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Abstract

Many clinical assessment protocols rely on the evaluation of functional movement tests
such as the Single Leg Squat (SLS), which are often assessed visually. Visual assessment
is subjective and depends on the experience of the clinician. Developing a reliable auto-
matic human motion tracking and assessment system can improve the accuracy of SLS
clinical assessments and provide objective results that can be tracked and monitored over
time to guide rehabilitation and determine an individual’s response to an intervention.
In this study, an Inertial Measurement Unit (IMU) based method for automated assess-
ment of squat quality is proposed to provide clinicians with a quantitative measure of SLS
performance.

First, an automated pose estimation method is applied to SLS motion data. A set
of three IMUs is used to estimate the joint angles, velocities and accelerations of the
squatting leg. To tackle noisy sensor measurements and gyro drift, a 7 degree of freedom
(DOF) kinematic model of the lower leg was applied together with a constant acceleration
assumption to approximate the angular velocity and linear acceleration at each sensor
location. The kinematic model predictions of the angular velocity and linear acceleration
and sensor measurements were fused via an Extended Kalman Filter (EKF). The position,
velocity, and acceleration of each DOF were defined as the states to be estimated by
the EKF. The pose estimation results showed successful extraction of joint angles with
an average RMS error of 3.2◦, 5.5◦, 7◦ compared to joint angles estimated from motion
capture for the ankle, knee, and hip joints, respectively. For this estimation, the required
parameters for the kinematic model, including information about the sensor placement and
orientation as well as the kinematic link lengths, were extracted from the marker data.

However, in clinical applications of the proposed method, when marker data is not
available, these parameters need to be measured. Measuring these parameters is time con-
suming in the clinical setting, which limits application of IMUs for clinical purposes. With
the motivation to make this procedure easier and faster, a method for approximating the
parameters using placement assumptions and body measures was described. A sensitivity
analysis was performed to detect those parameters which most affect pose estimation ac-
curacy. The sensitivity analysis results revealed that sensor orientation is the most critical
factor for accurate pose estimation. In this thesis, a simple and easy to use method is
proposed for sensor orientation calibration, based on a systematic placement of sensors
and using gyroscope information for orientation estimation. This protocol was evaluated
experimentally and pose estimation error with approximated parameters before and after
applying the calibration protocol were compared. The comparison results showed that the
estimate of the sensor orientation increases the pose estimation accuracy by 6.5◦ for the
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knee joint angle and with an average of 1.8◦ for other joints without the need for time
consuming calibration.

In the second part of the thesis, an algorithm for automated assessment of the SLS
in terms of dynamic knee valgus and risk of knee injury is developed. After applying the
pose estimation algorithm to IMU data of SLS motions, the estimated time series data
of joint angles, velocities and accelerations for consecutive squats were segmented into
individual squat repetitions. Statistical time domain features were generated from each
repetition. The most informative features were selected using a combination of 18 feature
selection techniques. Six common classifiers in including SVM, Linear Multinomial Logistic
Regression, Decision Tree, Näıve Bayes, K Nearest Neighbourhood, and Random Forests
were applied to the full dimensional data, the subset of selected features, and extracted
features by supervised principal component analysis. The proposed approach was evaluated
in two trials. First, a pilot study was conducted on a small dataset, followed by analysis
on a larger clinical data set, collected by our clinical collaborator. For the clinical study, a
dataset of SLS performed by healthy participants was collected and labelled by three expert
clinical raters using two different labelling criteria: “observed amount of knee valgus” and
“overall risk of injury”. Labels included “good”, “moderate”, and “poor” squat quality
or “high risk”, “mild to moderate risk”, and “no risk” of injury. Feature selection results
showed that both flexion at the hip and knee, as well as hip and ankle internal rotation
are discriminative features, and that participants with “poor” squats bend the hip and
knee less than those with better squat performance. Furthermore, improved classification
performance was achieved by training separate classifiers stratified by gender. Classification
results showed excellent accuracy, 93.1% for classifying squat quality as “poor” or “good”
and 95.3% for differentiating between high and no risk of injury.
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Chapter 1

Introduction

1.1 Motivation

Many clinical assessment protocols rely on functional movement tests, where the patient
is asked to perform a target movement while the clinician observes and assesses the move-
ment in terms of balance, stability, dynamic alignment and motion coordination [47]. The
single leg squat (SLS) is an example of a functional movement test, and is commonly used
in rehabilitation, sports medicine and orthopedic settings [39]. Many daily or athletic ac-
tivities share similarities with the SLS, making it a powerful test to identify compromised
muscle function [23]. Correct performance of the SLS can provide an indication of knee
function and assessment of recovery. An important component of the rating of the quality
of a performed SLS is the degree of inward movement of the knee, known as medial knee
displacement or dynamic knee valgus (DKV), as shown in Figure 1.1.

DKV correlates with non-contact Anterior Cruciate Ligament (ACL) injury and patello
femoral pain and is believed to be related to increased lower extremity risk of injury [67].
ACL injury mostly occurs during direction change, lateral pivoting, rapid deceleration, or
landing tasks [43], [92] and is frequent among athletes involved in high risk sports such as
soccer, football, basketball, and lacrosse [33]. ACL injury will result in knee instability and
destruction of the menisci and articulated surfaces [44]. More than 120,000 ACL injuries
occur annually, most during the high school years [33]. Treatment in 90% of patients
includes reconstruction surgery, followed by a rehabilitation period [69]. The estimated
average annual treatment cost of ACL rupture in the United States is more than 2 billion
dollars [79]. Return to play for professional athletes following ACL surgery can take almost
one year [88]. More than 50% will not return to their pre injury level of performance [69] and
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Figure 1.1: Left: “good” SLS performance. Right: inward movement of the knee during
“poor” SLS called Dynamic Knee Valgus (DKV).

between 50% to 100% develop osteoarthritis within 5 to 10 years after surgery. Moreover,
the risk of re-injury increases up to 5 times in those who have undergone initial surgery
[69]. All these statistics highlight the importance of early screening of individuals at higher
risk, through functional movement tests such as the SLS.

1.2 Problem Statement

Current clinical assessment of the SLS involves clinicians visually observing patients con-
ducting the movement and qualitatively rating performance utilizing clinical rating tools
[91], [9], [71], [7], [23]. The rating tool can include several criteria such as knee position
during the motion (pattella pointing past inside of foot is regarded as significant valgus),
trunk alignment (degree of leaning), pelvic plane orientation (amount of rotation away
from the horizontal plane), thigh motion (degree of hip adduction), and steady balance
(stance leg wobbling) [42]. While qualitative rating is common in current practice, subjec-
tive evaluations are not always accurate, and assessor error can impact test validity and
reliability [90], [25]. Reliability of visual assessment of the SLS by novice clinicians has
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also been the subject of several studies [71], [90],[38]. These studies tend to confirm that,
as expected, novice clinicians have lower reliability scores compared to experienced ones.
However, Weeks et al. [90] and Harris-Hayes et al. [38] concluded that novice clinicians
can still assess the SLS performance reliably while Poulsen et al. [71] found the novice
clinicians reliability score lower than the level necessary for clinical applications. Also,
Weeks et al. [90] found experienced clinicians were more sensitive to hip joint motion.

Moreover, qualitative assessment tends to rely primarily on the visual estimation of
joint range of motion (ROM) and limb position, and often neglects the assessment of higher
order kinematics (such as velocity and acceleration), since it is difficult for clinicians to
assess these parameters without instrumentation.

In addition, the clinician selects the treatment protocol based on a short term consulta-
tion with the patient; however, better assessment and treatment may be possible when the
patients’ motor function can be monitored during long periods of activity and their entire
rehabilitation regime, which currently is not possible. In-game monitoring of the athletes
can also lead to better understanding of the injury mechanism.

Finally, since clinicians see a large number of patients each day, it may be difficult for
them to remember the previous condition of each patient without a quantitative history.

The development of an automated SLS knee assessment system can improve the accu-
racy of SLS clinical assessments, and can provide objective results that can be tracked and
monitored over time to guide rehabilitation and determine an individual’s response to an
intervention. Such a system can also be used to perform large population screenings to
identify individuals with DKV and those at risk of knee injury.

In this thesis, our objective is to design a system that can (1) accurately measure human
pose during the performance of the SLS, (2) provide a quantitative assessment of the SLS
performance, and (3) is portable and easy to set up and use so that it can be deployed in
clinical and field settings.

1.3 Thesis Contributions

1.3.1 Applying IMU-based Pose Estimation to Extract Lower
Body Pose during the SLS

An IMU-based pose estimation algorithm based on kinematic chain modelling and EKF
fusion, previously developed by Lin and Kulić [55], was adapted to estimate the human
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lower body pose during the SLS. The following modification to the original algorithm were
made:

� In the SLS, the hip is moving while the ankle has a fixed position on the ground so
the ankle was set as the base frame.

� To improve sensor stability during the motion, unlike [55], the position of the tibia
sensor was changed to the flat part on the side of tibia with considerable shift from
frontal orientation. This shift introduced an additional calibration challenge, as it
had to be estimated and compensated for in the algorithm.

� Because off-sagittal plane motion is important for poor SLS detection, the ankle
and hip were modelled as 3 degree of freedom (DOF) joints. To avoid drift and get
acceptable accuracy for all joints, similar to [46], a virtual yaw sensor was added to
the hip.

� Moreover, for each IMU, a separate EKF was applied and a systematic way of EKF
tuning was proposed to estimate process and measurement noise covariance param-
eters through optimization. Despite the importance of appropriate noise parameter
selection, similar EKF-based studies [24],[81] usually do not describe how these pa-
rameters are selected. In this thesis, a structure for measurement and process noise
covariance matrices based on movement characteristics and modelling assumptions
is proposed, which offers a heuristic way of finding good initial values and speeds up
further optimization.

1.3.2 Experimental Validation of the Pose Estimation Algorithm

The pose estimation algorithm was validated by comparing the estimated pose and joint
positions to those obtained using marker-based motion capture. Ten participants were
recruited to perform SLS and joint angles were obtained from both the proposed IMU-
based algorithm and from the marker positions. Using marker-based pose as the ground
truth, the average estimation error for the ankle, knee, and hip joints were 3.2◦, 5.5◦, and
7◦, respectively. Considering the 3 dimensional estimation of hip and ankle motion and
the fact that the proposed approach does not use magnetometers, this error is acceptable
and comparable to similar studies [81], [24], [27].
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1.3.3 Proposing a Clinical Calibration Method for Improved Pose
Estimation from IMU Data with Minimum Required Mea-
surements

The proposed pose estimation algorithm requires several measurements including kinematic
link lengths as well as IMU position and orientation estimation with respect to the joint
coordinate system, which is a concern in clinical applications. A sensitivity analysis was
performed over all the required measurements to identify critical parameters. It was found
that the most critical parameter for estimation accuracy was IMU orientation. A simple
protocol is proposed to estimate IMU orientation in clinical settings. Using the experimen-
tal data collected in our validation study, we demonstrate that by extracting the sensor
orientations using the proposed protocol and estimating the remaining parameter values
using anthropometric tables, an accurate pose estimation can be achieved while minimizing
the need for manual parameter measurements or performing calibration movements.

1.3.4 Automated DKV and Risk of Injury Assessment

In the second part of the thesis, the estimated joint parameters were utilized to distinguish
between three different levels of squat quality and three different levels for risk of injury.

Squat quality is classified based on features extracted from joint angles, velocities or
acceleration rather than raw sensor data, which has the benefit of providing interpretable
information to the clinicians.

The estimated time series data of joint angles, velocities and accelerations for consec-
utive squats were segmented into individual squat repetitions. Statistical time domain
features were generated from each repetition. The most informative features were selected
using a combination of 18 feature selection techniques. Different classifiers were applied
to the full dimensional data, the subset of selected features, and extracted features by
supervised principal component analysis. The proposed approach was evaluated in two
trials. First, a pilot study was conducted on a small dataset, followed by analysis on a
larger clinical data set.

1.3.5 Validation on a Clinical Dataset

The proposed classification approach was verified on a clinical data collected by our clinical
collaborator.
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First, the feature selection results for both full agreement data and those with split
decision of the raters were analyzed to identify the best predictors of DKV and overall risk
of injury. The Feature selection results highlighted the discriminative role of the hip/ankle
IR features as well as hip Flex features for DKV and risk of injury assessment which was
in agreement with clinical findings.

Second, the performance of the proposed algorithm was characterized. The leave one
subject out cross validation results suggest that discriminating “poor” squats from “good”
ones is achievable with an accuracy of 90%, while the three class problem (adding ”mod-
erate” squats) achieves an accuracy of 68%. Screening participants at high risk of injury
from those at no risk can be achieved with 87% accuracy and adding mild risk subjects
drops the accuracy by 12%.

In addition, gender-specific differences were investigated by making male-only and
female-only datasets. Applying feature selection and classification methods on these data
sets revealed meaningful differences between DKV and risk of injury correlates in males
and females, which was in agreement with findings in clinical and sports medicine studies.
The results of gender specific classifiers suggest that developing separate classifiers for men
and women improves classification results.

1.4 Thesis Outline

This thesis consists of two parts: pose estimation from IMU data during SLS and au-
tomated assessment of SLS based on labelled repetitions of SLS. Chapter 2 reviews the
related studies to each of these parts. Regarding the pose estimation, available techniques
for static and dynamic pose measurement are described and those using IMU measure-
ments are examined and compared. In terms of automated assessment, recent findings
about predictors of DKV during the SLS as well as studies which have attempted to detect
DKV automatically are overviewed.

Chapter 3 describes the pose estimation algorithm including details of kinematic mod-
eling and EKF tuning. The experimental data collection and the estimation of required
parameters from marker data are described. The joint angles estimated from IMU mea-
surements using the proposed algorithm are compared to angles extracted from marker
information and the proposed algorithm performance is analyzed.

In Chapter 4 a sensitivity analysis is performed over all model parameters required
by the pose estimation algorithm. This analysis identifies the IMUs’ orientation as the
most sensitive parameter set. Therefore, a simple protocol suitable for clinical settings
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is proposed to extract full sensor orientation for more accurate pose estimation. Other,
less-sensitive parameters were replaced by average values from anthropometric tables. The
proposed calibration protocol is validated by comparing the pose estimation results with
results when same parameters were extracted from marker positions for each person.

Chapter 5 proposes an approach for automated assessment of the SLS and its validation.
The proposed method was first applied to a pilot study and subsequently expanded to larger
clinical dataset. The data collection and labelling procedures for both the pilot and clinical
studies are described. Second, we reported and compared the results with clinical findings.

Chapter 6 concludes the thesis and suggests directions for future work.
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Chapter 2

Related Work

2.1 Pose Estimation

Human pose estimation is the process of estimating the configuration of the body and has
many applications in rehabilitation, human-computer interaction, computer vision, and
sports medicine.

2.1.1 Range of Motion Measurement in Clinical Settings

Pose estimation in clinical applications is based on visual assessment [39] and measurement
tools are limited to range of motion (ROM) measurement, which is an essential part of
physical therapy [32].

ROM refers to body joint movement limits. Full ROM is essential to move efficiently
and with minimal effort [74]. Restricted ROM will result in impaired muscle extensibility,
decreasing the body’s ability to adapt to imposed stress on the body [74]. ROM may
be impaired as a result of injury, degenerative disease or surgery. A crucial part of the
rehabilitation process is to recover the full extent of the joint’s ROM to avoid complications
such as muscular dystrophy or contracture [80].

In current clinical practice, the most commonly available clinical tool is a goniometer,
which is used for ROM measurement. A goniometer is a protractor-like device limited to
single joint angle measurement in static positions (Figure 2.1(a))[32]. There are special
types of goniometer designed for specific joints but in general, it is hard to apply a go-
niometer to all joints. Measuring several joints’ ROM with a goniometer is time consuming.
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(a)
(b)

Figure 2.1: Different styles and sizes of universal goniometer (a), cervical ROM device with
three inclinometers (b)[74]

More importantly, it is not possible to measure ROM during dynamic movements with a
goniometer. An inclinometer is a type of goniometer which measures the angle of the limb
with respect to gravity and can measure motion at several joints [74](Figure 2.1(b)), but
it only can be applied to motion directions which are not parallel to gravity. According to
Norkin and White [65] several studies have shown lower reliability of visual assessment for
lower extremity motion compared to upper extremity motion. Moreover, measurements are
shown to be less reliable when motion is affected by adjacent joints or there are multi-joint
muscles.

Rachkidi et al. [73] examined the reliability of visual assessment of the lower extremity
passive ROM. According to their results, visual assessment of hip/knee Flex angle is reliable
even for less experienced examiners. However, accurate assessment of hip Abd/IR needs
experience and for the hip Add and ankle Flex/Ext, even with experienced clinicians
reliability was poor. Therefore for those ROMs, using the goniometer was recommended.
Youdas et al. [97] have also reported poor reliability for active ROM measurement of ankle
Flex/Ext.

2.1.2 Dynamic Pose Estimation Methods

Development of an automated and objective pose estimation tool which can be used during
movement has been an active research area within the past decades. Dynamic joint angle
measurement techniques include camera-based, magnetic -based and IMU-based methods.
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Camera-based Methods

Camera based systems can be categorized into two groups: marker-based and marker less
techniques [24]. In the marker-based approach, reflective markers are mounted on bony
land marks of the body, and movements are recorded by cameras installed in a Motion
Capture Studio. Joint angles are then recovered by further analysis of the camera data.
The camera-based system gives an accurate estimation of joint angles; however, it is not
suitable for clinical applications due to cost and setup limitations. Also, lighting and
capture space limitations limits its application for gait analysis, outdoor settings and sport
analysis. Certain exercises and view angles may be difficult to capture if line-of-sight
between markers and the cameras cannot be ensured. The process of mounting markers
itself is time consuming and needs experience.

Marker-less methods are based on image processing techniques. Recently many re-
searchers have taken advantage of Microsoft Kinect, which is inexpensive and provides
depth and brightness/color information [21]. However, marker-less methods also work
based on line-of-sight sensing. As a result, they suffer from the same limitations as marker-
based systems.

Electromagnetic Field-based Methods

Electromagnetic-field based methods use a local magnetic field to track objects in the field
[4]. These methods are accurate but subject to interference by ferromagnetic objects. The
magnetic field generator also covers a limited space which limits its application for outdoor
settings.

IMU-based Methods

An IMU is a compact package composed of an accelerometer which measures linear accel-
eration, a gyroscope which measures angular velocity and a magnetometer which measures
earth magnetic field (Figure 2.2).

IMUs are very well suited to motion measurement in clinical settings, as they are
lightweight, small, capable of long term data recording, wearable and have low cost and
low power consumption [30]. However, they are not as accurate as camera-based systems.
Accurate estimation of joint angles from IMU output is a challenging problem due to
several issues including gyro drift, sensor to segment misalignment and motion artifacts.
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Figure 2.2: An IMU is a compact package composed of an accelerometer, a gyroscope, and
a magnetometer [6]

Joint angle data is of interest to clinicians and has to be recovered from IMU data,
for which several methods have been proposed in the literature [89]. The majority use
strap-down integration of angular velocity to estimate the orientation of the limb to which
the IMU is attached with respect to a world frame and subsequently extract the joint angle
from relative orientation of the two adjacent limbs [29], [24], [78].

However, IMU sensor readings are noisy and may have bias. When position estimation
is done by integrating angular velocity, even a small amount of bias will grow over time
and cause considerable errors in estimation [81], a problem known as drift.

To tackle drift, a common approach is to fuse the accelerometer and gyroscope data.
Examples include applying the complimentary filter [18] or Kalman filter [58], [55], [24],
[81] for data fusion. A comparison between different adaptive filtering techniques for sensor
fusion and drift removal is provided in [66]. Drift can lead to physically unrealizable joint
angle estimates. To ensure that the estimated joint angles are physically feasible, a number
of studies introduced kinematic constraints to their estimation model [17], [55], [81].

Boonstra et al. [18] applied a complimentary filter including a low pass filter to ac-
celerometer data to eliminate noise, and a high pass filter to gyroscope data to eliminate
the DC offset. They estimated the sagittal inclination of the thorax, upper leg and the
lower leg by combining an estimate from the arctangent of the accelerometer with inte-
gration of the gyroscope. Their method worked well for sagittal plane motions. However,
since the accelerometer is used as an inclinometer, the motion needs to be constrained in
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the gravity- acting plane, so a generalization of the approach to 3D motion is not trivial.
Also, some information about the movement may be lost as a result of filtering.

Bonnet et al. [17] estimated joint angles of the hip, knee, and ankle during a double
leg squat exercise using a single IMU placed on the lower trunk. They used a planar chain
model of the body consisting of the trunk, upper and lower leg and calculated the angular
velocity and linear acceleration in the sagittal plane. Taking advantage of the periodic
pattern of movement, they represented joint angles by an N-harmonic Fourier series. The
parameters for this representation were calculated by minimization of least square error
between the measured and estimated linear accelerations and the angular velocity. An
advantage of their method is that no integration is needed to recover joint angles; therefore,
the drift problem is negligible. Moreover, joint angle physiological limits are introduced
in the cost function. However, their estimation restricts the motion to the sagittal plane,
and cannot be generalized to 3D angle measurement. Also joint angle representation by
Fourier series is not applicable for non-rhythmic movements.

Lin and Kulić [55] developed an automated human motion measurement method capa-
ble of knee and hip pose estimation during typical physiotherapy and training exercises.
The accelerometer and gyro data were input to an Extended Kalman Filter using a kine-
matic model to recover joint angles. Gyroscope drift was limited by introducing kinematic
constraints to the model. In addition, employing filter noise adaptation helped in dealing
with model uncertainty resulting from different motion speeds. However, the EKF assumed
a constant acceleration motion profile and assumed a known sensor alignment.

Joukov et al. [46] improved Lin and Kulić’s pose estimation method [55] for gait anal-
ysis. They attached IMUs to the waist, knees and ankles to extract 3D leg motion during
gait. They combined EKF with a canonical dynamical system which was capable of learning
rhythmic motion from estimated joint velocities and estimating the frequency and phase of
the movement. The estimated frequency and phase was then used to improve EKF state es-
timation by providing additional information about motion acceleration. Moreover, virtual
yaw sensors were applied to the waist to reduce drift. According to their results, rhythmic
EKF needs at least 15 seconds for accurate frequency measurement. Therefore, it performs
no better than the EKF-based method for movements of short duration. Moreover, it is
not applicable to non-rythmic motions.

Some commercial position estimation systems based on IMUs are also available (e.g.
Xsens MVN BIOMECH system [5]). In these systems, a large number of IMUs are usually
mounted in a suit to estimate the full body pose. Although these systems may be useful
for animation applications, they are not well suited for clinical applications because the
suit is expensive and cannot be fitted to all patients. It also requires a long calibration
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process and cleaning is also an issue.

Another major issue with IMUs is their sensitivity to misalignment [78]. Joint angles
should be measured in the anatomical joint coordinate system and since the sensor local
frame may not be matched to the anatomical joint frame, measurements are subject to
error. An exact positioning of the sensor or a calibration procedure is needed for acceptable
results. Calibration techniques rely on either pose or functional calibration or a combina-
tion of both [61]. In pose calibration, the subject is asked to stand in a known posture
while in functional calibration the sensor alignment is found using limb movements [28],
[57], [61], [77],[54], [66]. Although these methods can improve accuracy, they are time con-
suming and the precision depends on the accuracy of the movements/pose executed by the
subject. Moreover, some of these methods need a motion with a wide range which might
not be possible for patients with limited ROM. Recently, Seel et al. [78] have proposed a
functional calibration method which works based on arbitrary movements; however, their
method requires at least two IMUs around the target joint and arbitrary motions have to
excite all DOFs.

Favre et al. [29], used two IMUs located on the thigh and shank to estimate knee joint
angles. They proposed a fusion algorithm to combine accelerometer and gyroscope data
and calculate the orientation of upper and lower leg segments. To convert orientations
to joint angles, they aligned IMUs relative to the same world frame so that they could
calculate differential orientation which gives joint angles. This alignment was based on
predefined calibration movements done by the subject and its accuracy depends on the
accuracy of performing the calibration movements. This method is not suitable for patients
as they may have limited ROM which prevents them to perform the prescribed calibration
movements. Moreover, no strategy for drift elimination is proposed.

Daponte et al. [24] used magnetometer and accelerometer information to calculate
sensor orientation quaternions and fused these quaternions as well as gyroscope output into
Extended Kalman Filter to compensate for gyro drift. Calibration methods were applied to
compensate for both magnetic interference and sensor to segment misalignment. Relative
quaternions were used to recover elbow and shoulder joint angles. Deponte’s algorithm
treats each body segment as an independent rigid body, without considering the mobility
constraints between body segments, so adjacent body segments may drift and move with
respect to each other in ways that are not physically realizable.

Soft tissue artifacts are another source of error in IMU-based pose estimation, which is
less often addressed in the literature. McGinnis et al. [76] proposed a method for accurate
femur angle estimation during Femoroacetabular Impingement diagnosis test using a thigh
mounted IMU. They also investigated the effect of soft tissue artifacts using two IMUs
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mounted around the thigh, one fixed to the bone directly and the other attached to the
skin. According to their results, soft tissue artifacts were responsible for 3% and 2%
overestimate in hip flexion/extension (Flex/Ext) and internal/external rotation (IR/ER)
angles respectively and 17% underestimate in hip adduction/abduction (Add/Abd) angle.
However, they concluded that mounting on skin would still be enough to show differences
between normal and limited hip motions due to Femoroacetabular Impingement. Their
study is limited to static range of motion and does not take into account the effect of
muscle contractions in dynamic tests or during exercise.

Seel et al. [78] estimated the Flex /Ext angle of knee and ankle in gait trials of a
transfemoral amputee using three IMUs. Despite calibrating the IMU local frame to the
body segment anatomical frame, they reported almost 4◦ difference in knee and 1◦ degree
difference in ankle joint angle estimates between the prosthesis and contralateral sides due
to skin and muscle motion artifacts.

A summary of the advantages and limitations of the IMU-based pose estimation meth-
ods are listed in table 2.1.

2.2 Sensitivity Analysis

As mentioned in the previous section, IMUs are sensitive to correct positioning, and mis-
alignment is a source of error in pose estimation. While several studies have mentioned
the importance of sensor positioning and suggested methods for more accurate estimation
of the sensor orientation [28], [78], [54], very few studies have quantified the sensitivity of
pose estimation to sensor misplacement.

Trojaniello et al. [85] investigated the sensitivity of four different single IMU-based
gait initial contact estimation methods to IMU misplacement. The lower back IMU was
virtually rotated around the medio-lateral axis between±10◦. Two methods had acceptable
performance only in a limited range of IMU orientation change. One method was quite
insensitive but also had poor accuracy. Only one method showed acceptable performance
in terms of a compromise between good accuracy and least sensitivity. This method was
applied to a waist mounted IMU and wavelet transform was used to extract initial and
final contact gait time events [59].

Leardini et al. [52] compared a magnetic IMU based rehabilitation assistive system to
the optical motion capture analysis gold standard. The proposed system applies 3 IMUs
to the thorax, thigh and shank to estimate hip, knee and thorax inclination angles. The
sensitivity of the hip Abd/Add to frontal plane misorientation of the thigh IMU within
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±15◦ of the optimal orientation and the sensitivity of the hip Flex/Ext to mispositioning of
the thigh IMU within ±7 cm in mediolateral direction of the correct position was analysed.
Their results showed more error due to mediolateral displacement than due to frontal
misorientation. They concluded that overall error due to introduced misplacement is less
than 5◦ and is still acceptable. However, misconfigurations were limited to two scenarios
tested on one of the sensors, and the effect was investigated only on a single hip DOF
estimation.
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Table 2.1: Comparison between IMU-based joint angle measurement methods

IMU-based joint angle measurement methods

Method Advantages
Limitations

Boonstra
et al. 2006
[18]

- Drift removal using high pass fil-
ter

- Motion information may be lost during
filtering
- Not applicable to off-sagittal plane
- Estimate inclination with respect to world
frame not joint angles
- Joint physiological motion constraints are
not considered
- No sensor misalignment calibration

Favre et al.
2008 [29]

- Estimates 3D joint angles based
on inclination
- Sensor misalignment calibration

- No drift removal strategy
- Needs exact calibration movements
- Joint physiological motion constraints are
not considered

Bonnet et
al. 2012
[17]

- Drift removal and estimating
joint angles using Fourier series
- Motion constraints are consid-
ered

- Not applicable to off-sagittal plane motions
- Not applicable for non-rhythmic move-
ments
- No sensor misalignment compensation

Lin et al.
2012 [55]

- Estimate 3D joint angles using
kinematic model
- Motion constraints are consid-
ered
- Drift compensation using EKF,
kinematic model and kinematic
constraints

- No sensor misalignment calibration
- Assumes constant acceleration in motion
dynamics
- Using EKF introduces additional challenge
of appropriate noise parameter selection
which is discussed

Daponte et
al. 2014
[24]

- Sensor misalignment calibration
- Drift removal using magnetome-
ter and EKF
- Estimating 3D joint angles using
relative quaternions

- Body segments are independent of each
other without applying motion constraints
- Using magnetometer has added the chal-
lenge of magnetic calibration
- Using EKF introduces additional challenge
of appropriate noise parameter selection
which is not discussed
- Needs exact calibration movements
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IMU-based joint angle measurement methods

Method Advantages Limitations

Joukov et
al. 2015
[46]

- Drift compensation
- Estimate 3D joint angles using
kinematic model
- Motion constraints are consid-
ered

- Not applicable to non-rythmic motions
- Needs time to converge and perform well

Seel et al.
2014 [78]

- Sensor misalignment calibration
with arbitrary motions
- Gyro drift removal
- Accurate pose estimation

- Two sensors around each joint is needed
- Joint physiological motion constraints are
not considered
- The calibration method estimates only
main joint axis (is the one with greatest
ROM)
- Precise estimation in one direction (1DOF)

Xsens
Suite [5]

- Sensor misalignment calibration
- Gyro drift removal
- Whole body pose estimation

- Expensive
- Suit does not feet to all patients
- Cleaning problem
- Long calibration process because of large
number of sensors

2.3 Single Leg Squat Assessment

SLS and other functional movement tests such as the double leg squat and double leg jump
have been widely investigated in clinical and sport medicine studies. DKV occurrence
during these tests is not due to torsion of the knee, but due to movement of the kinematic
chain, particularly the hip/ankle inward movement. The main purpose of the majority
of these studies is to find relationships between the occurrence of knee valgus during the
mobility test and factors such as age, gender, body mass index, history of injury, and
kinematic or neuromuscular characteristics of the subjects (usually athletes) [41], [98],
[15], [67], [84], [86]. Studying these predictors aids in the development of appropriate injury
prevention strategies. For example, if it is found that hip abductor weakness correlates
with poor performance (DKV occurrence) in SLS, then specific exercises can be prescribed
to improve the strength and function of this muscle group.
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2.3.1 Finding DKV Correlates

Zeller. et al. [98] investigated the kinematics and muscular activity of nine men and nine
women athletes during the SLS. According to their results, women exhibited more knee
valgus, which was associated with greater ankle dorsiflexion (7◦) and pronation (2.7◦), less
trunk lateral flexion (16.6◦), and greater hip adduction (3.2◦), flexion (9.1◦), and rotation
(6.6◦). Rectus femoris muscle activation was also greater in women.

Hip and foot contributions to high DKV were investigated by Bittencourt et al. [15].
They examined 173 athletes during the SLS and at the landing moment of a double leg
jump. Data was collected in a Motion Capture Studio and the frontal plane knee projection
angle was measured at 60◦ of knee flexion and during a static single-leg stance. Four
other measures, including the passive ROM of the hip internal rotation, the isometric
strength of the dominant-limb hip abductors, the shank-forefoot alignment and participants
gender were defined as features to be input into a classification and regression tree. Their
results suggest that high DKV can be predicted by decreased hip abductor torque (below
1.03Nm/Kg) and increased passive ROM of the hip internal rotation (greater than 43◦)
for both the SLS and double leg jump landing.

Padua et al. [67] compared the neuromuscular characteristics of a group of 18 indi-
viduals with excessive knee valgus with a control group of 19 healthy individuals during
double leg squat performance. Electromyography (EMG) was used for muscle activation
measurement. Individuals were assigned to either the control or DKV group based on an
evaluation by an expert rater. A correlation between DKV and increased hip-adductor
activation as well as increased coactivation of the gastrocnemius (by 42%) and tibialis
anterior muscles (by 25%) was reported.

In a similar study, Stiffler et al.[84] compared kinematic characteristics including ROM
and postural alignment of 97 healthy individuals during the double leg jump, in order to
find differences between those with and without excessive DKV. Motion labeling was based
on the total Landing Error Scoring System (LESS)[68]. Their results showed associations
between DKV and less ankle dorsiflexion (3.6◦), as well as higher quadriceps angle (3.6◦).

The relationship between the occurrence of DKV with age, gender, and body mass
index was studied by Ugalde et al. [86]. They investigated 142 middle and high school
athletes while performing the SLS and drop jump tests. They defined knee-hip ratio as the
distance between the knees at maximum flexion divided by the distance between hips at a
quiet stance during the drop-jump test. Their results showed significantly lower knee-hip
ratio for individuals with DKV during SLS. However, they found no relationship between
DKV and age, gender, or body mass index during the SLS test.
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2.3.2 Automated DKV Detection

The investigations described above have focused on identifying correlates of DKV. Gener-
ally, these studies detect positive DKV occurrence based on expert clinician observations
or manual measurements extracted from video frames. Very few studies have tried to de-
velop an algorithm for automated DKV detection. In one such study, Whelan et al. [94]
classified SLS repetitions of 19 healthy participants into correct and incorrect categories
using a single lumbar-mounted IMU. They extracted time domain features from accelerom-
eter and gyroscope measurements, the IMU orientation (represented as roll, pitch, yaw),
and accelerometer magnitude. Using the generated feature vector and labels provided by
an expert, they trained a Random Forest classifier, which achieved 92.1% accuracy with
repeated random-sample validation. Despite these promising results, they may be difficult
to interpret clinically, as features were defined based on direct acceleration and gyroscope
output signals, where clinical assessment of the SLS includes the visual estimation and
interpretation of kinematic joint parameters, especially the joint angles. Developing a
classifier which works based on these parameters; therefore, has the advantage of inter-
pretability. Furthermore, Whelan et al., did not perform a Leave One Subject Out Cross
Validation (LOSO-CV), therefore it is not clear how well the classifier would generalize to
subjects unseen during training, which is critical for clinical applications.

2.4 Summary

IMU-based pose estimation is a challenging problem because of gyro drift, sensitivity to
mispositioning, and motion artifacts. Several studies have attempted to solve these issues
and some of them have reported very low estimation errors [29], [78]. However, many
of the proposed methods have limitations like one dimensional joint angle estimation or
exhaustive calibration requirements which make clinical application of the method time
consuming or technically complicated and demanding for the end user (see Table 2.1).

While sport medicine, rehabilitation, and other clinical applications are among the
most important purposes of developing IMU-based motion tracking systems, in most of
the studies, clinical applicability or performance are not evaluated. There is a gap in the
work to date regarding the performance of IMU-based pose estimation methods in realistic
clinical settings, where there are time constraints, data collection is to be performed by
clinicians with limited technical background, and motion data is being generated by clinical
populations.

In this thesis, we propose an accurate IMU-based pose estimation method for clinical
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applications. The proposed approach addresses most of the existing issues with IMUs,
and at the same time simplifies the calibration and setup procedures to make it usable in
clinical settings without compromising accuracy or generalizability.

For clinical applications, in addition to pose estimation, there is a need for automated
motion assessment during functional movement tests. There are very few efforts for auto-
mated assessment of clinical movement tests using IMUs in the literature. In this thesis,
we propose and validate a system for assessment of the single leg squat mobility test.

Our proposed system provides an integrated solution for both pose estimation and
assessment of the motion for the SLS, which makes it ideal for clinical applications.
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Chapter 3

Automated Pose Estimation

In this chapter, the algorithm for continuous pose estimation from IMU measurements
is developed. Many existing methods on human pose estimation provide body limb ori-
entations [29],[24], [78], which need to be transformed into joint angles using kinematic
information in a subsequent step. On the other hand, the algorithm proposed by Lin and
Kulić [55] incorporates the kinematic model in the estimation process, to directly produce
joint angles. Moreover, their proposed algorithm estimates joint angles during movement
in any direction. There is no limitation to movement only in the sagittal plane as in many
other studies [18], [17]. For these reasons we have adapted the pose estimation approach
proposed in [55] to measure joint parameters including angle, velocity and acceleration
during the SLS.

Since the IMU data is noisy and can suffer from drift, similar to [55], a kinematic model
of the lower leg is applied to calculate angular velocity and linear acceleration at each time
step to be used for correction of sensor estimates of these values. The kinematic model
predictions and sensor measurements are fused via an Extended Kalman filter (EKF). The
algorithm proposed in [55] is modified as follows:

� Degrees of freedom of the kinematic model was increased to 7 to simultaneously
model the 3 dimensional hip, the 1 dimensional knee and the 3 dimensional ankle

� Drift was minimized by introducing a virtual yaw sensor at the hip

� Tibia mounted sensor location was changed to the flat part of the tibia to improve
stability
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� For each of the ankle, knee, and hip joints a separate EKF was applied to reduce
joint parameters estimation error and simplify filter tuning

3.1 Kinematic Modeling

The human body can be modelled as a branched articulated chain of rigid bodies, and the
mobility of the body joints can be modelled as a series of single degree of freedom joints,
where each DOF represents joint motion in one direction. A common way to specify such a
model is to assign local frames to each DOF. Body segment rotations can then be quantified
by transformation matrices from one frame to the other. Each transformation matrix has 9
parameters representing rotation and 3 parameters representing transformation. By forcing
some constraints on frame assignment, number of parameters in transformation matrix can
be reduced [83].

3.1.1 DH Convention

The Denavit Hartenberg (DH) convention [87] is a common way of assigning frames to
rigid body links. The convention allows the transformation from one link to the other to
be fully defined using 4 parameters. These parameters include:

1. Joint angle (θi ): angle that forms between the Xi−1 and the Xi axes while rotating
about the Zi−1 axis (i refers to frame order)

2. Link offset (di ): distance from frame origin i− 1 to the Xi axis along the Zi−1 axis

3. Link length (ai ): distance between the Zi−1 and the Zi axes, along the Xi axis

4. Link twist (αi ): angle from Zi−1 to the Zi axis, about the Xi axis

In addition, the DH fame assignment includes two constraints on axis assignment: axis
Xi should be perpendicular to axis Zi−1, and axis Xi intersects axis Zi−1. Using these
rules, the transformation matrix from frame i− 1 to frame i can be defined as following:

Ti−1,i =


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) αicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) αisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1
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3.1.2 Forward Kinematics

The developed kinematic model for the human leg is composed of a 3 DOF ankle joint, 1
DOF knee joint, and 3 DOF hip joint. Frame assignment is carried out according to the
DH convention as depicted in Figure 3.1(left). Frames 0, 1, and 2 correspond to ankle in-
ternal/external rotation (IR/ER), adduction/abduction (Add/Abd) and flexion/extension
(Flex/Ext) respectively, followed by the shank link. Frame 3 corresponds to knee Flex/Ext,
followed by the thigh link. Frames 4, 5, 6 correspond to hip Flex/Ext, Add/Abd, and
IR/ER respectively, followed by the pelvis link. Frame 7 is the final frame located at the
back sensor. Frame 0 is the base frame as it is stationary during the SLS motion. To gen-
erate the measurement equations of the EKF, the angular velocity and linear acceleration
measurements at each sensor location are related to the joint positions and velocities using
the kinematic model, which can be done by iteratively computing the angular velocities
and linear accelerations as contributions from each joint in the kinematic chain:

ωi = RT
i−1,i ωi−1 +RT

i−1,i q̇i (3.1)

αi = RT
i−1,i αi−1 +RT

i−1,i q̈i + ωi × (RT
i−1,i q̇i) (3.2)

ẍi = RT
i−1,i ẍi−1 + αi × ri + ωi × (ωi × ri) for i 6= si(sensorframe) (3.3)

ẍsi = RT
i−1,i ẍi−1 + αi × rsi + ωi × (ωi × rsi) +R0,ig for i = si (3.4)

Where ωi is the angular velocity of frame i, Ri−1,i is the rotation matrix from frame
i − 1 to i , αi is the angular acceleration of frame i, R0,i is the rotation matrix from the
base frame to frame i, and r is the displacement vector from the origin of the current frame
to the origin of the previous frame. xi is the linear acceleration of the origin of frame i,
and xsi is the linear acceleration at the sensor i location.

The linear acceleration at the tibia sensor location will be xS3, where rS3 is the vector
from the sensor location to frame 2 (origin at the ankle). r2, r1, and r0 are zero as frames
2,1,0 are located at the same position. For the thigh sensor, xS4 is the linear acceleration at
the thigh sensor location, and rS4 is the vector from the thigh sensor to frame 3 (origin at
the knee). r3 for this sensor is the vector from frame 3 (knee) to frame 2 (ankle). Similarly,
for the back sensor, xS7 is the linear acceleration at the back sensor location. rS7 is the
vector from the back sensor to the hip center. r6 and r5 are zero (all at hip center), r4 is
the vector from hip to knee. The displacement vectors are shown in Figure 3.1(middle and
right).
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Figure 3.1: 7 DOF kinematic model of the right leg showing sensor positions and frame
assignments (left) and displacement vectors frontal view (middle) and transversal view
(right).

The resultant estimates of the angular velocity and linear acceleration from the kine-
matic model and the IMU measurements of these parameters are then fused into an EKF
to recover the joint angles [55]. The position, velocity, and acceleration of each DOF are
defined as the states to be estimated by the EKF. A constant acceleration model is used
for the state propagation.

3.2 Extended Kalman Filter (EKF)

The Kalman Filter is an estimation technique which combines noisy observations and
a model of the system to produce a more precise estimation of unknown variables [93].
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The Kalman filter assumes that both the measurement and system model are linear, and
that the measurement and model uncertainty are zero-mean Gaussian distributed. The
Extended Kalman Filter is a nonlinear version of the Kalman Filter which linearizes the
state and observation models about the current estimated mean and covariance [93].

In our model, the state propagation model is linear while the observation is a nonlinear
function of the states. The discrete time model of our system can be formulated with state
and observation equations as follows:

qk = Aqk−1 + wk (3.5)

Zk = h(qk) + vk (3.6)

Where A is the linear state transition equation which relates previous state (qk−1) to
the next state (qk). wk and vk are zero mean Gaussian process and measurement noises
with covariance Q and R, respectively. Q relates to the states and has the same size as
A while R relates to the observations. Zk is the current observation which is a nonlinear
function (h) of the state.

Our desired states to be estimated are position, velocity and acceleration of each DOF.
Assuming a constant joint acceleration, the relationships between position, velocity, and
acceleration can be written as follows:

qk = qk−1 + q̇k−1∆k + q̈k−1
∆k2

2
(3.7)

q̇k = q̇k−1 + q̈k−1∆k (3.8)

q̈k = q̈k−1 (3.9)

Where ∆k represents the sampling time interval. Using this model, for the pose esti-
mation problem, the A matrix in the equations will have the following format:

A =

1 ∆k ∆k2

2

0 1 ∆k
0 0 1


The EKF formulation consists of predict and update equations [93]. Prediction includes

projecting the state (q̂k
−) and the error covariance (P−

k) ahead based on the state model:
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q̂k
−

= Aq̂k−1 (3.10)

Pk
− = APk−1A

T +Q (3.11)

The update state includes calculating the innovation (residual) and the covariance (Equa-
tion 3.13) by linearizing the measurement model to obtain the jacobian C numerically (Equa-
tion 3.12), computation of the Kalman gain K (Equation 3.14) and updating state estima-
tion (Equation 3.15) and state error covariance (Equation 3.16) using the Kalman gain.

C =
∂h(qk)

∂qk
(3.12)

S = CPk
−CT +R (3.13)

Kk = Pk
−CT (S)−1 (3.14)

q̂k = q̂k
−

+Kk(Zk − h(qk)) (3.15)

Pk = (I −KkC)Pk
− (3.16)

Before the filter starts to run, some of its parameters including the initial state value
(q0), the initial state error covariance (P0), the measurement noise covariance (R), and the
process noise covariance (Q) need to be initialized.

The measurement noise initialization can be carried out empirically, because the sensor
noise profile is usually measurable by taking offline samples [93]. However, the correct value
for the process noise, which compensates for the model inaccuracies, is difficult to estimate.
Poor values for the process noise can affect the accuracy of estimation significantly.

3.2.1 Adding Virtual Yaw Sensor

For rotation angles parallel to gravity, drift due to gyro bias cannot be compensated by
the accelerometer and can result in large IR/ER angle errors. The drift problem is most
prevalent in the hip IR/ER due to accumulation of error from previous states. To alleviate
this issue, similar to [46] a virtual yaw sensor was assumed at the hip location to measure hip
internal rotation only. The output of this sensor was set to zero to avoid excessive internal
rotation due to drift. To fuse this additional measurement to EKF, the measurement model
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needed to be updated, through a rotation matrix from the base frame to the hip IR frame
(R0,7), calculated as shown below:

HipIR = tan−1

[
R0,7(2, 1)

R0,7(1, 1)

]
(3.17)

This additional information was added to h(qk)

3.2.2 1-EKF versus 3-EKF Structure

Two different approaches can be implemented for state estimation.

1-EKF Structure

The first approach is to estimate all joint angles using the information of all sensors via a
single EKF. In this approach, the state vector has a dimension of 21×1 (including 3 states
for each of the 7 DOFs) and the observation vector has a dimension of 19× 1 (including 6
readings for each IMU and 1 reading for virtual yaw sensor). As a result, the A matrix is
a 21× 21 matrix with the following structure:

A =


A1 O . . . O
O A2 . . . O
...

...
. . .

...
O O . . . A7

 , where A1 = A2 = . . . = A7 =

1 ∆k ∆k2

2

0 1 ∆k
0 0 1

 (3.18)

Where O is a 3× 3 zero matrix.

With this approach Q has the same size of 21× 21 and R is a 19× 19 matrix.

3-EKF Structure

In this approach a separate EKF is assigned to each IMU. Therefore, the observation vector
for the ankle and thigh EKF has 6 elements while for the hip EKF, it has 7 elements
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including the virtual sensor. This will result in a 6 × 6 R matrix for the first two EKFs
and a 7× 7 R matrix for the third one.

Ankle joint states are estimated using the tibia sensor EKF, knee joint states are esti-
mated using the thigh sensor EKF, and hip joint states are estimated using the back sensor
EKF. This means a 9 × 9 A matrix for ankle states and hip states and a 3 × 3 A matrix
for knee states in the prediction equation 3.10. Q follows the same size as A for each joint.
The three filters are run sequentially, so that the estimate of the ankle joints’ state is used
as input to the knee estimate, and the ankle and knee estimates are used as inputs to the
hip EKF estimator.

The one EKF approach simultaneously estimates the ankle states based on all sensors’
measurements, and the knee state based on both thigh and back sensor measurements,
while in the three EKF approach, these joint angles are estimated using only one of the
sensors (tibia sensor for the ankle joints, thigh sensor for the knee joints). Therefore,
we expect to have a more accurate estimation for these values compared to the 3-EKF
model. However, after implementing the two approaches and comparing the results, we
found that the three EKF model provides better joint angle estimates. These results and
their interpretation are detailed in Sections 3.6 and 3.7. In the rest of the thesis, we use
the better performing 3-EKF formulation throughout, unless otherwise mentioned.

3.2.3 EKF Tuning

EKF has been a very successful estimation method in a wide variety of research fields [53].
However, good performance of the EKF depends on the proper tuning of its noise statistics.
Despite the importance of a well-tuned filter, the estimation of optimal filter parameters
is less often discussed in the literature. Tuning can be done based on ad hoc or heuristic
methods or using supervised or unsupervised optimization [14].

Ad hoc methods are based on trial and error, while heuristic methods rely on empirical
analysis of the system and using a priori knowledge of the system.

Unsupervised optimization methods try to adapt noise parameters over time using the
covariance of the filter innovation term. There are four main categories of adaptive tuning
techniques including Bayesian, maximum likelihood, covariance matching and correlation
techniques [64]. These adaptive methods are advantageous because they can respond to
change in the system properties over time.

Supervised methods typically perform offline optimization of the filter parameters us-
ing a reference or ground truth. This method gives optimal parameters; however, those
parameters may not be useful any more when system changes.
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Adaptive tuning techniques are most suitable for long runs to allow adaptation. Since
SLS trials are rather short and we had access to ground truth via motion capture, the
best choice for filter tuning was supervised optimization. For this purpose, first, Q and R
matrix structures are simplified to reduce the number of parameters to be tuned. Then,
they are initialized to values selected based on a priori knowledge of the system. Finally an
objective function is defined based on RMS error between joint angle estimates obtained
on motion capture and from the algorithm and final values of the parameters are found
by optimization. Details of the Q and R matrix initialization are described in the next
section.

EKF Tuning by Optimization

Our objective is to identify the optimal elements of measurement noise R and process noise
Q covariance. For each IMU a separate EKF was applied. The tibia IMU estimates the first
9 states including the 3 DOF ankle joint angles, positions, and accelerations. Therefore,
the number of states to be estimated by the first EKF was 9, while the measurements were
the angular velocity (x, y, z) and linear acceleration (x, y, z) from the tibia IMU, which
resulted in a 9× 9 Q matrix and 6× 6 R matrix.

The thigh IMU estimates the 3 states of the 1 DOF knee joint, the angle, velocity and
acceleration. For the second EKF therefore, we have a 3 × 3 Q matrix and a 6 × 6 R
matrix.

Finally, the back IMU estimates 9 states of the 3 DOF hip: the joint angles, positions,
and accelerations. Because of the additional virtual yaw sensor added at the hip, the R
matrix for hip EKF has a size of 7× 7.

R and Q in general are full matrices. To simplify the matrix structures and reduce the
number of parameters to be optimized, we assume that measurement noise vk and process
noise wk elements are uncorrelated with each other, so we can define R and Q as diagonal
matrices. We assign positive values to diagonal elements to keep them positive definite.

For simplicity, we assume all accelerometer dimensions have the same noise profile and
that the tibia, thigh and back accelerometers are also similar. The same assumption holds
for the gyro. In this way, we can reduce the 19 parameters of R (6 for tibia, 6 for thigh and
7 for hip) into three parameters, one related to gyro noise covariance (β1), one related to
accelerometer noise covariance (β2) and one related to virtual yaw sensor noise covariance
(β3). From investigation of raw sensor data, it was observed that the accelerometer is
noisier than the gyro; therefore, the accelerometer coefficient in R is initialized to a higher
value. The structure of R for the tibia and thigh sensors is the following:
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Rankle,knee =


β2

1 0 0 0 0 0
0 β2

1 0 0 0 0
0 0 β2

1 0 0 0
0 0 0 β2

2 0 0
0 0 0 0 β2

2 0
0 0 0 0 0 β2

2

 , where β2 > β1.

β1 corresponds to gyroscope noise and β2 corresponds to accelerometer noise. For the
hip EKF there is one more element corresponding to the virtual yaw sensor (β3):

Rhip =



β2
1 0 0 0 0 0 0

0 β2
1 0 0 0 0 0

0 0 β2
1 0 0 0 0

0 0 0 β2
2 0 0 0

0 0 0 0 β2
2 0 0

0 0 0 0 0 β2
2 0

0 0 0 0 0 0 β2
3


Each element in Q corresponds to one of the states. Whenever there is higher uncer-

tainty in the state, it means that the corresponding diagonal element of Q for that state
should have a higher value. Due to the constant acceleration assumption, we hypothesize
that acceleration will be more inaccurate than velocity, and velocity will be more inaccu-
rate than position for all of the states. Therefore, we define a 3×3 diagonal matrix D such
that its first element describes position noise, the second element defines velocity noise,
and the third element defines acceleration noise:

D =

α1 0 0
0 α2 0
0 0 α3

 , where α3 > α2 > α1 > 0.

To come up with a good initial guess for the diagonal elements of Q, we can benefit
from our knowledge of the system. In the case of pose estimation for SLS, the motion is
known which means we know the direction and relative range of motion in each DOF.

The motion (SLS) is primarily in the sagittal plane so flexion/extension joints have the
biggest ROM. Therefore, the constant acceleration assumption will most likely be violated
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in the joints moving in the sagittal plane so coefficients in Q for joints moving in that
direction are initialized with higher magnitudes.

Using this approach, the following structure is proposed for the process noise covariance
matrix for the ankle:

Qankle =

D × γ1
2 O O

O D × γ22 O
O O D × γ32


Where γ1 corresponds to the uncertainty in the first DOF parameters (ankle IR/ER)

estimation, γ2 corresponds to uncertainty in the second DOF (ankle Abd/Add) and γ3

corresponds to uncertainty in the third DOF (ankle Flex/Ext).

The same structure is used for the hip, such that γ5, γ6, γ7 correspond to Flex/Ext,
Abd/Add, and IR/ER, respectively:

Qhip =

D × γ5
2 O O

O D × γ62 O
O O D × γ72


For the knee we only have one DOF so Q will be:

Qknee =
[
D × γ42

]
The knee, ankle and hip Flex/Ext have the biggest movements in the SLS, so we can

assume that γ3, γ4, and γ5 are greater than other parameters. Also, ankle IR/ER and hip
IR/ER are parallel to gravity so their estimates rely only on gyro integration. To prevent
drift and inaccurate estimation, we trust the model more for these values so we assign low
coefficients for them in Q. Therefore, we can set γ4 > (γ3, γ5) > (γ2, γ6) > (γ1, γ7).

Using this structure for R and Q matrices, the number of parameters to be tuned will
be 13 parameters in total.

To find the optimum values of the parameters, the objective function was defined as the
root mean square error between the estimated joint angles from the EKF-based algorithm
and the same angles obtained from the marker-based ground truth, averaged over all joint
angles as shown in Equation 3.19
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J = argmin(β1,β2,β3,α1,α2,α3,γ1,γ2,γ3,γ4,γ5,γ6,γ7)


√∑n

t=0(q̂1,t−q1,t)2
n

+ . . .+

√∑n
t=0(q̂7,t−q7,t)2

n

7


(3.19)

where q̂1,t refers to estimated joint angle for the first DOF at time t using the EKF-
based pose estimation and q1,t refers to the same angle estimated from marker information.
Marker-based estimations are extracted by applying inverse kinematics to the developed
lower body model using the approach proposed by Joukov [45].

This minimization problem was solved by global search optimization implemented using
the MatlabR2016a optimization toolbox. Global search applies the fmincon solver, which
is a gradient based solver started from a number of random initializations. If the new
point returns smaller cost, then it keeps that point and removes the previous guess. At
the end, it returns the best global solution. Starting from a good initial guess helps with
faster convergence in optimization. Such a guess was obtained by defining very small or
zero values for α1 , α2 and considering the described relative relationship between other
parameters in assigning values.

It should be noted that the optimal parameters obtained for one subject may not nec-
essarily be optimal for a different subject. To report the best achievable accuracy of the
method, tuning was repeated for each subject separately and subject-specific optimal pa-
rameters were used in reporting the errors. In general, however, when there is no reference
information available, an average value of the all subjects’ parameters can be utilized.

3.3 IMUs Characteristics

The IMUs used for data collection were obtained from Yostlabs [6] and are depicted in
Figure 3.2.
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Figure 3.2: Yost IMU used for data collection [6]

Each IMU consists of a triaxial accelerometer, gyroscope and compass sensors with a
2.4GHz DSSS communication interface and a rechargeable lithium-polymer battery. The
IMUs include on-board filtering algorithms. Calibration was possible through the 3 Space
Suite firmware which allowed for calibrating accelerometer, gyroscope, or compass using a
gradient-descent-based algorithm and an easy to use wizard (Figure 3.3)[1].

Moreover, it was possible to have access to various types of outputs including raw/corrected
or normalized data and filtered absolute and relative orientation outputs in quaternion, Eu-
ler angles (pitch/roll/yaw), or rotation matrix. It was also possible to define the desired
frame for each IMU and save output data in CSV format via an interface developed by
MSK-Metrics. To increase the sampling rate, we used one dongle for each sensor.

The specifications of the gyroscope and accelerometer are listed in Figure 3.4. The
magnetometer was not used in this study.
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Figure 3.3: Yost IMU wizard for accelerometer calibration[1]

Figure 3.4: Yost IMU specifications [1]
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3.4 Experiments

To evaluate the accuracy of pose estimation, SLS data was collected with marker-based
motion capture (MOCAP) and IMUs simultaneously. 10 participants (5 men, 5 women,
mean age: 28.5 ± 6.37) were recruited. Inclusion criteria were adults without any lower
back or leg injuries within the past six months. The experiment was approved by the
University of Waterloo Research Ethics Board, and all participants signed a consent form
prior to the start of data collection. Data from 3 participants were excluded from the
analysis due to unexpected local frame change in the sensors which was identified after
collection.

3.4.1 Mocap Data Collection

Three Yost [6] IMUs were attached to the participants’ low back at the level of the first
sacral vertebra, the anterior thigh 10 cm above the patella aligned with the sagittal plane,
and the flat surface of the shank at the level of the tibial tuberosity using hypoallergenic
tape. Sensor placement locations are illustrated in Figure 3.6. Data was communicated
to a nearby computer via Bluetooth communication with an average sampling rate of 90
± 10 Hz. Data were interpolated and resampled to the same rate of 200 Hz (equal to the
MOCAP camera frame rate) before subsequent analysis.

At the same time, 8 reflective markers were attached to bony landmarks including:
right and left anterior superior iliac spine (ASIS), right and left posterior superior iliac
spine (PSIS), medial and lateral knee, and medial and lateral ankle of the squatting leg.
Moreover, three markers were attached to the thigh and tibia sensors to enable sensor
orientation recovery from the marker data. Due to the vicinity of the back sensor to
the right and left PSIS markers, attaching three markers on the back sensor resulted in
marker swapping; hence only one marker was attached to the back sensor. MOCAP data
collection was performed with eight Eagle cameras and Motion Analysis Cortex software
for data collecting and pre-processing.
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Figure 3.5: Sensor and marker placement for the single leg squat experiment in the Motion
Capture Lab

Participants were instructed to remove their shoes and perform five continuous cycles
of SLS with their toes pointing forward and arms crossed in front of the body. They were
asked to perform SLS with their dominant leg (the one they kick the ball with) without
moving the foot or lifting the heel. In instances where subjects lost their balance, their
legs contacted each other, or the non-weight bearing leg touched the ground, the trial was
deemed unsuccessful and all cycles were repeated.

Before starting the exercise, subjects were asked to lift their squatting leg up and back
down and then stay for a few seconds in a rest position. This additional motion was used
for synchronization of the IMUs and MOCAP and was not included in the data analysis.
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3.5 Forward Kinematic Parameter Estimation

In order for the kinematic model to be accurate, the displacement vectors have to be
specified, which means that the exact position and orientation of the sensors are required.

3.5.1 IMU Orientations

Misorientation of the thigh and tibia sensors results from the fact that the leg anatomical
orientation is not vertical while in the kinematic model (see Figure 3.1) a perfectly vertical
position for these sensors is assumed. The back sensor is also assumed to be mounted per-
fectly horizontal with no angular offset with respect to the hip frame. The transformation
matrices from the sensors’ orientation on the body to the desired vertical orientation can
be calculated by defining each sensor’s frame using three markers on the sensor plane.

Od = Rd bOb (3.20)

Where Od and Ob are the IMU desired and body mounted orientations, respectively.
Rd b is the transformation from the body frame to the desired frame calculated by the

average of marker data for the first five seconds before exercise begins, when participants
were asked to stand still on both feet.

Figure 3.6: tibia sensor desired and body mounted orientations

Rd b was calculated for each sensor using the three markers on each sensor plane. Each
sensor measurement was rotated by Rd b before being input into the EKF. For the back
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sensor, only one marker was mounted so it was not possible to extract back sensor misori-
entation from marker data.

3.5.2 Displacement Vectors and DH Link Lengths

Sensor location vectors and limb lengths were calculated using marker data of the first five
seconds before exercise begins, when participants were asked to stand still on both feet.
The displacement vectors were computed as follows:

rS3 = Pankle − Ptibia (3.21)

r3 = Pankle − Pknee (3.22)

rS4 = Pknee − Pthigh (3.23)

r4 = Pknee − Phip (3.24)

rS7 = Pback − Phip (3.25)

where Pankle,Pknee, and Phip refer to joint center position vectors and Ptibia,Pthigh,
and Pback refer to IMU position vectors obtained from markers.

Pankle and Pknee were calculated by computing the average of their medial and lateral
markers.

Ptibia and Pthigh were obtained by computing the average of their corresponding three
markers. The Pback was obtained from the marker attached to the back sensor.

For Phip estimation, Harrington et al.’s method [37] was applied, which estimates the
hip center location based on leg length (LL), pelvic depth (PD) and pelvic width (PW),
shown in Figure 3.7. According to Harrington, LL is the distance from the right ASIS
marker to the right medial ankle marker (averaged over first 5 seconds). In this study, all
subjects were right legged so all figures and calculations are described for the right leg.

LL = |PRASIS − PRMA| (3.26)

PD = |(PRASIS + PLASIS)/2− (PRPSIS + PLPSIS)/2| (3.27)

PW = |PRASIS − PLASIS| (3.28)

Where, PRMA refers to the right medial ankle marker position vector. PRASIS and
PLASIS refer to right and left ASIS marker position vectors, and PRPSIS and PLPSIS

38



refer to right and left PSIS marker position vectors, respectively. Thigh and shank link
lengths were defined as the norm of r4 and r3 vectors, respectively (Figure 3.1). Hip link
length was defined as the length of the X component of the rS7 vector.

Figure 3.7: PD and PW calculation from markers

The calculated r vectors, orientation compensated sensor readings, and DH link lengths
were then used in the pose estimation algorithm to recover the hip, knee, and ankle joint
angles.

3.6 Pose Estimation Results

Table 3.1 reports RMS errors between MOCAP and joint angles estimated by the algo-
rithm. To produce these results, all required parameters including displacement vectors
and link lengths as well as thigh and tibia sensor orientations were extracted from mark-
ers. The only concern was that the back sensor orientation was unknown. We developed
a calibration protocol to retrieve sensor orientations from gyro data which is explained in
Section 4.4, this approach was used for the back sensor orientation. Figure 3.8 summarizes
the workflow of the pose estimation algorithm used to generate the results shown in Table
3.1.

The joint angle estimates for the participant with the smallest error (subject 1) and
largest error (subject 7) are depicted in Figures 3.9 to 3.14. Other participants’ joint angle
estimates can be found in Appendix A.
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Figure 3.8: Pose estimation algorithm overview
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Table 3.1: RMS error between IMU and Mocap when kinematic parameters and tibia
and thigh sensor orientations are extracted from markers and back sensor orientation is
obtained from the calibration protocol developed in Section 4.4

RMS error between Mocap and IMU-based estimated joint angles (degree)

Subject
Ankle
IR/Er

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Average
Error

1 2.6 1.3 3.2 4 5.5 2.1 3.3 3.1
2 2.4 2.4 3.9 4.8 14.3 3.1 2.5 4.8
3 1.6 2.4 4.9 5.7 11.9 5.1 4.6 5.2
4 3.8 1.4 5.2 7.5 15.3 3.7 6.3 6.2
5 5.2 4.4 2.3 4.8 9.4 5 5.5 5.2
6 5.1 1.7 3.5 3.6 6.5 8.4 6.4 5
7 2.6 2.5 4.2 8.3 13.5 3.9 10.2 6.4

Average 3.3 2.3 3.9 5.5 10.9 4.5 5.5 5.1
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Figure 3.9: Subject 1 ankle joint angles RMS error using marker-derived values for tibia
and thigh sensors orientation as well as displacement vectors
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Figure 3.10: Subject 1 knee joint angle RMS error using marker-derived values for tibia
and thigh sensors orientation as well as displacement vectors
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Figure 3.11: Subject 1 hip joint angles RMS error using marker-derived values for tibia and
thigh sensors orientation as well as displacement vectors. Back sensor orientation obtained
from calibration protocol developed in Section 4.4

44



Figure 3.12: Subject 7 ankle joint angles RMS error using marker-derived values for tibia
and thigh sensors orientation as well as displacement vectors
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Figure 3.13: Subject 7 knee joint angle RMS error using marker-derived values for tibia
and thigh sensors orientation as well as displacement vectors
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Figure 3.14: Subject 7 hip joint angles RMS error using marker-derived values for tibia and
thigh sensors orientation as well as displacement vectors. Back sensor orientation obtained
from calibration protocol developed in 4.4
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Table 3.1 shows the results obtained when subject-specific optimal parameters were
used for EKF noise statistics. In field application of the method, however, these optimal
values are not available for each subject. Therefore, an approximate value should be used
for these parameters. This will impact accuracy of the pose estimation. To examine the
effect, we have averaged over the optimal parameters found for all subjects and used the
same average value for all of them. Table 3.2 shows the estimated joint angle errors for
this condition.

Table 3.2: RMS error between IMU and Mocap when the EKF noise parameter statistics
are set to a fixed same value equal to average of optimal values of all subjects

RMS error between Mocap and IMU-based estimated joint angles (degree)

Subject
Ankle
IR/Er

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Average
Error

1 2.5 1.3 2.2 5.5 6.8 1.8 7.4 3.9
2 2.3 2.5 3.8 4.9 14.3 4.4 6.1 5.5
3 1.5 2.4 4.9 5.9 11.6 5.4 4.7 5.2
4 3.9 1.7 5.2 8.2 13.9 7.5 16.7 8.1
5 5.4 4 2.7 4.7 8.4 8 9.6 6.1
6 4.5 2.1 3.6 3.3 7.2 9.8 10.1 5.8
7 2.6 2.6 4.2 8 13.4 7.3 13.9 7.4

Average 3.2 2.4 3.8 5.8 10.8 6.3 9.8 6

In Section 3.2.2 we argued that 3-EKF implementation results were better than 1-EKF
implementation results. Table 3.3 compares the results of pose estimation for subject 1
using both implementations. In order for the comparison to be fair, both methods were
tuned separately and method-specific optimal noise parameter values were utilized. The
results show almost the same error in all joint angles except IR angles. It can be observed
from Figure 3.15 that despite using a hip virtual yaw sensor, the large observed error in
IR angles in 1-EKF implementation is due to drift. The drift in the hip and ankle is
enabled due to the redundancy of the 7 DOF model and the fact that these two angles are
indeterminate when the leg is straight (i.e., when the leg is in a singular configuration).
Since the hip IR/ER and ankle IR/ER are drifting in opposite directions, it may be possible
that if we add another virtual yaw sensor to the ankle, the error will reduce. However, the
virtual yaw sensor may suppress internal rotations which are real and not due to drift as
well. Also it adds one more parameter to be tuned in the EKF. The 3-EKF configuration
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achieves driftless results for the same subject (Figures 3.9, 3.11), so it is preferable.

Table 3.3: RMS error between IMU and Mocap for Subject 1 compared between 1-EKF
and 3-EKF implementations

RMS error between Mocap and IMU-based estimated joint angles (degree)

Method
Ankle
IR/Er

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Average
Error

3-EKF 2.5 1.3 2.2 5.5 6.8 1.8 7.4 3.9
1-EKF 17.8 1.3 1.4 5.9 6.8 2.7 20.2 8

49



Figure 3.15: Subject 1 hip and ankle IR joint angle estimation with 1-EKF implementation
of the algorithm

3.7 Discussion

Table 3.1 shows successful extraction of joint angles. The average estimated errors for the
ankle, knee and hip joints of seven participants compared to optical measurement and using
marker-extracted kinematic model parameters are 3.2◦, 5.5◦, and 7◦, respectively. The total
estimated error averaged over all subjects and all angles is 5.1◦, which is comparable to
similar IMU-based pose estimation studies [81], [24], [27].

These results were based on using subject-specific optimal EKF noise parameters. How-
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ever, Table 3.2 shows that if the same fixed value obtained by taking the average of all
subjects’ optimal values for each parameter was used instead, the error increase is 1◦ which
is still promising. Comparing the results of Table 3.1 to Table 3.2 shows that the hip IR
joint angle is most affected by the change in the filter noise parameters, which was expected
as it is the last parameter in the kinematic chain and its error cannot be compensated by
the accelerometer.

The reason for achieving better results for the the 3-EKF structure is that the 7 DOF
model is a kinematically redundant structure, and that the SLS motion occurs near the leg
singularity. In the singular configuration (when the leg is fully extended), motion in the
hip and ankle IR joints is aligned and drift can occur in opposing directions. By separating
the hip and ankle models, this source of error is removed. A second cause of error can be
due to the fact the 7 DOF model has a much larger parameter space, requiring longer for
optimization and introducing the possibility of more local minima. IR angle estimation
is more sensitive to poor process noise selection because its estimation is based on model
states and gyro readings. For other states, there is corrective information available from
the accelerometer which improves the results.

Comparing initial values of the filter parameters with the average of optimum values
over all subjects (reported in Table 3.4) showed that the optimal values of β2 > β1 and
α3 > α2 > α1 but the order of magnitude for the γ parameters was not the same as the
initial setting. The obtained order is: γ7 (hip IR) > γ2 (ankle Add) > γ4 (knee F lex) >
γ5 (hip F lex) > γ6 (hip Add) > γ1 (ankle IR) > γ3 (ankle F lex). We expected to see
the largest coefficients for the flexion angles (γ3, γ4, γ5) and the smallest ones for the IR
angles (γ1, γ7) and set the initial parameters to reflect that. However, the optimal ankle
flexion coefficient was lower, while the hip IR coefficient was higher than our a priori
initialization. For the hip IR, we hypothesize that model uncertainty was increased due to
the distality of the hip IR from the base of the kinematic chain as well as due to the hip
center approximation, which resulted in a large value of the process noise model for γ7.
Ankle Flex/IR were more reliable than all other angle estimates because of the proximity
to the base frame.
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Table 3.4: Optimal values obtained for EKF noise statistics averaged over all subjects

Optimal values obtained for EKF noise statistics averaged over all subjects
Gyro Accel VirYaw q q̇ q̈

β1 β2 β3 α1 α2 α3

18.6± 5.1 69.5± 3.8 46.9± 4.5 0 0.001 78.7± 0.6

ankle
IR

ankle
Add

ankle
Flex

knee
Flex

hip
Flex

hip
Add

hip
IR

γ1 γ2 γ3 γ4 γ5 γ6 γ7

6.4± 6 13.1± 5.4 0.5± 0.2 10.8± 5 9.1± 8.8 8.8± 5.1 28.7± 0.8
α1 and α2 always hit the lowest boundary so they were set to low fixed values

The highest errors in our algorithm correspond to hip joint angles and particularly
hip flexion. Looking into hip Flex/Add estimates of all subjects (Appendix A) reveals
that a big portion of this error is due to a fixed offset. The main reason for this offset is
the inaccurate extraction of sensor orientation on the body. The exact estimation of back
sensor orientation from markers was not possible. Although the estimated orientation from
the calibration protocol helps in improving the hip joint angle estimations, it is not yet
as accurate as marker-derived orientation. Moreover, since the hip center location is not
directly measurable, approximation of the hip center based on other estimated parameters
such as the pelvic depth, width and leg length also contributes to decreased accuracy.

In general, estimated flexion angle errors are higher because the motion is mainly
performed in the sagittal plane and flexion angles have the biggest ROM in SLS. Also knee
flexion has higher error than ankle flexion because of bigger ROM.

Currently available tools limit clinicians to passive ROM measurements. Reliability
of goniometric ROM depends on the joint and type of motion [65]. Due to the subjec-
tive nature of visual assessment or goniometry, reliability of the measurements or visual
assessments is an issue [65].

The proposed method in this study offers significant benefits to clinicians as it provides
objective and therefore reliable pose measurements during dynamic movements. This en-
ables not only estimation of ROM but also maximal flexion and extension associated with
that ROM as well as information about velocity and acceleration.

Reported mean errors of visuial assessment in Rachkidi et al. are up to 6◦ for hip
Add/rotation angles and up to 3◦ in flexion angles. Edwards et al. [26] have reported
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visual knee flexion error of 5◦. Allington et al. [8] also reported 5◦ ± 5 error for ankle
Flex/Ext visual assessment. Our results show 3.9◦± 1 for ankle Flex/Ext, 5◦± 2.3 for hip
Add/IR and 5.5◦ ± 1.8 and 10.9◦ ± 3.9 for knee and hip flexions, respectively. This ankle
error is better than visual assessment, knee flex and hip Add/IR error is almost the same
but hip Flex is higher than the reported values for human visual assessment capabilities.
Considering the fact that the comparison is made between passive clinical ROM reports
and active pose value measurements, the achieved results are promising.

Moreover, examining the flexion errors particularly hip error, revealed that most of the
error is related to a fixed offset (see Appendix A). This means that if an absolute joint
angle value is not required but range of motion is desired (which is the case in many clinical
applications), a more accurate estimation for ROM may be attainable with our method.

3.8 Summary

In this chapter, an IMU-based pose estimation algorithm was developed. The proposed
approach addresses many common issues related to IMUs including drift removal, esti-
mation of joint angles in all directions, compensation for sensor misorientation and direct
extraction of joint angles.

To achieve the above mentioned objectives, we combined kinematic chain modelling
with an Extended Kalman Filter. The Kinematic model helps to estimate 3 dimensional
and physically realizable joint angles as well as reducing the drift. EKF also improves
accuracy by filtering sensor measurements. By defining joint angles, velocities and acceler-
ations as EKF states, we can estimate these parameters directly. For better drift removal
from hip internal rotation, a virtual yaw sensor with zero measurement was added to the
observation vector. To address sensor to segment alignment, three markers were placed on
tibia and thigh sensors and exact sensor orientations were extracted from these markers.

One of the limitations of the proposed method is that the EKF includes parameters
such as the process and measurement noise covariances, which need to be carefully selected.
Process noise reflects model inaccuracies such as the constant acceleration assumption,
while the measurement noise reflects measurement inaccuracies. Poor selection of these
values will result in inaccurate estimations. These parameters were initialized using apriori
knowledge of the motion and further tuned by optimization.

Another limitation is that the location of each IMU on the link (displacement vector)
needs to be determined for the pose estimation algorithm. The same is true for sensor ori-
entations on the body. When marker data is available, the displacement vectors and sensor
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orientations can be obtained from the marker data, as explained in this chapter. However,
when marker data is not available, as would be the case in clinical use, translations and
orientations have to be identified using manual measurements and calibration procedures.
This limitation is addressed in the next chapter.
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Chapter 4

Sensitivity Analysis

Clinicians usually have a busy appointment schedule, which does not allow time for ex-
tensive sensor calibration or accurate measurement of the required parameters for pose
estimation (e.g sensor orientations and segment lengths) for each individual. One solution
is to only measure those parameters whose variation affects the pose estimation accuracy
the most and to use anthropometric data (e.g., [60], [31]) for less sensitive parameters.
Therefore, a sensitivity analysis is required to identify the most sensitive parameters influ-
encing the accuracy of pose estimation.

While several studies have mentioned the importance of sensor positioning and sug-
gested methods for more accurate estimation of the sensor orientation [28], [78], [54], very
few studies have quantified the sensitivity of pose estimation to sensor misplacement [85],
[52]. Even in these studies, the main focus was pose estimation; sensitivity analysis was
done for limited scenarios as a subsidiary part.

In this chapter, the sensitivity of pose estimation to the variations resulting from inac-
curate sensor placement is quantified, and a practical protocol for estimating the sensitive
parameters in clinical settings is proposed.

Before performing sensitivity analysis, a list of parameters for which sensitivity needs
to be measured has to be identified. These parameters include those needed for the for-
ward kinematic model, including the displacement vectors (r3, rS3, r4, rS4, rS7), link lengths
(Lshank, Lthigh, Lhip), and sensor orientations. If marker data is available, displacement vec-
tor elements can be obtained directly. However, in clinical applications the marker data is
not available. Therefore, an alternative method is needed to approximate these quantities.
For this reason, auxiliary parameters such as the pelvic width, depth, leg length, or leg
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circumference are needed. Therefore, the list of parameters required is first identified in
this chapter, and subsequently sensitivity analysis is applied.

4.1 Kinematic Model Parameter Approximation

Since the IMU-based pose estimation algorithm is to be applied in the absence of marker
information, an estimation method for the sensor orientation, displacement vectors, and
kinematic link lengths has to be defined.

4.1.1 Approximating the Displacement Vectors

To obtain displacement vectors and kinematic link lengths, one approach could be manual
measurement of vector elements, which is time consuming and may be dependent on clin-
ician expertise. An alternative approach is to make assumptions about sensor positions
and replace these measures by an average value from available anthropometric tables.

If we assume that sensors are placed exactly in the middle of the shank and thigh
and that the knee and ankle centers are aligned, then the X, Y, Z components of the
displacement vectors with respect to the sensor frame can be approximated according to
Table 4.1. In addition, if the leg is assumed to have a conical or cylindrical shape, the Y
component of rS3 and rS4 would be equal to the radius of the leg at the sensor location.
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V ector X Y Z

rS3 −(Lshank − LT ib2knee) −rshank = −(CTib

2π
) 0

r3 −Lshank 0 0

rS4 −LThi2knee −rthigh = −(CThi

2π
) 0

r4 −Lthigh 0 0
Lshank : Shank length
Lthigh : Thigh length
rshank : Shank radius at tibia sensor location
CT ib : Shank circumference at tibia sensor location
CThi : Thigh circumference at tibia sensor location
rthigh : Thigh radius at thigh sensor location
LT ib2knee : V ertical distance from middle of the tibia sensor to the knee center
LThi2knee : V ertical distance from middle of the thigh sensor to the knee center

Table 4.1: Sensor displacement vectors approximated based on thigh and shank lengths,
sensor vertical distance to previous joint center and leg radius at sensor location.

LTib2knee and LThi2knee distances have to be specified during sensor placement but have
a fixed value for all subjects.

The rS7 vector can be estimated as the summation of V 1 and V 2 vectors as depicted
in Figure 4.1. The Harrington method [37] gives the vector V 2, for which LL, PD, and
PW need to be measured.
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Figure 4.1: The rS7 vector can be estimated as the summation of vectors V 1 and V 2
where V 2 is estimable using PD, PW and LL. V 1 is assumed to have only Y component
equal to PD.

Given that the back sensor is placed at the midpoint between the right and left ASIS,
the Z and X components of V 1 are assumed to be zero and the Y component is equal
to PD with negative sign (according to the back sensor frame shown in the figure), fully
defining V 1.

Using the above mentioned assumptions, the required measurements are: LL, PD,
PW, shank length, thigh length, tibia and thigh circumference at sensor locations (CT ib,
CThi), and the tibia and thigh sensor distances to the knee (LT ib2Knee, LThi2Knee). These
parameters are shown in Figure 4.2.
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Figure 4.2: Required parameters for pose estimation including PW, PD, LL, shank length,
thigh length, tibia and thigh circumference at sensor locations (CT ib, CThi), and the tibia
and thigh sensor distances to the knee (LT ib2Knee, LThi2Knee).

To avoid manual measurement of these values, the pelvic width, shank and thigh
lengths were estimated as a fraction of participant height following Winter et al.[95] (Fig-
ure 4.3). The circumference of the thigh and tibia at sensor locations were estimated as
the “MidThigh Circumference” and “Maximal Calf Circumference” values from McDowell
et al. [60]. For the four remaining values, the average value of all participants was used
for analysis.
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Figure 4.3: Body segment lengths expressed as fraction of body height (H)[95]

4.1.2 IMU Orientations

We assume that the back and thigh sensors are perfectly aligned with the sagittal plane.
However; since the tibia sensor is placed on the flat part of the tibia, it has a significant
offset angle from the frontal plane about the X axis which cannot be neglected. We assume
that it is a fixed value for all participants and set it to −45◦ which is the roll angle value
we obtained from marker data averaged over all subjects. Therefore, in the absence of
marker data, we only compensate for the tibia sensor roll rotation and assume that the
other possible misorientations can be neglected.
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4.2 Pose Estimation using Approximated Parameters

Table 4.2 shows the RMS error for the pose estimation when approximated values described
in Section 4.1 are used in the pose estimation algorithm. Referring to Figure 3.8, we have
removed the marker information block as well as the calibration block and approximated
the kinematic model lengths, and the sensor displacement vectors, and orientations instead.

Table 4.2: RMS error between IMU and Mocap when kinematic parameters are approx-
imated from anthropometric tables and only tibia sensor orientation is compensated for
using a fixed shift angle

RMS error between Mocap and IMU-based estimated joint angles (degree)

Subject
Ankle
IR/Er

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Average
Error

1 2.9 1 10.1 11.9 29.1 7 7.8 10
2 3.2 2.3 6.9 17.1 11.6 5.5 7.3 7.7
3 1.8 1.5 3.8 7.9 16.4 4.8 5.1 5.9
4 5.9 8.7 2.4 12.5 7 10.9 17.6 9.3
5 6.6 7.8 16 9.3 12.5 12.1 6.2 10.1
6 10 12.8 4.3 18.8 6 8.2 9.1 9.9
7 4.4 10.8 3.8 12.3 4.7 9.5 10.9 8.1

Average 5 6.4 6.8 12.8 12.5 8.3 9.2 8.7

Joint angle estimates for participants 1 and 7 are depicted in Figures 4.4 to 4.9. These
can be compared to the performance when using marker-measured parameters for the same
participants depicted in Figures 3.9 to 3.14.
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Figure 4.4: Subject 1 ankle joint angles RMS error using approximated values for tibia
sensor orientation, kinematic link lengths as well as displacement vectors
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Figure 4.5: Subject 1 knee joint angle RMS error using approximated values for tibia sensor
orientation, kinematic link lengths as well as displacement vectors
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Figure 4.6: Subject 1 hip joint angles RMS error using approximated values for tibia sensor
orientation, kinematic link lengths as well as displacement vectors
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Figure 4.7: Subject 7 ankle joint angles RMS error using approximated values for tibia
sensor orientation, kinematic link lengths as well as displacement vectors
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Figure 4.8: Subject 7 knee joint angle RMS error using approximated values for tibia sensor
orientation, kinematic link lengths as well as displacement vectors
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Figure 4.9: Subject 7 hip joint angles RMS error using approximated values for tibia sensor
orientation, kinematic link lengths as well as displacement vectors
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Comparing Table 4.2 to Table 3.1, the results show increased error in all joint angle
estimates when using approximated values, as expected. The most affected angle is knee
Flex/Ext, with a 7.3◦ increase in error, while the ankle IR/ER and hip Flex/Ext are less
affected, with 1.7◦ and 1.6◦ increase, respectively. The overall increase in error, averaged
over all joints and all subjects is 3.6◦.

4.3 Sensitivity Analysis

To find out how pose estimation is impacted by variations in the kinematic parameters
and sensor alignment, a sensitivity analysis is performed. The needed parameters for the
forward kinematics (described in Table 4.1 and Section 4.1.2 and depicted in Figure 4.2)
include :

LT ib2Knee, CT ib, ZrS3
: describing rS3

Lshank, Yr3 , Zr3 : describing r3

LThi2Knee, CThi, ZrS4
: describing rS4

Lthigh, Yr4 , Zr4 : describing r4

PW, PD, LL : describing rS7

Roll-tibia, P itch-tibia, Y aw-tibia : describing tibia sensor orientation

Roll-thigh, P itch-thigh, Y aw-thigh : describing thigh sensor orientation

Roll-back, P itch-back, Y aw-back : describing back sensor orientation

There are a total of 24 parameters, which can be obtained from marker data if available,
or must be approximated. The set of parameters obtained from markers are called Pm1.
These parameters were changed one-by-one by ±5% of their nominal value and used to
calculate the one-at-the time sensitivity analysis [36].

Sensitivity analysis is performed based on the resulting joint angle errors of the IMU-
based method described in Chapter 3 using Pm1 and Pm2 and according to the following
formula:

Sensitivity = 100×

∣∣∣∣∣∣∣∣∣
Err2−Err1

Err1
Pm2−Pm1

Pm1

∣∣∣∣∣∣∣∣∣ (4.1)
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Pm1 are the accurate parameter values obtained from markers, Pm2 are the modified
parameter values equal to Pm1±5%, Err1 is the error between Motion Capture and IMU-
based joint angle estimates when Pm1 values are used in the forward kinematic model,
and Err2 is the error between the Mocap and IMU joint angle estimates when Pm2 values
are used in the forward kinematic model.

4.3.1 Results

Sensitivity analysis was performed for both increasing the parameters by 5% and decreasing
them by 5%. Tables 4.3 and 4.4 show the sensitivity of the pose estimation accuracy to each
of the defined parameters averaged for both decrease and increase and over all subjects for
the ankle, knee, and hip joints.
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Table 4.3: Sensitivity analysis results for the ankle and knee joints

Sensitivity %

Parameter
Ankle
IR/ER

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Ankle
Average

LT ib2Knee 3.4 15.1 5.8 3.1 8.3
CT ib 2.9 2.5 2.8 2.3 2.7
Zr3S 6.1 10 1.1 1 5.7
Lshank 10.7 43.6 16.3 9.5 23.5
Yr3 0 0 0 1.4 0
Zr3 0 0 0 0.1 0
LThi2Knee 0 0 0 8.5 0
CThi 0 0 0 4.4 0
Zr4S 0 0 0 0.1 0
Lthigh 0 0 0 0 0
Yr4 0 0 0 0 0
Zr4 0 0 0 0 0
PW 0 0 0 0 0
PD 0 0 0 0 0
LL 0 0 0 0 0
Roll-tib 47.7 309.5 28.5 38.9 128.6
Pitch-tib 24.6 107.8 2.2 3.7 44.9
Y aw-tib 4 1.3 113.5 51.4 39.6
Roll-thi 0 0 0 8.3 0
Pitch-thi 0 0 0 1.6 0
Y aw-thi 0 0 0 67.5 0
Roll-bac 0 0 0 0 0
Pitch-bac 0 0 0 0 0
Y aw-bac 0 0 0 0 0
Average 4.2 20.4 7.1 8.4

70



Table 4.4: Sensitivity analysis results for the hip joint

Sensitivity %

Parameter
Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Hip
Average

LT ib2Knee 2.7 12.9 30.8 15.5
CT ib 0.8 13.4 21.2 11.8
Zr3S 1.8 7.8 10.6 6.7
Lshank 2.3 22.8 37.9 21
Yr3 0.6 3.8 9 4.5
Zr3 0.7 2.7 3.7 2.4
LThi2Knee 4.2 18.1 50.6 24.3
CThi 4.1 4.2 8.3 5.5
Zr4S 0.2 2.9 2.5 1.9
Lthigh 12.3 14.1 28.7 18.4
Yr4 0.3 0.9 2 1.1
Zr4 0.2 1.1 2.2 1.2
PW 1.5 5.6 20.6 9.2
PD 3.5 18.1 30.4 17.3
LL 1.1 5.4 4.9 3.8
Roll-tib 7.7 167.5 55.8 77
Pitch-tib 1.2 44.8 12.3 19.4
Y aw-tib 1.2 3.1 3.3 2.5
Roll-thi 7.6 7.9 13.5 9.6
Pitch-thi 0.8 0.2 1 0.7
Y aw-thi 89.4 2.5 7.6 33.2
Roll-bac 92.5 33.4 26.6 50.8
Pitch-bac 6.3 36.5 4.7 15.9
Y aw-bac 1.8 23.4 5.5 10.2
Average 10.2 18.9 16.4

4.3.2 Discussion

According to Tables 4.3 and 4.4, the most sensitive parameters for ankle joint estimation
are the tibia sensor orientation parameters, specially the tibia roll angle. The most sensitive
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joints include the hip and ankle Abd/Add as well as the hip IR/ER.

Knee joint angle estimation is sensitive to the tibia sensor roll and yaw angles as well
as the thigh sensor yaw angle.

The most sensitive parameters for the hip joint are the tibia and back sensor roll angles
as well as the thigh sensor yaw angle. Hip joints, especially hip IR/ER, are sensitive to
more parameters because they are the last joints in the kinematic chain. This analysis also
reveals that approximations using the population-average leg circumference and assuming
alignment between joint centers will not impact the estimation results considerably.

By using the 3-EKF structure, as can be seen in Table 4.3, the ankle joints are not
sensitive to any parameter beyond the tibia sensor in the kinematic chain and the knee
joint is not sensitive to any parameter beyond the thigh sensor. This may partly explain
the better joint angle estimation using 3-EKF structure compared to 1-EKF structure.

In addition, an explanation for the obtained order of magnitude for the optimal values of
the EKF noise parameters reported in Section 3.7 can be provided based on the sensitivity
analysis results. By looking to the optimal parameters obtained for each subject, we
found that for majority of them γ7, γ6, γ2 have the highest values and γ1, γ5, γ3 have the
lowest values. This pattern is similar to the sensitivity of the corresponding joint angles.
According to Table 4.4, ankle Add, hip Add, and hip IR are the most sensitive ones while
ankle IR and ankle Flex are the least sensitive ones.

In general, the sensitivity analysis results suggest that having a good estimation of the
sensors’ orientation can improve joint angle estimation results considerably. If hip IR/ER
angle is of high interest then other measures such as the distance between the knee center
and the tibia and thigh sensors, shank and thigh lengths and PD should also be carefully
measured.

4.4 IMU Orientation Estimation Calibration Proto-

col

According to the sensitivity analysis results, knowing the exact sensor orientation on the
body is a key factor for accurate pose estimation. We would like to extract full sensor
orientations without requiring patients/subjects to perform any calibration movement or
posture.

For short duration movements, orientation can be estimated by gyro measurement
integration. Sensor orientations can therefore be retrieved from gyro data under specific
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considerations for sensor placement. For this purpose, a protocol for sensor placement was
developed as follows:

1. All sensors were placed on the table in the same known orientation (Figure 4.10-
right).

2. Sensor locations were marked on the thigh and tibia using a double sided tape at-
tached to the desired sensor location.

3. The outer side of the tape was removed and the participant was asked to stand still
in a defined frontal orientation with respect to the table as depicted in Figure 4.10.

4. Data collection was started and sensors were moved to the defined locations one by
one (Figure 4.10-left).

5. After a few seconds at the final position, data collection was stopped. This process
took less than one minute which is reasonable to avoid gyro drift.

Figure 4.10: Different steps of performing the calibration protocol

Please note that the calibration protocol does not require any marker information.
However, since the participant was going to perform the SLS task in the Mocap Lab, there
are markers on the body and sensors in Figure 4.10. These are used only for ground truth
data collection and are not required during clinical use.
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In the next step, the Rodriguez method [75] was applied to gyroscope data to calculate
rotation matrices from the start to the final position for each sensor according to Equations
4.3 to 4.5. RB 0(t) is the rotation matrix between the initial position on the table and the
sensor at time t. To get the final orientation, we averaged the last 200 samples which is
equal to the last second of data collection when all sensors were in their assigned position
on the body.

ω(t) =
√
ωx(t)2 + ωy(t)2 + ωz(t)2 (4.2)

S(t) =

 0 −ωz(t)/ω(t) ωy(t)/ω(t)
ωz(t)/ω(t) 0 −ωx(t)/ω(t)
−ωy(t)/ω(t) ωx(t)/ω(t) 0

 (4.3)

RB 0(t+ 1) = S(t)sin(ω(t)δt) + (S(t))2(1− cos(ω(t)δt)) + I (4.4)

RB 0(t) = RB 0(t− 1) RB 0(t+ 1) (4.5)

Where ωx(t), ωy(t), ωz(t) refer to X, Y, Z components of the angular velocity at time
t, respectively. ω is the magnitude of angular velocity. S and I are the skew-symmetric
and identity matrices, and δt is the sampling interval.

When the tibia and thigh sensors were to be placed in the desired orientation as depicted
in Figure 3.1-left, it was only necessary to rotate them +90◦ about the Z axis (+90 yaw
rotation) which was equal to RD 0(tibia, thigh) in Equation 4.6 (rotation matrix from initial
position to the desired position). For the back sensor; however, two rotations were needed
from the table to the desired back position: a −90◦ rotation about Y followed by −90◦

rotation about X which is equal to RD 0(back) in Equation 4.7.

RD 0(tibia, thigh) =

 0 1 0
−1 0 0
0 0 1

 (4.6)

RD 0(back) =

0 0 1
1 0 0
0 1 0

 (4.7)

Any difference between the ideal rotation matrices and those obtained from the gyro
integration procedure described above is as a result of sensor offset. Therefore, by obtaining

74



this offset as a rotation matrix and applying it to sensor readings, we are able to compensate
for the offsets from the ideal position. This offset matrix is shown in Equation 4.8 where
RB 0

T
is the transpose of RB 0.

RD B(offset) = RD 0 RB 0

T
(4.8)

4.5 Joint Angle Estimation Results After Applying

Calibration

Table 4.5 shows the RMS error of pose estimation when approximated values are used for
displacement vectors and sensor orientations are extracted from the calibration protocol.
Comparing the results with Section 4.2 reveals significant improvement in accuracy for
ankle and hip Add/Abd angles (2.8◦ and 3◦) and knee flexion angle (6.5◦). The results
have improved for all subjects and the overall improvement is 2.5◦. Joint angles for subjects
1 and 7 are depicted in Figures 4.11 to 4.16.

Table 4.5: RMS error between IMU and Mocap when kinematic parameters are extracted
from markers and sensor orientations are obtained from the developed calibration protocol

RMS error between Mocap and IMU-based estimated joint angles (degree)

Subject
Ankle
IR/Er

Ankle
Abd/Add

Ankle
Flex/Ext

Knee
Flex/Ext

Hip
Flex/Ext

Hip
Abd/Add

Hip
IR/ER

Average
Error

1 2 4.3 3.4 3.6 4.6 3.5 3.2 3.5
2 2.4 3.1 4.6 5.4 16 4.6 6.7 6.1
3 1.8 1.8 3.7 12.6 16 3.2 5.7 6.4
4 5.1 5.9 4.3 7.8 13.5 7.8 12.5 8.1
5 5.4 3 4.6 3 11.5 5.3 8 5.8
6 6.4 3.1 9.7 5.3 5.1 7.3 9 6.6
7 3.7 3.8 5.1 6.6 14.2 5.3 10.6 7

Average 3.8 3.6 5.1 6.3 11.6 5.3 8 6.2
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Figure 4.11: Subject 1 ankle joint angles RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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Figure 4.12: Subject 1 knee joint angle RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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Figure 4.13: Subject 1 hip joint angles RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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Figure 4.14: Subject 7 ankle joint angles RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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Figure 4.15: Subject 7 knee joint angle RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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Figure 4.16: Subject 7 hip joint angles RMS error using approximated values for displace-
ment vectors and estimated sensors’ orientations from the developed calibration protocol
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4.6 Soft Tissue Artifacts

To investigate the influence of soft tissue artifacts on the pose estimation, joint angles were
calculated by applying inverse kinematics (IK) to the marker positions using the algorithm
developed by Joukov [45]. In addition to the knee, ankle and hip joints, two 6 DOF joints
including three prismatic and three revolute joints were defined at the tibia and thigh
sensor locations and a 3 DOF prismatic joint was assigned to the back sensor in the IK
model (shown in Figure 4.17), which enabled us to measure sensor movements with respect
to their initial location during the SLS performance. Any movement in these additional
joints corresponds to sensor motion relative to the skeleton due to soft tissue artifacts.

Figure 4.17: Kinematic model of the skeleton developed by [45]. 6 DOF joints are defined
at the tibia and thigh sensor locations.

The movement of the tibia/thigh sensor included the displacement in X, Y, Z directions
with respect to the skeletal frame for prismatic joints, and roll, pitch, and yaw for the revo-
lute joints. Since ankle joint angles’ estimates are based on tibia sensor measurements only,
if there was any error introduced by tibia sensor motion, we expected to see a correlation
between ankle joint angle errors and tibia sensor motion. For this reason, we analyzed
the correlation between the obtained movements of the tibia sensor and the RMS error
of each ankle joint during the whole period of the motion. Similarly, the knee joint angle
estimate is based on thigh sensor measures and previously estimated ankle joint angles.
Therefore, thigh sensor motion should be observed primarily in the knee joint angle error.
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We also analyzed the correlation between the obtained movements of the thigh sensor and
the RMS error of the knee joint angle. Similarly, the correlation between the back sensor
displacement and each of the hip joint angles was analyzed. The results, however, revealed
no significant correlation between the joint angle estimation errors and sensor motion for
the collected data.

We hypothesise that sensor motion artifact may have been partially compensated for
through the measurement noise covariance of the EKF, illustrating another potential ben-
efit of EKF-based methods.

4.7 Summary

In this chapter, approximation methods for kinematic chain parameters required for pose
estimation were proposed. Approximations relied on body geometry, anthropometric in-
formation and use of average fixed values for measures which were not available through
anthropometric tables.

Next, those parameters whose variation contributed to the joint angle error the most
was identified through sensitivity analysis.

Finally, a fast and simple calibration protocol based on gyro data was proposed to
extract sensor orientations on the body, and it was shown that the protocol results in
improved pose estimation while it does not demand any specific calibration posture or
movement from the participant.

A correlation analysis was also performed to determine if there is any relationship
between sensor motion artifacts and joint angle errors. The results showed no significant
correlation for the collected dataset.

The main objective of the pose estimation in this study was to use the estimated
pose for the SLS motion analysis in order to detect faulty movement patterns. In the
next chapter, we will use the developed pose estimation algorithm to measure pose during
the performance of SLS and apply feature selection and classification techniques to the
estimated pose data for DKV detection as well as risk of injury evaluation.
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Chapter 5

Automated DKV and Risk of Injury
Assessment

To develop an automated assessment method for SLS, the developed IMU-based pose
estimation algorithm was applied to new participants while participants, both in the Motion
Capture Studio and in the field, were performing the SLS test. The estimated hip, knee,
and ankle joint position, velocity and acceleration was then used for assessment of squat
quality using the feature selection and classification techniques which will be elaborated in
this chapter.

The automated assessment method was first developed for a pilot data set. After
successful initial results with the pilot study, a larger dataset was collected and labelled
by our clinical collaborator and used for analysis.

In this chapter, we will first explain the methodology, then describe experiments and
results of both pilot study as well as clinical study.

5.1 Methodology

The IMU-based pose estimation was applied to a labelled SLS dataset. Time domain
features were extracted from segmented pose data; the most informative features were
selected via feature selection, and classifiers were trained to classify squat quality based on
the amount of observed DKV as well as overall risk of injury. Figure 5.1 shows the steps
of the automated assessment system. Each step is explained in the following sections.
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Figure 5.1: Overview of the automated assessment system

5.1.1 Pose Estimation

The pose estimation algorithm explained in Chapter 3 was applied to the collected data.
The required set of parameters including tibia and thigh sensors to knee distances (LT ib2Knee
and LThi2Knee), thigh and shank lengths (Lshank, Lthigh), tibia and thigh circumferences
at sensors location (CT ib, CThi), pelvic width and depth and leg length (PW, PD, LL)
were measured manually. It should be noted that, as discussed in Chapter 4, these man-
ual measurements can be omitted and replaced with anthropomorphic values in future
data collection efforts. Sensor orientations were extracted from the calibration protocol
described in Section 4.4.

5.1.2 Segmentation

To extract a single SLS repetition from continuous time series data, the joint angle, veloc-
ity, and acceleration trajectories needed to be segmented before feature extraction. Two
different approaches were applied for the pilot study and clinical data analysis.

Zero Velocity Crossing

The zero velocity crossing criterion [56], shown in Figure 5.4, was used for segmenting the
estimated pose data of the pilot study.
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The knee flexion velocity was chosen for segmentation. A first order Butterworth filter
with a cutoff frequency of 0.3 Hz was applied to the knee joint trajectory prior to segmen-
tation. This filter was applied only for segmentation and not for the subsequent feature
extraction. Every time velocity changed sign (crossed zero), a segment point was reported.
Additional criteria including the minimum interval between subsequent detected segments
and minimum amplitude were applied to remove false segment points.

Figure 5.2: Zero velocity crossing criterion applied to knee joint velocity for detecting the
segment points

Segmenting based on Joint Angle Peaks

Zero velocity crossing is sensitive to near zero fluctuation of the velocity trajectory and
additional criteria were necessary to remove false segment points.

For segmentation of the estimated joint pose for the clinical dataset, a peak detection
method developed by [40] was applied to the knee flexion angle. The knee flexion was chosen
for segmentation because the knee has a large ROM, and its peaks are easily detectable.
A first order Butterworth filter with cutoff frequency of 0.3 Hz was applied to the knee
joint trajectory prior to segmentation. This filter is applied only for segmentation and not
for the subsequent feature extraction. The midpoints between peaks were then calculated
and used as segmenting points as depicted in Figure 5.3. Figure 5.4 shows an example of
segmented joint angles used for feature extraction (without low pass filtering).
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Figure 5.3: Segment points (green arrows) were found by detecting peaks (red arrows) of
low pass filtered knee joint angle and computed the midpoint of the peak to peak distances
(horizontal arrows).

5.1.3 Feature Generation

Various feature extraction methods have been used for human activity recognition [51].
These methods are categorized into time domain or frequency domain methods.

The mean, standard deviation (STD), variance (VAR), interquartile range (IQR), mean
absolute deviation (MAD), correlation between axes, entropy, and kurtosis are among the
time domain features commonly used for activity recognition from the acceleration signal
[51]. Similarly, Preece et al. [72] have identified the mean, median, variance, skewness,
kurtosis and interquartile range as commonly used time domain features.

Common frequency domain methods include Fourier transform (FT) and discrete cosine
transform (DCT)[51].

Due to easier clinical interpretability and better temporal localization, we applied only
time domain feature extraction methods including the root mean square (RMS), STD,
VAR, mean, MAD, skewness, kurtosis, range, minimum, and maximum of the joint angle,
velocity and acceleration of each DOF for each segment of the data. Therefore, for each
repetition of the squat, a feature vector of 210 different features was generated.
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Figure 5.4: An example of segmented joint angles without low pass filtering used for feature
extraction.

5.1.4 Feature Selection/Extraction

We do not know which of the defined features better predicts DKV. Moreover, some fea-
tures might be redundant or irrelevant, which may degrade the classification results. Se-
lecting the most appropriate features not only helps with dimensionality reduction but also

88



suggests the best predictors of DKV to clinicians.

A large number of feature selection techniques are available in the literature, usually
categorized as filter, wrapper or embedded techniques [99]. Filter techniques select rel-
evant features based on statistical tests. Wrapper techniques use the performance of a
predefined learning algorithm as the selection criterion. In embedded techniques, feature
selection occurs in parallel to model learning, so that feature selection is embedded within
a classification model [99].

For this study, we applied 18 different feature selection techniques from all three cat-
egories. Matlab packages available from the Arizona State University [99] repository and
from Pohjalainen et al. [70] were used for implementation.

Wrapper methods included Random Subset Feature Selection, Sequential Forward Se-
lection, and Sequential Floating Forward Selection.

Filter methods were Mutual Information, Statistical Dependency, Correlation based
Feature Selection, Chi-Sqaure, Fast Correlation-Based Filter, Fisher Score, Gini Index,
Information Gain, Kruskal- Wallis, Minimum-Redundancy-Maximum-Relevance selection,
Relief-Feature selection strategy, and T-test.

From embedded techniques, Sparse Multinomial Logistic Regression via Bayesian L1
Regularization, Bayesian logistic regression, and Least Absolute Shrinkage and Selection
Operator (LASSO) were utilized.

Features ranked among the top ten by a majority of the methods are reported as se-
lected features. In addition to subset feature selection, feature extraction using supervised
principal component analysis (SPCA) was also applied. Matlab code developed by Barshan
et al. [13] was used for the SPCA implementation.

5.1.5 Classification

For classification purposes, six different methods were applied: Support Vector Machine
(SVM), Linear Multinomial Logistic Regression (LMLR), Decision Tree (DT), Näıve Bayes
(NB), K Nearest Neighborhood (KNN), and Random Forests.

For the pilot study, a subset of methods including SVM, LMLR, and DT were tried.
All classifiers were implemented using MATLAB R2014b. SVM was selected as it is robust
to small training data size. For 3-class classification, one-versus-all and one-versus-one
SVM with linear kernel were implemented. SVM multi-label results were computed by
majority vote between one-vs-one classification results. The Decision Tree was selected as
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it provides threshold values (cutoff points) in the selected features which can be informative
for clinical interpretation of the classifier.

For the clinical dataset, all six classification techniques were implemented using Matlab
2016a. The results showed that SVM, KNN, and NB always outperform other classifiers
for this dataset. Therefore, in the clinical data analysis, classification results are reported
for these three classifiers only.

5.2 Pilot Study

To develop and initially validate our proposed approach, we first conducted a pilot study.
In the pilot study, the automated assessment method described in Section 5.1 was applied
to a labelled SLS dataset collected from seven participants. Classifiers were trained to
distinguish between “poor”, “moderate”, and “good” squat qualities.

5.2.1 Experiment

Seven participants (6 male, 1 female, mean age 32.3±11.6 years) took part in the pilot
study. Inclusion criteria were adults not having any lower back or leg injuries in the past
six months. The experiment was approved by the University of Waterloo Research Ethics
Board, and all participants signed a consent form prior to the start of data collection.

Data Collection

Three Yost [6] IMU sensors were affixed to the participant using hypoallergenic tape.
Sensor placement sites included the low back at the level of the first sacral vertebra, the
anterior thigh 10 cm above the patella aligned with the sagittal plane, and the flat surface
of the shank at the level of the tibial tuberosity, as illustrated in Figure 5.5. Due to wireless
communication, sampling rates were not consistant or identical for all sensors. The average
sampling rate was 90±10 Hz. All sensors were interpolated and resampled to the same
rate of 100 Hz.
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Figure 5.5: Sensor placement during SLS pilot data collection

Participants were instructed to remove their shoes and stand on their dominant leg
(the leg they would kick a ball with) with toes pointing straight ahead, while keeping their
arms crossed in front of their body. In each trial, participants performed five consecutive
cycles of the SLS movement. For the SLS collection to be deemed successful, the subject
had to perform the squat without allowing the legs to contact each other, and without
losing balance (ie. without having the non-weight bearing leg touch the ground).

Data Labelling

Three of the participants replicated good, poor, and moderate squats under the instruction
and supervision of an expert clinician; the other participants performed the squats natu-
rally. The naturally performed squats were labelled by an experienced movement scientist
using a clinical knee valgus rating scale that was modified from a qualitative SLS clinical
rating tool [9]. A SLS was rated “good” if DKV did not occur during the squat or DKV
occurred, but the patella did not have a trajectory that pointed towards the second toe;
“moderate” if the patella pointed toward or past the second toe, but did not point past
the inside aspect of the foot; and “poor” if the patella pointed past the inside aspect of
the foot.

The number of trials used for analysis was not the same for all participants. There
were 7 labelled trials available from participant 2 (3 good, 1 moderate and 3 poor), 6
from participant 1 and participant 3 (1 good, 1 poor, and 1 moderate for each), 1 from
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participant 4 (poor), 2 from participant 7 (moderate), 3 from participant 5 (2 poor and 1
good) and 1 from participant 6 (moderate). Each trial consisted of 5 consecutive squats,
which resulted in 100 examples of SLS including 30 examples of good, 30 examples of
moderate, and 40 examples of poor squats.

5.2.2 Pilot Study Results

Given the 7 DOF kinematic model, where each DOF includes an estimate of its position,
velocity, and acceleration, the total number of features for each segment or observation
was 210. Therefore, our final data set had 100×210 dimensions. Another dataset was also
produced with the same features, but including only good and poor data (i.e., excluding
the moderate SLS data), which had 70 observations. All data was normalized to bring the
values in [0 1] range.

The feature selection results are summarized in Table 5.1. The feature selection results
highlight the importance of the ankle IR angle features for differentiating good, moderate
and poor squats. Although according to clinical studies [15], [98], the hip plays an im-
portant role in DKV, the feature selection results in our pilot study suggested that good
classification can be performed based on only the ankle kinematics. Possible explanations
for the finding that the hip data was not as informative as the ankle for classification in-
clude the large variability in hip joint movements between different subjects (independent
of squat quality) or a larger error in the pose estimation for the hip parameters.

The finding that all of the selected features are related to the ankle suggests that it
may be possible to achieve good classification of the SLS by using only a simple 3 DOF
model to estimate ankle joint kinematics. This is advantageous, as it simplifies the pose
estimation and reduces the number of sensors from 3 to 1, reducing the complexity of the
measurement apparatus and the setup and computation procedure. Similar clinical studies
[15] used time consuming manual measurements and focused on only the feature selection
part, while the proposed method in this study is completely automated and simple to
apply, and therefore more easy to apply in the clinical setting.

For the pilot study a subset of methods including SVM, LMLR, and DT were tried for
both the 2-class (“good” vs “poor”) and 3-class (“good” vs “moderate” vs “poor”) classifi-
cation problems. The classification results are reported for both 10 fold cross validation (10
F-CV) and leave one subject out (LOSO) cross validation methods in Table 5.2 and Table
5.3 for 2-class and 3-class problems, respectively. For reporting the accuracy percentage,
the number of selected features or Principal Components (PCs) in SPCA was set to one
first and accuracy was calculated. Then, the number of features or PCs was increased one
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Table 5.1: features ranked as top ten by more than 8 feature selection techniques.

Selected features For 2-class
problem

N r Selected features For 3-class
problem

N r

ROM of ankle IR 14 STD of ankle IR angle 13
STD of ankle IR angle 11 VAR of ankle IR angle 13
MAD of ankle IR angle 11 MAD of ankle IR angle 13
VAR of ankle IR angle 10 ROM of ankle IR 12
RMS of ankle IR velocity 9
MAD of ankle IR velocity 9
RMS of ankle Add accelera-
tion

9

N r : Number of times ranked as top ten features

by one up to the point that further increases did not improve performance. The reported
accuracies are the best performance each classifier achieved. Matrix inversion with the full
dimensional dataset was not possible with LMLR; therefore no results are reported for this
condition.

Analysis of the decision tree results using majority selected features shows that for both
LOSO and 10 fold validation, the best performance was achieved using only the ROM of
ankle IR feature for the 2-class problem, while for the three class problem, ROM and MAD
of the ankle IR angle resulted in best accuracy for LOSO CV and STD and MAD of the
ankle IR angle for 10 fold CV. The decision tree structure shown in Fig. 5.6 for the 2-class
problem suggests an association between poor squats and ROM of the ankle IR greater
than 20.63◦. For the 3-class problem, MAD of ankle IR angle less than 14.9◦ differentiates
good squats. MAD of ankle IR angle greater than 14.9◦ indicates either moderate or poor
squats, which are again differentiated based on ROM of ankle IR.
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Table 5.2: Accuracies (%) for the 2-class classification problem using three classifiers and
two different cross-validation methods

2-class classification accuracy (%)
Validation
method

10 Fold CV LOSO CV

Dimensionality
reduction
method

Majority
Selected
features

SPCA
No
reduction

Majority
Selected
features

SPCA
No
reduction

SVM 95.71 98.57 99.71 88.57 98.57 75.7143
Logistic Regres-
sion

93.57 98.57 – 91.43 98.57 —

Decision Tree 92.43 98.57 95.86 87.14 98.57 81.43

Figure 5.6: Decision Tree structure for LOSO-CV for the 3-class (left) and 2-class (right)
problems. For 2-class problem, poor squats are detected when ROM of ankle IR > 20.63◦.
For 3-class problem, MAD of ankle IR angle> 14.9◦ indicates either poor or moderate
squats, which are again differentiated based on ankle IR ROM. This also shows that decid-
ing between poor and moderate squats is harder than good and moderate for this dataset
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Table 5.3: Accuracies (%) for the 3-class classification problem using three classifiers and
two different cross-validation methods

3 class classification accuracy (%)
Validation
method 10 Fold CV LOSO CV

Dimensionality
reduction
method

Majority
Selected
features

SPCA
No
reduction

Majority
Selected
features

SPCA
No
reduction

SVM good vs all 91.8 84.7 98.1 91 83 79
SVM poor vs all 77.8 87.4 96.9 75 82 72
SVM moderate
vs all 64.8 77.5 87.2 62 74 42

SVM good vs
moderate 91.67 100 99 91.66 73.33 62.33

SVM poor vs
moderate 70.14 90 96.71 67.14 80 50

SVM good vs poor 93.71 97.57 99.43 91.43 97.14 75.71
Logistic Regression 73.6 93.1 — 68 68 —
Decision Tree 70.2 83.5 77.6 62 73 68
SVM majority vote 74.2 93.2 96.6 72 70 46.4

5.3 Clinical Study

The promising results of the pilot study showed that automated assessment of the SLS
based on pose data and expert labels is possible. However, there were some limitations in
the pilot study:

� Variability of motion generation and labelling in the dataset. The collected data
were a mixture of naturally performed squats labelled by an expert and replicated
“poor”, “moderate”, and “good” squats. We found no meaningful difference between
LOSO error of the two groups. However, feature selection/extraction and subsequent
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classification results could have been different between the two groups if we developed
different classifiers for each. Due to the small number of available naturally performed
squats and unbalanced distribution of “good”, “moderate”, and “poor” exemplars,
this was not possible with the pilot dataset.

� The small size of the training set. Although we had 100 examples of squats, many
of them were generated by the same subjects, limiting our ability to test the gener-
alization capabilities of the method.

To investigate the generalizability and reliability of the assessment method, a second
dataset of SLS was collected and provided by the clinical collaborator of the project.

The following are the differences between the pilot and field datasets:

� Larger number of participants with the same number of males and females were
recruited.

� The exclusion criteria were different between the two studies. For the pilot study,
participants were excluded if they had lower back or leg injuries in the past six
months whereas, in the clinical study, they must not have had a medical history
restricted participation in a standard musculoskeletal clinical examination of the
lower extremity.

� There were two labelling criteria: amount of observed DKV as well as overall risk of
injury.

� All squats were performed naturally with both legs and labelled by three expert
clinical raters.

� Reliabality analysis of raters was performed.

� Additional training datasets (differing based on features, gender, or agreement be-
tween raters) were generated.

5.3.1 Clinical Experiments

The dataset was collected by our clinical partner, MSK Metrics. 14 participants including
7 males and 7 females with mean age of 30.8 ± 5.5, mean height of 173.8 ± 12 cm, and
mean weight of 70.4±10.4 kg participated in the study. For two participants, the dominant
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leg (the leg they would kick a soccer ball with) was the left; the other participants were
right legged. To be included in the study, subjects had to be between the ages of 18-65
years, and must not have had a medical history that restricted participation in a standard
musculoskeletal clinical examination of the lower extremity. This would include the clinical
suspicion of an emergent health issue, severe neurological compromise, or the presence of
an acute fracture, dislocation or severe knee ligament instability. Subjects were excluded
from the study if they did not meet any of the above inclusion criteria.

Ethics approval from Institutional Review Board Services was obtained prior to the start
of the study. All participants signed a consent form prior to the start of data collection.

Given our inclusion criteria, it is possible that some individuals with active knee pain
or discomfort could have been recruited. Considering we were primarily interested in ana-
lyzing data from individuals without active knee injury, we identified subjects with active
knee pain or discomfort by having participants fill out the International Knee Documenta-
tion Committee (IKDC) subjective knee evaluation form for each knee [10]. Data from all
14 subjects were used in the Inter and Intra-rater Reliability (IRR) analyses, while only
data from knees that scored over 95% on the IKDC were included in training and cross
validation.

Data Collection

Three Yost [6] IMUs were attached to the participants’ low back at the level of the first
sacral vertebra, the anterior thigh 10 cm above the patella aligned with the sagittal plane,
and the flat surface of the shank at the level of the tibial tuberosity using hypoallergenic
tape. Sensor placement locations are depicted in Figure 5.7. Data was communicated to a
nearby computer via Bluethooth communication with an average sampling rate of 90± 10
Hz. Data were interpolated and resampled to the same rate of 200 Hz before subsequent
analysis.

Participants were instructed to take off their shoes and perform five continuous cycles
of SLS with their toes pointing forward and arms crossed in front of the body. They were
asked to perform SLS with both the right and left legs without moving the foot or lifting
the heel. In instances where subjects lost their balance, their legs contacted each other, or
the non-weight bearing leg touched the ground, the trial was deemed unsuccessful and all
cycles were repeated.
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Figure 5.7: Sensor placement during SLS clinical data collection

Data Labelling

The participants’ performance was videotaped during the tests. Videos were then reviewed
by three expert clinicians with advanced training in a sports sciences fellowship, with an
average of 9 years clinical experience.

Raters were asked to label each squat repetition. The clinical rating criteria were
adapted and modified from [42] and included 2 items: “Knee Valgus” and “Rater’s Sub-
jective Overall Knee Injury Risk”. We aimed to discriminate between “good” and “poor”
squats or screen “high risk” subjects from “no risk” ones (2-class classification), and to
assess if a finer grained assessment is possible by adding a “moderate” grading level (3-class
classification). For this purpose, each criterion was comprised of a three-level rating scale
of “0”, “1” or “2”. For the knee valgus criterion [42], a score of “0” was defined as no
valgus, “1” as moderate knee valgus, and “2” as severe knee valgus. For the overall knee
risk of injury criterion, a score of “0” was defined when the individual was at no risk and
no intervention was required, a score of “1” was defined when there was mild/low risk and
moderate intervention was required, and a score of “2” was defined when the individual
was at moderate to high risk and significant intervention was required. To determine the
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rating for the “overall knee injury risk assessment” item, the clinical raters were asked to
base their assessment of the overall whole body motion that occurred when the subject
was performing the SLS, not just the subject’s knee position.

The 14 participants performed 5 SLS repetitions with both left and right legs resulting
in 140 squat repetitions to be labelled. Three categories were created from the labelled
samples: samples which were unanimous (U) among raters, samples with a split (S) decision
among raters, where two raters gave the same score and one gave a different score, and
samples for which there was no consensus among raters, where each rater gave a different
score. Labeled data statistics for each of the two criteria are summarized in Table 5.4.
Samples that came from participants who scored less than 95% on the IKDC are referred
to as unhealthy in the table and are excluded from the analysis.

For split decision ratings, a final label based on majority vote was given to the samples.
For feature selection, 4 different datasets were generated: two with combinations of both
healthy unanimous and healthy split decision samples (for the two different criteria), and
the others with only healthy unanimous samples (again for the two criteria).

Table 5.4: Labeled Data Information

U: unanimous
S: split decision
H: healthy

Labeled with knee
valgus criterion

Labeled with overall
risk of knee injury
criterion

Male# Female# Male# Female#
Good(U,H) 7 5 1 5
Good(S,H) 11 16 7 8
Moderate(U,H) 10 5 9 1
Moderate(S,H) 18 16 18 15
Poor(U,H) 6 4 5 14
Poor(S,H) 11 10 22 12
No Consensus(H) 2 4 3 5
Unhealthy 5 10 5 10
Total 70 70 70 70

For classification, only the datasets which included both split decision and unanimous
samples were utilized. We made two different datasets for each labelling index: one included
combined healthy split decision and unanimous samples of the three categories to be used
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for 3-class classification. The other was generated by removing “moderate” exemplars from
the previous set to implement 2-class classification. Details of the training datasets are
summarized in Table 5.5.

Table 5.5: Training dataset details

Labelled with
knee valgus
criterion

Labelled with
overall risk of
injury criterion

Training and
validation sets

Healthy
Unanimous or
Split decision

119 exemplars
(39 “good”,
49 “moderate”,
31 “poor”)

117 exemplars
(21 “good”,
43 “moderate”,
53 “poor”)

Healthy
Unanimous

37 exemplars
(12 “good”,
15 “moderate”,
10 “poor”)

35 exemplars
(6 “good”,
10 “moderate”,
19 “poor”)

Removed
samples

Unhealthy and
no - consensus

21 exemplars 23 exemplars

5.3.2 Inter and Intra Rater Reliability (IRR) Analysis

Since we have more than one rater in this study, we analyzed the degree of agreement
between them (inter rater reliability), and the consistency of the ratings by each of the
raters (intra rater reliability).

Three raters ranked SLS data on a three point scale so the ratings were ordinal. IRR
assessment was performed using the two-way mixed, consistency, average-measures ICC
test. Details of the test selection criteria can be found in Appendix B. Calculations were
made using MedCalc [3]. The resulting ICC value was 0.80 for the knee valgus criterion
(Figure 5.8(a)) and 0.84 for the risk of injury criterion (Figure 5.8(b)). This indicates
excellent agreement between raters according to Cicchetti guidelines [22].

To assess intra-rater reliability, 15 of the 140 squat samples were randomly selected
and duplicated in the dataset provided to the raters for labeling. The two-way mixed,
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(a) IRR results for knee valgus
labeling criterion

(b) IRR results for risk of in-
jury labeling criterion

Figure 5.8: Inter-rater reliability evaluation by MedCalc

consistency, average-measures ICC test was applied to two ratings provided for the original
and duplicated samples by each rater. Intra-rater reliability results for the three raters were
1, 0.96, and 0.88 suggesting excellent reliability for all raters.

(a) rater 1 (b) rater 2 (c) rater 3

Figure 5.9: Intra-rater reliability evaluations by MedCalc

The IRR assessment results suggest that the measurement error introduced by individ-
ual raters is minimal and that SLS ratings are suitable for the purpose of classification.
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5.3.3 Clinical Study Results

All Joints’ Features

Tables 5.6 to 5.9 show the feature selection results for the four datasets and two different
classification problems (2-class versus 3-class).

Table 5.6: Feature selection results for 2-class problem and knee valgus criterion

Knee Valgus criterion- 2class (“good” vs “poor”)

Healthy (Unanimous) Nr
Healthy (Unanimous+Split
decision)

Nr

RMS of ankle IR angle 12
Mean of hip Flex. angle
RMS of hip Flex. angle

10

Mean of ankle IR angle 9 Max of hip Flex. angle 9
Nr: Number of times ranked as top ten features

Table 5.7: Feature selection results for 2-class problem and risk of injury criterion

Risk of injury criterion- 2class (“good” vs “poor”)

Healthy (Unanimous) Nr
Healthy (Unanimous+Split
decision)

Nr

Mean of hip Flex. angle 7 Mean of hip Flex. angle 14
RMS of ankle IR angle
RMS of ankle IR acceleration
RMS of hip IR angle

Mean of knee Flex. angle 11
6 RMS of ankle IR angle 10

Max of hip Flex. angle 9
Nr: Number of times ranked as top ten features

The feature selection results for the unanimous data in both 2-class and 3-class problems
reveal that ankle IR/Add features are the most important predictors of DKV, while in terms
of risk of injury, hip IR and Flex and ankle IR features are more discriminative. Another
observation from the unanimous data is that in the 2-class problem, joint angle features
appear as predictors, while for the 3-class problem, joint velocity plays a significant role.
These results are in agreement with our pilot study.
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Table 5.8: Feature selection results for 3-class problem and knee valgus criterion

Knee valgus criterion- 3 class (“good” vs “moderate” vs “poor”)

Healthy (Unanimous) Nr
Healthy (Unanimous+Split
decision)

Nr

Kurtosis of ankle Add. angle 12 Max of hip IR. angle 15
Mean of ankle IR angle
RMS of ankle Add. velocity
Min of ankle IR. velocity
Max of ankle IR. velocity
STD of ankle IR. acceleration

Mean of hip Flex. angle 13
Min of knee Flex. angle 11

7
Range of hip Flex. angle
RMS of hip Flex. angle

9

Nr: Number of times ranked as top ten features

Table 5.9: Feature selection results for 3-class problem and risk of injury criterion

Risk of injury criterion- 3 class (“good” vs “moderate” vs “poor”)

Healthy (Unanimous) Nr
Healthy (Unanimous+Split
decision)

Nr

STD of hip IR velocity 11 Max of hip Flex. angle 10
Range of hip Flex. angle
MAD of hip IR velocity

10 Mean of hip Flex. angle
VAR of ankle Add. velocity

9

VAR of hip IR velocity
RMS of hip IR angle

9

Nr: Number of times ranked as top ten features

103



On the other hand, when the data includes both unanimous and split decision samples,
flexion angles, particularly hip Flex, frequently appear as predictors of the knee valgus or
risk of injury.

The dimensionality of the training data was reduced by keeping only the identified
important features. Classification techniques are applied to the reduced-dimensionality
dataset including both unanimous and split decision data, using the labels from the two
criteria. Results for both 10 fold and LOSO cross-validations are reported in Tables 5.10
to 5.13. SPCA dimensionality reduction method results are also provided.

Table 5.10: Classification results for 2-class problem and knee valgus criterion

2-class classification problem accuracy(%)
Knee Valgus criterion

Validation
method

10F-CV LOSO-CV

Dim. Red.
method

Subset of
selected
features

SPCA
Subset of
selected
features

SPCA

SVM 92.71 93.14 87.5 89.77
NB 92.71 90.42 87.5 84.1
KNN 92.85 92.57 86.36 86.36

Table 5.11: Classification results for 3-class problem and knee valgus criterion

3-class classification problem accuracy(%)
Knee Valgus criterion

Validation
method

10F-CV LOSO-CV

Dim. Red.
method

Subset of
selected
features

SPCA
Subset of
selected
features

SPCA

SVM 66.87 73.5 65.4 67.4
NB 60.99 67.7 57 59.6
KNN 70.12 72.15 67.6 67.2
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Table 5.12: Classification results for 2-class problem and risk of injury criterion

2-class classification problem accuracy(%)
Risk of Injury criterion

Validation
method

10F-CV LOSO-CV

Dim. Red.
method

Subset of
selected
features

SPCA
Subset of
selected
features

SPCA

SVM 92.11 86.9 77.46 84.1
NB 92.25 85.39 87.39 82.25
KNN 93.7 87.32 85.87 79.35

Table 5.13: Classification results for 3-class problem and risk of injury criterion

3-class classification problem accuracy(%)
Risk of Injury criterion

Validation
method

10F-CV LOSO-CV

Dim. Red.
method

Subset of
selected
features

SPCA
Subset of
selected
features

SPCA

SVM 67.17 74.4 61.67 74.87
NB 66.34 68.67 66.67 61.27
KNN 67.86 76.3 66.26 73.27
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Classification results for 10F-CV showed that distinguishing between “good” and “poor”
squats is achievable with a promising accuracy (93%). For the 3- class problem; however,
the best achieved accuracy was 74%. LOSO-CV results were slightly lower, with best ac-
curacy of 90% for 2-class and 68% for the 3-class problems. With respect to predicting the
risk of injury, the best achieved accuracy using 10F-CV was 95% for the 2-class and 76%
for the 3-class problem. Using the LOSO-CV, the best accuracy for 2-class was 87% and
for 3-class problem was 75%.

Ankle Only Features

In the pilot data analysis, we found the ankle IR features to be the best predictors of the
DKV, which led us to suggest that it is possible to use only one sensor on the tibia (saving
time and simplifying the test protocol) and still have good classification accuracy. To
confirm this hypothesis with the larger datasets, we used feature selection on only ankle
extracted features (90 out of 210 features) and found that ankle IR velocity, angle and
acceleration features are the best predictors in the absence of hip or knee information. We
also repeated the classification using ankle only features. The best achieved results using
ankle only features and the percentage of change in accuracy in comparison to the best
reported results using all joints features are shown in Tables 5.14 and 5.15.

Table 5.14: Best achieved classification results for 10F-CV using ankle features

10F-CV accuracy(%)
Knee Valgus criterion Risk of Injury criterion

Best
results

ankle only
features

change in
accuracy

ankle only
features

change in
accuracy

2-Class 84.14 -9% 91.67 -3.6%
3-Class 67.5 -6% 77.13 +1.23%

The results from Tables 5.14 and 5.15 indicate that there is less than 4% drop in accu-
racy for risk of injury detection using only ankle information (one tibia sensor), suggesting
that one sensor can be used to simplify the data collection procedure, particularly if overall
risk of injury is of interest.
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Table 5.15: Best achieved classification results for LOSO-CV using ankle features

LOSO-CV accuracy(%)
Knee Valgus criterion Risk of Injury criterion

Best
results

ankle only
features

change in
accuracy

ankle only
features

change in
accuracy

2-Class 85.23 -4.54% 83.7 -3.69%
3-Class 60.4 -7.2% 73.5 -1.37%

Gender-specifc

We hypothesized that men and women might have different biomechanical characteristics
and movement strategies which result in different predictors. To test this hypothesis, we
separated the healthy subject data based on gender, resulting in female only data (60
samples) and male only data (65 samples). Feature selection methods were applied to
combined unanimous and split decision samples of both datasets separately. The results
reported in Tables 5.16 to 5.19 showed that different features are selected when the data
is segregated by gender. For the male dataset, the features selected were the hip and knee
flexion features. For females, hip and ankle IR features were selected. Based on this finding,
we also tested whether male-specific and female-specific classifiers might work better than
a general classifier for both genders. The SVM classifier was used for the two data set and
results are compared to general classifier results (developed in previous section) in tables
5.20 and 5.21.

Classification results show that for women, in all cases, the female-specific classifier
works better than the general classifier. For men, the same holds for risk of injury index.
The only noticeable exception is the 2-class classification with knee valgus criterion, for
which the general classifier is better.
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Table 5.16: Gender-specific feature selection results for 2-class problem and knee valgus
criterion

Knee Valgus criterion- 2 class (“good” vs “poor”)

Males Nr Females Nr

Mean of knee Flex. angle 13 RMS of ankle IR velocity 10
Max of hip Flex. velocity 11 STD of ankle IR velocity 7

RMS of hip Flex. angle
STD of hip Flex. angle
MAD of hip Flex. angle

7

RMS of ankle IR acceleration
MAD of ankle IR acceleration
VAR of ankle IR velocity
MAD of ankle IR velocity
Mean of ankle Add. velocity

6

Nr: Number of times ranked as top ten features

Table 5.17: Gender-specific feature selection results for 2-class problem and Risk of Injury
criterion

Risk of Injury criterion- 2 class (“good” vs “poor”)

Males Nr Females Nr

MAD of hip Flex. velocity 10 STD of hip IR velocity 11
Kurtosis of hip Flex. velocity 8 Mean of knee Flex. angle 9

RMS of hip Flex. velocity 7
Mean of hip Flex. angle
VAR of hip IR velocity

8

Nr: Number of times ranked as top ten features
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Table 5.18: Gender-specific feature selection results for 3-class problem and Knee Valgus
criterion

Knee Valgus criterion- 3 class (“good” vs “moderate” vs“poor”)

Males Nr Females Nr

RMS of hip Flex. angle 13 RMS of hip Add. velocity 8
Max of hip Flex. velocity 12 MAD of hip IR acceleration 7
Mean of hip Flex. velocity 9 VAR of ankle IR velocity

MAD of ankle IR velocity
STD of hip Add. velocity

STD of hip Flex. angle
VAR of hip Flex. angle
MAD of hip Flex. angle
Mean of hip Flex. angle

8 6

Nr: Number of times ranked as top ten features

Table 5.19: Gender-specific feature selection results for 3-class problem and Risk of Injury
criterion

Risk of Injury criterion- 3 class (“good” vs “moderate” vs“poor”)

Males Nr Females Nr

STD of hip Flex. angle 9
STD of hip IR velocity
MAD of ankle IR acceleration

9

Mean of hip Flex. velocity
Kurtosis of knee Felx. acceleration 8 STD of ankle IR velocity

RMS of ankle IR acceleration
Kurtosis of knee Flex. velocity 7 8
Nr: Number of times ranked as top ten features
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Table 5.20: Gender-specific classification results for 10F-CV

10F-CV accuracy(%)

Classifier type
2-Class 3-Class

Valgus Risk Valgus Risk
Male only- SVM 90.5 97.3 84 73.6
Female only- SVM 94.3 99.8 74.7 84.9
General- best results 93.1 95.3 73.5 74.4

Table 5.21: Gender-specific classification results for LOSO-CV

LOSO-CV accuracy(%)

Classifier type
2-Class 3-Class

Valgus Risk Valgus Risk
Male only- SVM 72.7 91.7 82.7 80
Female only- SVM 93.2 100 74.6 86.8
General- best results 89.8 87.4 67.6 74.9

5.3.4 Discussion

The identification of ankle IR/Add and hip IR/Flex features for the determination of
DKV and risk of injury are consistent with previous reports evaluating the kinematic
characterization of DKV, since ankle IR/Add and hip IR/Flex represent component joint
motions that contribute to the multi-joint DKV movement [98], [96], [43], [92]. Moreover,
knee flexion angle features were also identified as predictors of dynamic valgus and knee
injury risk in the present study. This finding is also consistent with previous investigations
that have identified a shallow knee flexion angle during single leg loading to be correlated
with dynamic knee valgus loading, ACL injury, and patellofemoral pain syndrome [92].
Knee flexion angles less than 30◦ have been shown to cause a large strain force on the
ACL caused by quadriceps contraction, and shallow knee flexion angles coupled with hip
internal rotation may also increase patellofemoral contact forces [63], [62], [82], [44].

Analyzing the flexion joint angles of the SLS repetitions revealed that those labelled
as “good” tended to have increased knee and torso flexion during the motion. Previous
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research investigating the effect of forward trunk lean on predicted anterior cruciate liga-
ment (ACL) strains that occur during the SLS movement indicate that a more moderate
forward trunk lean of approximately 40 degrees can lower ACL strains and increase muscle
activation of the hamstring muscles that assist in preventing anterior tibial translation
and lower activation of the quadriceps muscles that can increase anterior tibial translation
[49]. It is possible that the torso flexion observed in the “good” subjects in the present
study may be a result of a movement strategy utilized to minimize internal knee loads and
optimize the co-contraction of the quadriceps and hamstring musculature.

The achieved performance in the 2-class problem is comparable to Whelan et al. [94].
We further showed that the classification generalizes to unseen participants and investigate
3-class classification. Unlike Whelan et al., joint angle, velocity and acceleration features
are used, which are clinically interpretable parameters.

The results of gender specific classifiers suggest that developing separate classifiers
for men and women improves classification results and strengthens our hypothesis about
different biomechanical characteristics or movement strategies in men and women. Previous
literature investigating gender differences in the SLS movement test has identified that
females perform the SLS with more “valgus collapse” which involves more pelvic rotation,
hip internal rotation, femoral adduction, knee external rotation and abduction, and ankle
pronation compared to males [34], [91], [92], [98]. Females also perform the SLS with less
trunk, hip and knee flexion compared to their gender counterparts [98], [92], [34]. As a
result of these gender differences, it is not surprising that our gender-specific classifiers for
females primarily involved hip and ankle IR/Add features, and the male classifier primarily
involved hip and knee flexion features.

5.4 Summary

In this chapter, an automated assessment method to evaluate SLS quality was developed for
a small pilot dataset and expanded to a larger clinical dataset. Two criteria were used for
labelling by expert clinician raters: amount of inward knee movement that occurred during
the task (knee valgus) and perceived overall knee injury risk. SLS data from 14 volunteers
were collected and two data sets were generated: one included the data with unanimous
agreement among raters and the other dataset was a combination of full and partial agree-
ment of labelled data. 18 feature selection methods were applied to the datasets to find
the best predictors of knee valgus and risk of knee injury. The feature selection results for
only unanimous data suggested ankle IR/Add and hip IR/Flex features to be correlated
with DKV and risk of injury, respectively. However, for combined unanimous and split
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decision data, hip/knee flexion angle features were highlighted as the predictors of both
DKV and risk of injury.

Three common classification techniques were applied to the datasets. The LOSO-
CV results suggest that discriminating of “poor” squats from “good” ones is achievable
with promising accuracy of 90%. Changing the problem to multiclass (adding “moderate”
squats) drops the accuracy by 22%. Screening participants at high risk of injury from
those at no risk can be achieved with 87% accuracy, while adding mild risk subjects drops
the accuracy by 12%. Gender-specific classifiers were also developed and showed improved
classification accuracy.

The unanimous cases represent instances where 100% agreement between all three clin-
ician raters occurred, and likely represent cases where the motion characteristics can be
clearly identified. By combining both the unanimous and split decision cases, it is possible
that some labelling inaccuracies may have been introduced. However, split decision cases
may also represent borderline cases where a labelling judgement may be difficult. Consid-
ering borderline cases are likely to occur in the population, it is important to understand
the impact these cases may have on feature selection and classification results.

In the present study, the participants were not instructed to keep their torso upright
during the data collection. The fact that hip flexion angle features appeared as best pre-
dictors of DKV and risk of injury in the full dataset indicates that other motion behaviors
are also associated with knee valgus and knee injury risk, and that different test protocols
and instructions can lead to different results. SLS test protocols do vary between studies,
with some authors constraining the squat depth, time duration of the SLS, and upper and
lower extremity position [34], [47], [98]. Since the purpose of the SLS test is to assess how
an individual functions during single leg loading, which is a foundational movement that
is encountered in everyday life and athletic instances, we chose not to constrain the rate
and depth of the SLS, to study the subjects own inherent movement preferences while
performing the SLS. Our decision to not implement some of these constraints may have
affected feature selection results, which has to be considered in the clinical application of
the developed tool.

Given our results demonstrating improved classification with gender specific classifiers,
and the consistency of previous investigations identifying gender differences in SLS move-
ment performance, we propose that automated SLS assessments should include gender-
specific classifiers.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Findings

In this thesis, an IMU-based automated pose estimation and assessment method for assess-
ing the single leg squat in terms of amount of observed dynamic knee valugus and risk of
knee injury was proposed. The pose estimation accuracy was validated for 7 participants
in the Motion Capture Lab and the developed SLS assessment method was tested for a
group of 14 healthy participants under clinical test conditions.

Automated Pose Estimation

While IMU-based pose estimation has received extensive attention in the literature, the
majority of IMU-based pose estimation techniques are not yet validated for clinical ap-
plications due to various issues such as lack of generalization to 3 dimensional motion
measurement, limited number of joints measured, indirect joint angle information provi-
sion, or the need for complicated and time consuming calibration procedures for accurate
results. The proposed approach in this study was adapted from [55] and modified to pro-
vide 3 dimensional joint angle, velocity and acceleration estimates of the lower extremity
during the SLS. The pose estimation results were validated against marker-based pose
estimation and showed acceptable average accuracy of 5.1◦. This accuracy is acceptable
for assessment purposes, as according to the decision tree analysis (Figure 5.6), the clas-
sification thresholds are significantly greater than this error. The proposed method has
advantages over visual assessment, which is currently the main method of dynamic move-
ment evaluation in the clinic, as it provides quantitative measures of absolute joint angle
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values as well as velocity and acceleration (which are hard to assess visually) during the
lower extremity mobility tests.

Sensitivity Analysis

The pose estimation method was simplified for easier clinical application, by replacing the
required manual measurements by approximated values from anthropometric tables and
making assumptions about sensor placement. The amount of error introduced by these
simplifications was evaluated. A sensitivity analysis was performed to identify the most
critical parameters. Finally, a simple and easy to apply calibration method was proposed
for better estimation of sensitive parameters, which resulted in considerable improvement
in accuracy. The proposed calibration method was successfully applied in the clinical
setting by clinicians, which shows the effectiveness and feasibility of the method.

Automate Dynamic Knee Valgus and Risk of Injury Assessment

The proposed pose estimation method was applied to a dataset collected from 14 healthy
participants and labelled by three expert raters in a clinical setting. The estimated hip,
knee, and ankle joint position, velocity and acceleration were then used for assessment of
squat quality using a number of feature selection and classification techniques. The results
showed that classification of squat quality into two classes of good and poor or low risk
and high risk is possible with a high accuracy of 93 − 95%. Increasing the number of
classes by adding moderate squats drops the accuracy by 12− 22%. Further analysis was
performed to identify DKV correlates from feature selection and to develop more accurate
gender-specific classifiers.

To our knowledge, the present study is the first to investigate an automated SLS 3-class
classification, which would be beneficial for clinicians, as this would allow a determination
of not just the presence or absence of DKV and overall knee injury risk, but it would also
provide an assessment of the severity of these parameters. This stratification could assist
clinicians in developing interventions that could be tailored to an individual’s severity level
of DKV and knee injury risk. Our study is also unique in that we developed a classifier
for the identification of overall knee injury risk based on the SLS movement test. The
successful performance of a SLS requires the precise coordination and control of movement
about multiple joints (the trunk, hip, knees and ankles) while simultaneously maintaining
balance over a small base of support. Considering variables other than DKV, such as lateral
trunk position [92] and control of the non-squatting leg [47], has been shown to influence
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knee loading during the SLS, we had expert clinical raters judge the entire composite SLS
movement to rate individuals on knee injury risk.

6.2 Future Work

6.2.1 Sensor Orientation Estimation

The developed calibration protocol in this study extracts the sensors’ orientation on the
body based on gyro data, which improves the pose estimation accuracy. However, it
depends on the correct performance of the protocol by the clinician. Other possible orien-
tation extraction methods which can be used with minimum effort in the clinics need to
be explored. With the current method, visual guidance for ensuring the correct implemen-
tation can be developed through computer interfaces and wizards. One source of error in
this method can be the initial non zero orientation of the participant with respect to the
sagittal plane, which will be interpreted as a roll angle of the tibia and thigh sensors and
yaw angle in the back sensor. An additional step can be added to the method to detect
this offset.

6.2.2 Analysis of Motion Artifacts

The effect of soft tissue artifacts on the pose estimation accuracy can be better investigated
by designing the following experiments:

� Trying different sensor placements and comparing the amount of sensor motion re-
sulting from each placement.

� Using a fixed sensor placement and examining the effectiveness of different pose esti-
mation methods (e.g. EKF-based vs non-EKF based) in combatting motion artifacts.

6.2.3 Automated Segmentation

A challenge in the developed assessment method was correct segmentation of the squat
samples. Two different methods were tried. However, no method can guarantee segmenta-
tion with 100% accuracy, so a final visual check and tuning of the segmentation algorithm
were necessary, which remains an impediment to full automation of the technique. A more
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advanced motion segmentation technique [56] suitable for the SLS with high accuracy of
segmentation can be utilized to fully automate the process. Alternatively, an assessment
method can be developed for the whole period of the motion (5 continuous squats in this
study) and not for individual squats.

6.2.4 Larger Sample Size including Rehabilitation Patients

A limitation of the present study includes the small sample size. In addition, our sample
was comprised of healthy individuals with no current knee injury. There likely exist many
different movement strategies to perform a SLS within the population; therefore, future
work should consider a larger sample, and classification of subject samples with knee
pathology.

6.2.5 Providing Continuous Score for SLS Assessment

The current assessment method classifies the squats into three categories. Another useful
approach for clinical purposes would be an evaluation based on a continuous score. This
can be done through regression analysis. However, for better results of the regression, a
continuous way of labelling or a larger number of grading categories for the movement is
preferred.

6.2.6 Extending the Assessment Method to Other Mobility Tests

There are several other mobility tests such as the Double Leg Jump, Lunge, and Single
Leg Hop which can be analysed using the same proposed approach. Some of these tests,
like the Single Leg Hop or Double Leg Jump introduce additional challenges due to sensor
vibrations resulting from impact. Also the motion consists of flying periods when the
foot is no longer in contact with the ground, during which the current approach for pose
estimation would be unreliable because it assumes a fixed base. Extending the proposed
method to those tests can be an interesting direction for future work.
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Lummel, Maarten C. De Waal Malefijt, and Nico Verdonschot. The accuracy of
measuring the kinematics of rising from a chair with accelerometers and gyroscopes.
Journal of Biomechanics, 39(2):354–358, 2006.

[19] A Brennan, K Deluzio, and Q Li. Assessment of anatomical frame variation effect on
joint angles: a linear perturbation approach. Journal of biomechanics, 44(16):2838–
2842, 2011.

[20] Julien Chardonnens, Julien Favre, and Kamiar Aminian. An effortless procedure to
align the local frame of an inertial measurement unit to the local frame of another
motion capture system. Journal of Biomechanics, 45(13):2297–2300, 2012.

118



[21] Chien-Yen Chang, B. Lange, Mi Zhang, S. Koenig, P. Requejo, Noom Somboon, A.a.
Sawchuk, and A.a. Rizzo. Towards Pervasive Physical Rehabilitation Using Microsoft
Kinect. In 6th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth), pages 159–162, 2012.

[22] Domenic V Cicchetti. Guidelines, criteria, and rules of thumb for evaluating normed
and standardized assessment instruments in psychology. Psychological assessment,
6(4):284, 1994.

[23] Kay M Crossley, Wan-Jing Zhang, Anthony G Schache, Adam Bryant, and Sallie M
Cowan. Performance on the single-leg squat task indicates hip abductor muscle func-
tion. The American journal of sports medicine, 39(4):866–73, 2011.

[24] Pasquale Daponte, Luca De Vito, Maria Riccio, and Carmine Sementa. Design and
validation of a motion-tracking system for ROM measurements in home rehabilitation.
Measurement, 55:82–96, 2014.

[25] Mario A DiMattia, Ann L Livengood, Tim L Uhl, Carl G Mattacola, and Terry R
Malone. What are the validity of the single-leg-squat test and its relationship to
hip-abduction strength? Journal of Sport Rehabilitation, 14(2):108–123, 2005.

[26] John Z Edwards, Kenneth A Greene, Robert S Davis, Mark W Kovacik, Donald A
Noe, and Michael J Askew. Measuring flexion in knee arthroplasty patients. The
Journal of arthroplasty, 19(3):369–372, 2004.

[27] Mahmoud El-Gohary and James McNames. Human joint angle estimation with in-
ertial sensors and validation with a robot arm. IEEE Transactions on Biomedical
Engineering, 62(7):1759–1767, 2015.

[28] J. Favre, R. Aissaoui, B. M. Jolles, J. A. de Guise, and K. Aminian. Functional
calibration procedure for 3D knee joint angle description using inertial sensors. Journal
of Biomechanics, 42(14):2330–2335, 2009.

[29] J. Favre, B. M. Jolles, R. Aissaoui, and K. Aminian. Ambulatory measurement of 3D
knee joint angle. Journal of Biomechanics, 41(5):1029–1035, 2008.

[30] Daniel Tik Pui Fong and Yue Yan Chan. The use of wearable inertial motion sensors in
human lower limb biomechanics studies: A systematic review. Sensors, 10(12):11556–
11565, 2010.

119



[31] C D Fryar, Q Gu, and C L Ogden. Anthropometric reference data for children and
adults: United States, 2007-2010. Vital Health Statistics, (11):1–40, 2012.

[32] Richard L Gajdosik and Richard W Bohannon. Clinical measurement of range of
motion. Phys ther, 67(12):1867–1872, 1987.

[33] Alex L Gornitzky, Ariana Lott, Joseph L Yellin, Peter D Fabricant, J Todd Lawrence,
and Theodore J Ganley. Sport-Specific Yearly Risk and Incidence of Anterior Cruciate
Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. The
American journal of sports medicine, pages 0363546515617742–, 2015.

[34] G Graci, V; Van Dillen, L; Salsich. Gender differnces in trunk pelvis and lower limb
kinematics during a single leg squat. Gait Posture, 36(3):461–466, 2013.

[35] Kevin A Hallgren. Computing Inter-Rater Reliability for Observational Data: An
Overview and Tutorial. Tutor Quant Methods Psychol, 8(1):23–34, 2012.

[36] DM Hamby. A review of techniques for parameter sensitivity analysis of environmental
models. Environmental monitoring and assessment, 32(2):135–154, 1994.

[37] M. E. Harrington, A. B. Zavatsky, S. E M Lawson, Z. Yuan, and T. N. Theologis.
Prediction of the hip joint centre in adults, children, and patients with cerebral palsy
based on magnetic resonance imaging. Journal of Biomechanics, 40(3):595–602, 2007.

[38] Marcie Harris-Hayes, Karen Steger-May, Christine Koh, Nat K Royer, Valentina Graci,
and Gretchen B Salsich. Classification of lower extremity movement patterns based
on visual assessment: reliability and correlation with 2-dimensional video analysis.
Journal of athletic training, 49(3):304–310, 2014.

[39] P Hattam and A Smeatham. Special tests in musculoskeletal examination: an
evidence-based guide for clinicians. Elsevier Health Sciences.

[40] Tom O Haver. A Pragmatic Introduction to Signal Processing.

[41] Lee Herrington. Knee valgus angle during single leg squat and landing in
patellofemoral pain patients and controls. Knee, 21(2):514–517, 2014.

[42] Lee Herrington and Allan Munro. A preliminary investigation to establish the criterion
validity of a qualitative scoring system of limb alignment during single-leg squat and
landing. J Exerc Sports Orthop, 1(2):1–6, 2014.

120



[43] Timothy E Hewett, Gregory D Myer, Kevin R Ford, Robert S Heidt, Angelo J
Colosimo, and Scott G McLean. Biomechanical Measures of Neuromuscular Con-
trol and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk
in Female Athletes A Prospective Study Biomechanical Measures of Neuromuscular
Control and Valgus Loading of the Knee Predict Ant. The American journal of sports
medicine, 33(4):492–501, 2005.

[44] Gerwyn Hughes. A review of recent perspectives on biomechanical risk factors asso-
ciated with anterior cruciate ligament injury. Research in sports medicine, 22(2):193–
212, 2014.

[45] Vladimir Joukov. Pose estimation and segmentation for rehabilitation. Master’s thesis,
University of Waterloo, 2015.

[46] Vladimir Joukov, Vincent Bonnet, Michelle Karg, Gentiane Venture, and Dana Kulić.
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Appendix A

Pose Estimation Results of all
Subjects
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Figure A.1: Estimated ankle IR/ER joint angles related to Table 3.1
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Figure A.2: Estimated ankle Add/Abd joint angles related to Table 3.1
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Figure A.3: Estimated ankle Flex/Ext joint angles related to Table 3.1
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Figure A.4: Estimated knee Flex/Ext joint angles related to Table 3.1
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Figure A.5: Estimated hip Flex/Ext joint angles related to Table 3.1
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Figure A.6: Estimated hip Add/Abd joint angles related to Table 3.1

134



Figure A.7: Estimated hip IR/ER joint angles related to Table 3.1
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Appendix B

IRR Test Selection Criteria

Inter rater reliability (IRR) provides an assessment of whether the scale or rating criteria
were appropriate and the experience of the raters [35]. Percentage of agreement in the
ratings (number of consensus ratings divided by all ratings) is not a proper index of raters
agreement because it does not take into account agreements made by chance [35].

There are a number of statistical tests for IRR estimation. Two common tests include
Cohonens Kappa test and Intra Class Correlation (ICC) test. Cohonens Kappa test is
used for IRR assessment when the data is nominal (categorical) and is suitable for two
raters. For more than two raters, the Kappa test can be used for each pair of raters, and
the arithmetic mean of all Kappas can be reported as for the overall IRR estimation [35].

ICC is the most common test used for IRR assessment when the ratings are ordinal,
interval, or ratio. It can be used for more than two raters and non-fully crossed designs as
well [35].

In contrast to the Kappa test which defines IRR based on all or no agreement, ICC
takes into account the degree of disagreement such that lower ICC corresponds to the
larger disagreement. ICC is calculated by analysis of variance (ANOVA) by modeling each
rating as a sum of the true score and the measurement error as follows:

Xij = µ+ ri + eij (B.1)

Where Xij is the rating of subject i by rater j, µ and ri are the mean and deviation
of the true score for X and eij is the measurement error. The ICC score is calculated by
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combination of variance of Equation B.1 components. The combination formula depends
on the study design [35].

An ICC value of 1 corresponds to perfect agreement and -1 corresponds to perfect
disagreement, and in case of more than two raters ICC can have values less than -1.
Cicchetti’s guideline [22] for interpreting ICC values is summarized in Table B.1.

ICC value IRR
0.75− 1.00 Excellent
0.60− 0.74 good
0.40− 0.59 fair
< 0.40 poor

Table B.1: Cicchetti(1994) guidelines for interpreting ICC score [22]

Different variants of Cohonen’s Kappa and ICC tests are available for different study
designs. In order to select the most appropriate variant of the existing statistical tests,
the study design should be considered. For example, it should be taken into account if
the ratings were nominal, ordinal, interval, or ratios, whether the study is fully crossed or
non-fully crossed, and whether it is one-way or two-way [35].

If a subset of raters are selected randomly from a large number of raters to rate each
subject then ICC model is one-way, but if fixed number of raters have rated all subjects
(fully-crossed), two-way model should be used [35].

Moreover, it has to be specified whether absolute agreement between raters is of interest
or similarity in the rank ordering (consistency of rating) is enough. If one rater generates
lower ratings than another in general, absolute agreement between them would be low but
consistency of the ratings could still be high if rank order is the same [35].

Two different units of analysis are also available to apply in ICC. If multiple raters
have rated all subjects then reliability should be quantified based on average of the ratings.
However, if multiple raters have rated a subset of subjects and IRR has to be generalized
to other subjects, a single-measure ICC is more appropriate [35].

Finally, if a subset of coders are randomly selected to rate each subject and their IRR
will be generalized to other coders then the ICC model is random- effect whereas if raters
are not randomly sampled then ICC is mixed-effect [35].
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