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Abstract 

Metal carbonyl complexes (MCCs) are potentially useful for a range of biomedical 

applications, including cell imaging and bioassay. However, the poor solubility and stability 

of MCCs in water remain obstacles to their use in these applications. This thesis addresses 

this challenge via an investigation of the self-assembly behaviour of hydrophobic Fp (Fp: 

CpFe(CO)2) or Mp (Mp: CpMo(CO)3) acyl derivatives in water. Hydration of these 

hydrophobic molecules results in aqueous colloids with aggregation induced functions. 

The Fp and Mp acyl derivatives, used in this research, synthesized by the migration 

insertion reaction (MIR) of Fp and Mp alkyl compounds in the presence of phosphine 

ligands, e.g. triphenylphosphine (PPh3), possessed a highly polarized acyl CO group. This 

group was readily hydrated via water-carbonyl interactions (WCIs) during the aggregation of 

the molecules in water. This aggregation, driven by hydrophobic forces, resulted in highly 

integrated metal carbonyl vesicles (MCsomes) with liposome-like bilayer membranes. The 

polarized CO groups associated on the surface of the colloid created a strong local electric 

field, which induced an aggregation-enhanced IR absorption (AEIRA). When the colloids 

were exposed to a focused continuous-wave near-IR (NIR) laser beam, a strong gradient 

(trapping) force was generated, allowing laser-trapping of the MCsome. This strong force 

resulted from the sharp contrast in the refractive index (RI) between the building blocks (RI 

= ca. 1.8) and water (RI = 1.33).  

Blue-light–emitting MCsomes were created via the synthesis and self-assembly of a 

bithiophene tethered Fp acyl derivative. The bithiophene groups, associated within the 
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membrane, generated an aggregation-induced emission (AIE). The separation of the 

bithiophene group from the metal carbonyl group, by an alkyl spacer, prevented AIE being 

quenched by the iron elements. The AEIRA, AIE and laser manipulation render the 

MCsomes potentially useful for vibrational and photoluminescent sensing applications.  

In addition, the redox activity of the iron on the surface of the colloids in water was 

explored. Cyclic voltammetry (CV) results showed two oxidation peaks separated by a redox 

coupling (ΔE½). The value of ΔE½ is inversely related to the separation distance between the 

adjacent Fp units located at the surfaces of the colloids, and was used to probe the degree of 

hydration of the hydrophobic domain. Taking advantage of this redox behaviour, the 

contribution of hydrophobic hydration to the formation and stabilization of the colloids, 

assembled from Fp acyl derivatives including hydrophobic and amphiphilic molecules, was 

systematically investigated. The results indicate that the hydrophobic interaction and 

hydration are significantly important for colloidal stability. 

In conclusion, a novel group of vesicles, MCsome, with multiple functions has been 

created via the aqueous self-assembly of Fp or Mp acyl derivatives. Hydrophobic hydration 

and interaction are crucial forces for the formation and stabilization of the colloids.    
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Chapter 1 

Introduction 

This introduction chapter highlights the emergence of a research field focused on 

metal-containing building blocks for functional nanomaterials, and the need for designing a 

new group of stable metal carbonyl complexes (MCCs) that can serve as building blocks for 

aqueous self-assembled structures. The introduction discusses several related topics, with 

their relevant literature review, including amphiphiles, organometallic amphiphiles, MCCs’ 

structure and applications, Fp-derivatives, and hydrophobic hydration. 

1.1. Organometallic Amphiphiles 

Protein folding, DNA structures, microtubules, ribosomes, and cell membranes are 

selective examples of self-assembling that occur in nature and are crucial for living 

organisms.1, 2 For example, amphiphilic phospholipids are the main constituents of biological 

membranes. Phospholipids arrange themselves into bilayers through positioning their polar 

groups toward the surrounding aqueous medium, with their lipophilic chains forming the 

inside domain of the bilayer membrane.1  

Amphiphilic molecules contain both solvophilic (solvent-loving) and solvophobic 

(solvent-hating) moieties covalently linked to each other, which display lipid-like self-

assembly behaviour in solution.3, 4 When amphiphiles are dispersed in water, the hydrophilic 

(water-soluble) parts favourably interact with the water, and the hydrophobic segments tend 

to associate together to reduce the surface area at the water-hydrophobic interface (see 

section 1.4). As a result, well-defined nanostructures, including micelles, vesicles, lamella 
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and cylinders, can be generated spontaneously.5, 6 These assembled nanostructures can be 

manipulated by selectively using various amphiphilic molecules and adjusting solution 

conditions (Figure 1.1).7 These supramolecular organizations have displayed many functions 

beyond those of their building blocks.7, 8 These functions open up or enhance a wide range of 

applications for modern technology, including nanodevices,9, 10 drug delivery,11, 12, 13 and cell 

imaging.14  

 

Figure 1.1 Surfactant shapes and various self-assemblies in colloidal solution. Reproduced 

with permission from Ref [7].7 

Organometallic amphiphiles,15, 16 containing transition metal complexes,17 are 

interesting due to their diverse functions, such as catalytic, magnetic, optical and 

electrochemical, arising from their metallic properties.15 The distinct properties, including 
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coordination ability, geometry of the transition metal elements, and the crystallinity of metal 

containing chains, can also be used for controllable engineering of nano-assemblies. For 

example, coordination-driven self-assembly of organoplatinum (II) molecules results in a 

tailored structure with metal-containing hydrophobic cores decorated with two polyethylene 

glycol (PEG) hydrophilic moieties.18  The shape of the resultant assemblies can be readily 

tuned from spherical micelles to 1D nanofibers or 2D nanoribbons (Figure 1.2a).18 On the 

other hand, the crystallinity of iron-containing polyferrocenylsilane (PFS) block copolymers 

has been used to form building blocks for living crystallization-driven self-assembly in 

selective solvents, which generates a range of tailored architectures in one, two, and three 

dimensions (Figure 1.2b).19, 20       

Micelles with transition metal elements (metallomicelles),21, 22  can enhance aqueous 

catalytic properties, because the metallomicelles provide more metal-containing 

approachable surface area exposed to water. For example, the hydrolysis of a nitro-activated 

aryl ester was achieved in the presence of copper-containing micelles in aqueous solution at 

neutral pH (Figure 1.3a).23 Another example, ruthenium-containing metallomicelles catalysts 

were able to catalyze ring-closing metathesis reactions of water-insoluble dienic substrates in 

pure water at room temperature (Figure 1.3b).24 
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Figure 1.2 (a) Coordination-driven self-assembly of organoplatinum (II) molecules into 

spherical micelles, 1D nanofibers or 2D nanoribbons. Reproduced with permission from Ref 

[18].18 (b) Living crystallization-driven self-assembly of polyferrocenylsilane (PFS) block 

copolymers. Reproduced with permission from Ref [19].19, 20 
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Figure 1.3 (a) Schematic representation of the complexation between the surface of a copper-

containing micelle and esters. Reproduced with permission from Ref [23].23 (b) Ruthenium-

containing metallomicelle for catalysis of ring-closing metathesis reactions. Reproduced with 

permission from Ref [24].24 

Redox properties of the metal elements have been used as stimuli for the assembly 

and disassembly of matallovesicles, which is potentially useful for a wide range of 

biomedical applications including drug delivery and bioassay.25, 26, 27 For example, 

metalloamphiphile, consisting of three PEG hydrophilic moieties and a hydrophobic 

component of ferrocene (Fc)-tethered platinum(II) terpyridyl complex, can assemble in water 

with the hydrophobic metallic species associating within the bilayer membrane and the PEG-

decorated surfaces exposed to water. Upon the oxidation of the Fc units to hydrophilic 

ferrocenium ions, these assemblies can be disturbed.  Furthermore, the Fc groups can be 

incubated in hydrophilic cucurbituril (CB) host molecules, resulting in water-soluble Fc–CB 

complexes and consequently, dissociation of the micelles (Figure 1.4a).26 This host-guest 



 

 6 

concept has been used for the synthesis of voltage-stimulated polymer vesicles 

(polymersome). As shown in Figure 4b, the pseudo-copolymer PS-CD/PEO-Fc is constructed 

via the host-guest interaction between Cyclodextrins (CD) and Fc (Figure 1.4b).28 The active 

nature of the host-guest linker can be tuned by changing the oxidation state of the Fc groups. 

The resulting oxidized Fc is water-soluble and released from the cavity of the CD, which 

results in the disruption of the polymersome. Meantime, the reversible association has been 

achieved by using a reductive voltage to reduce the hydrophilic ferrocenium ions back to 

hydrophobic Fc (Figure 1.4b).28  

 

Figure 1.4 (a) Schematic representation of assembly and disassembly of ferrocene (Fc)-

tethered platinum(II) amphiphile in water Reproduced with permission from Ref [26].26  (b) 

Schematic of the voltage-responsive controlled assembly and disassembly of PS-CD/PEO-Fc 

vesicles. Reproduced with permission from Ref [28].28   

 

By taking advantage of the dynamic nature of metal−ligand coordination, the 

assembly and disassembly of hexagonal metallodendrimers containing platinum moieties are 

enabled by the addition or removal of halide ions (Figure 1.5).29 This stimuli-dynamic 

phenomenon has been applied for controllable release of encapsulated molecules.  
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Figure 1.5 Self-assembly of the hexagonal metallodendrimers (upper panel) and the process 

of halide-responsive release of fluorescent molecules (lower panel). Reproduced with 

permission from Ref [29].29   

Transition metal-complexes can be employed as energy donor or acceptor units in 

energy-transfer (ET) processes. To do so, both energy donors and acceptors need to be next 

to each other within a certain proximity, which can be achieved via the self-assembly of 

organometallic amphiphiles. For example, micelles assembled from ruthenium (II) 

metallosurfactants (as energy acceptors) in the presence of iridium (III) analogues (as energy 

donors) show efficient electronic ET processes. This self-organization endows the assembly 

with interesting luminescent properties (Figure 1.6).30 
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Figure 1.6 Mixed self-assembly of ruthenium (II) and iridium (III) metallosurfactants into an 

energy transfer metallomicelle. Reproduced with permission from Ref [30].30 

 

1.2. Metal carbonyl complexes (MCCs) 

Metal carbonyl complexes (MCCs) are organometallic derivatives made from CO-

coordinated transition metal elements. Since several decades, a wide range of MC derivatives 

with various metals and numbers of CO ligands has been synthesized, explored and used for 

industrial catalysis.31, 32 Recent explorations suggest that MC complexes are potentially 

useful for a range of biomedical applications, including CO delivery,33, 34 antitumor 

treatment35, 36 and vibrational bio-sensing.37, 38 Due to the intense IR absorption of the CO 

groups within a biologically transparent window, where interference from the absorption of 

water and most of biological molecules, with wavenumbers between 1800 and 2200 cm-1,37, 
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38  MC derivatives have been explored as vibrational IR or Raman probes for cell imaging39 

and bioassay40 studies. Challenges for practical applications of MC complexes in aqueous 

medium include low water solubility, stability, and vibrational signal sensitivity. Several 

studies have shown that their water solubility,41 cell up-take ratio13 and IR absorption 

intensity42 can be enhanced using colloidal chemistry.  

MC compounds serve as CO delivery source for several biological activities 

including inflammation and redox control.13, 34 To enhance their solubility and stability in 

water, MC complexes have been incorporated within inorganic particles,34 peptide gels and 

block copolymer micelles.13 As shown in Figure 1.7, a CO-delivery system has been 

developed using a polymeric aqueous micelle as CO carrier. The CO-releasing micelles were 

prepared from triblock copolymer that contained a hydrophilic PEG block and a hydrophobic 

poly(n-butylacrylamide) block with CO complexes loaded at the middle block.13 The 

micelles successfully enhanced the solubility and stability of the MC complex. The CO 

release was triggered by cellular thiol compounds, which showed the inflammatory response 

of human monocytes. Moreover, the toxicity of the loaded Ru carbonyl moieties was 

significantly reduced due to the aggregation of the MC moieties in the core of the micelles 

and the stealth feature of the hydrophilic PEG corona. These results show that the CO-

releasing micelles can provide an effective and non-toxic technique for CO-based therapy. 
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Figure 1.7 Schematic illustration of the PEG-b-OrnRu-b-nBu triblock copolymer and its CO-

releasing micelle. Reproduced with permission from Ref [13].13 

Vibrational spectroscopic techniques for bio-imaging has attracted attention since the 

1980s.42 In contrast to organic fluorophores used in fluorescence microscopy, vibrational 

spectroscopy involves no photobleaching or quenching limitations.37, 43 However, the 

development of vibrational-based probes, in the emerging field of bio-imaging, is a real 

challenge with a key issue of sensitivity.37, 42 MC complexes have intense IR absorption in 

the mid-IR window (1800 – 2200 cm-1) that is transparent for biological environment.37, 43 

Therefore, the MCCs are explored as vibrational probes using both IR and Raman 

spectroscopy, which has opened up a rewarding research field of bioorganometallic 

chemistry.37, 43 Although the sensitivity of MC compounds in FT-IR or Raman analysis is 

limited to submicromolar concentrations,43 the MC labels have been integrated with a wide 

range of biologically active species including steroids, peptides and antibodies for selectively 

targeting of organisms (Figure 1.8).36, 43 As shown in Figure 1.8, in an indirect quantitative 

determination of the amount of an analyte, the analytes are first conjugated with an excess 

fixed amount of metal carbonyl complexes, as tracers. These conjugates are allowed to bind 
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with a fixed amount of selective antibodies. The unbound tracers are then extracted and 

quantified using vibrational based spectroscopy. For example, using this technique, MC 

complexes have been used as tracers in immunoassays of drugs and pesticides with detection 

limits in the range of femtomolar concentration.43 Recently, FT-IR and Raman microscope 

have been successfully applied for mapping the uptake and distribution of MC based drugs in 

a single cell.39, 44  

 

Figure 1.8 Schematic representation of the working principles of metal carbonyl 

immunoassay. Reproduced with permission from Ref [43].43 
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Surface enhanced-Raman scattering (SERS) or SEIRA using plasmonic (e.g. Au, Ag) 

or dielectric (e.g. Al2O3, CS2) substrates have been explored to enhance the detection limit of 

the MC biosensors.37, 42 Olivo and coworkers have loaded the osmium carbonyl clusters on 

the surfaces of gold nanoparticles and functionalized the surface with selected antibodies. To 

enhance the solubility, the conjugates are further coated with water-soluble PEG 

(Figure 1.9a).45 The resulting particles were used as bio-tags for the mapping of cancer cells. 

They reported that the stretching vibration signal of the CO groups can be enhanced by four 

orders of magnitude (Figure 1.9b-c).  

 

Figure 1.9 (a) Preparation of the antibody-functionalized osmium carbonyl-gold 

nanoparticles (OC-AuNPs) conjugate. Raman scattering spectra for (b) the functionalized 

OC-AuNPs conjugate in water and (c) osmium carbonyl complex in ethanol. Reproduced 

with permission from Ref [45].45 

 

IR analysis of MC complexes has also been used for localization and tracking of 

individual biomolecules.44 Havenith and coworkers investigated MC complexes as IR-active 
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labels using scattering scanning near-field infrared microscopy (IR s-SNOM). They 

demonstrated the selective detection of the CpMn(CO)3 moiety of the cymantrene–peptide 

conjugate (Figure 1.10).44 As shown in Figure 1.10 (upper panel), a well-defined self-

assembled monolayer was prepared by attaching MC–peptide bioconjugates and 

octadecanethiol molecules on a gold substrate via thiol–gold bonds, in an alternative 

sequence (upper panel in Figure 1.10).  The MC-bioconjugates were mapped successfully 

using IR s-SNOM with a very good resolution. Imaging can be selectively recorded at 

specific frequencies. As shown in Figure 1.10 (lower panel),  images recorded at MC and 

amide vibrational frequencies (1944 cm-1 and 1658 cm-1, respectively) showed a clear 

pattern, whereas  no distinguished pattern has been observed at off-resonance frequencies.44  

According to these results, using MC-IR active labels in IR s-SNOM provides a new path for 

biosensing and biomolecular localization studies as an alternative to fluorescence detection 

techniques.  
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Figure 1.10  Self-assembled monolayer of octadecanethiol and metalcarbonyl–peptide 

conjugate (upper panel) and near-field contrast images at four distinct frequencies of a 

laterally structured monolayer (lower panel). Reproduced with permission from Ref [44].44   

Despite the progress discussed above, the applications of MCCs remain challenging. 

Many of these challenges stems from the lack of fundamental understanding of the aqueous 

behaviour of MC compounds in water, which requires substantial studies. 

Fp-acyl derivatives (Fp: cyclopentadienyl dicarbonyl iron; CpFe(CO)2), synthesized 

via the well-known migration insertion reaction (MIR),46, 47, 48 are a group of well-developed 
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and fairly stable MC compounds.49, 50, 51  For example, as shown in Figure 1.11, in the 

presence of a phosphine ligand, one of the terminal CO groups migrates and undergoes an 

intermolecular 1,1-insertion into the metal-alkyl bond. This MIR of the CO group provides 

an air stable Fp-acyl complex.49 The resulting structure possesses a highly polarized acyl 

group.52, 53 The stability of the resulting compounds renders them ideal for the study of their 

aqueous behaviour. 

 

Figure 1.11 Schematic illustration of the MIR of the terminal carbonyl group in the presence 

of a phosphine ligand. 

In our group, we have explored the supramolecular chemistry of Fp-acyl derivatives 

including small molecules47 and polymers.48 We discovered that this group of metal-carbonyl 

molecules exhibits unique self-assembling behaviour mainly due to the polarity of the CO 

groups. For example, CpFePPh3(CO)CO(CH2)5CH3 (FpC6) molecules are able to assemble 

in the solid state into an air stable supramolecular polymer with a truss arrangement of the 

metal elements (Figure 1.12). The presence of the polarized CO groups, as hydrogen 

acceptors, is a major contribution to the chain structure (Figure 1.12b).47 
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Figure 1.12 Schematic illustration for the formation of FpC6 chain structure. Reproduced 

with permission from Ref [47].47 

 

We have also developed migration insertion polymerization (MIP) and prepared MC 

macromolecules.48 As shown in Figure 1.13, di-functional A-B type monomers containing Fp 

and phosphine groups connected via an alkyl spacer (FpP) undergoes intermolecular MIR, 

which generates an air-stable macromolecule (PFpP). In addition to the MC groups, the 

polymers also contain phosphorous, which is potentially useful.54 Taking the advantage of 

metal-phosphine coordination in the stabilization of MCCs, a group of air-stable phosphine-

coordinated MC complexes has been synthesized recently by Joe B. Gilroy group. They 

reported a series of air-stable and redox-active Group 6 metal pentacarbonyl complexes 

(M(CO)5; M: Cr, Mo, W)  coordinated with primary, secondary and tertiary ferrocenyl ethyl 

phosphines.55  
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Figure 1.13 Scheme for Synthesis and MIP of FpP. Reproduced with permission from Ref 

[48].48 

 

Although Fp acyl derivatives and PFpP are hydrophobic, the highly polarized CO 

groups could interact with water via water carbonyl interactions (WCI), which would be a 

starting point to investigate their aqueous behaviour.   

1.3.   Water Carbonyl Interaction 

Hydrophobic hydration plays a crucial role in the organization of living organisms.56 

For example, hydrophobic hydration is essential in driving the self-assembly of the 

phospholipids to form cell membrane.57 The stability of protein folding is mainly due to the 

presence of buried water molecules between the hydrophobic side chains.58, 59, 60, 61  Buried 

water molecules are reported to stabilize the protein structure by acting as bridges between 

amino acids via water-carbonyl interaction (WCI).60 WCI also explains the capability of 
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lipolytic enzymes to access both hydrophobic triglycerides and water molecules for catalytic 

fat hydrolysis during metabolism.62  

WCIs of synthetic molecules containing carbonyl groups, e.g. 

polymethylmethacrylate (PMMA), have also been studied.63 The strength of WCIs is related 

to the degree of polarity of the CO groups.39, 64, 65 MCCs are usually hydrophobic,41 but the 

metal elements are electron-donating centers that can induce negative charges on the oxygen 

atoms in the CO groups, e.g. the acyl CO in the phosphine-coordinated Fp derivatives 

(Figure 1.14a-b).52, 53 Hydration of this group via stronger WCIs can then be expected for 

possible aqueous self-assembly. As a matter of fact, hydrophobic PFpP can assemble into 

vesicles in water (Figure 1.14c-d).66 The strong WCI accounts for the colloidal stability in 

water. However, further research is required to understand the contribution of WCI and other 

hydrophobic hydration in the aqueous assembly.  

 

Figure 1.14 (a) Chemical structure of PFpP. (b) PFpP resonance structure. (c) Hydrophobic 

PFpP floating in water. (d) PFpP colloids in water with polymer concentration of 0.1 mg/mL. 

Reproduced with permission from Ref [66].66 
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1.4. Hydrophobic Hydration and Self- Assembly 

Hydrophobic hydration defines the process of inserting a hydrophobic molecule 

(solute) into water.67, 68 This insertion exerts a thermodynamic and structural response of 

water molecules at the interface of the hydrophobic molecule.69, 70 However, water molecules 

tend not to sacrifice their hydrogen bonds; therefore, water molecules around the solute are 

connected via hydrogen bonding forming a water cavity.71  

The local structure of the interfacial water molecules depends on the size and 

structure of the hydrophobic molecule. The cavity associated with a small hydrophobic 

molecule, such as methane, has a cross section less than 0.5 nm (Figure 1.15a).72 For this 

small volume, no breaking of hydrogen bonds is required.67, 72 Therefore, the orientation of 

the water molecules around the solute allows the hydrogen-bonding patterns similar to that in 

the bulk liquid water.72 On the other hand, the surface of a large hydrophobic molecule is 

extended with a low curvature (Figure 1.15b). Therefore, the hydrogen bond network is 

disrupted in order to create a relatively larger cavity hosting the large hydrophobic molecule. 

It is an energetically unfavorable process, because the adjacent water molecules near the 

surface of the solutes cannot maintain a complete hydrogen-bonding pattern,72 More water 

molecules tend to be located closely around the large solute for the formation of a cage, 

which results in a significant decrease in the entropy and increase in Gibbs energy.70, 73 To 

overcome this penalty, hydrophobic molecules tend to assemble together to reduce the ratio 

of total surface area to volume. In this case, the number of the surrounding water molecules 

participating in the cage formation decreases, resulting in the increase in entropy.70, 72 
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Moreover, upon the aggregation, the solvation free energy becomes lower than the overall 

total solvation energy of the individual molecule; therefore, resulting in a favorable driving 

force for the assembly.72  

 

Figure 1.15 Configurations of liquid water molecules near (a) small and (b) large 

hydrophobic cavities. Reproduced with permission from Ref [72].72 

In the case of amphiphilic molecules, due to the presence of the hydrophilic 

segments, the amphiphiles exert strong attractive forces with water molecules. 

Although the hydrophilic moieties of amphiphiles are not directly responsible for 

hydrophobic assemblies, they have a crucial role in the arrangement of the molecules 

for the assemblies.72 Due to the presence of both weak hydrophobic-water interaction 

and strong hydrophilic-water interactions, there are two main types of water 

molecules, bulk and interfacial waters. Bulk water molecules strongly interact with the 
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hydrophilic moiety; whereas interfacial water molecules, that include dangling or 

buried water, interact with the hydrophobic part of an amphiphile.  Thus, the presence 

of strong interactions between the hydrophilic parts and water confines and localizes 

water molecules to a specific location, which minimizes the fluctuation and shaped the 

self-assembled structures. The different behaviour of these two types of water 

molecules makes it possible to study the hydration process, micelle structure and 

biological activities.74 Several techniques, including calorimetric, spectroscopic and 

computational methods,69, 70, 74, 75, 76 have been used to study the hydrophobic 

hydration process.  

However, it is rarely reported how the hydrophobic hydration and hydrophobic 

interaction contribute to the formation of micelles and the stability of colloids.77, 78 It 

is generally accepted that the aqueous self-assembly occurs via the association of the 

the hydrophobic tails, which results in a central dry hydrophobic core with a smooth 

spherical surface. A  few segments near the hydrophobic core are hydrated.79, 80 

Micelles are stabilized by water-soluble corona chains. However, the Menger model 

implies that water penetrates deeply into the hydrophobic core.81, 82 A recent study 

reported by Ben-Amotz and coworkers supports this model. The micelles are 

assembled from the surfactants with either cationic or anionic head groups and varied 

alkyl chain lengths.74 As shown in Figure 1.16a, the hydrophobic core of the micelle 

has a corrugated surface containing hydrated cavities penetrating deeply into the core. 

By probing the dangling water molecules, located at the hydrophobic surface with a 
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non-H-bonded OH group (Figure 1.16b), using Raman spectroscopy with multivariate 

curve resolution experiments, they found that the depth of these hydrated cavities were 

increased with the increase in the length of the surfactant tail (Figure 1.16b).74 How 

this hydration cavity contributes to the stability of the micelles is a matter of future 

work. 

 

Figure 1.16 (a) Schematic micelle structure showing deep hydrated cavities surrounding a 

small dry core. (b) The average number of excess dangling water molecules as a function 

alkyl chain length, compared between corrugated and smooth micelles. Reproduced with 

permission from Ref [74].74 

 

1.5. Thesis outline 

This thesis is composed of seven chapters. Chapter 1 (Introduction) provides a  

general introduction and literature review about thesis related topics including organometallic 

amphiphiles, metal carbonyl complexes, and hydrophobic hydration. Chapter 2 (Iron-

Carbonyl Aqueous Vesicles (MCsomes) via Hydration of FpC6: Highly Integrated Colloids 
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with Aggregation-Enhanced IR Absorption (AEIRA)) reports in detail the aqueous behaviour 

and hydration driven self-assembly of FpC6 as well as the discovery of AEIRA 

phenomenon. Chapter 3 (Aggregation-Enhanced IR Absorption (AEIRA) of Molybdenum-

Carbonyl Organometallic Aqueous Colloids) discusses the aqueous behaviour and AEIRA of 

MpC6. This behaviour is compared with that for FpC6. Chapter 4 (Laser Manipulable 

Aqueous Fp-Bithiophene Vesicles with Aggregation-Induced Emission (AIE) and 

Aggregation-Enhanced IR Absorption (AEIRA)) describes an Fp derivative with conjugated 

bithiophene tether (FpC3BTh) and its aqueous solution behaviour. The aqueous vesicles of 

FpC3BTh show a number of properties including AIE, AEIRA and laser trapping. Chapter 5 

(Colloidal Structure-Related Hydrophobic Hydration for the Stability of the Aqueous 

Assemblies of Hydrophobic Fp Derivatives) discusses the correlation between the colloidal 

structure-related hydrophobic hydration of Fp derivatives and their stabilities. Chapter 6 

(Hydrophobic Effect on the Solution Behaviour of PEG-Fp-Alkyl Amphiphiles ) reports the 

aqueous behaviour of a group of PEG-Fp-R amphiphiles (R = alkyl chain) with varied PEG 

and alkyl chain lengths. This behaviour is correlated with the colloidal structure and probed 

by the redox activity of iron elements at the core-shell interphase. Finally, Chapter 7 

(Summary and Future Work) provides a general thesis summary and suggestions for potential 

future work.   
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Chapter 2 

Iron-Carbonyl Aqueous Vesicles (MCsomes) via Hydration of FpC6: 

Highly Integrated Colloids with Aggregation-Enhanced IR 

Absorption (AEIRA) 

2.1 Introduction 

Self-assembly of hydrophobic small molecules into uniform and colloidally stable 

vesicles in water is beyond the reach of current knowledge,15, 83, 84 although supramolecular 

vesicles85, 86 (e.g. liposomes)87, 88 associated from amphiphilic molecules (e.g. lipids) are well 

known and have been widely used for material applications.15, 83, 84, 89, 90 Amphiphilic 

molecules are generally surface-active and only assemble above certain concentration 

(critical micelle concentration (CMC)).91, 92 As a result, micellar colloids have to be prepared 

and used at a concentration above the CMC, and the resultant aggregates have low structural 

integration upon dilution,91, 93 which imposes challenges for many applications, such as drug 

delivery,33, 34, 88, 89 bioassay, and cell imaging.38, 40, 94 Non-surface-active, hydrophobic 

assembling building blocks could be used to address this inherent problem, but such a group 

of building blocks has yet to be developed.  

In biology, water-carbonyl interactions (WCIs) explain the capability of lipolytic 

enzymes to access both hydrophobic triglycerides and water for catalytic fatty hydrolysis 

during metabolism.62 Therefore, we envision the possibility of harnessing WCI as a driving 

force for the creation of aqueous colloids if hydrophobic carbonyl molecules can be properly 
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designed. Many hydrophobic carbonyl molecules, such as triglycerides and 

polymethylmethacrylate (PMMA), are not able to self-assemble in water, probably because 

of their weak WCIs.63, 95 The strength of WCIs is related to the polarity of the carbonyl 

groups (CO groups).64, 65, 96 It is, therefore, tempting to explore the aqueous behaviour of 

carbonyl molecules with highly polarized CO groups. Metal-carbonyl complexes (MCCs) are 

usually hydrophobic,41 but they possess strong electron-donating metal elements and 

sometimes can induce negative charges on the oxygen in CO, for example, an acyl CO within 

a phosphine coordinated 5- cyclopentadienyl dicarbonyl iron (Fp) derivatives.52, 97 

Hydration of this group of molecules through stronger WCIs can then be expected for 

possible aqueous self-assembly. This exploration of WCI-induced direct self-assembly of 

MCCs also has high potential for material innovation. Although aqueous colloids directly 

assembled from MCCs are rarely reported, hybrid nanoparticles with MCC components have 

been explored for functional materials. For example, by integrating hydrophobic MCCs into 

block copolymer aqueous micelles, water-soluble CO-delivery agents with a high cell uptake 

ratio have been developed.13 In another approach, metal nanoparticles with surface-attached 

MCCs show enhanced IR and Raman signals for the CO groups, which is desirable for 

bioassay and cell imaging.42, 45  

We have recently explored supramolecular chemistry of Fp derivatives, including 

polymers48, 98, 99 and small molecules,47 and discovered that this group of metal-carbonyl 

molecules exhibits unique self-assembly behaviour mainly due to the polarity of the CO 

groups. For example, CpFePPh3(CO)CO(CH2)5CH3 (FpC6) is able to assemble in the solid 
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state into supramolecular polymers with a truss arrangement of iron elements.47 Hydrogen 

bonding with polarized CO groups as hydrogen acceptors is a major contribution for the 

chain structure. 

Herein, we report the aqueous behaviour of FpC6. FpC6 is hydrophobic, but its CO 

groups can be hydrated, which induces the formation of uniform metal-carbonyl vesicles 

(MCsomes). MCsomes, unlike conventional vesicles that are assembled from amphiphiles, 

stay integrated and maintain a narrow PDI upon dilution. Moreover, the aggregation of the 

molecules induces a significant enhancement (more than 100-fold) in the IR absorption for 

the CO groups. This enhancement is higher than most surface enhanced IR absorption 

(SEIRA) using external dielectric substances.42, 100 The highly integrated aqueous colloids of 

FpC6 with self-enhanced CO signals, therefore, offer a promising approach for addressing 

current challenges in biomaterial applications of MCCs.40, 89 

2.2 Results and Discussion 

Hydrophobic carbonyl molecules can interact with water through WCIs,63, 95 but this 

force is relatively weak and has not been harnessed as a driving force for the preparation of 

self-assembled aqueous colloids. Hydrophobic FpC6 contains a terminal CO and a highly 

polarized acyl CO.47, 52, 97 WCI of the acyl CO initiates the aggregation of the molecules. This 

aggregation subsequently induces WCI of the terminal CO and enhances WCI of the acyl CO, 

which results in strong hydration forces that sustain the FpC6 aggregates in water.  This 

aggregation induces a local electric field and consequently significantly enhances the IR 

absorption of the CO groups. These unprecedented discoveries will be illustrated in the 
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following sections, starting with the solution behaviour of FpC6, followed by morphology 

characterization and discussion of the self-assembly mechanism. Aggregation-enhanced IR 

absorption (AEIRA) is illustrated and discussed as the last part of the paper.   

2.2.1 Aqueous solution behaviour of hydrophobic FpC6 

By adding water to a solution of FpC6 in THF, followed by N2 bubbling to remove 

THF, an aqueous solution of FpC6 with a blue tint was prepared, which suggested that 

colloids were formed (Figure 2.1). Note that all colloids discussed in the paper are prepared 

using the same technique.  

 

Figure 2.1 Molecular structure of FpC6 and its aqueous colloids. 

 

DLS analysis reveals that the hydrodynamic radius (Rh) of the colloids is ca. 85 nm 

with an extremely narrow polydispersity (PDI) of 0.018.  Where PDI is a dimensionless 

measure of the broadness of the size distribution calculated from the cumulants analysis. The 

colloids remain highly integrated even when the solution was extremely diluted (Figure 2.2a). 

As shown in Figure 2.2a, no change in Rh was observed for any of the measured 
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concentrations. Even at 0.005 mg/mL (9.54 µM), a concentration much lower than CMC for 

many amphiphilic surfactants,41, 101 the solution still scatters light (Figure 2.1). DLS of the 

diluted solution reveals Rh of 86 nm, which suggests that the original colloids are well 

integrated (Figure 2.1). Moreover, the linear relationship of light scattering intensity as a 

function of solution concentration suggests that there is no detectable critical aggregation 

concentration (CAC; Figure 2.2b). 

 

Figure 2.2 (a) Hydrodynamic radius (Rh), polydispersity index (PDI) and (b) Count rates of 

aqueous colloids as a function of FpC6 concentrations. 

 

 1H NMR analysis of the colloids in D2O shows a single signal due to residual H2O at 

4.67 ppm and no chemical resonance from FpC6 was observed (Figure 2.3a), which verifies 

that there are no detectable FpC6 molecules in water. Surface tension measurements as a 

function of solution concentration are illustrated in Figure 2.3b. As shown in the figure, the 

surface tensions for all solutions remain at the same value of approximately 72.0 mN/m, 

similar to that for pure water. This set of experiments indicates that FpC6 cannot be classified 
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as a conventional amphiphile, but can aggregate without CAC (Figure 2.2b). This result 

explains that the colloids have strong structural integration upon dilution. We also performed 

1H and 31P NMR spectroscopy on the molecules recovered from aqueous solution by freeze-

drying, which indicated that there is no chemical structure alternation of FpC6. (Figure S2.3). 

Synthesis of FpC6 is described in details in the Experimental Section and Supporting 

Information (Figure S2.1 and Figure S2.2).  

 

Figure 2.3 (a) 1H NMR of FpC6 colloids in D2O (0.1 mg/mL), (b) Surface tensions of FpC6 

in water as a function of concentration. 

 

2.2.2 Morphology of FpC6 colloids 

To investigate the morphology of the prepared aqueous colloids, multi-angle static 

light scattering (SLS) was performed. As shown in Figure 2.4a, scattered intensities for 

aqueous solutions of FpC6 (0.006 mg/mL) are plotted as a function of scattering vector q2. 

From a Berry plot, the radius of gyration (Rg) is calculated to be 83.6 nm. The hydrodynamic 
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radius (Rh) obtained from DLS measurements for the same sample is 86.7 nm. By comparing 

Rg and Rh, the shape factor (Rg/Rh) was found to be 0.96, which suggests that FpC6 is able to 

self-assemble into vesicles in water. Conventional transmission electron microscope (TEM) 

was not able to image the sample because the colloids collapsed upon drying (Figure S2.4 in 

the Supporting information). Therefore, cryo-TEM was performed and a typical image is 

illustrated in Figure 2.4b. As shown in the figure, the contrast between the periphery and the 

interior is not sharp but clear, which corroborates the hollow structure and suggests that the 

wall for the vesicle is thin. The thickness of the wall for the vesicle as measured is ca. 4.0 nm. 

Although the colloids will not remain integrated upon drying, atomic force microscopy 

(AFM) analysis of the fragment can verify the thickness of the vesicle membrane. As 

illustrated in Figure S2.5 in the Supporting Information, the height profiles for the fragments 

are between 4.0 nm and 4.6 nm, which are comparable with what was revealed from the 

cryo-TEM images for the wall thickness. Because the total extended length of FpC6, as 

calculated from its crystal structure, is ca. 1.8 nm,47 the vesicles may have a bilayer structure 

with iron-carbonyl units exposed to water and the alkyl chains forming the inner domain of 

the vesicle wall. This proposition is supported by CV and IR experiments and will be 

discussed below.  
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Figure 2.4 (a) Berry plot obtained from multi-angle SLS measurements of FpC6 aqueous 

colloids (0.006 mg/mL), (b) Cryo-TEM image of FpC6 vesicles. Sample was prepared from 

FpC6 aqueous colloids (0.1 mg/mL). 

 

2.2.3 FpC6 aqueous aggregation process 

To investigate the aggregation process, the critical water content (CWC), the water 

content at which FpC6 molecules start to aggregate, has been determined in THF. Light 

scattering count rates from a solution of FpC6 (0.1 mg/mL) in THF with increasing amounts 

of water were measured and the resultant data are plotted in Figure 2.5a. As shown in the 

figure, when the water content reaches 60% by volume, an upsurge in count rate is observed, 

which suggests that aggregation occurs. The CWC is, therefore, determined to be ca. 60 v%. 

This value is much higher than those for amphiphilic block copolymers.92, 102 This high CWC 

can be attributed to the low molar mass of FpC6 and also suggests that the molecules, despite 

their aqueous insolubility, are able to be hydrated. 
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Figure 2.5 DLS count rates for FpC6 solutions (a) in THF/water, (b) in DMF/water as a 

function of water contents. 

 

We also plan to investigate the aggregation process of FpC6 by using cyclic 

voltammetry (CV) experiments by taking advantage of the redox properties of FpC6 

molecules. Because DMF will be used for the CV experiments instead of THF, the 

aggregation behaviour of FpC6 in DMF/water was investigated. Figure 2.5b displays the 

DLS count rates for FpC6 solutions in DMF/water (0.1 mg/mL) as a function of water 

contents. As shown in Figure 2.5b, the aggregation starts at water content of ca. 30 v% and 

becomes obvious at water content of ca. 60 v%. The redox activities of the iron complexes 

following this aggregation process have been examined for the investigation and the results 

are illustrated in Figure 2.6. As shown in the figure, FpC6 is soluble in pure DMF and shows 

a reversible redox trace with an oxidation peak at 0.60 V and a reduction peak at 0.46 V 

(Figure 2.6a). When we added 10 v% water, the FpC6 molecules remained soluble and did 

not aggregate (Figure 2.5b). As a result, a reversible redox cycle was still observed, though 
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the redox peaks are weaker (Figure 2.6b). As the water percentage was increased in the 

DMF/water solution, up to 30 v%, the FpC6 molecules started to aggregate (Figure 2.5b) and 

became less accessible to the electrode, which resulted in weak cathodic and anodic current 

(Figure 2.6c). However, when FpC6 aggregation was further enhanced by adding more water 

(60 v%), the oxidation peaks became visible again (Figure 2.6d), which suggests that FpC6 

molecules actually aggregate in a way that makes the metal-carbonyl groups more 

electrochemically detectable. This is reasonable in light of the proposed bilayer vesicle 

structure with the metal-carbonyl centres exposed to water. Moreover, unlike the system with 

lower water content, two oxidation peaks separated by a redox coupling (E½) of ca. 0.26 V 

became clearly observed (Figure 2.6d). CV experiments of poly(ferrocenylsilane)s also 

reveal two oxidation peaks, which is explained by the extent interaction between the adjacent 

ferrocenyl units along the polymer chain.103, 104, 105 The oxidation of the first iron centre 

allows the neighboring iron to be oxidized at higher potential with a separation of E½. 

Therefore, the appearance of the two separated oxidation peaks suggests that the metal 

carbonyl groups are closely associated as a result of FpC6 aggregation in DMF/Water with 

60 v% of water. No reduction peaks are observed in Figure 6d, suggesting that the oxidation 

of the colloids is not reversible. As the water content further increased to 80 v%, two 

separated oxidation peaks are still visible but relatively weak (Figure 2.6e), suggesting that 

the hydrophobic metal-carbonyl heads start to associate tightly and become less accessible to 

the electrode. The separation in the oxidation peaks (E½) for the system containing 80 v% 

water is 0.21 V, smaller than that (0.26 V) for the system with a water content of 60 v%. 
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These two values in different media, however, cannot be compared because 

oxidation/reduction potential is solvent dependent.106, 107 In pure water, the redox activity of 

the metal complex is barely detected (Figure 2.6f), which suggests that the iron-carbonyl 

heads are highly integrated and have low accessibility to the electrode.  

  

 

Figure 2.6 Cyclic voltammetry (CV) results, relative to Ag electrode, for solutions of FpC6 

in DMF/water with varied water contents. 

 

This set of experiments suggests that FpC6 colloids are formed with metal carbonyls 

closely packing on the surface. The CV experiments also illustrate that certain groups in 

FpC6 can be hydrated, which accounts for the solubility of FpC6 in mixed DMF/water 

solutions with a water content up to 60 v%. In pure water, the hydration force is not strong 

enough to molecularly dissolve FpC6. We therefore confirmed that FpC6 is water-insoluble 
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or hydrophobic as indicated by NMR analysis (Figure 2.3a). The colloidal stability of FpC6 

vesicles in water can be attributed to solvation interaction of certain groups in FpC6. The 

motif responsible for the aggregation will be investigated in the following section.  

2.2.4 Driven forces for aqueous self-assembly of FpC6 

The FT-IR spectrum of FpC6 shows that the absorption for the acyl CO appears at 

1610 cm-1.47 This low frequency absorption has been speculated to be due to the existence of 

a resonance structure with inductive negative charges on the oxygen of the acyl CO group 

(Figure 2.7).52, 97 Therefore, we performed zeta-potential experiments, which indeed revealed 

that the colloids had a negatively charged surface with a ζ value of ca. -65 mV. This surface 

charge derived from the metal acyl resonance structure promotes WCIs, which are 

responsible for the initial hydration and subsequent aggregation of FpC6 molecules. The 

WCI has been widely explored in biological and geological systems,64, 65, 96 but this is the first 

discovery that WCI can function as a driving force for the creation of well-defined aqueous 

colloids. 

 

Figure 2.7 Proposed resonance structure for FpC6 

The existence of WCI was further demonstrated using NMR spectroscopy. Both 1H 

and 31P NMR spectra for FpC6 in pure THF-d8 and THF-d8/D2O mixed solvents have been 

recorded. When the content of D2O reached CWC (60 v%), the aggregation of the 
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hydrophobic FpC6 reduced the mobility of the molecules so there was no signal 

corresponding to FpC6 detectable in 1H NMR spectrum. When the water content was lower 

than the CWC, FpC6 was mobile and could be detected using 1H NMR spectroscopy 

(Figure 2.8a). By comparing the spectra of the sample with increasing amounts of D2O, it 

was observed that the NMR signals that corresponded to both the Cp ring and methylene 

protons, α to the acyl carbonyl group, were shifted upfield (Figure 2.8a). The hydration of the 

carbonyl groups accounted for these observed shifts, which reduceed the deshielding effect 

on the α-methylene and Cp protons. The shift () was ca. 0.12 ppm for the methylene 

protons when D2O content increased from 0 to 40 v%.  This shift was much larger than that 

observed for the Cp protons (0.06 ppm). This difference can also be explained by the 

carbonyl group hydration, which affects its α-proton more effectively than those far away 

from the carbonyl group. In the 31P NMR spectra, the chemical resonance for the coordinated 

phosphorus shifted upfield to  = 2.9 ppm with increasing amounts of D2O. This larger shift 

was attributed to the sensitivity of 31P NMR spectroscopy and wide energy separations 

between the spin states of 31P (detectable ppm range). Unlike 1H NMR, 31P NMR 

spectroscopy signals are visible even when D2O content reaches CWC (Figure 2.8b). Despite 

the weak signal, the upfield shift at CWC is obvious (Figure 2.8b), suggesting that hydration 

of carbonyl groups continues even when aggregation occurs. This result is reasonable 

because the bilayer vesicular aggregation forces the phosphorus coordinated metal carbonyls 

heads exposed to water. In pure D2O solution, no 31P NMR signal can be detected, which is 

similar to 1H NMR spectra. Because the chemical shift could also be related to the variation 



 

 37 

of the solvent media, further investigation using solution ATR-FTIR was performed to 

support the occurrence of CO hydration.  

 

Figure 2.8 (a) Partial 1H and (b) 31P NMR spectra of FpC6 in THF-d8 (5 mg/mL) and THF-

d8/D2O mixed solvents. 

ATR-FTIR has been used to probe the process of the self-assembly driven by WCI. 

Upon addition of water, the occurrence of WCI usually shifts the IR absorption of CO groups 

towards lower wavenumber (Figure 2.9 and Figure S2.6 in the Supporting Information).63, 95, 

108 The degrees of the shifts in wavenumber (), an indicator for the strength of WCI, have 

been plotted as a function of water content (Figure 2.9) for FpC6 solutions in THF. As shown 

in Figure 9, when the water content is 10 v%, the shift in wavenumber () is 7 cm-1 and 0 

cm-1 for the acyl and terminal CO groups, respectively. This difference suggests that the acyl 

CO groups can be readily hydrated but there is no hydration of the terminal CO groups. No 

obvious changes in  for both types of CO groups are observed when the water content 
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increases from 20 v% to 40 v%. The solubility of the hydrophobic molecules at this fairly 

high water content (40 v%) can be attributed to the hydration of the acyl CO groups ( = 7 

cm-1). The terminal CO groups remain unhydrated ( = 0 cm-1) and thus make no 

contribution to the solubility. With further increase in the water content to the CWC (60 v%), 

colloids are formed (Figure 2.5). At this point,  for the acyl CO groups further increased, 

which indicates an enhanced hydration effect. Additionally, the aggregation induces the 

hydration of the terminal CO groups which become hydrated with a  of 4 cm-1 (Figure 2.9). 

This result suggests that the hydration of the terminal CO groups is aggregation-induced. 

This aggregation-induced WCI (AI-WCI) may be caused by the creation of a local electric 

field when polarized acyl CO groups pack together at the surfaces. 

  

Figure 2.9 The degrees of FT-IR red shifts in frequencies for terminal and acyl carbonyl 

groups of FpC6 in THF/water solutions as a function of water contents. 
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2.2.5 Aggregation-enhanced IR absorption (AEIRA) 

In addition to the observed shifts in IR absorption for the carbonyl groups, their 

intensities are also varied and related to the water content (Figure S2.6). At relatively high 

water contents (> 40 v%), the IR absorption for the acyl CO groups (1601 cm-1) interfere 

with the signal due to water absorption (scissors bending at 1650 cm-1), but the absorption at 

1910 cm-1, due to the terminal CO groups, does not overlap with the signals from most other 

molecules, including water and biological species. This is actually the advantage of IR-based 

bioassay stated in previous literature.38, 40, 94 Therefore, we used this absorption to investigate 

the observed aggregation-enhanced IR absorption (AEIRA). The absorption due to the 

terminal CO groups in the IR spectra of an FpC6 solution in THF with increasing amounts of 

water are listed in Figure 2.10a. As shown in the figure, the intensity of the IR signal initially 

decreases as the solution is diluted and this decrease in intensity becomes obvious when the 

water content is 40 v%. Upon further addition of water up to the CWC (60 v%), aggregation 

occurs and concurrently an abrupt enhancement in IR absorption is observed (Figure 2.10a). 

Once the colloids are formed, the addition of water (up to 75 v%) causes a slight drop in the 

intensity probably due to the effect of dilution. One may argue that hydration of the carbonyl 

groups, rather than aggregation, might be a reason for the enhancement of the IR absorption. 

This possibility can be excluded when we examine the IR absorption due to the acyl CO 

groups as a function of water content (Figure S2.6). Although acyl CO groups are hydrated 

before the occurrence of aggregation at the WC (60 v%) (Figure 2.9), their IR absorption 

intensity is not enhanced until FpC6 aggregates (Figure S2.6).  
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IR absorption can be enhanced by the surface of metallic or dielectric materials, for 

example, films or nanoparticles.42, 109, 110 This phenomenon is known as surface-enhanced IR 

absorption (SEIRA). Unlike conventional SEIRA, we observed AEIRA without the 

assistance of external substrates.111 As we know that the surface of MCsomes is packed with 

highly polarized CO groups, which create a local electric field. This field increases the 

polarization of the CO groups and subsequently induces AI-WCI of terminal CO groups and 

enhances WCI of the acyl CO groups (Figure 2.9). Upon electromagnetic interaction with the 

incident light, this local electric field is polarized and their electromagnetic irradiation is 

consequently strengthened, resulting in the observed AEIRA.100, 112, 113, 114, 115 

The enhancement in IR signals via conventional SEIRA is typically less than 100-

fold.42 For example, the IR absorption signal of 4-nitrobenzoic acid is enhanced by a factor 

of 20 using thin Ag metal over- and under-layers.110 If thin films of Pt/Ru alloy are used to 

enhance the IR absorption of carbonyl ligands, the enhancement factors are between 10.5 to 

13.1 folds.116 SEIRA has also been reported for anthracene on the substrates that consist of 

polar dielectric nanoparticles of silicon carbide and aluminum oxide with enhancement of 

approximately 100-fold.109 To compare our discovery with conventional SEIRA, we have 

quantified the degree of the enhancement caused by AEIRA. The experiments were designed 

to compare the detection limit for FpC6 in molecular and assembled forms. ATR-FTIR 

spectra of FpC6 in pure THF were first recorded at different concentrations (Figure S2.7) and 

the CO signal became undetectable when the concentration was dropped to 5.0 mM. ATR-

FTIR spectra for FpC6 aggregates in THF/water solutions (60 v% of water) were then 
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recorded and are displayed in Figure 2.10b. As shown in the figure, the CO absorption is still 

fairly strong at 5.0 mM and remains detectable even when the concentration drops to the 

micromolar range (50.0 µM). By comparing this value to the detection limit of FpC6 

molecules in THF, AEIRA improves the IR sensitivity by at least 100-fold (Figure 2.10c), 

which is the upper limit of the enhancement using conventional SEIRA assisted with external 

dielectric substrates.42, 100  

 

Figure 2.10 Partial ATR-FTIR spectra for FpC6 solutions in (a) THF/water solution with 

varied water contents, (b) THF/water solution (60 v% of water, CWC) with varied FpC6 

concentrations, (c) THF with FpC6 concentration of 5.0 mM and THF/water at CWC with 

FpC6 concentration of 0.05 mM. 
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Although conventional SEIRA has been explored for biological sensing and cell 

imaging,42, 100 complicated synthesis, less defined nanostructures, and the requirement for 

substrates impose restrictions in their practical applications. The use of AEIRA without 

external dielectric substrates is, therefore, promising for future technology advances.  

2.3 Conclusions 

In summary, we have demonstrated that FpC6 molecules are hydrophobic and non-

surface active, but are able to self-assemble in water into monodispersed metal-carbonyl 

vesicles (MCsomes) with strong structural integration. The WCI has been identified as a 

driving force responsible for aggregation. Hydration of the highly polarized acyl CO groups 

initiates the aggregation, which subsequently enhances WCIs of the acyl CO groups and 

induces WCI of the terminal CO groups. It is reasonable to think that the MCsomes, as 

suggested by the cryo-TEM and AFM images, contain a bilayer structure with associated 

metal-CO groups exposed towards water and the inner domain formed from packed alkyl 

chains. The association of the metal carbonyl groups creates a local electric field, which 

induces AEIRA for the CO groups. AEIRA has not been reported before and can improve the 

detection limit by at least 100-fold. Our discoveries open up a new research topic on WCI-

driven self-assembly of hydrophobic molecules for highly structural integrated colloids and 

the observed AEIRA will potentially address the challenge of relatively low sensitivity of IR-

based sensing and imaging.42, 94, 100  
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2.4 Experimental Section 

2.4.1 Materials and Instrumentation 

Materials: Potassium metal (99.5%, rods in mineral oil) and sodium metal (99.9%, 

cubes in mineral oil), cyclopentadienyl iron (II) dicarbonyl dimer (99%), triphenylphosphine 

(98%), benzophenone (99%) and 1-bromohexane (>98.0%) were purchased from Sigma-

Aldrich and used as received. Tetrahydrofuran (THF) was distilled over 

sodium/benzophenone before use. All other solvents were obtained from local commercial 

providers and used as received.   

Dynamic light scattering (DLS) and static light scattering (SLS): DLS results 

were obtained at 25 oC using Zetasizer Nano Series (Nano-S90, Malvern Instruments) with 

laser wavelength of 633 nm at fixed angle of 900. The broadness of the size distribution 

(Polydispersity index (PDI)) is calculated by the cumulants analysis from the ratio between 

the normalized variance of rate decay and the square value of the mean decay rate. Multi-

angle SLS measurements were carried out using Brookhaven Laser Light Scattering System 

with a BI-200 SM goniometer. A vertically polarized helium−neon diode laser with 

wavelength of 636 nm was used as the light source. Measurements were taken at scattering 

angles (θ) between 50°and 130° with 10° intervals. Toluene was used as the reference for the 

Rayleigh ratio.  

Nuclear magnetic resonance (NMR) spectroscopy: 1H and 31P NMR spectra were 

recorded on Bruker-300 (300 MHz) spectrometer at room temperature using the appropriate 

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
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solvent as mentioned for each experiment. 1H NMR chemical shifts are reported relative to 

residual solvent signals and 31P NMR resonances are referenced to an external standard 

sample of 85% H3PO4 in D2O. 

Cyclic Voltammetry: Cyclic voltammetry (CV) experiments of FpC6 solutions (0.1 

mg/mL) in water/DMF were performed at room temperature using DY2000 Multi-Channel 

Potentiostat (Digi-Ivy Inc.) workstation with a scan rate of 50 mV/sec and silver wire as a 

reference electrode. A water solution of KCl (2 mg/mL, 2.68 mM) and a DMF solution of 

tetrabutylammonium perchlorate (TBAP) (2 mg/mL, 5.8 mM) were prepared. First, FpC6 

was dissolved in the DMF solution and the water solution was subsequently added to prepare 

the mixed solutions of FpC6 in water/DMF.  

Surface tension: Surface tension of pure water and FpC6 aqueous colloids with 

different concentrations were measured at 24 oC using a tensiometer Data Physics DCAT 21 

system.  

Zeta potential:  ζ-potential measurements were performed at 25 oC on a Malvern 

Zetasizer nano ZS instrument using disposable folded capillary cells.  

ATR/FTIR: Fourier transform infrared (FT-IR) spectra for FpC6 solid sample was 

recorded on a Bruker Tensor 27 spectrophotometer with a resolution of 4 cm-1. Pellets were 

prepared by grinding and compressing of FpC6 (2% by weight) in anhydrous KBr using 

Nujol mulls. Attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra of 

FpC6 in THF/water solutions were recorded on the same instrument using a germanium 
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crystal Pike MIRacleTM ATR Attachment. A drop of the solutions was placed on the 

germanium crystal.  IR frequency of FpC6 solutions in THF were measured first. Afterward, 

water was successively added to the THF solutions and IR spectra were recorded at different 

water contents.   

TEM and Cryo-TEM: Conventional transmission electron microscopy (TEM) 

images were recorded on a low voltage (5 kV) LVEM5 electron microscope (Delong 

Instruments). TEM samples were prepared by dropping the solution onto a carbon-coated 

copper grid (Cu-300CN, Pacific rid Tech) and the grid was then then left to dry at ambient 

temperature. Cryo-TEM images were obtained using a high voltage (200 kV) field emission 

FEI Tecnai G2 F20 Cryo-TEM microscope. The cryo-TEM sample was prepared by placing 

5.0 µL of FpC6 (0.1 mg/mL) aqueous solution onto a glow discharged coper grid with holy 

carbon film (Quantifoil Multi A) and thinned by blotting with a filter paper. The grid was 

then quickly plunged into a liquid ethane bath and transferred under liquid nitrogen to a 

Gatan 914 cryo-holder and viewed at -179 oC.  

AFM: Atomic force microscopy (AFM) experiments were conducted on a Nanoscope 

MultiModeTM AFM microscope using a Conical AFM tip with a spring constant of 40N/m, 

resonance frequency of 300 KHz and tip radius of 8 nm. The samples were prepared by 

transferring 3 drops of the FpC6 aqueous colloids on freshly cleaved mica substrate. The 

sample was then spun for 45 s and left to dry overnight before scanning.  
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2.4.2 Synthesis of FpC6 

CpFePPh3(CO)CO(CH2)5CH3 (FpC6) was prepared as follows.47 A solution of 1-

bromohexane (1.00 mL, 7.12 mmol) in THF (10 mL) was added dropwise to a suspension of 

FpK (1.69 g, 7.84 mmol) in THF (20 mL) at 0 ⁰C under vigorous stirring. The mixture was 

then stirred at 23 oC for 1 h. Afterwards, THF was removed via rotary evaporation and the 

residue was dissolved in degased hexane and passed through a celite column. Hexane was 

subsequently removed using rotary evaporation. The resulting solid was dissolved in THF 

(20 mL) and mixed with triphenylphosphine (2.05 g, 7.84 mmol) in THF (10 mL). After the 

solution was refluxed at 70 ⁰C for 72 hours, it was cooled to 23 oC and THF was removed 

under vacuum. The resulting brownish solid was chromatographed using a silica column. The 

column was first washed using degassed hexane and a yellow band, identified to be 

(CpFe(CO)2(CH2)5CH3), was removed. Subsequently, the column was flashed using 

hexane/DCM (3/1 v/v) and an orange band was collected. The solvents were removed using 

rotary evaporation resulting in a brown oil-like product.  The product was then completely 

dried under vacuum overnight (yield 3.18 g, 85.0 %). 1H NMR (300 MHz, C6D6): 7.71 ppm 

(t, 6 H, m–Ph), 6.95-7.09 ppm (b, 9H, o- and p-Ph), 4.26 ppm (s, 5H Cp), 3.00-3.15 ppm (m, 

1H ,( α-H)-COCH2-), 2.84-2.97 ppm (m, 1H, ,(α-H) -COCH2), 1.45-1.63 ppm (b, 1H, ,(β-H)-

COCH2CH2-), 1.30-1.43 ppm (b, 1H, ,(β-H)-COCH2CH2-), 1.05-1.27 ppm (b, 6H, -

COCH2CH2(CH2)3-), 0.86 ppm (t, 3H,(terminal CH3) -COCH2CH2(CH2)3CH3). 
1H NMR 

(300 MHz, CDCl3): 7.50 ppm (t, 6 H, m–Ph), 7.30-7.40 ppm (b, 9H, o- and p-Ph), 4.40 ppm 

(s, 5H, Cp ring), 2.91-2.78 ppm (m, 1H ,(α- H)-COCH2-), 2.60-2.47 ppm (m, 1H, ,(α-H) -
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COCH2-), 1.26-0.91 ppm (mb, 8H, -COCH2(CH2)4-), 0.83 ppm (t, 3H,(terminal 

CH3)COCH2CH2(CH2)3CH3).
31P NMR (300 MHz, C6D6): 79.0 ppm, (300 MHz, THF-d6): 

78.2 ppm, (300 MHz, CDCl3): 77.9 ppm. FTIR of amorphous FpC6 (KBr pellet): 1910 cm-1 

(terminal C≡O), 1610 cm-1 (acyl C=O). (see Figure S2.1 and Figure S2.2 in the Supporting 

Information) 

2.4.3 FpC6 Colloid preparation 

FpC6 aqueous colloids (0.1 mg/mL) were prepared by adding 10.0 mL distilled 

deionized water to 1.0 mL THF solution of FpC6 (1.0 mg/mL) under stirring. Subsequently, 

THF was removed via nitrogen bubbling for one and a half hour. We also prepared FpC6 

colloids in D2O and the 1H NMR spectrum of the solution was acquired to determine the 

bubbling conditions (time and speed of N2 flow) for the complete removal of THF. 

2.4.4 Critical water content (CWC)  

Following successive addition of water to a THF solution of FpC6, DLS count rates 

were recorded. The resultant data were plotted against water contents, which shows an 

upsurge in the intensity at water content of 60 v%. This point was assigned as a CWC. 

2.4.5 FpC6 recovery by freeze-drying of FpC6 colloids 

FpC6 molecules were recovered from their aqueous colloids by adding 5 mL of the 

prepared FpC6 colloid (0.1 mg/mL) in a long-neck 50 mL round bottom flask. The flask was 

then placed in a liquid nitrogen bath with continuous swirling for two minutes to achieve a 

thin layer of frozen solution. Subsequently the flask was removed from the liquid nitrogen 
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bath and connected to a vacuum pump (Edwards RV3, A65201906). After six hours, all 

FpC6 molecules were recovered and the residue was then dissolved in 1 mL of CDCl3 and 

characterized by NMR.    
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Chapter 3 

Aggregation-Enhanced IR Absorption (AEIRA) of Molybdenum-

Carbonyl Organometallic Aqueous Colloids 

3.1 Introduction 

Metal-carbonyl (MC) complexes and colloids13, 41 have been explored for biomedical 

applications, such as CO delivery,33, 34 biosensors,38 and cancer therapy,35, 36 due to the IR 

absorption of their CO groups, within the biological transparent window between the 

wavenumbers of 1800 and 2200 cm-1.37 It is, therefore, an advantage to use MC derivatives 

as vibrational IR or Raman probes for cell imaging39 and bioassay.40 However, the intensity 

of the IR absorption is not high enough for possible applications in a diluted solution. 

Attachment of MC compounds on the surface of plasmonic or dielectric nanoparticles42, 117 

has been reported to enhance the IR signals via surface enhanced Raman scattering (SERS) 

117 and surface enhanced IR absorption (SEIRA).42 

 We have discovered that hydrophobic Fp acyl derivatives (Fp: CpFe(CO)2) can be 

hydrated via water carbonyl interactions (WCIs) and self-assemble into aqueous MC vesicles 

(MCsomes).66, 118, 119 For example, CpFe(CO)(PPh3)CO(CH2)5CH3 (FpC6) is hydrophobic 

and able to self-assemble into liposome-like MCsome in water with a highly integrated 

bilayer membrane.118 This assembly induces an aggregation-enhanced IR absorption 

(AEIRA) of the CO groups.118 This enhanced IR absorption without using external substrates 

will be an advantage for sensing applications. It is, therefore, tempting to create an array of 



 

 50 

this novel group of colloids for potential material exploration. This research is facilitated by 

well-developed synthetic chemistry for desired FpC6 analogues as building blocks.120, 121, 122 

For example, Pannell et al.123 reported a one-pot reaction of [CpMo(CO)3]
 (Mp) with 

epibromohydrin in the presence of an excess amount of triphenylphosphine generating trans-

CpMo(CO)2(PPh3)-2-furan. A phosphine coordinated Mp acyl complex was proposed as a 

reaction intermediate. The oxygen on the acyl CO group in the intermediate was nucleophilic 

and attacked the epoxide ring yielding the furan complex.123, 124  

Herein, we report the synthesis and aqueous behaviour of MpC6 (MpC6: 

CpMo(CO)2(PPh3)CO(CH2)5CH3). MpC6 is prepared via a reaction of Mp anion with alkyl 

bromide in the presence of triphenylphosphine. Surface tension and light scattering 

experiments suggested that MpC6 is non-surface active, but can self-assemble in water via 

WCIs without critical aggregation concentration (CAC). The aggregates of MpC6 exhibit a 

significant enhancement (ca. 70-fold) in IR absorption of the carbonyl groups. The colloidal 

stability and AEIRA function render the MpC6 colloids potentially useful as a sensing 

material.43 

3.2 Results and discussion 

3.2.1  Synthesis of MpC6 

To prepare MpC6 (3.2), the Mp anion was first reacted with 1-bromohexane in THF 

at 40 oC, producing [CpMo(CO)3(CH2)5CH3] (3.1). Subsequently, the reaction mixture was 

cooled to room temperature (23 oC) and triphenylphosphine was added. After stirring the 



 

 51 

solution at room temperature for 7 days, MpC6 was produced. Alternatively, as shown in 

Figure 3.1, the migratory insertion reaction (MIR) was completed within 24 hours when it 

was carried out at 60 oC.  

 

Figure 3.1 Synthesis of MpC6 complex. 

FT-IR and NMR spectra for MpC6 are illustrated in Figure 3.2. As shown in 

Figure 3.2a, two IR absorption bands appear at 1932 and 1850 cm-1 for the terminal CO 

groups and one band appears at 1616 cm-1 for the acyl CO group. 31P NMR spectrum 

(Figure 3.2b) shows a single peak at 71.0 ppm corresponding to the coordinated phosphine 

group.48, 118 These analyses suggest that the MIR has occurred.48 Figure 1c displays the 1H 

NMR spectrum of MpC6. As shown in Figure 1c, the chemical shifts at 7.36 and 4.92 ppm 

are attributed to the phenyl and Cp protons, respectively; the proton signals appearing upfield 

are assigned to the alkyl protons as indicated in Figure 1c. The integration ratio of these 

signals is consistent with the expected value for MpC6. Compared to  the  1H NMR spectrum 

of 3.1 (Figure S3.1), the upfield shift of the proton resonance due to the Cp ring (Figure 3.2c) 
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and downfield shift of the signal due to the α-protons (f in Figure 3.2c) confirm the 

occurrence of MIR.48 

 

Figure 3.2 (a) Partial IR spectrum (KBr pellet) of MpC6. (b) 31P and (c) 1H NMR spectra 

(CDCl3, 25 oC, 300 MHz) of MpC6. 
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The resultant MpC6 was recrystallized from a hexane solution at - 49 oC. The X-ray 

diffraction of the single crystal reveals a triclinic crystal system with a P-1 space group 

(detailed crystal analysis is summarized in Table S3.1 and Table S3.2, in the Supporting 

Information). As shown in Figure 3.3, the geometry for MpC6 is a four-legged stool. As 

shown in Table 3.1, although the metallic elements are different, the CO bond lengths in 

MpC6 and FpC647 are similar. These results suggest that the polarity of the CO groups in 

these two complexes is comparable and may have a similar strength of WCI-induced 

hydration.  

 

Figure 3.3 Crystal structure for MpC6 complex showing 50% probability of thermal 

ellipsoids. Labeling of hydrogen atoms is omitted for clarity. 

Table 3.1 Bond lengths (Å) of the CO groups in MpC6 and FpC6 

Bond  MpC6 FpC647 

C-O acyl 1.20 1.20 

C-O terminal 1.15 and 1.14 1.15 
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3.2.2  Aqueous behaviour of MpC6  

By adding 10.0 mL of water into a THF (1.0 mL) solution of MpC6 (1.0 mg/mL, 1.78 

mM) followed by N2 bubbling to remove THF, an aqueous MpC6 colloid is obtained 

(Figure 4.1a). DLS analysis reveals that the average hydrodynamic radius (Rh) for the colloid 

is ca. 60 nm with a narrow polydispersity index (PDI) of 0.07 (Figure 3.4a). There is no 

chemical degradation of MpC6 in water as proved by the 1H NMR spectrum of the molecules 

recovered from an aqueous solution via freeze-drying (Figure S3.2). Using dimethyl 

sulfoxide (DMSO) to replace THF, colloids with Rh of ca. 59 nm was prepared (Figure S3.3), 

suggesting that the choice of organic solvent did not affect the self-assembly. When basic 

water (pH = 11) was used, the resulting colloids had a similar size with those prepared using 

neutral water (pH = 7) (Figure S3.4); whereas, the colloids in acidic solution had a larger 

particle size (Rh = ca. 150 nm) (Figure S3.4). All colloids, regardless of the pH, exhibited the 

same stability over time and no precipitation or dissociation were observed after two weeks. 

Figure 3.4b indicates that the surface tension of the solutions with varied concentrations of 

MpC6 is similar with that for pure water, suggesting that MpC6 is not surface active. 

Figure 3.4c shows a linear relationship between the DLS count rates and the solution 

concentration,125 suggesting that MpC6 molecules can self-assemble without a detectable 

critical aggregation concentration (CAC). It can, therefore, be expected that the structural 

integration of the colloid is high. This is elaborated by the DLS analysis of a set of solutions 

with varied concentrations. These samples were diluted from an aqueous solution of MpC6 

(178 µM). As shown in Figure 3.4d, there is no change in Rh and PDI even at a very low 
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concentration (5.0 µM). On the other hand, when the colloids were directly prepared using 

different concentrations of MpC6 in THF, the Rh for the resulting colloids were 68, 60, 53 

and 46 nm for the solution with MpC6 concentration of 0.5, 0.1, 0.05 and 0.01 mg/mL, 

respectively (Figure S3.5). The effect of the concentration on the Rh, therefore, depends on 

how the solutions were prepared, which suggests that the assembling is kinetically controlled.  

 

Figure 3.4 (a) DLS analysis and photograph for an aqueous colloid of MpC6 (178 µM). (b) 

Surface tensions for MpC6 in water as a function of concentration. (c) DLS count rates of the 

aqueous colloids as a function of MpC6 concentration. (d) Hydrodynamic radii (Rh) and 

polydispersities (PDI) for MpC6 aqueous colloids prepared via a successive dilution of an 

aqueous MpC6 solution (178 µM). 
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A multi-angle static light scattering (SLS) measurement reveals that the radius of 

gyration (Rg) for the colloid is ca. 59.3 nm (Figure S3.6); while a DLS analysis for the same 

sample reveals an Rh of 55.5 nm. Therefore, the shape factor (Rg/Rh) for the colloids is 1.06, 

suggesting that MpC6 molecules are able to associate into vesicles in water.118 This 

investigation indicates that MpC6 and FpC6118 have similar solution behaviour and both 

cannot be classified as traditional amphiphiles.125, 126, 127 

We have reported that the acyl CO group in FpC6 can be readily hydrated via WCI.118 

This hydration induces an aggregation of the FpC6 molecules with a critical water content 

(CWC) of 60 vol%. The hydration of the terminal CO groups, however, only starts when the 

amount of water in the system reaches CWC. This aggregation-induced (AI) hydration is 

caused by the enhancement of the polarity of the terminal CO groups. This enhancement in 

polarity is explained due to the formation of a local electric field resulting from the 

aggregation of the MC groups at the surface of the colloid.118 To test whether this hydration 

process occurs to MpC6, we measured CWC for MpC6 in THF/water using DLS.  As shown 

in Figure 3.5, only when the water content reaches 60 vol%, a steep increase in DLS count 

rates is observed, indicating the occurrence of the aggregation. Therefore, MpC6 and FpC6 

have the same CWC (60 vol%), implying that the hydration of the acyl CO group is 

responsible for the assembling. This hypothesis is analyzed using ATR-FTIR spectroscopy. 

As shown in Figure 3.6, the wavenumber shifts in IR absorption (Δ) for the acyl CO group 

are observed at water contents lower than 60 vol%. In contrast, the Δ for the terminal CO 

groups only occurs after the water content reaches CWC (60 vol%). This behaviour confirms 
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that the acyl CO group is easier to be hydrated and the hydration of the terminal CO groups is 

AI.118 In addition, the Δ is much larger for the acyl CO than for the terminal CO groups 

(Figure 3.6). For example, Δ is 13 cm-1 and 5 cm-1 for the acyl and terminal CO groups, 

respectively, when D2O content is 80 vol%. This comparison suggests that the degree of the 

hydration is higher for the more polarized acyl CO group. Based on this IR spectroscopic 

experiment, it can be proposed that the balance of the acyl CO hydration against the overall 

hydrophobicity of the molecule determines the CWC. The polarity of the acyl CO groups in 

both MpC6 and FpC6 are comparable since bond distances are very similar (Table 3.1), 

which explains why the two building blocks have the same CWC.  

 

Figure 3.5 DLS count rates of MpC6 in THF/water solutions with varied amount of water. 
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Figure 3.6 Wavenumber shifts in IR absorption for the terminal and acyl CO groups (Δ) for 

THF/D2O solutions of MpC6 (5.0 mg/mL) as a function of D2O content. The average IR 

shifts for the two terminal CO groups are used for the plot. 

As we learned from our previous study on FpC6, the IR absorption of the CO groups 

can be enhanced upon the formation of the colloids.118 Unlike conventional surface-enhanced 

IR absorption (SEIRA),109, 110, 128 this AEIRA occurs in the absence of external metallic or 

dielectric substrate.118 Similar to FpC6, the MpC6 colloids possess a zeta potential (ζ) of ca. -

69.60 mV resulted from the polarization of the associated CO groups, which may also induce 

a local electric field for AEIRA.118 As shown in Figure 3.6, Figure S3.7 and Figure S3.9, the 

MpC6 solutions in THF and THF/H2O with H2O lower than CWC only show weak IR 

absorptions for the CO groups. In a sharp contrast, a significant enhancement in the 

absorption is observed for the same concentration of MpC6 aggregated in THF/water at 

CWC (60 vol%). The same enhancement in IR absorption was observed for the aggregates in 
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DMSO/water (Figure S3.10), so the aggregation, rather than the polarity of the solvents, is a 

major factor inducing the enhancement.  

This AEIRA for MpC6 is estimated to be ca. 67-fold by comparing the intensities of 

the IR absorptions (Figure 3.7b and Figure S3.8), which is smaller than that for the FpC6 

colloids (ca. 100-fold) recorded under the same conditions.118 The size of the colloids may 

explain this difference, because the polarizability of particles, a parameter determining the 

strength of the resulting local electric field, depends on the size of the particles.129, 130 For 

example, the photocurrent strength of an illuminated light129 and a surface enhanced Raman 

scattering (SERS)131, 132 can be varied by the size of silver nanoparticles.130 Figure 3.8 shows 

that the MpC6 colloid is relatively smaller than that for FpC6. Therefore, the smaller MpC6 

colloid creates a relatively weaker electric field and correspondingly imparts a lower 

enhancement in the IR absorption.  

 

Figure 3.7 (a) IR absorption of the terminal CO groups for the solutions of MpC6 (27 mM) in 

THF and THF/water (60 vol%). (b) Maximum intensities of IR absorption for the terminal 

CO groups (at 1855 cm-1) measured from MpC6 solutions in THF/water with varied amount 

of water. 
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The colloidal stabilities for FpC6 and MpC6 are also compared in Figure 3.8. As 

shown in Figure 3.8, the Rh for FpC6 colloid increases gradually from 85 nm to 155 nm and a 

small amount of insoluble materials was observed after the FpC6 colloid was aged for 7 days. 

In contrast, Rh for the MpC6 colloid is ca. 60 nm and only enlarged slightly to ca. 80 nm after 

14 days (Figure 3.8). In addition, no precipitate was observed even when the solution was 

aged for two weeks. The MpC6 colloids are therefore more stable than the FpC6 colloids. 

The number of CO groups in the building blocks can rationalize this difference. Compared to 

FpC6, MpC6 possesses one more terminal CO group, which may generate a stronger AI-

WCI and subsequently improve the stability of the colloids. 

 

Figure 3.8 Hydrodynamic radii for the aqueous colloids of MpC6 and FpC6 as a function of 

time. 
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3.3 Conclusion 

In summary, MpC6 is synthesized via MIR and its solution behaviour is investigated. 

This molecule is hydrophobic, non-surface active, but able to self-assemble into highly 

integrated colloids in water. The balance between the hydration of the acyl CO groups and 

the hydrophobicity of MpC6 accounts for the formation of the colloids. Upon the aggregation 

at CWC, the terminal CO groups are polarized by an AI local electric field and subsequently 

hydrated. The resultant colloids exhibit an AEIRA. This behaviour is similar with its iron 

analogue (FpC6).118 MpC6 and FpC6 are, therefore, unlike conventional amphiphiles,126, 127 

represent a new group of self-assembling building blocks. The resultant colloids with the 

unique AEIRA will be further explored for material applications. 

3.4 Experimental section 

3.4.1  Materials and instrumentations 

All experiments were performed under an atmosphere of dry nitrogen using standard 

Schlenk techniques unless otherwise indicated. THF was freshly distilled from 

Na/benzophenone under nitrogen. Hexane and DCM were degassed with dry nitrogen before 

use. Potassium (K), 1-bromohexane, benzophenone and cyclopentadienyl tricarbonyl 

molybdenum dimer (Mp2) were purchased from Sigma-Aldrich Co. Triphenylphosphine was 

purchased from Tokyo Chemical Industry (TCI). All chemicals were used as received unless 

otherwise indicated.  
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1H and 31P NMR spectra were recorded on a Bruker-300 (300 MHZ) spectrometer at 

ambient temperature using appropriate solvents. FT-IR spectra were recorded using a Perkin 

Elmer Spectrum RX I FT-IR system. The samples were ground with dry KBr and then 

pressed into transparent pellets. Attenuated total reflection-Fourier transform infrared (ATR-

FTIR) spectra of MpC6 in THF and THF/water solutions were recorded on a Bruker Tensor 

27 spectrophotometer with a germanium crystal Pike MIRacleTM ATR Attachment. DLS 

results were obtained using Zetasizer Nano Series (Nano-S90, Malvern Instruments) with the 

laser wavelength of 633 nm at a fixed angle of 90o, and the broadness of the size distribution 

(Polydispersity index (PDI)), in DLS results is calculated by the cumulants analysis from the 

ratio between the normalized variance of rate decay and the square value of the mean decay 

rate. SLS measurements were performed using Brookhaven Laser Light Scattering System 

with a BI-200 SM goniometer. A vertically polarized helium−neon diode laser with 

wavelength of 636 nm was used as the light source. Measurements were taken at scattering 

angles (θ) between 50° and 130° with 10° intervals. Zeta (ζ) potential measurements were 

performed at 25.0 oC on Malvern Zetasizer nano ZS instrument using disposable folded 

capillary cells. Surface tensions of pure water and MpC6 aqueous colloids with different 

concentrations were measured at 24.0 oC using tensiometer Data Physics DCAT 21 system. 

Single crystals suitable for X-ray diffraction analysis were mounted onto the tips of glass 

fibers with thick oil and transferred into the diffractometer cryostat. X-ray data were 

collected using Mo Kα radiation at 296 K on a Bruker Kappa APEX II System (Madison, 
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WI, USA). Structures were solved using direct methods and refined by full-matrix least 

squares on F2 using the APEX2 package (v2014.11-0). 

3.4.2  Synthesis of MpC6 

MpC6 was prepared in one pot as illustrated in Figure 3.1. First, potassium 

benzophenone ketyl was prepared by stirring of benzophenone (0.156 g, 0.86 mmol) and 

potassium (0.03 g, 0.80 mmol) in dry THF (20 mL) under N2 at room temperature. The color 

of the solution turned to dark blue immediately. The solution mixture was stirred for three 

hours. The dark blue solution was then added dropwise to a THF solution (20 mL) of 

[CpMo(CO)3]2 (Mp2) (0.20 g, 0.40 mmoL) under vigorous stirring. The dark red color of 

Mp2 disappeared within several minutes and the solution became yellowish green after 

stirring for two hours. To this solution, 1-bromohexane (0.11 mL, 0.80 mmoL) was added 

dropwise and stirred for one hour at 40 oC. The color of the solution gradually became 

brown. Afterward, PPh3 (0.223 g, 0.85 mmoL) was added to this solution followed by 

stirring for 24 hours at 60 oC. Then, the mixture was cooled to room temperature and the 

solvent was removed under vacuum. The residue was dissolved in hexane and filtered 

through a neutral Al2O3 column. Hexane was then removed under vacuum and a yellow solid 

of MpC6 was obtained (0.165 g, Yield: 85%). The resulting yellow solid was recrystallized 

from a minimum amount of hexane at -49 oC. 1H NMR (CDCl3): 7.36 ppm, (s, 15H), 4.92 

ppm (s, 5H), 2.95 ppm (t, 2H), 1.35 ppm (m, 2H), 1.13 ppm (m, 6H) and 0.77 ppm (t, 3H), 

31P NMR (CDCl3): 71.0 ppm. IR (KBr): 1932 cm-1 and 1850 cm-1 (the two terminal CO), 

1616 cm-1 (acyl CO).         
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3.4.3  Colloids preparation 

MpC6 aqueous colloids (0.1 mg/mL; 178 µM) were prepared by adding 10.0 mL of 

distilled deionized water to a 1.0 mL THF solution of MpC6 (1.78 mM) under stirring. 

Subsequently, THF was removed via nitrogen bubbling for one and a half hour.  

3.4.4  Critical water content (CWC)  

DLS count rates were recorded while water is successively added to a THF solution 

of MpC6 (178 µM). The resultant data were plotted against water contents. A steep increase 

in the intensity was observed at the water content of 60 vol%; therefore, this point was 

assigned as CWC.  
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Chapter 4 

Laser Manipulable Aqueous Fp-Bithiophene Vesicles with 

Aggregation-Induced Emission (AIE) and Aggregation-Enhanced IR 

Absorption (AEIRA) 

4.1 Introduction 

Supramolecular chemistry133, 134, 135 aims to establish a knowledge system for 

nanomaterial innovation via investigation of the self-assembly behaviour of various 

building blocks and their aggregation-induced functions.136, 137, 138, 139, 140 Based on the 

newly emerged field of metal carbonyl (MC) supramolecular chemistry,47, 66, 118 we 

have designed and created highly-integrated, laser manipulable MC vesicles 

(MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR 

absorption (AEIRA). 

MC complexes are potentially useful for a range of biomedical applications, 

including CO delivery due to their anti-inflammatory effects,33, 34 antitumor activity 

due to their selective cytotoxicity,35, 36 cell imaging39 and bioassay40 by taking 

advantage of the IR absorption of the CO groups within a biologically transparent 

window at wavelengths between 1800 and 2200 cm-1.37, 38 Their water solubility,41 cell 

uptake ratio,13 and IR absorption intensity42 can be enhanced using colloidal 

chemistry.141, 142 For example, a water-soluble CO-delivery system with a high cell 

uptake ratio has been developed via the incorporation of ruthenium carbonyl 
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complexes into a block copolymer micelle,13 IR signals of the CO groups can be 

enhanced via surface enhanced IR absorption (SEIRA) by integrating MC compounds 

on the surface of plasmonic or dielectric nanoparticles.42 

Aqueous MC colloids with light emission are highly desirable for promoting 

further study of the materials, because photoluminescent techniques have been well 

established and widely used for biomedical investigations.143 However, 

photoluminescent MC colloids, unlike their organic counterparts,144, 145, 146, 147, 148 

cannot be readily achieved using fluorochromes, because most transition metal 

elements are fluorescence (FL) quenchers.149, 150 To address this challenge, it is 

desirable to develop assembling techniques that enable spatial segregation of 

fluorochromes and MC complexes within the colloids.  

We have initiated a study of MC supramolecular chemistry and discovered that 

hydrophobic Fp acyl derivatives, including small and macromolecules,9, 10 are able to 

self-assemble in water, resulting in MCsomes. These colloids show no critical 

aggregation concentration (CAC) and exhibit high structural integration upon dilution. 

Water carbonyl interaction (WCI) is responsible for the colloidal stability.9, 10 For 

example, FpC6 (CpFe(PPh3)(CO)CO(CH2)5CH3)
9 is able to assemble into a liposome-

like bilayer structure with the alkyl chains aggregated within the membrane and the 

iron complexes associated on the surface. On the basis of this knowledge, we intend to 

design MC colloids with a FL readout. A spatial separation of the conjugated group 

from the MC complex can be expected, if the MCsome is assembled from an Fp 
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building block tethered to a conjugated system via an alkyl spacer. This separation 

will eliminate the quenching effect of the Fe elements.149, 150 The crux of the design 

concerns the selection of an appropriate conjugated system. It is well known that the 

association of conjugated systems may result in aggregation-caused quenching (ACQ) 

via π-π interactions.151, 152 In addition, strong π-π interactions, particularly those 

arising from planar polycyclic aromatic hydrocarbon,153 may also disturb the balance 

of the forces responsible for the formation of MCsomes. With this concern in mind, 

bithiophene, a non-planar small conjugated system,154, 155, 156 may minimize the 

possibility of π-π interaction. Although bithiophene groups are non-FL due to the 

intramolecular rotations of the thiophene units, AIE resulting from the restriction of 

intramolecular rotations (RIR), can be expected when the conjugated groups are 

aggregated in an ordered assembled nanostructure.153  

In addition to the targeted FL readout, highly polarized MC groups with 

possibly large refractive index (RI) may endow the MCsome with novel properties 

that liposomes and polymersomes cannot achieve,85, 86, 157, 158 such as aggregation-

enhanced IR absorption (AEIRA) 9, 10 and optical manipulability. Optical trapping of 

nanosized vesicles (e.g. liposome) using focused near-IR laser beams is 

challenging.159, 160, 161 The contribution of the difference in RIs between the lipid 

membrane (RI ~ 1.46) and water (RI = 1.33) to the gradient (trapping) force is 

negligible, because the membrane is too thin.159, 160, 161, 162 Encapsulation of high 

refractive index additives, such as sucrose,43 glucose, and NaCl,162 to enhance the 
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trapping forces has been reported to address this challenge. The MCsome with 

polarizable MC groups may offer a high contrast in RI between the membrane and 

water, which is expected to enhance the trapping force substantially.163 Manipulation 

of the MCsome without additives will, therefore, be possible. This expected advance 

will open up new opportunities to study the stability of the colloids,93 cell membrane-

related biological events164 and their functions in drug delivery.165, 166 

Herein, we report our innovation in the creation of functional MCsomes via the 

synthesis and self-assembly of a bithiophene tethered Fp derivative (FpC3BTh (4.1)). 

The building block is hydrophobic, non-surface-active, but is capable of assembly in 

water via WCI, resulting in a MCsome. The MCsome with a bilayer interdigitated 

membrane, as confirmed by a number of techniques, is highly integrated upon 

dilution. As designed, the MCsome possesses a number of functions, including AIE, 

AEIRA of the CO groups and capability of laser trapping without using additives. 

These novel functions and the unusual solution behaviour of the MCsomes9, 10 

represent a novel group of vesicles and open up a new research topic of MC 

supramolecular materials. 

4.2 Results and discussion 

4.2.1 Synthesis and solution behaviour of FpC3BTh. 

The building block FpC3BTh, as designed, contains an iron carbonyl and a 

bithiophene unit connected via a butanoyl spacer. Figure 4.1a illustrates the synthetic 

approach for the targeted molecule. Detailed synthetic scheme and characterization are 
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described in the Supporting Information for Chapter 4 (Figure S4.1- Figure S4.4). The 

aqueous colloids of FpC3BTh are prepared through a fast injection of water into a 

THF solution of 1 followed by N2 bubbling to remove THF (Figure 4.1b). DLS 

measurement reveals that the hydrodynamic radius (Rh) for the prepared colloids (154 

M) is ca. 85 nm with a narrow polydispersity index (PDI = 0.05).  

 

Figure 4.1 (a) Schematic illustration for the synthesis of FpC3BTh. (b) Aqueous solution of 

FpC3BTh (154 M) prepared using THF as a co-solvent. 

It is necessary to use an organic solvent (e.g. THF) as a co-solvent for the 

preparation, because FpC3BTh is neither soluble nor dispersible in water. This 

hydrophobicity of the building block is supported by the 1H NMR spectrum of 

FpC3BTh in D2O. As shown in Figure 4.2a, no protons corresponding to FpC3BTh 

are detectable; the signal at 4.7 ppm is due to the residual H2O. Figure 4.2b illustrates 

that there is no obvious change in surface tension for the solutions as the concentration 

of FpC3BTh decreases, so FpC3BTh is non-surface-active.  



 

 70 

 

Figure 4.2 (a) 1H NMR spectrum for the colloids of FpC3BTh in D2O (154 M). (b) Surface 

tensions of 1 in water with varied concentrations. (c) DLS count rates of the aqueous colloids 

of FpC3BTh as a function of concentration. (d) Hydrodynamic radii (Rh) and polydispersities 

(PDI) for the aqueous colloids of FpC3BTh with varied concentrations prepared by a 

successive dilution with water. Inset photograph in b is the aqueous solution of FpC3BTh (30 

M). 

DLS count rates of the solutions as a function of concentration show a linear 

relationship (Figure 4.2c), and no CAC can be deduced from the figure. While we 

dilute an aqueous solution of FpC3BTh, there is no change in both Rh and PDI (Figure 

2d). For all measurements, the Rh remains equal to 85 nm with PDIs lower than 0.10 
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(Figure 4.2d). Similar with FpC6,118 these analyses suggest that FpC3BTh cannot be 

classified as a conventional amphiphile.127 The Fp acyl derivatives therefore represent 

a new group of building blocks for the aqueous colloids without CAC.66, 118 This 

feature renders the MC building blocks highly desirable for some applications, such as 

drug delivery, where traditional surfactant micelles encounter difficulties due to the 

disassociation of the micelles at concentrations lower than their CACs.91, 93, 167, 168 

We have reported that WCI is a motif responsible for the aqueous self-

assembly of Fp acyl derivatives that contains acyl and terminal CO groups.66, 118  

Water can readily hydrate the highly polarized acyl CO group, which balances the 

hydrophobic force for the formation of the colloids in THF/water upon aggregation at 

the critical water content.118 The aggregation generates a local electric field, which 

further polarizes the CO groups. Consequently, the strength of the WCI is enhanced, 

resulting in an aggregation-induced hydration (AIH) of the terminal CO groups and an 

aggregation-enhanced hydration (AEH) of the acyl CO groups.118 This knowledge was 

deduced from the IR analysis of the CO groups as a function of water content. A 

similar analysis has been performed for FpC3BTh and the results are illustrated in 

Figure 4.3. As shown in Figure 4.3, a red shift in wavenumber for the IR absorption 

(Δ) of the acyl CO group is observed as soon as water is added to the THF solution 

of FpC3BTh, whereas the IR absorption for the terminal CO group starts to shift only 

when the water content reaches 60 vol%. This comparison indicates that the acyl CO 

is more prone to hydration as expected.118 When the water content reaches 80 vol%, 
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the Δ values (7.0 cm-1) for the terminal and acyl CO groups are the same 

(Figure 4.3), suggesting that both CO groups have the same level of hydration. 

Supporting the previous results for the non-thiophene Fp analogues,118,66 these results 

suggest that WCI between the Fp units and water play a crucial role in driving the 

self-assembly and colloidal stability (Figure S4.5). These findings can serve as a 

model system to understand the biological functions of WCI.118, 10, 169, 170  

 

Figure 4.3 The red shifts (Δ) in wavenumber for the IR absorption of the terminal and acyl 

carbonyl groups from 1 in THF/D2O solutions as a function of D2O content. 

4.2.2 Nanostructure of the MCsome  

The radius of gyration (Rg) for the colloids of FpC3BTh is 83.6 nm, as 

measured using static light scattering (SLS) technique (Figure S4.6); while Rh, for the 

same sample obtained from DLS, is 87.1 nm. The shape factor (Rg/Rh) is, therefore, 

deduced to be ca. 0.96, supporting the conclusion that the molecule FpC3BTh self-

assembles into a vesicles in water.171 Conventional transmission electron microscopy 
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(TEM) technique has been attempted to image the colloid and a representative TEM 

image is shown in Figure 4.4a, from which lamellae are observed. The observed 

morphology may result from the breakage of vesicles. Atomic force microscope 

(AFM) was subsequently used to verify this conclusion. The AFM specimen was 

prepared via drying a few drops of the solution on a mica substrate. As shown in 

Figure 4.4b, lamellae were observed, which was consistent with the TEM analysis 

(Figure 4.4a). The section analysis reveals that the lamellae have an average vertical 

height of 3.72 ± 0.20 nm (Figure 4.4b and Figure S4.8), which represents the 

membrane thickness of the broken vesicle. Cryo-TEM confirms that the colloid is 

spherical (Figure 4.4c). The enlarged image (inset in Figure 4.4c) shows a dark 

periphery with a width of ca. 3.2 ± 0.7 nm. On the basis of the microscopy 

experiments, a bilayer membrane structure can be proposed because the fully extended 

length for FpC3BTh is ca. 1.9 nm (Figure 4.5a). To confirm the bilayer structure and 

the wall thickness of the MCsome, small-angle X-ray scattering (SAXS) using 

synchrotron radiation was performed.172, 173 As shown in Figure 4.4d, although the 

signal intensity is low due to the low concentration of the sample (15.4 M), a weak 

hump at q = 0.26 (Å-1) is observed, corresponding to a domain spacing of 2.4 nm 

between the iron elements on the two sides of the membrane. The distance from the 

iron centre to the end of the bithiophene is ca. 14.25 Å (Figure 4.5a and Figure S4.9a); 

therefore, the bilayer with iron-to-iron distance of 2.4 nm suggests that the thiophene 

units are interdigitated, as illustrated in Figure 4.5b.  
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Figure 4.4 (a) TEM image, (b) AFM image with vertical section analysis and (c) cryo-TEM 

images for the colloids of FpC3BTh. (d) SAXS profile for the aqueous colloids of FpC3BTh 

(15.4 M). 
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Figure 4.5 (a) Gaussian simulation results for molecular geometry of FpC3BTh. (b) Proposed 

interdigitated model for the bilayer membrane structure for the MCsome FpC3BTh. 

 

The zeta potential (ζ) for the MCsome as measured is -55.5 mV, suggesting 

that the highly polarized CO ligands are packed on the surface of the vesicle and 

interacted with water via WCIs.9, 10 CV experiments support this membrane structure 

with a MC surface. Figure 4.6 illustrates the CV curves for the solutions of FpC3BTh 

in DMF/water with varied water contents. In pure DMF solution, FpC3BTh is soluble 

and redox active due to the presence of Fe elements. Its CV curve reveals one 

oxidation peak at 0.61 V and one reduction peak 0.51 V (a in Figure 4.6). After water 
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is added, two oxidation peaks separated by a redox coupling (∆E½) appears (b and c in 

Figure 4.6), suggesting that iron centers are associated closely to each other103, 104, 105, 

118 and accessible to the electrodes. This behaviour is similar to that observed for non-

thiophene analogue FpC6.118  

 

Figure 4.6 Cyclic voltammetry (CV) analyses, relative to Ag electrode, for the solutions of 

FpC3BTh in DMF/water with different water contents. 

4.2.3 Aggregation induced emission (AIE) of the MCsome  

The association of the bithiophene moieties within the inner walls of the bilayer 

vesicles restricts the intramolecular rotation of the thiophene units and, therefore, AIE 

is expected.174, 175 As shown in Figure 4.7a, the MCsome in water emits blue FL when 

exposed to a UV light; whereas the molecule of FpC3BTh in THF does not emit light. 

The solid sample of FpC3BTh dried from the aqueous solution Figure 4.7b) also has 

no photoluminescence (Figure 4.7c). This comparison indicates that the bilayer 

assembly of FpC3BTh is crucial for the observed AIE (Figure 4.5b). The butanoyl 

spacer separates the conjugated system from the iron elements, which prevents the 

quenching of the emission.149, 150 The solution emitted the strongest FL emission when 



 

 77 

excited by the light with a wavelength of 360 nm (λex = 360 nm). The intensity for the 

FL emission is decreased when ex  is lower or higher than 360 nm (Figure S4.10), but 

there is no obvious shift in the maximum emission wavelength  (454 ± 2 nm) with λex 

= 310-360 nm (Figure S4.10a). However, higher excitation wavelength generates 

multible emission peaks (Figure S4.10b). All the following experiments used an 

excitation waavelength λex = 350 nm. 

 

Figure 4.7 (a) Fluorescence emission spectra for the solutions of FpC3BTh (154 M) in THF 

and water. Photographs for the water solution of FpC3BTh (b) before and (c) after drying. (d) 

Fluorescence emission spectra for the solutions diluted from FpC3BTh in THF (154 µM) by 

the addition of varied amounts of water. The photographs, including insets for (a), (b), (c) 

and (d), are taken when the samples are irradiated by a UV lamp (ex = 350 nm). 
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 FL spectra and photographs of the solutions in THF/water with varied amount 

of water, are illustrated in Figure 4.7d. As shown in Figure 4.7d, one may notice that 

the emission appears even for the solution containing a small amount of water (9 

vol%). Without aggregation at this low water content (9 vol%), AIE might not be the 

reason for the emission. We, therefore, performed DLS experiments for a series of 

THF/water solutions with water contents varying from 0 to 100 vol%.   

Figure 4.8a displays the light scattering count rate as a function of water 

content; the corresponding hydrodynamic radii (Rh) and FL emission intensities of the 

solutions are plotted in Figure 4.8b. As depicted in Figure 4.8a, a steep enhancement 

in count rate occurs at a water content of 60 vol%. However, the count rate starts to 

increase and micron-size aggregates are formed (Figure 4.8b) when the water content 

is only 9 vol%. Therefore, the emission at the low water content (9 vol%) can be 

attributed to the aggregation as well (Figure 4.7b). The aggregates gradually shrink 

from micron-size to 450, 190, and 85 nm, as the water content increases to 30, 60 and 

100 vol%, respectively (Figure 4.8b). The RIR of the bithiophene groups is enhanced 

following this shrinkage, resulting in an enhancement in FL intensity as shown in 

Figure 4.8b. Meanwhile, there is no strong - interactions between the bithiophene 

groups, because no obvious red shifts in wavelength are observed for both emission 

and absorption spectra of FpC3BTh in THF/water with water contents less than 80% 

(Figure 4.7b and Figure S4.11). A slight red shift in the maximum absorption 

wavelength is observed from the UV-vis spectrum when the water content reaches 80 
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vol%, suggesting that the π- interaction starts to form at a higher water content 

(Figure S4.11).  However, this tendency is competed and supressed by the steric 

hindrance of the bulky MC groups (Figure 4.5),153, 176, 177, 178 which minimizes the 

ACQ and RIR remains to be a major factor influencing the emission. Besides, the 

curvature of the vesicular bilayer may also reduce the possibility of a face-to-face 

packing of the bithiophene units and consequently prevents a strong ACQ.151, 152, 179 

Therefore, the AIE is obviously observed even in pure water (Figure 7a). The quantum 

yield (QY) for the aqueous colloid of FpC3BTh, as compared with 1, 4-bis(5-

phenyloxazol-2-yl) benzene (POPOP) in cyclohexane,180 is ca. 7.27 (see section S4.2 

in the Supporting Information).  

 

Figure 4.8 (a) DLS count rates, (b) Rh and FL fluorescence intensities for THF/water 

solutions of FpC3BTh as a function of water content.  

 

The MCsome was able to emit light even when the solution was diluted to 4.8 

µM (Figure 4.9a and Figure S4.12). These results agree with the DLS results 
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(Figure 4.2d) and suggest that the MCsome of FpC3BTh possesses high integrated 

structure and colloidal stability upon dilution. Furthermore, this AIE is also 

temperature sensitive. As shown in Figure 4.9b, the FL intensity deceases when the 

solution is heated. After cooling back to 25 oC, the original FL intensity is recovered. 

DLS analysis indicates that the diameter of the aggregates increases by 20 nm upon 

heating from 25 oC to 94 oC. Therefore, the reversible AIE can be explained by the 

variation of RIR resulted from the temperature-stimulated swellability of the 

MCsome.181, 182 The uniform and high integrated MCsomes with temperature-sensitive 

photoluminescence are therefore potentially useful as drug delivery systems183, 184 

sensors and bioimaging probes.185, 186 

 

Figure 4.9 (a) FL emission spectra for the aqueous MCsome prepared by successive dilution 

of an aqueous colloid of FpC3BTh (154 mM). (b) FL emission spectra of the aqueous 

colloids of FpC3BTh (154 mM) measured at different temperatures (ex = 350 nm). 
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Similar to the THF/water solutions, the AIE phenomenum is also observed for 

the solutions of the MCsomes in dimethyl sulfoxide (DMSO)/water and acetonitrile 

(CH3CN)/water (Figure S4.13). Meanwhile, by varying the pH of the solution from 3 

to 10, there is no obvious change in the emission profile in terms of intensity and 

emission wavelength (Figure S4.14), so the MCsomes are potentially useful for 

biological applications. 

4.2.4 AEIRA and laser manipulability of the MCsome  

The high polarized MC surface of the MCsome endows the colloid with novel 

properties. It is well studied that the polarized nanoparticles, via interaction with 

incident light, are able to generate a strong local electromagnetic field applicable for 

SEIRA.114, 115 Figure 4.10 displays the IR absorptions of the terminal CO group for the 

MCsome solutions in THF/water as a function of water content. As shown in 

Figure 4.10, although the concentration of FpC3BTh (154 M) for all the solutions are 

the same, the IR absorption for the solution with 60 vol% of water is ca. 100 times 

stronger than those for the systems with lower water contents. This AEIRA is also 

observed for the MCsome assembled from other MC building blocks,66, 118 supporting 

that this feature results from the MC groups. 100-fold enhancement in IR absorption 

has also been reported for the anthracene adsorbed on the surface of silicon carbide 

particles,100 and is explained due to the phonon resonance effect caused by the 

dielectric surface.100 Phonon resonance is analogous to the plasmon resonance of the 

coinage metal substrates, a basis for surface-enhanced Raman scattering (SERS)132 
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and SEIRA.109, 110 It is, therefore, reasonable to think that the surface of the MCsome 

with tightly associated polarizable MC groups, behaves like dielectric substrates, 

responsible for the observed AEIRA. MCsomes possess a surface with polarized CO 

groups, which induce a local electric field with zetal potential of -55.5 mV. Upon 

irradiation of IR,  the local electric field interacts with the electromagnatic field of the 

illuminated light and become stronger than that for incident light. This stronger 

electric field enhances the absorption intensity of the CO groups located at the surface 

of the MCsomes.100, 114, 118 This enhancement is desirable and potential useful for 

bioassay and cell imaging.42  

 

 

Figure 4.10 Partial ATR-FTIR spectra (terminal CO) for FpC3BTh in THF/water solutions 

with varied water contents. 

The advent of the MCsome offers opportunities to address a challenge in 

vesicle studies using focused near-infrared (NIR) laser beams.  It has been proposed 

that cell membranes can be studied via laser trapping of liposomes as model 
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systems.187, 188, 189 However, despite several attempts, 46, 190 laser manipulation of 

nanosized liposomes with thin membranes remains challenging, due to the weak 

trapping force (see Section S4.1 in the Supporting Information).159, 160, 161 Although 

the RI of the lipids (1.46) is different with that of water (1.33), the contribution of this 

marginal difference to the trapping forces is found to be negligible.163, 191 The 

MCsome assembled from a highly polarizable MC building block may resolve this 

problem. Although the membrane for the MCsome is only ca. 3.7 nm thick, the RI for 

the building block (1.71 at  = 633 nm) (Figure S4.15) is significantly higher than the 

RI of lipids (1.46) and water (1.33). The high contrast in RI between the membrane 

and water may result in a trapping force strong enough to trap the MCsome without 

using additives.163, 192 Therefore, we performed the laser trapping experiments 

(Figure 4.11a). As shown in Figure 4.11b, the aggregation of the vesicles appears at 

the focal point after the solution of MCsome (77 µM) is irradiated with a focused 

continuous-wave near-IR (NIR) laser beam for 1 second. More MCsomes are attracted 

to the focal point by prolonging the irradiation time. The images taken at 3 and 6 

seconds indicate that the aggregates become larger with improved contrast 

(Figure 4.11b). After irradiation for 6 seconds, the size of the aggregate remains 

constant, suggesting that the focal volume is fully occupied by the MCsomes and the 

laser trapping reaches the equilibrium state.  
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Figure 4.11 (a) Experimental set-up for laser-trapping experiment. (b) The charge-coupled 

device (CCD) transmission images of the trapped MCsome recorded at 1, 3 and 6 seconds. 

(c) CCD transmission images, taken at the equilibrium states, for samples diluted from the 

MCsome solution (77 µM) by 4, 8, 16 and 32 folds. The image size is 48 μm in width and 36 

μm in height. 
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The aqueous solution of the FpC3BTh (77 µM) was subsequently diluted by 4, 

8, 16, and 32 times for further experiments. The laser trapping reached equilibrium 

states after the solutions were irradiated for ca. 20, 35, 60, and 90 seconds, 

respectively (Figure 4.11c). As shown in Figure 4.11c, the MCsome, due to its high 

integration upon dilution, are trapped even for the sample with a concentration of 2.3 

µM. It is also found that the gathered MCsomes can be moved arbitrarily following 

the beam and released upon turning off the trapping laser, which verify the success of 

the trapping experiments. Thus, the MCsome shows a good laser manipulability 

without additives that is difficult to be achieved for liposomes.159, 160, 161  

4.3 Conclusions 

Bithiophene-tethered Fp acyl derivative (FpC3BTh) is hydrophobic and non-

surface-active, but is able to self-assemble in water into a metal carbonyl vesicle 

(MCsome). The MCsome is colloidally stabilized by WCI and highly integrated upon 

dilution. The bilayer membrane structure of the MCsome is confirmed by TEM, AFM, 

CV and SAXS experiments. The bithiophene component are aggregated within the 

inner wall of the interdigitated membrane and spatially separated from the MC groups 

associated on the surface of the MCsome, resulting in AIE. The aggregation of the 

polarizable MC component with a high refractive index endows the particles with 

novel functions, such as AEIRA and laser manipulability without using additives. The 

solution behaviour and the properties of the MCsome are unique and desirable as a 

new group of vesicular materials, complementary to the extensively studied 
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liposomes193, 194, 195 and polymersomes85, 86, 157, 158 for potential applications including 

nanoreactor,10, 196, 197, 198 sensors199, 200 and drug delivery systems.11, 12, 201, 202 

 

4.4 Experimental section 

4.4.1 Materials and Instrumentation 

Potassium (99.5%, rods in mineral oil) and sodium (99.9%, cubes in mineral 

oil), cyclopentadienyl iron (II) dicarbonyl dimer (99%), 2, 2’-bithiphene (97%), 

benzophenone (99%) and 1-bromo-3-chloropropane (> 98.0%) were purchased from 

Sigma-Aldrich and used as received. Triphenylphosphine (98%) was purchased from 

Tokyo Chemical Industry (TCI) and used as received. Tetrahydrofuran (THF) was 

distilled over sodium/benzophenone before use. All other solvents were obtained from 

local commercial providers and used as received.   

Dynamic light scattering (DLS) analyses were performed using Zetasizer Nano 

Series (Nano-S90, Malvern Instruments) with laser wavelength of 633 nm at a fixed 

angle of 90o. For THF/water solutions with varied water contents, the samples are 

prepared by successive additions of water to a THF solution of FpC3BTh (154 µM). 

The broadness of the size distribution (Polydispersity index (PDI)), in DLS results is 

calculated by the cumulants analysis from the ratio between the normalized variance 

of rate decay and the square value of the mean decay rate.Multi-angle SLS 

measurements were carried out using Brookhaven Laser Light Scattering System with 

a BI-200 SM goniometer. A vertically polarized helium−neon diode laser with 
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wavelength of 636 nm was used as the light source. Measurements were taken at 

scattering angles (θ) between 50° and 130° with 10° intervals. Toluene was used as the 

reference for the Rayleigh ratio. Zeta potential (ζ) measurements were performed at 25 

oC on a Malvern Zetasizer nano ZS instrument using disposable folded capillary cells. 

Surface tension of pure water and the aqueous colloids of FpC3BTh with different 

concentrations were measured at 24 oC using a tensiometer Data Physics DCAT 21 

system. Cyclic voltammetry (CV) experiments for solutions of 1 (154 µM) in 

water/DMF were performed at room temperature using DY2000 Multi-Channel 

Potentiostat (Digi-Ivy Inc.) workstation with a scan rate of 50 mV/sec and silver wire 

as a reference electrode. A water solution of KCl (2 mg/mL) and a DMF solution of 

tetrabutylammonium perchlorate (TBAP) (2 mg/mL) were prepared. FpC3BTh was 

then dissolved in the DMF solution and the water solution was subsequently added to 

prepare the solutions of 1 in the water/DMF mixture.  

1H and 31P nuclear magnetic resonance (NMR) spectra were recorded on 

Bruker-300 (300 MHz) spectrometer at room temperature. 1H NMR chemical shifts 

were reported relative to residual CDCl3 signal and 31P NMR resonances were 

referenced to an external standard sample of 85% H3PO4 ( = 0.0). Attenuated total 

reflection-Fourier transform infrared (ATR-FTIR) spectra for the solid sample of 

FpC3BTh were recorded on a Bruker Tensor 27 spectrophotometer with a resolution 

of 1 cm-1. Pellets of the solid samples of FpC3BTh were prepared by grinding and 

compressing of FpC3BTh (2% by weight) in anhydrous KBr using Nujol mulls. ATR-

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
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FTIR spectra of FpC3BTh in THF/water solutions were recorded on the same 

instrument using a germanium crystal Pike MIRacleTM ATR Attachment using Pike 

Technologies. A drop of the solution was placed on the germanium crystal.  IR 

absorption of the solutions of FpC3BTh in THF was measured first. Afterward, water 

was successively added to the THF solution and IR spectra were recorded at different 

water contents.   

Conventional transmission electron microscopy (TEM) images were recorded 

on a low voltage (5 kV) LVEM5 electron microscope (Delong Instruments). TEM 

samples were prepared by dropping the solution onto a carbon-coated copper grid 

(Cu-300CN, Pacific rid Tech) and the grid was then left to dry at ambient temperature. 

Cryo-TEM images were obtained using a high voltage (200 kV) field emission FEI 

Tecnai G2 F20 Cryo-TEM microscope. The cryo-TEM samples were prepared by 

placing 5.0 µL aqueous solution of 1 (154 µM) onto a glow discharged copper grid 

with holey carbon film (Quantifoil Multi A) and thinned by blotting with a filter 

paper. The grid was then quickly plunged into a liquid ethane bath and transferred 

under liquid nitrogen to a Gatan 914 cryo-holder and viewed at -179 oC. Atomic force 

microscope (AFM) experiments were conducted on a Nanoscope MultiModeTM AFM 

microscope using a Conical AFM tip with a spring constant of 40 N/m, resonance 

frequency of 300 KHz and tip radius of 8 nm. The sample was prepared by 

transferring 2 drops of the aqueous colloids of FpC3BTh on freshly cleaved mica 

substrate.  
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Steady-state fluorescence emission spectra were recorded using a Cary Eclipse 

Fluorometer. A conventional quartz cell with light path of 1 cm was used for the 

solution samples. The solutions were excited at 350 nm. UV−vis absorption spectra 

were recorded on a Varian (Carey 100 Bio) UV−vis spectrophotometer using a quartz 

cuvette with a path length of 1 cm. Refractive index was executed using a J.A. 

Woollam Co. VASE® ellipsometer. The data was acquired at angles of incidence of 

(55o, 60o, 65o, 70o, 75o) with spectral range from 1700 to 400 nm. The measurement 

was performed for a thin film prepared by spin-coating of 5 w% solution of FpC3BTh 

in toluene on a silicon waver (Figure S4.15).   

The SAXS data was acquired at Beamline 23A1 in the National Synchrotron 

Radiation Research Center (NSRRC), Taiwan. The energy of the X-ray source and the 

sample-to-detector distance were 15 keV and 2977.4 mm. The aqueous solution of 

FpC3BTh (15.4 M) was introduced into a sample cell consisting of two Kapton 

windows. To collect the scattering signals, a two-dimensional MarCCD detector with 

512 x 512 pixels resolution was used. The SAXS profile was corrected for the empty 

cell beam scattering, sample transmission, and detector sensitivity. The domain 

spacing (d) was calculated by d = 2π/qm (qm: the position of the primary scattering 

peak). The q range of the small-angle X-ray scattering (SAXS) measurement is 

between 0.008 to 0.40 Å-1 (d = 78.5 - 1.6 nm). Since the Rh of the colloids of 

FpC3BTh (87.1 nm) is above the detection upper limit, the SAXS data was used to 

estimate the wall thickness of the MCsome. Quantum-chemical calculations were 
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performed with the Gaussian09 suite employing the DFT calculations (B3LYP/6-

311G). Geometry optimizations were performed with tight SCF and convergence 

criteria. 

For laser trapping experiments, a small amount of the sample solution was put 

onto a glass substrate (Matsunami, micro cover glass, thickness; 0.12–0.17 mm) 

placed on the stage of an inverted microscope (Olympus, IX71). A 1064-nm 

continuous-wave near-infrared laser beam (Spectra Physics, J20I-BL-106C, λ = 1064 

nm) was used as the trapping light source and was focused at a position of a few tens 

of micrometers above the glass through an objective lens (100 magnification, NA = 

1.4, oil immersion). The laser power was fixed to 300 mW after the objective lens by 

adjusting a half-wave plate placed in front of a polarizing beam splitter. The trapping 

behaviour was observed with a charge-coupled device (CCD) camera (WATEC, 

WAT-231S2) under halogen-lamp illumination. Laser trapping theory is described in 

Chapter S4 in Supporting Information. 

4.4.2 Synthesis of FpC3BTh (4.1) 

5-[3-chloropropyl]-2,2'-bithiophene (4.3) was prepared as follow. n-butyl 

lithium (n-BuLi) (5.41 mmol) was added dropwise to a solution of 2, 2’-bithiophene 

(1 g, 6.01 mmol) in THF (100 mL) at -78℃ under an atmosphere of dry nitrogen. 

After stirring for 0.5 hr at -78 ℃, 1-bromo-3-chloropropane (595 μL, 6.01 mmol) was 

slowly added. The reaction mixture was then warmed gradually to room temperature 

and stirred overnight. The solvent was removed by rotary evaporation and the residue 
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was subsequently purified using column chromatography on silica gel with hexane as 

the eluent (yield 0.684 g, 47%). 1H NMR (CDCl3, 25 oC, 300 MHz)  (ppm): 2.14 (q, 

2H; middle -CH2-), 2.98 (t, 2H; BTh-CH2-), 3.59 (t, 2H; -CH2-Cl), 6.73 (d, 1H; BTh), 

7.00 (m, 2H; BTh), 7.11 (d, 1H; BTh), 7.17 (d, 1H; BTh). Detailed synthesis scheme 

is illustrated in Figure S4.1 and the 1H NMR spectrum of 4.3 is shown in Figure S4.2 

in SI.  

The purified molecule 4.3 (0.684 g, 2.82 mmol) was then added to a solution of 

Fp anion (0.67 g, 3.10 mmol) in THF (50 mL) at 0 ⁰C under vigorous stirring (Figure 

S4.1). The mixture was stirred at room temperature (23oC) for 1 hour. 

Triphenylphosphine (0.81 g, 3.10 mmol) was then added to the mixture and 

subsequently was refluxed at 70 ⁰C for 72 hours. Afterward, the solution was cooled to 

room temperature and THF was removed under vacuum. The resulting gold-brownish 

solid was chromatographed using a silica column with hexane/DCM (2/1 v/v) as the 

eluent. The solvents were removed using rotary evaporation resulting in a brownish 

foam-like product of FpC3BTh (yield 1.45 g, 79 %). 1H NMR (CDCl3, 25 oC, 300 

MHz)  (ppm): 1.35 (m, 2H; middle -CH2- from the spacer), 2.41 (t, 2H; BTh-CH2-), 

2.67 (m, 1H; -CO-CH2-),  2.90 (m, 1H; -CO-CH2-),  4.41 (s, 5H; Cp ring), 6.57 (d, 

1H; BTh), 6.9-7.0 (m, 2H; BTh), 7.07 (d, 1H; BTh), 7.14 (d, 1H; BTh) 7.37 (s, 9H; o- 

and p-Ph), 7.49 (t, 6H; m-Ph). 31P NMR (CDCl3, 25 oC, 300 MHz)  (ppm):  77.4. FT-

IR (KBr pellet, 25 oC): 1600 cm-1 (acyl C=O), 1905 cm-1 (terminal CO). The 1H, 31P 
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NMR and FT-IR spectra of FpC3BTh are shown in Figure S4.3 and Figure S4.4 in 

Supporting Information. 

4.4.3 Self-assembly of FpC3BTh 

The aqueous colloids of FpC3BTh (154 µM) were prepared by fast addition of 

10.0 mL distilled deionized water to 1.0 mL THF solution of FpC3BTh (1.0 mg/mL, 

1.54 mM)) under stirring. THF was then removed through nitrogen bubbling for 90 

minutes. A same experiment was performed in D2O and examined using 1H NMR, 

which suggested THF is completely removed.  
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Chapter 5 

Colloidal Structure-Related Hydrophobic Hydration for the Stability 

of the Aqueous Assemblies of Hydrophobic Fp Derivatives 

5.1 Introduction 

The hydration of  hydrophobic biomolecules is important for biological activity.2, 203 

For example, before reaching the critical level of hydration, proteins lack biological 

activity.203 In addition to the hydrophobic interaction between hydrophobic side chains,59, 204, 

205 protein conformation and dynamics are driven and controlled by the surrounding water 

network.206, 207 The stability of proteins in water is structurally related to the hydrophobic 

hydration of the core and surface.208, 209, 210, 211 For example, water molecules buried in folded 

three-dimensional proteins play a crucial role in maintaining the protein stability by bridging 

the folded chains via hydrogen bonding.210, 211  

 Studies have extensively investigated the hydrophobic interaction and hydration of 

surfactants using calorimetric, spectroscopic and computational techniques.70, 71, 212 Similar to 

proteins, the hydrophobic interaction and hydration are responsible for the solubilization and 

aggregation of surfactant hydrophobic tails.70,72 Various techniques, including NMR,213 

neutron scattering,78 and molecular dynamics (MD) simulations,77, 78  have been used to 

investigate  the aggregation of the hydrophobic tails. The association of hydrophobic tails is 

generally considered to generate a central dry hydrophobic core with a smooth spherical 

surface.79, 80 However, the structure of micellar cores remains a matter for exploration.74  
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Based on the Menger model for the micellar surface, in addition to the 

hydration water at the micelle surface, a network of water molecules penetrates deeply 

into the hydrophobic core.81, 82, 214 This model was recently supported by Ben-Amotz 

et al. using Raman spectroscopy analyses of aqueous solutions of surfactants with 

various chain lengths.74 Based on their investigation, water molecules are wedged into 

hydrated cavities, penetrating deeply into the core.74 However, systematic studies on 

the correlation of surface structure with colloidal stability are not well established yet.  

As known from our previous studies on FpC6 and other analogues,66, 118, 119, 215 the 

acyl CO group is highly polarized and its interaction with water occurs right after the 

addition of water to the THF solution of FpC6. Although these molecules are hydrophobic 

and not surface active, the water carbonyl interactions (WCI) provides solubilization of these 

molecules.95, 118, 216 The aggregation starts at a critical water content (CWC).118 For example, 

FpC6 molecules start to assemble at a CWC of ca. 60 vol% into vesicles driven by the 

hydrophobic association of the alkyl tails.72, 118 The aggregation of the polar acyl CO groups, 

at the colloid surface, generates a local electric field, which is supported by the observation 

of aggregation-induced enhancement in the IR absorption of the CO groups.66, 118, 119, 215 The 

local electric field further polarizes the CO groups, thus initiating hydration of the terminal 

CO groups and enhancing hydration of the acyl CO groups, as verified by the attenuated total 

reflectance-Fourier transform infrared (ATR-FTIR) analysis.66, 118 The association of the CO 

groups at the colloid surface provided a negative surface charge and strong WCI, which 

therefore contributed in the colloidal stability. The electrochemical study of the FpC6 
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molecule in water/DMF solutions, with varied water contents, revealed that the association of 

the iron metals, upon aggregation, provides cyclic voltammetry (CV) curves with two 

oxidation peaks separated by a redox coupling (ΔE½).118  It is reported that CV experiments 

for polyferrocenyls also revealed two oxidation peaks, separated by ΔE½, which is inversely 

proportional to the distance between the adjacent ferrocenyl units along the polymer 

chain.104, 105 Taking the advantage of the redox properties of the Fp head at the micelle 

surface, in this chapter, we systematically studied the surface and core structure of the 

aqueous assembles of Fp-derivatives and correlated the surface structure with the stability of 

colloids.15, 17, 28  

   Herein, we report an experimental study of the aggregation process of Fp-

derivatives with various alkyl chain lengths and correlate their colloidal stability with the 

surface and core structures. We monitored colloidal stability over time using dynamic light 

scattering (DLS) measurements. The results revealed that the colloidal stability increases as 

the alkyl chain length increases. The trend in the stability was then investigated, based on the 

contribution of CO groups, alkyl chain length, and the colloidal morphology using CV, ATR-

FTIR, and static and dynamic light scattering (SLS/DLD) measurements. The contribution of 

CO groups was first investigated and showed similar contribution for all the molecules 

regardless of the of alkyl chain length. The effect of the alkyl chain length was then 

investigated based on CV and ATR-FTIR experiments. Longer alkyl tails provided more 

intermolecular hydrophobic interaction, however, remained more hydrated, and exposed to 
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the water. Colloidal size and morphology were then studied and correlated with the trend in 

stability.   

5.2 Results and Discussions 

5.2.1 Synthesis and aqueous self-assembly 

FpCn acyl derivatives 5.1-5.7 (FpCn; n: number of carbons in the alkyl chain) were 

synthesized via the migration insertion reaction (MIR) of Fp alkyl derivatives in the presence 

of triphenyl phosphine (PPh3) (Figure 5.1).47, 118 The molecules have been well characterized 

using 31P NMR, 1H NMR, and FT-IR spectroscopies (see Supporting Information for Chapter 

5). Synthesis and characterization were performed similar to that reported for FpC6 in the 

Experimental Section in Chapter 2. 

 

Figure 5.1 Synthesis and chemical structures of the Fp-derivatives 5.1 – 5.7  

 

All of the molecules 5.1-5.7 are hydrophobic and have no surface activity as proved 

by surface tension measurements.26, 27, 28 Based on our previous studies, FpC6 was able to 
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assemble into vesicles in water and the water-carbonyl interaction (WCI) was identified as 

one of the forces accounting for the stability of the colloids. To explore the collective forces 

that drive the assembly and stabilization of the colloids, the aqueous solutions for FpCn with 

various alky chain lengths were prepared. The resultant solution of 5.1 (FpC1) was cloudy 

and had a Dh of ca. 270 nm with PDI of 0.80, as characterized by dynamic light scattering 

(DLS). Precipitates were observed a few hours after the preparation (Figure S5.6); while 

solutions for other molecules, with longer alkyl tail, scattered light suggesting that the 

colloids were formed (Figure S5.6). The critical water contents (CWCs) for all FpCn 

including FpC1 in THF/water mixture were similar (ca. 60 ± 5 vol%) and irrelevant of the 

length of alkyl chain. The alkyl fragments, as we tested for alkyl chains without Fp head, 

started to phase separation in THF/water at water content of ca. 20 ± 5 vol%. The Fp acyl 

head, due to the hydration of the acyl CO group,95, 118, 216 is therefore responsible for the 

solubility of FpCn in the system with a higher water content. It was interesting to notice that 

the aggregates, formed from more hydrophobic FpCn, with longer alkyl tails (n = 5 - 18), 

form more stable colloids than those assembled from FpC1 (Figure 5.2 and Figure S5.6). 

This is an opportunity to explore the effect of the hydrophobic hydration on the colloidal 

stability. 

To evaluate the relative stability of the colloids, the hydrodynamic diameter (Dh) of 

the FpCn colloids as a function of aging time was monitored using DLS.  As shown in 

Figure 5.2, the FpCn (n = 5, 6, 8, 10) colloids grow in size over time and eventually 

precipitate. The precipitates are observed at the 2nd, 7th, 15th and 30th day, after the 



 

 98 

preparation of FpC5, FpC6, FpC8 and FpC10 aqueous solutions, respectively (arrows in 

Figure 5.2). It is clear that the aggregates assembled from the molecules with longer alkyl 

tails are actually more stable. This claim is further supported by the solution behaviour of 

FpC14 and FpC18. These two colloids in water are extremely stable and no precipitation is 

observed even after 3 months. This stability as a function of the length of the hydrophobic 

alkyl tail contradicts the commonly accepted concept of the hydrophobic hydration.71, 72, 73 

The longer alkyl chain length is supposed to be more hydrophobic and consume more 

unfavorable hydration energy, which should promotes the hydrophobic interaction and phase 

separation and therefore  resulting in a lower stability.17, 74, 217 Our unusual experimental 

results may result from the assembled structure-correlated hydrophobic hydration as often 

found in protein systems.208, 209, 210, 211  

 

Figure 5.2 DLS results of aqueous solutions (0.1 M) of Fp-derivatives with different alkyl 

chain length as a function of aging time. The inset arrows and data labels depict the time 

where colloids starts to precipitate. 
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The WCIs of the CO groups contribute to the stability, as we have reported before 

in Chapter 2.95, 118, 216 The strength of the WCI was evaluated using FTIR analysis for the 

aggregates in THF/water (66 vol%). FTIR stretching frequencies for both acyl and terminal 

CO groups are similar for all solutions (Figure S5.7), suggesting that the WCI is similar for 

all colloids and the contribution of the hydration of CO groups to the stability is similar 

regardless of the alkyl chain lengths. Therefore, we focus our attention on the effect of the 

hydrophobic alkyl chains. 

5.2.2 Alkyl chain length and stability 

Recently, Ben-Amotz  studied the micellar core structure of micelles, prepared from 

surfactants with various alkyl chain lengths, using Raman spectroscopy with multivariate 

curve resolution experiments,74 which indicated that the micellar core formed from the 

hydrophobic alkyl chains in the surfactants, was highly hydrated. Therefore, hydration 

cavities penetrated deeply into the cores. For the FpCn colloids with the Fp acyl heads 

exposed to water, the redox activity of the iron elements can be used to probe the hydration 

cavity in the hydrophobic core. FpCn molecules in DMF show a reversible redox cycle due 

to the iron element. Upon the aggregation, the redox cycle becomes irreversible probably due 

to the adsorption of the colloids on the electrode. Nevertheless, two oxidation potentials 

separated by a redox coupling (ΔE½) are observed (Figure 5.3). Using the knowledge 

previously reported for polyferrocenyls,104, 105 this ΔE½ value is inversely proportional to the 

distance between the adjacent Fp acyl heads (Ls).104, 105 Thus, this Ls represents the size of 

the hydrated cavity (Figure 5.3). 
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Figure 5.3 Representative cartoon illustration and CV results for Fp-derivatives in DMF 

solution (before aggregation) and in DMF/water solutions (after aggregation). 

 

Figure 5.4 displays the ΔE½ values for the FpCn aggregates with various length of 

alkyl tails in water/DMF (60 vol% of water). As shown in Figure 5.4, following the increase 

in the length of the alkyl chain, ΔE½ decreases. This result suggest that the FpCn molecules 

with longer alkyl tails assemble into colloids with larger Ls and thus larger hydration 

cavities, which is in line with what has been reported by Ben-Amotz.74 The larger cavity size 

allows for a deeper penetration of water into the hydrophobic domain, which favours the 

formation of a water network to suspend the particles and compensate the energy required for 

the hydrophobic hydration. This could explains why FpCn molecules with longer 

hydrophobic tails form more stable colloids. 
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Figure 5.4 Redox coupling (ΔE½), revealed from CV measurements, as a function of alkyl 

chain length of Fp-derivatives 5.2-5.7 in DMF/water solution (60 vol% of water). Error bars 

represent standard deviation calculated from five repeated experiments. 

 

The formation of the hydration cavity is further supported by FTIR experiments. 

Figure 5.5 illustrates the IR spectra of FpC18 molecules in THF and their aggregates in 

THF/D2O solutions. As shown in Figure 5.5, the absorption at 2978 cm-1 is due to 

asymmetric stretching of the terminal CH3, while the peak at 2867 cm-1 is assigned to the 

symmetric stretching of CH2.
217, 218, 219 The asymmetry stretching of the CH2 shows a weak 

absorption at 2923 cm-1,217, 220 suggesting that the alkyl chains are conformational 

disordered.221 This is reasonable because the molecule is well dissolved in THF. However, 

upon the aggregation of FpC18 in THF/D2O solution, an absorption peak at 2923 cm-1 
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appears resulting from a higher trans/gauche bond ratio in the alkyl chain.221 This is an 

indication that the alkyl chains are extended, which contributes to the formation the hydration 

cavity with a water-accessible “wedge” deep into the central hydrophobic core. Figure 5.5 

also shows that the absorption peak at 2867 cm-1 is shifted to 2860 cm-1 when FpC18 

molecules associated in THF/D2O solution. This shift to lower frequency is caused by the 

packing of alkyl chains due to hydrophobic interaction.217, 222, 223, 224 This result suggests that 

both hydrophobic hydration and hydrophobic interactions occur for the octadecyl chain.  

 

Figure 5.5 ATR-FTIR spectra (C-H stretching region) for FpC18 in THF and THF/D2O with 

60 vol% of D2O. 

 

The shift toward a lower wavenumber for the symmetric stretching of CH2 becomes 

smaller with decreasing alkyl chain length. However, no shift in CH2 stretching frequency 

has been observed for FpC5 upon aggregation in D2O/THF solution (Figure S5.8), suggesting 
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that the hydrophobic interactions between the pentyl chains are very week. This weak 

interaction explains the low stability of the FpC5 colloids (Figure 5.2). On the other hand,  as 

shown in Figure S5.8, the red shift of the absorption at 2867 cm-1 due to the hydrophobic 

association occurs to all other FpCn. The shifts are relatively weak for FpC6, FpC8 and 

FpC10 (less than 3 cm-1) and obvious for FpC14 and FpC18 (larger than 6 cm-1). These 

results suggest that the balance of the two interactions, hydrophobic hydration and 

hydrophobic interactions, is related to the nanostructure of the assemblies with their stability. 

The relative degree of these two interactions for the aggregates of FpCn in THF/D2O 

(60 vol% of D2O) is compared in Figure 5.6. As shown in Figure 5.6, upon aggregation, the 

enhancement in the absorption at 2923 cm-1 due to the hydration is barely observed for FpC6, 

but becomes detectable for FpC8 and FpC10 and more obvious for FpC14 and FpC18. 

Therefore, it is clear that both intra-aggregate hydrophobic interaction and the hydrophobic 

hydration, in the hydration cavity, are weak for the aggregates assembled from FpCn with 

shorter alkyl tails. On the other hand, the longer alkyl chains exert a stronger hydrophobic 

interaction, which integrates the FpCn molecules. Meantime, as revealed from the FTIR and 

CV analysis, this association creates larger hydration cavities that promote the hydrophobic 

hydration. The alkyl group in FpC1 is too short to associate into a hydration cavity and 

thereby tend to precipitate after several hours (Figure S5.6). FpCn (n = 5 – 10) molecules are 

able to assemble into defined aggregates with hydration cavities that strengthen the 

hydrophobic hydration. However, the hydrophobic interaction of the alkyl chains within the 

colloids is not strong enough to maintain the aggregates. As a result, the aggregates tend to 
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agglomerate driven by the hydrophobic interaction between the colloids to lower the total 

energy of the system. On the other hand, the stability of the colloids assembled from FpCn 

molecules with the longer alkyl tails (n = 14, 18) is attributed to the balance between both the 

strong hydrophobic interaction and hydration within the colloids. This analysis, with the 

consideration of the structure of the assemblies, explains the effect of the length of the alkyl 

tails on the stability of the FpCn colloids.  

 

Figure 5.6 ATR-FTIR spectra (C-H stretching region) Fp-derivatives different alkyl chain 

length in 60 vol% D2O in THF solutions. The arrow shows the trend in increasing in the 

absorption intensity for the asymmetric CH2 stretching with increasing of the alkyl chain 

lengths.    
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5.2.3 Morphology and stability 

The effect of the structure on the stability is further discussed by taking into account 

the morphology and size of the aggregates. Several Fp acyl derivatives, including FpC6, are 

able to self-assemble into vesicles. To investigate the morphology for the aggregates 

assembled from FpCn, with various length of alkyl tails, static and dynamic light scattering 

experiments were performed. The Rg/Rh for the colloids is illustrated in Table 5.1. As shown 

in Table 5.1, the Rg/Rh is ca. 1.0 for the aggregates assembled from FpC6, FpC8 and FpC10, 

suggesting that vesicles are formed. The vesicular morphology for FpC6 colloids has been 

reported before (Chapter 2). The cryo-TEM images for FpC10 colloids also reveal the similar 

vesicular morphology (Figure S5.9). At the same concentration (0.1 M), the Dh for the 

vesicles decreases with the increase in the length of alkyl tails (Table 5.1). The trend in the 

size of vesicles is inversely related to their stability trend. Smaller vesicles tend to be more 

stable, whereas the surface of larger vesicles is extended with a low curvature.  The smaller 

particles with a higher curvature require fewer  hydrogen bonds and are therefore more 

stable.72, 73  

On the other hand, the colloids assembled from FpC14 and FpC18 are more stable, 

although their Dh is relatively larger. SLS/DLD analysis indicates that the Rg/Rh for these two 

assemblies is ca. 1.50, suggesting that Gaussian chains may be formed (Table 5.1).  Although 

it is impossible to reveal the detailed structure of Gaussian chains, we have performed cryo-

TEM to image the overall shape of the aggregates. As shown in Figure S5.9, the colloids 

appear to be particles with deformed spherical shapes, reminiscent of images for globular 
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proteins. The average size of the particles is ca. 150 ± 20 nm, which is similar with the Dh of 

the colloids. The conventional TEM image of the colloids dried on a copper grid shows that 

the particles tend to fuse into one dimensional structures with width of ca 100 ± 15   nm 

(Figure S5.9). Although the detailed structure of the assemblies cannot be revealed, the 

SLS/DLS and TEM analyses confirm that the morphology for the colloids assembled from 

FpCn (n =14 and 18) is different from the vesicles assembled from FpCn (n =6, 8, 10). This 

difference, in addition to the stronger hydrophobic hydration resulting from longer alkyl 

groups, may also account for the improved stability of FpCn (n = 14 and 18) colloids. For 

example, the Gaussian chain, like globular proteins,210, 211 may involve bridging water buried 

within the random coils, stabilizing the colloids. 

  

Table 5.1 DLS/SLS results for the assemblies of FpCn in water 

FpCn Dh
* Rg/Rh Morphology 

FpC1 270 ± 15 

 

/ / 

FpC5 230 ± 10 

 

/ / 

FpC6 144 ± 5 1.06 Vesicles 

FpC8 123 ± 5 1.09 Vesicles 

FpC10 93 ± 6 1.04 Vesicles 

FpC14 109 ± 3 1.54 Gaussian Chain 

FpC18 142 ± 3 1.46 Gaussian Chain 
                 *Aqueous solutions with concentration of 0.1 M 

5.3 Conclusions  

This work provided an experimental investigation about the colloidal structure-related 

hydrophobic hydration and its correlation with colloidal stability. Spectroscopic, light 

scattering, and cyclic voltammetry measurements were used to investigate the aqueous 
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behaviour of Fp-derivatives with various alkyl chain lengths. FpCn (n = 6, 8, 10) molecules 

assembled into vesicles. The longer the alkyl chains, the smaller vesicles formed. FpC14 and 

FpC18 aggregated into Gaussian chain structures. Dynamic light scattering (DLS) 

measurements revealed that the colloidal stability increased with increasing alkyl chain 

lengths. The hydration of CO groups, as revealed from the ATR-FTIR experiment, shows 

similar contribution to the stability of the FpCn colloids, regardless of the length of the alkyl 

chain. CV and IR analyses indicated that longer alkyl tails provided more structural 

integration and created larger hydration cavities, resulting in more stable colloids. This 

research illustrates that molecular chemistry can provide simplified systems to effectively 

elucidate the hydrophobic effect that remains unclear from intensive studies mainly based on 

complicated protein systems. 
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Chapter 6 

Hydrophobic Effect on the Solution Behaviour of PEG-Fp-Alkyl 

Amphiphiles  

6.1 Introduction 

Organometallic surfactants have been explored, by taking advantage of the 

metal elements, as building blocks for a broad range of materials,225 including 

catalysts,23, 24 sensors38, 226 and drug delivery systems.26, 28, 29 The properties of the 

metal elements, such as redox activity and high electron density, may also facilitate 

understanding the micellar structure of surfactants and their aggregation behaviour. 

227,15 Studies of these structure-related solution behaviours are, however, rarely 

reported.  

Surfactants in water have a well-known ability to assemble into micelles with 

hydrophobic cores and hydrophilic corona.92 The structure of the micellar cores, 

which results from the balance between the hydrophobic interaction and hydrophobic 

hydration, and its correlation to the solution behaviour of the micelles are still to be 

explored. A number of techniques, including NMR,213 neutron scattering,78 and 

molecular dynamics (MD) simulations,77, 78 have been used to acquire knowledge on 

this aspect, generating diverse, sometimes conflicting, conclusions. It is generally 

considered that the water-insoluble tails associate into a central dry hydrophobic core 

with a smooth spherical surface.79, 80 Only a few segments near the hydrophilic corona 
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are hydrated, whereas Menger model implies that water penetrates deeply into the 

hydrophobic core.81, 82 This model has been supported by small-angle X-ray scattering 

measurements of aqueous sodium octanoate (C7COONa) surfactant solutions,74, 214 

and Raman spectroscopy analysis of aqueous solutions of the surfactants with various 

aliphatic chain lengths.74 Based on these studies, it is predicated that the surface of the 

core is not smooth, but corrugated.74  Water molecules are, therefore, wedged into the 

furrows, which creates hydrated cavities penetrating deeply into the core.74  

Experimental techniques to probe the relative size of this cavity are highly desirable as 

they would elaborate the model and promote research, but the ideal technique has yet 

to be established.  

Organometallic surfactants with a metal complex junction are able to assemble 

into micelles with metal elements arranged at the core-shell interface.15, 17, 28 The 

redox potential of the metal elements is sensitive to their microenvironment.106, 228 

Thus, electrochemistry can be used to probe the relative area per surfactant occuping 

the core-shell interface. This area can be correlated to the size of the hydration cavity, 

which may shed insight on the solution behaviour of several groups of surfactants.   

Although poly(ethylene glycol) alkyl ether (Brij®) surfactants are widely used 

for household products, biological materials and drug delivery systems,229, 230, 231 the 

solution behaviour of some Brij® surfactants is so far not clearly understood. For 

example, Brij® S10 (poly(ethylene glycol) (10) stearyl ether or PEG(10)-C18) 

micelles in water,232 when experimentally monitored, are not stable colloids and 
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gradually agglomerate into precipitates. It is also reported that Brij® molecules 

become strongly adsorbed protein molecules via hydrophobic attraction.233 This 

hydrophobic interaction characteristics could be the reason for instability of the 

aqueous Brij® micelles. However, the stability and phase behaviour of Brij® 

surfactants in different environments remains a matter to be investigated and may be 

related to the structure of the core.217, 232, 233, 234 Brij® analogues with a junction of 

metal element are, therefore, an ideal system for initiating the study. This initiative is 

expected to create an electrochemical technique to probe the core structure of 

organometallic micelles, enabling us to understand the micellization in depth. 

Herein, we report the synthesis and self-assembly of Brij® analogues with an Fp 

junction, PEG-PPh2-Fp-Cn (PEG-PPh2: polyethylene glycol diphenyl phosphine, Mn = 

550 or 2000 g/mol; Fp: CpFe(CO)2; Cn: octadecyl (C18) or hexyl (C6)). This chapter 

is organized in four sections: The first covers the synthesies and characterization of 

the organometallic molecules, followed by surface tension measurements indicating 

that the metal-carbonyl junction has no effect on the surfactant behaviour of the 

molecules. The third explores the solution behaviour of the micelles with a discussion 

of the context of micellar structure. Finally, the redox activities of the micelles are 

correlated to the core-shell interface structure  
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6.2 Results and discussion   

6.2.1 Synthesis of amphiphiles 6.1-6.4 

The synthetic scheme for PEG-Fp-Cn (6.1-6.4) is depicted in Figure 6.1. 

poly(ethylene glycol) methyl ether chloride (PEG-Cl), converted from poly(ethylene 

glycol) methyl ether (PEG-OH),235, 236 was reacted with diphenyl phosphine sodium 

(PPh2-Na) generating PEG-PPh2 (6.5). Fp-alkyl (6.6) was prepared via the reaction of 

cyclopentadienyldicarbonyliron potassium (FpK) with corresponding alkyl halides. 

Subsequently, migration insertion reaction (MIR) of (6.6) in the presence of (6.5) was 

performed in THF at 70 oC for three days. 

 

Figure 6.1 Schematic illustration for the synthesis of PEG-Fp-Cn amphiphiles. 
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The resultant amphiphilic molecules (6.1-6.4) were characterized using 1H and 

31P NMR, and IR analyses. Figure 6.3 displays the 1H NMR spectrum for 6.1. As 

shown in Figure 6.2 and Figure S6.1, the proton signal due to the Cp ring appears at 

4.36 ppm in 6.1 and 4.71 ppm in 6.6 (Figure S6.1). This upfield shift indicates the 

occurrence of MIR between 6.5 and 6.6 (Figure 6.1 and Figure S6.1).48 The proton 

signals due to the PEG chains (3.6 ppm) also appears in the spectrum for 6.1. In 

addition, Figure 6.2 shows two multiplet peaks at 2.61 and 2.85 ppm corresponding to 

the CH2 α to the acyl CO. The splitting of the signal is due to the chirality of the iron 

center in 6.1, which further supports the occurrence of MIR.48 31P NMR shows one 

resonance at 69.5 ppm (Figure 6.3a) suggesting the formation of P-Fe coordination.48 

The FT-IR spectrum (Figure 6.3b) shows two absorptions at 1912 and 1607 cm-1, 

corresponding to the terminal and acyl CO groups in 6.1. Before MIR, the IR 

spectrum for 6.6 shows two absorption signals at 1934 and 1990 cm-1 corresponding 

to the terminal CO groups (Figure S6.1). 48, 237   

 

Figure 6.2 1H NMR spectrum (CDCl3, 25 oC, 300 MHz) for 6.1 



 

 113 

 

Figure 6.3 (a) 31P NMR spectrum (CDCl3, 25 oC, 300 MHz) and (b) Partial FT-IR (KBr 

pellet) spectrum for 6.1 

6.2.2 Amphiphilic properties of 1-4 

The surface tension (𝛾) of the prepared molecules (6.1-6.4) was evaluated in 

water.  The change in 𝛾  as a function of concentration is typical for amphiphilic 

surfactants (Figure S6.2), from which the critical micelle concentration (CMC) for 

6.1-6.4 is deduced. The area per molecule (A), occupied at the water/air interface,212, 

238 and the maximum surface excess concentration (𝛤) are also calculated from the 

slope of γ as a function of concentration (Figure S6.2 and Table S6.1),212, 238 and 

summarized in Table 6.1. As shown in Table 6.1, molecules 6.1 and 6.2 with shorter 

PEG chains have smaller CMCs and A as compared with 6.3 and 6.4, with longer 

hydrophilic PEG chains. By comparing 6.1 with 6.2 or 6.3 with 6.4, it is apparent that 

the values of the CMC and A are smaller for the molecules with longer hydrophobic 

alkyl chain length. The smaller A and larger Γ values is attributed for tight packing of 

the molecules due to the stronger intermolecular hydrophobic interactions resulting 

from longer alkyl chain groups at the surface of water.  These results are typical for 
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surfactant molecules92, 212, 230, 232, 239 and similar with Brij® analogues.230 Thus, 6.1-6.4 

molecules are typical surfactants and the metal carbonyl junction has no significant 

effect on the surfactant behaviour.  

 

Table 6.1 Critical micelle concentration (CMC), maximum surface excess concentration (𝛤) 

and area occupied per molecule (A) adsorbed at the water/air interface for 6.1-6.4.a 

Molecules CMC 

(M) 

𝛤 x 106 

(Mole/m2) 

Area/molecule  

(Å2) 

(6.1) PEG550-Fp-C18 29.9 ± 2.3 4.023 41.3 

(6.2) PEG550-Fp-C6 40.0 ± 6.2 1.809 91.8 

(6.3) PEG2000-Fp-C18 82.1 ± 4.5 3.137 52.9 

(6.4) PEG2000-Fp-C6 113.3 ± 23 1.25 132 

a Data are calculated from surface tension measurements. 

6.2.3 Aqueous self-assembly of 6.1-6.4  

It is well known that Brij® micelles usually undergo agglomeration, which has been 

used for a variety application.229, 230, 231 As shown in Figure 3, after aging of Brij® S10 

(C18H37-PEG(10)) colloids for ca. 15 days, cotton-like agglomerates suspended in the 

aqueous solution were observed (Figure 6.4a). Similar to Brij® S10, the prepared 

organometallic surfactants also aggregated into micelles that gradually agglomerate (Figure 

S6.3) and eventually formed cotton-like suspensions. The suspensions could be re-dispersed 

upon shaking (Figure 6.4b). The similarity between the two groups of surfactants allowed us 
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to investigate the agglomeration behaviour of 6.1-6.4 (Figure 6.4c) for a better understanding 

of the solution behaviour of Brij® surfactants.  

 

Figure 6.4 Photographs of the aqueous solution of (a) 6.1 and (b) Brij® S10 (5 mg/mL) (1) 

freshly prepared, (2) after aging for 15 days and (3) after shaking.  

 

Taking advantage of the presence of the iron element at the core-shell interface, 

TEM analysis was used to explore the possible process for the agglomeration. As 

shown in Figure 6.5a, the freshly prepared colloids of 6.1 reveal spherical particles 

with a diameter of ca. 50 ± 6 nm for the core, which have a tendency to agglomerate 

into necklace chains. This tendency eventually leads to the assembly of all spherical 

particles into a network. This aggregation is probably due to the hydrophobic inter-

micelle interaction.  
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Figure 6.5 TEM images for colloids of 6.1 (a) 2 mg/mL aged for 3 days (b) 2 mg/mL aged 

for 5 days and (c) 5 mg/mL aged for 5 days. 

 

Figure 6.6 compares the agglomeration time for the aqueous solution of 6.1-6.4. It is 

clear that the rate for this agglomeration is related to the molecular structure of 6.1-6.4. As 

shown in Figure 6.6, the longer PEG chains (6.3 and 6.4) slow down the agglomeration rate. 

This is reasonable and can be explained by the shielding effect of the PEO chains. For the 

micelles with same corona length, the shorter alkyl chain exerts a stronger inter-micelle 

interaction and promotes the agglomerates. On the other hand, surfactants with longer alkyl 

chains agglomerate more slowly (Figure 6.6), suggesting that their inter-micelle hydrophobic 

interaction is weaker. The longer alkyl chains, however, exert stronger hydrophobic 

interaction within the core, which results in lower CMC values (Table 6.1). However, the 

balance between the hydrophobic interactions within the micelle core and between the 

micelles is probably related to the agglomeration rate. Therefore, the redox activity of the 

iron element at the core-shell interface was explored.  
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Figure 6.6 The agglomeration time for the aqueous solution of 6.1-6.4. 

 

6.2.4 The effect of the core structure on the agglomeration 

In order to understand the effect of the chemical structure, in particular the 

core-forming alkyl chains on the agglomeration rate, cyclic voltammetry (CV) 

experiments were performed, because the redox activity of iron is related to its 

microenvironment.106, 228 The organometallic surfactant is soluble in DMF and the CV 

experiment revealed a reversible redox curve. However, upon the micellization in 

water, the CV curve displayed two oxidation peaks separated by a redox coupling 

(E½). E½ is caused by the close association of the iron-carbonyl groups at the core-

shell interface.103, 104 The value of E½ is, therefore, inversely related to the separation 

distance (Ls) between the iron elements (cartoon in Figure 6.7).118 The Ls represents 

the area occupied by each molecule at the core-shell interface (cartoon in Figure 6.7). 

Based on Menger model,81, 82 this area is proportional to the hydration cavity of the 
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hydrophobic core. Therefore, E½ values can be used to investigate the micelle 

structure at the core-shell interface and predict the size of the hydrated cavity.  

 

Figure 6.7 Representative CV curves for the surfactants 6.1-6.4 in their molecular state (in 

DMF) and assembles state (in water).   

105 

Table 6.2 and Figure S6.4 summarize the CV results for the surfactants 6.1-6.4 

in DMF and their aqueous solutions. As shown in Figure S6.4 and Table 6.2, in DMF, 

the surfactants with longer PEG (6.3 and 6.4) have lower oxidation potentials as 

compared with those with shorter PEG (6.1 and 6.2). However, in water, a higher 

potential is required to get 6.3 and 6.4 oxidized, probably because the longer PEG 

shell shields the metal element from getting access to the electrode. Comparison of the 

E½ values for the aqueous solutions of 6.1-6.4 for surfactants with the same alkyl 

chain length shows that the E½ value decreases with the increase in the length of 

PEG. This result indicates that the longer water-soluble corona has a larger Ls and 
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thus larger occupied area per molecule at the core-shell interface. On the other hand, 

the effect of the length of alkyl chain on E½ values is more obvious. As shown in 

Table 6.2, E½ values for the micelles with C18 are smaller (0.227 V for 6.1 and 

0.201 V for 6.3) than those with C6 (0.346 V for 6.2 and 0.326 V for 6.4). This 

comparison suggests that the core assembled from short alkyl chains (6.2 and 6.4) has 

smaller hydrated cavities.105 The smaller cavity provides weaker intra-micelle 

hydrophobic interactions and weaker hydration of the core as we have illustrated 

in Chapter 5. The weaker intra-micelle hydrophobic interactions reduce the force for 

the integration of the micelles. In the meantime, the small cavity does not provide 

enough hydration forces to maintain the stability of the core. These two factors 

promote the inter-micelle hydrophobic interactions for the agglomeration to lower the 

free energy of the system. Therefore, the core structure contributes significantly to the 

stability of the micelles. This factor and its correlation to the colloidal stability have 

not caught sufficient attention in previous studies.105 

Table 6.2 CV experiment results for 6.1-6.4 solutions in both DMF and water 

Molecules 
In DMF (V) In water (V) 

Eox E re Eox1 Eox2 ∆E1/2 

(6.1) PEG550-Fp-C18 0.607 0.438 0.336 0.553 0.227 

(6.2) PEG550-Fp-C6 0.595 0.431 0.279 0.625 0.346 

(6.3) PEG2000-Fp-C18 0.543 0.450 0.353 0.554 0.201 

(6.4) PEG2000-Fp-C6 0.548 0.444 0.287 0.613 0.326 
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For further investigation of the agglomeration process, CV results were 

monitored for the surfactant 6.1 over time. Figure 6.8 shows CV curves for freshly 

prepared and 10 days aged aqueous solutions of 6.1. After 10 days, where colloids 

start to agglomerate (Figure S6.3), the CV curve showed a shift in the oxidation peaks 

toward lower potential.240 In the meantime, more aggregation resulted in more 

hydrophobic adsorption at the electrode surface and, therefore, weaker oxidation 

peaks with smaller current (ipa) values were detected. No change in E½ values over 

time suggesting that there is no dissociation of the colloids and the agglomeration at 

room temperature is a particle-particle interaction. The agglomeration could be also 

attributed to the hydrophobic interactions between the alkyl chains and the 

hydrophobic hydration within the hydrated cavities.241  

 

Figure 6.8 CV experiment results for aqueous solution of 6.1 (4 mg/mL) over time. (Scan 

rate 0.05 V/s) 

To further understand the effect of the hydrophobic hydration (within the 

hydration cavity) and the intra-micelle hydrophobic hydration on the inter-micelle 
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hydrophobic hydration, the agglomeration of the same micelle at different 

temperatures was investigated. It is worth noting that the agglomeration rate become 

faster when solutions were heated at 50 oC (Figure S6.5). Therefore, the faster 

agglomeration can be attributed to the increase in the hydrophobic hydration.242 This 

increase in the hydrophobic hydration may gradually reduce the hydrophobic 

interaction between the alkyl chains, which loosen the integration within the core and 

promotes the inter-micelle aggregations. This agglomeration process is therefore, 

starts from the dissociation of the micelles, which will separate the surfactants. This 

rationalization is supported by the CV experiment as a function of temperature. As 

shown in Figure 6.9a, as temperature increases, the oxidation peaks shift toward lower 

potential with smaller current value due to the faster electrophoretic mobility of larger 

aggregates resulting from the agglomeration.240 Meantime, as shown in Figure 6.9b, as 

temperature increases from 20 to 60 oC, E½ value of the aqueous solution of 6.1 

decreases from 0.135 to 0.061 V, suggesting that the Ls become larger resulting from 

the disintegration of the micelles. This disintegration becomes clear at 70 oC, where 

only one oxidation peak is observed (Figure S6.6), suggesting that the molecules are 

not closely associated together. The larger separation between the Fp groups proves 

that the hydrophobic hydration is enhance whereas the integration of the core is 

decreased resulting from weaker hydrophobic interaction between the alkyl chains. 

These results suggest that the stability of the colloids is strongly related to the degree 
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of the hydrophobic hydration and the strength of the hydrophobic interaction within 

the micelle core. 

 

 

Figure 6.9 CV experiment results for aqueous solution of 6.1 (4 mg/mL) at different 

temperatures. (Scan rate 0.05 V/s). 

 

6.3 Conclusions  

The first example of organometallic amphiphile with an Fp junction, PEG-Fp-

R, was prepared via migration insertion reaction of Fp-alkyl derivative with PEO-

phosphine. The prepared organometallic surfactants exhibit typical surfactant 

behaviour, similar to their analogues without Fp junction (Brij® amphiphilic 

molecules). The Fp junctions offer advantages for the investigation of the 

agglomeration, commonly observed for Brij® surfactants. The redox activity of the 

iron elements, located at the core-shell interface, as a function of molecular structure 

was used to investigate the hydrophobic core structure of the micelle. The CV results 
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suggest that the longer hydrophobic alkyl tails exert a relatively stronger intra-micelle 

hydrophobic interaction and larger hydrated cavity within the hydrophobic core, 

therefore, the agglomeration rate is relatively slower.   

6.4 Experimental Section 

6.4.1 Materials and instrumentations  

1-chlorooctadecan (>98.0%), and thionyl chloride (≥99.0%) were purchased 

from TCI America and Fluka Analytical, respectively. 1-Bromohexane (>98.0%), 

cyclopentadienyliron (II) dicarbonyl dimer (99%), triethylamine (≥99%), 

chlorodiphenylphosphine (98%), benzophenone (99%) and poly(ethylene glycol) 

methyl ether (PEO, Mn = 550 and 2000) were purchased from Sigma-Aldrich and used 

as received. Potassium metal (99.5%, rods in mineral oil) and sodium metal (99.9%, 

cubes in mineral oil) were purchased from Sigma-Aldrich, cut into small pieces and 

washed in hexane before use. Tetrahydrofuran (THF) was distilled over 

sodium/benzophenone before use. All other solvents were obtained from local 

commercial providers and used as received.  

1H and 31P nuclear magnetic resonance (NMR) spectra were recorded on 

Bruker-300 (300 MHz) spectrometer at room temperature using appropriate solvents 

as reported in each case. Fourier transform infrared (FT-IR) spectra were recorded on 

a Bruker Tensor 27 spectrophotometer with a resolution of 1 cm-1 at room 

temperature. Samples were prepared using KBr pellets by grinding and compressing 

of the amphiphile in anhydrous KBr using Nujol mulls. Dynamic light scattering 



 

 124 

(DLS) experiments were performed at 25 °C using Zetasizer Nano Series (Nano-S90, 

Malvern Instruments) with laser wavelength of 633 with a fixed angle of 90o. 

Transmission electron microscopy (TEM) images was performed using a low voltage 

(5 kV) LVEM5 electron microscope (Delong Instruments). TEM samples were 

prepared by dropping the solution onto a carbon-coated copper grid (FCF-200, 

Electron Microscopy Science) and the grid was then left to dry at the ambient 

temperature. Cyclic voltammetry (CV) measurements were obtained using DY2000 

Multi-Channel Potentiostat (Digi-Ivy Inc.) workstation with a scan rate of 50 mV/sec 

and silver wire as a pseudo-reference electrode. All samples were measured in both 

DMF and water using tetrabutylammonium perchlorate (TBAP, 2 mg/mL) and KCl (2 

mg/mL), respectively. Surface tension of pure water and the aqueous solutions of the 

prepared metallo-amphiphiles with different concentrations were measured at 22 oC 

using tensiometer Data Physics DCAT 21 system. 

6.4.2 Synthesis of the amphiphiles 6.1-6.4. 

Synthetic procedures of the amphiphile (PEG(550)-Fp-C18) 6.1 that contains 

PEG (Mn= 550 g/mol) and octadecyl chain, as representative amphiphile, will be 

discussed in detail in this section. All synthetic steps were conducted under a dry 

atmosphere of nitrogen gas using Schlenk line techniques.   
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6.4.3 Synthesis of (6.5) 

Synthesis of PEG(550)-Cl.92, 236 A toluene solution (17 mL) of poly(ethylene 

glycol) methyl ether, Mn = 550 (2.0 g, 3.6 mmol) and triethylamine (0.40 g, 4.0 mmol) 

was added dropwise into a 100-mL Schlenk flask containing thionyl chloride SOCl2 

(2.60 g, 22 mmol) at 0 oC (ice bath). After the addition, the ice bath was replaced with 

oil bath and the solution was gradually heated up to 65 °C. After stirring at 65 °C 

overnight, the solution was passed through a celite column to remove the resulted 

triethylamine hydrochloride salt and the filtrate was subject to rotary evaporation to 

remove toluene. The crude product was then dissolved in a minimal amount of dry 

THF and precipitated out in hexane as cloudy oil.  The final product was collected and 

dried under vacuum to yield PEG(Mn = 550)-Cl (1.74 g, 71%). 1H NMR (300 MHz, 

CDCl3, δ): 3.75 (t, 2H, -CH2Cl), 3.55-5.65 (s, 44H, CH2CH2O), 3.50 (t, 2H, - O - CH2- 

CH2Cl), 3.37 (s, 3H, CH3O). 1H NMR results for PEO(Mn = 2000)-Cl as follow. 

1H NMR (300 MHz, CDCl3, δ): 3.74 (tbr, 2H, -CH2Cl), 3.58-5.68 (sbr, 176H, 

CH2CH2O), 3.54 (brt, 2H, - O - CH2- CH2Cl), 3.37 (s, 3H, CH3O). (see Figure S6.7) 

Synthesis of NaPPh2.48, 98 Sodium diphenylphosphide (NaPPh2) was prepared 

as previously reported by our group. 31P NMR (300 MHz, THF, δ): -20 (s,1P, Ar2PNa) 

(Figure S6.1). 

Synthesis of PEG(550)-PPh2 (6.5a). PEG-Cl (1.01 g, 1.78 mmol) was added 

to a 100-mL Schlenk flask and dissolved in dry THF (5 mL). The flask was placed in 

an ice bath. To the flask, 5.5 mL sodium diphenylphosphide solution (0.55 g, 2.65 
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mmol; excess) was added dropwise. The resulting mixture was left under stirring for 2 

hours. Then, degassed methanol (2 mL) was added dropwise to react with the excess 

sodium diphenylphosphide. As a result, the color of the solution was changed from 

deep red to pale yellow. After the solution was passed through a celite column, the 

mixed solvents of THF/methanol were removed under vacuum, leaving pale yellow 

oil as crude product. The crude product was dissolved in a minimal volume of dry 

THF and subsequently precipitated out in degassed hexane. After this step of 

purification, the final product was collected and dried under vacuum, yield 0.89 g 

(69.6 %). 31P NMR (300 MHz, CDCl3, δ): -21 ppm; 31P NMR (300 MHz, THF, δ): -19 

ppm; 1H NMR (300 MHz, CDCl3, δ): 7.15, 7.55 (sbr, 10H, ArH), 3.48 (sbr, 48H, 

CH2CH2O), 3.20 (s, 3H, CH3O). (Figure S6.1)  

6.4.4 Synthesis of (6.6) 

Fp-Cn chain (6.6) was synthesized by coupling of 

cyclopentadienyldicarbonyliron potassium (FpK),243 with 1-chlorooctadecane (6.6a) 

or 1-chlorohexane (6.6b). For 6.6a, under stirring at 0 °C, a solution of C18H37Cl (2.5 

cmL, 7.3 mmol) in THF (5 mL) was added to an orange suspension of FpK (2 g, 9.3 

mol) in THF (20 mL). The orange suspension gradually turned to brown and was kept 

stirred at room temperature for 2 hours. THF was then removed by rotary evaporation 

and the residue was extracted using degassed hexane. The supernatant was collected 

and rotary evaporated. The resulting solid was chromatographed using a plug of silica 

column and a degassed hexane/DCM (4:1 v/v) mixture was used as eluent. The first 
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yellow band was collected and solvents were removed using rotary evaporation. The 

bright yellow crystals were collected and dried under vacuum. Yield 2.80 g (89.2 %). 

1H NMR (300 MHz, CDCl3, δ): 4.71 (s, 5H, Cp ring), 1.44 (br, 2H, Fe-CH2-alkyl 

chain), 1.25 (br, 32H, CH2-alkyl chain), 0.87 (t, 3H, terminal CH3); FT-IR (KBr): ν 

=1990 and 1934 cm-1 (two CO groups stretching). (Figure S6.1 and Figure S6.8)   

6.4.5 Synthesis of PEG(550)-Fp-C18 (6.1) 

A solution in THF (60 mL) containing 6.5a (1.0 g, 1.39 mmol) and 6.6a (0.72 

g, 1.7 mmol) was prepared in a 100-mL Schlenk flask. The solution was then heated 

up and refluxed at 70 oC for three days. THF was subsequently removed via rotary 

evaporation, resulting in a dark-brown crude product. The crude product was then 

suspended in a minimal volume of degassed hexane and transferred to a silica column. 

The column was first flushed using degassed hexane to remove the excess Fp-C18 

(6.6a), and subsequently washed using dry THF. The product appearing as a dark 

brown band was collected. After removing the solvent, a viscous dark brown oil was 

collected and dried under vacuum, 1.27 g (79.5 %). 31P NMR (300 MHz, CDCl3, δ): 

69.5 (Ph2-P-C); 1H NMR (300 MHz, CDCl3, δ): 4.36 (s, 5H, Cp ring), 2.61 and 2.85 

(m, 2H, acyl-CH2-alkyl chain), 1.25 (br, 32H, CH2-alkyl chain), 0.87 (t, 3H, terminal 

CH3), 3.6 (br, 42H, CH2CH2O), 3.37 (s, 3H, CH3O), 2.78 (t, 2H, CH2-P, overlapped); 

FT-IR (KBr): ν =1912 cm-1 (terminal CO stretching), 1607 cm-1 (migrated acyl 

carbonyl). (Figure 6.2 and Figure 6.3) 
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6.4.6 Preparation of the micelles 

Typically a 2.0 mg/mL aqueous solution was prepared by the addition of 10.0 

mL of water into a THF solution of each prepared amphiphiles 6.1-6.4 (20 mg in 0.5 

mL THF) under stirring. Subsequently, THF was removed via either bubbling with N2 

for an hour or dialysis over night against water.  
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Chapter 7 

Summary and Future Work 

7.1 Summary 

The self-assembly of hydrophobic molecules into aqueous colloids contradicts 

common chemical intuition, but was achieved in this research via hydration of 

CpFePPh3(CO)CO(CH2)5CH3 (FpC6). The resultant metal carbonyl aggregates were proved 

to be bilayer vesicles with iron complexes exposed to water and alkyl chains that formed the 

inner walls (MCsomes). These MCsomes showed high structural integration upon dilution. 

The highly polarized CO groups on the surface of MCsomes resulted in negative zeta 

potential (-65 mV) and created a local electric field, thereby significantly enhancing the IR 

absorption of CO groups more than a 100 fold. This is the first discovery of aggregation-

enhanced IR absorption (AEIRA) without the assistance of external dielectric or plasmonic 

substrates (Chapter 2). 

Molybdenum-carbonyl aqueous colloids were prepared from the self-assembly of 5-

CpMo(CO)2(PPh3)CO(CH2)5CH3 (MpC6) in water. MpC6 was synthesized through a 

reaction of CpMo(CO)3 anion (Mp-) with Br(CH2)5CH3 in the presence of PPh3. Similar to its 

Fe-analogue, FpC6, the aqueous assembly of MpC6 generated vesicles with an aggregation-

enhanced IR absorption (AEIRA) phenomenon (Chapter 3).   

A highly-integrated, laser manipulable multi-functional metal carbonyl nanovesicle 

(MCsome) with aggregation-induced emission (AIE) and aggregation-enhanced IR 

absorption (AEIRA) was created via the self-assembly of the bithiophene tethered-Fp acyl 
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derivative (FpC3BTh). The spatial segregation of the AIE-active bithiophene domain, from 

the iron-carbonyl units, by the butanoyl spacers prevented the quenching effect of the iron 

elements and resulted in a photoluminescent MCsome. The polarizable iron-carbonyl groups 

on the surface of the MCsome provided an enhancement (ca. 100-fold) in IR absorptions for 

the carbonyl groups. Upon the interaction of MCsomes with a focused continuous-wave 

near-IR (NIR) laser beam, a strong gradient (trapping) force was generated and allowed the 

laser trapping of the MCsome without the need for additives. (Chapter 4).   

The experiments detailed in Chapter 5 investigated colloidal structure-related 

hydrophobic hydration and confirmed its correlation with colloidal stability. In addition to 

spectroscopic and light scattering techniques, cyclic voltammetry measurements were used to 

investigate the aggregation process of the Fp-derivatives with various alkyl chain lengths 

(Chapter 5). 

PEG-PPh2-Fp-Cn (PEG-PPh2: polyethylene glycol diphenyl phosphine, Mn = 550 or 

2000 g/mol; Fp: CpFe(CO)2; Cn: octadecyl (C18) or hexyl (C6)) amphiphilic molecules with 

an iron-carbonyl junction were synthesized. Surface tension measurements indicated that the 

molecules, despite bearing an iron-carbonyl junction, behaved as typical surfactants. The 

redox behaviour of organometallic micelles with iron elements, sitting at the core-shell 

interface, was interrelated to the micellar core structure. This discovery enabled us to explore 

the effect of the core structure on the solution behaviour of the surfactants (Chapter 6).  
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7.2 Suggestions for Future Work 

The prepared Fp-derivatives showed unique multi-functional properties including 

SEIRA, AIE, and laser manipulability. These characteristics should serve a wide range of 

potential biological applications including cell imaging, bioassay and drug delivery. The 

stability of the prepared molecules and their aqueous colloids was tested over time in neutral, 

acidic (e.g. ascorbic and hydrochloric acids) and basic (e.g. sodium hydroxide) aqueous 

solutions. However, in order to introduce these molecules in biological systems, further 

investigation of their stability, bioviability and biosensing properties in real and 

biocompatible buffers and cell culture environments is needed.  

The hydrophobic hydration of the Fp-derivatives with correlations to their 

aqueous colloidal stability and their colloids’ surface structure was investigated using 

conventional electrochemical and spectroscopic methods. To validate the method 

established in this thesis, computational simulation and calorimetric titration 

experiments are suggested. Morphology of the prepared Fp-derivative colloids with 

varied alkyl chain lengths can be investigated using cryo-TEM. However, a cryo-TEM 

imaging protocol needs to be further validated by collaboration with a professional 

imaging research center. More cryo-TEM and simulation could be used to confirm the 

vesicular morphology for FpC3Bth colloids. 

The work in this thesis has focused on Fp-derivatives with varied hydrophobic alkyl 

chains. The triphenyl phosphine ligand was used in all reported molecules. Preliminary 

results showed that colloids prepared from Fp-derivatives with the trimethyl phosphine 
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ligands exhibited less stability over time compared to those with the triphenyl phosphine 

ligands. Therefore, the effect of the phosphine ligands (e.g. triphenyl, trimethyl, tricyclohexyl 

and isopropyl) on the colloidal structure and stability are worth investigating. In addition, 

synthesis and study of the aqueous behaviour of Fp analogues using other transition metals, 

such as ruthenium and platinum, should add great value to the aqueous MCCs research area. 

Use of the prepared PEO-Fp-R amphiphiles (Chapter 6), as a stabilizer, during 

emulsion polymerization would provide latex particles with metal-containing surfaces. 

Having an iron metal at the latex surface will provide new latex nanoparticles that could be 

fabricated into a functional latex film with conductivity, redox, and magnetic properties. 

Preliminary results have shown that, through miniemulsion polymerization technique, this 

group of iron-containing amphiphiles can be used to prepare a polystyrene (PS) latex. 

Reduction of the gold ions into gold nanoparticles at the surface of the prepared PS latex film 

was also achieved and confirmed with UV-vis spectroscopy. Furthermore, the presence of the 

polarized carbonyl groups at the latex surface should provide an active medium for the 

hydrolysis of silica at the latex surface. However, further investigation of the composition of 

the PS latex surface, using elemental analysis such as X-ray photoelectron spectroscopy 

(XPS) or Energy-dispersive X-ray spectroscopy (EDX), is still needed. 
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Appendices 

Supporting Information for Chapter 2 

 

 

 

 

Figure S2.1  Schematic illustration for the synthesis of FpC6 via MIR 
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Figure S2.2 1H NMR and 31P NMR spectra of FpC6 in C6D6. 
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Figure S2.3 1H NMR (up) and 31P NMR (down) spectra of FpC6 in CDCl3 (a) before and (b) 

after aqueous self-assemble. FpC6 is recovered from the aqueous colloids via freeze-drying 
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Figure S2.4 TEM images of FpC6 colloids dried from water solution (0.1 mg/mL) 
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Figure S2.5 Representative AFM images (a-b) and height profile section analysis (c-d) for 

the fragments of FpC6 colloids dried from water solution (0.1 mg/mL).   
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Figure S2.6 Partial ATR-FTIR spectra for FpC6 in THF/water solutions with varied water 

contents. 
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Figure S2.7 Partial ATR-FTIR spectra (terminal CO) for solutions of FpC6 in THF with 

different concentrations. 
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Supporting Information for Chapter 3 

 

 

 

 

 

Figure S3.1 1H NMR spectra (CDCl3) for complex 3.1 before MIR and complex 3.2 after 

MIR (MpC6).   
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Figure S3.2 1H NMR spectra (CDCl3) for MpC6 before and after self-assembly in water. 

MpC6 recovered from water via freeze-dry of the aqueous colloid. 
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Figure S3.3 DLS analysis for the aqueous colloid of MpC6 (0.1 mg/mL; 178 µM) in 

DMSO/water solution. 
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Figure S3.4 DLS analysis for the aqueous colloid of MpC6 (0.1 mg/mL; 178 µM) prepared 

using pure water (pH = 7), ascorbic acid/water solution (pH = 4) and NaOH/water solution 

(pH = 11). 
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Figure S3.5 DLS analysis for the aqueous colloids prepared with different MpC6 

concentrations. 
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Figure S3.6 Berry plot obtained from the multi-angle SLS measurements of MpC6 aqueous 

colloids (8.9 µM). 
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Figure S3.7 IR absorption spectra of MpC6 solution (5 mg/mL) in THF and THF/D2O with 

varied amounts of D2O.  (D2O was used to reduce the interfering of the acyl CO signal with 

water scissoring peak)   
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Figure S3.8 IR absorption spectra, normalized to the same concentration, of MpC6 solutions 

in THF (molecules) and in THF/water with 60 vol% of water (assembles). The enhancement 

in IR absorption is calculated by comparing the maximum absorption intensities at 1855 cm-

1. 
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Figure S3.9 IR absorption spectra for the terminal CO groups of MpC6 solution (15 mg/mL) 

in THF and THF/water with varied amounts of water. 
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Figure S3.10 IR absorption of the terminal CO groups for the solutions of MpC6 (3.7 mM) in 

DMSO and in DMSO/water with 60 vol% of water (1.5 mM). 
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Table S3.1 Crystal data and structure refinement for MpC6 

Empirical formula C32H33MoO3P 

Formula weight 592.49 

Crystal system Triclinic 

Space group P-1 

a Å 9.43830(10)  

b Å 11.3542(2) 

c Å 13.9690(2) 

α deg 91.8471(6) 

β deg 94.5175(6) 

γ deg 104.4341(7) 

Volume, Å
3
 1443.14(4) 

Z 2 

Dcalc, Mg/m
3
 1.363 

Absorption coefficient 0.540 mm-1 

F(000) 612 

Crystal size, mm
3
 0.220 x 0.150 x 0.100 

θ range, deg 1.464 to 27.994° 

Index ranges -12<=h<=12 

 -14<=k<=14 

 -18<=l<=18 

Reflections collected 27521 

Independent reflections 6966 [R(int) = 0.0171] 

Max. and min. transmn 0.7460 and 0.7160 

Weighting parameters a, b 0.0315, 1.8788 

Data/restraints/parameters 6966 / 0 / 335 

Goodness-of-fit on F
2
 1.406 

Final R indices [I>2σ(I)] R1 = 0.0351 

 wR2 = 0.0757 

R indices (all data) R1 = 0.0464 

 wR2 = 0.0919 

Largest diff peak and hole, e.Å
-3

 0.522 and -0.353 
a Details in common: Temperature 296(2) K, refinement method: full-matrix least-squares on 

F2. 
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Table S3.2. Selected bond distances (Å) and angles (θ) for MpC6 

Bond lengths 

Mo-C(24)     1.961(3) 

Mo-C(25)  1.970(3) 

Mo-C(26)  2.273(3) 

Mo-C(5)  2.315(3) 

Mo-C(4)  2.328(3) 

Mo-C(3)  2.364(3) 

Mo-C(2)  2.360(3) 

Mo-C(1)  2.342(3) 

Mo-P(1)  2.4733(7) 

 

  C(1)-C(2)  1.402(5) 

C(1)-C(5)  1.406(5) 

C(1)-H(1A)  0.9300 

C(2)-C(3)  1.388(5) 

C(2)-H(2A)  0.9300 

C(3)-C(4)  1.395(5) 

C(3)-H(3A)  0.9300 

C(4)-C(5)  1.401(5) 

C(4)-H(4A)  0.9300 

Bond angles 

C(24)-Mo-C(25) 107.93(12) 

C(24)-Mo-C(26) 72.35(11) 

C(25)-Mo-C(26) 73.37(12) 

C(24)-Mo-C(5) 138.28(12) 

C(25)-Mo-C(5) 100.48(13) 

C(26)-Mo-C(5) 87.79(12) 

 

 

C(27)-C(26)-Mo 122.6(2) 

C(28)-C(27)-C(26)117.8(4) 

C(29)-C(28)-C(27)123.8(6) 

C(28)-C(29)-C(30)118.5(7) 

C(31)-C(30)-C(29)120.2(7) 

C(32)-C(31)-C(30)118.7(11) 
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Supporting Information for Chapter 4 

 

S4.1. Principle of laser trapping 

 

Laser trapping phenomenon for particles with the size much smaller than the 

wavelength of the trapping laser is conventionally interpreted by Maxwell Boltzmann 

electromagnetic theory. The gradient force exerted on nanometer-sized objects is given as 

follows.163,88  

          (1). 

Here E denotes the electric field, and  represents a gradient with respect to the spatial 

coordinates. The parameter of  represents the permittivity of the surrounding medium. 

The polarizability of the nanoparticle, , under the dipole approximation, is given by 

             (2). 

Notations of r, is the radius of the nanoparticle. and  represent the refractive 

index of the nanoparticle and the surrounding medium, respectively. As calculated from 

above equations, no gradient force is given to a target nanometer-sized object in the case that 
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its refractive index is the same as that of the surrounding medium. When the target object has 

the refractive index higher than that of the surrounding medium, the gradient force toward 

the focal spot is exerted on the object, and its magnitude becomes larger with the increase in 

the refractive index of the target object. 

 

S4.2. Quantum yield measurement 

 

Quantum yield for the aqueous solution of FpC3BTh (4.1) was compared with 1,4-

bis(5-phenyloxazol-2-yl) benzene (POPOP) in cyclohexane as a reference. UV-vis spectra 

were measured for diluted solutions of POPOP in cyclohexane and colloid of FpC3BTh in 

water. Fluorescence spectra were then recorded for the same samples with excitation 

wavelength of 350 nm. The collected data was used to calculate the quantum yield of 

FpC3BTh using the following equation.180 

 

Q = Quantum yield for the sample 

A = absorbance at excitation wavelength for the sample 

n = refractive index of the solvent for the sample 

FL integration = area under the emission spectra of the sample 

 

QR = Quantum yield for the standard 

AR = absorbance at excitation wavelength for the standard 

nR = refractive index of the solvent for the standard 

FLR integration = area under the emission spectra of the standard 

All samples were measured at the same time under same conditions. The florescence 

emission spectra were measured with excitation wavelength of 350 nm. 
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S4.3. Synthesis and characterization of FpC3BThAs illustrated in Figure S4.1, the 

building block (FpC3BTh) is prepared via a migration insertion reaction (MIR) of a 

bithiophene tethered Fp derivative (4.2) in the presence of triphenylphosphine. 4.2 is 

obtained from the reaction of 4.3 with FpK. Molecule 4.3 is prepared via the reaction of 5-

lithio-2,2'-bithiophene with 1-bromo-3-chloropropane. 1H NMR for 4.3 is illustrated in 

Figure S4.2. Figure S4.3 display the 31P NMR and IR spectra for FpC3BTh. As shown in 

Figure S4.3, only one signal in the 31P NMR spectrum appears at 77.4 ppm due to the 

coordinated phosphorus element (Figure S4.3a) and both terminal CO and acyl CO groups 

appear in the IR spectrum for FpC3BTh (Figure S4.3b) at 1905 and 1600 cm-1, respectively, 

suggesting that the migration insertion reaction has occurred.48, 237 In 1H NMR spectrum 

(Figure S4.4), the down field signals appear at 7.37 – 7.49 ppm are due to the phenyl protons, 

while those between 6.55 and 7.15 ppm represent the protons from the bithiophene units. The 

downfield shift for signal due to the protons of Cp ring to 4.41 ppm and upfield shift of the 

two diastereotopic α-protons with splitting chemical shifts at 2.67 and 2.90 ppm (a in Figure 

S4.4) suggest that the migration insertion reaction has occurred.48 The detailed chemical 

shifts are summarized in the Experimental Section. 
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S4.4. Supporting Figures and analysis 

 

Figure S4.1 Synthesis of FpC3BTh (4.1) 
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Figure S4.2 1H NMR spectrum (CDCl3, 25 oC, 300 MHz) of 4.3 
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Figure S4.3 (a) 31P NMR spectrum (CDCl3, 25 oC, 300 MHz) of FpC3BTh; (b) partial FT-IR 

absorption spectrum (KBr pellet) for terminal and acyl CO groups from FpC3BTh. 
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Figure S4.4 1H NMR spectrum (CDCl3, 25 oC, 300 MHz) of FpC3BTh 
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The red shift in wavenumber (Δ) for the IR absorption for both acyl and terminal 

CO groups of 1 in water/THF solution with water content of 80 vol% is = 7.0 cm-1 (Figure 3 

in main text) ). In contrast, the terminal CO group in the non-thiophene Fp-analogue FpC6 

(Δ = 4.0 cm-1) is less hydrated under the same condition as we reported before.118 This 

difference in the degree of hydration may influence the stability of the MC colloids. As 

shown in Figure S4, DLS analysis indicated that the Rh for the colloids of FpC3BTh 

maintained unchanged over 60 days, whereas the Rh for the FpC6 colloids gradually 

increased and a small amount of precipitates was observed after the sample was aged for 7 

days.118 This comparison suggests that, despite the same MC unit in the building blocks, the 

polarizable CO groups have varied strength of WCI. 

 

 

Figure S4.5 Hydrodynamic radii for the aqueous colloids of FpC3BTh and FpC6 as a 

function of time. 
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Figure S4.6 Berry plot obtained from multi-angle SLS measurements of the aqueous colloids 

of FpC3BTh (0.77 µM). 
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Sample preparation methods for AFM experiments are crucial for the imaging. When 

the sample was prepared via spin coating of the colloidal solution on a freshly cleaved mica 

substrate, the colloids dissociated and only small fragments with vertical heights of ca. 1.0 

nm were observed (Figure S4.7). The observed fragments are therefore the single molecules 

lying on the substrates, because their heights closely match the dimension of the Fp acyl units 

(Figure 4.5a). However, when the AFM sample prepared via drying a few drops of the 

solution, lamella with vertical heights of ca. 3.72 ± 0.20 nm nm were observed (Figure S4.8 

and Figure 4.4), which represents the membrane thickness of the broken vesicle. 

 

Figure S4.7 Vertical section analyses of the AFM images for the sample of FpC3BTh (77 

µM) prepared on mica substrates via spin coating. 
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Figure S4.8 Vertical section analyses of AFM images for the colloid sample of FpC3BTh (77 

µM) prepared on mica substrates via drying a few drops of the solution. 
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According to the SAXS experimental results, the domain spaces 2.4 nm between the 

two iron centers. Cryo TEM images reveals that the thickness of the MCsome layer is ca. 3.2 

nm. Accordingly, the interdigitated structure (Model 1), as shown in Figure S8a, is more 

possible than the non-interdigitated bilayer structure (Model 2)  

 

Figure S4.9 (a) interdigitated and (b) non-interdigitated models for the bilayer membrane 

structure for the MCsome FpC3BTh. 
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Figure S4.10 FL emission spectra for the solutions of MCsome FpC3BTh in water at 

different excitation wavelength (ex). The arrows represent the trend in the emission intensity 

with increasing ex. 
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Figure S4.11 UV-vis spectra for the solutions diluted from FpC3BTh in THF (154 µM) by 

addition of varied amounts of water. 
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Figure S4.12 Photographs for the aqueous colloids, prepared by successive dilution of the 

solution of FpC3BTh (154 µM), under irradiation of a UV lamb. 

 

 

Figure S4.13 FL emission spectra for the solutions of MCsome FpC3BTh in (a) DMSO and 

DMSO/water and (b) in acetonitrile (CH3CN) and CH3CN/water solutions. (ex = 350 nm). 
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Figure S4.14 FL emission spectra for the aqueous colloids of MCsome FpC3BTh at different 

pH.  (ex= 350 nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 197 

Refractive index of FpC3BTh is measured using ellipsometry. A thin film of 

FpC3BTh was fabricated on a silicon waver using spin coating at a medium speed. 

Refractive index (n) profile was executed from the ellipsometric data revealed from J. A. 

Woollam Co. VASE® ellipsometer. Data were required, at angles of incidence of 55o, 60o, 

65o, 70o and 75o, with spectral range from 1700 to 400 nm. The refractive index revealed 

from the ellipsometric experiments is ca. 1.71 (at  = 633 nm). 

 

 

Figure S4.15 Refractive index of 1 executed from the ellipsometric experiment on a spin-

coated thin film of FpC3BTh. 
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Supporting Information for Chapter 5 

Fp- derivatives were prepared via MIR. Syntheses and characterizations were 

performed similar to that reported for FpC6 in the Experimental Section in Chapter 2. 

 

Figure S5.1 31P and 1H NMR spectra (CDCl3, 25 oC, 300 MHz) of FpC5 
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Figure S5.2 31P and 1H NMR spectra (CDCl3, 25 oC, 300 MHz) of FpC8 
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Figure S5.3 31P and 1H NMR spectra (CDCl3, 25 oC, 300 MHz) of FpC10 
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Figure S5.4 31P and 1H NMR spectra (CDCl3, 25 oC, 300 MHz) of FpC18 
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Figure S5.5 31P and 1H NMR spectra (CDCl3, 25 oC, 300 MHz) of FpC14 
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Figure S5.6 Photographs for FpC1 and FpC18 solutions. Left panel shows the solubility of 

FpC1 and FpC18 in water and THF. Right panel shows aqueous colloids of FpC1 and FpC18 

over time. 

`  

Figure S5.7 ATR-FTIR stretching frequencies (acyl and terminal CO groups) for the Fp-

derivatives 5.2–5.7, with different alkyl chain length self-assembled in 66 vol% D2O in THF 

(2 M). 
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Figure S5.8 ATR-FTIR spectra (C-H stretching region) for FpCn in THF and 60 vol% D2O 

in THF solutions. 
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Figure S5.9 a) TEM image for FpC18 colloids. Cryo-TEM images for b) FpC10 and c) 

FpC18. 
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Supporting Information for Chapter 6 

 

 

Figure S6.1 (a) Partial 1H NMR for 6.1 and 6.6 and (b) 31P NMR spectra for 6.5 and 

6.1(CDCl3, 25 oC, 300 MHz). (c) Partial FT-IR (KBr pellet) spectra of 6.6 and 6.1 before and 

after migration insertion reaction, respectively. 
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Figure S6.2 Surface tension as a function of solution concentrations for 6.1-6.4.   
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Figure S6.3 DLS results of the aqueous solutions of 6.1-6.4 over time. 
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Figure S6.4 CV curves for 6.1-6.4 solutions in both DMF and water. 

 

Figure S6.5 Photographs for the aqueous solutions of 6.1-6.4 heated at 50 oC. 
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Figure S6.6 CV experiment results for aqueous solution of 6.1 (4 mg/mL) at 30 oC and 70 oC. 

(Scan rate 0.05 V/s) 
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Figure S6.7 1H NMR spectra in CDCl3 of (a) PEG-OH and (b) PEG-Cl. (Mn = 550) 

 

1H NMR spectra, for both PEG-OH and PEG-Cl, suggest successful conversion of the 

hydroxyl group into chlorine. Figure S6.7 shows the disappearance of OH proton peak at 2.8 

ppm and evolving of a new triplet peaked at 3.7 ppm representing the methylene protons that 

close to chlorine atom. 
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Figure S6.8 1H NMR, in CDCl3, and FT-IR (KBr pallet) spectra of 6.6a before MIR. 
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Table S6.1 CMC results and calculation of the area occupied per molecule (A) for 6.1-6.4 

 CMC 

(mg/mL) 

CMC 

(mM) 

Slope 

 (δ 𝜸 /δln(c)) 

 (mole/m2) 

(-1/RT x (slope)) 

A=Area =1/ 

m2/mol (m2/molecule) 

PEG2000-Fp-C18 

(6.1) 

0.249 0.096 -7.757 3.137E-6 318783 

(5.29E-19) = 52.9 Ao2 

PEG550-Fp-C6 

(6.2) 

0.045 0.044 -4.473 1.809E-6 552828 

(9.18E-19) = 91.8 Ao2 

PEG550-Fp-C18 

(6.3) 

0.041 0.036 -9.949 4.023E-6 248548 

(4.13E-19) = 41.3 Ao2 

PEG2000-Fp-C6 

(6.4) 

0.357 0.147 -3.11 1.25E-6 797529 

(1.23E-18) = 132 Ao2 

 

 


