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Abstract

Maintaining and evolving modern software systems is a difficult task: their scope and
complexity mean that seemingly inconsequential changes can have far-reaching consequences.
Most software development companies attempt to reduce the number of faults introduced by
adopting maintenance processes. These processes can be developed in various ways. In this
thesis, we argue that data science techniques can be used to support process development.
Specifically, we claim that robust development processes are necessary to minimize the
number of faults introduced when evolving complex software systems. These processes
should be based on empirical research findings. Data science techniques allow software
engineering researchers to develop research insights that may be difficult or impossible to
obtain with other research methodologies. These research insights support the creation of
development processes. Thus, data science techniques support the creation of empirically-
based development processes.

We support this argument with three examples. First, we present insights into automated
malicious Android application (app) detection. Many of the prior studies done on this topic
used small corpora that may provide insufficient variety to create a robust app classifier.
Currently, no empirically established guidelines for corpus size exist, meaning that previous
studies have used anywhere from tens of apps to hundreds of thousands of apps to draw
their conclusions. This variability makes it difficult to judge if the findings of any one study
generalize. We attempted to establish such guidelines and found that 1,000 apps may be
sufficient for studies that are concerned with what the majority of apps do, while more than
a million apps may be required in studies that want to identify outliers. Moreover, many
prior studies of malicious app detection used outdated malware corpora in their experiments
that, combined with the rapid evolution of the Android API, may have influenced the
accuracy of the studies. We investigated this problem by studying 1.3 million apps and
showed that the evolution of the API does affect classifier accuracy, but not in the way we
originally predicted. We also used our API usage data to identify the most infrequently used
API methods. The use of data science techniques allowed us to study an order of magnitude
more apps than previous work in the area; additionally, our insights into infrequently used
methods illustrate how data science can be used to guide API deprecation.

Second, we present insights into the costs and benefits of regression testing. Regression
test suites grow over time, and while a comprehensive suite can detect faults that are
introduced into the system, such a suite can be expensive to write, maintain, and execute.
These costs may or may not be justified, depending on the number and severity of faults
the suite can detect. By studying 61 projects that use Travis CI, a continuous integration
system, we were able to characterize the cost/benefit tradeoff of their test suites. For
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example, we found that only 74% of non-flaky test failures are caused by defects in the
system under test; the other 26% were caused by incorrect or obsolete tests and thus
represent a maintenance cost rather than a benefit of the suite. Data about the costs
and benefits of testing can help system maintainers understand whether their test suite
is a good investment, shaping their subsequent maintenance decisions. The use of data
science techniques allowed us to study a large number of projects, increasing the external
generalizability of the study and making the insights gained more useful.

Third, we present insights into the use of mutants to replace real faulty programs in
testing research. Mutants are programs that contain deliberately injected faults, where
the faults are generated by applying mutation operators. Applying an operator means
making a small change to the program source code, such as replacing a constant with
another constant. The use of mutants is appealing because large numbers of mutants can
be automatically generated and used when known faults are unavailable or insufficient in
number. However, prior to this work, there was little experimental evidence to support the
use of mutants as a replacement for real faults. We studied this problem and found that, in
general, mutants are an adequate substitute for faults when conducting testing research.
That is, a test suite’s ability to detect mutants is correlated with its ability to detect real
faults that developers have fixed, for both developer-written and automatically-generated
test suites. However, we also found that additional mutation operators should be developed
and some classes of faults cannot be generated via mutation. The use of data science
techniques was an essential part of generating the set of real faults used in the study.

Taken together, the results of these three studies provide evidence that data science
techniques allow software engineering researchers to develop insights that are difficult or
impossible to obtain using other research methodologies.

x



Acknowledgements

I’d like to thank my supervisor, Reid Holmes, who had a tremendous impact on me
throughout my seven years at Waterloo. Though grad school is ostensibly about sharpening
one’s technical skills, the most valuable things I learned from Reid were about the social
aspects of research: how to present my work well, how to communicate its value, and how
to win friends and influence people at conferences. Reid also gave me an inside look at
the life of a professor by involving me in activities grad students are often not entrusted
with, such as grant writing and course design. These experiences proved invaluable when
deciding on my career path. Reid was also very flexible with my unusual (to put it mildly)
decision to move to California and have children in the middle of my PhD. I could not
possibly have juggled family and school without his support. All in all, I thoroughly enjoyed
working together and couldn’t have asked for a better supervisor (even if I acquired a habit
of abusing parentheses).

I’d also like to thank Mike Godfrey for piquing my interest in software engineering with
his grad course about software evolution and for introducing me to the SWAG family. When
Reid was on vacation prior to my defence, Mike stepped in and provided a tremendous
amount of editorial assistance. My thesis and my presentation were greatly improved by
his comments. In addition, his wife Anita and son Trevor generously babysat for me while
I defended my thesis.

Thanks also go to my former supervisor, Therese Biedl, who took a chance on me by
accepting me to Waterloo. Though I didn’t end up staying in the algorithms group, I would
not have been in grad school at all without her.

Of course, my other committee members were also a vital part of completing this work.
Thanks to Jo Atlee, Derek Rayside, Mei Nagappan, and Denys Poshyvanyk for their time
and their comments.

I’d also like to thank my family. My parents Robert Bogdan and Janet and Paul Ennis
have provided a tremendous amount of support in both emotional and material ways. My
inlaws, Svetlana Inozemtseva and Mikhail Inozemtsev, have also been very helpful. In
particular, I would not have been able to complete my internship at Microsoft Research
without both grandmas generously staying with us for six weeks each to provide childcare.
I owe more to all five of them than I could list here.

Finally, I’d like to thank my husband, Greg Inozemtsev, without whose support this
thesis would never have been possible. He was always happy to discuss my research when
I needed another point of view and prevented me from rage-quitting on more than one
occasion. His crazy plans, like moving to California, add lots of excitement to my life in

xi



both good and bad ways. (Mostly good.) I’m very happy to have someone like him to
spend my life with; I’m glad I made a spontaneous decision to join the Queen’s robotics
team back in 2006. Our sons Fyodor and Anton Inozemtsev have also made my life much
richer even if they made it harder to find time to do research. Though they’re too young to
fully understand the concept of grad school, I can still teach them to call me Dr. Mom.

xii



Dedication

For my mom, Janet Munro Ennis, whose intelligence, generosity, and
kindness are matched only by her courage in her struggle with cancer.
I love you, Mom.

xiii





Table of Contents

List of Tables xix

List of Figures xxi

1 Introduction 1
1.1 Roles and Publication Status . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Detecting Android Malware 7
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Corpus Size Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Malware Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 RQ1: How Many Applications? . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 RQ2: Should API Level Be Controlled? . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Relevance to Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



3 Measuring Test Suite Costs and Benefits 49
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Measuring Test Suite Maintenance Effort . . . . . . . . . . . . . . . 52
3.1.2 Capturing Test Outputs . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Reducing Suite Execution Time . . . . . . . . . . . . . . . . . . . . 53

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Collecting Travis Build Data . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Identifying Build Status . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Identifying Build Transitions . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Mapping Builds to Code Changes . . . . . . . . . . . . . . . . . . . 63
3.3.4 Classifying Failure Resolutions . . . . . . . . . . . . . . . . . . . . . 64

3.4 Assessing the Costs and Benefits of Regression Testing . . . . . . . . . . . 64
3.4.1 RQ1: What Fraction of Tests Are Flaky? . . . . . . . . . . . . . . . 64
3.4.2 RQ2: How Often Are Failures Beneficial? . . . . . . . . . . . . . . . 66
3.4.3 RQ3: Why Do Tests Usually Require Maintenance? . . . . . . . . . 68

3.5 Implications for Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.1 RQ4: How Often Do Tests Expose Faults? . . . . . . . . . . . . . . 72

3.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 Replication Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Relevance to Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 The Use of Mutants in Testing Research 77
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Subject Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 Locating and Isolating Real Faults . . . . . . . . . . . . . . . . . . 81
4.1.3 Obtaining Developer-written Test Suites . . . . . . . . . . . . . . . 83
4.1.4 Automatically Generating Test Suites . . . . . . . . . . . . . . . . . 86
4.1.5 Mutation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvi



4.1.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Are Real Faults Coupled to Mutants Generated by Commonly Used
Mutation Operators? . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 What Types of Real Faults Are Not Coupled to Mutants? . . . . . 93
4.2.3 Is Mutant Detection Correlated with Real Fault Detection? . . . . . 97
4.2.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Studies That Explored the Relationship Between Mutants and Real

Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Commonly Used Artifacts . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.3 Software Testing Research Using Mutants . . . . . . . . . . . . . . 104

4.4 Relevance to Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Conclusion 107

References 111

xvii





List of Tables

2.1 The number of Android methods introduced and removed in each API level
(version) and the total number of methods in each level. . . . . . . . . . . . 17

2.2 P values of the Kolmogorov-Smirnov (K-S) and Kuiper tests comparing each
smaller corpus to the largest corpus (1,000,000 apps). The null hypothesis is
that the data sets are drawn from the same population distribution function.
The alternative hypothesis is that the two experimental distributions are
consistent with the same theoretical distribution. The second and third
columns give P values for the distributions of distinct methods used, while
the fourth and fifth columns give P values for the distributions of distinct
levels used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The percentage of the most popular 20 API methods in each corpus that
match the most popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored. . . . . . . . . . . . . . . . . . . 24

2.4 The percentage of the least popular 20 API methods in each corpus that
match the least popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored, including methods with zero calls. 25

2.5 The percentage of the least popular 20 API methods in each corpus that
match the least popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored, excluding methods with zero calls. 25

2.6 The number of apps from our dataset assigned to each level. The third
and fourth columns give the number of malicious apps as a count and as a
percentage of the total, respectively. The table includes the 1,295,091 apps
from Google Play and the 7,036 from other sources. . . . . . . . . . . . . . 33

2.7 The ten least popular methods from the Android API in our dataset. None
of the methods were called by apps in our dataset. . . . . . . . . . . . . . . 46

xix



3.1 The 61 projects considered in this study. The second column lists the number
of non-blank, non-comment lines of source code (SLOC) in the system under
test (SUT). The third column lists the number of non-blank, non-comment
lines of source code in the system’s test suite. The fourth column sums these
quantities and the fifth column lists the amount of test code in the project
as a percentage of the total. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Final production and test code size and increase in size over the two year
study period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Aggregated build results for 61 open source Java projects that use Travis
and the state of 106,738 build executions from those projects. . . . . . . . 61

3.4 Categorization of how builds transition between Pass and Fail states. The
left-hand-side of → denotes the resources that changed to cause the test
failure. The right-hand-side of → denotes the resources that were changed
to resolve the test failure. This excludes flaky builds (177 transitions). . . . 67

3.5 The proportion of non-flaky Fail builds resolved by fixing faults and by
maintaining the test suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Manually inspected tests as well as an example of a broken build and the
change that fixed the test. The Break and Fix entries are hyperlinks to the
original Travis-CI test suite execution output. . . . . . . . . . . . . . . . . 71

4.1 Investigated subject programs. . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Number of candidate revisions, compilable revisions, and reproducible and

isolated faults for each subject program. . . . . . . . . . . . . . . . . . . . 82
4.3 Characteristics of generated test suites. . . . . . . . . . . . . . . . . . . . . 87
4.4 Number of real faults not coupled to mutants generated by commonly used

mutation operators. Numbers are categorized by reason: weak implementa-
tion of a mutation operator, missing mutation operator, or no appropriate
mutation operator exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Comparison of mutation scores between T̃pass and T̃fail . . . . . . . . . . . . 99
4.6 Comparison of studies that explored the relationship between mutants and

real faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xx



List of Figures

2.1 Usage of the 21,971 methods in the Android API. Each box represents a
method. The area of the box represents the total number of times the method
was called by all apps. The colour of the box indicates the API level in which
the method was introduced. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Usage of the 21,971 methods in the Android API. Each box represents a
method. The area of the box represents the number of apps in the corpus
that call the method. The colour of the box indicates the API level in which
the method was introduced. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The number of distinct Android API methods used by the apps in each of
seven app corpora of different sizes. . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The number of distinct Android API levels used by the apps in each of seven
app corpora of different sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 The percentage of VirusTotal scanning tools that marked the apps we
obtained from the Play store as malicious. . . . . . . . . . . . . . . . . . . 28

2.6 The percentage of VirusTotal scanning tools that marked the apps we
obtained from malware corpora as malicious. . . . . . . . . . . . . . . . . . 29

2.7 The distribution of Google Play apps among Android API levels. Colour
indicates whether or not the app was assigned to the malicious category. . 31

2.8 The distribution of malicious apps from the Drebin, McAfee, and AMGP
corpora among Android API levels. . . . . . . . . . . . . . . . . . . . . . . 32

xxi



2.9 The F-scores of k-nearest neighbour classifiers that used methods as features.
As we used ten-fold cross validation, each point represents the average f-
score of the ten folds. The x-axis shows the Android API level that the
apps belong to for the level-controlled classifiers (blue points). The paired
classifiers (green points) are trained and tested using the same number of
apps as the level-controlled classifier at the same position on the x axis. . . 38

2.10 The F-scores of k-nearest neighbour classifiers that used metrics as features.
As we used ten-fold cross validation, each point represents the average f-
score of the ten folds. The x-axis shows the Android API level that the
apps belong to for the level-controlled classifiers (blue points). The paired
classifiers (green points) are trained and tested using the same number of
apps as the level-controlled classifier at the same position on the x axis. . . 39

2.11 The F-scores of random forest classifiers that used methods as features. As
we used ten-fold cross validation, each point represents the average f-score of
the ten folds. The x-axis shows the Android API level that the apps belong
to for the level-controlled classifiers (blue points). The paired classifiers
(green points) are trained and tested using the same number of apps as the
level-controlled classifier at the same position on the x axis. . . . . . . . . 40

2.12 The F-scores of random forest classifiers that used metrics as features. As
we used ten-fold cross validation, each point represents the average f-score of
the ten folds. The x-axis shows the Android API level that the apps belong
to for the level-controlled classifiers (blue points). The paired classifiers
(green points) are trained and tested using the same number of apps as the
level-controlled classifier at the same position on the x axis. . . . . . . . . 41

2.13 The F-scores of the paired classifiers (randomly selected apps) as a function
of the number of apps used to train and test the classifier. . . . . . . . . . 43

3.1 Growth of production source code and test source code over the study period.
At the beginning, test code accounted for only 10.8% of all code, but by the
end this had increased to 21.9%, for a total of over 2.9 million lines of code. 60

3.2 Transitions between system states. Each transition is caused by one or more
commits. Pass→Pass persisted for an average of 5.6 builds, Error→Error
persisted for 2.6 builds, while Fail→Fail builds persisted for 2.9 builds. . . 62

xxii



3.3 As developers work on their systems their commits often change the state of
the build. Each box represents a commit; builds are often not run on every
commit but instead on blocks of commits. A C label on a commit means the
code under test was changed; a T label means the test code was changed.
The figure shows a failure caused by a code change that was resolved by
fixing both code and test files. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Average difference between the number of code fixes and the number of test
fixes. The radius of the bubbles represents the relative size of code+test fixes
compared to all fixes. The sum of all code fixes and test fixes for a project is
plotted on the x-axis on a logarithmic scale. . . . . . . . . . . . . . . . . . 70

3.5 Proportion of test cases that fail for the 40 projects we were able to parse
individual-test results from across the failing build of 586 tuples. Three data
points (16.9%, 8.7% and 4.1%) have been elided for clarity. The average
project failure rate was 0.38%. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Obtaining source code versions V1 and V2. . . . . . . . . . . . . . . . . . 83
4.2 Relationship between the i-th obtained test suite pair 〈T i

pass,T i
fail〉 and the

developer-written test suites Tbug and Tfix . . . . . . . . . . . . . . . . . . . 84
4.3 Statement coverage ratios and mutation scores of the test suites Tpass for

each subject program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Statement coverage ratios and mutation scores of the generated test suites

for each subject program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Effect of triggering tests on mutant detection. . . . . . . . . . . . . . . . . 92
4.6 Snippets of real faults that require stronger or new mutation operators. . . 95
4.7 Snippets of real faults not coupled to mutants. . . . . . . . . . . . . . . . . 98
4.8 Correlation coefficients for each subject program. . . . . . . . . . . . . . . 100
4.9 Â12 effect sizes for mutation score differences between T̃pass and T̃fail for

each subject program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xxiii





Chapter 1

Introduction

Nobody actually creates perfect code the first time around, except me. But there’s
only one of me.
Linus Torvalds, 2007 [31]

Maintaining and evolving modern software systems is a difficult task: their scope and
complexity mean that seemingly inconsequential changes can have far-reaching consequences.
Consider Debian’s OpenSSL bug from 2008, when developers removed a line of code that
caused the Valgrind and Purify tools to produce warnings about uninitialized memory
usage [103]. One developer commented:

At lines 467-469 in crypto/rand/md_rand.c is an interesting thing:

#ifndef PURIFY
MD_Update(&m,buf,j); /* purify complains */
#endif

That is the code that causes the problem (I just verified it with Valgrind). Does
it have any bad side affects [sic] to always skip that code? Since both Purify and
Valgrind is [sic] unhappy with that function call, something must be wrong with
it. [14]

Removing this line broke the random number generator, compromising all keys generated
with this code.
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There are many other cases where the poor practices used to effect software evolution
caused or revealed serious faults. The Therac-25 disaster, where patients were given massive
overdoses of radiation, is a widely studied example from the health domain [63]. In this case,
a hardware failsafe was replaced by a software equivalent that contained a race condition.
In 2009, a Google engineer mistakenly designated “/” as a site that was infected with
malware, causing all websites to be flagged as malicious, including google.com itself [75].
Poorly executed software evolution practices have also been identified as the cause of four
serious performance bugs in the Linux scheduler [69].

In all of these examples, the scope and complexity of the systems prevented the developers
from fully understanding the ramifications of their changes. Most software development
companies institute processes to help developers manage this complexity when making
changes in order to prevent, as much as possible, the introduction of faults. In their most
basic form, these processes are based on intuition, industry trends, or the experience of a
limited number of developers. An alternative approach is to measure descriptive software
metrics, such as the number of lines of code in the system, the number of faults found in
each source code file, the percentage of code that is executed by the test suite, and so on.
Development processes can be designed to keep these metrics in a predefined range; for
example, management may insist that test suite coverage is at least 75% prior to product
release. However, this approach can do as much harm as good: metrics that seem intuitive
may not have empirical support [43] or, when metrics are tied to compensation, developers
may game the metrics, to cite two potential problems.

A more sophisticated approach is to use data science to create robust, empirically-based
development processes. Data science is a set of techniques for extracting actionable insights
from (usually large) datasets. It arose as a way to handle the “big data” problem that
has recently manifested itself in many areas, such as business analytics and health care
informatics. Data science incorporates methods from fields that have historically been
separate, such as machine learning, statistics, databases, and distributed systems. The
latter two areas in particular come into play as the volume of data increases to the point
that it can no longer be stored on a single computer.

Software development generates many artifacts, including revision control history,
issue reports, electronic communication records, and software documentation. Software
engineering researchers can apply data science techniques to these data sources to extract
testable research insights that can guide the creation of development processes. The
application of data science techniques to software engineering data has been considered in
several prior PhD theses, notably those of Zimmerman [122] and Hassan [38]. In software
engineering research, the use of data science techniques is sometimes referred to as “mining
software repositories” or “software analytics”.
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Of course, data science is not the only approach to software engineering research:
other methods of inquiry such as case studies and developer surveys can provide valuable
information. However, data science provides a way of summarizing, linking, and merging
large volumes of data from many disparate sources to address real questions that developers
have about their systems. This is not information that can be extracted or inferred using
other techniques such product-based static program analysis or simple textual tools such as
grep. For example, Herzig et al. [40] used data science techniques at Microsoft to determine
how to run fewer regression tests while minimizing the number of faults that were not
detected as a result. Ostrand et al. [85] predicted the location and number of faults in two
large industrial systems. We have previously shown that different software artifacts such
as the issue tracker, the documentation, and Stack Overflow posts can be linked via the
fully-qualified names of source code elements [45].

This dissertation presents three examples of how data science techniques can be used to
generate insights about the development of software systems, in aid of improved development
practices and overall system quality. To be precise, the thesis of this dissertation is as
follows:

Thesis Statement. Robust development processes are necessary to minimize the number of
faults introduced when evolving complex software systems. These processes should be based on
empirical research findings. Data science techniques allow software engineering researchers
to develop research insights that may be difficult or impossible to obtain with other research
methodologies. These research insights support the creation of development processes. Thus,
data science techniques support the creation of empirically-based development processes.

We provide evidence for this thesis by presenting three research insights that could not
have been obtained without the use of data science. Note, however, that this dissertation
does not investigate the creation of development processes based on these insights.

First, we present insights into automated malicious Android application (app) detection.
Many of the prior studies done on this topic used small corpora that may provide insufficient
variety to create a robust app classifier. Currently, no empirically established guidelines
for corpus size exist; in practice, previous studies have used anywhere from tens of apps
to hundreds of thousands of apps to draw their conclusions. This variability makes it
difficult to judge if the findings of any one study generalize. We attempted to establish such
guidelines and found that 1,000 apps may be sufficient for studies that are concerned with
common app behaviour, for instance the most popular Android API methods, while more
than a million apps may be required in studies that want to identify outliers. Moreover,
many prior studies of malicious app detection used old malware corpora in their experiments
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that, combined with the rapid evolution of the Android API, may have influenced the
accuracy of the studies. We investigated this problem by studying 1.3 million apps and
showed that the evolution of the API does affect classifier accuracy, but not in the way we
originally predicted. We also used our API usage data to identify the most infrequently used
API methods. The use of data science techniques allowed us to study an order of magnitude
more apps than previous work in the area; additionally, our insights into infrequently used
methods illustrate how data science can be used to guide API deprecation. Chapter 2 of
the thesis describes this work in detail.

Second, we present insights into the costs and benefits of regression testing. Regression
test suites grow over time, and while a comprehensive suite can detect faults that are
introduced into the system, such a suite can be expensive to write, maintain, and execute.
These costs may or may not be justified, depending on the number and severity of faults
the suite can detect. By studying 61 projects that use Travis CI, a continuous integration
system, we were able to characterize the cost/benefit tradeoff of their test suites. For
example, we found that only 74% of non-flaky test failures are caused by defects in the
system under test; the other 26% were caused by incorrect or obsolete tests and thus
represent a maintenance cost rather than a benefit of the suite. Data about the costs
and benefits of testing can help system maintainers understand whether their test suite
is a good investment, shaping their subsequent maintenance decisions. The use of data
science techniques allowed us to study a large number of projects, increasing the external
generalizability of the study and making the insights gained more useful. Chapter 3 of the
thesis describes this work in detail.

Third, we present insights into the use of mutants to replace real faulty programs in
testing research. Mutants are programs that contain deliberately injected faults, where the
faults are generated by applying mutation operators. Applying an operator means making a
small change to the program source code, such as replacing a constant with another constant.
The use of mutants is appealing because large numbers of mutants can be automatically
generated and used when known faults are unavailable or insufficient in number. However,
prior to this work, there was little experimental evidence to support the use of mutants as a
replacement for real faults. We studied this problem and found that, in general, mutants are
an adequate substitute for faults when conducting testing research. That is, a test suite’s
ability to detect mutants is correlated with its ability to detect real faults that developers
have fixed, for both developer-written and automatically-generated test suites. However,
we also found that additional mutation operators should be developed and some classes
of faults cannot be generated via mutation. The use of data science techniques was an
essential part of generating the set of real faults used in the study. Chapter 4 of the thesis
describes this work in detail.
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Taken together, the results of these three studies provide evidence that data science is a
useful set of techniques that allow software engineering researchers to develop insights that
would previously have been unobtainable.

1.1 Roles and Publication Status

Chapter 2 is independent work. It has been reformatted as a paper and is currently in
submission at ICSME 2017 [44].

Chapter 3 is joint work with Adriaan Labuschagne. It has been reformatted as a paper
and is currently in submission at FSE 2017 [61]. My role in the work included data analysis
and writing.

Chapter 4 is joint work with René Just and Darioush Jalali [53]. It was published at
FSE 2014 and won an ACM Distinguished Paper Award. My role in the work included
conceptualizing the study, the generation of test suites, data analysis, and writing.

The material in Chapter 4 is based on research sponsored by DARPA under agreement
number FA8750-12-2-0107. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.

Some of the computations in this work were performed using the facilities of the Shared
Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca).
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Chapter 2

Detecting Android Malware

Smartphones are becoming increasingly popular, with the two primary smartphone operating
systems being Apple’s iOS and Google’s Android. Of these, Android is more widespread,
commanding over 80% of the global mobile OS market share [28]. This popularity makes it
a particularly attractive target for malware developers, who have begun to expand from
desktop software to mobile applications (apps). In the third quarter of 2014, McAfee
reported that they had detected over 5 million mobile malware samples. That number
grew by 16% during that quarter and by 112% during the previous year [72]. Trend Micro
reported a figure of 7.1 million malware samples in the first half of 2015 [76]. Malicious apps
will only become more common as smartphones continue to replace traditional computers
and cell phones and the use of third party apps for sensitive purposes such as mobile
banking becomes routine.

The increase in malware implies a need for accurate mobile malware detection tools.
Seventeen previous studies have used machine learning to identify malicious Android apps
with promising results, as we will discuss in Section 2.1. However, these studies share two
issues. First, no empirical guidelines exist regarding how many apps should be used in
studies of Android to obtain a generalizable result. This leads to the use of corpora of
widely varying sizes; the previous studies in this area used between 436 and 135,792 apps.
While more is generally accepted to be better, app mining can be expensive; in addition,
the lack of guidelines makes it harder to judge the generalizability of the findings in each
paper.

The second issue that was common to previous work in the area is that the studies did
not control for the API level1 of the app, even though the studies used level-dependent

1Android API developers use the term “version” in the usual way. The term “level” is used to refer to
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input features, such as the Android API methods called by the app. This is an issue because
it is difficult to collect malicious apps: identifying malware in the wild is time consuming
and requires special knowledge, so once a good quality malware corpus has been curated, it
is often used by researchers for some time. Consequently, the benign apps in a study are
often newer – and thus use a higher API level – than the malicious apps. Combined with
the fact that the classifiers used level-dependent input features, the classifiers in previous
work may have been distinguishing old apps from new apps rather than malicious apps
from benign apps.

To address these two threats, we collected 1,368,376 Android apps and conducted two
studies. First, we explored how the results obtained in a mining-based study vary depending
on the number of apps used. Specifically, we asked the following research question:

Research Question 2.1. How many apps should a mining-based study use to obtain
a generalizable result?

To answer this question, we studied various features of seven app corpora of varying
size, ranging from 10 apps to 1,368,376 apps, as we will describe in Section 2.2.1. We
found that, as a “rule of thumb”, 1,000 apps may suffice when the study is concerned with
what the majority of apps do. Studies that attempt to detect outliers of any sort, such as
malware, naturally require more apps, and it seems that 1,000,000 or more may be required.
Section 2.2.2 presents these results in detail.

Second, we explored the influence of API level on the accuracy of malware detection
classifiers. Specifically, we asked the following research question:

Research Question 2.2. Should studies of Android malware detection control the API
level of the apps used in the study?

We assigned the Android apps we collected to the API levels 1 through 22, inclusive,
based on their usage of Android methods and permissions. We trained and tested classifiers
on the apps assigned to each level, then trained and tested classifiers on “paired” collections
of apps from all levels. In each case, the paired classifier was trained and tested using the
same number of apps as the corresponding level-controlled classifier. We compared the
performance of the level-controlled classifiers to the paired (non-level-controlled) classifiers
to determine if controlling API level decreased classifier accuracy. The level-controlled

a group of one or more consecutive versions that are very similar to each other. Thus, “level” is a more
coarse-grained term.
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classifiers thus represent the experimental case while the paired classifiers represent the
control case, and the fact that each pair is trained and tested with the same number of
apps ensures that corpus size does not influence the comparison. Section 2.3.1 describes our
procedure in detail. We found that controlling app API level, contrary to our hypothesis,
increased classifier accuracy. This implies that controlling API level when evaluating
malware detection classifiers is not necessary. Section 2.3.2 presents these results in detail.

Following the presentation of results, Section 2.4 discusses how our findings can be used
by both researchers and Android API maintainers. Section 2.5 presents threats to validity
and Section 2.6 explains how the work in this chapter supports our thesis statement.

2.1 Related Work

We discuss work related to our two research questions in turn.

2.1.1 Corpus Size Guidelines

We were unable to identify any studies that answered our specific research question. Though
Martin et al. [71] studied the effect of using a small sample of app reviews, they did not
consider the sampling problem when the apps themselves are studied. Nagappan et al. [78]
developed a metric for measuring the diversity of software projects, but the existence of
such a metric does not provide an easy-to-use guideline. In addition, their metric is for
general software engineering studies, not just those done with Android.

Traditional statistics can answer our question in some cases. For example, when
estimating the population mean from a sample mean, one can use the following equation:

n = z2σ2

E2

where z is the z-score required to get a particular confidence value, σ is the standard
deviation of the population, and E is the error of estimation [26]. Concretely, to estimate
the mean of a population with a standard deviation of 0.2 units (σ = 0.2) within 0.05
units of the population mean (E = 0.05) with a confidence of 99% (z = 2.576), one should
use a sample of at least 107 observations. Unfortunately, computations of this nature
have limitations. The most salient is that they are limited to the calculation of numerical
values such as the mean; statistics does not tell you how many apps you must examine if
you want to know which API methods are most popular. In addition, such computations
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rely on assumptions made about the population distribution. If a software engineering
researcher wanted to study, for instance, the average number of lines in a stack trace, it
is not necessarily the case that this value is normally distributed and, if it is, what the
standard deviation of the distribution is.

Thus, to the best of our knowledge, guidelines of the sort in this work have not been
previously proposed. However, four papers have studied the usage of Android methods;
these papers are relevant to the discussion in Section 2.4 of how API maintainers can use
our results.

Li et al. [65] identified the ten most popular API methods used by a sample of 100,000
malicious Android apps. The authors then used static analysis to identify the most common
string parameters passed to these methods. They found that this information could be
used to identify some of the apps as malicious, as some apps that send SMSs to premium
numbers have the phone numbers hardcoded into the app. The authors also suggest that
information about common parameters could be used to support API comprehension and
could be used to find variants of a given app (e.g., plagiarized apps). However, the authors
did not evaluate the tool in these two scenarios.

Li et al. [66] studied how Android apps use so-called “inaccessible” API methods, or
methods not intended for use by third party apps. Using a corpus of 23,666 apps, mainly
collected from Google Play, the authors found that 5% of the apps used these inaccessible
API methods. The apps used a median of two inaccessible methods each and these methods
were mainly related to view and Bluetooth functionalities. Over 56% of the inaccessible
methods had a lifecycle of only one version; that is, they were removed from the Android
framework in the version after the one in which they were introduced.

McDonnell et al. [73] sought to understand how Android app developers respond to
changes made to the Android API. They studied the version control repositories of ten
open-source apps and found that 28% of API references in these apps were outdated; that
is, the app developers called methods that had been replaced by newer versions of the same
methods in the API. In addition, 50% of these outdated references lagged by at least 16
months, meaning that there was a 16 month gap between the time a new method was
introduced in the API and the time the developer updated their own code to use the new
method. However, the authors did not take multi-version support into account: if the app
developer wants to support phones running older versions of Android, this lag and the use
of older API levels in general may be deliberate.

Kavaler et al. [57] studied the relationship between the popularity of the classes in the
Android API and the number of Stack Overflow questions and answers about the classes.
They measured the ‘popularity’ of a class by collecting a large corpus of over 100,000
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apps and counting the number of times the methods of each Android class were called
by the apps. The authors found that the popularity of a class was correlated with the
number of Stack Overflow questions asked about that class; that the size of a class in
lines of code was correlated with the number of questions asked about that class; and that
classes with more documentation also had more questions asked about them. Note that
these findings are correlations, not casual explanations; for example, it could be that when
classes are frequently asked about on Stack Overflow, the Android developers improve the
documentation for those classes; alternatively, it could be that a developer faced with an
overwhelming amount of documentation turns to Stack Overflow for a fast, personalized
answer.

2.1.2 Malware Detection

We searched the literature for papers that do the following:
• Attempt to classify Android apps as malicious or benign (allowing for a possible third

category, adware, or multiple additional categories if the classifier attempts to identify
the malware family);
• Perform classification using a machine learning classifier;
• Create feature vectors using static analysis only; and
• Execute the classifier on either the mobile device or a central server.
We focused on papers that use static analysis because we are interested in papers that

might use features specific to a particular Android API level, such as the methods and
permissions used by the app.

We identified 21 studies that met the inclusion criteria. Of these, 17 studies simply
attempt to detect malicious apps using a classification approach. The authors’ aim was to
produce a classifier that has high precision and recall. The other four are ‘meta-studies’ of
sorts, similar to this work, that attempt to determine how different research approaches
affect the accuracy of the resulting classifiers. These papers are thus not concerned with
maximizing classifier accuracy but rather with the relative accuracy of classifiers produced
using different methods. We discuss these two types of papers in turn.

Studies of App Classification

Our second research question asks whether classifier accuracy drops when the API level of
the apps is controlled. However, answering this question is valuable only if existing classifiers
use API-level-dependent input features: if not, there is no reason to answer the research

11



question. Thus, we explored the classification features used by the seventeen previous
studies of Android malware detection. Of these seventeen, thirteen studies explicitly use
Android method calls, Android permissions, or both as input features when training the
classifier [1,7,8,27,29,30,99–101,112,113,115,116]. Two use dataflow paths within the app,
implicitly relying on method calls [9, 64]. One uses only the string constants within the
app [102], and the final study uses code complexity metrics computed for the methods and
classes of the app [92].

The fact that fifteen of these seventeen studies use feature vectors that depend either
explicitly or implicitly on the API level of the app indicates that it is important to determine
whether controlling for API level affects classifier accuracy. However, we note that the final
two studies, whose input features did not depend on the API level, obtained fairly good
results. Sanz et al. [102] achieved a true positive rate of 94% at a false positive rate of 9%
with a random forest classifier. Protsenko and Müller [92] achieved a true positive rate of
94% at a false positive rate of 0.5% with a random forest classifier. This implies that a
classifier does not necessarily need to use API-level-dependent input features to correctly
classify apps.

Meta-Studies of App Classification

Four studies have considered whether the research methods used by security researchers—or,
more accurately, the assumptions underlying the methods—affect the accuracy of app
classification. Most similar to our work is a paper by Roy et al. [98] that considered the
impact of common methodological choices on classifier accuracy. In particular, the authors
considered whether using an outdated malware corpus can affect the performance of the
classifier. The authors trained two classifiers using the same benign apps but different
malicious apps. The first classifier used the Android Malware Genome Project (AMGP)
corpus as the malicious apps; this corpus was created in 2012 [121]. The second classifier
used new malware from Google Play as the malicious apps. The authors found that the
performance of the classifier that was trained and tested on new malicious apps was worse
than the other classifier. However, the authors did not investigate the cause of the difference,
and there are a number of plausible explanations. First, the new corpus could contain more
diverse malware samples. The AMGP corpus contains 49 different malware families, and
while this may have been the majority of families that existed at the time the corpus was
created, to date over 300 families have been identified [106]. A second possibility is that
the new malware is more sophisticated than the older malware and thus harder to detect.
A third possibility is that the API level of the apps was a confounding variable; i.e., the
first classifier was distinguishing old apps from new apps rather than malicious apps from
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benign apps. Our paper differs from Roy et al. in that we seek to determine if this third
explanation is the root cause of the difference they observed.

Allix et al. [2, 3] noted that, in practice, a classifier is trained on whatever malware is
currently available but will be used (i.e., tested) on malware that will be written in the
future. They therefore argued that the most common method of building and evaluating
classifiers, where apps are randomly assigned to the testing and training sets, produces
biased results: it allows the classifier to be trained on apps “from the future”. That is,
random selection means that some of the apps in the test set can be historically antecedent
to some of the apps in the training set. Giving the classifier knowledge of the future in
this way may make its accuracy unrealistically high. The authors tested this hypothesis by
training a random forest classifier with both historically coherent datasets, where the apps
in the training set were older than those in the test set, and random datasets, where the
apps in the training and test sets were selected randomly. They found that the classifier
that used the historically coherent training set always had a lower F-score than the classifier
that used the random training set. Moreover, for the historically coherent classifier, the
wider the time gap between the apps in the training set and the apps in the test set, the
worse the classifier performed. For example, when the classifier was trained on apps from
August 2011 and tested on apps from August 2013, the F-score was less than 0.1.

These results may seem to contradict those of Roy et al., since Allix et al. found that a
wider age gap between the training and test sets decreased classifier accuracy. However, the
two studies were considering slightly different problems. In Roy et al.’s study, the benign
apps were new in both the control and experimental conditions; only the malicious apps
were varied. Thus, the authors found that when malware is made “more different” from
the benign apps by introducing an age gap, classifier accuracy improved. Allix et al. were
manipulating app age for both the malicious and benign apps. Thus, the authors found
that when the classifier was trained on old apps, the features that were good predictors for
those apps were no longer good predictors for the new apps.

In this study, we hypothesized that both results could be explained by Android API
churn. The Android API changes quickly: every month, on average, 44 methods are
changed, 11 methods are added, 51 fields are changed, 9 fields are added, and less than
one method/field is removed [73]. In Roy et al.’s study, the old malware would have used
different Android methods than the new malware and new benign apps, making the old
apps easier to detect. In Allix et al.’s study, the greater the age gap between the testing
and training sets, the more the API would have changed; consequently, the input features
that were good predictors for the training set would no longer be good predictors for the
test set.
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Allix et al. [4] later performed another study to determine if classifiers that perform
well “in the lab” will also perform well “in the wild”. While they investigated a number
of different classifier properties, such as the number of features used and the malware to
benign app ratio used, the primary difference between the “lab” scenario and the “wild”
scenario was the number of apps used to train and test the classifiers. The “in the lab”
scenario used AMGP as the malicious apps and apps from Google Play as the benign apps;
this classifier used at most 4,747 apps for both training and testing. The “in the wild”
scenario trained the classifier using the entire universe from the “in the lab” study, i.e., the
4,747 AMGP and Play apps. The classifier was then tested on a large number of apps from
Google Play. The exact number ranged from 48,422 apps to 51,302 apps; the malicious or
benign nature of the apps was determined using VirusTotal. The authors did not indicate
the detection threshold they required from VirusTotal, but mentioned that 16% of the
Play apps were labelled as malware. The “wild” classifiers performed uniformly worse than
the “lab” classifiers, no matter how the other variables, such as number of features, were
varied. This indicates that having a wide variety of apps in a corpus makes classification
more difficult. However, it is not clear from their results if the sheer number of apps is
the important variable, or the fact that the “lab” classifier was trying to identify malware
from AMGP (old malware) while the “wild” classifier was trying to identify malware from
Google Play (new malware), which is essentially the scenario studied by Roy et al.

2.2 RQ1: How Many Applications?

In this section, we explore our first research question: how many apps should a mining-based
study use to obtain a generalizable result? We discuss the method we used to answer this
question in Section 2.2.1 and our results in Section 2.2.2.

2.2.1 Method

Our general approach was to determine how large a corpus needs to be before its charac-
teristics stabilize. That is, we measured various features of app corpora of varying sizes,
then explored how those measurements changed with corpus size and how large the corpus
needed to be before the measurements stopped changing. To accomplish this, we needed to
construct app corpora of varying sizes, and we needed to measure various features of those
corpora. We describe these two steps in turn.
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Creating App Corpora

We began by downloading 1.5 million Android apps from the PlayDrone snapshot of Google
Play [109]. The apps were selected randomly from the crawled set of apps in order to avoid
biasing the selection. As of May 3, 2016, there were 2,126,544 apps in the Google Play
store2, so our corpus represents a large part of the store. We ensured we did not include
duplicate apps by computing the SHA-256 hash of each app; apps with distinct hashes were
assumed to be different. We created seven corpora of the following sizes: 10 apps, 100 apps,
1,000 apps, 10,000 apps, 100,000 apps, 1,000,000 apps, and 1,368,376 apps. The largest
corpus did not include all 1.5 million apps due to our callgraph extraction tool failing on
some apps; see Section 2.2.1. Each corpus was a subset of the next larger corpus.

Measuring App Features

We chose to compare the corpora using the following four features:
• the most popular 20 Android API methods used by the apps in the corpus;
• the least popular 20 Android API methods used by the apps in the corpus;
• the number of distinct API methods used by each app in the corpus; and
• the number of distinct API levels (versions) used by each app in the corpus.
We selected these features because they are commonly considered in studies of Android.

For example, the four papers discussed in Section 2.1 [57,65,66,73] all consider the usage
of Android methods. The studies that attempt to detect Android malware based on the
usage of API methods also naturally rely on the identification of popular methods. Other
examples include studies by Parnin et al. [88] and Linares-Vásquez et al. [67, 68].

To compare the features we selected, we needed to construct a master list of Android
API methods and the API level in which each was introduced and determine which methods
were used by each app. We discuss these steps in turn.

Master Method List We obtained a list of Android methods and the API level in which
they were introduced by parsing files from the official Android developer documentation. To
get the methods that existed in level 1, we parsed the api-versions.xml file. We looked
for classes with the attribute “since” equal to 1, and within those classes looked for any
method that also had an attribute “since” equal to 1. We mapped all of these methods to
level 1 of the API.

2http://www.appbrain.com/stats/stats-index
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We then parsed the api-diff files that are provided by the Android developers for levels
3 through 22; level 2 does not have any diff files available. The diff files for level n list all
changes to the API made between level n− 1 and n. For every level, we parsed the change
files to find methods that were added in level n and assigned them to API level n in our
list of methods. In total, we identified 21,978 different methods in the 22 levels. Table 2.1
summarizes the number of methods in each API level. Note that level 2 of the API does not
have any api-diff files available; we therefore have no methods mapped to that level. Level
6 of the API did not add any methods, so we also have no methods mapped to level 6. Note
also that we considered all public methods included by the Android team in their diff reports
to be part of the API. This means that, for example, java.lang.String.length() and
org.apache.http.StatusLine.getStatusCode(), methods one might not instinctively
think of as Android API methods, are included. We include these methods because the
Android developers have copied or re-implemented this functionality in their own code base,
and consequently must maintain this code over time.

Determining Method and Level Usage Next, to determine which API methods were
used by a given app, we used the Androguard3 tool to generate a callgraph for each app. We
were able to extract callgraphs for 1,368,376 of the apps we collected from the PlayDrone
snapshot. We parsed these callgraphs to identify the methods used by the app and removed
non-Android methods using our list of Android methods. For each app, we counted the
number of distinct Android methods it called and the number of distinct API levels it
used, where a level is “used” if the app calls a method that was introduced in that level.
Concretely, if an app uses methods that were introduced in API levels 1, 10 and 12, we
consider that it uses three distinct API levels. We then combined the results from all apps
to determine the most and least popular methods for each corpus. When determining
popularity, we counted all method calls and not just distinct calls for each app; that is,
if a given app calls a method ten times, we increment the total number of calls for that
method by ten. Figures 2.1 and 2.2 clarify this difference. The figures are treemaps, where
each box represents one method; the colour of each box represents the level in which it was
introduced. In Figure 2.1, the area of each box is proportional to the total number of times
each method is called. In Figure 2.2, the area of each box is proportional to the number of
distinct apps calling the method. Note that API methods that were not used by any of the
apps in the corpus have zero area and are therefore not represented in the figures.

3https://github.com/androguard/androguard
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Table 2.1: The number of Android methods introduced and removed in each
API level (version) and the total number of methods in each level.

Level Methods added Methods removed Total
1 17,627 0 17,627
2 0 0 17,627
3 417 0 18,044
4 86 3 18,127
5 205 0 18,332
6 0 0 18,332
7 53 0 18,385
8 208 2 18,591
9 529 17 19,103

10 7 1 19,109
11 449 10 19,542
12 79 2 19,619
13 22 0 19,641
14 302 17 19,926
15 27 0 19,953
16 393 10 20,336
17 151 19 20,468
18 159 4 20,623
19 287 4 20,906
20 32 1 20,937
21 859 17 21,779
22 79 2 21,856
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Figure 2.1: Usage of the 21,971 methods in the Android API. Each box repre-
sents a method. The area of the box represents the total number of times the
method was called by all apps. The colour of the box indicates the API level
in which the method was introduced.
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Figure 2.2: Usage of the 21,971 methods in the Android API. Each box rep-
resents a method. The area of the box represents the number of apps in the
corpus that call the method. The colour of the box indicates the API level in
which the method was introduced.
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Generating our dataset was an extremely time consuming process. To manage this
for our 1,368,376 apps, we employed Computer Canada’s Sharcnet research cluster which
provides multiple 1,000+ core clusters for sequential jobs. These jobs generated 11 TB
of callgraphs that each had to be extracted, parsed, and combined to achieve our final
dataset. This supports our assertion in the introduction of this chapter that app mining is
expensive and further motivates our desire to understand how many apps are necessary for
generalizable results.

2.2.2 Results

We begin our presentation of the results by comparing the number of distinct methods
and levels used by the apps in each corpus. Figures 2.3 and 2.4 show this information as
boxplots. In Figure 2.3, the median and first and third quartiles are fairly stable for all
corpora containing at least 100 apps. However, the largest corpora have more outliers.4 In
Figure 2.4, we see roughly the same pattern; however, the first and third quartiles do not
stabilize until the corpus contains 1,000 apps and the median does not stabilize until the
corpus contains 10,000 apps.

More formally, we can compare the distributions of pairs of corpora using statistical
tests. We compare each of the five smallest corpora to the corpus containing one million
apps. When doing each comparison, our null hypothesis is that the data sets are drawn
from the same population distribution function. As we know that all apps are drawn from
the same universe of apps, disproving the null hypothesis indicates that—to be extremely
imprecise—the smaller corpus is “very different from” the one-million-app corpus.

We use two statistical tests: the two-sample Kolmogorov-Smirnov (K-S) test and the two-
sample Kuiper test. The K-S test is most sensitive around the median value [91]. Roughly
speaking, it is good at detecting distribution shifts but may not be able to distinguish
between distributions that vary only in the outlying values. The Kuiper test is a variant of
the K-S test that accounts for this and so is equally sensitive at all parts of the distribution.
All this means that, if we reject the null hypothesis for both tests, neither the central values
nor the outliers of the smaller corpus are representative of the one-million app corpus. If we
reject the null hypothesis with the Kuiper test but not the K-S test, the central values are
representative of the one-million-app corpus but the outlying values are not. If we cannot

4By default, R plots a data point as an outlier if it is more than 1.5 ∗ IQR above the third quartile or
more than 1.5 ∗ IQR below the first quartile, where IQR is the interquartile range, or the difference between
the third and first quartiles.
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reject either null hypothesis, the two data sets are consistent with a single distribution
function; that is, the smaller corpus is representative of the one-million-app corpus.

Table 2.2 shows the p-values obtained from this test for the distinct Android methods
used and the distinct Android levels used. For the Android methods used, we see that we
cannot reject the null hypothesis for the corpora of size 100 and size 100,000. That is, the
entire distribution of the number of methods used for those two corpora, including outliers,
is similar to the distribution for the one-million-app corpus. However, given that we can
reject the null hypothesis with p = 0.06 and p = 0.01 for the 1,000 and 10,000 app corpora,
our results suggest that one needs a corpus of 100,000 to adequately represent a population
of 1,000,000 apps, including outliers. As the Play store has several million apps at the
time of this writing, one might consider using several hundred thousand apps. We cannot
reject the null hypothesis for any of the corpora when using the K-S test, indicating that
the central values of the distributions of the two data sets are similar even when we are
comparing a 10-app corpus to the one-million-app corpus. However, given that the p value
of the K-S test for the 10 app corpus is only 0.28, one may prefer to use 100 apps in place
of the larger corpus instead of 10 apps.

For the Android levels used, we can only reject the null hypothesis for the corpus of
10,000 apps using the Kuiper test. In other words, all other corpora were representative
of both the outliers and the central values of the one-million-app corpus, even the corpus
containing only ten apps.

Next, we compare the most and least popular 20 API methods in each corpus. We
consider the most and least popular 20 methods in the largest corpus, with 1,368,376, as
the gold standard, and compare the most and least popular methods in the other corpora
to those results. Table 2.3 shows how many of the top 20 methods in the smaller corpora
match the top 20 in the largest corpus, both when rank order is considered and when it
is not. Table 2.4 shows the same information for the 20 least popular methods including
methods with no calls; that is, all of the methods considered were not used by the apps in
the corpus. Table 2.5 shows the same information for the 20 least popular methods that are
called by at least one app. As the tables show, the top 20 methods are extremely similar
in all corpora when order is ignored. When order is considered, using at least 1,000 apps
results in an 80% match with the largest corpus. For the bottom 20 methods with zero calls,
however, good results are not obtained until 1,000,000 methods are used. For the bottom
20 methods called by at least one app, even a corpus of 1,000,000 apps does not produce
good results: only 35% of the methods matched the least popular methods in the largest
corpus even when order was ignored, and only 10% matched when order was considered.
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Figure 2.3: The number of distinct Android API methods used by the apps in
each of seven app corpora of different sizes.
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Figure 2.4: The number of distinct Android API levels used by the apps in
each of seven app corpora of different sizes.
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Table 2.2: P values of the Kolmogorov-Smirnov (K-S) and Kuiper tests com-
paring each smaller corpus to the largest corpus (1,000,000 apps). The null
hypothesis is that the data sets are drawn from the same population distri-
bution function. The alternative hypothesis is that the two experimental dis-
tributions are consistent with the same theoretical distribution. The second
and third columns give P values for the distributions of distinct methods used,
while the fourth and fifth columns give P values for the distributions of distinct
levels used.

Corpus Size K-S (DM) Kuiper (DM) K-S (DL) Kuiper (DL)
10 0.28 0.01 0.99 0.92

100 0.83 0.45 0.97 0.86
1,000 0.46 0.06 0.91 0.65

10,000 0.28 0.01 0.28 0.01
100,000 0.97 0.84 0.64 0.19

Table 2.3: The percentage of the most popular 20 API methods in each corpus
that match the most popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored.

Corpus size % matches (rank considered) % matches (rank ignored)
10 20 90

100 60 100
1,000 80 100

10,000 80 100
100,000 100 100

1,000,000 100 100

24



Taken together, our results suggest that between 10 and 1,000 apps are necessary to
capture typical behaviour, depending on the corpus feature of interest. A million or more
apps may be required to capture outlying values, again depending on the corpus feature of
interest. We combine these results in the following guideline.

Answer 2.1. A corpus containing 1,000 apps is likely sufficient for studies that consider
“normal” behaviour, or things that the majority of apps do. Detecting outliers naturally
requires more apps, and over a million may be required for a generalizable study.

We discuss the results further in Section 2.4 after we answer our second research question.

Table 2.4: The percentage of the least popular 20 API methods in each corpus
that match the least popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored, including methods with zero calls.

Corpus size % matches (rank considered) % matches (rank ignored)
10 0 15

100 5 30
1,000 10 40

10,000 10 50
100,000 20 60

1,000,000 100 100

Table 2.5: The percentage of the least popular 20 API methods in each corpus
that match the least popular 20 API methods in the largest corpus, both when
order is considered and when it is ignored, excluding methods with zero calls.

Corpus size % matches (rank considered) % matches (rank ignored)
10 0 0

100 0 0
1, 000 0 0

10, 000 0 0
100, 000 0 0

1, 000, 000 10 35
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2.3 RQ2: Should API Level Be Controlled?

In this section, we explore our second research question: should studies of Android malware
detection control the API level of the apps used in the study? We discuss the method we
used to answer this question in Section 2.3.1 and our results in Section 2.3.2.

2.3.1 Method

To answer our research question, we used the following high level procedure:
• Gathered apps from Google Play and used the VirusTotal service to determine their

benign or malicious nature;
• Gathered additional malicious apps from established corpora to enhance our own

corpus;
• Assigned each of our collected apps to an API level;
• Trained a classifier on the apps assigned to each level;
• For each level, trained a “paired” classifier on a random selection of apps from all

levels; and
• Compared the performance of the level-specific classifiers to the classifiers trained on

apps from many levels.
We now discuss these steps in more detail.

Gathering Apps from Google Play

Recall that we began answering our first research question by downloading 1.5 million
Android apps from the PlayDrone snapshot of Google Play [109]. To answer our second
question, we needed to extract feature vectors from these apps to use as input to our
machine learning classifiers. We successfully extracted features from 1,366,317 of these
apps; see the discussion of feature extraction below.

To perform supervised machine learning, it is necessary to label each app in the input
dataset as benign or malicious. While the majority of Google Play apps are benign, it
would be naive to assume that there are no malicious apps in a corpus of 1.3 million. Thus,
to assign labels to the apps from Google Play, we retrieved scan reports from the VirusTotal
analysis service5 using the apps’ SHA-256 hashes. VirusTotal analyzes each app with a
number of antivirus tools and reports which tools flag the app as benign and which flag it

5http://www.virustotal.com
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as malicious. The exact number of antivirus tools used depends on the app and the time
at which it was scanned and, for our dataset, ranges from 2 to 58. Of the 1,366,317 apps
we analyzed, 71,224 did not have existing scan reports in VirusTotal’s database. Due to
VirusTotal’s public API limits6, we omit these apps from our corpus instead of submitting
them for analysis; as they represent only 5% of the apps, we felt this was an acceptable
threat to validity. We also omitted two apps that had scan reports but were scanned by 0
antivirus tools. In total, we were able to label 1,295,091 apps.

As previously mentioned, VirusTotal reports a detection ratio rather than a boolean
decision for each app. Figure 2.5 shows the percentage of tools that flagged each app as
malicious. The vast majority of apps – 1,105,297 or 85% – were flagged by zero tools. The
remainder were flagged by at least one antivirus tool. However, some of these tools will
produce false positives, so we did not want to label an app malicious if it was flagged by a
small number of tools. Instead, we required that at least 27% of the tools that scanned
a particular app flagged it as malicious (recalling that different apps were scanned by a
different number of tools). This corresponds to the division between the ninth and tenth
vertical bars in Figure 2.5, or where the “hump” that peaks at 25% begins to drop off.
Consequently, we labelled 38,336 apps or 3% of the total as malicious and 1,256,755 apps
or 97% as benign.

One may wonder if this value reflects the true ratio of malicious to benign apps in
Google Play. Unfortunately, it is impossible to know the true ratio, and estimates of it vary
widely. Google claims the ratio is very low:

With respect to “malicious” applications, less than 1 out of every million installs
of an application observed by Verify Apps abused a platform vulnerability in a
manner that we think it would be appropriate to characterize as “malicious”. [32]

On the other hand, security researchers claim it may be one in a hundred or higher [77].
We believe 3% is not unreasonable considering that our apps represent more than half the
apps in the store.

Gathering Additional Malicious Apps

We supplemented the corpus with malicious apps provided by the Android Malware Genome
Project (AMGP) [121], McAfee, and the Drebin project [7]. As these collections are curated

6The maximum is four requests per minute and submitted apps have the lowest priority of all scans;
consequently, one must wait and repeatedly query for the result.
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Figure 2.5: The percentage of VirusTotal scanning tools that marked the apps
we obtained from the Play store as malicious.

by experts, we assume they are correctly labelled and do not perform any further analysis.
These three corpora totalled 7,120 apps, of which we were able to extract features from
7,036; see the discussion of feature extraction below.

To evaluate the detection threshold we selected in the previous step, we submitted these
7,036 apps to VirusTotal. As Figure 2.6 shows, some malicious apps are missed by the
service and are flagged by less than three percent of the tools. However, most apps were
flagged as malicious by at least 27% of the tools, consistent with our previously selected
threshold.
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Figure 2.6: The percentage of VirusTotal scanning tools that marked the apps
we obtained from malware corpora as malicious.

Assigning Apps to an API Level

In order to determine if the API level is a confounding variable when evaluating a classifier,
it was necessary to assign each app to an API level between 1 and 22, inclusive. In theory,
it is easy to identify the API level for an app, as developers can indicate an app’s target
API level in its manifest file.7 In practice, this information is optional and we found that it
was missing for many apps. In addition, even when it is present, the developer can specify
a minimum and maximum level rather than a target level, which is not precise enough for
our purposes. Finally, the information in the manifest is not guaranteed to be correct. For
these reasons, we needed to use a more accurate approach to determine the API level of

7https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
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each app. At a high level, we identified the API level in which each Android method and
permission was introduced, identified which Android methods and permissions were used
by each app, and chose each app’s level based on the levels of the methods and permissions
it used. Our procedure for the first two steps was discussed in Section 2.2.1; however, for
this part of the study, we also considered the permissions used by the app. To get a list of
permissions and the API level in which each was added, we parsed the Android developer
documentation.8 We identified 152 permissions in total in the 22 levels. We parsed the
manifest file included in each app to get a list of the declared permissions.

After identifying the Android methods and permissions used by the app, we identified
the level that each method and permission mapped to, and selected the maximum of those
levels as the app’s level. For example, if an app uses methods from levels 1, 4, and 8, we
chose level 8 as the app’s level. The level therefore represents the most modern features
used by the app.

Figures 2.7 and 2.8 show the distribution of apps over levels. Specifically, Figure 2.7
shows the distribution of Google Play apps over the 22 Android levels and whether each
app was labelled benign or malicious according to VirusTotal and our selected detection
ratio threshold. Two apps from Google Play could not be assigned to a level using our
procedure as they did not use any Android API methods; we omit these two from the
analysis. In addition, as level 2 of the API does not have any api-diff files available, we
have no methods mapped to that level. We do have two permissions mapped to level 2,
however, so some apps were assigned to that level. Level 6 of the API did not add any
methods or permissions, so we have no apps mapped to level 6.

Figure 2.8 shows the distribution of known-malicious apps from the AMGP, Drebin,
and McAfee corpora over the 22 Android API levels. The apps from these three sources
are graphed in a different figure for three reasons. First, there are 100 times as many apps
from Play as from the other three sources; this would make it difficult to see the apps from
non-Play sources if the figures were combined. Second, the apps in Figure 2.8 are virtually
certain to be malware, since the collections are curated by experts; the labels for the apps
in the Play figure are assigned based on a VirusTotal threshold and so are less certain.
Third, comparing the two figures shows that apps from Google Play tend to be assigned to
newer API levels, which is not surprising given that many app authors update their apps.
Apps from the malware corpora are biased toward older API levels, as they were collected
some time ago. Table 2.6 provides more information about the number of apps assigned to
each level and the percentage of apps in each level that were labelled malicious.

8http://developer.android.com/reference/android/Manifest.permission.html
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Figure 2.7: The distribution of Google Play apps among Android API levels.
Colour indicates whether or not the app was assigned to the malicious category.

Training Classifiers for Each Level

The classifiers we trained for this study varied in three dimensions. First, they varied in
whether app level was controlled; that is, whether the apps used to train and test the classifier
were all assigned to the same API level or not. Second, they varied in the classification
algorithm used: we tried both k-nearest neighbours and random forest classifiers. Third,
they varied in the feature set used: we tried both a method-based feature set and a
metrics-based feature set. We discuss these three dimensions in more detail below.

Whether App Level Is Controlled The primary aspect we varied for this experiment
was whether the app level was controlled. In the fixed-API-level situation, for each API
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Figure 2.8: The distribution of malicious apps from the Drebin, McAfee, and
AMGP corpora among Android API levels.

level, we trained a classifier on the apps assigned to that level. In the random situation, for
each API level, we trained a classifier on the same number of apps as were assigned to that
level, but selected at random from all API levels. For example, the level 13 classifier was
trained and tested on the 4,444 apps assigned to that level; the paired classifier was trained
and tested on 4,444 apps randomly selected from all levels. We omitted levels 2 and 6 from
the experiment as they did not have enough apps assigned to them to produce meaningful
results.

Classification Algorithm We applied two different classifiers: k-nearest neighbours and
random forest. The k-nearest neighbour classifier embeds every training vector into a vector
space. New apps are classified by embedding them into the same vector space, finding the
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Table 2.6: The number of apps from our dataset assigned to each level. The
third and fourth columns give the number of malicious apps as a count and as
a percentage of the total, respectively. The table includes the 1,295,091 apps
from Google Play and the 7,036 from other sources.

API level Apps assigned Malware assigned Malware (% of total)to level to level
1 61,391 1,342 2.2
2 19 2 10.5
3 32,389 1,977 6.1
4 50,177 4,292 8.6
5 34,209 2,081 6.1
6 0 0 0.0
7 24,134 1,941 8.0
8 44,003 1,421 3.2
9 21,421 700 3.3

10 6,361 9 0.1
11 56,091 2,634 4.7
12 10,332 55 0.5
13 4,444 331 7.4
14 39,630 610 1.5
15 1,230 11 0.9
16 136,559 4,600 3.4
17 354,415 13,037 3.7
18 92,570 1,958 2.1
19 270,993 7,847 2.9
20 55,273 482 0.9
21 3,196 17 0.5
22 3,288 25 0.8

All levels 1,302,125 45,372 3.5

nearest k points in the space, and choosing the label that matches the majority of the
neighbours. This classifier type has the advantage of making few assumptions about the
data. In particular, if different malware families differ from each other as well as from
the benign apps, kNN is capable of identifying these “neighbourhoods” in the feature
vector space. The main disadvantages are classification time and the so-called “curse of
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dimensionality”. Classification time will grow in proportion to the number of vectors in the
training set unless an approximation technique such as locality sensitive hashing [5] is used.
The “curse of dimensionality” refers to the fact that, in high dimensional spaces, the nearest
neighbours may no longer be very near, reducing classification accuracy. Nonetheless, kNN
is a fairly popular classifier type: it was used by four of the twenty-one studies discussed in
Chapter 2.1 [1, 8, 98,112].

Random forest classifiers are based on decision trees. In a decision tree, each node of the
tree contains a rule based on the input features that is used to split the training examples
at that node into two or more groups. The leaves of the tree represent classification labels;
an app is classified by successively applying rules starting at the root of the tree until a leaf
is reached. Decision trees have a tendency to produce very specific rules that overfit the
training data. This can be mitigated by training multiple trees: each tree is trained with
a random subset of the input data and the final classification is determined by majority
vote. A classifier of this type is called a random forest. Again, the classifier makes few
assumptions about the input data, and in this case, classification can be done in time
proportional to the logarithm of the number of training samples. Random forests were used
by nine of the twenty-one studies discussed in Chapter 2.1 [2–4,30,64,92,100–102].

We used these two approaches to ensure that our results were not due solely to the
choice of classifier. For both classifier types, we used a slight variation of ten-fold cross
validation for training. We split the data into ten pieces and used eight of them for training.
One piece was used to tune the parameters of the classifier – in particular, the value of k or
the number of trees in the forest, depending on the classifier type – and the final piece was
used for testing. Over the ten folds, every piece was used as the tuning set exactly once
and the testing set exactly once. We used scikit-learn [89] for the training.

Feature Set In Section 2.1, we saw that the majority of existing studies that use static
analysis to derive classifier features depend explicitly or implicitly on the methods and/or
permissions used by an app. However, there were two studies that did not: the first
used the strings in the app as features [102], while the second used complexity metrics as
features [92]. We sought to understand the impact of controlling for API level in both
situations; that is, when methods and permissions are used as features and when they are
not. We hypothesized that if classifier accuracy drops when the API level of the apps is
controlled, we would see a stronger effect when methods are used as features than when
they are not. Consequently, we used two different feature sets. The first feature set is the
API method calls and permissions used by the app, determined using Androguard. The 22
levels of the Android API define 21,978 different methods and 152 permissions for a total

34



of 22,130 features. The second feature set is the set of 144 code complexity metrics used
by Protsenko and Müller in their study [92]. We normalized the metrics (subtracted the
mean and divided by the standard deviation) to ensure that no one metric would have a
disproportionate influence on the classification simply because it has high variance.

We did not include app strings as features because the number of features in this feature
set grows with the number of apps analyzed. While this may not have been an issue for
the 666 apps used in the original study [102], it would have produced a computationally
infeasible number of features for this study.

As mentioned earlier in this chapter, we could not extract feature vectors from all of
the apps we collected. Specifically, we obtained vectors for 1,366,317 Google Play apps and
7,036 apps from our three malware corpora. This was due to either Androguard or Soot (on
which Protsenko and Müller’s metric extractor is based) failing to complete their analyses.

Summary

In total, we obtained a feature vector and, when applicable, a VirusTotal report for 1,302,125
apps. Varying the training parameters described above produced eight configurations per
API level. As we omitted levels 2 and 6, we trained classifiers for 20 API levels, giving us a
total of 160 classifiers.9

2.3.2 Results

In this section, we discuss whether controlling API level reduced classification ability. We
also explore how classification ability was affected by the choice of classifier type and feature
set. In each case, we compared the paired classifiers (the level-specific and random ones)
using the Wilcoxon signed rank test. We chose to compare the F-scores of the classifiers as
this score captures both precision and recall and thus simplifies presentation. In any case,
we are primarily interested in the relative performance of each pair of classifiers rather than
their absolute performance. If, as we hypothesized, API churn has led to overly optimistic
evaluations in previous studies, we would expect the API-level-specific classifier to perform
worse than the paired random classifier in most cases (i.e., we would expect the blue points
to have lower y-values than the green points in Figures 2.9 through 2.12). In practice, we
saw the opposite relationship, as we discuss further below.

9Of course, as we used ten-fold cross validation, in practice we trained 1,600 classifiers.
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kNN, Methods as Features

Figure 2.9 shows the results obtained when we trained kNN classifiers using methods as
input features. The figure shows that the classifiers trained and tested on apps from a
particular API level almost always had a higher F-score than the ones trained on the same
number of randomly selected apps. Using R’s Wilcoxon signed rank test indicates that the
difference between the means was significant with a p-value of 0.0007. The effect size was
also large: using R’s function for Cohen’s d reveals an effect size of 0.98.

Careful examination of the figure will reveal that two data points are missing: the
results for the level-specific classifiers for levels 10 and 15. In these two cases, the classifier
never predicted a positive (malicious) label. Recalling that precision is the number of true
positives divided by the sum of the true and false positives, it is clear that precision in this
case is undefined, and consequently, the F-score is also undefined. The paired points, or
the random classifiers for levels 10 and 15, were omitted when computing the p-value and
effect size as those calculations require pairs of measurements.

kNN, Metrics as Features

Figure 2.10 shows the results obtained when we trained kNN classifiers using metrics as
input features. As in the previous scenario, the classifiers trained and tested on apps from
a particular API level almost always had a higher F-score than the ones trained on the
same number of randomly selected apps. Using R’s Wilcoxon signed rank test indicates
that the difference between the means was significant with a p-value of 7.6e-05. The effect
size was also large: using R’s function for Cohen’s d reveals an effect size of 1.09.

As in the previous scenario, the level-specific classifiers for levels 10 and 15 never
predicted the label “malicious” for the apps in the test set in any of the ten folds. Thus,
the paired points were omitted from the p-value and effect size computations.

Random Forest, Methods as Features

Figure 2.11 shows the results obtained when we trained random forest classifiers using
methods as input features. As in the previous two scenarios, the classifiers trained and
tested on apps from a particular API level almost always had a higher F-score than the
ones trained on the same number of randomly selected apps. Using R’s Wilcoxon signed
rank test indicates that the difference between the means was significant with a p-value of
0.0003. The effect size was also large: using R’s function for Cohen’s d reveals an effect
size of 1.04.
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Random Forest, Metrics as Features

Figure 2.12 shows the results obtained when we trained random forest classifiers using
metrics as input features. As in all the other scenarios, the classifiers trained and tested
on apps from a particular API level almost always had a higher F-score than the ones
trained on the same number of randomly selected apps. Using R’s Wilcoxon signed rank
test indicates that the difference between the means was significant with a p-value of 3.6e-05.
The effect size was also large: using R’s function for Cohen’s d reveals an effect size of 1.24.

Answer 2.2. API level does not need to be controlled when evaluating classifier accuracy.
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Figure 2.9: The F-scores of k-nearest neighbour classifiers that used methods
as features. As we used ten-fold cross validation, each point represents the
average f-score of the ten folds. The x-axis shows the Android API level that
the apps belong to for the level-controlled classifiers (blue points). The paired
classifiers (green points) are trained and tested using the same number of apps
as the level-controlled classifier at the same position on the x axis.
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Figure 2.10: The F-scores of k-nearest neighbour classifiers that used metrics
as features. As we used ten-fold cross validation, each point represents the
average f-score of the ten folds. The x-axis shows the Android API level that
the apps belong to for the level-controlled classifiers (blue points). The paired
classifiers (green points) are trained and tested using the same number of apps
as the level-controlled classifier at the same position on the x axis.

39



●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1 3 5 7 9 11 13 15 17 19 21

Android API level

A
ve

ra
ge

 F
−

m
ea

su
re

Configuration ● ●Fixed API level Randomly selected apps

Figure 2.11: The F-scores of random forest classifiers that used methods as
features. As we used ten-fold cross validation, each point represents the average
f-score of the ten folds. The x-axis shows the Android API level that the apps
belong to for the level-controlled classifiers (blue points). The paired classifiers
(green points) are trained and tested using the same number of apps as the
level-controlled classifier at the same position on the x axis.
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Figure 2.12: The F-scores of random forest classifiers that used metrics as
features. As we used ten-fold cross validation, each point represents the average
f-score of the ten folds. The x-axis shows the Android API level that the apps
belong to for the level-controlled classifiers (blue points). The paired classifiers
(green points) are trained and tested using the same number of apps as the
level-controlled classifier at the same position on the x axis.
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2.4 Discussion

We begin the discussion of our results by answering the research questions defined in the
introduction to this chapter. With regards to our first research question, it seems that 1,000
apps may be sufficient for studies that consider “normal” behaviour, or things that the
majority of apps do. Detecting outliers naturally requires more apps, and over a million
may be required for a generalizable study.

The results from our second research question provide a way of testing this guideline.
Recall that for each API level, we generated a paired classifier that contained a random
selection of apps. These corpora contained different numbers of apps, allowing us to see
how classifier accuracy changes with corpus size. Figure 2.13 shows this information; we
can see that the accuracy of the classifiers increases with size and is still increasing for the
largest corpus we considered (354,415 apps). This provides additional data to support our
claim that at least 1,000,000 apps may be needed to detect unusual behaviour.

With regards to our second research question, we found that API level does not need to
be controlled when evaluating classifier accuracy. In fact, when API level was controlled,
classification accuracy actually increased, regardless of the feature set used or the classifier
type. This indicates that the existing work discussed in Section 2.1 is not affected by this
potential threat to validity.

An open question is the cause of this increase in accuracy. Lamba et al. [62] studied
how Android app developers use the API and found that they frequently call the same
groups of methods together in their own user-defined methods. These API usage patterns
offer a possible explanation for our results. Apps that use the same API level are likely
to use many of the same patterns, which may help the classifier distinguish malware from
benign apps. However, when training a classifier on apps from many levels, the patterns
are different for each level and so are less useful for classification. We plan to explore this
possibility by re-analyzing the callgraphs from the apps in our study. We also plan to
measure the information gain of the input features to see which ones are the most useful
for classification; this may help explain our findings further.

Another possible use of our results is to help Android API maintainers make maintenance
decisions. APIs require a great deal of maintenance [39], but this maintenance is often
done in an ad-hoc way, without collecting data about how the API is used by clients [120].
Without such data, it is difficult to make informed decisions about the evolution of the API.
Changes that seem reasonable to the API maintainers may end up having a significant
negative effect on API clients.
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Figure 2.13: The F-scores of the paired classifiers (randomly selected apps) as
a function of the number of apps used to train and test the classifier.
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The mailing list archives of the Seaside project provide an example of this. First, an
API user asked about several classes that he could not find in the latest version of the
framework:

In looking at Seaside 2.81.390 I noticed that the Seaside 2.6 dialog classes listed
below are not in Seaside 2.8a1.390. I have not been paying attention to Seaside
2.8 so don’t know much about its status. I am wondering if these classes have
been dropped, have not been ported to 2.8 or does their functionality exists
elsewhere?
Missing Dialog classes
WAChangePassword
WAEditDialog
WAEmailConfirmation
WAGridDialog
WALoginDialog
WANoteDialog

To which one of the Seaside developers replied:

They have been dropped. A mail went out to this list if anybody still used them
and nobody replied. [111]

Changes that negatively impact the API users in this way harm their opinion of the
API and, in some cases, may lead them to adopt a different API. The problem of negatively
impacting clients is particularly relevant for the Android framework, as changes to the
API impact both the app developers and the customers using the apps. Unnecessary,
burdensome changes may drive away app developers, while apps with high code churn have
been shown to have lower user ratings [35]. Thus, the API maintainers could benefit from
the use of data science to determine the most and least popular API methods.

Concretely, we found that 4,547 of the 21,971 Android API methods we identified were
not used by any of the apps in our largest corpus (1,368,376 apps). However, 1,050 of these
methods belong to abstract classes, 519 belong to interfaces, and 17 of the methods in
concrete classes were removed. If we conservatively assume that a static analysis could
not detect uses of the methods in the abstract classes and interfaces, this still leaves 2,961
methods that are not used by the apps in our corpus. In other words, a non-trivial portion
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(13%) of the Android API does not appear to be providing any benefit to the apps we
analyzed. Given the large size of our corpus, it seems safe to say that these methods
contribute little to the API. Removing them could shrink the API, reducing maintenance
effort for the Android team while also reducing the number of API methods that API users
must consider when searching for the functionality they desire.

In fact, the API developers themselves are sometimes aware that the methods con-
tribute little to the API. For example, both versions of the method isBoring in the
android.text.BoringLayout class are not used by the apps we studied; the documenta-
tion for this class states: “A BoringLayout is a very simple Layout implementation for text
that fits on a single line and is all left-to-right characters. You will probably never want to
make one of these yourself.”

To see some other candidates for deprecation, we list the ten least popular methods
in our dataset in Table 2.7. None of these methods were used by the apps in our corpus.
Three of the methods belong to abstract classes: ClipboardManager.init (a constructor),
getPackageInstaller, and addNodeChangeListener. They may have zero recorded calls
because the static analysis was not capable of detecting calls to concrete implementations.
The method stopLeScan was deprecated in level 21, suggesting that the API maintainers
are aware that it is not often used. However, the remaining six methods provide examples of
methods that have not been deprecated and do not belong to abstract classes or interfaces,
but are not used by app developers. These methods may therefore be logical candidates for
deprecation.

The four studies of Android API method usage discussed in Section 2.1 considered how
developers use Android API methods, as we do, but did not consider the least popular
Android methods with an eye to deprecation. In addition, two used different populations of
apps and methods: Li et al. [65] considered only malware, while Li et al. [66] considered
only “inaccessible” API methods. Thus, our results provide a new perspective on how
mining method usage from a large corpus can be used to guide deprecation.

2.5 Threats to Validity

As our work relies on Androguard, a static analysis tool, the usual static analysis shortcom-
ings apply. If an app leveraged reflection to access an API method, we would not identify
this call. More importantly, if an app leveraged an API by extending a class, we would also
exclude such a call, unless it was a direct call (such as super()) to a call in the Android
API.
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Table 2.7: The ten least popular methods from the Android
API in our dataset. Each method descriptor has the format
className::returnType::methodName::(methodArguments). None of the methods
were called by apps in our dataset.

Rank Method descriptor
21,962 java.util.BitSet::BitSet::valueOf::(long[])
21,963 android.view.InputDevice::int::getControllerNumber::()
21,964 android.text.ClipboardManager::ClipboardManager::init::()
21,965 android.content.pm.ServiceInfo::int::describeContents::()
21,966 java.util.LinkedList::E::removeLast::()
21,967 android.bluetooth.BluetoothAdapter::void::stopLeScan::

(android.bluetooth.BluetoothAdapter.LeScanCallback)
21,968 android.test.mock.MockPackageManager::List::

getPreferredPackages::(int)
21,969 android.content.pm.PackageManager::PackageInstaller::

getPackageInstaller::()
21,970 java.util.prefs.AbstractPreferences::void::addNodeChangeListener::

(java.util.prefs.NodeChangeListener)
21,971 java.util.concurrent.Executors::Callable::callable::

(java.lang.Runnable, T)

An additional threat to validity is whether the apps we used are a representative sample
of the universe of apps. We attempted to mitigate this threat in several ways. First, we used
a large number of apps from the PlayDrone corpus: over half the apps that are available
from the Play store. Second, we used three different malware corpora: AMGP, Drebin, and
apps from McAfee. Each corpus might be biased towards a particular type of malicious
app (e.g., command and control apps) or a particular age of app, but by using all three
corpora, we have increased the variety of malware in our corpus. Thus, we feel these apps
are representative of the apps available for download from the Play store.

Unfortunately, using apps from the Play store introduces another threat to the validity of
our second study: whether or not the apps are correctly labelled as benign or malicious. We
attempted to mitigate this threat by choosing a detection threshold based on the VirusTotal
distribution histogram and ensuring that the percentage of apps labelled malicious was
in line with existing estimates. This is not a perfect solution, but as it was infeasible to
manually examine each of the 1.3 million apps, we feel it is an acceptable threat.
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Another threat to the validity of our malware detection work is selection bias. Google
employs the Bouncer tool [81] to detect and remove some malware from the Play store.
Consequently, the malicious apps we obtained from Play via PlayDrone may not be a
representative sample of all malicious Android apps. However, they are a representative
sample of malicious apps that were not detected by existing malware detection tools, which
may be an even more interesting sample. In addition, we removed the apps that did not have
existing VirusTotal reports for efficiency reasons. While these represent a small percentage
of the apps, it may have biased the results.

A final threat to the validity of our second study is spuriousness; that is, the possibility
that the relationship between API level and classification accuracy we observed is due to
some other, third variable. We attempted to mitigate this threat by trying two different
feature sets and two different classifier types to ensure that the same relationship was
observed in different situations. We also note that, although classifier accuracy depends on
the number of apps used to train the classifier, as illustrated in Figure 2.13, this is not a
threat to our work. This is because the paired classifier for each level uses the same number
of apps as the level-specific classifier, so the size of the corpus is controlled for. That is, we
are interested in the relative accuracy of each pair of classifiers rather than their absolute
accuracy.

2.6 Relevance to Thesis

Recall that our thesis statement is as follows:

Thesis Statement. Robust development processes are necessary to minimize the number of
faults introduced when evolving complex software systems. These processes should be based on
empirical research findings. Data science techniques allow software engineering researchers
to develop research insights that may be difficult or impossible to obtain with other research
methodologies. These research insights support the creation of development processes. Thus,
data science techniques support the creation of empirically-based development processes.

App development processes depend on the work done by software engineering researchers
who study mobile apps. Until now, there have not been any empirical guidelines suggesting
the number of apps researchers should use in these studies. Some studies use as few as ten
apps (e.g., [73]). This has made it difficult to judge the generalizability of any particular
study and thus whether the results are useful to app developers. Our guidelines can help
improve app research practices, which in turn will improve app development processes.
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Mobile malware detection tools likewise rely on research findings to determine, for
instance, which classifier type will perform the best and which input features should be
used. If prior work had been based on an incorrect assumption, namely, that API level is
irrelevant, their results would be invalid and thus of little use to developers creating malware
detection tools. As it happens, API level does not need to be controlled to obtain correct
results. This information gives us more confidence in the findings of previous studies and
thus in the application of their results to the development of practical tools for detecting
malicious apps.

The use of data science was critical to obtain our results. Studying 1.3 million apps and
11 TB of callgraphs would not have been possible without the use of computing clusters,
big data storage and handling techniques, statistics, machine learning, and various other
tools that belong to the data science toolkit. Thus, this work provides an example of how
data science techniques can be applied to develop new research insights that in turn assist
software developers.
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Chapter 3

Measuring Test Suite Costs and
Benefits

“But what’s the harm in over-testing, Phil, don’t you want your code to be safe?
If we catch just one bug from entering production, isn’t it worth it?” [...] This
line of argument is how we got the TSA. [36]

Buggy software costs its developers money. Among other things, bugs can discourage new
customers from adopting a product and can drive away existing customers. Consequently,
many techniques exist for avoiding the introduction of bugs and for quickly identifying and
fixing bugs when they are introduced anyway. However, these techniques come with costs
of their own, so developers must carefully assess their cost-effectiveness before deciding
whether and to what extent to adopt them.

Automated regression testing [33] is one technique for fault detection that has seen
wide adoption [23,41]. However, it is a costly technique: developers must write, maintain,
and regularly execute the test suite to see the benefits of regression testing. Kasurinen et
al. [56] conducted a survey of industrial developers that, among other findings, identified
development expenses and maintenance costs as the main obstacles to adopting automated
testing. One of their participants stated:

Developing that kind of test automation system is almost as huge an effort as building
the actual project.

Moreover, one company that experimented with automated testing eventually removed the
test suite due to the cost of maintaining it.
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As this company’s experience indicates, it is important to understand both the costs
and benefits of regression testing when deciding whether and how to adopt it. Costs, in
this case, include the cost of initially writing the tests, maintaining the test suite, executing
the suite, and examining the test output. Benefits include the number of faults found as a
result of investing in the test suite. Previous studies have considered the cost-effectiveness
of automated regression testing, as we will discuss further in Section 3.1. However, these
studies share a common limitation: they were conducted by mining historical data from
the test suite repositories. While tracking the evolution of the test suites can provide
understanding of how the suites were developed and what their likely maintenance costs
might have been, they do not permit measuring possible benefits in terms of detected faults.

To address this limitation, we studied 61 projects that use Travis CI1, a cloud-based
continuous integration tool. Travis builds a project and executes its tests every time a
developer pushes a change or opens a GitHub pull request, meaning that developers push
their commits to the repository before testing them, frequently introducing faults that cause
one or more tests to fail. As Travis integrates with project version control systems, when
test failures occur, it is possible to precisely determine whether changes to the tests, the
system under test, or both were required to make the test suite pass again. Once flaky
tests2 are accounted for, if a test failure is resolved by changing the source code, we know
that the test provided a benefit by detecting a fault. On the other hand, if the failure is
resolved by changing the test itself, we can conclude that the test was buggy or obsolete; in
other words, we can conclude that the change represents a maintenance cost. Examining
the Travis results therefore allows us to measure both the costs and benefits of regression
testing, in contrast to previous work. Specifically, we considered the following research
questions:

Research Question 3.1. What proportion of test-suite executions are flaky?

Research Question 3.2. Once these flaky test-suite executions are accounted for,
what proportion of test-suite failures represent a maintenance cost and what proportion
represent a benefit?

Research Question 3.3. Why do tests usually require maintenance, and can mainte-
nance costs be reduced?

1https://travis-ci.org/
2Tests that pass and fail non-deterministically.
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By studying a dataset of 106,738 Travis builds, which we describe in Section 3.2, we
found that the benefits of regression testing are lower than one might expect relative to the
costs. Briefly, we found that 18% of test suite executions fail and that 12.8% of these test
suite failures are due to flaky (non-deterministic) tests. Of the non-flaky test suite failures,
only 74.1% are caused by a defect in the system under test; the remaining 25.9% are due to
tests that are either incorrect or obsolete. The causes of test maintenance vary widely, and
some of the causes are avoidable. Section 3.4 provides full answers to the three research
questions given above.

Although we feel these findings provide valuable information to developers in themselves,
they can also be used to inform test case selection techniques. The goal of test case selection
is to reduce the cost of running the regression suite by running only a subset of tests each
time. Ideally, one would only select and execute the tests that are going to fail and detect
a fault; of course, in practice, one does not know a priori which tests will do so. Our
dataset of Travis builds allowed us to address an additional research question related to
test selection:

Research Question 3.4. What proportion of test executions expose defects?

In brief, we found that, in failing builds, an individual test execution has only a 0.28%
chance of failing and exposing a real defect for any given code change. Section 3.5 provides
a full answer to this research question.

Following the presentation of results, Section 3.6 describes threats to validity and
Section 3.7 describes our data replication package. Section 3.8 explains how the work in
this chapter supports our thesis statement.

3.1 Related Work

As mentioned above, previous work has considered the cost/benefit tradeoff of automated
regression testing. We first discuss studies that used repository mining to measure the cost
of maintaining a regression test suite. Next, we discuss studies that captured test outputs,
but were not able to use this information to measure the costs and benefits of regression
testing. Finally, we briefly discuss studies that attempted to decrease the costs of regression
testing by reducing the amount of time required to execute the suites. These particular
studies of test selection and prioritization are closely related to our own work.
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3.1.1 Measuring Test Suite Maintenance Effort

Seven previous studies have considered test suite maintenance costs by exploring how test
suites evolve over time. Zaidman et al. [117] examined how developers evolve their test
suites along with the test code and whether testing effort varied by the project schedule.
They found both close synchronous evolution as well as separate, stepwise evolution but
failed to find any increase in testing effort before a major release.

Pinto et al. [90] studied test evolution and found that 30% of the changes made to test
suites were modifications, 15% were test additions, and 56% were test deletions.

Marsavina et al. [70] studied the co-evolution of production and test code. They found
that test code changes made up between 6% and 47% of all code changes for the projects
they studied.

Beller and Zaidman [13] found that tests and production code have some tendency to
change together, but that tests were not changed every time the system under test was
changed and vice versa.

Kasurinen et al. [56] conducted a survey of industrial developers that, among other
findings, identified development expenses and maintenance costs as the main obstacles
to adopting automated testing. In fact, one company that experimented with automated
testing eventually removed the test suite due to the cost of maintaining it. This indicates
that maintenance is perceived as very expensive, and in at least one case, the cost was high
enough that developers could not justify using automated regression testing.

Grechanik et al. [34] estimated that the costs associated with maintaining and evolving
test scripts are $50 million to $120 million per year. They also showed that even simple
changes could result in 30% to 70% of test scripts needing maintenance, a process that
could take hours or days and caused interruption to continuous integration systems. While
developers in the study saw the benefits of the automated test suite, the maintenance
burden often caused them to throw away their tests and start from scratch, often with
faulty logic due to time pressures.

Herzig et al. [41] developed a test selection tool called THEO that selects tests to be
executed if the probable cost of executing the test is lower than the probable cost of skipping
the test. To calculate these costs, THEO uses the past defect detection rate for each test
case (i.e., the true positive rate) and the past false alarm rate of a test case (i.e., the
false positive rate). These probabilities can then be used along with data such as machine
costs, number of engineers, and inspection costs in order to estimate the cost of skipping or
executing a test. An evaluation of the system using historical data from Microsoft projects
allowed 35% to 50% of tests to be skipped while only letting 0.2% to 13% of defects escape.
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In Section 3.5 we show that, in our dataset, a perfect test selection technique would execute
less than 0.38% of tests.

All seven of these studies share the same limitation: they could not capture the execution
results of the test suites due to being performed retroactively by mining historical data.
This means we cannot measure the benefit provided by the test suites in terms of the
number of faults detected. Without this information, we do not have a complete picture of
the cost/benefit tradeoff.

3.1.2 Capturing Test Outputs

Four previous studies have managed to capture test outputs. Anderson et al. [46] provide
insight into Microsoft Dynamix AX R2, a large industrial project. This project includes
over 5.5 million lines of product source code and over 4.8 million lines of regression test
code. The authors report that running the regression suite resulted in a 9% test case failure
rate during each execution of the test suite.

Memon and Soffa [74] found that 74% of all tests failed between successive releases of
a single industrial product, suggesting that test failures are relatively common. Beller et
al. [13] report that 65% of IDE-based JUnit test runs fail.

Vasilescu et al. [108] explored the relation between Travis CI build results (success or
failure) and the way the build was started (i.e., direct commit from a developer with write
access to the repository or a pull request). The authors found that builds started by pull
requests are more likely to fail than those started by direct commits. They also found
that, although 92% of the projects they studied are configured to use Travis CI, only 42%
actually do; we observed the same behaviour, as will be described in Section 3.3.

Unfortunately, while these studies captured test execution results, it is not clear what
proportion of the observed failures occurred because of faults and what proportion occurred
because the tests required maintenance. Additionally, developers in these studies may have
been using test driven development methodologies which would further influence the test
failure rates. It is therefore hard to draw conclusions about the amount of developer time
devoted to test maintenance and thus the cost/benefit ratio of regression testing from these
studies.

3.1.3 Reducing Suite Execution Time

A number of studies have attempted to reduce the cost of regression testing by reducing
the cost of executing the suite. The basic assumption is that re-running all the tests every
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time is too expensive, and some way of reducing this cost is required. As an example,
Rosenblum and Weyuker [94] proposed the use of test coverage information to predict the
cost-effectiveness of regression testing strategies.

Elbaum et al. [23] used test suite selection at the pre-submit stage and test suite
prioritization at the post-submit stage to increase the cost-effectiveness of testing. Note
that Google’s test suites are large enough that the authors were working with test suites,
not test cases. During the pre-submit phase – i.e., before code was pushed to the central
repository – suites that failed during a pre-determined failure window were selected to be
executed, the basic intuition being that recent failures are likely to predict future failures.
New tests and tests that had been skipped more than a set number of times were also
selected during this phase. During the post-submit testing phase, the authors attempted
to avoid skipping test suites and thus prioritized rather than selected test suites using the
same criteria used during the pre-submit phase. This strategy ensured that all test suites
were executed during the post-submit phase while running the suites that were most likely
to fail first, thereby shortening the feedback loop.

Anderson et al. [46] developed two test prioritization techniques that used test result
history. The first technique, most common failures, is based on the intuition that that
tests that failed the most in the past are the most likely to fail in the future. The second
technique, failures by association, attempts to use association rule mining to improve on
the first technique. The authors found that the techniques had similar performance when
predicting future failures and that both worked better when a small window of recent
executions was used, rather than the entire historical dataset.

Most test suite reduction techniques use coverage to detect redundant tests. This leads
to a loss in test suite fault detection ability because fully overlapping coverage does not
necessarily mean the tests will always fail under the same circumstances [60]. To address
this issue, Koochakzadeh and Garousi [59] developed a test reduction tool that brings a
human tester into the loop. Their tool identifies potentially redundant tests using coverage
analysis, then lets testers inspect these tests to identify the true positives that can be
removed from the suite. Using this technique they were able to remove eleven of the 82
tests in their subject system without affecting the suite’s mutation score. In contrast, the
coverage based approach identified 52 tests as redundant and reduced the mutation score
by 31%.

Rothermel et al. [96] studied how the granularity of test suites influenced the cost-
effectiveness of regression testing. They concluded that typical regression testing techniques
usually do not lose fault detection capability when operating on coarse-grained test suites,
but they do tend to save test execution time.
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While the information produced by these studies sheds light on the costs of regression
testing, they are concerned only with the cost of executing the test suites, while we focus
on the cost of maintaining the suites. In addition, like other studies that we have discussed,
the ones above do not measure the benefits of regression testing in terms of faults detected.
However, these studies are relevant to our final research question, which provides information
that may help researchers interested in test case prioritization and selection.

3.2 Method

The goal of this work was to study the costs and benefits of automated regression testing.
To do so, we used the following high level procedure:
1. Identified open source Java projects that use Travis CI and extracted the results of the

Travis builds.
2. Identified the status of each build to identify test suite failures.
3. Identified how builds transition between different statuses.
4. Mapped each build to associated code changes in the version control repository.
5. Determined whether each failing build was resolved by changes to the source code, the

test code, or both.
We now discuss each of these steps in turn.

3.3 Collecting Travis Build Data

To study Travis builds, we identified a large set of mature Java-based projects that use
the Travis infrastructure to actively execute their tests in the cloud. We selected subject
programs by querying the GitHub Archive3 for Java projects that received more than 1,000
push events between 2012 and 2014; this time frame was chosen based on Travis support
for Java, which began in February 2012. The query returned 685 projects; of these, 421
projects had Travis accounts. We were able to successfully clone 402 of these projects from
GitHub. As the focus of our analysis was on regression testing, we eliminated early-stage
projects that were less than two years old. This resulted in 362 projects.

Of these, only 101 projects actively used Travis to execute their test suites; the other
261 projects had signed up for the service but did not use it. Unfortunately, several of

3https://www.githubarchive.org/

55

https://www.githubarchive.org/


these remaining projects did not configure Travis correctly or did not examine the Travis
output, resulting in long stretches of broken builds; others almost never experienced a
failure. To account for this, we removed the 20% of the projects that had the most errors
and failures and the 20% that had the fewest errors and failures, resulting in a final set of
61 projects. Table 3.1 lists these projects along with, for each project, the number of source
lines of code (SLOC) in the system under test (SUT) and the test suite.4 Note that we
included all languages measured by cloc, including XML. Some data points may therefore
be surprising; for example, picketlink contains over 200,000 lines of XML in the test suite,
while thredds contains a million lines of XML in the SUT.

4Calculated using non-comment source lines using cloc: https://github.com/AlDanial/cloc.
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We examined the total size and churn in the test suites and production code of these
systems to estimate how large the testing effort was. The aggregate results for the size of
the production code and test code are shown in Table 3.2. This table shows that although
test code makes up far less than half of the code overall, it grew faster than production
code: the proportion of test code grew from 10.8% to 21.9% (see Figure 3.1). In total, the
test code for our systems totalled over 2.9 million SLOC. Even though SLOC may not be a
perfect measure of development effort, the results still show that a considerable amount of
effort was spent creating and evolving the test suites for these projects.

Table 3.2: Final production and test code size and increase in size over the two
year study period.

Code Test
Lines of Code 10,479,380 2,942,473
Percentage Increase 59.1 267.8
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Figure 3.1: Growth of production source code and test source code over the
study period. At the beginning, test code accounted for only 10.8% of all code,
but by the end this had increased to 21.9%, for a total of over 2.9 million lines
of code.
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3.3.1 Identifying Build Status

Each time a developer pushes a change or opens a pull request, Travis downloads the
change, builds the project, and executes its test suite; this is called a build. Travis stores
the state of every build, which can have the following values:
• Pass: The build was successfully compiled and all tests in the test suite passed.
• Error: The build failed before test execution began, i.e., there was a compilation or

configuration error.
• Fail: The build was successfully compiled, but one or more test assertions failed or

encountered an unexpected runtime exception.
• Cancel: A developer manually terminated the build while it was running.
• Started: The build was started but has not finished yet.
Table 3.3 summarizes the number and proportion of builds with each status in our

dataset.

Table 3.3: Aggregated build results for 61 open source Java projects that use
Travis and the state of 106,738 build executions from those projects.

State Builds (#) Builds (%)
Pass 71,303 66.8
Fail 19,640 18.4
Error 15,437 14.5
Cancel 354 0.3
Started 4 0.0
Total 106,738 100.0

3.3.2 Identifying Build Transitions

Though our dataset contained Travis builds, we were primarily interested in how the
projects transitioned between builds. However, it does not make sense to compare arbitrary
commits to each other in a distributed version control system. For instance, if a project
has been split into three concurrent branches A, B, and C, it only makes sense to compare
adjacent changes in A to each other and adjacent changes in B to each other. Also, if only
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one commit is ever made to C, there is no other change to compare it to. Consequently,
the number of transitions between builds differs from the number of builds throughout the
thesis.

Figure 3.2 shows the transitions between the Travis builds we collected. Due to their
relative infrequency we excluded cancelled and started builds as they do not provide any
insight into test execution outcomes. Interestingly, the data shows that the build continues
to pass only 58% of the time and systems stay in the Pass state for an average of 5.6 builds
before transitioning to a Fail or Error state. Error states are fixed more quickly, persisting
for an average of 2.6 builds, while Fail states persist for an average of 2.9 builds. These
numbers demonstrate that the developers of the Travis projects examined in our study
seem to pay attention to test results and fixed issues with their builds in a timely manner.
We discuss transitions grouped by their start state in more detail next.

Error

Pass

Fail

58%

6%

5%4%

4%

1%

1%9%
12%

Figure 3.2: Transitions between system states. Each transition is caused
by one or more commits. Pass→Pass persisted for an average of 5.6 builds,
Error→Error persisted for 2.6 builds, while Fail→Fail builds persisted for 2.9
builds.

Pass → ? The largest proportion of changes in this category correspond to changes where
the test suite passes before and after a change. These corresponded to two main cases:
changes to a non-code resources (e.g., documentation) or changes to code resources that
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did not introduce failures or errors. Builds transitioned into error states when changes
were made to either the build infrastructure itself, for instance by changing a configuration
file, or when the system could no longer be compiled, which was often caused by missing
dependencies. While we expected newly introduced failures to be caused by failure-inducing
changes to code resources, we also saw a large proportion of commits that seemed to be
failing for no reason at all; further examination of these changes showed that these failure
transitions were being caused by flaky tests (see Section 3.4.1).

Fail → ? The largest proportion of changes in fail states cause the build to continue to
fail; systems in fail states persist for an average of 2.9 builds. We were surprised to see
that most systems persisting in failing states seemed to continue to fail because developers
were making multiple unrelated changes to the system. While in some cases it seemed
that they were aware that these changes were larger and that the build would continue to
fail, in other cases they seemed to be disparate changes that happened by chance while
the build was already failing. While failing builds sometimes transitioned into error states,
primarily through adding new unresolved dependencies, the failures were usually returned
to a passing state by fixing the underlying test failures.

Error → ? Builds stayed in error states for the shortest period of time (2.6 builds on
average). While error states often took a few tries to resolve, mainly by committing changes
to configuration files, build scripts, and code dependencies, once these were resolved the
build was able to transition back to a passing state. Transitions from the error state to fail
state usually corresponded to added dependencies that allowed the code to be compiled so
the test suite could run (and fail).

3.3.3 Mapping Builds to Code Changes

In addition to storing build state, Travis stores the branch and SHA of the head commit
associated with each build. Note that, as mentioned in Section 3.3.1, Travis builds a project
and executes its tests every time a developer pushes a change or opens a GitHub pull
request. This means that a Travis build consists of a set of one or more commits; for
example, a pull request can be composed of three commits that comprise a single build.
We examined the git repository corresponding to each build to determine which commits
were part of the Travis build; unfortunately, not all of commits associated with the builds
could be reclaimed from the project repository. There are two reasons for this:
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1. The build was associated with a pull request. Travis creates a new build every time a
pull request is created or updated. The commits associated with these builds, however,
are never present in the repository, even if the pull request is merged, as the builds
are run against the merge commit between the pull request and the up-stream branch,
which does not exist in the master repository.

2. History rewrites. If a developer rewrites history, the build(s) that were triggered by the
rewritten commits will no longer be traceable to a commit in the repository.
Ultimately, 70,447 of the 106,738 builds (66%) executed by Travis had associated

commits in the project version control repositories. The remainder of our analyses are on
these 70,447 builds.

3.3.4 Classifying Failure Resolutions

Having identified builds that transition from the failing state to the passing state, we wanted
to know whether this transition was caused by a change to the test code, the system under
test, or both. For example, in Figure 3.3, a developer made three consecutive code-only
commits to their passing system; in doing so, they introduced a fault that caused a test
failure, i.e., a transition to the Fail state. To determine the cause of the failure, we diff the
last commit of the Pass build against the last commit of the Fail build. In this case, only
source code files were changed, meaning that the cause of the test failure was a source code
change (assuming for this example that the failing test(s) were not flaky). The developer
then performed three commits that were executed together to return the build to the Pass
state; since we cannot determine which commit fixed the fault, we label this a code+test
fix.

3.4 Assessing the Costs and Benefits of Regression
Testing

Having explained our approach for classifying failure resolutions, we can now answer our
first three research questions.

3.4.1 RQ1: What Fraction of Tests Are Flaky?

When the system transitions from the Pass state to the Fail state and back, this indicates
that a test failure has occurred and was resolved. There are several possible causes for this.
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Code Changes Only Code + Test Changes

Pass Fail

Failing Diff Fixing Diff

Pass

Figure 3.3: As developers work on their systems their commits often change
the state of the build. Each box represents a commit; builds are often not run
on every commit but instead on blocks of commits. A C label on a commit
means the code under test was changed; a T label means the test code was
changed. The figure shows a failure caused by a code change that was resolved
by fixing both code and test files.

First, the test could be flaky; in this case, the changes made to “resolve” the failure are
not actually related to the failure itself. Second, the test could be broken or obsolete; this
indicates a cost of regression testing. Third, the test could have identified a failure; this
indicates a benefit of regression testing. To determine the cost-effectiveness of the suites
under study, it was necessary to identify flaky builds so we could remove them from further
analysis.

To determine how common flaky tests are, we examined the 19,640 failing builds in
our dataset. We identified build triples in which the system transitioned from the pass
state to the failure state and back to the pass state. We excluded all error states as
they corresponded to configuration and dependency issues rather than source code defects
themselves. For the failing states, we excluded Fail? builds as developers commonly entered
these states intentionally when they were landing a diverse set of large changes; in these
cases the developers often seemed not to be considering the test suite executions at all
as the failures were expected while they worked on changes they knew to be impactful.
Ultimately, we found 1,381 instances of builds that underwent Pass → Fail → Pass
transitions. Each instance comprised three builds (by definition) and each build contained
an average of 5.2 commits (i.e., 15.6 commits per instance). Figure 3.3 shows a triple
matching this pattern consisting of three builds and eight commits.

Having identified these 1,381 triples, we used the Travis API to rerun the failed build
for each of the Pass → Fail → Pass tuples three times. To do this we created three
GitHub repositories for each project, each on a separate account, and connected each of
these accounts to Travis CI. We then created a branch at the commit associated with each
of the failed builds. The branches were then pushed to each of the GitHub repositories,
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triggering three identical builds for each branch on Travis CI. To ensure that a build is
triggered when a branch is pushed we removed the branch whitelist and blacklist sections
from the Travis configuration file and removed the deploy and notification hooks from the
configuration file to avoid disturbing the original developers.

If all three re-executions failed we considered the build to be non-flaky. We also
considered three passes to be non-flaky, despite a pass being different from the original
failure. Only re-executions that included at least two different results were classified as
flaky (e.g., failed, failed, passed, or errored, passed, failed). Unfortunately, in many cases
all three re-executions errored. We found that this usually happened when dependencies
were no longer available or when builds required features no longer supported by Travis CI;
these data points amounted to 32% of the re-executions we tried and were discarded. Of
the 935 failing builds we successfully re-executed, 120 (12.8%) executed inconsistently and
can be considered flaky builds.

Answer 3.1. 13% of the failing builds we studied were flaky.

3.4.2 RQ2: How Often Are Failures Beneficial?

Having determined which build triples were flaky, we addressed our second research question:
which of the non-flaky failures represent a cost of regression testing, and which represent a
benefit? Table 3.4 describes all of the possible transitions between three builds that Pass
→ Fail → Pass. The builds have been grouped by the kind of resource changes that
resolved the test failure. From this table, we can see that 58.7% of non-flaky Fail builds are
resolved with source code changes alone, 19.3% are resolved by test code changes alone,
and 22.0% are fixed by a combination of source and test code changes.

We examined the nine categories of failures in Table 3.4 to determine whether each
category represented a cost or benefit of testing. We consider the three categories of failing
builds that were resolved by code fixes alone as a positive indication that the test failure
identified a source code defect. We make this determination because the developer resolved
the failure by changing only the source code; that is, the failing test was correct, and the
fix was to modify the system under test to make the test pass in future builds.

In contrast, the three categories of failing builds resolved by test fixes alone represent a
cost for the developer: the fault was resolved by maintaining the test suite. These changes
acknowledge that the test itself was faulty or obsolete; fixing these failures requires either
modifying the test or removing it altogether.
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Table 3.4: Categorization of how builds transition between Pass and Fail states.
The left-hand-side of → denotes the resources that changed to cause the test
failure. The right-hand-side of → denotes the resources that were changed to
resolve the test failure. This excludes flaky builds (177 transitions).

Fix Type Resources Changed Count %

Code fixes

Code → Code 527 43.8
Test → Code 35 2.9

Code+Test → Code 145 12.0
∗→ Code 707 58.7

Test fixes

Code → Test 72 6.0
Test → Test 47 3.8

Code+Test → Test 114 9.5
∗→ Test 232 19.3

Mixed fixes

Code → Code+Test 100 8.4
Test → Code+Test 19 1.6

Code+Test → Code+Test 144 12.0
∗→ Code+Test 263 22.0

To gain insight into the nature of the 22.0% of builds that were resolved with both
source and test code changes, we examined the proportion of each change that was made
to the source code and the test code to fix the build. For these 263 builds, we observed
that on average 30% of lines changed were in test files, while the remainder were in source
code files. As we considered fixing failing builds by changing the source code beneficial, we
classify 70% (15.4% of all changes) of the mixed builds as fixing defects and the remainder
(6.6% of all changes) as test maintenance.

Table 3.5 summarizes the proportion of failing builds that are resolved by fixing faults
and by maintaining the test suite. These results allow us to answer our second research
question.

Answer 3.2. In the systems under study, 25.9% of non-flaky test suite failures were
spurious: they represented developer interruptions that had to be resolved to return the
test suite to a Pass state. 74.1% of failures detected real faults.
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It is important to note that we are not claiming that fixing these failing tests could not
provide a benefit in the future by detecting faults; however, their maintenance cost must
be considered when modelling the overall cost of the testing strategy.

Table 3.5: The proportion of non-flaky Fail builds resolved by fixing faults and
by maintaining the test suite.

Change Type Fix Type %

Fixing faults
Code only 58.7
Code+Test 15.4
Total 74.1

Maintaining tests
Test only 19.3
Code+Test 6.6
Total 25.9

3.4.3 RQ3: Why Do Tests Usually Require Maintenance, and
Can Maintenance Costs Be Reduced?

Our previous research question asked what proportion of test failures were resolved by
maintaining the failing tests and what proportion of failures were resolved by fixing a
real fault. A natural question to ask at this point is, “why do tests frequently require
maintenance”? To answer this question, we wanted to identify the tests that required
maintenance disproportionately often. Our first step was to identify pass/fail behaviour
of individual test cases. We accomplished this by parsing the output associated with the
failing build in the non-flaky Pass → Fail → Pass tuples to examine individual test case
behaviour. Unfortunately, parsing test logs is a difficult process prone to project-specific
noise and one-time errors; due to this we were only able to parse the logs for 40 of the 61
projects.

Once we knew which individual tests passed and failed in each build, we assigned each
test case a score: the number of times it failed and caused a code-only fix minus the number
of times it failed and caused a test-only fix. A positive number indicates that the test found
bugs in the code under test on more occasions than it required maintenance. A negative
number is the opposite: the test required maintenance more often than it found bugs.

Figure 3.4 shows the average scores obtained for the tests of 28 projects. The projects
apache/pdfbox and apache/jackrabbit-oak are elided for clarity: the former because it
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has a score of 39.25; the latter because its tests experienced 2,416 code and test fixes. Ten
projects where the sum of test-only and code-only fixes is smaller than five were removed
to reduce clutter. The size of the bubbles indicates the portion of test failures that were
resolved by a mixture of code and test changes. This can be seen as the portion of test fixes
where there is some doubt as to whether the fix is a return on investment or a maintenance
cost. On the x-axis, we plot the sum of all test failures that were resolved by code or test
changes alone on a logarithmic scale; this indicates the number of data points we have for
each project.

From the figure we can see that, on average, the tests of nine projects require maintenance
more often than they find bugs. It is therefore possible that these test suites add very
little value or even represent a loss for the projects. We also notice that the difference
between code-only fixes and test-only fixes for most projects is small, ranging from -0.87
(graylog2-server) to 1.16 (cloudify) when excluding the clear outlier, apache/pdfbox,
where the difference is 39.25. This is in part due to 85% of tests that fail failing only once
and 97% failing two times or fewer. There are, however, tests that seem to provide a large
return on investment: 24 tests have a score of 5 or higher. There also seem to be tests that
may be costly to maintain: 609 tests have a score of -1 and 4 tests a score of -2.

To understand the causes of maintenance, we qualitatively studied the failures associated
with seven of the ‘least valuable’ tests from the data underlying Figure 3.4 to learn why
they required an outsized amount of maintenance relative to their defect-detection ability.
These tests included the four with a score of -2 and three randomly selected from the 609
tests with a score of -1. The tests are listed in Table 3.6. One of the tests experienced a
test-only fix twice, the remaining six experienced only one test-only fix, and none of the
tests experienced code-and-test or code-only fixes.

Two of the tests failed due to unintended interaction between tests. The first test
(Test 1) depended on an @after method deleting the user with email address JO@FOO.COM
from the database, but failed because the user’s email address was in lower case in the
database. This test used to work since MySQL, by default, is not case sensitive, but stopped
working when the test was run on Postgres which is case sensitive by default. This failure
could have been avoided had the developers not depended on the default behaviour of
MySQL. The second test (Test 2) was fixed by re-initializing the context between tests. It
is, however, interesting that the breaking change removed the re-initialization code and the
fix simply replaces it, meaning that it is hard to know why it was removed in the first place.

One of the tests was non-deterministic and from the commit messages we know that the
developers were aware of this. The ‘fixing’ commit for the first test (Test 3) has the commit
message “more logging to debug saveTask_shouldSaveTaskToTheDatabase”, making it
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Table 3.6: Manually inspected tests as well as an example of a broken build
and the change that fixed the test. The Break and Fix entries are hyperlinks
to the original Travis-CI test suite execution output.

(1) ProvisioningTests.canCreateUser...
Break: cloudfoundry/uaa/builds/40103431
Fix: cloudfoundry/uaa/builds/40114195

(2) PackageAPITest.delete
Break: BaseXdb/basex/builds/1093013
Fix: BaseXdb/basex/builds/1093360

(3) SchedulerServiceTest.saveTask...
Break: openmrs/openmrs-core/builds/31049916
Fix: openmrs/openmrs-core/builds/31125642

(4) FTIndexQueryTest.testFTTest
Break: BaseXdb/basex/builds/1787079
Fix: BaseXdb/basex/builds/1792995

(5) FNClientTest.clientClose
Break: BaseXdb/basex/builds/1434048
Fix: BaseXdb/basex/builds/1434164

(6) JavaFuncTest.staticMethod
Break: BaseXdb/basex/builds/848008
Fix: BaseXdb/basex/builds/850290

(7) CommandTest
Break: BaseXdb/basex/builds/759351
Fix: BaseXdb/basex/builds/759996

clear that the issue is not yet resolved. When the test fails again at a later stage the ‘fix’
seems to be unrelated to the failing test and we suspect that it does not resolve the issue.

One test (Test 4) was too difficult to analyze and we could not determine whether it is
non-deterministic or not. Another test (Test 5) as well as the four others that failed with it
are an example of new tests being added to the suite that fail on the first execution. They
were fixed by changing a constant.

Of the last two tests, the first is an example of a functional change resulting in test
suite maintenance (Test 6) and the second is an accident where changes were applied before
they were ready (Test 7).
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From these tests, we can see that test failures that lead to maintenance occur for
many different reasons. These include tests that fail because of interaction between tests,
non-deterministic tests, new tests failing immediately after creation, tests failing after a
change in functionality, and an accident where changes were merged before they were ready.
This reveals that test code maintenance is not necessarily as tied to product code evolution
as one might think. Ensuring that tests do not depend on assumptions (e.g., Test 1) and
do not depend on other tests (e.g., Test 2) may reduce the frequency of test maintenance.
The prevalence of flaky tests and the developer discussions around them stand out as major
costs in automated testing and hinder empirical studies of test results as it is hard to
automatically distinguish between deterministic and non-deterministic failures.

Answer 3.3. “False alarm” test failures have a wide variety of causes, some of which
could be avoided, such as dependence on assumptions and on other tests.

3.5 Implications for Test Selection

In this section, we answer our final research question: what do our data suggest about the
limits on test case selection?

3.5.1 RQ4: How Often Do Tests Expose Faults?

The log parsing technique described in the previous section allowed us to count the number
of tests that pass and fail on each build to establish the percentage of tests that failed in
failing builds. Figure 3.5 shows the proportion of test failures from 40 projects across 586
Pass → Fail → Pass test suite executions from which we could parse the results. From
this set, the average test failure rate was 0.38%. It is important to note that this is not the
global test case failure rate, but just the test case failure rate within the builds that had at
least one test failure.

This number is helpful for understanding the potential effectiveness of test selection
approaches as it establishes the absolute minimum fraction of tests a selection approach
could execute. That is, if a test selection approach only executed tests from builds that
would fail, and then only executed the failing tests, the approach would have to execute
an average of 0.38% of the test suite. Assuming that these failures are spread out equally
between the tuple types in Table 3.4 would mean that 25.9% of these test failures did not
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Figure 3.5: Proportion of test cases that fail for the 40 projects we were able to
parse individual-test results from across the failing build of 586 tuples. Three
data points (16.9%, 8.7% and 4.1%) have been elided for clarity. The average
project failure rate was 0.38%.

find faults, bringing the percentage of test case executions that do find faults down to
0.28%.

Interestingly, we found that 64% of failed builds contain more than one failed test.
These failures usually have the same root cause and therefore all the failed tests were
not necessary to find the fault. Test selection strategies typically use coverage overlap to
determine whether a test is redundant or not, but this alone can be inaccurate [60]. By
only considering a test case redundant if all past failures occurred with other tests the
false-positive rate could be reduced. Conversely, if a test has failed alone it would indicate
that it is not redundant even if it does have complete coverage overlap with another test.

It is also worth considering that multiple failing tests could provide additional insight
into the underlying cause of a failure. For example, suppose a number of tests related to
sending an email fail. These tests might differ in whether they include an attachment,
use special formatting, and so on. When they all fail together, the developer may realize
that the mail server is down and thus the root cause of the problem is different from that
suggested by any one test.

Answer 3.4. In the failed builds under study, only 0.28% of test case executions failed
due to a fault. Only 36% of build failures are caused by a single test case failing.
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3.6 Threats to Validity

The dataset presented in Section 3.2 has a number of limitations, most notably to external
validity. While it presents a diverse set of 61 projects, they were mostly Java-based projects
that used the Travis continuous integration platform. In the process of trying to find
representative projects, we also filtered out projects that we believed to be unusual, but
whose test-inducing behaviour may have been interesting. That said, the set of projects
was diverse and contained test suites that were being actively maintained and executed.
The projects may have used different development processes, which would increase project
diversity but make comparisons between projects less meaningful.

One may also wonder whether developers run some tests locally before committing
to the repository, skewing our results. This is a common threat in studies that mine
software repositories: one may be exploring development as it was recorded, rather than
as it happened. We do not believe developers ran tests locally for three reasons. First,
we eliminated the projects with the fewest build failures; i.e., those that mirror stable
repositories. Second, of the remaining projects, the large number of error and failure builds
suggest that developers frequently break the build; that is, they do not worry about ensuring
the code can be compiled or tested before committing. Third, it is unlikely that developers
would set up CI infrastructure and then run tests manually. We feel that, just as developers
who set up Ant or Maven are unlikely to run javac on the command line, developers who
set up Travis are unlikely to replicate its functionality locally.

Our goal in Section 3.4 was to measure how often a test suite failure indicated that
test suite maintenance was necessary. Though it seems reasonable to assume that, if only
the test code was changed to fix a test failure, the developers were maintaining the test,
it is possible that we misclassified some of the test failures. We note that we did not see
any such misclassifications during our manual inspection of tests. However, examining
each change manually would have been infeasible, and feel our approach is an adequate
approximation.

Additionally, in the code fixes category, some of the Code+Test changes could have
involved test maintenance that was done before the tests failed because the developer knew
that their code changes would cause test failures. Thus, in terms of internal validity, these
analyses may be overly conservative as we have excluded some test changes that could have
been classified as maintenance.

Our results for the flaky analysis were also limited: while we found that 12.8% of the
tuples we examined were flaky, we examined only builds that failed when the developer
originally executed them. It is possible for flaky tests to pass by chance, and thus some of
the passing builds we did not re-execute could have been flaky as well.
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Finally, though we compared the number of times tests were maintained and the number
of times they detected faults, we did not attempt to do any cost estimation. A test that
frequently requires maintenance but detects one critical fault may be more valuable than
one that rarely requires maintenance but only detects minor faults. However, on average,
more maintenance means a more expensive test suite while more faults detected means the
suite is providing more benefit.

3.7 Replication Package

The data underlying this paper represents an oracle consisting of code changes and test
failures that arose in practice. This dataset is valuable because it augments past studies
on industrial code for which the full data could not be released (e.g., [23,41,46]). It also
provides crucial information about the dynamic outcomes of test executions that cannot be
recovered from mining studies alone (e.g., [13, 70,90]).

The dataset includes a database image of the build results of 225,860 Travis builds run
by 493 projects (some projects not studied in this paper are included). Build results include
the build state, timestamps, and, for builds whose logs we could parse, the test identifiers
of failed tests. Unparsed logs of all builds are also provided in text files.

These data represent the largest open collection of practical test failures and will prove
valuable for many future studies that want to evaluate their approaches on real data by,
for instance, measuring how many actual failures would be missed by a test minimization
approach, or how effective a test prioritization approach is relative to a known ‘best case’.
The full replication package for this study can be found and contributed to online.5

3.8 Relevance to Thesis

Recall that our thesis statement is as follows:

Thesis Statement. Robust development processes are necessary to minimize the number of
faults introduced when evolving complex software systems. These processes should be based on
empirical research findings. Data science techniques allow software engineering researchers
to develop research insights that may be difficult or impossible to obtain with other research
methodologies. These research insights support the creation of development processes. Thus,
data science techniques support the creation of empirically-based development processes.

5github.com/rtholmes/RealTestFailures/
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Writing and executing automated tests is a development process that can improve code
quality. However, maintaining such a test suite is costly. To determine whether and to what
extent to adopt automated testing, developers need to carefully consider both the costs
and the benefits of their test suite. Our work provides insight into this tradeoff by showing
that, for the systems we studied, 26% of non-flaky test failures represented a maintenance
cost and an individual test execution had only a 0.28% chance of failing and exposing a
real defect for any given code change. It is difficult to use this information to make general
recommendations for developers, as the testing budget and the ramifications of faults that
are not detected depend on the project. However, having these numbers in hand may allow
a developer to convince other developers or management to measure the costs and benefits
of their own test suite. In addition, our findings indicate that current test case selection
approaches can still be improved.

Information about the cost/benefit tradeoff of test suites could be obtained using other
research methodologies. For example, one could visit a software company, instrument the
IDEs being used by the developers in order to record the amount of time spent running
tests, and ask the developers to self-report the number of faults detected. Though this
would work, we would not have been able to get data about 61 projects and therefore our
study would lack external generalizability. The use of data science techniques allowed us
to get a research result that would have been infeasible to obtain via other means. Thus,
the work in this chapter provides an example of the ways in which the use of data science
techniques can allow researchers to develop new insights that in turn support software
developers.
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Chapter 4

The Use of Mutants in Testing
Research

Both industrial software developers and software engineering researchers are interested in
measuring test suite effectiveness. While developers want to know whether their test suites
have a good chance of detecting faults, researchers want to be able to compare different
testing or debugging techniques. Ideally, one would directly measure the number of faults a
test suite can detect in a program. Unfortunately, the faults in a program are unknown a
priori, so a proxy measurement must be used instead.

A well-established proxy measurement for test suite effectiveness in testing research is
the mutation score, which measures a test suite’s ability to distinguish a program under
test, the original version, from many small syntactic variations, called mutants. Specifically,
the mutation score is the percentage of mutants that a test suite can distinguish from the
original version. Mutants are created by systematically injecting small artificial faults into
the program under test, using well-defined mutation operators. Examples of such mutation
operators are replacing arithmetic or relational operators, modifying branch conditions, or
deleting statements (cf. [48]).

Mutation analysis is often used in software testing and debugging research. More
concretely, it is commonly used in the following use cases (e.g., [11,25,48,49,97,105,107,110]):

Test suite evaluation The most common use of mutation analysis is to evaluate and
compare (generated) test suites. Generally, a test suite that has a higher mutation score is
assumed to detect more real faults than a test suite that has a lower mutation score.
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Test suite selection Suppose two unrelated test suites T1 and T2 exist that have the
same mutation score and |T1| < |T2|. In the context of test suite selection, T1 is a preferable
test suite as it has fewer tests than T2 but the same mutation score.

Test suite minimization A mutation-based test suite minimization approach reduces
a test suite T to T \ {t} for every test t ∈ T for which removing t does not decrease the
mutation score of T .

Test suite generation A mutation-based test generation (or augmentation) approach
aims at generating a test suite with a high mutation score. In this context, a test generation
approach augments a test suite T with a test t only if t increases the mutation score of T .

Fault localization A fault localization technique that precisely identifies the root cause
of an artificial fault, i.e., the mutated code location, is assumed to also be effective for real
faults.

These uses of mutation analysis rely on the assumption that mutants are a valid
substitute for real faults. Unfortunately, there is little experimental evidence supporting
this assumption, as discussed in greater detail in Section 4.3. To the best of our knowledge,
only three previous studies have explored the relationship between mutants and real
faults [6, 19, 79]. Our work differs from these previous studies in four main aspects. (1)
Our study considers subject programs that are orders of magnitude larger. (2) Our study
considers real faults rather than hand-seeded faults. (3) Our study uses developer-written
and automatically-generated test suites. (4) Our study considers the conflating effects
of code coverage when studying the correlation between mutant detection and real fault
detection. A higher mutant detection and real fault detection rate could both be caused
by higher code coverage, thus it is important to control this variable when measuring the
correlation.

Specifically, this paper extends previous work and explores the relationship between
mutants and real faults using 5 large Java programs, 357 real faults, and 230,000 mutants.
It aims to confirm or refute the hypothesis that mutants are a valid substitute for real
faults in software testing by answering the following questions:

Research Question 4.1. Are real faults coupled to mutants generated by commonly
used mutation operators?

The existence of the coupling effect [20] is a fundamental assumption underlying mutation
analysis. A complex fault is coupled to a set of simple faults if a test that detects all
the simple faults also detects the complex fault. Prior research empirically showed the
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existence of the coupling effect between simple and complex mutants [47, 82], but it is
unclear whether real faults are coupled to simple mutants derived from commonly used
mutation operators [48, 80, 83]. Therefore, this paper investigates whether this coupling
effect exists. In addition, it studies the numbers of mutants coupled to each of the real
faults as well as their underlying mutation operators.

Research Question 4.2. What types of real faults are not coupled to mutants?

The coupling effect may not hold for every real fault. Therefore, this paper investigates
what types of real faults are not coupled to any of the generated mutants. Additionally, this
paper sheds light on whether the absence of the coupling effect indicates a weakness of the
set of commonly applied mutation operators or an inherent limitation of mutation analysis.

Research Question 4.3. Is mutant detection correlated with real fault detection?

Since mutation analysis is commonly used to evaluate and compare (generated) test suites,
this paper also addresses the question of whether a test suite’s ability to detect mutants is
correlated with its ability to detect real faults.

In summary, the contributions of this paper are as follows:
• A new set of 357 developer-fixed and manually-verified real faults and corresponding

test suites from 5 programs.
• The largest study to date of whether mutants are a valid substitute for real faults using
357 real faults, 230,000 mutants, and developer-written and automatically-generated
tests.
• An investigation of the coupling effect between real faults and the mutants that are

generated by commonly used mutation operators. The results show the existence of a
coupling effect for 73% of real faults.
• Concrete suggestions for improving mutation analysis (10% of real faults require a new
or stronger mutation operator), and identification of its inherent limitations (17% of
real faults are not coupled to mutants).
• An analysis of whether mutant detection is correlated with real fault detection. The

results show a statistically significant correlation that is stronger than the correlation
between statement coverage and real fault detection.
The remainder of this chapter is structured as follows. Section 4.1 describes our method

and the experiments we performed to answer our research questions. Section 4.2 presents
and discusses the results. Section 4.3 reviews related work, and Section 4.4 explains how
this study supports our thesis statement.
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Table 4.1: Investigated subject programs.

Program size (KLOC), test suite size (Test KLOC), and the number of JUnit tests (Tests)
are reported for the most recent version. LOC refers to non-comment, non-blank lines of
code and was measured with sloccount (http://www.dwheeler.com/sloccount).

Program KLOC Test KLOC Tests
Chart JFreeChart 96 50 2,205
Closure Closure Compiler 90 83 7,927
Math Commons Math 85 19 3,602
Time Joda-Time 28 53 4,130
Lang Commons Lang 22 6 2,245
Total 321 211 20,109

4.1 Method

Our goal was to test the assumption that mutants are a valid substitute for real faults
by conducting a study with real faults, using both developer-written and automatically-
generated test suites. To accomplish this, we performed the following high-level steps:
1. Located and isolated real faults that have been previously found and fixed by analyzing

the subject programs’ version control and bug systems (Section 4.1.2).
2. Obtained developer-written test suites for both the faulty and the fixed program version

for each real fault (Section 4.1.3).
3. Automatically generated test suites for the fixed program version for each real fault

(Section 4.1.4).
4. Generated mutants and performed mutation analysis for all fixed program versions

(Section 4.1.5).
5. Conducted experiments using the real faults, mutants, and the test suites to answer our

research questions (Section 4.1.6).

4.1.1 Subject Programs

Table 4.1 lists the 5 subject programs we used in our experiments. These programs satisfy
the following desiderata:
1. Each program has a version control and bug tracking system, enabling us to locate and

isolate real faults.
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2. Each program is released with a comprehensive test suite, enabling us to experiment
with developer-written test suites in addition to automatically-generated ones.

4.1.2 Locating and Isolating Real Faults

We obtained real faults from each subject program’s version control system by identifying
commits that corrected a failure in the program’s source code. Ideally, we would have
obtained, for each real fault, two source code versions Vbug and Vfix which differ by only the
bug fix. Unfortunately, developers do not always minimize their commits. Therefore, we
had to locate and isolate the fix for the real fault in a bug-fixing commit.

We first examined the version control and bug tracking system of each program for
indications of a bug fix (Section 4.1.2). We refer to a revision that indicates a bug fix as
a candidate revision. For each candidate revision, we tried to reproduce the fault with an
existing test (Section 4.1.2). Finally, we reviewed each reproducible fault to ensure that it is
isolated, i.e., the bug-fixing commit does not include irrelevant code changes (Section 4.1.2).
We discarded any fault that could not be reproduced and isolated. Table 4.2 summarizes
the results of each step in which we discarded candidate revision pairs.

Candidate Revisions for Bug-Fixing Commits

We developed a script to determine revisions that a developer marked as a bug fix. This
script mines the version control system for explicit mentions of a bug fix, such as a bug
identifier from the subject program’s bug tracking system.

Let revfix be a revision marked as a bug fix. We assume that the previous revision in the
version control system, revbug, was faulty (later steps validate this assumption). Overall,
we identified 1,179 candidate revision pairs 〈revbug,revfix〉.

Discarding Non-reproducible Faults

A candidate revision pair obtained in the previous step is not suitable for our experiments if
we cannot reproduce the real fault. Let V be the source code version of a revision rev , and
let T be the corresponding test suite. The fault of a candidate revision pair 〈revbug,revfix〉 is
reproducible if a test exists in Tfix that passes on Vfix but fails on Vbug due to the existence
of the fault.

In some cases, test suite Tfix does not run on Vbug. If necessary, we fixed build-system-
related configuration issues and trivial errors such as imports of non-existent classes.
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Table 4.2: Number of candidate revisions, compilable revisions, and repro-
ducible and isolated faults for each subject program.

Candidate
revisions

Compilable
revisions

Reproducible
faults

Isolated
faults

Chart 80 62 28 26
Closure 316 227 179 133
Math 435 304 132 106
Time 75 57 29 27
Lang 273 186 69 65

Total 1179 836 437 357

However, we did not attempt to fix compilation errors requiring non-trivial changes, which
would necessitate deeper knowledge about the program. 836 out of 1,179 revision pairs
remained after discarding candidate revision pairs with unresolvable compilation errors.

After fixing trivial compilation errors, we discarded version pairs for which the fault was
not reproducible. A fault might not be reproducible for three reasons. (1) The source code
diff is empty — the difference between revbug and revfix was only to tests, configuration, or
documentation. (2) No test in Tfix passes on Vfix but fails on Vbug. (3) None of the tests in
Tfix that fail on Vbug exposes the real fault. We manually inspected each test of Tfix that
failed on Vbug while passing on Vfix to determine whether its failure was caused by the real
fault. Examples of failing tests that do not expose a real fault include dependent tests [119]
or non-deterministic tests. The overall number of reproducible candidate revision pairs was
437.

Discarding Non-isolated Faults

Since developers do not always minimize their commits, the source code of Vbug and Vfix
might differ by both features and the bug fix. We ensured that all bug fixes were isolated
for the purposes of our study. Isolation is important because unrelated changes could affect
the outcome of generated tests or could affect the coverage and mutation score. Other
benefits of isolation include improved backward-compatibility of tests and the ability to
focus our experiments on a smaller amount of modified code.

For each of the 437 reproducible candidate revision pairs, we manually reviewed the bug
fix (the source code diff between Vbug and Vfix) to verify that it was isolated and related to
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Vbug VfixV1features &
refactorings

V2bug fix =

source code diff

Figure 4.1: Obtaining source code versions V1 and V2.
V1 and V2 differ by only a bug fix. Vbug and Vfix are the source code versions of two consecutive
revisions in a subject program’s version control system.

the real fault. We divided a non-isolated bug fix into two diffs, one that represents the bug
fix and one that represents features and refactorings. We discarded a candidate revision
pair if we could not isolate the bug fix part of the diff. The result of this step was two
source code versions V1 and V2 such that V1 and V2 differ by exactly a bug fix — no features
were added and no refactorings were applied. To ensure consistency, the review process was
performed twice by different authors, with a third author resolving disagreements. Different
authors reviewed different diffs to avoid introducing a systematic bias.

Figure 4.1 visualizes the relationship between the source code versions V1 and V2, and
how they are obtained from the source code versions of a candidate revision pair. V2 is
equal to the version Vfix , and the difference between V1 and V2 is the bug fix. Note that V1 is
obtained by re-introducing the real fault into V2 — that is, applying the inverse bug-fixing
diff. Overall, we obtained 357 version pairs 〈V1,V2〉 for which we could isolate the bug fix.

4.1.3 Obtaining Developer-written Test Suites

Section 4.1.2 described how we obtained 357 suitable version pairs 〈V1,V2〉. This section
describes how we obtained two related test suites Tpass and Tfail made up of developer-
written tests. Tpass and Tfail differ by exactly one test, Tpass passes on V1, and Tfail fails on
V1 because of the real fault.

Since Tpass and Tfail differ by exactly one test related to the real fault, the pairs
〈Tpass,Tfail〉 enable us to study the coupling effect between real faults and mutants, and
whether the effect exists independently of code coverage. These test suite pairs also reflect
common and recommended practice. The developer’s starting point is the faulty source
code version V1 and a corresponding test suite Tpass, which passes on V1. Upon discovering
a previously-unknown fault in V1, a developer augments test suite Tpass to expose this fault.
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Figure 4.2: Relationship between the i-th obtained test suite pair 〈T i
pass,T i

fail〉
and the developer-written test suites Tbug and Tfix.
Tbug and Tfix are derived from a subject program’s version control system. t̂i

fix is the i-th triggering
test in Tfix , and tj

bug is the previous version of that test.

The resulting test suite Tfail fails on V1 but passes on the fixed source code version V2. Tpass
might be augmented by modifying an existing test (e.g., adding stronger assertions) or by
adding a new test.

We cannot directly use the existing developer-written test suites Tbug and Tfix as Tpass
and Tfail , because not all tests pass on each committed version and because the developer
may have committed changes to the tests that are irrelevant to the fault. Therefore, we
created the test suites Tpass and Tfail based on Tbug and Tfix , as we now describe.

Recall that for each pair 〈V1,V2〉, one or more tests expose the real fault in V1 while
passing on V2 — we refer to such a test as a triggering test, t̂. Let m be the number of
triggering tests for a version pair; then t̂i denotes the i-th triggering test (1 ≤ i ≤ m).
Figure 4.2 visualizes how we obtained, for each real fault, m pairs of test suites 〈T i

pass,T i
fail〉

with the following properties:
• T i

pass passes on V1 and V2.
• T i

fail fails on V1 but passes on V2.
• T i

pass and T i
fail differ by exactly one modified or added test.

In order to fairly compare the effectiveness of Tpass and Tfail , they must not contain
irrelevant differences. Therefore, Tpass is derived from Tfix . If Tpass were derived from Tbug
instead, two possible problems could arise. First, V1 might include features (compared
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Figure 4.3: Statement coverage ratios and mutation scores of the test suites
Tpass for each subject program.

to Vbug, as described in Section 4.1.2), and Tfix might include corresponding feature tests.
Second, tests unrelated to the real fault might have been added, changed, or removed in
Tfix .

In summary, we applied the following steps to obtain all pairs 〈Tpass,Tfail〉 using the
developer-written test suites Tbug and Tfix :
1. Manually fixed all classpath- and configuration-related test failures in Tbug and Tfix to

ensure that all failures indicate genuine faults.
2. Excluded all tests from Tbug that fail on V1, and excluded all tests from Tfix that fail on
V2.

3. Determined all triggering tests t̂ifix in Tfix .
4. Created one test suite pair 〈T i

pass,T i
fail〉 for each t̂ifix ∈ Tfix (as visualized in Figure 4.2).

Overall, we obtained 480 test suite pairs 〈Tpass,Tfail〉 in this step. Figure 4.3 summarizes
the statement coverage ratios and mutation scores for all test suites Tpass measured for
classes modified by the bug fix. The high degree of statement coverage achieved by Tpass
allowed us to obtain 258 test suite pairs for which coverage did not increase and 222 test
suite pairs for which it did.
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In 80% of the cases, Tfix contained exactly one triggering test; developers usually augment
a test suite by adding or strengthening one test to expose the fault. For the remaining
cases, each triggering test exposes the real fault differently. For example, a developer might
add two tests for a boundary condition bug fix – one test to check the maximum and one
test to check the minimum value.

4.1.4 Automatically Generating Test Suites

We used three test generation tools for our study: EvoSuite [24], Randoop [86], and
JCrasher [17]. We attempted to use DSDCrasher [18] instead of JCrasher, but found that
it relies on the static analysis tool ESC/Java2. This tool does not work with Java 1.5 and
higher, making it impossible to use DSDCrasher for this study.

Unlike Randoop and JCrasher, EvoSuite aims to satisfy one of three possible criteria —
branch coverage, weak mutation testing, or strong mutation testing. We generated tests for
each of the criteria. We also selected two different configurations for Randoop, one that
allows null values as inputs (Randoop-null) and one that does not (Randoop-nonnull). For
each fixed program version V2, we generated 30 test suites with EvoSuite for each of the
selected criteria, 6 test suites for each configuration of Randoop, and 10 test suites with
JCrasher. Each test generation tool was guided to create tests only for classes modified by
the bug fix.

Each of the test generation tools might produce tests that do not compile or do not run
without errors. Additionally, tests might sporadically fail due to the use of non-deterministic
APIs such as time of day or random number generators. A test suite that (sporadically)
fails is not suitable for our study. We automatically repaired uncompilable and failing test
suites using the following workflow:
1. Removed all tests that cause compilation errors.
2. Removed all tests that fail during execution on V2.
3. Iteratively removed all non-deterministic tests; we assumed that a test suite does not

include any further non-deterministic tests once it passed 5 times in a row.
The final output of this process was generated test suites that pass on V2. Repairing

a test suite resulted in approximately 2% of cases in an empty test suite, when all tests
failed and had to be removed. Therefore, for all tools used to generate tests, the number of
suitable test suites, which pass on V2, is smaller than the total number of generated test
suites. Table 4.3 summarizes the characteristics of all generated test suites that pass on V2.
Note that unlike EvoSuite and Randoop, JCrasher does not capture program behavior for
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Table 4.3: Characteristics of generated test suites.

Test suites gives the total number of test suites that passed on V2 and the percentage of test suites
that detected a real fault (Tfail). The KLOC and Tests columns report the mean and standard
deviation of lines of code and number of JUnit tests for all test suites. Detected faults shows how
many distinct real faults the test suites detected out of the number of program versions for which
at least one suitable test suite could be generated.

Test suites KLOC Tests Detected
Total Tfail faults

EvoSuite 28,318 22.3% 10±49 68±133 182/354
-branch 10,133 21.1% 2±7 21±24 156/352
-weak 9,420 21.8% 3±8 24±27 158/352
-strong 8,765 24.1% 26±86 171±202 152/350

Randoop 3,387 18.0% 212±132 6,929±9,923 90/326
-nonnull 1,690 17.3% 200±124 6,113±9,012 78/316
-null 1,697 18.7% 224±138 7,747±10,698 84/319

JCrasher 3,436 0.6% 543±561 47,928±48,174 2/350

Total 35,141 19.7% 335±995 1,066±5,599 198/357

regression testing but rather aims at crashing a program with an unexpected exception,
explaining the low real fault detection rate.

We executed each generated test suite T̃ on V1. If it passed (T̃pass), it did not detect the
real fault. If it failed (T̃fail), we verified that the failing tests are valid triggering tests, i.e.,
they do not fail due to build system or configuration issues. Overall, the test generation
tools created 35,141 test suites that detect 198 of the 357 real faults. Figure 4.4 gives
the statement coverage ratios and mutation scores for all generated test suites grouped by
subject program, test generation tool/configuration, and real fault detection rate.

4.1.5 Mutation Analysis

We used the Major mutation framework [50, 51] to create the mutant versions and to
perform the mutation analysis. Major provides the following set of mutation operators:
Replace constants, Replace operators, Modify branch conditions, and Delete statements. This
set, suggested in the literature on mutation analysis [48,55,80,83], is commonly used and
includes the mutation operators used by previous studies [6, 19].
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Figure 4.4: Statement coverage ratios and mutation scores of the generated
test suites for each subject program.
The vertical axis shows the statement coverage ratio (Coverage) and the mutation score (Mutation).
The horizontal axis shows the real fault detection rate.

Major only mutated classes of the source code version V2 that were modified by the
bug fix. This reduces the number of mutants irrelevant to the fault – differences in the
mutation score would be washed out otherwise.

For each of the developer-written and automatically-generated test suites, Major com-
puted mutation coverage and mutation score. A test is said to cover a mutant if it reaches
and executes the mutated code. A test detects a mutant if the test outcome indicates a
fault — a test assertion fails or the test causes an exception in the mutant.

We did not eliminate equivalent mutants, which means that the reported mutation
scores might be underestimated. This is, however, not a concern for our study because
we do not interpret absolute mutation scores. Moreover, the set of equivalent mutants is
identical for any two test suites used in a comparison.

4.1.6 Experiments

As described in the introduction, the goal of our study was to answer three research
questions:
1. Are real faults coupled to mutants generated by commonly used mutation operators?
2. What types of real faults are not coupled to mutants?
3. Is mutant detection correlated with real fault detection?
After explaining why and how we controlled for code coverage, this section explains how we
answered these three questions.
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Controlling for Code Coverage

Structural code coverage is a widely-used measure of test suite effectiveness. Differences
in coverage often dominate other aspects of test suite effectiveness, and a test suite that
achieves higher coverage usually detects more mutants and faults for that reason alone [43].
More specifically, if test suite Tx covers more code than Ty, then Tx is likely to have a
higher overall mutation score, even if Ty does a better job in testing a smaller portion of
the program.

Furthermore, no developer would use a complex, time-consuming test suite metric such
as the mutation score unless simpler ones such as structural code coverage ratios had
exhausted their usefulness.

To account for these facts, we performed our experiments in two ways. First, we ignored
code coverage and simply determined the mutation score for each test suite using all mutants.
Second, we controlled for coverage and determined the mutation score using only mutants
in code covered by both test suites.

For the related test suite pairs 〈Tpass,Tfail〉, Tpass and Tfail may have the same code
coverage: Tpass and Tfail cover the same code if the triggering test in Tfail does not increase
code coverage.

For the automatically-generated test suites, it is highly unlikely that T̃pass and T̃fail
have the same coverage because they were independently generated. Therefore, we had to
control for coverage when using the automatically-generated test suites. We did this by
only considering the intersection of mutants covered by both test suites. This means that a
pair of generated test suites was discarded if the intersection was the empty set.

We include the first, questionable method for comparison with prior research that does
not control for coverage. The second method controls for coverage. It better answers
whether use of mutation analysis is profitable, under the assumption that a developer is
already using the industry-standard coverage metric. Our experiments use Cobertura [16]
to compute statement coverage over the classes modified by the bug fix.

Are Real Faults Coupled to Mutants Generated by Commonly Used Mutation
Operators?

The test suites Tpass and Tfail model how a developer usually augments a test suite. Tfail is
a better suite — it detects a fault that Tpass does not. If mutants are a valid substitute
for real faults, then any test suite Tfail that has a higher real fault detection rate than
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Tpass should have a higher mutation score as well. In other words, each real fault should
be coupled to at least one mutant. For each test suite pair 〈Tpass,Tfail〉, we studied the
following questions:
• Does Tfail have a higher mutation score than Tpass?
• Does Tfail have a higher statement coverage than Tpass?
• Is the difference between Tpass and Tfail a new test?
Based on the observations, we performed three analyses. (1) We used the Chi-square

test to determine whether there is a significant association between the measured variables
mutation score increased, statement coverage increased, and test added. (2) We determined
the number of real faults coupled to at least one of the generated mutants. (3) We measured
the sensitivity of the mutation score with respect to the detection of a single real fault – the
increase in the number of detected mutants between Tpass and Tfail . We also determined the
mutation operators that generated the mutants additionally detected by Tfail . Section 4.2.1
discusses the results.

What Types of Real Faults Are Not Coupled to Mutants?

Some of the real faults are not coupled to any of the generated mutants, i.e., the set of
mutants detected by Tpass is equal to the set of mutants detected by Tfail . We manually
investigated each such fault. This qualitative study reveals how the set of commonly used
mutation operators should be improved. Moreover, this study shows what types of real
faults are not coupled to any mutants and therefore reveals general limitations of mutation
analysis. Section 4.2.2 discusses the results.

Is Mutant Detection Correlated with Real Fault Detection?

We conducted two experiments to investigate whether a test suite’s mutation score is
correlated with its real fault detection rate. Calculating the correlation requires larger
numbers of test suites per fault, and thus we used the automatically-generated test suites. We
analyzed the entire pool of test suites derived from all test generation tools to investigate
whether the mutation score is generally a good metric to compare the effectiveness of
arbitrary test suites. The experiments consider 194 real faults for which we could generate
at least one test suite that detects the real fault and at least one test suite that does not.

We determined the strength of the correlation between mutation score and real fault
detection. Since real fault detection is a dichotomous variable, we computed the point-
biserial and rank-biserial correlation coefficients. In addition, we investigated whether the
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correlation is significantly stronger than the correlation between statement coverage and
real fault detection.

While we cannot directly calculate the correlation between mutation score and real
fault detection independently of code coverage, we can still determine whether there is
a statistically significant difference in the mutation score between T̃pass and T̃fail when
coverage is fixed. Calculating the correlation coefficient independently of code coverage
would require fixed coverage over all test suites. In contrast, testing whether the mutation
score differs significantly requires only fixed coverage between pairs of test suites.

For each real fault, we compared the mutation scores of T̃pass and T̃fail . Since the
differences in mutation score were not normally distributed (evaluated by the Kolmogorov-
Smirnov test), a non-parametric statistical test was required. Using the Wilcoxon signed-
rank test, we tested whether the mutation scores of T̃fail are significantly higher than the
mutation scores of T̃pass, independently of code coverage. Additionally, we measured the
Â12 effect sizes for the mutation score differences. Section 4.2.3 discusses the results.

4.2 Results

Section 4.1 described our method and analyses. This section answers the posed research
questions. Recall that we used 357 real faults, 480 test suite pairs 〈Tpass,Tfail〉 made up of
developer-written tests, and 35,141 automatically-generated test suites which may (T̃fail) or
may not (T̃pass) detect a real fault.

4.2.1 Are Real Faults Coupled to Mutants Generated by Com-
monly Used Mutation Operators?

Considering all test suite pairs 〈Tpass,Tfail〉, the mutation score of Tfail increased compared
to Tpass for 362 out of 480 pairs (75%). Statement coverage increased for only 222 out of
480 pairs (46%).

The mutation score of Tfail increased for 153 out of 258 pairs (59%) for which statement
coverage did not increase. The mutation score of Tfail increased for 209 out of 222 pairs (94%)
for which statement coverage increased. The Chi-square test showed a significant association
between mutation score increased and statement coverage increased (χ2(1) = 78.13, N =
480, p < 0.001), hence we considered the influence of statement coverage throughout our
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Figure 4.5: Effect of triggering tests on mutant detection.
The bars represent 480 triggering tests. 258 triggering tests did not increase statement coverage
(unchanged), and each one detects 2 new mutants on average. 222 triggering tests increased
statement coverage, and each one detects 28 new mutants on average.

analyses. In contrast, there was no significant association between mutation score increased
and test added.

In addition to determining whether the mutation score increased, we also measured the
sensitivity of the mutation score with respect to the detection of a single real fault, i.e.,
the number of mutants additionally detected by the triggering test. Figure 4.5 visualizes
the number of additionally detected mutants when coverage did not increase (unchanged)
and when it did. For triggering tests that did not increase statement coverage (black bars),
two characteristics can be observed. First, 40% of these triggering tests did not detect any
additional mutants. Second, 45% of these triggering tests detected only 1–3 additional
mutants, suggesting that the number of mutants that are coupled to a real fault is small
when accounting for the conflating effects of code coverage.

Figure 4.5 also illustrates these conflating effects of code coverage on the mutation score:
35% of triggering tests that increased statement coverage (gray bars) detected 10 or more
additional mutants. In contrast, this ratio was only 3% for triggering tests that did not
increase statement coverage.

We also investigated the underlying mutation operators of the mutants that are coupled
to real faults when statement coverage did not increase. We found that real faults were
more often coupled to mutants generated by the conditional operator replacement, relational
operator replacement, and statement deletion mutation operators. A possible explanation is
that some of these mutants cannot be detected by tests that only satisfy statement coverage.
Conditional and relational operator replacement mutants are frequently generated within
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conditional statements, and numerous statement deletion mutants only omit side effects
– detecting those mutants requires more thorough testing. None of these three mutation
operators is known to generate a disproportionate number of equivalent mutants [114],
hence they should always be employed during mutation analysis.

Answer 4.1. 73% of real faults are coupled to the mutants generated by commonly
used mutation operators. When controlling for code coverage, on average 2 mutants
are coupled to a single real fault, and the conditional operator replacement, relational
operator replacement, and statement deletion mutants are more often coupled to real
faults than other mutants.

4.2.2 What Types of Real Faults Are Not Coupled to Mutants?

For 95 out of 357 real faults (27%), none of the triggering tests detected any additional
mutants. We manually reviewed each such fault to investigate whether this indicates a
general limitation of mutation analysis. Table 4.4 summarizes the results, which fell into
three categories: cases where a mutation operator should be strengthened, cases where a
new mutation operator should be introduced, and cases where no obvious mutation operator
can generate mutants that are coupled to the real fault. In the latter case, results derived
from mutation analysis do not generalize to those real faults.

Real faults requiring stronger mutation operators (25)

• Statement deletion (12): The statement deletion operator is usually not implemented for
statements that manipulate the control flow. We surmise that this is due to technical
challenges in the context of Java — removing return or break/continue statements
changes the control flow and may lead to uninitialized variables or unreachable code
errors. Figure 4.6a gives an example.
• Argument swapping (6): Arguments to a method call that have the same type can be

swapped without causing type-checking errors. Argument swapping represents a special
case of swapping identifiers, which is not a commonly-used mutation operator [83].
Figure 4.6b shows an example.
• Argument omission (5): Method overloading is error-prone when two methods differ in
one extra argument — a developer might inadvertently call the method that requires
fewer arguments. Figure 4.6c gives an example. Generating mutants for this type
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Table 4.4: Number of real faults not coupled to mutants generated by com-
monly used mutation operators. Numbers are categorized by reason: weak
implementation of a mutation operator, missing mutation operator, or no ap-
propriate mutation operator exists.

Weak Missing No such Totaloperator operator operator
Chart 5 1 2 8
Closure 11 2 18 31
Math 4 4 30 38
Time 2 0 5 7
Lang 3 0 8 11
Total 25 7 63 95

of fault requires a generalization of a suggested class-based mutation operator, which
addresses method overloading to a certain extent [58].
• Similar library method called (2): Existing mutation operators replace one method call

by another only for calls to getter and setter methods. It would be both unfeasible and
largely unproductive to replace every method call with every possible alternative that
type-checks. Nonetheless, the method call replacement operator should be extended
to substitute calls to methods with related semantics — in particular library method
calls for string operations. Figure 4.6d shows an example in which the fault is caused
by using the wrong one of two similar library methods (indexOf instead of lastIndexOf).

Real faults requiring new mutation operators (7)

• Omit chaining method call (4): A developer might forget to call a method whose return
type is equal to (or a subtype of) its argument type. Figure 4.6e gives an example in
which a string needs to be escaped. A new mutation operator could replace such a
method call with its argument, provided that the mutated code type-checks.
• Direct access of field (2): When a class includes non-trivial getter or setter methods for
a field (e.g., further side effects or post-processing), an object that accesses the field
directly might cause an error. Figure 4.6f shows an example in which post-processing
of the field chromosomes is required before the method iterator() should be invoked. A
new mutation operator could replace calls to non-trivial getter and setter methods with
a direct access to the field.
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}
+ return false;

}
case 4: {

char ch = str. charAt (0);

(a) Lang-365 fix
- Partial newPartial = new Partial ( iChronology , newTypes ,

newValues );
+ Partial newPartial = new Partial (newTypes , newValues ,

iChronology );

(b) Time-88 fix
- return solve(min , max);
+ return solve(f, min , max);

(c) Math-369 fix
- int indexOfDot = namespace . indexOf (’.’);
+ int indexOfDot = namespace . lastIndexOf (’.’);

(d) Closure-747 fix
- return ... + toolTipText + ...;
+ return ... + ImageMapUtilities . htmlEscape ( toolTipText ) + ...;

(e) Chart-591 fix
- return chromosomes . iterator ();
+ return getChromosomes (). iterator ();

(f) Math-779 fix
- FastMath .pow (2 * FastMath .PI , -dim / 2)
+ FastMath .pow (2 * FastMath .PI , -0.5 * dim)

(g) Math-929 fix

Figure 4.6: Snippets of real faults that require stronger or new mutation oper-
ators.
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• Type conversions (1): Wrong assumptions about implicit type conversions and missing
casts in arithmetic expressions can cause unexpected behavior. Figure 4.6g shows an
example where the division should be performed on floating point numbers rather than
integers (the replacement of the division by multiplication is unrelated to the real
fault). A new mutation operator could replace a floating-point constant by an exact
integer equivalent (e.g., replace 2.0 by 2), remove explicit casts, or manipulate operator
precedence.

Real faults not coupled to mutants (63)

For the faults in this group, no obvious mutation operator exists that can simulate the
faults. Note that it may be possible to simulate a particular instance of the fault, such as
the examples we discuss, but that the class of faults as a whole cannot be simulated by a
mutation operator.
• Algorithm modification or simplification (37): Most of the real faults not coupled to

mutants were due to incorrect algorithms. The bug fix was to re-implement or modify
the algorithm.
• Code deletion (7): Faults caused by extra code that has to be deleted are not coupled to

mutants. A bug fix that only removes special handling code also falls into this category
— Figure 4.7a gives an example.
• Similar method called (5): Another common mistake is calling a wrong but related

method within the program, which might either return wrong data or omit side-effects.
Figure 4.7b shows an example of calling a wrong method. Note that this type of fault
can be represented by mutants for well-known library methods. However, without
deeper knowledge about the relation between methods in a program, replacing every
identifier and method call with all alternatives would result in an unmanageable number
of mutants.
• Context sensitivity (4): Mutation analysis is context insensitive, while bugs can be

context sensitive. Suppose the access of a field that might be null is extracted to a utility
method that includes a null check. A developer might forget to replace an instance of
the field access with a call to this utility method. This rather subtle fault cannot be
represented with mutants since it would require inlining the utility method (without the
null check) for every call. Figure 4.7c gives an example of this type of fault. The fault
is that this.startData might be null — this condition is checked in getCategoryCount().
However, other tests directly or indirectly detect all mutants in getCategoryCount(),
hence a test that exposes the fault does not detect any additional mutants.
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• Violation of pre/post conditions or invariants (3): Some real faults were caused by the
misuse of libraries. For example, the Java library makes assumptions about the hashCode
and equals methods of objects that are used as keys to a HashMap. Yet, a violation of this
assumption cannot be generally simulated with mutants. Figure 4.7d gives an example
of such a fault.
• Numerical analysis errors (4): Real faults caused by overflows, underflows, and improper

handling of NaN values are difficult to simulate with mutants, and hence also represent
a general limitation. Figure 4.7e shows an example of a non-trivial case of this type of
fault.
• Specific literal replacements (3): Literal replacement is a commonly used mutation
operator that replaces a literal with a well-defined default (e.g., an integer with 0 or
a string with the empty string). However, the real fault might only be exposed with
a specific replacement. For example, a map might contain a wrong value that is only
accessible with a specific key. The literal replacement operator cannot generally simulate
such a specific replacement. Figure 4.7f demonstrates an example that involves Unicode
characters.

Answer 4.2. 27% of real faults are not coupled to the mutants generated by commonly
used mutation operators. The set of commonly used mutation operators should be
enhanced. However, 17% of real faults, mostly involving algorithmic changes or code
deletion, are not coupled to any mutants.

4.2.3 Is Mutant Detection Correlated with Real Fault Detection?

Section 4.2.1 provided evidence that mutants and real faults are coupled, but the question
remains whether a test suite’s mutation score is correlated with its real fault detection rate
and whether mutation score is a good predictor of fault-finding effectiveness.

Figure 4.8 summarizes the point-biserial and rank-biserial correlation coefficients between
the mutation score and real fault detection rate for each subject program. Both correlation
coefficients lead to the same conclusion: the correlation is positive, usually strong or
moderate, indicating that mutation score is indeed correlated with real fault detection.
Unsurprisingly, real faults that are not coupled to mutants show a negligible or even negative
correlation. For reference Figure 4.8 also includes the results for statement coverage.

The correlation between mutation score and real fault detection rate is conflated with
the influence of statement coverage, but the Wilcoxon signed-rank test showed that the
correlation coefficient between mutation score and real fault detection rate is significantly
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if ( childType . isDict ()) {
...

- } else if (n. getJSType != null &&
- parent . isAssign ()) {
- return ;

} ...

(a) Closure-810 fix
- return getPct (( Comparable <?>) v);
+ return getCumPct (( Comparable <?>) v);

(b) Math-337 fix
- if ( categoryKeys . length != this. startData [0]. length )
+ if ( categoryKeys . length != getCategoryCount ())

(c) Chart-834 fix
- lookupMap = new HashMap < CharSequence , CharSequence >();
+ lookupMap = new HashMap <String , CharSequence >();

(d) Lang-882 fixa

aThe result of comparing two CharSequence objects is undefined — the bug fix uses String to alleviate
this issue.
- if (u * v == 0)
+ if ((u == 0) || (v == 0))

(e) Math-238 fix
- {"\ u00CB", "&Ecirc;"},
+ {"\u00CA", "&Ecirc;"},
+ {"\u00CB", "&Euml;"},

(f) Lang-658 fix

Figure 4.7: Snippets of real faults not coupled to mutants.

higher than the correlation coefficient between statement coverage and real fault detection
rate for all subject programs except Time.

Further investigating the influence of statement coverage, Table 4.5 summarizes the
comparison of the mutation scores between all test suites T̃pass and T̃fail for each real fault
when coverage is controlled or ignored (not controlled). In addition to the number of
real faults for which the mutation score of T̃fail is significantly higher, the table shows the
average Â12 effect size.
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Table 4.5: Comparison of mutation scores between T̃pass and T̃fail.

Significant gives the number of real faults for which T̃fail has a significantly higher mutation score
(Wilcoxon signed-rank test, significance level 0.05).

Program Coverage controlled Coverage ignored
Significant Avg. Â12 Significant Avg. Â12

Chart 21/22 0.74 21/22 0.74
Closure 27/32 0.66 30/32 0.71
Math 76/80 0.79 80/80 0.81
Time 18/18 0.81 17/18 0.81
Lang 40/42 0.77 39/42 0.78

Figure 4.9 summarizes the Â12 effect sizes. In our scenario the value of Â12 is an
estimation of the probability that a test suite with a higher real fault detection rate has
a higher mutation score as well, where a value Â12 = 1 means that the mutation score
increased for all observations. An effect size of Â12 ≥ 0.71 is typically interpreted as large.
As expected, the effect size is greater if statement coverage is ignored (not controlled),
but the average effect size remains large for all subject programs except for Closure when
coverage is controlled.

Answer 4.3. Mutant detection is positively correlated with real fault detection, inde-
pendently of code coverage. This correlation is stronger than the correlation between
statement coverage and real fault detection.

4.2.4 Threats to Validity

Our evaluation uses only 5 subject programs, all written in Java. Other programs might have
different characteristics. Moreover, all 5 subject programs are well-tested (see Figure 4.3).
This may limit the applicability of the results to programs that are not well-tested (e.g.,
programs under development). However, we do not feel this is a major threat, since mutation
analysis is typically only used as an advanced metric. For example, if a test suite covers
only 20% of the source code, developers are likely to focus on improving code coverage
before they focus on improving the mutation score.
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(a) Point-biserial correlation coefficients.
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(b) Rank-biserial correlation coefficients.

Figure 4.8: Correlation coefficients for each subject program.
The differences between the correlation coefficients (of mutation score and statement coverage) are
significant (Wilcoxon signed-rank test) for all subject programs (p < 0.05) except Time (p > 0.2).

Another threat to validity is the possibility of a bias in our fault sample. We located
the real faults by automatically linking bug identifiers from the bug tracking system to the
version control revisions that resolved them. Previous work suggests that this approach
does not produce an unbiased sample of real faults [10]. In particular, the authors found
that not all faults are mentioned in the bug tracking system and that not all bug-fixing
commits can be identified automatically. In addition, they found that process metrics such
as the experience of the developer affect the likelihood that a link will be created between
the issue and the commit that fixes it. However, this threat is unlikely to impact our results
for the following two reasons. First, while we may suffer false negatives (i.e., missed faults),
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Figure 4.9: Â12 effect sizes for mutation score differences between T̃pass and
T̃fail for each subject program.

our dataset is unlikely to be skewed towards certain types of faults, such as off-by-one
errors. Bachmann et al. did not find a relationship between the type of a fault and the
likelihood that the fault is linked to a commit [10]. Second, recent evidence suggests that
the size of bug datasets influences the accuracy of research studies more than the bias of
bug datasets [93]. The severity of the bias threat is therefore reduced by the fact that we
used a large number of real faults in our study.

We focused on identifying faults that have an unquestionably undesirable effect and that
can be triggered with an automated test. It is possible that our results – the correlation
between the mutant detection and real fault detection – do not generalize to faults that do
not match these criteria. However, we argue that reproducibility of faults is desirable and
characteristic of common practice.

A final threat is that we did not use class-level mutation operators, such as those in
Kim and Offutt’s studies [58,84]. We did not consider them in our study for two reasons.
First, class-level mutation operators are neither implemented in modern Java mutation
tools such as Major, Javalanche, and PIT, nor are they commonly used in experiments
involving mutants. We therefore argue that using the set of traditional mutation operators
improves comparability and also generalizability – the set of traditional mutation operators
is applicable to many programming languages. In addition, our qualitative study addresses
this threat and shows whether and how mutation analysis could benefit from adding
improved or specialized versions of class-level mutation operators.
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Table 4.6: Comparison of studies that explored the relationship between mu-
tants and real faults.

LOC gives the total number of lines of code of the studied programs that contained real faults. Test
suites gives the type of used test suites (gen=generated, dev=developer-written). Mutation opera-
tors refers to: Rc=Replace constants, Ri=Replace identifiers, Ro=Replace operators, Nbc=Negate
branch conditions, Ds=Delete statements, Mbc=Modify branch conditions (note that Mbc sub-
sumes Nbc [54]).

Real
faults LOC Tests

suites
Mutation
operators

Mutants
evaluated

Coverage
controlled

[19] 12 1,000 gen Rc,Ri,Ro 1% no
[6] 38 5,905 gen Rc,Ro,Nbc,Ds 10% no
[79] 38 5,905 gen Rc,Ri,Ro,Nbc,Ds 10% no

Our
study 357 321,000 gen

dev Rc,Ro,Mbc,Ds 100% yes

4.3 Related Work

This section discusses previous studies that explored the relationship between mutants and
real faults. It also discusses commonly used artifacts that provide faulty program versions
and research areas that rely on the existence of a correlation between the mutation score
and real fault detection rate.

4.3.1 Studies That Explored the Relationship Between Mutants
and Real Faults

We are only aware of three previous studies that investigated the relationship between
mutants and real faults, which are summarized in Table 4.6.

Duran and Thévenod-Fosse [19] performed the first such study. They found that, when
their subject program was exercised with generated test suites, the errors (incorrect internal
state) and failures (incorrect output) produced by mutants were similar to those produced
by real faults. However, this study was limited in scope as it considered a single 1,000 line
C program and evaluated only 1% of the generated mutants. Finally, this study only used
generated test suites and did not control for code coverage.
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Andrews et al. [6] were the next to explore the relationship between mutants, hand-
seeded faults, and real faults. They found that hand-seeded faults are not a good substitute
for real faults, but that mutants are. In particular, they found that there is no practically
significant difference between the mutation score and the real fault detection rate. However,
this study was also limited in scope since only one of the eight studied programs (Space)
contained real faults. Space is written in C and contains 5,905 lines of code. Additionally,
the study considered only 10% of the generated mutants, used automatically-generated test
cases, and did not control for code coverage.

Namin and Kakarla [79] later replicated the work of Andrews et al. [6], used a different
mutation testing tool (Proteum), and came to a different conclusion: they found that the
correlation between the mutation score and the real fault detection rate for Space was weak.
They also extended the work to five Java classes from the standard library, ranging from
197 to 895 lines of code. Faults were hand-seeded by graduate students, and the authors
found that the correlation was considerably stronger.

To the best of our knowledge, our study is the first to undertake experimental evaluation
of the relationship between mutants and real faults at such a scale in terms of number of
real faults, number of mutants, subject program size, subject program diversity, and the
use of developer-written and automatically-generated test suites. In addition, our study is
the first to consider the conflating effects of code coverage on the mutation score and the
first to explore real faults in object-oriented programs.

4.3.2 Commonly Used Artifacts

Many research papers use programs from the Siemens benchmark suite [42] or the software-
artifact infrastructure repository (SIR) [21] in their evaluation. More precisely, Google
Scholar lists approximately 1,400 papers that used programs from the Siemens benchmark
suite, and SIR’s usage information website [104] lists more than 500 papers that reference
SIR.

The Siemens benchmark suite consists of 7 C programs varying between 141 and 512 lines
of code, and all faults were manually seeded. The authors described their manually-seeded
faults as follows [42]: “The faults are mostly changes to single lines of code, but a few
involve multiple changes. Many of the faults take the form of simple mutations or missing
code.” Thus, our results likely hold for these faults, which are essentially mutants.

SIR provides 81 subjects written in Java, C, C++, and C#. According to the SIR meta
data, 36 of these subjects come with real faults. The median size of those 36 subjects is
120 lines of code, and 35 of them are written in Java. SIR was not suitable for our study
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due to the small program sizes and the absence of comprehensive developer-written test
suites. Therefore, we developed a fault database that provides 357 real faults for 5 large
open-source programs, which feature comprehensive test suites [52].

4.3.3 Software Testing Research Using Mutants

The assumption that mutant detection is well correlated with real fault detection underpins
many studies and techniques in several areas in software testing research.

Mutation analysis is an integral part of mutation-based test generation approaches,
which automatically generate tests that can distinguish mutant versions of a program from
the original version (e.g., [25, 37, 87, 118]). However, studies in this area have not evaluated
whether the generated test suites can detect real faults.

Test suite minimization and prioritization approaches are often evaluated with mutants
to ensure that they do not decrease (or they minimally decrease) the mutation score of the
test suite (e.g., [22,95]). Prior studies, however, left open the question whether and how
well those approaches maintain real fault effectiveness.

To evaluate an algorithm for fault localization or automatic program repair, one must
know where the faults in the program are. Mutants are valuable for this reason and
commonly used (e.g., [15, 49]). Yet, it is unclear whether those algorithms evaluated on
mutants perform equally well on real faults.

Our qualitative and quantitative studies show to what extent research using mutants
generalizes to real faults. Our studies also reveal inherent limitations of mutation analysis
that should be kept in mind when drawing conclusions based on mutants.

4.4 Relevance to Thesis

Recall that our thesis statement is as follows:

Thesis Statement. Robust development processes are necessary to minimize the number of
faults introduced when evolving complex software systems. These processes should be based on
empirical research findings. Data science techniques allow software engineering researchers
to develop research insights that may be difficult or impossible to obtain with other research
methodologies. These research insights support the creation of development processes. Thus,
data science techniques support the creation of empirically-based development processes.
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Testing is a powerful quality assurance tool. However, there are many different ap-
proaches to testing software. Comparing these approaches to see which is the most
cost-effective requires doing testing research; conducting testing research requires having
faults to detect. Unfortunately, the real faults that remain in “wild” software are by
definition unknown. Testing researchers therefore require some way of introducing faults
into software in order to determine if a given test suite can detect those faults. Mutants
are a popular choice for this as mutation testing provides an automated, replicable way
of seeding faults. However, prior to this work, empirical support for the use of mutants
was lacking. Our work shows that a test suite’s mutant kill score is correlated with its
ability to detect real faults, supporting the use of mutants in testing research. The work
also shows that mutation testing provides a good estimate of a suite’s fault detection ability
and therefore can be recommended to practitioners who are interested in measuring the
quality of their test suites.

To test for the existence of the correlation between mutant detection and fault detection,
we had to identify real faults in real programs. Though this required some manual effort,
the use of data science techniques was essential to measure this correlation. Generating test
suites, in particular, took over a year of serial machine time and could not have been done
without access to multiple computational clusters. Thus, this chapter of the thesis provides
additional evidence for our thesis statement: data science tools permit the development of
new research insights that in turn affect the day-to-day practice of software engineering.
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Chapter 5

Conclusion

Driving decisions with data is like having a spotlight. It creates an area of clarity
and illumination but also shadows and dark spots.
Kent Beck, 2016 [12]

The scope and complexity of modern software systems makes it difficult for developers
to fully understand the ramifications of a given code change. For this reason, software
development companies create processes for developers to follow when maintaining and
evolving code. The use of good processes can reduce the number of faults introduced into
the system. Naturally, the challenge is defining “good”; this is where software engineering
researchers come in.

Software engineering researchers develop many insights that can help developers perform
their day-to-day work. There are many different methodologies that can be used to conduct
this research, including interviews, surveys, and industrial case studies. Each approach
has some benefits and some drawbacks when compared to the others. In this thesis, we
explored how the use of data science techniques can generate research insights that could
not be obtained in other ways. We saw three examples that support this claim.

In Chapter 2, we saw that mobile application (app) research uses app corpora of varying
sizes, ranging from tens of apps to hundreds of thousands of apps. This makes it hard to
judge the generalizability of any one study. We therefore developed empirical guidelines that
can assist researchers studying mobile apps. We suggested that a corpus containing 1,000
apps may be sufficient if the research is concerned with typical behaviour, while a million
or more apps may be required if the study seeks to identify outliers. We also showed that
13% of the public API methods were not used by the apps in our corpus of 1,368,376. This
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information can help guide the Android maintainers as they choose methods to deprecate.
In addition, it will indirectly benefit users of the Android API who will have a smaller API
to comprehend.

Next, we applied our newly-created guideline to a study of Android malware detection.
Previous studies of Android malware detection did not control for the API level of the
apps in the corpus and none used more than 135,792 apps. This represented a potential
threat to the validity of at least fifteen previous studies on the topic. We conducted a study
of 1.3 million apps in which we controlled for API level. As it happened, the potential
threat to validity did not materialize: the accuracy of the malware detection classifiers is
not artificially inflated when API level is not controlled. However, this information helps
researchers working with Android by increasing their confidence in existing results. Future
work on this topic could explore the cause of this result, as it is somewhat counterintuitive.

In Chapter 3, we saw that the regression test suites we studied rarely detected a fault:
only 0.28% of test case executions failed due to a fault in the system under test. In addition,
26% of non-flaky test failures were resolved by fixing the test, not the system under test.
The ideal tradeoff between the cost of production bugs and the cost of writing, maintaining,
and executing a test suite naturally depends on the software system in question. However,
while developers are intellectually aware that every test has a cost, they likely do not
consider the lifetime cost of a test as they are writing it. The findings we presented in this
chapter may make them more aware of the cost of regression testing relative to the benefits,
informing their test suite maintenance decisions. Future work in this area could broaden
the study to other platforms and languages as well as replicating the results at individual
companies in the form of in-depth case studies.

In Chapter 4, we saw that a great deal of testing research relies on the assumption that
mutants are an adequate substitute for real faults. That is, the studies assume that a test
suite’s mutant detection rate is correlated with its real fault detection rate. However, prior
to our study, this assumption was not well supported by empirical evidence. We showed
that the mutant detection rate and the real fault detection rate are indeed correlated, even
when the effect of code coverage is accounted for. Future work in this area could explore
whether equivalent mutants are indicative of code smells.

Taken together, these three studies provide examples of using data science to generate
research results that can inform development processes. The results in Chapter 3 are
directly applicable to developers, while the results in Chapters 2 and 4 affect software
engineering research methodology and thus indirectly impact developers. Data science
techniques played a key role in the method used to conduct all three studies. Without these
techniques, we would have been unable to handle a corpus of 1.3 million apps, study test
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suites for 61 projects, or identify 437 faults to compare to mutant programs. Of course,
as the quote at the beginning of this chapter highlights, facts and figures extracted from
a software system cannot describe it completely. In addition, the data in use may be
incomplete, noisy, biased, unstructured, or of uncertain provenance. Finally, if the data are
generated by system users, the use of data science may raise privacy and security issues.
Thus, data science is not a panacea for attacking software development problems. Human
judgement is needed to interpret and apply the information produced by data science.
However, when used carefully, research results generated via the application of data science
techniques can replace the use of heuristics and intuition, making the maintenance of large,
complex software systems much easier.
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