
Digital Signature Schemes Based on
Hash Functions

by

Philip Lafrance

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

c© Philip Lafrance 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Cryptographers and security experts around the world have been awakened to the
reality that one day (potentially soon) large-scale quantum computers may be available.
Most of the public-key cryptosystems employed today on the Internet, in both software and
in hardware, are based on number-theoretic problems which are thought to be intractable
on a classical (non-quantum) computer and hence are considered secure. The most popular
such examples are the RSA encryption and signature schemes, and the Elliptic Curve
Diffie-Hellman (ECDH) key-exchange protocol employed widely in the SSL/TLS protocols.
However, these schemes offer essentially zero security against an adversary in possession
of a large-scale quantum computer. Thus, there is an urgent need to develop, analyze and
implement cryptosystems and algorithms that are secure against such adversaries. It is
widely believed that cryptographic hash functions are naturally resilient to attacks by a
quantum adversary, and thus, signature schemes have been developed whose security relies
on this belief.

The goal of this thesis is to give an overview of hash-based cryptography. We describe
the most important hash-based signature schemes as well as the schemes and protocols
used as subroutines within them. We give a juxtaposition between stateful and stateless
signature schemes, discussing the pros and cons of both while including detailed examples.
Furthermore, we detail serious flaws in the security proof for the WOTS-PRF signature
scheme. This scheme had the feature that its security proof was based on minimal security
assumptions, namely the pseudorandomness of the underlying function family. We explore
how this flawed security argument affects the other signature schemes that utilize WOTS-
PRF.

iii

Acknowledgments

First and foremost I would like to thank my supervisor Dr. Alfred Menezes for his world-
class guidance, tutelage, and conversations over the course of these past two years. Alfred’s
unique insights and razor sharp eyes were invaluable to my growth and success throughout
this program. His experience with the so-called “real-world” has kept me grounded and
on a path that I am not only overjoyed to be walking, but am proud to be on.

I would like to thank the department of Combinatorics and Optimization for all it has
provided me during my time here. The administrative staff have been nothing but friendly
and helpful. In particular, I would like to thank Melissa Cambridge for everything she has
done for not only myself, but also for all my peers and colleagues. Melissa was always
available to give me advice or to lend a hand with any number of problems. There is no
doubt in my mind that this whole ordeal would have been much more grueling if it were
not for Melissa.

I am grateful for my readers, Dr. Mosca and Dr. Jao for their helpful insights and
diligence. Furthermore, I want to sincerely thank CryptoWorks21 for their financial support
and for the valuable training sessions they continue to provide. Additionally, my thanks
and appreciation extend to NSERC, not only for their financial support, but also because
of all they do for academia.

Finally, I wish to thank my dear friends that have made this all possible. I fear that no
words could truly convey how much good they have brought into my life over these years.
Just by knowing these people I have become a wiser, happier, and better person. From
the bottom of my heart, thank you my friends.

iv

Dedication

This thesis is dedicated to the person who has loved me, supported me, and believed
in me more than any other. This is for my Mother. I can only hope to one day pay her
back for all she has done for me.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments iv

Dedication v

Table of Contents vi

List of Figures ix

1 Introduction 1

2 Background 3

2.1 Hash Functions . 3

2.1.1 Preimage Resistance . 4

2.1.2 Second-preimage Resistance . 5

2.1.3 Collision Resistance . 6

2.1.4 Subset Resilience . 8

2.2 Signature Schemes . 8

2.3 The Lamport-Diffie One-Time Signature Scheme 12

vi

2.3.1 One-Time Use . 13

2.3.2 Large Private Keys . 15

2.3.3 Large Public Keys . 15

2.3.4 Reliance on Collision Resistance . 18

2.3.5 Small Bound on the Number of Signatures 21

2.3.6 Weakness Against Multi-user Attacks 24

2.3.7 Statefulness . 26

3 Winternitz One-Time Signature Schemes 29

3.1 Basic WOTS . 30

3.2 WOTS-LM . 32

3.3 WOTS-PRF . 42

3.4 WOTS+ . 51

3.5 WOTS-T . 54

4 Merkle Signature Schemes 57

4.1 The Leighton-Micali Signature Scheme . 58

4.1.1 Hierarchical LMS . 62

4.2 XMSS . 63

4.3 XMSS+ . 65

4.3.1 The BDS Algorithm . 66

4.3.2 The TreeHash Algorithm . 67

4.3.3 XMSS+ Algorithms . 67

4.4 XMSSMT . 70

4.5 XMSS-T . 71

4.6 SPHINCS . 74

4.6.1 HORST . 75

4.6.2 SPHINCS Algorithms . 77

vii

5 Conclusion 85

5.1 Future Work . 85

References 87

viii

List of Figures

2.1 A Merkle tree with h = 3. 16

2.2 Authentication path for s = 4, h = 3. 18

2.3 A two-layer hyper tree with h0 = h1 = 3. 23

2.4 Goldreich’s construction for n = 3, signing with leaf 10. 28

3.1 Winternitz signature for w = n = 4 and d = 1011. 33

3.2 A tree of keychains. 49

4.1 A visualization of the SPHINCS signature algorithm. 81

ix

Chapter 1

Introduction

The field of Cryptography has experienced dramatic changes since its infancy. From the
primitive encryption schemes of the Romans, to the paradigm changing advent of public-
key cryptography and so very much in between, the search for secure and efficient methods
of protecting our data has been ongoing. However, security experts worldwide are acutely
aware that we may be approaching another paradigm shift in the field.

We are entering the Quantum Era. Researchers around the world are consistently work-
ing to develop functional quantum computers; computers which are capable of calculations
— which although are not theoretically impossible for our classical computers, would take
infeasible amounts of time and memory to complete — that are devastating to modern
cryptographic infrastructures. Previously secure systems such as the famed RSA encryp-
tion scheme, the Elliptic Curve Digital Signature Algorithm, or even the Diffie-Hellman
key agreement scheme all provide essentially zero security against an adversary equiped
with a large-scale quantum computer.

It is to this end that the National Institute of Standards and Technology (NIST) an-
nounced their challenge to produce new quantum safe cryptographic standards [33]. Of
particular interest are quantum safe encryption schemes, signature schemes and key agree-
ment protocols. This thesis focuses on the second item. In particular, we focus on what
seems to be the most likely candidate for standardization in this regard: hash-based digital
signature schemes. That is, signature schemes (a notion we introduce in Section 2.2) based
on cryptographic hash functions (Section 2.1).

NIST is clear that the intent of their challenge is not to pick one clear, ultimate winner
in each of the above mentioned categories, but rather to select multiple secure schemes
and protocols as each individual scheme is likely to have its own strengths and weaknesses.

1

So, even though we believe that hash-based signature schemes will “win” the challenge, it
remains to discuss which hash-based schemes may be selected. Hence, the purpose of this
work is to collect and describe all of the potential candidates and describe in detail their
strengths and weaknesses. Moreover, we collect and discuss the techniques used in the
field of hash-based cryptography, why these techniques are used and what they actually
accomplish. We analyze the obstacles to practicality that hash-based schemes might suffer
from and present the best known remedies to these issues. Furthermore, we discuss the
security of these schemes and their key sizes, key generation times and signing/verification
times.

The schemes we discuss in this work are of the following two types. The first type
are one-time signature schemes. These are schemes whose security is only guaranteed if at
most one message is signed with any particular key pair. The second type are full signature
schemes based on binary hash trees which utilize the schemes of type one.

Organization: Chapter 2 of this work introduces the requisite background information
to understand the later chapters. We introduce hash functions and discuss their desired
properties and presumed security against classical and quantum adversaries. We introduce
a basic hash-based signature scheme which we use as a starting point for our discussion of
the topics mentioned above. Chapter 3 introduces each of the one-time signature schemes
which are of interest in and of themselves, but which in some sense serve as building blocks
for the more complete schemes discussed later on. We present the flaws that we discovered
in the security proof and analysis of the WOTS-PRF signature scheme from [5, 6]. In
Chapter 4, we discuss a variety of full signature schemes based on binary hash trees which
implement the schemes from Chapter 3. This includes both stateful and stateless schemes.
Finally, in the last chapter, Chapter 5 we conclude with a summary of what we have
accomplished and outline potential projects for future work.

Notation: Much notation will be introduced in later chapters, but here we mention some of

the more standard notation which we shall be employing. We will write x
$←− X to denote

that the value x is selected uniformly at random from the set X. Also we will write log(x)
to represent the logarithm base-2 of x, i.e., log(x) = log2(x).

2

Chapter 2

Background

This chapter aims to give the reader a gentle introduction to hash-based cryptography. In
Section 2.1 we introduce hash functions and the security properties which are required of
them as well as the fastest known generic classical and quantum attacks on them. Then,
in Section 2.2 we concretly define digital signature schemes, and in particular, what a
hash-based digital signature scheme is. Section 2.3 introduces a fundamental hash-based
signature scheme and systematically describes its drawbacks and provides modifications
that resolve these issues in a clear, rigorous, but not-too-technical way.

2.1 Hash Functions

There exists some debate amongst cryptographers as to the precise definition of a hash-
function. Some will claim that because security properties are not required in the definition
that simply saying “a hash function is just a function” is satisfactory. Others may argue
that more substance is necessary. The definition we give below is one which is suitable for
our needs and is seemingly the most common definition given.

Definition 2.1.1. Let n be a fixed, positive integer. A hash function g is a deterministic
function mapping elements of {0, 1}∗ to elements of {0, 1}n. That is,

g : {0, 1}∗ → {0, 1}n.

Strictly speaking we do not need the domain of g to be all bitstrings, but this is
the most general form. Most often the domain will either be {0, 1}∗ or {0, 1}n. Again,

3

it is not strictly necessary for the definition, but in practice we also need that g(x) is
efficiently computable for each x in the domain; we will implicitly assume this from now
on. Additionally, if we are working with an arbitrary hash function we will also assume
that it is uniformly random, but deterministic.

Next, we describe the most well-known and desired properties of hash functions as well
as the fastest known generic classical and quantum attacks on those properties. We remark
that we will always assume that any attacker we discuss in this work is computationally
bounded. That is to say we assume every attacker has as an upper bound on their com-
putational abilities some polynomial in the security parameter, i.e., they cannot perform
more than polynomially many operations. The security parameter for the hash functions
we discuss is a positive integer n.

2.1.1 Preimage Resistance

Definition 2.1.2. A hash function g : {0, 1}∗ → {0, 1}n is said to be preimage resistant if

given a random element y
$←− {0, 1}n, it is computationally infeasible to produce an element

x ∈ {0, 1}∗ such that g(x) = y.

In other words, if one is given a random image under the hash function, one cannot
feasibly produce a value in the domain which yields that image. Sometimes this property
is also called one-wayness, and g is referred to as a one-way function.

The fastest classical attack on preimage resistance against a generic hash function is
simply brute force. Suppose that an attacker is given a uniformly random y ∈ {0, 1}n,
and is challenged to produce a preimage of y. Assuming of course that g is random (but
deterministic) the best that the attacker can do is to select arbitrary elements from the
domain and check if the hash of any of these values equals the challenge y. If the attacker
selects an element x ∈ {0, 1}∗, there is only a 2−n probability that x is a preimage of y.
Hence, the expected number of attempts before the attacker successfully finds a preimage
is 2n. We say that the hash function has n-bits of security against this attack.

It is necessary to also consider the security of hash functions against a quantum adver-
sary, i.e., an attacker with access to a quantum computer. Unfortunately, the best known
generic quantum attack against preimage resistance is a little better than brute force. To
see why this is so, we give a high level exposition of Grover’s search algorithm [16]. Let n
be a positive integer, and suppose that there is a function h : {0, 1}n → {0, 1} such that
h(x) = 1 for exactly one x ∈ {0, 1}n and h(x) = 0 for all other inputs. We also require that
h is efficiently computable. Then, with high probability, Grover’s search algorithm returns

4

the value x such that h(x) = 1 in 2n/2 operations. Generally, Grover’s algorithm is thought
of as a probabilistic method to search an unsorted database, but we will think of it as a
way to invert functions. More generally, if there exist p distinct values in the domain that
have image 1, then Grover’s algorithm needs only 2n/2p−1/2 operations to produce one of
them.

Now let’s see how this algorithm can be used to attack preimage resistance. Let g be
as above, and let y ∈ {0, 1}n be randomly selected. Define a function hy : {0, 1}n → {0, 1}
by

hy(x) =

{
0 if g(x) 6= y

1 if g(x) = y.

As we assumed that g is efficiently computable, it is clear that so is hy. However, observe
that g has as its domain all non-empty bitstrings, and that Grover’s algorithm only works
with binary functions of fixed input length; of course {0, 1}n is only a small subset of all
non-empty bitstrings. And so, if we apply Grover’s algorithm to hy, if we get an answer,
it will be an n-bit string. One may think that is is not satisfactory; however, if we assume
that g is uniformly random then there is a high probability that a preimage of y does
indeed exist in {0, 1}n. If this is the case, then if we apply Grover’s algorithm to hy, we
will obtain a value x such that g(x) = y in O(2n/2) operations. Note that because the
algorithm is not guaranteed to succeed, one may have to run it more than once, and we
might choose to modify hy to act on {0, 1}n+1 instead.

Hence, to obtain say 128-bit security for preimage resistance against a quantum adver-
sary, we need only extend the outputs of our hash function to be at least 256 bits. In this
way, the advent of quantum computers does not greatly affect the security of one-way hash
functions. We will see that this theme continues for the remaining properties.

If g is a hash function such that any attacker making at most tOW operations has success
probability at most εOW of producing a preimage, then we call g a (tOW, εOW)-preimage
resistant hash function.

2.1.2 Second-preimage Resistance

Definition 2.1.3. A hash function g : {0, 1}∗ → {0, 1}n is said to be second-preimage

resistant if given a random element x′
$←− {0, 1}∗, it is computationally infeasible to produce

an element x ∈ {0, 1}∗ such that x 6= x′ and g(x) = g(x′).

In other words, given a random preimage it is computationally infeasible to produce a
second, distinct value which has the same image under g as the first.

5

The fastest classical generic attack against second-preimage resistance is exactly the
same as for preimage resistance. The best that the attacker can do is to try arbitrary
inputs until they find one that works. So again, we expect about 2n attempts before a
second preimage is found.

Similar to the preimage resistance case, Grover’s algorithm can be used to attack
second-preimage resistance. Suppose that x′ ∈ {0, 1}m is a given second-preimage chal-
lenge, where m is a positive integer. Compute y = g(x′). Define a function hy : {0, 1}n →
{0, 1} by

hy(x) =

{
0 if g(x) 6= g(x′) or x = x′

1 if g(x) = g(x′) and x 6= x′.

We can apply Grover’s algorithm to hy to find a second preimage of x′ in O(2n/2) operations.

If g is a hash function such that any attacker making at most tSPR operations has success
probability at most εSPR of producing a second-preimage of g, we call g a (tSPR, εSPR)-
second-preimage resistant hash function.

2.1.3 Collision Resistance

Definition 2.1.4. A hash function g : {0, 1}∗ → {0, 1}n is said to be collision resistant
if it is computationally infeasible to produce two distinct values x, x′ ∈ {0, 1}∗ such that
g(x) = g(x′). Such a pair (x, x′) is called a collision.

The key difference between collision resistance and second-preimage resistance is that
in second-preimage resistance the attacker is challenged with finding a second preimage of
a given value, whereas in collision resistance the attacker is challenged with finding any
pair which have the same hash value. Observe that by the pigeonhole principle, collisions
are guaranteed to exist if the domain is strictly larger than the range.

It may not be surprising to hear that because an attacker has more “freedom” in
an attack on collision resistance that the best generic classical attack is faster than 2n

operations. Consider for instance the well known Birthday Paradox: if 23 people are
gathered in one room, then there is about a fifty percent chance that at least one pair
of the people share the same birthday. We calculate this probability by first calculating
its complement as follows. Label the people as person 1, person 2 and so on. Then the
probability that no two people share a birthday is given as the product of the probabilities
of the following events: person 1 has a birthday, person 2’s birthday is different from

6

person 1’s, person 3’s birthday is different from both person 1’s and person 2’s and so on.
Explicitly we have that

Pr(no two people share a birthday) = 1× 364

365
× 363

365
× · · · × 343

365
≈ 0.4927.

Thus, by complements, the probability that at least one pair of people share a birthday is
about 0.5073.

How this translates to an attack on collision resistance is clear. If an attacker queries
the hash function on m distinct inputs, then the probability that at least two of those
inputs collide is

1−
m−1∏
i=0

2n − i
2n

.

We can obtain an approximation for this value by treating the events as independent.
That is to say we can assume that the probability that any particular pair of inputs do
not collide is (2n − 1)/2n. Thus, by observing that there are m(m− 1)/2 such events the
above probability can be approximated as

1−
(

2n − 1

2n

)m(m−1)
2

= 1−
(

1− 1

2n

)2n
m(m−1)

2·2n

≈ 1−exp

(
−m(m− 1)

2n+1

)
≈ 1−exp

(
−m2

2n+1

)
.

Inverting the above function yields the formula for the approximate number of queries
(denoted m(p)) needed to find a collision with probability p.

m(p) ≈

√
2n+1 ln

(
1

1− p

)
.

If we set p = 0.5, we get that m(0.5) ≈ 1.1774 × 2n/2. Hence, we need about m = 2n/2

queries to find a collision with 50% probability. Exploiting this fact of probability is called
a birthday attack.

In practice birthday attacks have enormous storage requirements. There do exist more
sophisticated methods for finding generic collisions in hash functions, but their expected
number of operations is not any less than a birthday attack. For example, in 1999 van
Oorschot and Wiener [36] devised a highly parallelizable method for finding generic colli-
sions which has the advantage of having very small storage requirements. Brassard et al. in
1997 developed a quantum collision finding algorithm that runs in time O(2n/3) [4]. How-
ever, as observed by Bernstein [3], when one takes into account the storage requirements
of this algorithm, the true cost is not better than the van Oorschot-Wiener method.

7

If g is a hash function such that any attacker making at most tCR operations has success
probability at most εCR of producing a collision, then we call g a (tCR, εCR)-collision resistant
hash function.

2.1.4 Subset Resilience

Subset resilience is a less studied property of hash functions, but nonetheless it is still an
important one, especially for our purposes. We give essentially the definition from [28],
but first we need to define what it means for a function to be negligible in some parameter.

Definition 2.1.5. Let εn : N → [0, 1] be a function. We say that εn is negligible in n
and write εn = negl(n) if, for any positive integer c ∈ N, there exists an nc ∈ N such that
εn < n−c for all n > nc.

Let H = {Hi,t,k} be a collection of functions, where Hi,t,k maps an input of arbitrary
length to a subset of size at most k of the set {0, 1, . . . , t − 1}, and i is an index. One
can think of H as an indexed collection of families of functions. Moreover, assume that
there is a polynomial-time algorithm such that given i, t, k ∈ N and M ∈ {0, 1}∗, computes
Hi,t,k(M).

Definition 2.1.6. We say that H is r-subset-resilient if, for every probabilistic polynomial-
time adversary A,

Pr
i

(
(M1,M2, . . . ,Mr+1)← A(i, 1t, 1k) : Hi,t,k(Mr+1) ⊆

r⋃
j=1

Hi,t,k(Mj)

)
< negl(t, k).

In other words, the probability that the adversary outputs r + 1 messages such that
the hash of the last message is contained in the collection of the other r hash values is
negligible in the security parameters.

2.2 Signature Schemes

Theoretically every person has a unique hand-written signature; and in a perfect world,
no one would be able to successfully replicate another’s signature. Under this assumption,
if you sign a contract then any person who views that contract could verify that indeed it
is your signature on the contract, and hence that you agree to the terms and conditions

8

of said contract. Similarly, if you sign a cheque you are verifiably agreeing to that ex-
change of funds, and so on. The purpose of your signature is for some form of data origin
authentication.

This same concept exists mathematically and electronically. Suppose that you look
at your cellphone and see a notice for a software update. How do you know that this
software update is coming from a reliable source and not a malicious attacker? Signatures!
Your phone receives a signature from the company trying to give you the update and
then verifies that indeed this signature is that of the legitimate company. Assuming that
signatures cannot be forged — which we prove is the case — then you can rest assured that
you are receiving a legitimate, safe, software update. In actuality the process is much more
involved and nuanced than this; there are plenty of security considerations and technical
details, but this high level idea is all we need. We refer to these sorts of signatures as
digital signatures.

Digital signatures are also used for non-repudiation. Because signatures cannot be
forged, each entity can only produce the signature for itself. Suppose that a document
is signed by some user. Since that signature could only have come from that user, they
cannot later claim that they did not sign it. Verifiably, we know that this user signed the
document; they cannot lie.

The third major use of digital signatures is for data integrity. One key difference
between physical signatures and digital signatures is that a physical signature is the same
regardless of what document it is on; your signature in principle always looks the same.
However, in the case of digital signatures, each signature is theoretically unique to the
document it is signing. Thus, if a document is signed by a legitimate user, then when this
document/signature pair is received by someone else they can check to see if the contents
of the document changed at any point after it was signed. As the signature placed on the
document is unique to the document the signature will not verify if the contents of the
document were changed. The signature would be rejected.

We give a formal definition of a digital signature scheme (DSS) now.

Definition 2.2.1. A digital signature scheme is a triple of algorithms (Kg, Sign, Vrfy)
where:

• Kg is called the key generation algorithm. On input of a security parameter n, Kg
outputs a key pair (sk, pk), where sk is known as the secret key, private key, or signing
key, and pk is known as the public key, or verification key.

• Sign is called the signing algorithm. On input of a signing key sk and a message M ,
Sign outputs a digital signature σ.

9

• Vrfy is called the verification algorithm. On input of a verification key pk, a signature
σ and a message M , Vrfy outputs 1 or “accept” if σ is a valid signature on M , and
outputs 0 or “reject” otherwise.

• We also require the correctness condition that if (sk,pk) is a valid key pair output by
Kg, then for any message M ,

Vrfy(pk, Sign(sk,M),M) = 1.

In other words, any signature gained from signing a message with sk will verify using
pk.

Each key pair corresponds to an instance of the scheme; so when we say an “instance”
of a DSS, we mean an instantiation using one specific key pair.

The concept of a DSS was introduced in the same paper as both public-key cryptography
and the Diffie-Hellman key-exchange protocol were in 1976 by the name-sakes Diffie and
Hellman [13], perhaps the most famous paper in the history of cryptography. However, the
first example of a DSS was not introduced until 1978 by Rivest, Shamir, and Adleman in
[34], perhaps the second most famous paper in cryptography.

Most signature schemes in use today (classical signature schemes) rely on hard number
theoretic problems such as factoring large integers or the discrete logarithm problem for
their security. Unfortunately, due to the work of Shor [35] all such schemes are broken in
polynomial time by an adversary who has access to a quantum computer. The purpose
of this thesis is to study signature schemes whose security relies solely on the security
of hash functions; as we previously discussed, quantum adversaries do not greatly affect
the security of hash functions. We give our first example of a hash-based digital signature
scheme in Section 2.3.

Before we proceed with our discussion of digital signature schemes, we need to rigorously
define what we mean by a secure DSS. It is necessary to build up the security vocabulary
we will need. Although this vocabulary is universal in cryptography, we will only use it in
the context of digital signature schemes.

By a forgery of a signature, we mean a valid message/signature pair which was not
produced by the honest user, but rather by an adversary. In other words, a signature
created by an attacker that is accepted by the verification algorithm. There are various
ways in which an attacker can go about attempting to produce a forgery, but we shall
discuss our security under the assumption that an attacker performs a so-called chosen
message attack (CMA), the most general and liberal of the classical attack types. In this

10

attack model the adversary is allowed to query the honest user (or an oracle) for the valid
signatures of some number of messages of the adversary’s choosing, and the honest user
must oblige. This can be done adaptively, i.e., the attacker queries one message at a time
and can choose their next query using the knowledge they gained from their previous query,
or the attacker can query all of their messages all at once, non-adaptively.

Finally, if we say that a signature scheme is existentially forgeable, then we mean that an
attacker is able to feasibly forge a valid message/signature pair (M,σ) for some message M .
Conversely, if a signature scheme is existentially unforgeable then no attacker can feasibly
forge a valid message/signature pair for any message. To put this all together, we say that
a signature scheme is existentially unforgeable under a chosen message attack (EU-CMA)
if no attacker can feasibly forge a valid message/signature pair for any message using a
chosen message attack. We formalize this below in terms of a game (sometimes called an
experiment).

Definition 2.2.2. Let (Kg, Sign, Vrfy) be a digital signature scheme with security param-
eter n. Let A be an adversary against this DSS and let C be the challenger. Then the
EU-CMA game is the following.

1. C runs Kg with input n and receives (pk, sk).

2. C gives pk to A.

3. A selects messages M1,M2, . . . ,Mq and gives these messages to C.

4. C returns the valid signatures σ1, σ2, . . . , σq to A.

5. A outputs (M∗, σ∗).

A wins the game if σ∗ is a valid signature for the message M∗ and M∗ /∈ {M1,M2, . . . ,Mq}.

Note that written as is the above game is non-adaptive, but it is clear how it could
be modified to become adaptive. The two versions of the game are almost always distin-
guished. We also reiterate that q = poly(n). For convenience we will notate the success
probability of the adversary A in this game as

ExpEU-CMA
DSS(1n) (A).

Definition 2.2.3. Let DSS be a digital signature scheme and n ∈ N a security parameter.
We say that DSS is EU-CMA-secure if for all q, t polynomial in n, the maximum success
probability denoted InSecEU-CMA(DSS(1n); t, q) of all (possibly probabilistic) adversaries A

11

running in time at most t and making at most q queries in the EU-CMA game is negligible
in n. Symbolically,

InSecEU-CMA(DSS(1n); t, q) := max
A

{
ExpEU-CMA

DSS(1n) (A)
}

= negl(n).

We refer to this value as the Insecurity function of the DSS.

If DSS is a digital signature scheme that is existentially unforgeable against any adver-
sary running in time at most t and making at most q queries to the signing algorithm and
who has a success probability at most ε, then we say the DSS is (t, q, ε)-EU-CMA secure.
In the next section, where we introduce one-time signature schemes, we add the restriction
that q = 1.

2.3 The Lamport-Diffie One-Time Signature Scheme

First proposed in [24], the Lamport-Diffie one-time signature scheme (LD-OTS) is an
important signature scheme, one which we shall use as a launching point for our discussion
of provably secure, practical and efficient hash-based digital signature schemes. The scheme
takes as input a security parameter n, and uses a one-way function

f : {0, 1}n → {0, 1}n

and a collision resistant hash function

g : {0, 1}∗ → {0, 1}n.

In what follows, we use superscripts to denote a secondary index.

Key generation: On input of security parameter n do as follows.

1. Select 2n bitstrings, x00, x
1
0, x

0
1, x

1
1, . . . , x

0
n−1, x

1
n−1

$←− {0, 1}n.

2. For each pair (i, j) with i ∈ {0, 1, . . . , n− 1} and j ∈ {0, 1}, compute yji = f(xji).

The secret key is X = (x00, x
1
0, . . . , x

0
n−1, x

1
n−1), and the public key is the collection of images

under f of these secret bitstrings: Y = (y00, y
1
0, . . . , y

0
n−1, y

1
n−1).

Signature generation: To sign a message M ∈ {0, 1}∗ using secret key X do as follows.

1. Compute the message digest d = g(M).

12

2. Parse d as d = d0‖d1‖ . . . ‖dn−1.
The signature on M is

σ = (xd00 , x
d1
1 , . . . , x

dn−1

n−1).

In other words, the signer reveals the n coordinates of X that correspond to the n bits of
d.

Signature verification: To verify a signature σ on a message M using verification key Y do
as follows.

1. Compute the message digest d = g(M) as before.

2. Check if
(f(σ0), f(σ1), . . . , f(σn−1)) = (yd00 , y

d1
1 , . . . , y

dn−1

n−1),

where σi is the ith coordinate of σ.

The signature is accepted if and only if the above comparison holds.

The security of the above scheme relies on the one-wayness of the function f and the
collision resistance of g. We require f to be one-way, for else an attacker could simply
recover the secret key from the public key. We require g to be collision resistant, for else
if an attacker had two distinct messages M and M ′ such that g(M) = g(M ′) they could
query for the signature of M and then produce a successful forgery by simply swapping
M ′ for M .

2.3.1 One-Time Use

LD-OTS is a so-called one-time signature scheme. It is a signature scheme which is (prov-
ably) secure only if it is used to sign at most one message. Trivially a signature scheme
becomes insecure if the signing key is known to an attacker; and a single LD-OTS signature
reveals half of the secret key. Reasonably one would expect that if a second message were
signed, about three-quarters of the secret key would be revealed if you include the first
signature. We see that security degrades rapidly as more messages are signed. And so, the
LD-OTS scheme should only be used to sign at most one message per instance.

A solution to this problem of one-time use is to reveal a smaller fraction of the secret
key than one half. To this end we introduce the hash-based signature scheme HORS (Hash
to Obtain a Random Subset) [28]. HORS was conceived as an improvement on the “Balls
and Bins signature scheme” [32]. HORS has parameters n, k, t ∈ N where t is a power of
2, and utilizes a one-way function

f : {0, 1}n → {0, 1}n

13

and an r-subset-resilient hash function

g : {0, 1}∗ → {0, 1}k log(t),

where r is the maximum number of messages the user wishes to sign securely with a single
key pair.

Key generation: On input of parameters n, k, t do as follows.

1. Select t bitstrings, x0, x1, . . . , xt−1
$←− {0, 1}n.

2. Compute yi = f(xi) for i = 0, 1, . . . , t− 1.

The secret key isX = (k, x0, x1, . . . , xt−1) and the verification key is Y = (k, y0, y1, . . . , yt−1).

Signature generation: To sign a message M ∈ {0, 1}∗ using secret key X as above do as
follows.

1. Compute the message digest d = g(M).

2. Parse d as k bitstrings d0, d1, . . . , dk−1, where each dj is of length log(t). Interpret
each dj as a non-negative integer.

The signature on M is
σ = (xd0 , xd1 , . . . , xdk−1

).

Signature verification: To verify a signature σ on a message M using verification key Y as
above,

1. Compute the message digest d = g(M).

2. Parse d as in signature generation. Check if

(f(σ0), f(σ1), . . . , f(σk−1) = (yd0 , yd1 , . . . , ydk−1
).

The signature is accepted if and only if the above comparison holds.

Observe that in the HORS signature generation algorithm at most k coordinates of the
t-element secret key are revealed (the dj are not necessarily distinct). And so, if k is much
smaller than t it seems intuitively clear that the degradation of security is much slower
in HORS than in LD-OTS as more messages are signed. In fact, HORS can be used to
securely sign more than one message. It is an example of a few-time signature scheme
(FSS). The exact number of messages which can be signed securely depends on the value
of r. In other words, it depends on the subset-resilience of the hash function employed.

14

For example, if k = 32 and t = 216, then the fraction of the secret key revealed by a
signature is at most 32/216 = 0.00048828125. In other words, a signature would reveal at
most about 0.0489 percent of the secret key. It is for this reason that we require g to be
subset-resilient. Signatures are made by parsing the hash values of messages and revealing
those corresponding pieces of the secret key. Hence, if g is r-subset-resilient then it is
with negligible probability that the hash of a new message is contained in the collection
of previously output hash values (from the r previously produced signatures). Hence, an
attacker cannot simply look at r previous message/signature pairs and construct a forgery
from them.

We also describe another solution to the problem of one-time use in Section 2.3.3.

2.3.2 Large Private Keys

In order to be useful in practice, a signature scheme needs to have a reasonably small
private key. However, we see that both LD-OTS and HORS suffer from massive secret
keys. The size of an LD-OTS secret key is 2n2 bits and a HORS secret key is of length
tn bits. In general, for meaningful values of n and t these keys can become too large and
greatly effect the practicality of the scheme. However, we can mitigate this flaw with the
use of a deterministic pseudorandom function. Instead of storing a massive secret key, we
can store a relatively short secret seed and then generate the secret key on the fly. This
cuts down on the large storage requirements, and assuming one makes a careful choice
of pseudorandom function, the key generation is done efficiently. This technique is used
commonly in the schemes we discuss in later chapters.

2.3.3 Large Public Keys

Just as having large secret keys can be burdensome, having large public keys detracts from
the practicality of a signature scheme. Again, both LD-OTS and HORS suffer from this
deficiency. Unfortunately, we cannot use pseudorandom functions to generate public keys
on the fly because the public keys are derived from the secret keys, and of course we would
like the secret keys to remain secret. Instead we introduce a powerful tool: the Merkle
Signature Scheme (MSS).

In 1979 Ralph Merkle (one of the inventors of public-key cryptography) patented the
so-called Merkle tree [30]; a binary tree where the internal nodes are the hash values of
the concatenation of their children. Merkle’s intent was to use the root node of this tree
as a way to check the validity of many one-time public keys. Let g : {0, 1}∗ → {0, 1}n be

15

a one-way, and collision resistant hash function, and let OTS be any one-time signature
scheme.

Key generation: To generate the Merkle tree, one first selects a parameter h ∈ N. This
parameter dictates how many one-time keys we can verify, namely 2h. Next, generate 2h

OTS key pairs (Xi, Yi), with indexing starting at 0. The leaf nodes of the tree are the
hashes of the public keys, g(Yi). The tree will have h + 1 levels, level h will contain just
the root node and level 0 will contain the leaves. We denote the ith node on level j by
vj[i] indexing from left to right starting at 0; see Figure 2.1. Then, for i = 0, 1, . . . , 2h− 1,
v0[i] = g(Yi), and

vj[i] = g(vj−1[2i]‖vj−1[2i+ 1]), 1 ≤ j ≤ h, 0 ≤ i ≤ 2h−j.

v3[0]

v2[0]

v1[0]

v0[0] v0[1]

v1[1]

v0[2] v0[3]

v2[1]

v1[2]

v0[4] v0[5]

v1[3]

v0[6] v0[7]

Figure 2.1: A Merkle tree with h = 3.

The MSS public key is the root node vh[0], and the secret key is the collection of one-
time secret keys X = {X0, X1, . . . , X2h−1}. Again, these can be generated on the fly via
pseudorandom functions. See the survey by Buchmann et al. [1, Chapter 2] for a more
in-depth analysis of how this can be done efficiently. Moreover, the authors of [1] note
that if a so-called forward secure pseudorandom function is used, then in fact the Merkle
signature scheme itself becomes forward secure. A signature scheme is said to be forward

16

secure if when a current secret key is obtained by an adversary, the adversary still cannot
feasibly forge signatures corresponding to past keys. Similarly, a stateful pseudorandom
function is forward secure if an adversary who knows the current secret internal state of
the function cannot feasibly distinguish outputs corresponding to an earlier state from
random. In the context of the MSS forward security is desirable because, if the secret key
of a current node is compromised, then one needn’t worry about the security of earlier
signatures, but rather only that of signatures not yet produced. In other words, such a
compromise causes no harm to past signatures.

Signature generation: To sign message M ∈ {0, 1}∗ using secret key X as above first
compute d = g(M). If this is the sth message to be signed using this instance of the MSS,
then we sign d using the sth OTS secret key Xs; call this signature σOTS. The signature will
also contain the sth public key, so this too must be calculated. It remains to calculate the
authentication path. The authentication path Auths = (a0, a1, . . . , ah−1) corresponding to
σOTS is the ordered collection of sibling nodes along the tree which are required to compute
the root node. The aj are computed as follows:

aj =

{
vj[bs/2jc − 1] if bs/2jc is odd

vj[bs/2jc+ 1] if bs/2jc is even.

The MSS signature on M is
σ = (s, Ys, σOTS,Auths).

Signature verification: To verify an MSS signature σ on a message M we must first
use the one-time verification key Ys to verify the one-time signature σOTS on M . The
verification algorithm proceeds if and only if the OTS verification succeeds. Secondly, we
must confirm the validity of the public key Ys. To do so, we use Ys together with the
authentication path to construct the root node of the Merkle tree as follows. We compute
a path Ps = (p0, p1, . . . , ph) by setting p0 = g(Ys), and

pj =

{
g(aj−1‖pj−1) if bs/2j−1c is odd

g(pj−1‖aj−1) if bs/2j−1c is even

for j > 0; see Figure 2.2. The algorithm accepts the signature if and only if ph equals the
public key (the root node).

17

p3

a2 p2

p1

p0 a0

a1

Figure 2.2: Authentication path for s = 4, h = 3.

To be explicit, by using a Merkle tree one can produce a secure signature scheme where
the public key size is only n bits as opposed to say 2n2 bits. Furthermore, this signature
scheme can be used to sign 2h messages as opposed to just a single message. However, this
construction still has some drawbacks which we continue to discuss below.

2.3.4 Reliance on Collision Resistance

In the security proof for MSS we require the assumption that the hash function used
is collision resistant. Intuitively, one can think that if the underlying one-time signature
scheme is secure, then if a forgery is successfully produced it must be the case that a collision
occurred somewhere within the tree. However, in the real-world, collision resistance is
a very strong property for a hash function to have. For example, previously popular
hash functions such as MD4, MD5 and SHA-1 have all fallen from the good graces of
cryptographers because modern day attacks on these algorithms makes them question or
completely abandon the assumption that the functions are collision resistant. For practical
purposes we would like to be able to relax the need for collision resistance to second-
preimage resistance. To accomplish this goal we introduce bitmasks, and describe a slight
modification to the MSS due to Dahmen et al. [12].

18

For each level of the tree with the exception of the leaf level, we uniformly at random
select a bitmask Qj ∈ {0, 1}2n. Instead of hashing the concatenation of two sibling nodes
to create the parent node, we first take the xor of the concatenation of the sibling nodes
with the bitmask corresponding to that level and then hash. Symbolically,

vj[i] = g(Qj ⊕ (vj−1[2i]‖vj−1[2i+ 1])).

Suppose for now that the public keys of the underlying OTS consist of L = 2` n-bit strings
for some fixed `. In the previous incarnation of the MSS, the leaves of the tree were the
hashes of the OTS public keys. Here, the leaves will be the bitstrings which comprise the
2h OTS public keys — in the natural order. So instead of having a tree with h + 1 levels
and 2h leaves, we have a tree with h+ `+ 1 levels, and 2h2` = 2h+` leaves.

Each OTS public key Yi corresponds to its own subtree, and the same bitmasks are
used for each such tree. There is a slight problem with this construction if L is not a power
of two. However, this is easily fixed by creating an unbalanced subtree; a left node which
has no sibling is lifted to a higher level until it has one. The result is that the full tree has
h+ dlog(L)e+ 1 levels. We’ll refer to these subtrees as L-trees.

The rest of the signature scheme is exactly the same. In particular, we mention that
the authentication paths have the same length here as in the previous incarnation of MSS.
In other words, they begin on level dlog(L)e; the level with the root nodes of the L-trees.
The authors of [12] refer to this construction as SPR-MSS, for “second-preimage resistant
Merkle signature scheme”.

We claim that these modifications relax the need for collision resistance in the Merkle
signature scheme. First, it is important to understand why second-preimage resistance
is not sufficient in the vanilla version of the MSS. Recall that in the second-preimage
challenge, one requires that the input (the first-preimage) of the hash function be chosen
uniformly at random from its domain. Then the adversary attempts to produce a second
element of the domain which differs from the first, but results in the same hash value. If
we attempted to prove security of the MSS in the standard model, we lose the assumption
that the hash function is a random function. The leaves of the tree are the hashes of public
keys, and hence, they are not uniformly random as they are the outputs of a non-random
function. Moreover, the concatenation of pairs of these leaves are also not uniformly
random. However, these concatenations are the inputs into the hash function when we
produce the next level; and so, we have non-uniformly random inputs into the hash function
for each higher level, and so we fail to fulfill the premise for a second-preimage challenge.

Notice that if r is a uniformly random n-bit string, then r⊕x is also uniformly random
for any n-bit string x. Hence, even though (vj−1[2i]‖vj−1[2i + 1]) may not be uniformly

19

random for some (i, j), we have that (Qj−1 ⊕ vj−1[2i]‖vj−1[2i + 1]) is indeed uniformly
random; and so, inputs into the hash function are in fact uniformly random in SPR-MSS.

Notice that in this construction leaf nodes are not xor’ed with any bitmasks. Suppose
that an attacker produced a valid forgery for some message, but such that the OTS verifica-
tion key Ys given in the signature is not the original key produced by the user. This implies
that a leaf node has changed. However, since the signature is still valid, this means that
there must have been a collision while computing the parent node of that leaf. The security
reduction for SPR-MSS in [12] accounts for this possibility, and provably second-preimage
resistance suffices. Thus, we need not include bitmasks for the leaf nodes.

One trick which various authors employ to get better security reductions with these
sorts of schemes is to replace functions with families of functions parameterized by some
set, where each member of the family has the same security property: one-way, collision
resistant, second-preimage resistant, etc. MSS and SPR-MSS can be modified in this way
by replacing the hash functions with a family of hash functions and then randomly selecting
a member of this family to use in any particular instance. LD-OTS is often presented with
this modification.

We omit the technical details, but we have the following theorem from [12].

Theorem 2.3.1. If HK = {Hk : {0, 1}2n → {0, 1}n}k∈K is a family of (tSPR, εSPR)-second-
preimage resistant hash functions with εSPR ≤ 1/(2h+`+1 − 2) and the employed one-time
signature scheme is a (tOTS, εOTS, 1) signature scheme with εOTS ≤ 1/2h+1, then the SPR-
MSS is a (t, ε, 2h) signature scheme with

ε ≤ 2 ·max{(2h+` − 1) · εSPR, 2h · εOTS}
t = min{tSPR, tOTS} − 2h · tSIG − tVER − tGEN,

where tSIG, tVER, tGEN are the number of operations needed to sign a message, verify a
message, and generate a key pair for the underlying OTS.

Although not mentioned in the above theorem, the proof actually gives the stronger
result of strong unforgeability.

With the introduction of SPR-MSS, the condition of collision resistance for the Merkle
signature scheme has been successfully relaxed. However, for each of the one-time schemes
we have introduced so far, our security relies on collision resistance. In particular, the
MSS no longer needs collision resistance, but we still need collision resistance in LD-OTS.
Clearly if we don’t address this issue as well then we really haven’t made any significant
improvements. Thankfully, relaxing the need for collision resistance in LD-OTS is fairly

20

simple. The modification is due to Leighton and Micali [23] and was originally intended
for the Winternitz signature scheme which we discuss in Chapter 3, but works equally well
for any hash-based signature scheme. Suppose that a signer wishes to sign a message M .
Instead of just hashing M down to n bits with g, they first select a uniformly random
bitstring r and sign the message digest d = g(r‖M). Everything else remains exactly the
same except the value of r is included in the signature.

Before, if an attacker knew of a collision g(M) = g(M ′) for some M 6= M ′, they could
query for a signature of M and receive (M,σ) and then produce a forgery as (M ′, σ).
Now, if we include some randomness, finding an arbitrary collision with g is insufficient to
produce a forgery. Since the attacker has no knowledge of what the random value r will be
before they query, they have no way of knowing ahead of time what the resulting message
digest will be, and so knowing a collision is useless to them. They would need to produce
values M ′ and r′ such that g(r′,M ′) = g(r,M) — assuming of course that r is long enough
to not be guessed feasibly. Suppose that the attacker had the values M and r. If they
evaluated the hash function on say q random inputs, then they only have probability q/2n

of finding a pair (r′,M ′) which collide with (r,M).

This modification has the added benefit of allowing us to halve the hash length of g
because we no longer need to worry about birthday attacks.

2.3.5 Small Bound on the Number of Signatures

One can sign 2h messages with SPR-MSS; this hardly seems like a small upper bound. It
is hard to imagine one signing say 240 messages within the lifetime of one key — that’s
over a trillion messages! Theoretically this is all quite fine, but a problem arises in imple-
mentation. We would need to generate 240 OTS key pairs and then construct the Merkle
tree and all the L-trees. The storage requirements and generation times required would be
absurd. We need a way to make the implementation of SPR-MSS practical. It is to this
end that we introduce hyper trees. We first describe a hyper tree with two layers, and then
generalize to d layers.

Select two tree heights h0 and h1; the total height of the hyper tree will be h = h0 +h1.
The first layer (the top layer) consists of a single tree of height h1, the root of which will
be the public key for the scheme. Layer zero will consist of one tree for each leaf of the
tree on the layer above; and so there will be 2h1 trees on this level. Each tree on layer zero
will have height h0. All trees are constructed using the SPR-MSS construction; that is
their leaves are root nodes of L-trees (which we will interchangeably refer to as compressed
OTS public keys) and each level has a corresponding, uniformly random bitmask. We use

21

the same bitmasks for each tree on level zero. We give a high-level description of the key
generation, signature and verification algorithms.

Key generation: Given as input h0, h1 and security parameter n, first generate 2h1

OTS key pairs (Xi, Yi), 0 ≤ i ≤ 2h1 − 1. Next, randomly select h = h0 + h1 bitmasks
Qj ∈ {0, 1}2n and bitmasks for the L-trees. To produce a public key we need only generate
the tree on layer one. Do this according to the SPR-MSS construction using bitmasks
Qh0+1, Qh0+2, . . . , Qh for the tree itself. We use the same bitmasks for all L-trees. The root
node will be the public key for the scheme, the secret key is the seed used to generate the
OTS secret keys.

Signature generation: Given a message M and an index s, we wish to first sign M with
the sth leaf on layer zero. Determine which tree this leaf belongs to; if 0 ≤ s ≤ 2h0 − 1,
then we use the first tree — indexing starting from 0. If 2h0+k ≤ s ≤ 2h0+k+1 − 1, for
some positive integer k, then it belongs to tree k. The leaf we use in this tree is at index
s mod 2h0 . Sign M with this leaf to get σ0, and then produce the authentication path
Auth0 to the root node vh0 [0] of the kth tree on layer 0. Observe that to do this we need to
generate this entire tree, but for reasonable choices of h0 this is practical. Next, treat the
root node of this tree as a message and sign it with the corresponding leaf on layer one to
obtain σ1; if we are using the kth tree on layer zero then sign the root node with the kth

leaf on layer one. Compute the authentication path Auth1 for this leaf. The signature is
then: Σ = (s, σ0,Auth0, σ1,Auth1).

Signature verification: Given a message M and a signature Σ, we verify Σ as follows.
First, verify σ0 on M . The algorithm proceeds if and only if the OTS verification algorithm
succeeds. Next, as described in Section 2.3.3 use Auth0 to produce the root node of the
tree on layer zero. The next step is to verify the signature σ1 on this root node. The
algorithm proceeds if and only if the OTS verification algorithm succeeds. Next, use Auth1
to compute the root node of the tree on layer one. The algorithm accepts the signature if
and only if the root node equals the public key.

During key generation we need only construct the topmost tree. To sign a message we
need only generate a tree on the layer below. Once we have signed 2h0 messages, we remove
the bottom tree from memory and then generate the tree corresponding to the second leaf,
and so on. Hence, we need only generate/store 2h1 + 2h0 OTS key pairs. Suppose for
concreteness that h0 = h1 = h/2 for some even height h. Then we generate 21+h/2 key
pairs. Without the use of this two-layer hyper tree we would have needed to generate 2h

such pairs; so this is nearly a square root improvement. Figure 2.3 shows a two-layer hyper
tree where both layers are of height 3. For clarity we omit the L-trees from Figure 2.3, but
remind the reader that they lie below each leaf node.

22

v13[0]

a11

σ1

v03[0]

a02

a00 σ0

M5

a01

a10

a12

Figure 2.3: A two-layer hyper tree with h0 = h1 = 3.

23

It is worthwhile to make an obvious, yet important observation. Recall that each leaf
on the topmost tree is a compressed OTS verification key, i.e., it can only securely sign
one message. However, we use it to sign 2h0 times. The observation here is that every
time it is used, it signs the exact same message; namely the root node of the tree below
it. Hence, even though it is used many times, the attacker gains no new knowledge by us
repeatedly signing with it. That is of course assuming a deterministic signature algorithm
for the underlying OTS scheme. It is conceivable that with a non-deterministic scheme
that some information could be gained by the attacker if they see multiple signatures.

In general, to construct a d-level hyper tree, we first select d heights h0, h1, . . . , hd−1.
Again, there will be a single tree on layer d − 1 (the topmost layer). Layer d − 2 will
be exactly as we described layer 0 in the 2-layer case. However, now instead of signing
messages with the leaves of the trees on layer d− 2, we continue to construct an SPR-MSS
type tree per each leaf of each of these trees (only one at a time of course), and so on.
Messages are signed with the leaves of the trees on layer 0. In this construction, a signature
will look like,

Σ = (s, σ0,Auth0, σ1,Auth1, . . . , σd−1,Authd−1).

Verification is done in a similar manner. We verify an OTS signature, then use the corre-
sponding authentication path to obtain the root of a tree, and then repeat, but this time
using that root as the new message we wish to verify. The signature verifies if and only if
the root node on layer d− 1 equals the public key.

2.3.6 Weakness Against Multi-user Attacks

Often not taken into consideration when discussing the security of signature schemes is the
potential threat of a multi-user attack. Often when discussing security only the security of
a single instance of a particular scheme is considered. However, these security arguments
lose tightness when one considers multiple instances of a particular scheme, i.e., if there is
more than one user of a scheme, each with their own sets of public and private keys. In
this setting an attacker is challenged to produce a forgery for at least one of these users.
So, they have a larger number of potential targets.

Let us return to our specific discussion on LD-OTS. We previously claimed that a
particular instance of LD-OTS is EU-CMA assuming the one-wayness of a function (family)
and the collision resistance of a hash function (family). While this certainly remains true,
conceivably an attacker could get “lucky” and produce a forgery for some instance of the
scheme if there are sufficiently many instances of the scheme currently in use. Let us clarify
by using a trivial example. There are N = 22n2

possible distinct LD-OTS public keys, and

24

of course in practice it is impossible to actually generate all of these keys for any meaningful
value of n. However, suppose for the sake of argument that each of these N public keys
is in use across some number of users. That means then that if the attacker selects any
set (x00, x

1
0, . . . , x

0
n−1, x

1
n−1) of n-bit strings and computes d = g(M) for any message M ,

then σ = (xd00 , x
d1
1 , . . . , x

dn−1

n−1), is a valid forgery for some instance of LD-OTS; of course the
attacker is only successful if they can also tell you exactly what instance it is a forgery for.
Obviously this is a silly example, but it should highlight something important: the more
instances of LD-OTS that are in use at any particular time, the higher the probability that
an attacker can find a forgery for at least one of them.

Let us make this a bit more concrete. Suppose that we have exactly one instance of
LD-OTS, with public key Y . Since the one-way function is public, the attacker could just
select a random X ∈ {0, 1}2n2

and see if f(X) = Y . In other words, they can just make
a guess at what the secret key is. After q such guesses, their probability of successfully
finding the secret key is q/22n2

. Hence, to achieve k-bit security for one particular instance
(where k = log(q)), we need k ≥ 2n2. Now, suppose that N distinct instances of LD-OTS
are in use for some positive integer N , with public keys Y1, Y2, . . . , YN . In this case, instead
of checking if f(X) = Y for a fixed key Y , the attacker can check to see if f(X) = Yi for
some i = 1, 2, . . . , N . In this case, after q guesses, the probability of successfully finding
a secret key for at least one instance of the scheme is Nq/22n2

. Thus, to achieve k-bit
security for this multi-user setting we need k + log(N) ≥ 2n2. Therefore, to achieve the
same level of security, we must increase the output length n of the hash function as we
increase the number of instances.

Additionally, in a similar manner, even if we concatenate our messages with a random
string before hashing (as suggested in Section 2.3.4), we still get a degradation in security
as more instances are added.

It is another suggestion by Leighton and Micali from [23] which fixes this problem. Each
signer is given a distinct identity, and if they are using more than one instance of LD-OTS,
they are also given a unique instance number for each one — instance numbers are never
re-used. The user’s identity and instance numbers are included with their public keys, and
are used in the verification algorithm. Depending on the OTS used, this modification can
be implemented in a number of ways, but for the LD-OTS scheme what one could do is
compute message digests as d = g(r‖id‖M), where r is a random string and id includes
both the user’s identity and their instance number. This makes it so that each query the
attacker makes to g can be used to attack exactly one instance of the scheme since each
query must be unique to some id.

Furthermore, it has been suggested by Katz [22] that we also include (for example)

25

identifiers for the functions we use. For example, instead of computing y = f(x) for some
x, we could compute y = f(x‖00), and similarly z = g(x‖01). The purpose of this modifi-
cation is that potentially, f and g could be the same function, and these identifiers allow
us to treat them each as independent functions. Katz also suggests further modifications
if the functions need to be iterated, but we omit those details for now and revisit them in
Section 3.2.

2.3.7 Statefulness

The final drawback we shall discuss in this section is that of statefulness. The modifications
discussed thus far have been stateful, i.e., they need to keep an internal state or index which
needs to be updated after each new message is signed. This is not entirely a bad thing as
we can use statefulness to prove properties such as forward security. However, there are
numerous difficulties with managing states. One difficulty is that there is some overhead
associated with maintaining a state such as storage requirements. However, this is perhaps
the least important problem associated with stateful signature schemes. McGrew et al. in
2016 discussed these problems in detail [25]. For example, a difficulty arises if a system
needs to restore itself to some earlier point. Here it is possible for the system to restore
itself to a point when it was using an earlier state. New messages get signed using earlier
states and hence with previously used OTS keys. This could be disastrous for security. A
similar issue arises if keys are backed up or copied onto other devices. Similarly, if multiple
devices are all signing with the same keys (say one’s desktop computer, phone, and laptop
are all used) then an issue arises with key synchronization. See [25] for a more complete
list and analysis of these state management problems.

We describe a stateless hash-based signature scheme due to Goldreich [14, 15]. Goldre-
ich’s construction uses a deterministic pseudorandom generator G and a collision resistant
hash function g : {0, 1}∗ → {0, 1}n. And of course, the construction uses an underlying
OTS.

Key generation: Uniformly at random select a secret seed for G. Then G along with
this seed will be used to generate 2n+1−1 OTS key pairs; note that this is computationally
infeasible for a meaningful value of n, but we clarify this at the end of this subsection.
Each node in the entire tree will correspond to one such key pair, and as such, we need
to maintain some sort of coherent ordering of the key pairs. Unlike the nodes of Merkle
trees, nodes in this tree are not constructed using their children, but rather are the OTS
verification keys themselves. The secret key will be the seed for G. The public key of the
scheme is the OTS public key of the root node.

26

Signature generation: Goldreich described two possible ways to sign a message. We
give both. Notice that the outputs of g are n-bits, and there are 2n leaf nodes in the tree
(2n+1−1 nodes in total). So, Goldreich’s first suggestion was to sign in a deterministic way:
given a message M , compute d = g(M) and treat the n-bit string d as an integer between
0 and 2n − 1. And so, d in base ten (denoted (d)10) is the index of the leaf which we use
to sign the message M , producing signature σ0. Note that the underlying OTS should use
a different hash function than g — or at least use identifiers as suggested by Katz. Next,
take the OTS verification key corresponding to index (d)10, and concatenate it with its
sibling’s verification key, then hash the result. Treat this new hash value as a message, and
sign it using the parent node of the two siblings we just used. Call this new signature σ1.
Iterate this process until we use the root node to sign the hash of the concatenation of its
childern to receive signature σn. The signature Σ on M consists of each of σ0, σ1, . . . , σn,
as well as each of the OTS public keys used to verify, and their respective sibling keys.

Goldreich’s second suggestion was to randomly select a leaf node with which to sign
M instead of deterministically selecting one; everything else remains the same. In the first
method, we require g to be collision resistant, and in the second case, we need sufficiently
many leaves so that the probability of selecting a leaf node to sign with more than once is
acceptably small — recall that we are using one-time key pairs to sign with.

Signature verification: The verification algorithm should be pretty obvious; systemati-
cally verify signatures on messages as we build a path up to the root node. The algorithm
accepts the signature if and only if each of the σi verifies for i = 0, 1, . . . , n. In Figure 2.4
we show an example of the signature path from node 10, to the root node. Hatched nodes
are used to sign and the corresponding sibling nodes are shown in bold. The signature
produced is (σ0, σ1, σ2, σ3, Y10, Y9, Y4, Y3, Y2, Y1). Note that node j’s sibling is at j + 1 if j
is even, and at j − 1 if j is odd. Similarly, the parent node of j is at index (j/2)− 1, if j
is even, and at bj/2c otherwise.

The tree from this construction is what is known as a virtual tree. By that, we mean
that the entire tree is never actually constructed. Consider the signing algorithm. If we
use the deterministic method mentioned, then to achieve at least 128 bits of security we
need the output of the hash function to be at least 256-bits so as to be secure against
birthday attacks. However, the output length of the hash function corresponds to the
number of levels in the tree. Hence, our tree would have at least 257 levels! This would
require generating 2256 leaves, which is clearly infeasible. So suppose we use the method of
randomized leaf selection. It is noted by Bernstein et al. [2] that if we take n = 128, then
there is only a probability of about 2−30 of re-using a leaf node for signing, and that the
scheme is likely to be broken within 250 signatures. Even if this is an acceptable probability,
the tree would still have 129 levels, and while this is surely an improvement over 257, it is

27

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 2.4: Goldreich’s construction for n = 3, signing with leaf 10.

still infeasible to generate.

The solution is to not actually generate the entire tree. Instead, one could simply
generate just the nodes that are required using the secret seed for the generator along with
the indices of the required nodes.

28

Chapter 3

Winternitz One-Time Signature
Schemes

In this chapter we introduce the Winternitz one-time signature scheme (WOTS) [31], and
discuss its evolution and usage throughout the years. First proposed by Ralph Merkle in
1979, but not published until a decade later, this scheme was developed as an improvement
to LD-OTS, and was suggested to Merkle by Robert Winternitz. These improvements allow
us to substantially reduce signature sizes and gives us a way to establish a trade-off between
signature generation time and storage space used. The other property of WOTS which we
make extensive use of is that we can compute the verification key from any valid signature.
Hence, public keys no longer need to be included in signatures, further reducing signature
sizes.

In Section 3.1 we describe the most basic version of the scheme and discuss at a high
level why it is secure. Next, in Section 3.2 we describe a version of the scheme that utilizes
the Leighton-Micali improvements suggested in Sections 2.3.4 and 2.3.6 and give a full
security proof due to Katz [22]. Then, in Section 3.3 we describe a version of WOTS which
utilizes pseudorandom functions and give the corresponding security proof. However, we
observe that the only currently known proof is flawed and incorrect. We include this
version for its historical significance and because the ways in which the proof is flawed is
of interest. Next, in Section 3.4 we describe another improved version of WOTS utilizing
so-called chaining functions and give a high-level security argument, and discuss what
these improvements actually accomplish. Finally, in Section 3.5 we discuss a version that
is provably secure against multi-target attacks.

29

3.1 Basic WOTS

The scheme uses a security parameter n ∈ N and the Winternitz parameter w ∈ N, which is
typically a power of 2 and which determines the space-time trade-off that can be achieved.
Additionally, we need a one-way function

f : {0, 1}∗ → {0, 1}n

and a collision resistant hash function

H : {0, 1}∗ → {0, 1}n.

For a message M ∈ {0, 1}∗, we denote by f e(M) the e-fold iteration of f on M . In other
words,

f e(M) = f(f(· · · (f(M)) · · ·)),
where there are e applications of f . Let f 0(·) be the identity function. Set

`1 =

⌈
n

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

Define a checksum C : ({0, 1}w)`1 → {0, 1}w`2 as follows. Let d be an n-bit message
digest. First compute a base-w representation of d so that each digit in d has value in
{0, 1, . . . , w − 1}. Next, parse d into its `1 constituent digits b0, b1, . . . , b`1−1 and interpret
each bi as a nonnegative integer. Then the checksum is computed as

C(b0, b1, . . . , b`1−1) =

`1−1∑
i=0

(w − 1− bi).

The result is stored as an integer using exactly `2 bits, where we prepend 0’s if necessary1.
We claim that the base-w representation of the checksum has length at most `2. This is
because C(d) ≤ `1(w − 1) for d ∈ {0, 1}n, and taking the base-w log of both sides yields
|C|w ≤ logw(`1(w − 1)). Now we apply the change of base formula to the right hand side
to get log(`1(w − 1))/ log(w). By construction, this value is bounded above by `2.

Observe that the larger the bi are, the smaller is the checksum; this is crucial to the
security proofs for such schemes. We now describe the scheme.

Key generation: The key generation algorithm takes as input the security parameter n.

1McGrew et al. [29] suggest a cyclic left shift of the checksum bits. The size of this shift is dependent
on the parameters used; see [29] for their recommendations. In the interest of readability we do not shift
the checksum in this thesis.

30

1. Select ` values x0, x1, . . . , x`−1
$←− {0, 1}n.

2. For i = 0, 1, . . . , `− 1, compute yi = fw−1(xi).

3. Compute pk = H(y0‖y1‖ . . . ‖y`−1).
The secret key is the set of xi and the public key is the hash value pk.

Signature generation: To sign message M ∈ {0, 1}∗ using secret key {x0, x1, . . . , x`−1}, do
as follows.

1. Compute the digest d = H(M) and the checksum c = C(d).

2. Let B = d‖c be the concatenation of the base-w representations of d and c.

3. Parse B as a sequence of ` bitstrings of length w as B = b0‖b1‖ . . . ‖b`−1. Interpret
these bi as nonnegative integers.

4. For i = 0, 1, . . . , `− 1, compute σi = f bi(xi).

The signature returned is σ = (σ0, σ1, . . . , σ`−1).

Signature verification: To verify signature σ on message M ∈ {0, 1}∗ using public key pk,
do as follows.

1. Compute d = H(M), c = C(d), and B = d‖c as in the signing algorithm.

2. Parse B = b0‖b1‖ . . . ‖b`−1 as in the signing algorithm.

3. For i = 0, 1 . . . , `− 1, compute yi = fw−1−bi(σi).

The signature is accepted if and only if pk = H(y0‖y1‖ . . . ‖y`−1).
Figure 3.1 gives a visual example of the Winternitz signature of a message with hash

digest d = 1011 using n = w = 4. These parameters yield `1 = `2 = 2 and hence, ` = 4.
The base-w representation of d is 23, and the checksum (prepending a zero) is computed
as 01. Thus, B = 2301 and the resulting signature is

σ = (f 2(x0), f
3(x1), f

0(x2), f
1(x3)).

The highlighted nodes of Figure 3.1 are the individual components of the signature.

The size of the public key is n bits, the size of the private key is `n bits, and a signature
has size `n bits. We will see throughout this chapter that this version of WOTS has the
smallest of these sizes. However, this version also has the strongest security assumptions
which are difficult to achieve in practice.

31

An interesting and useful observation about WOTS is that the public key can be com-
puted from a valid signature. We make use of this fact in Chapter 4.

We give an informal security argument for this scheme. Suppose that an adversary
A wants to forge a WOTS signature, and that they are in possession of a valid mes-
sage/signature pair (M,σ). Each component xi in the secret key corresponds to a function
“chain” f 0(xi), f

1(xi), f
2(xi), . . . , f

w−1(xi). As f is a one-way function, it is infeasible
for A to recover any of the elements along these chains that occur before the σi which
they possess, but they can efficiently produce any elements further along the chains. Let
B = b0‖b1‖ . . . ‖b`−1 correspond to M . Suppose that M ′ 6= M is a message whose signature
A is trying to forge. And so A computes B′ = d′‖c′ = b′0‖b′1‖ . . . ‖b′`−1.

To successfully produce a signature A must produce σ′i = f b
′
i(xi) for each i. Again,

A cannot recover the elements along the chains earlier than the σi they got from σ. In
particular they cannot compute the secret key. Thus, they can only produce a signature if
b′i ≥ bi for each i. We claim that this can never happen. Consider just d′ = b′0‖ . . . ‖b′`1−1;
if each of these b′i equal their corresponding bi then d′ = d, and the adversary has found
a collision in H. Because H is collision resistant, we can assume this is not the case. So
suppose that each of these b′i are at least equal to bi, but with at least one b′i > bi. Then by
construction of the checksum, c′ < c — the larger these bi are, the smaller the checksum
becomes. Finally, since c′ < c, we have that b′i < bi for at least one i ∈ {`1, `1+1, . . . , `−1}.
This gives the claim.

3.2 WOTS-LM

McGrew, Curcio and Fluhrer [29] put forth WOTS combined with the suggested improve-
ments by Leighton and Micali from Chapter 2 as a proposed standard for hash-based digital
signatures. Commissioned by the National Security Agency (NSA), Katz [22] analyzed the
concrete security of this scheme in the multi-instance setting. Katz refers to this scheme as
the Leighton-Micali OTS, but for the sake of consistency we refer to it as WOTS-LM. In
the same paper, Katz analyzes the concrete security of the so-called full Leighton-Micali
scheme described in [29], i.e., a version of the Merkle signature scheme where the underlying
OTS is WOTS-LM. We discuss the full scheme in Section 4.1.

LM-OTS uses the same primitives as the vanilla version of WOTS, but with a couple
of modifications. First, if i and b are nonnegative integers with 0 ≤ i < 28b, we denote
by [i]b the b-byte representation of i. Furthermore, we make some modifications to the
hash function H. Let s be a string, k a positive integer and u a nonnegative integer. We

32

x0

f 1(x0)

f 2(x0)

f 3(x0)

x1

f 1(x1)

f 2(x1)

f 3(x1)

x2

f 1(x2)

f 2(x2)

f 3(x2)

x3

f 1(x3)

f 2(x3)

f 3(x3)

Figure 3.1: Winternitz signature for w = n = 4 and d = 1011.

33

recursively define

Hk
s (x;u) = H(Hk−1

s (x;u)‖s‖[u+ k − 1]1‖0x00),

where 0xab denotes that ab is written in hexadecimal, and H0
s (x;u) = x. We give the

scheme’s algorithms next.

Key generation: The key generation algorithm takes as input the security parameter n
and a unique identity id = (I, p), where I is a 64-byte identifier and p is a 4-byte instance
number.

1. Select ` values x0, x1, . . . , x`−1
$←− {0, 1}n.

2. For j = 0, 1, . . . , `− 1, compute yj = Hw−1
id‖[j]2(xj; 0).

3. Compute pk = H(id‖y0‖y1‖ . . . ‖y`−1‖0x01).

The public key is pk and the secret key sk is the set of xj.

Signature generation: To sign message M ∈ {0, 1}∗ using secret key sk and identification
id = (I, p), do as follows.

1. Select r
$←− {0, 1}n.

2. Compute d = H(M‖r‖id‖0x02) and c = C(d).

3. Let B = d‖c be the concatenation of the base-w representations of d and c.

4. Parse B as a sequence of ` bitstrings of length w as B = b0‖b1‖ . . . ‖b`−1. Interpret
these bj as nonnegative integers.

5. For j = 0, 1, . . . , `− 1, compute σj = H
bj
id‖[j]2(xj; 0).

The signature returned is σ = (r, p, σ0, σ1, . . . , σ`−1).

Signature verification: To verify signature σ on message M ∈ {0, 1}∗ using identification
id = (I, p), do as follows.

1. Compute d = H(M‖r‖id‖0x02) and c = C(d).

2. Compute B = d‖c and parse it as in signature generation.

3. For j = 0, 1, . . . , `− 1, compute yj = H
w−1−bj
id‖[j]2 (σj; bj).

34

The signature verifies if and only if H(id‖y0‖y1‖ . . . ‖y`−1‖0x01) = pk.

Sizes: The size of the public key is n bits, the size of the private key is `n bits, and a
signature has size `(n+ 1) + 32 bits.

Next, we give a full security proof for this scheme which very closely follows that from
[22].

Theorem 3.2.1 ([22]). For any adversary attacking arbitrarily many instances of WOTS-
LM, making at most q hash queries of the form H(?‖m) with m ∈ {0x00, 0x01, 0x02}, ?
arbitrary and H a random function, the probability with which they successfully forge a
signature with respect to any of the instances of the scheme is at most 3q

2n
.

Proof. The proof proceeds as follows. We describe a game which we can play with the
adversary, and then describe a slightly syntactically different game from the first, but
which has the same probability space as the first. We play the second game with the
adversary. We give an exhaustive list of events that could possibly occur during this game
and then prove that if the adversary successfully produces a forgery then at least one of
those events occurred. We then calculate upper bounds on the probabilities of these events
and finally use a union bound to establish the above stated upper bound on the adversary’s
success probability.

Let t be an upper bound on the number of instances of WOTS-LM; we assume that
there is a fixed set of distinct identifiers {idi = (I i, pi) | i = 1, 2, . . . , t}. We assume for
simplicity that all of these instances of WOTS-LM use the same parameters. It is not too
difficult to alter the following proof if this assumption is not valid.

Game 1:

1. Select a uniformly random function H : {0, 1}∗ → {0, 1}n.

2. For i = 1, 2, . . . , t, run the key generation algorithm with input idi to obtain (pki, ski).
Give {(idi, pki) | i = 1, 2, . . . , t} to the adversary A.

3. The adversary is given oracle access to H, and is given a signing oracle OSign(·, ·) with
the property that for message M ∈ {0, 1}∗ and index i ∈ {1, 2, . . . , t}, OSign(i,M)
outputs Sign(ski,M, idi), where Sign is the WOTS-LM signing algorithm. For each
i, A may query this oracle at most once.

We assume without loss of generality that A queries the signing oracle exactly once
for each i (we could just query it for them). Additionally, we assume that whenever
A is given a signature, they are also given all of the queries/answers to H needed to
verify that signature.

35

4. The adversary outputs (i,M, σ), where (i,M) was not queried to the signing oracle
previously. The adversary wins the game if σ is accepted by the verification algorithm
as a signature for M in the ith instance of the scheme. Just as in the above step, we
assume without loss of generality that the attacker has all of the queries/answers to
H needed for this verification.

Next we describe a second game which instantiates the first game along with the algorithms
for the WOTS-LM scheme, but such that the probability space of the second game is the
same as that of the first. The second game is the one which we play with the adversary.

Game 2:

1. Initialize an empty set H. The elements of H will be pairs (x, y) such that H(x) = y.
In other words, H will contain the defined query/answer pairs for the function H
from the first game.

2. For i = 1, 2, . . . , t, do:

(a) For j = 0, 1, . . . , `− 1, select xij,0
$←− {0, 1}n.

(b) For j = 0, 1, . . . , ` − 1 and k = 0, 1, . . . , w − 2 select xij,k+1
$←− {0, 1}n and add

(xij,k‖id
i‖[j]2‖[k]1‖0x00, xij,k+1) to H. Let yij = xij,w−1.

(c) Select pki
$←− {0, 1}n and add (idi‖yi0‖yi1‖ . . . ‖yi`−1‖0x01, pki) to H.

(d) Select ri, di
$←− {0, 1}n.

(e) Give the adversary (idi, pki).

3. When A queries H(x), respond as follows:

(a) If (x, y) ∈ H for some y, then return y.

(b) Else, select y
$←− {0, 1}n and return y to the adversary; store (x, y) in H.

4. When A queries OSign(i,M
i), respond as follows:

(a) If (M i‖ri‖idi‖0x02, d) ∈ H for some d, then redefine di by giving it the value d.

(b) Let ci = C(di), set Bi = di‖ci, and parse Bi as in the WOTS-LM signature
generation algorithm.

(c) Give the signature (ri, pi, xi
0,bi0
, xi

1,bi1
, . . . , xi

`−1,bi`−1
) to the adversary.

5. The adversary outputs a triple (i,M, σ), with M 6= M i. The adversary wins the
game if Vrfy(M,σ, I i) = pki. Here, Vrfy is the WOTS-LM verification algorithm.

36

The second game works by randomly selecting all of the input/output pairs of H in-
cluding the message digests and randomness pairs (di, ri). If the adversary queries for a
hash value of a particular input, then we do a simple look-up in H to see if we already
have a defined response for the query. If we do, then give the response to the adversary,
and if we do not, then randomly select a response and give this to the attacker and store
this new pair in H. When the adversary queries the signing oracle for H(M i‖ri‖idi‖0x02),
we redefine di if we already have a response to this stored. Otherwise, we essentially run
the signature algorithm as usual. Having all of the hash query/response pairs randomized
allows for the calculation of more elegant upper bounds on the probabilities of the events
we define below.

We refer to the following as collision events. These events constitute an exhaustive list
of possible occurrences in the second game that allow the adversary to produce a forgery.

• Coll1,i is the event that A queries H(I i‖p‖y0‖y1‖ . . . ‖y`−1‖0x01) where
(p‖y0‖y1‖ . . . ‖y`−1) 6= (pi‖yi0‖yi1‖ . . . ‖yi`−1), but they receive the correct public key
pki as a response.

• Coll2,i is the event that A queries H(?‖ri‖idi‖0x02) before the query OSign(i, ?) is
made. Observe that if this event does not occur, then we will not redefine di in Step
4(a) of the above experiment.

• Coll∗2,i is the event that either Coll2,i occurs, or either of the following events occur:

– Before making the query OSign(i, ?), A queries H(?‖ ? ‖idi‖0x02) and receives
di as response, i.e., the adversary finds some message and a string which gives
a collision for di under H before making the signing query, or

– After making the query OSign(i,M
i), A queries H(M‖?‖idi‖0x02) with M 6= M i

and receives as response di, i.e., the adversary finds a collision for di sometime
after they make the signing query.

• Coll3,i,j,k is the event that A queries H(xij,k‖id
i‖[j]2‖[k]1‖0x00) either before making

the query OSign(i, ?), or after making the query but with k < bij. In the former case,
A learns intermediate links in a Winternitz chain before they have even queried the
signing oracle. In the latter case, A will receive a value along the Winternitz chain
that occurs before the value they received as part of the response from the signing
oracle.

• Coll∗3,i,j,k is the event that either Coll3,i,j,k occurs, or A queries

H(x‖idi‖[j]2‖[k]1‖0x00) with x 6= xij,k and receives the response xij,k+1. In other
words, the adversary finds a collision for xij,k+1 under H.

37

The first claim we establish is that an upper bound on A’s success probability is given by
the probability that at least one of the collision events occur.

Claim 1: If the adversary succeeds in producing a forgery, then at least one of the collision
events occurred.

Proof. Suppose that A outputs (i,M, σ), where σ is a valid signature on M with respect
to I i and pki, and with M 6= M i. Recall that by assumption all of the H-queries needed
to verify σ on M with respect to I i and pki are defined when A outputs their forgery.
Parse σ into its components as σ = (r, p, σ0, σ1, . . . , σ`−1) and set id = (I i, p). Define
d = H(M‖r‖id‖0x02), and let c = C(d). Run the verification algorithm on M with input

id to obtain the values d‖c = b0‖b1‖ . . . ‖b`−1 and yj = H
w−1−bj
id‖[j]2 (σj; bj). Since the adversary

wins the game, we have that H(id‖y0‖y1‖ . . . ‖y`−1‖0x01) = pki.

Suppose that neither Coll1,i nor Coll∗2,i have occurred. We show that Coll∗3,i,j,k has
occurred for some values of j and k. As Coll1,i has not occurred, we have that

(p‖y0‖y1‖ . . . ‖y`−1) = (pi‖yi0‖yi1‖ . . . ‖yi`−1),

and thus id = idi. As Coll∗2,i has not occurred, di was not redefined during the game and
the adversary has not received di as the response to a query in the forms described in
the definition of Coll∗2,i; and as d is of this form, we can conclude that d 6= di. By the
construction of the checksum we have that there exists some j such that bj < bij — this
was hinted at when we introduced the checksum in Section 3.1. Hence, bj is earlier along
its chain than is bij. However, we also have that yj = y′j. And so, it is now clear that either
Coll3,i,j,k occurred for some k or the adversary found a collision in H in the form of event
Coll∗3,i,j,k for some k.

Hence, to establish an upper bound on the adversary’s success probability, we upper
bound the probabilities of each of the collision events occurring and then take a union
bound.

Claim 2: Let q1,i be the number of H-queries of the form H(I i‖ ? ‖0x01). Then for all i,
Pr(Coll1,i) ≤ q1,i2

−n.

Proof. Any query H(I i‖p‖y0‖ . . . ‖yp−1‖0x01) with p‖y0‖ . . . ‖yp−1 6= pi‖yi0‖ . . . ‖yip−1 re-

turns a uniformly random value in {0, 1}n. Moreover, this output is independent of pki.
Hence, for each query in this form, A has a 1/2n probability of receiving pki as the response.
The claim now trivially follows.

38

Claim 3: Let q2,i be the number of H-queries of the form H(?‖ ? ‖idi‖0x02). Then for all
i, Pr(Coll2,i) ≤ q2,i2

−n.

Proof. In order for Coll2,i to occur, the adversary must query H(?‖ri‖idi‖0x02) prior to
making the signing query OSign(i, ?). However, ri is a uniformly random value in {0, 1}n
which the adversary has no knowledge of until it queries OSign(i, ?). The claim trivially
follows.

Claim 4: For all i, Pr(Coll∗2,i) ≤ 2 · q2,i2−n.

Proof. We first observe that Pr(Coll∗2,i) ≤ Pr(Coll2,i) + Pr(Coll∗2,i|¬Coll2,i), where ¬A
means that event A did not occur. We apply Claim 3 to get a bound for the first term
on the right hand side. As mentioned earlier, if Coll2,i does not occur, then the value of
di is not redefined in the game. Furthermore, every time A queries H(?‖idi‖0x02) before
making the signing query OSign(i, ?), and every time they query H(M‖ ? ‖idi‖0x02) with
M 6= M i after querying OSign(i,M

i), the response they obtain is uniformly random in
{0, 1}n and is independent of di. Hence, the second term on the right hand side can be
upper bounded by q2,i2

−n. This establishes the claim.

Claim 5: Let q3,i,j,k be the number of H-queries of the form H(?‖idi‖[j]2‖[k]1‖0x00).
Define q3,i,j,−1 = 0. For all i, j, k,

Pr

(
Coll3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`

)
≤ q3,i,j,k

2n − q3,i,j,k−1
,

where
∧

is the logical AND operator.

Proof. If Coll∗3,i,j,k−1 has not occurred, A’s information about the uniformly random value
xij,k is limited to the fact that xij,k was not the result of one of the attacker’s previous

queries of the form H(?‖idi‖[j]2‖[k − 1]1‖0x00). That is of course assuming k < bij, in the
event that the adversary has already made the query OSign(i,Mi). The claim follows.

Claim 6: For all i, j, k,

Pr

(
Coll∗3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`

)
≤ q3,i,j,k

2n − q3,i,j,k−1
+
q3,i,j,k

2n
.

39

Proof. We establish this claim in a manner similar to that of Claim 4. We have the
following:

Pr

(
Coll∗3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`

)
≤ Pr

(
Coll3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`

)

+ Pr

(
Coll∗3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`
∧
¬Coll3,i,j,k

)
.

Claim 5 gives a bound for the first term on the right hand side. To bound the second
term, we observe that if Coll3,i,j,k does not occur, then all queries A makes of the form
H(?‖idi|[j]2‖[k]1‖0x00) return a uniformly random response in {0, 1}n which is independent
of xij,k. It then follows trivially that the second term is bounded by q3,i,j,k2

−n. The claim
follows.

Claim 7: For all i, j, Pr(
∨w−1
k=0 Coll∗3,i,j,k) ≤ 3 ·

∑w−1
k=0 q3,i,j,k · 2−n.

Proof. Observe that if
∑w−1

k=0 q3,i,j,k ≥ 2n/2 then the value on the right hand side is larger
than 1 and the result is trivial. Otherwise we apply Claim 6 and distribute the sum to
obtain

Pr

(
w−1∨
k=0

Coll∗3,i,j,k

)
≤

w−1∑
k=0

Pr

(
Coll∗3,i,j,k |

k−1∧
`=0

¬Coll∗3,i,j,`

)

≤
w−1∑
k=0

q3,i,j,k
2n − q3,i,j,k−1

+
w−1∑
k=0

q3,i,j,k
2n

. (3.1)

Additionally, we have that q3,i,j,k−1 ≤
∑w−1

k=0 q3,i,j,k < 2n/2. Hence, 2n/2 − q3,i,j,k−1 ≥ 0.
Consequently, 2n − q3,i,j,k−1 ≥ 2n/2. Taking reciprocals and multiplying through by the
nonnegative value q3,i,j,k gives

q3,i,j,k
2n − q3,i,j,k−1

≤ 2q3,i,j,k
2n

.

Substituting this into (3.1) gives the claim.

To finally complete the proof of Theorem 3.2.1, we need to put all of these claims
together. Recall that t denotes an upper bound on the number of instances of WOTS-
LM. As previously mentioned, Claim 1 with a union bound gives an upper bound on the

40

adversary’s success probability. Explicitly this upper bound is

t∑
i=1

Pr(Coll1,i) +
t∑
i=1

Pr(Coll∗2,i) +
t∑
i=1

`−1∑
j=0

Pr

(
w−1∨
k=0

Coll∗3,i,j,k

)
.

By applying Claims 2, 4 and 7, we can upper bound the above expression by

t∑
i=1

q1,i2
−n + 2 ·

t∑
i=1

q2,i2
−n + 3 ·

t∑
i=1

`−1∑
j=0

w−1∑
k=0

q3,i,j,k2
−n.

Clearly we can upper bound the above by

3 ·

(
t∑
i=1

q1,i +
t∑
i=1

q2,i +
t∑
i=1

`−1∑
j=0

w−1∑
k=0

q3,i,j,k

)
· 2−n.

Finally, we observe that each H-query that the adversary makes of the appropriate form
H(?‖0x00), H(?‖0x01), H(?‖0x02) increases at most one of q1,i, q2,i, or q3,i,j,k, and thus the
value in the parentheses above is bounded above by the total number q of hash queries.
This completes the proof.

In Chapter 4, we revisit the WOTS-LM signature scheme.

As with any security proof, it is important that we ask what the practical implications
of Theorem 3.2.1 are. Unfortunately, Katz’s proof is not a reductionist proof, and so we
cannot estimate parameters from it as we would in other schemes. Moreover, the proof
does not seem to inform us whether the hash function employed should be second-preimage
resistant or if it should be collision resistant. However, the proof is essentially tight, and
so as long as H behaves like a random function and we select a value for n such that
the adversary’s success probability 3q/2n is acceptably small for a feasible number of hash
queries q, we can be confident that no forgeries will occur.

Interestingly enough, the Internet draft by McGrew et al. [29] does not give recommen-
dations for n or q to ensure any particular security level. All of the parameter sets they
explicitly give use n = 256, but they do not justify this choice in terms of the security
level. That said, the cost of an experiment (i.e., a game) that runs in time t with success
probability at most ε, is given by t/ε. In our second game above, we can take t to be ap-
proximately the number of hash queries q, and ignoring the factor of 3, we have ε = q/2n.
Hence, by taking the ratio of these two values, we can conclude that the cost of this game
is about 2n. It then seems appropriate to select for example n = 128 to achieve the 128-bit
classical security level. Nonetheless, if resistance to quantum adversaries is desired, then
n = 256 is recommended.

41

3.3 WOTS-PRF

This section describes a variant of the Winternitz scheme whose security is in the standard
model and is based on pseudorandom functions. We call this signature scheme WOTS-PRF
[5]. In Chapter 4 we describe several schemes based on the Merkle signature scheme, but
with underlying one-time signature schemes being some variants of WOTS. In particular,
we describe the scheme XMSS [7], a full signature scheme based on binary hash trees with
underlying one-time scheme WOTS-PRF. For several years XMSS was a scheme of central
focus because, its security reduction is tight, exact, in the standard model, and requires
minimal security assumptions. Moreover, the techniques that the authors of [5] employed
further reduced signature sizes.

Unfortunately, as we detail in this section, the security proof in [5] is flawed. We
restrict ourselves to only discussing the most important and pernicious of the errors, but
it is important to note (as we detail in later sections) that the erroneous security claims
from [5] are used in other important works. Furthermore, slightly different versions of the
results from [5] have appeared, [6, 17]. These other works attempt to correct some of the
errors, but the most devastating flaws remain.

We first describe the scheme, then give the full security proof from [5], and finally
discuss the errors within.

The scheme uses the following parameterized pseudorandom function family

Fn = {fk : {0, 1}n → {0, 1}n | k ∈ {0, 1}n}

for security parameter n. Given a key k and a nonnegative integer e, we define the e-fold
iteration of fk as follows. If e = 0, then f 0

k (x) = k2. If e > 0, then

f ek(x) = ffe−1
k (x)(x).

Thus, f 1
k (x) = fk(x), f 2

k (x) = ffk(x)(x), and so on.

The scheme also uses a Winternitz parameter w, values `1, `2, `, checksum C, and signs
m-bit message digests3. Let H : {0, 1}∗ → {0, 1}m be a cryptographic hash function. We
now describe the algorithms of WOTS-PRF.

Key generation: On input a security parameter n the algorithm proceeds as follows.

1. Select a value x
$←− {0, 1}n.

2[5] incorrectly defines f0k (x) = x. This was later fixed in [17], but not in [6].
3We replace n with m in the formulation of `1 and `2.

42

2. Select strings sk1, sk2, . . . , sk`
$←− {0, 1}n.

3. For i = 1, 2, . . . , `, compute pki = fw−1ski
(x).

The public key is pk = (pk0, pk1, . . . , pk`), where pk0 = x. The secret key is sk =
(sk1, . . . , sk`).

Signature generation: On input a message M ∈ {0, 1}∗ and secret key sk, the algorithm
proceeds as follows.

1. Compute the m-bit message digest d = H(M).

2. Express d in its base-w representation as d = b1‖b2‖ . . . ‖b`1 , so that each bi ∈
{0, 1, . . . , w − 1}.

3. Compute the checksum C = C(d), and let B = d‖C = b1‖b2‖ . . . ‖b` be the concate-
nation of the base-w representations of d and C.

4. For i = 1, 2, . . . , `, compute σi = f biski(x).

The signature returned is σ = (σ1, σ2, . . . , σ`).

Signature verification: On input a message M ∈ {0, 1}∗, signature σ and public key pk,
the algorithm proceeds as follows.

1. Compute the m-bit message digest d = H(M).

2. Express d in its base-w representation as d = b1‖b2‖ . . . ‖b`1 , so that each bi ∈
{0, 1, . . . , w − 1}.

3. Compute the checksum C = C(d), and let B = d‖C = b1‖b2‖ . . . ‖b` be the concate-
nation of the base-w representations of d and C.

4. For i = 1, 2, . . . , `, compute pk′i = fw−1−biσi
(pk0).

The signature is accepted if and only if pk = (pk0, pk
′
1, . . . , pk

′
`).

We give the following definitions directly from [5].

Definition 3.3.1. A family of functions Fn is pseudorandom if no efficient algorithm Dis
is able to distinguish a randomly chosen function fk ∈ Fn from a randomly chosen function
g from the set Gn of all functions with the same domain and range as Fn. Dis gets access
to an oracle Box(·) implementing either fk or g in a black box manner. The distinguisher
may adaptively query Box(·) as often as he likes. Finally, the distinguisher outputs 1 if he
thinks the Box models fk and 0 otherwise.

43

Let Fn be a family of pseudorandom functions and Gn = {g : {0, 1}n → {0, 1}n} the family
of all functions with domain and range {0, 1}n. We call Fn a (t, ε)-PRF if the advantage

AdvPRF
Fn (Dis) =

∣∣∣Pr(Box $←− Fn : DisBox(·) = 1)− Pr(Box $←− Gn : DisBox(·) = 1)
∣∣∣

of any distinguisher Dis that runs in time t is at most ε.

Definition 3.3.2. Let Fn be a family of pseudorandom functions. We call Fn (t, ε)-KOW
if the success probability

AdvKOW
A = Pr((x, k)

$←− {0, 1}n × {0, 1}n, y ← fk(x), k′ ← A(x, y) : y = fk′(x))

of any adversary A that runs in time t is at most ε; we also say that Fn is key one-way.

The key one-way (KOW) property is similar to the one-wayness property that is typi-
cally required of hash functions.

Definition 3.3.3. We define a key collision to be a pair of distinct keys (k, k′) ∈ {0, 1}n×
{0, 1}n such that fk(x) = fk′(x) for some x ∈ {0, 1}n.

This leads to one more definition4.

Definition 3.3.4 ([5]). The upper bound κ on the number of key collisions is defined as
follows: For each pair (x, k), there exist at most κ− 1 different keys k1, . . . , kκ−1 which are
also different from k, such that fk(x) = fki(x) for i = 1, . . . , κ− 1. Similarly we define the
lower bound on the number of key collisions κ′: For each pair (x, k), there exist at least
κ′ − 1 different keys k1, . . . , kκ′−1 which are also different from k, such that fk(x) = fki(x)
for i = 1, . . . , κ′ − 1.

Roughly speaking, these values of κ and κ′ partition {0, 1}n for each x into classes of
functions that map x to the same image. Hence,

2n

κ
≤ |{fk(x) : k ∈ {0, 1}n}| ≤ 2n

κ′

for all x ∈ {0, 1}n. The authors of [5] write the following: “Also, given y
$←− {0, 1}n the

probability that there exists a key k and a preimage x such that fk(x) = y holds is at least

4This definition does not quite capture what the authors intended as it was subsequently changed in
[6] and again in [17]. The definition in [17] is the correct one, namely κ should be the least upper bound
on the number of key collisions and κ′ should be the greatest lower bound. The definition given in [6] is
flawed.

44

1/κ”. While this is certainly true, the lower bound is very weak. Observe that since x is
not fixed, it is quite likely that the probability is very high.

We present the first erroneous claim of [5]. The following lemma describes a relation
between the security level of pseudorandom functions and the upper bound κ on key
collisions.

Lemma 3.3.5 ([5]). Let Fn be a (t, ε)-PRF with security level b = log(t/ε) and κ as in
Definition 3.3.4. Then κ ≤ 2n−b + 1.

We first present the proof exactly as in [5] and then discuss its flaw.

Proof. Assume κ > 2n−b + 1 and let (x, y) be a pair where there exist κ keys mapping
x to y. Then distinguisher Dis queries Box with x. If Box(x) = y then Dis returns 1

and 0 otherwise. Clearly Dis runs in time t′ = 1. Further we have Pr(Box
$←− Fn :

DisBox(·) = 1) = κ/2n > 2−b + 2−n and Pr(Box
$←− G : DisBox(·) = 1) = 2−n and therefore

ε′ = AdvPRF
Fn (Dis) > 2−b which is a contradiction.

The problem with the above proof is the use of the word “let”. The distinguishing
algorithm Dis takes as input a pair (x, y) for which the value κ is attained. Then, Dis
constructively uses that pair to contradict the assumed security level of the PRF. The
authors of [5] give no method for obtaining such a pair (x, y), but then uses such a pair as
input into their algorithm Dis. A constructive algorithm with non-constructive input is not
useful. To really highlight why this kind of argument is flawed, consider a cryptographic
hash function H. We construct an efficient adversary A for finding collisions in H as
follows. Let (x, x′) be a pair of distinct values in the domain of H such that H(x) = H(x′).
Give the pair (x, x′) to A. The adversary then outputs the pair (x, x′), and has hence
successfully produced a collision in H. Thus we have a constructive algorithm with non-
constructive input for quickly finding collisions. As we do not provide a constructive
method for obtaining the input it follows that this algorithm is rather useless. We point
out further consequences of this lemma later in this section.

We have the following proposition relating the KOW property to the PRF property.

Proposition 3.3.6 ([5]). Let Fn be a (t, ε)-PRF. Then Fn is (t− 2, ε/(κ−1− 2−n))-KOW.

Next, we present the security reduction for WOTS-PRF from [5] and analyze its flaws.

45

Theorem 3.3.7 ([5]). Let Fn be a family of pseudorandom functions and κ as in Defini-
tion 3.3.4. If Fn is a (tPRF, εPRF)-PRF then WOTS-PRF is (t, ε, 1) EU-CMA with

t = tPRF − tKg − tVf − 2

ε ≤ εPRF`
2w2κw−1

1

κ−1 − 2−n
,

where tKg and tVf are the runtimes of the key generation and verification algorithms respec-
tively.

Proof. The proof works as follows: First we use a forger for WOTS-PRF to construct
an adversary on the key one-wayness of Fn. This adversary is then used to construct a
distinguisher using Proposition 3.3.6. The signing oracle Sign is simulated by the adversary.

The goal of the adversary AKOW is to produce a key k′ such that fk′(x) = y for x, y
provided as input. AKOW begins by generating a regular WOTS-PRF signature key pair
and choosing random positions α (a Winternitz chain) and β (a position within that chain).
Then he computes the WOTS-PRF verification key using value x. The bitstring at position
α in the verification key (pkα) is computed by inserting y at position β in the hash chain
used to compute pkα. Next, AKOW calls the forger and waits for it to ask an oracle query.
The forger’s query can only be answered if bα ≥ β holds because AKOW doesn’t know the
first β entries in the corresponding hash chain. The forgery produced by the forger is only
useful to AKOW if b′α < β holds. Only then might the bitstring σ′α in the forged signature
yield a key k′ such that y = fk′(x) holds.

We now compute the success probability of AKOW. Without loss of generality we assume
that the forger queries the signing oracle. The probability of bα ≥ β is at least (`w)−1. This
is because of the checksum which guarantees that not all the bi are zero simultaneously.
The probability that the forger succeeds is at least ε by definition. This probability holds
under the condition that the verification key pk computed resembles a regular verification
key which is the case if there exists a key k such that fβk (x) = y. This happens with
probability at least 1/κβ according to Definition 3.3.4. The probability that b′α < β is at
least (`w)−1. This is because of M 6= M ′ and the checksum which guarantees that bi > b′i
for some i ∈ {1, . . . , `}. The probability that y = fk′(x) holds is at least 1/κw−1−β. This is
because there exist κw−1 keys mapping x to pkα after w− 1 iterations and only κβ of these
keys map x to y after β iterations5

In summary we have εKOW ≥ ε/(`2w2κβκw−1−β) and tKOW = t+ tKg + tVf as the time for
the signature query is already taken into account at the runtime of the forger. Combining

5This should say at most κw−1 and at most κβ . This was corrected in [17].

46

this with Proposition 3.3.6 yields εPRF ≥ ε(κ−1−2−n)/(`2w2κw−1) and tPRF = t+tKg+tVf+2
which concludes the proof.

To aid in our explanation of the flaws in the proof of Theorem 3.3.7 we introduce the
following definition.

Definition 3.3.8. Let Fn = {fk : {0, 1}n → {0, 1}n | k ∈ {0, 1}n} be a pseudorandom
function family. Let x ∈ {0, 1}n and γ ∈ N be arbitrary. Then a γ-keychain of x is an
ordered γ-tuple (k1, k2, . . . , kγ) of n-bit keys such that ki+1 = fki(x) for i = 1, 2, . . . , γ − 1.

In other words, a γ-keychain of x can be thought of as the ordered set of keys one would
use to evaluate fγk1(x). We will make use of this definition by thinking of a γ-keychain as
a length-γ vector of keys that yield a contiguous length-γ subchain of a Winternitz chain.
We are now ready to discuss the flaws in the proof of Theorem 3.3.7.

Both of the flaws we discuss here pertain to the probability analysis of the reduction.

Consider first the statement: “This probability holds under the condition that the ver-
ification key pk computed resembles a regular verification key which is the case if there
exists a key k such that fβk (x) = y.”. The authors claim that “This happens with prob-
ability at least 1/κβ according to Definition 3.3.4.” This second statement is false. In
the language of keychains, the first statement is equivalent to saying that the referred to
probability holds if there exists at least one β-keychain of x that yields y. The number of
possible keys k such that fk(x) = y is at most κ. In general, at any link in a Winternitz
chain there exist at most κ keys which yield the next link. The value y is placed at the
βth position of the αth Winternitz chain and so, as x is always the input into the PRF
in these Winternitz chains, there exist at most κβ distinct keys mapping x to y after β
iterations, i.e., there exist at most κβ β-keychains of x that yield y. Observe however, that
this is merely an upper bound on the number of possible β-keychains of x that yield y. To
prove that one actually exists we would need a (positive) lower bound. Unfortunately, the
following argument illustrates that we cannot establish such a lower bound.

The pair (x, y) in the above reduction corresponds to a KOW challenge as per Defini-
tion 3.3.2, and thus, we are in fact guaranteed that there exists at least one key kβ such
that fkβ(x) = y. However, we are given no guarantee that there exists a key kβ−1 such
that fkβ−1

(x) = kβ, and similarly for key kβ−δ for δ = 2, 3, . . . , β − 1. In other words, we
can get to y from κβ after a single iteration, but we have no promise that we can get to
y from any key after exactly β iterations. Thus, we cannot conclude that with positive
probability there exist any β-keychains of x that yield y.

47

Thus, we can conclude that the statement “This happens with probability at least 1/κβ

according to Definition 3.3.4.” is indeed false and therefore the proof of Theorem 3.3.7
fails.

Unfortunately, there is still another flaw in the proof of Theorem 3.3.7 to be dis-
cussed. Consider the following statement: “The probability that y = fk′(x) holds is at
least 1/κw−1−β”. This statement is false. Consider the tree of all (w − 1)-keychains of x
that yield pkα. By the same argument as above, there exist at most κw−1−β distinct keys at
the βth level of the tree and hence at most κw−1−β distinct (w− 1− β)-keychains of x that
yield pkα (keychains are uniquely defined by their first coordinate). Moreover, one of these
keys is y. Hence, if the adversary selects from among these possible (w− 1− β)-keychains
uniformly at random then they have a probability of at least 1/κw−1−β of selecting the
one beginning with y. However, this assumption is not valid. The adversary operates in
a black box manner and we cannot assume a probability distribution for it. In particular,
it is conceivable that the adversary always selects σ′α so that the unique keychain from σ′α
never yields σα, and thus never uses y. In other words, the probability that y = fk′(x)
holds would be zero. Hence, this argument in the proof is also incorrect. In practice people
tend to use either WOTS-LM or WOTS+ (cf. Section 3.4) over WOTS-PRF. As such, we
make no attempt to correct this proof in this work. However, we do remark that there
does not seem to be a trivial or obvious fix to these problems.

Figure 3.2 gives an example tree of all (w− 1)-keychains of x that yield pkα. Nodes are
labeled as tuples where the first coordinate is the index in the keychain, and the second
coordinate is the key at that index. We see that out of the possible κw−1−β keychains
beginning at the βth position, there is exactly one whose first key is y.

We have the following corollary to Theorem 3.3.7 that gives a concrete security level
for WOTS-PRF.

Corollary 3.3.9 ([5]). Let b = log(t/ε) denote the security level and use `w as an upper
bound for tKg and tVf, respectively. Let Fn be a (2n−1−log(κ), 1/(2(κ−1 − 2−n)))-PRF with
κ = 2. Then the security level of WOTS-PRF is

b ≥ n− w − 1− 2 log(`w).

The ideal PRF family has security level b ≈ n. For such a family, Lemma 3.3.5 concludes
that κ ≤ 2. As we have shown Lemma 3.3.5 to be false, then this proof is also flawed.
However, we scrutinize this claim further. What does it actually mean that κ ≤ 2?
Intuition tells us that this is not a reasonable value. Consider the article [27], wherein
the authors give a tight analysis for the following problem. If we sequentially throw M

48

}κw−1−β

(b′α, σα)

(β, y)

(bα, σα)

(w − 1, pkα)

Figure 3.2: A tree of keychains.

49

balls into N bins independently and uniformly at random, what is the expected maximum
number of balls in any particular bin? Of particular interest is [27, Section 4] where the
authors study the case M = N . This study is analogous to the pseudorandom function
family Fn where, for a fixed input x, the balls are the keys k ∈ {0, 1}n, the bins are the
elements of the codomain {0, 1}n, and ball k is placed in bin fk(x). Then the expected
maximum number of balls in a bin is at most κ.

Theorem 3.3.10 ([27]). If N balls are sequentially placed independently and uniformly at

random in N bins, then the expected maximum number of balls in a bin is log(N)
log log(N)

(1+o(1)).
Moreover,

Pr

(
∃ at least one bin with ≥ α

log(N)

log log(N)
balls

)
=

{
1− o(1) if 0 < α < 1,

o(1) if α > 1.

Clearly the value log(N)/ log log(N) can be made arbitrarily large. Hence, for any
t ∈ N we can produce values 0 < α < 1 and N ∈ N such that α log(N)/ log log(N) ≥ t.
Thus, even though the PRF family Fn is not uniformly random, this gives strong evidence
that κ ≤ 2 is in general untrue. We would expect the maximum number of balls in any
particular bin to depend in some way on the value N .

To further illustrate this point consider the following. Fix a positive integer t. Define

Xi =

{
1 if bin i has exactly t balls,

0 otherwise.

Then by the binomial distribution, for any i we can calculate the expectation of Xi as
follows:

E[Xi] = 1 · Pr(bin i has exactly t balls) + 0 · Pr(bin i does not have exactly t balls)

= Pr(bin i has exactly t balls)

=

(
N

t

)(
1

N

)t(
1− 1

N

)N−t
≈
(

1

t!

)(
1

e

)
.

Now let Y be the random variable counting the number of bins with exactly t balls in
them. That is to say Y =

∑
Xi. Using linearity of expectation and the fact that the Xi

are identically distributed, we can conclude that

E[Y] = E
[∑

Xi

]
=
∑

E[Xi] = N · E[X1] ≈
N

t!e
.

50

Clearly this value can be made arbitrarily large. In words, this means that we can
expect arbitrarily many bins to contain arbitrarily many balls if we allow the number N
of bins/balls to become arbitrarily large. This further enforces that κ � 2.

Consider again Corollary 3.3.9. The lower bound n−w− 1− 2 log(`w) on the security
level of WOTS-PRF is obtained in [5, Section 2.4] by using the assumption that κ ≤ 2.
If one acknowledges that κ � 2, then (without giving any concrete values) the security
guarantee one obtains is lower — potentially much lower — than Corollary 3.3.9 claims.
This observation shows that any implementation of WOTS-PRF using parameters based
on Corollary 3.3.9 may have security levels significantly lower than those thought to be
guaranteed by Corollary 3.3.9, and hence may have potential security vulnerabilities.

We conclude then that WOTS-PRF should not be used in practice. Both the theoretical
and concrete security are compromised.

The remainder of [5] discusses, among other things, the strong unforgeability of WOTS-
PRF. We found that similar problems as the above pervade this section as well, but we do
not go into any more detail.

3.4 WOTS+

Perhaps the biggest critique of hash-based signature schemes is that they tend to have
very large signature sizes, and indeed this is a major roadblock to making such schemes
practical. The Winternitz scheme has the advantage that the public key can be computed
from any valid signature, and thus, the public key need not be included in a signature.
Hence, signature sizes are naturally smaller in Winternitz-style schemes. However, these
sizes may still be too large to be completely practical. Here, we introduce another variant
of the Winternitz scheme due to Hülsing [19] which reduces signature sizes even further;
the scheme is known as WOTS+.

The main difference between WOTS+ and previous incarnations of the Winternitz OTS
is the introduction of so-called “chaining functions”. At a high level, WOTS works by
applying some function iteratively to a random input, and each iteration of this function
gives another link in a chain. The ends of these chains comprise the public key, the
beginnings of these chains comprise the private key, and signatures are formed by mapping
pieces of a message digest to pseudorandom links in these chains. In WOTS+, Hülsing
introduces a more sophisticated chaining function which allows for a tight security proof
and a tight analysis of the security level of the scheme. Moreover, the iteration method
which the author employs is one which does not require the underlying hash function to

51

be collision resistant. Instead, this scheme requires that the hash function used be second-
preimage resistant, one way and undetectable. Undetectability is a notion we have not yet
defined, but is a rather natural notion; we define it at the end of this section.

WOTS+ uses a publicly known keyed function family Fn = {fk : {0, 1}n → {0, 1}n | k ∈
Kn}, where n is the security parameter and Kn is a key-space dependent on n. We require
this family to be second-preimage resistant, one-way and undetectable. This function
family is used to describe the chaining function cik(x, r) as follows. The function takes as
input a bitstring x ∈ {0, 1}n, an iteration counter i ∈ N, a key k ∈ Kn, and randomization
elements r = (r1, r2, . . . , rj) where each ra ∈ {0, 1}n and j ≥ i. In the case where i = 0,
i.e., where we require zero iterations, the function simply acts as the identity function:
c0k(x, r) = x, and in the case where i > 0, we recursively define the functions as

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri).

In words, in every iteration the function returns fk evaluated on an intermediate link in
the chain which has been xor’ed with the bitmask ri.

To compress notation, we denote by ra,b the substring (ra, . . . , rb) of r. If a > b, then
define this to be the empty string. We can now describe WOTS+.

First, select the Winternitz parameter w, the bitlength m of digests to be signed, and
compute

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

The checksum is the same as before. Again, we assume that H : {0, 1}∗ → {0, 1}m is a
cryptographic hash function.

Key generation: The key generation algorithm takes as input the security parameter n.

1. Randomly select `+w−1 strings from {0, 1}n. The secret key sk = (sk1, sk2, . . . , sk`)
will consist of the first ` of these strings, and the remaining strings become the
randomization elements r = (r1, r2, . . . , rw−1).

2. Randomly select a key k ∈ Kn.

3. The public key is computed as pk = (pk0, pk1, . . . , pk`), where pk0 = (r, k), and
pki = cw−1k (ski, r) for i > 0.

The reader may notice that the public keys in this version of WOTS are larger than in
previous incarnations because of the inclusion of the randomization elements. This is
unfortunate, but allows for a tight, standard model reduction.

52

Signature generation: To compute a signature on a message M ∈ {0, 1}∗ using secret key
sk and with randomization elements r, the signer does the following:

1. Compute the m-bit digest d = H(M).

2. Express d in its base-w representation as d = b1‖b2‖ . . . ‖b`1 , so that each bi ∈
{0, 1, . . . , w − 1}.

3. Compute the checksum C = C(d), and let B = d‖C = b1‖b2‖ . . . ‖b` be the concate-
nation of the base-w representations of d and C.

4. For i = 1, 2, . . . , `, compute σi = cbik (ski, r).

The signature returned is σ = (σ1, σ2, . . . , σ`).

Signature verification: To verify a signature σ as above on a message M ∈ {0, 1}∗ using
public key pk do the following:

1. Compute the m-bit digest d = H(M).

2. Compute B = d‖C as in signature generation.

3. Check if

pk = ((r, k), cw−1−b1k (σ1, rb1+1,w−1), . . . , c
w−1−b`
k (σ`, rb`+1,w−1)).

The signature is accepted if and only if the above comparison holds.

Sizes: The size of the public key is (` + w − 1)n + |k| bits, the size of the private key is
`n bits, and a signature has size `n bits. Here, we use |k| to denote the number of bits to
represent an arbitrary member of Kn.

Even though we have not given the security reduction for this scheme, for completeness
we define the security notion of undetectability. Intuitively, one can think of undetectabil-
ity as “you cannot detect if a hash function has been applied”. Suppose we have two
distributions over {0, 1}n × K as follows. The first, DUD,U is obtained by randomly se-

lecting a bitstring u
$←− {0, 1}n (U represents the uniform distribution) and a key k

$←− K;
the sample returned is (u, k). The second distribution DUD,Fn is obtained by randomly

selecting a key k
$←− K and a random bitstring u

$←− {0, 1}n, and returning the sample
(k, fk(u)). The adversary is challenged with distinguishing between these two samples. A
function family Fn is said to be undetectable if the advantage of any possible probabilistic

53

adversary in distinguishing between such samples in time at most t is negligible in n. In
other words, if

InSecUD(Fn; t) := max
A

{
AdvUD

Fn (A)
}

= negl(n).

We have the following theorem from [19].

Theorem 3.4.1. Let n,w,m ∈ N with w,m = poly(n), and let Fn = {fk : {0, 1}n →
{0, 1}n | k ∈ Kn} be a second preimage resistant, undetectable, one-way function fam-
ily. Then, InSecEU−CMA(WOTS+(1n, w,m); t, 1), the insecurity of WOTS+ against an
EU-CMA attack, is bounded above by

w · InSecUD(Fn; t′′) + max{InSecOW(Fn; t′), w · InSecSPR(Fn; t′)},

where t′ = t+ 3`w and t′′ = t+ 3`w + w − 1.

It is interesting to note (as the authors of [19] indeed do) that if it can be shown that
there exists a function family which combines all three of the above desired properties,
then it would be the case that WOTS+ has minimal security requirements.

3.5 WOTS-T

WOTS+, WOTS-PRF, and the schemes (that we introduce in the next chapter) that use
these OTS schemes as building blocks suffer from the drawbacks mentioned in Section 2.3.6:
vulnerability to multi-target attacks. In that section, we mentioned that if an adversary
has more targets to attack then the probability of them launching a successful attack on
at least one of these targets is higher than the probability of succeeding against exactly
one. When one considers these sorts of attacks they see a linear drop in security (in some
parameters of the scheme).

There is another variation of WOTS by Hülsing, Rijneveld and Song [21] which is
essentially an improved version of WOTS+ that has tight security against multi-target
attacks; this scheme is refered to as WOTS-T. Essentially, the major change from WOTS+

to WOTS-T is that a new, pseudorandom function key or bitmask is generated every time a
function call needs such an input. This change is at the core of what prevents multi-target
attacks.

WOTS-T uses an addressing scheme which assigns to each part of a data structure a
unique address. We assume the existence of a function GenAddr(as, index) that takes

54

as input the address of a data structure (for example a Winternitz chain) and an index
of a substructure (such as an index within a chain) and outputs a unique address for this
substructure. The values w, `1, `2 and ` are generated as before, and the checksum also
remains the same as in previous versions of WOTS. Let H : {0, 1}∗ → {0, 1}m be a cryp-
tographic hash function. Finally we also utilize the following functions: a cryptographic
hash function F : {0, 1}n × {0, 1}n → {0, 1}n, and two pseudorandom function families
Fm : {0, 1}n×{0, 1}∗ → {0, 1}m and Fn : {0, 1}n×{0, 1}a → {0, 1}n where m is the length
of message digests to be signed and where a is the length of addresses.

Next, we describe the chaining function used for this incarnation of the signature
scheme. This function takes as input a value x ∈ {0, 1}n, an iteration counter i ∈ N,
a start index j ∈ N, a Winternitz chain address aC, and a public seed Seed. The function
is defined recursively as follows:

ci,j(x, aC,Seed) = F (ki,j, c
i−1,j(x, aC,Seed)⊕ ri,j)

if i > 0 and returns x otherwise. Here, key ki,j = Fn(Seed,GenAddr(aC, 2 · (j + i)))
and bitmask ri,j = Fn(Seed,GenAddr(aC, 2 · (j + i) + 1)). In words, this function takes
the xor of the previous output with a new bitmask ri,j and then evaluates the function F
using key ki,j on this result.

We now have all we need to describe the algorithms of WOTS-T. We remark that this
scheme is designed to be implemented within a larger structure similar to the Merkle tree
construction described in Section 2.3.3. As such, each key generation for WOTS-T also
takes as input an address for itself as an OTS key pair within a binary hash-tree; we denote
this as aOTS.

Key generation: On input of secret seed S ∈ {0, 1}n, address aOTS and public seed Seed,
the key generation algorithm proceeds as follows.

1. For i = 1, 2, . . . , `, compute ski = Fn(S,GenAddr(aOTS, i)).

2. For i = 1, 2, . . . , `, compute pki = cw−1,0(ski, aCi ,Seed) where aCi = GenAddr(aOTS, i).

The secret key is sk = (sk1, sk2, . . . , sk`) and the public key is pk = (pk1, pk2, . . . , pk`).

Signature generation: On input of message M ∈ {0, 1}∗, secret seed S, address aOTS and
public seed Seed the signature algorithm proceeds as follows.

1. Compute the message digest d = H(M).

2. Compute the checksum C = C(d), and set B = d‖C = b1‖b2‖ . . . ‖b`.

3. Generate the secret key sk as during key generation.

55

4. For i = 1, 2, . . . , `, compute σi = cbi,0(ski, aCi ,Seed).

The signature produced is σ = (σ1, σ2, . . . , σ`).

Signature verification: On input of message M ∈ {0, 1}∗, signature σ, address aOTS and
public seed Seed, the verification algorithm proceeds as follows.

1. Compute the bi as in signature generation.

2. For i = 1, 2, . . . , `, compute pk′i = cw−1−bi,0(σi, aCi ,Seed).

Technically this algorithm should accept the signature if and only if

pk′ = (pk1, . . . , pk`) = pk.

However, WOTS-T is designed to be implemented within the full signature scheme of
Section 4.5. Hence, this comparison occurs within that scheme’s verification algorithm.

Sizes: Public and private keys are n` bits, but we also need a global n-bit secret key, and
an n-bit public seed. Signatures are also n` bits.

56

Chapter 4

Merkle Signature Schemes

Recall the Merkle signature scheme from Section 2.3.3. This scheme will serve as a template
for the schemes discussed throughout this chapter. In this chapter we explore full Merkle-
signatures— signature schemes based on the Merkle signature scheme that employ the one-
time schemes discussed in Chapter 3. These schemes are able to sign many messages, and
as we will show in some of these schemes a single key pair can be used to sign a “virtually
unlimited number of messages”. We begin by discussing one of the most popular such
schemes in Section 4.1 and giving a full security analysis due to Katz [22]. This scheme
is particularly appealing due to its relative simplicity when compared to the schemes that
follow.

In Section 4.2 we introduce XMSS, the first in a family of signature schemes and discuss
its historical significance and security analysis. In Sections 4.3, 4.4 and 4.5 we introduce
and discuss the XMSS+, XMSS-MT and XMSS-T members of the XMSS family and the
improvements each of them offer over the original. Finally in Section 4.6 we discuss a
stateless hash-based signature scheme due to Bernstein et al. [2].

At this point we make an important note. Each of the one-time schemes from Chapter 3
are complete signature schemes by themselves, i.e., they include verification algorithms.
In this chapter, when we implement these schemes into larger structures, it is often the
case that we do not need to run the OTS verification algorithms as subroutines in the full
verification algorithms. This is because we compute Winternitz OTS public keys from their
signatures and then use these keys to construct binary hash trees. Often one can prove
that assuming an OTS scheme is secure, then simply computing a public key candidate
from a signature and subsequently verifying the authenticity of that candidate is sufficient
to ensure the security of the full scheme. This saves some computational resources. Hence,

57

in this chapter when we say that we run an OTS verification algorithm, it may be the case
that we simply mean that we calculate the public key from the signature. This distinction
should be clear from context.

4.1 The Leighton-Micali Signature Scheme

We alluded to this scheme in Section 3.2. We present this scheme first because it is perhaps
the easiest to understand among the schemes discussed in this chapter, and thus provides
a good entry point into the world of full Merkle Signatures. At a high level, the LMS
scheme is just the Merkle scheme where the underlying OTS is LM-OTS (which we called
WOTS-LM) from Section 3.2. We describe the scheme below, and then give a security
proof due to Katz [22].

We deviate slightly from the method of ordering tree nodes described in Section 2.3.3.
In this tree, the root node (at level h) will be denoted T [1], the leftmost node on level h−1
is denoted T [2], and the next is T [3], and so on in the natural order. As in Section 3.2, if i
and b are nonnegative integers with 0 ≤ i < 28b, we denote by [i]b the b-byte representation
of i.

Key generation: The key generation algorithm takes as input a 64-byte identifier I and the
tree height h. For convenience, set N = 2h − 1.

1. For i = 0, 1, . . . , N , run the WOTS-LM key generation algorithm to produce key-pairs
(pki, ski).

2. For j = 2h, 2h+ 1, . . . , 2h+1−1, set T [j] = H(pkj−2
h‖I‖[j]4‖0x03). These are the leaf

nodes.

3. For j = 2h − 1, 2h − 2, . . . , 1, set T [j] = H(T [2j]‖T [2j + 1]‖I‖[j]4‖0x04). These are
the internal nodes.

The public key contains the tree height h, the identifier I and the root node T = T [1]: pk =
(h, I, T). The secret key is the collection of WOTS-LM secret keys: sk = (0, sk0, sk1, . . . , skN).
The first coordinate of sk is the current state of the system. After the first signature is
generated, the state is updated to 1, then 2, etc, in the natural order. If s = N + 1, then
all leaf nodes have been used to sign, and the key is discarded and no more signatures can
be generated; we refer to the key pair as exhausted at this point.

Signature generation: To sign a message M ∈ {0, 1}∗ using secret key sk, where the current
state is s (using the sth leaf node), proceed as follows. Set id = (I, s).

58

1. Compute the WOTS-LM signature σ = Sign(sks,M, id).

2. Compute the authentication path Auths = (a0, a1, . . . , ah−1) as described in Sec-
tion 2.3.3.

3. Increment s by 1.

The signature returned is Σ = (σ,Auths).

Signature verification: To verify a signature Σ = (σ,Auths) on a message M ∈ {0, 1}∗ using
public key (h, I, T) proceed as follows.

1. Run the WOTS-LM verification algorithm on σ and M to produce pk′.

2. Extract the state s from σ, and compute the leaf node T [s + 2h] = H(pk′‖I‖s +
2h‖0x03).

3. Using the above and the authentication path, compute the root node T [1].

The signature is accepted if and only if T [1] = T .

We now discuss the security of this scheme. It was noted erroneously by Katz [22,
Section 3.4] that the security of this scheme can be proven “generically based on any
one-time signature scheme and any second-preimage resistant hash function”. Intuitively
his statement makes sense, but when one considers the details it falls apart. A proper
second-preimage challenge must be uniformly random, but since the hash function used in
the scheme is not a random oracle, the subsequent inputs into the hash function (when
constructing the tree) are not uniformly random; i.e., the hash values associated with the
nodes of the Merkle tree are not uniform random values since the hash function itself
is not a random function. Hence, we do not have valid second-preimage challenges, and
second-preimage resistance is not strong enough to prove the security of LMS. Instead, we
establish the security of the scheme in the Random Oracle Model.

The following security proof is done in the single-instance setting (for simplicity), but
it is not too difficult to show that provided each instance uses a unique identifier I, then in
the multi-instance setting security does not degrade. We present a security proof for this
scheme that very closely follows Katz’s proof from [22].

Theorem 4.1.1 ([22]). For an adversary attacking the LMS scheme and making at most
q hash queries and with H a random function, the probability that they successfully forge a
signature is at most 3q

2n
.

Proof. We bound the adversary A’s success probability in the following game:

59

1. Let H : {0, 1}∗ → {0, 1}n be a random function.

2. Run the key generation algorithm for LMS using identifier I and tree height h to
obtain key pair (PK, SK). The adversary is given PK.

3. The adversary is given oracle access to H and a stateful signing oracle OLMS
Sign (·) which

on input M ∈ {0, 1}∗ returns a valid LMS signature on M using SK and I, and which
updates the private key.

We assume without loss of generality that when the adversary is given a signature,
they are also supplied with all the H-queries needed to verify that signature.

4. The attacker outputs (M,Σ), where M was not previously queried to the signing
oracle. The adversary wins the game if Σ is a valid LMS signature on M under pk.
Similarly to the previous step, we assume that the adversary has all the H-queries
needed to run the verification algorithm on these inputs.

We can assume the signature output by the adversary is of the form Σ = (σ,Auths),
where Auths is an authentication path. Moreover, we may assume that σ is in the format
of a WOTS-LM signature; for if either of these is false then the signature output by the
adversary is trivially invalid. Let s be the state stored in σ and let pk be the WOTS-LM
key produced by running the WOTS-LM verification algorithm on σ. We define two forge
events.

• Forge1 is the event that the adversary succeeds and pk = pks.

• Forge2 is the event that the adversary succeeds and pk 6= pks.

If Forge1 occurs, then A must have forged a signature for WOTS-LM, and if Forge2
occurs, then A must have found a collision in H for some internal node of the Merkle
tree. The probability then that the adversary is successful in producing a forgery is clearly
exactly equal to Pr(Forge1)+Pr(Forge2). Hence, to establish the claimed upper bound on
A’s success probability, we upper bound the probabilities of these forge events occurring.
We establish these upper bounds via the following two claims.

Claim 1: Let q1 be the number ofH-queries of the formH(?,m) withm ∈ {0x00, 0x01, 0x02}.
Then, Pr(Forge1) ≤ 3q1 · 2−n.

Proof. From A we construct a second adversary A′ who attacks the underlying WOTS-LM
instances. Let ids = (I, s) for s = 0, 1, . . . , N = 2h − 1. The adversary A′ is given the
public keys pki for i = 0, 1, . . . , N and proceeds as follows.

60

1. Compute the root node T [1] as in the key generation algorithm using the set of
WOTS-LM public keys. Give the master public key PK = (h, I, T [1]) to A.

2. When A queries for the signature of a message Mi for i = 0, 1, . . . , N , A′ queries
its signing oracle OWOTS-LM

Sign (i,Mi) to obtain the signature σi. It then computes the
relevant authentication path Authi = a0, a1, . . . , ah−1 and gives the full signature
(σi,Authi) to A.

3. A′ answers the H-queries of A by forwarding them to A′’s own H-oracle and then
giving A that response.

4. When A outputs a forgery (M, (σ,Auth)), A′ extracts the state s contained in σ and
outputs (s,M, σ) as its own forgery.

If Forge1 has occurred, then A′ is successful in producing a forgery. Now, A′ makes some
H-queries in addition to those made by A; these additional H-queries are of the form
H(?,m), with m ∈ {0x03, 0x04}. However, the number of H-queries of the form H(?,m)
with m ∈ {0x00, 0x01, 0x02} made by both adversaries is exactly the same. Now we can
apply Theorem 3.2.1 to establish the claim.

Claim 2: Let q2 be the number of H-queries of the form H(?,m) with m ∈ {0x03, 0x04}.
Then, Pr(Forge2) ≤ q2 · 2−n.

Proof. In order to establish this claim, we need to introduce two more collision events.
Note that these are different events from those in Section 3.2.

• Collj for j = 2h, 2h + 1, . . . , 2h+1 − 1, is the event that A queries H(pk‖I‖[j]4‖0x03)

with pk 6= pkj−2
h

and receives T [j] as a response. In other words, this is the event
that A finds a collision for leaf node T [j].

• Collj for j = 1, 2, . . . , 2h − 1, is the event that A queries H(T‖T ′‖I‖[j]4‖0x04) with
(T, T ′) 6= (T [2j], T [2j + 1]) and receives T [j] as a response. In other words, this is
the event that A finds a collision for the parent node of T [2j] and T [2j + 1].

Clearly if Forge2 occurs, then A found a collision for a leaf node or for an internal node of
the Merkle tree. Thus, if Forge2 occurs, then Collj occurs for some j. Thus,

Pr(Forge2) ≤
∑
j

Pr(Collj).

61

Let q′j denote the number of H-queries of the form H(?‖I‖[j]4‖?). As H is a random oracle
with range {0, 1}n it follows that Pr(Collj) ≤ q′j · 2−n. Thus,

Pr(Forge2) ≤
∑
j

q′j2
−n.

Now, each of the adversary’s queries of the form H(?,m) with m ∈ {0x03, 0x04} increases
the value of at most one q′j. Hence, ∑

j

q′j ≤ q2.

The claim follows.

To conclude the proof of Theorem 4.1.1 we combine the above two claims with our
earlier observation about the adversary’s success probability as follows.

Pr(A is successful) ≤ Pr(Forge1) + Pr(Forge2)

≤ 3q1 · 2−n + q2 · 2−n

= (3q1 + q2) · 2−n.

Now, each H-query increases at most one of q1 or q2, and so q1 + q2 ≤ q. In particular,

3q1 + q2 ≤ 3q1 + 3q2 ≤ 3q.

The result now follows.

4.1.1 Hierarchical LMS

The Internet draft [29] also specifies a hyper tree construction (cf. Section 2.3.7) imple-
menting the LMS scheme. This construction is fairly natural and straightforward. As
such, we omit the details here, but refer the reader instead to [29]. However, we do men-
tion that it is important to ensure that users wishing to use only single-tree LMS still
have interoperability and compatibility with systems utilizing the hierarchical (hyper tree)
design.

62

4.2 XMSS

Recall SPR-MSS [12] described in Section 2.3.4. In this section we introduce the eXtended
Merkle Signature Scheme (XMSS) [7], an important variant of the Merkle Signature Scheme
based also on [8]. At the same security level as SPR-MSS, XMSS signatures are more than
25% smaller. Moreover, XMSS has private keys consisting only of a seed and the index of
the last signature. XMSS uses the WOTS-PRF scheme from Section 3.3 as its underlying
OTS. Before we describe the algorithms for this signature scheme, we describe all of the
required primitives and public parameters.

Select the security parameter n, the Winternitz parameter w, and the bitlength m of
message digests to be signed. Compute `1, `2 and ` as usual. The checksum C and keyed
function family Fn are the same as in Section 3.3. XMSS also uses a keyed hash function
family

Hn = {Hk : {0, 1}2n → {0, 1}n | k ∈ {0, 1}n}.
Finally, we assume that we have a pseudorandom generator GEN such that for λ ∈ N and
µ ∈ {0, 1}n,

GENλ(µ) = fµ(1)‖fµ(2)‖ . . . ‖fµ(λ).

The leaves of the tree are on level 0 and the root node is on level h. The ith node on
level j (in the natural order) is denoted vj[i]. The tree construction is almost exactly the
same as in Section 2.3.4.

Key generation: On input of security parameter n and tree height h, key generation pro-
ceeds as follows.

1. Select a seed S
$←− {0, 1}n.

2. Select a hash function Hk
$←− Hn.

3. For j = 1, 2, . . . , h+ dlog(`)e, uniformly at random select a bitmask Qj ∈ {0, 1}2n.

4. For i = 1, 2, . . . , 2h, the ith WOTS secret key is generated as ski = GEN`(fS(i)).

5. To construct the leaf nodes, we first construct the L-trees as described in Section 2.3.4
using hash function Hk and bitmask Qj on level j = h+1, h+2, . . . , h+dlog(`)e. The
leaf nodes are the root nodes of these L-trees, also known as the compressed public
keys of the underlying OTS. Note that we do not include the height of the L-trees in
the total tree height h.

6. Compute the non-leaf nodes of the tree as vj[i] = Hk(Qj ⊕ (vj−1[2i]‖vj−1[2i+ 1])).

63

The XMSS secret key is SK = (S, 0), the second coordinate being the state that is
updated as signatures are produced. When i = 2h, no more signatures are generated
and new XMSS keys are used. The (master) public key of the XMSS scheme is given as
PK = (vh[0], Q1, Q2, . . . , Qh+dlog(`)e).

Signature generation: To sign the sth message M ∈ {0, 1}∗ do as follows.

1. Compute a signature σ on M by running the WOTS-PRF signature algorithm using
the sth WOTS key pair.

2. Compute the authentication path Auths = (a0, a1, . . . , ah) from v0[s] to vh[0].

The signature returned is Σ = (s, σ,Auths).

Signature verification: To verify signature Σ on message M as above, do as follows.

1. Run the WOTS-PRF verification algorithm on (σ,M) to obtain the sth one-time
public key pks = (pks1, pk

s
2, . . . , pk

s
`).

2. Construct and compress the L-tree corresponding to pks to obtain the leaf node v′0[s].

3. Using v′0[s] and Auths, compute the path p0, p1, . . . , ph to the root node of the tree.

The signature is accepted if and only if ph = vh[0].

Sizes: The XMSS public key has size (2(h+ dlog(`)e) + 1)n bits; secret keys are no longer
than 2n bits, and signatures have length (`+ h)n bits.

We have the following “result”.

Theorem 4.2.1 ([7]). If Hn is a second-preimage resistant hash function family and Fn
is a pseudorandom function family, then XMSS is existentially unforgeable under chosen
message attacks.

The proof of this theorem in [7] employs the flawed Theorem 3.3.7 from Section 3.3;
hence, this result too is false. It is not known to us if there exists an alternative proof
technique. Furthermore, in the same paper, the authors proved that XMSS is forward
secure provided the key generation algorithm is modified slightly. This result also uses the
flawed Theorem 3.3.7.

It is important to mention that the only flaw known to us in the proof of Theorem 4.2.1
is the use of Theorem 3.3.7. We believe that XMSS itself is provably secure if a provably
secure underlying OTS is used in place of WOTS-PRF.

64

4.3 XMSS+

We introduce the signature scheme XMSS+ [18], a scheme based on the XMSS scheme
discussed in Section 4.2. In general, implementing cryptographic protocols on constrained
devices poses a complicated problem. On such devices it is standard for memory and
processing power to be very limited. Hence, signature and key sizes must be kept as
small as possible. Moreover, generating keys on these constrained devices efficiently has
proven to be rather challenging. To our knowledge, the authors of [18] give the first full
implementation of a hash-based signature scheme on smart cards.

The goal of XMSS+ was to present a practical, forward secure signature scheme which
solves the problem of on-card key generation and which could practically compete with
signature schemes such as RSA and ECDSA at least in terms of runtimes. While the
authors of [18] did indeed accomplish most of theses goals, their objective of forward secu-
rity falls short because the proof they use to show forward security utilizes the erroneous
Theorems 3.3.7 and 4.2.1. However, we still describe the scheme and highlight some of the
important techniques used in the paper; in particular, the tree chaining technique from [10]
and distributed signature generation from [8]. XMSS+ also uses a more efficient algorithm
for computing authentication paths due to Buchmann, Dahmen and Schneider (BDS) [9].

Compared to the original XMSS scheme, XMSS+ reduces the key generation time from
O(N) to O(

√
N), where N is the number signatures which can be produced from a single

key pair. To avoid confusion, we remark that XMSS+ is not simply XMSS instantiated
with WOTS+, but rather the paper introducing XMSS+ was published before that of
WOTS+. However, as is noted in [19, Section 4], using WOTS+ as the underyling OTS in
XMSS+ does indeed offer improvements.

XMSS+ uses essentially the same primitives and underlying OTS as XMSS does. One
can think of XMSS+ as XMSS using a hyper tree with two levels, each of height h/2 (cf.
Section 2.3.5). However, in this version of XMSS, the pseudorandom generator used is
more explicit. WOTS-PRF key pairs are generated in two steps. First, a stateful, forward
secure pseudorandom generator FsGen : {0, 1}n → {0, 1}n × {0, 1}n is used to generate a
new state and a pseudorandom value is used to generate the key pair via Fn. This is done
by first selecting a uniformly random initial state S0 ∈ {0, 1}n and then computing

FsGen(Si) = (fSi(0)‖fSi(1)) = (Si+1‖Ri).

The output Ri is used to generate the ith WOTS secret key ski = (ski1, sk
i
2, . . . , sk

i
`) as

skij = fRi(j − 1), 1 ≤ j ≤ `.

65

Before we can describe the scheme, we need first describe the underlying algorithms
used.

4.3.1 The BDS Algorithm

The first algorithm we describe is the so-called BDS Algorithm from [9]. The BDS al-
gorithm is a more efficient method of computing authentication paths in Merkle trees; it
increases the memory used, but drastically cuts down on generation times. While we do
not get into the intricate technical details of the algorithm, we give a high level overview
of how it works so as to make our explanation of XMSS+ more clear. For more specific
details see [9].

The algorithm uses a parameter k ∈ N. This parameter represents a memory-time
trade-off; the larger k is the more memory is used, but faster authentication paths can be
generated and vice versa. To really drive home the usefulness of this algorithm we mention
that in the worst case to generate an authentication path requires 2h − 1 leaf computa-
tions and evaluations of the TreeHash algorithm (which we describe soon). The BDS
algorithm reduces worst-case signing time to only (h − k)/2 such evaluations. We note
that we will always ensure that h− k is even. The algorithm realizes that the major com-
putational expenses during authentication path generation involve computing right hand
nodes, whereas left nodes can be computed cheaply with a few tweaks and observations.
The algorithm accomplishes the following three things.

• The BDS algorithm stores certain right nodes that occurred in earlier authentication
paths so that left child nodes can be computed from these values using only a single
evaluation of the hash function. Observe that right nodes do not have their children
used in previous authentication paths and so they must be computed from scratch.

• During key generation the algorithm stores the right nodes from the top k levels of the
tree. As these nodes are the most expensive to compute they need only be computed
once. In particular, they do not need to be recomputed every time a signature is
generated.

• Finally, the algorithm distributes the computations required to compute right nodes
amongst previous signature generations. The computation of the next right node
on a particular level begins when the most recently computed right node becomes
part of the authentication path. This is done using one instance of the TreeHash
algorithm that we describe next.

The BDS algorithm uses an internal state StateBDS.

66

4.3.2 The TreeHash Algorithm

The second algorithm we describe is the TreeHash algorithm. This algorithm is designed
to more efficiently construct hash trees. As a subroutine, the TreeHash algorithm uses the
BDS algorithm. The initial BDS state StateBDS is initialized during the root computation
we describe below. The algorithm initializes an empty stack Stack, and randomly selects an
initial state S0 ∈ {0, 1}n. The algorithm systematically uses the current state to generate
the leaves and tree as follows.

1. Compute FsGen(Si) to obtain a new state Si+1 and random output Ri.

2. Ri is used to generate the ith WOTS key pair as described above, and subsequently
generates the ith leaf of the tree using the corresponding L-tree.

3. The leaf and Stack are used as input into TreeHash to recursively update Stack:

(a) While the top node on Stack has the same height as the input node N , set
t← N.height() + 1, and set N ← H((Stack.pop()‖N)⊕Qt).

(b) Push the new node N onto Stack: Stack.push(N).

(c) Return Stack.

4. Delete the used Ri and WOTS-PRF key pair from memory.

5. After all 2h leaves have been input into TreeHash, Stack only contains the root
node vh[0].

An XMSS public key PK consists of the set of h + dlog(`)e bitmasks, the value x used in
the underlying OTS, and the root vh[0]. The secret key SK contains the initial state S0

and the initial BDS state StateBDS, and is updated accordingly.

4.3.3 XMSS+ Algorithms

The XMSS+ tree is a two-level hyper tree. We call these the upper and lower trees re-
spectively. The same value x for WOTS-PRF and the same bitmasks are used for both
levels. XMSS+ uses a randomly selected member H of the second-preimage resistant hash
function family Hn = {Hk : {0, 1}2n → {0, 1}n | k ∈ {0, 1}n} to construct the trees.

Key generation: The key generation algorithm takes as input the security parameter n,
the length m of message digests to be signed, and the even tree height h.

67

1. Set the internal tree height h′ = h/2. Select two Winternitz parameters wu and wl,
and two BDS parameters ku and kl such that h′ − ku and h′ − kl are both even, and
such that (h′ − ku)/2 + 1 ≤ 2h

′−kl+1.

2. Compute two sets of WOTS parameters `1,i, `2,i and `i for i ∈ {u, l} as follows.

(a) If i = u, then calculate the parameters using input wu and n.

(b) If i = l, then calculate the parameters using input wl and m.

3. Uniformly at random select x ∈ {0, 1}n and h′+ max{log(`u), log(`l)} bitmasks Qi ∈
{0, 1}2n.

4. The upper tree U uses the parameters wu and ku and signs messages of length n.
The lower trees L use parameters wl and kl and signs digests of length m. Construct
all of these trees as in Section 4.2, but utilizing the TreeHash algorithm.

5. The root node vh′,L[0] of the first L is signed using the first (leftmost) WOTS-PRF
key pair of U .

6. A FsGen state for the next L on the lower level is selected, and a new TreeHash
stack Stacknext is initialized.

The XMSS+ public key PK consists of the h′+ max{log(`u), log(`l)} bitmasks, the value x,
and the root node of U . The secret key SK is a bit more complicated; it contains the two
FsGen states Su and Sl, as well as the BDS states StateBDS,u, StateBDS,l, the signature on
vh′,L[0] and finally the TreeHash stack Stacknext, its corresponding BDS state StateBDS,n,
and an FsGen state Sn.

Signature generation: To sign the ith message M ∈ {0, 1}∗ using secret key SK do as
follows.

1. Sign M as follows:

(a) The secret key SK contains the states Sl and StateBDS,l. Let j = i mod 2h
′
.

Evaluate FsGen(Sl) to obtain the next state and randomness Rj.

(b) Update the secret key with the new state.

(c) Use Rj to generate WOTS-PRF key pair (pkj, skj).

(d) Sign M using skj to obtain σl, the one-time signature on M .

2. Compute the authentication path Authl to the root node of the current lower tree
using the BDS tree traversal algorithm with the appropriate parameters.

68

3. Sign the root node of L using the appropriate leaf of U as described in Section 2.3.5
to obtain the signature σu and compute the authentication path Authu from this leaf
to the root node of U .

The signature generated is Σ = (σu,Authu, σl,Authl). However, there are still a few details
about this algorithm which we have yet to describe. During the generation of σl, the BDS
algorithm receives (h′ − kl)/2 updates. If any of these updates are not used to update
StateBDS,l, then those updates are instead used to update StateBDS,u. Then compute one
leaf on the next lower tree which is then used as input to TreeHash to update Stacknext.

If we have reached the last leaf on the current lower tree (i.e., if i mod 2h
′

= 2h
′ − 1),

then Stacknext contains the root of the next lower tree. Now, the root of this new lower tree
is signed using U as before. At this point, BDS receives no updates; the updates needed to
compute the next authentication path will come from the next 2h

′
signatures. We update

the secret key SK by replacing StateBDS,l, and Sl and the signature of the root of the lower
tree by StateBDS,n, Sn, and the new signature. Finally, the data structures for the next
lower tree are initialized as detailed above, and these replace the ones in SK.

Signature verification: To verify a signature Σ = (σu,Authu, σl,Authl) on a message M
using public key PK do as follows.

1. Run the WOTS-PRF verification algorithm on M and σl to compute corresponding
WOTS-PRF public key.

2. Using the WOTS public key, construct the corresponding L-tree and its associated
root node (a leaf node of L).

3. Use Authl, the above leaf node and the index j = i mod 2h
′
to compute the root node

of the lower tree.

4. Treat this new root node as a message and verify the signature σu on it to compute
the corresponding WOTS-PRF public key of the upper tree.

5. Using this new WOTS-PRF public key, construct the corresponding L-tree and its
associated root node (a leaf node of U).

6. Use Authu, the above leaf node and the index j = bi/2h′c to compute the root node
of the upper tree.

The signature is accepted if and only if this final root node equals the root node included
in PK.

Sizes and runtimes: The size of a signature is (h+ `u+ `l)n bits. The size of the public key
is (h + 2 max{log(`u), log(`l)} + 2)n bits. The private key has size at most (7.5h − 7kl −

69

5ku + 2kl + 2ku + `u)n bits. Let tH and tf denote the times required for one evaluation of
H and f respectively. The worst-case key generation time is 2h/2(`u + `l + 1)tH + 2h/2(4 +
`u(wu+ 1) + `l(wl + 1))tf . The worst-case signing time is less than max

i∈{l,u}
{(((h′−kl + 2)/2) ·

(h′ − ki + `i) + h′)tH + (((h′ − kl + 4)/2 · (`i(wi + 1)) + h′ − kl)tf}. Finally, the signature
verification time is (`u + `l + h)tH + (`uwu + `lwl)tf .

4.4 XMSSMT

The signature scheme we discuss in this section can be viewed as a d-level hyper tree
implementing the original XMSS scheme blended with the tree-chaining idea from [10] and
the distributed signature generation from [8] (actually it uses an improved version of the
distributed signature generation technique discussed in [18]).

Given an exact security reduction for a particular signature scheme, one can calculate
secure parameters for the scheme at a given security level. This sort of parameter selection
has been done for example in [5, 7, 8, 10, 12, 19] among others. However, these param-
eters are selected to be secure parameters for some security level, not necessarily optimal
parameters. In fact, the problem of selecting optimal parameters for a given security level
can be a highly non-trivial task. In some instances a parameter space consisting only of
reasonable parameters can grow to the order of 280 or larger (according to the authors
of [20]). In [20] the authors introduce yet another variant on the XMSS scheme called
XMSSMT (Multi-Tree XMSS) and describe a way to select optimal parameters for this
scheme for a given security level.

Due to the technical similarities between XMSSMT when compared to XMSS+ and the
scheme we detail in Section 4.6, we omit the algorithmic details of XMSSMT. However, we
do highlight some of these similarities. One can picture XMSSMT as XMSS+ with a d-level
hyper tree (as opposed to two levels). In particular, XMSS+ is a special case of XMSSMT.

To clarify, XMSSMT uses the BDS algorithm and the TreeHash algorithm outlined in
Section 4.3. In particular, it uses d instances of these algorithms, one for each layer in the
hyper tree, each of which having its own parameter sets. Furthermore, each level of the tree
also has its own bitmasks and its own parameters for the underlying OTS (which is some
variant of WOTS). The key difficulty in this scheme is the maintenance and the updating
of the various states within the keys and algorithms. For explicit details on how this is
done we refer the reader to the original paper [20]. We remark that state management is
impressively problematic when it comes to implementing these schemes securely— recall
Section 2.3.7.

70

The advantage of XMSSMT over previous versions of XMSS is that utilizing more levels
in the hyper tree allows for the signing of “a virtually unlimited number of signatures”.
However, the security of XMSSMT is based on the erroneous Theorem 4.2.1 from Section 4.2,
and so the actual calculated parameters are called into question. However, we emphasize
that the overarching methodology seems to be sound.

To systematically select a provably optimal set of parameters for a particular instanti-
ation of XMSSMT, the authors of [20] employ the so-called generalized lambda technique of
the theory of optimization [26] to linearize the problem instance and then efficiently solve
for provably optimal parameters using the very well known Simplex algorithm [11, Part
1]. Indeed using linear optimization to solve for optimal parameters has been done before,
but Hülsing et al. give a more explicit formulation of this problem than has been done
previously. As this thesis does not focus on Linear Optimization, we omit these technical
details, but again refer the reader to the source material [20].

4.5 XMSS-T

Recall Sections 2.3.6 and 3.5. In the former we discussed how schemes have a linear drop in
security if multi-target attacks are allowed, and in the latter we described a variant WOTS-
T on the Winternitz scheme designed to be resilient to these multi-target attacks. In this
section we describe XMSS-T [21], a variant on XMSS using WOTS-T as the underlying one-
time scheme. This new scheme is important because it is the only member of the XMSS
family to explicitly consider the threat of multi-target attacks and to be proven secure
against them. Moreover, in [21] the authors introduce concrete definitions of multi-target
security notions for hash functions.

This scheme uses all of the primitives for WOTS-T from Section 3.5 as well as a crypto-
graphic hash function H : {0, 1}n×{0, 1}2n → {0, 1}n and an “arbitrary input randomized
hash function” H : {0, 1}m × {0, 1}∗ → {0, 1}m, where m is the length of message digests
to be signed.

In order to be secure against multi-target attacks, we need to modify the binary tree
construction slightly. These trees will be of height h (with 2h leaves). As usual we denote
nodes by vj[i], where j denotes the level of the node and i denotes the index from left to
right. To construct the tree, first randomly select n-bit leaf nodes as v0[i] ∈ {0, 1}n for
i = 0, 1, . . . , 2h − 1 and compute the internal nodes as

vj[i] = Hki,j((vj−1[2i]‖vj−1[2i+ 1])⊕ ri,j),

71

where key ki,j = Fn(Seed,GenAddr(aTree, 4 · (j + i))), and bitmask
ri,j = (Fn(Seed,GenAddr(aC, 4 · (j + i) + 1))‖Fn(Seed,GenAddr(aC, 4 · (j + i) + 2))).
Just as in Section 3.5, aC is the Winternitz chain address, and now aTree is a unique address
for the tree we are constructing.

We remark that to increase practicality, one would need to instantiate XMSS-T with
the distributed signature generation method as well as the BDS algorithm from Section 4.3.
However, for the sake of giving a clear description of the scheme we do not include those
details.

The full scheme will consist of a hyper tree of total height h divided into d layers, each
of height h/d. The leaves of each of these trees will themselves be compressed WOTS-T
public keys (i.e., they are the root nodes of L-trees). In this sense, one can view a tree in
this scheme as a key pair able to sign 2h/d messages. The root layer, layer d − 1, consists
of a single tree, layer d− 2 consists of 2h/d trees — one for each leaf on layer d− 1 — and
the roots of these trees will in turn be signed by the corresponding leaf nodes above them
on layer d − 1. In general, layer i consists of 2(d−1−i)(h/d) trees whose roots are all signed
by the corresponding leaf nodes on layer i+ 1. In layer 0, the leaf nodes of trees are used
to sign message digests.

The reader will notice a lot of similarities between this scheme and the final scheme
we describe in this thesis (Section 4.6). Hence, understanding this scheme will aid in
the understanding of the next one. The authors of [21] note that the techniques used in
XMSSMT could in fact be used to improve the scheme in Section 4.6, but we leave this
discussion for other work.

We now describe the algorithms of XMSS-T.

Key generation: On input of security parameter n, the key generation algorithm proceeds
as follows.

1. Select two secret values S,S ′ $←− {0, 1}n. The first value S will be the global se-
cret used to generate WOTS-T keys pseudorandomly while S ′ is used to generate
pseudorandom inputs to randomize the message digest in the signing algorithm.

2. Select the public seed Seed
$←− {0, 1}n.

3. Use S to generate 2h/d WOTS-T key pairs. Compress the public keys into the leaf
nodes of the tree on layer d−1. Then as described above, use these leaves to construct
the full binary tree. Denote the root of this tree as PK1.

The public key is PK = (PK1,Seed) and the secret key is SK = (0h,S,S ′,Seed), where

72

0h is the h-bit string of 0’s, and denotes the index of the next WOTS-T key pair used for
signing; this index is updated accordingly.

Signature generation: On input of message M ∈ {0, 1}∗ and a secret key SK, the signing
algorithm proceeds as follows.

1. Compute a randomization element R = Fm(S ′,M).

2. Compute a randomized message digest D = H(R,M).

3. Extract index i from the secret key. Let i0 be given by the last h/d digits of i, and
i′0 be given by the first (d− 1)(h/d) bits of i. Then i corresponds to the ith0 key pair
in tree i′0 of level 0.

4. Sign the message digest D with the ith0 WOTS-T secret key to receive signature σw,0.

5. Compute the authentication path Authi0 from the leaf indicated by index i to the
root node of that tree.

6. For layer δ, with 1 ≤ δ ≤ d − 1, let i = i′δ−1 be the index of the root node on level
δ − 1 that we wish to sign next. Compute iδ as the last h/d digits of i′δ−1, and i′δ as
the first (d− 1)(h/d) bits of i′δ−1.

7. Sign the root node on level δ − 1 with the ithδ WOTS-T key pair in the tree with
index i′δ on level δ to receive signature σw,δ.

8. Compute the authentication path Authiδ .

The signature produced is Σ = (i, R, σw,0,Authi0 , . . . , σw,d−1,Authid−1
).

Signature verification: On input of message M , signature Σ and public key PK, the verifi-
cation algorithm proceeds as follows.

1. Extract randomness R from Σ and use it to compute D = H(R,M).

2. Run the WOTS-T verification algorithm with input D, public seed Seed, address
aOTS0 and signature σw,0 to compute the first WOTS-T public key as pkw,0.

3. Construct the L-tree corresponding to pkw,0 and compress it to root node Root0 using
index i0 and Authi0 .

4. Repeat this procedure for the remaining d−1 levels of the hyper-tree. After all layers
are used the final root node computed is Rootd−1.

73

The algorithm accepts the signature if and only if Rootd−1 = PK1.

Sizes: An XMSS-T public key is 2n bits, a secret key is h + 3n bits, and signatures are
h+m+ d(n`) + nd(h/d) = h+m+ n(d`+ h) bits. So clearly we see that even though the
key sizes are relatively small, the signature size is rather unwieldy. Large signature sizes
are inherent with hyper tree style signature schemes. This represents a trade-off between
signature size and the number of messages one can securely and practically sign.

As a final remark about XMSS-T, it is the only member of the XMSS family to in-
corporate not only multi-target resilience, but also a rigorous quantum security analysis.
In fact, one can find a complete and detailed proof of security in the Quantum Random
Oracle Model of XMSS-T in the source material [21]. Often, quantum security is assumed
based on generic quantum attacks against hash function, but here one can find a rigorous
analysis. We omit the details and statement of this security result.

4.6 SPHINCS

It is in this section that we describe the final signature scheme of this thesis. We present the
hash-based signature scheme Stateless Practical Hash-based Incredibly Nice Cryptographic
Signatures, or SPHINCS [2]. As mentioned in Section 2.3.7, one of the biggest challenges
in implementing hash-based signature schemes is in secure management of states. The
schemes we have described thus far in this chapter all have many states to keep track
of, especially if one implements them with the BDS algorithm and distributed signature
generation techniques.

SPHINCS also provides benefits besides statelessness. For example, instead of using
a one-time signature scheme to sign message digests, SPHINCS uses a few-time signature
scheme (cf. Section 2.3.1). This allows for a smaller overall tree height (fewer leaves)
which in turn reduces the sizes of signatures as fewer authentication paths and one/few-
time signatures need be included in a full signature. Reducing the overall height of the
hyper-tree does exponentially increase signing time, but these trade-offs are typical for
such schemes.

The underlying FTS used in SPHINCS is based on the HORS scheme described in
Section 2.3.1. The authors of [2] noticed that HORS has very large public keys, but
SPHINCS signatures must include the public keys of the underlying FTS. It is for this
reason that they introduced HORST (HORS with Trees). This new FTS construction has
substantially shorter public keys than its predecessor which allows for shorter SPHINCS

74

signatures. However, as mentioned above we suffer a trade-off to get these shorter keys,
namely the runtimes of HORST algorithms are longer than those of HORS.

For the schemes discussed in the remainder of this section we will use the following
public functions for the security parameter n and message digest length m = poly(n).

• Two cryptographic hash functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n.

• An arbitrary input, randomized hash function H : {0, 1}n × {0, 1}∗ → {0, 1}m.

• A family of pseudorandom generators Gλ : {0, 1}n → {0, 1}λn.

• A family of pseudorandom functions Fλ : {0, 1}λ × {0, 1}n → {0, 1}n.

• A pseudorandom function F : {0, 1}∗ × {0, 1}n → {0, 1}2n.

In practice each of these functions can in fact be built from the same cryptographic hash
function, but for purposes of readability we separate them according to their roles.

4.6.1 HORST

This scheme signs m-bit message digests using parameters k, τ ∈ N, with t = 2τ such
that m = kτ . The difference between this scheme and its predecessor is that HORST
uses a binary hash tree that reduces the public key to the root node. In what follows we
assume that the bitmasks used are publicly known. Let x be a positive integer minimizing
n(k(τ − x + 1) + 2x); this will be the public key size. It is possible for two consecutive
values of x to minimize this value; if this happens then select the larger value of x.

Key generation: On input of secret seed S and collection of bitmasks Q = {Q1, . . . , Qτ},
with each Qi ∈ {0, 1}2n, the key generation algorithm proceeds as follows.

1. Compute sk = Gt(S) = (sk1, sk2, . . . , skt).

2. For i = 0, 1, . . . , t− 1, compute Li = F (ski). These Li will be the leaves of the tree.

3. Construct the hash tree using the Li and bitmasks Q.

The public key pk is the root node of this tree; the secret key is S.

Signature generation: On input of message digest d ∈ {0, 1}m, seed S ∈ {0, 1}n and
bitmasks Q ∈ {0, 1}2n×τ , the signing algorithm proceeds as follows.

1. Compute the secret key sk as in key generation.

75

2. Divide d into k τ -bit strings as, d = d0‖d1‖ . . . ‖dk−1. Interpret each di as an unsigned
integer.

3. For i = 0, 1, . . . , k − 1, compute σi = (skdi ,Authdi) where the authentication path
Authdi contains only the lower τ − x elements of the full authentication path for the
corresponding leaf Ldi = F (skdi).

4. Compute σk = (vτ−x[0], vτ−x[1], . . . , vτ−x[2
x − 1]), the collection of all 2x nodes on

level τ − x.

The signature produced is σ = (pk, σ0, σ1, . . . , σk). Observe that the block σk can be
computed and stored during key generation. The underlying concept is similar to that of
the BDS algorithm.

Signature verification: On input of message digest d ∈ {0, 1}m, signature σ and bitmasks
Q ∈ {0, 1}2n×τ , the verification algorithm proceeds as follows.

1. Compute the di as in signature generation.

2. For i = 0, 1, . . . , k − 1 compute Ldi = F (skdi).

3. For i = 0, 1, . . . , k − 1 set yi = bdi/(2τ − x)c.

4. For i = 0, 1, . . . , k− 1 compute node v′τ−x[yi] using Ldi ,Q and Authdi as described in
Section 2.3.3.

5. For i = 0, 1, . . . , k − 1 check if v′τ−x[yi] = vτ−x[yi] using σk.

6. If each comparison in the previous step holds, then use σk to compute the root node
Root0. The signature is accepted if and only if this happens.

Technically the verification algorithm should compare the computed root node to the pub-
lic key. However, when instantiated in the full SPHINCS scheme this comparison is an
unnecessary operation.

Sizes and runtimes: The size of a HORST public key is only n bits, as is the secret key. A
signature is n(k(τ − x+ 1) + 2x) bits. Key generation requires only a single evaluation of
Gt and t evaluations of F to obtain the leaves. From there it takes t−1 hashes to compute
the public key, giving a total of 2t − 1 hash evaluations. Signing a message digest also
takes 2t− 1 hash evaluations because, we need to calculate the root node. The verification
algorithm requires k evaluations of F to compute the leaf nodes. In addition, it requires
τ −x hash evaluations to compute the nodes on level τ −x. Furthermore, 2x−1 hashes are
needed to compute Root0 from σk. In total then, verification requires k(τ −x+ 1) + 2x− 1
hashes. Recall that this value is minimized by x.

76

4.6.2 SPHINCS Algorithms

In addition to the few-time signature scheme HORST, SPHINCS also uses the one-time
signature scheme WOTS+ from Section 3.4. SPHINCS uses a d-level hyper tree construc-
tion of total height h where the root nodes of internal trees are signed using WOTS+ keys
and the trees on the bottom level are HORST trees (see Figure 4.1). The leaves of the
internal trees are compressed WOTS+ keys. We do not include the height of the HORST
trees at the bottom of this construction in the total tree height.

Similarly to XMSS-T, SPHINCS uses an addressing scheme for pseudorandom key
generation. Set a = dlog(d + 1)e + h; an address is a bitstring of length a. The address
of a WOTS+ key pair is obtained as follows. Encode the layer of the tree it belongs to
as a bitstring of length log(d + 1) unless it is the top layer in which case use log(d − 1)
bits. Next, concatenate the index of the tree within the layer as a (d− 1)(h/d)-bit string
with indexing starting from 0 moving left to right. Finally, concatenate the index of the
WOTS+ key pair within the tree as an (h/d)-bit string using the same indexing method.
Thus, a WOTS+ key pair address looks like A = (layer‖index of tree‖index of key pair).
A HORST key pair address is obtained from the address of the WOTS+ key pair used to
sign its public key by replaying the layer index with d encoded as a bitstring of length
dlog(d+ 1)e.

As the SPHINCS algorithms are quite involved, we give a high-level overview of the
key generation and signature algorithms before we describe them.

To generate a SPHINCS key pair, one need only generate the topmost tree. To do so,
we first randomly select two secret seeds and sufficiently many bitmasks so that each data
structure that needs bitmasks in this construction has one for each of its levels. Using
distinct addresses we compute 2h/d pseudorandom seeds that we then use together with
bitmasks as inputs into the WOTS+ key generation algorithm to produce 2h/d WOTS+

public keys. Then we compute the root nodes of the L-trees corresponding to these WOTS+

public keys. These root nodes will be the leaves of the topmost tree. Construct the topmost
tree according to the SPR-MSS construction. The global public key contains the root node
of this tree and the collection of bitmasks, and the secret key contains the two seeds and
the collection of bitmasks.

Key generation: On input of security parameter n, key generation proceeds as follows.

1. Select two secret seeds S,S ′ $←− {0, 1}n. The first seed S will be used for pseudoran-
dom key generation while the other secret S ′ is used to generate pseudorandom inputs
to randomize the message digest in the signing algorithm, as well as for generating
indicies in the signing algorithm.

77

2. Set p = max{w− 1, 2((h/d) + dlog(`)e), 2 log(t)}1. Select bitmasks Q1, Q2, . . . , Qp
$←−

{0, 1}2n. Let QWOTS+ consist of the first w− 1 of these bitmasks, QHORST consist of
the first 2 log(t) bitmasks, QL-Tree consist of the first 2dlog(`)e bitmasks, and QTree

consist of the 2h bitmasks which come afterQL-Tree. Denote byQ the entire collection
of bitmasks. Note that some bitmasks may belong to more than one of the five subsets
of Q we described.

3. Generate 2h/d WOTS+ key pairs for the tree on layer d − 1. Do this as follows for
i = 0, 1, . . . , 2h/d − 1.

(a) Compute the WOTS+ key address as A = (d− 1‖0‖i)
(b) Compute the seed SA = Fa(A,S). We assume without loss of generality that

these seeds are known to any algorithm that knows S. In general this is how
we compute seeds with address A.

(c) Use seed SA and bitmasks QWOTS+ as input into the WOTS+ key generation
algorithm to produce pkA.

(d) Compress pkA into leaf Li using an L-Tree with bitmasks QL-Tree.

4. Use the set of leaves together with bitmasks QTree to construct the binary hash tree.
Denote the root of this tree by PK1.

The public key is PK = (PK1,Q) and the secret key is SK = (S,S ′,Q).

To sign a message M , we first compute a randomized message digest D of M . Using
a pseudorandom address we compute a pseudorandom seed that is used with D as input
into the HORST signing algorithm to produce a HORST signature; we pseudorandomly
generate a new HORST key pair each time we sign a message. Deterministically produce
a new address from the previous one and use this new address to produce a new pseu-
dorandom seed. This new seed is used to produce a WOTS+ signature on the HORST
public key contained within the HORST signature; at the same time we extract the cor-
responding WOTS+ public key. Next, using our ensemble of pseudorandom functions
and addresses, we construct an SPR-MSS tree where one of the leaves is the compressed
WOTS+ public key used to sign the HORST public key. We compute the authentication
path corresponding to this leaf. The root node of this tree is denoted Root0. Essentially
we repeat this process for the remaining d−1 layers signing the root of the tree on the pre-
vious level using the WOTS+ signing algorithm and computing the relevant authentication
path. A SPHINCS signature contains this collection of WOTS+ signature/authentication
path pairs, the HORST signauture, and some pseudorandomness.

1The original version of [2] erroneously has h instead of h/d in the calculation for p.

78

In what follows, if x is a bitstring, we denote by x(i, j) the substring of length j − i of
x beginning at the ith position of x.

Signature generation: On input of message M ∈ {0, 1}∗ and secret key SK, the signing
algorithm proceeds as follows.

1. Compute R = F(M,S ′) and parse R as R = R1‖R2, where each Ri ∈ {0, 1}n.

2. Compute a randomized message digest D = H(R1,S ′).

3. Set index i equal to the first h bits of R2.

4. Set AHORST = (d‖i(0, (d − 1)(h/d))‖i((d − 1)(h/d), (h/d)) and compute SAHORST
=

Fa(AHORST,S).

5. Run the HORST signing algorithm on D with seed SAHORST
and bitmasks QHORST

to obtain signature σH . Note that the public key pkH is contained in σH .

6. Set A0 to be AHORST with the first dlog(d+ 1)e bits set to 0.

7. Run the WOTS+ signature algorithm on message pkH with seed SA0 and bitmasks
QWOTS+ to obtain σw,0. This signature is essentially treated as a leaf of the tree on
level 0.

8. Compute the authentication path AuthA0 corresponding to the WOTS+ key pair used
to obtain σw,0.

9. Run the WOTS+ verification algorithm for message pkH and signature σw,0 using
bitmasks QWOTS+ to obtain public key pkw,0. Note that this could also be calculated
and stored in step 7.

10. Compute the root of the tree on level 0 Root0 by first compressing pkw,0 via an
L-Tree and then using the index of the WOTS+ pair used in step 7, AuthA0 and
bitmasks QWOTS+ .

11. Repeat for layers 1 through d− 1 with the following differences.

(a) On layer 1 ≤ δ ≤ d − 1 use WOTS+ to sign root Rootδ−1 which is the root
computed at the end of the previous iteration.

(b) The address of the WOTS+ key used on layer δ is computed as A = (δ‖i(0, (d−
1 − δ)(h/d)‖i((d − 1 − δ)(h/d), h/d)). In words, the last h/d bits of the tree
address become the new leaf address and the remaining bits of the previous tree
address become the new tree address.

79

The signature produced is Σ = (i, R1, σH , σw,0,AuthA0 , . . . , σw,d−1,AuthAd−1
).

Signature verification: On input of message M ∈ {0, 1}∗, signature Σ and public key PK,
the verification algorithm proceeds as follows.

1. Extract randomness R1 from Σ and compute D = H(M,R1) as in signature genera-
tion.

2. Run the HORST verification algorithm on signature σH for message digest D and
bitmasks QHORST to obtain HORST public key pkH . Continue if and only if the
HORST signature is accepted.

3. Run the WOTS+ verification algorithm on signature σw,0 for message pkH with bit-
masks QWOTS+ to obtain WOTS+ public key pkw,0.

4. Compress pkw,0 using an L-Tree to compute Li((d−1)(h/d),h/d), the leaf corresponding
to pkw,0.

5. Compute Root0, the root node of the tree on layer 0 using Auth0, Li((d−1)(h/d),h/d),
and index i((d− 1)(h/d), h/d).

6. Repeat for layers 1 through d− 1 with the following differences.

(a) On layer 1 ≤ δ ≤ d − 1, the root node Rootδ−1 of the tree from the previous
iteration is used as input into the WOTS+ verification algorithm to compute
pkw,δ.

(b) The leaf computed from pkw,δ using an L-Tree is Li((d−1−δ)(h/d),h/d). In words,
the index of the leaf within the tree can be obtained by cutting off the final
δ(h/d) bits of i and then by using the final h/d bits of the resulting bitstring.

After the final iteration the algorithm has Rootd−1. The algorithm accepts the signature
if and only if Rootd−1 = PK1, the first coordinate of PK.

Figure 4.1 shows a high-level visual representation of the SPHINCS signature algorithm.
The values on the right are the heights of the respective trees. The HORST tree is shown
with hatched lines as its height is not included in the total tree height d.

Sizes: A secret key consists of the two n-bit seeds and the p = max{w − 1, 2(h/d +
dlog(`)e, 2 log(t)} bitmasks for a total of n(2 + p) bits. Public keys have size n(p + 1)
bits. Signatures however are a bit larger. A signature contains an h-bit index, n bits
of pseudorandomness, one n(k(τ − x + 1) + 2x) bit HORST signature, d `n-bit WOTS+

signatures each with h/d n-bit authentication path nodes. This gives a total signature size
of n((k(τ − x+ 1) + 2x) + d`+ h+ 1) + h bits.

80

Treed−1

σw,d−1

Treed=2

σw,d−2

Tree0

σw,0

HORST

σH

M

h/d

h/d

h/d

τ

Figure 4.1: A visualization of the SPHINCS signature algorithm.

81

Runtimes: Key generation requires the construction of the topmost tree. It is not too diffi-
cult to see that this requires 2h/d PRF calls, 2h/d PRG calls, 2h/d WOTS+ key generations
(each requiring `w hashes) and 2h/d L-Tree constructions (each requiring ` − 1 hashes).
Furthermore, building the tree requires another 2h/d − 1 hashes. This requires a total of
`(w + 1)2h/d − 1 hashes. The signature algorithm requires one PRF call to generate the
index and randomness for the message digest as well as for the message digest itself. Then,
it requires one PRF call to generate a HORST seed and a HORST signature. Next, d trees
need to be built, thus adding d times the time for key generation. WOTS+ signatures
can be extracted during WOTS+ key generation and thus incur no extra cost. This totals
d2h/d + 2 PRF calls, d2h/d + 1 PRG calls and 2t+ d((`(w+ 1)2h/d− 1) hashes. Finally, the
verification algorithm needs to compute the message digest, run the HORST verification,
and d WOTS+ verifications, L-Tree computations and h/d−1 hash evaluations to compute
the root nodes. In total this requires k(τ−x+1)+2x+d(`(w+1)−2)+h hash evaluations.

For concreteness we give the parameters and sizes from [2] for SPHINCS-256, an in-
stantiation of SPHINCS which provides 128 bits of security against a quantum adversary.
This instantiation uses n = 256,m = 512, h = 60, d = 12, w = 16, t = 216, τ = 16 and
k = 32. These parameter choices yield, ` = 67, x = 6, and a = 64. This leads to public
keys with size 1056 bytes, secret keys of size 1088 bytes, and signatures of size 41000 bytes.

The number of messages that can be securely signed with SPHINCS-256 depends on
what the user deems an acceptable probability for an adversary to succeed in producing
a forgery. In [2, Section 3.2], the authors show that the probability that any particular
HORST key pair is used to sign exactly γ messages after q queries is bounded above by(q

2h

)γ
exp

(
−q
2h

)(
1

γ!

)
.

Furthermore, it is shown that if a key pair is used to sign exactly γ messages, then an
adversary can “mix and match” components of these valid signatures to break γ-subset-
resilience with probability approximately (t/(γk))γ with a classical attack, and approxi-
mately (t/(γk))γ/2 with a quantum attack. Attacking subset resilience is the main (generic)
attack against SPHINCS. Thus, a SPHINCS user must find an acceptable balance for them-
selves between the chances of a key being used γ times and the amount of work an adversary
must do in order to break the scheme if this event occurs.

Suppose that a SPHINCS-256 user were able to sign 220 messages per second, and
they do so continuously. It would then take more than thirty years for them to sign
q = 250 messages. The probability of a fixed HORST key being used γ times is at most(
q
2h

)γ
exp

(−q
2h

) (
1
γ!

)
. From this, one can show that if ρ = q/2h is sufficiently smaller than

82

1 then there will be approximately q keys used once, approximately ρq/2! keys used twice,
approximately ρ2q/3! keys used three times, and so on. The probability that some key
will be used γ = −(h/ log(ρ)) + δ times is approximately ρδ/γ!. Now, if a key is used 9
times and q = 250 messages are queried, then a post-quantum attack has cost (t/γk)k/2 =
(216/9 ·32)16 ≈ 2125.28. Thus, if a key is used γ = 9 times we have 125 bits of security at the
post-quantum level; less than the desired 128-bit security level. However, the probability
of a 9-time key reuse is approximately ρδ/γ! = (2−10)3/9! ≈ 2−48.5. Hence, SPHINCS-256
provides long-term security against this kind of attack. Assuming a careful choice of the
other relevant functions, SPHINCS-256 provides long-term security against generic attacks
at the 128-post-quantum and 256-classical bit levels of security.

We present the following theorem from [2] and remark that the reduction is tight. For
details see the source material [2].

Theorem 4.6.1. SPHINCS is existentially unforgeable under qs-adaptive chosen message
attacks if

• F is a second-preimage resistance, undetectable, one-way function,

• H is a second-preimage resistant hash function,

• Gλ is a secure pseudorandom generator for λ ∈ {`, t},

• Fλ is a pseudorandom function family for λ = a,

• F is a pseudorandom function family, and

• for the subset-resilience of Hk,t it holds that

∞∑
γ=1

min
{

2γ(log(qs)−h)+h, 1
}
· Succγ−srHk,t (A) = negl(n)

for any probabilistic polynomial-time adversary A, where Succγ−srHk,t (A) denotes the
success probability of A against the γ-subset resilience of Hk,t.

More specifically, the insecurity function InSecEU-CMA(SPHINCS; ξ, qs) describing the max-
imum success probability of all adversaries against the existential unforgeability under qs-

83

adaptive chosen message attacks, running in time at most ξ, is bounded by

InSecPRF(F ; ξ, qs) + InSecPRG(Fa; ξ,Nfts +Nots)

+ (Nots +Nfts) · InSecPRG(G`; ξ)

+Ntree · 2h/d+dlog(`)e · InSecSPR(H; ξ)

+Nots · (`w2 · InSecUD(F ; ξ) + `w · InSecOW(F ; ξ) + `w2InSecSPR(F ; ξ))

+Nfts · 2t · InSecSPR(H; ξ) +Nfts · t · InSecOW(F ; ξ)

+
∞∑
γ=1

min
{

2γ(log(qs)−h)+h, 1
}
· InSecγ−sr(Hk,t; ξ),

where Nots = min
{∑d

i=1 2ih/d, dqs

}
denotes the maximum number of WOTS+ key pairs,

Nfts = min{2h, qd} denotes the maximum number of HORST key pairs, and Ntree =

min
{∑d−1

i=1 2ih/d, (d− 1)qs

}
denotes the maximum number of subtrees used answering qs

signature queries.

The SPHINCS signature scheme is particularily appealing due to its statelessness and
fast runtimes, but the large signature sizes pose a problem for many real world applications.
However, for many other applications larger signatures are acceptable.

84

Chapter 5

Conclusion

In this work we collected and detailed the underlying tools and techniques of hash-based
cryptography. We described the one-time signature schemes which underlie the full signa-
ture schemes vying for standardization and pointed out serious flaws in the security proof
and analysis of the WOTS-PRF signature scheme. We highlighted the major advantages
and drawbacks of these various schemes and what the main obstacles are to efficiency and
practicality. We juxtaposed stateful and stateless schemes, noting the security advantages
and disadvantages of both. Although a work which describes all of the up to date intricate
details (of theory and implementation) of each of the many schemes we presented here
would be useful, such a project would be too unwieldy.

We conclude this thesis by highlighting a few potential projects for future work.

5.1 Future Work

Much work remains to be done on the problems of designing and optimizing practical,
efficient and secure hash-based digital signature schemes. Ideally, we would like signatures
to be smaller and signing/verification times decreased. Considering that global key pairs
have very long life times, it is less important that key generation times be minimal —
anything less than a day is likely acceptable.

Highly worthy of consideration is the recent work of McGrew et al. in [25]. Not only
do the authors nicely highlight the problems associated with stateful signature schemes,
but they present a theoretical construction for a hybrid stateful/stateless scheme. It is
claimed that this sort of hybrid construction eliminates many of the difficulties associated

85

with maintaining a state. It is a worthwhile research project to analyze this construc-
tion and formulate a concrete instantiation along with a security proof and parameter
recommendations for both classical and post-quantum security.

We mentioned in Section 4.5 that one could improve the SPHINCS scheme by incor-
porating some of the techniques from XMSS-T [21]. It would be interesting to concretely
construct and analyze this scheme with an accompanied, benchmarked software implemen-
tation.

Another project for future work would be designing new few-time signature schemes
with smaller signature sizes than HORST. It seems to be fundamental to few-time schemes
that they have a large amount of secret information and reveal only a small fraction of this
information in a signature. However, this area seems to be rather under-explored and we
hope that perhaps more practical schemes can be devised.

Alternatively, if it proves too difficult to devise new and improved few-time schemes,
then another avenue of research would be to decrease the computational effort required to
produce Winternitz-style signatures. Currently, Winternitz-style signatures require many
hash applications and often much random number generation (for example). This presents
a significant overhead that would preferably be avoided.

A research project of theoretical interest would be to resurrect the WOTS-PRF scheme
or design an alternative WOTS variant which employs pseudorandom functions. In addi-
tion to designing such a scheme, it would be desirable to include a reductionist security
proof using only the pseudorandomness of the functions as a security assumption.

86

References

[1] D. J. Bernstein, J. Buchmann and E. Damen, (eds.) Post-Quantum Cryptography.
Springer-Verlag Berlin Heidelberg (2009).
http://www.springer.com/us/book/9783540887010.

[2] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, P. Schwabe and Z. Wilcox-O’Hearn. SPHINCS: practical stateless
hash-based signatures. In M. Fischlin and E. Oswald, (eds.), Advances in Cryptology
— EUROCRYPT 2015. LNCS 9056, pp. 368-397. Springer (2015).

[3] D. J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In SHARCS’09: Special-purpose Hardware for Attacking Crypto-
graphic Systems (2009).

[4] G. Brassard, P. Høyer and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News (Cryptology Column), Vol 28, pp. 14-19, (1997).

[5] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing and M. Rückert: On the security
of the Winternitz one-time signature scheme. In: A. Nitaj, D. Pointcheval, (eds.)
AFRICACRYPT 2011. LNCS 6737, pp. 363-378. Springer (2011).

[6] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing and M. Rückert. On the security of
the Winternitz one-time signature scheme. Int. J. Applied Cryptography, Vol 3, No.
1, pp. 84-96 (2013).

[7] J. Buchmann, E. Dahmen and A. Hülsing. XMSS – A practical forward secure signa-
ture scheme based on minimal security assumptions. In: B. Y. Yang, (ed.) PQCrypto
2011. LNCS 7071, pp. 117-129. Springer (2011).

[8] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya and C. Vuillaume. Merkle signa-
tures with virtually unlimited signature capacity. Proceedings of Applied Cryptogra-
phy and Network Security 2007. LNCS 4521, pp. 31-45. Springer (2007).

87

[9] J. Buchmann, E. Dahmen and M. Schneider. Merkle tree traversal revisited. In: J.
Buchmann and J. Ding, (eds.), Post-Quantum Cryptography, LNCS 5299, pp. 63-78.
Springer (2008).

[10] J. Buchmann, L. C. Coronado Garcia, E. Dahmen, M. Dring and E. Klintsevich. CMSS
— An improved Merkle signature scheme. R. Barua, T. Lange, (eds.) INDOCRYPT
2006. LNCS 4329, pp. 349-363. Springer (2006).

[11] V. Chvatal. Linear Programming. New York, W. H. Freeman and Company, (1983).

[12] E. Dahmen, K. Okeya, T. Takagi and C. Vuillaume. Digital signatures out of second-
preimage resistant hash functions. In: J. Buchmann and J. Ding (eds.), Post-Quantum
Cryptography, LNCS 5299, pp. 109-123. Springer (2008).

[13] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6), 644-654, (1976).

[14] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In Andrew M. Odlyzko, (ed.), Advances in Cryptology — CRYPTO 86, LNCS
263, pp. 104-110. Springer (1987).

[15] O. Goldreich. Foundations of cryptography: Volume 2, basic applications. Cambridge
University Press, Cambridge, UK, (2004).

[16] L. K. Grover. A fast quantum mechanical algorithm for database search. Proceedings,
28th Annual ACM Symposium on the Theory of Computing, pp. 212-219, (1996).

[17] A. Hülsing. Practical forward secure signatures using minimal security assumptions.
PhD thesis, TU Darmstadt (2013).

[18] A. Hülsing, C. Busold and J. Buchmann. Forward secure signatures on smart cards.
In: L. R. Knudsen and H. Wu. (eds.), SAC 2012. LNCS 7707, pp. 66-80. Springer
(2013).

[19] A. Hülsing. W-OTS+ — Shorter signatures for hash-based signature schemes. In: A.
Youssef, A. Nitaj, A.E. Hassanien. (eds.) AFRICACRYPT 2013. LNCS 7918, pp.
173-188. Springer (2013).

[20] A. Hülsing, L. Rausch and J. Buchmann. Optimal parameters for XMSSMT . In: A.
Cuzzocrea, C. Kittl, D.E. Simos, E. Weippl and L. Xu. (eds.) Security Engineering
and Intelligence Informatics. LNCS 8128, pp. 194-208. Springer (2013).

88

[21] A. Hülsing, J. Rijneveld and F. Song. Mitigating multi-target attacks in hash-based
signatures. In: C. Cheng, Ka. Chung, G. Persiano and B. Yang (eds.) PKC 2016.
LNCS 9614, pp. 387-416. Springer (2016).

[22] J. Katz. Analysis of a proposed hash-based signature standard. In: L. Chen, D. Mc-
Grew and C. Mitchell. (eds.) SSR 2016, LNCS 10074, pp. 261-273. Springer (2016).

[23] F. T. Leighton and S. Micali. Large provably fast and secure digital signature schemes
based on secure hash functions. US Patent 5,432,852, July 11, (1995).

[24] L. Lamport. Constructing digital signatures from a one way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, (1979).

[25] D. McGrew, P. Kampanakis, S. Fluhrer, S. Gazdag, D. Butin and J. Buchmann. State
management for hash-based signatures. In: L. Chen, D. McGrew and C. Mitchell.
(eds.) SSR 2016. LNCS 10074, pp. 244-260. Springer, (2016).

[26] S. Moritz, A mixed integer approach for the transient case of gas network optimization.
PhD thesis, TU Darmstadt (2007).

[27] M. Raab and A. Steger. Ball into bins — a simple and tight analysis. In: M. Luby, J.
Rolim and M. Serna (eds.) RANDOM’98. LNCS 1518, pp. 159-170, Springer (1998).

[28] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In: L. Batten and J. Seberry. (eds.) Information Security and
Privacy 2002. LNCS 2384, pp. 1-47. Springer (2002).

[29] D. McGrew, M. Curcio and S. Fluhrer. Hash-based signatures. Internet Draft draft-
mcgrew-hash-sigs-05, October 31, (2016). “work in progress”

[30] R. C. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Depart-
ment of Electrical Engineering, Stanford University (1979).

[31] R. C. Merkle. A certified digital signature. Advances in Cryptology - CRYPTO’89.
LNCS 435, pp. 218-238, Springer (1989).

[32] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In P.
Samarati. (ed), Eighth ACM Conference on Computer and Communication Security,
pp. 28-37, (2001).

[33] http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-
presentation.pdf

89

[34] R. L. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2), pp. 120-126, (1978).

[35] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26, pp. 1484-1509 (1997).

[36] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology 12, pp. 1-28 (1999).

90

	Author's Declaration
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	Introduction
	Background
	Hash Functions
	Preimage Resistance
	Second-preimage Resistance
	Collision Resistance
	Subset Resilience

	Signature Schemes
	The Lamport-Diffie One-Time Signature Scheme
	One-Time Use
	Large Private Keys
	Large Public Keys
	Reliance on Collision Resistance
	Small Bound on the Number of Signatures
	Weakness Against Multi-user Attacks
	Statefulness

	Winternitz One-Time Signature Schemes
	Basic WOTS
	WOTS-LM
	WOTS-PRF
	WOTS+
	WOTS-T

	Merkle Signature Schemes
	The Leighton-Micali Signature Scheme
	Hierarchical LMS

	XMSS
	XMSS+
	The BDS Algorithm
	The TreeHash Algorithm
	XMSS+ Algorithms

	XMSSMT
	XMSS-T
	SPHINCS
	HORST
	SPHINCS Algorithms

	Conclusion
	Future Work

	References

