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Abstract

Data assimilation is a statistical technique for combining observations of a physical system with
the state of a numerical model of that system. The procedure yields a new and ideally improved
state estimate called the analysis. A critical component of data assimilation is the observation
error covariance matrix, which describes the magnitude and the correlation of the errors in the
observations. When the observation error correlation structure is unknown, an approximation
can yield a poor analysis and an incorrect estimate of the quality of the analysis.

Little is known about the error correlation structure of remotely-sensed sea ice thickness ob-
servations. However, sea ice prediction centres are beginning to move forward with ice thickness
assimilation under the simplifying assumption that the observation errors are uncorrelated. The
assumption of uncorrelated observation errors is attractive because the errors can be represented
by a diagonal observation error covariance matrix, which is inexpensive to invert. The purpose
of this thesis was to develop an understanding of how the diagonal approximation might affect
the quality of the sea ice state estimate.

This thesis describes a set of twin assimilation experiments that were conducted using a
one-dimensional sea ice model. The twin experiment design enabled an investigation of the
differences between the estimated and actual errors in the analysis state. The first part of this
investigation explored how the diagonal approximation can impact the estimated mean analysis
error standard deviation. The second component of the investigation explored the spatial scales
of the errors present in the analysis.

The experimental results indicated that the diagonal approximation can be used without in-
creasing the mean analysis error standard deviation so long as the observation error variances are
multiplied by a sufficiently-large inflation factor. The results also indicated that the inflation fac-
tor can be conservatively overestimated without adversely impacting the analysis. For some of
the experiments, the diagonal approximation resulted in an increase in the analysis error spectral
variance at lower wavenumbers. The approximation had little effect at higher wavenumbers.

The main finding of this thesis is that diagonal approximations to the ice thickness obser-
vation error covariance matrix can likely be incorporated into ice prediction systems without
adverse effects. One caveat of this statement is that an inflation factor should be used to increase
the observation error variance estimates. A second caveat is that the analysis error covariance
matrix may underestimate the correlation of analysis errors at the largest spatial scales. A final
finding is that large improvements in analysis quality may be obtained if better approximations
to the ice thickness observation error covariance matrix can be found and used in the analysis.

iii



Acknowledgements

I would like to thank my supervisor, Dr. K. Andrea Scott, for providing helpful feedback and
support throughout my time as her student. With her guidance, I was able to navigate through
the uncertainty miring sea ice data assimilation toward the optimistic conclusion presented in
this thesis.

I would also like to thank the Marine Environmental Observation Prediction and Response
(MEOPAR) network for providing technical training and the opportunity to participate in an
Arctic field program.

iv



Table of Contents

List of Tables vii

List of Figures viii

List of Symbols xi

List of Abbreviations xiii

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4
2.1 Sequential Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The Ice Thickness Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Remote Sensing of Sea Ice Thickness . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Operational Sea Ice Assimilation in Canada . . . . . . . . . . . . . . . . . . . . 14

2.6 Experimental Sea Ice Thickness Assimilation Systems . . . . . . . . . . . . . . 16

2.6.1 Seasonal Forecast Initialization Using Field Observations . . . . . . . . . 16

2.6.2 Twin Experiments with Synthetic Observations . . . . . . . . . . . . . . 16

2.6.3 Quasi-Operational Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3 A One-Dimensional Dynamic-Thermodynamic Sea Ice Model 19

3.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Simplified Sea Ice Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Twin Experiment Formulation 35

4.1 Base Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Background State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Freeze-up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Stochastic Perturbations in the Toy Model . . . . . . . . . . . . . . . . . 38

4.2.3 Evolution of Ensemble Spread during Freeze-Up . . . . . . . . . . . . . 40

4.2.4 Background Error Covariance Matrix . . . . . . . . . . . . . . . . . . . 40

4.2.5 Skewness of State Variable Error Distributions . . . . . . . . . . . . . . 45

4.3 Sensor Design and Sampling of Synthetic Sea Ice Thickness Observations . . . . 46

4.3.1 Observation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Specification of Observation Error Variances . . . . . . . . . . . . . . . 47

4.3.3 Observation Error Covariance Matrices . . . . . . . . . . . . . . . . . . 50

4.4 Comparing Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Experimental Results 57

5.1 Analysis Error Standard Deviations . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Spectral Densities of Analysis Errors . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Optimal Inflation Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusions 74

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 76

Appendices 82

A Analysis Error Covariance Spectral Density Plots 83

vii



List of Tables

2.1 Satellite Sensors for Sea Ice Thickness Estimation . . . . . . . . . . . . . . . . . 12

2.2 Required ancillary data for satellite sensor-based estimation of ice thickness . . . 13

3.1 Model Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Default model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Correlation structure of each observation error covariance matrix . . . . . . . . . 50

4.2 Four variants of the analysis error covariance matrix that were computed for each
twin experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Estimated and actual analysis errors for the twin experiments with Rtrue1 . . . . . 58

5.2 Estimated and actual analysis errors for the twin experiments with Rtrue2 . . . . . 58

5.3 Estimated and actual analysis errors for the twin experiments with Rtrue3 . . . . . 59

5.4 Estimated and actual analysis errors for the twin experiments with Rtrue4 . . . . . 59

5.5 Estimated and actual analysis errors for the twin experiments with Rtrue5 . . . . . 60

viii



List of Figures

2.1 Schematic of an assimilation cycle . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sea ice thickness survey route, April 20, 2015 . . . . . . . . . . . . . . . . . . . 9

2.3 Photograph of sea ice in the Beaufort Sea, April 20, 2015 . . . . . . . . . . . . . 10

2.4 Histogram of sea ice thicknesses in the Beaufort Sea, April 2015 . . . . . . . . . 10

3.1 Empirical functions for the sea ice growth rate . . . . . . . . . . . . . . . . . . . 22

3.2 Staggered grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Toy sea ice model state after a sixty-day integration from nearly ice-free conditions 30

3.4 Ice, ocean and wind velocities observed during the sixty-day validation run . . . 31

3.5 Distribution and spatial autocorrelation of sea ice thickness . . . . . . . . . . . . 33

4.1 Diagram of the twin experiment procedure . . . . . . . . . . . . . . . . . . . . . 36

4.2 Ensemble of sea ice model states with the true state following the thirty-day
freeze-up period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Temporal evolution of spread in the five-hundred-member ensemble during the
thirty-day freeze-up period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Background error correlation matrix corresponding to the estimated background
error covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Empirical probability distribution functions of sample skewness of errors for
each state variable in the sea ice model ensemble . . . . . . . . . . . . . . . . . 46

4.6 Prescribed true observation error standard deviation as a function of ice thickness 48

4.7 Evaluation of the observation error standard deviation function at the true state . . 49

ix



4.8 Correlation structures of the true (prescribed) observation error covariance ma-
trices and of the background error covariance matrix . . . . . . . . . . . . . . . 51

4.9 True (prescribed) observation error covariance matrix, Rtrue1 . . . . . . . . . . . 52

4.10 Spectral density of errors in the background error covariance matrix . . . . . . . 55

5.1 Example of an analysis error correlation matrix . . . . . . . . . . . . . . . . . . 62

5.2 Spectral densities of the mean and median rows of the background, observation
and analysis error covariance matrices for ice thickness . . . . . . . . . . . . . . 63

5.3 Estimated and actual thickness analysis error standard deviation as a function of
the inflation factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



List of Symbols

Symbol Description

a ice concentration

h ice thickness

u velocity

ρ density

τ quadratic drag term

ζ bulk sea ice viscosity

P∗ sea ice strength parameter

Sh, Sa thermodynamic source terms for ice thickness and concentration

f (h) sea ice growth rate function

η fluid free surface elevation

xb background state vector

xt true state vector

y observation vector

ε error vector

σ standard deviation

xa analysis

B background error covariance matrix

R observation error covariance matrix

A analysis error covariance matrix

xi



H(x) observation operator

H observation operator (linear)

K Kalman gain matrix

xii



List of Abbreviations

Acronym Description
3DVar Three-dimensional variational data assimilation

ACF Autocorrelation Function

AEM Airborne electromagnetic

BLUE Best Linear Unbiased Estimate

CIS Canadian Ice Service

CMC Canadian Meteorological Centre

ECCC Environment and Climate Change Canada

EnKF Ensemble Kalman filter

EnOI Ensemble Optimal Interpolation

GIOPS Global Ice-Ocean Prediction System

MEOPAR Marine Environmental Observation Prediction and Response Network

MIRAS Microwave Imaging Radiometer with Aperture Synthesis

NWP Numerical Weather Prediction

NWT Northwest Territories

OI Optimal Interpolation

RIPS Regional Ice Prediction System

RMSD Root-mean square deviation

RMSE Root-mean square error

SMOS Soil Moisture and Ocean Salinity (satellite)

ULS Upward-looking sonar

VisIR Visible Infrared

xiii



Chapter 1

Introduction

Accurate prediction of sea ice conditions is becoming increasingly important as global attention
turns toward the Arctic Ocean [1]. Ongoing improvements to numerical sea ice models (e.g. the
Los Alamos sea ice model [2]) have provided one means to improve forecasts. New satellite
systems (e.g. CryoSat-2 [3]) have also helped improve forecast quality by providing valuable
observational data. However, despite these efforts, there continue to be large errors in sea ice
forecasts [4][5][6] and it remains difficult to plan safe operations in the Arctic Ocean [1].

This thesis explores how advances in sea ice data assimilation can help to improve sea ice
prediction. Data assimilation is a set of statistical procedures for combining observations of a
physical system with the state of a numerical model [7]. The product of data assimilation is a
state estimate that may provide more accurate initial conditions for making forecasts. National
forecasting centres such as the Canadian Meteorological Centre (CMC) at Environment and Cli-
mate Change Canada (ECCC) presently assimilate satellite observations of ice concentration
[8], which is the fraction of the ocean surface that is frozen. However, there is now increasing
motivation to begin assimilating observations of ice thickness, another critical state variable.

Ice thickness contributes to the ice strength and to the rate of heat transfer between the at-
mosphere and ocean [9]. Having a good initial estimate of ice thickness is therefore critical to
producing a good forecast. Ice thickness can also vary significantly in space and time and the
state of sea ice thickness typically poorly known [10]. By assimilating sea ice thickness obser-
vations, there is an opportunity to greatly improve forecasts [11][12].

The basis of any data assimilation system is prior knowledge of the model (background)
and observation errors, which are described by the background and observation error covariance
matrices, respectively [7]. However, the observation error covariance matrix is often either too
difficult or too expensive to properly characterize [13]. Common simplifications, such as the
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assumption that observation errors have no spatial correlation, facilitate implementation but can
lead to overconfidence in what might be a poor state estimate [14][15]. Chapter 2.4 illustrates
why it is especially difficult to parameterize sea ice thickness observation errors. Chapters 4 and
5 of the thesis explores the implications of the diagonal approximation to the observation error
covariance matrix.

There are additional challenges compounding sea ice thickness data assimilation. First is the
expense of conducting sea ice data assimilation experiments. Operational coupled sea ice-ocean-
atmosphere models require large computational resources and expertise. Second, it is difficult to
validate the results of a sea ice thickness assimilation experiment because there is very little in
situ ice thickness data relative to the size of most model domains.

To help provide some insight for the design of operational sea ice prediction systems that
ingest ice thickness observations, we developed a simplified one-dimensional dynamic sea ice
model. The model contains the relevant terms necessary to simulate a realistic sea ice state
and it is forced by synthetic but realistic forcing data. The primary application of the model
is to conduct twin experiments, where observations are sampled from one model state using a
synthetic sensor and assimilated into a second model state. This provides a means for assessing
the impacts of the approximation of the observation error covariance matrix in a sea ice thickness
data assimilation system.

1.1 Objectives

The princpal objective of this research project was to provide support for the design of an opera-
tional data assimilation framework that ingests sea ice thickness observations. More specifically,
the objective was to quantify the effects of assuming an uncorrelated diagonal observation er-
ror covariance matrix when assimilating sea ice thickness observations having correlated errors.
This is a pertinent and timely question due to the increasing availability of sea ice thickness
observations and limitations of operational data assimilation systems. A secondary objective
was to explore and communicate some of the challenges facing sea ice remote sensing, sea ice
modeling, and data assimilation of observations with correlated errors.

1.2 Outline

This thesis is divided into five chapters. Chapter 2 describes in detail the unique challenges
that sea ice thickness remote sensing presents, from a data assimilation perspective. We also
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describe the limitations of recent experimental efforts to assimilate ice thickness data. Chapter
3 describes the toy sea ice model that was used as the basis of experiments in Chapters 4 and 5.
Chapter 4 describes the twin experiment procedure, including the design of the background error
covariance matrix and the synthetic sea ice thickness sensor. Chapter 5 explores the experimental
results, followed by a pragmatic discussion of the future of sea ice thickness data assimilation.
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Chapter 2

Background

Every data assimilation problem has unique challenges related to the sensor network and physical
phenomenon being studied. This chapter explores the factors that complicate sea ice thickness
data assimilation.

2.1 Sequential Data Assimilation

Geophysical systems including Earth’s atmosphere and oceans are governed by dynamic, non-
linear processes [16]. Using numerical models, it is possible to predict the future states of these
systems. In this context, a state vector, or system state, is a vector containing the minimum
amount of information at a given time to fully characterize that system [17]. Forecasts of future
states can quickly become unrealistic due to model inaccuracies, errors in forcing data, and the
propagation of errors in the models’ initial states [16]. Ideally, observations of the geophysical
system could be used as the initial conditions for a forecast. However, there are typically far
fewer observations available than there are model variables [14]. Furthermore, these observa-
tions are prone to measurement and interpolation errors [14]. The statistical techniques of data
assimilation provide a means to produce improved initial conditions, incorporating information
from both the model state and the observations and taking into account the inaccuracies in each
[14][7].

Sequential data assimilation describes a family of methods that follow a two-stage cyclical
process [14], illustrated in Figure 2.1. In Figure 2.1, xb represents the background state, our
best estimate of the true system state, xt . The observation vector y contains a set of recent
observations of the geophysical system. In the assimilation stage, the observations are combined

4



xa

xb

assimilationmodel y

Figure 2.1: Schematic of an assimilation cycle. Observations, y, are assimilated into a back-
ground state, xb, to produce an analysis, xa. The analysis is marched forward by a numerical
model to produce the next background state.

with the background state to produce xa, the analysis. In the model stage, the analysis becomes
the new model state and is marched forward in time using a numerical model, producing the
background state for the next iteration.

In sequential data assimilation, the analysis is constructed as a linear combination of the
background state and the observations [14]:

xa = xb +K(y−H(xb)) (2.1)

where K represents the Kalman gain matrix and H represents the observation operator, which
can be any linear or nonlinear user-defined function that maps the background state to the obser-
vations [14]. The linearized observation operator, H, is the Jacobian of the observation operator:

H =
∂H
∂x

∣∣∣∣
xb
. (2.2)

The Kalman gain matrix, K, is designed to minimize the trace of the analysis error covariance
matrix, which describes the errors in the analysis [18]. The Kalman gain can be expressed as
[18]

K = BHT(R+HBHT)−1 (2.3)

where B and R are the background and observation error covariance matrices, respectively. The
error covariance matrices are defined as

B =< ε
b
ε

bT
> (2.4)

R =< ε
o
ε

oT
> (2.5)
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where εo and εb are error terms defined as

ε
b = xb−xt (2.6)

ε
o = y−yt (2.7)

where xt represents the true, but unknown state evaluated at the time of assimilation. Similarly,
yt represents the observations that might be obtained in the absence of sampling error [14]. This
formulation yields the Best Linear Unbiased Estimate (BLUE) [7][14] when:

1. The errors are unbiased, i.e. < εb >=< εo >= 0; and when

2. The background errors and observation errors are uncorrelated, i.e. < εoεbT
>= 0.

There is also an implicit assumption here that the background and observation error covari-
ance matrices are known exactly. Under these conditions, the analysis errors can be described
by the analysis error covariance matrix, A. Equation 2.8 demonstrates how the background and
observation error covariance matrices contribute to the analysis error covariance matrix.

A = (I−KH)B(I−KH)T +KRKT (2.8)

When the observation error covariance matrix and the observation operator are known ex-
actly, Equation 2.8 simplifies to Equation 2.9 [7]. This more clearly demonstrates the impact of
the Kalman gain matrix and the observation operator on the analysis, relative to the background
error covariance matrix.

A = (I−KH)B (2.9)

In practical applications, it can be difficult to validate the assumptions listed above. Section
2.5 explains that large biases are known to exist between sea ice forecasts and observational
datasets. Section 2.4 describes why for sea ice thickness it may not be reasonable to assume
that the background and observation errors are uncorrelated. Stewart et al. [13] and Desroziers
et al. [19] explain that many operational assimialtion systems do not correctly estimate the
observation error covariance matrix. When any of these assumptions are not met, the analysis
is effectively suboptimal and Equation 2.8 might not accurately describe the errors in the state
estimate [7][13][14].

There exists a spectrum of sequential assimilation techniques that follow different approaches
for estimating and updating the background error covariance matrix between cycles [7]. Opti-
mal Interpolation (OI), for instance, makes the assumption that the background error covariance
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matrix is static in time [20]. This is the simplest method and it is still used in some prediction sys-
tems today (e.g. [21]) but it is acknowledged that OI analyses may actually be suboptimal [21]. If
the geophysical system is linear, the Kalman filter [22] can be used to propagate the background
error covariance matrix through time [18]. However, most geophysical systems [16], includ-
ing sea ice [23], are described by nonlinear equations and the Kalman filter is not well-suited to
these systems [7][24]. More complicated techniques, such as the Ensemble Kalman filter (EnKF)
[24], described in Section 2.2, can account for nonlinearities in the system dynamics at greater
computational expense.

The estimation of the observation error covariance matrix has received comparatively less
attention than the background error covariance matrix [13]. Sections 2.5 and 2.6 describe how
many, if not all operational sea ice data assimilation systems blindly assume that the observation
error covariance matrix is diagonal. This is largely due to challenges in estimating the observa-
tion error correlation structure [13][19].

An important challenge with the design of any new data assimilation system is to select an
assimilation technique that yields acceptable analysis quality at an acceptable cost. Section 2.5
describes some of the design decisions that were made for sea ice prediction systems.

Note that only sequential methods are decribed above. There are also related variational
methods, e.g. 3DVar [14][21], that approach data assimilation as an optimization problem. The
variational approach is to find the state vector that minimizes a cost function, not presented
herein. The variational problem can converge to the sequential analysis under certain circum-
stances [7]. A comparison of variational and sequential data assimilation is provided in [7]. We
focused on sequential data assimilation because most of the sea ice thickness data assimilation
experiements, summarized in Section 2.5, use sequential techniques.

2.2 The Ensemble Kalman Filter

The EnKF [24] and variants of the EnKF are applied in many of the most recent sea ice data
assimilation experiments (e.g. [11]), which are described in detail in Section 2.6. An ensemble-
derived background error covariance matrix is also used in the twin experiments described in
Chapters 4 and 5. For these reasons, this section provides an introduction to the EnKF.

The EnKF uses an ensemble (a set) of model states to represent the distribution of background
errors [24]. The advantage of this approach is that it can provide an accurate representation
of the background errors, including any inter-variable correlations [7][24]. Equation 2.10 [24]
demonstrates how the background error covariance matrix can be estimated using an ensemble
of model states.

7



B =
1

nens−1

nens

∑
i=1

(xb
i −xb)(xb

i −xb)T (2.10)

and where xb
i represents one of nens model states in the ensemble and where the mean state is

represented by

xb =
1

nens

nens

∑
i=i

(xb
i ) (2.11)

During the analysis step, the observations are assimilated into each model state separately
[7]:

xa
i = xb

i +K(yi−H(xb
i )) (2.12)

Note that the analysis also requires an ensemble of observations, yi. Typically there are
not enough simultaneous observations to provide an ensemble-based estimate of the observation
error covariance matrix [24]. Instead, the observations are perturbed for each ensemble member
by sampling random errors from a Gaussian distribution with spatial correlations following a
prescribed observation error covariance matrix [24].

Propagating forward each model state in time using the numerical model conveniently also
marches forward the estimate of the background error covariances. Thereby the EnKF provides
a reasonably inexpensive dynamic approximation of the background error covariance matrix.

The implementation of an EnKF presents several challenges. First is the choice of nens, the
size of the ensemble. In most operational systems (e.g. [8]), fewer than fifty model states are used
due to computational cost, with the drawback that the distribution of background errors may not
be very well characterized. Error covariance localization is often performed (e.g. [12]) to filter
out spurious long-range correlations that may be present. The second added challenge is that
stochastic numerical models must be used in place of fully deterministic numerical models [7].
Without a stochastic component, the ensemble members can converge to a single state, implying
overconfidence in the background state estimate and possibly leading to numerical errors [24].
The stochastic component requires careful tuning to ensure that there is sufficient spread between
ensemble members [24].

background error covariance matrix provides a realistic approximations of the actual back-
ground errors.
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Figure 2.2: Route from a sea ice thickness AEM survey that occurred April 20, 2015. The survey
begain in Inuvik, NWT, and traversed approx. 400 km of the Beaufort Sea. The observed ice
thicknesses were binned at a 5-km and are plotted by colour. This figure demonstrates the spatial
distribution of thickness and the sparsity of observations that can be achieved from an AEM
survey.

2.3 The Ice Thickness Distribution

This section presents observations from a recent sea ice field survey in an effort to describe the
sea ice thickness distribution and how it is represented in numerical models and assimilation
systems.

The field campaign was conducted on April 20th, 2015, and was funded by the Marine En-
vironment Observation Prediction and Response (MEOPAR) network. The program was led by
Dr. Christian Haas’ research team at York University, with help from the University of Water-
loo’s Department of Systems Design Engineering. To measure sea ice thickness, an Airborne
electromagnetic (AEM) sensor system mounted beneath a Basler BT-67 airplane [25] was flown
North from Inuvik, Northwest Territories, over the Beaufort Sea. The resulting dataset was a
linear track of ice plus snow thicknesses at a resolution of ∼ 8 m, with a nominal thickness error
standard deviation of 0.1 m [25]. Figure 2.2 illustrates the flight path with 5-km average thick-
nesses. Figure 2.3 depicts a typical scene from the airplane at an altitude of approximately thirty
meters. Finally, Figure 2.4 illustrates the distribution of thicknesses observed during the survey.

In Figure 2.2, the 5-km mean sea ice thicknesses are fairly consistently 2-3 m. However,
in Figure 2.3, there appears to be a variety of mixed thin and thicker ridged ice alongside a
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Figure 2.3: Photograph of sea ice in the Beaufort Sea, April 20, 2015. Depicted is a prominent
lead in first-year ice. Within the lead is a mixture of open water, rubble, and new ice.
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Figure 2.4: Histogram of sea ice plus snow thickness in the Beaufort Sea, April 20, 2015. The
thicknesses are binned into categories that are typical of sea ice models, with more categories
representing thinner ice.
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prominent open water lead.

Considering the variability in Figure 2.3, what is the best way to represent ice thickness in
a numerical model? Most numerical sea ice models (e.g [2], [26]) treat sea ice as a continuum,
rather than modelling every segment of ice individually. In these models, ice is discretized
not only in space and time but also in thickness space. Thickness is thereby represented as
a histogram with anywhere from two to twenty categories, where each category has a mean
thickness value and partial concentration. Figure 2.4 depicts the ice thickness histogram for the
April 2015 ice thickness survey, with bins that represent typical ice thickness catagories.

In Figure 2.4, there are nine thickness bins. If these bins were used in a model, the model
would be considered a ten-category model, since there is an additional category representing
the concentration of zero-thickness ice, or open water. Notice that the mean and variance of the
thickness poorly describe the distribution of thicknesses. Firstly there is a long tail that represents
highly ridged ice. Secondly, there may be two separate peaks, representing the combination of
thicker first/multi-year ice and newer ice that were observed during the survey.

In the context of data assimilation, special consideration needs to be given to the ice thick-
ness distribution. A ten-category model increases the state size by one order of magnitude and
the background error covariance by two orders of magnitude, as compared to a two-category
model. Furthermore, there is an inherent discrepancy between thickness (units of meters) and
thickness partial concentration (unitless). Section 2.6 describes how this problem is currently
being approached in experimental sea ice data assimilation systems.

2.4 Remote Sensing of Sea Ice Thickness

Sea ice thickness can be measured reliably in the field by drilling through the ice with an auger
and measuring tape [27]. Reasonably accurate estimates of sea ice thickness can also be obtained
by airborne surveys [25] and submarine-based field programs [28]. Unfortunately, very few
field surveys are conducted each year and airborne and ULS data are more frequently used for
validation (e.g. [29]) than for assimilation. Until we can develop a field-based sensor network
with sufficient spatial coverage and reliability, there is perhaps greater value in assimilating data
collected by spaceborne sensors, which can provide better spatiotemporal coverage of the Arctic
[7][9].

The trade-off with space-based observations of ice thickness is that there is greater uncer-
tainty with the data quality [9]. To be clear, it is not actually possible to directly observe sea
ice thickness remotely. Satellite sensors detect more basic electromagnetic signals that must be
combined with ancillary data through a statistical or physically-based thickness model. Errors
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Table 2.1: Satellite Sensors for Sea Ice Thickness Estimation

Sensor Satellite Type Sensor Footprint (km)

SIRAL CryoSat-2 Radar Altimeter 0.3*1.5
MODIS Aqua VisIR 1
VIIRS Suomi NPP VisIR 0.75

MIRAS SMOS Passive Microwave 35
AMSR-2 AMSR-2 Passive Microwave 14-62

in the ancillary data, model inaccuracies, and differences in spatial resolutions all contribute to
errors in the thickness estimates.

There are three standard approaches for estimating sea ice thickness using observations from
spaceborne sensors. The first approach is based on altimetry and Archimides principle [3]. The
second approach is based on Visible-Infrared (VisIR) imagery and a thermodynamic model [30].
The third approach is based on passive mircowave imagery and an emissivity model [31][32].
Table 2.1 lists a selection of active satellites in the three sensor categories, along with the diameter
of the sensor footprint. The sensor footprint is the area projected onto the Earth’s surface that
contributes to the observed signal. Passive microwave sensors typically produce imagery with a
finer resolution than the sensor footprint. For instance, the SMOS sea ice thickness product has
a spatial resolution of 12.5 km and a sensor footprint of 35 km [33].

Each of the satellites in Table 2.1 are in polar low-earth orbits. It is therefore possible to
expect daily revisit times at most temperate latitudes, with increased frequency near the poles.
The exception is CryoSat-2, which has a fine beam width and can take months to revisit the same
location [3].

Table 2.2 lists the ancillary data required to produce a sea ice thickness estimate with each
sensor type. In general, satellite sensor data comprise only a fraction of what is required to es-
timate ice thickness. Some of the required variables, like snow density, ice density, and ocean
salinity, are often assumed to be constants [30]. Snow thickness is often specified as a piecewise
function of the ice thickness [30]. Atmospheric variables can be interpolated from meteorolog-
ical forecasts. Ice concentration estimates can be taken from remote sensing estimates of ice
concentration or from the state of a sea ice model. In general, remote-sensing-based estimation
of ice thickness is quite an involved process.

An important note is that each of these remote sensing-based thickness estimation techniques
come with caveats on the condition of their use. Cryosat-2, for instance, cannot distinguish ice
thicknesses less than 1 m because the freeboard (elevation of the ice above the ocean surface) is
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Table 2.2: Required ancillary data for satellite sensor-based estimation of ice thickness

Sensor Type Required Ancillary Data

Altimeter Ice density, snow density, snow thickness, and ocean surface ele-
vation [3]

VisIR

Albedo (for daytime retrievals), ice surface temperature, ice den-
sity, ice concentration (assumed to be 100%), cloud cover frac-
tion, snow density, snow depth, air density, relative humidity, 2 m
wind speed, 2 m air temperature, surface air pressure, and ocean
salinity [30]

Passive Microwave
Snow thickness, ice temperature, ice salinity, ice concentration
(assumed to be 100%), and the shape of the ice thickness distri-
bution [32]

near the error standard deviation of the sensor [9]. MODIS-based ice thickness estimates become
unreliable above 0.5-1 m [34]. Similarly, AMSR-2-based ice thickness estimates saturate at
0.2-0.3 m and SMOS-based ice thicknesses saturate above 0.5-1.0 m, depending on the sea ice
salinity [32]. Another condition is that VisIR-based ice thickness estimates are only reliable
for night-time imagery and all three methods are only reliable during freezing conditions, in
the absense of melt ponds or wet snow. Finally, SMOS-based thickness observations are prone
to contamination from electromagnetic interference [32]. These conditions are all theoretically
manageable but there are clearly challenges facing the automated retrieval algorithms that would
be required for an operational data assimilation syste.

Validation of satellite-based ice thickness products typically involves comparing the product
to a set of field observations from the same date [9]. For SMOS-based ice thickness estimates,
relative standard thickness errors are estimated to be 20% for ice < 30 cm and 100% for ice
> 1 m thick [32]. This corresponds to error standard deviations of of 0.06 and 1 m for the
respective thicknesses. Estimates of error standard deviations for MODIS-based ice thickness
estimates range from 0.15 to 0.5 m for ice thicknesses ranging from 0.05 to 0.8 m, and only
for air temperature <−20C and windspeeds < 5 m/s [34]. These error estimates can be several
times larger for warmer air temperatures and greater windspeeds [34]. CryoSat-2 errors are more
consistent, with an error standard deviation of 0.1 m when the snow and ice density are known
[32].

In a comparison of sea ice thickness products from six different sources in the Arctic Ocean,
Wang et al. [6] demonstrated that there are often large biases between thickness products. For
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instance, thicknesses from the satellite sensor AVHRR (Vis-IR) were 0.19 m less than the corre-
sponding thicknesses from CryoSat-2, in regions where both sensors predicted ice thinner than 1
m [6]. Compared to a set of AEM survey data, AVHRR and CryoSat-2 both had positive biases of
0.18 and 0.29 m, respectively. The authors investigated the spatial correlation of errors but only
qualitatively [6]. From a visual inspection of the thickness maps the thickness error correlations
appeared to often span hundreds of kilometers.

We can conclude that it is possible to produce remote sensing-based sea ice thickness obser-
vations. It may also be also be possible to estimate the observation error variances, at least under
certain conditions. However, in an operational assimilation system, we lack he ability to estimate
the observation error covariance structure.

2.5 Operational Sea Ice Assimilation in Canada

ECCC has two operation sea ice forecasting systems: Regional Ice Prediction System (RIPS)
[21] and Global Ice Ocean Prediction System (GIOPS) [5]. RIPS provides 48-hour forecasts at
5-km resolution in Canadian coastal waters [21]. The objective for this system is to support the
Canadian Ice Service (CIS) in its mandate to support safe naval operations in Canadian waters.
GIOPS provides 10-day forecasts on a coarser 10-km grid [5]. GIOPS forecasts are used as input
for numerical weather prediction (NWP) systems.

GIOPS uses the Los Alamos sea ice model (CICE) coupled to the Nucleus for European
Modelling of the Ocean (NEMO) ocean model [5]. RIPS also uses CICE, forced by an ocean
state interpolated from GIOPS [21]. CICE is a multicategory ice model, meaning that ice thick-
ness is represented by up to ten categories, where each category is represented by a thickness
value and a partial concentration [2]. Atmospheric forcing data are interpolated from ECCC’s
Regional and Global Deterministic Prediction Systems (RDPS and GDPS).

GIOPS has two separate data assimilation systems. The first system assimilates remotely-
sensed sea surface temperature (SST) and sea surface anomaly observations, along with field-
based observations of the same variables, into the ocean model state using a Singular Evolutive
Extended Kalman (SEEK) filter [5]. The second system uses 3DVar to assimilate ice concen-
tration observations from passive microwave satellite sensors and from manually-classified ice
charts from the CIS into the sea ice model. RIPS also uses 3DVar to assimilate sea ice concen-
tration observations from passive microwave sensors and CIS ice charts [21]. Both systems are
now moving toward the ensemble-based EnVar [8].

Both sea ice concentration assimilation systems share a few specific details [5][21]:
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• Passive microwave concentration observations are rejected when the air temperature is
greater than zero and when the SST is above −4◦C;

• Since the passive microwave observations have a much larger footprint size than the model
resolution, a many-to-one linear observation operator (a footprint operator) is used to in-
terpolate the background concentrations to the observations;

• The analysis occasionally produces concentrations greater than one or less than zero, which
is non-physical. These concentrations are truncated to the range [0,1];

• The observation error covariance matrix is diagonal but the error variances are inflated by
a factor greater than one to account for the lack of off-diagonals; and

• Sea ice concentration is the only variable in the background state.

The reason that GIOPS and RIPS both use a diagonal observation error covariance matrix
is two-fold. Firstly, ECCC’s variational data assimilation system requires the inverse of the
observation error covariance matrix, which becomes too poorly conditioned to invert directly
when non-zero spatial covariances are included [21]. The second reason is that it is simply too
challenging to estimate the actual error covariance structure in an operational setting. Inflating
the observation error variances ensures that the assimilation system does not underestimate the
analysis error covariances.

In GIOPS, the ice state is represented by ten partial concentrations of ice thickness, yet only
the total concentration is used in the analysis [5]. After updating the total concentration with
3DVar, the partial concentrations must be adjusted. However, linearly scaling each partial con-
centration by the change in total concentration is not reflective of the physical processes that
led to the errors. Instead, a more sophisticated redistribution scheme is used. The details of the
redistribution scheme are beyond the scope of this thesis but they are described in detail in [5].

In RIPS and GIOPS, the root-mean-square errors (RMSEs) for ice concentration are esti-
mated to be approximately 0.2-0.3 (20-30%), based on comparisons with manually-classified
Synthetic Aperture Radar image analysis datasets [4][5]. Typical biases were ±0.1 (10%), al-
though bias is not handled explicitly by the system [4]. Thickness error estimates were not
reported for either system. These error estimates provide a benchmark upon which we might be
able to improve through ice thickness assimilation.
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2.6 Experimental Sea Ice Thickness Assimilation Systems

Sea ice thickness is not currently being assimilated operationally at any NWP centre. How-
ever, there is active experimental research being conducted to support the development of such
systems. This section describes three distinct areas of research in this field.

2.6.1 Seasonal Forecast Initialization Using Field Observations

The quality of numerical sea ice models degrades severely during the summer when higher tem-
peratures prevent passive microwave sensors from producing reliable sea ice concentration ob-
servations. Late summer is also the period when it is possible for ships to travel through the
Northwest Passage [1]. There is therefore great value in ensuring that seasonal forecasts are
initialized with the best possible model state.

In 2012, Lindsay et al. [35] used the thickness products from twelve AEM surveys to help
set the initial conditions for a seasonal forecast spanning the summer months. The AEM surveys
covered the Beaufort and Chuchki Seas, collecting ice thickness observations at fourty-meter res-
olution. With this high-resolution field data, it was possible to estimate the partial concentrations
for each thickness category [35]. Lindsay et al. used OI to combine the partial concentration es-
timates with the June 1, 2012 state of PIOMAS. The result was an improvement in the predicted
September total ice extent, as compared to a control forecast.

While field surveys provide accurate observations that are well-suited to assimilation into ice
models, these are not cost-effective for operational use. The AEM surveys used in [35] did not
span the entire arctic ocean, nor did they cover important regions such as the Canadian Arctic
Archipelago. A pan-arctic sea ice survey has never been done and such an effort cannot be
expected every year. That said, several regional AEM surveys are conducted each year and these
might be used effectively for tasks like validation of satellite-based ice thickness products and
for assisting with regional forecasts.

In a similar study using an ensemble of climate models, Day et al. [36] showed that exactly
knowing the initial thickness state could have impacts extending up to eight months into the
future. While it is not possible to exactly determine the thickness state, this investigation set the
upper bound on potential long term impacts from ice thickness assimilation.

2.6.2 Twin Experiments with Synthetic Observations

Lysaeter et al. [11] conducted perhaps the first sea ice thickness data assimilation experiment.
In this experiment, the authors ran two sets of two-category arctic sea ice models in parallel.
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Observations were sampled from one model state using a synthetic sensor that simulated the
observations that CryoSat would produce. The sampling errors were prescribed to be spatially
uncorrelated, but the error variances were a function of the ice concentration and thickness in
the model state. These observations were then periodically assimilated into an ensemble of other
model states using an EnKF. In their assimilation system, the background state vector included
not only mean ice thickness but also concentration, ocean salinity and SST.

The authors demonstrated that biweekly assimilation of CryoSat data reduced the RMSE
from 0.8 m to 0.4 m [11]. Improvements to SST and ice concentration were also observed,
although these improvements only occurred at the ice edge (the marginal ice zone). While this
experiment was overall somewhat idealistic, it demonstrated and quantified the potential benefits
of routine sequential sea ice thickness assimilation.

2.6.3 Quasi-Operational Systems

In the most recent sea ice thickness data assimilation experiments, researchers are sequentially
assimilating sets of satellite-based sea ice thickness observations into operational-quality coupled
ice-ocean models forced with atmospheric reanalysis data. The analyses and forecasts aren’t
being used directly by industry, but insights from these experiments are applicable to the design
of next-generation NWP systems.

Yang et al. [12] investigated the impacts of assimilating SMOS-based ice thickess observa-
tions along with passive microwave sea ice concentration observations. The authors used the
daily SMOS-based thickness product that is produced by the University of Hamburg [33]. These
data are subject to rigorous quality control and are provided with an estimate of the observation
uncertainty. This provides a convenient starting point for operational data assimilation because
the observation uncertainties can be used to estimate the observation error variances.

In their study, Yang et al. used a two-category sea ice model coupled to a multi-level ocean
model [12]. The ice model is two-category, meaning that the only thickness variable is the
mean ice thickness. From a thickness assimilation perspective, this is convenient, although the
numerical model may be less accurate. The authors used a background state that included the
thickness, concentration, and ocean prognostic variables.

Yang et al. used a sophisticated Local Singular Evolutive Interpolated Kalman (LSEIK) filter,
which is an extension of the EnKF, for their analyses [12]. The authors described in detail the
construction of the background error covariance matrix, which is generated using the ensemble
of model states and then localized to a decorrelation length of 125 km. The observation operator
implemented linear interpolation to map the model thicknesses to the observation locations. The
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observation uncertainties provided with the SMOS thickness dataset were used to create observa-
tion error covariance matrix, which was specified to be diagonal. Thickness observations greater
than 1 m were given an error variance of 5 m to prevent these observations from impacting the
analysis.

The authors reported favourable results, with root-mean-squared differences (RMSDs) be-
tween the SMOS thickness and model thickness decreasing from 0.8-0.85 to 0.35-0.54 m over
the course of a season in the first-year ice zone [12]. The RMSD in the early winter was less than
the RMSD at the end of the growth season, in part because there was more thin ice early in the
season. An important note is that 80% of the grid points experienced negative increments during
the assimilation, suggesting that the analysis was in fact largely just a bias correction.

SMOS-based observations will likely be the first thickness observations assimilated sequen-
tially. Despite the relatively coarse 35 km sensor footprint size and 12.5 km spatial resolution,
SMOS is able to produce pan-Arctic daily coverage, unlike CryoSat-2. Furthermore, SMOS data
is less sensitive to weather and light conditions than VisIR-based observations. There is also in-
creased confidence in the data now that a daily SMOS-based thickness product is being produced.
The efforts from these investigations confirm that the assimilation of SMOS-based observations
has the potential to improve sea ice model state quality during the ice growth season and at the
ice-water boundary.

2.7 Synthesis

The NWP community is nearing the point where it is possible to assimilate satellite-based sea
ice thickness observations into coupled ice-ocean models. 3DVar and/or EnKF systems ingesting
SMOS-based thickness data will likely form the first operational systems.

Despite this progress, there remain several barriers to the immediate implementation of a
sea ice thickness data assimilation system. Ice thickness biases in both the model states and in
the observations are known to exist but neither operational nor experimental NWP systems can
adequately correct this. Remote sensing-based thickness estimates are also notoriously poor and
little has been done to quantify ice thickness observation error covariances. It seems likely that
the first operational prediction systems that will assimilate ice thickness observations will do so
using diagonal approximations to the observation error covariance matrix. If short-term sea ice
forecasts are to play a role in ship navigation and other safety-critical operational activities in
Canada’s North, there is a demonstrated need to understand how the state of a numerical model
will change when a diagonal approximation to the observation error covariance matrix is used in
ice thickness data assimilation.
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Chapter 3

A One-Dimensional
Dynamic-Thermodynamic Sea Ice Model

Experimental data assimilation methods are often tested on lower-dimensional models before
moving to full-scale prediction systems. For instance, the development of the Ensemble Kalman
Filter (EnKF) was supported by experiments with the Lorenz equations and the shallow wa-
ter equations [24]. Using these simpler tools it is possible to rapidly and inexpensively screen
hypotheses and quantify the impact of alternative data assimilation methodologies. While the
simplified models do not exactly reproduce the dynamics of the geophysical system, they can be
used effectively to reveal insights that may be applicable to larger systems.

The basis of this thesis is a simplified sea ice model, coupled to simplified models of the
atmosphere and ocean. The sea ice model implements a two-category representation of sea ice
in one-dimension. The model is not bound to any particular coastlines or latitude and can be
configured to mimic the evolution of a sea ice state in any season. Starting with a set of random
initial conditions, the model provides a random simulation of the ice pack. The model is referred
to herein as the toy model.

This chapter describes the design and validation of the toy model. The toy model was de-
signed to meet two requirements: first, that it be inexpensive and suitable for use in twin data
assimilation experiments on a desktop computer; and second, that it produces a dynamic sea ice
state with thickness and velocity distributions that are similar to observational datasets. This sec-
ond feature of the toy model, the realistic simulated forcing, is a novel contribution that provides
a different perspective than other one-dimensional ice models, which are more commonly used
for testing and validating new model processes and algorithms [2][26]. The use of the toy model
in a twin experiment is described in Chapter 4.
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3.1 State Variables

Hibler [23] developed one of the first dynamic-thermodynamic sea ice models. Hibler’s state
variables were concentration (a), thickness (h), and the meridional and zonal velocities (u and
v). This represents a two-category model, where a given model cell has a fraction a of thick ice
with thickness h and a fraction (1−a) of either open water or very thin ice that that has minimal
effect on the model processes. While multi-category models are more realistic, the two-category
model was considered better suited to the scope of this study.

There can be many additional state variables in addition to concentration, thickness and ve-
locity. Examples include albedo, snow density, snow thickness, ice density, ice temperature, ice
salinity, and melt pond area. Full scale multi-category models such as the Los Alamos Sea Ice
Model (CICE) [2] and the Louvain-la-Neuve Ice Model (LIM) [26] propagate each of these vari-
ables at increased expense and complexity. For the purposes of the toy model, we chose not to
include any more variables than Hibler modeled. Instead, variables such as the ice density were
set to be constant parameters. We also removed the second velocity component, v, effectively
making the model one-dimensional.

3.2 Simplified Sea Ice Equations

In the continuum representation, sea ice behaves like a viscous plastic that is forced mechanically
by the wind and ocean currents. The balance between internal and external stresses is represented
in the momentum equation [23]:

ρiceah
Du
Dt

=−ρiceah f k×u+ τa + τw−ρiceahg∇H +F (3.1)

where ρice represents the density of the ice, k is a unit vector, f is the Coriolis parameter, τa
represents the external stress caused by the wind, τw represents the external stress caused by
shallow ocean currents, ∇H represents the surface gradient of the ocean free surface, and F
represents the internal stresses within the ice sheet. Note that this equation is two-dimensional,
and only a one-dimensional implementation is considered herein.

A scaling exercise based on field observations in the Baltic Sea [37][38] revealed that the
atmospheric, oceanic, and internal stresses are typically orders of magnitude larger than the
other terms for ice conditions with a mean thickness of approximately 1 m. Retaining these
terms, constraining dynamics to one dimension, and expanding the source terms we obtain a
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simplified momentum equation:

ρiceah
∂u
∂ t

= ρaaCaua|ua|+ρoaCo(uo−u)|uo−u|+ ∂

∂x

(
ζ

∂u
∂x

)
(3.2)

where Ca and Co represent the quadratic drag coefficients for the wind and ocean, respectively;
ua and uo represent the wind and ocean velocities, respectively; ρa and ρo represent the wind
and ocean densities, respectively; and ζ represents the bulk viscosity of the sea ice. The drag
coefficients are typically set to constant values based on field observations, but they can be pa-
rameterized based on the ice roughness. The air and ocean velocities are typically interpolated
from ocean and atmospheric models that are being integrated in parallel (e.g. [5]).

The viscous-plastic ice rheology produces a viscosity term that is a nonlinear function the
ice concentration, thickness, and velocity. The equations describing the bulk viscosity in one
dimension are [23]

ζ =
P

2∆
(3.3)

∆ =

∣∣∣∣∂u
∂x

∣∣∣∣(1+ e−2) (3.4)

P = P∗hexp(−C(1−a)) (3.5)

where P represents the ice strength. P∗, C, and e are empirically derived/tuned constants. Note
that the ice strength is linearly proportional to thickness and exponentially proportional to con-
centration. To avoid singularities, the viscosity is constrained within the range of ζmin = 4∗108

kgs−1 and ζmax = 2.8∗108P [23]. At the minimum viscosity, ice forms flows that behave like a
solid. At higher viscosities, ridging or fracturing occurs.

In addition to the momentum equation, there are transport equations for both thickness and
concentration [23]:

∂a
∂ t

=−∂ua
∂x

+Sa (3.6)

∂h
∂ t

=−∂uh
∂x

+Sh (3.7)
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Figure 3.1: Empirical functions for the seasonal sea ice growth rate in the central Arctic [23][39].
The growth rate function f (h), found in equations 3.8 and 3.9, is greatest for thin ice, decreasing
with increasing ice thickness. In the summer, the growth rate is negative.

where Sa and Sh are thermodynamic terms given by

Sh = f (h/a)a+(1−a) f (0) (3.8)

Sa =

{
f (0)(1−a)/h0, if f (0)> 0,
0, if f (0)< 0

+

{
0, if Sh > 0,
0.5ah−1Sh, if Sh < 0

(3.9)

where h0 = 0.1 m is a fixed demarcation between thin and thick ice, and f (h) is the growth rate.
Hibler [23] used an exponential function of thickness for growth rate based on field experiments
conducted by Thorndike et al. [39]. Figure 3.1 illustrates this growth function. From Figure 3.1
and equations 3.8 and 3.9, we can see that winter growth rates are considerably higher when the
ice is thin and has low concentration. When the ice is thicker or the concentration is 100%, there
is little growth, reflecting the insulative properties of ice thickness.

The January and July growth rate curves depicted in Figure 3.1 may represent more extreme
growth rates than might be observed at lower latitudes or at other times during the year. Further-
more, there may be daily fluctuations in growth rate from the monthly average rate. To allow
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Figure 3.2: The staggered grid for the toy sea ice model. The velocities are offset by one half-grid
cell from the other variables.

for intermediate growth rates, the toy model was configured so that the January growth function
f (h) can be multiplied by a growth rate scaling factor.

Note also that CICE and LIM use a prognostic thermodynamic model for simulating heat
transfer through the ice and snow. While this adds a level of realism, it requires additional
state variables and input from sophisticated ocean and atmospheric models. By using Hibler’s
empirical growth rate function, we preserved the simplicity of the toy model while not ignoring
thermodynamics entirely.

3.3 Numerical Solution

The numerical solution to the sea ice momentum equations is an active area of research (e.g. [40],
[41]). Since ice velocity is a function of the ice viscosity, and viscosity is a function of the ice
velocity, the momentum equation is highly nonlinear. Viscosity can take on values spanning two
orders of magnitude, effectively representing the sea ice as a fluid at low viscosities and a solid
at high viscosities. The solution of the toy model follows the mixed implicit-explicit approach
described by Lemieux et al. [40]. In this approach, the momentum equation is solved implicitly
at each time step, while concentration and thickness equations are solved explicitly.

Algorithm 1 [40] describes the procedure for advancing the sea ice state at time t. The outer
k iterations are required for the ice state to reach a stable viscosity ζ and velocity u. The use
of uk−1

l instead of simply uk−1 damps the increment, leading to better convergence. Following
this approach, a time step of six hours can be used accurately on a 10-km grid [40]. Lemieux et
al. [40] found that a reasonable level of convergence can be achieved in up to 5 iterations of the
outer loop. Our selection of ten outer loop iterations was conservative and we did not observe
visible differences in ice states generated with either fewer or more iterations.

The model domain is a one-dimensional periodic grid spanning 1000 km with a grid spacing
of 1 km. While this represents a higher resolution than RIPS (5 km), the grid may be reflective
of next-generation ice prediction systems. The grid is staggered in such a way that the velocity
ui is stored one-half grid cell away from the concentration, thickness and viscosity. Figure 3.2
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Data: ut−1, at−1, ht−1, ut
o, ut

a, f (h)t

u0 = ut−1;
u1 = ut−1

for k = 2→ 10 do
Compute bulk viscosity ζ ;

uk
l =

uk−2+uk−1

2 ;
Solve the momentum equation (3.2), substituting uk−1

l for ut−1;
Result: uk

end
ut = uk;
Solve the transport equations (3.6 and 3.7) to update a and h;
Result: ut , at , ht

Algorithm 1: Numerical Solution to Sea Ice Equations [40]

illustrates the grid. A forward-in-time, centered-in-space finite difference discretization of the
momentum equation (3.2) yields:

α1ut
i−1 +α2ut

i +α3ut
i+1 = b (3.10)

where

α1 =
1

(∆x)2 ζi

α2 =
1

(∆x)2 (ζi +ζi+1)−
(

ρi

2∆t

)
(ai+1hi+1 +aihi)−

ρwCw

2
(ai +ai+1)

∣∣∣uwi−ut−∆t
i

∣∣∣
α3 =

1
(∆x)2 ζi+1

b =−ρice

2∆t
(ai+1hi+1 +aihi)ut−∆t− ρwCw

2
(ai +ai+1)uwi

∣∣∣uwi−ut−∆t
i

∣∣∣− ρaCa

2
(ai +ai+1)uai |uai|

Evaluating these coefficients at every grid point produces a series of equations:

Au = b (3.11)

Solving the system of momentum equations (3.11) can be done using any number of numeri-
cal solvers. Lemieux et al. [40] used the Generalized Minimum RESidual (GMRES) solver. With
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our coefficient matrix A being only 1000x1000, it was faster to solve this system of equations
directly.

Once the ice velocities are computed, the concentration and thickness can be advected. This
was accomplished using the Adams-Bashforth-3 time-stepping scheme, which is second-order
accurate in time [42]. For ice thickness:

ht = ht−1 +∆t
(

23
12

f t
h−

4
3

f t−1
h +

5
12

f t−2
h

)
(3.12)

where f t
h represents the thickness flux at time t, given by

f t
h =−

1
2∆x

(hiui +hi+1ui−hi−1ui−1−hiui−1)+Sh (3.13)

Substituting concentration a for thickness h in Equations 3.12 and 3.13 yields equivalent equa-
tions for advecting concentration.

The default time step for the toy model was set to 0.5 hours. Based on experimentation with
the model, this was found to be an approximate lower bound on stability. Note also that under
compressive stresses, ice concentration can exceed 100%, which is non-physical. To limit the
concentration at 100% and conserve ice mass, a redistribution stage is necessary. With redis-
tribution, the concentration is reduced to 100% and the thickness is increased by a factor that
conserves the ice mass. Under diverging conditions, if either the concentration or thickness fall
below zero, both variables are set to zero.

3.4 Forcing

The novel component of the toy model is that it is driven by simulated forcing data to produce
ice dynamics with a realistic velocity field. Operational ice models (e.g. [21]) are driven by
atmospheric datasets taken from full-scale numerical weather prediction models. As there was
no equivalent dataset for the one-dimensional toy model, we constructed our own simplified
models of the ocean and atmosphere to produce this forcing data.

Single-layer, one-dimensional shallow water models were selected provide the wind and
ocean currents that drive the ice model. The shallow water equations are simplifications of the
Navier-Stokes equations where vertical pressure gradients are assumed to be hydrostatic and hor-
izontal pressure gradients are caused by displacement of the free surface [16]. These equations
were selected to force the ice model because they are relatively simple and because preliminary
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experiments revealed that they can produce velocity fields with a wide range of spatial scales and
with magnitudes that match observational data.

The governing equations for the shallow water model can be written as [16]
∂u
∂ t

=− ∂

∂x

(
gη +

1
2

u2
)

(3.14)

∂η

∂ t
+

∂ηu
∂x

= 0 (3.15)

where η represents the fluid depth, u represents the fluid velocity, and g represents acceleration
due to gravity.

These equations are discretized and solved on the same grid as the ice model, with velocity
and fluid elevation staggered. The same Adams-Bashforth-3 timestepping scheme used for con-
centration and thickness is used to march forward the velocity and fluid depth. The timestep for
the shallow water model was set to one second to ensure numerical stability.

The initial conditions for the shallow water models include a velocity field set to zero. The
fluid surface is displaced from its mean elevation by adding a simulated Gaussian Markov Ran-
dom Field (GMRF) [43]. By displacing the fluid surface, we effectively inject energy across the
model domain. The length scale, variance, and spatial covariance model of the random field can
be modified to produce different dynamics. All experiments conducted in this thesis used a decor-
relation length of 10 km and a Gaussian correlation function. We considered the decorrelation
length to represent the distance at which the correlation is 0.05. We selected the decorrelation
length of 10 km because it produced velocity features with the widest range of scales but without
producing sharp-fronts that led to numerical errors in the velocity field. Similarly, the Gaus-
sian correlation structure was chosen because it prevented numerical errors in the model that we
observed with other correlation structures.

The model uses a Fast Fourier Transform (FFT)-based approach for simulating the random
surface displacement field [43]:

η = FFT−1
(√

FFT (c)�FFT (w)
)

(3.16)

where c denotes the covariance vector as a function of distance separating the points,� represents
the Schur product, and w represents a vector of independantly and identically distributed noise.
The Gaussian covariance function was computed as [44]:

c(d) = exp

(
−3
(

d
r

)2
)

(3.17)
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Table 3.1: Model Files

File Summary

world.py Defines classes for Ice, Ocean, and Atmosphere models.
assimilation.py Defines a class for performing Optimal Interpolation.
main.py Main code for running the model.
main_oi.py Conducts a twin experiment using the assimilation class.
utils.py Contains various utility functions (e.g. random field simulation).

Two additional sets of parameters are included to adjust the properties of the shallow water
models. First, the velocities were multiplied by a constant to produce more realistic distribu-
tions of wind and ocean current velocities. This constant was tuned to produce wind velocities
between approximately -15 and 15 m/s and ocean velocities between -0.3 and 0.3 m/s. The
timesteps were also multiplied by constants to produce slower wave speeds, in other words de-
creasing the temporal scale of velocity. These parameters were tuned to produce wind and ocean
currents fields with a temporal decorrelation length of approximately ten days. Overall, these
shallow water models produced nonlinear wave-like mechanical forcing with regions of mixed
convergence and divergence.

3.5 Implementation

The model was written in Python (version 3.5) and can be found at https://github.com/
gastoneb/sea_ice_model. The model requires the numpy, scipy, and matplotlib libraries.
Table 3.1 summarizes the five included Python files and Table 3.2 lists the parameter values that
define a standard model run.
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Table 3.2: Default model parameter values

Parameter Units Default Value

Ca - 0.0015
Cw - 0.0015
C - 20
e - 2
h0 m 0.05
P∗ N m−1 5000
ρi kgm−3 910
ρw kgm−3 1035
ρa kgm−3 1.3
∆x m 1000
∆t 0.5

3.6 Validation

The generality and significance of the experimental results described later in this thesis were
contingent on the sea ice model being reasonably realistic. To validate the model, statistics
generated from a long model run were compared to identical statistics gathered from historical
field datasets and other model runs (e.g. long-term climate studies). Six measures were generated
and compared herein. These measures were selected based on availability of data available for
comparison [45].

1. Histograms of wind and ocean velocities

2. Histogram of sea ice velocity

3. Histogram of sea ice divergence, ∂u/∂x

4. Temporal autocorrelation function (ACF) of sea ice velocity

5. Spatial ACF of sea ice thickness

6. Histogram of sea ice thickness distribution

To generate these plots, the model was initialized with a thickness of 10 cm, a concentration
of 50 %, and growth rate factors sampled from the range [0.5,0.9]. The ice was allowed to
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grow for a period of 30 days. Following this, the model was run for another thirty days with
a growth factor randomly selected each day from a range of [−0.05,0.05], representing milder
thermodynamic conditions. For this second period, the model state and forcing data were saved
at each time step. The saved states were used to create the histograms and ACFs listed above.
Figure 3.3 illustrates the model state at an intermediate time step.

Following the sixty-day integration, the mean sea ice thickness and concentration were ap-
proximately 0.72 m and 0.95, respectively. Note that greater variability in ice velocity was ob-
served in regions with relatively low ice thickness and concentration. This can be attributed to
the ice strength being a function of ice thickness and concentration (Equation 3.5).

Figures 3.4a and 3.4b illustrate the distributions of wind and ocean velocities simulated dur-
ing the model run. The distribution of wind velocities was approximately Gaussian and compa-
rable to the distribution of wind velocities collected from a 10 m meterological tower during a
field program over the Beaufort Sea [45]. A similar study in the Beaufort Gyre observed typical
maximum ocean surface currents of 5-10 cm/s [46]. Overall we felt that the shallow water mod-
els used to force the sea ice model would provide a reasonable distribution of surface stresses on
the ice.

Following a verification of the forcing data, we examined the sea ice drift velocity fluctua-
tions. A velocity fluctuation is the recorded velocity minus the long-term average velocity [45].
The long-term average sea ice velocity was approximately zero. Figure 3.4c illustrates the distr-
bution of sea ice velocity fluctuations observed during the model run. The sea ice drift velocity
fluctuations roughly followed a Gaussian distribution with a mean of zero and with maximum
observed speeds of 0.2 m/s. This distribution was compared to a distribution of velocity fluctu-
ations gathered from buoys deployed during an Arctic Field campagin [47]. Both distributions
were comparable. However, the buoy data contained very infrequent velocity fluctutations up
to 1 m/s that were not observed in the toy model. These large velocities were be attributed to
turbulent-like features [47]. We did not expect our simplified model to reproduce these large
velocities.

The divergence rate is the horizontal derivative of velocity, ∂u/∂x, representing the deforma-
tion being experienced by the ice [48]. Figure 3.4d illustrates the divergence rates observed by
the model. The divergence rate distribution was compared to the distribution of divergence rates
copmuted from a set of Radarsat Geophysical Processor System (RGPS) observations [48]. Both
distributions approximately followed a power-law-like distribution, with a large amount of ice
that exhibits very little deformation and smaller amounts of ice exhibiting fracturing or ridging
events. In the RGPS data, there were more divergence rates near zero and fewer greater than
0.2 day−1, as compared to the toy model. A possible explanation for this discrepancy is that the
RGPS data was obtained from first-year and multi-year Arctic sea ice that is much thicker and
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Figure 3.3: Toy sea ice model state after a sixty-day integration from nearly ice-free conditions.
The mean thickness was 0.72 m and the mean ice concentration was 0.95. Note that in regions
where there is relatively low thickness and concentration, the variability of ice velocity is higher.
This demonstrates the sea ice processes that the model is able to simulate.
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(c) Distribution of sea ice fluctuating velocities
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(d) Distribution of ice divergence rates
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(e) Temporal ACF of ice velocities

Figure 3.4: Ice, ocean and wind velocities observed during the sixt-day validation run. The veloc-
ity distributions were all approximately Gaussian. These produced a PDF of ice divergence rates
that approximately followed a Power-Law distribution. The temporal decorrelation length of ice
velocities was approximately ten days. These distributions are comparable to the distributions of
field observations presented in [45]
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stronger than the ice simulated by the toy model.

Figure 3.4e illustrates the temporal autocorrelation of sea ice velocity experienced at a randomly-
selected grid point. The decorrelation time was between five and ten days. For comparison, the
Arctic buoy data [47] had a decorrelation time of ten days. Figure (3.5a) presents the histogram
of ice thickness produced by the toy model. This histogram can be compared to the AEM-based
thickness histogram presented in Figure 2.4. In both histograms there is a thickness mode less
than 1 m and a long tail indicating thicker ice. In the AEM dataset, there is a longer tail with
thicknesses extending up to 7 m. This is in part related the higher resolution of the AEM dataset,
since sea ice can exhibit greater variability at smaller scales [9]. It is also related to the fact
that there was first- and multi-year ice covered in the AEM survey, which may have experienced
many more ridging events. Overall, the ice thickness distribution produced by the toy model was
reasonable for young ice. Figure 3.5b illustrates the spatial autocorrelation of thicknesses pro-
duced by the toy model. The ice thickness had a decorrelation length of approximately 30 km.
This ACF was comparable to the ACF of ice draft observations collected using a ULS beneath
the Beaufort Sea [49].

One important concluding note is that the results depended largely on both the initial sea ice
state and the forcing. When the inital ice concentration was set to a constant 100%, the range of
velocities was much smaller due to the greatly increased ice strength. Girard et al. [48] noted
that when the ice concentration was 100%, the ice divergence rates no longer followed a power
law-like distribution. The toy model was more representative of new, thinner ice than the thick
first- and multi-year ice studied in [47]. While this leads to confidence in the ability of the toy
model to adequately simulate sea ice, it also means that results from experiments with the model
should be considered unique to the model state and forcing. This caveat was carried forward in
later chapters.
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(a) Distribution of sea ice thicknesses generated during the sixty-day vali-
dation run of the toy model
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(b) Spatial ACF of sea ice thickness

Figure 3.5: Distribution and spatial autocorrelation of sea ice thickness generated during the
sixty-day validation run. The ice thickness distribution had a slight skew and the ACF had a
decorrelation length of approximately 30 km. Both plots are comparable to field-based observa-
tions [25][45].
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3.7 Summary

This Chapter presented a toy sea ice model that was developed to simulate sea ice dynamics and
thermodynamics on a one-dimensional grid. The toy model is different from other simplified
models in that it is forced by simulated but realistic forcing data. The intended use of the toy
model was to support the twin sea ice thickness data assimilation experiments in Chapter 4.

Overall, the toy model provides a reasonable representation of sea ice dynamics and thermo-
dynamics. There are a few noted deficiencies, such as the lack of shear and the two-category
representation of thickness. Another deficiency is that the ice model and shallow water mod-
els are only coupled in one direction, whereas the ice exerts equiavlent drag forces on the wind
and ocean. Despite these shortcomings, the toy model produces a sea ice simulation that has
characteristics comparable to observational data sets.

The model is well-suited to thickness assimilation because thickness is stored as a single
variable, avoiding the challenges facing multi-category models. The model is also well-suited
to assimilation experiments because the model domain with 1000 grid points and three state
variables produces a background error covariance matrix that easily fits in computer memory.

A final note is that the model state evolves differently under different initial conditions and
thermodynamic forcing. Any insights gathered from assimilation experiments should be consid-
ered unique to the given conditions. Because the model was validated primarily on a relatively
young ice pack, similar conditions should be used in the assimilation experiments.
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Chapter 4

Twin Experiment Formulation

In the context of data assimilation, a twin experiment involves assimilating observations sampled
from one model state designated the true model state, into a second model state that represents
the background [50]. Often, multiple twin experiments are conducted, each with a different
assimilation technique or observation type, as a means to assess the value of that technique or
sensor (e.g. [11]). Compared to experiments with actual observational data, a twin experiment
permits greater flexibility and control over unknowns. It also allows for comparison of the anal-
ysis to the true system state, which is not possible in operational systems. Lisaeter et al. [11] and
Yang et al. [12] used twin experiments to demonstrate the value of assimilating sea ice thickness
observations.

Twin experiments with the toy model comprised the main analytical component of this thesis.
The objective of these experiments was to demonstrate and quantify the impacts to the sea ice
state that might occur when sea ice thickness is assimilated with incorrectly-characterized obser-
vation error statistics. This chapter describes the methodology followed in the twin experiments.
Chapter 5 describes the results of the investigation.

4.1 Base Experiment Design

The twin experiments described in this chapter each followed the same basic formulation. For
the base experiment, we first sampled a background state, xb, from a true state, xt , using a
background error covariance matrix, B. The state vectors contained three variables: thickness,
concentration, and velocity. The background error covariance matrix, which included cross-
covariance terms, was obtained from an ensemble of model runs. Section 4.2 describes the
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Figure 4.1: Diagram of the twin experiment procedure. From the true state, we sample a back-
ground state and a set of observations. The observations are then assimilated into the background
state an approximation to the observation error covariance matrix.

generation of the true state, the background error covariance matrix, and the sampling of the
background state.

We sampled a set of thickness observations from the true model state using a true observation
error covariance matrix, denoted Rtrue. We then assimilated these observations into a background
state, xb, using an approximation to the observation error covariance matrix, Rest , generating the
analysis, xa

actual . We then compared this analysis to the ideal analysis, xa
ideal , obtained when the

true observation error covariance matrix was used in the assimilation. Figure 4.1 illustrates the
experimental procedure. The assimilation steps were conducted using the sequential assimilation
equations presented in Section 2. Effectively, the twin experiments comprised a single cycle of
an EnKF [24].

We devised five scenarios corresponding to five true observation error covariance matrices.
The true observation error covariance matrices, presented in Section 4.3 each had different cor-
relation structures, ranging from diagonal to a dense Gaussian structure. Each of these matrices
contained the same error variances.

For each scenario, we conducted the twin experiment three times. For the first experiment, the
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correct observation error covariance matrix was used in the analysis. For the second experiment,
a diagonal approximation was used. The third experiment was identical to the second except that
the error variances were multiplied by an inflation factor of 2.4. The choice of inflation factor
is described in Chapter 5. The inflation of observation error variances is applied in RIPS and
GIOPS at ECCC [21][5]. However, the actual inflation factor was not reported for these systems.

The decision to focus on diagonal approximations was based on the reality that in the near
future, it is not likely that sea ice prediction systems will begin to incorporate correlated observa-
tion errors. By only considering diagonal approximations to the true observation error covariance
matrices, we can provide more practical recommendations to ECCC and other forecasting cen-
tres.

Section 4.4 describes in detail the procedure that was followed in the comparison of the anal-
yses. The objective was to quantify the reduction (or increase) in error for each state variable that
accompanied the diagonal approximation to the true observation error covariance matrix. It was
possible to accomplish this task without actually sampling a background state or observations.

4.2 Background State

The background error covariance matrix in the twin experiments was constructed from an ensem-
ble of ice model states. This section describes the procedure followed to create the background
error covariance matrix.

4.2.1 Freeze-up Procedure

To generate the ensemble of model states for estimating the background error covariance matrix,
we initialized five hundred identical model states, plus a true model state, and ran toy the sea ice
model for a period of thirty days. The procedure is described in detail below:

Initial Conditions

We first created an ensemble, Xb, of nens = 500 identical model states, xb
i , plus an additional

model state, xt , deemed the true state. Each model state had thickness of 0.1 m, concentration of
10 %, and a zero velocity field across the entire domain. Each state was paired with an instance of
the toy model. For each model state in the background ensemble, we perturbed the corresponding
numerical model parameters, following the approach described in Section 4.2.2. This procedure
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was similar to the way the sea ice ensemble was generated in Shlyaeva et al. [8]. Note that the
model parameters were not perturbed for the true state. This follows the procedure presented by
Houtekamer and Mitchell [51], who performed one of the first ensemble-based twin experiments.

Freeze-Up Period

Each model state was propagated forward in time for thirty days. Every twenty-four hours,
the growth scaling factor was resampled from a uniform distribution spanning [-0.2,0.5]. We
found that when a single positive growth scaling factor was used, the ice concentrations were
nearly all 100 % and the spread of ice concentration was much less than reported for RIPS and
GIOPS [4][5]. By alternating between melting and freezing conditions, we achieved a more
realistic spread. After the first fifteen days, we began sampling from a uniform distribution
spanning [-0.2,0.2], representing milder thermodynamic conditions. Each model was supplied
with identical forcing data. However, each model applied an independent perturbation to the
forcing, as described in Section 4.2.2.

In Schlyaeva et al. [8], the ice models were spun-up between twenty and forty days before
assimilating ice concentration observations. The thirty-day freeze-up period in our study was se-
lected so that the background error variances were reasonably large while not fluctuating greatly
in time. Section 4.2.3 illustrates the growth of the background error variances.

4.2.2 Stochastic Perturbations in the Toy Model

A critical requirement in ensemble data assimilation is that the numerical models must have a
stochastic component [7]. The use of carefully-tuned stochastic models instead of purely de-
terministic models ensures that the distribution of model states about the mean is approximately
equal to the distribution of errors about the true state [7]. To carry out ensemble data assimilation,
the deterministic toy sea ice model therefore requried a stochastic component.

A common practice in sea ice ensemble forecasting is to perturb the model parameters and
forcing data rather than adding errors directly to the ice thickness, concentration, and velocity
[8][52]. Sea ice parameters are typically poorly known and numerical models of the ocean and
atmosphere, which force the sea ice, contain their own independent background errors [8][52].
The perturbation of model parameters and the use of an ensemble of forcing data has been shown
to yield a satisfactory ensemble spread [8][52]. In this study, we perturbed

1. The ice strength parameter, P∗;
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2. The drag coefficients, Ca and Co;

3. The ice density, ρi;

4. The thermodynamic growth scaling factor;

5. The ocean velocities, uw; and

6. The wind velocities, ua.

The strength, drag and density parameters were perturbed by multiplying the default param-
eter value by a factor sampled from a Gaussian distribution with a mean of 1 and a standard
deviation of 0.1. This produced some model states that were stiffer and other states that experi-
enced more deformation.

Factors that influence thermodynamic growth include the albedo, snow depth, air tempera-
ture, atmospheric moisture content, and cloud cover, all of which may vary in space and time
[2] and none of which are modeled explicitly by the toy model. These variables are subject to
spatially and temporally correlated errors just like ice thickness, and we wanted to account for
that despite the limitations of our simplified thermodynamic growth term. Onto the growth scal-
ing factor we added a random vector sampled from a Gaussian distribution with a mean 0 and
standard deviation of 0.2, with a Gaussian correlation structure that had a decorrelation length
of 50 km. This accounted for potential spatially correlated errors in variables that influence ice
growth. The growth scaling factor was resampled every twenty-four hours for each model state.
This accounted for potential temporal variability in the errors in variables such as humidity and
snow depth.

The ocean and wind velocities were also multiplied each time step by a factor sampled from
a Gaussian distribution with mean 1 and standard deviation 0.2. This approach was implemented
successfully in Shlyeva et al. [8]. In addition, the velocities were perturbed spatially (i.e. shifted)
by a Gaussian random variable with mean 0 and standard deviation of 5 km, rounded to the near-
est kilometer. This introduced spatially correlated errors into the ensemble. We considered
forcing each ice model with a separate shallow water model but this was found to be too compu-
tationally expensive.

Excluding the thermodynamic term, these perturbation factors were sampled only once at
the start of each model run. Furthermore, they were sampled independently for each ensemble
member and for the true state.

Note that the true model state was integrated purely deterministically. No perturbations were
applied to this state.
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4.2.3 Evolution of Ensemble Spread during Freeze-Up

At the end of the thrity-day growth period, the mean concentration in the true state had increased
to a value of 96%. The thickness grew from 0.1 m to a mean of 0.50 m. The minimum and
maximum observed ice thicknesses were 0.07 m and 1.2 m in the true state. This relatively
thin ice state was well-suited to experiments with a SMOS-based thickness sensor. Figure 4.2
illustrates the mean and 10th and 90th percentiles of the ensemble after the thirty-day growth
period. The true state is also plotted for reference.

At each timestep during the freeze-up, the ensemble spread was calculated for each state
variable. Figure 4.3 illustrates the evolution of this statistic over the thirty-day period. In this
study, spread was defined as [53]

spread =

√√√√ 1
(nx−1)(nens−1)

nx

∑
i=1

nens

∑
j=1

(xi j−xi)
2 (4.1)

Several observations can be made regarding the evolution of the sea ice state. Firstly, the
thickness spread increased steadily with time, reaching a value of 0.22 m after twenty-five to
thirty days.

The spread of concentration did not experience the same monotonic increase. The spread
after thirty days was 0.073. In regions where the concentration was near 100%, the error was
much lower. Conversely, in areas where the concentration was lower, there was greater error.
This is consistent with operational systems, where the best estimates of concentration occur
when the concentration is either 100% or 0% (e.g. [5]).

The spread of ice velocities experienced an immediate jump, but over the first ten days the
spread gradually decreased. At the beginning of the freeze-up period, the ice was relatively weak
and the range of ice velocities was larger. As the ice thickened, the strength increased and the
velocities accordingly decreased.

4.2.4 Background Error Covariance Matrix

Following the freeze-up, we found large biases in the ensemble. Any given ensemble member,
compared to the ensemble mean (Equation 2.11), had a different mean thickness, concentration
and velocity. The standard deviations of these biases were 0.074 m, 4.1 %, and 0.034 m/s,
respectively. ECCC also found large ice concentration biases in RIPS and GIOPS, relative to
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(c) Ensemble of ice velocities

Figure 4.2: Ensemble of sea ice model states with the true state following the thirty-day freeze-
up period. The mean and the 10th/90th percentiles of the ensemble are plotted to illustrate
the spread. Note that where the true ice concentration was near 100 %, the spread of the ice
concentration and the velocity errors were the least but there was little correlation between the
state and the thickness spread.
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Figure 4.3: Temporal evolution of spread in the five-hundred-member ensemble during the thirty-
day freeze-up period. The thickness spread increased to a value of approximately 0.2 m, which is
reasonably high considering the mean thickness of 0.5 m. The concentration spread experienced
an initial increase but slowly decreased as the mean concentration approached 100 %. Similarly,
at the beginning of the growth period, the ice was weak and there was a greater velocity spread
than at the end, when the sea ice was more developed and stronger.
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observational data [5][4]. Massonnet et al. [54] demonstrated that modelled sea ice velocity
biases, relative to RGPS data, can be partly attributed to the model parameters, including the ice
strength parameter and the drag coefficients. The perturbation of these parameters was perhaps
the source of the observed biases in our experiment. Bias is important to consider in operational
sea ice prediction systems and merits future work beyond the scope of this thesis.

Preliminary computations of the background error covariance matrix, using Equation 2.10
and the ensemble of model states, revealed large non-zero error correlations that spanned the en-
tire domain. We found that these long-range correlations were a product of the model biases. By
subtracting the bias from each model state, relative to the ensemble mean state, these long-range
correlations disappeared. This procedure resulted in background error decorrelation lengths of
20-100 km that were more consistent with literature [21][7].

The background error covariance matrix was 3x3 block diagonal. The first 1000x1000 block
along the diagonal represents the thickness error covariances. The second block represents the
concentration error covariances and the third block represents the velocity error covariances.
The off-diagonal blocks correspond to the cross-covariances between the three state variables.
We noted that while most error covariances decayed to zero after approximately 20-100 km,
there were fluctuations in the error covariances about a mean of zero at much greater distances.
These covariances were likely spurious, given that the dimension of each state vector was three-
thousand but the ensemble contained only five-hundred model states. Note that in operational
systems, for much larger domains, ensembles are typically run with only fifteen [12] to one-
hundred [11] ensemble members.

To produce a more realistic estimate of background errors, we localized the background error
covariance matrix. Localization is commonly performed in ensemble data assimilation to remove
the undesired effect of spurious long-distance correlations [7]. To perform localization, we took
the element-wise product of each of the nine 1000x1000 submatrices of the background error
covariance matrix with a 1000x1000 circulant correlation matrix, L. The correlation structure in
L was Gaussian with a decorrelation length of 150 km. This effectively damped the long-range
correlations while minimally affecting the correlations up to a distance of 100 km. The localized
background error covariance matrix was computed as

Bi j = B∗i j�L (4.2)

where B∗ represents the background error covariance matrix prior to localization and where �
represents the element-wise product.

To provide a better illustration of spatial correlations of background errors, the background
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Figure 4.4: Background error correlation matrix corresponding to the estimated background error
covariance matrix. Observe that the spatial correlations are variable across the domain and across
variables. This may be a result of the nonlinear response of the model to the forcing data. The
significance of this correlation matrix is that some regions may a experience greater analysis
increment than the others.

error covariance matrix was decomposed and its underlying correlation matrix extracted. The
matrix decomposition, presented in [50], is

B = D1/2CD1/2 (4.3)

C = D−1/2BD−1/2 (4.4)

where D is a diagonal matrix of the error variances, taken from the diagonal of the background
error covariance matrix, and where C represents the corresponding background error correlation
matrix. Figure 4.4 depicts the resulting background error correlation matrix.

The matrix was symmetric, with entirely positive eigenvalues and positive diagonal elements.
This met the requirements of a covariance matrix [43]. The matrix had a large condition number
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of 1.1 ∗ 1016. Fortunately, the inversion in Equation 2.3 is performed only on HBHT +R. The
matrix HBHT was much smaller and had a condition number of only 483.

4.2.5 Skewness of State Variable Error Distributions

The derivation of the Kalman filter [7][22] does not make any assumption that the distribution of
background errors must follow a Gaussian distribution. However, it is assumed that the the filter
that minimizes the error variance is the best filter. When there is skewness, kurtosis, or multiple
modes in the errors, the variance alone may no longer be the best descriptor of the background
error. Sequential assimilation under these circumstances may be beneficial but an alternative
filter may be better-suited to the problem [55].

Because thickness and concentration are both bounded variables, we considered it important
to investigate the distributions of the errors for each state variable in the ensemble. We calculated
the skewness across the ensemble for each state variable at each grid cell. Figure 4.5 presents the
empirical probability distributions of skewnesses, which were calculated following [56].

s =
1

nens
∑

nens
i=1(ψi−ψ)3[

1
nens−1 ∑

nens
i=1(ψi−ψ)2

]3/2 (4.5)

where ψi represents the particular state variable corresponding to a particular ensemble member
i at a given grid point. ψ represents the ensemble mean at that grid point.

From Figure 4.5, only the velocity errors had an approximately zero skew. The ice thickness
errors were consistently skewed positively, indicating a long tail to the right at each grid point.
The concentration error distributions were entirely negatively skewed. The positive thickness er-
ror skewnesses can be attributed to the lower bound of 0 m that ice thickness can take. Similarly,
the negative concentration error skewnesses can be attributed to the upper concentration bound
of 100%. The implication is that while sequential data assimilation may improve the sea ice state
estimate, there may be alternative filters that provide improved analyses.

These skewnesses, along with the biases described in Section 4.2.3, can be attributed to the
bounding of the variables and to the combined effects of nonlinear model processes and perturbed
model paramters. The assumption of nonlinearity presented in Chapter 2 is challenging because
the BLUE can be derived without making this assumption. The role of nonlinearity is perhaps
indirect. Firstly, nonlinear model processes can lead to model bias, which does in fact violate
the critical assumption of unbiased errors. Secondly, nonlinear model processes appear to lead
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Figure 4.5: Empirical probability distribution functions of sample skewness of errors for each
state variable in the sea ice model ensemble. The velocity errors have approximately zero skew-
ness but there are significant positive and negative skewnesses for the thickness and concentration
errors. With large skewnesses, the performance of sequential data assimilation may not be ideal.

to non-Gaussian error distributions, in which case the Kalman Filter may no longer be the best
linear unbiased estimator (BLUE) [55].

In an operational setting, analyses might occur every six hours rather than every thirty days
as was the case with this experiment. With assimilation cycling at a shorter interval, it is possible
that skewnesses and biases would not have the opportunity to develop. The actual distribution
of errors in sea ice state estimates is a topic that has not received much attention in literature,
meriting additional consideration in follow-up work.

4.3 Sensor Design and Sampling of Synthetic Sea Ice Thick-
ness Observations

We designed a synthetic SMOS-like sea ice thickness sensor to generate observations for the
twin experiments. The observations were defined in terms of a true observation state vector yt

and an observation error vector sampled using the true observation error covariance matrix.

y = yt + ε
o (4.6)

46



This section describes how we determined of the true observation state, yt , along with the
observation error covariance matrices and the sampling of the error vector, εo.

4.3.1 Observation Operator

The true observation state was obtained by mapping the true model state to the observation space.
The mapping was achieved through a linear observation operator.

yt = Hxt (4.7)

The sensor had an observation footprint diameter of 35 km and an observation spacing of 12.5
km. This resulted in an observation operator with dimensions of 80 by 3000. The observation
operator was largely sparse, with non-zero entries, H jk, in locations where thickness entries k fell
inside the footprint of observation j. The value of the non-zero coefficients in the observation
operator was a constant 1/35, meaning that each grid cell within the footprint contributed equally
to the observation. This footprint operator was similar to the operator used in RIPS for the
assimilation of coarse-resolution passive microwave sea ice concentration observations [21].

The observation operator that was used to generate the observations was also used to assim-
ilate the observations. In practice this may not be possible because the impulse response of the
sensor may not be known exactly. The actual impulse response of SMOS is not actually a uni-
form step function as described herein. The use of an incorrect observation operator introduces
representativity errors, which are commonly grouped with the sensor observation error [7].

4.3.2 Specification of Observation Error Variances

The observation error standard deviations were specified as a function of the true thickness, yt .
SMOS-based observation standard errors are reportedly 0.06 m for ice less than 0.3 m thick and
1.0 m for ice 1.0 m thick [32]. We fit a piecewise function to these values. The error standard
deviation was constant for h≤ 0.3 and set to a quadratic function of thickness for h > 0.6, with
a vertex (0.3,0.06) and passing through (1.0,1.0).

σo(h) =

{
0.06 h≤ 0.3,
1.92(h−0.3)2 +0.06 h > 0.3,

(4.8)

Figure 4.6 illustrates the observation error standard deviation function evaluated for thick-
nesses ranging from 0 to 1.5 m. For thicknesses less than 0.5 m, the observation error is relatively
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Figure 4.6: Prescribed true observation error standard deviation as a function of ice thickness.
As the true ice thickness increases past 0.3, the observation error standard deviation increases
quadratically, meaning that there is low observation accuracy for regions of thick ice.

low and these observations may have an impact on the analysis. As the thickness increases, the
observations have a much smaller impact on the analysis.

The result of the quadratic function was that any observed thicknesses greater than 1 m had
error variances high enough that they would not contribute significantly to the analysis. Yang
et al. [12] outright did not assimilate thickness observations greater than 1 m. It was not im-
mediately clear what might be the impact of clipping the data versus assimilating the complete
observation set but with large error variances where appropriate. A preliminary hypothesis is that
clipping the data above a given value may affect the bias in the analysis state.

Figure 4.7 illustrates the background and observation error standard deviations plotted along-
side Hxt , which represents the true state mapped to the observation locations. For most of the
domain, the background error standard deviation is less than the observation error variance. How-
ever, where the true ice thickness is thinnest, the observation error standard deviations are com-
parable or less than those of the background state. If the true background and observation error
covariance matrices were diagonal, we would see the majority of the analysis increment in these
areas.
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Figure 4.7: Evaluation of the observation error standard deviation function at the true state
mapped to the observation locations. The background error standard deviations (solid black)
can be compared to the observation error standard deviations (grey), revealing that the back-
ground error standard deviations are relatively constant across the domain while the observation
error standard deviations are more variable. We can expect greater impact from the assimila-
tion in two isolated regions where the observation error standard deviations are less than the
background error standard deviations.
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Table 4.1: Correlation structure of each observation error covariance matrix

Matrix
Correlation
Structure

Decorrelation
Length (km)

Rtrue1 Gaussian 150
Rtrue2 Gaussian 50
Rtrue3 Exponential 150
Rtrue4 Exponential 50
Rtrue5 Diagonal 0

4.3.3 Observation Error Covariance Matrices

Stewart et al. [50] presented a matrix decomposition approach for constructing prescribed obser-
vation error covariances. We constructed Rtrue following their approach:

Rtrue = D1/2CD1/2 (4.9)

where the diagonal entries in D1/2 were defined by σo(yt).

The error correlation matrix, C, was constructed using a deterministic function of the distance
between observation points. For these experiments, we used five error correlation matrices to
produce five Rtrue matrices. We decided to use five error correlation matrices to rerpesent a
range of possible observation error scenarios. Table 4.1 describes the five true obsevation error
covariance matrices.

The Gaussian correlation functions were defined as [44]

c(d) = exp

(
−3
(

d
r

)2
)

(4.10)

and the exponential correlation function was defined as

c(d) = exp
(
−3
(

d
r

))
(4.11)

where d represents the distance between points and r represents the length at which the correla-
tion decreases to a value of 0.05.
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Figure 4.8: Correlation structures of the true (prescribed) observation error covariance matrices
and of the background error covariance matrix. Each of the observation error correlation func-
tions except for Rtrue5 (no spatial correlation) have a longer correlation length scale than the
background.

The observation error covariance matrices were symmetric and positive definite, with entirely
positive eigenvalues and with condition numbers less than 1.7∗106. The matrix HBHT+R had
a condition number less than 4.0∗104.

Figure 4.8 illustrates the correlation structures of each observation error covariance matrix
alongside the correlation structure extracted from the background error covariance matrix. The
background error correlation structure appears similar to the exponential (50 km) structure of
Rtrue4 . We considered also creating additional Rtrue’s with decorrelation lengths that were less
than the background error decorrelation length. However, with an observation spacing of 12.5
km, this would have produced a nearly-diagonal observation error covariance matrix.

Figure 4.9 illustrates Rtrue1 for example. Unfortunately, due to the extreme error variances
observed in some regions of the domain, the structure of the observation error covariance matrix
was difficult to visualize.
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Figure 4.9: True (prescribed) observation error covariance matrix, Rtrue1 . Observe first that
the error variance is not constant along the matrix diagonal. Also not that the error covariance
structure is not smooth, a result of correlations in the true ice thickness state. The implication is
that some observations will have a greater impact in the analysis than others.
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4.4 Comparing Experimental Results

In order to compare the analyses, it was not necessary to actually sample observations and as-
similate them into a sampled background state. Instead, we compare the analysis error variances,
corresponding to diagonals of the analysis error covariance matrices. The analysis error covari-
ance matrix is described in Chapter 2 by Equation 2.8. By comparing the analyses based solely
on the analysis error covariance matrices, we avoided errors associated with the sampling of the
background state and observations.

For each experiment scenario, it was possible to compute four variants of the analysis error
covariance matrix, described in Table 4.2. For the first analysis error covariance matrix, Aideal ,
we computed both the Kalman gain, K, and the analysis error covariance matrix using the true
observation error covariance matrix. This represents the analysis error covariances for the ideal
case where the exact observation error covariance matrix was used in the assimilation.

For the second analysis error covariance matrix variant, Aest, we computed both the Kalman
gain and the analysis error covariance matrix using a diagonal approximation to the observation
error covariance matrix. This matrix represents the naïve estimate of the analysis error covari-
ance matrix that would be obtained in an operational system where the true observation error
correlation structure is unknown. Based on Stewart et al. [13], for a diagonal approximation to
the true observation error covariance matrix, we would expect Aest to underestimate the analysis
error variances for the cases where true observation error covariance matrix is not diagonal.

The third matrix, Aactual , represents the actual analysis error covariances for the case where
an incorrect observation error covariance matrix was used in the assimilation.

For the third matrix, Aactual , an incorrect observation error covariance matrix was used in
the computation of the Kalman gain. The analysis error covariance matrix was then constructed
using the correct observation error covariance matrix and and the incorrect Kalman gain matrix
that was compuetd with the incorrect observation error covariance matrix. Effectively, this actual
analysis error covariance matrix is what we could obtain if we used an incorrect observation error
covariance matrix in the assimilation while also knowing the exact true model state. It would not
be possible to calculate this analysis error covariance matrix, Aactual , in an operational system
where the observation error covariance matrix was not known exactly. Healy and White [15]
introduced the concept of Aactual , using a different but equivalent formulation. Rainwater et al.
[57] referred to this matrix as the performance analysis error covariance matrix. By comparing
Aest and Aactual , we were able to explore how the diagonal approximation to the observation
error covariance matrix affects the perceived analysis quality.

The background error covariance matrix was also included in Table 4.2 to represent the case
where no data was assimilated. We considered it especially important to identify instances where
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Table 4.2: Four variants of the analysis error covariance matrix that were computed for each twin
experiment

A Calculation

Aideal
Aideal = (I−KH)B(I−KH)T +KRtrueKT

K = BHT (HBHT +Rtrue)
−1

Aest
Aest = (I−KH)B(I−KH)T +KRestKT

K = BHT (HBHT +Rest)
−1

Aactual
Aactual = (I−KH)B(I−KH)T +KRtrueKT

K = BHT (HBHT +Rest)
−1

B No assimilation

the estimated analysis error covariance matrix contained larger error variances than the back-
ground error covariance matrix, since this would indicate that the assimilation had a negative
impact on the state estimate.

With these analysis error covariance matrices, it was possible to compute the mean analysis
error standard deviation, σa, for each of the four analysis error covariance matrices and for each
state variable. The error term was defined as:

σ
a(A) =

√
1
nx

trace(A) (4.12)

where A is the block submatrix corresponding to either thickness, concentration or velocity for
any one of Aideal , Aest , or Aactual . Refer back to Figure 4.4 for an interpretation of these subma-
trices.

With these measurements, we were able to quantify the total decrease or increase in back-
ground error when thickness observations were assimilated using an approximation to the ob-
servation error covariance matrix. The error standard deviations for the background state (σb)
were 0.200 m, 7.28 %, and 0.0138 m/s, respectively for thickness, concentration and velocity.
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Figure 4.10: Spectral density of errors in the background error covariance matrix. The three
curves have overall negative slopes, indicating that the majority of the spectral density exists at
low wavenumbers.

To compare σa and σb, we computed the relative change in mean background error standard
deviation as (σb−σa)/σb.

We also investigated the spatial scales in the background and analysis errors. To do this, we
computed the real component of the discrete Fourier transform of the mean row of Aii, where
each row j was first rotated (rolled) to the left by j units. This allowed us to plot the spectral
density of the analysis error covariance structure. This approach is adapted from Shlyaeva et al.
[58]. Figure 4.10 illustrates the spectral densities of the background error covariances for the
three state variables.

As a final note, it is important to consider that the assimilation of thickness observations may
produce an analysis with negative thicknesses or with concentrations outside of [0,1]. At ECCC,
these non-physical values are accounted for by clipping the state at the variable boundaries [5].
The implication for this thesis is that the analysis error covariance matrices may not exactly
reflect the actual errors that would exist after this clipping.

55



4.5 Summary

This chapter presented an experimental methodology that can be followed to investigate the im-
pacts of using mischaracterized observation error statistics in sea ice thickness data assimilation.
The base twin experiment procedure consisted of a single EnKF cycle with the toy sea ice model
where synthetic observations sampled from a true model state were assimilated into an ensemble
of background model states. The base twin experiment was repeated for five scenarios corre-
sponding to different realizations of a prescribed true observation covariance matrix. For each
scenario, the assimilation was performed for three approximations to the corresponding true ob-
servation error covariance matrix.

The synthetic ice thickness sensor was designed to imitate SMOS-based thickness retrievals,
with error variances parameterized as a function of the true ice thickness. The true decorrelation
lengths of the observation error were set to either 150 km, 50 km, or 0 km. The true observation
errors followed both Gaussian and exponential correlation structures. While the

The spread of the ensemble background error was approximately 0.20 m after the freeze-
up period. This was comparable to the observation error variances in regions where the true ice
thickness state was relatively thin. For most of the model domain, the background error variances
were less than the observation error variances. We also observed large skewnesses and biases in
the background sea ice thickness and concentration errors. These were attributed to the propaga-
tion of Gaussian noise through the nonlinear model. It would be sensible to further investigate
the distribution and bias of sea ice model errors using an ensemble of full-scale models.

To compare the analyses from the twin experiments we required only the analysis error co-
variance matrices, which could be obtained without sampling a background state or observations.
With just the analysis error covariance matrices we were able to compare the analysis error stan-
dard deviations and the spatial scales of the anlaysis errors for each experiment scenario.
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Chapter 5

Experimental Results

This chapter presents the results from the twin experiment methodology described in Chapter 4.
Following the presentation and discussion of the results, we propose several recommendations
for the sea ice prediction community.

5.1 Analysis Error Standard Deviations

Tables 5.1 through 5.5 list the mean analysis error standard deviations for each of the experiment
scenarios.

We first investigated the effect of spatial correlation in the observation errors by comparing
the analysis error standard deviations for the cases where true observation error covariance matrix
was used in the analysis. These analysis error standard deviations (σa, Equation 4.12) correspond
Aideal described in Chapter 4. In the first set of experiments (Table 5.1), the relative differences
between the mean background and analysis error standard deviations were 29 %, 17 %, and again
17 % for thickness, concentration, and velocity, respectively. This first experiement experienced
the largest decrease in background errors. This first experiment also corresponds to the Gaussian
observation error correlation structure with the 150 km decorrelation length.

The observation error covariance matrix that yielded the smallest relative difference between
background and analysis errors was Rtrue5 , having a diagonal structure. From Table 5.5, the
mean background error standard deviations fell by only 10 %, 6 %, and 9 % for this case. This
assimilation effectively had a three-fold decrease in effectiveness compared to first experiment,
which had correlated observation errors. The other observation error covariance matrices pro-
duced analysis increments of intermediate magnitude. Generally speaking, the observation error
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Table 5.1: Estimated and actual analysis errors for the twin experiments with Rtrue1 . Rtrue1 had
a Gaussian correlation structure and a decorrelation length of 150 km

Rest
h a u

(10−1 m) (10−2) (10−2 m/s)

- σb 2.00 7.28 1.38

Rdiag
σa

est 1.81 6.87 1.26
σa

actual 1.89 6.93 1.34

Rdiag ∗2.4
σa

est 1.86 7.00 1.30
σa

actual 1.87 6.96 1.31

Rtrue1

σa
est 1.43 6.01 1.14

σa
actual 1.43 6.01 1.14

Table 5.2: Estimated and actual analysis errors for the twin experiments with Rtrue2 . Rtrue2 had
a Gaussian correlation structure and a decorrelation length of 50 km

Rest
h a u

(10−1 m) (10−2) (10−2 m/s)

- σb 2.00 7.28 1.38

Rdiag
σa

est 1.81 6.87 1.26
σa

actual 1.87 6.97 1.31

Rdiag ∗2.4
σa

est 1.86 7.00 1.31
σa

actual 1.86 6.97 1.30

Rtrue2

σa
est 1.67 6.49 1.24

σa
actual 1.67 6.49 1.24
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Table 5.3: Estimated and actual analysis errors for the twin experiments with Rtrue3 . Rtrue3 had
an exponential correlation structure and a decorrelation length of 150 km

Rest
h a u

(10−1 m) (10−2) (10−2 m/s)

- σb 2.00 7.28 1.38

Rdiag
σa

est 1.81 6.87 1.26
σa

actual 1.87 6.94 1.32

Rdiag ∗2.4
σa

est 1.86 7.00 1.30
σa

actual 1.86 6.96 1.30

Rtrue3

σa
est 1.78 6.76 1.26

σa
actual 1.78 6.76 1.26

Table 5.4: Estimated and actual analysis errors for the twin experiments with Rtrue4 . Rtrue4 had
an exponential correlation structure and a decorrelation length of 50 km

Rest
h a u

(10−1 m) (10−2) (10−2 m/s)

- σb 2.00 7.28 1.38

Rdiag
σa

est 1.81 6.87 1.26
σa

actual 1.84 6.93 1.29

Rdiag ∗2.4
σa

est 1.86 7.00 1.30
σa

actual 1.85 6.95 1.29

Rtrue4

σa
est 1.82 6.88 1.28

σa
actual 1.82 6.88 1.28
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Table 5.5: Estimated and actual analysis errors for the twin experiments with Rtrue5 . Rtrue5 is
diagonal.

Rest
h a u

(10−1 m) (10−2) (10−2 m/s)

- σb 2.00 7.28 1.38

Rdiag
σa

est 1.81 6.87 1.26
σa

actual 1.81 6.87 1.26

Rdiag ∗2.4
σa

est 1.86 7.00 1.30
σa

actual 1.83 6.92 1.27

Rtrue5

σa
est 1.81 6.87 1.26

σa
actual 1.81 6.87 1.26

covariance matrices with Gaussian spatial correlations resulted in smaller analysis error stan-
dard deviations than the observation error covariance matrices with exponential structures. The
implication is that observation errors with greater spatial correlations can yield larger analysis
increments, compared to observations with less- or uncorrelated errors.

Stewart et al. [13][50] made similar observations in a twin experiment with a shallow water
model. The best analyses occurred when the observation error covariance matrix had the largest
off-diagonals, which can be represented by the Frobenius norm [50]. These authors explained
this phenomenon from an information theory perspective. Effectively, the use of spatially cor-
related observation incorporates more information into the analysis than the use of observations
with uncorrelated errors [13][50].

After investigating the impact of correlated observation errors in these ideal scenarios, we
looked at the impact of the diagonal approximation. The impact of diagonal approximations to
the true observation error covariance matrices varied across the five experiments. For the fifth
experiment (Table 5.5), Rtrue5 was diagonal and accordingly σa

est was equal to σa
actual . Here, the

diagonal approximation had no effect. For ice thickness, σa
est = σa

actual = 0.181 m, which repre-
sents a 10% improvement over the background state. The experiment that produced the largest
σa

actual under the diagonal approximation was the first experiment (Table 5.1). Again, Rtrue1 had
the greatest Frobenius norm. For the ice thickness estimate in this experiment, σa

actual = 0.189
m, which represents only a 6% improvement in background error versus the estimated 10% im-
provement. This reflects overconfidence in the analysis. If an EnKF were used in an operational
setting, extra attention would need to be paid to avoid filter divergence. Again we saw intermedi-
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ate impacts in the other experiments, with more sensitivity when the observation error correlation
structure was Gaussian and for lonegr decorrelation lengths. In none of the experiments did we
see mean actual analysis error standard deviations greater than the background error standard
deviation.

Inflating the diagonal observation error covariance matrices had a generally positive effect.
When the inflated diagonal approximation to the observation error covariance matrix was used
in the assimilation, the estimated mean analysis error standard deviations were approximately
0.186 m, 7.00%, and 1.30∗10−2 m/s, for thickness, concentration, and velocity, respectively.
This reflected relative improvements over σb of 7%, 4%, and 6%, respectively. While these were
not large analysis increments, the main benefit is that σa

actual was approximately equal to σa
est .

For each of the experiments, σa
est was consistently slightly larger than σa

actual , which is perhaps
desireable since it represents a conservative underestimate of the analysis quality.

For inflation experiments, an interesting note is that σa
actual was nearly identical across ex-

periments, even though only a single inflation factor of 2.4 was used. This suggests that perhaps
analysis error is not sensitive to the choice of inflation factor. The choice of inflation factor is
discussed in greater detail in Section 5.3.

The cross-variable impact of assimilating thickness observations was surprisingly strong.
Compared to the decreases in σb observed for ice thickness, the decrease in σb for the other state
variables had relative magnitudes between 0.5 and 0.8. One benefit of this cross-variable effect is
that thickness assimilation can clearly be used to improve the secondary state variables. A second
benefit is that the assimilation of ice concentration or velocity observations might have a similar
effect on the ice thickness state. The corresponding drawback of the effect of cross-correlation is
that if a poor estimate of the observation error covariance matrix is used in the assimilation, the
analysis error standard deviations for the secondary state variables will also be incorrect. This
was demonstrated in Tables 5.1 through 5.4. For instance, in Table 5.1, for ice velocity, σa

est had a
value of 1.26∗10−2 m/s when σa

actual was in fact 1.34∗10−2 m/s. This corresponds to estimated
and actual relative decreases in mean background error standard deviation of 9% and 3%, which
are considerably different.

5.2 Spectral Densities of Analysis Errors

For an initial demonstration, we first considered the case presented in Table 5.5, where the es-
timated and true observation error covariance matrices were diagonal. Figure 5.1 depicts the
analysis error correlation matrix for this scenario, computed using Equation 4.4. The analysis
error correlation matrix can be compared to the background error correlation structure presented
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Figure 5.1: Analysis error correlation matrix corresponding to the analysis error covariance ma-
trix for the case where the observation error covariance matrix was diagonal. This figure can be
compared with the background error correlation matrix presented in Figure 4.4. The differences
bewteen these two matrices are very subtle, indicating that the analysis has not largely changed
the error correlation structure

in Figure 4.4. The differences between these two matrices are subtle, which is reflective of the
fact that the assimilation of observations here had only a small effect on the background errors.

A clearer perspective can be obtained by comparing the spectra of the background and anal-
ysis error covariance matrices. Figures 5.2a and 5.2b illustrate the differences between the back-
ground and analysis error variance spectral densities. Here we plot the spectra of the mean and
median rows of the background, observation, and analysis error covariance matrices.

The spectral density function of the mean row of the diagonal observation error covariance
matrix here was flat, which was expected considering that a diagonal covariance matrix repre-
sents a white-noise process. The spectral densities for the observation error covariance matrix
did not exist for any wavenumbers greater than 4∗10−2 km−1. This wavenumber corresponds to
a wavelength of 25 km, which is twice the observation spacing. The implication here is that the
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(a) Spectral densities of the mean rows of three error covariance matrices
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(b) Spectral densities of the median rows of three error covariance matrices

Figure 5.2: Spectral densities of the mean and median rows of the background, observation and
analysis error covariance matrices for ice thickness and for Rtrue5 . The largest improvements
occured at the lowest wavenumbers and the analysis provided no improvement at wavenumbers
higher than 0.04 km−1 (wavelength of 25 km).
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assimilation of SMOS data cannot improve the high-frequency errors in the background state.

Daley [14] and Shlyaeva et al. [58] demonstrated that when the spectral density of the back-
ground errors was less than the spectral density of the observation errors, the spectral density
of the analysis was closer to that of the background. Similarly, when the spectral density of the
observation errors was less than that of the background errors, the spectral density of the analysis
errors was less than the background. We did not observe this phenomenon but perhaps this can
be attributed to the non-constant error variances in our study. Shlyaeva et al. [58] used constant
error variances for both the background and the observation error covariance matrices. We plot-
ted the spectral densities of the median rows of these matrices to provide alternative perspectives.
In Figure 5.2b, the spectral density of the median row of the observation error covariance ma-
trix was less than that of the background error covariance matrix over the entire domain. Hence
the spectral density function of the analysis error covariance matrix did not intersect that of the
backgroudn error covariance matrix except in one small region.

Appendix A contains a set of figures representing the spectra of the mean rows of the back-
ground and analysis covariance matrices for each of the twin experiments and for each state
variable. This is equivalent to taking the column-wise mean of the real component of the Fourier
transform of each row of these covariance matrices. From these plots we can see where the esti-
mated and actual analysis error covariance matrices depict an improvement (or degradation) over
the background errors. Each figure contains three plots. The first plot represents the case where
we assumed a diagonal observation error covariance matrix. The second plot represents the case
were we assumed a diagonal observation error covariance matrix with inflated variances. The
final plot depicts the scenario where the true observation error covariance matrix was used in the
assimilation.

Several general observations can be interpreted from the plots in Appendix A. The first is
that assimilating the observations with the correct observation error covariance matrix resulted
in the smallest analysis error spectral density at all scales. This was not unexpected considering
the findings of Stewart et al. [50].

The second general observation is that for most of the analyses, the greatest decrease in
spectral density occurred at the lowest wavenumbers. As the wavenumber approached 0.04 km−1

(25 km), the assimilation had a decreased impact. There were a few exceptions. When the true
observation error covariance matrix had a Gaussian structure, there were several unexplained
decreases in the spectral density at intermediate frequencies. These could have been caused by
the particular construction of the observation error covariance matrix, recalling Equation 4.9.
Effectively, some of the observations had much lower error variances than others. Furthermore,
the spatial correlation of the true ice thickness state contributed to the spatial concentration of
the observation errors.
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When we used a diagonal approximation to the true observation error covariance matrix by
neglecting the off-diagonals, the naïve estimate of the analysis error covariance matrix, Aest , pre-
dicted a positive benefit from the assimilation at all frequencies less than 0.04 km−1. However,
when we consider the actual analysis error covariance matrix, Aactual , the spectral density of the
analysis was in fact larger than predicted at low frequencies. For the cases where the decorre-
lation length was 150 km, the actual spectral densities at the lowest frequencies were actually
greater than those of the background state. The implication is that the analysis state may contain
a greater amount of low-frequency errors when a diagonal observation error covariance matrix is
blindly specified.

The use of inflation also had a generally positive effect. The estimated and actual analysis
error spectral densities were much closer than they were when there was no inflation. However,
there were still differences between the estimated and actual analysis error spectral densities. For
the case where the true observation error covariance matrix was diagonal, we observed a slight
increase in the actual analysis spectral densities at all wavenumbers less than 0.04 km−1.

The results for concentration and velocity were again similar to those for thickness but with
decreased magnitude. For instance, comparing Figures A.1c and A.6c, the decrease in analysis
error spectral density is not as large for concentration as it is for ice thickness. The effects on
the spectral densities of the velocity errors seem to be even less pronounced even those for ice
concentration. This includes both the positive effects of the assimilation and the negative effects
of the diagonal approximation.

Overall, there did not appear to be any results from this spectral density study that might pro-
hibit the use of diagonal approximations to the observation error covariance matrix. A negative
result may have been if the diagonal approximation effectively increased the density of actual
analysis errors at the wavelengths corresponding to length scales of 25-50 km. This could have
led to the prediction of navigable channels through the ice that might not actually exist. Another
negative result might have been if the diagonal approximation resulted in high-frequency errors
in the concentration or ice velocity fields, which could lead to predictions of a more dynamic ice
field.

5.3 Optimal Inflation Factors

A single inflation factor of 2.4 was used in the experiments described above. However, for
every assimilation problem there is a possibly unique inflation factor that minimizes the analysis
error standard deviation [59]. Iterative methods can be applied to identify the optimal inflation
factor (e.g. [59]). However, these methods require repeatedly solving the sequential assimilation
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equations, which may be too costly for an operational system. It would be more convenient to
use a single inflation factor in practice. In this section we investigate the impact of the choice of
inflation factor.

To investigate the impact of the inflation factor, and to identify the inflation factor that mini-
mizes the actual analysis error variance, we repeated the twin experiment for each scenario with
a range of inflation factors spanning [0.1,6]. Figures 5.3a to 5.3b illustrate how the estimated and
actual analysis error standard deviations vary as a function of the inflation factor.

For the inflation factor experiment with Rtrue5 , which is diagonal, the minimum value of
actual analysis error standard deviation occured when the inflation factor had a value of 1. At this
value, the actual and estimated analysis error standard deviation curves intersected. This makes
sense for this scenario because when the true observation error covariance matrix is diagonal,
inflation of the error variances should only increase the analysis error.

For the experiments with the other true observation error covariance matrices, at an inflation
factor of 1, the estimated analysis error standard deviation was less than the actual analysis error
standard deviation. The difference between the two error terms varied depending on the structure
of the true observation error covariance matrix. When the observation error covariance matrix
had the highest Frobenius norm (Gaussian, 150 km), the difference was the greatest. For Rtrue4 ,
which had an exponential shape with a 50 km decorrelation length, the impact was the smallest.

For each experiment there was a different optimal inflation factor that minimized the actual
analysis error standard deviation. For Rtrue1 , the greatest optimal inflation factor of 2.4 was
observed. Rtrue5 had an optimal inflation factor of 1. Intermediate optimal inflation factors were
observed for the other experiments. These optimal inflation factors are consistent with Liang et
al. [59], who found typical optimal inflation factors between one and five, and with Stewart et al.
[13], who used inflation factors between two and four.

When the inflation factor decreased below a value of 0.5, the actual analysis error standard
deviation increased asymptotically past the background error standard deviation while the es-
timated analysis error standard deviation decreased asymptotically. In this region, we are ef-
fectively grossly overconfident about a very poor analysis. This was observed in each of the
experiments. The implication is that it is very important not to underestimate the observation
error variance when assuming a diagonal observation error covariance matrix.

When the inflation factor was greater than its optimal value, both the estimated and actual
error standard deviations increased at very similar low rates. It appears that the system was
very insensitive to overinflating the observation error covariance matrix. This is a promising
observation because it means there is some flexibility in setting the inflation parameter. This also
indicates value in specifying a conservatively high inflation factor.

66



0 1 2 3 4 5 6
Inflation Factor

0.16

0.18

0.20

0.22

0.24

T
h
ic

kn
e
ss

 E
rr

o
r 

(m
)

Rdiag

Rdiag ∗ 2. 4

σaactual

σaest

σb

(a) σa for Rtrue1

0 1 2 3 4 5 6
Inflation Factor

0.16

0.18

0.20

0.22

0.24

T
h
ic

kn
e
ss

 E
rr

o
r 

(m
)

(b) σa for Rtrue2

0 1 2 3 4 5 6
Inflation Factor

0.16

0.18

0.20

0.22

0.24

T
h
ic

kn
e
ss

 E
rr

o
r 

(m
)

(c) σa for Rtrue3

0 1 2 3 4 5 6
Inflation Factor

0.16

0.18

0.20

0.22

0.24

T
h
ic

kn
e
ss

 E
rr

o
r 

(m
)

(d) σa for Rtrue4

0 1 2 3 4 5 6
Inflation Factor

0.16

0.18

0.20

0.22

0.24

T
h
ic

kn
e
ss

 E
rr

o
r 

(m
)

(e) σa for Rtrue5

Figure 5.3: Estimated and actual thickness analysis error standard deviation as a function of the
inflation factor. Each experiment had an optimal inflation factor between 1 and 2.4. Underesti-
mation of the inflation factor resulted in a divergence between the estimated and actual analysis
error standard deviation. Overestimation of the inflation factor had a lesser effect.
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5.4 Discussion

The results from these experiments suggest that it may be safe, although not optimal, to assimilate
SMOS-based ice thickness observations using a diagonal observation error covariance matrix
so long as the observation error variances are inflated by a sufficiently large factor. This is
a promising overall result but it should be interpreted with cautious optimism. This section
presents a discussion of the limitations of the twin experiments. We later propose a series of
recommendations that might lead to more optimal use of the observational data.

5.4.1 Limitations

Chapters 1 and 2 described how the size and cost of quasi-operational prediction systems have
limited the depth and thoroughness of assimilation experiments in the literature. We used this
to justify the creation of the toy model and the twin experiment framework. Using this tool, we
were able to conduct a range of experiments and to investigate the results in greater depth than
we may have been able to accomplish using a different experimental framework. However, the
results were still not completely general. Here we discuss how the twin experiments could have
been improved.

The first limiation was related to the true state. The observation error variances and covari-
ances were defined as a function of the thicknesses in the true state. However, sea ice can exhibit
a wide range of topographies depending on many factors including the coastal geometry, the ice
age, and the weather. Additionally, the ice sensor is much more effective for for thinner ice states.
It is possible that entirely different results may have been obtained with a thinner or thicker true
ice state or with an ice state that had a different spatial correlation of thicknesses. There may be
value in repeating the experiments for different initial ice conditions. With a mean thickness of
approximately 0.7 m and with many concentrations less than 100%, the results from the exper-
iments presented herein may be reflective of assimilation in the marginal ice zone or in regions
where there is no established first- or multi-year ice pack.

A similar limitation is related to the background error covariance matrix. The background
error covariance matrix generated in Chapter 4 had an approximately exponential correlation
structure and what seemed to be strong correlations across state variables. However, as with the
true state, different results may have been obtained with a different background error covariance
matrix. The background error covariance matrices for RIPS and GIOPS at ECCC were created
by solving the diffusion equation on the model grid, producing a smoother error covariance shape
[21][5]. However, there was limited justification provided for using that structure. In the sea ice
EnKF literature, the authors did not present their mean error correlation structures [8][12][11],
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and thus there was little to compare against. The authors did present their mean background error
standard deviations, for sea ice thickness, which ranged from 0.4 to 0.8 m [8][12][11]. These
errors were much greater than our background error standard deviation of 0.2 m. However,
our experiment represented solely new/marginal ice whereas the experiments in the literature
spanned the entire Arctic, which in general has much thicker ice. Again, the implication is that
the results presented herein represent what may happen in operational systems.

Beyond the background variances and covariance structure, the results from Chapter 4 iden-
tified significant bias and skewness in the freeze-up ensemble. Large biases are acknowledged
to exist in ice prediction systems (e.g. [21]) and they are not being actively accounted for op-
erationally. We explicitly removed bias in both the background and observation errors and it
is not clear how the results may have varied if biases were actually present. Regarding the ob-
served skewnesses, we did not find any material in the literature to indicate what the expected
distribution of errors should be. The distribution of errors is perhaps worth attention in future
experiments. As explained in Chapter 4, a non-Gaussian error distribution does not prohibit use
of the Kalman Filter but rather there may exist alternative filters (e.g. the particle filter) that could
provide a better analysis.

In Sections 5.1 and 5.2, we assessed the analysis quality in terms of the analysis error standard
deviation and in terms of the spectral density of error variances in the analysis error covariance
matrix. Literature tends to focus more on just the RMSE or the RMSD and the bias (e.g. [21],
[12]). To that end we have provided a novel perspective but it remains unclear what metrics are
actually most valuable to know about a sea ice state. For instance, what information would lead a
ship captain to successfully navigate a ship through an ice field? What types of model state errors
might lead a captain to make decisions that would result in his or her ship becoming immobilized
in ice? Section 5.2 demonstrated that diagonal approximations can increase the low-frequency
errors in the ice state. But what are the impacts of this? From Chapter 3, the viscosity of sea ice
is a function of the spatial derivatives of concentration and thickness. Following this definition,
a smoother ice state may be physically much stiffer and less dynamic. In Chapter 3, we also
presented five metrics (e.g. absolute divergence) that can be used to gauge the quality of an ice
state. It may be worthwhile to further evaluate which qualities of an ice model state are the most
valuable to preserve in a sub-optimal assimilation.

This leads to the fact that we did not investigate the temporal effects of assimilating ice thick-
ness observations with diagonal observation error covariance matrices. Using the toy model it
would be feasible to either perform forecasts or to perform daily analyses over some period to
see the longer-term effects of the diagonal approximation. However, we felt that for the pur-
poses of this thesis it was more worthwhile to more rigorously assess the quality of the analyses.
An EnKF experiment might be the most worthwhile future experiment. However, we note that
running an EnKF, which requires careful tuning to avoid filter divergence, would comprise a
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substantial effort.

We also did not consider the variety of thickness retrieval algorithms, even when considering
only the SMOS sensor (e.g. [29] and [60]). Each of these algorithms might produce different
estimates of the observation error variances. We did not explicitly consider the effect of mischar-
acterizing the error variances. However, the optimal inflation factor results presented in Section
5.3 provide some indication of what might happen if the observation error variances are under-
or over-estimated uniformly across the entire domain.

An additional limitation relates to the assumption in the derivation of the Kalman Filter that
the background and observation errors are uncorrelated [7]. Chapter 2 explains that it is possible
that there are correlations between SMOS-based ice thickness observations and the ice state. The
correlations are related to the retrieval algorithms requiring ancillary data including snow depth,
the ice thickness distribution, the ice salinity, and most importantly the ice concentration. Our
synthetic sensor did not rely on any variables apart from the true ice thickness, meaning that we
effectively avoided the need to question this assumption.

The final and the most obvious limitation of these results are that they were obtained using
a simplified 1-D ice model, rather than using a quasi-operational model and actual ice thickness
data. This limitation was expected and desired. What we have presented herein may be used to
spark conversation and to guide future experiments on full-scale prediction systems. In fact, a
secondary contribution of this thesis is that by looking at this problem in detail, we have identified
a number of unrelated topics (e.g. potential skewness in the background error distribution) that
may lead to better numerical prediction in the future.

Despite the many limitations identified above, nothing seems to indicate that the main find-
ings of this thesis should be outright rejected. Working with diagonal approximations to the ice
thickness observation error covariance matrix is likely safe so long as an appropriate inflation
factor is used. Using the correct observation error covariance matrix might provide a substan-
tial improvement in the analysis quality but the increment from assimilation with an inflated,
diagonal observation error covariance matrix does not appear to be negligible no matter the true
observation error covariance structure.

5.4.2 Recommendations

The previous section presented a number of recommendations that can be followed to improve
the twin experiments with the toy sea ice model. The current section combines the findings from
the twin experiments with the material presented in previous Chapters to present some additional
practical recommendations that might be worth exploring in future work.
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Estimation of Observation Error Covariance Structure

Until we can properly estimate the true observation error covariance matrix, predictions of the
sea ice state will continue to be suboptimal. This applies not only to sea ice thickness but also to
ice concentration and ice velocity observations.

We propose two methods for estimating these error covariance terms. The first method is
the Desroziers diagonstic approach, which involves estimating the observation error covariance
matrix as [19]

Rest =
1

Nens−1

Nens

∑
i=1

da
i db

i
T

(5.1)

where da = y−H(xa), db = y−H(xb), and y represents a vector of real observations (i.e. not
simulated). Here, the observations must first be assimilated using an approximation to the obser-
vation error covariance matrix, perhaps diagonal. The resulting estimate is a better approximation
to the true observation error covariance amtrix. This procedure would require actual data and a
full scale sea ice model. While this still only provides an approximation to the observation error
covariance structure, it would at least provide some indication of what scales are present in the
observation errors.

An alternative approach might involve passing the error covariance matrices of the ancillary
data through the retrieval algorithm to produce an estimate of the ice thickness error covariances
that are attributable to the ancillary data. This could be accomplished in a Monte Carlo simula-
tion. We could accomplish this given ensembles of model states of the ice, ocean and atmosphere.
This would not account for errors in the actual MIRAS sensor aboard SMOS. However, again,
this would provide an initial idea of what the observation error covariances might look like.

Approximate Solutions to the Sequential Assimilation Equations

One of the main findings of this thesis is that it is perhaps extremely valuable to identify the true
observation error covariance structure and to incorporate this into an operational assimilation
system. However, for numerical reasons it is perhaps naïve to assume that a complete observa-
tion error covariance matrix with long-scale correlations could be used in an operational setting.
ECCC uses diagonal observation error covariance matrices in RIPS and GIOPS in part because
the variational assimilation problem requires the inverse of the observation error covariance ma-
trix. This inversion is trivial for a diagonal matrix but for a covariance structure similar to that of
Rtrue1 , the matrix becomes too-poorly conditioned to invert. Rather than inverting these matrices
exactly, it is possible to find approximate solutions to the system of linear equations [43]. The
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discussion of preconditioning and efficient numerical solution to the sequential and variational
data assimilation equations is beyond the scope of this thesis but may require some consideration
in the future.

Alternatives

We have described in this section and in previous chapters, from a data assimilation perspec-
tive, a breadth of issues associated with the ice thickness retrieval algorithms and ancillary data.
However, we note here that a critical presumption of this thesis has been that the only way to use
SMOS data (or VisIR data, etc.) is to feed the sensor data through a retrieval algorithm and to
assimilate the resulting thickness estimates into a model state. In fact this is not correct and there
are alternatives to using these retrieval algorithms.

The first alternative is to directly assimilate the satellite sensor data (brightness temperature,
etc.) into the model state through the use of the nonlinear observation operator, H(x). This ap-
proach was applied by Scott et al. [61] to directly assimilate AMSR-E (a passive microwave
satellite sensor) data into a combined sea ice-ocean state. The approach is to specify H(x)
as a radiative transfer model that converts the ice state into a satellite brightness temperature
[61]. Conveniently, these transfer functions already exist, created during the development of the
SMOS-based ice thickness retrieval algorithms [29][31]. The transfer function is effectively the
inverse of the retrieval algorithm.

The key benefit of this alternative approach to data assimilation is that we no longer need to
know the error covariances of the ancillary data such as snow depth or ice density. We would
only need to understand the brightness temperature error covariances. The secondary sea ice
state variables would become part of the background state vector and could be generated using
an EnKF.

This approach would solve a number of other issues plaguing ice thickness assimilation.
Firstly, it would now be reasonable to assume that there is no correlation between the observation
errors and the background errors. Secondly, this would solve the discrepancy between with
the ice thickness distribution (a series of partial concentrations) and mean ice thickness. The
ice thickness distribution partial concentrations could be incorporated into the background state
vector without any sort of transformation.

A second alternative that is not mutually exclusive to the first is to make use of the cross-
correlation terms in the ensemble-derived background error covariance matrix and to focus on
assimilation of improved ice concentration datasets. It is now possible to derive high-resolution
ice concentration products from synthetic aperture radar imagery using Convolutional Neural
Networks (e.g. [6]). Supposing that we can correctly estimate the observation error covariance
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matrix for these products, it is possible that the cross-variable (i.e. concentration to thickness)
increment might be greater than what could be achieved with SMOS, especially considering the
difference in spatial resolution of the data.

For this second alternative, we note that little is known about the structure of the ice con-
centration observation error covariances. Operational ice prediction systems (e.g. RIPS [21])
continue to assimilate ice concentration data under the diagonal approximation. The final rec-
ommendation of this thesis is therefore an appeal to place a larger emphasis on the estimation of
observation error covariances.

5.5 Summary

This chapter presented the results from five sets of twin experiments conducted with the toy sea
ice model. We investigated the actual and perceived analysis error quality that is observed when
the corresponding observations are assimilated using diagonal approximations to the observation
error covariance matrices. To compare the analyses we computed the expected and actual analy-
sis error standard deviations and the spectral densities of the error variances in the analysis error
covariance matrices. We also investigated the sensitivity of the analyses to the chosen diagonal
observation error covariance matrix inflation factor.

Several observations were interpreted from the results. The first was that using the correct
observation error covariance matrix, especially when there is a long-distance error correlation
structure, yields by far the best analyses. The second conclusion was that when a diagonal ap-
proximation is used, the estimated analysis error variance is less than the actual analysis error
standard deviation. In this scenario, we saw an increase in the low-frequency errors in the state
estimate. When an inflation factor was used, the actual and estimated analysis errors were ap-
proximately equal, even for the case where the true observation error covariance matrix was
diagonal. We found that the system was very sensitive to underestimating the inflation factor but
not nearly as sensitive to overestimation. We considered this promising for the design of oper-
ation assimilation systems that are restricted to the use of diagonal observation error covariance
matrices.

Despite the fact that sea ice forecasting systems are quickly moving toward the assimilation of
thickness observations, the discussion in this chapter revealed that there is perhaps a great deal
of basic research to be conducted before ice thickness observations can be ingested optimally
and confidently. That said, it appears possible to safely assimilate SMOS-based ice thickness
observations using diagonal approximations to the observation covariance matrix, provided that
a sufficiently-large inflation factor is used.
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Chapter 6

Conclusions

The state of sea ice in the Arctic Ocean is not known with great accuracy and it is difficult to
make reliable predictions of future conditions [1]. There is motivation now to begin assimilating
ice thickness observations into ice model states to provide improved nowcasts and forecasts.

The retrieval of ice thickness observations from spaceborne sensors is not straightforward
and there is lingering uncertainty about the usefuless of the data. When datasets are assimilated
without exactly knowing the observation error covariances, it is possible that the assimilation can
actually degrade the model state estimate [7]. It seems likely that when ice thickness observations
are first assimilated in operational sea ice prediction systems, the observation error covariance
matrix will be approximated by a diagonal matrix [21][5][12][62]. The objective of this thesis
was to examine how this approximation might affect the quality of the analyses.

6.1 Summary

Chapter 1 introduced the concepts of both sea ice thickness and data assimilation. We then
described at a high level some of the challenges facing sea ice thickness data assimilation. This
led to the presentation of the motivations and objectives of this thesis.

Chapter 2 provided a more comprehensive summary of the challenges facing sea ice thickness
remote sensing, data assimilation, and forecasting. We described the assumptions underlying se-
quential data assimilation and then demonstrated how these assumptions may be violated once
sea ice thickness observations are ingested. We described why it is diffcult to estimate the ob-
servation error covariance matrix for satellite-based ice thickness estimates. We then described
some of the state-of-the-art operational ice prediction systems in Canada and the experiments that
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have recently been conducted to support ice thickness data assimilation. Finally, we described
why it is difficult to conduct fully-rigorous data assimilation experiments with quasi-operational
ice prediction systems.

Chapter 3 presented a simplified toy sea ice model that was developed to provide the basis for
twin ice thickness data assimilation experiments. The toy sea ice model could be used in future
experiments.

Chapter 4 described the design of the twin experiments, which comprised the analytical com-
ponent of this thesis. The procedure was to assimilate thickness observations into a background
ice state with and without the correct observation error covariance matrix, and then to compare
the analysis error estimates. We described how an ensemble-based background error covariance
matrix was obtained. We then described the synthetic ice thickness sensor, which was based on
the SMOS satellite. Finally, we described the difference between the true analysis error covari-
ance matrix and the estimated error covariance matrix, and how to compare the two.

Chapter 5 presented results from the twin experiments. There were several key findings. The
first was that it is entirely reasonable to use a diagonal approximation to the observation error
covariance matrix so long as the observation error variances are inflated. An inflation factor of
at least 2.4 was found to be suitable in this study. The analysis quality was insensitive to the
overestimation of this parameter. The diagonal approximation resulted in an increase in the low-
wavenumber errors in the analysis state, relative to what could be obtained if the actual error
covariance matrix was known. There was little impact at higher wavenumbers. A final finding
was that the ice thickness analysis error can be greatly reduced when the actual observation error
covariance matrix is known.

6.2 Future Work

The findings from this thesis point to two distinct regions for future work. The first is to move
toward operational use of SMOS-based ice thickness observations under the diagonal approxi-
mation to the observation error covariance matrix. The second area of future work is to make
more-optimal use of the satellite data.

As a first step toward operational assimilation of SMOS data, we recommend first repeating
a selection of the twin experiments on a quasi-operational prediction system. This would help to
reveal whether any of the results presented in this thesis were unique to the background state and
background error covariance matrix. Following a positive result, it may be worthwhile to begin
ingesting ice thickness observations within operational prediction systems.
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There are several ways that we can make more effective use of satellite data in ice thick-
ness data assimilation. The first is to attempt to estimate the error covariance structure for ice
thickness observations. We demonstrated that much larger analysis increments can be achieved
when the true observation error covariance structure is known. An alternative, should this prove
infeasible, would be to investigate the direct assimilation of satellite brightness temperatures us-
ing transfer functions that incorporate the ice thickness. Other unrelated areas for future work
include investigating the presence of skewness in the background error distribution.

To conclude this thesis, we restate that we are now in a position where we can begin making
improved sea ice predictions through the use of remotely-sensed ice thickness observations. The
diagonal approximation to the observation error covariance matrix provides a suitable starting
point. However, we also stress that there is much opportunity to make better use of this satellite
data.
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Appendix A

Analysis Error Covariance Spectral
Density Plots

Spectral Densities of Analysis Error Variances – Ice Thickness
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Figure A.1: Spectral densities of thickness analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had a Gaussian correlation structure and
a decorrelation length of 150 km
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Figure A.2: Spectral densities of thickness analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had a Gaussian correlation structure and
a decorrelation length of 50 km
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Figure A.3: Spectral densities of thickness analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had an exponential correlation structure
and a decorrelation length of 150 km
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Figure A.4: Spectral densities of thickness analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had an exponential correlation structure
and a decorrelation length of 50 km
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Figure A.5: Spectral densities of thickness analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix was diagonal
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Figure A.6: Spectral densities of concentration analysis error variances for the twin experiment
scenario where the true observation error covariance matrix had a Gaussian correlation structure
and a decorrelation length of 150 km
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Figure A.7: Spectral densities of concentration analysis error variances for the twin experiment
scenario where the true observation error covariance matrix had a Gaussian correlation structure
and a decorrelation length of 50 km
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Figure A.8: Spectral densities of concentration analysis error variances for the twin experiment
scenario where the true observation error covariance matrix had an exponential correlation struc-
ture and a decorrelation length of 150 km
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Figure A.9: Spectral densities of concentration analysis error variances for the twin experiment
scenario where the true observation error covariance matrix had an exponential correlation struc-
ture and a decorrelation length of 50 km
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Figure A.10: Spectral densities of concentration analysis error variances for the twin experiment
scenario where the true observation error covariance matrix was diagonal
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Figure A.11: Spectral densities of velocity analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had a Gaussian correlation structure and
a decorrelation length of 150 km
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Figure A.12: Spectral densities of velocity analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had a Gaussian correlation structure and
a decorrelation length of 50 km
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Figure A.13: Spectral densities of velocity analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had an exponential correlation structure
and a decorrelation length of 150 km
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Figure A.14: Spectral densities of velocity analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix had an exponential correlation structure
and a decorrelation length of 50 km
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Figure A.15: Spectral densities of velocity analysis error variances for the twin experiment sce-
nario where the true observation error covariance matrix was diagonal
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