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Abstract 

Recent emphasis on sustainable development has carried over into the transportation sector, given the 

impacts of transportation behavior on environment and equity. Transit is widely recognized as a 

viable option supporting the sustainability issue providing benefits such as reducing air pollution, 

alleviating traffic congestion, enhancing mobility, and promoting social well-being (health through 

walk- and bike-access). An important tool in advancing sustainable transport is to generate more 

robust transit ridership models to evaluate the benefits of investments in these modes. In particular, 

this thesis concentrates on two sub-problems of (1) calibration procedures and (2) insufficient data for 

transit mode choice modules.  

The first purpose of this thesis is to improve the calibration procedures through better 

understanding of calibrated mode constants. First, the magnitude and relative importance of mode 

constants to measurable components are analyzed using representative data from six cities in North 

America. The mode constants (representing unmeasured inputs) in study cities account for 41% to 65% 

of total utilities. The results demonstrate that, in some cases, mode constants are large enough to 

render models insensitive to changes of important but omitted system factors such as reliability, 

comfort, convenience, visibility, access environment, and safety. The need to explicitly include mode 

constant endogenous to the model is verified.  

Second, this thesis introduces a framework to improve the utilization of new data sources such as 

automated vehicle location (AVL) and automated passenger counting (APC) systems in transit 

ridership forecasting models. The direct application of the AVL/APC data to travel forecasting 

requires an important intermediary step that links stops activities - boarding and alighting - to the 

actual location (at the TAZ level) that generated/attracted this trip. The GIS-based transit trip 

allocation methods are newly developed with focus on considering the case when the access shed 

spans multiple TAZs. The proposed methods improve practical applicability with easily obtained data 

in local contexts. The performance of the proposed allocation methods is further evaluated using 

transit on-board survey data. The results show that the buffer area ratio weighted by employment or 

population and footprint weighted method perform reasonably well in the study area and can 

effectively handle various conditions, particularly for major activity generators. The average errors 

between observed data and the proposed method are about 8% for alighting trips and 18% for 

boarding trips.  
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Third, given the outputs from the previous research effort, the application framework of the 

AVL/APC data to travel forecasting model calibration is demonstrated. In the proposed framework, 

transit trip allocation methods are employed to identify prediction errors at finer geographic level (at 

TAZs). In turn, the approach makes it possible to evaluate the zonal characteristics that affect 

estimation accuracy. Developed multinomial regression models produce equations for the mode 

choice prediction errors as a function of (1) measurable but omitted market segmentation variables in 

current mode choice utility function including socio-economic and land use data; and (2) newly 

quantifiable attributes with new data source or techniques including quality of service variables. The 

proposed composite index can systematically evaluate and prioritize the major source of prediction 

errors by quantifying total magnitudes of prediction error and a possible error component.  

The outcomes of the research in this thesis can serve as foundation towards more reliable and 

accurate mode choice models and ultimately enhanced transit travel forecasting.  
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 Chapter 1

Introduction 

The performance of transportation networks in accommodating travel demand is a recurring and 

global area of concern. Poorly performing transportation systems negatively impact the environment, 

the economy and personal quality of life. The role of the contemporary transportation engineer is to 

plan, evaluate, design and oversee the implementation of both policies and physical infrastructure that 

advance the goal of improved transportation systems. A critical part of these responsibilities is the 

development of robust decision making methods that allow the engineer to assess the relative costs 

and benefits over the short and long term of various possible interventions. One important tool is the 

travel forecasting model – a quantitative assessment technique that is developed to represent the 

current situation, while allowing users to evaluate multiple future scenarios. A thorough review of the 

structure of travel forecasting models is presented in Chapter 2.  

Originally, travel forecasting models were developed for capacity expansion programs in interstate 

highway systems where automobiles play a key role. At that time, urban planning policies in North 

America also encouraged people to move to dispersed, lower-density settlements in suburban areas. 

The resulting urban forms and scattered population distribution influenced the transportation network 

and the usage of various transport modes – typically increasing automobile transportation while 

decreasing the use of walking, cycling and public transport. Accordingly, the evolution of travel 

forecasting models had been oriented toward appropriate representations of system performance for 

automobile traffic. 

More recently, interest has intensified in sustainable urban development, promoting environmental 

quality and social equity. This emphasis has carried over into the transportation sector, given the 

impacts of transportation behavior on environment and equity. According to Transport Canada (2010), 

the transportation sector is the second largest source of greenhouse gas (GHG) emissions in Canada, 

with a share of 27% of total emissions in 2007. Between 2000 and 2007, transportation emissions 

grew at a rate of 1.6% per year, while total GHG emissions grew at a rate of 0.6% per year. A study 

reported that if one person in a household switched his/her commuting trip from driving alone to 

using existing transit, the energy consumption of the household can be reduced by 30%. This can save 

an average of two metric tons of carbon dioxide each year (Millar, 2012). 
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In these contexts, transit is widely recognized as a viable option supporting new paradigms   

providing benefits such as reducing air pollution, alleviating traffic congestion, and enhancing 

mobility. Moreover, well-planned and well-implemented transit systems may support social well-

being, for instance, by serving people who have fewer transportation choices and by promoting health 

through walk- and bike-access to transit.  

Given the emphasis on public transportation in modern transportation engineering, many transit 

investments have been evaluated using travel forecasting models, with mixed results. Specific 

concerns have been identified regarding models’ ability to generate realistic mode share results. For 

example, Pickrell (1992) compared actual and predicted transit ridership for fixed-guideway projects.  

The actual levels were below 50% of forecasted in six out of seven rail transit systems in the United 

States. For international projects, actual transit ridership levels were under 80% of the forecasted 

ridership in about 85% of rail projects (Flyvbjerg et al. 2005). Out of the 18 fixed-guided way transit 

projects built between 2003 and 2007, eight projects had 80% of the predicted ridership and 10 

projects had much lower levels than the forecasted (Federal Transit Administration, 2008). There has 

been an overall need to improve travel forecasting models, particularly in their estimates of transit 

ridership.  

An important tool in advancing sustainable transport is to generate more robust transit ridership 

models to evaluate the benefits of investments in these modes. The objective of this dissertation is to 

improve the performance of regional travel forecasting models, particularly in estimating transit 

ridership. 

1.1 Background – Travel Forecasting Models 

Analytical tools such as travel forecasting models are used to support policy decisions by assessing 

the impact of programs (e.g., pricing, high occupancy lanes, convertible traffic lanes, etc.) as well as 

facility construction on overall system performance. The models may be used to compare possible 

interventions in transportation systems. While construction costs are generally estimated in other 

ways, travel models have the potential to estimate benefits for the general population within a 

modeled area or, alternatively, for specific population groups (e.g. older people or students). The 

benefits quantified by models include transportation safety, air quality, as well as congestion concerns 

(NCHRP, 2012, TMIP 2013).  
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The success of travel forecasting models and ultimately decision-makers’ ability to make sound 

judgment regarding transportation system changes is predicated upon appropriate models of travel 

behavior. Understanding traveler behavior is remarkably complex. For a fixed starting point (origin), 

a traveler has a set of possible destinations at which an activity may take place. To arrive at any 

destination, the traveler has a set of modes and paths by which the activity may be reached. The 

traveler may also elect to perform more than one activity in sequence, meaning that the choice of 

destinations, paths, and modes is influenced by more than one end point. Moreover, the traveler may 

begin the trip at any point in time. The traveler’s behavior is often influenced by household 

constraints – the availability of a car or the need to travel with others, for example. 

A further complicating factor is that not all travelers perceive various trip components in the same 

way. For example, significant evidence exists that travelers perceive waiting time for transit as more 

onerous than time spent in-vehicle. It may also be true that some travelers find time spent in a transit 

vehicle offers positive utility – the ability to read, work or socialize for example – compared to 

driving an automobile. Linking observable transportation costs to quantitative representations of 

traveler perceptions of these costs is a fundamental area of research in transportation engineering. 

To effectively model travel behavior, models most often use the following approach: 

1. The model assumes a trip origin – the location from which the trip will begin. Common origins 

include home and non-home based trips. 

2. The model assumes a trip purpose – the activity that the traveler wishes to complete. Common 

trip purposes are work, school, shopping and other.  

3. Depending on the trip purpose, the destination may be fixed (in the case of work or school 

trips), or competing destinations may be available (in the case of recreational or shopping trips). 

4. In the case of a fixed destination, the model quantifies the cost of traveling from the origin to 

the destination by multiple paths and modes. For multiple destinations, the model may estimate 

the cost of accessing each destination by the several paths or modes. 

5. The measurable attributes of each candidate trip are then converted to a utility function – 

typically a sum of the products of actual costs and a representation of the average traveler’s 

perception of that trip component. Mathematically, a common form of a utility function is 

(Koppelman and Bhat 2006): 
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Vit = V(St) +  V(Xi) +  V(St, Xi)                                                      (1-1) 

Where: 

Vit is the utility of alternative i for individual t 

V(St) is the portion of utility associated with characteristics of individual t 

V(Xi) is the portion of utility of alternative i associated with the attributes of alternative i 

V(St, Xi) is the portion of the utility which results from interactions between the attributes of 
alternative i and the characteristics of individual t 

 

6. The likelihood of a traveler choosing alternative i among all alternatives I, is calculated 

stochastically using a discrete choice model. The most commonly used model formulations are 

logit (or nested logit) and probit models. The differences between these models are explained 

in chapter 2. 

7. The model developed in step 1 through 6 is then used to estimate the behavior of travelers 

under current conditions. The results of these model predictions are compared to observed data: 

interzonal and intrazonal travel volumes; volumes on individual facilities; network and 

corridor-based transit mode shares. If significant errors are identified, the modeller can revisit 

any of steps 1 through 6. 

 

1.1.1 The need for data 

Given this process, the importance of data in generating effective models becomes evident. To 

complete steps 1 and 2, estimates of the rate at which trips are made for various purposes and from a 

variety of locations must be known with some certainty. These data are normally gathered through 

travel surveys or diaries, where respondents record and convey their complete travel activity for a 

given period of time, normally one day. The data needed for step four – quantifying travel time by 

various modes along a set of paths (or routes) – are reasonably well estimated by calculations done 

endogenous to the model. For automobile travel, models estimate travel time using the relationships 

between trip distance, and travel speed (as dictated by facility, mode, volume and delay). Generally, 

forecasting the use of the public transportation is more difficult than estimating private auto use. This 

outcome is a result of two complicating sets of factors. First, transit travel has a more complex cost 

structure than travel by private auto. Travelers must access the system, wait for the transit vehicle to 

arrive, experience in-vehicle time (and potentially transfers), and finally travel from the alighting stop 
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to their ultimate destination. Estimates of travelers’ perceptions are necessary to convert the travel 

costs to disutilities for each of these multiple components.  

Extensive data are necessary to develop appropriate utility functions – representative measures of 

how travelers perceive travel costs for a given trip’s purpose. The most common way to estimate 

these representations is through stated preference surveys. Travelers are presented with paired 

alternatives and asked to choose their preferred option. For example, a traveler may be presented with 

a situation where a trip can be completed using private auto with 1) a travel time of 30 minutes and an 

out of pocket expense of $3.00 for tolls or 2) a travel time of 45 minutes, but no toll. The respondent’s 

choice in this situation provides evidence on the relative value of 15 minutes of travel time savings 

compared to $3.00 cost saving. Utility functions can also be generated from revealed preference or 

observed behaviors. Although not desirable to do so, when budgets are limited, the relative 

importance of these cost components may be transferred from previous modeling efforts. 

1.1.2 Challenges unique to modeling transit utility and mode choice 

Unlike travel by automobile, transit has a number of difficult to quantify attributes. Because the 

service operates on discrete intervals, departure and arrival times are also discrete (compared to 

nearly continuous for auto travel), which may create a cost to the traveler (Casello et al., 2009). 

Transit unreliability also introduces uncertainty into total travel time and the ability for a traveler to 

arrive on time. Researchers have posited that this is interpreted as a transit disincentive for some 

travelers (Chorus, 2006). Travel by public transit may also offer very different comfort standards – in 

terms of temperature, seating / standing, proximity to strangers etc. – all of which may be perceived 

as a cost, but are very hard to quantify effectively. 

Thus, to calibrate transit utility functions, even greater data are necessary, but are not often 

systematically collected or available for the development of contemporary models. The literature has 

recognized the poor performance of models in general, and in estimating transit usage. NCHRP 

special report 288 (2007) summarizes the primary shortcomings as: inherent weakness of the models; 

errors introduced by modeling practice; lack of reliable data; and biases arising from the institutional 

climate where models are used. Similarly, Flyvbjerg (2005) diagnosed that inaccuracies of road and 

rail travel forecasts are related to input assumptions (particularly, land use development) and the 

model components (especially, trip distribution and trip generation steps and forecasting models in 
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general). Opening delay, design change, and political pressures to achieve a predetermined outcome 

were evaluated as other factors of forecast errors of rail projects.  

The Federal Transit Administration (FTA, 2006) identified major deficiencies in state-of-the-art 

transit ridership forecasting exist in (1) insufficient data and (2) calibration procedures. Reliable data 

are equally important for each step of a model’s development including estimation, calibration, and 

validation. However, transit ridership modeling is conducted with limited data, while the models 

require a more comprehensive dataset both in the system characteristics (e.g., transit travel speed and 

transit accessibility) and in traveler characteristics (e.g., choice of destination, transit-access mode, 

and transit-path).  

1.2 Mode Constants 

One approach to quantify the difficult to measure attributes of travel by a given mode is through the 

use of so-called mode constants. The mode constants are normally interpreted as a representation of 

the net influence of all unobserved (or not explicitly included) mode (or individual or trip) 

characteristics in the variables of utility. The unobserved transit trip attributes and excluded variables 

include reliability, comfort, convenience, visibility, flexibility, safety, and other factors (Ortuzar and 

Willumsen, 2001). Increasingly, social norms are beginning to be recognized as influencing travel 

behavior, but are not included in utility functions. 

In practice, without mode constants, utility functions often produce unrealistic results, typically due 

to the excluded variables. The normal process for incorporating mode constants into travel forecasting 

models is to identify one mode, normally private automobile, as the reference mode, and to add (or 

subtract) a cost to all other modes that represents travelers’ aversion (or preference) for that mode 

relative to private auto (Koppelman and Bhat, 2006). Mathematically, Equation (1-2) shows the mode 

constant - or alternative specific constant - added to the utility function originally presented as 

equation (1-1). 

Vit = V(St) +  V(Xi) +  V(St, Xi) +  βio × ASCi                                                      (1-2) 

Where: 

βio is the change in utility of alternative i relative to the reference mode 

ASCi 
is an Alternative Specific Constant, equal to 1 for alternative i and 0 for all other 

alternatives 
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In addition to the measurable components shown in Equation (1-1), mode choice models usually 

include an alternative specific constant, the magnitude of which is represented as βio × ASCi    in 

equation (1-2). 

Naturally, good modeling practice seeks to minimize the magnitude of these mode constants. 

Modelers should aim to identify all those trip and traveler attributes that influence behavior and, 

whenever possible, model these components explicitly, such that the impacts of these changes can be 

evaluated. This is particularly important if a model is to be used over a long time horizon.  

Assumptions about traveler behavior may not remain constant across time periods and, as such, mode 

constants developed in the current time period may not apply to future scenarios. 

One stream of research has attempted to quantify and incorporate difficult-to-measure attributes in 

mode choice models. Srinivasan et al. (2007) identified a number of papers that examine the 

importance of qualitative factors on cost perceptions including comfort and convenience through 

proxy variables such as seat availability and number of transfers (Algers et al. 1975) and freedom, 

safety, and anxiety based on ratings of various subjective factors (Forward, 1998). With the inclusion 

of the qualitative variables such as transit access environment (Evans et al., 1997), transit service 

reliability (Casello et al., 2009), psychological factors (e.g., attitude, habit and affective appraisal) 

(Domarchi et al., 2008), the magnitude of mode constants was reduced. Despite these efforts to 

understand possible components of mode choice constants, and best practice literature that 

recommends modifying mode constants only as a last resort (Cambridge Systematics, 2010), the use 

of large, and poorly defined mode constants remains a challenge for many models. 

1.3 New Data Sources to Improve Transit Ridership Estimation 

The primary purpose of mode choice models is to predict transit ridership – boardings and alightings 

– at a zonal level. The quality of a model in terms of its accuracy in both the short- and long-term is 

largely dependent on the data that inform the model development. Models require accurate 

representation of two primary components: the costs of travel by alternative modes (including time 

and out of pocket expenses) and travelers’ behaviors when presented with these costs. To estimate the 

first component, models typically rely on conventional data sources that generate highway or arterial 

speeds to predict transit in-vehicle time, representing impedance and travel time in trip distribution 

and mode choice, respectively (FTA, 2006). Transit travel times may also be generated endogenously 



 

8 

 

to the model from scheduled headways and run times. Fares represent the primary out of pocket 

expenses. In general, these data tend to be relatively easy to gather. 

The second component, travel behavior, has proven to be more difficult to measure. In the past, 

estimates of transit ridership have largely been derived from a series of data collection exercises, 

including: journey to work data from the census; on-board transit ridership surveys; and household 

travel diaries. More recently, however, new data sources from the transit industry itself have become 

available that have significant potential to improve modelers’ abilities to quantify traveler behavior. 

Three automated data collection systems have been widely implemented in transit systems: 

Automatic Vehicle Location (AVL); Automated Passenger Counting (APC); and Automated Fare 

Collection (AFC) systems.  

An AVL system monitors the location of vehicles using Global Position Systems (GPS) or roadside 

detectors. The most important feature of AVL data for passengers is real-time arrival information at 

stations; for the transit agency, AVL generates real-time system performance indicators such as 

vehicle schedule adherence (Furth et al., 2006). 

An APC system utilizes pressure-sensitive mats, horizontal beams, or over-head infrared sensors to 

count the number of passengers boarding and alighting at each stop. If APCs are fully implemented, 

the independent systems can include both location measurement and stop matching. The benefits of 

the APC system are automated and low-cost collection of data about station activities; cumulative 

loading diagrams; maximum load sections; and daily, monthly, or seasonal variations in demand 

(Furth et al., 2006). Historically, AVL and APC systems were independently developed for real-time 

and off-line analysis purposes, respectively. Since a combined AVL/APC system reduces the 

marginal costs for APC installation by relying on the AVL component for location referencing, it has 

become more popular. 

An automatic fare collection (AFC) system refers to an advanced technology of fare media or 

collection such as magnetic stripe cards/tickets, and smart cards (also known as integrated circuit or 

chip card). These fare collection devices record a traveler’s boarding and sometimes alighting 

locations; AFC data also include time stamps for when the transaction occurred. Some AFC systems 

link the travel behavior to a specific traveler, thereby providing a link between demographic data and 

traveler behavior. AFC systems enable faster boarding and alighting, more opportunities for ridership 
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data collection, greater security, and finally better understanding of customer market segments using 

transit service (Multi systems, Inc. et al., 2003; Bagchi and White, 2004).  

 

 

Figure 1-1: Transit boarding and alighting counts using AVL/APC System (Furth et. al. 2006) 

The data collected from AVL/APC and AFC systems have great potential to be used as a new or 

complementary data sources to improve transit ridership forecasting. On the cost side, distributions of 

transit speed and bus travel times can be directly obtained from AVL data. For passenger demand, 

AFC systems, especially those linked to demographic information, present the richest data set.  

However, even in the absence of AFC, APC systems can provide zonally-based, temporally defined 

ridership counts for individual transit routes. This research considers a method to improve the 

utilization of new data sources such as AVL/APC systems in transit ridership forecasting models.  

1.4 Problem Statement 

Travel forecasting models are used to predict the future performance of multimodal transportation 

systems. There has been a need to improve travel forecasting models, particularly in their estimates of 

transit ridership. While many challenges exist in developing robust travel forecasting models, 

particularly mode choice modules, this research concentrates on two sub-problems. 

First, as described above, calibrated mode constants are used to generate transit mode shares that 

reflect the actual modal demands for the time period modeled.  These mode constants are then used to 

forecast mode share over the planning horizon, assuming that all difficult-to-measure cost perceptions 

remain constant throughout the analysis period. An important question involves the magnitude of the 
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mode constant; if the absolute value is large relative to the measurable cost components, major 

improvements in system performance (through operational changes or infrastructure investments) 

may have very small impacts on the likelihood of choosing the improved mode. This research 

explores several functioning models from various municipalities to understand the magnitude of 

mode constants. 

Next, there is an identified desire amongst modelers to reduce the magnitude of mode share 

constants by incorporating travel or personal attributes endogenously in the model. Using AVL / APC 

data, an opportunity exists to explore model prediction errors at a very disaggregate spatial scale – at 

the TAZ level. This research develops and implements a method to utilize AVL / APC data in the 

formulation and calibration of more robust utility functions. In order to complete the second objective, 

innovative methods of converting boarding and alighting data from stop locations to their zonal 

origins and destinations are necessary. This dissertation presents and evaluates several methods for 

completing this data structure change.   

1.5 Research Objectives 

The main objective of this thesis is to enhance the estimation performance of transit ridership through 

improved calibration procedures of mode choice models in regional travel demand forecasting. 

Noting an overall need to improve travel forecasting models and their estimates of transit ridership, 

one concern is around the mode constants used in calibration. To improve calibration procedures, first, 

we need to understand the mode constants better from state-of-the-art regional travel forecasting 

models. Accordingly, the first set of research questions is: 

1. How big are the mode constants in regional forecasting models? How important are these 

mode constants relative to the measurable components? 

To answer that question, the magnitude and relative importance of mode constants are analyzed 

using representative data from six cities in North America.  

In order to improve the performance of transit ridership forecasting, the issue of insufficient data 

for both transit system and transit users should be addressed. In recent years, automated data 

collection systems such as AVL/APC have been implemented in many cities in North America. The 

direct application of these data to ridership forecasting requires an important intermediary step that 
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links stop activities – boarding and alightings – to the actual location (at the TAZ level) that generated 

/ attracted this trip. This leads to the second research question: 

2. How can we link stop boardings (or alightings) to the zones from (or to) which these 

passengers are actually originated (or destined)? 

This research generates four GIS-based methods to complete this linking exercise. Using a very 

small data set from on an on-board survey, a method is demonstrated on how to select the best 

performing of these methods.  

Having completed the analysis from research question 2, it is then possible to generate transit 

activity observations – boardings and alightings, as well as mode share – at the zonal level. The 

observed data can then be compared to the model estimates. Errors in the model’s performance are 

quantified and classified at the zonal level. By classifying the error types – over and under predictions 

– regression models can be used to identify explanatory variables – both demographic and land use – 

that may help explain the incorrect predictions. This observation leads to the third set of research 

questions: 

3. By comparing prediction errors at a more disaggregate level, can we effectively identify the 

source of errors? Can variables which capture these sources of error be explicitly modeled?  

To answer these questions, this research proposes a framework which can effectively calculate 

prediction errors, identify ranges of errors that warrant further investigation, and evaluate the source 

of errors affecting the accuracy of predicted transit use on a zonal level.  

To summarize, the objectives of this dissertation are to: 

Obj.1. Examine the magnitude of mode constants using representative data from several cities. 

Obj.2. Develop a methodology to assign boardings and alightings at stops to origin and destination 

zones using APC data. 

Obj.3. Develop a framework to effectively assess transit mode share prediction errors and the 

source of errors affecting the accuracy of predicted transit use on a zonal level.  

The successful completion of these three objectives has the potential to improve the understanding 

of travel forecasting models and to generate more robust estimates of transit ridership. 
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1.6 Thesis Outline 

To achieve the above objectives, the remainder of this thesis is organized as shown in Figure 1-2.  

 

Figure 1-2: Overview flowchart of research 

In Chapter 2, conventional travel forecasting models, fundamentals of transit modeling including 

state-of-the-art mode choice and assignment models are described. Mode constants in these models 

are presented. Related research linking transit use at stops to their origin/destination zones is 

identified. 

In Chapter 3, the magnitude of mode constants is discussed using representative data from six cities. 

The magnitude of calibration constants is investigated in terms of in-vehicle time equivalent unit and 

relative importance of mode constants to the measurable components. 
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In Chapter 4, methods converting stop-level boarding and alighting trips into TAZ trips are 

proposed. The accuracy and applicability to regional forecasting models of each proposed method are 

also tested and discussed. 

In Chapter 5, a systematic calibration method to identify and evaluate source of prediction errors of 

transit use is proposed. 

In Chapter 6, conclusions, research contributions and future works are summarized.  

  



 

14 

 

 Chapter 2

Literature Review 

This chapter discusses four issues related to transit ridership forecasting. First, a summary of 

conventional travel forecasting models, including the four-step model, activity based models, and 

direct demand models are reviewed. Next, recent advancements in transit travel forecasting models 

are discussed, focusing on how mode choice models account for taste variation and socio-

demographic attributes. A summary of the solution algorithms used for these models is also presented. 

Third, research on the determinants of transit mode choice - including psychological factors and 

quality-of-service variables, as well as traditional indicators - is presented. Research associated with 

mode constants and unobserved attributes in transit modeling is also discussed. The fourth issue 

identifies and discusses previous studies relevant to assigning stop-level activities to their actual 

origin and destination zones. The chapter concludes with a summary of the literature reviewed. 

2.1 Conventional Travel Forecasting Models  

Until recently, the most commonly employed method for travel demand prediction was the traditional 

four-step model. The basic steps in the model are: to estimate trips generated from and directed to a 

number of disaggregate spatial areas, or zones; to predict the distribution of these trips between zones; 

to model the mode by which these trips are completed; and finally assigning these trips to paths or 

routes they follow (Meyer and Miller, 2001). The four-step model is known to be trip-based; all travel 

is assumed to contain an origin and a destination. Multiple destination trips, now known as tours, are 

considered in four step models as multiple decision points.  

The main features of a four-step model can be summarized as:  

1. A sequential decision process for the traveler, who first chooses a destination, a mode and 
then a path; 

2. An assessment of travel at the trip level, defined as a person or vehicle traveling from an 
origin to a destination without intermediate stops;  

3. An estimate of performance based on the cumulative impact of multiple trips each made for a 
specific purpose – typically work, school, or shopping; 

4. Travel assessments conducted for various times of day, including am/pm peak period, mid-
day, etc. (NCHRP, 2012).  
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In the four-step method, mode choice and traffic assignment are important steps in the estimates of 

transit demand. The mode choice process involves the computation of demand for each available 

mode based on the relative cost of completing a given trip by each mode.  The traffic assignment step 

determines the actual highway path (for auto trips) and transit route(s) for public transport trips. A 

widely recognized weakness of the four step model is in the representation of travel decisions as a 

sequential problem. For example, the effect of congestion is not reflected in the initial destination 

choice and mode choice since traffic assignment lies in the last step. To correct this weakness, many 

four step models now incorporate 'feedback' of travel time (Boyce, 2003) where  output travel time is 

iteratively used to rerun the trip distribution and mode choice steps until a successful convergence 

(Vuchic, 2005).  

2.1.1 Activity based models 

While trip-based models had been the dominant modeling approach for several decades, tour- and 

activity-based models have been developed and increasingly implemented in recent years particularly 

for large urban areas. The move from the traditional four-step model is motivated by both improved 

understanding of travel behavior as well as changing public objectives. Contemporary transportation 

policies in North America have shifted away from addressing congestion through increased 

infrastructure and capacity for many reasons. The emphasis in transportation planning now tends to 

focus on strategies to manage demand and incent more sustainable modes. Evidence of these changes 

includes requirements for mixed land use development, the introduction of economic disincentives for 

automobiles like congestion or parking pricing, and greater emphasis on accessibility. To evaluate the 

effectiveness of these policy changes in achieving improved system performance, it becomes 

necessary to understand travelers’ behavior and response to system changes more accurately. The 

activity- or tour-based models are more suitable for these disaggregated analyses than the 

conventional trip-based 4-step models.   

The U.S. National Cooperative Highway Research Program (NCHRP) report 719 summarizes the 

five major characteristics of activity-based models as follows:  

1. focusing on modeling activity participation (at different points in space and time); 
2. using a 'tour' based structure which is defined as a chain of trips beginning and ending at a 

same location (e.g., home or work place); 
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3. viewing individuals' activity-travel patterns as a result of their decisions on time use 
subject to their socio-demographic, spatial, temporal, transportation system constraints; 

4. accommodating interactions and joint activity participations among individuals in a 
household; and 

5. simulating the activity-travel patterns of each individual using a microsimulation.  

In practice, activity-based travel model systems consist of three major steps: population synthesis, 

long-term decision-making (e.g., residential location change, auto ownership change, etc.), and 

activity-based travel models.  

Despite the advancement from trip-based to tour-based models, the sophistication of modeling 

transit components has not yet evolved substantially. The likelihood of a traveler using transit for 

some part of a tour still depends on a comparison of costs amongst available modes. The use of 

microsimulation does enhance the representation of measured cost components but does not allow for 

the quantification of more difficult to measure travel components.   

In general, the ability of tour-based models to better represent transit remains an unanswered 

question. The literature reports that the traditional models are superior in mid- and small sized cities 

to tour-based models (NCHRP, 2012). In addition, the research on comparison between the four-step 

and tour-based models (Ferdous et al., 2012) suggests that trip-based models generate superior results 

to tour-based models at a project-level when additional behavioral and network data are not provided. 

Both models generate overall the same level of accuracy in a regional-level comparison. An SHRP2 

(Strategic Highway Research Program of U.S. Federal Highway Administration) task force further 

evaluates the capabilities of the two modeling approaches (NCHRP, 2012). While activity-based 

models are currently implemented partially across Canada and the United States (TMIP, 2011), large-

scale activity-based models still lack some system integration of each model component. Moreover, 

in practical applications, many researchers believe that more studies need to demonstrate their 

theoretical advantages outweighing their complexities (TMIP, 2013). 

2.1.2 Data driven models – STOPS (Simplified Trips-on-Project Software)  

As an alternative to regional models, some users of travel forecasting models (e.g., Federal Transit 

Administration in the U.S. and the UK department for Transport) have recently begun to evaluate and 

employ data-driven techniques due to cost-effectiveness and some evidence of superior estimates 
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(particularly, in the areas of transit ridership forecasting, pricing policy analysis) when compared to 

conventional regional travel models.  

Data-driven approaches are frequently applied in areas where the existing data on travel demand 

patterns may be used directly to forecast future behavior. These techniques are also known as 

incremental forecasting models. The approaches work as follows (Woodford, 2013): (1) conduct a 

large scale Origin-Destination survey of potential users, (2) construct mode-specific person trip tables, 

(3) assign person-trip tables to the networks, (4) using demographic information for the base and 

forecast year, scale OD survey information to represent future conditions, (5) utilize the elasticity or 

incremental logit models to evaluate alternative future-year mode choice, and (6) assign future trips to 

report volumes/ridership for individual facilities.  

Specifically, FTA (2013) has invested in the development of STOPS (Simplified Trips-on-Project 

Software) to prepare forecasting of transit passenger trips for proposed transit projects. STOPS is a 

simplified version of a conventional 4-step travel model. The software considers zone-to-zone travel 

markets, employs conventional mode-choice models to predict zone-to-zone transit travel, and assigns 

the transit trips into fixed guideway transit networks including (heavy, light, commuter) rail and bus-

rapid transit facilities. On the other hand, STOPS replaces the following standard steps of (FTA 2013, 

RSG, 2015): 

• trip generation and distribution steps with worker-flow tabulations from the Census 

Transportation Planning Package (CTPP, soon, the American Community Survey) to 

explain overall travel markets and patterns, 

• coded transit network with transit-services data in the General Transit Feed Specification 

(GTFS) format developed by local transit providers to support mobile and on-line transit 

trip-planning applications. 

To enable forecasts in different years, STOPS scales the trips patterns to population and 

employment estimates provided by the user, and allows modification and addition of General Transit 

Feed Specification (GTFS) data. Unlike regional travel models, STOPS does not include any 

representation of the roadway network and does not assign predicted automobile trips to any network. 

STOPS relies on zone-to-zone roadway travel times and distances derived from the regional travel 

model for both the current year and the future year. Therefore, STOPS only computes the change in 
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automobile person-miles of travel resulted from shifts of trips from auto to transit. In addition to its 

capability, several limitations of the STOPS model should also be recognized (FTA, 2013): 

• Since STOPS entirely relies on the regional travel model for information on roadway 

travel times and distances, it is not suitable for use the model for local-bus planning 

studies, highway studies, or air-quality conformity analysis.  

• STOPS focuses on routine weekday travel by residents of the metro area and does not 

deal with special market, for example, college students or air passenger, etc. 

Overall, for data-driven approaches, significant effort is concentrated on adjusting / correcting the 

OD matrix and network processing procedures to generate sufficiently accurate results. Although this 

is not a trivial task, the level of effort is typically much less than that required to calibrate and to 

validate conventional regional travel models. STOPS can be a useful alternative, particularly to 

evaluate and rate transit projects for project sponsors when locally maintained methods are 

unavailable. Further, STOPS can serve a quality-control purpose, providing a second ridership 

forecast for comparison to a forecast prepared with locally maintained methods. 

2.1.3 Direct demand models 

When estimates of boardings and alightings are necessary for individual transit routes or stops, 

practitioners and researchers often employ direct-demand models that estimate these values as a 

function of measurable station area attributes. For example, Kuby and Upchurch (2014) evaluate 

actual light rail transit (LRT) ridership versus predicted station boardings using direct-demand 

regression models in Phoenix. The explanatory variables include station-specific trip generation 

variables (e.g., employment and population), intermodal connectivity (e.g., airport, park & ride, bus 

line connecting) and network location (e.g., terminal, transfer, and centrality). Zhao et al. (2014) 

include CBD dummy variables and bicycle P&R in direct-demand regression models. Although 

direct-demand models have some advantages over four-step models, specifically greater sensitivity to 

station-area effects, researchers usually consider these kinds of models as sketch-planning tools for 

pre-feasibility study (Kuby and Upchurch, 2014). 

The common elements for all of these modeling paradigms are a need to accurately represent travel 

cost, travelers’ perception of these costs, and ultimately a choice among travel alternatives. The 

underlying assumptions of the discrete choice problem are reviewed here. 
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2.2 Fundamentals of Transit Modeling 

Common themes around improving transit travel forecasting in recent studies include disaggregation 

(or individualization in more recent years), and interactions between demand and supply. The former 

is the result of research efforts in travel behavior analysis in disaggregate mode choice models and 

multiclass/multimodal assignment, while the latter stems from the improvement of solution 

algorithms including feedback mechanisms and combined modeling. This section begins with a 

comprehensive overview of the evolution of mode choice models. 

2.2.1 Mode choice models' frameworks and taste variation 

Random utility models attempt to quantify the likelihood of a certain choice amongst alternatives 

based on both the characteristics of the alternatives and the decision maker. The models are broadly 

divided into three categories: Multinomial Logit (MNL), Multinomial Probit (MP), and Random 

Coefficient (or Mixed Logit) models. What differentiates these model formulations are specific 

assumptions about the distribution of random error terms (Ben-Akiva and Lerman, 1987, Ortuzar and 

Willumsen, 2001); a second differentiating factor is the ease with which solutions are generated for 

these models. MNL models have the advantage of generating choice probabilities with a simple 

closed form solution but the theoretical foundation of the model assumes the so-called "independence 

of irrelevant alternatives" (IIA) property. Simply stated, the IIA assumption requires that irrelevant 

alternatives that are excluded from the choice set do not influence the performance of the model. In 

transportation analysis, this assumption does not always hold true, yet practitioners often overlook 

this shortcoming due to the simplicity of the solution methods. Further, since MNL models assume 

that the coefficients of all attributes are the same for all respondents, they are particularly problematic 

when taste variations exist among individuals.  

To overcome the IIA property, Multinomial Probit (MNP) models have been considered as an 

alternative choice model. Since MNP models have a flexible pattern of error correlation structure 

which is assumed to be normally distributed, these provide a general framework that allows for the 

interdependence of alternatives. Min (2007) suggests that there are some issues with MNP models: 

although MNP models are fundamentally more flexible than multinomial logit models, they are 

considered more difficult to apply in practice due to their computational complexity. MNPs require 

computation of multiple integrals without a simple closed-form solution. However, steady 
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improvements both in estimation algorithms and simplification of the covariance matrix have 

encouraged the application of MNP models.  

Some studies have shown that Random Coefficient Models (RCM) - also known as Mixed Logit 

(ML) models - offer solutions to the problems identified in both MNL and MNP models. RCM 

models tend to be computationally less complex but are still able to account for taste heterogeneity 

across individuals in a relatively simple way. In RCM, the weightings of individual utility parameters 

(e.g., time components and individual preferences) are treated as stochastic by dividing the random 

error terms into two uncorrelated parts. These parameters are (1) correlated over alternatives and 

individuals (i.e., flexible components similar to those used in Probit) and (2) independent and 

identically distributed over alternatives and individuals (Hensher and Greene, 2001, Walker, 2001).    

Cherchi and Ortuzar (2003) discuss methods of accounting for taste variation, particularly focusing 

on random-parameter specification versus the inclusion of socio-economic (SE) characteristics. SE 

variables are commonly added to utility functions as alternative-specific variables. The authors argue 

that the conventional method of adding SE variables in a linear-in-the-attributes structure is not 

theoretically justified. Although this specification certainly influences the total utility associated with 

its alternative and the difference between options, it does not have any influence on the marginal 

utility of the level of service variables and value of time. The introduction of SE variables that 

interact with LOS variables shows better results. Further, in their context, fixed parameter models 

with interaction terms of socio-economic and LOS variables are notably superior to RCM models in 

terms of explaining taste variations. 

Similarly, Bhat (1997) points out that since RCMs do not systematically consider taste variations, 

the models cannot be considered as a substitute for the careful identification of systematic variations 

in the population, nor can they be considered as an alternative approach to account for heterogeneity 

in choice models. 
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2.2.2 Market segmentation for systematic taste variation  

One approach to more systematically capture taste variation is to estimate mode choice models with 

market segmentation (MS) techniques. MS in travel forecasting typically refers to the subdivision of a 

market that is relatively homogenous in terms of traveler characteristics and types. Within each 

segment, individuals are assumed to have identical preferences and sensitivities to all the variables in 

the utility function (Bhat, 1997). Two basic approaches to segmenting markets include (1) pre-

determined (a priori) segmentation, and (2) market-defined (post-hoc) segmentation. Pre-determined 

segmentation involves selecting certain groups from a population based on past research or common 

sense. On the other hand, market-defined (post-hoc) segmentation identifies sub-groups based on the 

analysis of surveys in order to predict market responses (Elmore-Yalch, 1998).  

Pre-determined segmentation has often been applied in trip-based regional travel forecasting 

models using socio-economic variables (e.g., income, car ownership, household structure, age), trip 

characteristics (e.g., trip purpose, trip distance), and geographical attributes (e.g., CBD ends). The 

challenges associated with pre-determined market segmentation include: a lack of a priori knowledge 

of the correct segmentation methods; exponential growth in the combinations of market segments; 

and the cost of collecting sufficient data to calibrate multiple segment utility functions. Moreover, as 

Elmore-Yalch (1998) suggests, in the dynamic and unstable social environment of recent decades, 

pre-determined segmentation should be used carefully in transit travel forecasting. There is increasing 

diversity amongst travelers' behaviors and those segments that are thought to be homogeneous today, 

may not remain so in the period over which the model is applied.  

The market-defined (post-hoc) segmentation method should also be used cautiously. Elmore-Yalch 

(1998) describes three main challenges of the market-defined segmentation method as follows. First, 

the cost is often greater than that of using the a priori method. Second, it is difficult to understand the 

specific criteria used to assign a respondent to a certain segment. This is associated with the use of 

multivariate analysis techniques such as factor or cluster analysis. Third (and most importantly), one 

cannot know several key factors (e.g., number and size of the segments, stability, and homogeneity) 

until the data have been gathered and analyzed. Accordingly, the market-defined segmentation begins 

with the development of a certain hypothesis (e.g., persons who are concerned about the environment 

are more likely to use transit). Hence, there is always a possibility of poor segmentation resulting 

from a poorly-defined hypothesis.  
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To overcome these problems, more quantitatively-rigorous approaches have been formulated to 

deal more effectively with market segmentation. Structural Equation Modeling (SEM) can help 

identify the most appropriate segments to monitor. SEM has been applied in some transit ridership 

estimation research. Ben-Akiva et al. (1999) were amongst the first to apply SEM to study railways in 

the Netherlands. The authors estimated the importance of comfort and convenience by linking known 

traveler information (i.e. age) and journey (i.e. travel time, transfers, and class of seating) attributes 

with stated perception of mode properties (i.e. safety, reliability, flexibility of departures, ease of 

travel etc.). Significant differences in the relative importance of typical generalized cost variables – 

for example, travel time and the number of transfers – exist between the model that includes “latent” 

variables and the model that does not. The former has much better goodness of fit.  

Outwater et al. (2003) take a similar approach to estimate ferry ridership. The SEM captures the 

causal influence of the exogenous variables (socio-economic status) on the endogenous variables 

(attitudinal statements) through sets of underlying attitudinal factors (e.g., desire to protect the 

environment, the need to save time, the need for flexibility, sensitivity to travel stress, insensitivity to 

transport cost, and sensitivity to personal travel experience). The authors define eight market 

segments by deploying SEM. The results show that the stated preference model, combined with 

attitude and market segmentation data, improves the accuracy and explanatory power of mode choice 

and ridership forecasting models.  

2.2.3 Evolution of solution algorithms in transit travel forecasting 

In large-scale regional travel forecasting models, another common theme to improve transit ridership 

forecasting is the representation of mutual responses between supply and demand. Here, the supply 

refers to the provision of facilities (e.g., transport infrastructure and services) for performing activities. 

The demand refers to requirements for services (e.g., travel demands, travel patterns between 

locations) at a specific location (Boyce, 1986). In this section, methods of representing feedback 

mechanisms within travel forecasting procedures are explored.  

In the mid-1990s, there was a broad consensus about the need for solutions to the well-known 

problem of inconsistent travel impedances within travel demand models. Recall that the four-step 

model sequentially estimates: trip generation and attraction; trip distribution; mode choice; and finally 

assignment. This approach has the fundamental weakness that the actual costs to complete travel are 

not known until assignment, therefore approximations are made for the first three steps. These initial 
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approximations are often poor representations of final costs. One approach to solve this inconsistency 

between initial and final levels of service is to provide a feedback loop that iterates through trip 

distribution, mode choice, and traffic assignment (with or without a successive averaging step) until 

some convergence criteria are met (Lan et al., 2003). Accordingly, solving for feedback convergence 

involves achieving a close match between the origin-to-destination congested travel times used in 

applying travel model components and those that correspond to the ultimate assigned ink flows 

(Slavin et al., 2015). 

Boyce et al. (2008) compare three alternative feedback conditions: (1) providing direct feedback 

(i.e., no averaging of trip matrices or link flows); (2) averaging of trip matrices with constant weights, 

and (3) applying the Method of Successive Averages (MSA) to an existing travel forecasting model 

from Albany, NY. Averaging the trip matrix using constant weight values produce stable and highly 

converged solutions. 

The other approach is to solve trip distribution, mode choice, and trip assignment simultaneously. 

This is referred to as a combined model. These models address the effects of congestion by 

determining transport cost endogenously. The combined models use mathematical programming (i.e., 

linear or non-linear programs) under the framework of minimizing cost (Chang, 2006). Evans' (1976) 

partial linearization algorithm became the principle basis for the majority of combined-model 

research, while a full linearization algorithm was advocated by Florian and Nguyen (1975) and a 

route-based algorithm was suggested by Lundgren and Patriksson (1998). Florian has contributed to 

network equilibrium research with variable demand. Many of his methods during 1970s were 

implemented in EMME/2, and emphasized transit modes (Boyce and Bar-Gera, 2004, De Cea et al., 

2008).   

An interesting extension of the combined-model research in recent decades involves the 

incorporation of multiclass and multimodality of origin-destination, mode, departure time period, and 

route choices (e.g., Florian et al., 2002, Boyce and Bar-Gera, 2004, De Cea et al., 2005). Conversely, 

conventional combined models assume one homogenous user group. This technique is useful for 

applying models to large-scale urban areas. For instance, Boyce and Bar-Gera (2003) estimated and 

validated a multiclass, multimodal combined model at the same level of detail used by transportation 

planning professionals in the Chicago region. The result was a large-scale combined model in terms 

of the number of zones (1790) and road network size (12,092 nodes; 39,018 links). De Cea and 
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Fernandez (2001) developed a performance-demand equilibrium model to forecast passenger and 

vehicle flows in multimodal urban transportation networks with multiple user classes where demand 

models have a hierarchical logit structure. This research led to the development of ESTRAUS and 

related software. In many respects, it was considered to be one of the most detailed multiclass 

combined models implemented at the time of its creation. The implementation for Santiago had 13 

user classes, 3 trip purposes, 7 pure transit modes and 4 combined modes (Boyce and Bar-Gera, 2004).  

An overview of relevant research about mode choice models and solution algorithms in large-scale 

regional travel forecasting models has been provided in the above section. The aforementioned mode 

choice models and solution algorithms have been widely implemented in contemporary transit travel 

forecasting practice, including the regional travel forecasting models discussed in the case studies of 

this thesis.  

2.2.4 The transit assignment problem 

Transit assignment is also known as transit path choice problem.  The ultimate goal is to understand 

and model how transit travelers choose: 

 An appropriate boarding stop near to the actual trip origin; 

 A specific route from the set of routes serving the chosen stop; 

 A specific vehicle (or departure) amongst all departures from the chosen stop on the chosen 

route; 

 An appropriate destination station (or transfer location) based on the choices made above and 

the ultimate trip destination. 

As with all components of travel forecasting models, the most important premise of transit 

assignment models is that a traveler chooses a cost-effective path to complete his journey. To this end, 

the traveler selects amongst a choice set the combination of stops, vehicles and departures that 

minimizes the disutility.  In early models, these costs were estimated using simple, single path 

representations (Dial et al., 1967, Fearnside and Draper, 1971, Le Clercq, 1972).  Yet, in the transit 

assignment problem, the cost structure – including access time, wait time, in-vehicle time, transfer 

time and egress time – is very complex and dependent the choice set.  Moreover, the solution set is 

very complex in space – the number of stops and route alignments – and time – the number of 

possible departures / arrivals.  The traveler behavior also depends heavily on several difficult-to-
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quantify attributes including: the traveler’s knowledge of the system (i.e. personal knowledge of 

choice set); real-time information on system performance (reliability or vehicle loading); and 

passenger attributes (risk tolerance, trip purpose). Finally, the transit assignment problem may be 

considered static – once a path is chosen, the traveler does not revisit the choice set – or dynamic – 

where a traveler may deviate from the original choice and make a subsequent travel decision while in 

route.     

The complexity and quality of models for transit assignment have been evolving over time.  A first, 

important distinction was made by differentiating stops that were served only by a single route and 

those stops that were served by multiple routes.  For the latter case, the so-called common-line 

situation was defined.  For a stop served by multiple routes, only a subset of these routes may be 

considered “attractive” to the traveler in terms of the destinations served and the total travel time to 

connect to destination(s). Thus, a traveler departing from a stop with common lines choice set is 

limited to attractive departures (Spiess and Florian, 1989).   

In recent years, the effect of additional information on passengers’ path choice behaviors has been 

discussed. In the presence of reliable, real-time information, for example, remaining waiting time for 

a certain service, a passenger’s behavior can be different; whether to board the coming run of a line, 

waiting for the next run for the same line or another; or transfer to any of alternative services. Nokel 

and Wekeck (2009) discussed these issues with several comparative scenarios of information 

affecting passengers’ choice behaviors. They demonstrate that different assumptions result in diverse 

models of route choice on both boarding and alighting, and produce different splits of passenger 

volume into different paths.  

Contemporary models also consider the issue of vehicle capacity and seat-availability.  In highly 

utilized systems, the concept of failure-to-board (due to capacity limitations) has been paid growing 

attention in path choice models. As Fu et al. (2012) summarize, methods are utilized to monitor 

demand relative to capacity and when capacity is reached, additional boardings are prevented (Lam et 

al., 2002, Teklu, 2008, and Hamdouch and Lawphongpanich, 2008). More sophisticated models also 

include specifications as to who has the priority of being seated (Hamdouch et al., 2011, Leurent, 

2012). In these models, the different travel discomfort experienced by standing and sitting passengers 

are also quantified producing in-vehicle time costs that are formulated differently and, as a result, 

produce different behaviors. 
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Moreover, because transit service reliability also significantly affects passengers’ trip decisions as 

well as their perceptions on transit service, journey time variability (i.e., a reliability measure) is 

employed in some studies (Szeto et al., 2011, 2013). In these studies, it is observed that the journey 

time variability is in effect for not only in-vehicle time and wait time, but also walk and other stages 

of a journey. However, as Szeto (2011) pointed out the effect of variations of generalized journey 

time is not given much treatment into the decision of route choices in the existing transit assignment 

models.  

The current state-of-the-art practice in transit assignment includes those considerations listed above 

in one of two overarching approaches. Fu et al. (2012) describe frequency-based (also termed as 

headway- or line-based) models as those that assume travelers will choose the first arriving (attractive) 

vehicle from an origin stop.  This formulation typically applies to those transit travelers who are less 

familiar with a network and its performance.  The second approach is known as schedule-based (also 

termed as timetable- or run-based); in this case, travelers select a specific departure vehicle based on 

its overall properties – total travel time, arrival time, or reliability. 

In the frequency-based approach (Cepeda et al., 2006, Nokel and Wekeck, 2007), for single line 

stops, the wait times for passengers can easily be estimated as a function of the headway.  For short 

headways, the common practice is to assume wait times of one-half the headway.  For common line 

stops, wait times normally vary as a function of the proportion of total departures that are attractive 

departures.   

The schedule-based model structure (Poon and Tong, C.O., 2004, Nuzzolo and Crisalli, 2009) 

inherently includes specific time stamps for each vehicle in the system.  The transit network also 

represents run-based spatio-temporal graph that shows individually serial runs as scheduled in 

timetables and competitive lines (Fu et al., 2012).  As a result, this approach is computationally more 

expensive. Wait times in scheduled based models can be developed to reflect system reliability as 

well as disparate attributes of the traveler.  

To conclude, this subsection describes the transit assignment problem. Over time, modeling efforts 

have evolved from simple, time-based cost estimates to complex models of behavior that reflect a 

number of system and traveler attributes.  Contemporary models attempt to include transit reliability 

and capacity limitations, sometimes in the presence of real time information.  
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2.3 Mode Constants and Unaccounted-for Attributes 

The concept of mode constants is introduced in the previous chapter. In this section, mode constants 

identified in the literature will be discussed further. 

2.3.1 Mode constants in regional travel forecasting models 

De Witte et al. (2013) identified determinants of mode choices from 76 research papers in the US, 

Europe, and other areas. Among the research studies the authors reviewed, 64 papers included public 

transport modes, the focus of this study. As shown in Figure 2-1, the authors classified each 

determinant of mode choice into a number of categories.  

  

Figure 2-1: Classification of modal choice determinants based on number of papers reviewed (A. 

De Witte et al., 2013) 

The horizontal axis indicates whether a determinant is commonly studied, and the vertical axis 

shows whether a determinant is frequently recognized as significant. The variables belonging to the 

right-hand side of the graph (i.e., car availability, income, density, age, gender, employment, travel 

time and cost) are traditional determinants of socio-economic characteristics and level of service. 

Overall, these indicators were proven to be significant (i.e., they were identified in over 30% of the 

studies the authors reviewed). On the other hand, habits, familiarity, and experiences (which appear in 
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the upper left area of the graph) have been understudied, despite their tendency to significantly 

influence mode choice decision. 

Thus, these level-of-service or measurable attributes alone do not adequately account for the 

variation in mode choice behavior. In functional regional travel demand forecasting models, to deal 

with these errors, mode constants are added to (or subtracted from) the generalized cost (GC) of a 

given mode in the model. The justification for these mode constants is to include those immeasurable 

cost components that a traveler considers but are not explicitly included in traditional GC expressions. 

However, the use of mode constants without representing other qualitative or difficult-to-measure 

attributes creates some problems (FTA, 2006, Outwater et al., 2014). One is that any error introduced 

in other stages (e.g., person-trip tables, highway and transit networks, observed transit ridership 

patterns) of the regional travel forecasting procedures can be incorporated in the mode constants. The 

second problem is associated with project evaluation regarding user benefits. User benefit criteria 

defined by FTA in the U.S. has been a measure of the difference in the aggregate utility of different 

alternatives. Heavy reliance on mode constants has been shown to bias to this measure (Outwater et 

al., 2014). Due to the problems, recently, the project evaluation criteria regarding user benefits of 

FTA have been adjusted to use the number of trips on the project made by transit dependent persons 

(FTA, 2013).  

One way to improve mode choice models and heavy reliance on mode constants is to account for 

difficult-to-measure attributes and develop methods to include them exogenously in regional travel 

forecasting models. These research efforts will be described in the following section.  

2.3.2 Accounting for difficult-to-measure attributes  

One of the research streams on mode constants focuses on accounting for difficult-to-measure 

attributes in mode choices. The research has attempted to demonstrate that the influence of 

unobserved factors (i.e., magnitude of mode constants) may be reduced.  

Domarchi et al. (2008) take into account psychological factors - including attitudes, habits, and 

affective appraisal – on mode choice and attempt to add them into Multinomial Logit (MNL) models. 

Using revealed preference (RP) survey data, Domarchi et al. (2008) incorporate these factors through 

dummy variables (i.e. high, medium, and low propensities to use cars and public transport, 

positive/negative emotions toward each mode, etc.) in utility functions. Results show that when 
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factors were added to the discrete choice model framework, the fitness and statistical significance of 

these models were improved. With the inclusion of habit variables, mode constants reduce their 

relative importance. Similarly, Cherchi and Manca (2011) analyze the issue of accounting for inertia 

effects. Inertia represents the tendency of individuals to be consistent with their past choices when 

they are faced with new situations. Some indicators of inertia (or habits) include car availability, 

miles travelled, seasonal public tickets, and number of trips per week. 

Evans et al. (1997) present a quantitative approach to incorporating the effects of the transit access 

environment into a transportation planning model. The authors define a “transit friendliness factor” 

(TFF) which varies as a function of the characteristics of the station area, including pedestrian- 

friendly design (e.g., sidewalks, street crossing) and appropriate station amenities (e.g., presence of 

benches, shelters, bicycle racks, lighting etc.). TFF in the future year is defined as the average change 

in population and employment density. The authors demonstrate a sizable reduction in the mode 

constants for transit as a result of the inclusion of the transit friendliness factor in mode choice models.   

Outwater et al. (2014) identify and quantify traveler behavior that affects the use of premium transit 

services (i.e., fixed guideway systems) in different urban contexts, including Salt Lake City, Chicago, 

and Charlotte. The authors categorize three important attributes that are not traditionally included in 

mode choice models: Station/stop design features (e.g., real-time information, security, shelter, etc.), 

on-board features (e.g., seating availability, seating comfort, cleanliness etc.) and other features (e.g., 

reliability, schedule span, and others). They also demonstrate how premium transit service attributes 

can be incorporated into travel models. The authors concluded that the combined importance of all 

premium service characteristics (both for commute and non-commute trips) is between 13 to 29 

minutes of in-vehicle time. However, as expected, considerable variation exists in the importance of 

the premium service attributes among different cities. 

Hensher et al. (2003), Litman (2007), Casello et al. (2009) have all quantified the reliability of 

transit services. Hensher et al. (2003) estimates that an additional minute of delay is equivalent to 2.1 

additional minutes of in-vehicle-time, while Litman (2007) suggests an additional minute of 

unexpected delay is 3.7 times the cost of an additional minute of in-vehicle-time. Casello et al. (2009) 

evaluated the impact of unreliable service on generalized transit user costs using a simulation model 

of bus arrivals and passengers’ desired arrival times. The results show that increasing reliability of 

station arrivals can decrease a transit user's generalized costs significantly, by as much as 15%.  
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Douglas et al. (2006) quantify station/stop comfort by considering cleanliness, the presence of 

shelter, availability of seating, and the caliber of the station itself. To quantify the importance of each 

of these attributes, the authors take the following approach. For each variable, the authors quantify the 

percent improvement that would produce an equal reduction in generalized cost as a 10% reduction in 

travel time. In essence, this is an elasticity calculation. The results are that station amenities would 

need to be improved by 19% in terms of cleanliness, 17% for station structure, 7% for shelter, 5% for 

seating, and 5% for the platform surface. In this case, cleanliness of the station is nearly twice as 

important as the in-vehicle time.   

Real-time information is known to reduce the costs (specifically perceived time costs) associated 

with wait time and transfers. Spitz et al. (2007) in a study of New Jersey BRT estimate the value of 

real-time information as equivalent to a 5-minute reduction of in-vehicle time. In the same study, 

Spitz et al. (2007) also quantify safety improvements. Adding surveillance cameras and emergency 

call buttons are the most highly-valued attributes, equivalent to a 7-minute improvement in in-vehicle 

time in the analysis of 11 New York City train stations.  

However, it should be noted that some of these values, particularly for quality-of-service attributes, 

significantly depend on the context, as implied by Outwater et al. (2014). For example, reliability and 

real-time information in suburban areas with low-frequency transit services may be more highly 

valued compared to large urban areas with high-frequency services.  

2.3.3 Implementation of difficult-to-measure attributes in regional travel forecasting models 

These studies have successfully measured difficult-to-measure attributes such as habits, experiences, 

perceptions, the transit-access environment, reliability, real-time information, safety, and comfort.  

However, in most practical implementations, practitioners have attempted to account for the 

aggregate impact of all unmeasured attributes rather than focus on the particular attributes. Outwater 

et al. (2014) summarized case studies on application methods of unmeasured inputs into regional 

travel forecasting models as shown in Table 2-1.  
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Table 2-2: Model application of difficult-to-measure attributes in regional travel forecasting 

models (Outwater et al., 2014) 

 Case study Attributes 
Model Application 

Phase Technique 

1 FTA New/Small Starts Modeling 
Guidance 

Reliability, branding, 
visibility, learn-ability, 
schedule-free service, 

hours of frequent service, 
passenger amenities 

Mode 
Choice 

Incremental bias 
constant 

2 TCRP 118-BRT Practitioner’s 
Guide 

Running ways, station 
amenities, vehicle 

attributes, service patterns, 
ITS applications and 

branding 

Post-model 
Percentage 

adjustment to 
ridership 

3 Chicago Transit Authority & Metra 
New Starts Alternatives Analysis 

Walk-ability, unmeasured 
rail preferences 

Auto 
ownership, 

path-
building, 

mode choice 

Utility variable, 
travel time discount 

(15%) 

4 

Discounted travel time coefficient 
(models for Denver Regional 

Transportation District and New 
York Metropolitan Transit 

Authority) 

Sum of all unmeasured 
LRT attributes 

Mode 
Choice 

Discounted travel 
time coefficient 

(30% for Denver, 
25% for New York) 

5 Southeast Florida Regional 
Planning Model (ver. 6.5) 

Sum of all unmeasured 
premium mode attributes 

Mode 
Choice 

Incremental mode-
specific bias 

constant 

6 Lower Manhattan-Jamaica/JFK 
Transportation Project Seating availability 

Mode 
Choice 

(suggested) 
Utility variable 

7 Chicago Transit Authority Smart 
Card Activity Analysis 

Revealed bus vs. rail 
preference 

Mode 
Choice 

(suggested) 

Discounted travel 
time (42%) and 

wait time 
coefficients (34%) 

 

As presented in Table 2-1, only one case study of Lower Manhattan-Jamaica/JFK Transportation 

Project includes specific seating availability attribute in travel models directly.    

One approach for the regional travel model implementation of these variables involves adopting 

lump-sum mode constants as FTA New/Small Starts Modeling Guidance (2007) and Southeast 

Florida Regional Planning Model (ver. 6.5) in Table 2-1. This method uses incremental values 

according to detailed transit modes (e.g., light rail, arterial BRT, peak commuter rail, heavy rail, and 

streetcar, etc.). In the FTA modeling guidance for the New/Small Starts programs, they allow for the 
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maximum adjustment of unmeasured attributes for planning for guideway transit. The unmeasured 

guideway attributes are categorized into three factors: (1) guideway-like character (e.g., reliability, 

visibility, schedule-free service), (2) span of good service, and (3) passenger amenities at stations. 

When systems are constructed with high reliability, high frequency, service throughout the day, and 

well designed-stations, the modeler may credit this system with reductions in generalized costs - i.e. 

positive utility for these features. The credits can range up to 8, 3, and 4 minutes respectively for each 

category, or a maximum total of 15 minutes.  

Alternatively, instead of adjusting mode constants in regional travel models, the FTA (2007) allows 

for up to a 20% discount on perceived travel time for well-designed transit. However, applied values 

from empirical studies are reported to range from 15% to 42% as shown in the case study of Chicago 

and New York (case study number 3, 4, and 7) in Table 2-1. In the same table, Kittleson & Associates, 

Inc. et al. (2007) in the TCRP report 118 apply a percentage-based ridership bonus for BRT services 

of up to 25% considering time, frequency, and cost, to account for the perceived benefits of various 

BRT amenities.  

Chen and Naylor (2011) explicitly include the BRT mode in their regional demand model. While 

many agencies in North America consider the BRT mode constant to be the same as LRT or local bus 

in their models, Chen and Naylor (2011) derived new BRT constants from SP survey. The inclusion 

of the BRT mode constant gives BRT ridership a variation of approximately 15% (higher or lower), 

compared to the result of applying a local bus or LRT constant to BRT.  

Outwater et al. (2014) conducted an implementation test with premium transit service. Instead of 

revising mode choice models for the non-traditional attributes, the authors revised mode choice by 

manipulating the costs associated with certain transit path choices. Credits were given for "premium" 

service and additional costs were added to lower-quality service. The magnitudes of the credits or 

charges were derived using survey data from Chicago and Charlotte. Although the results showed that 

the inclusion of premium service attributes could reduce the influence of unobserved variables in 

mode choice, transit ridership forecasting errors were higher compared to those in existing models. 

Moreover, the FTA (2007) reported that the usage of the credits (i.e., direct adjustment of mode 

constants) is more likely to result in an overestimation of the guideway-mode forecast for initial 

projects than forecasts for system expansion. When the lump-sum credits (of difficult-to-measure 

attributes) are directly incorporated into the utility functions, the adjustment leads to higher ridership 
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on these guideway modes. Accordingly, the guidelines recommend that credits be applied only in the 

estimation of user benefits, and not for ridership forecasts. 

Although some case studies incorporating difficult-to-measure attributes in regional travel 

forecasting models have been conducted in recent years, their application results have demonstrated 

only partial success in terms of transit ridership prediction accuracy. Further study is necessary to 

quantify and include difficult-to-measure attributes in regional travel forecasting models without 

compromising transit travel forecasting accuracy. To this end, the goals of the research presented here 

are to quantify the magnitude of mode constants in several operating travel forecasting models and to 

explore the use of AVL/APC data as means to reduce these constants. 

2.4 Spatial Aggregation of Stop-level Activities 

As introduced in Chapter 1, one of the challenges of deploying AVL/APC data for mode choice in 

regional travel forecasting models is the lack of proper analytical methods to link stop activities to the 

actual zones in which they occur. Some researchers (Furth et al., 2006, Wilson et al., 2009, Nassir et 

al., 2011) have noted that it is necessary to convert on-off counts at stops into trips in traffic analysis 

zones (TAZs) in order to use AVL/APC/AFC data for travel demand modeling. Nassir et al. (2011) 

suggest that stop-level Origin-Destination estimation should be expanded to a zone- or parcel-level 

since the activities originate not from a stop but from home or attraction points. Wilson et al. (2009) 

also indicate that the path choice modeling approach can be extended to the full transit path choice 

problem (including access and egress links) by using home and work address information that may be 

available for smart card holders. However, very few research efforts have been made on this subject.  

Another challenge in the use of these new data sources involves producing full trip information. 

Transit systems in North America typically require payment at boarding. Thus, information can be 

gathered on a user's boarding point. But, without requiring a passenger to "tap out" - indicate the 

alighting point – it is a difficult task to identify trips – origin-destination pairs for travelers. This 

problem is known in the literature as the Origin-Destination Matrix Estimation (ODME) problem. 

Using surrogate measures from AVL/APC and AFC data has been a significant research focus. To 

infer destination, Barry et al. (2002), Farzin (2008), Wilson et al. (2009), and Nassir et al. (2011) use 

a method similar to the trip-chaining approach, which assumes that the destination of each trip can be 

inferred from the origin of the next AFC (boarding) transaction point. In addition to generating  
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alighting stop alternatives, recent research expands the method from rail-to-rail systems to rail-to-bus 

systems (e.g., Wilson et al., 2009), and detects transfer trips by considering service headway as well 

as transfer time thresholds (e.g., Nassir et al., 2011).  

To use AVL/APC data in model calibration, it may not actually be necessary to identify the exact 

stop at which a passenger alighted. Instead, it may be sufficient to know that a passenger left the 

transit system within a zone. An approach to quantify this kind of activity was presented by Lee et al. 

(2012) who defined stop aggregation models. The methods solve the problem of AFC data that 

provide the current location of the transaction instead of the actual boarding stop. For aggregate 

representation of transit stops, the proposed methods are based on distance between stops, textual 

similarity of stop names, and catchment. By representing nearby multiple stops as a single node, the 

methods can be applied in OD estimation process with reduced complexity. The results suggest that 

depending on the scale of the analysis, error rates were about 18%. In their subsequent study, Lee et 

al. (2013) extend the aggregation techniques to include temporal considerations and more 

disaggregate land use data, understanding that times of day are likely to generate direction of travel to 

or from specific land uses.  

Farzin (2008) presents a method of constructing an OD matrix at the zonal-level for bus systems 

using fare card data and global positioning system (GPS) data in Sao Paulo, Brazil. In this research, 

each AVL record is affiliated with a particular bus stop, and each stop has an associated zone 

assignment. Farzin (2008) compares the OD patterns from 2007 to the OD matrix using year 1997 

household survey data. The author finds that OD patterns between major zones are reasonably similar 

but a sizable discrepancy in OD trips exists between the two methods. The author argues that this 

discrepancy is attributed to (1) no consideration for the change in Sao Paulo's route structure between 

year 1997 and 2006, (2) limited number of buses with AVL equipment (i.e., only passengers using a 

bus with AVL equipment are captured in the ODM), and (3) no inclusion of cash-payment passengers. 

However, it should be noted that the zone definitions may have also been different between the two 

methods. In Farzin's ODM, a zone is a group of places where passengers are in when they swipe their 

cards on the bus. In fact, this zone is different from that of travel demand modeling where the 

activities are generated or attracted. Consequently, the method of aggregating stop-level counting at 

the zonal-level may not generate results that are compatible with the travel demand model. 
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Arguably, the best research effort available for the issue of assigning stop counts to TAZs was 

conducted by Furth et al. (2007). They estimate the impacts of changing stop locations on user costs 

with assigned transit demand at the parcel level in Boston and Albany. The authors simplify user 

costs as a function of walking access, and estimate walking distance from each parcel to its closest 

stop. Their approach of assigning stop counts to its parcels is to solve the many-to-one (i.e., parcels to 

a stop) trip distribution problem. Parcel level demand is determined by assigning stop on/off counts as 

a function of strength between two locations represented by (1) a parcel's size attributes in association 

with its land use type; (2) "propensity", which is an exponential distance decay function type term 

(i.e., 𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.∗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ); and (3) competition factors. The competition factors reflect the 

fraction of transit demand that is drawn away to other transit lines.  

Although the model presented by Furth is conceptually well-designed and considers comprehensive 

issues in walk-access to transit at a semi-aggregate (i.e., parcel) level, several issues arise in the 

application process. First, as the authors recognize, the method of determining coefficients, 

parameters, and factors in their models are crude and arbitrary. In their case study, the first term of the 

model (i.e., land use and intensity) requires a large amount of trip generation coefficients that need to 

be calibrated or determined based on expert judgment. The number of coefficients that need to be 

determined in the case study totals 138. The data needs and approaches make this model difficult to 

replicate.  

If AVL/APC data are to be used as a means to reduce the magnitude of mode constants, a robust 

method to assign boarding locations to zonal origins (and alighting locations to zonal destinations) is 

necessary.  This research presents and tests the validity of four methods to solve this problem. 
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2.5 Chapter Summary 

To supplement the introduction presented in Chapter 1, the literature related to four issues on the 

improvement of transit ridership forecasting has been examined in this chapter. The main findings of 

the review are as follows. 

First, the most common structures for travel forecasting models were reviewed.  Four-step, activity 

based, data driven models focusing on STOPS (Simplified Trips-on-Project Software), and direct 

demand models were presented and assessed. While each model has advantages – simplicity of its 

solution, ability to account for travel tours, and relatively less effort for model calibration and 

validation, the accuracy of stop-level predictions – all of these formulations have certain limitations to 

represent the complexity of traveler behavior. 

Second, the advancement of mode choice models, solution algorithms, and transit assignment 

problems were reviewed. To account for systematic taste variation, socio-economic variables are 

commonly added to utility function either in a linear-in-the attributes structure or interaction with 

LOS variables. In a large-scale regional travel forecasting model, market segmentation is commonly 

applied to capture taste heterogeneity in mode choice. The challenges associated with pre-determined 

MS include a lack of a priori knowledge of the correct segmentation methods, the exponential growth 

of combinations of market segments, and the cost of collecting sufficient data to calibrate multiple 

segment utility functions. 

On the subject of advancing solution algorithms in regional travel forecasting models, research 

over the last decade has focused on representing mutual responses between supply and demand, and 

achieving consistency in model application, namely, feedback mechanisms and combined models. 

Behavioral motivation for models with feedback loops is to reflect the effects of transportation 

improvements on land use, trip frequencies, trip distribution, and mode choice. All steps in regional 

travel forecasting models are related each other through the feedback loops which seek consistency in 

congested travel time. Therefore, it should be noted that error sources that impede feedback 

convergence can also affect errors of results generated from other steps including mode choice, trip 

distribution, or trips generation. The combined models in recent decades have been extended to 

incorporate multiclass and multimodality of OD, mode, departure time period, and route choices to 

implement models for large-scale urban areas.  
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An overview of the transit assignment problem is also presented. Increasing sophisticated research 

efforts take into account transit reliability, and boarding failure caused by the vehicle capacity or seat-

availability when modeling travelers’ behaviors.   

Third, an overview of mode constants and their impact on regional travel demand forecasting 

models was presented, with an emphasis on the implementation of unaccounted-for attributes. The 

significant determinants of transit mode choice were discussed. These include (1) traditionally well-

known factors such as car availability, income, density, age, gender, employment, travel time and cost; 

and (2) significant but yet understudied factors such as habits, familiarity, experiences, transit access 

environment, reliability, real-time information, stop comfort, and safety.  

Traditional measurable attributes alone do not adequately account for the variation in mode choice 

behavior. To deal with these errors, regional travel demand forecasting models typically include mode 

constants in the generalized cost (GC) of a given mode. However, the use of mode constants without 

representing other qualitative or difficult-to-measure attributes creates some problems. One is that any 

error introduced in other stages (e.g., person-trip tables, highway and transit networks, observed 

transit ridership patterns) of the regional travel forecasting procedures can be incorporated in the 

mode constants. The second problem is that heavy reliance on mode constants has been shown to bias 

to user benefit estimates. One way to improve heavy reliance on mode constants is to account for 

difficult-to-measure attributes and realistically implement in regional travel forecasting models. 

Recent research on mode constants has attempted to account for the aforementioned difficult-to-

measure attributes in mode choices, incorporating them in mode choice models, and proving that the 

influence of unobserved factors (i.e., magnitude of mode constants) has been reduced. In spite of 

improvements in quantifying difficult-to-measure attributes in mode choice models, a gap remains in 

practical applications. In recent practice, difficult-to-measure attributes are implemented in mode 

choice processes either by adopting lump-sum mode constants (which have incremental values with 

respect to detailed transit modes) or by discounting perceived travel time coefficients (FTA, 2007, 

Chen and Naylor, 2011). Outwater et al. (2014) have also conducted implementation tests with 

quantified premium (i.e., fixed guideway) transit services. However, the application efforts have 

shown partial success. While reducing the influence of unobserved attributes on mode choice, transit 

ridership forecasting errors have increased compared to existing models. Moreover, since the usage of 
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the credits of mode constants is more likely to result in overestimation of starter project, FTA (2008) 

recommended that these be applied only when estimating user benefits.  

Finally, while automatically collected data (ACD) are increasingly popular, most research focuses 

maninly on stop-level analysis since the ACD provides direct values of on/off counts at each stop.  

Little attention has been paid to applying the data to regional travel demand modeling procedures, 

particularly for mode choice and calibrations. One of the main difficulties of incorporating APC data 

to the demand modeling process is the lack of appropriate and proven methods to infer trips at the 

traffic analysis zone (TAZ) level from boardings and alightings at each stop. The need to convert or 

expand stop-level estimation to full transit trips by connecting origines/destinations of activity is 

gradually being recognized (Barry et al. 2002, Furth et al. 2006, Chu et.al. 2008, Wilson et al. 2009, 

and Nassir et al. 2011).  
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 Chapter 3

Mode Constant Magnitudes 

3.1 Introduction 

A common component of all mode choice models (i.e. conventional four-step, combined, or activity 

based models) is a need to represent travel cost (or disutility) for available modes between origin- 

destination pairs. These disutilities are most commonly measured as linear combinations of time and 

out-of-pocket expenses. The models typically have various utility functions that differ by traveler 

type and by trip purpose. Despite this disaggregation, mode choice models often systematically over- 

or underestimate a given mode's utilization when only "measurable" costs are considered.  

One difficult-to-measure attribute in utility functions is a traveler's perception of individual modes 

or technologies. Consider an example where the measurable components of two utility functions – 

one for private auto and one for bus transit – produced equal disutilities. In most cases, people with 

access to a private car would choose the car in this case, presumably due to attributes of the car that 

are “better” than transit – potentially more control over departure time, path choice, return time, etc.  

But, the probability models would estimate equal likelihood of choosing car or bus. 

To deal with these kinds of errors, utility functions usually include “mode constants”. These 

constants are added to (or subtracted from) the generalized cost of a given mode’s utility function 

based on market segmentations in the model. In a practical application, an initial value of the mode 

constants may be estimated through stated or revealed preference surveys. These estimated mode 

constants represent travelers' preference for one mode relative to another. The mode constant may 

also be used to calibrate the mode choice models, such that the error in transit mode share in a 

specific market segment is minimized throughout the study area.  

This chapter describes details about mode constants used in the formulation of regional travel 

demand models. Using representative data from six cities in Canada and the United States, this 

chapter focuses on (1) demonstrating an understanding of the state of practice with regards to model 

formulations; (2) estimating the overall magnitude of various model constants; and (3) quantifying the 

importance of mode constants relative to the measurable components of utility functions in mode 

choice models. To accomplish the first goal, a succinct review of several contemporary models from 

throughout North America and a sample computation for disutility are provided in the first section. In 
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the second section, the size of mode constants is  investigated using a well-known technique amongst 

modelers – converting the magnitude of the mode constant to an implied value of in-vehicle-time 

(IVT) using data from six regional travel forecasting models used in cities from across North America. 

For the final investigation, the question I aim to answer is what portion of travel cost between an 

origin and a destination is comprised of a fixed mode constant. This is important because a very large 

mode constant relative to measurable attributes can render a model insensitive to changes in systems’ 

unmeasured performance including reliability, comfort, convenience, visibility, access environment, 

and safety, either through investments in new infrastructure or improved operations. The third 

analysis is informed using data from the Philadelphia metropolitan region and the Washington D.C. 

region. 

3.2 Data 

The review of the magnitude of mode constants is based on mode choice models from recently-

developed and implemented regional travel forecasting models. The review covers six cities in North 

America: Calgary, Denver, Ottawa, Philadelphia, Washington D.C., and Winnipeg. The data were 

obtained through an informal internet survey as well as individual contact with travel demand 

modelers responsible for the model development or implementation. While the list of cities surveyed 

is not exhaustive, the data do reflect a variety of city sizes and governance structures (See Table 3-1) 

from which generalizable conclusions can be drawn. 

Internet survey questionnaires (see Appendix A) were distributed to members of the Travel Model 

Improvement Program (TMIP) under the U.S. Federal Highway Administration. The TMIP on-line 

community is an open discussion group related to issues on transportation modeling and analysis. 

This group has subscribers representing travel forecasting professionals around the globe.   The 

survey dates were January 30 - February 28, 2014; responses were received from three municipalities 

- Denver, Ottawa, and Cincinnati. 1 Additionally, the same questionnaire was distributed through 

individual e-mail to the modeling staff of each city in Canada. Calgary and Winnipeg provided data.  

From the survey, the following information was collected: 

                                                      
1 In this study, the data from Cincinnati were excluded due to missing responses.  
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• General information of mode choice models: calibration year, types of models, structure of  

models etc.; 

• Calibration coefficients and constants of mode choice. 

For the second analysis (Section 3.5), Philadelphia and Washington D.C. provided data including 

mode choice inputs corresponding to the year of calibration, application files/data, GIS shape files 

representing zone area system, output data and relevant documentation from the regional travel 

forecasting models (2010 TIM version 2.1 and 2011 TPB version 2.3.38, respectively). Given this 

additional information, the second component of the analysis (understanding the relative impact of 

mode constants) could be completed for these two models. 

Table 3-1 summarizes the general information gathered about the mode choice models of the six 

cities. The mode choice models were all developed or updated between 2001 and 2014. Denver and 

Ottawa have adopted tour-based/activity-based travel demand forecasting frameworks while the other 

cities apply four-step travel demand models (see section Chapter 2 for a description of the differences 

amongst these models). Philadelphia and Washington D.C. are relatively larger in population size (6 

million and 5.9 million, respectively), while the populations of the other cities range from 0.66 

million (Winnipeg, year 2011) to 2.7 million (Denver, year 2013). Most of the mode choice models 

follow a nested logit structure.  

As noted in Chapter 1, many models employ a so-called nested structure, where a first choice is 

made between general categories of modes (i.e. auto versus transit) and a second choice is made from 

categories within a mode (i.e. rail versus bus transit, or auto driver versus auto passenger). This 

nested structure requires that several transit sub-modes be defined. In my review of the models (and 

in Table 3-1), I concentrate on the modal constants associated with these transit modes. Table 3-1 

presents a summary of the transit representation including the nesting structure and the sub-modes 

used in each of the models.  
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Table 3-1: Overview of mode choice models from six cities' regional travel forecasting models 

City Population 

Model 
Description 
(Calibration 

year) 

Structure of mode choice models 2) 
(Home based work trip, AM peak) 

Calgary 1.1 mil 
(2011) 

Nested logit 
(2001) 

 1) 

Denver 2.7 mil  
(2013) 

Nested logit, 
Tour-based 
(2007)  

 

Ottawa 0.83 mil 
(2011) 

Nested logit 
Activity-
based 
combined 
with 4-step 
(2014)  

 

Philadel-
phia 

6.0 mil 
(2013) 

Nested Logit 
(2010) 

 
 

Washington 
D.C. 

5.9 mil 
(2013) 

Nested logit 
(2012) 
 
 
  

 

Winnipeg 0.66 mil 
(2011) 

Multinomial 
logit 
(2012) 

Auto driver, auto passenger, transit, walk/bicycle 

1) Nested logit structure for mode and time-of-day,  
Peak crown time period: last 1/2 hour, the peak shoulder: 1 and 1/2 hours for a total peak period of 2hours. 
2) SOV: Single occupancy vehicle, HOV: High occupancy vehicle, P&R: Park and ride, K&R: Kiss and ride, 
B&R: Bike and ride, BRT:  Bus rapid transit, LRT: Light rail transit 
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3.3 Understanding Contemporary Travel Forecasting Model Formulations 

For this section of the thesis, the primary concern is to provide an explanation of the function of 

contemporary travel forecasting models’ utility functions used in mode choice analyses. As described 

in chapters 1 and 2, models’ utility functions are often disaggregated based on trip purpose (e.g. work, 

school, shopping) and trip time (e.g. am or pm peak). In this section, I present data for one of these 

scenarios – typically a work trip made in the am peak. 

Recall that the normal form of a utility function involves a linear weighting of trip cost components, 

including in-vehicle travel time (IVT), out-of-vehicle travel time (OVT) (e.g., transfer time; walking 

for access, egress, or transferring; waiting time), and fare or out-of-pocket cost. For each of these cost 

components, a series of coefficients are estimated to represent the perceived relative importance.   

Cost perceptions for in-vehicle travel time are known to vary based on mode of travel. The simplest 

representation of this difference is to generate different cost coefficients for auto and transit in-vehicle 

times. In some, more complex models, the perception of in-vehicle time can also vary based on 

disaggregate modal representations. For example, time in an automobile may be perceived differently 

as a passenger than as a driver. Moreover, the perception of transit IVT may differ if traveling by bus, 

Light Rail Transit, or Metro.   

Different cost representations are often used when a trip is multimodal versus unimodal. For 

example, auto in-vehicle time may be perceived as less onerous when an entire trip is made by auto 

versus when auto is being used to access transit. To account for this phenomenon, some models 

define specific multimodal combinations, such as auto access to transit, and estimate appropriate 

coefficients for each of the combinations. Commonly considered multimodal trips include drive to 

transit, resulting in either being dropped off (kiss-and-ride) or parking and transferring to transit 

(park-and-ride).   

Finally, models are often constructed to recognize that travel costs are perceived differently based 

on: 

• the travelers’ income level. Generally, lower income travelers tend to represent in the 

models as perceiving transit less negatively than higher income travelers.   
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• the area type for which the travel originated or was destined. Travel to and from higher 

density areas tends to represented in models as less costly by transit than similar trips to 

lower density areas. 

3.3.1 Cost perception in studied models 

Normally, travelers perceive different portions of trips as more or less onerous. For example, a 

traveler may perceive 10 minutes of waiting time (at a transit stop) as significantly longer than 10 

minutes of travel time in the transit vehicle. To account for these different perceptions, a convention 

has been adopted of weighting out-of-vehicle time (e.g., walk and wait time of transit) as two to three 

times as onerous as in-vehicle time (Bruzelius, 1979; MVA et al., 1987; Steer Davies Gleave, 1997). 

This convention was widely applied across all six cities.  

Quantitatively, the treatment of the perception of travel costs can be measured by the ratio of 

coefficients for out-of-vehicle-time (OVT) and in-vehicle-time (IVT). For example, from Table 3-2: 

Philadelphia, this ratio for bus mode is computed to 2.5 (i.e., -0.0625/-0.025). This means that bus 

transit users perceive OVT as 2.5 times as onerous as IVT. 

As shown in Table 3-2, in Philadelphia, this ratio ranges from about 2.5 to 4 depending on modes; 

in Washington D.C. and Denver the ratio ranges from about 1.5 to 2.5 depending on out-of-vehicle 

time components. In Ottawa, the values span from 1.4 (drive-access time) to 5.0 (number of 

boardings). The largest range is in Winnipeg, where the minimum is 1.9 (wait time) and the 

maximum ratio is 10.6 (number of transfers). In Canadian cities, those maximum values of 3.1 

(Calgary), 5.0 (Ottawa), and 10.6 (Winnipeg) indicate ratios of the number of transfers to the in-

vehicle time. This means that transit users in these cities perceive number of transfers as significantly 

more onerous (three times, five times, and ten times, respectively) than travel time in the transit 

vehicle. 

Table 3-2: Perception of travel costs: ratio of OVT/IVT 

City Calgary Denver Ottawa Philadelphia Washington 
D.C. Winnipeg 

Out-of-vehicle time 
/ In-vehicle- time 

ratio 
1.5 - 3.1 1.5 - 2.5 1.4 - 5.0 2.5 – 4.0 1.5 - 2.5 1.9 – 10.6 
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3.3.2 Cost representation in studied models 

Table 3-3 presents the components of the overall utility functions for each of the six models studied.  

In-vehicle times are calculated endogenously to the model and are weighted using coefficients which 

are typically mode specific. For example, the City of Calgary model has a coefficient for both auto in-

vehicle time (-0.088) and transit in-vehicle time (-0.0597). The City of Winnipeg’s model 

differentiates between in-vehicle times for auto drivers, auto passengers and transit users. In Ottawa, 

the model employs several coefficients for in-vehicle time that represents the quality and location of 

transit services: a general IVT coefficient; an IVT coefficient specific for travel along the City’s 

higher order transit way; and two additional coefficients that vary based on stop density. 

The models for Denver and Philadelphia use multimodal combinations. For example, in 

Philadelphia, trips that involve driving access to transit are defined as D-trn. Here, the in-vehicle time 

coefficient depends on the type of transit used. A traveler who drove to a bus stop would have a 

coefficient (Bus_IVT) of -0.0250 for every minute of in-vehicle time; if the same traveler drove to a 

subway stop, each minute of travel would be multiplied by Subway_IVT, or -0.0188. In Denver, in 

conjunction with a general IVT coefficient, the model has two types of coefficients for the proportion 

of local bus IVT out of total transit IVT (-0.677); and for the proportion of driving access time out of 

total IVT (-1.433). For example, if the local bus time (that represent low quality-of-service) out of  

total transit time increases or driving access time out of total IVT increases, the disutility (cost)  

increases in addition to a general IVT. 

Out-of-vehicle times (e.g., access time, waiting time, and number of transfers) vary depending on 

the disaggregation level of OVT cost components. For example, the model for Philadelphia estimates 

total OVT for walk-access and drive-access, respectively, and every minute of total OVT is 

multiplied by -0.0625. On the other hand, the model for City of Ottawa employs four OVT 

components, and their associated coefficients are -0.0684 for wait time, -0.053 for walk time, -0.114 

for number of boardings, and -0.0308 for drive-access time, respectively. In this case, a traveler 

perceives that transferring (number of boardings) is twice (-0.114/-0.053) as onerous as walking to 

transit. Again, Table 3-3 summarizes a subset of the data; a full compilation of all model components 

is contained in Appendix B. 
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Table 3-3: Summary of mode choice model calibration coefficients in the study cities 

 Philadelphia (GPR) Washington D.C. (MWCOG) City of Calgary 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff. Attributes Modes 

Applied Coeff. 

In-vehicle 
time 

Bus_IVT 
BRT_IVT 
LRT_IVT 
Subway_IVT 
Rail_IVT 

Auto, W-trn, D-trn 
Auto, W-trn, D-trn 
Auto, W-trn, D-trn 
Auto, W-trn, D-trn 
Auto, W-trn, D-trn 

-0.0250 
-0.0238 
-0.0213 
-0.0188 
-0.0150 

IVT DA, SR2, SR2+, WK-
Commuter rail, WK-bus, 
WK-bus/metro, WK-metro, 
PNR-4 transit modes,  
KNR-4 transit modes 

-0.02128 Car IVT 
Transit IVT 

Auto, PNR 
Transit,PNR 

-0.0880 
-0.0597 

Out-of-
vehicle 

time 

D-trn_ACC 
OVT 
# transfer 

D-trn 
Auto, W-trn, D-trn 
W-trn, D-trn 

-0.0625 
-0.0625 
0.0000 

Initial wait, transfer 
wait,board time, 
park time (PNR) WK-4 transit modes , PNR-4 

transit modes, KNR-4 transit 
modes 

-0.05320 Walk time, 
wait time Transit, PNR -0.0910 

# transfer 0.00000 # transfer Transit, PNR -0.1858 
Access time, other 
walk time -0.04256 Park wait 

time Auto -0.2727 
Access time -0.03192 

Constants 

Income constants Income constants Mode constants 
Low income  W-trn 0.675 Low income  WK-4 transit modes 2 C_Car 1p car1p 0 
Low income D-trn 0.300 High income  WK-4 transit modes -2 C_Car 2p car 2p -1.3733 

Area-type constants Mode constants (example of Seg.1 and Seg.3) C_Car 3p+ car 3p+ -3.3787 
    Seg. 1 Seg. 3    
Den12_W-trn 
Den12_D-trn 
Den3_W-trn 
Den3_D-trn 
Den4_W-trn 
Den4_D-trn 
Den56_W-trn 
Den56_D-trn 

CBD 
CBD 
Urban 
Urban 
Suburban 
Suburban 
Rural 
Rural 

-0.075 
-1.125 
0.000 

-0.900 
-0.475 
-0.125 
-1.125 
0.000 

Auto 
Transit  

0.0000 
3.7245 

0.0000 
6.6777 

C_Transit transit 3.8696 
C_D-trn PNR -2.5134 

Transit 
 WK-access 

PNR-access 
KNR-access 

 
0.0000 

-3.7643 
-7.3352 

 
0.0000 

-8.0902 
-11.2737 

   

   
Walk-trn 

WK-metro 
WK-commuter rail 
WK-bus 
WK-bus/metro 

 
0.0000 

-0.8073 
-1.4496 
-1.4604 

 
0.0000 

-5.6499 
-9.0773 
-8.5955 

   Mode constants 

PNR-trn 
PNR-metro 
PNR-commuter rail 
PNR-bus 
PNR-bus/metro 

 
0.0000 

-0.3935 
-2.4506 
0.8506 

 
0.0000 

-2.3531 
-9.5804 
-7.8945 

 
   

C_W-trn 
C_D-trn 

W-trn 
D-trn 

-1.175 
-1.425 

KNR-trn 
KNR-metro 
KNR-commuter rail 
KNR-bus 
KNR-bus/metro 

 
0.0000 
3.5730 
1.2609 
5.7435 

 
0.0000 

-0.1115 
-3.9039 
0.8457 
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Table 3-3: Summary of mode choice model calibration coefficients in the study cities (cont'd) 

 Denver (DRCOG) City of Winnipeg City of Ottawa 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff.  Attributes Modes 

Applied Coeff. 

In-
vehicle 

time 

IVT auto, W_trn,  
D-trn -0.020 IVT Auto drive -0.064 Transit IVTT 

Transit 

-0.0228 

Local bus time/total 
transit IVT 

W_trn,  
D-trn -0.677 IVT_Passenger Auto passenger -0.078 IVTT transit 

way 0.0128 

D-trn_ACC/total 
IVT D-trn -1.433 TIVT Transit -0.035 IVTT low stop 

density 0.0011 

      
IVTT high stop 
density -0.0050 

Out-of-
vehicle 

time 

Walk mode terminal 
time 

Auto (DA, 
SR2,SR3+) -0.050 walk distance 

( <=3km) walk/bike -1.335 Wait time Transit -0.0684 

Transit walk, transit 
first wait time 

W_trn, 
 D-trn -0.050 

bike distance 
( >3km and 
<=10km) 

Walk/bike -0.466 Walk time Transit -0.0530 

Transit other wait W_trn,  
D-trn -0.030 TWALKTOT Transit -0.087 # of boarding Transit -0.1140 

   TWAITTOT Transit -0.066 Drive access 
time Transit -0.0308 

 # transfer Transit -0.371    

Constants 

Mode constants Mode constants Mode constants for AM 
 
C_SR2 
C_SR3+ 
C_W-trn 
C_D-trn 

 
SR2 
SR3+ 
W-trn 
D-trn 

 
-2.889 
-3.410 
-3.956 
-4.693 

 
C_Auto drive 
C_Transit 
C_Walk 
C_Bike 

 
auto drive 
transit 
walk 
bike 

 
3.976 
2.902 
4.024 
1.619 

 
C_SOV 
C_HOV2-dr 
C_HOV2-PASS 
C_HOV3+-dr 
C_HOV3+-pass 
C_Bus-wak 
C_Bus-PNR 
C_Bus-KNR 
C_Bus-BNR 
C_Rail-walk 
C_Rail-PNR 
C_Rail-KNR 
C_Rail-BNR 

 

 
2.0945 
0.0121 
0.0000 

-1.1164 
-0.8040 
2.1806 

-1.9185 
-3.0607 
-5.0000 
2.2440 

-1.1452 
-2.9609 
-5.0000 
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Given the complexity of the model formulations, the meaning of the mode choice coefficients and 

constants in Table 3-3 may be demonstrated with an example. Here, it is assumed that a commuter in 

Philadelphia travels from home to work. His home location is an urban area and the workplace is located 

in the CBD area as shown in Figure 3-1. The commuter uses a bus for his trip and accesses the bus by 

walking. The full utility expression for the commuter is given by eq. (3-1). 

 

where,  

UtilityW−trn (tod) Utility for walk-access transit trips from origin to destination 
Total IVTW−trn,od Total in-vehicle travel time from origin to destination: 

Total IVTW−trn,od = −0.025𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜 − 0.0238𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜
− 0.0213𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜 − 0.0188𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜
− 0.015𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜 

ICW−trn 1, if low income household 
0, otherwise 

 

 

Figure 3-1: An example of a transit trip and travel time/cost components 
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Since the commuter uses a bus mode in his trip to work, total IVT component would be  

−0.025𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜  with no transfer (no. of transfer = 0). In addition to these time and cost 

components, there are area-specific disutilities in the Philadelphia model. Constants related to these two 

area types are included in the utility formulation (0.000-0.075).    

Table 3-4 illustrates application values to different area-type combinations of ODs in the Philadelphia 

model. The effect of area-type constants ranges from 0 to 38 min (in IVT value) in walk-access and from 

5 min to 64 min in drive-access. In the case of walk-access, suburban production or suburban attraction 

trips tend to have much larger area-type constants. In drive-access, all CBD origin trips tend to have much 

larger constants. The models represent higher cost for trips from/to low density areas than similar trips to 

high density areas. In addition, drive-access trips originated from high density areas are much more costly 

(due to parking cost etc.) than similar trips from low density areas. 

Table 3-4: Values of area-type constants - Philadelphia (Home based work trip, AM peak) 

O \ D 
walk-access to transit drive-access to transit 

CBD Urban sub-urban CBD Urban sub-urban 

CBD -0.15 
(6) 

-0.075 
(3) 

-0.55 
(22) 

-1.2 
(48) 

-1.125 
(45) 

-1.6 
(64) 

Urban -0.075 
(3) 

0 
(0) 

-0.475 
(19) 

-0.975 
(39) 

-0.9 
(36) 

-1.375 
(55) 

sub-urban -0.55 
(22) 

-0.475 
(19) 

-0.95 
(38) 

-0.2 
(8) 

-0.125 
(5) 

-0.6 
(24) 

  ( ) equivalent values of IVT - minutes 

 

Winnipeg incorporates the area-type attributes directly to the utility. For example, the model inserts the 

dummy variable of 'origin zone is suburban high or urban low' for transit utility. Washington D.C. applied 

280 nesting constants for HBW trips based on geographic market segmentations and modes. The 

geographic market is divided into twenty groups (e.g., Seg1: DC core/DC urban to DC core, Seg2: DC 

core/ DC urban to VA core, etc.) and fourteen modes (15 modes - 1 reference mode). 

To consider different cost perceptions based on income level, the Philadelphia and Washington D.C. 

models add income constants in a utility function. In Philadelphia, from equation (1), if the commuter 

belongs to a low income household, 0.675 minutes are added to the utility. Since this is a positive value, it 

increases the utility (positive benefits) of transit. As shown in Table 3-3, in Washington D.C., the income 
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constants are applied for all walk-access modes including walk-access to commuter rail, to bus, to bus and 

metro, and walk-access to metro. These values are 2 minutes for low income group and -2 minutes for 

high income group.  

In the six models studied, the travel models in Calgary, Denver, Ottawa, and Winnipeg incorporate auto 

ownership attributes. Philadelphia and Washington D.C. models do not include these types of variables. 

As shown in Table 3-5, the auto ownership in the model is represented as HH car ownership (Calgary and 

Denver), or car sufficiency (Winnipeg) or zero car (Ottawa, Winnipeg) dummy variable.  

Table 3-5: Auto ownership in the studied models 

 Auto ownership 
attributes Modes applied Coeff. Values of mode 

constants in minutes 

Calgary Household(HH) 
zone car ownership Auto, PRN 5.628 Transit 

PNR transit 
-65 
42 

Denver Number of car in 
HH 

SR2, SR3+ 
W-trn 
D-trn 

5.045 
12.201 

9.26 

wk-acc to transit 
dr-acc to transit 

198 
235 

Ottawa 0 car 

SOV, bus-PRN, rail-PNR 
Bus-walk, bus-BNR, rail-
walk, rail-BNR 
Bus-KNR, rail-KNR 

-99.0000 
0.4075 

 
-0.8517 

wk-acc bus 
wk-acc rail 
PNR bus 
PNR rail 
KNR bus 
KNR rail 
BNR bus  
BNR rail  

-96  
-98  
84  
50  

134  
130  
219  
219 

Philadelphia n.a.   wk-acc to transit 
dr-acc to transit 

47 
57 

Washington D.C. n.a.   refer to Table 3-7 

Winnipeg 

0 veh in HH 
2+ veh/2+ adults 
2 veh/ 3+ adults 
1 veh/2 adults 
1veh/3 adults 
2+ veh/ 2+ adults 

Transit 
Auto drive 
Auto drive 
Auto drive 
Auto drive 
Auto drive 

0.658 
0.918 

-0.487 
-1.294 
-1.462 
1.934 

Transit -83 

PRN: park-and-ride, SR: shared ride, SOV: single occupancy vehicle, BNR: bike-and-ride, KNR: kiss-and-ride 

 

Table 3-5 implies that, in most of the studied models, the auto ownership variables contribute to add 

positive utility to automobile. For example, in the Calgary model, HH zone car ownership attributes add 

positive utility for auto and park-and-ride modes with positive coefficient of 5.628. Similarly, in the 

Winnipeg model, low car sufficiency in a HH contributes to decrease auto drive utility by subtracting -

0.487, -1.294, -1.462 depending on the degree of insufficiency. From the following binary logit equation 
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(3-2), it is possible to interpret that the auto ownership related variables works as impeding transit use by 

making the utility difference between transit and automobile larger.    
 

Pn(i|Cn) =  exp(𝑉𝑉𝑖𝑖𝑖𝑖)
∑ exp�𝑉𝑉𝑗𝑗𝑗𝑗�j∈Cn

= Ptransit = 1
∑exp(𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)    (3-2) 

Since the auto ownership is commonly considered as a significant variable of mode choice, omitted 

these variables may affect the magnitude of mode constants. However, in this study scope, it is difficult to 

generally state that the large transit mode constants are attributed to the omitted auto ownership variables.  

Since incorporation of auto ownership variable may also affect the calibration of the other coefficients in 

automobile utility, further investigations are necessary. Furthermore, as shown in the same Table 3-5, the 

Philadelphia model which does not include auto ownership variable overall shows the smallest mode 

constants compared to the other travel models. 

Lastly, in Table 3-3, the reference mode (i.e., mode constant = 0) of most of the cities is auto-drive (or 

drive-alone), while the reference modes for Winnipeg and Ottawa are auto passenger and HOV2 

passenger, respectively. The reference mode affects the interpretation of transit mode constants in next 

section. In the following section, mode constants of six study cities are examined in more detail. 

3.4 The Value of Mode Constants in In-vehicle Time 

Figure 3-2 shows the signs and magnitudes of mode constants for each transport mode of the six cities. 

Figure 3-2(a) shows positive values for transit modes in Winnipeg, Calgary and Ottawa. However, it 

should be noted that the reference mode (i.e., mode constant=0) for the Winnipeg and Ottawa models is 

auto-passenger, while that of the other cities is drive-alone. For comparison, the reference mode of auto-

passenger can be switched to drive-alone by subtracting (in this case) or adding the same amount of 

alternative-specific constants from all alternatives without loss of generality. Accordingly, the positive 

value of the transit mode constant for Winnipeg can be adjusted to -1.074, with auto-drive and auto-

passenger changed to 0 and -3.976 respectively. Consequently, the transit mode constant of Winnipeg 

would also be a negative value.  
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(a) Philadelphia, Denver, Winnipeg, Calgary, Ottawa 

 

 
* Top-level equivalent nesting constants 

(b) Washington D.C. 

Figure 3-2: Summary of mode constants (Home based work trip/tour, AM peak) 
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In Washington DC (see Figure 3-2 (b)), the modeled area is divided into seven super districts: DC core, 

VA core, DC urban, MD urban, VA urban, MD suburban, and VA suburban. Travel can occur within or 

between any of these super-districts, resulting in 49 (7x7) possible origin destination pairs. The DC model 

collapses these 49 options to only 20, by combining several similar travel pairs.  Each of the 20 paired 

travel options are defined as segments, numbered 1 through 20. To demonstrate the importance of area 

types on mode constants, the different mode constants for two different segments: Segment 1 (DC 

core/DC urban to DC core – essentially travel to the CBD) and Segment 3 (DC core, Urban to DC urban – 

travel within the city, but not to the CBD) are presented. This result suggest that the net influence of the 

unobserved mode, individual, and trip attributes are greater in CBD to Urban areas than in CBD to CBD 

areas in this context.  

Overall, from Figure 3-2, for a majority of the cities, mode constants for transit modes are negative 

values (except Calgary and Washington D.C.). The negative values imply that travelers inherently derive 

negative utility (or experience additional costs) from using transit (relative to the default mode). As a 

result, the current models without calibrated mode constants would over-predict the actual propensity to 

use transit sub-modes. On the other hand, it is interesting that the mode constants of all transit sub-modes 

of Washington D.C. and walk-access to transit modes of Ottawa are positive values. In the Washington 

DC example, travelers derive a positive utility from using transit compared to the default mode choice. In 

this case, absent the calibration parameters, the mode choice models would under-predict transit trips; the 

mode constants have the influence of increasing the transit trips after calibration.    

 

A common practice in evaluating the magnitude of model constants is to convert these values to 

equivalent minutes of in-vehicle time. Here this approach was taken to estimate conceptually the 

reduction in in-vehicle time that would be necessary to equivalently eliminate the mode “bias” from the 

utility function. The values of mode constants in minutes are shown in Table 3-6 to Table 3-7. To 

estimate the value of calibration constants, each mode constant was divided by the transit in-vehicle time 

coefficients.  
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Table 3-6: Values of mode constants in minutes of IVT in regional travel forecasting models - 

Calgary, Denver, Ottawa, Philadelphia, Winnipeg (Home based work trip, AM peak) 

City In-vehicle time 
coefficient Applied modes Mode coefficient 

value 

Values of mode 
constants in 

minutes 

Calgary -0.0597 
(Transit, PNR) 

Transit 
PNR transit 

3.8696 
-2.5134 

-65 
42 

Denver -0.02 
(Auto, transit) 

wk-acc to transit 
dr-acc to transit 

-3.9560 
-4.6930 

198 
235 

Ottawa -0.0228 
(Transit) 

wk-acc bus 
wk-acc rail 
PNR bus 
PNR rail 
KNR bus 
KNR rail 
BNR bus * 
BNR rail * 

2.1806 
2.2440 

-1.9185 
-1.1452 
-3.0607 
-2.9609 
-5.0000 
-5.0000 

-96  
-98  
84  
50  

134  
130  
219  
219  

Philadelphia -0.025 
(Bus) 

wk-acc to transit 
dr-acc to transit 

-1.1750 
-1.4250 

47 
57 

Winnipeg -0.035 
(Transit) Transit 2.9020 -83  

* Bike and ride 

As shown in Table 3-6, Calgary and Winnipeg tend to have a smaller mode constant value, ranging 

from 42min to 83min. For combined activity-based and 4-step models, such as those of Denver and 

Ottawa, the values of mode constants range from 50 min to 235 min. In Philadelphia, the implied 

impedances of mode constants are 47 min and 57 min for walk-access and drive-access, respectively.  

The Table 3-6 implies that mid-sized cities tend to have smaller mode constant values, while 

metropolitan areas show greater mode constant values. The values of mode constants for IVT are 

presumably affected by the population size and associated transportation system size of the cities. 

Furthermore, the magnitudes of mode constants also vary depending on travel distance in the same city. 

There is a common difference observed in some cities (Denver, Ottawa, Philadelphia) between short 

distance trips (e.g. walk-access) and long distance trips (e.g. drive-access), since, in drive-access to transit 

trips, mode constants tend to have larger values  than short distance trips of walk-access. 

 

Table 3-7 shows the mode constants for two of the 20 geographic market segments in Washington 

travel model – Segment 1 and Segment 3 – for 12 of the 14 modal combinations. In addition to the 20 

area segments, Washington DC also introduces 14 modal combinations, resulting in 280 market segments 

per each trip purpose. The range of results is very large. Some notable observations include that for 
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Segment 1, the implied values of park-and-ride and kiss-and-ride mode constants range from 3 min to 97 

min, while the values of walk-access modes are much larger, ranging from 158 min to 175 min.  

Table 3-7: Values of mode constants in minutes of IVT in regional travel forecasting models - 

Washington D.C. (Home based work trip, AM peak, Segment 1 and 3) 

City 
In-vehicle 
time 
coefficient 

Applied mode 

DC core/urban to 
DC core (Seg.1) 

DC core/urban to Urban 
(Seg.3) 

Mode 
coefficient 
value* 

Values of 
mode 
constants in 
minutes  

Mode 
coefficient 
value* 

Values of 
mode 
constants in 
minutes  

Washington 
D.C. -0.02128 

Wk-CR 
Wk-bus 
Wk-bus/metro 
Wk-metro 
PNR-CR 
PNR-bus 
PNR-bus/metro 
PNR-metro 
KNR-CR 
KNR-bus 
KNR-bus/metro 
KNR-metro 

3.5226 
3.3621 
3.3594 
3.7245 
1.7439 
1.2296 
2.0549 
1.8423 
0.9501 
0.3721 
1.4927 
0.0568 

-166 
-158 
-158 
-175 
-82 
-58  
-97 
-87 
-45 
-17 
-70 
-3 

5.2652 
4.4084 
4.5288 
6.6777 
2.0443 
0.2375 
0.6590 
2.6326 
1.0130 
0.0649 
1.2523 
1.0409 

-247 
-207 
-213 
-314 
-96 
-11 
-31 

-124  
-48 
-3  

-59 
-49 

* Top-level equivalent nesting constants (Source: Calibration report for the TPB travel forecasting model, Version 

2.3, pp.6-23, 2012) 

 

The value of incremetal mode constants indicates the perceived difference of unmeasured attributes 

between modes. For example, the Seg.1 of Washington D.C. in Table 3-7 shows a 29 min value (i.e., -58-

(-87)) of perceived mode preference for metro over bus in PNR-access. This implies that when 

measurable attraibues are equal, in order to have the same likelihood of taking bus and metro, a bus mode 

trip would have to be 29 min faster than a metro mode trip. The value reflects the benefits of metro modes 

compared to bus resulting from difficult-to measure factors such as reliability, visibility, passenger 

amenities, and real time infromation. In Seg.3, the percieved values of mode difference between bus and 

metro are much larger than those in Seg.1. Mode preference of metro over bus are 107 min IVT values for 

walk-access; and 113 min for PNR-access. This seems to be an unusually large difference between modes 

that gives motivation to test the relative contributions the mode constants make to overall travel utility 

estimates. This analysis is presented in the following section. 
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3.5 Magnitude of Mode Constants Relative to Measurable Utility 

The previous section analyzed the magnitude of mode constants in terms of IVT values. This section will 

examine how big the mode constants are relative to the total values of measurable attributes in a utility 

function. For the analysis, data from Philadelphia and Washington D.C. are used. These two cities were 

chosen based primarily on the availability of the full model and sufficient documentation to conduct the 

analysis. The approach, described in more detail below, was to estimate the total disutility of travel for a 

subset of origins and destinations in the two metropolitan regions. The total disutility of travel was then 

disaggregated into two components – measurable travel attributes and costs associated with mode 

constants. From the previous step, it is a straightforward extension to calculate percentage of total 

disutility from the mode constant. Because multiple origin destination pairs were analyzed, I was able to 

generate distributions of results for each metropolitan region. The distributions are presented in this 

chapter. 

3.5.1 Method 

The disutility calculations were completed for multiple origins and destinations with various attributes. 

For the Philadelphia region, 429 zones including CBD, urban, and adjacent suburban areas were selected 

among 3,399 zones in total. For Washington D.C., 393 zones including DC core and DC urban areas 

(corresponding to geographic market segments 1 and 3) among 3,722 zones were selected. In order to 

divide the transit utility into measurable components and mode constants for each OD pair, the 

measurable component of disutility was estimated using skims – a basic estimate of travel costs between 

origins and destinations for all modes.  

Here, measurable utility includes travel time and out of pocket costs; area-type constants are not 

included. The inputs into the cost estimations are shown in Table 3-8. Sample computations are shown in 

Appendix C. One further note of explanation is necessary. The Washington D.C. model use coefficients 

of ‘COST INC G1-G4’ to imply the value of time (VOT) and sensitivity to cost for each income group, and 

are used to convert monetary values of cost to travel time values in generalized cost (utility). In this study, 

the results using the low income group coefficient, -0.00185, are present. The low income group 

coefficient is chosen because it is the largest negative value among all income groups.  As a result, the 

generated measurable utilities are maximum (absolute) values relative to mode constants. The results, 

then, present the lower bounds on the percentage of total disutility that is represented by mode constants. 
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 Table 3-8: The inputs into the cost estimations of measurable utility component 

 Applied 
mode Input Unit/Remark Source 

Philade-
lphia 

Walk-access 
to transit 

IVT_wk acc  (RR, 
subway, PATCO, 
LRT, BRT, bus, 
trolley, others) 
OVT_wk acc 
No .transfers_wk 
acc 
Fare_wk acc 

min 
 
 
min 
- 
$ 

Skim values from highway and 
transit skimming  in VISUM 

Dr-access to 
transit 

IVT_dr acc  (RR, 
subway, PATCO, 
LRT, BRT, bus, 
trolley, others) 
OVT_dr acc 
No .transfers_dr acc 
Fare_dr acc 

min 
 
 
min 
- 
$ 

Output of park-and-ride model 
which choose the best park-
and-ride lots for each 
OD pair and then compose  
 the transit-drive skims 

Washin-
gton 
D.C. 

Walk-access 
wlk IVT bus 
          ⁞ 
other walk time 

0.01min 
2007 cents 

AM peak, all bus wk-access 
skims 

Drive-access 
(PNR and 
KNR) 

drv IVT bus 
          ⁞ 
other walk time 

0.01min 
2007 cents 

AM peak, all bus dr-access 
skims 

All COST INC G1-G4 

Cost Inc G1(low income 
group): 
 -0.00185 
Cost Inc G2: 
 -0.00093 
Cost Inc G3: 
 -0.00062 
Cost Inc G4(high income 
group): 
 -0.00046 

Defined in script ( ‘Hbw nl 
mc.ctl’) 

Walk-access  Income constant 

Income group 1: 2 (low 
income group) 
Income group 2-3: 0 
Income group 4: -2 (high 
income group) 

Defined in script ( ‘Hbw nl 
mc.ctl’) 

Drive-access  
(PNR and 
KNR) 

Drive-access 
distance 0.01mile AM peak, all bus, dr-access 

skims 

Drive-access  
(PNR and 
KNR) 

AUOP Auto operating cost 
10cents/mile 

Defined in script ( ‘Hbw nl 
mc.ctl’) 

 * Parking cost data were not available. Only wk-access and KNR-access are analyzed in this study. 
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3.5.2 Results for Philadelphia 

Recall that the goal of this portion of the research is to understand how much of the total disutility 

estimated for a given trip is a result of the mode constant and how much of the disutility is from 

measurable attributes.  

The magnitude of mode constants relative to the total value of measurable attributes is shown in Figure 

3-3. The vertical axis shows the number of observed OD pairs, and the horizontal axis indicates the total 

value of measurable attributes in a utility function, including transit travel time and cost components. In 

the distribution graph, the area to the right side of the mode-constant-value shows OD pairs where the 

magnitude of immeasurable inputs was greater than measurable inputs. For these cases, the immeasurable 

inputs "dominate" in the calculation of the total travel costs and, as a result, in the likelihood of choosing 

transit. In the walk-access to transit case (Figure 3-3 a), 14.3% of OD pairs (see Table 3-9) have mode 

constants that are greater than the total value of measurable attributes. This reflects a model in which the 

mode constant may influence future model performance. In the case of drive-access to transit (Figure 3-3 

b), mode constants were greater than the quantifiable utility only in 0.04% of the OD pairs (Table 3-10). 

This mode choice model is much more sensitive to unaccounted attributes change in the future year than 

for walk access. 

 

(a) Walk-access to transit            (b) drive-access to transit 

Figure 3-3: Magnitude of mode constants relative to measurable components: Philadelphia (Home 

based work trip, AM peak) 



 

59 

 

In addition to analyzing the number of OD pairs that exhibit properties, the range of contribution of 

mode constants are quantified for all trips by two modes – transit with walk access and transit with auto 

access. As shown in Table 3-9 for walk-access to transit mode, mode constants have sizable percentage 

out of the total utility or generalized cost (GC).  

Table 3-9: Magnitude of mode constants relative to measurable components-walk access: 

Philadelphia (Home based work trip, AM peak) 

 Measurable cost 
component 

Area-type 
constants Mode constants 

% out of total utility (GC)    
AVG. 56.0% 3.3% 40.7% 
Max 80.7% 29.6% 71.5% 
Min. 28.4% 0.0% 13.4% 

% of cases that (mode constants>=total 
value of measurable components)   14.3% 

No. of pairs in which  
mode constants>=measurable 
components 

  24,520 

Total no. of OD pairs1)   171,107 
1) Excluding OD pairs for which transit service is not provided  

Table 3-10: Magnitude of mode constants relative to measurable components-drive access: 

Philadelphia (Home based work trip, AM peak) 

 Measurable cost 
component 

Area-type 
constants Mode constants 

% out of total utility (GC)    
AVG. 53.9% 18.3% 27.8% 

Max 77.1% 33.7% 50.5% 
Min. 32.2% 2.1% 12.9% 

% of cases that (mode constants>=total 
value of measurable components)   0.04% 

No. of pairs in which  
mode constants>=measurable 
components 

  74 

Total no. of OD pairs1)   171,107 

1) Excluding OD pairs for which transit service is not provided  
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On average, mode constants account for 40.7% of total GC, while the measurable cost component 

accounts for 56%. Area-type constants cover less than 4%. For drive access modes to transit (see Table 3-

9), the impact of mode constants on total GC is less than walk access. The mode constants account for 

27.8% of the total utility on average; measurable components account for about 53.9%. The area-type 

constants cover 18.3%. 

 

3.5.3 Results for Washington D.C. 

As shown in Figure 3-4, in Washington D.C., signs of mode constants are positive whereas signs of the 

total values of measurable attributes are all negative. In Figure 3-4, the sign of the mode constants are 

changed and these are plotted in the same way as Philadelphia. Figure 3-4 a and b show the distribution 

graphs for Segment 1; c and d present for Segment 3. In the distribution graphs, the area to the right side 

of the mode-constant indicates OD pairs where the magnitude of unaccounted inputs was greater than 

measurable inputs. In walk-access to bus modes (Figure 3-4 a, c), mode constants have much larger 

impact on utility than in KNR-access modes (Figure 3-4 b, d). In walk access to bus transit mode for 

Seg.1 and Seg.3,  99.6% and 99.7% of OD pairs have mode constants that are greater than the total value 

of measurable attributes (see Figure 3-4 a and c, respectively). In drive-access to bus transit (Figure 3-4 b, 

d), both segments have no observed OD pairs in which mode constants are greater than the total value of 

measurable components. For these cases, the walk access model is much more insensitive to changes in 

systems’ reliability, comfort, convenience, visibility, access environment, and safety attributes than for 

drive access. 
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  (a) walk-access to bus in Seg.1          (b) KNR-access to bus in Seg.1  

 

 
  (c) walk-access to bus in Seg.3    (d) KNR-access to bus in Seg.3 
*mode constants: applied top-level equivalent nesting constants  

Figure 3-4: Magnitude of mode constants relative to measurable components: Washington D.C. 

(Home based work trip, AM peak) 
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Using the same approach as Table 3-9, in Table 3-11, the range of importance of mode constants for 

several trip types in Washington D.C. is presented. The percentage of observed OD pairs in which mode 

constants are greater than the total value of measurable components are 99% for walk-access modes; and 

0% for KNR-access modes. In walk-access, on average, mode constants (immeasurable attributes) 

account for 65% of total disutility while measurable attributes account for only 35%. For KNR-access, the 

impacts of mode constants on utility are much smaller; these are 17.4% and 2.9% for Seg.1 and Seg.3, 

respectively.  

Table 3-11: Magnitude of mode constants relative to measurable components: Washington D.C. 

(Home based work trip, AM peak) 

 

Seg. 1 DC core/urban to 
DC core 

Seg. 3 DC core/urban to 
DC urban 

Walk-access 
to bus 

KNR to 
bus 

Walk-access 
to bus 

KNR to 
bus 

No. of pairs in which 
mode constants>=measurable components 35,783 - 105,305 - 

Total no. of OD pairs1) 35,929 12,750 105,638 35,750 

% of cases that (mode constants>=total value of 
measurable components) 99.6 0 99.7 0 

 % of mode constant out of total utility (GC)     

Avg. 64.9% 17.4% 65.5% 2.9% 

Max. 81.8% 26.7% 84.1% 7.8% 

Min. 45.0% 7.6% 43.8% 1.2% 

1) Excluding OD pairs which transit service is not served  
 

Overall, in walk-access to bus, the impact of immeasurable inputs (i.e., mode constants) are much 

greater than the measurable utility, while mode constants in KNR-access to transit do not have a large 

influence on the total cost. As calibrated mode constants are used to forecast mode share over the 

planning horizon assuming that all difficult-to-measure cost components remain constant throughout the 

analysis period, the walk-access models can become largely insensitive to change of operation or 

important factors that influence on systems’ reliability, comfort, convenience, visibility, access 

environment, and safety.  
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 Impact of mode constant magnitude on model’s predictive capacity 

Given the concerns about the large mode constants in specific segments, in this section of the thesis, the 

impacts of large mode constants on models’ functionality are demonstrated through a simple quantitative 

example. The focus of the demonstration lies on, depending on the size of mode constants, how the 

probabilities of using transit mode are influenced with respect to the changes of system performance over 

time.  

For this demonstration, the following conditions are assumed. Two utility functions – one for private 

auto and one for bus transit - are generated. Travel time and cost by each mode for a specific trip from an 

origin to a destination are assumed as shown in Figure 3-5. For example, in-vehicle-time by bus from the 

origin to the destination is 20 minutes while the walk time is 10 minutes.  Wait time at the stop is 10 

minutes and the fare is $2. For the same OD travel by private auto, in-vehicle time is 10 minutes over a 

distance (to calculate car operating cost) of 5km.  Walk time from parking to the destination is 2 minutes 

and auto ownership (zone average) is 1.5vehicle.  

 

 

Figure 3-5: Travel characteristic assumptions of transit and automobile to compute influence of 

mode constant magnitude on model’s predictive capacity 
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The cost representation and the associated coefficients (except mode constant) are broadly derived from 

the City of Calgary (see Table 3-12, and for original models see Appendix B). The applied coefficients 

follow a convention that the ratio of OVT/IVT for transit mode ranges from 1.5 (wait time and walk time) 

to 3.1 (transfer). To estimate probabilities of using transit with respect to system performance change, a 

simple Multinomial Logit Model (MNL) formulation is applied as described in Table 3-12. 

Table 3-12: Applied coefficients and models for mode choice estimation 

 Attributes Modes Applied Coeff. 

In-vehicle time IVT Auto 
Transit 

-0.0528 
-0.0358 

   
Out-of-vehicle 

time 

Park walk time Auto  -0.1636 
Transit walk time 
Transit wait time 
Number of transfer  

Transit 
Transit 
Transit 

-0.0546 
-0.0551 
-0.1115 

Cost 
Operating cost 
Parking cost 

Auto  
Auto 

-0.3167 
-0.0317 

Fare Transit -0.3167 

Others HH zone car ownership Auto  3.3768 

Applied mode choice 
model 

Multinomial Logit Model (MNL): Pn(i|Cn) =  exp(𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
∑ exp�𝜇𝜇𝜇𝜇𝑗𝑗𝑗𝑗�j∈Cn

  

Where,  
Pn(i|Cn): probability of choosing i alternative among choice set Cn for 

individual n 
𝑉𝑉𝑖𝑖𝑖𝑖: utility of alternative i for individual n 

  𝜇𝜇=0.6 * 

*scaled in this study to set the base case.  

 

In this example, two utility functions are developed.  The first (Case 1) is a typical utility function that 

includes traditional cost components.  The second function (Case 2) treats reliability explicitly. Using the 

two different functions, future transit mode share results are compared. To this end, first, transit mode 

share in base case is set as 6% when the assumed travel time and cost values (in Figure 3-5) are applied. 

Second, calibration is performed by fixing all coefficients except the mode constant. The calibrated mode 

constant in Case 1 is 2.334, and the calibrated mode constant accounts for about 49% of total utility while 

total measurable components account for about 51% (see Table 3-13).  
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Now, in Case 2, the transit utility function includes the additional variable, reliability. We assume that 

reliability accounts for about one fourth of the total mode constant. Therefore, new mode constant is 

1.734 accounting for 36% of total utility, and reliability accounts for 13% as shown in Table 3-13, under 

base case column. Consequently, Case 1 has larger mode constant value than Case 2, and Case 2 has new 

variable of reliability in utility formulation.  

Given transit mode share of 6% of two cases in base year, it was examined how the probability of using 

transit will be influenced by system performance changes in both cases in future years. The following two 

scenarios are tested: 

• Scenario 1: Frequency improvement in bus transit: 20 min headway  10 minute headway  

• Scenario 2: Transit reliability improvement: on-time performance 60%  80%* 

* A review and the definition of transit reliability are presented in 5.2.3 of this thesis. 

It should be noted that since the calibration was performed by fixing all coefficients except the mode 

constants, the final utility formulation may not have addressed all the interactions of the reliability with 

other variables.  

Table 3-13: Impact of mode constant magnitude on model’s predictive capacity 

 Base case Scenario1 Scenario2 

 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 
Value of 
measurable 
component 

-2.447 51.2% -2.447 51.2%     

Value of 
Reliability - - 0.6 12.5%     
Mode constant 2.334 48.8% 1.734 36.3%     
  100.0%  100.0%     
Mode share of 
transit 0.061  0.061  0.078 0.078 0.061 0.073 

Transit mode 
share change     +0.017 +0.017 - +0.012 

Increment based 
on base case (%)     +29.3 +29.3 - +20.5 
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In Table 3-13, Scenario 1 tests the case when transit system performance, particularly frequency has 

increased. The results of mode share indicate that regardless of the magnitude of mode constants (Case 1 

or Case 2), the models generate equally increased likelihood of using transit (from 6.1% to 7.8%, 29.3% 

increase of transit ridership in both cases). This is because frequency improvement can be measured as 

waiting time in utility functions and does not affect the transit mode share.  

Scenario 2 tests the case where transit reliability is increased. On-time vehicle performance is assumed 

to increase to 80% in the future year from 60% in calibration year. The Case 1 model cannot capture the 

improved system performance of reliability change as shown in the results under Scenario 2 in the same 

table. The likelihood of using transit is still 6.1%. On the other hand, in the Case 2 model, transit mode 

share has increased by 7.3%, and transit ridership forecasting has increased as much as 20.5% compared 

to the base case. The result implies that larger the mode constants, transit ridership forecasting result 

errors between future year and base year can be significantly increased.  

 To sum up, the results indicate that system performance change of ‘directly included variables’ in the 

model, frequency in this example, does not influence on overall predictive capacity. However, when 

reliability is explicitly included in the model (as a result, when mode constants are reduced), the mode 

choice models generate more sensitive results for the un-accounted system performance (reliability in this 

example) improvements. The results demonstrate that, the larger the mode constants, the models are 

insensitive to the changes on the un-accounted for system performance improvement. The errors on 

transit ridership forecasting will be accumulated over time.  

3.6 Chapter Summary 

In transit travel forecasting, understanding mode constants is a significant issue, since these constants 

reflect behavior assumed to be static throughout the analysis period. In this chapter various types of 

calibration coefficients from the state-of-the-art regional travel forecasting models are introduced and the 

magnitude of mode constants has been examined using empirical data from six cities in Canada and the 

US. The magnitude of mode constants has been evaluated by IVT and relative importance to measurable 

components (i.e., mostly travel time and cost) of mode choice utility. For this, the total disutility of travel 

was disaggregated into two components – measurable travel attributes and costs associated with mode 

constants. This chapter has presented three major findings from the case studies as follows.  
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First, the majority of cities (four cities including Philadelphia, Denver, Winnipeg, and Ottawa) have 

negative values of mode constants; the other two cities (Calgary and Washington D.C.) have some 

positive values. A negative mode constant for transit modes means that the mode choice models would 

over-predict the transit ridership; the mode constants have an influence on decrease of the transit rideship 

after calibration.  

Second, the magnitude of mode constants in IVT values varies, ranging from 42 min to 219 min 

depending on transportation system size, presumably travel distance, and model types. For example, 

Calagary and Winnipeg tend to have smaller mode constant values, while Denver and Ottawa have larger 

values. The magnitude of mode constants can also vary depending on travel distance in the same city. It is 

observed that there is overall difference between short distance trip (i.e., walk-access) and long distance 

trip (i.e., drive-access). In drive-access to transit trips, mode constants tend to have larger values than 

short distance trips of walk-access.  

Significant differences exist in the observed magnitude of mode constants across cities. For instance, 

although Philadelphia is the largest metropolitan area among six cities, the size of mode constants is 

smaller than those of the other cities. In the case of Washington D.C., the the size of mode constants for 

PNR and KNR access models are smaller than those of the other six cities, while the mode constants for 

walk-access are extrememly larger than the others. Those extremely large mode constants suggest a 

problem with transit travel forecasting.  

Third, the importance of mode constants relative to the measurable components is examined. In the 

study area of Philadelphia, for both access modes (walk access and drive access) to transit, the mode 

constant itself tends not to have an unusually large influence on the total cost. In about 14% of OD pairs, 

the mode constants were greater than the total value of measurable components in walk-access; and only 

0.04% in drive-access modes. Yet, mode constants still have sizable percentage out of total utilities. On 

average, total value of unmeasured attributes (i.e., mode constants) account for 41% of total utilities in 

walk-access, 28% in drive-access. 

In Washington D.C., in walk-access to bus modes, the impact of immeasurable inputs (i.e., mode 

constants) is much greater than that of the measurable utility in almost of all OD pairs. The % of mode 

constants out of total GC indicates that the average magnitude of mode constants are almost  65% of the 

total utility in walk-access modes for both study segments. On the other hand, mode constants for KNR-

access to transit do not have a large influence on the total cost. As the calibrated mode constants are used 
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to forecast mode share over the planning horizon assuming that all difficult-to-measure cost components 

remain constant throughout the analysis period, these walk-access models can become largely insensitive 

to change of operation or important factors that influence on systems’ reliability, comfort, convenience, 

visibility, access environment, and safety. 

The objective of the study in this chapter is to demonstrate an understanding of the state of practice 

with regards to model formulation and mode constants. Moreover, by estimating the overall magnitude of 

various mode constants and by quantifying the importance of mode constants relative to the measurable 

components, it provides some evidences on what portion of travel cost between an origin and a 

destination is comprised of a fixed mode constant. By applying the approach, it is also useful to identify 

problematic segments that have unusually large mode constants.  

Given the concerns about the size of the mode constants and their impacts on models’ functionality, an 

approach to further analyze their impacts on model performance is developed. The approach, presented in 

Chapter 5 is to identify zones where models under predict or over predict transit ridership. For these zones, 

I attempt to identify important characteristics of the zone’s built form and demographics of its residents 

that if included explicitly may improve the model’s estimate. 

The method of identifying over and under predicted zones requires knowledge of where travelers begin 

and end their trips at the zonal level. The data that are available most frequently are not trip ends, but 

rather boarding and alighting locations. Thus, it is necessary to develop robust methods to assign transit 

boardings to origin zones and transit alightings to destination zones. Chapter 4 presents and evaluates four 

candidate methods to complete this step.  
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 Chapter 4

Allocating Transit Trips to Zones 

In this chapter, methods to link the stop-level boarding and alighting trips to the traffic analysis zones 

from which these passengers actually originated or were destined are formulated. In each case, readily 

available, local data are used. For each technique proposed here, a method to test the accuracy of 

predictions using the results of on-board surveys is formulated and applied. The results of the research 

presented suggest that it is possible to map transit route boardings and alighting to origin and destination 

zones with sufficient accuracy to allow for the use of these data in calibrating travel forecasting models. 

More details on the proposed methods and assessment results are described in the following sections.    

4.1 Introduction 

Technologies such as automated vehicle location (AVL), automated passenger counting (APC), and 

automated fare collection (AFC) systems have been growing in popularity. In addition to improving 

transit operations, these automated systems can augment conventional data sources for travel demand 

modeling and its validation. In contrast to traditional survey methods that sometimes require high costs 

for limited samples, AVL/APC systems enable modelers to access a rich dataset of transit vehicles’ time-

at-location as well as spatially and temporally disaggregated information on transit ridership.  

With these benefits, usage of automatically collected data (ACD) is increasingly popular, particularly 

for transit path-choice modeling, transit origin-destination matrix estimation and direct-demand modeling 

(or sketch planning modeling) research. Most of this research has focused primarily on stop-level analysis 

since the ACD provides direct values (e.g., on/off counts) at each stop. Stop-level estimates of origins and 

destinations using AFC data (Barry et al. 2002, Farzin, 2008, Chu and Chapleau, 2008, Wilson et al. 2009, 

and Nassir et al. 2011) have also been completed. Further, direct-demand models that relate transit 

ridership at either a station (boarding or alighting) or station-to-station (trip pattern) level to a variety of 

independent variables have attracted great attention in recent years (Upchurch et al. 2013, Zhao et al. 

2013).  

In spite of the increasing attention to the APC or AFC data, little attention has been paid to the use of 

these data more broadly in regional travel demand modeling procedures, especially mode choice. One of 

the main difficulties of  incorporating APC data to the demand modeling process is the lack of appropriate 
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and proven methods to map trips from a stop to the appropriate traffic analysis zone from (or to) which a 

trip actually begins (or ends). Previous studies that have addressed this problem, and their recognized 

limitations, are presented in Section 2.3. Additional research results are presented in the following section. 

Existing research on spatial aggregation of stop counts at the zonal-level, is not (yet) adequate for 

implementation in regional travel forecasting models since, in this research, a zone is defined as a group 

of places where a fare card transaction occurs. This is different from a zone in travel forecasting models, 

which is defined as an activity generator or attractor. 

A general principle used in most of the potential transit demand models is that the boardings at a stop 

should be allocated to nearby areas based on the density of activity – population or employment for 

example – and the proximity of this density to the stop itself. To improve previous methods, the 

definitions of density have been extended by some researchers to the parcel level, by incorporating 

household data such as number of bedrooms in dewelling unit or household size. One such example is 

Zhao (2003), who addresses the issues of uneven population distribution in transit access buffer areas by 

incorporating detailed household variables derived from cadastral data. Kimpel et al. (2007) allocate 

potential transit demand in overlapping transit service areas to specific stops. They measure the effect of 

overlapping service areas on passenger boardings by applying scheduled service (i.e., buses per hour) and 

dwelling units in nearby parcels. Biba et al. (2010) analyze population (i.e., potential transit users) 

estimates in transit access shed by connecting parcel centroid to cadastral data and to the walking network. 

They compare the estimates to buffer methods and network-ratio method. Their results show that based 

on the parcel-network method, network-ratio method overestimates population around stop areas from 11% 

to 117% depending on transit routes, and buffer method overestimates from 41% to 184%.  

Arguably, the best research effort available for the issue of assigning stop counts to TAZs was 

conducted by Furth et al. (2007). The authors propose a method for assigning stop-level demand at a 

parcel level in Boston and Albany. Their approach is to solve the many-to-one (i.e., parcels to a stop) trip 

distribution problem as a function of strength between two locations. However, due to a variety of 

coefficients and factors that need to be determined based on expert judgments, its application in practice 

is difficult. On the basis of these previous works, in this chapter, I focus on formulating methods to 

further improve the allocation of APC data; the methods are introduced in the following section. 
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4.2 Methods 

Four methods are proposed and applied to assign stop boarding/alighting counts to traffic analysis origin 

and destination zones. The first approach is the buffer area ratio method weighted by population and 

employment.  In this method, I assign trips proportionally to the population / employment and area sizes 

of competing zones within transit accessible areas. To incorporate more land use information, the second 

and third approaches consider the number and types of parcels of each competing zone. The fourth 

method adds weights to these parcels having high-rise buildings. The following sections describes each of 

the methods in detail.  

4.2.1 Defining buffers 

In typical transit demand analysis, each stop in a network is assumed to attract passengers from an access 

shed. The most common way to define these sheds is to create a buffer distance around the stop location. 

The simplest form of the shed is a circle with the center at the stop location and the radius determined by 

an acceptable walking distance. To create the boundary, a 400m radius is used as a common guideline for 

light-rail transit station and bus rapid transit stops; 800m is often considered appropriate for commuter 

rail stations (O’Sullivan, and Morrall, 1996, Gutierrez and Garcia-Palomares, 2008, Zielstra and 

Hochmair, 2011). These values tend to be taken from empirical studies. Some studies suggest that transit 

share diminishes rapidly around this 400m boundary. For example, Crowley et al. (2009) demonstrate that 

the use of rapid transit significantly dropped in the band between 400m and 800m from a stop location.  

Willingness-to-walk distance has also been shown to vary by area type. Table 4-1 shows the summary 

of empirical studies on willingness-to-walk distance by Lee et al. (2013). Table 4-1 demonstrates different 

access assumptions for CBDs and suburban areas in Calgary and Toronto. The walking distances in CBD 

areas tend to be shorter than in suburban areas presumably due to dense land use and better transit service 

standards (e.g., network coverage). Walking distance to transit also varies by transport mode - train or bus. 

It is known that people are willing to walk farther to access a higher-order service such as rail modes 

compared to conventional bus transit. Other research suggests that the access areas should be greater for 

BRT systems compared to conventional systems. 
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Table 4-1: Summary of willingness-to-walk distance studies (Lee et al., 2013) 

Study Walking distance: 
distance threshold 

Measurement and 
application Location Remark 

Lam and 
Morrall  292m Median walking 

distance Calgary, Canada Average: 327m;  
75th percentile: 450m 

O’Sullivan and 
Morrall 

326m: CBD; 
649m: suburban 

Average walking 
distance Calgary, Canada 

Distinguish between walking to 
LRT station in the suburbs and 
in the CBD 

Hsiao et al. 400m Buffer Orange County, 
Calif. 

According to the 1990 on-board 
survey, more than 80% of bus 
riders would walk up to 400m 

Polzin et al. 800m Buffer Tampa, Fla. 
800m buffers for zonal 
coverage have been drawn 
around each route 

Zhao et al. 800m Buffer Southeast Florida 
By applying a decay function, a 
long walking distance (800-
1600m) may be unnecessary 

Kittelson and 
Associates 400m Aveage walking 

speed of 5km/h 
North American 
cities 

Most passengers (75% to 80% 
on average) walk 400m or less 
to a bus stop 

Alshalalfah and 
Shalaby 

231m: downtown; 
454m: suburban 

Median subway 
access distance Toronto, Canada  

Utsunomiya et 
al. 

Distribution of 
minimum daily 
access distance 

Estimated access 
distance Chicago, Ill. 

In the case of Chicago Card 
customers, walking access 
distance vary significantly 
between rail and bus 

Kimpel et al. 536 m (1/3 mi) Buffer Portland, Ore. 
Initial distance of 1/3 mil and 
then a distance decay function 
is applied 

Alshalalfah and 
Shalaby 

60% of users live 
within 300m from 
their stop 

Buffer (an 
interval of 100m) Toronto, Canada Overall, 80% live within a 

distance of 500m 

Hoback et al. 580m True walking 
distance Detroit, Mich. 

On average, 1,300m per round 
trip (e.g., home-transfer-work-
transfer-home) 

Note: North American cities only. From Lee et al., 2013 

Other researchers have been more sophisticated varying the radius based on climate, vertical grades 

that must be traversed, and the directness of the access paths. Calthorpe (1993) applied slower walking 

speed of 2.27mph considering walking environment of hills, rivers, and other obstacles in pedestrian 

movement, and suggested 2000-ft (about 610 m) radius.  

 Some studies applied distance-decay relationships either taking a negative exponential form derived 

from an actual walk distribution (Zhao et al., 2003) or a negative logistic function which reflects a more 
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gradual decline in transit demand at short distance, a steeper decline as distance approaches 400m, and a 

more gradual tail (Kimpel et al., 2007) (see Figure 4-1).  

 

 

 
Figure 4-1: Distance-decay functions to measure willingness-to-walk distance 

The idea of distance-decay is that passenger demand decreases with respect to increased walking 

distance to stops. The function measures the level of accessibility from features (e.g. home, parcel) to 

stops. In an operationalized model, the use of distance-decay type functions rather than the buffer method 

may be able to generate more realistic results of transit use. 

The maximum willingness-to-walk distance has also been derived from appropriate walking travel time 

– 5 min and 10 min walk to stops - and walking speed. Gutierrez and Garcia-Palomares (2008) analyzed 

that buffer radius of 300m and 600m corresponded to these 5 and 10 min walking travel time, respectively.   

Choosing the correct boundary of transit access shed is challenging work as the literature demonstrates. 

In spite of some variance, depending on the study context, the evidence in table 4-1 establishes (from 

empirical studies) that the walking distance or distance threshold for bus and BRT system ranges from 

400 to 450 meters. In this study, the proposed methods are evaluated for BRT routes in the Region of 

Waterloo. While some research has suggested that larger access sheds may be warranted in analyzing 

BRT routes, in this research, the traditional 400 meter buffer is used. Operationally, the BRT stop spacing 

in Waterloo is about 1.2 km. But, in many corridors, the BRT route shares an alignment with 

conventional services. So while a 400 meter radius leaves gaps between BRT stops, it is likely that those 

who would begin a trip at the midpoint between stations, would do so using conventional transit.  

(a) Negative exponential type function 
(Zhao et al., 2003)  

(b) Negative logistic type function: the two 
different functions reflect different 
coefficients. From Kimpel et al. (2007)  
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The next step in the research is to allocate the number of boardings and alighting over a given time 

period to zones contained in the access shed. In some cases, an access shed may be wholly contained in a 

single traffic analysis zone (TAZ) at which point the problem becomes trivial – all boardings and 

alightings are assigned to that zone.  The problem becomes more complicated when the access shed spans 

multiple TAZs. This is the problem I am attempting to solve.  

4.2.2 Buffer area ratio weighted by population and employment 

The concept of buffer area ratio has been widely used to estimate transit access (O’Neill et al. 1992, Hsiao 

et al. 1997, Peng and Dueker, 1995, Ayvalik and Khisty, 2002). The first approach employs this concept.  

The idea of buffer area ratios is that the proportion of trips beginning or ending in a zone should be 

proportional to the attribute(s) of the candidate zones.  Naturally, trip patterns vary as a function of the 

time of day.  On a weekday morning, for example, many transit trips are commuting trips; the expectation 

in this time period is that transit boardings will be more heavily influenced by the presence of residential 

land uses near to the boarding location.  Similarly, alightings in the morning peak are more likely to be 

destined to employment locations – commercial or industrial land uses. If the mapping analysis is 

conducted for a weekday afternoon, the opposite logic may be warranted – boardings are generated by 

places of work while alightings are destined for residential land uses.  

In this research, boarding and alighting data are from the am peak.  As such, the presence of residential 

density is used to allocate origins.  Based on the same logic, alighting trips are allocated based on the 

presence of commercial, business, and institutional areas.   

Mathmatically, the method of estimating the transit boardings from zone i (𝑏𝑏𝑖𝑖) from the station boarding 

count, 𝑏𝑏𝑠𝑠𝑘𝑘 is represented as equation (4-1). 

𝑏𝑏𝑖𝑖, 𝑆𝑆𝑘𝑘 = (asi/ASi)×Pi
∑ (asi/ASi)×Pii∈Sk

 × bSk       ∀ Sk                                                                      (4-1) 

Where:  

    𝑏𝑏𝑖𝑖, 𝑆𝑆𝑘𝑘: observed boardings from zone 𝑖𝑖 using Stop 𝑘𝑘   
    asi: area of zone 𝑖𝑖 within the 400m buffer of stop 𝑘𝑘  

    ASi: Total area size of zone 𝑖𝑖 

    bSk: Total boardings at stop 𝑘𝑘 

Pi: Population of zone 𝑖𝑖 
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    i ∈ Sk: Subset of zones that intersect with stop 𝑘𝑘 within 400m radius 

Next, the total number of transit trips originating from zone i is computed as the sum of boardings over 

all stops that have an access shed involving zone i.  This summation is shown in equation (4-2). 

𝐵𝐵𝑖𝑖 = ∑ 𝑏𝑏𝑖𝑖, 𝑆𝑆𝑘𝑘𝑆𝑆𝑘𝑘                                                                                              (4-2) 

Where:    

    𝐵𝐵𝑖𝑖: observed total transit users of origin TAZ 𝑖𝑖 

 

In the same way, the estimated number of transit alightings to zone j (𝑎𝑎𝑗𝑗) from a station’s alighting 

count is computed as equation (4-3) and summed over all the stops in equation (4-4). 

𝑎𝑎𝑗𝑗, 𝑆𝑆𝑘𝑘 = �asj/ASj�×Ej
∑ �asj/ASj�×Ejj∈Sk

 × aSk       ∀ Sk                                                                      (4-3) 

 

Where:   

    𝑎𝑎𝑗𝑗, 𝑆𝑆𝑘𝑘: observed alightings in zone 𝑗𝑗 using Stop 𝑘𝑘 
    asj: Intersected area of zone j with 400m radius from stop 𝑘𝑘  

ASj: Total area of zone j 
    Ei: Employment Population of zone j 
    aSk: Alightings at stop 𝑘𝑘 

j ∈ Sk: Subset of zones that intersect with stop 𝑘𝑘 within 400m radius 
 
 

𝐴𝐴𝑗𝑗 = ∑ 𝑎𝑎𝑗𝑗, 𝑆𝑆𝑘𝑘𝑆𝑆𝑘𝑘                                                                                                                (4-4) 
 

Where: 

    𝐴𝐴𝑗𝑗: observed total transit users of destination TAZ 𝑗𝑗 
 

The procedures of the buffer area ratio method are systematically presented in the following steps; 

Figure 4-2 shows the method graphically. 

Step 1 Create a 400 meter (Euclidean distance) buffer around a stop. 

Step 2 Intersect zones with the created buffer in step 1 and calculate the ratio of the intersected area and 
individual zone.  

Step 3 Repeat steps 1 to 2 for all stops. 
Step 4 Allocate boardings/alightings to individual zones based on area size ratio and population employment.  
Step 5 Aggregate the allocated boardings/alightings for each zone. 
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Figure 4-2: Graphical representation of the buffer area ratio weighted by population and 

employment 

4.2.3 Parcel number ratio 

To consider the effect of land use density, the second approach allocates trips not as a function of area, 

but rather as a function of the number of parcels present in the transit access area for each zone.  To 

quantify the approach, the following two calculations are made: 

a. Parcel number ratio method 1: The trip allocation is completed based on the ratio of the total 

number of parcel ratios within a zone’s transit access shed, relative to all parcels in the access 

shed.  

b. Parcel number ratio method 2: The trip allocation is completed based on disaggregate ratios of 

parcel types.  More specifically, boardings are allocated to zones based on the ratio of residential 

parcels in a given zone to the total number of residential parcels in the full access shed.  Similarly, 

the proportion of alighting trips assigned to a zone is determined based on the proportion of 

employment parcels – commercial, institutional, or industrial – in a given zone relative to the full 

access shed. 

 The procedures are similar to those of the buffer area ratio method.  
Step 1 Create a 400 meter  buffer around a stop 
Step 2 Intersect not only zones but also parcels with the created buffer in step 1 
Step 3 Repeat steps 1 and 2 for all stops. As parcel data include land use attributes, the generated GIS 

outputs from steps 1 to 3 include StopID, TAZ ID, Parcel ID, Land use Code (Residential, 
Institutional, Commercial, Industrial, Road, Agricultural, and etc.) and shaped parcel areas. 

Step 4 With the GIS generated outputs, compute the parcel ratios 
Step 5 Based on the estimated  numbers of parcel ratios, the transit on/off count data at each stop are 

multiplied by each ratio and boardings and alightings are aggregated by TAZs. 
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4.2.4 Footprint weighted parcel ratio method  

The fourth method is the weighted parcel method which extends the previous approach to include the 

relative trip production and attraction of a given parcel based on its overall size or function. This method 

can improve the accuracy of the parcel number ratio method, particularly where large buildings exist 

within the catchment areas.  The concept motivating this method is that parcels containing large structures, 

often with multiple dwelling units should be weighted more heavily in assigning trip origins than parcels 

with smaller buildings and potentially only a single dwelling unit.  

To compute the footprint weights, GIS data for building sizes are necessary. In my experience, these 

data are typically available. To allocate the number of alightings to a zone, the total number of trips is 

proportioned based on the relative commercial building footprints in each candidate zone. 

To allocate the number of boardings to zones, an additional step is taken to quantify the number of 

dwelling units contained in any building over five stories.  In some cases, the number of dwelling units 

per building is available in a GIS format such that the dwelling unit weights can be directly calculated.  If 

the data are not available, such as in our case, an alternative approach to estimate the number of dwelling 

units is required.  In this study, building height, measured in stories, was available for all parcels.  At a 

larger spatial scale, the dissemination area, the total number of dwelling units and the total building areas 

were available.  From these two data points, it is possible to calculate the average building area per 

dwelling unit.  Thus, the total number of dwelling units on a parcel, dwum is estimated as a function of a 

building’s area, its height in stories, and the average area per dwelling unit.  The calculations are shown in 

equation (4-5). 

𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 = (sam)×sl
Avg.total area of multi−dwelling unit

                                                                             (4-5) 
Where: 

   𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 : number of dwelling units in parcel m  
   sam : area of building l with parcel m  
   sl : Storey of building l 

The summary of procedures of the fourth approach are as follows: 

Step 1 Create a 400 meter buffer around a stop 
Step 2 Intersect the buffers, zones, parcels, and building footprint 
Step 3 Iterate Step 1 and Step 2 for all stops. The produced GIS outputs include StopID, TAZ ID, Parcel 

ID, Land use code of parcel, Building ID, Building Type, Building Footprint Area, Storey, and 
Shaped building area with intersected buffer of the stops and TAZs. The outputs are generated 
only when buildings exist in the intersected areas among buffers and TAZs 

Step 4 Merge the GIS outputs (i.e., parcels including buildings) in Step 3 with the GIS outputs (i.e., all 
parcels information) from the parcel number ratio method in previous section. This is done 



 

78 

 

because we still need to count the number of parcels as well as building weight 
Step 5 Delete the duplicate parcel ID records from the merged outputs from Step 4. 
Step 6 Estimate weights for parcels including high storey buildings. 
Step 7 The transit on/off count data at each stop are multiplied by each ratio, and consequently, 

boardings and alightings are aggregated by TAZs. 
  

4.3 Application of Methods to a Case Study – The Region of Waterloo 

The Regional Municipality of Waterloo is located approximately 100km west of Toronto in southern 

Ontario. The region is comprised of three cities - Kitchener, Waterloo and Cambridge - and four rural 

townships. The current population is approximately 550,000. Transit is provided in the three cities by 

Grand River Transit (GRT), a division of the Regional government. GRT provides 12.2 million vehicle 

kilometers and 16.6 million passenger trips in the region per year (2008). At the time of the study, the 

agency had a fleet of 208 vehicles, of which about 90% are equipped with AVL/APC technologies.  

For this research, a subset of the Region was identified.  The study area, shown in the inset of Figure 4-

3, consists of 52 zones. At the boundary of the study area, an additional 35 zones were identified that 

could be potential origin or destination zones. The land uses observed in the study areas are residential, 

commercial, industrial and institutional areas, including two universities. This area was chosen because an 

on-board survey which provides validating data – origin zones and boarding locations, as well as 

destination zones and alighting locations – was recently conducted.  

Transit activity at each stop was provided from the Regional government’s AVL/APC database. Data 

were ascertained for a one month period from February, 2012. The total transit trips may be affected by 

the seasonal variations caused by weather or academic calendars. However, since this study focuses on 

transit trip allocation methods that are related with transit access pattern, the influence of those periodical 

variations on travel access pattern may be minimal. For each stop, the average weekday am peak (7-8am) 

boarding and alighting counts were calculated for each trip scheduled during the study hour.  The sum of 

the averages for each trip produces an hourly average of boardings and alightings at each stop. 

The methods described above were completed using GIS. The input files for the analysis included: the 

transit network, including all route and stop locations; the boundaries of traffic analysis zones; population, 

employment, and area for each of the TAZs; parcel information; building footprint and heights in stories; 

and 2006 census data comprising housing type and number of dwelling units at the dissemination area 

(DA) level.  



 

79 

 

 

Figure 4-3: The Regional Municipality of Waterloo and study area (Map source: Google maps) 

4.3.1 Demonstrating the impacts of the multiple methods 

The problem to be solved is the allocation of transit boardings and alightings to a number of candidate 

TAZs all of which are contained in part by the transit stop’s access shed – a 400 meter boundary around 

the stop itself. Four separate methods have been suggested. To demonstrate the different outcomes that 

result from the four methods, the following approach was taken. Four representative stops located in King 

Street (known locally as the Central Transit Corridor (CTC)) from within the study area – Stop IDs 1906, 

2540, 3619 and 3719 have been selected. The number of candidate TAZs for these stops range from four 

(Stop ID 2540) to ten (3719).  Each of these stops, the boundaries of their buffers, and the limits of the 

adjacent TAZs are shown in Figure 4-4. 

 

Study Area 
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Figure 4-4: Configuration of stops, the buffer areas, and associated zones 

For each of these stops, the number of alightings that would be allocated to each TAZ using the four 

different techniques has been computed.  The results are shown in Table 4-2. Note that the table includes 

only those TAZs with non-zero alighting allocations.  

Table 4-2: Allocating results of stop activites to TAZs using four methods 

  Buffer area 
ratio 

Parcel 
number ratio 

(1) 

Parcel 
number ratio 

(2) 

Footprint  
weighted 

parcel ratio 
Stop ID Associated TAZs % allocation % allocation % allocation % allocation 
1906 122 1.6 15.3 10.3 5.4 

 123 0.1 0.3 0.7 2.2 

 125 2.0 18.7 8.9 2.6 

 126 63.5 29.1 40.4 47.1 

 127 23.6 18.4 30.8 35.3 

 132 0.6 4.3 4.8 3.2 

 137 3.6 8.6 2.1 1.8 

 138 5.1 5.2 2.1 2.4 

 Totals 100.0 100.0 100.0 100.0 
2540 133 66.6 38.3 27.5 83.3 

 134 25.9 27.1 41.2 5.4 

 136 4.1 18.2 15.7 10.7 

 140 3.4 16.4 15.7 0.6 
  Totals 100.0 100.0 100.0 100.0 
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  Buffer area 
ratio 

Parcel 
number ratio 

(1) 

Parcel 
number ratio 

(2) 

Footprint  
weighted 

parcel ratio 
Stop ID Associated TAZs % allocation % allocation % allocation % allocation 
3619 65 1.7 5.1 0.0 0.0 

 69 5.6 35.9 10.0 3.9 

 70 41.6 0.7 3.3 80.1 

 71 27.3 34.4 13.3 4.3 

 72 5.4 4.4 36.7 3.2 

 73 16.4 7.0 33.3 8.6 

 282 1.9 12.5 3.3 0.0 
  Totals 100.0 100.0 100.0 100.0 
3719 122 1.4 13.4 9.3 5.3 

 123 0.1 0.3 0.7 2.2 
 124 0.0 0.6 1.3 0.0 
 125 2.2 21.2 9.3 3.0 
 126 63.3 28.4 39.3 47.1 
 127 23.5 17.9 30.0 34.8 
 129 0.3 1.5 1.3 0.0 
 132 0.5 4.2 4.7 3.1 

 137 3.0 6.9 2.0 1.8 

 138 5.5 5.7 2.0 2.5 
  Totals 100.0 100.0 100.0 100.0 

 

To explain the data contained in Table 4-2, the characteristics of the areas surrounding several stops are 

analyzed. Figure 4-5 shows the configuration of parcels and building footprints around the above stop 

areas.  

As shown in Figure 4-5 (a), Stops 1906 and 3719 are located in a high density area known as Uptown 

Waterloo, where low-rise commercial buildings (one to four stories, but mainly one to two stories) are 

dominant along the transit route. As indicated in Table 4-2, stop 1906 and 3719 generate very similar 

results since the transit access sheds from these two stops almost completely overlap each other. 

Accordingly, here, the results for Stop 1906 are shown.  

Some differences exist between the four methods, specifically for zones 126 and 127 surrounding Stop 

1906. Among these two zones, the buffer area ratio method allocates more alighting trips to zone 126 than 

127 (63.5 vs. 23.6% respectively) while the weighted-footprint (47.1% vs. 35.3%) and parcel number 

ratio (2) (40.4% vs. 30.8%) methods produce more balanced results. As shown in Figure 4-5 (a), in the 
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case of zone 127, commercial buildings are more concentrated in the buffer area surrounding Stop 1906 

than in remaining area of the zone 127 outside of the buffer. Since weighted buffer area ratio method 

assumes even distribution of employment for a zone, the weightings of employment in zone 127 

intersected with transit access shed can be underestimated. As a result, the buffer area ratio method 

allocates more percentage of alighting trips to zone 126 than 127.  

For zones 122 and 125 surrounding Stop 1906, the two parcel number ratio methods allocate over 10% 

of alighting trips to these zones, while the buffer are ratio and weighted foot-print methods assign much 

smaller percentages, less than 5%. These zones are comprised of a greater number of residential parcels. 

Zones 126 and 127 have fewer parcels, but contain some of the highest employment density areas in the 

region.       

 

(a) Stop ID: 3719 and 1906 (Uptown waterloo - King st. near Town square) 
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(b) Stop ID: 2540 (Grand River Hospital) 

 

(c) Stop ID: 3619 (Wilfrid Laurier University) 

Figure 4-5: Configuration of parcels and building footprints in buffer areas 
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As shown in Figure 4-5 (b), the buffer area around Stop ID 2540 includes a large parcel (part of zone 

133) on which Grand River hospital is located.  The buffer area also contains significant residential areas 

(zone 133 and 134), as well as some commercial zones (part of zone 134). From Table 4-2, the buffer area 

ratio and footprint-weighted methods generate similar transit trip allocations to TAZs – with a significant 

proportion of trips destined for Grand River Hospital (zone 133).  This is intuitively correct as the 

hospital is one of the major activity centers in the Region of Waterloo.  On the other hand, two parcel 

number ratio methods more evenly distribute transit trips to surrounding zones. This is mainly because in 

the buffer area for Stop 2540, zones 133, 134, 136, and 140 have similar total number of parcels as shown 

in Figure 4-5 (b). Compared to parcel number (1) method, parcel number (2) method (which considers 

land use type of each parcel) assigns more alighting trips to 134 than 133, since there are more 

commercial parcels in 134 zones than 133 zones.  

An analysis of the trip allocation from Stop 3619 shows that the four methods produce quite different 

results. As shown in Figure 4-5 (c), zone 70 contains a large parcel where a university (Wilfrid Laurier) is 

located; other zones consist of commercial areas and residential areas. The buffer area ratio and footprint-

weighted parcel methods allocate large portion of trips to the zone 70 followed by 71 due to high 

employment density and large building footprints.  Parcel number ratio (1) method assigns most of the 

trips to zones 69 and 71 since the number of parcels in these zones is greater than in zone 70. Parcel 

number ratio method (2) allocates most of the trips to either zone 72 or 73, since the number of parcels 

where area type is commercial is the greatest in these zones amongst all the candidate zones in the access 

sheds.  

Overall, the buffer area ratio weighted by employment method can effectively handle various 

conditions, particularly for major activity generators (e.g., hospital, down town or uptown area, 

university). The data for employment and population are easy to obtain and the application technique is 

also straightforward. However, as shown in case of Stop 1906 (zone 127), since the buffer area ratio 

method assumes even distribution of population and employment, careful attention to interpreting the 

results (e.g., investigating homogeneity of a zone) is still required. 

The two parcel number ratio methods and footprint weighted method incorporate land use information 

(e.g., parcel type, building type, building foot-print area, building story). As shown in the analysis of 

results for Stops 2540 and 3619, both parcel number ratio methods are limited in their applicability to the 
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whole study area, especially in cases where a large parcel contains high density buildings or major 

activity centers. In this case, the transit trip allocation results are quite different from our intuition. 

The foot-print weighted method generally produces similar results with the buffer area ratio method as 

demonstrated in the analysis of Stops 2540 and 3619. The one issue is the quality of GIS footprint data. In 

rare cases, the data include null values on building story or building type. In this case, it may be necessary 

to edit manually. Furthermore, as described in section 4.2.4, the footprint data are available only for 

building structure. Therefore, the area size for single dwelling units in residential areas cannot be directly 

estimated. In such case, the method also requires additional steps as 4.2.4. In the following section, I 

evaluate the proposed four methods using transit on-board survey data and examine if the benefits from 

the weighted footprint method can justify the additional effort.  

4.3.2 Evaluation setup 

In order to assess the performance of the proposed models, actual data on origins and destinations are 

necessary. These data would typically be gathered through either an on-board transit survey or by other 

contemporary data collection methods (including AFC data or using GPS travel diaries). In the case study, 

data from two on-board passenger surveys are used.  The first survey was conducted by the Region of 

Waterloo for the period of March 21 to 24 of 2008; the second data are from a broader travel behavior 

survey of transit users conducted by the University of Waterloo for three weekdays in 2010.  One 

limitation of the current work is that the data sets for actual origin and destination locations are somewhat 

sparse.  Thus, the assessment methods are presented as to demonstrate how validation can be done; the 

results on the suitability of each assignment method should be repeated with larger data sets.  That work 

is beyond the scope of this dissertation. 

In the study area, GRT- iXpress Routes 200 and 201 are assessed because reliable data are available for 

nearly all stops (unlike local routes where the data are less reliable). The routes consist of 19 stops in the 

study area as shown in Figure 4-6 and Table 4-3. 
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Figure 4-6: Transit routes and stops for evaluation (2012 configuration) 

 

To evaluate the proposed methods, the difference in % allocation for each zone based on the four 

proposed methods is analyzed and the predicted allocations are compared to the actual results from the 

on-board survey.  

From the data gathered by the on-board surveys, only those trips for which the boarding and / or 

alighting stops were part of the selected routes, and that occurred during the appropriate study period – 

the am peak period are of interest. As such, the first step is to filter the full database to include the 

relevant trips.  For these trips, the following information is then recorded:  

(1) The actual trip origin, which is geocoded in a GIS and linked spatially to a Traffic Analysis Zone 
(TAZ)  

(2) The boarding location, linked to a stop indexed by the Region of Waterloo’s stopID field; 
(3) The alighting location indexed in the same way as the boarding location; 
(4) The actual trip destination, geocoded in the same way as step 1, to a specific TAZ. 
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Then, sample trips are expanded to total stop boarding or alighting trips using APC data. Here, the 

expansion factors for each record (that have stop and its actual origin/destination information) are the 

number of responses at the stop divided by total transit trips of the route at the stop from APC data.  

Table 4-3: The characteristics of the set of stops in study area 

Route 
Direction 

Stop (ID) 

Avg. 
boarding/ 
alighting 
(7-8am)  From To 

201 

Forest glen plaza Conestoga mall Fischer-Hallman/Erb (1972) 13.8 

Forest glen plaza Conestoga mall Fischer-Hallman/Thorndale (1992) 5.9 

Forest glen plaza Conestoga mall Fischer-Hallman/Victoria (3143) 5.4 

Forest glen plaza Conestoga mall Fischer-Hallman/Stoke (3144) 1.5 

Forest glen plaza Conestoga mall Fischer-Hallman/University (3146) 7.4 

Conestoga mall Forest glen plaza Fischer-Hallman/Keats way (3162) 0.9 

Conestoga mall Forest glen plaza Fischer-Hallman/Thorndale (3165) 2.4 

Conestoga mall Forest glen plaza Fischer-Hallman/University (3167) 3.4 

Conestoga mall Forest glen plaza Fischer-Hallman/Stoke (3169) 1.6 

Conestoga mall Forest glen plaza Fischer-Hallman/Erb (3590) 1.6 

200 

Conestoga mall Ainslie terminal Univ. of Waterloo-Davis centre (1123) 15.8 

Ainslie terminal Conestoga mall Uptown Waterloo-King St. near Waterloo 
town square (1906) 10.8 

Conestoga mall Ainslie terminal King/Pine- 
Grand River Hospital (2540) 3.4 

Ainslie terminal Conestoga mall University/Hazel- 
Laurier University (3619) 19.9 

Ainslie terminal Conestoga mall Univ. of Waterloo-Davis centre (3699) 32.5 

Conestoga mall Ainslie terminal Uptown Waterloo-King St. near Waterloo 
town square (3719) 4.9 

* Omitted stops in the study area have zero boarding and alighting during AM peak (7-8am) hour 
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4.3.3 Evaluation results 

The performances of the four allocation methods of transit boardings and alightings to their origin and 

destination zones were assessed by investigating (1) the difference in % allocation for each zone based on 

proposed methods, (2) Root Mean Squared Errors (RMSE) and (3) a probabilistic technique - chi square 

test. Chi-square is the sum of the squared difference between observed (o) and the expected (e) data, 

divided by the expected data in all possible categories (N) as shown in equation (4-6).  

𝐶𝐶ℎ𝑖𝑖 𝑥𝑥2 = ∑ �(𝑂𝑂𝑖𝑖−𝑒𝑒𝑖𝑖)2

𝑒𝑒𝑖𝑖
�𝑁𝑁

𝑖𝑖=1                                                                                             (4-6)
      

Where: 

𝑜𝑜𝑖𝑖 = observed 
𝑒𝑒𝑖𝑖 = expected 
𝑁𝑁 = total number of category 

 

The null hypothesis of independence is rejected if 𝑥𝑥2 is large, because this means that observed 

frequencies and expected frequencies are far apart. The chi-square curve is used to judge whether the 

calculated test statistic is large enough so that the area beyond it (under the chi-square curve with a 

degrees of freedom) is less than 0.05 of P value (Smith, 2015).  

In this study, for observed values for  𝑥𝑥2, observed % allocation at each zone was converted into values 

equivalent to total 100 alighting trips at each zone. For expected values for  𝑥𝑥2, estimated % alighting 

trips at each zone are used. Total number of categories (associated with degree of freedom) corresponds 

to the number of associated TAZs at each stop.  

Among the set of stops of route 200 and 201 in the study area (see Table-4-3), allocation results were 

evaluated for 11 stops (shown in bold in Table 4-3). In cases where the total number of boarding/alighting 

trips is very small (less than three trips), those stops are excluded in the evaluation. The allocation results 

based on four proposed methods, observed data, and the differences in percentage of allocation are shown 

in Table 4-4.  
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Table 4-4: Performance evaluation of the trip assignment methods - Alightings 

 
Obs. Alighting 

trips Buffer area ratio Parcel num ratio (1) Parcel num ratio (2) Footprint weighted parcel ratio 

Stop ID Associated 
TAZ Obs. 

% 
allocation 

(a) 
Est. 

% 
allocation 

(b) 

Difference 
in % 

allocation 
(b-a) 

Est. 
% 

allocation 
(c) 

Difference 
in % 

allocation  
(c-a) 

Est. 
% 

allocation 
(d) 

difference 
in % 

allocation 
(d-a) 

Est. 
% 

allocation 
(e) 

Difference 
in % 

allocation  
(e-a) 

1123 

63, 64 16 100.0 16 98.9 -1.13 14 90.5 -9.52 14 88.2 -11.76 14 88.2 -11.76 

65  0.0 0 1.1 1.13 2 9.5 9.52 2 11.8 11.76 2 11.8 11.76 
Chi-square 
Probability, 

P-value 
    0.284*   0.0012   0.0003   0.0003 

1906 

118 1 5.9 
 

0.0 -5.88 
 

0.0 -5.88 
 

0.0 -5.88 
 

0.0 -5.88 
122 

 
0.0 0 1.6 1.60 2 15.3 15.34 1 10.3 10.27 1 5.4 5.35 

123 
 

0.0 0 0.1 0.12 0 0.3 0.31 0 0.7 0.68 0 2.2 2.19 
125 1 11.8 0 2.0 -9.78 2 18.7 6.95 1 8.9 -2.86 0 2.6 -9.21 
126 3 23.5 7 63.5 39.93 3 29.1 5.61 4 40.4 16.88 5 47.1 23.60 
127 4 35.3 3 23.6 -11.66 2 18.4 -16.89 3 30.8 -4.47 4 35.3 0.03 
132 

 
0.0 0 0.6 0.57 0 4.3 4.29 1 4.8 4.79 0 3.2 3.20 

137 1 5.9 0 3.6 -2.32 1 8.6 2.71 0 2.1 -3.83 0 1.8 -4.07 
138 1 5.9 1 5.1 -0.82 1 5.2 -0.67 0 2.1 -3.83 0 2.4 -3.45 
276 1 5.9 

 
0.0 -5.88 

 
0.0 -5.88 

 
0.0 -5.88 

 
0.0 -5.88 

282 1 5.9 
 

0.0 -5.88 
 

0.0 -5.88 
 

0.0 -5.88 
 

0.0 -5.88 
Chi-square 
Probability, 

P-value 
    0.0000   0.0000   0.0000   0.0000 

2540 

133 3 83.3 2 66.6 -16.73 1 38.3 -45.00 1 27.5 -55.88 3 83.3 -0.05 
134 

 
0.0 1 25.9 25.87 1 27.1 27.09 1 41.2 41.18 0 5.4 5.42 

136 1 16.7 0 4.1 -12.53 1 18.2 1.49 0 15.7 -0.98 0 10.7 -5.96 
140 

 
0.0 0 3.4 3.39 1 16.4 16.43 0 15.7 15.69 0 0.6 0.58 

Chi-square 
Probability, 

P-value 
    0.0000   0.0000   0.0000   0.0253 
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Obs. Alighting 

trips Buffer area ratio Parcel num ratio (1) Parcel num ratio (2) Footprint weighted parcel ratio 

Stop ID Associated 
TAZ Obs. 

% 
allocation 

(a) 
Est. 

% 
allocation 

(b) 

Difference 
in % 

allocation 
(b-a) 

Est. 
% 

allocation 
(c) 

Difference 
in % 

allocation  
(c-a) 

Est. 
% 

allocation 
(d) 

difference 
in % 

allocation 
(d-a) 

Est. 
% 

allocation 
(e) 

Difference 
in % 

allocation  
(e-a) 

3619 

41 2 12.5 
 

0.0 -12.50 
 

0.0 -12.50 
 

0.0 -12.50 
 

0.0 -12.50 
60 2 12.5 

 
0.0 -12.50 

 
0.0 -12.50 

 
0.0 -12.50 

 
0.0 -12.50 

65 
 

0.0 0 1.7 1.71 1 5.1 5.13 0 0.0 0.00 0 0.0 0.00 
69 

 
0.0 1 5.6 5.59 7 35.9 35.90 2 10.0 10.00 1 3.9 3.87 

70 2 12.5 8 41.6 29.14 0 0.7 -11.77 1 3.3 -9.17 16 80.1 67.56 
71 7 37.5 5 27.3 -10.22 7 34.4 -3.07 3 13.3 -24.17 1 4.3 -33.24 
72 2 12.5 1 5.4 -7.09 1 4.4 -8.10 7 36.7 24.17 1 3.2 -9.31 
73 

 
0.0 3 16.4 16.45 1 7.0 6.96 7 33.3 33.33 2 8.6 8.62 

74 2 12.5 0 0.0 -12.50 
 

0.0 -12.50 0 0.0 -12.50 0 0.0 -12.50 
282 

 
0.0 0 1.9 1.92 2 12.5 12.45 1 3.3 3.33 0 0.0 0.00 

Chi-square 
Probability, 

P-value 
    0.0000   0.0000   0.0000   0.0000 

3699 

52 
 

0.0 1 3.4 3.41 7 21.7 21.74 9 26.3 26.32 1 2.3 2.32 
53 

 
0.0 0 0.3 0.26 1 4.3 4.35 2 5.3 5.26 1 2.2 2.18 

63, 64 33 100.0 31 96.3 -3.67 24 73.9 -26.09 22 68.4 -31.58 31 95.5 -4.50 
Chi-square 
Probability, 

P-value 
    0.1485*   0.0000   0.0000   0.0946* 

3719 122 
 

0.0 0 1.4 1.44 1 13.4 13.43 0 9.3 9.33 0 5.3 5.32 

 
123 

 
0.0 0 0.1 0.12 0 0.3 0.30 0 0.7 0.67 0 2.2 2.19 

 
124 

 
0.0 0 0.0 0.02 0 0.6 0.60 0 1.3 1.33 0 0.0 0.00 

 
125 

 
0.0 0 2.2 2.25 1 21.2 21.19 0 9.3 9.33 0 3.0 3.02 

 
126 2 47.3 3 63.3 15.99 1 28.4 -18.98 2 39.3 -8.01 2 47.1 -0.21 

 
127 1 23.7 1 23.5 -0.18 1 17.9 -5.76 1 30.0 6.33 2 34.8 11.17 

 
129 

 
0.0 0 0.3 0.33 0 1.5 1.49 0 1.3 1.33 0 0.0 0.05 

 
132 

 
0.0 0 0.5 0.48 0 4.2 4.18 0 4.7 4.67 0 3.1 3.15 

 
133 1 14.5 0 0.0 -14.49 0 0.0 -14.49 0 0.0 -14.49 0 0.0 -14.49 

 
136 1 14.5 0 0.0 -14.49 0 0.0 -14.49 0 0.0 -14.49 0 0.0 -14.49 
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Obs. Alighting 

trips Buffer area ratio Parcel num ratio (1) Parcel num ratio (2) Footprint weighted parcel ratio 

Stop ID Associated 
TAZ Obs. 

% 
allocation 

(a) 
Est. 

% 
allocation 

(b) 

Difference 
in % 

allocation 
(b-a) 

Est. 
% 

allocation 
(c) 

Difference 
in % 

allocation  
(c-a) 

Est. 
% 

allocation 
(d) 

difference 
in % 

allocation 
(d-a) 

Est. 
% 

allocation 
(e) 

Difference 
in % 

allocation  
(e-a) 

 
137 

 
0.0 0 3.0 2.99 0 6.9 6.87 0 2.0 2.00 0 1.8 1.76 

 
138 

 
0.0 0 5.5 5.55 0 5.7 5.67 0 2.0 2.00 0 2.5 2.54 

 
Chi-square 
Probability, 

P-value 
    0.0000   0.0000   0.0000   0.0000 

Total alighting trips 86 86 86 86 86 
Min. diff.%  0.02 0.30 0.00 0.00 
Max. diff.%  39.9 45.0 55.9 67.6 
Avg. diff.%  7.6 11.0 11.5 7.9 

RMSE  1.33 2.11 2.69 1.93 
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From the data in Table 4-4, alighting trips during AM peak tend to concentrate along the activity 

centers (e.g., University of Waterloo-zone 63, 64; Uptown Waterloo: zone 126, 127; Grand River 

Hospital: zone 133). A total of 86 trips were observed from the selected stops; 71% of the observed 

alighting trips are destined for major activity centers in the study area. Table 4-4 indicates that the errors 

(difference in % allocation) for these major allocation zones, for example, zone 63, 64, and 133 are 

relatively small for the buffer area ratio and footprint-weighted parcel ratio methods compared to the 

other two methods. 

The results in Table 4-4 show that footprint area ratio method and the buffer area ratio method perform 

best in the study area. On average, error in allocation is below 10% for both buffer area ratio and footprint 

weighted parcel ratio approach. The average difference in % allocation between observed data and 

proposed methods are 8%, 11%, 12%, and 8%, respectively. The maximum allocation error is 40% for 

buffer area ratio, 45% for parcel number ratio 1, 56% for parcel number ratio 2, and 68% for footprint 

weighted method. RMSE also indicates that the buffer area ratio approach (RMSE=1.33) and footprint 

weighted parcel ratio method (RMSE=1.93) are superior to the other two methods. 

Similar results are shown for boardings. In Table 4-5, the footprint area weighted method generates the 

best estimates (RMSE=4.2) followed by the buffer area ratio approach (RMSE=4.4). Average errors 

(averaged difference in % allocation) are about 18% for all four methods.  In Table 4-4 under the section 

of Chi-square probability, Stop ID 1123 and 3699 show high P values in Buffer area ratio and Footprint 

weighted methods. This high P value (greater than 0.05) indicates the estimates are similar to observed 

(i.e., 𝐻𝐻0 is not rejected). For many stops, the number of observations are very small, and the expected 

values are less than one. As a result, Chi square tests are not possible. This reflects the limitation 

identified above regarding small sample size. That being said, the method remains applicable. 
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Table 4-5: Performance evaluation of the trip assignment methods - Boardings 

 
Obs. 

Boarding 
trips 

Buffer area ratio Parcel num ratio (1) Parcel num ratio (2) Footprint weighted 
parcel ratio 

Stop 
ID 

Associ
ated 
TAZ 

Ob
s. 

% 
allocat

ion 
(a) 

Es
t. 

% 
allocat

ion 
(b) 

Diff. 
in % 

allocat
ion 

(b-a) 

Es
t. 

% 
allocat

ion 
(c) 

Diff. 
in % 

allocat
ion 

(c-a) 

Es
t. 

% 
allocat

ion 
(d) 

Diff. 
in % 

allocat
ion  

(d-a) 

Es
t. 

% 
allocat

ion 
(e) 

Diff. 
in % 

allocat
ion 

(e-a) 
1972 275 2 14.2 3 23.9 9.7 1 10.8 -3.4 1 10.6 -3.6 2 12.4 -1.8 

 
276 4 28.9 5 36.4 7.5 5 33.7 4.9 5 33.3 4.4 4 32.5 3.7 

 
278 2 14.2 0 3.3 -11.0 1 5.9 -8.3 1 6.0 -8.2 1 5.9 -8.3 

 
283 2 14.2 2 16.8 2.6 3 18.6 4.4 3 18.7 4.5 3 18.5 4.3 

 
286 2 14.2 3 19.6 5.4 4 30.9 16.7 4 31.4 17.2 4 30.7 16.5 

 
275, 276, 
283, 286 2 14.2 

            
3143 295 1 16.1 2 46.3 30.2 2 37.1 21.1 2 37.0 20.9 2 28.6 12.5 

 
301 1 25.0 1 20.6 -4.4 1 23.1 -1.9 1 22.8 -2.2 2 28.6 3.6 

 
303 1 8.9 1 11.2 2.3 

 
0.0 -8.9 

 
0.0 -8.9 

 
0.0 -8.9 

 
306 1 25.0 1 21.9 -3.1 2 39.7 14.7 2 40.3 15.3 2 42.8 17.8 

 
308 1 8.9 

 
0.0 -8.9 

 
0.0 -8.9 

 
0.0 -8.9 

 
0.0 -8.9 

 
301,306 1 16.1 

            
3146 280 

 
0.0 0 1.8 1.8 0 0.5 0.5 0 0.5 0.5 0 0.5 0.5 

 
281 1 18.0 0 3.6 -14.4 0 3.5 -14.5 0 3.1 -14.9 0 3.0 -15.0 

 
283 

 
0.0 3 39.9 39.9 2 32.9 32.9 2 32.9 32.9 2 32.1 32.1 

 
284 2 35.0 1 9.1 -25.9 1 6.9 -28.0 0 5.9 -29.0 1 8.3 -26.6 

 
285 1 18.0 3 45.7 27.7 4 56.3 38.3 4 57.6 39.6 4 56.1 38.2 

 
283, 284, 

285 2 29.1 
            

3167 280 
 

0.0 0 1.2 1.2 0 0.3 0.3 0 0.3 0.3 0 0.3 0.3 

 
281 1 33.3 0 9.1 -24.2 0 5.7 -27.6 0 5.3 -28.0 0 6.1 -27.2 

 
283 

 
0.0 1 34.2 34.2 1 31.7 31.7 1 31.8 31.8 1 29.2 29.2 

 
284 1 33.3 1 17.6 -15.8 1 16.0 -17.3 1 15.0 -18.3 1 20.7 -12.6 

 
285 1 33.3 1 37.9 4.6 2 46.3 13.0 2 47.6 14.3 1 43.7 10.4 

1992 275 3 50.0 
 

0.0 -50.0 
 

0.0 -50.0 
 

0.0 -50.0 
 

0.0 -50.0 

 
283 

 
0.0 3 49.2 49.2 2 37.6 37.6 2 37.5 37.5 2 37.5 37.5 

 
285 

 
0.0 1 20.4 20.4 2 27.5 27.5 2 27.6 27.6 2 27.6 27.6 

 
286 

 
0.0 2 30.4 30.4 2 34.9 34.9 2 34.9 34.9 2 34.9 34.9 

 
283, 285, 

286 3 50.0 
            

Total trips 36 36 36 36 36 
Min. diff. %  

 
1.2 0.3 0.3 0.3 

Max. diff. % 
 

50.0 50.0 50.0 50.0 
Avg. diff. % 

 
17.7 18.6 18.9 17.8 

RMSE 
  

4.4 4.5 4.6 4.2 
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Following the quantitative analysis, additional evaluation was conducted on the conditions under which 

each assignment method performed either well or poorly. The observed strengths and weakness of the 

proposed methods are summarized in Table 4-6.  

Table 4-6: Summary of characteristics of proposed transit trip allocation methods 

Proposed method Strength/ Characteristics Weakness Comment 

Buffer area ratio  

Effectively handles major 
activity generators.  

Easy acquisition of data. 

Straightforward 
technique. 

Reasonable performance.  

Assumption of even 
distribution of population 
and employment in buffer 
areas 

Careful attention on the 
homogeneity of a zone is 
necessary. 

Parcel number ratio  

Use of land use 
information instead of 
density index (pop or 
emp) 

Limited applicability 
when parcels contain high 
density buildings 

Use of the ‘number of 
parcels’ is not appropriate 
to measure strength (size) 
of a zone: Combination 
with density index can be 
considered.  

Footprint weighted  Good performance 

The issue of GIS footprint 
data quality and coverage:  
it is necessary to 
edit/correct data cells 
manually and to construct 
additional steps  

It should be examined if 
the benefits from the 
weighted footprint 
method can outweigh the 
additional effort. 

 

Comparing Tables 4-4 and 4-6, it appears that the errors are larger for alighting trips than allocating for 

boarding trips. This is mainly due to a challenge related to the on-board survey where passengers were 

asked to identify their actual trip origin using an address, an intersection or a postal code. Most 

respondents chose one of the latter two options. A postal code can contain multiple TAZs.  Similarly, an 

intersection can form the boundary between multiple TAZs. As a result, it is difficult to have certainty 

when assigning origin TAZs. Future data collection should be designed to eliminate this source of error.  

A second challenge arises from the small number of observations at some stops. For example, the 

largest differences in % allocation (i.e., 50%) are observed surrounding stop ID 1992 where only six 

boardings were observed. A more extensive on board survey or a trip diary survey method may be 

necessary to validate the appropriate allocation methods. However, to the author's knowledge, no 
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previous studies have actually tried to validate proposed method compared to observed maps of transit 

users from homes to stops and stops to destinations. 

To conclude, based on an admitted small sample size and analysis area, this study explored transit trip 

allocation methods. The proposed framework can be useful to lead the choice of an effective method in 

accordance with user’s need. The results of application to this study area provide some evidence that 

buffer area ratio method weighted by employment and footprint weighted method perform reasonably 

well compared to the observed data. For boarding trip allocation to their origin zones, footprint weighted 

parcel ratio method performs the best followed by buffer area ratio approach. Buffer area ratio weighted 

by population or employment method can effectively handle various conditions including major activity 

generators with reasonable accuracy, and improve the practical applicability with easy-to-obtain and -use 

data. 

4.4 Chapter Summary 

The challenges of using AVL/APC data for travel demand modeling process is the lack of appropriate 

methods to link stop activity to their actual TAZs. Previous approaches are simple zonal aggregations of 

boarding and alighting trips based on stop locations (i.e., simple summation of boarding counts of 

associated stops if coordinates of stops lie in the TAZ). Thus, it has been perceived that stop-level counts 

are not accurate at zonal level. In addition, it was not clear how to aggregate when stops are located on 

zone boundaries.  

In this chapter, four methods for linking the stop-level boarding (or alighting) to the zone from (or to) 

which these passengers actually originate (or destined) were proposed. The proposed methods incorporate 

the concept of transit access area among competing zones. To be practically useful in terms of data 

acquisition, the proposed methods were developed focused on the availability of data in the local context 

including socio-economic, parcel, building footprint, and census data, while adequately performing in 

terms of accuracy and robustness.   

The performance of each method was evaluated by comparing the percentage of allocation to candidate 

zones based on four proposed methods. For observed transit trips from stops to origin/destination zones, 

transit on-broad survey data were used. To my knowledge, there has not been any research validating 

proposed method compared to observed maps of transit users from homes to stops and stops to 

destinations.  
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For alighting trips and their destination TAZs, the buffer area ratio method weighted by employment 

(RMSE=1.33) and footprint weighted methods outperform the other models. The average estimation error 

for allocation to each zone is about 8%. For boarding trips and their origin, the footprint weighted parcel 

ratio method (RMSE=4.2) performs the best. Similar to the footprint weighted method, buffer area ratio 

(RMSE=4.4) also can closely approximate the observed trips in origin zones. The average estimation 

errors of these two methods are about 18%.  

The buffer area ratio method provides robust (in terms of both boarding and alighting) and reasonably 

accurate results using readily available data (i.e., population and employment). However, since the buffer 

area ratio method assumes even distribution of population and employment, careful attention during 

interpretation of the data (e.g., investigating homogeneity of a zone, size of zones-if they are small 

enough for homogeneity) and the application of the method are still required 

As expected, the footprint weighted method shows good performance. Yet, in rare cases, GIS foot-print 

data require manual edits or additional steps to ensure data quality. In the study area, the benefits from the 

weighted footprint methods do not outweigh the additional effort to the buffer area ratio method.   

The results do point to one weakness of this approach. Transfer trips cannot be captured in the 

proposed methods. However, the issue of transfer trips can be overcome, for example, by using AFC 

(Automatic Fare Collection) data that allow easy calculation of total transfer trips at each stop. 

It should be noted that in most cases, statistical significance of the difference between RMSE results 

were not attainable due to the limitations of sample size. Additional investigations are necessary with 

more observations. 

Chapter 5 presents the application of these assignment methods with a goal to improve the utilization of 

AVL / APC data in the calibration of travel forecasting models. 
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 Chapter 5

Assessment of the Transit Mode Share Prediction Errors  

5.1 Introduction 

The disparity between actual and forecasted transit ridership has been an important area of study and a 

concern for practitioners for several decades. In order to decrease the discrepancy caused by model 

property errors, a number of studies focus on better representation of difficult-to-measure cost functions 

and incorporation of behavioral variables in mode choice models. In spite of the improvement in mode 

choice models, some gaps still remain in practical applications, particularly for large-scale regional travel 

forecasting models which are zone-based and aggregated. Given limited resources, planners experience 

challenges in determining the causes of the prediction errors and, more generally, the overall deficiencies 

in models. In this chapter, one goal is to propose a method to enhance the processes by which travel 

forecasting models are calibrated. Further, a better explanation of what components would be the major 

sources of errors of transit mode choice forecast is pursued.  

The proposed method in this chapter effectively calculates prediction errors, identifies ranges of errors 

that warrant further investigation using statistical techniques, and evaluates the source of errors affecting 

the accuracy of predicted transit use on a zonal level. Details of the methods are provided in the following 

sections. 

5.2 Methods 

5.2.1 Calculating prediction errors 

The approach taken to understand the sources of error is as follows. Travel forecasting models predict the 

number (and percentage) of trips made between all origins and destinations by various modes. When 

AVL/APC data are available, the actual number of transit boardings occurring in a zone is also known.  A 

comparison of the observed transit boardings to predicted transit boardings in a zone can be used to 

identify those zones in which the model is performing well and those zones in which significant error 

exists.  For the latter set of zones, a further examination can identify the sources of those errors. 

As described in Chapter 4, the first step is to assign the observed boardings to the zone (TAZ) from 

which the trip actually began.  Once this step is complete, there exists a column vector of actual boardings 
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(𝐵𝐵𝑖𝑖′  ) for each zone i, in a given time period. The approach to allocate boardings to individual zones is to 

assign trips proportionally to the population and area size of competing zones within 400 meters of the 

stop (see Eqs. (4-1) to (4-4), and Fig.4-2). From the travel forecasting model, the predicted number of 

total trips by all modes between each origin-destination (i,j) pair for the same time period are known. By 

summing the trip matrix over the destinations, it is possible to calculate the total number of trips, 𝑇𝑇𝑖𝑖, 

beginning at each origin zone i.  

From steps 1 and 2, an observed mode share - or the probability of a trip that begins in zone i being 

made by transit can be estimated. Mathematically, this is represented as: 

𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡𝑖𝑖) = 𝐵𝐵𝑖𝑖
′

𝑇𝑇𝑖𝑖
=  𝐵𝐵𝑖𝑖

′

∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗
                                                                                                (5-1) 

Where: 

𝐵𝐵𝑖𝑖′ : actual boardings for each zone i 
𝑇𝑇𝑖𝑖: total number of trips beginning at each origin zone i 

 

Also from the travel forecasting model, the number of predicted transit trips between each i, j pair is   

known. Again, by summing over the destinations, the number of predicted trips by transit beginning from 

zone i, 𝐵𝐵𝑖𝑖 can be estimated. From steps 2 and 4, it is possible to calculate the estimated probability of a 

trip beginning in zone i being made by transit.  Mathematically: 

𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖) = 𝐵𝐵𝑖𝑖
𝑇𝑇𝑖𝑖

=  𝐵𝐵𝑖𝑖
∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗

                                                                                               (5-2) 

Where:  

𝐵𝐵𝑖𝑖: predicted boardings from zone i 
𝑇𝑇𝑖𝑖: total number of trips beginning at each origin zone i 

 

This study defines the mode share error for zone i, 𝜀𝜀𝑖𝑖 as the difference between equations (5-1) and (5-2) 

as below:  

𝜀𝜀𝑖𝑖 = 𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡𝑖𝑖) − 𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖)                                                                      (5-3) 

From equation 5-3, mode share errors – the difference between the observed and estimated probabilities 

of using transit for a trip from zone i – can be estimated for each TAZ (see Figure 5-1).  
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(a) Predicted vs. observed transit uses in each zone   

 

 

(b) Computed transit mode share errors 

Figure 5-1: Illustration of transit mode share error computation 

5.2.2 Classifying prediction errors 

Having identified the errors at the zonal level, the next step is to identify those zones for which the error 

represents a (statistically) significant deviation from the overall performance of the model. To this end, 

the magnitude of prediction errors is categorized based on a well-known outlier labeling technique – the 

box plot, proposed by Tukey (1977).  
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Tukey's method constructs a boxplot to display information about symmetry, median, lower quartile (or 

hinge), upper quartile, lower extreme (or whisker end), and upper extreme of a data set. Since Tukey's 

method uses a robust statistics of median instead of mean or standard deviation, it is less sensitive to 

extreme values than other outlier labeling techniques (Seltman 2014, Seo 2002). It is known that the 

method is not appropriate for a small sample size (Iglewicz and Hoaglin, 1993). An important aspect of 

Tukey's method is that it makes no assumptions about the distribution of the data and, as a result, is 

effective in describing data that are not normally distributed.  

Figure 5-2 (a) shows an example of box-plot where the data are normally distributed. IQR (Inter 

Quartile Range) is the distance between the lower (Q1) and upper (Q3) quartiles. Inner fences (or also 

known as ‘whisker end’) are located at a distance Q1-1.5IQR and Q3+1.5IQR. Outer fences are located at 

a distance Q1-3IQR and Q3+3IQR. It is suggested that a value between the inner and outer fences is a 

possible outlier, and an extreme value beyond the outer fences is a probable outlier (Seltman 2014, Seo 

2002). 

 

Figure 5-2: Methods for categorizing zones based on degree of prediction errors and detecting 
outliers of prediction errors: (a) Boxplot (modified from "Boxplot vs PDF" by Jhguch at en.wikipedia); 
(b) (c) Probability density function associated with box plot, (Jhguch at en.wikipedia, Accessed 1 April, 
2016)  



 

101 

 

In this chapter, box plots to visualize and analyze the range of error terms are used. This approach 

allows for the categorization of zones based on the magnitude and direction of error, and to conduct 

further analyses across these categories. Zones that are outliers are classified into categories labeled 

highly under- and highly over-estimated; those that demonstrate significant errors, but are not outliers are 

labeled as moderately under- and over-estimated. Finally, those zones that are performing within expected 

boundaries of performance are labeled as reasonably predicted. 

5.2.3 Determination of possible source of prediction errors 

Next, the factors that could affect these prediction errors on a zone level are examined. Specific attention 

is paid to those variables that are not directly controlled for via market segmentation (see Table 5-1). For 

example, the presence of high concentrations of students (percent population of age 18-24) is not assessed 

since the market segment of post-secondary trips is already included in the model.  

Figure 5-3 presents a range of variables that are commonly identified as influencing the propensity to 

use transit. Additional descriptions of these variables are contained in Chapter 2. The variables are sorted 

into two categories: those that may be quantified but for which new data sources may be necessary and 

those that can be readily quantified using existing data sources. Dealing with the latter category first, the 

approach taken in the analysis is to calculate the summary statistics for each variable for all zones 

belonging to the five categories which are defined in the previous section. Then, pairwise statistical 

comparisons of means are completed to identify those variables for which significantly different 

properties exist. These variables may have the highest explanatory power for reducing the error terms. 
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Figure 5-3: Possible elements of mode share errors (sources of variables: Outwater et al., 2011, 
Lutin et al., 2008, Kittelson et al., 2003, Rosenbloom et al., 1998, Litman, 1995) 

 

Next, two of the three characteristics for which new data sources provide an opportunity to quantify 

these variables for inclusion in the model are addressed: reliability and accessibility. The following 

section describes the estimation methods for reliability and accessibility at the zonal level.  

Reliability is estimated as the percentage of “on-time vehicles” using AVL/APC data on a zone by zone 

basis. The literature contains many definitions of “on-time” (Kittelson et al. 2003; Canadian Urban 

Transit Association 2001; Kimpel et al. 2008). In this case, an on-time vehicle is defined as arriving at a 

stop no more than 2 minutes late and departing that stop no more than 30 seconds early. These vehicle 

data are available from the Region’s AVL database.  The reliability estimation using AVL data takes the 

following steps: 

i. Extracting the required data from AVL dataset. The time stamp on the data must be during the 

study period 7am-8am. Additionally, the data contain: the route number; operating day; stop 

number; scheduled arrival time; scheduled departure time; actual arrival time; actual departure 

time; trip ID, and coordinate. 

ii. For each data record, a binary decision is made to label the record as on-time or not on-time.  

This calculation is done as shown in Equation (5-4). 
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iii. The data records are merged such that the stop location is linked to the TAZ in which the stop 

occurred.   

iv. Reliability rates are generated for each TAZ.  Two assumptions were made for the aggregation: 

(1) transit users’ trips originate within the walking access threshold (400m in this method) from 

each stop and (2) transit users’ perceptions of transit reliability are influenced by on-time 

performance of all stops associated to a zone (i.e., perceptions of transit reliability in Zone “A” 

are composed of on-time performance at Stop “a” and Stop “b” in Fig. 5-3.) 

 

 

Figure 5-4: A method to estimate reliability at TAZs 

 
Prion time = 1 − Prinot on time = 1 −   1

Ti
∑ ∑ Max (LAst, EDst)ts        ∀ s ∈ i          (5-4) 

If (AA − SA) > 𝑙𝑙, then LAst = 1, else 0 

If (AD − SD) < −𝑒𝑒, then EDst = 1, else 0 

where, i: TAZ    s: Bus stop belongs to zone i 

t: Bus trip (vehicle in certain period of time in different date)  

LAst: Late arrival at stop s and on bus trip t   

EDst: Early departure at stop s and on trip t 

Ti: Total bus trips in every stop on zone i  

AA: Actual arrival time  SA: Scheduled arrival time 

AD: Actual departure time SD: Scheduled departure time 

l: Threshold of late arrival e: Threshold of early departure 
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The expectation is that zones that experience significant unreliability of service will be correlated with 

a model’s over prediction of transit boardings. 

In this study, a robust, network appropriate measure for access distance from origin to transit compared 

to conventional methods is adopted. Springate (2011) proposed an access tool which can measure walking 

distance along a pedestrian network from all building footprints to transit. The results generated by the 

access tool were employed. It is my expectation that significant disparities will exist between the 

Springate method of analysis and the software employed by the Region.  In zones where the Region’s 

software under-estimates transit access, the model will over-predict transit ridership (and vice versa). 

5.2.4 Quantifying the sources of error 

The previous steps identify those variables that are likely to have the strongest explanatory power in terms 

of predicting mode share errors. To estimate more formally this explanatory strength, two approaches are 

taken. First, regression analysis is used to correlate the prediction error as the response variable as a 

function of the variables presented in Figure 5-3.  The second classification method involves z scores. The 

approach taken is to compute the product of the standardized value of each possible source of error (zXi) 

and the reported prediction error (Ei) in zone i. The product of these two variables implies the simplified 

magnitude of prediction errors and associated possible elements of the errors. If the distance between a 

prediction error and associated attributes is far from the average, it is interpreted that the composite index 

as a significant contributor to the error term (See Figure 5-5). When the total score of the composite index 

is larger, the variable has relatively larger impact on the prediction errors. Absolute values are used to 

measure magnitude. Finally, the composite scores of possible source of prediction errors are calculated by 

summing up the magnitude over all 𝑖𝑖 zones or sub-group of zones as shown in equation (5-5). 

Score of variable x =∑ | zXi  × Ei |i                           (5-5) 

   Where:  

              zXi= Z value of variable X of zone i 
           Ei= transit more share prediction errors of zone i 
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Figure 5-5: Method for assessment of source of the prediction errors related to box plot: (a) (b) from 
Figure 5-2, (c) Plot for prediction error (Ei) vs. standardized value of source of errors (Zi) for zone 𝒊𝒊. 

 

5.3 Application 

5.3.1 Study area 

For this section of the thesis, the area of study within the Region is extended to include the urbanized area 

– the cities of Waterloo, Kitchener, and Cambridge - as shown in Figure 5-6. More background on the 

Region of Waterloo can be found in Section 4.3.  
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Figure 5-6: Study area 

5.3.2 Data 

To test the effectiveness of the proposed approach, the methods described in 5.2 are applied in the Region 

of Waterloo, using the Region’s travel forecasting model and its AVL/APC data. Table 5-1 summarizes 

the structure of the Region’s travel forecasting model.  Briefly, the model is a standard, four-step model 

consisting of 386 urban zones and 597 total zones. As is the norm, zones vary in size and density 

(population and employment), in an effort to balance the consistency of attributes of the zones, while 

being cognizant of the scale of the model. The model used in the research was calibrated in 2006 on the 

TransCAD platform. It estimates system performance for the AM peak, from 7am to 8am.    
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Table 5-1: Parameters of the region's travel forecasting model 

No. of zones in urbanized area (total) 386 (597) 
Zone size 

Avg. area (km2) 0.81 
    Max. 6.45 
    Min. 0.03 
Avg. Population Density 1,900 

       Max. 14,045 
       Min. 0.00 
Calibration year 2006 
Selected time period for this study 7:00–8:00 a.m. (AM peak) 
Total trips (Auto+Transit)  83,212 
% use of transit (calibration year) 5.89% 

Model application code 

GISDK (GIS Developer’s Kit) in TransCAD 
: assignment results (Generalized Costs) are fed back to 
trips distribution 
 

Mode choice model Multinomial Logit Model1) 

Headway  of transit Max. 30 min 
Min. 4 min 

Travel modes bike, walk, auto, transit (bus) 
 
Market Segmentation  
in mode choice 

 
Trip purposes:  
Work, High school, Post-secondary, Others 

1) Applied two separated Multinomial Logit model for walk trip and transit trips. 
   Bikeij = Totij × 0.067 × e−0.221 Auto distanceij                                                                                                (5-6) 

   Walkij =  
Totij−Bikeij

1+e0.06 �WlkIp−AuIp+ACwalk�+e0.06×�WlkIp−TrIp+TCwalk� 
                                                                           (5-7) 

   Transitij =  
Totij−Bikeij−Walkij

1+e0.06 �TrIp−AuIp+ACtransit�
                                                                                                              (5-8) 

   Auto pij = Totij − Bikeij − Walkij − Trnij                                                                                                     (5-9) 
 
  where,  i = Origin zone 
  j = Destination zone 
  WlkIp = Walk impedance (or walk generalized cost) 
  AuIp = Auto impedance (auto generalized cost) 
  TrIp = Transit impedance (transit generalized cost) 
  ACwalk = Auto mode constant for walk trip 
  TCwalk = Transit mode constant for walk trip 
  ACtransit = Auto mode constant for transit trip 
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The model uses a multinomial logit formulation to compute mode shares amongst bikes, walking, auto 

and transit (bus only). The mode choice models are shown in the footnote of Table 5-1 as equations (5-6) 

through (5-9). Bicycle trips are estimated using an exponential decay function of total trips and distance 

traveled. Two binary logit models are used for walk trips and transit trips, as shown in equation (5-7) to 

(5-8). Equation (5-8) shows the form of a binary logit model that estimates the likelihood of selecting 

transit compared to private auto for a trip from i zone to j zone.  

The calibration parameters for the Regional model are shown in Table 5-2. 

Table 5-2: Mode choice model calibration coefficients 

 Attributes Modes 
Applied Coeff. 

Values of 
transit 
mode 

constants in 
minutes 

In-vehicle time 
 

IVT 
 

Transit 
 

-0.060 
 

 

Out-of-vehicle 
time walk time Transit -0.096  

 initial wait and transfer wait time Transit -0.096  

 
Transfer time 
 

Transit 
 

-0.240 
 

 

Cost Fare Transit -0.240  

 auto cost ($/km) Auto 0.1223  

 auto parking cost Auto 0.5  

 VOT (min/$) Auto 4.86  
Constants C_auto_to work Auto -0.06 -1 

 C_auto_to high-school Auto 1.56 26 

 C_auto_to post-secondary Auto 0.78 13 

 C_auto_others Auto -0.84 -14 
 

As shown in Table 5-2, the ratio of out-of-vehicle time and in-vehicle time ranges from 1.6 (walk 

time/in-vehicle time) to 4 (transfer time/ IVT and fare/IVT). This means that bus transit users in the 

Region of Waterloo perceive wait time as 1.6 times as onerous as IVT. 

Since the reference mode of original mode choice models (see equation 5-8) is set as transit, this  

affects the interpretation of the performance of the models (i.e., if the model is over-predicting or under-

predicting before calibration). For comparison to the other cities in Chapter 3, the reference mode was 

switched from transit to automobile. Accordingly, from Table 5-2 ‘constants’ column, the mode constant 
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values of transit are adjusted to 0.06, -1.56, -0.78, and 0.84 for work, high-school, post-secondary, and 

other trip purpose, respectively. The values of mode constants are -1 min (=0.06/-0.06), 26 min (=-1.56/-

0.06), 13 min (=-0.78/-0.06) and -14 min (=0.84/-0.06) for each trip purpose. 

Based on the computed transit mode constants in Table 5-2, the signs of mode constants for high-

school and post-secondary school transit trips imply that the current model before calibration is over-

predicting the actual propensity to use transit modes. It is important to note that the area of study in the 

Region of Waterloo contains two universities. Therefore student ridership constitutes a significant portion 

of overall transit use.  

One additional observation is necessary. The Waterloo Regional Transportation (WRT) model was 

developed as part of 'Growth management strategy and transit initiative study (2005)'. The model was 

specifically designed to produce ridership forecasts for a proposed rapid transit system – an LRT system 

along the central spine of the Region, known locally as the Central Transit Corridor (CTC).  Although this 

model covers the entire Waterloo region, calibration and validation efforts were focused on transit mode 

and the CTC.  

5.4 Results 

5.4.1 Identification of the prediction errors  

As described in the methodology, both the observed (using APC data from February 15 to March 15, 

2012) and predicted mode shares for trips originating in each zone were computed. Next the error term for 

each zone was calculated. The error terms for the 384 zones in the study area are plotted in Figure 5-7.  
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Figure 5-7: Error terms in mode share as computed by original mode constants 

In Figure 5-7, the vertical axis shows the sign and magnitude of the error term as calculated in Equation 

5-3. Those on the right side of the chart (positive sign) have the observed mode shares that are larger than 

the model’s prediction. The left side of the chart represents the opposite case where the model is over 

predicting the actual propensity to use transit in a given zone. While the conventional mode constants 

may minimize the errors in system-wide (e.g., based on market segments in this case), significant over- 

and under prediction errors exist for individual zones.  

In typical mode choice calibration and validation procedures of regional travel forecasting models, it 

has been difficult to generate error terms in mode share at TAZ level, since observed transit boardings at 

TAZs are not known. With the use of AVL/APC data and formulated method in Chapter 4, stop counts 

are able to be converted into TAZ trips, in turn, the errors are identified at the zonal level as shown in 

Figure 5-7. 

It should be noted that the resulting error terms in Figure 5-7 come from an assumption that the travel 

forecasting model accurately predicts the total travel demand between zones since model predicted total 

number of trips (𝑇𝑇𝑖𝑖) are used as a denominator to obtain observed transit mode share (see eq. 5-1). If 

functional models have problems in steps affecting estimation of the total number of trips (𝑇𝑇𝑖𝑖)  including 

mode choice, trip distribution, or trip generation; or for an activity based models, daily activity pattern 
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generation, tour location choice etc.; or errors in demographic variables, these errors can influence the 

calculated error terms in Figure 5-7. As noted in Chapter 4, transfers could not be considered in the 

formulated transit trip allocation methods (see 4.3.3); as a result, an additional source of potential error 

may be introduced.  

5.4.2 Examination of the source of errors  

In this section, exploratory data analysis of box plots was performed. Based on the magnitude and 

direction of mode choice prediction error, it is possible to categorize zones and to conduct further analysis 

across these categories.  

Figure 5-8 shows the upper and lower inner fences, inner quartile range, and points marking outlier 

zone numbers.  

 

Figure 5-8: Mode share prediction errors in box plots 

 

This analysis suggests the following boundaries and five groups on the degree of the prediction errors:  

• 𝜀𝜀𝑖𝑖 < −8%:  Highly over-estimated: (2 zones) 

• −8% ≤ 𝜀𝜀𝑖𝑖 < −0.5%: Moderately over-estimated: (218 zones) 
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•  −0.5% ≤ 𝜀𝜀𝑖𝑖 < 0.5%:  Reasonably estimated: (121 zones) 

• 0.5% ≤ 𝜀𝜀𝑖𝑖 < 6%:  Moderately under-estimated: (25 zones) 

• 𝜀𝜀𝑖𝑖 ≥ 6% :  Highly under-estimated: (18 zones) 

Using these classifications, the characteristics of zones belonging to each category are explored to 

identify differences among them. In Figure 5-8, mode share disparity values in the zones listed are beyond 

the upper inner fence (18 zones) or lower inner fence (2 zones). These zones are labeled as highly under- 

and over-predicted zones. These zones are identified as possible outliers in boxplot analysis as described 

in section 5.2.2.  

Using these classifications, the characteristics of zones belonging to each category are explored to 

identify differences among them. The summary statistics are shown in Table 5-3. Pairwise statistical 

comparisons are made between those belonging to moderately over, moderately under and highly under 

estimated zones. The comparison results highlight which variables should be considered for further 

analysis.  

From Table 5-3, the results of (highly) under-estimated zones generally show transit supportive 

characteristics such as lower car ownership, lower income, and higher land use density. Transit quality of 

service, as measured by reliability and accessibility, is also better in these (highly) under-predicted zones. 

For the means of these variables, t-test results show a statistically significant difference between the two 

groups (i.e., moderately over-estimated and moderately under-estimated zones; and moderately over-

estimated and highly under-estimated zones). In Table 5-3, results in bold indicate statistically significant 

possible source variables of prediction errors in a category.    
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Table 5-3: Summary statistics for possible source of errors 

The degree of transit 
ridership estimation 

error (# of zones) 

Highly 
over-

estimate 
(2) 

Moderat
ely 

over-
estimate 

(218) 

Reasona
bly  

estimate 
(121) 

Moderat
ely 

under-
estimate 

(25) 

Highly 
under-

estimate 
(18) 

t-Test  
(two sample assuming unequal 

variances) 
Moderately 

over- vs. 
Moderately 

under- 
P(T<=t) two-
tail, (t Stat) 

Moderately 
over- vs. 

Highly under- 
P(T<=t) two-
tail, (t Stat) 

Average Disparity 
(Mode share) -0.12 -0.03 0.00 0.02 0.27 - - 

Socio-economic Variables     
Avg. # of cars per 

household 1.49 1.52 1.57 1.33 1.23 p >.05 (1.91) p < .05* (2.76) 

% of population 65+ 13.84 11.36 10.27 10.64 12.47 p >.05 (1.54) p >.05 (-1.62) 
Income ($ CAD) 15,648 36,403 37,645 33,674 31,333 p >.05 (1.01) p < .05* (2.20) 

Land Use Variables     
Pop Density  

(persons / km2) 3,885 2,560 349 2,916 3,093 p >.05 (-0.89) p >.05 (-0.96) 

Emp Density  
(jobs / km2) 4,294 1,125 1,427 2,732 3,976 p < .05* (-2.15) p < .05* (-2.24) 

Transit Quality of Service Variables     
Reliability  
(on-time 

performance) 
0.59 0.51 0.53 0.55 0.66 p < .05* (-2.27) p < .05* (-5.57) 

Avg. access 
distance1) (meters) 242.55 228.79 243.70 143.51 173.13 p < .05* (3.33) p < .05* (2.82) 

1) Estimation results are available for 110 zones among 386 zones of the study area. Number of observation for 
access distance in: highly over-estimated zones- 2; moderately over- 77; reasonably- 13; moderately under- 9; highly 
under- 9. 

 

Interestingly, those zones belonging to the “reasonably estimated” category have properties that are 

generally considered to be unsupportive of transit use: the group has the highest car ownership, income, 

and transit access distance and the lowest percentage of seniors. It should be noted that the zones in this 

group where prediction errors are almost zero include the cases where no people use transit both in model 

and actual situation. 
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Table 5-4: Results of regression analysis 

 Variable Coefficient Std. Error t-Statistic Significance 

All zones 

Constant -0.099 0.032 -3.117 0.002 
ln (Pop den) -0.001 0.001 -0.705 0.481 
ln (Emp den) 0.003 0.002 1.530 0.127 
% pop 65+ 0.000 0.001 0.527 0.598 
Avg. # of cars per 
household -0.020 0.010 -2.032* 0.043 

Income 1.367E-007 0.000 0.434 0.664 
Reliability 0.194 0.035 5.479* 0.000 

Over-estimated 
zones 

Constant -0.042 0.014 -3.109 0.002 

ln (Pop den) 0.001 0.001 1.833 0.068 

ln (Emp den) 0.000 0.001 0.587 0.558 

% pop 65+ -0.001 0.000 -2.023* 0.044 
Avg. # of cars per 
household -0.002 0.004 -0.636 0.525 

Income 7.282E-008 0.000 0.546 0.586 
Reliability (on-time 
performance) 0.009 0.013 0.694 0.489 

Under-
estimated 

zones 

Constant -0.534 0.279 -1.917 0.063 

ln (Pop den) 0.001 0.010 0.091 0.928 

ln (Emp den) -0.003 0.019 -0.171 0.865 

% pop 65+ 0.022 0.011 2.020* 0.051 
Avg. # of cars per 
household 0.040 0.062 0.656 0.516 

Income 7.512E-008 0.000 0.035 0.972 
Reliability 0.632 0.247 2.563* 0.015 

Summary 

All zones 
Adj. R2 
Std. Error of the Estimate 
Observations 

0.11 
0.0709 
384 

Over- estimated 
zones 

Adj. R2 
Std. Error of the Estimate Observations 

0.01 
0.0182 
220 

Under-estimated 
zones 

Adj. R2 
Std. Error of the Estimate Observations 

0.24 
0.1431 
43 
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Next, to identify those zonal characteristics that affect estimation errors, three separate types of zones – 

all zones, over-estimated zones, and under-estimated zones- were assessed using multinomial regression 

models. The regression analysis produces equations for the mode choice prediction errors as a function of 

socio-economic, land use and quality of service variables that are not included in the utility function. The 

results of this regression are presented in Table 5-4. The results in bold indicate statistically significant 

variables in the regression results. Based on the t-Statistics, the variables that are shown to be statistically 

significant for the prediction errors for “all zones” are reliability (on-time performance) and average 

number of cars per household. In other words, the prediction errors are sensitive to both reliability and the 

average number of cars per household. For under-estimated zones, the constant is much larger than the 

over-estimated zones, meaning much greater prediction errors. In these zones, the prediction errors are 

sensitive to both senior-aged (65+) population and reliability. It seems to be counterintuitive for the signs 

of some variables, for example, ‘average number of cars per household’ in under-estimated zones. 

However, it should be noted that the response variable of the regression analysis is prediction errors, not 

the probability of using transit. In this case, it is interpreted that auto ownership is not significant variable 

in under-predicted zones. 

The goodness-of-fit summary suggests that the model delivers reasonable explanatory power in models 

for "all zones" and high transit supportive areas (i.e., under-estimated zones). Although the goodness-of-

fit for over-estimated zones shows low explanatory power, the primary purpose of the analysis is to 

understand which predictor variables are related to prediction errors between predicted and actual transit 

mode choice. Overall, reliability, average car per household and senior-aged (65+) groups are shown to 

be primary sources of transit mode choice prediction errors.  

While three separate types of zones – all zones, over-estimated zones, and under-estimated zones- were 

evaluated in this section, in future work the regression analysis only for “all zones” may be sufficient to 

identify major sources of prediction errors because this category represents the largest number of 

observations. 

In this section, possible sources of prediction errors are examined for zones in various categories using 

various analytical tools. Based on the examination, a composite index to systematically identify the major 

source of errors is formulated in the following section. 
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5.4.3 Scoring the source of errors  

To effectively identify the major source of the transit mode share prediction errors, a scoring method was 

formulated. As shown in equation (5-5), the formulation is involves the standardized value of each 

possible source of error (zXi) and mode share prediction error (MSEi) in zone i. The product of these two 

variables implies the simplified magnitude of prediction errors and associated possible components of the 

errors. The larger the total score of the composite index, larger the impact the variable has on the 

prediction errors.  

Table 5-5 shows the results of scores for the groups categorized by prediction error degree: two outlier 

zone groups (highly over-estimated and highly under-estimated) and total zones.  

Table 5-5: Score on the source of prediction errors 

 
 
 

(no. of zones) 

Highly 
over-

estimated 
 

(2) 

Moderately 
over-

estimated 
 

(218) 

Reasonably 
estimated 

 
 

(121) 

Moderately 
under-

estimated 
 

(25) 

Highly 
under-

estimated 
 

(18) 

Score of 
highly 
over- 
and 

highly 
under- 

Score 
of 

total 
 

(384) 

Ranking 

|Z_ln(pop den) 
×MSE1| 0.36 4.84 0.03 0.49 3.56 3.92 9.28 4 

|Z_ln(emp 
den)×MSE| 0.27 4.08 0.02 0.37 4.72 4.99 9.45 3 

|Z_65+×MSE| 0.18 3.90 0.01 0.23 3.25 3.43 7.58 6 

|Z_car×MSE| 0.01 5.24 0.02 0.54 5.73 5.74 11.55 2 

|Z_income×MSE| 0.37 4.24 0.03 0.38 2.62 2.99 7.63 5 

|Z_reliability×MSE| 0.14 4.59 0.03 0.39 7.34 7.48 12.49 1 

|Z_access2×MSE| 0.14 2.08 0.00 0.12 0.93 1.07 3.28 - 
1 MSE: mode share error 
2 access: transit accessibility variables are available for 110zones among 384 zones. So I cannot compare the score 
with the other variables in this study.  

 

In Table 5-5, the highest score among seven possible factors for transit mode share prediction errors is 

reliability. Car ownership per household is the second most important factor for the forecast errors both in 

highly over- and under-estimated zones and in overall study areas. These components are also recognized 

as significant sources of prediction errors in the regression analysis in Table 5-4. Also land use variables 

including population density and employment density are identified as important variables associated with 

transit mode share prediction errors.  
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5.4.4 Model improvement recommendations 

Based on the evaluation of factors that affect transit mode share prediction errors, three major components 

of the errors are determined in the study area: transit reliability (on-time performance), number of cars per 

household, and employment density as shown in Table 5-6.  

Table 5-6: Model improvement recommendation associated to error components 

Error component Score Recommendation 

Quality of 
service Transit reliability 12.49 Incorporation of variables in mode choice models 

Socio-
economic No. of cars/HH 11.55 Incorporation of the variable in mode choice models  

Land use  Employment density 9.45 

- Incorporation of the variables (e.g., area-type)  in 
mode choice models 
- Addition of lump-sum land use mode constants based 
on area-type (e.g., CBD urban area, sub-urban area, 
rural area etc.)   
- Land use feedback loop in travel forecasting models 

 

These variables have the highest scores among the seven possible variables. Further evidence that 

reinforces their inclusion in models is apparent based on the t-statistics in Table 5-3 and in the regression 

results for ‘all zones’ presented in Table 5-4.  The variables identified were determined to be statistically 

significant in explaining mode share prediction errors. The score on the source of prediction errors using 

developed method further allow prioritization.  

From this analysis, to reduce transit mode share prediction errors, the inclusion of transit reliability, 

number of cars/HH, and employment density directly in the models should be considered. In case of land 

use variables, to decrease the forecast errors, the following is also suggested: (1) addition of lump-sum 

land use mode constants (e.g., area-type constants as shown in Table 3-3) in mode choice models, or (2) 

inclusion of the land use feedback loop in travel forecasting models.  
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5.5. Chapter Summary 

Understanding how a model is different from actual decision making processes (e.g., what is unique to the 

place and the travelers at the present time or in a calibration year) is among the first steps necessary to 

refine existing mode choice and, more generally, travel forecasting models. To make this process more 

systematic, this study proposes a method to efficiently identify and evaluate the sources of prediction 

errors of transit use on a zonal level.  

Model predicted boardings are compared to actual boardings obtained from the transit trip allocation 

method proposed in Chapter 4. Then errors are calculated and these terms are used to identify zones that 

should be considered outliers in terms of the model’s ability to correctly predict transit boardings. The 

characteristics of zones and possible sources of the prediction errors are examined. These errors are 

associated with the omitted market segmentation variables and measurable characteristics with new data 

sources such as quality of service variables. 

This chapter has presented the following major findings from the case studies:  

• While the calibrated mode constants may minimize the errors in system-wide (e.g., based on 

market segments in the case study) boardings, significant over- and under- prediction errors exist for 

individual zones. 

• The under-estimated zones generally show transit supportive characteristics such as lower car 

ownership, lower income, higher land use density while the over-estimated zones have overall transit 

un-supportive characteristics. 

• Outlier zones of prediction errors commonly have extreme (or larger) standardized z-values in 

some possible source variables. 

• Using the proposed scoring method, major components of the errors in the study area were 

determined. These variables are: transit reliability as a quality of service variable; number of cars per 

household as a socio-economic variable; and employment density as a land use variable. This study 

also suggests methods for model improvement with these variables to reduce the prediction errors.  

The explicit inclusion of these additional variables may improve a model’s ability to accurately predict 

transit boardings. The proposed method will be useful  in (re)calibrating, updating, or modifying 

components of travel forecasting models, not only to investigate prediction errors in finer geographic 

level but also to identify major sources of prediction error of current models.  
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 Chapter 6

Conclusions and Contributions 

6.1 Conclusions  

To enhance the estimation performance of regional travel forecasting models, particularly with regard 

to transit ridership, this dissertation concentrated on two sub-problems of (1) understanding the role of 

mode specific constants and (2) the potential to address insufficient data in mode choice modules.  

When a mode choice model is calibrated, the underlying assumption is that all future forecasts 

(behaviors) will continue to reflect current conditions. Therefore, any misrepresentation of current 

conditions can generate even larger forecasting errors over the time horizon of the model. Despite the 

efforts to understand possible components of mode choice constants, and best practice literature, the use 

of large and poorly defined mode constants remains a challenge for many models and modelers. In the 

first part of this thesis the magnitude of this problem – the influence of large mode specific constants – 

was addressed by explicitly quantifying the relative importance of mode constants to measurable 

components using representative data from six cities in North America.  

Second, the quality of a model in terms of its accuracy in both the short- and long-terms is largely 

dependent on the data that inform the model development. Recently, new data sources from the transit 

industry including Automatic Vehicle Location (AVL), Automated Passenger Counting (APC), and 

Automated Fare Collection (AFC) systems, have become available. This availability presents potential to 

improve modelers’ abilities to quantify traveler behavior.  

This thesis proposed a framework to improve the utilization of new data sources such as AVL/APC 

systems in transit ridership forecasting models. The direct application of these data to ridership 

forecasting requires an important intermediary step that links stop activities – boarding and alightings – to 

the actual location (at the TAZ level) that generated / attracted this trip. This research proposed GIS-based 

methods to complete this linking exercise and a framework to select the best performing method.  

Lastly, given the research effort above, this thesis demonstrated a method to effectively identify and 

evaluate the source of transit ridership prediction errors in calibration procedures and to eventually 

enhance the calibration and model update procedures in the travel forecasting models. The following 

sections describe each of the above achievements and contributions in more detail. 
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6.2 Major Contributions 

The contributions of this dissertation are summarized as follows.  

1. Development of a framework to quantify the magnitude and importance of mode constants 

relative to the measurable components of travel utility functions: This research introduced various 

types of mode constants from state-of-art regional travel forecasting models and investigated the 

magnitude of these mode constants. Using the proposed framework, the importance of mode 

constants relative to the measurable components is quantified. The mode constants (representing 

unmeasured inputs) in walk-access segments of study cities account for 41% to 65% of total 

utilities. The results demonstrated that, in some cases, mode constants are large enough to render 

models insensitive to changes in system performance including reliability, convenience and many 

other factors. As such, the need to explicitly include mode constant endogenous to the model is 

verified. While it is widely understood in the literature and in practice that large mode constants 

should be avoided, this thesis presents a novel approach and quantitative evidence that verify the 

common understanding. 

2. Development of methods to improve the utilization of AVL/APC data in mode choice calibration: 

This research developed innovative GIS-based methods to link the stop-level boardings and 

alightings to the traffic analysis zones from/to which these passengers actually originated or were 

destined. The formulated methods allocate transit trips proportionally to population / employment 

and area size of competing zones; or land use density (number of parcels, weighted footprint area) 

of parcels within transit access shed.  

The novel idea behind the four GIS-based methods is to consider the case when the access shed 

spans multiple TAZs. In some cases, an access shed may be wholly contained in a single traffic 

analysis zone (TAZ) at which point the problem becomes trivial – all boardings and alightings are 

assigned to that zone. The problem becomes more complicated when stops are located in zone 

boundaries.  

The performance of the proposed transit trips allocation methods was evaluated using transit on-

board survey data. To the author's knowledge, no previous studies have actually tried to validate a 

method compared to observed maps of transit users from homes to stops and stops to destinations. 
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While the sample size of observations precluded conclusive comments on optimal methods, the 

methods developed reflect an important advance in evaluation methods.   

Given the reasonable accuracy of predictions observed, the weighed buffer area ratio or footprint 

weighted method can improve the utilization of new data source (AVL/APC) to travel forecasting 

model calibration, particularly in investigating prediction errors at a finer geographic level. 

3. Development of a method to effectively identify and evaluate the factors affecting the accuracy of 

predicted transit use on a zonal level: This research developed a method which can systematically 

identify and evaluate the source of mode choice prediction errors. As part of this framework, 

multinomial regression models were developed to evaluate those zonal characteristics that affect 

estimation accuracy. The regression analysis produces equations for the mode choice prediction 

errors as a function of (1) measurable but omitted market segmentation variables in current mode 

choice utility function including; socio-economic, land use and (2) newly quantifiable attributes 

with new data source or techniques including; quality of service variables.  

A method to quantify possible source of prediction errors was also developed and applied. The new 

composite index represents the magnitude of a prediction error and a possible error component as a 

standardized value at the zone. The total score of the composite index (over all zones, or sub-

groups of zones, depending on the necessity) can be utilized to help modelers identify additional 

variables to be included when calibrating models, or modifying or updating components of travel 

forecasting models. 

 

6.3 Future Work 

In order to enhance transit ridership forecasting, the work presented in this thesis needs to be further 

improved and complemented. Possible future work is divided into the following four themes. 

First, the thesis explored the use of AVL/APC data as means to reduce mode constants. In this thesis, 

the proposed allocating methods from AVL/APC stop boardings and alightings to zones are configured 

using 400 meter access shed boundary from a stop. By applying approaches to create more sophisticated 

transit access sheds – distance decay functions, varying the buffer radius based on climate, directness of 
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the access paths, or creating waking path -, the performance of the transit trip allocation models in this 

thesis can be further improved.  

Second, the proposed transit trip allocation methods currently cannot capture transfer trips since their 

actual origin or destination zones are located beyond the access sheds and AVL/APC data do not provide 

transfer information. It is recommended to extend the proposed framework so that it can take into account 

transfer trips by using AFC (Automatic Fare Collection) data that allow easy calculation of total transfer 

trips at each stop. 

Third, the research presented here dealt with magnitude of mode constant and addressed the need to 

explicitly include components of mode constants endogenous to the model. Considerable variations 

existed in magnitudes of difficult-to-measure attributes (i.e., mode constants) among different cities. 

Future work may include comparative analysis on the importance of quality-of-service variables among 

different cities including large urban areas and suburban areas. The analysis can improve nationwide 

transit travel forecasting models considering spatial variations.  

Lastly, Chapter 5 addressed a method for systematically identifying and evaluating the source of mode 

choice prediction errors. The determined variables in regression analysis and in the scoring method using 

z values have the potential to improve ridership forecasts. An interesting extension of the work presented 

here would be to reconstruct the mode choice model including the identified variables – reliability, land 

use density and auto ownership – endogenously in the model.  The results could then be evaluated to 

determine if the mode constants and prediction errors are reduced both in specific zones and region-wide.  
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Appendix A 

Survey 

Questionnaire 

on Calibration Coefficients and Constants in Regional Mode Choice Models  

 
This informal survey aims to: (1) take a look at calibration constants in regional mode choice models 

(Logit, Nested Logit type) in different cities and to (2) relate the estimated transit trips (over- or 

under-prediction before calibration) to the cities’ characteristics. 
 

Please take a minute to help us by answering the following questions. An example spread sheet is 

provided to help your understanding. Please refer to the attached example sheet or use the sheet to 

respond. 

OR 

If you can send us the calibration report for mode choice travel forecasting models, it would be very 

valuable for our research.  

 

Please respond to the following questions or input on the attached example spread sheet whichever 

you are convenient. 

1. Municipality (town, city, province/state):                           

2. Calibration year of mode choice (or travel forecasting) models: 

3. Type of mode choice models: 

a.  Logit  b. Nested Logit  
4. Calibration coefficients and constants of mode choice models:  

a. If Logit, conversion factors of Logit: 

a-1. If Nested Logit, nesting coefficients:  

b. Coefficients of time and cost for all transit and auto modes, HBW model 

c. Value of time (with unit), HBW model 

d. Mode/area/segment (specific) constants, HBW model 
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• Respondent's Name:  _______________ 
• Organization:  _______________ 
• Position:  _______________ 
• TEL:  _______________ 
• E-mail:  _______________ 

Thank You! 

 

Return 
After completing the survey, please send it to the indicated below. 

Name: You-Jin Jung 

Email: yj3jung@uwaterloo.ca 

Tel: 1-519-888-4567 ext.38979 

Fax: 1-519-888-4349 

mailto:yj3jung@uwaterloo.ca
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Appendix B 

Mode choice model calibration coefficients in the study cities' models 

 Philadelphia (GPR) Washington D.C. (MWCOG) City of Calgary 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff. Attributes Modes 

Applied Coeff. 

In-vehicle 
time 

Bus_IVT Auto, W-
trn, D-trn -0.0250 

IVT 

DA, SR2, SR2+, 
WK-Commuter 
rail, WK-bus, 
WK-bus/metro, 
WK-metro, 
PNR-4 transit 
modes,  
KNR-4 transit 
modes 

-0.02128 

Car IVT Auto, PNR -0.0880 

BRT_IVT Auto, W-
trn, D-trn -0.0238 

Transit IVT Transit, 
PNR -0.0597 

LRT_IVT Auto, W-
trn, D-trn -0.0213 

Subway_IVT Auto, W-
trn, D-trn -0.0188 

Rail_IVT Auto, W-
trn, D-trn -0.0150 

Out-of-
vehicle 

time 

D-trn_ACC D-trn -0.0625 

Initial wait, transfer 
wait,board time, park 
time (PNR) WK-4 transit 

modes , PNR-4 
transit modes, 
KNR-4 transit 
modes 

-0.05320 Walk time, wait time Transit, 
PNR -0.0910 

OVT Auto, W-
trn, D-trn -0.0625 # transfer 0.00000 # transfer Transit, 

PNR -0.1858 

# transfer W-trn, D-
trn 0.0000 Access time, other walk 

time -0.04256 Park wait time Auto -0.2727 

   Access time -0.03192    

Cost 

Dist(miles) Auto 0.0000 Fare 

WK-4 transit 
modes , PNR-4 
transit modes, 
KNR-4 transit 
modes 

Cost Inc 
G1: -

0.00185 
Cost Inc 

G2: -
0.00093 
Cost Inc 

G3: -
0.00062 
Cost Inc 

G4: -
0.00046 

Car operating cost ($) Auto, PNR -0.5278 

OPFARE Auto, W-
trn, D-trn -0.1500 PCOST 

DA, SR2, SR2+, 
PNR-4 transit 
modes,  

Fare Ttransit, 
PNR -0.5278 

PCOST Auto, D-trn -0.3333 OC 

DA, SR2, SR2+, 
PNR-4 transit 
modes, KNR-4 
transit modes 

Daily parking cost Auto -0.05278 
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 Philadelphia (GPR) Washington D.C. (MWCOG) City of Calgary 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff. Attributes Modes Applied Coeff. 

Others 
      LRT used auto to transit  PNR 0.4324 

      HH zone car ownership Auto, PNR 5.628 

      district to district trips car 2, car3+ 0.000015 

Constants 

Income constants Income constants Mode constants 
LOWINC W-trn 0.675 Low income  WK-4 transit modes 2 C_car 1p car 1p 0 
LOWINC D-trn 0.300 High income  WK-4 transit modes -2 C_car 2p car 2p -1.3733 

Area-type constatns Mode constants (example of Seg.1 and Seg.3) C_car 3p+ car 3p+ -3.3787 
DEN12_W-trn 
DEN12_D-trn 
Den3_W-trn 
Den3_D-trn 
Den4_W-trn 
Den4_D-trn 
Den56_W-trn 
Den56_D-trn 

CBD 
CBD 
Urban 
Urban 
Suburban 
Suburban 
Rural 
Rural 

-0.075 
-1.125 
0.000 
-0.900 
-0.475 
-0.125 
-1.125 
0.000 

 Seg. 1 Seg. 3 C_Transit transit 3.8696 
Auto 
Transit  

0.0000 
3.7245 

0.0000 
6.6777 C_D-trn PNR -2.5134 

      
Transit 
 WK-access 

PNR-access 
KNR-access 

 
0.0000 

-3.7643 
-7.3352 

 
0.0000 

-8.0902 
-11.2737 

   

      
Walk-trn 

WK-metro 
WK-commuter rail 
WK-bus 
WK-bus/metro 

 
0.0000 

-0.8073 
-1.4496 
-1.4604 

 
0.0000 

-5.6499 
-9.0773 
-8.5955 

   

      
PNR-trn 

PNR-metro 
PNR-commuter rail 
PNR-bus 
PNR-bus/metro 

 
0.0000 

-0.3935 
-2.4506 
0.8506 

 
0.0000 

-2.3531 
-9.5804 
-7.8945 

   

Mode constants       C_W-trn 
C_DT 

W-trn 
D-trn 

-1.175 
-1.425 

KNR-trn 
KNR-metro 
KNR-commuter rail 
KNR-bus 
KNR-bus/metro 

 
0.0000 
3.5730 
1.2609 
5.7435 

 
0.0000 

-0.1115 
-3.9039 
0.8457 
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Mode choice model calibration coefficients in the study cities' models (cont’d) 

 Denver (DRCOG) City of Winnipeg City of Ottawa 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff.  Attributes Modes Applied Coeff. 

In-vehicle 
time 

IVT auto, transit -0.02 IVT Auto drive -0.064 Transit IVTT All transit 2 -0.0228 
Local bus time/total 
transit IVT 

W_trn, D-
trn -0.677 IVT_Passenger Auto passenger -0.078 IVTT transit 

way Transit 0.0128 

D-trn_ACC/total 
IVT D-trn -1.433 TIVT Transit -0.035 IVTT low stop 

density Transit 0.0011 

      
IVTT high stop 
density Transit -0.005 

Out-of-
vehicle 

time 

Walk mode terminal 
time 

Auto (DA, 
SR2,SR3+) -0.05 walk distance 

( <=3km) walk/bike -1.335 Wait time Transit -0.0684 

Transit walk, transit 
first wait time 

W_trn, 
 D-trn -0.05 

bike distance 
( >3km and 
<=10km) 

Walk/bike -0.466 Walk time Transit -0.053 

Transit other wait W_trn,  
D-trn -0.03 TWALKTOT Transit -0.087 # of boarding Transit -0.114 

   TWAITTOT Transit -0.066 Drive access 
time Transit -0.0308 

   # transfer Transit -0.371 auto free flow 
time 

auto (sov, hov2-
dr, hov2-pass, 
hov3+-dr, hov3+-
pass) 

-0.0308 

      auto delay auto -0.0562 

Cost 

Cost($)-low income 
Cost($)-medium  
Cost($)-high 
income 
Cost($)-missing  

Auto, 
Transit 

-0.246 
-0.11 

-0.083 
-0.103 

TOTCOST  
(OC, PC, FARE) 

Auto drive, auto 
passenger, 
transit 

-0.268 PCOST Auto -0.1200 

                                                      
2 all transit: walk-bus, PNR bus, KNR bus, BNR bus, walk-rail, PNR rail, KNR rail, BNR rail 
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 Denver (DRCOG) City of Winnipeg City of Ottawa 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff. Attributes Modes Applied Coeff. 

Others 

arrive at des in AM 
peak Auto -1.003 0 veh in HH Transit 0.658 Low income bus-walk, bus-

KNR, bus-BRN 1.7428 

leave from des in 
PM peak Auto -0.268 2+ veh/2+ adults Auto drive 0.918 Low income bus-PNR -0.0550 

shopping 
stops/tours 
remaining 

DA 0.847 2veh/3+ adults Auto drive -0.487 Low income rail-walk, rail-
KNR, rail-BNR 1.3425 

escort stops/tours 
remaining SR2, SR3+ 5.391 1veh/2 adults Auto drive -1.294 Low income rail-PNR 0.8641 

other stops/tours 
remaining SR2, SR3+ 0.495 1veh/3adults Auto drive -1.462 Medium income bus-walk, bus-

KNR, bus-BRN 0.9319 

LOWINC SR2, SR3+ 0.158 2+ veh/2+ adults Auto passenger 1.943 Medium income bus-PNR 0.4535 

LOWINC W-trn 0.308 less than one 
veh/adults Auto passenger 1.651 Medium income rail-walk, rail-

KNR, rail-BNR 0.6940 

LOWINC D-trn 0.043 part time worker 
with 1+ veh in HH Auto passenger 0.703 Medium income rail-PNR 0.2156 

HIGHINC SR2, SR3+ -0.057 HH with children Auto drive 0.205 Zero cars SOV, bus-PNR, 
rail-PNR -99.0000 

HIGHINC W-trn -1.745 destination 
University dummy Transit 0.991 Zero cars 

bus-walk, bus-
BNR, rail-walk, 
rail-BNR 

0.4075 

HIGHINC D-trn -1.215 
destination zone is 
urban low or urban 
high3 

Auto drive -0.353 Zero cars bus-KNR, rail-
KNR -0.8517 

missing INC SR2, SR3+ -0.215 destination zone is 
CBD Auto drive -0.417 car sufficiency 

low SOV -0.1110 

missing INC W-trn -0.782 
origin zone is 
suburban high or 
urban low 

Transit 0.315 car sufficiency 
low bus-PNR -0.2668 

missing INC D-trn -1.156 O and D zones are 
urban high or CBD Walk/bike 1.07 car sufficiency 

low 
bus-KNR, rail-
KNR -1.2592 

                                                      
3 Winnipeg incorporates the area-type attributes directly to the utility. For example, the model inserts the dummy variable of 'origin zone is sub-urban high or 

unban low' for transit utility.  
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 Denver (DRCOG) City of Winnipeg City of Ottawa 

 Attributes Modes 
Applied Coeff. Attributes Modes Applied Coeff. Attributes Modes Applied Coeff. 

Others 

No Car in HH SR2, SR3+ 5.045 manufacturing auto drive 0.351 Emp density bus 0.0008 
No Car in HH W-trn 12.201 sales/service transit 0.456 Emp density rail 0.0009 

No Car in HH D-trn 9.26 professional/office 
constant auto passenger -0.275 Pop density bus-walk, rail-

walk 0.0018 

HH cars>0, 
<workers SR2, SR3+ 1.366 professional/office 

constant walk/bike 0.389 Pop density 
bus-PNR, bus-
KNR, rail-PNR, 
rail-KNR 

-0.0087 

HH cars>0, 
<workers W-trn 5.119    % detached HH SOV, hov2-dr, 

hov3+-dr 1.0117 

HH cars>0, 
<workers D-trn 3.529    % detached HH bus-walk, rail-

walk -1.3042 

HH cars>=workers, 
<adults SR2, SR3+ 0.553       
HH cars>=workers, 
<adults W-trn 2.38       
HH cars>=workers, 
<adults D-trn 1.572       
Female SR2, SR3+ 0.57       
Female D-trn 0.656       
1 person HH SR2 -1.659       
1 person HH SR3+ -2.452       
2 person HH SR3+ -1.704       
Destination 
intersection density 

W_trn, D-
trn 11.43       

Destination retail 
density 

W_trn, D-
trn 0.253       

Origin intersection 
density W_trn 6.8       
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 Denver (DRCOG) City of Winnipeg City of Ottawa 

 Attributes Modes 
Applied Coeff. Attributes Modes 

Applied Coeff. Attributes Modes Applied Coeff. 

Constants 

Mode constants Mode constants Mode constants for AM 
   

C_SR2 SR2 -2.889 C_Auto drive auto drive 3.976  SOV 2.0945 
C_SR3+ SR3+ -3.41 C_Transit transit 2.902  HOV2-dr 0.0121 
C_W-trn W-trn -3.956 C_Walk walk 4.024  HOV2-PASS 0 
C_D-trn D-trn -4.693 C_Bike bike 1.619  HOV3+-dr -1.1164 

       HOV3+-pass -0.8040 

       bus-wak 2.1806 

       bus-PNR -1.9185 

       bus-KNR -3.0607 

       bus-BNR -5.0000 

       rail-walk 2.2440 

       rail-PNR -1.1452 

       rail-KNR -2.9609 

        rail-BNR -5.0000 
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Appendix C 
Sample computation of measurable utility using skim values for Washington D.C. 

 

 
Figure C-1. Sample calculation area (zone 215, 216, 217 → zone 18, 19, 20) 

 

a. Walk-access 

Table C-1. Input skim values for walk-access to bus (source: AM_AB_WkAcc_Skims_2007, unit: 

0.01min, 0+, cents) 
wk ivt local bus wk ini wait wk xfer wait wk transfer 

O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 

215 1906 2550 1872 215 429 1000 750 215 0 0 0 215 0 0 0 

216 1748 2571 1872 216 750 750 750 216 0 0 0 216 0 0 0 

217 1748 2571 1872 217 750 750 750 217 0 0 0 217 0 0 0 

wk fare wk added board time wk acc time wk other wk time 

O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 

215 135 135 135 215 500 500 500 215 560 520 740 215 1300 460 680 

216 135 135 135 216 500 500 500 216 680 600 480 216 840 500 680 

217 135 135 135 217 500 500 500 217 460 380 260 217 340 0 180 

 

  



 

142 

 

Example calculation:  

zone 215 (DC urban) → zone 18 (DC core) : Area segment 1, HBW trip 
 

Uwk acc −bus,od

= −0.02128 ×
𝐼𝐼𝐼𝐼𝑇𝑇𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
− 0.0532 ×

𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 + 𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥𝑥𝑥𝑥𝑥 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
 

− 0.0000 × 𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎− 𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜   + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐶𝐶𝐺𝐺1 × 𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜  − 0.05320

×
𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
− 0.04256

×
𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100

= −0.02128  ×  
1906
100

− 0.0532 ×
429 + 0

100
− 0.000 × 0 −  0.00185 × 135 − 0.05320 ×

500
100

− 0.04256

×
560 + 1300

100
= −1.9412                              

 

Estimated measurable utility for walk access (sample 3×3 zones) 

 

Destination 

Origin \ 

DC core DC core DC core 

18 19 20 

DC urban 215 -1.9412 -2.0075 -1.9175 

DC urban 216 -1.9336 -1.9300 -1.8068 

DC urban 217 -1.6272 -1.6236 -1.5004 
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b. Drive-access 

 

Table C-2. Input skim values for drive access to bus (source: AM_AB_DrAcc_Skims_2007, unit: 

0.01min, 0+, 0.01mile, cents) 

 
ivt local bus dr acc time dr ini wait time dr xfr wait time 

O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 

215 2119 2473 2473 215 686 686 686 215 450 450 450 215 0 0 0 

216 2119 2473 2473 216 600 600 600 216 450 450 450 216 0 0 0 

217 2119 2473 2473 217 400 400 400 217 450 450 450 217 0 0 0 

dr xfr dr fare dr acc distance dr added board time 

O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 

215 0 0 0 215 135 135 135 215 240 240 240 215 500 500 500 

216 0 0 0 216 135 135 135 216 210 210 210 216 500 500 500 

217 0 0 0 217 135 135 135 217 160 160 160 217 500 500 500 

dr wk acc time dr other wk time dr park cost dr park time 

O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 O\D 18 19 20 

215 300 200 60 215 360 500 180 215 0 0 0 215 206 206 206 

216 300 200 60 216 360 500 180 216 0 0 0 216 206 206 206 

217 300 200 60 217 360 500 180 217 0 0 0 217 206 206 206 

 
Example calculation:  
zone 215 (DC urban) → zone 18 (DC core) : Area segment 1, Income group1, HBW trip 
 

UKNR bus,od = −0.02128 ×
𝑑𝑑𝑑𝑑𝑑𝑑 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
− 0.03192 ×

𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 

100
− 0.0532

×
𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥𝑥𝑥𝑥𝑥 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
 − 0.0000

× 𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐶𝐶𝐺𝐺1

× �𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 +
𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
× 𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜� − 0.05320

×
𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜

100
− 0.04256

×
𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 + 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐾𝐾𝐾𝐾𝐾𝐾−𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜 

100

=  −0.02128 ×
2119
100

− 0.03192 ×
686
100

− 0.0532 ×
450 + 0

100
− 0.0000 × 0 − 0.00185

× �135 +
240
100

× 10� − 0.05320 ×
500
100

− 0.04256 ×
300 + 360

100
= −1.7503 



 

144 

 

 

 

 

Estimated measurable utility for drive access (sample 3×3 zones) 

 

Destination 

Origin \ 

DC core DC core DC core 

18 19 20 

DC urban 215 -1.7503 -1.8427 -1.6469 

DC urban 216 -1.7173 -1.8097 -1.6139 

DC urban 217 -1.6442 -1.7366 -1.5408 
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