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Abstract 

Purpose: To examine the possible role of corneal sensitivity and tear film quality in triggering a 

blink by investigating the relationship between blink rate, central corneal sensitivity threshold 

(CST), ocular surface temperature (OST), tear meniscus height (TMH), tear film quality (non-

invasive tear break-up time: NIBUT), and tear film lipid pattern, under normal conditions. 

 

Methods: Forty-two volunteers (average age: 27.76±5.36 years; 11 males) with good ocular 

health (OSDI <15.0) were recruited for this cross-sectional cohort study. Blink rate, CST (non-

contact corneal aesthesiometer, NCCA), minimum and maximum OST in the central and inferior 

cornea between blinks (thermal infrared camera), tear meniscus height (TMH), and NIBUT and 

lipid pattern of the tear film (Keeler Tearscope Plus) were recorded on the right eye only.  

 

Results: Median blink rate was 11 blinks/min (IR: 6.95-17.05), CST was 0.35 mbars 

(interquartile range, IR: 0.30-0.40), minimum OST in the central cornea was 35.15°C (IR: 34.58-

35.50) and NIBUT was 34.55sec (IR: 12.45-53.80). Moderate but statistically significant 

correlations were observed between CST and NIBUT (r=0.535; p<0.001), CST and blink rate 

(r=-0.398; p<0.001), lipid pattern and OST (r=0.556; p<0.001) and between CST and OST 

(r=0.371; p=0.008). The correlations between blink rate and NIBUT (r=-0.696, p<0.001) and 

between OST and NIBUT (r=0.639; p<0.001; Spearman’s test) achieved higher significance; this 

was highlighted by the linear regression model, where NIBUT, minimum central and inferior 

OST were identified as significant predictor variables. 

 

Conclusions: There is strong evidence for significant interactions between corneal sensitivity, 

NIBUT, OST and blink frequency emphasizing that ocular surface conditions represent a possible 

important trigger for the initiation of a blink. However, the mechanisms involved in the initiation 

of a blink are complex, with local ocular sensory input as only one trigger, along with other 

external influences and internal factors under cortical control.  
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The human blink mechanism protects the ocular surface against external noxious stimuli and 

allows the even spreading of the tears over the surface of the eye. Blinking plays an important 

role in the maintenance of ocular surface integrity, by contributing to the maintenance of ocular 

surface moisture, drainage of tears, secretion of lipids from the meibomian glands, and the 

spreading of tear lipids across the pre-corneal tear film.1-4  

 

For a blink to occur, the antagonistic muscles of the levator palpebrae superioris and the 

orbicularis oculi alternately contract in a push-pull fashion.5 There are three types of blinks: 

spontaneous endogenous, reflex (both involuntary) and voluntary.6 Reflex and spontaneous 

blinks represent a response to different trigeminal, visual and acoustic stimuli, and spontaneous 

blinks occur unconsciously, without any evident stimulus.6 A normal blink rate is considered to 

be 10-16 blinks per minute.7 

 

The normal blinking process is greatly variable in blink rate and under cortical control.6 It is 

strongly influenced by external factors, psychological and physiological influences, and activity-

related factors.6 Blink rate increases during anxiety,8 visual fatigue,9 sleep deprivation,10 

driving,11 flying,12 and tasks that require speech.13 It is reduced during reading or when 

concentrating on a text on video display:14 the more difficult the task, the greater the resulting 

blink inhibition will be. Conversation, anger and excitement markedly increase the blink rate. 

Furthermore, neurological and psychiatric diseases have an influence, as Cruz et al. reviewed:15 

blink rate is recognised as a clinical marker of central dopaminergic activity; a low blink rate 

could be recorded in conditions with hypodopamine activity (e.g. Parkinson disease, progressive 

supranuclear palsy and attention deficit/hyperactivity disorder). Blink rate was found to be high 

in conditions with hyperdominergic activity (e.g. Huntington disease, schizophrenia, or focal 

dystonia and neuro-developmental conditions). The afferent pathway of the involuntary blink 

reflex - elicited by sight or touch – originates in the retina or superficial cornea, respectively, and 

runs along either the long or short ciliary nerves, respectively, via the ciliary ganglion, along the 

nasociliary branch of the ophthalmic division of the trigeminal nerve, to the pons and then the 

medulla oblongata before finally reaching the caudal spinal trigeminal nucleus.16 From there, 

impulses are relayed via the medullary pathway, ascending bilaterally to reach the facial nuclei in 

the pons. These trigeminofacial connections are thought to pass through the lateral tegmental 

field (medial to the spinal trigeminal nucleus).16 The efferent arc is conveyed by the facial nerve 

to the levator palpebrae superioris and the orbicularis oculi.17 



Despite the cortical control, ocular surface conditions have been associated with blink rate. Blink 

rate may be influenced by tear film quality,18,19 since blink rate has been shown to be higher in 

dry eye patients than the normal population19 and can be influenced in these patients by use of 

artificial tears and protective eyeglasses.20 Nakamori et al. recorded a blink rate in patients with 

dry eye disease of 34.1±2.4 per min as supposed to normals with to 20.1±1.6 per min.19 Also, the 

maximum time during which a person can keep their eyes open was shown to be decreased 

among dry eye patients.19 Ocular surface damage has been shown to increase the blink rate.21 

 

Hence, it has been hypothesized that corneal sensitivity must play an important role in triggering 

involuntary blinks, since blink rate reduces when corneal sensation is blocked with a local 

anaesthetic.19,22,23 The corneal sensory nerves are integrated into the afferent pathway of the 

involuntary blink reflex through small unmyelinated (C) and myelinated (Aδ) fibers. C fibers 

respond to thermal and / or chemical stimuli and many of them have been found to be polymodal 

and hence, respond to near-noxious mechanical energy as well.24 Aδ fibers run parallel and 

deeper (within the basal cell layer) below the corneal surface and are proposed to respond to 

mechanical stimuli and may also be polymodal nociceptors.24 The afferent pathway for the ocular 

surface mediated blink response runs along the short ciliary nerves as described above. The 

efferent pathway is conveyed by the facial nerve to the lacrimal gland, ensuring basal tear 

secretion. With a stimulus above a certain threshold (by touch or a sufficient rate of tear 

evaporation), the levator palpebrae superioris and the orbicularis oculi are also activated, and the 

lacrimal gland's stronger response leads to lacrimation. Because the reflexes arising from the 

cornea run through the medulla oblongata before connecting with the ipsilateral and contralateral 

facial nucleus, it has been postulated that the corneal reflex and the blink reflex use similar 

trigeminofacial connections.17  

 

It has been proposed that involuntary spontaneous blinking is determined by a local corneal 

reflex that is dependent on corneal sensitivity, possibly triggered by ocular surface cooling when 

the tear film progressively evaporates.25 Yap was able to show that blink rate increased when tear 

break-up time reduced.18 Mori et al suggested that evaporation-mediated cooling,26 which occurs 

during the process of tear break-up, may be detected by thermo-sensitive corneal nerves and 

thereby provide the signal for a blink to reform the tear film. Several studies have been unable to 

establish a clear relationship between blink rate, tear break-up time and corneal sensation: 

Doughty et al. measured invasive tear break-up time (TBUT) using fluorescein and recorded 

corneal sensitivity with a Cochet-Bonnet aesthesiometer and could not find any correlation 



between central corneal tactile threshold and blink rate (r=0.236; p=0.315).27 However, the 

Cochet-Bonnet aesthesiometer measures only mechanical corneal sensitivity, as it applies a 

tactile stimulus to the cornea using a nylon thread. It is not, therefore, the instrument of choice for 

the measurement of the excitability of thermo-sensitive C fibres in the cornea. In contrast, Ntola, 

using the non-contact corneal aesthesiometer (NCCA),28 which uses a fine jet of cooling air as a 

stimulus and which is designed to measure the activity of corneal C fibres, observed a weak, but 

not statistically significant, relationship between corneal sensitivity threshold (CST) and inter-

blink interval (IBI; r=0.236; p=0.315).29 Collins et al. showed that infrequent blinking can result 

from diminished corneal sensitivity; however, they only established a moderate trend for a 

correlation between CST and blink rate, without statistical significance (r=0.56, p>0.10).22 

 

The aim of this study was to examine the possible role of corneal sensitivity and tear film quality 

in triggering a blink by investigating the relationship between blink rate, central corneal 

sensitivity threshold (CST), ocular surface temperature (OST), and tear film quality (non-invasive 

tear break-up time (NIBUT), tear film lipid pattern and tear meniscus height (TMH)) under 

normal conditions. 

 

Methods 
A cross-sectional clinical cohort study method was used. Ethical approval was obtained from the 

Cardiff University School of Optometry and Vision Sciences Research Audit Ethics Committee, 

and the study followed the tenets of the Declaration of Helsinki. 

 

Forty-two volunteers were recruited from the staff and patient pool of the Optometry Department, 

University of Applied Science in Olten (CH). They were invited either by email or by personal 

invitation in the clinic. All subjects invited to take part in the study were given a subject 

information sheet explaining the study prior to giving signed consent. The age range was limited 

to between 20 and 39 years, since corneal sensitivity,30 OST,31 and tear film stability32 have been 

found to decrease with age. Exclusion criteria for participation in this study were: history of 

previous ocular surgery including refractive surgery, eyelid tattooing, eyelid surgery or corneal 

surgery; previous ocular trauma; Sjögren’s Syndrome (absence of dry mouth), rheumatoid 

arthritis, diabetes or ocular infections; current or previous condition known to affect the ocular 

surface and/or tear film; a score ≥ 15.0 on the Ocular Surface Disease Index (OSDI) 

questionnaire;33 medication or use of eye drops known to affect the ocular surface and/or tear 



film; pregnancy (on self-report); contact lens (CL) wear one day prior or on the day of this study, 

as this may affect ocular surface sensitivity.34-36 

 

All measurements were made on the right eye at least 4 hours after awakening; between 12:00 

and 6:30pm to avoid any possible diurnal bias in corneal sensitivity37 or tear film stability.38 

Humidity levels and room temperature were controlled to maintain normal office environmental 

limits (by means of air conditioning), as these variables have been shown to influence OST,1-4,39 

showing a typical increase of 0.15 to 0.2°C per 1°C increase in room temperature.40  

 

All subjects completed an OSDI questionnaire and the following measurements were carried out: 

measurement of blink rate /inter-blink interval (IBI), CST, OST, NIBUT, tear meniscus height 

(TMH) and tear film lipid pattern grading. In order to avoid an impact of measurements on 

subsequent ones, there was a break period of at least three minutes between each measurement 

type. 

 

Ocular Surface Disease questionnaire (OSDI)  

The OSDI questionnaire (12-item scale), developed to grade the severity of dry eye disease 

(DES), is currently used worldwide to discriminate between people with varying levels of ocular 

surface disease.33 and is accepted by the U.S. Food and Drug Administration (FDA) for use in 

clinical trials.33 For this study, the OSDI questionnaire was applied, in order to fulfil the inclusion 

criterion that participants were without DES, showing an OSDI score of < 15.0. The official score 

used to assess dry eye symptoms was: OSDI = (sum of scores) x 25 / (number of questions 

answered).  

 

Blink rate / Inter-blink interval (IBI) 

The blinking pattern of the subjects was recorded using a digital video camera (Sony DCR-

TRV27E Digital Handycam, Sony) while viewing a short (7:55 minutes) German documentary 

(‘Brillen für Afrika’ from ‘Sachgeschichten’ from the broadcast ‘Sendung mit der Maus’ in 2012). 

The latter was presented on a computer screen (Mac Book Pro, 13 inch with retina display, Apple 

Computer Inc, Cupertino, CA, USA) at a distance of 2m for a natural viewing situation. The film 

was chosen to have a ‘neutral’ theme in order to not generate any emotions capable of affecting 

the subject’s blink rate frequency. All subjects watched the video with best corrected visual 

acuity. For ethical requirements, the subjects were informed of the video-recording prior to 

commencement of the study and they signed a separate consent form for this purpose. Since the 



blink rate may have been affected by an awareness of being filmed (psychological status may 

affect blink rate6), only the last 5 minutes of film viewing were considered for analysis. This 

allowed some time for the subjects to ‘forget’ about the fact that they were being filmed. This 5 

minutes duration has been considered ideal for blink behavior analysis by Doughty.7 The digital 

recording of each subject’s blink frequency was then downloaded to a computer (Mac Book Pro, 

3 GHz Intel Core i7 Processor, Apple Computer Inc, Cupertino, CA, USA) and watched again, 

for analysis with the VLC media player (Version 2.0.5 Twoflower (Intel 64bit), the VideoLAN 

Team). Blink frequency was analysed in two ways: 1) Blink rate – the average number of blinks 

per minute; and, 2) Inter-blink interval (IBI) – the average time between blinks in seconds. 

 

Corneal sensitivity threshold (CST) 

Corneal sensitivity threshold (CST) was assessed within the central cornea, using the NCCA. 

This instrument stimulates the ocular surface in a well-controlled, repeatable and consistent 

manner and has been described previously.28 Briefly, it stimulates the sensory corneal nerves 

using a controlled pulse of air at room temperature (and hence considerably cooler than the 

ocular surface of 34-35°C), aimed at the cornea, which produces a localized area of cooling on 

the anterior corneal surface. 41,42 The nerves respond to this stimulus and, if the temperature 

change produced is above threshold, the subject experiences a sensation of cooling. No corneal 

deformation could be observed during stimulus presentation in one study, hence the authors 

hypothesized that the air gas stimulus does not have a relevant mechanical element.41 Using this 

instrument, the central corneal sensation threshold was measured using a forced-choice, double-

staircase technique.28 Alignment with the cornea was made using a customized slit-lamp 

attachment that allows accurate positioning of the air-jet at 1 cm away from the central corneal 

surface. Stimulus duration was set at 1 sec and the time interval between each stimulus 

presentation was 15 sec.28 In order to ensure a complete and stable tear film over the cornea, the 

subjects were asked to make a full, but unforced blink, following which (within 1-2 sec) the 

stimulus was presented.43 

 

Ocular Surface Temperature (OST) 

Real-time measurements of OST were carried out on all subjects, with each measurement lasting 

for the duration of five consecutive natural blinks, using a self-calibrating thermal infrared 

camera (FLIR A310; thermal resolution 0.08°C, temporal resolution 30 Hz; spatial resolution 

320x240 pixel, corneal emissivity 0.95). The camera was placed directly in front of the subject’s 

right eye, at a distance of 25cm and OST was noted in the very centre (at the same location where 



the CS threshold is being measured) and at the inferior cornea (2 mm inside the limbus). Grey-

scale thermal images were analysed using a purpose-designed computer programme 

(ThermaCAM Researcher Pro Version 2.9, FLIR Systems, 2006). A mean value for central and 

inferior OST was recorded 2 sec after each of the 5 consecutive natural blinks and a mean 

minimum value was determined immediately before each blink (at the time point of maximum 

evaporation from the ocular surface), as well as the mean temperature difference occurring on the 

ocular surface between each blink (= OST 2 sec after a blink – min. OST immediately before a 

blink). 

 

Non-invasive break-up time (NIBUT), tear lipid pattern and tear meniscus height (TMH) 

NIBUT and the tear lipid pattern were observed using a Tearscope Plus (Keeler Ltd., Windsor, 

UK), equipped with a diffuse, cold, light-source. For NIBUT measurement a fine grid was used 

for better accuracy by enabling earlier observation of small deformation in the grid reflection. 

Subjects were instructed to blink spontaneously, as they would normally, and then to refrain from 

blinking after a spontaneous blink. The grid pattern projected onto the cornea was then observed. 

NIBUT was recorded as the time from the blink until the first distortion in the grid pattern, or the 

patient expresses a need to blink. Three consecutive measurements were taken and a median 

value was calculated. The subject was asked to blink gently between measurements to promote 

re-stabilization of the tear film, for a minimum period of 30sec. 

 

The tear lipid pattern was evaluated according to the classification of Guillon:44 open meshwork 

(grade 1), closed meshwork (grade 2), flow / wave pattern (grade 3), amorphous (grade 4), 

normal colour fringes (grade 5), abnormal colour fringes (grade 6) and globular appearance 

(grade 7). The pattern was observed after 2 to 3 spontaneous blinks, each time after tear film 

movement, following a spontaneous blink. No grid was employed for this evaluation. 

 

Tear film stability has been shown to be most stable with the flow, amorphous and normal colour 

lipid patterns, whereas open meshwork and the abnormal colour fringes have poorer quality: a 

four-fold increase in tear evaporation could be shown when the lipid layer was absent or when 

abnormally coloured fringes were observed.45 According to Guillon, the amorphous lipid layer 

indicates a stable lipid layer, whereas open and closed meshwork, flow and normal colours 

describe an average lipid layer, and the globular and abnormal colour fringes describe an unstable 

tear film.44 The reduced tear film stability with a thicker lipid layer may be explained by a 

reduced aqueous tear volume underlying the lipid layer.46 In order to better reflect tear film 



stability, the lipid patterns were divided into the following four grades, with grade 1 representing 

poor quality and grade 4 representing the most stable tear film quality, which allows for a 

decrease in tear film stability observed with lipid layers thicker than ‘amorphous’:47 Grade 1 – 

open and closed meshwork, abnormal colour fringes, globular appearance; Grade 2 – wave / 

flow; Grade 3 – normal colours; Grade 4 – amorphous. 

In addition, TMH was measured using Tearscope illumination and an eyepiece graticule on the 

slit-lamp. 

 

Statistical Analysis 

An a priori power calculation was carried out with correlation=0.40, α=0.05, β=0.80 

(power=0.80) and correlation ρ H0 =0, and a sample size of n=37 was obtained (G*Power 3.1). 

For consideration of possible dropouts, 42 subjects were recruited. 

The data did not follow a normal distribution (Shapiro Wilk Test, SPSS Version 20), hence the 

non-parametric Spearman’s test was applied to test the correlations between the relevant 

parameters (SPSS Version 20). In addition, a robust linear regression analysis for determination 

of significant predictor variables and their interactions was applied, because the assumptions of 

collinearity and homoscedasticity were violated with the standard linear regression model (R-

statistics, Version 3.1.0). IBI was chosen to be the dependent variable. 

 

Results 
Forty-two volunteers participated in this study, of whom 11 were male. Average age was 

27.76±5.36 years. The median / interquartile ranges (IR) and mean (±SD) values for all 

measurements carried are summarized in Table 1. The average ambient temperature in the testing 

room was 24.7±0.8°C and average ambient humidity was measured to be 41.6±4.5%. 

 

On average, the central OST decreased by 0.15±0.09°C during the period when the eye was open 

between each blink. The minimum inferior OST was found to be slightly higher than central OST. 

The inferior OST difference occurring between blinks was slightly higher than in the central part 

of cornea.  

 

Inter-relationships 

The correlations between blink rate / IBI, OSDI score, CST, tear film characteristics and OST are 

summarized in Table 2, and significant ones are displayed in scatterplots (Figures 1-5). 

 

http://en.wikipedia.org/wiki/Homoscedasticity


Moderate but statistically significant correlations between blink rate / IBI and CST (r=-0.398; 

p<0.001 / r=0.360; p=0.010; Figure 1), NIBUT and CST (r=0.535; p<0.001; Figure 2), lipid 

pattern and OST (r=0.556; p<0.001) as well as CST and OST (r=0.371; p=0.008) were observed. 

Stronger correlations were noted between NIBUT and blink rate / IBI (r=-0.696, p<0.001; Figure 

3 / r=0.672; p<0.001), tear film stability and blink rate / IBI (r=-0.571; p<0.001; Figure 4 / 

r=0.519; p<0.001), as well as NIBUT and OST (r=0.639; p<0.001, and between tear film stability 

and NIBUT (r=0.744; p<0.001; Figure 5). 

 

Robust linear regression analysis 

A robust linear regression analysis was applied (R-statistics, Version 3.1.0). This kind of linear 

regression analysis down weighs data points not fulfilling model assumptions such as normal 

distribution of random errors. IBI was chosen to be the dependent variable and NIBUT, lipid 

pattern, tear film stability, CST, minimum central and inferior OST, difference between 

minimum central and inferior OST (OST gradient) and their interactions represented predictor 

variables. The following variables and their interactions were found to be non-significant and 

were hence removed: lipid pattern, tear film stability and CST. Consequently, the final model was 

carried out only for NIBUT, OST gradient and the interactions between NIBUT and OST 

gradient as predictor variables. It was statistically significant (p<0.001) and explained 66.3% of 

the variance (R2=0.688, adjusted R2=0.663). 

 

The model was described as the following: 

Dependent Variable = Intercept + A *IV1 + B * IV2 + C*IV1 * IV2; IV=independent variable. 

IBI = 2.600 + 0.05177 * NIBUT – -0.74716 * OST gradient - 0.09407 * (NIBUT * OST 

gradient). 

 

Power Calculation 

A post-hoc power calculation was carried out for the correlations between the parameters CST, 

NIBUT, blink rate, IBI, tear film stability and min. OST in the central cornea, and the results are 

summarised in Table 3 (G*Power 3.1): the powers between these parameters ranged between 

0.69 and 1.0. 

 

Table 4 summarizes the NIBUT measurements for different lipid patterns and distributions, 

compared to the Tearscope Plus manual. 

 



Discussion 
This study explored the relationship between blink frequency (blink rate / IBI), corneal sensitivity, 

tear film quality (NIBUT, lipid pattern, TMH and OST) and dry eye symptoms (OSDI) in normal 

subjects. A non-invasive measurement of tear film break-up was chosen (NIBUT), the habitual 

blink rate was recorded, and corneal sensitivity was measured with a non-invasive method 

(NCCA air gas aesthesiometer). 

 

To the authors’ best knowledge, this is the first study to show a moderate and statistically 

significant correlation between blink rate and corneal sensitivity. A stronger correlation between 

blink rate, NIBUT and OST could be confirmed in this study and was highlighted by the robust 

linear regression analysis, where NIBUT, OST gradient and their interactions were identified as 

significant predictor variables for the outcome variable inter blink interval. This supports the 

hypothesis that the thinning of the tear film before break-up may contribute to triggering a 

spontaneous involuntary eye-blink.  

 

However, no statistically significant correlation could be found between blink rate and TMH. 

 

The median score for the OSDI questionnaire obtained in this study represented a normal range 

for a normal population.33 The median blink rate found in this study was very similar to the 

average blink rate reported by Doughty in his review paper.7 The median minimum central OST 

occurring between blinks was within a normal range for OST of 32.9-36.0°C,40 and showed very 

little variability between the healthy participants. The NIBUT measurements obtained in this 

study on normal subjects were found to be higher than in some other published clinical 

studies.45,48,49 This may be explained by the inclusion criterion of a low OSDI value for 

participation in this study and the young age group. In an age group <45 years, Maissa and 

Guillon obtained a mean NIBUT of 20.0±13.9s;49 Thirty-nine percent of the participants in this 

group study had NIBUT values of >20s. The prevalence of different lipid patterns observed in the 

current study compared fairly well with those estimated in the Tearscope Plus manual (Table 4).50 

 

Isreb et al. observed a positive correlation between lipid layer thickness and tear break-up time 

(with the use of fluorescein) on 44 eyes with dry eye disease symptoms (r=0.653, p<0.01),51 

confirming that a thicker lipid layer is desirable and is correlated with an optimal tear film 

stability and tear film characteristics. This may suggest a better tear film stability and hence a 

longer break-up time with a tear film showing normal colour fringes, rather than showing an 



amorphous lipid pattern. In the current study, however, those eyes showing an amorphous lipid 

pattern exhibited, on average, a longer NIBUT and were therefore graded as having a superior 

tear film stability (Table 4). According to the Tearscope Plus instruction manual, a lipid layer was 

graded as ‘amorphous’, when it appeared as ‘thick, white, even and well-mixed that may have 

shown colours during the blink’.50 In other words, there may have already been some colours 

present during the blink that were not visible after the blink. In the current study, this type of lipid 

layer was found to be more stable (i.e. showing a longer NIBUT rate) than a tear film with a 

further increase in lipid layer thickness, which continued to exhibit a normal colour pattern after 

the blink. This finding is in accordance with the results published by Craig et al.47 

 

The NIBUT measurements in this study exceeded the median IBI of 4.57 seconds by far – even 

the lower value of the interquartile range of 12.45 seconds for NIBUT was found to be 

comfortably higher than the higher value of the interquartile range of 7.04 for IBI. It can hence be 

concluded that NIBUT exceeded IBI for the subjects participating in this study, as it would be 

required for normal eyes without dry eye disease, as defined by the ocular surface protection 

index.52 Median TMH was found to be normal, as well as the median value for grading of the 

lipid pattern, which corresponds to a wave pattern and is most commonly found in a normal 

population. Yokoi et al. could show a good correlation between TMH and the initial velocity of 

the tear film lipid layer spread after a blink:53 a shorter spreading time of the tear film after a 

blink indicates a more stable tear film, and a longer spreading time is characteristic of aqueous 

tear-deficient dry eye. 

 

Topical anaesthesia has been shown to reduce, but not to abolish, blink rate.19,22,23,54 A moderate, 

and statistically significant, correlation between blink rate and corneal sensitivity was shown for 

the first time in this study. 

 

As mentioned before, no previous study could establish a correlation between blink rate and 

corneal sensitivity: Ntola observed a correlation of r=0.236 without statistical significance 

(p=0.315), but had excluded subjects with a TBUT <8 seconds.29 Collins et al. could show that 

infrequent blinking can result from diminished corneal sensitivity, however they could only 

establish a moderate correlation without statistical significance (r=0.56, p>0.10).22 They recorded 

blink rate while the subjects were involved in conversation, which may have artificially increased 

blink rate. Also, their sample group comprised only nine subjects. Doughty et al. did not observe 

any correlation between corneal tactile threshold (Cochet Bonnet aesthesiometer) and blink rate, 



whereby they recorded blink rate for 5 mins. in silence, without any visual stimulation for the 

participating subjects.27 However, for the conjunctival tactile threshold, they found a moderate 

inverse relationship: the lower the conjunctival sensitivity, the higher blink rate was found to be 

(r=0.588, p<0.001). These results are questionable, as the Cochet Bonnet aesthesiometer has been 

shown to have many limitations, most importantly a truncated stimulus range and imprecise 

stimulus application.28 It may therefore not be sensitive enough for subtle sensitivity differences 

in normal subjects. Furthermore, a blink rate without any visual stimulation at all may not 

necessarily be natural. Other research also showed a strong relationship between corneal 

sensation and tear film drying dynamics.55 

 

This study found a statistically significant correlation between IBI and NIBUT and a statistically 

significant negative correlation between blink rate and NIBUT. Several investigations also found 

significant negative correlations between blink rate and TBUT, however to variable degrees, as 

many of these previous studies were affected by the use of fluorescein to measure TBUT or by 

poor control over the blink recording conditions:18,56,57 Yap et al. found a strong and statistically 

significant correlation of r=-0.69 (p<0.01), whereby the patients were filmed with a hidden 

camera during a period of 5 minutes whilst waiting in the exam room, but relied upon fluorescein 

TBUT.18 Al-Abdulmunem also observed a strong correlation in 159 healthy students when they 

recorded their blink rate by observation in a lecture theatre (r=-0.74, p<0.05), and again used 

TBUT.56 Collins et al. established a moderate correlation between TBUT and blink rate, however 

without statistical significance (r=-0.38, p>0.10). Prause and Norn found a weak to moderate 

correlation between TBUT and blink rate (r=-0.33; p<0.05) for normals and a stronger, moderate 

effect for patients with Sjögrens syndrome (r=-0.58; p<0.05).57 However, they measured blink 

rate during reading, which may have had an inhibitory effect. Tsubota and Nakamori observed an 

influence of ocular surface area on blink rate,58 however these results were disputed by Zaman et 

al., who could not find any correlation between ocular surface area and spontaneous eyeblink 

activity in elderly Caucasians.59 The ocular surface area was unfortunately not measured for the 

subjects participating in this study. 

 

Acosta et al., as well as Nakamori et al., were able to decrease blink rate during computer work 

with the use of artificial tears,19,60 which supports the hypothesis that sensory input from the 

corneal and conjunctival sensory fibers modulates the neural circuits involved in spontaneous 

blinking. They concluded that blink rate, at rest, may be partially influenced by extrinsic factors, 

such as ocular surface conditions, whereas a low blink rate induced by the performance of an 



attentive task may be mainly governed by intrinsic neural mechanisms. The resulting strong 

inhibition of neural blinking mechanisms during the computer task is stronger than the sensory 

input from the cornea and conjunctiva. It has been suggested that spontaneous blinking originates 

in the central nervous system and is modulated by internal factors such as fine motor controls, 

speech centers, emotional and psychological states, cognition and attention.23 Thus, both central 

and neural control and local ocular sensory input may jointly act to stimulate blinks. 

 

Each blink spreads warm tears over the ocular surface, after which an immediate heat transfer 

from the tear film to the environment takes place, leading to a decrease in OST over time after 

each blink.61 The tear film destabilizes after a blink, most probably due to evaporation, leading to 

a cooling response due to the positive latent heat of vaporization as the liquid changes into gas 

and heat is transferred to the atmosphere.47 In dry eye disease, the rate of evaporation has been 

shown to increase, due to a poor lipid layer quantity or quality.62 Several studies have shown 

OST to be increased in eyes with a poor tear film quality immediately after the blink, compared 

to controls.63 The resulting larger difference in temperature between the eye and the atmosphere 

may further accelerate the subsequent cooling rate.64 In the current study, central OST was 

measured to be slightly lower than in the inferior cornea (in proximity to the inferior limbus), 

which may be explained by the fact that the vascularized limbal area has been shown to be 

warmer than the avascular corneal center.61 The rate of cooling between blinks was similar for 

the central and inferior cornea in this study. The minimum central and inferior OST temperatures 

(immediately before a blink) were highly correlated with NIBUT in this study, suggesting a lower 

cooling rate with better NIBUT measurements. The correlations between OST and lipid 

pattern/tear film stability were consequently good as well. Also, higher OST measurements 

correlated well with longer inter-blink intervals, supporting the hypothesis that evaporation 

contributes to the initiation of a blink. The direct correlation between OST and CST, however, 

was not observed to be strong in this study. 

 

A statistically significant correlation between corneal sensitivity and NIBUT was found in this 

study. Situ et al. established a weak to moderate correlation between corneal sensitivity and 

NIBUT in patients with dry eyes (r=0.31 for cornea, r=0.40 for conjunctiva; air gas 

aesthesiometry).65  

 

The weaker correlation between blink rate and CS, than between blink rate and NIBUT in this 

study may be due to the feedback loop between NIBUT and the initiation of a blink in healthy 



eyes that hinders the activation of superficial corneal nerves. The high median value for NIBUT 

obtained for the subjects in this study indicated a very good tear film quality. A stronger 

correlation between CS and blink rate would be expected in eyes during the beginning stages of 

the dry eye disease process, where a sensitization of the superficial corneal nerves and an 

increased blink rate have been reported.66  

 

All measurements were carried out by only one examiner, therefore masking of the CST, TMH, 

NIBUT and lipid layer measurements to the examiner was not possible - this is a potential 

limitation of this study. However, the analysis of blink rate was carried out at a later time point 

after completion of all data collection on all subjects, in order to avoid a direct subjective 

comparison between the results. 

 

Conclusion 

The mechanisms involved in the initiation of an eye-blink are complex. This study suggests that 

local ocular sensory input represents one possible trigger for the initiation of a blink, next to other 

external influences and internal factors that are under cortical control. The stronger correlation 

between blink rate, NIBUT and OST found in this study, emphasizes the fact that ocular surface 

condition plays an important role in blink rate. 

 

For future research, it would be interesting to explore if a more significant correlation between 

ocular surface sensation and blink rate can be established in eyes during the early stages of the 

dry eye disease process, where the sensitization of the superficial corneal nerves and an increased 

blink rate have been reported.66,67 
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Figures and Tables 

 
Figure 1: Scatterplot for median inter-blink interval (IBI, in seconds) and corneal sensitivity 
threshold (CST, in mbars); line fitted to median values. 

 



 
Figure 2: Scatterplot for median non-invasive tear break-up time (NIBUT, in seconds) and corneal 
sensitivity threshold (CST, in mbars); line fitted to median values. 

 



 
Figure 3: Scatterplot for median non-invasive tear break-up time (NIBUT, in seconds) and blinks 
per minute; line fitted to median values. 

 



 
Figure 4: Scatterplot for tear film stability and blinks per minute; line fitted to median values. 

 



 
Figure 5: Scatterplot for tear film stability and median non-invasive tear break-up time (NIBUT); 
line fitted to median values. 

 



 OSDI Blinks per 
minute 

IBI 
(secs) 

CST 
(mbars) Min OST 

central cornea 
(°C) 

OST 
difference 

central 
cornea (°C) 

Min. OST 
inferior 

cornea (°C) 

OST 
difference 

inferior 
cornea (°C) 

Median / IR 8.30 /  
4.20-14.60 

11.00 /  
6.95-17.05 

4.57 /  
3.03-7.04 

0.35 /  
0.30-0.40 

35.15 / 34.58-
35.50 

0.15 /  
0.10-0.20 

35.30 / 
34.78-35.60 

0.20 /  
0.10-0.20 

Mean±SD 8.86±4.92 12.83±7.64 5.44±3.18 0.35±0.98 34.98±0.68 0.15±0.09 35.11±0.74 0.16±0.09 

 
 

 NIBUT 
(secs) 

Lipid pattern Tear film 
stability 

TMH (mm) 

Median / 
IR 

34.55 /  
12.45-53.80 

3.0 /  
2.75-4.25 

2.00 / 
1.0-3.0 

0.23 /  
0.20-0.30 

Mean±S
D 38.58±28.62 3.29±1.44 2.24±1.05 0.23±0.75 

Table 1: Median / Interquartile Range (IR) and Mean (±Standard Deviation) of the following measurements: OSDI (ocular surface disease index), 
blinks per min., inter blink interval (IBI), corneal sensitivity threshold (CST), min. ocular surface temperature (OST) central cornea, OST central 
cornea difference between blinks, min. OST inferior cornea, OST inferior cornea difference between blinks, non-invasive tear break-up (NIBUT), 
lipid pattern, tear film stability and tear meniscus height (TMH). 

 

  



 OSDI Blinks per 
minute IBI CST 

Min. OST 
central 
cornea 

OST 
difference 

central 
cornea 

Min. OST 
inferior 
cornea 

OST 
difference 

inferior 
cornea 

NIBUT Lipid 
pattern 

Tear film 
stability TMH 

OSDI --            

Blinks per minute 0.122 
(p=0.220) --           

IBI -0.112 
(p=0.239) 

-0.964 
(p<0.001) --          

CST -0.306 
(p=0.024) 

-0.398 
(p<0.001) 

0.360 
(p=0.010) --         

Min. OST central 
cornea 

-0.039 
(p=0.466) 

-0.478 
(p=0.001) 

0.474 
(p=0.001) 

0.371 
(p=0.008) --        

OST difference 
central cornea 

-0.238 
(p=0.064) 

-0.217 
(p=0.084) 

0.181 
(p=0.126) 

0.252 
(p=0.053) 

0.298 
(p=0.028) --       

Min. OST inferior 
cornea 

0.015 
(p=0.406) 

-0.545 
(p<0.001) 

0.552 
(p<0.001) 

0.330 
(p=0.017) 

0.937 
(p<0.001) 

0.249 
(p=0.122) --      

OST difference 
inferior cornea 

-0.039 
(p=0.112) 

-0.204 
(p=0.097) 

0.167 
(p=0.145) 

0.192 
(p=0.112) 

0.427 
(p=0.012) 

0.414 
(p=0.003) 

0.426 
(p=0.002) --     

NIBUT -0.194 
(p=0.110) 

-0.696 
(p<0.001) 

0.672 
(p<0.001) 

0.535 
(p<0.001) 

0.639 
(p<0.001) 

0.362 
(p=0.009) 

0.620 
(p<0.001) 

0.392 
(p=0.005) --    

Lipid pattern -0.049 
(p=0.380) 

-0.561 
(p<0.001) 

-0.562 
(p<0.001) 

0.325 
(p=0.018) 

0.556 
(p<0.001) 

0.289 
(p=0.032) 

0.500 
(p=0.001) 

0.381 
(p=0.006) 

0.675 
(p<0.001) --   

Tear film stability -0.291 
(p=0.031) 

-0.571 
(p<0.001) 

0.519 
(p<0.001) 

0.534 
(p<0.001) 

0.518 
(p<0.001) 

0.390 
(p=0.005) 

0.488 
(p=0.001) 

0.333 
(p=0.015) 

0.744 
(p<0.001) 

0.697 
(p<0.001) --  

TMH 0.022 
(p=0.444) 

-0.163 
(p=0.429) 

0.25 
(p=0.216) 

0.049 
(p=0.380) 

0.116 
(p=0.232) 

0.144 
(p=0.182) 

0.069 
(p=0.286) 

0.064 
(p=0.344) 

0.028 
(p=0.429) 

0.354 
(p=0.011) 

-0.040 
(p=0.401) -- 

Table 2: Correlation coefficients (r) between dry eye symptoms (OSDI), blinks per minute / inter-blink interval (IBI), corneal sensitivity threshold (CST), 
minimum ocular surface temperature (OST) in the central cornea, OST difference between blinks in the central cornea, minimum OST in the inferior 
cornea, OST difference in the inferior cornea, non-invasive tear break-up time (NIBUT), lipid pattern, tear film stability and tear meniscus height (TMH), 
(Spearman’s test, SPSS Version 20). 
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 Blinks per 
minute IBI CST 

Min. OST  
central 
cornea 

NIBUT Tear film 
stability 

Blinks per minute --      

IBI 1.00 --     

CST 0.77 0.69 --    

 
Min. OST central 
cornea 

0.95 0.95 0.70 --   

NIBUT 1.00 1.00 0.98 1.00 --  

Tear film stability  0.99 0.98 0.98 0.98 1.00 -- 

Table 3: Post-hoc power calculation (G*Power 3.1). 

 

 
Lipid pattern 

observed 
Mean NIBUT 
± standard 

deviation (seconds) 

Distribution in 
current study (%) 

Distribution 
published by the 
Tearscope Plus 

manual (%) 
open meshwork 11.50±6.82 16.7 15 

closed meshwork 11.37±2.91 7.1 14 
wave / flow 32.37±14.69 35.7 29 
amorphous 72.09±29.63 16.7 19 

normal colour 56.01±30.85 21.4 17 
abnormal colour 33.8±8.34 4.8 not stated 

globular - - 6 
Table 4: NIBUT measurements for different lipid patterns and distributions, compared to the 
Tearscope Plus manual. 
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