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Abstract

Pointwise growth estimates for the n-dimensional (n > 2) half space Dirichlet and
Neumann Poisson integrals are given. They are shown to be the best estimates
possible within the class of functions for which the integrals converge. A modified
Poisson kernel can be formed by subtracting M terms from the Fourier expansion (in
Gegenbauer polynomials) of the Poisson kernel. With Dirichlet data, the resulting
modified Poisson integral satisfies u(z) = o(|z|M+!sec*! §) (z — oo,z, > 0) where
8 is the angle between z and the normal to the half space z, = 0. Here the data is
f:R™! 5 R and satisfies [pn [f(¥)|(Jy/¥*™ + 1)"*dy < oo. Thus, a convergent
modified Poisson integral can be defined for any polynomial data. Similar estimates
are obtained for the half space Neumann problem and for A-harmonic functions in
a half space. The modified kernels of Finkelstein and Scheinberg (1975) are used to
write modified Poisson integrals that give a classical solution to the half space Dirichlet
problem for any continuous data. Growth estimates are obtained for these solutions.
When n = 2 the Neumann kernel is logarithmic and different estimates are obtained.
A key feature of all the above solutions is that they can have angular and radial blow-
up as z approaches the boundary at infinity. When f.._, [f(¥)|(lyl* + 1)dy < oo for
some p > 0 a similar type of modified kernel is used to give the asymptotic expansion
of the Poisson integral as |z] — oo. Using the Henstock—Kurzweil integral, growth

estimates for conditionally convergent Poisson integrals are also given.

A Phragmén-Lindelof principle that takes into account the above angular blow-
up is proved. This is done by means of barriers on cusped sub-domains of the half
space. This gives an extension of the Phragmén-Lindelof principles of Wolf (1939)
and Yoshida (1981) and leads to a uniqueness theorem. Uniqueness is also proven

directly using a spherical harmonics expansion.
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Chapter 1

Introduction

1.1 Overview

It will first be necessary to introduce some notation. For z in the half space I, =

{z € R"z, > 0} (n > 2) let y € R™! be identified with the projection of z onto
the hyperplane z, = 0, which will be denoted as JIL,. Let 8 be the angle between
z and é,, ie, z, = [z|cosb, |y| = |z|sinf and 0 < 6 < /2 when z € II,. We

n-1

will write z = Zyiéi + Zné, where é; is the i*P unit coordinate vector and é, is
normal to JIL,. ifllnit vectors will be denoted with a caret, z = z/|z| for z # 0. Let
B.(a) be the open ball in R*~! with centre a € R®! and radius r > 0. It’s surface
element is written d S,,_;. When a = 0 we write B,. The volume of the unit n-ball is
wyp = 72 /T(1+n/2). When integrating over regions in R™! the integration variable
is written y’ and the angle between y’ and y (for fixed y) is . When n = 2, we take
¢’ = 0 or 7 according as y’ and z, are on the same or opposite side of the origin.

Equivalently, cos 8’ = sgn(x; y')-
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Of central importance will be the boundary value problem

v € C}(IL,) N C%(IL}) (1.1)
Au=0, zeIl, (1.2)
u=f, =ze€dll, (1.3)

for Laplace’s equation (A = 8%/0z3 + --- + 82/0z2). Here f is a given continuous
function on R™*. Such a function u is called a classical solution, i.e., u is twice
continuously differentiable in the open half space and continuous in its closure. The

Poisson kernel is

K(z,y') = :wﬁ Iy’ —yl*+22]"% (1.4)

n

and defines the Dirichlet Poisson integral
Difle) = [ K@) f4) . (15)

When the normal derivative of u is specified on the boundary we have the Neumann
problem, i.e., replace (1.3) with

du
'a—z;=-f, z eIl

and demand that v € C3(Il,) N C*(IL,).

This thesis arose from the following observation. There are various proofs in the
literature that if f is bounded and continuous then the Poisson integral of f is the
unique bounded solution to the half space problem (1.1)-(1.3) (see [7]). However, f
need not be bounded for the Poisson integral to exist. The Poisson integral exists on
I if

|f(y')| dy’
‘/l;n-_l I!I'ITI— < oo. (1.6)

See [23]. But then D[f] need not be bounded. This leads to the questions

(i) Under (1.6) what is the best estimate for the growth of the Poisson integral?
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(i) What condition will ensure uniqueness for the half space problem and be com-

patible with the Poisson integral?

(iii) What type of solutions does the half space problem admit when (1.6) fails?

In order for (1.1)—(1.3) to have a unique solution, some additional condition on u
is necessary. Otherwise, any harmonic function that vanishes when z, = 0 could be
added to u. For example, v(z) = z, is harmonic and vanishes on 9IL,. So if u is a
solution of (1.1)—(1.3) then u + cv is as well, for any constant c. And, if f is an entire
function of the complex variable z = z; 4 iz2 with only real coefficients in its power
series, then v(z,,z;) = Im[f(2)] is harmonic in R? and is zero on z; = 0. Witness

f(z) = 22 exp(—z?). Then
v(z1,22) = exp(z2 — 22)[(23 — z}) sin(2z,22) — 22,12 cos(221Z;))

and Av =0, v(z,,0) =0.

To ensure uniqueness, a growth condition is applied that will rule out examples like
the two functions v in the preceding paragraph, although it need not be so stringent as
to demand that u be bounded. A classical result is that if »(z) = o([z|) as |z| = oo,
i.e., u(z)/|z| = 0, then any solution to (1.1)—(1.3) is unique. See [55]. It is shown in
Proposition 2.2.1 that if f is bounded then D[f] is bounded and if f has compact sup-
port then D[f](z) = O(z,|z|™) (z € IL}, |z| = o), i.e., |z|*D[f](z)/zx is bounded.
However, under (1.6) the best estimate is in general D[f](z) = o(|z| sec*~? 8) (Corol-
lary 2.2.1). The order relation is interpreted as u(r)/r — 0 as r — oo where u(r)
is the supremum of |D[f](z)|cos” 18 over z € II;, |z| = r, i.e., uniform in £ as
|z] = oo. This growth estimate predicts that [z|~?D[f](z) — 0 uniformly in Z as
|z] = 00 if 0 < 8 < 6y < w/2 (z in a closed cone intersecting II, at {0}). Baut,
|z}*D[f](z) can be unbounded if # — 7/2 as |z] — oo. It will be proven that the
growth condition is sharp, using the following new definition. A growth condition w
is said to be sharp if given any function ¥ = o(w) and any sequence {z} € I, with
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|z6)] — oo, we can find data f so that the solution corresponding to f is not little oh
of ¥ on this sequence (see Definition 3.3.1 and Theorem 3.3.1 below). Much of the
literature on the half space problem deals with data f that is bounded, of compact
support or in an P space (see [62]). We will drop these assumptions and be guided
by the integrability condition (1.6).

Uniqueness for the half space problem follows immediately from a Phragmén-
Lindelof Principle, see Corollary 7.3.1. A classical result is that if u is subharmonic
inl; (Az>0),z<0on 6]1,.andu(z)=o([z|) (z € I, |£] = oo) then u < 0
in II;. In Chapter 7 we will prove a more general version of this Phragmén-Lindel6f
Principle that is compatible with the growth condition D[f](z) = o(|z|" ! sec™ ! 4).
This will give a uniqueness theorem for (1.1)-(1.3) under a growth condition that
allows u to be the Poisson integral of any fanction for which (1.6) holds.

Another uniqueness theorem, also in accord with u(z) = o(|z|*!sec™ 1), is
proven in Chapter 6 by expanding a harmonic function in spherical harmonics.
The Poisson kernel has the expansion

K(z,y) = if: Z IJ,TLMC,','!’(sinﬂcos ) 1.7)
m=0

where C2/% is a Gegenbauer polynomial. The series converges for |y'| > |z|. Each
term in the series is a harmonic function of z. If (1.6) fails but fp._. [F(y')|(Jy'I**" +
1)~! dy’ converges for a positive integer M then the Poisson integral can be modified
by subtracting the first M terms in (1.7) from K(z,y’). The new kernel, Kn(z,y’),
will be of order |y'|~ M+ as |y’| = oo and can be used to define a solution to (1.1)-
(1.3) when f satisfies the weaker integral condition above. This new Poisson integral
has growth of|z|M*!sec™*@). This is proven sharp in Theorem 3.3.1. The proof
is complicated because Kjs is no longer positive like K was. It is thus difficult to
obtain a lower bound on the modified Poisson integral. A crucial tool in the proof is

an integral representation of the modified kernel, see Lemma 3.3.1. A type of Riesz
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kernel,
-a
K(vzy) = [y -y +23] (L8)

is used to write solutions to both the Dirichlet and Neumann problems. This kernel
is modified as above and estimates are obtained in Theorem 3.3.1.

In Chapter 4, various other results on modified kernels are collected.

The expansion

, 23» ot /lm R ,
K(z,y)=_— .,.go ll![,"l'“C,“,,/z(smacosﬂ) (1.9)

(valid for |z| > |y]) is used to define a modified kernel that gives asymptotic expan-
sions of D[f] as |#| — oo in the case that f...|f(¥)|(¥'M* +1)dy’ < oo for a
positive integer M.

It is shown that if f >0 and [5., F(¥')(Jy'|* + 1)~ dy’ = +oo then there are no
positive solutions to (1.1)-(1.3). Note that the modified kernels that can be used to
solve (1.1)—(1.3) are not positive.

Modified Neumann integrals are represented as integrals over modified Dirichlet
integrals. A relation of this type is of particular importance in determining the growth

in the n = 2 Neumann case.

M. Finkelstein and S. Scheinberg have shown in [22] that for the modified Poisson
kernel with M terms removed, if M is allowed to be a function of the integration
variable y’ then for any continuous function f it is possible to construct a modified
Poisson integral for which f5._, Kary)(z,¥’) f(¥’) dy’ is a classical solution of (1.1)-
(1.3). If M(y’) is a given function taking values in the natural numbers then this
defines an integral condition that determines a class of functions for which the mod-
ified Poisson integral with M(y’) is convergent. We establish a growth condition for
such solutions. And, if f is a given function, we give an algorithm for choosing M so
that the modified Poisson integral of f converges. See §4.3.
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When n = 2, a solution of the half plane Neumann problem is

we) =5 [ f(E)log (€~ 26rcosd+r7) de. (1.10)

f=-o0
Here polar coordinates are used, 2;, = rcos¢ and z; = rsing, with 0 < ¢ < =.
The function u satisfies Ax = 0 for z; > 0 and —8u/3z; = f when z, = 0. The
integrability condition is now

/ F(©)llog(€? +2) d¢ < oo

g=~co
Under this condition we have the surprising estimate u(z) = o(log(1—| cos ¢|)/log ),
Theorem 5.4.1. This is for an odd function. When f is not odd a term proportional
to log r must be added. In order to obtain this estimate, the Neumann solution is
written as an integral over a Dirichlet solution. Modified kernels are developed in this

case as well.

The Lebesgue integral has powerful advantages over the Riemann integral. It can
integrate unbounded, nowhere continnous functions over unbounded domains. And,
if each f, is a measurable function then so are limsup f, and liminf f, (and lim f, if
this exists). However, Lebesgue integrals must be absolutely convergent. This poses
a problem for the Poisson integral. For example, if n = 2 and f(£) = ¢ sin € then the
Poisson integral of | f| diverges but the Poisson integral of f exists as a conditionally
convergent improper Riemann integral (and is calculated in §8.2). If f is changed
to zero on the rational numbers then even this last integral fails to converge. These
problems are overcome by using the Henstock-Kurzweil integral (also called gauge or
generalised Riemann integral). This integral reduces to the Lebesgue integral in the
case of absolute convergence but allows conditional convergence. We can then handle
the Dirichlet problem with data for which the Riemann or Lebesgue integral does not
exist. Without absolute convergence, a replacement for the Dominated Convergence

Theorem must be found. This is done for the case at hand. A strengthened version
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of Abel’s test for uniform convergence is stated but not proved. The growth estimate
for the Poisson integral with conditional convergence turns out to be the same as the
estimate for the Lebesgue integral.

It is not clear when the first reference to the half space problem was. Certainly
such potential integrals were known to George Green by the 1820’s, [31]. The jus-
tification for studying such an ancient problem that has been tackled by so many
mathematicians is that, first of all, the half space Laplace equation is not fully under-
stood. We present new growth estimates for solutions given by the Poisson integral,
the modified Poisson integral and conditionally convergent integrals. In addition,
these estimates are proved to be the best possible in a strong sense. Second, this is
an important equation. Understanding Laplace’s equation and other equations with
constant coefficients is a crucial first step in understanding more general elliptic equa-
tions. A typical method in the study of such equations is to “freeze” the coeflicients
at a point and study the corresponding constant coeflicient equation at that point.
Thus, for elliptic equations we must have a solid theory of coustant coefficient equa-
tions. As far as nonlinear equations go, consider the remarks of N. V. Krylov at the
1986 International Congress ([43], p.1103),

One can say that a good linear theory breeds a good nonlinear theory in
contradiction with the known claim that “linearity breeds contempt.”

Many of the results here are in the papers [61] and [64] but as these arose from
this thesis no particular reference will be made to them.
1.2 Mathematical preliminaries

All of the integrals appearing here are Lebesgue integrals, except in Chapter 8 where
the Henstock—Kurzweil integral is used. We will distinguish between measurable and
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integrable functions. If E C R" is a (Lebesgue) measurable set and the function f
maps E to the extended real numbers then f is measurable if the set {z € E | f(z) >
a} is measurable for each a € R. The fanction f is integrable over E if [ |f| < oo.
And, f is locally integrable if f, |f| < oo for each compact set A C E. Thus, the
function z + z~! is measurable and locally integrable over the interval (0,1) but not
integrable over (0, 1). Note that for a function to be integrable, it is required that the
positive and negative parts be separately integrable, i.e., the Lebesgue integral does
not admit conditional convergence.

When integrating functions that depend on a parameter, it will be important
to know when it is valid to interchange limit and integration operations. For the
Lebesgue integral the most useful convergence test is Lebesgue's Dominated Conver-

gence Theorem.

Dominated Convergence Theorem Suppose {fm} is a sequence of measurable
functions on the measurable set E and g is integrable over E such that |fn(z)| < g(z)
on E. If fu(z) = f(z) almost everywhere on E then

lim. ! fo= B[ f. (111)

See, for example, [58].

For Laplace’s equation (and elliptic differential equations as a whole), the well-
posed problems are the boundary value problems, where some combination of the
function and its normal derivative are specified on the boundary. There are three
basic types of boundary. The theory of elliptic differential equations in bounded
domains is a mature field. For existence proofs within the space of Holder continuous
functions, see [27] or [42]. A second type of boundary is that of the exterior problem,
for which the domain has compact complement. Specifying the value of the solution
at infinity gives uniqueness. Integral equation methods can be used to reduce the
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problem to the finite boundary. In the case of Laplace’s equation for n > 3, it is
known that bounded harmonic functions defined in an exterior region have a limit at
infinity. Thus, assigning this limit gives uniqueness and letting the limit value run
through R gives all solutions satisfying the inner boundary condition ([53]). We will be
concerned with the case of an unbounded region whose boundary is also unbounded.

The archetype example is the half space, which we will study exclusively.

The following properties of Laplace’s equation will be important. Most of them
have some sort of analogue in the case of an elliptic equation. General references are

[7] and [27].

Mean value property If « is continuous in a domain Q C R" then u is harmonic if

and only if u satisfies the mean value property,

u(z) = udSp—y, (1.12)

nw, R»-1
8Ba(2)

for every ball Bg(z) properly contained in .

Schwarz reflection principle Suppose £ C R" is symmetric about JIL,. If u is
continuous on  NII,, u is harmonic on R NII; and v = 0 on QN JIL,, then the odd

extension of u across OIl,; is harmonic in §.

Weak maximum principle Suppose Au > 0 in a bounded domain  and that
u € C¥(I1,) N C°(I1;). Then the maximum of  is achieved on 32,

sup 4 = supu. (1.13)
o an

If » is not assumed to be continuous in § then the conclusion is

supu = limsup u. (1.14)
(1] zeEN, 280

This is also true for elliptic operators. See [27].
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Laplace’s equation admits the fundamental solution

E(z) = { ""_'?llm'zlh’ "> (1.15)
cloglz], n=2.

It satisfies AE(z — ') = 0(z — z’') when z and z’ are in R™ and § is the Dirac

distribution. A Green function can be defined for the half space Dirichlet problem by

taking an odd reflection across 4Il;, G(z,z’) = E(z,z') — E(z,z"), where z* is the

reflection of z across z, = 0. f z = y + z,é, then z* = y — z,é, where y - é, = 0.

Write z’' = y’ + z/,é, as above. The Poisson integral is now given by

P = ./ R ')aGa(:z) W (1.16)
Rn-l
= m /; ”_lf(y')[ly’-yl’+z§]“%dy’. (1.17)

For the Neumann problem with —9u/0z, = f on IIl,, take G(z,z') = E(z,z') +
E(z,z") and then

Nfie) = - [ f0)6Ey) (L18)
Rn—l
= f(y')[ly’—yl’+2,’.]_‘n_’ﬂdy’- (1.19)

(n - 2)7“"", Rn-1

These formulas can also be derived by taking an (n — 1)-fold Fourier transform in
the variables orthogonal to é,.

Gamma function For the Gamma function we will need Stirling’s approximation

I(z) = ‘/% e*llos=-1) [1 +0 (-:-)] as z — oo. (1.20)

For fixed a and b, this leads to

{:E—::—g =z*t [1 +0 (%)] as z — 0o. (1.21)



Chapter 2

The half space Dirichlet problem

2.1 The Poisson integral

The classical half space Dirichlet problem is to find u satisfying

v € C*(IL,) n C%(IL,) (2.1)
Au=0, zell, (2.2)
u=f, zcdl, (2.3)

where f is a given continuous function on R"~!. The Dirichlet Poisson integral is
defined by

Difie) = [ K@) ) (24)
where the Poisson kernel is
N2 2 21~}
K(zvy) - nw, [Iy yl + zn] - (2'5)
The integral will exist if
|f(v')] dy’
—— < 0. 2.6
/n»~n P+l =% (2.6)

11
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Since the kernel satisfies the mean value property for harmonic functions, v = D[f]
will then define a harmonic fanction in II,. If f is continuous then v € C*(IL) N
C°(I1,) and satisfies (2.3) ([7], Exexcise 16 of Chapter 7 and [23]).

It is a classical result that if © = o(|z|) then any solution to (2.1)—(2.3) is unique
([24]). However, we show below that the Poisson integral behaves as o(|z|sec™! )
when |z] = oo in II; (recall the notation z, = |z|[cos¥, |y] = sinf). It is thus
desirable to have a uniqueness theorem that allows this behaviour. Such a theorem

will be presented in Chapters 6 and 7.

2.2 Growth estimates

We first present some basic estimates for D[f].

Proposition 2.2.1 (i) If f is bounded and measurable then D[f] is bounded.
(i) If f € L' with compact support then D[f](z) = O(za|z|™) (z € I, |2] — o).

Proof: (i) It is shown in [7] (p. 128) that D[1](z) = 1. Therefore, if [f(y)| < M then
|DIfl(z)| < M D(1)(z) = M. '

(if) Suppose the support of f is contained in Bgr. Let |z| > 2R. Then
2z, |f () dy’
P < o= [ e
2z, / |£(v) dy’
nwn Jp, (I2] = [y

2, [ |f)dy’
= om /; (=] - B)"

2z, |2| " / '
< L i dy. &
< — . [f(¥)ldy

<

In what follows, we will be primarily concerned with data f satisfying (2.6), or

subsequent convergence conditions, with no assumption on the boundedness or sap-

port of f.
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When u is a solution of (2.2), (2.3), various estimates on the L? norm of %z and of
%., (where u.,(y) = u(z)) are given in [7] and [13]. However, as we are concerned with
pointwise behaviour of u we give the following estimate of [u|. (See [7] for estimates

when u is in a harmonic Hardy space.)

Theorem 2.2.1 Leta>1,0<b<a+n—1lora=1,0<b<n. If fis measurable
such that fo _|f(¥)°(Iy'l° +1)7dy’ < co then (2.6) holds and u = D[f] satisfies
u = of|z|E"tN/6 gec(n-1)/a g) (z € I, [2| = ).

Proof: Let 0 < a < n/2 and p, ¢ Hélder conjugate exponents (p~* +q' =1, p > 1).
The Poisson kernel, (2.5), may be written

n 2& —_at -
K(z,¥) = nwn(l sind cos ')
(Iv'l = 1=I)? el Tt g2 g 2] -(2-a)
[ dayfal] i — o+ 22 @)
2°*1z,(1 + sin 6)* ~2a s ~(3-a)
S ey~ W+l [ly' —yi* + =) :
(2.8)
Let |z] > 1. For p > 1, a < n/2, the Holder inequality gives
, , 22¢+1 2am1 L
[ K@l < Z—falsecr-6 2} I}, (2.9)
Rn-1 Ny,
where
4 pdyl
I = / 1 (y')] 2.10
S e W1+ (oD (210}
If)IP dy’
< 2 / 2.11
Rent WP + 2157 21
and

L= / Iy -y +22] G ay'. (2.12)
Rn-l
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To evaluate I3, introduce spherical coordinates centred on y, i.e., p = |y — y|. Then

Iz = / [pz +£ﬂ-q(¥—°) / dS,..g dp
o= aB,

= (n —-— ]_)(,;“_“1 / [Pz + z:]‘ﬂ("il‘a) pn—z dp
p=0

(» = Duna w200 [[g2pypaei-eprigp. (213)
p=0

This integral converges whenever n — g(n —2a) <lor2ap <p+n—1.

When p =1 (a < n/2), (2.9) holds with I¥ replaced by

s [y - ol +2]] TE) = g,
And, if a =n/2, (2.9) holds with I, = 1.

Now, put a = p, b = 2ap. Hence, (2.6) holds and v = D[f] exists on II,.
Furthermore, by dominated convergence and (2.11), I; — 0 as |z| = co. The theorem
follows by putting (2.11) and (2.13) into (2.9). @&

Corollary 2.2.1 If (2.6) holds, then u = D[f](z) = o(|z|sec™! §).

Proof- Leta=1,b=n. B

Despite the crude appearance of the estimate in (2.8), it will be shown in Chapter 3
(Theorem 3.3.1) that for a = 1 this leads to the best estimate possible for u = D[f]
under (2.6).

Remark 2.2.1 (i) Corollary 2.2.1 with » = 2 was obtained by F. Wolf [65] and
D. Siegel [60].
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(i) f e > 1 and f € L* then the Holder inequality shows that (2.6) holds and
[2(z)| < cnallfllsza™ . The above constant is given in terms of the beta function,

_ 2 [r=1Dwpyfn—1 n 1 1-%
cn,c'-wﬂ[ 5 B( 3 ,2(a_1)+2)] whena>1

and cp; = 2/(nw,). It is obtained by evalnating (2.13) in the case a = 0 ([19], 1.5.2).
In (7], Theorem 7.11, an inequality of the same form is derived by a different method.
(iii) The estimate in the above corollary may not hold if we allow principal value
integrals. For example, if f is odd and » = 2 then

_ma, [ FO)dE
D[fl(z1,z2) = - 'P: / oz i (2.14)
_ T £(€) ¢
= T / E-=)+2 (2.15)
N

. 1 1
«13"—%6/0 @) [(z B I S e

;| & @10

_ 4z1=l=z ]o f(§)€d . (2.17)
g (€ — z1)? + 23][(€ + £1)? + 23]

Use polar coordinates z, = rcos ¢, zo = rsin¢, where r = |z|] and 0 < ¢ < = for

z € IT;. This last integral will exist on IL; if 7 |f(€)[(€® + 1)1 d§ < oo. Under

this integrability condition, the same method as in the proof of Theorem 2.2.1 gives

D[f)(z) = o(r? cos pcsc ¢). Indeed, if f(£) = £ then the residue calculus applied to

(2.17) readily shows that D[f](z1,Z3) = z1 # o(r csc ¢).

When f is majorised by a radial function a better estimate of |u| is possible.

Proposition 2.2.2 If |f(y)] < F(ly)) for F such that | F(p)(p* + 1) dp < oo
then u(z) = D[f](z) = o(|z|sech). =



CHAPTER 2. THE HALF SPACE DIRICHLET PROBLEM 16

Proof: From (2.7) and (2.8) (and the binomial theorem),

23+ . -2/ rin rin—21.12y~1
K(z,) S S a1 ~sind cos ) H(ly'T" + v/ la) .
We then have o
25tz [ F(p)dp
lu(z)| < ™ 2tz Y
=0
where
Is = (1 - sin0 Ccos 0’)-% dS,._z.

By
The integral I is singular when § = n/2 (z, = 0). To determine the nature of
the singularity we use the method of spherical means (38] to write

L= (n—2)wns / (1 +sin 8 cos )~ sin™° $dg.
‘:o

Using the substitution 1-2¢ = cos ¢, an integral representation of the hypergeometric
function and quadratic and linear transformations ([19], 2.12.1, 2.11.4, 2.9.2) we have
_ 2y/% wn—2L'(2) 2 Fi1(a, b; c; sin’ 0)

Iy =
* I'(3 — 1) cos?6 ’

wherea=nf4—1,b=n/4—-1/2 and ¢ =n/2 —1/2. The hypergeometric function,

2Fy, (with these a, b, c) is bounded above (and below) by positive constants so that

Adlzl [ F(p)dp

<
'u(z)l -_— coso p2+|zl2!
p=0

where A, is a positive constant. As |z| — co we have u(z) = o(|z|secf). @
The radial term in o(|z| sec™™! 8) and o |z| sec 8) of Proposition 2.2.2 and Corollary

2.2.1 cannot be replaced by any positive function that is little ok of |z|. This will be
proved with the help of the following lemma.

Lemma 2.2.1 Given a function v that is bounded and positive on [0, co) with limit
zero at infinity, there ezists ¥ € C*([0, 00)) such that lgn ¥U(r) =0, ¥ < 0 and
¥(r) > ¥(r) forr > 0.
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Proof: Let ¥1(r) = sup ¥(t). Then ¢, is positive, decreasing, bounded and majorises
¥ e alr) 296,

Let ¥3(r) = ¥1([r]) where [r] is the integer part of ». Then ¥, is a decreasing
step function with steps only at the positive integers.

We can now find a C' majorant by using a cubic spline. For each n > 1, we
require p,(z) = anz® + b,z? + coz + d,, to satisfy

pa(n) =¥2(n—1)  pua(n+1) = 13(n)

po(n) =0=p,(n+1).
This gives the system
Pan—1) = aun®+bn? +cun+d,

Pa(n) = aa(n+1)P°+ba(n+ 1)’ +ca(n+1)+d,
0

3a,n? + 2b.n + ¢,
0 = 3an(n+1)%>+2b(n+1)+cn.

For a solution, we need

n3

3n? 2n 1 0
(r+1)* (r+1) n+1 1
3n+1)? 2(n+1) 1 O

n? n 1

Let

zz zz :Bz
A-(zl) Zz3,Z3, 34) =
33 33 za

-

= (21— z2)(z1 — 23)(21 — z4) (72 — Z3)(22 — Z4)(z2 — 24)
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be a Vandermonde determinant. Then, with subscripts on A denoting partial differ-
entiation, Az4(s,s,t,t) = (s —¢)* and A = Az4(n,n,n + 1,n + 1) = 1. Hence, we
can solve for a,, bn, ., d, uniquely. Since cubic polynomials have at most one point
of inflection we know that p,(t) < 0for n <t < n+ 1. We can now let ¥(r) = p,(r)
forl1<n <r<n+1land ¥(r) = ¢(r) for 0 < r < 1. Thus, ¥ is the required

majorant. W

Proposition 2.2.3 Let v be a bounded positive function on [0, o) that tends to zero
at infinity. For any fired 0 < Oy < 7 /2 there is a function f satisfying (2.6) such that
D[fl(z) = |zl¥(|z|) for all z € I, with 0 <8 < b,.

Proof: By Lemma 2.2.1 we can assume ¥ € C'([0,00)) and 9 is decreasing. Let
f(y) = —calyl*¥'(ly]) where ¢, = 2" 1 secynw,/((n — 1)wn-1). Then (2.6) reduces

to
[ 0*%'(p)p™2 dp .,
—f o < —-/¢(p)dp
p=0 p=0
= 9(0)
< ©00.
And,

2 [ Pv () dp
D[f](z) Z nwncn‘/;a‘d‘l’n-lp:[ (p+|z|)"’

v

_2lz{cosfea(n = Yuns ]" P (p)p" dp

Wy, (p + ="
r=lz|

v

~lel [ #(o)dp
p=l=z|

= [zl¥(jz]). &
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Hence, in any closed cone in IL, with 0 < 8 < 6, < 7/2 we can have D[f](z) [z|™*
tend to zero arbitrarily slowly as [z] & oo. However, we cannot have 6y = 7/2 in

Proposition 2.2.3. For example,

9(y) = if?([g’llﬁ)- = o(ly|) as [y| = oo

but D[g](z) diverges. Since g is continuous, in order for there to be a function f such
that D[f](z) > g(z) for all z in TI, we would need f(y) > g(y) for all y € R*. But
then the integral in (2.6) would diverge.

The following example will show that the estimate on the Poisson integral in
the above corollary is sharp in the sense that if we try to use the growth condition
D[f](z) = o(|z|® sec” 8) then this may fail to be true for some f satisfying the inte-
grability condition (2.6) f 8+ <n,v >0, or B+ 7 =n, v <0. Define continuous
data, f, to be zero except on a sequence of balls along the z,-axis,

f{(1~Lly—aitil), y€ Br(aty) CR™
fly)= '

0, otherwise,

where f;, a; and r; are sequences of positive real numbers such that a; - oo, r; < 1
and the B, (a:é,) are disjoint. If © = D[f] then (2.6) is equivalent to convergence of

the series

®© £ n-1
YA (2.18)
i=1 i '

a

We can write u as the superposition of translates of the solution to the normalised

problem

Ai=0, =zell, (2.19)

1-lyl, z€ B, CR™!
= o ! (2.20)

0; z,=0, z & B;.
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Thus, since % >0,

u(z) = g; £ (” ‘r""") (2.21)
> fa (2222). (2.22)

Consider the sequence 2™ = a,,é; +rmé,. We now show that f 8+ < n, v > 0,
or B+9 =mn, v <0, then u(z)|z|™® cos”8 4 0 along this sequence. Put a; = &,
f: = €™, r; =172, Then the series (2.18) converges and yet

(R)\Y o ( () T £ T
(z" ) t‘(z ) 2 Tm fm u(eﬂ) (2.23)
SBF = (ak, 4 r2) BT
_ memi(s,)
= (ezm + m-—()(p-py)/z
A0 as m — oo. (2.25)

(2.24)

Taking ¥(y) = l?g'('i}l,'ﬁ-z_) in Proposition 2.2.3 shows that we need § > 1. However,
the above example does not rule out a growth condition such as o(|z|*sec”~248). In
the next chapter we will prove that the estimate in o(|z]|sec™! #) is indeed the best

possible.



Chapter 3

Modified kernels

3.1 Kernels for the half space

For A >0 (A € R) and ¢ € R™! define the kernel
—-A
K(\z,y) = Iy -yl +22] . (31)

The Poisson integrals for the half space problem Au =0 (z € I1,.) with Dirichlet and
Neumann data f: R"! — R on JI1, are, respectively,
DIfie) = anzn [ FWIK (ioy) & (n22) (32)
Rn—l

and

Nifle) =22 [ SR (Rey) b (029) (33)
R

n—1

Here a,, = 2/(nw,) and w, = *#*/23/T'(1 + n/2) is the volume of the unit n-ball .
When n =2, N has a logarithmic kernel. This case is dealt with in Chapter 5.

The functions defined by (3.2) and (3.3) will be harmonic in I, if

LF)ldy’

ly'[** +1
Rnr-1

< oo (3.4)

21
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with A = n/2 and (» — 2)/2, respectively ([23], Theorem 6). If f is continuous then
convergence of the appropriate integral in (3.4) is sufficient for (3.2) or (3.3) to be a
classical solution of the respective Dirichlet or Neumann problem on IL; (cf. Corollary
3.3.1, 3.3.2). Notice that since I, is unbounded the integral of f over R™~! need not
vanish for N[f] to be a solution of the Neumann problem. If Q is a bounded region
with C* boundary and u is harmonic in Q with normal derivative equal to f on 9Q
then the Divergence Theorem gives [, f = 0. See, for example, [27]. However, the

Divergence Theorem does not apply to the unbounded region R™-1.
When the integral in (3.4) diverges but

d ’
[Jﬁ,%ii <o (3.5)
Rn—-1

for a positive integer M we can use the modified kernel

M-1 | _im
Ku(A z,y) = K\ z,¥) — E Iylr':'l“"” C2 (sin 8 cos §') (3.6)
m=0

(defined for |y| > 0) where 0 < #' < = is the angle between y and ¢/, i.e., y-y' =
[v’| [z|sinf@cos# and Ko = K. f y =0 or y’ = 0 we take §' = 7 /2.

In (3.6) the first M terms of the asymptotic expansion of K in inverse powers of
|y’| are removed. The coefficients are in terms of Gegenbauer polynomials, C), most

of whose properties used herein are derived in [63].

When n = 2, we take & = 0 or m according as y’ and z, are on the same or
opposite side of the origin. Equivalently, cos# = sgn(x;y’). Or, we may write
z; =rcos@d, T3 = rsing, where r = [z| and 0 < ¢ < x for z € II. And then, using
Cr(cos ¢) = sin[(m + 1)¢] csc 4,

KM(la 1, T2, E) = [(5 - zl)z + 3;] Z Em+811:l(nn;¢) (37)

for the modified Dirichlet kernel. This formula follows by taking the imaginary part
of the geometric series Y ., s™c™ (3,6 € R).
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When A = 1/2, as for n = 3 in the Neumann case, the expansion is in Legendre
polynomials via C.f;/ 2(t) = Pn(t).

Let w: R*! — [0, 1] be continuous so that w(y) =0for0 < Jy| <land w(y) =1
for |y| > 2. Define modified Dirichlet and Neumann integrals

Dalf|(z) = anzn / @)K (2,29) dy (n22) (3.8)
Rn-1

Nulfle) = 222 [ f6) K (5229) & (n23). (3.9)
Rr-1

Then u(z) = Durfwf](z) + D(L — w)f](2) and v(z) = Nagfwfl(z) + N[(1 — w)f](=)
are respective solutions of the classical half space Dirichlet and Neumann problems.
The Dirichlet version of Kjs appears in (5], [61] and: [67], with inspiration from [22].
The Neumann version is discussed by Gardiner ([25]) and Armitage ([6]). Modified
kernels with radial data are considered in [52]. When n = 2, we write

Dulfllere) =2 [ 56 Kic(3,21,22,) . (3.10)
§=~co

In this chapter we give growth estimates for © and v under (3.5) and prove they
are sharp. This is done in Theorem 3.3.1 by first defining

Fudfi@) = [ f0)Ku(hz9)dy (3.11)
vi>1
and proving that
Fum{fl(z) = o(|z|M sec**8) as |z|] + o0 with z elIl,. (3.12)

The order relation is interpreted as u(r)/r — 0 as r — oo where u(r) is the supremum
of | Fy m[f](z)| cos** @ over z € I, |z| = r. A growth condition w is said to be sharp if
given any function ¥ = o(w) and any sequence {z;} € IL, with |z;| =& oo, we can find
data f so that the solution corresponding to f is not little ok of ¥ on this sequence
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(see Definition 3.3.1 below). The sharpness proof is complicated by the fact that the
modified kernels are not of one sign. For each z;, regions in R*! are determined
where the kernel is of one sign. Data is then chosen so that the contribution from
integrating where the sign of the kernel is not known is cancelled out and the main
contribution comes from integrating over a neighbourhood of the singularity of the
kernel. This proof makes up a substantial portion of the thesis. Note that condition
(3-5) is necessary and sufficient for F) a[f](z) to exist as a Lebesgue integral on IL,.
See Proposition 3.4.1 below.

3.2 First type of modified kernel

The expansion (3.6) arises from the generating fanction for Gegenbauer polynomials
((63], 4.7.23)

Q0
(1-2tz+2%)7> =) z2"CA(t), A>0, (3.13)
m=0
A " 2y-A .
where C,,(t) = mlgz—,;(l — 2tz + 2°%) . If -1 < ¢t < 1 the series converges
z=0

absolutely for [2] < 1 (the left side of (3.13) is singular at z = ¢ +iv/1 —¢2). The

majorisation and derivative formulas

ceiscam= (Pl S HEm g
oA =2CA8 @) (3.15)

are proved in [63] (4.7.3, 7.33.1, 4.7.14). Hence, the series in (3.13) converges if
|2| < 1, uniformly for —1 < £ < 1 and the same can be said for all of its derivatives
with respect to z and t. From the definition above and Fai di Bruno’s formula for
the m*® derivative of a composite function ([1], p. 823) it can be seen that CA(¢) is

a polynomial in ¢ of degree m. And,

Cit)=1, CNt)=2xt. (3.16)
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A proof of the following lemma is hinted at in [5], [25] and [67] by reference to
a more general result on axial polynomials in {44] (Theorem 2). However, we give a
simple direct proof.

Lemma 3.2.1 Form =0,1,2,3,... the functions h,(:!,,l(z) = zoz|™ Co/? (@) (n > 2)
and kP(z) = |2z|*CE/%(©) (n > 3) are homogeneous harmonic polynomials of
degree m + 1 and m, respectively, where © =sinfcosé'.

Proof: Using (3.13) we obtain the expansion of the fundamental solution of Laplace’s

equation

|z — 2" = Z |z,:i'+n., CEI(3-5), n>3. (3.17)

If 2’ 5 0 this series converges for |z| < |z'| and defines a harmonic function. Each
term is homogeneous in z of degree m and it is clear from (3.16) that the first two
terms are harmonic. Given z, take z’ such that |z/| > |z|. Differentiating termwise
in T gives

Ble—ofm=0= 30 DA (RS (18)

m=2

Each term A (|a=l"‘0',(: -2 2(5’:-5:’)) is homogeneous of degree m — 2, hence, by the
linear independence of homogeneous functions, Izl"‘C,(: =3/ ?(£-#') is harmonic on
R" for each m > 0. Every harmonic function can be uniquely written as a sum of
homogeneous harmonic polynomials so |z|™ C&~?/%(34') is a homogeneous harmonic

polynomial of degree m ([7], 1.26, 1.27).

Now set z, =0, then £-2' = y-y'/(|2| |¢|) = sin 0 §-§’ = ©. Hence, the Neumann
half space expansion is
L

[Iyt — yl3 + 3?‘] ~(n-2)/2 _ Z ’Imﬂ-z C(ﬁ—z)/z(e) n 2 3’ (3.19)
m=0
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and each term in the series is a homogeneous harmonic polynomial of degree m.

For the Dirichlet expansion differentiate (3.17) with respect to z,, use (3.15) and
(3.16), and set z, =0. Then forn >3

[ ylz + 31:] -nf2 __ E |z':||’:‘l"" m (6), (3.20)

each term in the series is a homogtmeous harmonic polynomial of degree m + 1.

When n = 2, use C} (cos ¢) sin[(m + 1)¢] csc¢. Then from (3.17) we recover

the trigonometric expansion
®© .
T2 ™ sin(mé)
E—z)p+22 Z e 0 TS €], (3.21)

m=1
where we have written r = [z[, and ¢ = 7/2 — # to conform with the usual polar
coordinates (z, = rcos @, z; = rsin ¢). Each r™ sin(m¢) is a homogeneous harmonic

polynomial of degreem. B

Remark 3.2.1 When z, = 0, A2 and 0h{Y/8z, vanish. The spherical harmonics
of degree m are the restriction of the homogeneous harmonic polynomials to the unit
sphere. If we write ;" (2) = h%2() and Y,{"(2) = b (2) then hD(z) = |z|~¥:"(2)
and h%)(z) = [z["Y,{"(2). The fanctions |z|~™+*-DY,0(2) and |z|-(m+-2Y, M (2)
are harmonic for |z| > 0 (interchange z and z’ in (3.17) and (3.18)).

3.3 A sharp growth estimate

In equation (2.8) of the proof of Theorem 2.2.1, the Poisson kernel was factored to
obtain a growth estimate for u(z) = D[f](z). This will be done again to derive a
growth estimate for F) as. As well, we will prove the estimate is sharp, i.e., the best
possible under (3.5). We will use a lemma and the following definition.

Definition 3.3.1 Let w: Iy — (0, 00) then w is @ sharp growth condition for Fy um
if
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() Fusdlfi®) = o(w(®)) (z € I, [z] - oo), for all f satisfying (3.5)

(ii) If ¥: I, = (0,00) and $(z) = o(w(z)) then for any sequence {z} in I such
that [£)| = oo as i — oo there ezists a continuous function f satisfying (3.5)
with lim Py adlf)(2)/$(29) # 0.

Note that it is essential that the limit condition on F) m[f]/¥ be checked on all paths
to infinity. For example, wy(z) = |z| and w;z(z) = [z|secd agree on all radial paths
but allow very different behaviour on paths approaching 911, .

Let

8.(0,() = MC(8) + (2A + M —1)C_,(8)¢ and © =sinfcos¥'.
(3.22)

Lemma 3.3.1 For M > 1, the modified kernel has the integral representation

l=l/lv'|
Ku(2,9) = KOz,y) [ (1-200+ ()80, ¢ dc.
¢=0 (3.23)

Proof. The Gegenbauer polynomials satisfy the recurrence relation

(m+2)Chia(t) —2(A +m +1)tCar,,(t) + (2A + m) CA(t) = 0.
(3.24)

Let Sur—1(z) = M1 zmCA(t). Following the method in [63] used to derive (3.13),
multiply (3.24) by z™*! and sum fromm =0tom =M - 1:

M+l M M
0 = ) mzmTICA(H) -2 ) ZmCAt) 2tz Y mzmIC(t)
m=2 m=1 m=1
M-1 M-~1
+2Xz ) 2mCA(t) + 22 Y mz™ICA(t)

m=0 m=1

= (1 -2tz + zz) Sy—1(2) = 2A(t - z)Su-1(2) + MZM-1C (¢)
-+ M-1)MC)_ (1), (3.25)
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using (3.24), C}(t) = 1 and C}(t) = 2A¢t. Solving the above differential equation with
the initial condition Sps—;1(0) =1, we obtain

Sua(z) = (1-2z+24)7 { f (1-2¢+ ) 7 [@A+ M - 1)¢MCo,(0)
¢=0

—MCM1Cy(8)] A + 1}- (3.26)

Letting z = [z[/|y’]| and £ =sin O cos #', (3.22) gives (3.23). B

When A is an integer the integrand in (3.23) is a polynomial and the integral can
be evaluated (without integrating by parts M times!) to a polynomial in |z]/|y’|-
This polynomial is of degree 2\ + M — 1 with no terms of degree less than M. The
coefficients are functions of ©. And, when n = 2 and A = 1, (3.23) is the modified
Dirichlet kernel and is written

rfé
_ 1 (M sin [(M + 1)¢] — (M + 1) sin(M¢)¢) (M1 d¢
Du(r,¢,§) = Iz _2€rcos¢+,.zc;/o‘ sin ¢
_ sin[(M +1)] (/€)™ — sin(M9) (r/)™* (3.27)

(@~ 2rcos g+ ) sin $
_ o (€sin [(M +1)¢] — rsin(Mg))
EHT(E — Zrcos g+ ) sing

This appears in [60].

(3.28)

Use of (3.23) allows us to prove

Theorem 3.3.1 Let A > 0 and f be measurable so that (3.5) holds for integer M > 0.
Then Fyum(f](z) = o (|z|™ sec®* §) (z € IT*, |z| = o0) and the order relation is sharp

in the above sense.

The proof is based on the idea of using “spikey” data as in the example at the
end of the previous chapter. Now, however, things are more complicated since the

modified kernel is not of one sign as was the original Poisson kernel. Regions must
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be found where the modified kernel is of one sign. The proof is quite long but has
been broken down into digestible pieces as detailed below. Of crucial importance is
the integral form of the modified kernel, given in Lemma 3.3.1.

Step I It is shown that F x[f] = o(|z|™ sec?* #) for any measurable function f sat-
isfying the integrability condition (3.5). In (3.23), the original kernel K is estimated
as was done in Theorem 2.2.1 (a = n/2). The function $(8, ¢) has a simple zero pre-
cisely where 1 —20¢ +(? vanishes, at © = { = 1. So the ratio $(6,¢)/+/1 —20C + (?
is bounded and the integrand in (3.23) is continuous for A > 1/2 and unbounded but
integrable when 0 < A < 1/2. In either case, elementary approximations lead to an
upper bound for |Kjs| on which the Dominated Convergence Theorem can be used
to prove (3.12).

Step II The order estimate o(|z| sec?* §) is now proven to be sharp, first for given
sequences which have a subsequence ) = a;é; + b;é, that stays bounded away from
the é; axis of JIL; by an angle 6y (0 < 8y < 7/2). On such a sequence the growth
condition reduces to o(|z|¥). A region Q; C R™! is found on which #_ and hence
K are of one sign. Due to the parity of C) about zero (C is even if m is even and
odd if m is odd) it follows that $_(0,() will be of one sign if |©| is small enough.
Since © = sin 6§ cos ¢, this is accomplished by restricting 6’ to lie near /2. And,
2, is taken as the region between two cones, both of which have an opening angle
of nearly 7/2 from the &, axis. For y’ € Q,, the combination (-1)M/213_(0,() is
strictly positive when ( > 0. (When z € R, the ceilingof z, [z],iszif z € Z
and is the next largest integer if z ¢ Z.) A lower bound on (—1)/21K)y, is now
obtained, equation (3.43). Data is then chosen that has support in Q; and is large
on a sequence of unit half balls along the é; axis. (This is an axis orthogonal to é;.
Something slightly different is done when n = 2.) Sharpness of the growth estimate
for this special type of sequence now follows from an argument similar to that in the
example at the end of Chapter 2.
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Step IIT Now considered are sequences with a subsequence () = a;é; + b;é,, that
approaches the boundary at the é; axis. Again, a region is found where ®_ is of one
sign. On the sequence, we have sin# — 1 so taking # near 0 makes © nearly equal to
1. In this case then, the kernel K(),z,y’) will be singular for |y’| = |z] and © — 1.
Hence, in (3.6) it will dominate the Gegenbauer terms subtracted from it. A region
Q; C R™1is defined to be the portion of a cone with |y’| > 1 and axis along é;.
This region is shown in Figure 3.1, drawn for n = 3 (so that y and y’ are in R?).
The opening angle ¢’ is taken small enough so that when y; > 0 and [y’| is near |z|,
|z|/A < |[¥’| < A|z]| for a constant A > 1, we have Ky > 0, i.e., near the singularity
of K. The modified kernel is also positive for large values of |y’| in Q, but changes
sign when y; > 0 and 1 < [¢'| < |z|/A (the region § in Figure 3.1). And, due to
the parity of C2, the modified kernel is one sign when y’ € Q; with y; < 0. Data is
chosen to have support within £, on a sequence of balls along the é, axis. When y;
is positive, f(y’) is positive and when y; is negative, f K¢ is positive. Contributions
to flv’l->l f(')Knm(\, z,y') dy’ are now known to be positive except when integrating
over 5. But f is chosen so that if the reflection of y’ across the y; = 0 hyperplane
is denoted y*, then if y, > 0 we have f(y*) = (—1)MA.f(y'), where Ay, > 1lis a
constant. The data is given a “super odd” or “super even” extension from y; > 0 to
yi <0, according as M is even or odd. This allows the contribution from integrating
over ,, where fK)s is not of one sign, to be balanced out by the contribution
from integrating over the reflection of Q. to y; < 0, where fKjs is positive. The
contribution to j}u’l>1 f(Y)Knm(A 2,9y') dy’ from integrating near the singularity of
Ky, ie., over §3, produces a lower bound for F, a[f] from which it follows that
Fum[fl(zD)/9(z®) 4 0, where ¥ and () are given in the theorem. Note that all
the  regions defined here depend on |z|.

Step IV The special case of sequences () = a;é, + b;é, considered in II and III is
shown to be applicable to general sequences in II,. Since 9B, is compact, for any

sequence r;; in IL,, the sequence {#;} has a limit point #o € 8B,. This direction is
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then rotated to correspond to y;.

Proof: Wiite s = |z|/]y’|. Throughout the proof di, ds, ... ,do will be positive con-
stants (depending on A and M).
Step I First suppose M > 1.

In [63] (4.7.27) for M > 2 we have

MCY(t) = CA+ M —1)tCi_,(t) — 22 (1 — £*) CiFL(2). (3.29)

With reference to (3.22) and (3.14) we can write

2-(6,¢)l  _ |22+ M ~1)(6 —()Cr_1(©) — 2)(1 - ©*)C3%,(9))]
V1-20(+¢ ©-02+(1-0?) (3.30)
<(2A+M-1) (2'\;;1'_41- 2) 422 ”;{1'_‘; 1)
22+ M
-a(3Y) (3:31)

for M > 2. f wedefine C2, =0 form =1,2,3,... and use the fact that C}(©) =1
and C(©) = 21O then (3.29) and (3.31) still hold when M = 1. Hence, (3.23) and

(3.31) give

L 4

|Eae(A, 2,9)| < dy K(\,z,y") M- [ (1—-20¢ +¢)*4de.  (3.32)

(=0

For M >0 and X > ; the integrand in (3.32) is continuous and |8] < 150 (1-26¢ +
¢?) < (1 + s)2. Therefore,

|Kae(0,2, )] < dh K(A,2,5') 6™ (14 ). (3.33)
The estimate

|K(A z,y')] < 2% sec® 0 (|| + |v'])™™ (3-34)



CHAPTER 3. MODIFIED KERNELS 32

is in (2.8) of the proof of Theorem 2.2.1. Hence,

|Kae(A,2,9)| < dy 8™ sec® 0|y’ (1 + s) 2. (3.35)
< dy M sec?* 0 |y~ (3.36)

Multiply (3.35) by |f(v’)| and integrate ¥’ € R™, Jy’| > 1. Letting [z| — oo, the

Dominated Convergence Theorem gives (3.12)

When 0 < A < ; the integrand in (3.32) can be singular. In this case

[a-zcroptas [n-ga

¢=0 ¢=0
1 j1-(1-5)3*, 0<s<1
2 1+(s—-1)*, s>1
< (%) min(s, s**). (3.37)
And,
|Km(, 2,y)| < ds 8™ sec® 0 (J2| + |y/'[) ™ (3.38)

50 (3.12) holds for 0 < A < } as well.

Step II We now prove sharpness. Given any sequence {z*} in II, with |z)] & oo
and any function ¥(z) = o (|z|™ sec** §) we find a continuous function f satisfying
(3.5) for which lim B u[f1(z)/9(2) # 0.

Note that (3.23) may be written

1
KieOh 2,) = KOv2,9) oM [ (1~ 200C + 5P 8_(0, ) (-1 k.
¢=0 (3.39)

Suppose first that {z(} has a subsequence () = a;é, + bié,, ¢ > 1, where b; > 0
and 0 < a; < b;tan§, for some 0 < 6y < 7/2. Then 0 < sinfd = a;/\/a? + b <
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sinfy < 1. Since Y(z) = o([z[¥ sec?*8) and 1 < secld = (/a? + b7 /b; < secly <
we also have ¥(z) = o(|z|¥). We may assume that Z*) have been chosen so that
(&) < B/, i > 1. |

Now find a region 2; C R™! in which $_(0, s{) is of one sign. Consider n > 3
and M > 1. Let $; be the smallest positive root of {Cjr,C_,}. And, CA(©)is a
polynomial in © of degree m with m simple zeroes in (—1,1). KM =1, take §; = 1.
So 0 < B; < 1. Now, C2 is even or odd about the origin according as m is even or odd
([63], 4.7.4) and (-1)™C32.(0) > 0 ([20], 10.9.19). Therefore, for any 0 < 8 < =/2,
Cyy(sin 8 cos 6') and C}_, (sin 8 cos §') are each of one sign for arccos(f)) < & < n/2
or 7/2 < ¢’ < 7 — arccos(f;). Write M = 2u + €0 where & is 0 or 1. From (3.15) we
see that if 0 < t < 3; then sgn(C},,;(t)) = sgn(C3}(t)) = (-1)* and if —8, <£< 0
then sgn(C3,,,(t)) = —sgn(C3(t)) = (—1)#+'. Let

@) = {ver™
and arccos{By/3) < & < m — arccos(By/2) if M is odd}. (3.40)

arccos($,/2) < & < arccos(f1/3) if M is even

Then, since Cjy and C},_, have no common roots, there exists a positive constant d
such that
(—1)#ted_(0,s() > dq, (3.41)
whenever 0 < 8 < n/2,y € Qi(§), 0 < <1, s > 0. In (3.40), ¢ is restricted to
lie in a smaller region than arccos8; < 6’ < 7/2 so that (—1)*t*&_ will be strictly
positive for y’' € ;.
From (3.39) we will need the estimate,

(1-20sC + 23 > (1 +s)?0-Y, 0<A<1
T | ((s¢ —sinbo)? + cos?6p)*-L, A>1
> (14 8)72% cos?-Hg,. (3.42)
These give
ds K('\, T, yl) sM

(—1)*** Kp(A, 2,9) 2 (3.43)

(1+3s)? ’
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whenever y’ € ;.
If M =0 then (3.42) and (3.43) hold and we can take 2; = R"L.
Let

, (-1)"*‘°fa[1 -y - c.-ézl] vil; ¥ € Bi(ciéa), (~1)My; >0
)=

0, otherwise, (3.44)
where ¢; := |£()| = /a? + b7 and the constants f; are defined in (3.46) below. Then
f: R™! 5 R, has support in a sequence of half balls along the é; axis and is
continuous. The factor [1 — |y’ — c;é;|]|y;| makes f vanish on the perimeter of the i*®
half ball. Without loss of generality we may assume ¢; — 0o monotonically so that
the By (cié;) are disjoint, supp(f) C @ and ¢; > 2 (otherwise, take an appropriate

subsequence of {£%}).
Now, for any 5 > 1,
FadfiGM > [ f6)Ku(3,39,4) dy'
Bi(cjés)
When y’ € By(c;é;) we have s = || /|y’| < ¢;/(c; — 1) < 2 and
8 2 cjf(c; +1) =2 2/3. And,
-2
K(A,29,y) > [(y/] + 0 + 8]
Y
> [(es+1+a;° + 8]
> (7e3).
Thus, using (3.43),

Fuadfl6) 2 ot [a-wiwild
By

= d7* f; |E007 (3.45)
Let

fi = dpp(29) 2922, (3.46)
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Then f;/c¥** < (dri®)~* and i Fic7 M+ < o0 50 (3.5) holds. And, on {#¥} we
have Fou[fl(59) > $(39)) for each j > 1 o0 lim sup F,p(f](z?/4(=)) 2 1 and
Jlim Py e[ f](z9)/9(20) # 0.

When n = 2, write z; = rcos ¢, z, = rsin¢. Then in place of (3.23) we have
Fulfl(z) = J2,, F(§) Kae(A, z,£) dE where

2,2

Kn(Mz,8) = K(\, 2,€) (%)M j (1 - 2% cos ¢ + -'E,-) ! &_ (cos &, %) CM-1de.
¢=0

If0<6<0<n/2then 0 < ¢p < ¢ < — ¢g <« where ¢p = 7/2 — b,.

Let ¢;, 1 <i < g, be the roots of Cjyocos and Cjy_, ocos in [@g, 7 — o], ordered by
size. We then have the partition ¢y =tp < t; < &3 <=~ -< tyoy <ty S g1 = T — o
In each interval [¢;,¢;41], 0 <i < ¢, C3y o cos and Cjy_, o cos are each of one sign. If
¢o is a root, we omit the singleton {¢,}, similarly with = — ¢,.

For any sequence ¢; € [¢o, T — ], ¢ > 1, there is a subsequence {¢;} in one of the
above intervals [t;,¢;41]. If Cly(cos &) and Cjy_,(cos ;) are of the same sign, take
Q = {€ € RIf < 0} and Q; = {£ € R|¢ > 0} if they are of opposite sign. Then
(—1)40 & _(cos gi,r(/€) > 0fori > 1, £ € Q,, where (—1)* = sgn(C(cos &) (po =0
or 1). Since C{; and Cjy_, have no common zeroes there is a subsequence {¢;} of {:}
such that either C,(cos @;) or Cy_,(cos ¢;) is bounded away from zero for all i > 1.
Hence, there is a positive constant ds such that (—1)*0&_(cos &;, #:¢/€) > ds(F:(/|€])*
for i > 1. Here £ = #; cos ¢; é;+; sin §; €, is a sub-subsequence of the given sequence
{z®} and g, is 0 or 1. We now proceed in a similar manner to the case » > 3 given

above.

Step III In the previous argument 0 < 8, < 7/2 was arbitrary so now suppose that
given the sequence {z*)} there is a subsequence ) = a;é; + b;é, such that sin 8 <
sinf = a;/4/a? + b2 < 1. Since 0 < b; < a; cot 6§, we may assume 0 < b; < a;/2 and

that a; — co monotonically.
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Find a region Q2 C R"! on which K is of one sign. Let M > 1 and let
z = 2181 + Tpé, € {£9}. Let
1os<a lcoct (3.47)
A A
and take 1 < A < 2 close enough to 1 so that Kar(\,z,¥’), C(©) and Ciy_,(O)

are positive. From (3.1) and (3.6), Kx(\, z,¢') > lv'|~2* [(1 —2A72+ A% — 970,
M-1 -1/a

where TAp = (22"‘6';}‘(1)) (0 < mauM < o0). Note that A > 1 implies
m=0

1—-2A"2+A% > 0. Now, Ky > 0if A*+(1—7amr)A%2—2 < 0. Let rg > 1 be the largest
root of this quartic. Let 32 be the largest zero of C;}ma"\). Then cos(x/(M + 1)) <
B2 < cos(n/(2M)) ([63], 6.21.7). Hence, if 1 < A < min(2, ro,sec(n/(2M)) and s and
O are as in (3.47) then Kpr(A, z,y') > 0, C3(©) > 0 and C3,_,(©) > 0 ([63], 6.21.3).

To satisfy © > 1/A (3.47) we will restrict z and g’ so that sinf > 1/v4 and
cos¢’ > 1/v/A. First, take 6o = arcsin (,/27(27-‘17) then sind > sinfy =
VA/(2A=1) > 1/VA. And, since y = z,é;, we have cos¢’ = (y-y')/(ly|ly']) =
éry |[y|7 for y' #0. Let

%) = {v Ry > 1, VA< cost' < 1}, (3.48)

a portion of a cone with axis along é;. If y’ € Q3 then cos¢’ > 1/ VA. i n =2, take
Q2 = {€ € R|¢ > 1}. See Figure 3.1.

Define f: R™! - R by

5 (1- &y ~ aiésl) , ¥’ € Buu(ass) for some i>1

fW)=1 (-)MAf; (1 -y +a¢é1l) , Yy’ € By,(—a;é,) forsome i>1
(3.49)

0, otherwise,
\

where A, > 1 is given in (3.51) and f; in (3.57). By taking an appropriate subse-
quence of {Z()} we may assume the balls By, (a;é,) are disjoint (a:+; > 3a; suffices).
The condition sinfy = 4/A/(24 — 1) ensures that each By (a;é1) C Q2- Then f is
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Figure 3.1: The regions Q;, Qs and Q>

continuous, has support on a sequence of balls along the €, axis and is non-negative
for y; > 0.

With y’ € Q; such that y; > 0 and z as above (preceding (3.47)), A" < © =
sinfcosd < 1. So Cp(O), Ce_1(0) > 0. As a function of s, with fixed © as in
(3.47), the integral in (3.23) is zero when s = 0, is an increasing function of s for
0 < s < MC}(0)/[(2A+M—-1)C},_,(0))] (where it has a maximum) and decreases for
larger values of s. And, we know from the analysis following (3.47) that this integral
is positive at s = A. Hence, Kp(A,2,y') > 0for 0 < s < A (with y' € Q,, y; > 0).

Ky € 9 and y, < 0 then © < 0. Since CA(—t) = (—1)™CA(t) we have
3_(0,¢) = (~1)M8,(|6], ¢) and sga(Ku(},x,¥)) = (~1). From (3.49),
f(Y)Ku(A z,¥) 2 0.
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Define
Q={y ey 20, s> A} (3.50)

See Figure 3.1. If z € {£} then f(y")Kn(A, z,y') = 0 for y’ € Q; except possibly for
y’ € Q.. By taking A, large enough we can ensure / FW)Ku(M z,9')dy’ > 0.

Ul

Indeed, let y* be the reflection of y’ in the hyperplane y; = 0 and 6" the angle between
y* and y. Then y* € Q. if and only if ¥’ € 5.

If A > 1 and y* € Q¢ then, as in (3.22), ©* := sinfcos§* = —O. Then, using
(3.23) and (3.49),

- F M-14
F(Y ) Kn(A, z,y7) = Arf(Y) [[31'12 +20ly| =] + ["’Iz] ’ 3:?2’9? _C{. Cz)l-C.\
(=0

2 AWl + 4™ / (L+3)124(8,¢) (M d(.

=0
And,

- M~1
(') Ku( A 2,y) = f(¥) [ly'lz — 20y’ |=| + I“’lz] ’ 3’_(62)’9? i Cz)ii
¢=0

L

2 —fW)lel -4 [P ane, 004

¢=0

Therefore,

[ FW) KA 2y dy' 20 i Ax 2 (A+ 1A -1
Nculs

If0'< A <1and y* € Q¢ then

F) K 2,97) 2 Ax S (f2] + 1) (1 + 222 [ 8,(0,¢) M d¢

¢=0

- A
> Ax f(y') |27 (1 + A7Y) T2 M1 (2A+M-1)Cy,(8)

(M +1)
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If0 < A <1/2 then, using (3.31) and (3.37),

20+ M) sMH9r-1
@K 2,¥) 2 ~F) =l = D22 (5 1) T
And, if1/2 <A <1,

M .
F0) K29 2 ~F@) el - W22 (% ) S

Hence, for 0 <A <1,

£ Kaelh2,9) 2 =2V Sl (1 - A7) P b (0,

And, / f(W)Kpu(Mz,y)dy >0 if

Qcufls
S8VZ(M+1) (22 +M\ [A+1\PT | -1
>——-——-——-———
M2 -1 M—l) A-—l) L_‘P_;?S,Cu-l(t)] :

Hence, for A > 0, z € {9}, if we take

A+1\* 8VZ(M+1) 22+ M o -t
Az A—l) m“"(l’ A+ M -1 M—-—l)[A-IngICM-l(t)]
(3.51)

then Fy ulfl(z) > [ ') Kne(A, z,y) dy’, where
s

QB={ye Qzlyi >0, A7 <s < A} (3.52)
See Figure 3.1. Note that if z = a;é, + b;é, then By,(a;é1) C Qs if a; — |z]|/A > b; and
A|z| — a; 2> b;. Since a; = |z|sin b, b; = |z|cos 8 and 8y < § < 7/2, these conditions
are satisfied if }[x — arcsin(1 — A~2)] < 6y < 7/2, i.e., by taking 8, close enough to
/2.
From (3.23),

1
Ku(\ z,y) = K\ z,y) s¥ / (1 —20s¢ + s*¢*)* 1 @_(0,s¢) (M1 d¢,
=0 (3.53)
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which is strictly positive on Qs ((3.47) and following). And, K(\, z,v’) is positive
but singular at s = © = 1. Using (3.14), the integral (3.53) above reduces to

r@r+ M) |
I'(22) L(M) Lo

at s = © = 1. The integral in (3.53) is a strictly positive continuous function of s
and © when the conditions in (3.47) are satisfied. Hence, it must be bounded below

(=P > 0

by a positive constant, say dg, i.e.,
Ku(A\ z,y) > ds K(\, 2,y ) s¥ for y' € Qs, sind > sin b,. (3.54)
If M = 0 we can dispense with the sets Q,,Q3, Q. and Q... In (3.49), Ay =1 and
f is extended as an even function. Then (3.54) holds for z € I, with ds = 1.
For M > 0 each element of the sequence £() = a;é; + b;é,, satisfies sin 8 > sin 6,
so, using (3.49) and (3.54)

Fuulf1(G9) > dof20 f FWEED, y) | dy’
(179

L~ |y — a;érl7%)
> de(a? + b2)M/2§, ( €l87)
2 ds(a; + b5) /" ; / (ly' — a1l + B2 lv'I™ dy

B.i(a,'é';)

A LA / @~y (y'* +1)dy’
B,

(a; + b;)M B2

> dy f; b7 (3.55)
1
where d = dg 2°M/*(n — 1)wa [ (1~ p)(p* + 1) pn2dp.
p=0
Note that (3.5) holds if and only if

[+ <]

o
Z w < 0o. (3.56)
=1 %

Now suppose ¥: R"~! — (0, 00) such that ¥(z) = o(|z|™ sec** §). On the sequence

) = a;é; + bjé,, |z|Msec?*§ = |z|M+2Az-2A = (a3 + b3)M/2+2pr2r and ¢(3)) =
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o(a?‘ +22 572 (since 0 < b; < a;/2). We may assume that {£()} has been chosen so

that ¥(£0)) < aM** b2 i-2 for i > 1. Let
fi = d3t plaéy + b:&) P, i1 (3.57)

Then (3.56) is satisfied and F m[f](2) > $(219)) so lim Fy p[f](z?)/9(z?) # 0
and F) x[f](z) # o(|z|™ sec?* #). Hence, the order relation Fi x[f](z) = o(|z|¥ sec® 6)
is sharp for z € II, of form z = £,€; + Zé,.

Step IV For n = 2 this completes the proof. For n > 3 we now remove this
restriction on z. For any sequence {z(*)} in II,, we can write z() = |29 2() where
i €8Bf ={z € R"“z| =1, z, > 0}. Then {£*} must have a limit point, say 3o,
in the compact set B_Bf Let 8, be the angle between §, and é,.

If0 < 8y < 7/2 then let $; be in the direction of the projection of 3y onto A1,
and let $; € OII, be any unit vector orthogonal to §;. For any § > 0 there is a
subsequence i‘(,") = £0) + §;i; where 2% = a;5; + bén, c; = |£(‘)| — oo monotonically,
b; > 0, {31, én, £} is orthonormal, each #; € I, and 0 < §; < §. We can now try to
repeat the first part of the sharpness proof, beginning with (3.39). Then 3; and 3,
play the roles €; and é, did before, except that we now have perturbations by é;.

Let z € {5?)}. Let n; be the angle between a;3, + 8;f; and 3,. Without loss of
generality a; > 1. We have 0 < #; = arctan (4;/a;) < §. Hence, we can replace (3.40)
with the narrower cone

%@ = {ver

and arccos(81/3) + 8 < 6 < m —arccos(f;/2) — & if M is odd} (3.58)

arccos(f1/2) + 6 < 8, < arccos(f,/3) — 48 if M is even

where 8 is the angle between y’ and a;3,. (Take 2§ < arccos(B;/3) — arccos (3:/2).)
For any z € {£"}, if y € ), then |cos#| < /2 and (3.41) holds.

K 3¢ = éu (60 = 0) then take a; = 0. Let 3, = é; and §; = é;. For any
T € {5&‘7} and y' € Q] we have 0 < 6 < d and so 0 < sinf < sind. Therefore,
|©] = |sin 6 cos '] < § < B;/2 for small enough 4. And, (3.41) holds.
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Now, for 0 < 8; < n/2, replace (3.44) with

(~Defi[L~ Iy —ciil]ui; o € Bulesés), v 20
o, otherwise, (3.59)

@) =

where y} = y'-((—1)™ cos 6 5, — sin § 5;). We align the half balls of the support of f
along the unit vector &5 in the direction (—~1)™ sin § 5, +cos & 3; so that B;(c;és5) C 5.

The rest of the proof for this case follows without serious change, through (3.46).

If 39 € 9IL; (6p = 7 /2) then $; = 5y and a subsequence approaches the boundary.
As before, for any d > 0 there is a subsequence of form 5?) = £0) + §;f; where
£6) = azy +bién, 0 < b; < a;,a: > 1, a; = 0o monotonically, b;/a; = 0, {3y, én,:} is
orthonormal and 0 < 4; < 4. Follow the second part of the sharpness proof, from
(3.47).

Let

A A
Bs=min [ —re, A= §, ———
’ ((1 + 6VA) i+ JA)

then B; < A. And, Bs > 11if
0 < 6 < min((\/z—l)/\/z, A-1,(A— 1)/A)
= (VA-1)/VA.
Without loss of generality, take A satisfying the conditions following (3.47) and 0 <
I<(A-1)/A<1/2.

For each j > 1, let & be the angle between 3’ and a;3, and 0} the angle between
y’ and a;3; + d;t;. We have 8’ — § < @; < ' + & so replace (3.48) with

Qi (h) = {y' € R™ Y|y’ > 1, 0 < 85 < arccos(1/+/Bs) — J} . (3.60)

For each j > 1, let 8 be the angle between 79 and &, and 65 the angle between ()

and é,,. Then .
. la;d1 + d;t5] aj—4
sin 5 = = - .
TTED +a T EI+8
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For large enough ||, we have sin 65 > a;/|Z0)| — & = sin 6 — §. It follows from the
first component of the definition of Bs that sin § > 1/+/Bj implies sin6; > 1/vA.

Wiite s = |20)]/]y/], 55 = |28”|/|y’]- Then fory’ € Q}, s — & < 85 < s + 4. From
the second and third components in the definition of Bjs, 1/Bs; < s < B; implies
1/A < ss < A. Hence, we can replace ; with {); and carry out the sharpness proof
for a;3; + bjé, with the following changes. In (3.49), replace a:é, with a:3; + &:¢;. In
(3.50) and (3.52), replace y; with y’-3;. The rest of the proof, through (3.57), follows

with minor changes. W

The growth estimate on F) ar[f] gives estimates for the solutions of the half space
Dirichlet and Neumann problems. The modified kernel introduces a singularity at
the origin of the integration space. To avoid integrating f there, a continuous cutoff
function that vanishes in a neighbourhood of the origin is used.

Corollary 3.3.1 Let w : R*™! — [0,1] be continuous such that w(y) = 0 when
ly] <1 and w(y) =1 when |y| > 2. Let f be continuous on R"* and satisfy (3.5)
with A =n/2 (n>2). The function u(z) = Dy[wf](z) + D[(1 ~ w)f](z) satisfies

v € C¥(I,) N C°(TL4) (3.61)

Au=0, zecll (3.62)

u=f ze€dl, (3.63)

u(z) = o(|z[**" sec® ™ 0); z €I, |z| oo (3.64)

Proof: That u is a classical solution, (3.61), (3.62), (3.63), is contained in Corollary 2
of [67]. To prove (3.64), note that Dyr[wf](2) = anznFz p[wf](z) = o(|z[M** sec”~ 6)
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by the Theorem. And,

ID[(1 - w)fl(2)] < antn [ 1)) (=] — 2)~" dy’
vi<2
<anPzafel™ £ l2] 24,

so (3.64) is satisfied. W

Corollary 3.3.2 Let f and w be as in Corollary 3.3.1 such that (3.5) holds with
A=(n—-2)/2 (n>3). Then v(z) = Nyl[wf](z) + N[(1 — w)f](z) satisfies (3.62)

and

v € C}(IL )N CYIL,) (3.65)

dv P

9z, —~f, zedll, (3.66)
v(z) =o(|z[Msec"20); zell,, |z|— oo (3.67)

Proof: The growth estimate (3.67) follows from the Theorem:
= %
Nulwfl(z) = ——5Foza ylwf](2)-
And,

N - )@ < 725 [ 1) (el -2y
lv'l<2
< ap(n —2)712" 2P if |z| >4

Theorem 1 of [25] shows (3.62), (3.65) and (3.66) hold. W



CHAPTER 3. MODIFIED KERNELS 45

Remark 3.3.1 In Corollary 3.3.1, the solution to (3.61)—(3.64) is unique if M =0
and if M > 1 it is unique to the addition of a harmonic polynomial of degree M
vanishing on JII, (see Theorem 6.4.1). Similarly, in Corollary 3.3.2, if M = 0 the
solution to (3.62), (3.65)—(3.67) is unique and if M > 1 it is unique to the addition of
a harmonic polynomial p(z) of degree M —1 that is even about z, = 0. See Theorem
6.4.2 below.

Remark 3.3.2 If f(y') |y’|*~?~¥ is integrable at the origin then we can use u(z) =
Du[f](z) and v(z) = Nag[f](z) in Corollaries 3.3.1 and 3.3.2, respectively.

Corollary 3.3.3 If w: II; — (0,00) then w is a sharp growth condition for F) pr
if and only if there are constants 0 < S < T < oo and N > 0 such that § <
|z}~M cos®** 8w(z) < T for all z € I, with |z| > N.

Proof: Throughout the proof f will satisfy (3.5) and |z}, |z¥| > N.

Suppose S and T exist as above. Then
|[Fam[fl(2)] /w(z) < |Fase[fl(2)| S z|™ cos?*§ — 0

so Fu(f] = o(w).

Let ¢ : II, — (0,00) with ¢ = o(w) then ¥(z) = o(|z|™ sec** 8). Given {z?} in
I, take f as in the proof of the Theorem. Then Fy a[f](z?)/¥(z®) 4 0. Hence, w
is sharp.

Now suppose w is sharp. If x(z) := ||~ cos®** @ w(z) is unbounded then there is
a sequence {z(} on which x(z®)) — oco. Let

|z|™ sec**8 on {z®}

¥(z) =

w(z)/|z|, otherwise,
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then ¢ = o{w) but for any f we have F ax[f](z®)/9¥(z®) — 0, since
F m[f](2) = o(|z|™ sec?* 6). This contradicts the assumption that w was sharp (Def-
inition 4.2.1, (ii)). Hence T exists as above.

K x — 0 on some sequence {z(")} then take f such that

limsup Fum[f)(z9)[z®] M cos®™ 0; > 1 (cos; = [z)|/zD).
S~»oo

(3.68)
Then
. Pl f)(z®) e Fx[fl(2®) [29]M sec?* §; _
hﬂ?p w(z®) hﬁﬁp |2 [M sec?rg;  w(z() = o0,

which contradicts the sharpness assumption (i) of Definition 4.2.1. Hence, S exists

as above. W

Remark 3.3.3 The angular blow up predicted for F) as as [z] — oo can be expected
to occur only as z approaches 911, within a thin or rarefied set. See [3], [21], [51] and

references therein.

3.4 The integrability condition

It is shown in [23] that condition (3.5) with M = 0 and A = n/2 is necessary and
sufficient for the Poisson integral to exist on IT. Using the estimates in the proof of
Theorem 3.3.1 we now show that F) p[f] exists on II; whenever (3.5) holds. Here
we are considering absolute integrability. Conditionally convergent integrals will be
discussed in Chapter 8.

Proposition 3.4.1 If f is measurable on R""! then F, y{f] ezists on IL; if and only
tf (3.5) holds.
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Proof Let € I, and |y/| > max(1, 2|z|). Then using (3.6) and (3.13),
KuOuz) =1 Y (EF) cace).
m=M
Then from (3.14),

|Ka(M 2,9 < W™ “Z s™|CA m(9)|

=™ i 2\+m+M-1
lyl'M-I»ZA m+ M y

IA

Let A = [2A]. Then
(2A+m+M- 1)

TAN

A+m+M-1
m+M
{ (AtmiM-1)(Adm+M-2)(m+M+1) 5 >2

m+M

@A-1)t
1, A=1
(A+m+ M —1)A!
(A—1)

holds for A > 0. Therefore,

r z -m
KO 2,v)] < ,y!IAL,,Azz (A+m+M—1)>

ko [z[™

S Iyl|M+2A

where ko depends only on M and ). It follows that
Bl AN < Rl [ £l
>

So (3.5) is sufficient to define F) ps[f] on IL;.

47

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

To prove the necessity of (3.5), suppose f is given and F) a[f] exists on II,. With

no loss of generality, f(y’) > 0. There is a finite sequence of points y(*),y®, - -. |

y(L) e

R™! such that Q,(yM)UQ, (y®)uU---UQ, (yP)) = R*1. See (3.40) for the definition
of Q;. Each set Q;(y(?) is the region between two cones of fixed angular opening.
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The intersection of Q;(y(9) with the unit sphere of R*! is a zone, i.e., if é is the unit
vector y'/|y’| then © is in the zone of y if 1/3 < é-¥ < $1/2. The number 0 < 5; <1
is given before (3.39). Let 9;(y’) be the interior of the intersection of Q,(y’) with
the unit sphere. Then Uw[=1ﬁ;(y') = 8B, the unit sphere of R*"}. Since 3B, is
compact this open covering has a finite subcovering as proclaimed above.

By taking unions and intersections, we have measurable sets E, C Q,(y(?), 1 <
£ < L, that are disjoint and whose union is R*~!\ B,. Let z, > 0 be fixed and let
2@ =y +z,¢é,. Define 8 by sin 89 = |yD|/|2D] then 0 < sin 0 < sin b, < 1 for
some fixed 6, as discussed following (3.39). With the above definitions, K (), z9,y’)
is positive for each 1 <£ < L and ¥’ € Q4(y®@) (and hence positive for all ¥’ € E,).
Since F a([f] exists on IL, we have

L
BalAEO =3 | [ 1)K, 20 0) iy <. @)
J=1 3’.
So, ij f(W)Knm(A,zO,y')dy’ < oo for each 1 < £ < L. Then, from (3.41), (3.42)
and (3.43),

o [ fW)Kxu(\, 29, y)dy 3.78
o > K E[ S (3.78)
> K [ )l dy (3.79)
B,
> & f )l gy, (3.80)
B,

where k{? and k{? are positive and depend on n, A, M and z. And, k* = min, <o k{7,
Now, summing (3.80) over £ from 1 to L shows (3.5) holds. W

Other properties of modified kernels are dealt with in the next chapter.



Chapter 4

Further results on modified kernels

In this chapter we extend the definition of the modified kernel Kjs by allowing M
to be an integer-valued function of y’. There are also results on the non-existence of
positive solutions to a Dirichlet problem and representations of Neumann solutions in
terms of Dirichlet solutions. Another type of modified kernel is introduced and used
to give asymptotic expansions of solutions to half space problems.

4.1 A Dirichlet problem without positive solutions

The modified kernels K, introduced in (3.6), are not of one sign. In the proof of
Theorem 3.3.1 we had sgn(Km(A, x,y’)) = —sgn(CL(sin 8 cos6')), where m < M —
1 is the largest integer such that C)(sinfcosé’) # 0. As [y/| = oo, (3.22) and
(3.23) show that sgn(Km(A,x,¥’)) = sgn(Cy(sin 0 cos 8")) if Cjs(sin 8 cos ¢') # 0 and
—~sgn(CRy_, (sin 8 cos #')) otherwise. And, for small enough z,, if y’ is close enough to
y then [jy’ — y|*> + 23]~ will dominate all other terms in (3.6) and Ka(A,z,y’) will

be positive.

We have the following result about solutions to the Dirichlet problem.

49
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Theorem 4.1.1 If f > 0 suck that fx'--i @) (yI" +1)"! dy’ = oo then there are
no positive solutions to (2.1)—(2.3).

Proof: Introduce a cutoff function, €y, such that

L [¢|<N
Ev =
0, [z|>N+1,

0 <énx <1 and &n is continuous.

Suppose u > 0 and satisfies (2.1)—(2.3). Let ux = D[fén]. Given € > 0, we claim
that v > uy — € on 3B, NI for large enough p. Indeed, we have Auy = 0 in I,
uy = fén on 911, and un = O(z,|z|™?) as |z] = oo (since fEn has compact support,
Proposition 2.2.1). So, u > ux on 9l and |uy| < € on 3B, NI, for large encugh
p- Therefore, u > uy — e on 3B} (0B} = {z € R"||z| = p, z» > 0}). Since e is

arbitrary, v > uy on dB}. By the weak maximum principle, » > uy in B}. Bat,

un(z) > / K(z,y)f(y") dy'

WIsN
— oo as N — oco.

Hence, there can be nosuchu. @

The above theorem can also be deduced from the general representation of non-
negative harmonic fanctions on II;. The representation theorem states that all pos-
itive harmonic functions on II; are of the form u(z) = D[ul(z) + ¢z, where p is a
positive Borel measure on R*! and ¢ > 0 is a constant ([7], Theorem 7.24). Replacing
i by the continuous function f gives Theorem 4.1.1. See item (ii) in §9.1.

4.2 Representation of the Neumann solution

The modified kernel Ky(A, z,y’) satisfies a differential-difference equation for the
derivative with respect to 8, |z, y;, ||, Za, [V'|, ¥} and &', relating the derivative to
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Ku(A+1,z,¥), Kpy-1(A+1,2,y) and Kp—2(A + 1, 2,y’). The integration of these
equations give representations of the modified Neumann integral in terms of the mod-
ified Dirichlet integral.

Proposition 4.2.1 Letn >3, M >0, A > 0,z € II; and y € R*!. Use the
convention that K,, = K ifm < 0. Then

. 9K, ) ,
(1) -70‘_‘-()’ z, y’) =2 Tn y'y’ Kl‘--l(A + 11 z,y )

... 0K, .
(i) T:i"(z\, z,y') =2A[sin0 -y Ky—1(A + 1, 2,¥) — 2| Kp—2(X + 1,2, 9')]

(iti) aa?'(«\, z,y’) =2\ [y; Km—(A 4+ 1,2,¢) —viKp-2(A +1,2,¢)],1 <i<n—1

(iv) ;iy’fu, 2,¥') = 2[5’ Kt (A + 1, 2,5") — [yl Kne—z(A + 1, 2, 3")]

0K,
(‘U) EA‘;(,\, z, y') =-=-2\z, KM.z(/\ +1,z, y’)

., 9K, . ’ /
(v)) Zr 2 ¥) =29 K0+ L2,9) ~ WIKuA +1,2,9')]
) OKu ! ’ ! ’ :
(viz) —a'gg‘(l\,zay ) =2A[y; KM1(A +1,2,¢) ~yi Kue(A+1,2,¥)], 1 Si<n—1

..., 0K .
(viii) (A, 2,y') = ~2A ly] v/ sind Knes(A +1,2,9)).

The proofs rest on the identities

2 A = CA (4.1)
Crt)=0 for m<0, CXMt)=1 (4.2)
mCA(t) = 2AECA (t) — CARL (1] (43)

(m + 20)Co, (2) = 2A[CH (2) — t CoHi(2)] (4.4)
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([63],4.7.28). In (iv) z, is fixed. If 8 is held constant for the differentiation then

d
—I&{-(A, z,y) =2\ [§-y K12 + 1,2,¥") — |z| csc8 Kp—a(A + 1,2,9')] -

dlyl
This leads to a similar change in (iv) of Proposition 4.2.2.

Proof of (i): From (3.1), (3.6), (4.1) and (4.2)

0Ky

55 M2 ¥) =2AlY| 2| cosfcos 'K (A + 1, 2,4)

M-1
-2 Z |z[™y'| M CAH (8) cos 6 cos ¢
m=1

=2Az, [y |cos¢' Kpe1 (A +1,2,y). W&

The other proofs follow in a similar manner from (4.1)—(4.4) or by differentiating
(3.23). Note that y and © = sin# cos§’ = sin -y’ are independent of |z| and that
tan 8 = |y|/zn so 80/8y; = y; z./(|z|*|y|) and 86/8z, = —sin 8/|z|.

Integrating (i) through (iv) above and setting A = (n — 2)/2 we obtain

Proposition 4.2.2 Let f be measurable with the origin not in the closure of its sup-
port and satisfy (3.5) with A = (n-2)/2 (n > 3). Let M >0, A >0,z c I,
and adopt the convention that D,, = D for m < 0. Then the following are equal to

Nu[fl(=)
é

@) [ Dunslfill=(®) &+ Mulfiettn), 050053
t=6o

= l=l
(u) tan ¢ f Dy-l[ff,](tg)% ~secf / Du_g[f](té) dt + NM[f](foi), To Z 0

% vi
() & [ Duc-slfelsi) dt - & [ Duecslfi(a:(6) e

+Nu(fl(2(t:)); t€R,1<i<n—-1
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|

lul
() & [ Dacaslfil(ti + zuta) d — & [ Dae-al (e + zatu) 1t

t=p t=p

+Nulfl(pd + 2as), p =0

(v) - [ Dat—af1(Ea(8)) dt + NaglFl(Enltn))s a2 0.
t=tn

The following notation has been introduced. In (i)~(iv), if z; and z; are in R*!
then f;, (22) = z1-22 f(22). In (i), if 0 < s < /2 then z(s) indicates = with the
polar angle @ replaced by s, ie., z(s) = y(s) + zn(3)én, where y(s) = |z|sinsy,
Zn(8) = |z|coss, 2(0) = z and y(f) = y. Note that |z| and § are independent of 4.
In (iii) and (v),if z = iz_.,-é,- then Z;(t) = E:,-é,— +te; (1<i<n).

=1 i
Proof- Integrate each of (i)-(v) in Proposition 4.2.1 with respect to the relevant
variable and set A = (n —~ 2)/2. Multiply by ((n —2)/2)f(v’) and integrate y’ € R™*.
Because of (3.5) the integrals Das_»[|f|](z) and Das—1[|f;]](z) converge to continuous
functions on IL.. The same is true for each modified Dirichlet integral in (i)-(v).
Fubini’s Theorem now justifies the interchange of orders of integration. @

Remark 4.2.1 We can relax the condition that f be continuous if we refrain from
evaluating Ny[f] on OI1;. This requires taking 0 < 6y < 7/2, o > 0, p > 0 and
t, > 0. We can dispense with the restriction on the support of f if f(y’) [y'|~(M—3+2})
is integrable at the origin. When M = 0 there is no restriction on the support of f.

We can use Proposition 4.2.2(i) to confirm the growth estimate (3.67). If f satisfies
(3.5) with A = (n—2)/2, » > 3, and if 0 < 6y < 7/2 then (3.36) gives Npg[f](z(6o)) =
o(|z|™). From Corollary 3.3.1, Dar_1[f;)(z) = o(|z[™ sec~1 §). Integrating over  and
using (i) of Proposition 4.2.2,

Nu[fl(z) = o(|z{™ sec™* 8) + o(|z[™) = o(|z[* sec™* 6),
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in agreement with Corollary 3.3.2.

4.3 Variable M

By taking M a fixed positive integer we were able to construct the modified kernel
K and this allowed us to write a modified Poisson integral that converged for data

f satisfying

<X

’ d 7
T}%‘!i)’_l*% : (4.5)

Rn—1
In particular, this includes any polynomial data. In [22], Finkelstein and Scheinberg
prove that if M is allowed to be an integer-valued function on R™?,

M:R*' > {0,1,2,---}, (4.6)

then for any continuous function f on R™! there exists a function M of the above
type so that Dps[f] is a classical solution to the half space Dirichlet problem, (2.1)~
(2.3). The kernel Ky is defined as in (3.6) with M = M(y’), and Dy and F) pr as in
(3.9) and (3.11). It follows that if f is any measurable function on R*™! then there
is an M as in (4.6) such that F) a[f] exists on II,. With this new type of kernel,
the number of terms subtracted from [ly — ¢'|> + z2]~ in (3.6) can vary with y’ to
compensate for growth of f(y’).

The previous estimate

23A 22 @

sec
(ly'l + [=)**

from (2.8) of Theorem 2.2.1 (with a = A in the first two terms of (2.7) and @ =n/2

KX\zy)=[ly-yP+z3"* < (4.7

in the third) can be used again to estimate F» as. There are two approaches. First,
if M is a given function, determine an integral condition on f (analogous to (4.5))
under which F) x(f] exists on IL;. Also, find a growth estimate for F) »[f] and prove
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it is sharp. The second approach is to assume f is a given function. The problem is
then to find the “smallest” M for which F) a[f] exists on IL,.

Start off with a given fanction M as in (4.6). The modified kernel is
M(/)-1

z|™ . ,
Kupy(Az,y) = KAz,y)— Y Iy—![—,,';mc:.(macoso) (4.8)
m=0

K(X,2z,y) /(1 —20¢ +¢*)*8_(0,¢) (MMM ¢, (4.9)

=0
where © =sinfcos ¢, s = [z|/|y'| and $_ is given in (3.22). To estimate F a[f], we
need to prove an inequality like (3.35) but now taking into account the dependence
of Mony'

Let
L= fa-20¢+rte 0,0 & (4.10)
¢=0
and estimate the integrand. As in (3.30),
[8-(8,0)  _ [(2A + M —1)(6 - ()Cir_1(©) — 2M(1 — ©%)C3,(9)]

Vi-20(+¢ V(@ -0*+(1-6?)

< (2A+ M - 1)Cl (1) + max [2,\«1 -1 |c:;_1,(e)|]
- (4.12)

(4.11)

- L@+ M) s
= Fanran T2 2ax, [sinn Culy(cosn)] (4.13)

The maximum of Caft,(cos 1) occurs at 7 = 0 which is where sin 5 = 0. To determine

the maximum of this product we use the integral representation

NAL@A+m) . 0 [ cos[(A+m)e]dt

C)(cosn) = O (cos t — cos)i=%" (4.14)
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valid for A > 0 ([49], p.224). For M > 2 it follows from integration by parts that

Isinq Ca™. (cosn)l (4.15)
A+ M) si
= 2‘{‘[(‘22(,\-:. 1))[‘8?;{ D 2+ M 1 / sin[(A + M —1)t](cost — cosn)*~'sin ¢t dt
I'(2\ + M) 1 —cosn
S AP+ DIM -1+ M—1) \ sm’y ) (4.16)
L'(2A + M)
< sEoTOra—noTE—y ©S753 (4.17)
From (4.13),if M > 2 then for A > 0
2-0.91 . [@+M) 2'-AAT(2A + M) wis
i - TenTen TR sntM-De+M-1) ¥
1 21-X ) \
[r(2,\) M cTpn 1)] M* (M~ o). (4.19)
The last step is by Stirling’s approximation, (1.21). Therefore,
2-0: D _ o m> (420

J1—-28C+¢
where a, is a positive constant that depends only on A. When M = 1 this result still
holds since CA =0 for m <0 and C} =1.

Now, from (4.10),

1] < axM® / (1 —20¢ + (312 ¢M-1 4. (4.21)
(=0
If A >1/2 then
L] < axM?(1 + s)?! / CM-1d¢ (4.22)
=0
= aaMP (1 +5)P 1M, (4.23)

Hence, (3.34) and the above results lead to the estimate
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by sM sec?* § M1
ly'[PA(1 + )

(bx depends only on A). Hence, |Fy a[f](2)| < oo if
@) [ MP 2y

[P

[Kll(‘\v z, y,)[ <

0.

vi>1

When 0 < X < 1/2, (4.9) becomes
IKM('\i z, y,)[ S K(’\’ Z, y’) ax M"\Iz,
where

B o= fa-gteea

(=0
1
= M / 11— s¢[* "t ¢M-1dg.
=0

If0<s<l,then

1
Bo< o fa-gpicea
¢=0

_ sMDEA) (M)

T TLCEA+M)

sMT(2))
ML\

If M =1 and s > 1 then from (3.37),

_,z.\
< —.
I < X

If M >2and s >1+ M™! then write

(M — oo, Stirling’s approximation).
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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1-M—1 1Mt
I2 - / (1 _ C)?;\-—l (M-l dc + / [1 — CIZA\—I. CM-ld(
(=0 ¢=1-M~1

+ [ c-vreek
(=1+M-1
1-M-t 14+Mt

MI-ZA / CM-ldc_{_ (1+ M-I)M’l / ,1 _Clz-\-l d(

¢{=0 =1-M-1

I

+ M1-2A / (M -1 dc
(=1+M-1

~1\M~1 pf~2)
M- (1- M“)M + 1+M1) M

A

I

+ M M — (14 M)™]

SM
AM2
Cx SM

S

IN

(es™ + 1)

where c) depends only on A. (4-33)

And,if M >2and 1 <s <1+ M, then write

1-M-1t s
L = (1= ¢Mtdg 4+ L= ¢t Mg
Ci C=1;{l -1
1-M-1 s
< Ml-zA CM—I dc +8M-1 '1 _ c,zl\-l dc
Ci (:1:{l"

M-1
_ -2x (1 _ app-1\M s _1)\32 —2A
= M2 -M) 4 o[- )P + M7

< M As‘M+(s—1)3“M"‘+ 1
- AM2 e 2s 2s
dx SM

TR where d, depends only on . (4.34)

TAN

The four estimates (4.31)—(4.34) give

d,\ JM

TO% valid for s >0 and M > 1. (4.35)

|2} <




CHAPTER 4. FURTHER RESULTS ON MODIFIED KERNELS 59

From (3.34), (4.26) and (4.28),
ex|z[Msec®* 0

|Kxe(A, 2,9)| < 7+ 2D (4.36)
where e, depends only on A. Hence, |Fy m[fl(z)| < o0 if
’ M
[ LY <o 0<ash. (43

>t
Theorem 4.3.1 In order for F) m{f] to ezist on IL;, a necessery and sufficient con-
dition is

’ alM 1.7
\f (Iyy?lﬂfjﬂfy < . (4.38)

vi>1
for each a > 0.

Proof: Let a > 0 be given. Let  be 2A—1 or 2, accordingas A > 1/20r0 < A < 1/2.
Then

[z]M M* > &M (4.39)
if |z] > e*M#/M. And, M~*/M < 1 s0 if [z] > e then |z[MM* > ¢*M and
convergence in (4.25) or (4.37) implies convergence in (4.38).

Now suppose z € IL, is given. Then

M > |z|M M* (4.40)
if @ > log|z| + (ulog M)/M. Since (log M)/M < e7!, if we take a = max(log |z| +
p/e,0) then e™ > |z{MM* and convergence in (4.38) implies convergence in (4.25)

or (4.37). ®H

Theorem 4.3.2 Given M: R™! — {0,1,2,---} and a measurable function f defined
on R™1, if (4.38) holds then F) m[fl(z) = o(G(|z]) sec**) (z € I, |z] = =), where
Glzh= [ 156l My |-+ gy (4.41)

v'>1
The parameter p is taken as 2\ — 1 when A > 1/2 and 0 when 0 < A < 1/2.
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Proof Apply the Dominated Convergence Theorem to (4.24) and (4.36). ®&

Determining the behaviour of G(|z|) as [£] — oo is an interesting asymptotics
problem. Assuming something about M(y’) as [y'| & oo will probably be necessary.
This point will not be pursued further here.

Now consider the situation where f is a given function on R™~!. We wish to deter-
mine M(y’) so that F) x{f] converges on IL,. Hence, we want |f(y')[e>M|y’|~(M+2})
to be integrable over [y’| > 1 for each @ > 0. For any y’' € R"!\ B, such that
|f(y")] < Aly'|® where A > 0 and B < My + 2\ —n + 1 are constants and M, > 0 is
an integer, we can take M(y’) = M,. In particular, if | f(y’)[ < 1 then let

, max(0,[n —2A=1]) if 2\ ¢ Z
M(y)={ .
max(0,n — 2) if 2Ae€Z.

(4.42)

Hence, in choosing M(y’) we really only need to consider those y’ for which |f(y')| > 1.

Let I > 0 be a measurable function such that ji yi>1 [(¥)dy’' < co. Suppose
|f(')] > 1. Let |f(y')|e=MWy/|"MEH2A) < I(y), [y'| > e* and solve for M:

log[fl +aM <log I+ (M +2))log [v| (4.43)
yields
(log [y'| — a)M 2 log |f| —log I — 2Xlog |y'[- (4.44)
Therefore,
M > log | f| *;olgjsyfl:i\log lv'| (4.45)
_ _ /
- [log . l;)fglly’l Bl ‘] [1 * loga;y'l T ] ' (449)

This says what M must be in order for (4.38) to hold.

Theorem 4.3.3 Given functions f, I and h locally integrable on R™!\ B; such that
I is positive and integrable over R®! \ B, and h(y') = oo as |[y’| = oo then (4.38)
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holds if M is defined as follows. For those y' € R™ !\ B; such that |y'| < 2 or
W) <1let

max(0,[r —2A—1]) if 20 ¢2Z

M(y) = { _
max(0,n — 21) if 2A€Z.

And, if |y’| > 2 so that |f(y’)| > 1 then let M(y') = max(0, [M,(y’)]) where

e if |eslf0lleln) gy o
Ml(y') - { logiy’[

(1 + M) (Mﬁ - ZA) , otherwise.

logiy’| log [y/']

(4.47)

Here ¢ > 0 13 any constant.

Proof: By the preceding remarks we need only consider |y'| > 2 where |f(y’)| > 1.

Let ¢ > 0 be a constant and let E; C R*!\ B; be the set where |f(y')| > 1 and
loglf(Wi-logHy') _ 9 < ¢. Let M\(y') = con Ey4. For y’ € E; we have

logiy’|
e < 1) e~ (449
and
s <o fmad @0

E,

If |y’'| > 2 so that |f(y")| > 1 and

log |f(y)| —log Ity) ., _ . (4.50)
log |v'| ’ '
then take
n_ h(y') \ (log|f(y')| —log I(y)
M) = (‘ *log Iy’l) ( Tog [y 2") ' (451)
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We now have

[f(y')| e=266)

[yl IM]_ (v)+22

(0| exp [ex (1 + 20 ) (EebOOloeelt) _o3)]

T Iy exp [(1+ 222) (log [0)] — log I(y') — 2Alog y')]
Ay’ 1 (log [Fw)] — log Iy)
= 1w {[a (1+ gy) a0 (LR - )}
< I(y") for large enough AR (4.52)

Hence, (4.38) holds with M = M;.

The function M + e*M|y’|~™ has derivative e®M|y'|"M(a — log|y']). It is a
decreasing function of M if |y’| > e*. Therefore, (4.38) still holds when we let
M(y') = max(0,[M;]). B

Erratic pointwise behaviour of f need not lead to erratic behaviour of M. The

function I can be chosen so that log |f(y’)| ~ log I(y’') is continuous. For example,

we could write [ = fg where g is continuous and chosen so that fg is integrable over
ly'| > 1.

The condition A(y’) — oo cannot in general be omitted. For suppose 0 < h(y’) <
hy where hy is a positive constant. Let a > 2hg. Then for [y’] > 1 it follows that

h(y’) ) ,
1+ ——=—)~-h > 2hg — hg = hq. 4.53
a( +log|y’| (¥') = 2ho — ho ) ( )
Let f(y’) = ely"l >1 and I(y’) = lyll-n' Then fly’|>1 I(y’) dyl < 0o but
[f(y) e . vl
ly'lu‘(”')"’z‘\ 2 [y ™ exp |ho E—g—E—,[' +n-— 24\) , (4.54)

which is not integrable over |y’| > 1. So the integral in (4.38) diverges.

And, if I is not integrable over |y’| > 1 then (4.38) may fail to hold. Let ¢ > 0
be a constant. Given h(y’) — oo, let f(y') = exp[h(y)iy’|/log [v'| + [v']] and I(y') =



CHAPTER 4. FURTHER RESULTS ON MODIFIED KERNELS 63

exp[h(y’)[v’]/ log |y’]]- Then I(y’) > 1 for |y'| > 1 and I is not integrable. And,

log | f(v')| —log I(y) vl
-2\ = -2
log |v'| log [']
> ¢  for large enough |y'|.

But, with M, given by (4.47) we have
|f(y')| ex0 )

PG

= { [ 1]+ = (1 2570r) -] (g =)}
> exp (ly'] +2Ah(y"))

— oo as |y'| = oco. (4.55)

So (4.38) does not hold.

When f is a polynomial (or of polynomial order) M can be taken as a constant.

Corollary 4.3.1 When f is of polynomial order, |f(y')| < Aly'[N for large enough
ly'|, it suffices to take

M) = { max(0, N — 2] +n —1) z:f AgZ (456
max(0, N — 2\ 4+ n) if 20 € Z.

Proof Let I(y') = |y'|* "log™ |y'| where B > 1 is a constant. Let h be as in the
theorem with A(y’) = o(log |y'|). Then for y’ such that |y’| > 1 and |f(y’| > 1, we

have »
no_ h(y') (103 |f(y)| —log I(y") )
M) = (1  iog Iy'I) log y'| 2 (457)
h(y') ) (logA + Bloglog |y'| )
< {1+ +N-22+n-1) (4.58
( fog Iy Tog Iy n-l) (458)

~ N-2\+n-1 as ly'| = oo. (4.59)



CHAPTER 4 FURTHER RESULTS ON MODIFIED KERNELS 64
If 2) is not an integer then for large enough |y’| we have M;(y') < N - |2A| +n—1.
And, we can take

max(0,N — [2\| +n—1) if 2A€Z
max(0, N — 2\ +n) if 2\€Z

M(y') = { (4.60)

forally’ e R*'\B,. N

Example. Suppose f,._ E,'{%yﬁ% < oo for a constant My > 0. Let I(y') =
|f(y")| ly'[~+3)). Then

log [f(y) —log I(y) _,, _,/ (4.61)
log [v'| > '

Take ¢ = My. Then M; = M, and M = [M;] and the theorem gives the expected
value for M. Note that if h(y') = o(log |y’|) then, when |f(y')] > 1, My(y') =
(1 + h(y’)/ log |y'[| Mo, which is asymptotic to Mp.

We conclude this section with an example of data with greater than polynomial
growth.

Example. If § and « are positive constants and f(y') = exp(8ly’|"), let I(y’) = |y'|™".
Then for any positive constant c,

log |f(y)| ~log I(y') _,, _ Blyl"+nlogly| ,,
log |y'| log |y’

Bly'["

log |y’

> ¢ for large enough |y'|.

+n—2)

Let h(y’) = o(log |v'[). Then,
h(y') ) (ﬂly'l’ )
M) = (1 + -2\
W) ioglyT) \logly] T ™
_ Bl
log [y'|

as |y'| = oo.
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4.4 Second type of modified kernel

Using the generating function (3.13) with z = [¢’|/|z|, t = © = sinfcos#, we can
define a second type of modified kernel

o[

- _lym
Ku(\z,y) =K\ z,4) = Y ———=CA(®), (4.62)

defined for [z| > 0 and M > 1. The convergence condition corresponding to (3.5) is

now
FI(Y' ™ +1) dy’ < o0. (4.63)
ol
If (4.63) is satisfied, define
Fudfie) = [ ) Ru(n 29 d (4.64)
s

Define Dy and Ny in terms of Fy ar as in (3.2) and (3.3). Each z,|z|~ ™™ C>*(©) in
the kernel Dy is harmonic in R™\{0} (3.2.1). Similarly with |z|~(™"-2C$~%/?) (@)
in the kernel Nys. Hence, Dys[f] and Npg[f] are harmonic in II;. Results similar to
Propositions 4.2.1 and 4.2.2 hold for K, Das and Nag.

However, Dys[f] is not continuous on II, . Since (4.63) implies (2.6) (with A = n/ 2)
the unmodified Poisson integral D[f] is continuous for z, > 0 if f is continuous.

Hence,

M~1
Dulfi() = Difl(z) = anza 3 [z~ f ™ F(&)Co*(0) dy’
m=0 Rn-1

and Dyg[f] is continuous for z, > 0, z # 0. Similar remarks apply to the Neumann
case. We will work with Dys and Nar only in the limit |z| — oo.

Growth estimates for /) A are similar to those for F .
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Theorem 4.4.1 If (4.63) holds for measurable f then
Fyulfl(z) = o(jz|" M+ Nsec™6) (2 € IL, |2| + o)

and this estimate is sharp in the sense of Definition 3.3.1.

Proof: Throughout the proof d; and d; will be positive constants (depending on A
and M). In (3.23) replace |z|/|y’| by |¥'|/|z| and in the proof of Theorem 3.3.1 let
p='/l=l

If A > 1 then (3.32) and (3.34) give

. di pM1sec? 0[(1 +p)** - 1]
IKM(/\: z,y')l < (=] + lyll)zA

< By sec 6[(1 +p)** — 1]
lz|M+24\-1(1 +p)24\ "

(4.65)

Since (1 +p)** —1 — 0 as p — 0, integrating (4.65) and noting (4.63), dominated

convergence gives

/ FWEu(A z,9) dy’ = ofz|" M+ sec®9) (2 € IL, |z| — o0).

Rn-1

If0 < A < 1 then (3.32), (3.34) and (3.37) give

P

'I‘.{M(Ag z, y’)l S d5 K(A, z, y')pM-l / ll _ Clzl-l d(
(=0
de pM 221 gec?* §
(l=[ +ly'D** °

from which B\ ym[f](2) = o(jz|~(M+22-1) sec?A §).

To prove this sharp, interchange |z| and |y/| in the proof of Theorem 3.3.1 and

proceed in a similar manner. W

The modified kernel furnishes an asymptotic expansion of D[f] and N[f].



CHAPTER 4. FURTHER RESULTS ON MODIFIED KERNELS 67

Theorem 4.4.2 Let f be measurable such that (4.63) holds for a positive integer M.
Then, as z — o0 in I,

M-1
() Difl(z) = Y_ [~V (), (2) + of[2|-*4+"-2) sec-16) (n > 2)

M-1
(i) N[fl(z) = Y la|- DD (2) + of |zl M+~ sec-26)  (n > 3)
m=0

where Y. is given by (4.66) below and is e spherical harmonic of degree m that
vanishes on OIL, and Y.V is given by (4.67) below and is a spherical harmonic of
degree m whose normal derivative vanishes on Oll,. The data f can be chosen so
that simultaneously the leading order term (m = 0) does not vanish and the order

relation is sharp (in the sense of Definition 3.5.1).

Proof. To prove (i) use (4.62) with A =n/2, f as in the Theorem and |z] > 0,

M-1 \m -
Difl(z) = anzn / Y I_J:T|+“_C;/z(e) dy’ + Du(f](=)-

Rn-1
Now (i) follows from Theorem 4.4.1 and the definition
V() = ancost [ 1) 1" O (sin03-4') ' (46)
Rn-1

Clearly Y%, vanishes when 6 = x/2. It is a spherical harmonic of degree m + 1
by Remark 3.2.1.

Given ¥(z) = o(|z|~(M+"~2) sec™! @) take f as in Theorem 4.4.1 so that Dy [f](z) =
o(|z|~M+"-2) gec™~1§) is sharp. In particular, f can be taken to be positive for y; > 0
with a super-even extemnsion (M even) or super-odd extemsion (M odd) to y; < 0
(Ax > 1 in the proof of Theorem 3.3.1 (3.51)). The leading order term in (i) is with
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m =0, ¥°z) = ancosd [ f(y')dy’. With f as above this spherical harmonic

RN-1

does not vanish if 0 < < v/2. With the definition

W) =2 [ [ osre) dy, (467)
Rn-1

the proof of (ii) is similar. B

Remark 4.4.1 If ., |f(¥')|dy’ < o0 and fp._, f(¥') dy’ = 0 then (4.63) holds with
M =1 and the leading behaviour is D[f](z) = o(|z|"™ V) sec®! §) and N[f](z) =

o(|z|~™2) sec™~2 9).

The addition formula for Gegenbauer polynomials can be used to separate the 6

dependence in (i) and (ii). First write

5]
Col'(sin8§-7) = Y Yamel8)CE3) G5,
=0

where

(=2 (1) 4 (20) (n+2m -4~ 1)T (3 +m—20) [ (% + m—{)
Yo t(6) = I?(n/2)8(n +2m — 2 - 3L %

x sin™ % 0 Cp/**™ *(cos §)

([20] 10.9.34t, 10.9.19). Then (4.66) becomes

15
Yng-,gl(i) = a, cos § E Yruym,£(6) On.m e (),
£=0

where
Snm () = / O IS i) dy'
. Rn-l
and is independent of |z| and 6.

tThe first term in the sum over m in this formula should read 22™.
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A similar separation of |z, § and § dependence in (i) is given by
o, L
Y@ = Z Yn-3.mt(0) bn-2.me(§) (n > 3).

The function defined by Z,,(#1,%3) = crf z(ﬁ;-ﬁz) is known as a zonal harmonic of
degree m with pole §; € 3B, evaluated at g, € B; (see [7], Chapter 5).

If the integral in (4.63) converges for all M > 1, letting M — o0 in Theorem 4.4.2
will give asymptotic series for Dps[f] and Nu[f]. As the following example shows,

these series will not in general be convergent.

Example. Let f(y) = exp(—|y|) and let dw,_, be surface measure on the unit ball
of R*~L. Then for n > 3, (4.67) becomes

[~ ]
- ay, —p m4n—~ n— 3 T,
YO(@) = == / e p™ "2 dp / Co~3(sin 0 §-§) dwn
p=0 9B,

(m+n—2)!(n - 2) was I()(6),

T n— 2
where

18).(6) = / CL~2/%(sin § cos ¢) sin™ > $ dgp
o=

and the surface integral was evaluated by spherical means [38]. The integral IS} m(8)
is known ([30] 7.323.2, together with [20] 10.9.19),

3"=3T(n/2 ~1) (=1)* (2k)! T (k+n/2 ~1) CS2~ /2 (ma)

I,(:,),‘(0) - T (Zktn—2) m = 2k
0, m odd
And,
Wz = 22T (/2 = 1) (=1)* (2K)!D(k +n/2) C~(cos §)
Y, (2) =

k!
(sz+1( z)=0). Ask — oo,

2(n/2 + 2k — 2)! sin[nr/4 ~ (n/2 + 2k — 1) §]

(n-2)/
Coe™" (cos6) ~ (n/2 — 2)1(2K)! (25in B)~/31
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([63] 8-4.13), so Stirling’s approximation shows that for fixed z

M-1
E 2] ™Y (%) divergesas M — oo.
m=0

With the Dirichlet expansion we have from (4.66)

Y2, (2) = an(m +n —2)! (n —2) waz IEL(6),

where

19,(0) = cos @ f C™/?(sin 6 cos ¢) sin™° ¢ dp.

If n > 5 then (3.15) and integration by parts give

1 d
(0) —_— (1)
I (0) (n 2) sma dg n—2.m+2(0)
and
M-1
E [z]"™Y,(X2) diverges as M — 0. (4.68)

When n = 2, we use
sinf(m + 1)¢]
sin ¢

Cr(cos¢) =
and replace @ by 7/2 — ¢ (see the end of the proof of Lemma 3.2.1). With Dirichlet
data f(§) = exp(—|€]) we have Y,f:,),l(:i) = 2m!sin[(m+1)¢]/x, if m is even and again

M- .
z:l m! sin{(m +1)6] diverges as M — oo
m=0 Ll

for fixed £ = rcos@é, + rsinfé,.
When n = 3, Igz(ﬂ) can be evaluated in terms of Legendre polynomials (since
1/3(t) = Pn(t)) and when n = 4, I%)(6) can be evaluated in terms of trigonometric
functions. In both cases, the conclusion of (4.68) remains valid.



Chapter 5

The logarithmic kernel

5.1 Kernels for the half space Neumann problem

When n = 2, the half plane Neumann problem is

v € CX (L) nCY(IL) (5-1)
Au=0, z,>0 (5.2)
v

oz, =—f, z2=0, (5.3)

where f: R — R is a continuous function. Polar coordinates are z; = rcos ¢,
z, =rsing, and I, is theset z; > 0,z; ERorr > 0,0 < ¢ < n. The angle ¢ is
measured from the positive z, axis on 9II,, whereas 6 from chapters 3, 4 and 5 was

measured from the normal ( |x/2 — ¢| = 6).

Provided
f ) 1og (€ +2) dE < o, (54)
a solution to (5.1)-(5.3) :-m
NIfl(r 8) = 5= 7 FON (. $,6) d€ (55)
teo

71
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where the Neumann kernel is

Nir,¢,6) = —log (& —26rcosg+r?) (5.6)
= —log[(6—=)* +43]. (5.7)

Since the domain II, is unbounded there is no further integrability condition on f.

As with K()\, z,¥) = [ly' —y[*+2z2]™2, (3.1), the Neumann kernel diverges to +oo
at its singularity £ = z;, z; = 0. Because the kernel in (5.6) is not of one sign and
also diverges as r — o0, it is more difficult to find the growth of (5.5) under (5.4).
This will be done by writing Neumann solutions as integrals of Dirichlet solutions,
along the lines of Proposition 4.2.2.

When the integral in (5.4) diverges but

%z.fl—(j?-l-*:—‘i < 00, (5.8)

é=—occ
for a positive integer M the modified Neumann kernel is of use. This is defined as in
(3.6) from the generating function '

(= ] m t
log (1 —2zcost + 2%) = -2 Z -z——a%(—"i—l; |z2] <1, teR. (5.9)

ma=x]

This formula may be obtained from the Taylor expansion

zm
log(l—2) = Z::; =, lz<1, (5.10)
by writing
log(1 — 2z cost + z%) = log(1 — ze®) +log (1 — ze™¥) . (5.11)

See, for example, [18], p.27. In equation (5.9), put z = r/{ and ¢ = ¢. The modified

kernel is

—log (s’_—_z.::_co_-ﬂ) . M=1
Nau(r,$,6) = e Mt
~log (;.-_zer_c;-o;w_’) -2 % olmd) M > 2. 5.12)
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And A, is defined to be A. Let Ny[f] be defined by

Nulfld) = 5= [ FONu(r8.0&+5- [ FONE4.6)de
~ lei>1 iei<t (5.13)

and let w be a continuous function as in Corollary 3.3.1. Then u(r, ¢) = Nywf](r, d)+
Nu[(1 — w)f](r,¢) is a solution of (5.1)-(5.3) for each M > 0. The major goal of
this chapter is to provide a sharp estimate (Definition 3.3.1) of (5.13) under (5.4)
(M =0)or (58) (M>1).

In Chapters 3 and 4 we had an expansion of K in Gegenbauer polynomials, C2
with A > 0, (3.6). Because of the limit ([63], 4.7.8)

A]i_{g.o $CM(cost) = CD(cost) (5.14)
_ 2 cos(mt), m>1 (5.15)
1, m=0,

Nz is in some sense the limit of K as A — 0. Many of the results in this chapter
will closely parallel those of Chapters 3 and 4.

5.2 Integral form of the modified kernel

To derive an integral representation of Ny, let

g _ Mlgm cos(md)
M-1(8) = E EE— M>2. (5.16)
m=1

Lemma 5.2.1 If M > 1 then

r/¢
- _ M-1
¢=0
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Proof First suppose M > 2. Multiply the identity
cos [(m +2)¢] — 2 cos b cos [(m + 1)¢] + cos(m¢) = 0 (5.18)

by s™*! and sum from m =1 to M — 1. As in Lemma 3.3.1,

M+l M M-1
0 = Y s™'cos(mg)—2scosd Y_ 5™ ' cos(mg) +s* Y _ ™" cos(mg)
- m=3 m=2 m=1

= (1 —2scos ¢+ s?) Spg_,(s) + 8™ cos(M@) — s™ cos [(M — 1)¢] + s — cos &.
This differential equation is solved subject to Sps_;(0) = 0. The solution is

Sae-s(s) = - j(cos(M¢)—-(cos[(M-l)q&]))(““d{'_ f (¢-cosd) dC
BERREA -2 oos g+’ J -t

The second integral is —1 log(1 — 2s cos ¢ + s?). So (5.17) follows on putting s = r/¢

in the above equation.

When M = 1, direct integration of (5.17) gives (5.12). N

5.3 Integral representations of Neumann solutions

In the present notation, the modified Dirichlet integral is

Dulfiir ) =222 [ f(Durb.0)dt (5.19)
é=-~c0
where (from (3.7) and (3.28))
M pm=1gin(m
DM(T7¢1€) = 62 _26’, (].':08¢+1‘z - 21 :?"_:4.1_]:;(?;_)‘. (5-20)

In order to work with both Cartesian and polar coordinates we will abuse notation by
writing Dpe[f](21,z2) = Dum|[f](r,$) where z; = rcos¢ and z; = rsin¢é. Similarly
with Nag, Dy and Ny

Each derivative of N with respect to z,, z,, r or ¢ is a linear combination of

Dp, Dar-1 and Dy,
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Proposition 5.3.1 Let M > 0. Use the convention that D =D if m <0. Then

) 2 (r,,6) = ~2%r sn 6D (r,$,6)

("’) agrrﬁl (1‘, ¢1 E ) = ZET cos ¢DM -l(ra ¢7 6) - 2TDM -2(fy ¢a f)

(iii) aég:‘ (zla z3, E) = 2£DM-1(31$ Z2, f) - 23103‘—2(31: z;, E)

(31: z3, f) = _232DM-2(31’ z3, f) -

Ny
d

2

(iv)

Proof of (it): Differentiating (5.17) with respect to r gives

_ M1
SN 2 (cos(M¢) - g cosl(M —1)4]) (3)
5 $8) = (5.21)
€(1-2zcos6+(3)?)
_ 204 (€ cos(M) — roos[(M — 1)) 52
EM=2 (£ —26r cos ¢ +1?) ' '
Using the identity
withm=Mand M -1,
ONar, 4 gy = HM-(€sin(M) — reinl(M — 1)g) cos
or 27 §M-2(£2 — 2rcosgp +r)sing
EM=2 (£3 — 26rcosp +1?) :
= 2{cos¢Dm-1(r,4,{) — 2rDy—2(r,¢,£)- @ (5.25)

The other proofs are done in a like manner by differentiating (5.17) or (5.12). Or,

let A = 0 in Proposition 4.1 ((iii) and (iv) there reduce to (iii) in the present case).

Integrating (i)—(iv) above gives
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Proposition 5.3.2 Let M > 0. Let f be a measurable function so that

/ [FE)E™ dE < co. (5.26)

é==~o00
Use the convention that D, = D form < 0. Let £ = 2,6, + 2263 € I (21 =rcos ¢,

z3 =rsin¢g). Then

do
() Nulfl(r,4) = [ Dat—r[efl(r,t) &t + Nufi(r,do), 0< o<
t=¢

(i) Nu[f](r,¢) = cot ¢ / Du—x[tf](t,'ﬁ)%t'-csmﬁ / Dy—2[f](¢, ¢) dt

+NM[ﬂ(r0a #), 120

(i) Nulfl(z1,22) = / Du-l[ef](t,zz)dt-—-:: / Das—s[f](t, z2) tdt

+Nuy(f](t1,22), t1€R

(iv) Nu[fl(z1,22) = - f Das—s[fl(z1,t) dt + Nu[fl(21,82), ¢2 0.
=t
The function ¢: R = R is the identity and ¢f is interpreted as pointwise multipli-
cation of ¢ and f, i.e, (¢f)(t) =tf(t).

Proof. Integrate each of (i)~(iv) in Proposition 5.3.1 with respect to the relevant vari-
able. The condition (5.26) ensures all the Dirichlet integrals converge to continuous
functions on II,. Fubini’s Theorem allows interchange of orders of integration. W
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5.4 Growth estimates for the logarithmic kernel

It is difficult to estimate Nye(f] directly. But, (i) of Proposition 5.3.2 writes Npg[f] in
terms of Dps—1[cf] and this Dirichlet integral can be estimated using Theorem 3.3.1.

First consider N[f] under

/ F(€)|log(€? +2) d€ < oo. (5.27)

é=-~oo

Part (i) of Proposition 5.3.2 gives

x/2

Nifitrd) = [ DIfl(rit)at + Nifl(r,/2). (5.28)
t=¢
Each part above can be estimated separately.

Lemma 5.4.1 If f satisfies (5.27) then

_.1_05.: j‘a f(€)d€ +0(1) asr —+ o0, if f is not odd.
N[fl(r,x/2) = =
0 for all r, if f is odd

If f is not odd, then the term o(1) in the case of odd f is sharp in that given
any bounded positive function v on [0,00), with Y(r) — 0 as r — oo, there ezists a

function f satisfying (5.27) such that

> ¥(r) for all r>1.

]" f(§) ¢

=—00

‘N[f}(r, w/2) + 22T

(5.29)

Proof. First note that if (5.27) holds then

[ IFE)] dE < oo. (5.30)
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We have
Nifira/D) = —5 [ f@og (€+r) de (531)
é=—o0
- leer [ Fle &t — = [ fieog (& +1) & (5:32
g=—co Mo
= o / F@)dE +0(1) (r — o). (5.33)
é=—c0

The last line above is by the Dominated Convergence Theorem.
And, N[fl(r,#x/2) =0 for all r if f is odd.
To prove the sharpness of

Niflir,x/2) + 5

[ f(€)dE = o(1) (r— o) (5.34)

f=—c0

when f is not odd, use the method in Proposition 2.2.3. Given a bounded function
¥ with ¥(r) = 0 as r — oo, Lemma 2.2.1 allows us to assume ¥ is decreasing,
¥ € C*([0,00)) and ¥’(0) = 0. Let
f(r) = { “ega V) 20 (5.35)
0, r<0.
Then

‘N[f](r,fr/2)+l°§' f f(f)dE‘ = 7 fenog (5 +1) & (530)

g=—oo €¢=-oo

/ #(©)log (5 +1) dt (537

log2
> lngwe)log( +1) & (5:39)
> - / ¥'(6) de (5.39)

= ¢(:). | (5.40)
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Note that convergence in (5.27) implies the existence of D[.f] in (5.28). The
growth estimate in Theorem 2.2.1 can be integrated over ¢. Put a=b=1and n =2

in Theorem 2.2.1. Since

/ % = —[log(csct —cott)]2 (5.41)
t=¢
= log(csc @ — cot @) (5.42)
it fellows that
=[2
/ D[cf](r,t) dt = o([log(csc ¢ — cot ¢)|) as r—oo. (5.43)
t=¢

The function |log(csc ¢ — cot ¢)| is symmetric about ¢ = x/2 since

¢, ¢—0*
cscp —cotp ~ 1, ¢—7% (5.44)
ﬁ, ¢~

The estimate in (5.43) can be improved because it fails to take into account the

logarithm factor in (5.27).
To accurately determine the growth of D[cf] under (5.27), write

rsin ¢

Dlef)(r,$) = — (h+ L + Iy) (5.45)
where
L = j P(E)F(E) de (5.46)
f=-c
L = p1(€)£(6) dt (5.47)
e<|¢|<N
L = [ p1(6)F(€) dE (5.48)

>N
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and

_ §
pI(E) - 63 -2£TCOS¢+1'2’ (5.49)

The number N = N(r) > e will be determined in Lemma 5.4.4.

Lemma 5.4.2 If (5.27) holds then I, = O(r~%) asz — oo in IL;.

Proof: Let r > e+ 1. Then from (5.46),

[ lef(e)lde
lh| < . - — 6 (5.50)
1 e
< "—“)_’Je l€£(@)Ide (5.51)
< L2 [ ks (552)
f=—c

Remark 5.4.1 A complete asymptotic expansion of I; as r — co may be obtained
by expanding in Legendre polynomials (A = 1/2 in (3.13)).

Lemma 5.4.3 If (5.27) holds then I3 = o(1/[(1 — | cos §|)rlogr]) as z — oo in IL,.

Proof. Let
_ £
p!(f) - logf(fz -2£TCOS¢+T2), (5-53)
F(e) = / F(#)logt dt (5.54)
t=¢
and

R = / |F ()| log ¢ dt. (5.55)
t=¢
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Then pz(€), F(€) and Fi(§) = 0 as { — oo. Let Iy = [ = f(£) log € p2(€) d€ and
integrate by parts:

L= [ @ ogeme)de (5.56)
é&=N
= Fnm) + [ F© 5O (5.57)
=N
And,
1) = R () + R [ 30)1 . (5.58)
=N
The last integral above can be evaluated if the roots of p; are known. We have
ooy o (Qog€~1)r? +26rcos — (log§ + 1)¢°

p2(£) Tog £ (6 — 26r con g + 17)F (5.59)
— (1.2 — éz) log E (52 - 25' cos ¢ + .,.2) R (5.60)

log? £ (€2 — 2¢r cos ¢ + 12)?
The transcendental equation p3(§) = 0 cannot be solved directly. However, the
quadratic in (5.59) can be factored for r = r(§, ¢), viz

64 =¢ ( AT (561)

the function £ —» £/(log £ —1) has derivative (log £ ~2)(log {—1)~! and is an increasing
function of £ for £ > 2. Consequently, r(£,4) is an increasing function of £ (£ > e?)
and (5.61) has a unique solution for £ in terms of r (for each fixed ¢). This equation

can be solved approximately by noting the asymptotic behaviour as { — oo:

f6d) = o {-cons+ioge[1- Tt 10 (og)]
[1 +logt ¢+ 0 (log™2¢)] } (5.62)
= ¢ [1 + ? 14005 £)] (€ = o), (5.63)

ie., ime oo (€, 4)/€ =17, Hence, we can write

- E(r, ¢) (5.64)

™9
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where E(r,¢) = o(1) (z € II.,r = o) and 0 < E(r,$) < 1 for large enough r. Put
§/r =1— E(r, ¢) in (5.60). Then

-0 = (2E — E* [log(1 — E) +logr] —2(1 — cos ¢) + 2(1 — cos §) E — E?

= 2Elogr —2(1 —cos$) — E*logr + R(E) (5-65)

where
R(E) = (2E — E*log(l1 —E)+2(1 —cos$)E + E? (5.66)
~ 2(1 —cos@)E —3E* (z €I, r — oo). (5.67)

Treating (5.65) as a quadratic in E,

E = 1-4/1-2(1—cos¢)/logr + R(E)/logr (5.68)
2(1 —cos@)/logr — R(E)/logr (5.69)

N 1+4/1—-2(1~cos¢)/logr + R(E)/logr

Since R(E(r,9)) = o(1) as z — oo, we have E(r,¢$) ~ (1 — cos $)/logr as £ — oco.

From (5.60),

>0 for N<{<r—rE(r,¢)

p3(é){ =0 for ¢ =r—rE(r,9) (5.70)
<0 for € >r—rE(r,¢)
and
[ @1 = BER - PO (5.71)
é=N

= 2py(r(1 - E)) — p2(N). (5.72)

Therefore, from (5.58),

_ (r — rE) Fy(N) 5.1
= (log(1—E) +logr) [2(1 — cos §) — 2(1 — cos $)E + BF| 2~
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Asz —oom I,
(1-E) Fi(N) _
(1~cosd)r logr [1-[-0( )] [1+0(E)+0(1_m.¢)]

e o () o) e

And, Fj(N) —+ 0 as N — oo, so given € > 0 there is Ny > e such that N > M,
implies Fl(N) < €. Thetefore, I4 =0 (U-T;Trm) as £ — oo In II+.

For the integral fE:—oo F(€) log € p2(£) d€ we have the same results with ¢ — 7 —¢.

The lemma now follows. W

(5.75)

e <

Lemma 5.4.4 If (5.27) holds then I; = o(1/(rlogr)) asz — 00 in .

Proof. Let ps(£) = [£|/log [{] then

)} —
ps(§) = sgn(f)l(oi;f fl ) (5.77)
{ >0 for £2>e
(5.78)
<0 for 0<é<e
Therefore, ps(£) < ps(N) for e < [§| < N. Let r > N then
I
< Pa(8) l({(i)llfﬁf l€1 d¢ (5.19)
e<|¢I<N
N
v | V@il (5.80)
e<|é|<N

In Lemma 5.4.3 we had N > N; > e. Now, given €2 > 0 we will show that
N/[(r — N)?log N] < €3/(rlogr) for appropriately large »r and N. We can take
€2 < min(1,25/(4MN;)). Let r > 25¢;2. Then

2
a5 5 5 max (Nl, E) (5.81)
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and we can take

max (M, ?) SN<T (5.82)
Then
N €r
< 5.83
(r—NPlgN ~ 4(1-2)r2log () (5.83)
€2
< 5.84
. 4(1—%)2rlog (v/7) (5.84)
_ 862
~ Orlogr (5.85)
€2
< rlogr’ (5.86)
Now replace ¢; by
= (5.87)
max (1, [ 1f(&)l loglé] df)
e<[¢|<N
then || < e/(rlogr) for > 25¢;* and N given by (5.82). &
Lemmas (5.4.1)—(5.4.4) can now be combined for an estimate of N[f].
Theorem 5.4.1 Let (5.27) hold for a measurable function f. If f is odd then
N[fl(r,$) = 0 (103(1 = g':°s "")) as z — oo in I (5.88)

If f is not odd, write N[fl(r,¢) = u(r,¢) + v(r) where u(r,4) = N[f](r,¢) —
N[f)(r,7/2) and v(r) = N[f](r,7/2). Then

u(r,4) = o (103(1 — | cos ¢D) and v(r) = —

logr
logr T

/f(f)df+0(1) asz — oo inIl,.
e (5.89)

The estimates o (Eﬂa‘_;“ﬂl) are sharp in the sense of Definition 3.13. And, the
estimate V(r) := v(r) + lﬁ? JZo, f = o(1) is sharp in that, for any positive function
¥(r) = o(r) asr — oo, there is a function f satisfying (5.27) so that |V (r)|/%(r) A 0

as T — 00.
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Note that o (ml—;{—?—ﬂ)—) and o(1) are not comparable. Let ¥(r, §) = log csc¢/logr
and suppose 0 < ¢ < ¢p < n/2. Then u = o(¥) if and only if u(r,d) = o(log(l —
| cos $])/ log r), since log(1~ | cos $|) and log csc ¢ have essentially the same behaviour
except at ¢ = n/2 (Their ratio is bounded if ¢ is kept away from 7/2.). On the
curve r(¢) = cscd we have ¥(r,¢4) = 1. On the curve r(¢) = logcscé we have
¥(r,$) = log csc ¢/ loglog cscp — oo as r — co. And, on the curve r(¢) = constant
we have ¥(r,¢) = O(1/log r). Hence, neither o (BQ%‘L?!Q) nor o(1) is dominant.

Proof. From Lemmas 5.4.2-5.4.4 and equations (5.46)—(5.48), 1 + L+ Iy = o(1/[(1 -
| cos ¢|)rlogr]) as £ — oo. Now look at (5.28), (5.45) and Lemma 5.4.1. If f is odd

then

x/2
. 1 sintdt
N[f](r! ¢) =o0 (logrt:‘/“ 1 - lcostl) - (5'90)

And,

=/2

sintdt
/ m = —log (1 - ICOStI) . (5.91)
t=¢

This gives (5.88).
When f is not odd, the contribution from N[f](r,7/2) (Lemma 5.4.1) must be
added for (5.89).

To prove (5.88) is sharp a lower bound on N[f] is needed. Let f be an odd function
such that f > 0 on [0,00), f <0 on (—00,0] and [Z__ |f(£)|log(¢* +2) dé < co.

First suppose that 0 < ¢ < #/6 so that cos ¢ > 0. Then £2r-2—-2fr~lcosp+12>1
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whenever £ > 2r cos ¢ or £ < 0. Now use the fact that f is odd to write

Nifltng) = BT 7 red-5 [ fewe (G -2bessr) &

{=—c0 [€1>2rcosé

1
~5 f(€)log (——-2 2cosd+1) df

[l<2rcosé
oo

]

1 G +28cosg+1
5 | row(ErE=en)

§=2rcosd

_%r.{ /0 +27m‘}f(f)log(——2 cos¢+1)df

é==2rcosé £=0
2rcosd

[ seree (—-z-cos¢+1) &,

=0

1

>
= Tom

Since 0 < ¢ < 7/6 if follows that 0 < cos¢ —singd < cos¢ +sin¢ < 2cos ¢. Let
F(r, ¢) be the minimum of f(£) over r(cos ¢ —sin @) < £ < r(cos ¢ + sin ¢). Then
r(cos¢-+sin )

Nifl(r.4) > F(r, ) (—-;;) [ e [(i-cos ) +sin’¢] .

¢=r(cos$—sin4) (5-92)

With the change of variable ¢ = 5 — cos ¢ this becomes
siné
r -
NIAle.9) 2 Fird) (<L) / log (¢ + sin’ §) dt

= F(r,¢) (——) [tlog (¢ + sin® §) — 2¢ + 2sin arctan (sm¢)]ﬁ“

rsin ¢

= PF(r, ¢)( )[2log(sm¢)+log2-2+w/2].

Finally, since log(sin ¢) < log(1/2) < 2 —n/2 —log 2 when 0 < ¢ < /6, we have the

lower bound

N[f](r, ) > F(r,$)rsin¢ log(1 — | cos ¢|) i (5.93)

T
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Now, given any sequence {9} in I, and any function ¥ : R — R with ¢¥(z) =
o(log(1 — [cos §])/logr) (z = oo in II), to prove sharpness of (5.88) we have to
show that N[f]/¥ # 0 on some subsequence of {z(}. With no loss of generality,
it may be assumed that [z)| = oo monotonically (take a subsequence of {z¥} if
nec?ssuy).

First suppose there is a subsequence £(*) = r; cos §; &, + r; sin¢; &; with 0 < ¢; <

n /6. Using (5.93), it suffices to show that

. T
F(r; cos ¢;, rssin ¢;) > Froomdilogr (5.94)
Let
=y —£__ (|6 —r;cos ;| +1.57; sing;), msing; < |€—ricosdi| < 1.57; singy;
F(€) = fi [ — r; cos ;| < risin g

0, otherwise.

Note that for 0 < ¢; < /6, we have ry(cos ¢; + 1.5 sin ¢;) < :(v/3 + 1.5)/2 and
rir1(cos dipq — 1.5 sin @iyy) 2> 1'.-.,.1(\/3-. — 1.5)/2. The intervals (r; cos ¢;,r; sin ¢;) are
disjoint if riy1 > (V3 +1.5)(v/3 — 1.5)~1 r;. This can always be arranged by taking a
spalse enough subsequence.

From the definition of f, we have F(r;cos ¢;,r;sin ¢;) = f;. So if we define f; =
m(r; sin @; log r;12)~! then (5.94) is satisfied. It remains to show (5.27) holds. That

condition is equivalent to convergence of the series

Z f: 7 sin ¢; log(r; cos ¢;). (5.95)
=1
And with f; as above, this series becomes
log(r. cos ¢;)
“Z,: A log s <= Z (5.96)

This establishes sharpness in (5.88) when £ is odd and there is a subsequence of {z(!)}
in the sector 0 < ¢ < /6.
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Now suppose that f is odd and that each element of {z(¥} is in the sector 7/6 <
¢ < 7/2. We have

£ —2r;cos¢; +12 = (£ —ricosd)® +risin’ (5.97)
o2

2 7 (5.98)

21 ifrn22 (5.99)

We can assume that r; > 2 and {r;} is an increasing sequence. Then log(¢? —

2£r.:cos¢,~+r?) > 0 for each £ € R. Let

£(6) = { —fi(l—[f—-7), m-1<€<r;+1forsomei>1
0, otherwise
(5.100)
where f; > 0 is a sequence given below. We now have
oo i+l
Niflead) = ~Y 3= [ FOLE(E ~2rcosdi+rd)de (5101
i=1

é=ri—-1

ri+l
<L [ a-lg-rogra (5.102)
f=r;—1

f—l;r'g—' (5.103)

We can assume we have a subsequence £*) = r; cos ¢; é; + r; sin ¢; é; such that

- (§ 1 1- (3
ey < LGl (5.104

Let f: = [¢(21)|/log ;. Condition (5.4) is satisfied if and only if
) filogr; < oo (5.105)
=1

With f; as above we have

filogr; < "'hg(l.: cos ¢)| (5.106)

_wlog(1 — v3/2)

'2

(5.107)

IA
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and (5.105) holds. Also, N[f](r:; ¢:)/i¥(2®)| > 1. Therefore, (5.88) is sharp when f
is odd. By symmetry this holds for 0 < ¢ < =.

When f is not odd, take f as above and add a positive function satisfying (5.35)
in Lemma 5.4.1. The resulting function gives the desired sharpness. -

Since II, is unbounded, f;_m f(€) d¢ need not vanish for N{f] to be a solution
of (5.1)- (5.3). However, as shown below, f;’_m F(€) log(£2 +1?) dE is zero (for all r)
precisely when f is odd. This means that v in (5.89) is not identically zero.

Lemma 5.4.5 If (5.27) holds for continuous f then N[f}(r,7/2) =0 for allr >0
if and only if f is an odd function.

Proof: If f is odd then N[f](r,#/2) = 0 since it has an even kernel.

If N[f](r,x/2) = 0 for all r > 0 let g(§) = f(§) + f(—£) if £ = 0 and g(§) =0 if
£ < 0. We have

£y = -2z <o,

so g is continuous. And,
1 00
Nifitra/2) =0= o= [ g()log (€ +1) de (5.108)
Let u(r, ¢) = N{g](r, ) and consider u as a function in the left quarter plane r > 0,

/2 < ¢ < w. Since u(r,x/2) = 0, u can be extended across the y-axis to 0 < ¢ < 7/2
as an odd function (Schwarz Reflection Principle, see §1.2). Define

o ) = { —ur,m—¢), 0<é<n/2 (5.109)
u(r, 9), T2l $<m.
Then
v € C¥(I) N C°(IL) (5.110)
Av=0, zell, (5.111)
20, zeo (5.112)

ofrescd) (z €ll;, r — o). (5.113)

v
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Theorem 6.4.2 (with N = 0) now says v = N[0] = 0. But u and v agree on the left
quarter plane so u = 0 on II,. By the same theorem, g =0 and fisodd. @

Remark 5.4.2 If f is assumed only to be measurable so that (5.27) holds and
fflo(f(f) + f(—€))€= df converges for some —1 < a < 0 (f being bounded at the
origin suffices) and if N[f](r,7/2) is only known to be zero for r in an open subset
of Ry, we can still obtain the conclusion that f is odd. Define g as above. The
fanction N[f] is real analytic on IL; ([7], page 21). It follows that N[f](r,x/2)is a
real analytic function of » for » > 0. Since it vanishes on an open set it vanishes for

all » € R. Differentiate under the integral sign and write

c—,d;N[y](r,vrﬂ) = ;’;— g% (5.114)

£=0

_ 1 [ gr)de

= = / ) (5.115)

- £=0
= 0 forr>0. (5-116)

The Mellin transform of g,

Mig)(s) = / 9(€)¢* 1 d¢ == G(s), (5.117)

=0
is analytic in the strip 0 < Re(s) < 1+ a. Let h(¢) = (2 + 1)~!. The Mellin

transform is

Hs) = [S-% (5.118)

Iy s/2-1
% %_Td{ (5.119)

é=0
I'(s/2) T(L — 5/2)
. 2

([19],1.5.2) (5.120)

= SEeD ([19],1.2.6) (5.121)
(5.122)
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and is analytic in the strip 0 < Re(s) < 2. The convolution of g and k is

gxh() = [ srOmO &t (5.123)
¢=0

and has Mellin transform
Mg *hj(s) =G(s)H(1 — s) (5.124)

(see, for example, [15]). The convolution is analytic in the common strip 1 + a <
Re(s) < 1. But from (5.115), g*h(r) = 0 for r > 0. Therefore, G(s) H(1 —s) vanishes
identically for 1 + @ < Re(s) < 1. And, H(1 — 8) = H(s) = wsec(7s/2)/2 # 0 in
this strip. Hence, G vanishes identically there and so g vanishes almost everywhere
for 7 > 0. Therefore, f is odd (almost everywhere).

5.5 The modified kernel

The modified Neumann integral, Nj[f], can be estimated using the integral repre-
sentation of the kernel given in part (i) of Proposition 5.3.1.

Theorem 5.5.1 Let M > 1 be an integer. If (5.8) holds for a measurable function
f then

Nulfl(r4) = o (rMlog(1 - [cos §]) + 0 () (2 €Iy, 2| = oo).
(5.125)

The estimate is sharp in the sense of Theorem 5.4.1.

Proof: Use (i) of Proposition 5.3.2 to write

x/3
Nulf1(r9) = / Das[ef](r £) dt + Naelfl(r,7/2). (5.126)
t=¢
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An upper bound on |Dy[f]| was obtained in (3.35) of Theorem 3.23. And, |Dy—1[cf]|
will have the same upper bound. It follows that Da_i[cf}(r,é) = o(r™log(1 ~

| cos 4]))-
The final term in (5.126) is

Nulfl(r,7/2) =
Ei>1  ¢=o0
We have
1+¢ . ((1=¢)
R T
SO
1511:5352 for0<¢ <1
And,
¢+ ¢-1
1+ - tirer
SO
1 _1+¢ _2
ZSI'_'*_—SE for (>1
Let-
(1+€)C”“‘d(
I'C_L 1+
Ifr/[¢| <1 then
r/lEl M
2 r
9 [ Mrgr==(—) .
nsa [ oa (IEI)

SOy [ (“'f’f;'l %

¢=0

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)

(5.133)
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Ifr/|€] > 1 then
1 /1€l
I < 2 [ (Mtd¢+2 | (M2dC (5-134)
Cl C;/l»l
M-
_ [ Ea[ene -1, Mz (5.135
2 + 2log(r/I€)), M=1

=3 M-1

S M-1 ("/[5') Y M 2 2 (5.136)
2+ 2log(r/IEl), M =1.

The preliminary results above will now lead to an estimate of Ny[f](r,7/2). Let
r > 1. From (5.133), we have

[~ ~] rM oo
[rora| < 5 [1Ea (5.137)
é=r &=y
= o(r™) (r - ). (5.138)

Let F(§) = f:e [f(t)|t~™ dt. Then F(¢) = o(1) as ¢ — oo. And, given € > 0, there
is a number N > 1 depending on € so that F(v) < e¢/2forall v > N. Let r > N and
M > 2. Then, using (5.136),

r r

2rM-1
[ rere < 2— [FE (5.139)
&=N &=N
< Mz_lr““F(N) (5.140)
< erM. (5.141)
And,
f 241 F I5(e)lde
[ sora < 31— [0k (5.142)
é=1 é=1
< 2NrM-1p(Q1) (5.143)
< erM  ifr>2NF(1)/e. (5.144)
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Hence, Ny [f](r, 7/2) = o(+™) for M > 2. (Using a similar construction for £ < —1.)

When M =1,
l/f(f)fdf <L+1IL,
egN
where
L =2 [l
e=N
[ e %
< 2 [ 5
=N
< 20F(N)
< er
And,
L= 2 [ if@)os(r/e)dt
é=N
< 2rF(N)sup1‘-)EE
e>1 ¢
< erfe.
As well,
N
[ rorag| <n+i,
=1
where
N
B =2 [If@%
é=1
< 2NF(1)
< er ifr2>2Nf(l)/e

(5.145)

(5.146)

(5.147)

(5.148)
(5.149)

(5.150)

(5.151)
(5.152)

(5.153)

(5.154)

(5.155)
(5.156)
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And,

N
L=2 [ |F(E)Ilog(r/€) de. (5.157)

é=1

Since logr/r — 0 as r — oo, we can always find r (depending on ¢) such that
logr/r < ¢/(2NF(1)). With such an r,

N
d¢
Iy < 2Nlogr | |f(6) (5-158)
Jrere
< 2NF(l)logr (5.159)
< er. (5.160)

(If F(1) =0 then (5.160) holds for any r > 1.) Hence, Na[f](r,7/2) = o(r™) for all
M2>1.

To prove the estimate Nas[f](r, 7/2) = o(r™) is sharp, suppose ¢ is any bounded
positive function that tends to zero at infinity. By Lemma 2.2.1 we can assume 9 is

continuously differentiable and decreasing. Let

2rM(—1)MH1/(E) M, £>1
f6) = { rM(—1)MHL(E) €M, ¢ 5160

0, £<L

From (5.129) and (5.132) we have I > M~(r/£)M for £ > r. Thus,
Nulflen/D) = o [ fOrd (5.162)
el EGL; (5.163)
§=r

= My(e), (5.164)

giving sharpness as in Theorem 5.4.1.

The proof that f;(: Du[f](r,t) dt = o(r™1og(1 — | cos #|)) is sharp is similar to
the-previous sharpness proofs in Theorems 3.3.1 and 5.4.1. @



Chapter 6

Uniqueness and spherical

harmonics

6.1 Introduction

The classical Phragmén~—Lindelof Principle(see the next chapter) ensures uniqueness
to (2.1)- (2.3) under the growth condition # = o(|z|) as |z] & oo in II,. How-
ever, if f satisfies (2.6) then u = D[f] is a solution even though f(y) needn’t be
o(|y|) for the Poisson integral to exist. And, as we have seen above, existence of
the Poisson integral does not imply any @ prior: pointwise behaviour of u on JIL;.
We now establish a theorem that guarantees a unique solution to (2.1)-(2.3) with a
growth condition compatible with any data f satisfying (2.6). It gives uniqueness to
a harmonic polynomial of degree N when f satisfies

'
/ %ﬁ;l% < oo forsome N> 1. (6.1)
RN?

96
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6.2 Spherical harmonics and homogeneous harmonic

polynomials

In this section we will list some relevant facts about homogeneous harmonic polyno-
mials and spherical harmonics. General references are [7], [14], [20] and [62]. The
basic properties of spherical harmonics are derived from first principles in [59]. Group
symmetry properties are discussed in [32].

Let P denote the set of homogeneous harmonic polynomials of degree k; h € Pi
if h’is a polynomial of degree k such that

h(tz) =t*h(z); ze€R" t>0 (6.2)
Ah =0in R~ (6.3)

It will be convenient to define P, = {0} for £ < 0. Due to (6.2), an element of P; is
determined by its values on the unit sphere (h(z) = k(|z|2) = |z| h(2))-

The spherical harmonics of degree k are the restriction of elements of P to the
unit sphere. We write Y (2) = h(2) for h € Py and define

Vi = {Y: Sp-1 = R IY(:E:) = h(z) for some h € ’P,,} . (6-4)

There is a one-to-one correspondence between P; and Yi; h(z) = |z|*Y(2). The
elements of ), are analytic functions on the unit sphere S,,—;. If we write r for jz|
then the Laplacian in R" can be written

A _ 1‘1—” 58'.- (ru—l %) + ;]_’2_A

which defines A as a differential operator on fanctions twice differentiable on S,,_;.
We call A the Laplace-Beltrami operator. The spherical harmonics are eigenfunctions
of A,ie,AY +k(k+n—2)Y =0 for Y € Ys.
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With the usual pointwise definitions of scalar multiplication and vector addition

Vi is a vector space of dimension

d(n, k) = (":f;‘)

When n = 2, d(2, k) = 2 and ) is the span of {sin(k¢), cos(k$)}. Equivalently, there
are two linearly independent homogeneous harmonic polynomials of each degree in
two variables. These are listed up to degree five in Table 6.1 below. For ease of

reading we have written z; =z = rcos ¢ and z; = y = rsin ¢.

Po 1

P z Yy

P, 22—y 2zy

Ps z3 — 3zy? 323y — ¢

Py | 2*-62%y’+y* 4zy(z? - %)

Ps || 25 — 10z%y® + 5zy* | y° — 1023y® + 52y

Table 6.1: Homogeneous harmonic polynomials in two variables

The elements of P have been chosen so that the corresponding elements of Vi
are cos(kg) and sin(k¢). For example, z* — 3zy® = r*(cos® ¢ — 3 cos ¢ sin’ §) and
cos(3¢) = cos(24)cos ¢ —sin(2¢)sin ¢
= (cos® ¢ — sin? §) cos ¢ — 2 cos ¢ sin® ¢

= cos’ ¢ — 3cos ¢ sin? §.
When n = 3 we write z; = |z|sinf cos ¢, z; = |z|sin d sin$ and z3 = |z|cosf. A
basis for Y is usually taken as
Yi*(2) = PI™(cos 8) e,

where —k < m < k and P is the associated Legendre function. Alternatively, the
set {1, P*(cos 8) cos(m¢), P/(cos 8) sin(mg)}%,_, is a real basis for V.
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Explicit formul= for spherical harmonics are given in [20]. For » > 3 they are
represented as products of Gegenbauer polynomials and trigonometric fanctions.

Let f and g be (real) L2 functions on the unit sphere and dw,_, surface measure
on dB,. Under the inner product

(f.9) = /a  faduny

the spaces ), are orthogonal, i.e., if f € Wi, g € Ve and k # £ then (f,g) = 0. Bach
Yk is a vector subspace of the set of L? functions on the unit sphere S,,_; and for any
f € L*(Sn-1) we have the expansion f = ¥ fi where fi € )i and convergence is in
the norm induced by the above inner product. Hence, the Hilbert space L?(S,-;) is
the direct sum of Yy, W1, Vs, --- and we write

L*(Sn-1) = P W (6.5)
k=0

There is a corresponding result for P;. A strengthened form of this expansion will be

used in the proof of the uniqueness theorem (Theorem 6.4.1).

6.3 Three lemmas

The following lemmas will be useful.

Lemma A: Fiz1 <t < n. For each j > 0, if H; € P; then there ezists A\; € R such

that Hipy(2) = z:Hj(z) — Ajlz)? %1,‘1,.1 is in Pjy1.

A proof is given in [14], p.534. It is based on Euler’s theorem for homogeneous
functions, namely, z -V H(z) = k H(z) where H is a homogenous function of degree
k.

Our uniqueness proof depends on the fact that, on the unit sphere, the product of
any polynomial and a spherical harmonic has a finite expansion in terms of spherical

harmonics. To prove this we use three lemmas.
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Lemma 6.3.1 Ifh € P (k > 0) and p > 0 i3 an integer, then there are h; € P;
such that

ZZh(z) = Y |2[* hesp-2e(z), (6.6)
£=0

where © is a fized integer, 1 <i < n.

Proof: The proof is by induction on p.
If p = 0 the result is immediate.

If (6.6) holds for 0 < p < q then

q
sh(z) = 7 Y |o*Herg-2(z)  (H; €P)). (6.7)
l_.:o
Writing A; = [n+2(j — 1)}~ for § > 1 and A; = 0 for j < 0, the function H;4;(z) :=

z; Hi(z) — Ajlz[? %f—:f— is in Pj41 (Lemma A). Since 95%- € Pj-1, (6.7) may be written

. ) OHire
z*h(z) = Y [z* (Hkﬂ-m-l(z)‘*"\kﬂ"‘ l=f* ;: 2‘)

=0
q g+l
aHk+q-2l+2

D 12 Hera-2esa(2) + 3 1ol Mtg-a042 =5

=0 =1

q+l - -~
Z |2[* Hiyg-2e41(z)  (for some H; € P;)
=0

I

and the result follows. P
The case p = 1 is given in [62], p. 226, Lemma 3.4.

The spherical harmonics of degree k are the restriction of elements of P; to the
unit sphere. Lemma 6.3.1 with ¢ = n may be written

P
cos? 0Yi(2) = ) Visp-2u(2) whereY; ¥; € V. (6.8)
£=0
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Lemma 6.3.2 If h € Pi (k > 0) and r; > 0 are integers, then there are h; € P;
such that

P
gl -2 = Y |2 hryp-ze(2), (6.9)
l:o

n
where p =) p;.
=1

Proof- The case when all the r; are zero except one is covered by Lemma 6.3.1. Use
the convention that for any m-tuple o, hg') € Pr (1 £ m < n). Hence, repeatedly

using Lemma 6.3.1,
1

Al h(z) = el Y (el A, L, (2)

4=0

mn P2
4,2
= 2Proe2B Y (22 Y |22l (2)

4L4=0 £3=0

’ f 41 P2 Pn
= Y 14 jefe-- Y bl (=), (6.10)
4,=0

4L=0 L=0
where we have written £ = 4 + &, + --- + £,. Collecting together homogeneous

polynomials of the same degree gives the combinatorial sum

o2l h(@) = ALY (@) + lef? (AT @) + RS ) + -+ A ()
+al* (5320 (2) + BESH =) + - + 55 40(e))
. +eeet lzlzp h,?_',’,m’p")(z)
= YlEE Y MR
£=0 L+l +-Hln=t
= z,,: |2(* heyp-2¢(z), whereh;€P;. B

=0
Example. Let n = 2 and h(z,y) = z* — y*> € P;. Then

2
zy* h(z,y) = E r* hs_x(z,y)
=0

hs(z,y) + (22 + y*) ha(z,y) + (2% + v*)? hu(z,v).
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A calculation shows
hs(z,y) = -% (=° - 102%y? + 5z4*)

hs(z,y) = %(”3"‘3393)
hi(z,y) = 0.

Lemma 6.3.3 Let P be a polynomial of degree p and h € P,.. Then there areY; € Y;
such that

P(z)h(2) = ) Yerg-2(2). (6.11)
t__.o

Proof First éonsider iz ooz, where r; 2> 0, Y0 7 = r < p. By Lemma
6.3.2, zin---z] h(z) = Y5, |2|* hisp-20(Z), where h; € P;. Restricting z to the
unit sphere via the map z — # = z/|z| gives #[r---Z1' h(z) = Y7, Yetp—2:(2),
where Y; € Y; and Z; = =z;/|z|. Since P(£) is a linear combination of terms like
Er ---Z7' the result follows. @

In the example above, when z is restricted to the unit sphere, we have z =

r cos ¢ > cos ¢ and y = r sin ¢ > sin ¢, and (6.11) expresses a trigonometric identity.

6.4 A uniqueness theorem

We are now in a position to prove the following uniqueness theorem.

Theorem 6.4.1 If N >0 (N € Z), P a polynomial of degree p and f a continuous

function on R™"! then any solution to

v € C¥(IL) N C°(IL) (6.12)
Au=0, zell, (6.13)
u=f, =ze€dll, (6.14)

u=o(8lF) (zel, |z + x) (6.15)
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is unique to the addition of a harmonic polynomial of degree N that vanishes on 8I1,.

Proof- Let v be a solution of the corresponding homogeneous problem (f = 0). It
is equivalent to prove that v € Py and v = 0 on JII;. By the Schwarz reflection
principle any such v must be harmonic in R™. The spherical harmonics expansion

theorem ([14], p. 535) gives
v(z) =) 1= YO(2), (6.16)
k=1

where we will write Y;‘(i) € Vi and Y,,(o) vanish on 9l N 3B,;.

Using Lemma 6.3.3 we have

P(z) Y"(2) = Z Y- 2(2) (6.17)
=0
and
P(#)v(z) =) lzI* Y ¥, . (2). (6.18)
k=1 =0

Let j € Z; and 0 < m < p. The series in (6.16) converges uniformly on compact sets
and so may be integrated over the unit sphere term by term. With 4,; the Kronecker
delta, orthogonality of spherical harmonics gives

(9 3 - 2|2
/ Y an(8)P(@) (ol2) d50

o0 P
=Yl 3 Gipptmitrae [V B (8)dSus. (619)
k=1 =0 9B

The notation v(|z{Z) indicates |[z| remains fixed for the integration. The condition
J+p—2m = k+ p — 2L is satisfied by only a finite number of k € Z,, 0 < £ < p. The
right member of (6.19) is then a polynomial in |z| with no constant term. Integrating
the order relation (6.15),

[ ¥ sm@P@)o(lal2) d50s = o(lzl”“ / Y,-‘iLzm(é)dS»—l)
8B, By
= o(2e™) (el > ),  (6.20)
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shows the coefficient of |z}/ in (6.19) vanishes when j > N, ie., | Y2, |’ = 0.
From (6.17), Y =0 for k > N. Hence, by (6.16), v(z) =0if N =0 and if N > 1,
N
v(z) = Z lz|* Y (z) € Px.
k=1

The theorem follows. W

Corollary 6.4.1 If (2.6) holds for continuous function f then u = D[f] gives the
unique solution to the Dirichlet problem (2.1)—(2.3) that satisfies the growth condition
u = o(jz]|sec” 1) (z€ll,, [z] = ).

Proof: Use Corollary 2.2.1 and put N=0,p=n —1in Theorem 64.1. W
There is a corresponding result for the Neumann problem.

Theorem 6.4.2 If N >0 (N € Z), P a polynomial of degree p and g a continuous
function on R™*™! then any solution to

u € CY(IL) n CY(IL;) (6.21)
Au=0, ze€ll, (6.22)

% =—g, zedl, (6.23)
u=o(Ey) (zeIL,|z] ~ x) (6.24)

is unique to the addition of a harmonic polynomial of degree N — 1 whose normal

derivative vanishes on OIL,.

Proof The proof is similar to that above. Let v be a solution to the homogeneous
problem. Extend v to z, < 0 as an even fanction, v(z) = 10, |z[*Y{")(2), where
now Y,"(2)/80 = 0 on I, N HB,. Proceeding as before, (6.20) becomes

[ ¥ am@P@olelt)iser = ofiot” [ VD sni@)dSin)
: = o(lz[")  (lz| = ). (6.25)
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It follows that Y{” = 0for k> N. Thus v(z) =0if N=0and if N > 1,

N-1
v(z) =) V(@) ePy. B
k=0

If n > 2 then N[f] = o(sec®20). Therefore, the Poisson integral u = N{f] gives
the unique solution to the Neumann problem under the growth condition u(z) =
o(sc;c"'2 8), since in Theorem 6.4.2 we can take N = 0 and the degree of P at least
n—2. Ifn =2 and f is odd then N[f] = o(log(1 —|cos ¢|)/log r). And, since we can
take N = 0 we have uniqueness of u = N[f] under o(csc$). (The lowest degree odd
polynomial is g(§) = &, which fails this growth condition.) However, when f is not
odd then N[f] = O(log r) and we must take N = 1. In this case, the growth condition
u = o(r/sin ¢) does not give a unique solution. The solution will be u = N{f] + ¢
where c is any constant. Growth estimates for the n = 2 Neumann case were given

in Theorem 5.4.1.

In the next chapter a uniqueness theorem will be derived using barrier functions.



Chapter 7

A Phragmén-Lindelof Principle

7.1 Phragmén—Lindelof Principles

The classical Phragmén—Lindel6f Principle of complex analysis gives an estimate for
an analytic function in a sector based on its boundary behaviour and growth at

infinity.

Theorem A (Phragmén and Lindelof): Let 0 < a < 7 and let K, be the sector
0 < |arg z| < a. If f is analytic in K, such that

limsup [f(2)| <1  for each zo € 0Ka,, (7.1)
z€Kas—20
) log u(r
timeup EEE) — 0 where ur) = sup_ 1£(5)] &
r—+00 lz|=r,z€EKa

then |f(z)] <1l forallz € K,.

See [54] for the original reference.

A similar result holds for subharmonic functions in cones of R™.

106
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Theorem B: Let 0 < a < 7 and let K, be the cone {x e R" |0 < 0 < a}. If
u € C*(K,) such that

Au >0 inK, (7.3)
limsup u(z) <0 for each zo € 0K, (7.4)

2€Kq, 2429

lim sup p(r) <0 where u(r) = sup [u(z)|, (7.5)
r—boo rf |zj=rz€Ka

then u <0 in K,.

Here p is the smallest positive root of p(p+n—2) = A; where A; > 0 is the smallest
eigenvalue for the problem Av+ Av = 0 in K, with v =0 on K, N3B,. For the half
space, a = w/2 and p = 1. See [17]. The first theorem is a special case of the second
since if f is analytic then log|f(z)| is a subharmonic function of the two variables
z) - Re(z) and z; = Im(z). There are many other types of Phragmén-Lindelof
Principles, for different differential equations, for different regions and with different
types of growth conditions. The works by M. R. Essen [21], W. K. Hayman and P. B.
Kenney [33], V. A. Kondrat’ev and E. M. Landis [40] and P. Koosis [41] survey the
literature. As will be seen below, a Phragmén-Lindelof Principle immediately leads

to a uniqueness theorem.

In Chapter 2 we had the growth estimate D[f](z) = o(|z|sec™™! 8) (Corollary 2.2.1)
and this was proven to be sharp in Chapter 3, Theorem 3.3.1. Hence, the sec”"! 4
term cannot be dropped and the Poisson integralwill not in general satisfy the premise
of the Phragmén-Lindelof Principle (@ = 7/2 in this case). And yet we know from
the spherical harmonic expansion that the Poisson integralgives the unique solution
to the Dirichlet problem under a growth condition compatible with o(|z]sec™ ! §).
See (6.15) and Corollary 6.4.1. Thus it is desirable to prove a Phragmén-Lindelsf
Principle that allows divergence at the boundary. For the half plane, F. Wolf has the
following result, [66].

Theorem C: Let II, be the half plane £, > 0 of R2. Let f be a non-negative
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measurable function on (0,x) with f‘;olog"’ H($)dé < co. Ifu € C*(I1}) such that

Au>0 inll, (7.6)
limsap u(z) <0 for any zo €3Il (7.7)

z€Ml, z—z0

lim sup #(r) <0  wherep(r)= sup e FOu(z), (7.8)
r=$a0 r |zl=rzclls

thenu <0 inll,.

The function log* ¢ is logt for ¢ > 1 and 0 for 0 < ¢ < 1. In this theorem the growth
condition allows the angular function to be singular for any value in [0, 4] provided
its logarithm is still L!. This includes the growth condition in (6.15). The proof
of Wolf’s theorem depends on construction of a conformal map and so is specific to
n = 2. It will be the aim of this chapter to develop a Phragmén-Lindel6f Principle in
I, of R" that allows angular blow up compatible with the estimate on the Poisson
integral. This will be done using barriers.

7.2 Barriers in the plane
In order to prove a Phragmén-Lindelof Principle we will need two lemmas.

Lemma 7.2.1 For any decreasing, measurable function mq : (0,1] — (0, 00) with
f::o mo(t) dt < oo and any positive number A there is a function m : (0,1] — (0, o)
majorising mo such that
(i) m(t) > molt) ~ Alogt
(it) m is C? on (0,1)
(iii) m' <0

(iv) ~m(t)t > A
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1
(v) /m(t)dt < o0

(vi) —t3m/(t) is increasing

Proof Start with (iii), (v) and (vi). Let ¢ = £~V/2 then § = —2t73 %. Write
my(€) = mo(t). Condition (iii) becomes m}(§) > 0. And,

d 3., — -3_d_ ’
& (Tmale) = -2 g5 (2ma(€)) - (7.9)

So (vi) is equivalent to mj(£) < 0 or m; is concave.

Since 2dt = —£~3/% d we require [, m1(£)§~*/*df < oo in place of condition
(v). With mg as given in the lemma, the function m;:[1,00) = (0, 00) is increasing
and satisfies the above integral condition. Hence, m,;(€§) = o(+/€) as £ — oo. Let

V = {h:[1,00) = [0,00) | h € C*((1,0)),h'(£) = 0,h"(§) <0
and h(§) > mq(€) for £ > 1} . (7.10)

The map £ — a+ b€ is in V for large enough a and b so V is not empty. Let
mqff) = ’{1615 h(€). Then my(£):[1,00) — [0, 00) and is a concave, increasing majorant
of m;. It is piecewise linear where it does not agree with m;. If 1 < &, < §; then for

all € > 0 there is a function h” in V (depending on € and §;) so that
0 < h%(&) —ma(3) <. (7.11)
We have
may(§1) < h*(&) S h*(&) S ma(ée) +e (7.12)

And, € > 0 was arbitrary so mz(§;) < ma(§2). Therefore, m, is increasing (in the

wide sense) on {1, 00). To prove m; is concave we have to show that

ma(As + (1 — A)t) > Amga(s) + (1 — A)ma(2t)
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forall s,£>1and all 0 < A < 1. Suppose 1 < s < ¢ =§;. Using (7.11) we have

may(As +{(1=A)t) > h*(As+(1—A)t) —¢ (7.13)
> AMT(s)+ (L= A)h°(t) — e (7.14)
2 A(ma(s) —€) + (1 —A)(ma(t) —€e) —e  (7.15)
= Amg(s) + (1 — A)m,(t) — 2e. (7.16)

Since € > 0 is arbitrary it follows that m, is concave on [1, co).

Now show that Jeoy ma(§)673/2 d§ < 0. Let {£,}32, be the set of points such
that §o = 1; {n < L2n415 Ma(ban) = mu($zn) and ma(Eans1) = mi(&anya); for all €
satisfying £, < & < €n41 We have ma(€) > my(€). Let @ C [1,00) be the set of
points w ¢ {£,} such that ma(w) = m;(w). If a sequence of points in {£,} has a finite
limit then it will be impossible to label &, such that £, < £2,, whenever n < m.

Let V,, be the semi-infinite strip
Va= {(é’ 'l) € R? I E > €2n+11 on <N < 7]2n+1} (7.17)

and A, the triangle with vertices ({2n,%2n), (€2n+1;M2n) a0d (E2n41,M2n+1). We have
written e = ml(fk) fork = 01 1, 2’ ---. Theline containing (Ezﬂ»i ’lﬁn) and (§2n+17 "2n+1)

has equation

: _ - M2n+1 — Mon _
. 17— M2n €—2n+1 — 621:) (E fzn) (7.18)

or, 7 = a,§ + b, where

ay = ('hn-i-l h "2'1)/ (62n+1 - EZn) and bn =MNM2n — anfzn' (719)
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Let 0 be measure in the {n-plane with weight £~%/2. By construction, m,(§) <

ané + by on (E2n, fan+1)- Therefore,

§ans1 Gné4dn
o) = [ [ i

£=£0 TmMn
&ans1

/ (@n€ + b — 1) €7/% dE
€=&n
= [28a€"2 = 2(bn — 12a)€ ] Zz:-ﬂ

1

]

And,

) &an41
[[a= [ e [a
Va e=€3n+1 71=§2n
272041 — T12n)

v 52n+1

Therefore,
vént1~vGan Ean

o An) 3 (M2a+41 = Tzn) [ &ns1~E2n (Gan+1-E2n) (\/Gzln-u

1

280 (Ve ~ Vi) = 2(bums) (\/EMT-@

1

~ Ve

).

)

§ant1 — 24/ Eanbaner + Ean

63ﬂ+1 = fzn

— V& — Vn
Vi + vVén
1.

Now,

o) < [ mi(e)e? de < co.

n=1 =1

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)
(7.29)

(7.30)
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We_then have
atma) < Yo(k)+a(a) + [me)e 2 de (r3)
n=1 h)
< 2Y o)+ [mio eV a (7.32)
n=1 b
< oo. (7.33)

In order to smooth out m; we will need to extend its domain to [0, ). Suppose
£2m is not a limit point of @ (for some fixed m > 0). Then m; is a linear function
on [£am, am+1), i-€., m2(€) = amé + b where a,, and b, are given in (7.19). Since
mo(1) > 0 it follows that m3(1) > 0 and there is a number M > 0 such that if

M+anl+bm, 0<§< Emp
ms(§) =
M +m;(§), €2 Emer
then m3(§) > 0 for £ > 0. And, m3 is concave and increasing on [0, 00).
We can mollify ms with a convolution. Let ®:[0,1] — [0,1] be a C? function
with the properties $(t) = ®(1 —¢) (even about ¢t = 1/2), & is increasing on (0, 1/2),
&(t) =0fort <Oort>1, #(0) =& (1) =0 and f_ B(t)dt = 1. Let

€ u
me(§) = / / my(v) B(u — v) dvdu + m3(1) (7.34)
> ma(1). (7.35)

Since my; is increasing, m} exists almost everywhere and m, is C? on [1,00). And,

mj; > 0. Now,
13
mi(€) = [ () B(E - v) dv (7.36)
v=£-1
'3
> my(E) [ (€ ~v) dv (7.37)
v=g-1

mi(€")- (7.38)
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The last line follows from the change of variables £ — v — v. Since m} may not exist
everywhere, we define

my(£*) = Jim, my(2). (7.39)
It now follows from (7.35) and (7.38) that m4(¢§) > ms(€) for € > 1.

And, m4 is concave, for

3
mi©) = [ mie)#E-o)d (7.40)
v=¢-1
- / mi (€ ~ 5) &'(s) ds (7.41)
'=1(/)2 1/2

= [rie-9¥@ds+ [miE-14+9F0-ds (a2
=0 =0 .

1/2

[ mige— ) = mie ~1+6)) &(s) . (7.43)

]

The last line follows from the fact that & is even about 1/2 implies ¥’ is odd about
1/2. When 0 < s < 1/2 we have { —s > £ —1+s. Since my, is concave and $'(s) > 0
(0 < s £1/2) (7.43) shows that mj(£) < 0.

The fanction my also has finite measure with respect to . We have
13

my€) < mh(E—-1)"%) j' (¢ - v)dv (7.44)
v=€-1

= my((6-1)*) (7.45)

< my((6-1)). (7.46)

And, my(1) = m3(1) = ms(0)+(ma(1) ~m3(0)) so my(§) < ms(€~1)+ms(1)—ms(0).
Therefore,

o(me) < [ [ms(€) + ms(1) — ma(0)] £~/2 de (7.47)
é=1
< oo. (7.48)
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If we now transform back to the interval (0, 1) via § = ¢2 and then define ms(t) =
m4(€) then ms majorises mo and satisfies (ii), (iii), (v) and (vi).

Finally, let mg(t) = ms(t) — Alogt. Then on (0,1), me(t) > ms(t) > mo(t) and
mg € C?((0,1)), so (i) and (ii) hold. We have m(t) = mi(t) — A/t < mi(t) <0,
which gives (iii). As well, —mg(t)t = ~m{(t)t+ A > A, giving (iv). To demonstrate

(vi), write
- 1 1 1
mi(t)dt = [ mi(t)dt—A [ logtdt (7.49)
Jruow = [moa-a]
= o(md+ A (7.50)
< oo. (7.51)
For (vi),
%(-—tama(t)) = %(—t’m;(t))+%(3a4tz) (7.52)
= —4t"3mj(£) +6At (7.53)
> 0. (7.54)

Hence, mg is the desired majorant. W

Lemma 7.2.2 Let mg be any decreasing measurable function, mq : (0,1) — [0, o0),
with f;o mo(t)dt < oo. For each p > 0 there is a barrier function v, : (—p,p) —
[0,00) and a set T, C IL; satisfying

¥, € CHT,)NCT,\S) (7.55)

Ay, < 0, zeT, (7.56)

Yolz) > rem™ERd) 7T, (7.57)

¥, >0, =zeT,\S (7.58)

pl.i_ﬂ}o Yo(21,22) < o0 for each (z;,z2) € T),. (7.59)
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The boundary of T, is piecewise smooth. The set S is the intersection of T, and the

T1-GT1S,
S = {(z1,22) €R?*| —p <z, < p, 3, =0} (7.60)

and 8T, = 8T, N11,.

Proof. The proof is partly based on the construction in Lemma II of [11]. Let m > my
be the majorant in Lemma 7.2.1 with A = 3. We will be referring to the properties
(i)~«(vi) of Lemma 7.2.1.

There is a number 0 < A < 2/3 such that — f;{, m'(t) dt = 2. Indeed, let I(u) =
— [L,m'(t)dt. Then I(0) =0 and by (iv), I(2/3) > 2. Due to the continuity of I,

the number A exists as above.

Let
g(t) = %m(ﬁ) and  g(—1) = A (7.61)
define g on [~1,1). We have
wen ()4G0
so that
e [eQG) o
=1 =1 \
= —“1 ‘/{ . m'(u)u du. (7.64)

The left side is an increasing function of ¢ which says that g is an increasing function
(recall m' < 0).
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The domain of g is [-1,1). If lim g(t) = +oo for some —1 < £, < 1 then as
t=rty

t — t; we have

A A
- / m(wyudu - — / m’ (u)u du = 2 (7.65)

w=1/g(t)

but lim (¢ + 1) =% + 1 < 2. Therefore, £, = 1.

t—t

Now, from (7.61),

e ()

and 1/g(t) is a decreasing fanction of t so (vi) shows g’ is an increasing function.

Therefore, g is a positive, increasing, convex function on [—1,1) with g(t) = +oo as

t g 1-.
Let
£(3) = exp ( / a(t) dt) for —1<s<1. (7.67)
t=-1
Then on (—1,1),
>0, (7.68)
ff = fg>0, (7.69)
' = fo¢+fd>o0. (7.70)
Let
P(21,22) = f(21) (223 — 23 g%(21)) - (7.71)

Then ¥(z,,2;) > 0 when -1 < z; <1 and 0 < z, < v2/g(21). And,

AY(z1,23) = 2f"(z1)22 — (f(21)9%(21))" — 6£(21)g%(21)22. (7.72)
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Both f and g are increasing and convex so fg® is convex and, using (7.70) and (7.66),

Ay < [2f'(z1) — 6f(z1)g*(z1)] 22 (7.73)

' = 2f(z)g*(z1) [1+ 497 ~ 3] 22 (7.74)
_ z z 9(z1) —9l =z

= 2f(z1)g%( 1)[ o) 2] 2 (7.75)

< 0. (7.76)

The last inequality is from (iv) of Lemma 7.2.1.

For p > 0, let

s (22 e (23] om

This will be the form of the desired barrier function. We have 1, > 0 in the set

{imsl <, 0 <o < pmin (119 (2) 110 (22) )} (1.18)

and 9, is C? in its interior. From (7.76), Ay, < 0. We have 0 < A < g(0) < o and
f(0) = eXP(_]:]___I g(t) dt) < oo so

ple Yo(z1,22) = 2f(0)z2 < oo for each (z,,z;) in the above set.
(7.79)

Define T, to be a subset of the set in (7.78). Let
T,:{(zl,zz)eR’[0<zz<p(5g) (I/g( ) 1/g ( )}

(See Figure 7.1.) With these definitions, (7.55), (7.56), (7.58) and (7.59) are satisfied.
It remains to show that the choice of g in (7.66) will give us (7.57). Note that ¢,
is singular at (+p,0) and that in general T, will have a cusp at these points and at

(0,3p/(v/59(0)))-

The boundary of T, consists of the three smooth arcs {z2 = 3p/(V59(|21|/p)),
[z1| < p} (which make up 3+7,) and the segment [—p, p] of the z;-axis. Consider one
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Figure 7.1: The cusped region T,

half of 3*T,. On, z; = 3p/(v/59(21/p)), 0 < ;1 < p, we have

g (2 ) (7.81)

Since g is strictly increasing, it has an inverse fanction g~'. On the curve z; =

3p/(V5g(z1/p)), (7.71) and (7.77) show that

Yo(21,22) 2> 5emf (%) (2-2) =z (7.82)
= ™M -1 3p z

f (y ( ﬁzz)) 2 (7.83)

> e™¥(fog™)(cscg)rsing. (7.84)

The last line is entailed from the following observations. First, the functions f, g
and g~! are all increasing. With polar coordinates z, = rcos¢, z; = rsing, if
(21,22) € 3T, thenr < ‘ﬁ + (3/(v/59(0)))? p. We have g(0) > A~* > 3/2 (second
paragraph of this proof) so that r < \/1‘|’_4/5 p = 3p/V/5. Putting r < 3p/V5 in
(7.69) gives (7.70). |
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Now, on z3 = 3p/(v/5 9(:1/p)), (1.67), (7.84) and (7.61) give

07 (cscé)
Yo(z1,22) > exp| m(A)+ / g(t)dt | rsing (7.85)
=-1
97 (cscé)
. 1
= rsing exp [ m()\) + t=-[1 dm (Rt—)) (7.86)
= rsin¢ exp [m(sing)] . (7.87)

But using (i) of Lemma 7.2.1, exp[m(sin ¢)] > exp(mo(sin ¢)) csc ¢ so (7.58) is satisfied

and 3, is the required barrieron 7,. W

7.3 Phragmén-Lindelof Principle

These lemmas allow us to prove the following Phragmén-Lindelof Principle in IL,.
The barrier in Lemma 7.2.2 is extended to n-dimensions and then the Weak Maximum

Principle is used.

Theorem 7.3.1 Let mg be any decreasing measurable function, mo:(0,1) — [0, 00),
with [} mo(t)dt < oo. If u € C*(ILy) such that

Au>0 inlL (7.88)
lgfsup u(z) <0 for any zo € Ol (7.89)

- z€lly, 2=z
u = o (|z|e™*®) qs|z] = 00 in I, (7.90)

then v <0 in IL,.

Proof: It suffices to prove the theorem for a function that is larger than the given m,.
In Lemma 7.2.1 let m > mq be the majorant with properties (i)-(vi). Let ¢, be as
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in Lemma 7.2.2, (7.77), with f given in (7.67), g in (7.66) and % in (7.71). Extend
T, to be a subset of R™. Let

n 3 .
T,= {zeR |0 <z,.<p(75_) ISI%J'{I._I (l/g(
When n = 2, this is the same as in Figure7.l. When n = 3, T, is a square-based

=]
P

))ﬂmhﬂ%lsisn—l}-

pyramid with base corners (+p, £p,0) and apex (0,0,3pA/v/5). The sides, however,
may be curved and join the base at a cusp. Write 8*+T, = 8T, NI, and

S={z€T,|2z,=0, |z;] =p for some 1 <i<n—1}. (7.91)

Note that T, expands to become II; as p — oo. A barrier function is a solution
¥, € C¥T,)nC%T,\ S) of

AV, <0, z€T, (7.92)
@, (z) > |z|e™®=<d), e d'T, (7.93)
¥, >0, z€T,\S (7.94)
(¥, is not defined on §).
Define ¥, by writing
n—t
L ZOEDILACENE (7.95)
i=1

Since 1, was superharmonic as a function of two variables, ¥, is superharmonic as
a function of n variables in 7,. And ¥, is singular only on § so it is a continuous
function in T, \ S. Each 9, is non-negative in T, and although 1, does not have a
limit as z — zo € § it is true that as z ~ zg in T}, liminf ¢,(z) > 0 for any z¢ € S.
Also, v, vanishes when z, = 0, |z;| < p (1 < j < n —1). To show ¥, is a barrier
function we need only pzzove (7.93).

Let z € T, so that z, = 3p/(v5g(z:1/p)), i.e., on the face through z; = p.
Consider two right triangles, one with vertices at P = z = (z1,-+- ,2s), @ = y =
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(21, yZn-1,0) and R = (0, 23,23, ,Zn-1,0), the second with vertices at O (the
origin), P and Q. It will be convenient to use n-tuple notation for elements of
R". Let r, = |PR| and 6; be the angle PR and the normal to 3+T, through R.
As usual, 8 will be the angle between OP and the normal at 0. We have angles
ZOPQ = LPQR = =/2. Therefore, 22 = [OP)* - |0QJ® = |z|* — |y|* = |PR|* -
[QR]? = r? —z3. And, r? = z2 + z} > |z[*cos? 8 so that r; > |z{cosf. Also,
tané = |y|/z, and tanb, = =z;/z, so tand, = z,tanf/ly|. If z is on the face
though z; = p then the minimum of z,;/|y| occurs when z; = (p,0,--~,0) and
y = (p,p,*-=,p,0) Therefore, tanf, > ptano/\/(n-_l)p-’- = tanf/v/n — 1. And,
sec?§; = 1+tan?6; > 1+tan?0/(n—1) > sec?d/(n—1) so that cos§; < v/n — 1 cosé.
The maximum of z,/|y| is 1 so cos8, > cos¥.

In f, g and ¥ let m — m(¢/vn —1). It is readily verified that m(t/vn — 1)
satisfies (i)-(vi) of Lemma 7.2.1 (with mo — m). Take A = 3 in that lemma. Use

(7.87) and the bounds on r, and cos 8, above to write

Do(Z1,2n) = 7y cosfyemos/ VA (7.96)
> |z|cos? e™(=>*9) (7.97)
> |ojemele=d), (7.98)

Notice that sin ¢, = cos§;. By symmetry, ¥,(z;,z,) > |z|e™(*%) when z € T, on
the face through z; = por z; = —p (1 < i < n—1). Therefore, if z € T, on the

face through z; = £p (for some 1 < j < n —1) then ¥, (z) > ¥,(zj, z,)|z|emo(9).
Hence, ¥, is a barrier.
Now, let € > 0. Since u = o|z|e™*?) it follows that u < ¥, on 8T, for

sufficiently large p. Write w = u — e ¥,. With p as above,

Aw >0, zeT, (7.99)
w<0, z€d'T, (7.100)
] limsup w <0 for any zo € T, N 31, (7.101)

z€Tp, 2420
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Note that (7.101) holds in particular when z, is in the singular set S (on an edge in
the z, = 0 hyperplane). For as z — zg in T,

lim sup w(z) < lim sup u(z) — € lim inf ¥, (z) (7.102)

<0. (7.103)

- The Weak Maximum Principle, §1.2, applied to w shows that w < 0 in 7. Finally,
given z € IL;, let p be large enough so that z € T,. Then, using (7.71), (7.77) and
(7.79)

02 lim [u(z) ~ e¥y(z)] (7.104)
= u(z) — 20e™M(n — 1)z, € (7.105)

and € was arbitrary so u(z) < 0. Hence,u <0inIl,. &

Remark 7.3.1 Condition (7.90) may be replaced with the weaker condition

limsup { sup [u(z)|z| e ~mol==f] & <0. (7.106)
r—+00 zl‘zli—i:

Also, ifu € C°(IL;) then (7.89) may be replaced by u < 0 on OIL,.
A Phragmén-Lindelof Principle leads to a uniqueness theorem.

Corollary 7.3.1 Let mo be as in the theorem and f: R"! — R be a continuous
function satisfying [gu [F(¥')| (I¥'|* + 1) dy’ < co. Then any solution to

u € C¥(I}) N C°(TL,) (7.107)
Au=0 inll, (7.108)
u=f ondl, (7.109)
u = o (|z|e™(=?) (z e I, 2| = o) (7.110)

is unique and is given by u = D[f].
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Proof By the remark above, (7.89) may be replaced with the condition v < 0 on
onl,.

If u, and u3 satisfy (7.107)~(7.110) then v = u, — u; satisfies the premises of the
theorem. Hence, v < 0 in IT,. The same is true for the function —v. Therefore, v = 0
and u; = u,, giving uniqueness.

Let mo(t) = (n — 1)log sect. Then (7.110) becomes u = o(|z|sec™ ! §). Corollary
2.2.1 now shows D[f] is the unique solution.

7.4 Evolution of a barrier function

The definition of the barrier in Lemma 7.2.2 ((7.61), (7.67) and (7.71)) may seem
rather mystical but is the end result of a reasonable chain of thought. In this section

we endeavour to give some explanation for the choice of .

Barriers are often constructed on balls, for example, [26] and [55]. Suppose T,
in Lemma 7.2.2 was the semicircle {z € R? | |z]| < p,0 < ¢ < 7}. Try to solve
(7.56)—(7.58) with equality. The Poisson integral for a circle of radius p is

v
_pr-r h(t) dt
u(r ) = —- /;r’—2rp cosi — B T 7 (7.111)

The function u is harmonic in the unit disc with boundary values u(p, ¢) = h(9) (if

h is continuous). For the semicircle problem
Au = 0, r<p (7.112)

u(p,¢) = ph(d), 0O0<¢<w (7.113)
u(r,0) = u(r,x)=0 (7-114)
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take an odd reflection of h across the z;-axis, h(2r — ¢) = —h(¢). Then

1&(1‘, ¢)

@=rp [ 1 1
= 2% ,;[h(t) (f’—2rpcos(t-¢)+p’-f’-2rpco8(t+¢)+p’)dt

2 o sin#dt
= ;(pz_rz)pzrsuli;./o- (2 —2rp cos(t — @) + p°) (12 — 27 p cos(t + J) + p)

is the solution to (7.112)—(7.114). If u is to be a barrier function for the upper
semicircle of radius p then k should be positive and singular at the points (z;,z,) =
(£p,0). Near ¢ = 0 the kernel for u behaves like
sint o sint
(r2 —2rp cos(t — @) + p?) (r* —2rp cos(t + ¢) + p?)  (r2 —2rp cos(d) + p?)*
It is necessary that f  h(t)sintdt converge. This is a much more stringent condition

on h than (v) imposes on m in Lemma 7.2.1 If H(¢$) = exp(m(sin ¢)) in (7.57) then
Jio,log H(t) dt must converge, i.e., a much weaker condition than that on % above.
A similar result is obtained for the half ball in R™. In this case

P —l=l* [ h(y')dy’
u(z) = ~ P (7.115)
8B,

where h is a function on the unit ball of R™-1.

In the semicircle problem, the region T, meets the z;-axis at right angles. By
making this angle more acute it is possible to fabricate a barrier function with higher
growth. The function

ua(r, ) = fi—“%’l (% > 0) (7.116)

is harmonic on R?)\ {0}, singular at the origin and positive in the sector 0 < ¢ < 7 /k.
As k is increased the growth at the origin increases and the width of this sector
decreases. A barrier can be made by adding two translated versions of uz. Let

— 2 _ 2
rt—\/(pqizl) +z3 and ¢t-—arctan(pq:zl).

(7.117)
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The function

¥,(21,23) = p**! [sms.kcﬁ.;.) + Sin(r,;‘ﬁ-)] (7.118)

- +
is a barrier in the triangle with vertices (+p,0) and (0,pn/(2k)). The sides make
an angle 7/(2k) with the z;-axis. The angular growth function can now be taken
as h(§) = csc* ¢, allowing arbitrary power growth in 1/¢ as ¢ — 0%. Notice that
log h(¢$) = klog csc ¢ is integrable over (0, ) in accordance with the condition on m,
in Lemma 7.2.2. Full details are in [61].

If T, is allowed to have a cusp at the z,-axis then a barrier can have growth
exceeding power growth at (4p,0). This can be achieved by summing the functions

ug. Let
Us(r,¢) = Z ) ""(r ?) (7.119)

= Im [;le (P :;"‘)‘] (7.120)

. - Im { exp [p" cr:sk(k¢)] exp [ip" si.llt(k(ﬁ)] } (7.121)

- exp [P_"w] cin [L";(’iﬂ] , (7.122)

The fanction Uy is harmonic in R2\ {0} and vanishes when ¢ = 0. It is positive for
2x < L2 s“‘( psinkd) 1t (ez). (7.123)

Let k > 1 and ! = 0 then Uy(r, ¢) > 0 for r > p[sin(k¢)/n|*/* and 0 < ¢ < n/k. This

region has a cusp at the origin. Let v+ be the curves

. 1/k
ry = g [M*_)] (7.124)

™
where r4 and ¢ are defined in (7.117). we can define T, to be the region bounded
by v-, 7+ and the portion of the z;-axis between z; = —p and z, = p. There are

now cusps at (+p,0). And, letting

Vo(z1,22) = p[U(r+, 64) + Ui(r-, 4-)] (7.125)
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gives a barrier in T,. The boundary behaviour is
Yo(z1,22) > Ar exp (Bcscr:f ¢) on 8T, (7.126)

Here A and B are positive constants.

We do not include all the details of this argument as Lemma 7.2.2 includes this

result. The purpose here is to motivate the choice of barrier in that lemma.

The function corresponding to my in (7.57) is cscr-%l' &, which is integrable over
(0, 7). However, as k — oo this function approaches csc ¢ which fails this integrability
condition. This is an indication that [[_ m(f)dt < oo is the correct integrability
condition.

The final form of the barrier in Lemma 7.2.2 can now be derived. The barrier is
to be singular at (£p,0) and T, has a cusp at these points so ¢ must tend to zero as
one approaches the singularity. As ¢ — 0, we have z; ~ r and z; ~ r¢. In this same
limit,

up ~ e~'='°msin(5-’-’i) (7.127)
T
- kL

U ~ e»,,ssin(%ﬁ;). (7.128)

Both of these functions are of the form
exp ( / @) dt) sin (f(z1) z2) (7.120)
t=2
where c is a constant (U has been scaled by p). For small z,, this is approximately
f 1
exp ( [ re dt) [flen)2s - 3P0 3] (7.130)
=z

and this is similar to (7.71).
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7.5 Yoshida’s Phragmén—-Lindelof Principle

H. Yoshida has a stronger version of the n-dimeusional Phragmén-Lindelof Principle
([69], Corollary 3) . It allows angular blow up as with Wolf’s result. To discuss the
theorem the following notation is needed. His results are for a cone but we simplify
to the case of a half space. If f > 0 is a measurable function on 8*B; = B, NI,
then let

S1() = {2 € 8*By | £(3) 2 ¢} (7.131)

For each ¢t > 0, Sy(t) is a subset of the upper unit ball 3*B,. Its surface area is
designated |Sy(t)|, which is a decreasing function of ¢ with |Ss(0)| = nw,/2. Denote
its inverse by T. If there is more than one ¢ giving the same value |Sy(¢)| then one of
them is chosen arbitrarily as the value of T4(|Sf(¢)[). Also, if there is a value t = to
such that the left and right limits of |Sy| are different at o, that is

lim [Sy(¢)| > Lim [S4(2)] (7.132)
t=t, t=3ty

then define |Sy(to)| = lim,,,- |S¢(£)| and Ty(s) = ¢ for every s satisfying |Ss(t)| >
s 2 lim, .+ |Sf(t)|. Then Ty is a decreasing function on the interval [0,nwa/2]. It
now follows that |Sy(t)| is the one-dimensional measure of the set {s € [0,nw,/2] |
Ty(s) 2 t}.

Theorem D (Yoshida’s Phragmén—Lindel6f Principle): Let u be subkarmonic
in I1, such that
limsup u(z) <0  for each zo € 3*T,. (7.133)
z—zg,z€IL4
Let f:8¥B, — [0,00) be measurable so that

nwy, (2

s~/ (=1 160+ Ty(s) ds < +o0 (7.134)
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and u(z) < €lz|f(2) for any € > 0 and z = |z|z € I, such that |z| > R(e), where
R(€) is a constant depending only on e. Then u(z) <0 forallz €11,.

The function log* s is defined to be logs if s > 1 and 0 if 0 < s < 1. Notice that
the theorem applies to subharmonic functions,i.e., % is less than its mean value. See

§1.2 in Chapter 1.

When n = 2, the term nw,/2 becomes =, the exponent on s in (7.134) vanishes

and condition (7.134) reduces to Wolf’s L' condition.

The Phragmén-Lindelof Principle is a corollary of a theorem that replaces a
growth condition in R™ dependent on angle with a purely radial one.

Theorem E (Yoshida): Let u be subharmonic in R™ and let f > 0 be a measurable
function on OB, such that

3"(”-2)/("-1) log+ T’(s) ds < 4o00. (7.135)

Bo
Given € > 0, if there are constants p > 0 and Ry(€) such that u(z) < e|z|*f(£) for
all z € R™ with |z| > R,(€) then there constants A and Ry(€) such that

u(z) < Aejzl®, (7.136)

where R, and R, depend on € only.

The proof of Theorem E depends, ultimately, on the Mean Value Theorem. The-
orem D then follows as a corollary on appeal to the angle-independent Phragmén-
Lindelof Principle of Deny and Lelong, [17].

Yoshida gives an example to show that Theorem D is sharp in the sense that if
the exponent (n —2)/(n — 1) on s in (7.135) is replaced by any number greater than
(n—2)/(n—1) then there are functions f and u satisfying the premises of the theorem

and yet u(z) can be positive in II,. However, in the example given the function f is
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singular only in the é, direction, i.e., as § approaches 0. For the ball Br(0) we have
surface measure given by dS, = Rsin" 20 dS,., where dS,_, is surface measure on
the ball of radius R in R™! and is independent of 8. Note that for n > 2, in the half
space, sin™? @ vanishes only as 6 approaches 0. Since sin"28 — 0 as f — oo this

aids the convergence of |Sy(t)| when integrating near 8§ = 0.

Suppose f is not singular in the direction é,. In this scenario sin® 26 is bounded
away from 0 for # bounded away from 0. Thus we do not get this interplay between
sin"~2 6 and f at the singularity of f and sin"~2 8 is not a convergence factor in |S(t)|
as it was in Yoshida’s example. Similar remarks apply to the other angular variables
in &,. Our Theorem 7.3.1 applies only when u has a growth condition as in (7.89)
whose angular portion depends only on §. We state a result comparing Theorem 7.3.1

and Theorem D in this case.

Preposition 7.5.1 Suppose my satisfies the conditions of Theorem 7.5.1. Let f =
exp{mo(cos 8)). Then the condition f¢1=o mgo(t) dt < oo in Theorem 7.3.1 is less re-

strictive than the condition

Nwn /2
/ ==/ oo+ T (5) ds < +o00 (7.137)

=0

in Theorem D if n > 2. If n = 2 the conditions are the same.

Proof. Let m be a decreasing integrable function on (0,1]. For £ € 8% B, let f(2) =
exp(m(cos8)). Then f is increasing for 8 € [0,7/2). For t > 0, the set Sy(t) is
{# € 8*B, | f(£) > t}. As usual,  is the azimuthal angle of 2 € 8¥*B;. We
have Sg(t) = 8*B, if 0 < t < e™V. Ift > e™®) then 2 € Sy(t) if and only if
m(cos @) > logt, i.e.,

6 = arccos (m~*(logt)) (7.138)
= (mocos)”! (logt). (7.139)
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And, if 0 < 6; < ®/2 then

=/2 /2

/ ds, = / dSus / sin"20df = (n — Lwn_y / sin"~2 6 df,
6=6o

- stEpTt R (7.140)

where BP ! is the unit ball in R™~!. These results give

=, if0<t<em)
Se(®)| = =/2
155 (R = D)wp-y [ sin™20d8, ift>emM).
=b (7.141)

We have written 8 = (m o cos)~(logt). Now,

=/2
/ sin"2 0 df ~ %- B  as b — % (7.142)
6=6,

So, |S¢(t)| ~ (n—1)wn—1[7/2—(mocos) " (log t)] as ¢ — oo (since (mocos)~*(s) — /2

as s = 00). It now follows that

Ti(s) ~ exp {(m o cos) [% —"—]} as s — 0t  (7.143)

(= 1wnn
e )
~ exp {m [(1;_——;)2:] } as s — 0%, (7.145)
Now,
nwn/2
s~/ ogt Ty(s)ds < (7.146)
o=0

if and only if s~(~2/("~1) ;m(s) is integrable at the origin. However, the condition on
m in Theorem 7.3.1 says that m(s) must be integrable at the origin. Since

no2 oL (7.147)

n—1 n-1
> % for n > 3, (7.148)
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Theorem D puts a more stringent integrability condition on f than does Theorem
7.3.1. When n = 2 these two conditions are the same. W

Wolf’s proof (see below) shows a way to create a barrier v, and region T, capable
of proving Theorem D in the case that f depends only on 6. A barrier could be
constructed by the method we employed in the proof of Theorem 7.3.1 (although Wolf
did not use a barrier in his proof). This barrier would be more complicated than the
one” we have constructed. In proving Theorem 7.3.1, the planar barrier was used to
build an n-dimensional barrier and eventually prove the n-dimensional version of the
Phragmén-Lindelof Principle in the case of only § dependence in the growth condition.
It may be possible to use this technique with the more general barrier from the
Wolf proof and strengthen Yoshida’s Theorem D to the case where m is (essentially)
bounded at the origin and positive but otherwise need satisfy only f¢1=o m(t)dt < co.
Equivalently, the fanction f in Theorem D would satisfy ["“~/*log* Ty(s) ds < +oo,
that is, the term s—™-2)/("-1) can be dropped from the integrand. As seen above,
this allows the function f to be more singular so that the condition u(z) < e|z|f(zZ)

is less constraining and yet we obtain the same conclusion.

7.6 Wolf’s Phragmén-Lindelof Principle

The proof of Theorem C is based on constructing a bounded region D in IT, that has
a cusp at angles where m(sin ¢) is singular. An explicit conformal map is produced
that maps D to the unit disc and allows one to apply the Mean Value Theorem in
a disc. Our barrier approach is different from both the work of Yoshida and Wolf

because it depends on the Weak Maximum Principle.

Wolf’s set D is star-like from the origin and D intersects II, in a segment of the
z;-axis containing the origin. It can have a countable number of cusps, at angles
between 0 and #, whereas our set T, had at most three cusps and only the two on
the z;-axis were significant. The difference is that Wolf allows f(¢#) to be singular
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anywhere in [0, 7] so long as it is integrable and we allowed m(sin ¢) to be singular
only at 0 and 7. To extend our result to cover this more general case we would need
to construct a new region T, with attendant barrier fanction ¥, that could be singular
at any angle. A possible scheme is the following.

The fanction ¥,, (7.77), was an odd function of z; and vanished when z, = 0.
Suppose T, is extended to negative values of z; by a reflection across the z;-axis.
If ¥, were extended to negative values of z; as an even function then it would be
positive and continuous in the extended version of T,. However, it would not be C*
across the z,-axis as its z; derivative would have a jump discontinuity at z; = 0.
Consider the Green function for this new region. Write the upper boundary of 7, as
the curve z; = ¢,(2,). See (7.80) for the explicit formula. Our reflected version of T,
is defined by |zz| < ¢,(z;), for |z1] < p. Let (z1,z2) be a point in this set. Write the
Green function with source point (£,n) in the above set as G(z,,z3;£,n). Then

co(21)
Ga(z1, z2;21,1) dn (7.149)

n=—cp(x1)
will also have a jump discontinuity at the point (z,,0). The subscript denotes partial
derivative. It may be possible to add this to ¥, and obtain a C? superharmonic
function. This idea is due to Beurling ([11]). We would then have an even function
with a cusp at (p,0). Rotation about the origin would lead to a region with a cusp
at any desired angle. Summing over such functions might produce a barrier able to
reproduce Wolf’s Theorem C. This could then be extended to n-dimensions as in

7.3.1.



Chapter 8

Conditional convergence

8.1 Conditionally convergent integrals

All of the real integrals appearing so far have been Lebesgue integrals. For a Lebesgue
integral to exist it must be absolutely convergent. If a function f:R — R is oscillatory
it may happen that the integral of | f| over R diverges but [}, f exists as a conditionally
convergent integral. If f were continuous (or continuous except on a set of measure
zero) this would be the improper Riemann integral limp, 1,w fi2 ;. f(£) d¢. By
allowing conditionally convergent integrals we will extend the validity of the Poisson
integral to a wider class of functions than was allowed in Chapter 2.

A more general integral than that of Lebesgue or Riemann is the Henstock-
Kurzweil integral (also called gauge, generalised Riemann or Riemann complete).
This new integral arose from the following defect of the Lebesgue and Riemann inte-
grals. In the Fundamental Theorem of calculus, in order for j;" f'(z)dz = f(a) - f(b),
it must be assumed that the derivative of f is integrable. In the Lebesgue case this
amounts to assuming f = F’ almost everywhere on [a, b] for some absolutely contin-
uous function F. The search for a theory that included the “calculus integral” led
A. Denjoy (1912) and O. Perron (1914) to new formulations of the integral. (See [34]

133
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for original references and a history of Henstock~Kurzweil integration.) Because every
differentiable function was the indefinite integral of its derivative, the new integral

has been called the Riemann complete integral. The integrals of Denjoy and Perron
are discussed in [58] and [29]. Unfortunately, the new definitions were rather unwieldy

and it required tremendous effort to develop even simple results like integration by
parts.

A major breakthrough came 40 years later when J. Kurzweil (1960, [45]) and
R. Henstock (1961, [36]) independently gave a powerful new formulation of the integral
in terms of Riemann sums. The definition is simple, requiring no measure theory. For

a function f : [a,b] = R, f is Henstock—-Kurzweil integrable, f: f =1, if and only if

For all € > 0 there is a function § : [a,b] = (0,00) such that whenever a tagged

division {&;, [zi-1,21]}2, given by

a=20<21< - <ZTp=b and & € [zi-1,2;] foreach i=1,--- |n
(8.1)
satisfies
[zi-11 3{] c (fi - 5(63-)3 fi + 5(65)) f01‘ t= 17 21 e, (8-2)
we have
> A& mi—zi) ~ I <e (8.3)
i=1

The tag for [z;_;,z1] is &. The division is said to be “d-fine” when (8.2) holds.
The definition is easily extended to R, without the need for “improper” integrals. If
b = +oo then we take £, = 400 and define f(+00) = 0 and f(£)(Zn — Zn-1) = 0.
Similarly if @ = —oo. There is an extension to R™ as well. Usual properties such
as linearity, integration on sets other than intervals, integration by parts, change of
variable, etc. can be proven quite readily. Expository accounts of the Henstock—
Kurzweil integral are in [16], [46] and [50].
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The integrals of Denjoy and Perron are in fact equivalent to the above definition.
The difference between the Henstock~-Kurzweil and Riemann integral is that 4, the
gauge, can now be a function rather than a constant. If f oscillates wildly near =z,
then § is taken to be small near z, and this forces the interval [z;_,,z;] containing
To to be small. A function is Riemann integrable if and only if § can be taken to be
a constant. It is remarkable that the class of Henstock-Kurzweil integrable functions
includes the Lebesgue integrable functions. In fact, the Henstock—Kurzweil integral
reduces to the Lebesgue integral whenever we have absolute integrability. Tlms,
we immediately have all the L? results. Henstock has since shown, [34], that the
Henstock-Kurzweil integral can encompass integration over more general sets than
R"™ (division spaces) and includes Feynman and Wiener integrals, etc. Because it
has wider applicability and is easier to define than the Lebesgue integral, there is a
movement to replace the Lebesgue integral with the Henstock-Kurzweil integral in
the undergraduate curriculum. In the recent article 8], Bartle presents this case.

One of the important properties of the Lebesgue integral is that integrals over
unbounded domains or with unbounded integrand are handled with no special proce-
dures such as must be done with the Riemann integral. Despite its apparent similarity
Wit!l the Riemann definition, the Henstock-Kurzweil integral has this same property.
The function sin(z)/z is integrable over [1,00]. And, if f(z) = z? cos(1/z2) for z > 0
and £(0) = 0 then [ f = f(1) for the Henstock-Kurzweil integral but f' is neither
Riemann nor Lebesgue integrable over [0, 1]. The Riemann integral of f’ fails to exist
since f’ is not bounded and the Lebesgue integral does not exist since |f’| is not

integrable over [0, 1]. Note that we have the improper Riemann integral

e—0t

lim, [ £(2)d2 = lim (1) - ()] = £(0). (84)

However, if f’ is changed to be zero on the rationals then this improper Riemann
integral no longer exists but the Henstock-Kurzweil integral is unchanged.

With conditionally convergent integrals, the Dominated Convergence Theorem
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no longer applies. In order to take a limit under the integral sign of an integral that
depends on a parameter, some condition other than dominated convergence is needed.
There has been considerable work in this direction and it remains an active area of
research. Recently, R. Bartle has given necessary and sufficient conditions under
which the limit and integration can be interchanged for Henstock—Kurzweil integrals.
(See [9] and, for an addendum, {28].) These are, unfortunately, not easy conditions
to use in practise. For the Poisson integral, we will develop an ad hoc proof of the
validity of taking limits under the integral sign. This will be done using the Second
Mean Value Theorem for Henstock-Kurzweil integrals.

Second Mean Value Theorem: Suppose f and g are real-valued functions defined
on [a,b], g i3 monotonic and j:' f ezists. Then there ezists ¢ in [a,b] such that

j fg=2g(a) j f+9(b) j f. (8.5)

Note that g is bounded since we are saying g(a) and g(b) are in R. The monotonicity
of g then implies g is of bounded variation which shows the existence of [ : fg. A
proof for bounded intervals is given in [50]. In general, the theorem does not apply
on unbounded intervals. However, since g is bounded it has a limit at a and b
(=00 £ @ < b < +0). The theorem then holds with g(a) and g(b) replaced by
their respective limiting values. This can be seen by using a change of variables, say
t — tant, which transforms [a, b] to a finite interval. See [50], p.64, for the change of

variables formula in Henstock-Kurzweil integration.

8.2 A conditionally convergent Poisson integral

A simple example will illustrate the importance of allowing conditionally convergent
integrals. Consider the function f(§) = £ cos€. Let n = 2. The Poisson integral of
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|f| diverges but D[f] converges conditionally. The same is true with g(£) = £sin €.
Both D[f] and D[g] can be evaluated using the residue calculus. Let w(z) = ze* =

u(zy, z3) + $v(2;,2;) where

u(zy,22) = Re[w(z)] = e**(z1 cos z; — z2sin z;) (8-6)

v(zy,z3) = Im [w(z)] = e **(z;sin z; + T3 cos z;) (8.7)

and z = z;+i 3. The function w is analytic so « and v are harmonic. For R > 0let yg
be the interval [~ R, R] of the z,-axis and let 'z be the semicircle {Re*® | 0 < ¢ < 7}.
Then Cgr = yr UTr is a simple closed curve in II,. Let z € II;. We have

T2 _1 1 _ 1
(€ —z1)* + 23 T2 ((— ) ~izs (—12 +izz) : (8-8)

Thé Cauchy integral representation gives

o f WO _ 1 fe@d_ 1 fe@d o
)] (~-z)2+22 i) (—z 2mi (-2 )
Cr Cr Cr
= w(z) (8.10)
= ze** (8.11)

since z is inside Cp and Z is not (or, %’{% has residue w(z) inside Cp).
An easy estimate now shows

7 _‘_"gﬁ G0 R (8.12)
Cr

Letting R — oo in (8.11) and taking real and imaginary parts gives

= e *?(zy cos 2; ~ Z35in ;)

. oz EcosEdE
D(fl(z1,23) = 2-,2, (6 ~z1)* + 23
o (8.13)

D[gl(zli 32) = 2 / (E Esmfdf = 8—22(213&131 + z2 coszl).

2r —z,)% + 23 (5.14)
F=o 8.14
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Note that u(z,,0) = D[fl(z1,0) = f(z1) = 2, cos z; and v(z,,0) = D[g](z,,0) =
g(z1) = z;sinz;. Thus u and v are classical solutions to the half plane Dirichlet

problem with boundary data f and g, respectively.
To see what growth condition v satisfies use polar coordinates and write (abusing

notation again)

v(r,§) = e "% r|[cos Psin(r cos $) + sin ¢ cos(r cos §)] (8.15)
= e rsin(¢ + rcosg). (8.16)

We have
2B _ eorind sin(4 + 7 cos )] < 1 (8.17)

so v(r,4) = O(r). And, v(r,d) # o(r). Let z{)) be a sequence with components
zgj) = /24277 and zg‘n = j~1. On this sequence v approaches [z)| so v(r, ¢) # o(r).

However, let h(¢) be any bounded positive function on (0,7) that tends to 0 as
¢ tends to 0 or 7. Then v(r,4) = o(r/h(4)) as £ = oo in II,. To see this, let
M > 0 be a bound on A. Given 0 < € < M, we show that taking r large enough
gives|v(r, #)h(4)/r| < €. There is no loss of generality in assuming 0 < ¢ < «/2.
Let H(r,¢) = e "*"®h(4). By (8.16) it suffices to show H(r,¢) — 0. For z € I1,
with r > log(M/e), either rsin ¢ > log(M/¢), in which case H(r,¢) < ¢, or rsing <
log(M/€). In this instance we have 0 < ¢ < (7/(2r))log(M/€). Because h has limit
0 as ¢ — 0, there is a function & : (0, M] — (0,7 /2] such that 0 < h(¢$) < € whenever
0 < ¢ < d§(¢). To make H(r,$) < ¢, take r > (w/(25(€))) log(M/e).

The same order relation holds for u = D[g]." These functions exhibit the most
mild angular blow up possible. Note also that u and v have exponential decay along
every ray from the origin but are still not o(r). Of course, the exponential decay
is not uniform in ¢. This example can be extended to n-dimensions by writing
U(z) = w(z1,zn) = D[F](z) where now F(y) = f(z1). As above, the integral can be
evaluated explicitly.
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8.3 Growth estimates

Conditionally convergent Poisson integrals have many of the same properties as their
absolutely convergent counterparts. The growth estimates are the same and they are
classical solutions of the Dirichlet problem when the data is continuous. Proving the
growth estimate requires interchanging limits and integration. If Jemeoo 1F(E)I(E® +
1)7'd¢ < oo then fZ__ f(E)(€* +r*)*df — 0 as r — oo. This depends on the
Dominated Convergence Theorem which is no longer applicable. Instead we have the
following lemma.

F(6)(€% + 1)1 d€ converges then

==—00

Lemma 8.3.1 If f2

[ fod
lim B =0. (8.18)
§=-o0
Proof- Write
[ f0d_ [ 0
I ein= | a6 de, (8.19)

where g(£) = (6% +1)/(€ +r*). We have ¢'(§) = 2£(r*> ~1)(£* +7*)* 500 < g(§) <1
and g is an increasing function of [£| for r > 1. By the remark above, the Second Mean

Value Theorem applies on any subinterval of [—o0,0] or [0, +00] with g(+o0) = 1.

From the hypothesis, the function f(£)(£2 +1)7! is integrable over any subinterval
of the real line and Limy_o0 fZp F(€)(6* + 1)~ d§ = 0. Hence, given € > 0 there is
N(e) > 0 such that | [Zy f(€)(€* + 1)1 d€| < ¢/3. Now apply the Second Mean
Value Theorem. There exist numbers ¢; and c; such that 0 < ¢ < N < ¢; < 40

and

f(E)y(E)df 4(0) f(f)df+( N) f(€)d£+( ) iGL

TE+1 E+1 &+1 E+1°
£=0 £=0 &=y §=e3 (3_20)
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Let M be the supremum of | f:_:& FENE2 +1)"1dE] over 0 < & < €2 < +0o. Then

[FGLGLEAP < ( N+ 1) +& (8.21)

e+

Taking r > max(y/3M/e,|[N? — 3(N? + 1) M/e|*/?) completes the proof. W

As in the absolutely convergent case, the conditionally convergent Poisson integral
has the following properties.

Proposition 8.3.1 If D[f] ezists for one value of z in IL then it ezists on all of
Io,.

Proof- Suppose (zq,y0) € IL;. and D{f](zo,yo) convexrges. Let (z;,z3) € IL; and write
h(€) = (€ — 26zo +r3) /(€ — 2621 + 1), where ro = (z] +y3)'/>. Then

Difiea =2 [ L8 —hea (8:22)

é=—o0

Also,

_ 2[(zo — 21)€ — (r3 — )€ + z1r] — zor?]

h'(§) = (€2 — 28z, + )2

If &’ has no real roots then h is monotonic. Otherwise, let {_ < £, be the roots of A’

(8.23)

and write
h(€) — h(€-), -
b = { (6) - h(e-), £<¢
0, £>¢&-
h(¢-), £ <¢E-
hz(E) = h(£)7 E— < f < £+
h(€:), €&+

) = { 0, E<ts
h(€) — h(€+), €&
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Each function h; is bounded, continuous and monotonic. And, h = h; + hy + hs.

Difl(z1,23) = 33;3 {]ofohri- 7fohz+ ]oﬁ;hs} , (8.24)

the proposition follows since the product of an integrable function and one of bounded
variation is integrable. We have written fo for f(£)/(¢2 ~26zo +7%). ®

Writing

Proposition 8.3.2 If f;_m F(€)(€? + 1)t d€ converges for a continuous function f
then uw = D[f] is a solution of

u € CY(IL) N C°(IL,) (8.25)
Au=0, zecll, (8.26)
u=f, ze€dl,. (8.27)

A proof is given for the Dirichlet problem in a disc in [10]. We skip the proof and
instead concentrate on proving a growth estimate for D[f].

Theorem 8.3.1 If [Z__ f(£)(& +1)' d¢ converges then D[f](r,$) = o(r csc§) as

z— oo inll.

Proof- Write
u(r, ) = D[f](r, ¢) = rs;l:uﬁ / gz-zé(fc): :f¢+r=‘ (8.28)
é=-0c0
Then
) 1’,¢ 1 ¢ . T f z+1'2
7 u r) WP = sin?¢ / & f)r, P—ZEErcos¢+r3d£ (8.29)
§=-o0
= sin?¢ / f(€) [ e_;g:z::z+r,] e (8.30)
6-—00
FOdE . [ FO)glE
e [ LO%, [ 1050 oy

€=—co é=—~00
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wheére
_ 2§rcosé sin’ ¢
96) = £ —2frcosp+r?

The first integral in (8.31) goes to 0 as r — 0o by Lemma 8.3.1. Now show the second
integral in (8.31) is o(1).

With no loss of generality, take 0 < ¢ < x/2. When £ > 0 we have
(L— cos §)(L+ cos §)2€ 7 cos

(8.32)

0<g(6) < ¢ 8.33
@ (1 — cos $) [ {25 + 2¢r ] (8-39)
8ér
< C+rr (8.34)
<. (8.35)
And,
) 2r cos ¢ sin’ ¢ (r* — £2
7O = Tyt (8.36)
<0 foré>r. (8.37)

Therefore, the maximum of g for £ > 0 occurs at £ = r and is g(r) = cos ¢ (1 + cos ¢).

Let

0, 0<é<r
p(§) = (8.38)
9(§) —cosp(1 +cosg), =7

and

9($), 0<¢<r
€)= 8.39)
! { cosPp(l+cosg), £€E>r. (

The function p is continuous and decreasing and g is continuous and increasing. And,
p(§) +¢(§) = 9(£). Now, write

/ HQs@ & _ T 1000 | T 1@ a0 & (5.40)
Jo &7 e+ £+ .

Applying the Second Mean Value Theorem as in Lemma. 8.3.1 shows that all three
integrals in (8.40) tend to zero as r tends to infinity. The same holds true when
integrating over the negative real line. The theorem follows. &
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8.4 Abel’s test

Several authors have investigated conditions under which the operations of limit
and integration can be interchanged when integrating sequences of functions, i.e.,
lim [ f, = [ f where lim f, = f. The criteria obtained so far are mostly based
on a special type of absolute continuity of the indefinite integral of f, and are not
easy to apply in practise. See [35], [46] and [48]. With the Riemann integral, we
can justify taking a limit under an integral sign by proving [ f, converges uniformly
in n. Useful sufficient tests for uniform convergence in the case of conditional con-
vergence are those of Dirichlet and Abel. The conjectured form of Abel’s test for
Henstock-Kurzweil functions is the following.

Abel’s test: Let {fi} and {gr} be sequences of Henstock-Kurzweil integrable func-
tions on [a,b] (—o0 < a < b < +00). If f::a fi(t) dt converges uniformly for k > 1,
if gr is uniformly bounded on [a,b] and if gi(t) is @ monotonic function of t for each
fized k > 1, then f:':a fr(t)ge(t) 3¢ converges uniformly for k > 1.

Dirichlet’s test is similar. Abel’s test is proved in [57]| when all functions in the
sequences {fi} and {g.} are continuous. The proof does not carry over in an obvious
way to Henstock-Kurzweil integrals. Note that we were able to employ the Second
Mean Value Theorem in Lemma 8.3.1 because g(£) = (£2+1)/(£2+r%) - las £ - o
for each value of r except r = co. Since there was only one point where we did not
have g(§) — 1 pointwise it was easy to isolate this one bad point by integrating
in a neighbourhood of infinity. The general case where we have almost everywhere
convergence requires more care. We will leave the proof of Abel’s test as a goal for

the future.



Chapter 9

Further work and conclusions

9.1 Further work
There are several straightforward additions to the work included here.

(i) The method of Theorem 2.2.1 will certainly apply to derivatives of D[f] and we
can find estimates under the condition fi _ [f(y')*(ly'[* +1)™' dy’ < oo. Similarly
with F) x[f] and its derivatives, once we use |[Kp| < dy K sM (1+3)221, s = |z|/|y/|,
(3.33). This is for A > 1/2. There was a similar estimate on |Kas| when 0 < A < 1/2.

(ii) The estimates carry through unchanged if we replace the Lebesgue measurable
data f by a Borel measure.

(iii) The Poisson integral for the cone
Kio={zeR*"|[0<0<a} O<a<m) (9.1)

can be calculated using the Mellin transform ([15], p. 212). We can obtain estimates
as before. The fanction r~™*/* sin(m=@/) is harmonic in R?\ {0} and vanishes on

the boundary of K,. It can take the place of r~™ sin(m#) in the derivation of a barrier

144
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(§7.4) and we can prove a Phragmén-Lindelof Principle in the cone. Yoshida states
his results in [69] for a cone.

(iv) Suppose g is a function on (0, 00). Then for u(z) = g(za) Jgn-1 F(¥')K(A, z,¥') dy’
we have the sharp estimate u(z) = o(g(z») sec** 4) (under (3.4)). It may happen that
u is the solution of a half space boundary value problem. In Cartesian coordinates, the
differential operator for such a problem would have to have coefficients that depended
only on |y| and z,,. It should be possible to find all such linear operators. For example,
there are solutions of form z2|z[® (and hence of the above type) for the generalised
Weinstein equation

poOu g _
Au+znazn+ziu-0, (9.2)

where p and q are parameters. Many references to this equation are given in (4] and
[47].

(v) With all of the results obtained for Fj am{f], there are analogues for the logarithmic
kernel (necessary and sufficient conditions for existence of the modified kernel, M a
function of ', expansions at infinity, etc.).

(vi) In the Robin problem, a linear combination of f and its normal derivative are

specified on the boundary. There is a solution integral ([27]) and we can repeat the
calculations that were done for the Poisson integral.

(vii} The integral representation, (3.23),

l=i/1y']
Ku\2,v) = KO,2,y) [ (1-200+CP-18-(0,0 ¢ &k
¢=0 (9.3)
can be used to define the modified kernel Kjps. Then Kjs will be defined for any
complex number M and, in particular, for M ¢ Z. The Gegenbauer functions are
defined through hypergeometric functions when M ¢ Z. (They won’t be polynomials
anymore.) The following result is easy to prove.



CHAPTER 9. FURTHER WORK AND CONCLUSIONS 146

Proposition 9.1.1 Let Ky be defined for M > 0 by (9.3) and Ko = K. Then
Ku(Az,¥) = Kag1 (A 12 oo (sincos®’ 9.4
M( $zay)— M—l( ,z,y’) -l;l_lil_“m M-l(sm cos ) ( - )

holds for M > 1.

An induction argument now shows that if M > 1 then

= e -
Ku(A\z,9) = Kig (A, 29) — D Wcm+m (sin 8 cos §'),
m=0

(9.5)
where 0 < My = M — |[M| < 1. So, for M > 0, Kp is determined by K|as. The
growth properties of Fya[f] will be the same as when M was an integer. These
inte.grals are harmonic but will not take on correct boundary values on 8II;. The
modified kernels are rather like the fanctions r**sin(a¢) and r** cos(a¢) in R? when
a € R. They may be useful in cones. Further investigation is called for.

(viii) When M is a function of y' we had the growth estimate, Theorem 4.3.2,

Pulfl(z) = o(G(lz])sec™8)  (z € ILy, |z] = o), (9.6)
where
Glel = [ 1) oMoy |-0+30 dy (9.7)
Wi>1

and g =2 —1 when A >1/2 and 4 = 0 when 0 < A < 1/2. It would be interesting
to determine the behaviour of G(z) as [z =& oco. Some further assumption on M

would almost certainly be necessary, such as M monotonic increasing.

(ix) Taking distributional data continues the theme of extending the validity of the
Poisson integral. For example, if 4 is the Dirac distribution then

2z,
nwy|z|®

D[¢}(z) = §(K(=,y")) = K(=,0) = (9.8)
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This fanction is harmonic in R™\ {0} and vanishes on 9I1; (only tangentially at the
origin). In R?, taking data as derivatives of § gives the family of solutions r~™ sin(md)
for m = 0,1,2,---. Notice that each function satisfies the Poisson integral growth
condition o(r/sin ¢).

Suppose f is a continuous function on R and g is a monotonic differentiable

function on R with one real root. Then

f(g~*(0))
] = 9.9
This formula appears, for example, in [39]. Now, let g(t) = 1/¢. Proceeding formally,
we have
1
Goan) = [4(3)s0a (9.10)
(el>1
f 1\ dt
- [eor(;) 5 (0.11)
t=—1
— tme2f(L
= {‘_’f&t f(t . (9.12)
If we now let f be the Poisson kernel (with z, and z; as parameters) then
— b4 zz
= &2
= 2 (9.14)
Carrying out a similar calculation with the derivative of 4 gives
(& o g)(K) = 22222, (9.15)

In a similar manner we can generate the harmonic polynomials that vanish on JIL,.
Notice that neither of the above functions satisfies the Poisson integralgrowth condi-
tion. Consider 4 = dog as a measure. Then for each interval I; = [¢, i+1]U[—(i+1), —i]
we have p(L) =0 s0 32, u(L;) = 0. But, UZ,J; = R and p(R) = +oo. Therefore,

p is not countably additive. There is more to be done here!
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(x) The spherical harmonics expansion has an analogue for other equations and re-
gions. What made this expansion particularly appealing was that the Fourier series
(in Gegenbauer polynomials) was also in ascending powers of [z|. This will not be the

case for other operators or regions but uniqueness theorems may still be obtainable.

(xi} We can look at conditionally convergent integrals when » > 2 and also try to
prove Abel’s test.

More nebulous extensions are as follows.

(1) The barrier ;nethod of proving the Phragmén-Lindelof Principle has been extended
to uniformly elliptic operators by D. Gilbarg and E. Hopf in [26] and [37]. A barrier
for the Laplacian capable of proving the Phragmén-Lindelof Principle with growth
o(r) in the half plane (i.e., without angular blow up at the boundary) is

Yo(21,22) = 2;" [ucta.n (p fzzz) + arctan (p :222)] . (9.16)

Compare with (7.118). Gilbarg and Hopf then defined a barrier for the elliptic equa-
tion by writing ¥ = h(1,). They were able to find a function A that would make
¥ the desired elliptic barrier by solving a differential inequality for k. Being able

to do this depended on the simple form of 3. It may now be possible to take the
barrier from Theorem 7.3.1 and repeat this procedure to prove a Phragmén-Lindelof
Principle for uniformly elliptic operators with blow up allowed at the boundary. It
was pointed out before that Wolf has a barrier for angular blow up but it seems too
complicated for this task. However, the barrier from Theorem 7.3.1 may be simple
enough to carry out the method of Gilbarg and Hopf. In fact, this was the original

motivation for the barrier constructions in Chapter 7.

(ii) We have considered only pointwise growth, both for our estimates of the Poisson
integraland in the Phragmén-Lindelof Principle. A next step would be to investigate
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some sort of mean growth for the Poisson integral. In [67], Yoshida has used the
Nevanlinna norm,

Nisl(e) = [ u(@el) cosbdunr, (9.17)
8B,
to obtain a Phragmén-Lindelof Principle. And, in [56], A.Yu. Rashkovskii also obtains
Phragmén-Lindelof Principles with an integral growth condition.

(iii) There are some very general representation formulas for solutions of elliptic prob-
lems. For example, [12] and [2]. The techniques used here might have some applica-
bility in determining growth for these elliptic problems.

9.2 Conclusions

The goals of this thesis were to obtain growth estimates for the Poisson integral,
to extend the validity of this integral and to consider uniqueness for the half space

problem.

By using the half space kernel K(), z,y’), we were able to estimate the Dirichlet
and Neumann solutions under the most general convergence conditions for which these
integrals converge. The technique was application of the Dominated Convergence
Theorem after some algebraic manipulation of the kernel. An integral representation
of the modified kernels led to a growth estimate here as well. Also, for any given
continuous function it is possible to construct a convergent modified Poisson integral.
A growth estimate was found in this case. An important new definition of sharpness
for a growth condition was introduced. This allowed us to prove that our growth
estimates were the best possible. This portion of the thesis is largely independent
of existing theory, our pointwise estimates being under more general conditions than
considered by most authors. There is good reason to believe that techniques used

here will be applicable to other equations with explicitly known solutions.
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The construction of a barrier function proceeded by first considering the basic
singular solution u(r,¢$) = r ™ sin(m¢) in the plane. The barrier was singular at
the boundary of the half space and gave a Phragmén-Lindelof Principle that allowed
angular blow up in accord with the growth estimate for the Poisson integral. An
outcome of this was a uniqueness theorem that showed the Poisson integralwas the
unique solution under a growth condition that was not unduly constraining. The
spherical harmonics expansion gave a similar result. Methods for extending these
results to other elliptic equations have been proposed.

The applicability of the Poisson integralwas further increased by considering it as
a Henstock-Kurzweil integral. The growth estimate was the same as for absolutely
convergent integrals.
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