

The Programming Historian

2014-09-20

Introduction to the Bash Command Line

By Ian Milligan and James Baker

Reviewed by Melodee Beals, Allison Hegel, Charlotte Tupman, and Adam Crymble

Recommended for Beginning Users

Introduction to the Bash Command Line

Introduction

Many of the lessons at the Programming Historian require you to enter
commands through a Command-Line Interface. The usual way that
computer users today interact with their system is through a Graphical-
User Interface, or GUI. This means that when you go into a folder, you
click on a picture of a file folder; when you run a program, you click on
it; and when you browse the web, you use your mouse to interact with
various elements on a webpage. Before the rise of GUIs in the late
1980s, however, the primary way to interact with a computer was
through a command-line interface.

http://programminghistorian.org/
http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es

GUI of Ian Milligan’s Computer

Command-line interfaces have advantages for computer users who need
more precision in their work – such as digital historians. They allow for
more detail when running some programs, as you can add modifiers to
specify exactly how you want your program to run. Furthermore, they
can be easily automated through scripts, which are essentially recipes of
text-based commands.

There are two main command-line interfaces, or ‘shells,’ that many
digital historians use. On OS X or many Linux installations, the shell is
known as bash , or the ‘Bourne-again shell.’ For users on Windows-
based systems, the command-line interface is by default MS-DOS-based ,
which uses different commands and syntax, but can often achieve
similar tasks. This tutorial provides a basic introduction to the bash

terminal, and Windows users can follow along by installing popular shells
such as Cygwin or Git Bash (see below).

This lesson uses a Unix shell, which is a command-line interpreter that

http://programminghistorian.org/images/intro-to-bash/GUI.png
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/chap_01.html
http://en.wikipedia.org/wiki/Syntax
https://www.cygwin.com/
http://en.wikipedia.org/wiki/Unix_shell

provides a user interface for the Unix
operating system and for Unix-like
systems. This lesson will cover a small number of basic commands. By
the end of this tutorial you will be able to navigate through your file
system and find files, open them, perform basic data manipulation tasks
such as combining and copying files, as well as both reading them and
making relatively simple edits. These commands constitute the building
blocks upon which more complex commands can be constructed to fit
your research data or project. Readers wanting a reference guide that
goes beyond this lesson are recommended to read Deborah S. Ray and
Eric J. Ray, Unix and Linux: Visual Quickstart Guide, 4th edition (2009).

Windows Only: Installing Git Bash

For those on OS X, and most Linux installations, you’re in luck
— you
already have a bash shell installed. For those of you on Windows, you’ll
need to take one extra step and install Git Bash. This can be installed by
downloading the most recent ‘Full installer’ at this page. Instructions for
installation are available at Open Hatch.

Opening Your Shell

Let’s start up the shell. In Windows, run Git Bash from the directory that
you installed it in. You will have to run it as an administrator - to do so,
right click on the program and select ‘Run as Administrator.’ In OS X, by
default the shell is located in:

Applications -> Utilities -> Terminal

http://en.wikipedia.org/wiki/Unix
https://git-for-windows.github.io/
https://openhatch.org/missions/windows-setup/install-git-bash
http://programminghistorian.org/images/intro-to-bash/Terminal.png

The Terminal.app program on OS X

When you run it, you will see this window.

A blank terminal screen on our OS X workstation

You might want to change the default visual appearance of the terminal,
as eyes can strain at repeatedly looking at black text on a white
background. In the default OS X application, you can open the ‘Settings’
menu in ‘Preferences’ under Terminal.
Click on the ‘Settings’ tab and
change it to a new colour scheme. We personally prefer something with
a bit less contrast between background and foreground, as you’ll be
staring at this a great deal. ‘Novel’ is a soothing one as is the popular
Solarized suite of colour palettes. For Windows users, a similar effect
can be achieved using the Git Bash Properties tab. To reach this, right-
click anywhere in the top bar and select Properties .

http://programminghistorian.org/images/intro-to-bash/Blank-Terminal.png
http://ethanschoonover.com/solarized

The Settings Screen on the OS X Terminal Shell Application

Once you are happy with the interface, let’s get started.

Moving Around Your Computer’s File System

If, when opening a command window, you are unsure of where you are
in
a computer’s file system, the first step is to find out what directory
you are in. Unlike in a graphical system, when in a shell you cannot be
in multiple directories at once. When you open up your file explorer on

n

Startup

Profiles

Settings

Window Groups Encodings

Homebrew

Man Page

Novel
Default

Ocean

Pro

Red Sands

Silver Aerogel

Solid Colors

Default

Font

Courier 12 pt.

Text

Wiindow Shell

� Antialias text
� Use bold fonts
� Allow blinking text
� Di splay ANSI colorrs
0 Use bright color.s for bold text

ANSI Colors

Cursor

01 Block

Q_I.Jnderline

0 I Vertical Bar

0 Blin cursor

Keyboard Advanced

[Change ...]

� Te.xt

� Bold Text

� Selection

� Cursor

(j)

http://programminghistorian.org/images/intro-to-bash/Settings.png

your desktop, it’s revealing files that are within a directory. You can find
out what directory you are in through the pwd command, which stands
for “print working directory.” Try inputing:

pwd

and hitting enter. If you’re on OS X or Linux, your computer will
probably display /users/USERNAME with your own user name in place of
USERNAME. For example, Ian’s path on OS X is /users/ianmilligan1/ .

Here is where you realize that those on Windows and those on OS
X/Linux will have slightly different experiences. On Windows, James is
at:

c/users/jbaker

There are minor differences, but fear not; once you’re moving and
manipulating files, these platform divergences can fade into the
background.

To orient ourselves, let’s get a listing of what files are in this directory.
Type

ls

and you will see a list of every file and directory within your current
location. Your directory may be cluttered or it may be pristine,
but you
will at a minimum see some familiar locations. On OS X, for example,
you’ll see Applications , Desktop , Documents , Downloads , Library ,
Pictures , etc.

You may want more information than just a list of files. You can do this
by specifying various flags
to go with our basic commands. These are
additions to a command that provide the computer with a bit more
guidance of what sort of output or manipulation you want. To get a list
of these, OS X/Linux users can turn
to the built-in help program. OS
X/Linux users type

man ls

The Manual page for the LS command

Here, you see a listing of the name of the command, the way that you
can format this command and what it does. Many of these will not
make sense at this stage, but don’t worry; over time you will
become more familiar with them.
You can explore this page in a
variety of ways: the spacebar moves down
a page, or you can arrow
down and arrow up throughout the document.

To leave the manual page, press

q

00 ill ianmilliganl - less - 94x39

LS(l) BSD General commands Manual LS(l)

la -- list directory contents

STIIOPSIS

la [-ABCFGJII.OPRSTUW@abodefghiklmnopqratuwxl] [file ..:....:....:.l

DESCRIPTIOliT

:I

For each operand that names a file of a type other than directory, ls displays its
name as well as any requested, associated information. For each operand that
names a file of type directory, ls displays the names of files contained within
that directory, as well as any reques·ted, associa·ted information.

If no operands are given, the contents of the current direc·tory are displayed. If
more than one operand is given, non-di..rectory operands are displayed first; direc­
tory and non-directory operands are sorted separately and in lexicographical
order.

The following options are available:

-@ Display extended attribute keys and sizes in long (-1) output.

-1 (The nwneri..c digit ''one''.) Force output to be one entry per line. Thi..s
is the default when output is not to a terminal.

-A List all entries except for
.:.

and Always set for the super-user.

-a Include directory entries whose names begin with a dot (
.:.

l •

-B Force printing of non-printable characters (as defined by ctype(3) and
current locale settings) in fi..Le names as \xxx, where xxx i..s the nwneric
value of the character in octal.

-b As -B, but use c escape codes whenev,er possible.

-c Force multi-column output; this is the default when output is to a termi-

It 1

http://programminghistorian.org/images/intro-to-bash/man-ls.png

and you will be brought back to the command line where you were
before entering the manual page.

Try playing around with the man page for the other command you have
learned so far, pwd .

Windows users can use the help command, though this command has
fewer features than man on OS X/Linux. Enter help to see the help
available, and help pwd for an example of the command’s output.

Let’s try using a few of those options you saw in the man page for ls.
Perhaps you only want to see TXT files that are in our home directory.
Type

ls *.txt

which returns a list of text files, if you have any in your home directory
(you may not, and that is OK as well). The * command is a wildcard —
it stands for ‘anything.’ So, in this case, you’re indicating that anything
that fits the pattern:

[anything.txt]

will be displayed. Try out different combinations. If, for example, you
had several files in the format 1-Canadian.txt , 2-Canadian.txt , and so
forth, the command ls *-Canadian.txt would display them all but
exclude all other files (those that do not match the pattern).

Say you want more information. In that long man page, you saw an
option that might be useful:

-l (The lowercase letter ``ell''.) List in long

format. (See below.) If

the output is to a terminal, a total sum for all the

file sizes is out-

 put on a line before the long listing.

So, if you type

ls -l

the computer returns a long list of files that contains information similar
to what you’d find in your finder or explorer: the size of
the files in bites,
the date it was created or last modified, and the file name. However,
this can be a bit confusing: you see that a file test.html is ‘6020’ bits
large. In commonplace language, you
are more used to units of
measurement like bytes, kilobytes, megabytes,
and gigabytes.

Luckily, there’s another flag:

-h When used with the -l option, use unit suffixes:

Byte, Kilobyte,

 Megabyte, Gigabyte, Terabyte and Petabyte in order

to reduce the number

 of digits to three or less using base 2 for sizes.

When you want to use two flags, you can just run them together. So, by
typing

ls -lh

you receive output in a human-readable format; you learn that that
6020 bits is also 5.9KB, that another file is 1 megabyte, and so forth.

These options are very important. In other lessons within the
Programming Historian, you’ll see them. Wget, MALLET, and Pandoc
all
use the same syntax. Luckily, you do not need to memorize syntax;
instead, keep these lessons handy so you can take a quick peek if you
need to tweak something. These lessons can all be done in any order.

You’ve now spent a great deal of time in your home directory. Let’s go
somewhere else. You can do that through the cd or Change Directory
command.

If you type

cd desktop

http://programminghistorian.org/lessons/applied-archival-downloading-with-wget
http://programminghistorian.org/lessons/topic-modeling-and-mallet
http://programminghistorian.org/lessons/sustainable-authorship-in-plain-text-using-pandoc-and-markdown

you are now on your desktop. This is akin to you ‘double-clicking’ on the
‘desktop’ folder within
a file explorer. To double check, type pwd and
you should see something like:

/Users/ianmilligan1/desktop

Try playing around with those earlier commands: explore your current
directory using the ls command.

If you want to go back, you can type

cd ..

This moves us ‘up’ one directory, putting us back in
/Users/ianmilligan1/ . If you ever get completely lost, the command

cd --

will bring you right back to the home directory, right where you started.

Try exploring: visit your documents directory, your pictures, folders
you
might have on your desktop. Get used to moving in and out of
directories. Imagine that you are navigating a tree structure. If you’re
on the desktop, you won’t be able to cd documents
as it is a ‘child’ of
your home directory, whereas your Desktop is a ‘sibling’ of the
Documents folder. To get to a sibling, you have to go back to the
common parent. To do this, you will have to back up to your home
directory (cd ..) and then go forward again to cd documents .

Being able to navigate your file system using the bash shell is very
important for many of the lessons at the Programming Historian.
As you
become more comfortable, you’ll soon find yourself skipping directly to
the directory that you want. In our case, from anywhere on our system,
you could type

cd /users/ianmilligan1/mallet-2.0.7

or, on Windows, something like

cd c:\mallet-2.0.7\

http://en.wikipedia.org/wiki/Tree_structure

and be brought to our MALLET directory for topic modeling.

Finally, try

open .

in OS X or

explorer .

in Windows. That command will open up your GUI at the current
directory. Make sure to leave a space between open or explorer and
the period.

Interacting with Files

As well as navigating directories, you can interact with files on the
command line: you can read them, open them, run them, and even edit
them, often without ever having to leave the interface. There is some
debate over why one would do this. The primary reason is the seamless
experience of working on the command line: you never have to pick up
your mouse or touch your track pad, and, although it has a steep
learning curve it can eventually become a sole writing environment.
Furthermore, many programs require you to use the command line to
operate with them. Since you’ll be using programs on the command line,
it can often be quicker to make small edits without switching into
a
separate program. For some of these arguments, see Jon Beltran de
Heredia’s “Why, oh WHY, do those #?@! nutheads use vi?”.

Here’s a few basic ways to do interact with files.

First, you can create a new directory so you can engage with text files.
We will create it on your desktop, for convenience’s sake. You can
always move it later. Navigate to your desktop using your shell,
and
type:

mkdir ProgHist-Text

http://programminghistorian.org/lessons/topic-modeling-and-mallet
http://www.viemu.com/a-why-vi-vim.html

This creates a directory named, you guessed it, ‘ProgHist-Text.’ In
general, it’s good to avoid putting spaces in your filenames and
directories when using the command line (there are workarounds, of
course, but this approach is simpler). You can look at your desktop to
verify it has worked. Now, move into that directory (remember, that
would be cd ProgHist-Text).

But wait! There’s a trick to make things a bit quicker. Go up one
directory (cd .. - which will take you back to the Desktop). To navigate
to the ProgHist-Text directory you could type cd ProgHist-Text .
Alternatively, you could type cd Prog and then hit tab. You will notice
that the interface completes the line to cd ProgHist-Text . Hitting
tab at
any time within the shell will prompt it to attempt to auto-
complete the line based on the files or sub-directories in the
current directory. This is case sensitive, however (i.e. in the
previous
example, cd prog would not auto complete to ProgHist-

Text .
Where two or more files have the same characters, the
auto-complete will only fill up to the first point of difference. We
would encourage using this method throughout the lesson to see
how it behaves.

Now you need to find a basic text file to help us with the example. Why
don’t you use a book that you know is long, such as Leo Tolstoy’s epic
War and Peace. The text file is availiable via Project Gutenberg. If you
have already installed wget, you can just type

wget http://www.gutenberg.org/files/2600/2600-0.txt

If you do not have wget installed, download the text itself using your
browser. Go to the link above, and, in your browser, use the ‘Save Page
as..’ command in your ‘file menu.’ Save it in your new ‘ProgHist-Text
directory.’ Now, when you
type

ls -lh

you see

http://www.gutenberg.org/ebooks/2600
http://programminghistorian.org/lessons/applied-archival-downloading-with-wget

-rw-r–r–+ 1 ianmilligan1 staff 3.1M 1 May 10:03
pg2600.txt

You can read the text within this file in a few different ways. First, you
can tell our computer that you want to read it using the standard
program that you use to open text files. By default, this may be TextEdit
on OS X or Notepad in Windows. To open a file, just type

open pg2600.txt

on OS X, or

explorer pg2600.txt

in Windows.

This selects the default program to open that type of file, and opens it.

However, you often want to just work on the command line without
leaving it. You can read files within this environment as well. To try this,
type:

cat pg2600.txt

The terminal window erupts and War and Peace cascades by. That’s
great, in theory, but you can’t really make any sense
of that amount of
text? Instead, you may want to just look at the first
or the last bit of the
file.

head pg2600.txt

Provides a view of the first ten lines, whereas

tail pg2600.txt

provides a perspective on the last ten lines. This is a good way to
quickly determine the contents of the file. You could add a command to
change the amount of lines displayed: head -20 pg2600.txt , for example,
would show the first twenty lines.

You may also want to change the file name to something more
descriptive. You can ‘move’ it to a new name by typing

mv pg2600.txt tolstoy.txt

Afterwards, when you perform a ls command, you will see that it is
now tolstoy.txt . Had you wanted to duplicate it, you could also have
run the copy command by typing

cp pg2600.txt tolstoy.txt

you will revisit these commands shortly.

Now that you have used several new commands, it’s time for another
trick. Hit the up arrow on your keyboard. Notice that cp pg2600.txt

tolstoy.txt
appears before your cursor. You can continue pressing the
up arrow to cycle through your previous commands. The down arrow
cycles back toward your most recent command.

After having read and renamed several files, you may wish to bring their
text together into one file. To combine, or concatenate, two or more
files, you can use the cat command. First, let’s duplicate the Tolstoy
file (cp tolstoy.txt tolstoy2.txt). Now that you have two copies of War
and Peace, let’s put them together to make an even longer book.

To combine, or concatenate, two or more files use the cat command.
Type

cat tolstoy.txt tolstoy2.txt

and press enter. This prints, or displays, the combined files within the
shell. However, it is too long to read on this window! Luckily, by using
the > command, you can send the output to a new file, rather than the
terminal window. Type

cat tolstoy.txt tolstoy2.txt > tolstoy-twice.txt .

Now, when you type ls you’ll see tolstoy-twice.txt appear in your
directory.

When combining more than two files, using a wildcard can help avoid
having to write out each filename individually. As you have seen above,
* , is a place holder for zero or more characters or numbers. So, if you

type

cat *.txt > everything-together.txt

and hit enter, a combination of all the .txt files in the current directory
are combined in alphabetical order as everything-together.txt .
This can
be very useful if you need to combine a large number of smaller files
within a directory so that you can work with them in a text analysis
program. Another wildcard worth remembering is ? which is a place
holder for a single character or number.

Editing Text Files Directly on the Command Line

If you want to read a file in its entirety without leaving the command
line, you can fire up vim. Vim is a very powerful text editor, which is
perfect for using with programs such as Pandoc
to do word processing,
or for editing your code without having to switch to another program.
Best of all, it comes included with bash on both OS X and Windows. Vim
has a fairly steep learning curve, so we will
just touch on a few minor
points.

Type

vim tolstoy.txt

You should see vim come to life before you, a command-line based text
editor.

http://en.wikipedia.org/wiki/Vim_%28text_editor%29
http://johnmacfarlane.net/pandoc/

Vim

If you really want to get into Vim, there is a good Vim guide available.

Using Vim to read files is relatively simple. You can use the arrow keys
to navigate around and could theoretically read War and Peace through
the command line (one should get an achievement for doing that).
Some quick basic navigational commands are as follows:

Ctrl+F (that is, holding down your ‘control key’ and pressing the letter
F) will move you down a page (Shift+UpArrow for Windows).

Ctrl+B will move you up a page. (Shift+DownArrow for Windows users).

http://programminghistorian.org/images/intro-to-bash/vim.png
http://vimdoc.sourceforge.net/htmldoc/quickref.html

If you want to rapidly move to the end of a line, you can press: $ and
to move to the start of one, 0 . You can also move between sentences
by typing) (forward) or ((backwards). For paragraphs, use } and
{ .
Since you are doing everything with your keyboard, rather than

having to hold your arrow key down to move around a document, this
lets you zip
quickly back and forth.

Let’s scroll to the top and do a minor change, such as adding a Reader

field in the heading. Move your cursor in between Author: and
Translators:, like so:

About to Insert a Field

http://programminghistorian.org/images/intro-to-bash/about-to-insert.png

If you just start typing, you’ll get an error message or the cursor will
begin jumping around. This is because you have to specify that you
want to do an edit. Press the letter

a

At the bottom of the screen, you will see

-- INSERT --

This means you are in insert mode. You can now type and edit text as if
you are in a standard text editor. Press enter twice, then arrow up , and
type

Reader: A Programming Historian

When you are done, press ESC to return to reading mode.

To leave vim or to make saves, you have to enter a series of commands.
Press :
and you’ll move to the command input line of Vim. you can
enter a
variety of commands here. If you want to save the file, type w

to ‘write’ the file. If you execute that command, you will see

“tolstoy.txt” [dos] 65009L, 3291681C written

After Writing the File, with Our Minor Change

If you want to quit, type : again and then q . It will return you to the
command line. As with the rest of bash, you could have also combined
the two commands. Pressing : and then typing wq would have written
the file and then quit. Or, if you wanted to exit without saving, q!

would have quit vim and overriden the default preference to save your
changes.

Vim is different than you are likely used to and will require more work
and practice to become fluent with it. But if you are tweaking minor
things in files, it is a good way to get started. As you become more

00 ProgHist-Text - vim - 94x39
The Project Gutenberg EBook of war and Peace, by Leo Tolstoy

This eBook is for the use of anyone anywhere at no cost and with almost
no restrictions whatsoever. You may copy it, give it away or re-use it
under the terms of the Project Gutenberg License included with this
eBook or online at 'W'W'W.gutenberg.org

Title: war and Peace

Author: Leo Tolstoy

Reader: A Programming Historiall

Translators: Louise and Aylmer Maude

Posting Date: January 10, 2009 [EBook #2600]

Last Updated: March 15, 2013

Language: English

"*"*"* START OF THIS PROJECT GUTENBERG EBOOK WAR AND PEACE "*"*"*

An Anonymous Volunteer, and David Widger

WAR AND PEACE

By Leo Tolstoy/Tolstoi

CON'l'EN'l'S

BOOK ONE: 1805
"tolstoy.txt" [dos] 65009L, 3291681c written I

http://programminghistorian.org/images/intro-to-bash/after-writing.png

comfortable, you might even find yourself writing term papers with it, by
harnessing the footnoting and formatting power of Pandoc and
Markdown.

Moving, Copying, and Deleting Files

Let’s say you are done with this directory, and you would like to move
tolstoy.txt
somewhere else. First, you should create a backup copy.

The shell is quite unforgiving with mistakes, and backing up is even
more important than with GUIs. If you delete something here, there’s no
recycling
bin to fish it out of. To create a backup, you can type

cp tolstoy.txt tolstoy-backup.txt

Now when you run a ls command you will see five files, two of which
are the same: tolstoy.txt and tolstoy-backup.txt .

Let’s move the first of these somewhere else. By way of example, let’s
create a second directory on your desktop. Move up to your desktop (cd

..) and mkdir another directory. Let’s call it proghist-dest .

To copy tolstoy.txt you have a
few different options. you could run
these commands from anywhere in the shell, or you could visit either
the origin or destination directories. For this example, let’s just run it
from here. The basic format of the copy command is cp [source]

[destination] . That is, you type cp first, and then enter the file or files
that you want to copy followed by where they should go.

In this case, the command

cp /users/ianmilligan1/desktop/proghist-text/tolstoy.txt

/users/ianmilligan1/desktop/proghist-dest/

will copy Tolstoy from the first directory to the second directory. You will
have to insert your own username in place of ‘ianmilligan1’. This means
you now have three copies of the novel on our computer. The original,
the backup and the new copy in the second directly. If you wanted to

http://programminghistorian.org/lessons/sustainable-authorship-in-plain-text-using-pandoc-and-markdown
http://programminghistorian.org/lessons/sustainable-authorship-in-plain-text-using-pandoc-and-markdown

move the file, that is, not leave a copy behind, you could run the
command again, swapping cp for mv ; let’s not do this yet.

You can also copy multiple files with a single command. If you wanted to
copy both the original and the backup file, you could use the wildcard
command.

cp /users/ianmilligan1/desktop/proghist-text/*.txt

/users/ianmilligan1/desktop/proghist-dest/

This command copies all the text files from the origin directory into the
destination directory.

Note: If you are in the directory that you either want to move things
to
or from, you do not have to type out the whole directory structure. Let’s
do two quick examples. Change your directory to the proghist-text

directory. From this location, if you wanted to copy these two files to
proghist-dest , this command would work:

cp *.txt /users/ianmilligan1/desktop/proghist-dest/ (on OS X, substitute
the directory on Windows)

Alternatively, if you were in the proghist-dest directory, this command
would work:

cp /users/ianmilligan1/desktop/proghist-text/*.txt ./

The ./ command refers to the current directory you’re in. This is a
really valuable command.

Finally, if you want to delete a file, for whatever reason, the command is
rm , or remove. Be careful with the rm command, as you don’t want

to delete files that you do not mean to. Unlike deleting from within your
GUI, there is no
recycling bin or undo options. For that reason, if you
are in doubt, you may want to exercise caution or maintain a regular
backup of your data.

Move to proghist-text and delete the original file by typing

rm tolstoy.txt

Check that the file is gone using the ls command.

If you wanted to delete an entire directory, you have two options. you
can use rmdir , the opposite of mkdir , to delete an empty directory. To
delete a directory with files, you could use from the desktop:

rm -r proghist-text

Conclusions

You may want to take a break from the terminal at this point. To do so,
enter exit and you’ll close your session.

There are more commands to try as you get more comfortable with the
command line. Some of our other favourites are du , which is a way to
find out how much memory is being used (du -h makes it human
readable — as with other commands). For those of you on OS X, top

provides an overview of what processes are running (mem on Windows)
and touch FILENAME can create a basic text file on both systems

By this point, we hope you have a good, basic understanding of how to
move around using the command line, move basic files, and make minor
edits here and there. This beginner-level lesson is designed to give you
some basic fluency and confidence. In the future, you may want to get
involved with scripting.

Have fun! Before you know it, you may find yourself liking the
convenience and precision of the command line - for certain
applications, at least - far more than the bulkier GUI that your system
came with. Your toolkit just got bigger.

Reference Guide

For your convenience, here are the commands that you have learned in

this lesson:

Command What It Does
pwd

Prints the ‘present working directory,’ letting
you know where you are.

ls Lists the files in the current directory

man *
Lists the manual for the command,
substituted for the *

cd * Changes the current directory to *

mkdir * Makes a directory named *

open or
explorer

On OS X, open followed by a file opens it; in
Windows, the command explorer followed by
a file name does the same thing.

cat *
cat is a versatile command. It will read a file

to you if you substitute a file for * , but can
also be used to combine files.

head * Displays the first ten lines of *

tail * Displays the last ten lines of *

mv Moves a file
cp Copies a file
rm Deletes a file
vim Opens up the vim document editor.

Note: You are now prepared to move on to the next lesson
in this series.

About the authors

Ian Milligan is an assistant professor of history at the
University
of Waterloo.

James Baker is a Curator in
the Digital Research team at the British
Library and an
historian of eighteenth century Britain.

Suggested Citation

Ian Milligan
and James Baker
, "Introduction to the
Bash Command Line," Programming Historian, (2014-
09-20),

http://programminghistorian.org/lessons/research-data-with-unix

http://programminghistorian.org/lessons/intro-to-bash

About
· Lessons
· Contribute
· Project Team
· Research
· Blog
· Español

The Programming Historian ISSN 2397-2068, is released under the CC-BY
license.

The project is published by the Editorial Board of the Programming Historian, and
first appeared in July 2012. It was last updated on 25 April 2017.

Hosted on GitHub Previous Versions ·
Give

Feedback

http://programminghistorian.org/
http://programminghistorian.org/lessons
http://programminghistorian.org/contribute
http://programminghistorian.org/project-team
http://programminghistorian.org/research
http://programminghistorian.org/blog
http://programminghistorian.org/es
http://creativecommons.org/licenses/by/2.0/
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll/commits/gh-pages/lessons/intro-to-bash.md
http://programminghistorian.org/feedback
http://programminghistorian.org/feedback

	programminghistorian.org
	Introduction to the Bash Command Line | Programming Historian

