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ABSTRACT

Shading attachments may have a strong influence on solar
gain. The determination of off-normal solar optical properties
of individual layers of glazing/shading systems is required in
order to estimate this solar gain, which influences building
peak load and annual energy consumption. Recently, a unique
test method was developed for the experimental determination
of off-normal solar optical properties of flat shading devices
(e.g., drapery fabrics and roller blinds). The study described
in this research applies the same method to insect screens.
More specifically, semi-empirical models were developed from
measured data, obtained at varying angles of incidence using
an integrating sphere installed in a spectrophotometer. The
measurements were taken on six samples of screen material
with various mesh sizes and wire reflectances. The measured
data were compared with analytical models recently developed
[from geometry and ray tracing techniques. The results of this
study demonstrate the reliability of using special sample hold-
ers attached to an integrating sphere to obtain off-normal solar
optical properties of flat shading materials.

INTRODUCTION

Building energy consumption constitutes approximately
40% of the total energy used in the US (DOE 2004). It has also
been estimated that about 25 billion dollars per year is tied to
the thermal performance of windows (DOE 2004). Due to
rising costs of conventional hydrocarbon fuels, there is an
increased interest in conversion from conventional to clean
and environmentally friendly sources of energy. The first step
in this conversion is conservation. Improved thermal perfor-
mance of windows, therefore, offers great potential.

John L. Wright, PhD, PEng
Member ASHRAE

Michael R. Collins, PhD
Associate Member ASHRAE

In pursuit of energy conservation, shading devices such
as venetian blinds, roller blinds, and draperies can be used to
control solar gain. Their potential for reduction of cooling
load and annual energy consumption is recognised to be large
(e.g., Grasso and Buchanan [1982] and Harrison and van
Wonderen [1998]). In addition, insect screens are frequently
attached to windows, particularly in residential buildings, and
recent studies have revealed that insect screens have a signif-
icant influence on solar gain (e.g., Brunger et al. [1999]). By
using a solar simulator-based test method, Brunger et al.
(1999) noted that a typical insect screen attached to a window
reduced its solar heat gain coefficient (SHGC) significantly.
Their test results showed that when the insect screen was
placed on the outdoor side of a double-glazed window, SHGC
was reduced by 46%. On the other hand, SHGC was reduced
by 15% when the insect screen was placed on the indoor side
ofthe window. In light of the aforementioned observations, an
insect screen can be classified as a shading device and could
be used to control solar gain.

Shading layers are often characterised by the assumption
that each layer, whether homogeneous or not, can be repre-
sented by an equivalent homogenous layer that is assigned
spatially averaged “effective” optical properties. This charac-
terization of shading layers was used in a number of studies
(e.g., Parmelee and Aubele [1952], Farber et al. [1963],
Pfrommer et al. [1996], and Yahoda and Wright [2005]) and
was shown to provide accurate optical properties of venetian
blinds (Kotey et al. 2008).

The use of effective optical properties and a beam/diffuse
split of solar radiation in multilayer systems provide virtually
unlimited freedom to consider different types of shading
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layers. This approach also delivers the computational speed
needed in the context of building energy simulation.

The most recent characterisation of screens is reported in
the EnergyPlus reference manual (DOE 2007). Off-normal
solar property models were developed for building energy
simulation using analytical and ray tracing techniques. The
models are based on the orthogonal crossed cylinder geometry
with known wire diameter, wire centre-to-centre spacing, and
wire reflectance. The models assume that the wire diameter
and wire spacing are the same in both directions. For a unit of
incoming beam radiation with known direction, the models
account for both undisturbed flux going through the openings
of the screen and intercepted flux. More specifically, the
undisturbed flux constitutes the beam-beam transmittance.
The portion of the intercepted flux that is not absorbed is scat-
tered and leaves the layer as an apparent reflection or trans-
mission. The portion of the intercepted flux not absorbed and
emerging in the forward direction gives rise to beam-diffuse
transmittance, and the flux emerging in the reverse direction is
the beam-diffuse reflectance. The beam-diffuse transmittance
model was “empirically” formulated by curve-fitting results
from an optical ray tracing algorithm. The ray tracing algo-
rithm is based on the assumption that the wire reflectance is
diffuse. The beam-diffuse reflectance is a function of the
beam-beam transmittance, the wire reflectance, and the beam-
diffuse transmittance. The diffuse-diffuse transmittance and
reflectance models are simply hemispherical integrations of
the beam-total (beam-beam plus beam-diffuse) transmittance
and beam-diffuse reflectance, respectively.

A measurement technique was devised to obtain the off-
normal solar optical properties of flat shading devices (Kotey
etal. 2009a, 2009b). It involves the use of special sample hold-
ers attached to an integrating sphere installed in a commer-
cially available spectrophotometer. The integrating sphere is
particularly useful since it can separate the undisturbed and

Table 1. Description of Insect Screen Samples
Mesh Size, Wire Wire
Item per in.2 Diameter, Spacing, Colour
(cmz) in. (cm) in. (cm)
150 0.0026 0.0067 a
(23) (0.0066) (0.0170) gray
b 120 0.0026 0.0084 a
(19) (0.0066) (0.0213) gy
. 20 0.0160 0.0518 a
3) (0.0406) (0.1315) gray
d 60 0.0045 0.0169 a
) (0.0114) (0.0429) gy
. 20 0.0100 0.0521 blue-era
3) (0.0254) (0.1323) gray
£ 26 0.0060 0.0414 charcoal-
4) (0.0152) (0.1052) black
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scattered components of incident beam radiation. Cosine
power functions were used to approximate the measured solar
properties. The cosine power function was chosen for several
reasons, including simplicity. The cosine function is also
symmetrical, having zero gradient at 6 =0 (normal incidence).
It has maximum and minimum values at © = 0 and at 6 = 90°,
respectively. Also, the shape of the curve can be modified by
changing the value of the exponent. Given the solar optical
properties at normal incidence, the semi-empirical models
were developed to characterise the off-normal properties of
drapery fabrics and roller blind materials (Kotey et al, 2009a,
2009b).

This paper summarises the results of research that used
the same measurement technique to determine the off-normal
solar optical properties of insect screens. The solar optical
properties models obtained in this study can be used in multi-
layer glazing/shading layer calculation modules of building
energy simulation tools. To further demonstrate the reliability
of the measurement technique, measured data were compared
with analytical models, showing good agreement.

TEST SAMPLES

Measurements were taken using six different samples of
screens, as summarised in Table 1. Each screen is made of
stainless steel wires that are woven to form an orthogonal
mesh. The wires can be woven loosely, leaving significant
open areas, or woven tightly with small openings. The screen
samples considered represent a wide range of geometry and
wire reflectances. Samples a through d are made of unpainted
stainless steel wire with a metallic gray surface. Samples e
and f are commercially produced insect screens with colored
surfaces. The samples are shown in Figure 1.
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Figure 1 Insect screen samples: a)150 mesh, gray, b) 120
mesh, gray; c¢) 20 mesh, gray, d) 60 mesh, gray,
e) 20 mesh, blue-gray; f) 26 mesh, charcoal-black.
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When beam radiation is incident on the surface of an
insect screen, it is split into two portions: the undisturbed
portion transmitted through the openings and the intercepted
portion—some of which will be scattered in the forward direc-
tion (i.e., transmitted) or scattered in the reverse direction (i.e.,
reflected). The scattered components, regardless of their true
directional nature, are categorised as purely diffuse. This is
done because the models presented here will be used within a
multilayer glazing/shading model where beam and diffuse
components of solar radiation are tracked (Wright and Kotey
2006). The undisturbed portion constitutes the beam-beam
(specular) transmittance, t,,. At normal incidence, t,, is
equivalent to the openness factor, 4, = 1,,(6 = 0), defined as
the ratio of the open area to the total area of the material. The
intercepted radiation is scattered by multiple reflections
between the wires. The portion of the intercepted radiation
that is not absorbed by the wires subsequently emerges in the
forward direction as beam-diffuse transmittance, t, ,, orin the
backward direction as beam-diffuse reflectance, p,,. The
beam-total transmittance, t,,, is the sum of t,, and 7,,.
Reflectance measurements show that insect screens generally
have a negligible specular component; hence, the beam-beam
(specular) reflectance, p,,, is zero. The beam-total reflec-
tance is therefore equal to the beam-diffuse reflectance,
Py, = Ppg- Incident diffuse radiation is presumed to remain
diffuse in transmission or reflection and the corresponding
diffuse-diffuse properties are p,,; and ;.

EXPERIMENTAL PROCEDURE

The experiments were performed with an integrating
sphere (IS) attached to a double beam, direct ratio recording,
rapid scanning spectrophotometer. The IS is a hollow, 110 mm
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(4.33 in.) diameter sphere with a highly reflective inner
surface. This surface is designed to give uniformly diffuse
reflection so that any light entering the sphere is uniformly
distributed over the entire inner surface, eliminating any direc-
tional effects. Radiation detectors attached to a small opening
on the sphere wall receive an integrated signal proportional to
the rate at which radiant energy enters the sphere. The opera-
tional wavelength range of the IS is 0.25-2.5 um, which covers
almost 98% of the total solar spectrum.

Special sample holders that enable transmittance and
reflectance measurements at off-normal incidence were fabri-
cated from aluminium tubes with one end machined at a
known angle, 0. They were installed in either the transmission
or the reflection port, and they projected into the sphere. The
length of each sample holder was such as to allow only the
angled portion to project into the sphere. With a highly
polished exterior surface, signal losses due to absorption on
the exterior surfaces of the sample holders were minimised.
Moreover, the interior surfaces of the sample holders were
painted black in order to absorb radiation scattered in reflec-
tion during a transmittance measurement or scattered in trans-
mission during a reflectance measurement. For each screen
sample considered, spectral beam-beam transmittance 1, ,
beam-diffuse transmittance t,,, and beam-diffuse reflectance
p,, Measurements were obtained at 6 ranging from 0° to 60°
in 15° steps.

Typical arrangements for transmittance and reflectance
measurements are shown in Figure 2. To augment the IS
measurements, a transmittance tray with a specially designed
rotatable sample holder was used. With this arrangement, spec-
tral beam-beam transmittance measurements were obtained at
incidence angles ranging from 0° to 80°. In addition to validat-
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Figure 2 Measurements with integrating sphere: a) off-normal transmittance measurements, b) off-normal reflectance

measurements.
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ing IS measurements, the rotatable sample holder gave much
needed information on the transmittance at grazing angles of
incidence. The uncertainty in the measurements with the IS
was estimated to be +0.03 ata 95% confidence level. Error bars
representing the level of measurement uncertainty are shown
on the beam-total transmittance data of 60 mesh, 0.0045 in.
(0.1143 mm) diameter, stainless steel in Figure 6. Details of the
calibration, measurement procedure, and uncertainty estimates
can be found in Kotey et al. (2009a, 2009b).

After the spectral measurements were obtained, solar
optical properties were calculated using the 50-point selected
ordinate method as described in ASTM E903-96 (ASTM
1996). The solar irradiance distribution (ASTM 1987) was
divided into 50 equal-energy wavelength intervals. The spec-
tral optical property was then evaluated at the centroidal wave-
length of each interval.

SEMI-EMPIRICAL MODELS

Beam-Beam Transmittance Model

The geometric configuration of a screen is relatively
simple and can be represented by orthogonal crossed wires
with known wire diameter, D, and centre-to-centre spacing, S
(see Figure 3). Assuming D and S are the same in both direc-
tions, then the openness 4,,, defined as the portion of the screen
area open to radiation at normal incidence, is

_s-D)

8

As stated previously, 4, is equivalent to beam-beam transmit-
tance at normal incidence, 4, = 1,,(0 =0). Thus, 4, can
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Figure3  Geometry used for insect screens.
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either be determined from geometry or by simply measuring
7,,(6 = 0) . Another parameter of practical importance is the
incidence angle beyond which direct beam transmission is cut

off, 0,,,- From geometry, 6, can be estimated as:

D
cos(@cumﬁ) =3 2)

This analysis establishes the endpoints of a curve that repre-
sents the beam-beam transmittance model. To obtain the
shape of the curve, we use the cosine power function with an
exponent selected to match the experimental data (e.g., Kotey
et al. [2009a, 2009b])).

A convenient way to normalise t,, in order to represent
a cosine power function with an exponent, b, is given by Equa-
tion 3:

norm _ Tbb(e) _ b( 0

T, = —————— = COS . 90°) 3)
bb Tbb(e =0) ecuto_/f

For a given sample, a unique value of b allows the empir-

ical function to match the experimental data, as shown in

Figure 4. Assuming that b is a function of 7, ,(6 = 0) , a scatter

graph of b versus t,,(0 = 0) can be represented by a line, as

shown in Figure 5. This line is given by

b = —0.45In(MAX(1,,(6 = 0),0.01)) + 0.1 . 4)

26 mesh 0.006in dia charcoal
20 mesh 0.01in dia blue gray
60 mesh 0.0045in dia gray
20 mesh 0.016in dia gray
120 mesh 0.0026in dia gray
150 mesh 0.0026in dia gray
— cos function

Normalised beam-beam transmittance
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Figure 4 Normalised beam-beam transmittance versus
incidence angle (from measurements with the
integrating sphere).
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Figure 5 Graph of b versus t,,(0 =0).

Ideally, Equation 4 would be formulated such that b
approaches zero as openness approaches 100%. In this limit,
the insect screen disappears and Equation 3 applies no off-
normal adjustment. However, some compromise was needed
in order to retain the simplicity of the model and to retain the
realism that the absorptivity of the screen remains between
zero and unity for all possible input values.

More formally, Equations 1 through 4 can be used to
calculate 7,,(0) as function of 7,,(6 = 0) using:

b( O
7,,(0) = 1,,(0=0)cos -90° 0<0
bb bb (ecutaﬁ" ) cutoff (5)

0> ecutojf

T,5(0) = 0

Beam-Total Transmittance Model

The beam-total transmittance, t,, is the sum of t,, and
1, - A recent analytical model of screens (DOE 2007) reveals
that t,, increases monotonically to a maximum value at
0,107 and then decreases sharply to zero at © = 90°. Since
Ty, = 0 At 0,,,,<90° and 1,, = 0 at 6 = 90°, it implies
that t,, = 0 at 6 = 90°. We can represent the normalised
form of t,, with a function given by Equation 6:
om0

= cosb(e) (6)

T T (0=0)

By inspection, the desired values of b can be obtained by
working with Equation 6. Assuming b is a function of

ASHRAE Transactions

7,,(0 = 0), a relation between b and t,,(6 = 0) can be repre-
sented by

b = —0.65In(MAX(x,,(6 = 0),0.01))+0.1 . (7)

Similar to the way in which Equation 4 was formulated,
some compromise was accepted in order that the model would
provide realistic results in the extreme cases of insect screens
with very high openness and very low reflectance.

Rearranging Equation 6,

1,,(0) = 17,0 = 0)cos’(0) . (8)

Beam-Diffuse Transmittance Model

At any given 0, t,, is the difference between t,, and
T,,, - Thus,

Tp4(0) = 1,,(8) —7,,(0). )

Beam-Total Reflectance Model

Measurements showed that the beam-total reflectance of
the screen, p,,, includes no appreciable specular component;
thus, p,, = ppy-

In order to make an approximate distinction between
wires of different reflectivity, an apparent wire reflectance,

w

p , was defined such that

Pp(8=0) = p"(1-4,). (10)

The reflectance model described by Equation 10 consid-
ers reflection at the surface of the wire as well as multiple
reflections between the wires. Rearranging Equation 10,

wo_ pbz(e = 0)
== (11)

Equation 12 was used to define normalised beam-total
reflectance:
norm Pp(0) —py(0=0)
pbt(e) = — o —
Py(0 = 90°) —p, (6= 0)

(12)

A model was then developed by comparing measure-
ments with the function shown in Equation 13. Knowing only
the openness of the screen and p,,(0 =0), the off-normal
reflectance of the screen can be calculated as follows:

norm

p,(0) = 1-cos’(0) (13)
where
Py (0=90°) = p, (0 =0)+(1—-p,,(6=0))(035p") . (14)

The exponent b was estimated for each set of experimen-
tal data by inspection, similar to the way in which values of b
were found for the t,, model, and was found to correlate well
with respect to p" :

b =-045In(p") . (15)
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Finally, p,,(0) is obtained by combining Equations 12
and 13:

Pp(0) = pp,(6=0)+(p,,(0=90°)—p,,(0=0)) (1 fcosb(e))
(16)

Diffuse-Diffuse Transmittance

and Reflectance Models

The solar optical properties for incident diffuse radiation
can be obtained by integrating the beam-total properties over
the hemisphere. The diffuse-diffuse transmittance is

T

2
Taa = 2] 75(0)sin(0)cos(0)d0 . (17)
0

Similarly, the diffuse-diffuse reflectance is

Paa = 2| Pp,(0)sin(6)cos(0)dd . (18)

S —— NIAa

Numerical integration can be used to evaluate the inte-
grals in Equations 17 and 18.

DISCUSSION

Table 2 gives a summary of the measured normal inci-
dence solar optical properties of screens considered in this
study. Items a through f are the different screens as specified
in Table 1. The results in Table 2 include measurements with
and without the IS as well as 4, calculated from geometry. As
expected, t,,(0 = 0) obtained from measurements compared
favourably with 4,,. This observation clearly demonstrates the
reliability of measuring 4, using a spectrophotometer.

Figures 6 through 9 show the variation of the solar optical
properties with 6. The symbols represent measurements
while the solid lines represent the semi-empirical models.

Tables of measurement results are included in the Appendix.
Clearly, there is a good agreement between measured and
calculated results. As seen in Figure 6, t,, decreases as 0
increases and falls to zero at 6, which is directly depen-
dent on D and § as given by Equation 2. Figure 7 also shows
a decrease in 1,, as 0 increases, and in this case the semi-
empirical model predicts a complete attenuation of t,, at
0 = 90°. On the other hand, t,, changes very little with
respectto 6 until 6 ~ 60°, as seen in Figure 8. Beyond 6 ~ 60°,
1,4 increases to a maximum value, which occurs at
0 = 0.0 At 0>0,,,,, Ty, decreases sharply to zero
até = 90°. Turning to the variation of p,, with 0 , itis evident
from Figure 9 that p,, remains almost constant with respect to
0 until 6 ~60°. Beyond 6~ 60°, p,, increases slightly to a
maximum value at 6 = 90°.

Consideration will now turn to the comparison between
the experimental results and the analytical model documented
in EnergyPlus (DOE 2007). Figure 10 shows plots of solar
properties versus 6 for a 20 mesh, 0.006 in. (0.153 mm) blue-
gray screen (item e in Table 1). The models generally follow
the same trend as the experimental results. Furthermore, the
models are in good agreement with the experimental results
except for an obvious underprediction of t,, in the range of
0 < 0 <45°. This underprediction is small, with a maximum
value of 2% in absolute terms at 6 = 0. Nonetheless, it can be
explained by considering the accuracy of the model. As stated
in EnergyPlus (DOE 2007), t,, was derived from pure geom-
etry and as such is only influenced by the geometrical prop-
erties of the screen and 6 . However, 1, , was formulated by
curve-fitting results from an optical ray tracing algorithm that
modeled the reflectivity of the wire as diffuse. More specifi-
cally, generalised curves were fitted to accommodate ray trac-
ing results for 0.2<D/5<0.8 and 0.2<p" <0.8. Since the
curve-fitted model generally underpredicts the optical ray
tracing results for most screens with modest values of D/S and
wire reflectivity (McCluney 2006), we expect a similar trend

Table 2. Summary of Solar Optical Properties at Normal Incidence
. Measurements
Measurements with IS without IS
Calculated
Item Beam-Total Beam-Total Beam-Diffuse Beam-Beam Beam-Beam Ope:lmess,
Reflectance, Transmittance, Transmittance, Transmittance, Transmittance, o
pht(9=0) Tbt(9=0) Ihd(9=0) Tbb(9=0) Tbb(e=0)
a 0.23 0.44 0.08 0.36 0.38 0.37
b 0.19 0.54 0.08 0.46 0.47 0.48
c 0.18 0.54 0.05 0.49 0.48 0.48
d 0.18 0.60 0.08 0.52 0.54 0.54
e 0.07 0.65 0.02 0.63 0.64 0.65
f 0.01 0.71 0.01 0.70 0.73 0.73
160 ASHRAE Transactions
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Figure 6 Beam-beam transmittance versus incidence
angle.
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Figure 8 Beam-diffuse transmittance versus incidence

angle.
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Figure 7 Beam-total transmittance versus incidence angle.
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Figure 9 Beam-total reflectance versus incidence angle.
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Figure 10 Comparison between experimentally determined
solar optical properties and EnergyPlus models
for 20 mesh blue-gray screen.

between the curve-fitted model and results obtained from the
measurements. It should be noted that the agreement between
EnergyPlus models and the measurement results for all other
screens considered in this study was also good.

CONCLUSIONS

Off-normal solar optical properties of shading devices are
particularly useful in estimating the influence of these devices
on solar gain. Experimental determination of the off-normal
solar optical properties of insect screens is reported in this
study. Such screens frequently attached to windows are clas-
sified as shading devices since they have significant influence
on solar gain. The experiments involve the use of special
sample holders attached to an integrating sphere of a spectro-
photometer. Semi-empirical models were subsequently devel-
oped from the experimental results. Given solar optical
properties obtained at normal incidence, the proposed semi-
empirical models can be used to obtain the off-normal prop-
erties of any screen. To further demonstrate the reliability of
the measurement technique, the experimental results were
compared to analytical and ray tracing models recently devel-
oped for building energy simulation. In general, there was very
good agreement between the two sets of results.
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NOMENCLATURE

Symbols

b
Il

o openness
D = wire diameter, in. (mm)
S = wire spacing, in. (mm)
b = exponent in semi-empirical models

Greek Letters

p = reflectance (dimensionless)

T = transmittance (dimensionless)
0 = incidence angle

Subscripts

bb = beam-beam optical property
bd = beam-diffuse optical property
bt = beam-total optical property
dd = diffuse-diffuse optical property

Superscripts

norm = normalised solar optical property
w = wire solar optical property
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Table A.1. Beam-Beam Transmittance from Measurements

Beam-Beam Transmittance

Incidence Angle, °

Item a Item b Item c Item d Item e Item f
0 0.36 0.46 0.49 0.52 0.63 0.70
15 0.36 0.45 0.47 0.51 0.62 0.69
30 0.33 0.43 0.45 0.50 0.62 0.67
45 0.25 0.36 0.38 0.44 0.55 0.63
60 0.13 0.23 0.25 0.32 0.47 0.54
Table A.2. Beam-Total Transmittance from Measurements
Beam-Total Transmittance
Incidence Angle, °
Item a Item b Item ¢ Item d Item e Item f
0 0.45 0.54 0.54 0.60 0.66 0.71
15 0.44 0.54 0.54 0.59 0.65 0.70
30 0.42 0.52 0.52 0.58 0.64 0.69
45 0.37 0.46 0.46 0.53 0.58 0.65
60 0.25 0.35 0.35 0.43 0.51 0.56
Table A3. Beam-Diffuse Transmittance from Measurements
Beam-Diffuse Transmittance
Incidence Angle, °
Item a Item b Item ¢ Item d Item e Item f
0 0.08 0.08 0.05 0.08 0.02 0.01
15 0.08 0.09 0.06 0.08 0.02 0.02
30 0.09 0.09 0.07 0.08 0.02 0.01
45 0.11 0.11 0.08 0.09 0.04 0.02
60 0.12 0.13 0.10 0.11 0.04 0.02
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Table A4. Beam-Total Reflectance from Measurements
Beam-Total Reflectance
Incidence Angle, °
Item a Item b Item ¢ Item d Item e Item f

0 0.23 0.19 0.18 0.18 0.07 0.01

15 0.24 0.19 0.18 0.17 0.07 0.01

30 0.24 0.20 0.18 0.18 0.07 0.01

45 0.23 0.20 0.19 0.18 0.08 0.01

60 0.26 0.22 0.20 0.21 0.09 0.02
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