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Abstract— In this paper, a vehicle’s lateral dynamic model is
developed based on the pure and the combined-slip LuGre tire
models. Conventional vehicle’s lateral dynamic methods derive
handling models utilizing linear tires and pure-slip assumptions.
The current article proposes a general lateral dynamic model,
which takes the linear and nonlinear behaviors of the tire
into account using the pure and combined-slip assumptions
separately. The developed methodology also incorporates var-
ious normal loads at each corner and provides a proper
tire-vehicle platform for control and estimation applications.
Steady-state and transient LuGre models are also used in
the model development and their responses are compared
in different driving scenarios. Considering the fact that the
vehicle dynamics is time-varying, the stability of the suggested
time-varying model is investigated using an affine quadratic
stability approach, and a novel approach to define the critical
longitudinal speed is suggested and compared with that of
conventional lateral stability methods. Simulations have been
conducted and the results are used to validate the proposed
method.

I. INTRODUCTION

Tire models and tire-road friction forces have played a
vital role in recent developments in the field of vehicle
state estimation and control. They are incorporated into the
lateral dynamics to estimate vehicle states and to analyze
stability. The most widely used static tire model, known
as the Magic Formula, was proposed by Pacejka et al.
[1], [2], and Uil [3], and provides a semi-experimental
approach for tire force calculation. Canudas-de-Wit et al.
proposed a dynamic tire-road friction model, known as the
LuGre, in [4]-[8], and introduced tire deflection as a state
in system dynamics. Pre-sliding and hysteresis loops as well
as combined friction characteristics are considered in their
model [9]. Other dynamic models, examined in [10] and [11],
consider transient phases.

In the vehicle stability analysis, the most widely practiced
approach uses a 2-degree-of-freedom (2DOF) planar vehicle
model and a linear tire model [12], [13]. These studies fail
to predict the critical velocity and under/neutral/over steering
behavior of the actual vehicle in nonlinear operating regions.

Vincent Nguyen [14] has studied the stability of vehicle
lateral dynamics with bifurcation of the equilibrium con-
ditions, and also explored some aspects of the transient
response of vehicles. The study used a planar model with
roll dynamics, lateral load transfer, and tire dynamics for
overall stability assessment outside of normal operating
ranges. Different tire models and their associated friction
situations in antilock brake systems (ABSs) and longitudinal
dynamics are discussed in [15]. Tire forces were used as
a cascaded scheme for longitudinal vehicle dynamics, but

a closed formulation of the integrated tire-vehicle with a
dynamic tire model, such as LuGre [6], is not provided.

A theoretical analysis followed by a numerical study was
performed in [16] and [17] to develop a new methodology
for the local stability assessment of vehicle dynamics. The
effects of the bifurcation phenomena on vehicle spin and
system instability were examined using the Perturbation
method. The joint-point locus approach is introduced in [18]
to geometrically analyze the equilibria of the system and their
associated stability properties. The authors have shown that
a vehicle can remain stable even when pushed to its limits.
Although the attractive domain of stable poles is very narrow
in the presented conditions, stability in highly nonlinear
regions can still be maintained. Wang et al. has presented a
new perspective to the stability analysis of ground vehicles
in [19] by taking the driving model into account. Consistent
with the fact that at high speeds there is a significant
difference between FWD and RWD modes, the authors have
shown that the existing stability-estimation techniques will
fail because they fail to consider the drive model. Della Rossa
et al. [20] has explored a special condition, where stability
is a concern when vehicles are negotiating a curve. A 2DOF
model with nonlinear tires is chosen to study the steady-state
cornering condition. A set of Homoclinic bifurcations, stable,
and unstable limit cycles are identified when the the vehicle,
is exposed to the conditions reported by professional driver as
rare but very dangerous. In all of the aforementioned studies,
the pure-slip tire model is employed to avoid the complexities
in analytic or even numerical methods. However, in the
extreme driving conditions and nonlinear operating regions
investigated by most articles, the combined-slip (combined-
friction) case is a dominant phenomenon. This characteristic
of tire models is considered in this current article to check
the slip ratio’s adverse effect on the lateral tire capacity.

This paper employs the LuGre tire model [8] and provides
a new representation of the tire-vehicle interaction in canon-
ical form, which includes linear and nonlinear parts. The
lateral dynamics of a vehicle with conventional linear tires is
provided in Section II. Section III recalls the pure/combined-
slip LuGre tire models. Using the steady state and transient
LuGre models, section IV explores the lateral dynamics
arising from the general form of the pure/combined-slip
approaches. The performance and robustness of the devel-
oped tire-vehicle interaction are examined and compared
with those of the conventional 2DOF model in Section
V. The stability of the developed linear parameter-varying
(LPV) tire-vehicle lateral dynamics is analyzed in Section
VI. The affine quadratic stability of the proposed LPV
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system is proven and compared to the tight quadratic stability
condition. Consequently, speed limit criteria is introduced
in accordance to the stability of the linear part of the
lateral model. Section VII briefly discusses the application
of the dynamics developed in this paper to the controller
design. Section VIII compares the performance of the steady-
state and transient models before moving on to discuss
then discusses the findings on various maneuvers carried
out under lateral or longitudinal excitation. The last section
includes conclusions and future work.

II. VEHICLE LATERAL DYNAMICS

The 2DOF bicycle model, a well-known vehicle lateral
model, provides vehicle lateral velocity and yaw rate based
on longitudinal and lateral tire forces, I, and F,. The lateral
dynamic is in the following form with the vehicle mass m
and moment of inertia I:

m (0 4+ ru) = Fypsind + Fyrcosé + Fy,
L7 = a(Fypsind + Fypcosd) — bF,,, (D

where u is the speed, subscripts f, 7 symbolize front and rear
tracks, a, b represent the distance of the front and rear tracks
from CG, J is the steering angle on the front wheels, and v, r
denote the lateral velocity and the yaw rate respectively. A
linear tire model suggests lateral forces at each track F,; =
Cosap, Fy. = Cq, ap, in which ay, ;. are the front and
rear slip angles, respectively, and C,,,, C,,, are the cornering
stiffness. Front and rear slip angles are related to the lateral
states v, 7 as o = 0 — %, Qp = ”’T_“ The steering angle
effect on the longitudinal/lateral forces can be ignored, and
the lateral dynamic equations can be simplified as shown in
[21]:

m (0 +ru) = Fyr + Fy,
Li = aF,s — bF,,. @

Consequently, the linear tire-vehicle handling model can be

Cu Cu
represented by @ = Az + B, where B = [ a—*]"
and
Co;+Ca, Co;—bCa,
- — (U )
A= aCo;—bCa, a’Co;+bCa, ) 3)
- ul, - ul,

in which the vehicle states are defined as z = [v(t) r(t)]%.

Under the constant velocity assumption, the stability of the
above time invariant system suggests the condition

I+ Kysu® >0, 4)
7m(aCaf 7bCaT)
1Co,Cu,

l = a+b. As pointed out above, the bicycle mod‘el is obtained
under the assumption that the relation between lateral force
and slip angle is linear. However, this assumption is not
always realistic. More specifically, the relation between the
kinematic variables (like slip ratio or slip angle) and the
forces of the tire is nonlinear in general. Moreover (3) is
independent of the slip ratio; i.e., the value of the longitudinal
slip ratio has not been considered there. In this paper, the

with the understeer coefficient K, = and

force components F, ¢ and Fy, are replaced with the LuGre
tire model, which captures the nonlinearity of the force-slip
relation. The effect of the pure and combined-slip models
has also been incorporated in this study, and the developed
lateral dynamics seems more practical to be used for the side-
slip angle estimator or the stability control. Consequently,
the derived lateral dynamics will lead to some specific
characterization and conditions for stability which can be
compared with those in (4). Two vehicles, an SUV and a
sedan, are used in this paper as examples to verify the lateral
responses. Specifications of these vehicle are listed in Table I.

III. LUGRE TIRE MODEL

This section formulates the averaged lumped LuGre fric-
tion model, which can be implemented in the lateral dynam-
ics.

Numerous studies on vehicle state estimation [22]-[25]
or stability analysis [15] have documented tire-road forces
even in the nonlinear region, represented by a group of
curves, among which, the most commonly used are those of
algebraic force-slip relationships such as Pacejka model [2].
Compared to other conventional approaches, e.g. Pacejka,
the LuGre model utilizes relative velocities v,, = R.w — u
and v,y = uc rather than slip ratio A = - and
slip angle o where w is the wheel speed and R, is the
tire’s effective radius. The passivity of the transient LuGre
makes it a bounded and stable model and prohibits the
divergence of both internal tire states and consequent forces
[26]. Accurate force results will be obtained by considering
normal force distributions over the contact patch and multiple
bristle contact points. The average lumped LuGre model
[27] symbolizes the distributed force over the patch line
with some simplifications of normal force distribution; rep-
resenting average deflection of the bristles, the tire internal
lateral state Z, in the average lumped LuGre model relates
the relative lateral velocity v,., = w« and tire parameters as:

00|y
0g(vry)
in which ( is the the axis coordinate. The rubber stiffness o
and road friction condition 6 are defined in Table I. The force
distribution along the patch line is represented by parameter
k in the average lumped model and can be a function of
time, a constant, or may be approximated by an asymmetric
trapezoidal scheme. The suggested value for x in [27] is
Kk = 2, where L is the tire patch length. Moreover, g(v;,)

GT’
is defined by:

Zy(Cot) = vy — ( +rR[w])Z, (C,1),  (5)

Yry |7

g(vry) = pte + (s — NC)e_‘ v | ) (6)

where the tire parameter 7 = 0.5 is assumed for the
distributed LuGre model [27] and p., i1 are the normalized
Coulomb and static friction, respectively. The Stribeck
velocity Vs shows the transition between these two friction
states. In the current study, identification of the LuGre tire
parameters was done using the experimental curves of the
Chevrolet Equinox standard tires and by utilizing an error
cost function and the Nonlinear Least Square method. The



tire curve resulting from the parameters identified in the
lateral direction is compared with the experimental tire
curve in Fig. .11 in the Appendix. The parameters listed
in Table I [28] will be used in this study, and they were
obtained using the nonlinear least square identification
method.

TABLE I: Vehicle Spec. & LuGre Model Parameters

Parameter Unit Value Description
00 [1/m] 181.5 Rubber stiffness
o1 [s/m] 0.9 Rubber damping
o2 [s/m] 0.001 Relative viscous damping
s — 1.55 Normalized static frict.
He -] 0.85 Front & rear axles to CG
Vs [m/s] 6.6 Stribeck relative velocity
K — 8.3 Load distribution factor
Parameter Unit SUvV Sedan Description
m lkg] 2270 1530 Vehicle mass
1, [kgm?) 4600 4192 Moment of inertia
a [mm] 1421 1320 Front axle to CG
b [mm)] 1438 1456 Rear axle to CG
Ca; [N/rad] 69800 70000  Front cornering stiffness
Ca, [N/rad] 69600 69900  Rear cornering stiffness

Equations (5), (6) are developed based on the pure-slip
condition, which cannot address the issue of decreasing
lateral tire capacities due to the longitudinal slip. The
combined-slip (direct correlation between the lateral and
longitudinal slips) LuGre model is proposed by Velenis [9],
in which the internal state z; , j € {z, y} for each direction
is described as:

éj = VUpj — Coj,?j — /@Re|w|2j, @)

M3ve|loo:
where Cp; = %, and M. = [tz 0;0  ficy].
The transient function g(vr) between the Columb and static

friction in the combined slip tire model is introduced in [29]
as:

[ MEvell | (IMEvel|  [IMZVell\ jiweijos
g9(ve) = - eVl
[ Meve|| [ Mgvel| |[[Mcvel|
®)
where M = [ptsz  0;0  pgy] and vy = [vpy  vy]7. The
final form of the normalized friction force ( p; = lfj - ) of the
zj
averaged lumped LuGre model with z = [z, Z,]" yields
[29]
W= 00Z+ 01Z + 02V, )

in which p,%,v,, € R? and can be described both in
longitudinal and lateral directions in the combined or uni-
directional slip models. The longitudinal relative velocity is
defined by v,, = AR.w and v,, = Au for the traction and
brake cases, respectively. In addition, the rubber stiffness

is 09 = [00x 0;0 09y, the rubber damping is o1 =
[012 0;0 01,], and the relative viscous damping is defined
by O = [ng 0,0 O'gy], in which 005, 01j and O2; are

the rubber stiffness, damping, and relative viscous damping
in each direction. These pure and combined-slip models
can be used in road-independent state estimation approaches

[30], will be incorporated in the lateral dynamics, and are
described in the next section.

IV. LATERAL DYNAMICS WITH THE LUGRE TIRE MODEL

In Section II, a linear tire model is assumed and used
to derive the lateral dynamic equation (3). However, this
assumption is not realistic due to the nonlinear nature of
tire-road interactions. After discussing the LuGre model
for both pure and combined-slip cases in Section III, we
incorporate it into the vehicle lateral dynamics (2) in this
section. This analysis leads to a formulation that captures
nonlinearities in the model as well as the pure and combined-
slip characteristics. The pure-slip model is addressed first. It
contains the steady state and transient assumptions. Then, the
combined friction case is investigated and the closed form
of the combined-slip with lateral dynamics is provided to
facilitate the stability analysis. The suggested formulations
are also useful for the control and estimation applications.

A. Lateral Dynamics with the Pure-Slip Condition

In this subsection both the steady-state and transient forms
of the pure-slip LuGre model (5) are incorporated into
the lateral dynamics (2), and formulae, are derived for the
linear part of the curves and the saturation/nonlinear regions.
Comparison of the steady-state assumption of the LuGre
model with (5) is left to the end of this section.

1) Steady-state LuGre model: 1If we assume the steady
state LuGre model (z,(¢,t) = 0) by defining new variables

pP= og(vry)v (10)

the normalized lateral force p, will be as follows with « as
the slip angle at each tire/axle. (Detail of this derivation is
provided in the Appendix)

p
fy = | ———— + 02 ) ua.
Y (UIaI +yp Y

To be able to write the state-space form of the lateral
dynamics based on the LuGre model, we need to analyze
the effect of the slip angle as discussed in the following
sections. For the case where |a| < 7yp/u, the normalized
lateral force (11) will be

1
ty =0 ;+02y uQ.

Here, 6 is employed with direct multiplication as an impli-
cation of the effect of road conditions. It helps in making
the suggested pure-slip formulation compatible with the real
tire model since the slope of the linear region of the force-
slip curve is a function of the road condition as studied in
the slip-slope method [31], [32]. Normalized lateral forces
of the pure-slip LuGre model and the linear part (that
resembles |a| < yp/u) are depicted in Fig. 1 for various
road conditions.

The lateral dynamics with the tire model can be expressed
as follows after putting the tire forces of each track F,; =

m (64 7u) = pypFap o+ pyr P

v = KkRew/0gy,

(1)

(12)

]zfzauyszf _b,uyerm (13)
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Fig. 1: Pure-slip LuGre lateral tire model

Several studies focuses on normal force calculation on each
axle using load transfer and acceleration measurements [28],
[33], [34]. Calculated normal forces on the front and rear
axles I,y and F., can then be utilized in (13) whenever lat-
eral/longitudinal acceleration measurements are available. To
reach a stability condition comparable with the conventional
understeer coefficient (4), a static normal load distribution is
used in this subsection, which results in the following vehicle
state form after substituting the corresponding lateral forces
from (12)

b b
0= —% (bky + aky)v — (alg (kf—kr)+ u) r+ Tgkfué,
. mabg mabg
7= T (kp —kg)v 1 (bky + aky)r +
(14)
where ky = 6 (% +02f) and k, = 0 (% +02T). Equa-

tion (14) represents a linear time-varying system for the
lateral dynamics with states # = [v(t) r(¢)]7 and front
steering; it is based on the LuGre linearized model for small
slip angles. To consider the nonlinear part, disregarding the
|a| < vp/u condition, one can rewrite the normalized lateral
force (11) at each corner

1
n (1+ 381)

where ¢ € {f,r} can be front or rear tires, p;,~y; are defined
in (10), u is the vehicle speed, and «; is the slip angle at
each track. The term k;ua represents the linear part (12),
and the second term shows nonlinear behavior of the lateral
force with respect to the slip angle. By substituting (15) in
the lateral dynamics (13), one will get ':

Hyi = ksuog — Uy, (15)

@ = A(t)z + B(t)d; + H(1), (16)

IFrom now on, since most of the matrices (state matrices or nonlinear
parts) contain time varying parameters w(t), the notations M, M(t) or
M (w) may be used for any matrix like M(.) interchangeably.

where B(t) = [ngkfu m“bgkfu]

and A(t) is defined by

—(“P (kg — kr) + )

17
m“bg(bk + aky) an

[k + aky)
mabg(kr _ kf)

.1
The components of H(t) representing the nonlinear region
are

2 (b oy L,
H(t)z[ M"%‘MM)], (18)

mabgu (¢faf Qbrar)

in which ¢ and ¢, are obtained as follows for the front and
rear tires, respectively

Pi 0
()
uloy| +vipi Vi

The linear part, A(t), of system (17) is parameter-varying
due to the varying wheel speed w(t) in v¢,v, and in k¢, k,
consequently. The stability of this system will be investigated
in Section V.

Remark 1: The linear part of the state-space (16) for
the pure-slip condition can be directly compared with its
traditional counterpart (3). O

Previously, we assumed that || < yp/u, which covers
the linear region from the spectrum of the behaviour of a.
Now, we discuss the convenience of the assumption |o| <
~vp/u for linearized lateral dynamics. In Fig. 2, we show the
effect of the slip angle « on || H (¢)]],
the nonlinear part (18) on the SUV with the specifications
summarized in Table I.

19)

IIH(t)II
253
zo
10-1
5,

0 O
f

Fig. 2: Effect of slip angle on ||H (t)|| for the pure-slip model
on dry, u = 54[kph)]

Figure 2 depicts the magnitude of the nonlinear term H (¢),
which is a bounded function of the front and rear slip angles.
Equation (16) can be utilized as a control system and an
appropriate controller to mitigate the effect of this nonlinear
term as discussed in Section VIL.

Remark 2: Equation (16) can be rewritten using normal
forces on each axle F.; and I, instead of utilizing the
static normal load distribution. This leads to the following
lateral dynamics:

&= Ap(D)x + Bu(t)d; + Hp(t), (20)



where B, (t) = [%kju al;—:fkfu]T and A, (t) is defined
by

F. F.
(B4 Bety) Mk, - 2Bty

An(t) = aF 2 a’F
b?fj"kr_ I:fkf _(bizrkr+ Izszf)
2y
The nonlinear part also changes to
% (Fz ¢ Oy + Fzr¢rar)
Hot)= | (22)
T, (anf¢faf - bFzr¢raT)
O

Remark 3: General form of the pure-slip vehicle-tire lat-
eral dynamics can be rewritten in a linear time-varying
system for large slip angle. In the case in which the slip
angles satisfy || > vp/u (large slip angles), the normalized
lateral force (11) will be p,, = psgn(«) + oayuc. Thus, the
nonlinear part H(t) can be written in a form that contains
states v and r. This is done by the assumption of |a| >
~vp/u, which simplifies the term 1+ yp/(uc) to 1. Thus, at
very high slip angles |«| > vp/u, the term H (¢) in (16) can
be expressed as:

H(t) = o (t)x + B(t)d (23)
where Z(t) = @[% 7}2“]T and </ (t) is
_A(171) —q1 _A(LQ) —q2—U
TO= A e a2 -a | Y

where A(i,j) is the (¢, 7)-th element of A in (17) and ¢’s
are:

0 fab
@ =7g(502f+a0’2r);Q2: lg(02f—0’27~)
Omab Omab
q3 = Ilg(sz*(Tzr);(M: Ilg(a02f+b02r),

(25)

Therefore, for large slip angles, the lateral dynamics has the
following linear form

#(t) = (A + )x(t) + (B + B)s. (26)

0

2) Transient LuGre model: In this part, the state space
form of the transient pure-slip case is derived and it is
concluded that the steady-state case, which will be employed
in this study, provides reasonable accuracy. The average
lumped LuGre model (5) for the pure-slip condition and

w > 0 can be expressed as z, = —&(t)z, + v, with
u
£t) =22 (L +1al), @)
p \u

and v, p defined in (10). The solution of (5) is

t
z, = 2,(0)e7® 1 / e €My, dr.  (28)
0

The condition |&| < vp/u for the linear part leads to
E(t) = ooy = KRew(t) which simplifies (28) to z, =
fg e~ #Rew((E=T)yadr, assuming zero initial condition.

Considering w(t) € [w;,w,] for all ¢ > 0 where w;,w,, are
the lower and upper bounds of the wheel speed together with
the fact that the above integral is an increasing function of
—kRw,t 5 —kRuwt
7 we have g2 (1—e "™ <z, < rro(l—e” wit),
Thus, the linear part of the normalized lateral force can be

written as follows

1 _ 1
fyi = 0 ’7 + GimRewt((fli — *) + 09; | uQy;
3 K3

= kiuai

with ¢ € {f,r}. By applying (29) in (13), the lateral
dynamics based on the pure-slip transient LuGre model
yields

&= Ar+ Bu+ H, (29)
in which A is the same as A in (17), but kg, k, should be
replaced with ky, k, respectively. The time-varying coeffi-
cients k £ k, are defined in (29) for the front and rear tracks.
Details of the calculation are provided in the Appendix. The
nonlinear part H is the same as in (18), but ¢ t, ¢ should
be replaced with ¢y, ¢, respectively, where ¢; = ¢; + ®;
and

Di —opiulaglt

_ 7)8 Pi
ulov;| + yipi

1
_ e*Uoi’Yite(O.li _ 7)

i

o, = e~ 00t (Uli
(30)

Therefore, the transient model converges very quickly to the
steady-state model. In (30) and (29), as time goes on, the
exponential terms will tend to zero. Thus, ®; — 0 and (29)
tends to (12).

The yaw rate response of the pure-slip steady state and
transient models (16) and (29) (with linear and nonlinear
terms) are depicted in Fig. 3 and compared with the linear
tire-vehicle model (3). The tested vehicle is the SUV pro-
vided in Table I, and the test is a step steer on a dry road
with longitudinal velocity u = 65[kph], and steering angle
d = 0.035[rad] on the front wheels. The transient and steady
state lumped LuGre models respond similarly to this input.

0.4

0.3f

= = = Steady-State LuGre
Transient LuGre

Yaw Rate [rad/sec]
o
N

0 2 4 6 8 10
time (s)

Fig. 3: Step steer, steady-state vs. transient LuGre model

The difference between the LuGre and the linear tire
occur because of the existing nonlinear terms in the Lu-
Gre, which correctly represent the lateral tire forces and
consequently provide a more accurate yaw rate and lateral
velocity responses. The cornering stiffnesses for each front
and rear tire in the lateral dynamic model (3) with linear



tires are considered, as Coy = 69800[N/rad] and Cu, =
69600[N/rad)] respectively. These values are compatible in
the linear region with the LuGre parameters provided in
Table 1. More results of the suggested steady state (16) and
transient models (29) and (30) are provided in Section VI,
specifically in Table II, and confirms the accuracy of the
steady-state approach.

B. Combined-Slip LuGre Model in Lateral Dynamics

The studies in the previous subsection and simulations
in Section VI show that the steady-state model provides
reasonable accuracy for several lateral tests, which makes
it a sound choice for implementation in the derivation of
the lateral dynamics with combined-slip friction and tire
nonlinearities. Subsequently, the tire-vehicle lateral dynamics
with the steady-state combined-slip LuGre model is devel-
oped in this part. A practical, closed form lateral vehicle-tire
model that includes combined friction characteristics and a
consideration of a slip ratio on each wheel is presented. This
is an advantage of the current formulation over conventional
lateral vehicle-tire approaches that assume pure-slip and
work with each track instead of each corner. A general
vehicle model, with two conventional degrees of freedom
v,r along with the longitudinal slip ratio A at each corner,
is utilized in this section and shown in Fig. 4.

Fig. 4: Planar vehicle model for the combined-slip analysis

The combined-slip scheme incorporates the effect of the
slip ratio, A, and slip angle, «, simultaneously at each corner,
which provides a more practical tire model. The steady-state
combined-slip LuGre model with w > 0 yields

_ Vry
znyRerM' (€29)

€ eg(Vr)sz
Putting the longitudinal relative velocity v,, = R.w — u

and lateral relative velocity v,, = ua in (31) and using (9),
one can obtain the following normalized lateral force of the
combined-slip LuGre model:

O’Oy

KRew + 33”(;{?

Loy = + 02y | ua, (32)

where = 120 [1+ (1A Retw/u0)?] and 1 = (pew /ey

1) Deviation from the pure slip condition: One can define
a metric to measure how far the system is from the pure slip
condition. This metric is in terms of the ratio between the
slip ratio and slip angle. More specifically, based on (32), we
introduce AR.w/uc as a metric that can be used to identify
this distance. For pure slip, i.e., AR.w/uc < 1, equation
(32) changes to (11), which was investigated in the previous
subsection. On the other hand, when AR.w/uca > 1, (32)
can be written as

p
= +02>ualCuoz,
Y (dA-+7p v

in which € = nR.w. This represents a linear force-slip angle
relationship for the large slip ratios, as illustrated in Fig. 5
by dashed lines. Equation (33) also substantiates the linear

(33)
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Fig. 5: Normalized lateral forces, combined-slip model, on
a dry road @ = 1 with longitudinal speed u = 20[m/s].

characteristics of all combined-slip tire curves for small slip
angles «; as shown in Fig. 5.

2) General form of the combined-slip model: The general
form of the lateral LuGre tire forces in (32) with the
combined-slip condition, can be rewritten as

(34)

oy = ( P + 02 )ua
Y\t e 4y

Since this is a combined-slip model, the wheel speed and slip
ratio at each corner (wheel) make a significant contribution in
the lateral forces and the lateral dynamics. This contribution
is considered when implementing both the linear part and
general form (34) of the lateral force and static normal force,
F,;, distribution at each corner, which results in

&= A'(t)x + B'(t)65 + L(t), (35)
where B'(t) = [ngPfu ﬁi?gpfu]T, and A’'(t) is
SL(bPs +aP,) —(%L(Py —P,) +u

wip= |BPrTar) SEP PO g
2.1 (Pr=Py)  — 2.1 (bPr + aPy)

where Py = k}»l + k:}r, P, = k., + k.. The parameters k;s
are defined at each corner ¢ € {fl, fr,rl,rr} independently:

ky = M (37)
€|\l +vipi



The nonlinear term L(¢) can be written as follows with Q¢ =
My 4+ My, and Q, = M, + M, for the front and rear
tracks:

(38)

bguay »
L= | o e
o (apQp — rQy)

\/u?aeref)\?
where p;,~y; are from (10), N; = =, and M; =
1

+— — k; + o9y, for each tire separately. Fig. 6 represents

the effect of the slip angle « on the Euclidean norm of the
nonlinear parts (38) on the previously tested SUV.

Lo

Fig. 6: Effect of slip angles on || L(t)||, combined-slip model
on dry, u = 54[kph] and A = 25%

Remark 4: Considering suspension dynamics and the load
transfer, instead of the static normal force distribution, nor-
mal forces at each corner Fl.y, F.fp, Iy, I, are calcu-
lated in [28], [34]. The combined-slip tire-vehicle lateral
dynamics (35) can then be rewritten utilizing normal forces
as

&= A, (t)x + B, (t)d; + Ly (1), (39)

where By, (t) = [P §“Ppal” and Aj(t) is described
as follows

%(,an + Prn)
i(b'Pm —aPsn)

_(%an - %,Prn + u)

I
An(t) = — L (a2Py + 1Ppn)

)

(40)

in which an = szlk}l + szrk}r’ Prn = zrlk;‘l +

F,.-k.... Subsequently, the nonlinear term L,,(¢) changes to:
It u%gfn + %an

n( ) a m;?f an - b%(jr an ’

where an = szl./\/lfl +szr./\/lfr and Q,y, = Fopy M, +

F, ..M., for the front and rear axles. O

(41)

V. STABILITY OF THE PURE AND COMBINED SLIP
MODELS

This section provides the speed conditions under which
the linear part of the pure-slip and combined-slip models
(16), (35) are asymptotically stable. First, the stability with
the time-invariant assumption is investigated and speed limit
criteria are provided, then quadratic and affine quadratic
stability of the parameter-varying case is explored. It is

demonstrated that the notion of the affine quadratic stability
will give less conservative conditions than the quadratic
stability for the lateral dynamics.

A. Time-Invariant Case

1) Pure-slip model: The stability of the linear part of the
system (16) with the pure-slip time-invariant assumption, i.e,
constant longitudinal velocity u, can be addressed with the
Hurwitz criterion on the state matrix A in (17). Having neg-
ative eigenvalues yields mysu? > mx2 — x1x3/l.. Clearly,
if xo > 0, (i.e ‘;—(’: > i%f), there will be no constraint on the
longitudinal speed u. This resembles the case K, > 0 in (4)
for the conventional bicycle model with linear tires. However,
with the tire parameters provided in Table I, x2 < 0 and this
results in the following speed limit:

I
w2 < Yo — X1X3 z, (42)

mxz2
where yi = § (%22 4 920m) vy = %9(%= — S00) and

X3 = ”ﬁfg (“Ziif + b:—g) This is analogous to the stability

o _l
condition u < 174

case (3) Using the LuGre model parameters provided in
Table I, the speed criteria yields u < 63.8[m/s], which is
close to the u.. = 66[m/s] obtained by the condition (4)
for the bicycle model, which has tires similar to the linear
LuGre model tires.

2) Combined-slip model: The stability of the assumed
time-invariant combined-slip state matrix A’ in (35) can be
investigated similar to the pure-slip approach by introducing
s; at each corner having the longitudinal slip ratio A;:

(1= Xi)pi

§; = ——
! 77|)\7;|+%;

for the conventional time-invariant

(43)

where i € {fI, fr,rl,rr}. Then, the stability condition leads
to mIyu? > mI‘% —I'1I'3I, where:

Ty =2 (b(ssi + s52) + als + 500))

21
ab
2= 279(571 + Srr = Sp1— Sfr)
mab
I's = T]’g (a(Sfl + Sfr) + b(Srl + Srv')) (44)

Clearly, if I'y > 0 (this depends on the slip ratio as well as
the tire parameters at each corner), there is no criteria for
the longitudinal speed that is unfeasible in practice. Having
I's < 0 result in:

IS
mFQ '

u® < Ty — (45)
The conditions (42), (45) are defined for the time-invariant
case, which may seem reasonable at each time step with
constant speed, but the system is time-varying in practice.
Consequently, the following two subsections investigate the
stability of the parameter-varying lateral dynamics with the
pure/combined slip LuGre tire model using the quadratic
stability approach for LPV systems.



B. Quadratic Stability

The quadratic stability of the system is analyzed in this
section. The linear parts of (16) and (35) are in the following
form

o(t) = A(w)a(t),

which is an LPV system due to the time-varying angular
velocity w(t). Thus, evaluating the eigenvalues does not lead
to asymptotic stability. Instead, the following proposition is
valid

Proposition 1:
system

(46)

[35] The following linear time-varying

i(t) = G(t)x(t),

is exponentially stable if A < 0, with a convergence rate of
, Where
< G(t)+G* (1)

A= ma il 2

(47)

)

According to Proposition 1, system (46) is exponentially
stable if A\;(A(w(t))) < O for all ¢ > 0. Thus, by a
converse theorem for Lyapunov stability [36], one can con-
clude that there exists a quadratic Lyapunov function for
(46). However, for the simplicity of the linear system, the
quadratic Lyapunov candidate is assumed to be in the form
of V(z(t)) = 3x(t)" Px(t) for some P > 0. The derivative
of the Lyapunov function along the state trajectories leads to
the following condition for some @ > 0:

V(J;(t)) = (Ax(t))TPx(t) + ()T P(Az(t))

= —a(t)" Qx(t), (48)
This can be written as

V(x(t)) = —2(t)" Qu(t) < —Amin(Q)z(t)" x(t)
< 2min(@) T o) = —aV(a(t)), @9)

o )\maa:(P) ’
where o = )\((% > 0. By choosing P = I, one gets
Qw) = —f(A( )+A(w)T), which is the same as the matrix

introduced in Proposition 1. Matrix Q(w) is the symmetric
part of A(w), and from now, it is denoted by A,(w). Note
that the stability of As(w(t)) is a sufficient condition only
for the stability of (46). In other words, the system (46)
may be stable while A4(w) is unstable. To find a physical
condition (interpretation) for the current time-varying linear
lateral models (17) and (36) similar to the condition (4) in the
2DOF bicycle model, the stability of the symmetric A, (w) =
M and A (w) = M is studied in this
subsection for both the pure and combined-slip approaches.

1) Pure-slip model:: For the stability of Ag(w)axo, it is
necessary and sufficient to have Tr(A;) < 0 and Det(A;) >
0 for all £ > 0. Satisfying these two conditions leads to the
following longitudinal speed criteria:

VX1X3
u

X4 U
=<
5|

where x4 = “Tblg (t;of _ %f) (14 7).

(50)

2) Combined friction model: The same methodology
used for stability of the assumed time-varying symmetric
matrix A’ is used for the combined-slip case that leads to:

VI
\f -5l <=2 (51)
in which I'y,T's, 'y are provided in (44) and
ab
Iy = 2lg(1 + 7 )(Srl + Spr — Sp1 — Sfr) (52)

One can compare the criteria (50) for LPV pure and
combined-slip systems with their counterparts (42) for time-
invariant systems and with (4) for the bicycle model. How-
ever, the stability of Ag(w) and A’(w) is a conservative
sufficient condition for the stability of (46). Consequently
(50) and (51) for both pure and combined-slip cases, suggest
conservative conditions for the maximum longitudinal speed.
The following section provides another approach for the sta-
bility of (46), which consequently reaches a less conservative
limit on w. Limits for the speed and slip ratio based on
the quadratic stability of the time-varying pure/combined-slip
models are listed in Tables III, IV. These limits are compared
with the affine quadratic stability case be studied in the next
section.

C. Affine Quadratic Stability

To find a less conservative condition than the asymptotic
stability of the symmetric matrix As(w) and to check the
possibility of stability at greater speeds, the affine quadratic
stability of linear parts of the time-varying systems (16), (35)
is studied here, using the notation of (46) with the initial
condition z(0) = x¢ for all ¢ > 0. The state matrix A(w)
is said to be affinely dependent on the parameters w when
known and fixed matrices Ay and A; exist such that A(w) =
Ap+wA;. The time-varying parameter and its derivatives are
in the sets wj, € [wy,w,] and w, € [w;,w,] respectively.

Theorem 1: [37] The linear system (46) is affinely
quadratically stable over all possible trajectories of the
parameter vector w(t) if A(w,,) is stable (w,, is the average
of parameter span) and there exists an affine positive definite
Lyapunov function V(z,w) = 2T P(w)x with P(w) =
Py + wP; > 0 such that dV(w,w)/dt < 0 for all initial
conditions x(y and the additional multi-convexity constraint
ATP, + PiA; > 0 holds [38]. The condition V <0
resembles

A" (wp) P(wp) + P(wp) A(wp) + P(wp) — Py <0 (53)
for all (w,w) € S, xS, where S, is the set of vertices of the
parameter box [w;, w,] and S, is the set of corners of the rates
[wWi, wy]. The affine quadratic stability condition implements
the variation rate w(t), which makes it less conservative than
the quadratic stability criteria. O

Proposition 2: The linear part of the lateral dynamics (16)
and (35) are affinely quadratically stable with respect to the
parameter w(t) € [wy,w,] for all ¢ > 0 for some wy, wy,.



1) Pure-slip model: To show the above proposition for
the pure-slip model, we rewrite the state matrix A(w) in an

affinely dependent form, and we use k; ~ —7*— since o3
is small for both front and rear tires:
0 —u _ X1 2xal-
Aw) = [o 0 ] 0| sy TR G4
(m+1:)Re Re

where w = wi The introduced wheel speed @ is a bounded

variable with an operating region of w € [wi, w%] The rate
of variation is also bounded between & € [wi, wi] The

affine matrix P(w) = Py + w1 P can be found numerically,
such that (53) holds and AT P, + Py A; > 0. LMIs (53) are
solved with Matlab, and the stability of the linear part of
the system (16) is guaranteed with the substitution of the
operating region ||w|| < 160[rad/s| and the rate of change
||| < 700[rad/s?] with sampling frequency 200[H z].

2) Combined-slip condition: Affine quadratic stability
can also be investigated for the combined-slip model, as
shown in the following paragraph. Equation (36) can be
rewritten as an affine linear parameter varying system such
%A@):Am+@Wh+@ﬁAyHMﬁ3+@ﬂhwmm

w; = 1/w;. With G; = A(@w) can be
expressed as:

- 0 —u _bg -1 ¢
A(w) = [0 0 :| "rizwilggh [_ma _W]

1. I,
_ag, |71 b
Jrzwig?lgzg [m me]
io I.

00iP;
U
NiReooi|Ni|+KRep)’

(55)

IZ
in which iy € {fl, fr}, iz € {rl,rr}.
VI. RESULTS AND DISCUSSION

Independent simulations are carried out in this section
using the steady-state and transient LuGre tire models with
the pure and combined-slip assumption. Stability of the
suggested parameter-varying lateral models is also explored.
The vehicle selected for the first test is a Sedan with the
specifications listed in Table I. A standard double lane change
maneuver with the maximum steer angle of 6 = 0.0525[rad)]
on the front wheels is examined and the lateral velocity
response with w = 70[kph] on a dry road is depicted in
Fig. 7. The response of the system with the linear tire model
is compared to the complete (both linear and nonlinear parts)
steady state and transient pure-slip models (16), (29).

As can be seen in Fig. 7, the steady-state model demon-
strates good accuracy (compared with the transient one).
The predicted larger lateral velocity for the LuGre models
is due to the fact that the saturation, nonlinear regions,
and consequently, tire capacities are considered in these
approaches, but the linear tire model has no capacity or limit
on lateral forces.

The pure-slip model (5) can also be employed for the
longitudinal direction. The performance of the pure-slip
longitudinal LuGre model is studied in Fig. 8. The maneuver
is successive acceleration and brake with initial speed of
u = 40[kph] and no steering on dry road. The longitudinal
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Fig. 7: Lateral velocity, pure-slip SS and transient model

forces with the pure-slip LuGre model on the front left tire
are depicted in Fig. 8.
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Fig. 8: Transient vs. steady state model, longitudinal forces
in acceleration/brake

There are deviations between the steady-state and
transient model near the acceleration and brake points due
to not considering the transient response in the steady-state
approach, but the performance of the steady-state model
is good as quantified in Table II for different maneuvers
and vehicles. To summarize, the RMS of the error between
the transient and steady-state LuGre models are listed in
Table II for two vehicle models. The step steer and double
lane change maneuvers are denoted by S-Str and DLC,
respectively. Deviations of the steady-state (SS) front tire
internal state z,; and the slip angle o from the transient
ones with the pure-slip condition are reported in Table II as
well.

TABLE II: Steady State Model Error RMS

Maneuver v T
SUV; S-Str 6 = 0.03, ugz = 60kph 0.21% 0.23%
SUV; S-Str § = 0.03, ugy = 90kph 0.57% 1.2%
Sedan; DLC § = 0.052, u, = 80kph  0.8%  1.64%
Sedan; DLC 6 = 0.075,u; = 80kph  2.17% 2.6%

Maneuver Zyf af

SUV; S-Str § = 0.03, ug, = 70kph 0.4% 0.36%
Sedan; DLC § = 0.03, u, = 80kph 0.6%  0.72%
Sedan; DLC § = 0.075, u, = 80kph  1.47% 1.6%

As seen in Table II, the SS model exhibits good accuracy
in slip angle and z,¢, which are correlated with the lateral



states v and r. It substantiates that the states calculation error
produced by the SS model with the pure-slip assumption
is negligible in such DLC and S-Str driving scenarios. To
compare the results of the linear part of the suggested pure-
slip model (16) (PS, Lin. LuGre), the linear part of the
proposed combined-slip model (35) (CS, Lin. LuGre), the
complete form (linear and nonlinear) of (16) (PS, NonLin.
LuGre), and the conventional linear bicycle model (3) (Linear
tire), a standard double-lane change maneuver is performed
on the SUV with parameters provided in Table I. The lateral
velocity results of the test on a dry road with speed u =
54[kph] are illustrated in Fig. 9. The maximum steering angle
i8 0;naz = 0.07[rad)] on the front wheels, and the longitudinal
slip ratio is A = 20% for the combined-slip model.
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Fig. 9: Double-lane change, LuGre vs. the linear tire model

It can be concluded from Fig. 9 that the linear tire
model provides the same response as the linear part of
(16). Thus, the tuned LuGre parameters in Table I are
compatible with the cornering stiffness of the linear tire
model. This compatibility is also confirmed by Fig. .11,
which shows correspondence between the experimental tire
curve and the LuGre model with the identified parameters in
Table I. As predicted by the model, the slip ratio significantly
affects tire capacity and results in higher lateral velocity.
The expected lateral tire forces of the combined-slip model,
even with the linear part, are smaller than those of the
complete LuGre (linear and nonlinear) model with pure-slip
assumption. Thus, the predicted largest vehicle’s side-slip
angle 3 at CG for the combined-slip model with the linear
part is B¢ 1in, = 5.15°, which is higher than the acceptable
margin S = 5° and suggests marginally stable condition. On
the other hand, the complete form (linear and nonlinear) of
the pure-slip LuGre model exhibits 85 nontin = 2.7° that is
within the allowable side-slip angle margin.

Figure 10 illustrates the lateral velocity of the same SUV
using the developed pure and combined-slip models (denoted
by PS and CS in the figure) on a slippery road with § = 0.4
and speed u = 47[kph]. The combined-slip results are plotted
as well for the longitudinal slip ratio A = 25%.

Figure 10 confirms the reducing effect of the longitudinal
slip ratio on the lateral capacity of tires. A higher slip ratio
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Fig. 10: Step steer, pure/combined-slip LuGre vs. the linear
tire on a slippery road § = 0.4

reduces the tires’ lateral forces and leads to higher lateral
velocity and consequently large and unstable maximum side-
slip angle Scs rin = 10.6° on the slippery road.

Example 1: The SUV with the parameters introduced in
Table I is selected here to show the difference between the
outcome of the quadratic stability and the stability of the
symmetric matrix A(t). The critical speed obtained by (50),
which is the location of the eigenvalues of symmetric matrix
Ag(t) is u = 12.4m/s on a dry road, but the affine quadratic
stability condition (53) with the multi-convexity constraint
al' P + Pia; > 0 and P(w) > 0 suggests u = 39.1m/s
with:

0.39 —0.37w  0.008 — 0.009c0

P@) = 0.008 — 0.009w 0.024 — 0.014w

(56)
This confirms that the affine quadratic stability provides
a more practical stability condition than the stability of
the symmetric matrix A,(t), which is conservative. The
maximum allowable speed are compared for the three
stability criteria in Table IIl in which LTI, LG and LTI,
L-tire represent the time-invariant stability conditions (42)
and (4) on the lateral dynamics with the linear LuGre and
conventional linear tire models respectively. The quadratic
and affine quadratic stability conditions are denoted by QS
and AQS respectively.

TABLE III: Speed limits for the pure-slip case

Maneuver LTI, L-tire LTI, LG [N AQS
Dry road § =1 66m/s 63.8m/s 11.3m/s  42m/s
Dry road 6 = 0.5 46.7m/s 44.7m/s 7.9m/s  29.4m/s

Example 2: The stability of the symmetric matrix A ()
and the quadratic stability criteria of the affine system (55)
are compared in this example. The same vehicle is tested with
the combined-slip LuGre mode. The affine quadratic stability
condition (53) on the affine system (55) (with independent
wheel speed at each corner) suggests the following sym-
metric matrix P(w;) with p; = 1.84 — 1.03w; + 0.0007@,,
p2 = —0.29—-0.065w ¢ +0.53@, and p3 = 0.845—0.5600¢ +



0.254®,. on a dry road with A = 20%:

(@) pa(w)
P@) = [pz(@) ps(@i)} G7)

in which @y = @y + Ofp, W = Wpp + Wppr. This stability
criteria suggests the maximum speed u = 19.6[m/s|, but the
stability of the symmetric matrix A’,(¢) yields the maximum
speed u = 8.1[m/s]. The maximum allowable longitudinal
slip ratio A4, and the maximum speed are compared for
the two stability criteria in Table IV.

TABLE IV: Speed and A limits for the combined-slip

Maneuver oS AQS
Dry road 6 = 1,u = 10m/s Amaz = 15% Amaz = 34%
Wet road 6 = 0.5,u = 8m/s Amaz = 31% Amaz = 49%

Dry road 6 = 1, \ = 20%
Wet road 0 = 0.5, A = 40%

Umaz = 8.1m/s
Umaz = D.TM/s

Umaz = 19.6m/s
Umaz = 13.8m/s

The first two rows provide the limit for the longitudinal
slip ratio, A4, on both dry and wet roads, with constant
speed. The maximum speed, 4., for a constant slip ratio
on different roads is suggested in the third and fourth
rows. Table IV reveals the conservative characteristics of the
stability criteria on A’ ()

VII. CONCLUSION

The purpose of this paper has to address the nonlinear
and saturated tire behaviors as well as linear region in
lateral vehicle dynamics. Two main developments have been
adopted for the tire-vehicle lateral state space model: a)
incorporation of both steady-state and transient LuGre tires;
b) employing the pure and combined-slip models. Based on
the developed tire-vehicle lateral dynamics and simulation
results, the following conclusions can be made:

Application to control/estimation: the novel methodology
presented in this article and the suggested general forms
of the tire-vehicle lateral models (16) and (35) provide a
framework to achieve analytical solutions for control and
estimation problems. This has a significant advantage over
the cascaded methods that need slip ratio/angles to calculate
forces (in a tire model) and then to get vehicle states by
solving lateral dynamics and calculated forces.

Transient vs. steady-state LuGre model: A closed form
solution for the transient LuGre model was developed in
(29). This solution converges to the steady state LuGre model
response with negligible deviations as shown in Tables II.
The steady state LuGre model can be used effectively in
vehicle stability analysis with insignificant impact on the
results.

Lateral dynamics with the pure/combined-slip models:
The interaction of longitudinal and lateral slips and their
effect on the lateral dynamics were fully studied in this
article. Equation (16) provides a general form of the pure-slip
lateral dynamics in which the linear part is isolated from the
nonlinear. The vehicle dynamics assuming a combined tire
slip is presented in (35). This equation can be used to predict
accurately the vehicle’s lateral stability when tires are in

their nonlinear and saturated regions. Therefore, controllers
and state observers can be designed based on the closed
formulations (16) and (35) of the tire-vehicle model delivered
in this paper.

Normal force incorporation at each corner: one significant
advantage of the suggested model is that it can be used
whenever normal forces at each corner are available; see
(20) for the pure-slip case and (39) for the combined-slip
friction model.

Large slip angles: for large slip angle cases, the nonlinear
part H(t) in (16) yields a form that contains states (lateral
velocity and yaw rate). Thus, the general form (linear and
nonlinear parts) of the pure-slip condition can be rewritten
in a linear parameter-varying system provided in (26), which
is practical for the stability analysis or control applications.

Stability, time-invariant case: different stability criteria for
the derived lateral dynamics were explored and compared
with that of the bicycle model. For the time-invariant case,
speed limit criteria (42) and (45) are suggested for the pure
and combined-slip cases respectively.

Stability, time-varying case: The quadratic stability (QS)
of the linear parts of the time-varying pure/combined-slip
lateral dynamics was investigated and speed limits for the
pure and combined-slip models were suggested in (50) and
(51). Furthermore, the time-varying systems (16), (35) were
rewritten in the affine parameter-varying forms (54), (55)
with a proper variable change and affine quadratic stability
(AQS) was studied to find a less conservative condition
than the QS. The AQS suggests more practical speed limits
guaranteeing the quadratic stability of the proposed tire-
vehicle lateral model.

APPENDIX

A. LuGre parameter identification

The LuGre tire parameters are obtained by fitting to the
experimental tire curves with the Nonlinear Least Square
method and the result is shown in Fig. .11 for the normal
force of F, = 4.5[kN] on a dry road. Identified parameters
are also listed in Table I

B. Derivation of Eq. (11)

The lateral internal state of the LuGre tire model for the
steady-state z, = 0 pure-slip condition can be written as:

P — (B.1)

oy |[Vryl
0g(vry) + KRew
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Fig. .11: Lateral LuGre tire curve and the experimental tire
curve

The relative lateral velocity is v, = uc. The the normalized
lateral force yields:

Hy = O0yZy + O2yUry

1

=|———+0 uQ
u|af KRew T 2y

0g(vry) Toy

B p/u
- (|a| Fpiu ") e

where 0y, and oy, are rubber stiffness and relative vis-
cous damping defined in Table I, p = fg(vyy), and v =
KRew/o0y.

(B.2)

C. Lateral dynamics with the transient LuGre model

The lumped LuGre model (5) can be written as:

5, :w_(m

0g(vry)
Oy U| Y
_ (O-Oyfy + prl) Zy + Upy

oyt (Y _
_ _“oy™ (7/7 + |Oz|) Zy +Ury
p U

= —E(t)Zy + vry

+ kRe|w)|)Zy

(C.1)

which has the solution z, = [} e=¢(M(=7)y, dr, assuming
zero initial condition. After integrating and substituting Z,
and z, into the normalized force equation p = ogyz, +
UlyzLy + 09y, the following lateral normalized force will
be obtained for the transient LuGre model:

_ L ulagl 1
UGyi =€ Uo(’vﬁ‘ i ) UU_W UQ;
Yi 0 C2
e (C2)
+ W +O‘2Z"LLO(Z‘.
Yi+ =

The linear part is proposed is extracted as follows with the
road condition 6 and the slip angle «; at each tire.

1 1
fyi = [ + e—mRewt (Uli — ) + O’2{| Ouc;. (C.3)
i i

Thus, the nonlinear part can be described as

n 0 Pi —ogiulaglt
¢i=e (01 — —————)e " |uq;
ulov| 4 ips

(7 3)
| Juw
ulal+py

— 67001‘%159(0'11‘ — l)U,Oél
Therefore, ¢; can be defined as ¢; = ¢; + ®; where ¢; and
®, are provided in (19) and (30) respectively. Substituting the
general form of the transient LuGre normalized force (C.2)
into the lateral dynamics (2) yields the following lateral state
representation:

0 2(bky + ak,) —(22(ky — ko) +u)] [v
Pl Bk — k) TS (O, + aky) | |7

(C4)

+ ng];fu I %b(b(gf_o‘f + a‘z_rar)
itk mebt (Grary — Grar)

(C.5)

where k¢ and k,. are defined in (29) for the front and rear
axles.
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