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Abstract

Pyolysin (PLO) belongs to the homologous family of the cholesterol-dependent cytolysins (CDCs),

which bind to cell membranes containing cholesterol to form oligomeric pores of large size. The CDC

monomer  structure  consists  of  four  domains.  Among  these,  the  C-terminal  domain  4  has  been

implicated in membrane binding of the monomer, while the subsequent processes of oligomerization

and  membrane  insertion  have  primarily  been  assigned  to  other  domains  of  the  molecule.

Recombinantly expressed or proteolytic fragments that span the domains 4 of the CDCs streptolysin O

(SLO) and perfringolysin O (PFO) bind to membranes but fail to oligomerize, and they inhibit the

activity of the respective wild type toxins. We here report that the isolated domain 4 of pyolysin (PLO-

D4) not only binds to membranes but also forms oligomers with itself, as well as hybrid oligomers with

the full-length toxin. As expected,  the pure PLO-D4 oligomers are devoid of pore-forming activity.

Surprisingly, however, within hybrid oligomers, PLO-D4 not only fails to inhibit, but even amplifies

the hemolytic activity of the full-length toxin, to an extent similar to that of doubling the amount of the

full-length  toxin  alone.  We propose  that  this  amplification  may  be  related  to  the  kinetics  of  the

oligomerization  reaction.  Overall,  our  findings  indicate  a  greater  role  of  domain  4  in  the

oligomerization of CDCs than previously demonstrated. 
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Introduction

The  cholesterol-dependent  cytolysins  (CDCs)  are  a  family  of  homologous  pore-forming  toxins

produced by various  species  of  Gram-positive  bacteria  (Heuck et  al.,  2010).  Among its  members,

streptolysin  O  (SLO),  perfringolysin  O  (PFO),  pneumolysin  and  listeriolysin  O  have  been  most

thoroughly  characterized  in  terms  of  structure  and  function. Crystal  structures  are  available  for

perfringolysin (Rossjohn et al., 1997) and intermedilysin (Polekhina et al., 2005). In both toxins, and

presumably  in  the  other  CDCs  as  well,  the  tertiary  structure  is  comprised  of  4  domains  that  are

arranged into an elongated shape (Figure 1). The C-terminal domain 4 is the only one that is formed by

a single contiguous stretch of the primary sequence (Rossjohn et al., 1997). This domain contains the

highly  conserved  tryptophan-rich  motif  that  also,  with  all  CDCs  but  pyolysin  and  intermedilysin,

contains a unique cysteine residue whose covalent  modification prevents membrane binding of the

monomeric  toxin molecule  (Iwamoto et  al.,  1987). A proteolytic  fragment of perfringolysin O that

contained all of domain 4 and some adjoining part of domain 2, the latter most likely in unstructured

form, was shown to retain membrane-binding activity, and also to interfere with the hemolytic activity

of simultaneously applied intact toxin (Iwamoto et al., 1990; Tweten et al., 1991). The same behaviour

was observed with a recombinantly expressed fragment of SLO that contained domain 4 alone (Weis

and Palmer, 2001). Therefore, in the overall mode of action of the toxins, domain 4 has been assigned

the role of initial membrane binding of the monomer. The subsequent steps of oligomerization and

membrane insertion have primarily  implicated domain 3  (Palmer et  al.,  1998; Palmer et  al.,  1996;

Shatursky et  al.,  1999;  Shepard et  al.,  1998) and domain 1  (Abdel  Ghani et  al.,  1999).  While  the

domain 4 fragment of SLO caused some inhibition of the oligomerization of simultaneously applied

full-length SLO, no stable or productive incorporation into hybrid oligomers was observed (Weis and

Palmer,  2001).  From these  findings,  it  would  appear  that  domain  4  contributes  very  little  to  the

formation of the membrane-associated CDC oligomer. 

Pyolysin, while clearly a member of the CDC toxin family, nevertheless diverges further from the

consensus  sequence  than  the  other  members  (Billington  et  al.,  1997).  Therefore,  we  thought  it

worthwhile to revisit the correlation of structure and function of specific domains with this toxin. In a

previous study  (Pokrajac et al.,  2012), we reported that the effect of an engineered disulfide tether

between domains 2 and 3 of the molecule deviates from the effect of the same tether introduced into

perfringolysin O (Hotze et al., 2001), such that it stalls the activity of the toxin already at the level of

oligomerization,  rather than only at membrane insertion.  We here report that the isolated domain 4

3



fragment of pyolysin, too, deviates in activity from the aforementioned fragments of streptolysin O and

perfringolysin O. Our present findings show that PLO domain 4 is capable of self-oligomerization,

though not of pore formation.  The fragment  can also form hybrid oligomers with wild type toxin.

Surprisingly, the activity of the wild type toxin is not only retained in the presence of the domain 4

fragment but is even amplified by the latter. Hence, compared to other CDC toxins, the isolated domain

4 of PLO retains a decidedly greater scope of function. The findings reported in this study support a

greater functional role of domain 4 in the overall activity of CDC than previously reported.

Materials and methods

Protein expression and purification. The plasmid pJGS59 encoding the PLO gene containing a histidine

purification sequence (Billington et al., 1997) was used as the template for PCR to create a cysteine-

containing,  functionally  intact  toxin  mutant  (N90C)  and  to  express  the  C-terminal  fragment  that

corresponds  to  domain  4.  The  recombinantly  expressed  C-terminal  fragment,  PLO-D4,  comprises

residues 421 to 534 of the native sequence. The N-terminus of the fragment was extended with a hexa-

histidine  tag  for  purification,  a  thrombin  cleavage  site,  and  a  single  cysteine  residue  to  facilitate

fluorescent labeling.  The primers used for this purpose had the following sequences:  5’-CTG GTA

CCC AGG GGG TCC TGC TAC AAG TCT GGT GAA ATC ACC-3’ (forward), and 5’-GCA GGA

CCC CCT GGG TAC CAG ACC ACC ATG ATG ATG ATG ATG ATG AGA ACC-3’ (reverse).

PCR products were used to transform the E. coli XL1 Blue strain, cultured on LB ampicillin plates and

incubated  at  37  °C  for  12-18  hours.  After  sequence  verification,  recombinant  plasmids  were

transformed into E. coli BL21 and cultured in 2×YT broth supplemented with 0.5 mM IPTG (BioShop,

Burlington  ON)  for  protein  expression.  After  harvesting,  the  bacterial  cells  were  lysed  using  an

Emulsiflex C5 Emulsifier (Avestin, Ottawa ON), and the protein was purified using a BioRad Biologic

LP liquid chromatography system (Mississauga ON) with nickel agarose column (Qiagen, Mississauga

ON). To remove the hexa-histidine purification tag from the PLO-D4 toxin fragment, the protein was

equilibrated  by  gel  filtration  with  thrombin  cleavage  buffer  consisting  of  50  mM  Tris  (BioShop,

Burlington ON), 150 mM NaCl (BioShop, Burlington ON) and 2.5 mM CaCl2, pH 7.5. Human plasma

thrombin (Sigma Chemicals, St Louis MO) was added to 1 µg for every 100 µg of substrate protein,

incubated 12-18 hours at  4 °C;  the cleavage was monitored using SDS-PAGE. Protein molecular

masses  were  determined  on  a  MicroMass  Q-ToF  quadropole  time  of  flight  mass  spectrometer
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(Montreal QC).

Chemical  modification  of  cysteine  residues.  Protein  samples  were  transferred  to  labelling  buffer

consisting of 50 mM Tris, 150 mM NaCl, 1 mM EDTA (BioShop, Burlington ON) pH 7.5 using gel

filtration. The samples were supplemented with 1 mM of either fluorescein-5-maleimide (Biotium Inc,

Hayward CA) or rhodamine red maleimide (Invitrogen, Burlington ON). The samples were incubated

at 25 °C for 60 minutes and the excess label was removed by gel filtration. To determine the labelling

efficiency,  the  molar  ratio  of  fluorophore  to  protein  was  calculated  from  UV-VIS  spectra  with

extinction  coefficients  of  83,000  l/mol×cm  for  fluorescein  at  490  nm  and  91,000  l/mol×cm  for

rhodamine at 540 nm. The extinction coefficient of PLO was determined to be 68,500 l/mol×cm at 280

nm. The measured absorbance values at 280 nm of the labeled proteins were corrected for absorbance

of the dyes at 280 nm, using 35,000 l/mol×cm and 17,700 l/mol×cm for fluorescein and rhodamine,

respectively. Labelling efficiencies ranged from 85-90% for fluorescein and 70-80% for rhodamine.

Preparation of red blood cells and membrane ghosts.  To prepare red blood cells (RBCs), aliquots of

400 µl sheep blood were made up to 1 ml with PBS buffer (16 mM K2HPO4, 150 mM NaCl, 1 mM

EDTA,  pH  7.5),  centrifuged  at  380×g  for  4  minutes,  and  the  supernatant  was  removed  to  yield

approximately 100 µl of RBC pellet. The pellet was washed repeatedly by resuspending with PBS and

centrifugation until the supernatant remained clear, and finally resuspended again to a final volume of 1

ml and a concentration of 10%. From this,  1% RBC working suspensions were made.  To prepare

membrane ghosts, 400 µl of sheep blood were mixed with 600 µl cell lysis buffer (5 mM NaCl, 5 mM

Na2HPO4, pH 7.0) and centrifuged at 16,000×g for 10 minutes. The supernatant was removed and the

pellet  washed  repeatedly  by  centrifugation  until  both  the  supernatant  became  clear  and  the  pellet

translucent. The pellet was made up to 1 ml with PBS buffer.

Hemolysis assay. Wild type PLO (10 µl) was admixed with PLO-D4 to ratios of 1:1, 1:4 and 1:16.

Two-fold serial dilutions were made in a 96-well plate with PBS buffer. Sheep red blood cells were

added to each well to a final concentration of 0.5% and incubated at 37 °C for 30 minutes. Hemolysis

causes a decrease in cell turbidity, which was monitored at a wavelength outside the absorbance of

hemoglobin (650 nm) using a SpectroMax Plus 384 microplate spectrophotometer (Molecular Devices,

Sunnyvale CA). Hemolytic activity of the wild type PLO/D4 mixtures was compared to wild type PLO

alone and PLO-D4 alone. The same samples were tested for lysis kinetically at 25 °C for 30 minutes.

Fluorescence measurement and data analysis. All samples containing labelled protein were made to a

5



final concentration of 1 µM with 1% (v/v) of red cell membrane ghosts. For hybrid oligomer analyses,

the samples containing fluorescein-labelled PLO-N90C (PLO-N90C-F) and rhodamine-labelled PLO-

N90C (PLON90C-R) were mixed to a 1:2 ratio (where PLO-N90C-F concentration was 0.33 µM and

PLO-N90C-R concentration was 0.66 µM). The hybrid samples containing rhodamine-labelled PLO-

D4 (PLO-D4-R) and fluorescein-labelled (PLO-N90C-F) were also mixed to a 1:2 ratio (where PLO-

D4-R concentration was 0.33 µM and PLO-N90CF-F concentration was 0.66 µM). 

For all other fluorescence assays, fluorescein- and rhodamine-labelled toxin was combined in a 1:1

ratio (0.5 µM each). After incubation at 37 °C for 30 minutes, the protein-membrane samples were

centrifuged at 16,000×g for 10 minutes, the supernatant removed, and the pellet resuspended with PBS.

Steady state fluorescence spectra were recorded for soluble toxin controls, membrane-bound samples,

and the centrifugation supernatant. The intensity of the membrane-bound samples was corrected for

incomplete binding toxin according to the following equation:

F membrane , corrected=
F membrane , raw

F solution−F supernatant

where  Fsolution is  the intensity  of the toxin prior to incubation with membranes,  and  Fsupernatant is  the

intensity of the supernatant after incubation with membranes and centrifugation.  All sample spectra

were subtracted with buffer or erythrocyte ghost suspension blanks as  appropriate. 

Steady state fluorescence measurements were conducted on a PTI QuantaMaster  spectrofluorimeter

using an excitation wavelength of 465 nm with emission scans recorded from 485 to 630 nm, using 2

nm band passes.  Time-resolved fluorescence  was measured  using an FT-100 compact  fluorescence

lifetime spectrometer  (PicoQuant,  Berlin,  Germany) using an LDH-PC-470 LED laser light source.

Fluorescein  emission  was  isolated  using  a  520±5  nm bandpass  filter  (Andover  Corporation,  New

Hampshire). Decays were fitted using FluoFit software (PicoQuant) using three exponential lifetime

components, from which the average lifetime <τ> was calculated according to

τ≥
Σαi τ i

Σαi

where αi represents the amplitude at time zero and τi is the lifetime of the  ith component. The three-

exponential fits yielded 2 values ≤ 1.2.
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Oligomer size characterization by size exclusion chromatography.  In order to compare the relative

sizes of hybrid oligomer complexes, samples of labelled PLO-N90C-F or PLO-D4-F were made to 1

µM concentration, with varying concentrations of unlabelled PLO-D4 added as indicated in the Results

section. Membrane ghosts were added to a final concentration of 20% (v/v). Samples were incubated at

37  °C  for  30  minutes,  centrifuged  at  16,000×g  for  10  minutes,  after  which  the  supernatant  was

removed. Membranes were dissolved using 5% sodium deoxycholate, and the samples were brought to

a  final  volume  of  1  ml.  Size  exclusion  chromatography  was  performed  on  a  BioRad  BioLogic

chromatography system using a Sephacryl S-400 column equilibrated with elution buffer consisting of

20 mM Tris, 150 mM NaCl, 1 mM EDTA and 0.25% (w/v) sodium deoxycholate (BioShop, Burlington

ON) pH 8.5. Eluted fractions were collected and analyzed for fluorescein fluorescence.

Transmission electron microscopy. Wild type PLO and the C-terminal fragment PLO-D4, alone or in

mixtures as indicated in the Results section, were incubated at a total protein concentration of 0.125

mg/ml with cholesterol crystals 0.5 mg/ml, prepared according to published procedures (Harris et al.,

1998) for 30 minutes at room temperature. The samples were subjected to negative staining with 2%

uranyl  acetate.  Transmission  electron  microscopy  study  of  the  negatively  stained  specimens  was

performed by a Phillips CM 100 transmission electron microscope at  100 kV. Digital  images were

recorded using  an Optronics  1824×1824 pixel  CCD camera  with an  AMT40 version  5.42  capture

engine  supplied  by  Deben  (Bury  St.  Edmunds,  UK).  All  TEM  analyses  were  performed  at  the

University of Newcastle, Newcastle upon Tyne, UK.

Results

Structural  integrity  of  PLO-D4. A CD  spectrum  of  PLO-D4 was  used  to  estimate  the  secondary

structure using the K2D3 web service (http://www.ogic.ca/projects/k2d3/)  (Louis-Jeune et al., 2011).

The predicted structure – 38% beta structure and <2% alpha helix, with the remainder being random

coil – suggests that the folded structure of the fragment resembles that in the intact protein (compare

Figure 1). This is also supported by the scope of residual function of the fragment, which exceeds that

of previously characterized homologous toxin fragments (see below).

Hemolytic  activity  of  PLO-D4 alone and in  combination  with wild  type  PLO.  In order  to  test  the

activity of PLO-D4, the protein was combined with sheep erythrocytes, and the extent of hemolysis

was determined by the decrease in turbidity (OD650) of the cell suspension  (Figure 2). In this assay,
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wild type PLO (PLO-WT) achieved 50% hemolysis at approximately 0.4  μg/ml, which is similar to

previous measurements (Ikegami et al., 2000). As expected from previous studies on perfringolysin O

and streptolysin O (Tweten et al., 1991; Weis and Palmer, 2001), PLO-D4 alone shows no hemolytic

activity. However, when the fragment is combined with PLO-WT, the hemolytic activity of the mixture

exceeds that of PLO-WT alone.

Under the experimental conditions of Figure 2, the enhancement of the hemolytic activity of PLO-WT

by PLO-D4 is manifest only at one concentration of the wild type toxin (0.312 μg/ml), while at  0.625

μg/ml virtually the same end point is reached with and without the domain 4 fragment. 

The enhancement  of  the hemolytic  activity  of  PLO-WT by PLO-D4 was consistently  observed in

several repeated experiments, and in each single experiment its extent was very regularly correlated

with the amount of PLO-D4 present. Between experiments, however, the absolute extent of hemolysis

caused by given amounts of PLO-WT and PLO-WT was somewhat variable, such that the standard

deviations  of  the  data  points  representing  different  concentrations  of  PLO-D4 in  Figure  2  would

overlap each other (data not shown).

The enhancement of hemolysis by the PLO-D4 fragment  can also be observed as a dose-dependent

acceleration of hemolysis in a kinetic assay (Figure 3A). Interestingly, the extent of this acceleration is

limited and appears to level off with increasing excess of the fragment over wild type PLO. 

For comparison, the time course of hemolysis observed with various amounts of PLO-WT is shown in

Figure 3B. The effect of a single additional equivalent of PLO-WT on the rate of hemolysis appears

similar to that of 16 equivalents of PLO-D4, and higher concentrations of wild type toxin increase the

speed of hemolysis even further. The observation that the promotion of hemolysis by domain 4 can be

saturated suggests that its productive interaction with PLO-D4 is limited by the amount of the latter.

Nevertheless, the finding that PLO-D4 increases the hemolytic activity of wild type PLO is in stark

contrast with previous observations on the isolated domain 4 of streptolysin O (Weis and Palmer, 2001)

as well as with a similar proteolytic fragment of perfringolysin O (Iwamoto et al., 1990), both of which

inhibit rather than augment the activities of the respective wild type toxins.

Oligomerization of PLO-D4. To examine the ability of PLO-D4 to form oligomers on its own or with

the full length toxin, both molecules were thiol-specifically labelled with fluorescein and rhodamine,

respectively. The two labels form a donor-acceptor pair for fluorescence energy transfer (FRET) studies

with a Förster distance (R0) of approximately 50 Å  (Wu and Brand, 1994). The fluorescein-labelled
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(PLO-D4-F) and the rhodamine-labelled fragment (PLO-D4-R) were mixed and then incubated with

sheep erythrocyte membrane ghosts, and the fluorescence emission was measured (Figure 4A). The

pronounced  decrease  in  the  donor  (fluorescein)  signal  when  combined  with  acceptor  (rhodamine)

indicates that the two PLO-D4 fragments can associate with each other and thereby engage in FRET.

When the two species  were applied to the membranes  sequentially  rather  than simultaneously, the

donor signal was weaker than with PLO-D4-F alone but stronger than with the premixed sample. This

suggests  that  at  least  some  of  the  molecules  in  the  initially  applied  sample  were  sequestered  in

oligomers and no longer available for the formation of hybrid oligomers at the time of the second

application. This result is consistent with the formation of oligomers that are stable on the time scale of

the experiment. The attenuation of donor fluorescence in the combined samples is not the result of

competition for binding sites by the acceptor-labelled fragments, as application of two equivalents of

donor also doubles the donor intensity (data not shown).

Oligomers of SLO and PFO are stable after membrane disruption with detergents, and solubilization

with deoxycholate has been used to isolate and characterize these oligomers  (Palmer et al., 1996). In

order to test the stability of the domain 4 oligomers towards dissociation by detergents, PLO-D4-R and

PLO-D4-F were incubated with membrane ghosts and subsequently with deoxycholate to dissolve the

membranes. Fluorescence spectra were obtained before and after deoxycholate solubilization (Figure

3B). The intensity of the fluorescein peak increases greatly upon membrane solubilization, indicating

disruption of the oligomers and abolition of FRET. In contrast, the oligomers of an active, labeled full-

length toxin mutant (N90C) readily withstand membrane solubilization, as evident from the continued

existence of FRET before and after solubilization. This indicates that oligomers formed by domain 4

alone are linked by forces weaker than those occurring in oligomers of intact toxin molecules. 

It may also be noted that, in Figure 4B, the rhodamine fluorescence emission is stronger with the full

length toxin than with the domain 4 fragment. Rhodamine is subject to concentration-dependent self-

quenching  (MacDonald, 1990), and it appears possible that this effect is stronger with the domain 4

fragment  than  with  the  full  length  toxin.  This  effect  does  not  change  the  interpretation  of  the

experiment. 

Morphology  of  PLO-D4  oligomers. Cholesterol  has  been  shown  to  induce  oligomerization  of

streptolysin O (Duncan and Schlegel, 1975), and cholesterol crystals have been established as a useful

model system to study the oligomerization of CDCs by EM (Harris et al., 1998; Harris et al., 2011). On
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such crystals, intact wild type PLO forms the usual ring and arc structures (Figure 5A) that have also

been observed with many other CDCs. In contrast, PLO-D4 forms a pattern of parallel lines (Figure

5B). Evidently, the absence of the first three domains profoundly changes the size and shape of the

oligomers formed by PLO-D4, but does not abrogate oligomer formation as such.

Formation of hybrid oligomers by PLO-D4 and wild type PLO. From the observation of oligomers of

both PLO-D4 and of the full-length molecule,  the question arises if  the two can also form hybrid

oligomers. The enhancement of the hemolytic activity of wild type PLO by PLO-D4 suggests that this

should possible. In order to directly detect such hybrids, PLO-D4-R was mixed with PLO-N90C-F, and

the mixture was incubated with membranes.  Formation of hybrid oligomers should result  in FRET

between the two species, and this is indeed apparent from the reduction in PLO-N90C-F fluorescein

emission (Figure 6A). FRET is pronounced only when the two species are applied simultaneously, but

only minor upon sequential application, which corroborates the conclusion that is is mostly due to the

formation of hybrids, as opposed to FRET between segregated donor- and acceptor-labelled oligomers

that happen to be located in close proximity to each other. 

In hybrid oligomers, the domain 4 fragment might be restricted to terminal positions, or alternatively it

might intercalate between two molecules of full-length toxin. In order to determine whether or not such

intercalation occurs,  fluorescence measurements  were performed on an equimolar  mixture of PLO-

N90C-F and PLO-N90C-R,  to  which  increasing  amounts  of  unlabelled  PLO-D4 were  added.  The

rationale  here is  that intercalation of PLO-D4 between the donor- and acceptor-labelled full-length

molecules  should reduce FRET between the latter. Figure 6B shows that,  with increasing PLO-D4

concentration, the donor signal also increases, and the acceptor signal decreases. This change is small

but reproducible, and is indicative of a slight increase in the average spacing between the labelled full-

length toxin monomers. However, as also shown in Figure 6B, the decrease in energy transfer was far

more  pronounced  when  unlabelled  wild  type  PLO  was  employed  instead  of  the  unlabelled  D4

fragment.

These  observations  are  corroborated  by  time-resolved  fluorescence  measurements  (Table  1).

Fluorescein-labelled N90C alone yields a fluorescein lifetime of 2.8 ns, whereas the mixture of N90C-F

and N90C-R without D4 yields a lifetime of 1.1 ns. When the unlabelled D4 fragment is added, the

average lifetime of fluorescein increases slightly, while a much greater increase is seen with unlabelled

wild type PLO. An increase in the lifetime of the donor reflects an increase in quantum yield, and thus
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a  decrease  in  the  efficiency  of  FRET. Therefore,  the  collective  results  indicate  that  the  domain  4

fragments can intercalate between full length toxin molecules, but with an efficiency that is very greatly

reduced relative to the intact toxin molecules themselves.

Conceivably, the low efficiency of PLO-D4 intercalation between subunits of full-length toxin might be

explained by substantially different rates of oligomerization. If one species undergoes oligomerization

much  more  rapidly  than  the  other,  this  would  favour  the  formation  of  segregated  oligomers.  To

compare the rates of oligomerization, the time course of fluorescein fluorescence was monitored during

incubation with red cell membrane ghosts of a mixture of PLO-N90C-F and PLO-N90C-R , as well as

of a mixture of PLO-D4-F and PLO-D4-R, and also of a mixture PLO-N90C-F and PLO-D4-R (Figure

7). Progress of oligomerization is evident from the decrease in fluorescein fluorescence due to FRET.

While the kinetic curves of the different samples vary somewhat in shape and slope, overall the rates of

change in donor fluorescence are of comparable magnitude. This suggests that differences in the rate of

oligomerization are not the major reason for the relatively low efficiency of intercalation of domain 4

between full-length toxin molecules in mixed samples. 

Morphology of hybrid oligomers. On crystalline cholesterol surfaces, mixtures of PLO-WT and PLO-

D4 yield rings and arcs as expected for PLO-WT alone, as well as linear stripes as expected for PLO-

D4 alone (Harris et al., 2011). However, occasionally, the two shapes are seen to combine into walking-

cane like formations (Figure 5C and D). It appears likely that the arc portion of the walking cane

oligomer is formed predominantly by wild type molecules, whereas the stick consists mostly of domain

4 fragment.  The observed structures appear compatible with the notion of a limited but measurable

ability of domain 4 to form hybrid oligomers with PLO-WT, as inferred from fluorescence experiments.

Discussion

The findings in this study clearly demonstrate that the isolated domain 4 fragment of PLO differs in

several ways from similar fragments of PFO and SLO (Iwamoto et al., 1990; Tweten et al., 1991; Weis

and Palmer, 2001).  Unlike  those  previously characterized  fragments,  PLO-D4 forms homogeneous

oligomers on membranes, can form hetero-oligomers with the wild type toxin, and amplifies rather than

inhibits the hemolytic activity of the latter. These observations raise several intriguing questions.

One question concerns the mechanism of the amplification of the hemolytic activity of the full-length

toxin. It has been clearly established that domain 3 contains the crucial segments of the toxin molecule
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that insert into the membrane (Palmer et al., 1996) to form the trans-membrane β-barrel (Shatursky et

al., 1999; Shepard et al., 1998), while domain 4 resides on the outer surface of the target membrane

even in the fully inserted, final form of the oligomer and does not directly contribute to the membrane-

spanning parts of the pore (Tilley et al., 2005). In keeping with this model, the PLO domain 4 fragment

itself, like the corresponding SLO and PFO fragments, is devoid of any hemolytic activity. Therefore,

the observed amplification most likely comes about in a more indirect manner. 

One  possible  indirect  mechanism  relates  to  the  kinetics  of  oligomerization.  With  SLO,  the

oligomerization reaction has been found to follow a two-step, nucleation-extension mechanism (Palmer

et al., 1995). In this mechanism, the nucleation step is of second order for the toxin monomer and is

rate-limiting  for  the  overall  reaction.  In  limiting  dilution  hemolysis  experiments,  hemolysis  likely

ceases because the nucleation step no longer proceeds efficiently on the time scale of the experiment.

Assuming that the nucleation reaction normally involves two molecules of wild type toxin, it appears

possible  that  the  domain  4  fragment  may  substitute  one  or  both  of  these  two  molecules,  thus

accelerating the nucleation reaction.

Interestingly, the  extent of hemolytic amplification becomes self-limiting at very high concentrations

of PLO-D4. One possible  explanation is  that,  as depicted in Figure 8C, one of the partners in the

nucleation reaction has to be a wild-type molecule, the concentration of which therefore becomes rate-

limiting for nucleation at large excess of PLO-D4. Another possibility is that, while nuclei formed from

two molecules of PLO-D4 can recruit wild-type monomers (Figure 8D), this process is limited by the

competing mutual aggregation of PLO-D4 nuclei and monomers. Either way, it is interesting to note

that hemolytic activity levels off but does not decrease at very large excess of PLO-D4. This suggests

that PLO-D4 interacts assists in priming the oligomerization of wild type toxin but does not interfere

with its further progress.  This hypothetical scenario seems to agree with the experimental evidence

suggesting that even in hybrid oligomers the full-length and the domain 4 subunits remain largely

segregated.  According  to  fluorescence  experiments,  intercalation  of  PLO-D4  between  full-length

molecules is minimal; most full-length molecules will therefore be able to productively interact with

other full-length molecules in adjacent positions.

According to the fluorescence assay shown in Figure 7, the segregation of PLO-WT and PLO-D4 is not

accounted  for  by  large  differences  in  the  respective  rates  of  oligomerization.  Another  possible

explanation  might  be that  full-length molecules  are able  to displace domain 4 molecules  from the
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growing end of a growing oligomer. The fact that domain 4 oligomers but not full-length oligomers can

be disrupted by deoxycholate solubilization (Figure 4B) suggests that the fragment molecules associate

more weakly, which might be conducive to such displacement.

The very limited extent of intercalation of domain 4 fragments between full-length molecules inferred

from fluorescence experiments agrees with the appearance of putative hybrids in electron microscopy

(Figure  5).  These  walking  cane-like  structures  combine  linear  segments,  presumably  containing

predominantly PLO-D4 molecules, with curved ones, which likely contain mostly the full-length toxin.

It  has  previously  been  shown  that  incomplete,  arc-shaped  oligomers  of  SLO and  PLO can  form

functional pores; therefore, it appears likely that the “handles” of the walking canes are also capable of

membrane permeabilization. 

Regarding the walking cane structures, a possible objection may be that the abutting linear and curved

segments are not really connected, but are in fact separate PLO-D4 and full-length toxin oligomers

whose ends only came to be in the same place by chance. Note, however, that in each of the instances

shown in Figures 5C and D, the direction of the straight segment is smoothly continued by the tangent

of the curved section at the meeting point. If there were no intermolecular forces between them, the two

structures should be seen meeting at various angles, and a kink going one way or the other should

usually be visible between them. Since this is not the case, we propose that the walking cane structures

represent true hybrid oligomers. 

In summary, our results show that the C-terminal domain of PLO retains the ability to bind to target

membranes, to form oligomers with itself, and to form hybrid oligomers with intact toxin molecules to

the point of enhancing their activity. The formation of oligomers, as well as the amplification of the

activity  of the full-length toxin distinguish PLO-D4 from similar fragments of SLO and PFO. Our

study provides an intriguing example of how the same experimental strategy for assigning structure and

function may lead to different results with homologous protein molecules, and it supports a greater

functional role of domain 4 in CDC pore formation than has previously been documented.
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Table 1

N90C-fluorescein fluorescence lifetimes in hybrid oligomers. An equimolar mixture of the fluorescein-

labelled and rhodamine-labelled forms of mutant N90C was incubated with membranes, either alone

(leftmost column) or with the D4 fragment or wild type PLO added at different molar excess over the

labelled N90C. The fluorescein time-dependent fluorescence decay was fit with a three-exponential

model, and the average lifetimes <τ > calculated as detailed in the Methods section. The fluoresence

lifetime of N90C-F alone after incubation with membranes is shown for comparison. The χ2 values are

those of the three-exponential fit.

N90C-F/R D4 wt N90C-F
Unlabeled protein (mol/mol) - 1 2 4 1 2 4 -

<τ > (ns) 1.10 1.23 1.25 1.29 1.87 2.23 2.14 2.77
 χ2 1.15 1.12 1.07 1.15 1.12 1.06 1.13 1.03
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Legends to Figures

Figure  1:  Structural  model  of  pyolysin,  based  on  the  crystal  structure  of  the  homologous  toxin

perfringolysin O (Rossjohn et al., 1997).

Figure  2:  Hemolytic  activity  of  wild  type  PLO with  increasing  ratios  of  PLO-D4.  The  extent  of

hemolysis of 0.5% sheep red blood cells after incubation at 37 °C for 30 minutes was determined by

the decrease in turbidity (OD650). The concentration of PLO-WT  was varied by serial twofold dilution

from 2.5  μg/ml; the concentration of PLO-D4 in the mixed samples is implied by the molar ratios

indicated on the graph (PLO-WT:PLO-D4). The sample containing PLO-D4 only had a concentration

of 5 µg/ml. The figure shows a single representative experiment.

Figure 3: Time Course of hemolysis of wild type PLO with increasing ratios of PLO-D4. In (A), wild

type PLO at 0.625 µg/ml was incubated with 0.5% RBC’s at room temperature, and the progress of

hemolysis was monitored by the decrease in turbidity (OD650). The toxin was present alone (1:0) or

with PLO-D4 at various molar proportions as indicated.  The sample labelled 0:1 contains PLO-D4

only. In (B), wild type toxin alone was used at various multiples of the initial concentration (1:0 again

equals 0.625 µg/ml).

Figure 4: Characterization of domain 4 fragment oligomers by FRET. 

A: PLO-D4 labelled with fluorescein (D4-F) alone or in combination with rhodamine (D4-R) were

incubated with sheep erythrocyte ghosts. Addition of D4-R prior to incubation with membranes greatly

reduces the fluorescence of D4-F due to FRET, indicating oligomerization. If PLO-D4-R is added after

incubation for 30 minutes with D4-F alone, the extent of FRET is reduced, indicating that the two

species remain partially segregated. 

B: A mixture of fluorescein- and rhodamine-labelled PLO-D4 was incubated with membranes as before

and the sample solubilized with deoxycholate (DOC). FRET is reversed, indicating dissociation of the

oligomer. The same treatment does not change the fluorescence of a sample of N90C-F and N90C-R.
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Figure 5: Electron microscopy of wild type PLO and domain 4 oligomers on cholesterol crystals. 

A: Wild type PLO alone. The rings and arcs resemble those previously described for other CDCs. 

B: PLO-D4 alone. Instead of rings and arcs, straight rods in parallel arrangement are seen. 

C and D: Mixtures of wild type with PLO-D4 in twofold or fivefold excess, respectively. In addition to

the arcs, the rings and rods are also observed in A and B, ‘walking canes’ and other hybrid shapes are

seen, some of which are marked with arrows. Black scale bars correspond to 100 nm.

Figure 6: Formation of hybrid oligomers from wild-type PLO and the domain 4 fragment (FRET). 

A: PLO-N90C labelled with fluorescein (PLO-N90C-F) and rhodamine (PLO-N90C-R) were incubated

with  sheep erythrocyte  ghosts.  FRET (as  detected  by  a  decrease  of  fluorescein  fluorescence)  only

occurs if the two proteins are applied simultaneously. The absence of FRET observed with sequential

application, with incubation for 30 minutes between the two species, likely indicates the formation of

segregated oligomers. 

B: FRET between N90C-F and the rhodamine-labelled species (N90C-R) is effectively suppressed if

the labelled toxin is admixed with an equivalent amount of unlabelled wild type toxin before addition

to membranes.  In contrast,  only a very slight reduction of FRET is observed even with a fourfold

excess  of  unlabelled  D4 fragment.  This  indicates  that  the  fragment  does  not  efficiently  intercalate

between N90C subunits in hybrid oligomers.

Figure  7:  Kinetics  of  oligomer  formation  on  membrane  ghosts  by  FRET.  The  progress  of

oligomerization  of full-length PLO, the domain 4 fragment  and of hybrid oligomer formation  was

monitored by the decrease of fluorescein fluorescence caused by FRET from fluorescein to rhodamine.

Fluorescein- and rhodamine-labelled N90C or D4 fragment  were mixed as indicated.  At t=0, RBC

membrane ghosts were added to 1%, and the sample mixed by pipetting. The spikes at t=0 are artifacts

caused by opening and closing the sample compartment.
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Figure  8:  Oligomerization  of  PLO-WT  and  PLO-D4,  and  hypothetical  mechanism  of  hemolysis

enhancement by PLO-D4 through hybrid oligomer formation.

A: Wild type pyolysin forms arc-shaped (as shown) and ultimately ring-shaped oligomers. Based on

studies on the homologous toxin streptolysin O (Palmer et al., 1995), it is likely that the initial reaction

between two monomers is the rate-limiting step in oligomerization.

B:  The  domain  4  fragment  alone  forms  oligomers  with  linear  shape,  possibly  influenced  by  the

molecular arrangement of the underlying cholesterol substrate (see Figure 5B).

C: In a mixture of wild-type PLO and PLO-D4, the latter might replace one of the wild-type toxin

molecules in the rate-limiting nucleation reaction, and thereby enhance the hemolytic activity of wild-

type PLO. Addition of both wild-type and D4 fragment molecules to the hybrid nucleus could result in

walking-cane structures as those seen in Figures 5C and 5D.

D: In an alternative  scenario,  a nucleus  formed from PLO-D4 alone  might  react  with a  wild-type

molecule;  the ensuing hybrid would again form a walking cane by recruit additional wild type and D4

molecules.
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Figure 4
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Figure 6
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