
A Collapsing Method for Efficient Recovery of Optimal

Edges in Phylogenetic Trees

by

Michael Hu

A thesis

presented to the University of Waterloo

in fulfillment of the thesis requirement

for the degree of Masters of Mathematics

in Computer Science

Waterloo, Ontario, Canada, 2002

c©Michael Hu, 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

iii

Abstract

In this thesis we present a novel algorithm, HyperCleaning∗ for effectively infer-

ring phylogenetic trees. The method is based on the quartet method paradigm

and is guaranteed to recover the best supported edges of the underlying phy-

logeny based on the witness quartet set. This is performed efficiently using a

collapsing mechanism that employs memory/time tradeoff to ensure no loss of

information. This enables HyperCleaning∗ to solve the relaxed version of the

Maximum-Quartet-Consistency problem feasibly, thus providing a valuable tool

for inferring phylogenies using quartet based analysis.

iv

Acknowledgments

Many people gave me constructive advice and encouragement during my stay

at Waterloo. In particular I would especially like to thank my supervisor: Paul

Kearney for his guidance, my parents for their support and understanding, my

readers: Therese Biedl, Ming Li, and Dale Schuurmans, for their patience, and

the folks in the bioinformatics lab for the sometimes constructive:), always geeky

discussions, of which some were actually relevant to this thesis.

v

Contents

1 Introduction

1

1.1 Genes, Trees and Evolution

3

1.2 Motivation

9

1.3 Structure of This Thesis

11

2 Phylogenetic Inference

12

2.1 Evolutionary Model - A Biological Perspective

12

2.2 Computational Methods

13

2.3 Sequence Based Approaches

15

2.3.1 Maximum Likelihood

16

vi

2.3.2 Parsimony

19

2.4 Distance Based Approaches

20

2.4.1 Neighbour Joining

20

2.5 Quartet Based Methods

24

2.5.1 Quartet Puzzling

29

2.5.2 Hypercleaning

31

2.6 Effectiveness Assessment of Phylogenetic Methods

34

3 HyperCleaning∗

37

3.1 Overview of HyperCleaning∗

37

3.2 HC* using Weighted Quartets

39

vii

3.2.1 The Algorithm

42

3.2.2 Cluster Tree, Collapsing and HC*

47

3.2.3 The HC* algorithm under collapsing

54

3.2.4 Constructing Bestxy(m,W)

55

3.2.5 Constructing Best(m,Wk)

57

4 HC* collapsing mechanism

61

4.1 Updating W for achieving loss-less collapsing

61

4.1.1 Algorithm for Updating W

63

5 Results, Future Work and Conclusion

76

5.1 Efficiency of HyperCleaning∗

76

viii

5.2 Effectiveness of HyperCleaning∗

81

5.3 Future Work

82

A Implementation Issues

91

A.1 Implementations of Best(Wk,m), and Bestxy(Wk,m)

91

A.2 Collapsing and Shifting Indices

92

A.3 Maintaining collapse history to perform Exp()

96

ix

1 Introduction

The study of phylogenetic inference is fundamental to the understanding of

biological evolution at the molecular level. Phylogenetics not only poses an in-

teresting problem in its own right but also plays a key role for solving many

other problems in computational biology. To date, the problem has proven to

be extremely hard from both a biological and computational standpoint. The

biological difficulty stems from the lack of understanding of the complex evolu-

tionary process. The computational difficulty arrives from the implicit tradeoff

between the effectiveness/sophistication of an algorithm and its computational

resource requirements. Sophisticated methods such as Maximum Likelihood

(ML) [17], and Maximum Parsimony (MP) [16], are NP-hard optimization prob-

lems, making them computationally infeasible.

The Quartet Based paradigm (see 2.5) and numerous algorithms produced un-

der it, have been designed to exploit some of the features of ’ML-like’ algorithms

but at the same time keep the computational requirements tractable. The main

idea behind the Quartet Paradigm is to first break the original problem set into

smaller subproblems of input size four, called a quartet. Expensive methods

such as ML can then be employed to solve these quartets. Then a quartet

method will analyze and assemble a final solution to the overall problem based

on the solutions to the quartets in a consistent manner. However, under the

quartet paradigm, any attempt to assemble a solution optimally from the solu-

tions of the subproblems (known as the Maximum-Quartet-Consistency (MQC)

problem) is itself NP-hard [49]. Many quartet based methods such as Quartet

Puzzling (QP) [51], WO method [41], Short Quartet Method [15] solves the

MQC problem in a heuristic sense. One method called HyperCleaning [3] will

solve a slight relaxed version of the MQC problem exactly 1 under the assump-
1In a nutshell, the solution to the MQC problem yields a tree topology that optimally

agrees with the solutions on the quartet set. HyperCleaning returns the set of tree edges that

1

tion that certain percentage of all the quartets (smaller subproblems) are solved

correctly. Moreover both the running time and accuracy of HyperCleaning is

highly coupled to the quality of the solutions on the quartet set. Thus Hyper-

Cleaning provides a valuable tool for solving exactly the relaxed version of the

MQC problem for inferring phylogenies.

There are however two shortcomings of HyperCleaning which are the focus of

this thesis : 1) HyperCleaning treats the solution to all the quartet sub-problems

with equal weighting, which is not biologically sound since some sub-problems

are much harder to tackle than others; and 2) HyperCleaning runs in paramet-

ric polynomial time (parameterized on both the problem input size, and the

quality of the inferred quartet set). But under realistic/interesting biological

scenarios, the solutions provided to the quartet set contain enough inaccuracies

to force a high input parameter for HyperCleaning to solve the MQC prob-

lem. This in turn induces HyperCleaning to run in high order polynomial time.

The main contribution of this thesis is then to present a time/space tradeoff

collapsing mechanism that allows us to keep the accuracy guarantees on the so-

lutions produced by HyperCleaning, but also reduce the running time to render

it computationally efficient at the expense of more memory. This is achieved by

collapsing the input space such that the problem can be solved efficiently, but

with the same accuracy guarantees as provided by HyperCleaning. Moreover,

we enable a general weighting scheme to be applied to the quartets.

In the rest of this chapter, we introduce in more depth the problem domain

of phylogenetics and formally define the problem under study, our motivation

for studying this problem and a brief outline of the remaining chapters.

optimally agrees instead. Note that the set of edges returned might not be consistent, in that

they cannot all exist in the same tree.

2

1.1 Genes, Trees and Evolution

Phylogenetics is the study of evolutionary relationships among a set of objects.

2 In biology the objects in question are usually 1) organisms, 2) genomes, or 3)

gene sequences. The fundamental assumption of evolution on a set of objects

is that these objects are related by descent from a common ancestor. As such

the objects through evolutionary pressure and mutation undergo a speciation

process, whereby the object becomes two distinct objects. As such, the evolu-

tionary history of a family of related objects (genes, organisms, etc.) can be

represented by an evolutionary tree.

Definition 1 An evolutionary tree T on a set S of objects, is either a rooted

or unrooted tree where the leaves of T are labelled by elements of S. T is called

weighted if its edges have associated lengths (i.e. evolutionary distances, etc.).

Tree T succinctly describes the evolutionary relationship on the objects in S,

where the internal nodes of T are of degree 3 or higher, except its root may have

degree 2. A root node denotes the common ancestor to all the leaves, and an

internal node of degree 3 denotes an ancestral speciation event, where a parent

object gives rise to two multiple children objects. This continues until the termi-

nal leaves are reached, denoting the current observable objects (extant objects).

An edge uv ∈ T denotes the evolutionary time/distance on some object. In this

sense, given an internal edge uv ∈ T , uv denotes a particular object under the

evolutionary process, and without loss of generality one endpoint u denotes its

conception from a speciation event from its parent object and another endpoint

v denotes its split into two new species. A tree where all internal (with exception

of the root node) nodes have degree 3 is called binary and describes a resolved

2The objects need not be biological in nature. For example phylogenetic methods have

been applied in determining the evolutionary relationship on a set of hand-written medieval

manuscripts of Chaucer’s Canterbury Tales; or to the evolutionary relationship/development

of various linguistic forms.

3

evolutionary relationship of its leaves.

Evolutionary trees are also called phylogenetic trees and we will use the two

terms interchangeably.

Given a set of objects, the tree that describes its true evolutionary history is

called its phylogeny. Note that a phylogeny might not be resolved (i.e. binary),

since to date the notion of binary descent for evolution is only a theory. In

reality, we are given a set of objects to which its true evolutionary relationship,

is not known. The problem is then to infer its phylogeny.

Definition 2 - Phylogenetic Inference Problem. Given a set of n objects, S,

infer the phylogeny on these extant objects.

The inferred tree T can have the option of having numeric labels on the edges,

denoting the estimated evolutionary distance (time, amount of mutation, etc.)

on that edge. We call these labelled phylogenies.

Figure (1) shows an outline of the phylogenetic inference process.

The evolutionary relationship on a set of objects can be represented by either a

rooted or unrooted phylogenetic tree. A rooted tree provides more information

in that the root object is the common ancestor to all extant leaf objects and

moreover induces an evolutionary history between all pairs of nodes (e.g. we

can answer questions such as: given nodes u, v, is u an ancestor or descendant

of v of are they evolving in parallel?) With an unrooted tree however, we can

only talk about the relative evolutionary relationships between the nodes (e.g.

given 3 leaves u, v, w, which two are evolutionarily closer to each other than to

the third ?). Figure (2) illustrates this difference.

4

. . . .

Machine
Inference

nS

TACAATAGCACATA

TACCGTATCAAATA

GACTCACTAACAT−

S =
S

2S

. . .
S4

. . .

. . .

S1
S3

. . .

TAGCGAATACAATC

Hypothesis

root ancestor

S =

S =

S =

1

2

3

4

Figure 1: The phylogeny inference problem, where the input S is a set of extant

organisms. These can be represented by many types of data. In this case, the

organisms are represented by an alignment of their gene sequences. The input

S is fed into an inference machine which then presents a hypothesis (e.g. phylo-

genetic tree) which attempts to describe the evolutionary relationship between

the organisms of S based on its input data.

5

. . .

. . .
. . .

Iranian

Korean

Japanese

European Caucasoid

N.E. Asians

Eurasian
North

. . .

X

. . .
. . .

European Caucasoid

N.E. AsiansKorean

Japanese

Iranian

Figure 2: The left phylogeny is rooted at the node North Eurasian, elucidat-

ing the evolutionary history between the extant objects: European, Japanese,

Korean, and Iranian. The right phylogeny (not including the dashed edge) is

unrooted and as such we cannot determine the evolutionary history, only the

relative relationship between the extant objects, such as that European is ge-

netically closer to Iranians than to Koreans for example. We can even induce a

fictitious evolutionary history by having the root X as given in the right phy-

logeny, which says that N.E. Asians are a sub-group of the Caucasoids, whereas

Europeans are not. Figures are sub-trees taken from the diagrams from L.

Cavalli-Sforza, Genes, peoples, and languages. Scientific American. 1991.

6

Note that the size of the tree space grows exponentially with respect to the

size of the input (number of leaves). Given a set of n leaves, there are

(2n− 5)!/(2n−3(n− 3)!)

possible unrooted phylogenetic tree topologies [34], and

(2n− 3)!/(2n−2(n− 2)!)

possible rooted tree topologies. The exponential complexity in the number of

candidate hypothesis trees on a set of data is one of the major factors in the

difficulty of the phylogenetic inference problem.

In this thesis, we only consider evolutionary trees under a biological context,

(i.e. objects in question are either a set of organisms, genomes, or genes). We

note that phylogenetic analysis on genes, genomes, and species are inherently

different. Phylogenetics at the species level typically implies the actual evolu-

tionary history of the organisms under question, and can be investigated using

fossil data, morphological data, or their genetic data (genomes and/or homol-

ogous gene sequences). This however does not imply that in general, a species

tree is the same as, say, its genome tree, or its gene tree [34].

In the context of inferring the phylogeny on a set of entire genome sequences

however the tree model is limited in that it lacks the expressiveness to suc-

cinctly describe multi-ancestral relationships known as horizontal gene trans-

fers. This occurs when the genes of a particular organism’s genome arises from

several ancestors, usually from closely related species. In such cases, a graph

is required to capture of evolutionary relationship. In nature, horizontal gene

transfer generally occurs through non-reproductive means such as transduction,

where genetic material is carried across species by viruses, or transformation

where the genetic material is taken up by a species from the environment and

subsequently integrated into its own genome. Figure (3) shows an example of

horizontal gene transfer. For a more thorough treatment on the biological back-

ground of evolution, phylogenetics and established techniques, consult [53], [34].

7

���
�

������
���
������
���

��
�
��
�

sequence

root gene

. . .
. . .

Figure 3: A graph must be used to expound the evolutionary relationship be-

tween genes having experienced horizontal gene transfer

.

In biology, the classical study of evolution seeks to fulfill Darwin’s dream of

deducing the resolved (if possible) evolutionary tree on the entire set of species

of organisms found in Nature. The study of phylogenetics at the gene or genome

sequence level is also becoming prevalent in various applications of comparative

biology and genomics, where reliable and effective analysis of phylogenetic rela-

tionships is required. The following lists a few such applications.

Applications of phylogenetics in genomics and proteomics:

• Database search methods for homologous sequences, can be made more

efficient using an evolutionary tree as a guide [42].

• Detecting potential gene expression regulatory elements by finding con-

served regions in a set of orthologous, non-coding DNA sequences [5],

requires accurate phylogenetic information.

• Phylogenetic analysis can provide valuable metrics for governing gene

function prediction algorithms. [39, 13].

• Evolutionary trees can be used as valuable roadmaps for inferring gene

duplication events in genomes [14], [9] inferring gene rearrangements [4],

8

and horizontal gene transfer problems [23], [48].

1.2 Motivation

We have listed a few of the many biological motivations for studying the phylo-

genetic inference problem. To date the problem is considered a ‘hard’ problem

from both a biological and computational perspective. From a biological per-

spective, the challenge lies in our limited understanding of the evolutionary

process. Consequently we are unable to construct a sufficiently realistic model

of evolution that can always correctly interpret the input data describing our

set of organisms in question as to resolve their evolutionary relationship. Figure

. . . .

. . . .

Collar−flagellates

Fungi

Microsporidia

Green Plants

Animals

Red Algae

Collar−flagellates

. . . .

. . . .

Animals

Fungi

Microsporidia

Green Plants

Red Algae

Resolved Eukaryote Phylogeny Possible Hypothesis

Opisthokonts

Figure 4: The phylogeny on the left shows the current resolved relationship

between some Eukaryotes. The tree on the right is a possible hypothesis that is a

slightly more resolved version of the evolutionary relationship of the Eukaryotes,

where Green Plants, Red Algae are evolutionarily closer to each other than any

other Eukaryotes.

9

(4) shows the currently known evolutionary relationship [38] between some Eu-

karyotes (i.e. organisms possessing a nucleus in their cells). Our current un-

derstanding of evolution and availability of the necessary data prevents us from

determining say the evolutionary relationship between Green Plants, Red Al-

gae, and the resolved subtree Opisthakonts. From a computational perspective,

any algorithm for solving the phylogentic inference problem must deal with two

implicit complexities:

1. The exponential size of the tree solution space wrt the size of the input.

This rules out any algorithm which tries to exhaustively search and score

the entire set of candidates from the tree space.

2. Biological modelling. As we will see in section 2, there is an implicit

tradeoff in any algorithm for solving the phylogenetic inference problem,

between the sophistication/realism of the incorporated biological model

and the algorithm’s complexity. Algorithms which incorporate complex

models in general are superior at inferring the correct evolutionary re-

lationships than those with simple models of evolution, but at a cost of

increased complexity which sometime makes the method computationally

intractable.

Thus faced with both the biological problem of not having a realistic model of

evolution and the computational problems of having an exponentially large so-

lution space as well as the evolution model/computational complexity tradeoff,

the phylogenetic problem is in general very hard.

In this thesis we explore a method called HyperCleaning∗ which is based on

the Quartet Method Paradigm (see section 2.5). HyperCleaning∗ tackles the

phylogenetic inference problem purely from the computational complexity view.

We introduce a space/time tradeoff mechanism that enables HyperCleaning∗ to

scale up to large input sets. This mechanism is general and can be applied to

other quartet based methods for speedup. Moreover, we address the accuracy

of the quartet set inference stage using ensemble learning techniques.

10

1.3 Structure of This Thesis

The contribution of this thesis are:

• Generalize the HyperCleaning algorithm to handle weighted quartets.

• Introduce a space/time tradeoff (collapsing) mechanism that enables hypercleaning∗

to scale up to infer evolutionary trees over large data sets.

• A modular implementation of HyperCleaning∗ in C++.

In chapter 2, we give a paradigm based overview of several phylogenetic inference

algorithms, with emphasis on some well known methods: Neighbour Joining,

Maximum Likelihood, Parsimony, and some Quartet Based methods. In chapter

3, the hypercleaning∗ algorithm is presented in detail. Chapter 4 gives a detailed

account of the collapsing mechanism that makes hypercleaning∗ efficient on large

datasets. In Chapter 5 we present the use of ensemble learning techniques for

the quartet set inference stage, and how to improve the quality of the witness

quartet set. In chapter 6 we present our experimental results, further avenues

of research and the conclusion.

11

2 Phylogenetic Inference

2.1 Evolutionary Model - A Biological Perspective

Due to the recent exponential accumulation of sequence data as well as the

advances in sequencing technology, biological sequences are becoming an ubiq-

uitous source of data from which informative knowledge about the evolutionary

process can be gleaned. All biological information on a given organism is stored

in raw form in its DNA sequence (called its genome), on an alphabet of size 4.

Encoded in these sequences are all the instructions necessary for a particular

organism to survive in its current environment. Among the DNA sequences are

genes which contain instructions for synthesizing proteins, which are the build-

ing blocks of crucial biological processes and cellular machinery in an organism.

During a stage called transcription, certain portions of the DNA sequence (i.e.

the relevant protein coding genes) are transcribed into amino acid sequences on

an alphabet of size 20 that encodes protein building information. The cellu-

lar machinery subsequently builds proteins from these amino acid sequences in

a process called translation. Most biological sequences under study are either

DNA or amino acid sequences. For simplicity we call the individual letters of

a given sequence nucleotides. Consult Li [34] for a biological treatment on se-

quences, and Sankoff [46], or Eddy et. al. [12] on sequence analysis techniques.

Models of evolution on biological sequences fundamentally based on the assump-

tion that evolution induces change or substitution of nucleotides in sequences

in a stochastic fashion. As such we can view the evolutionary model as a dis-

tribution of change on the nucleotide level parameterized by time, expressed as

the probability:

p(a → b | t) (1)

12

that nucleotide a evolves to nucleotide b within t units of time, where a, b ∈ Σ,

and Σ is a finite sequence alphabet,

The following two assumption are also made on our sequence model of evo-

lution. First, the memoryless property assumes that our model of evolution on

sequences satisfies the following:

p(a → b | t1 + t2) =
∑

c

(
p(a → c | t1) + p(c → b | t2)

)
(2)

Secondly, we assume evolution is time reversible which implies that

p(a)p(a → b | t) = p(b)p(b → a | t) (3)

Numerous computational models have been proposed to estimate the true dis-

tribution of equation (1). Some models, such as Jukes-Cantor, are simple and

assume that the evolutionary process across a sequence is site independent, i.e.

given sequences x = (x1, .., xn), y = (y1, .., yn) :

p

(
(x1, x2, ..., xn) → (y1, .., yn) | t

)
=

n∏

i=1

p(xi → yi | t) (4)

Other models are more complicated and take into account correlations across

multiple nucleotides to model evolutionary patterns such as mutation variance

among coding vs. non-coding sites, codon position bias, etc. Consult [53], [36]

or [33] for a more thorough treatment.

2.2 Computational Methods

Most computational algorithms for solving the phylogenetic inference problem

proposed throughout the years can be characterized by whether they explicitly

incorporate the model of evolution into their inference procedure, or employ

some implicit evolutionary model. Two broad class of methods illustrating this

are sequence and distance based methods.

Sequence based methods work directly with the aligned gene sequences or genomes

13

as input, while distance based methods on input S of size n requires a n×n dis-

tance matrix M where entry Mij encodes the estimated evolutionary distance

between sequences i, j ∈ S. The distance matrices themselves are often obtained

from sequence data, but this stage is removed from the inference methods.

In general, most distance based methods such as neighbour joining [45] and

Weighbor [6] are computationally fast lending it to handle large data sets, but

are limited in accuracy since the only information available are the estimated

pair-wise distances. Methods following the explicit model based approach, such

as maximum likelihood [17], parsimony [16], and structural EM [20] tend to be

more accurate and robust across the input distribution, at the price of being

computationally more expensive.

Another set of methods are based on the quartet method paradigm and we

defer their discussion until section 2.5. Quartet methods are meta-methods in

that they use existing methods (distance, or sequence based) to infer the set of

all quartet sub-trees and then re-combine these pieces of a puzzle into a larger

picture. For the remainder of this section, we examine in closer detail several

established methods under the sequence based and distance based framework.

Through these methods, we examine the intrinsic coupling between the com-

putational complexity of a method and the amount of biological information

or the sophistication of the biological model a computational method has to

work with. This illustrates the complexity/effectiveness tradeoff inherent to all

phylogenetic inference methods.

14

2.3 Sequence Based Approaches

In a sequence based approach to phylogenetic inference, we are given a set of n

aligned sequences S, which we view as extant or observable data generated by

the evolutionary process. Our inference algorithm, on input S and some explicit

model on sequence evolution, will proceed to infer the underlying phylogeny.

Figure (5) shows the inference process.

T’

M

1
n

2

3

I(M, S) . . .S =

1
2
3

n

{

Figure 5: High level diagram of phylogenetic sequence based inference.

One simplifying assumption that most model based methods make is the afore-

mentioned site independence (see equation 4), also called point mutation pro-

cess. This implies that given our input set S of aligned sequences, each nu-

cleotide site amongst the sequences evolve independent of the other sites. Thus

evolution on a set of sequences can be viewed simply as l independent, simulta-

neous evolutionary processes effecting the sequences in question, where l is the

length of each of the gene sequence. In reality point mutation does not hold

since some sites in genes will correlate with the evolutionary rate of other sites

further along the same gene.

15

2.3.1 Maximum Likelihood

The method known as maximum likelihood [17] is a computationally expensive

method that has a formal statistical framework. Maximum likelihood (ML) rep-

resents a candidate hypothesis (i.e. phylogenetic tree) as a parameterized naive

bayes net. The naive bayes net is parameterized by some model of evolution

M . The underlying objective is to assign a likelihood score to a hypothetical

tree T given the data S. In essence, ML calculates the likelihood that a partic-

ular tree T , under some model of evolution M , produced the observed data set

S = {S1, S2, . . . , Sn} in question. This can be expressed by 3

Pr(S | T, M) (5)

which can be expanded to the following:

Pr(S1, S2, ..., Sn | T, M) (6)

As such the hypothesis (i.e. tree) that produces the maximum likelihood of

generating the data with respect to the above expression is selected as the most

probable phylogeny, denoted by TML:

TML = argmaxT Pr(S|T, M) (7)

Thus expression (5) outlines the metric to use for scoring a particular tree and

(7) dictates how to pick the best tree from all possible trees from the tree space.

In order to reduce the computational complexity of calculating (5), most im-

plementations of ML assumes that the sequences of S have evolved under point

mutation. Consequently for a particular sequence Si ∈ S, we have

Pr(Si | M, T) =
n∏

j=1

Pr(Sj
i | M, T) (8)

3This method is also known as maximum relative likelihood, since we assume a uniform

distribution of the tree space. If we computed instead P (T)P (S | T, M), then this is another

form of ML known as a maximum posterior probability (MAP) estimate [50]

16

where Sj
i is the jth nucleotide in the sequence Si. As such we can simplify

equation (5) to

Pr(S1, S2, ...Sn | M, T) =
m∏

j=1

Pr(Sj
1, S

j
2, ..., S

j
n | M, T) (9)

Thus from (5), (6) and (9), we have

Pr(S | M, T) =
m∏

j=1

Pr(Sj
1, ..., S

j
n | M, T) (10)

To compute the above probability, it suffices that we can compute the following,

for all j = 1, . . . , n:

Pr(Sj
i , ...Sj

n | M,T) (11)

The joint in (11) can be computed efficiently by decomposing it into the product

of local dependencies. This general technique have been studied extensively in

the statistical machine learning community. Consult [11], [19] for a thorough

treatment.

Given a set of sequences S = {S1, .., Sn}, and a hypothetical tree T with leaves

labelled by S describing its possible evolutionary history, it turns out that the

local independence structure for computing (11) is almost described by the

topology of T .

To convert the hypothesis tree T into a bayesian network that describes the

local independencies for efficiently computing (11) requires picking of a ’start-

ing’ leaf v0 in tree T , either by randomly picking a node if the underlying

evolutionary process is assumed time reversible 4, [17], or by determining an

outgroup, see [25]. Then visit all edges of T and put a direction indicating the

direction of evolution assuming that v0 is the ancestral node. Having converted

hypothesis tree T into a bayesian network TG, we can solve for (11) using the

standard forward algorithm on parameterized bayesian networks as described in

17

[19]. We will not go into the details of the forward algorithm here.

s1

s4

s2

s3

h1 h2

s1

s4

h1

s3

s2

h2

e4

e5

e1
e2

e3

Figure 6: The left is a tree T on leaves S = s1, .., s4, with edge lengths

e1, e2, e3, e4. On the right is the corresponding parameterized bayes net (assum-

ing s1 is the starting node), describing the distribution Pr(s1, .., s4, h1, h2|θ) in

terms of local conditionals, where the conditional say, P (s3|h2), depends on the

parameter e3.

For illustration consider a simple example as given in Figure (6). The can-

didate tree on 4 leaves on the left has been converted to the bayes net on the

right. As such using the forward algorithm, equation (11) is simplified into the

following product of local conditionals:

Pr(sj
1, .., s

j
4 | M,T) = (12)

∑

hj
1

∑

hj
2

Pr(sj
1, .., s

j
4, h

j
1, h

j
2 | M,T) = (13)

Pr(hj
1)

∑

hj
1

Pr(hj
1|sj

1)Pr(sj
4|hj

1)
∑

hj
2

Pr(hj
2|hj

1)Pr(sj
2|hj

2)Pr(sj
3|hj

2) (14)

where we marginalize across all possible values for the variables: hj
1, h

j
2 (repre-

senting the nucleotide values of the internal unseen nodes).

The only remaining issue is how to get the conditional values in (14) of the

form:

Pr(vi|vj); vi, vj ∈ {sk
1 , sk

2 , sk
3 , sk

4 , hk
1 , hk

2} (15)

In a parameterized bayes net, conditionals are explicitly defined by a function

f on the edge length parameters e1, e2, ... ∈ θ, such that

Pr(vi|vj) = f(vi, vj , ek) (16)

18

, where ek is the edge connecting the adjacent nodes vi, vj .

To make a good choice for the function f(vi, vj , ek), first consider the biological

implication of a conditional, say

Pr(h2|h1) (17)

Let ek be the edge length between nodes h1, h2, then the above conditional

denotes the likelihood of the state of hk
1 evolving to the state of hk

2 given time

ek. Thus conditional (17) is precisely the likelihood of nucleotide substitution

between two sequences, as given by the parameter M .

The computational difficulties associated with ML is in determining the tree

parameter T and its edge weights that maximizes (16). Since the size of the

tree space grows exponentially wrt the number of input taxas, it is both com-

putationally impractical and infeasible to search through every tree T , and si-

multaneously determine the corresponding edge weight parameters to maximize

the ML score [53].

2.3.2 Parsimony

Parsimony is a sequence based method which assumes a simpler model of evo-

lution than ML. Unlike ML, which allows the user to specify its model M of

evolution, parsimony incorporates an implicit model of evolution. Parsimony

assumes that evolutionary processes act on sequences in a divergent, station-

ary, and point mutation manner. Consequently we may employ the notion of

Ockham’s Razor in that the tree (i.e. hypothesis) which takes the minimum

number of mutations to explain is the most probable one. Based on the simple,

implicit model of evolution adopted by parsimony, several discrete algorithmic

techniques have been developed for parsimony that find the maximum likelihood

tree T [18], [16]. In essence finding the most parsimonious tree is equivalent to

19

solving the “Hamming-distance Steiner tree problem”. Parsimony is effective

as an estimator provided that the data in question does not violate the Okham

Razor assumption too much, which is not unrealistic in biological evolution due

to back substitutions and convergent evolution. Although parsimony techniques

are computationally much faster than maximum likelihood, searching through

the entire tree space is still exponential on the size of the input. Similar to ML,

most parsimony algorithms used today, such as in PAUP [52], rely on heuristics

to constrain the number of tree candidates searched from the tree space.

2.4 Distance Based Approaches

The motivation behind distance based methods is that the evolutionary distance

dT (x, y) between leaves x, y in the underlying phylogeny T is unique to T [54].

Various methods exist for estimating pair-wise evolutionary distances. Pairwise

evolutionary distances between sequences can be estimated by adopting some

sequence based model of evolution such as Jukes-Cantor [28], Kimura-Two, etc..

Note that this approach requires that the extant set S be an aligned set of gene

sequences. Other approaches such as [33] uses an information theoretic estimate

of the pair-wise evolutionary distances between a set S of whole genomes, rather

than a set of aligned sequences. Figure (7) illustrates the high level idea behind

distance based methods.

2.4.1 Neighbour Joining

Neighbour Joining (NJ) [45] is a greedy, computationally fast, distance based

method that iteratively builds the phylogeny estimate rather than search across

the tree space. NJ on a set of input leaves S, requires the evolutionary distances

20

4

1

2 3

5

6

5

ATG−CAG−ATTA− CG . . .

ATTG−AG−ATTAACG . . .

6

4

3

2

1

CGGA−GG−ATCAAG− . . .

GTTC−GATTA− AT−A . . .

GTTC −GATTA−AT−A . . .

ACGA−GG−T−GAAGA . . .

1 3 4 5 6
1

2

3

4

5

6

0

0

0.15
2

00.15

0.210.91

0.97

0.97

0.97

4.74

4.74 4.74

4.74

4.744.74

0 2.11

0.97

0.88 0.91

1.84

1.84

1.84

1.84

4.74 4.74 0.88 2.11 0

2.112.11 0 0.21

0.91

0.91

Figure 7: Distance based inference on a set of six extant organisms as described

by an alignment of their gene sequences. First pairwise sequence evolutionary

distances are estimated and stored in a distance matrix. Then an estimate of

the phylogeny is produced.

21

Dij between all pairs i, j ∈ C. These distances are stored in a distance matrix

M , where Mij = Dij . The method used for estimating these distances varies

and partly depends on the data that describes the input set S. If the leaves of

S are described as aligned gene sequences, then sequence based distance models

such as Jukes-Cantor [28], or Kimura-Two model [32] may be employed.

Given a distance matrix M on input set S, NJ proceeds to build an estimated

phylogeny by successively finding the next ‘neighbouring’ leaf to append to the

current partially resolved tree.

A partially resolved tree is captured by a clade, which is simply some esti-

mate of a subtree of the underlying phylogeny. A trivial clade is simply some

given leaf of S. Given clade C, the leaves of C, denoted Leaves(C) are a subset

of the input leaves S. When joining two clades Ci, Cj to form a single clade

Cij , graphically we introduce a new internal node rootij , and without loss of

generality, attach the root of clade Ci as the left descendant to rootij and attach

the root node of Cj as the right descendant of rootij . Then the new node rootij

becomes the root node of clade Cij . The root node of a trivial clade is just the

leaf itself. Figure (8) illustrates this process.

C j

C j

C j

root of C root of root of Ci (i j)

C

C

i

i

Figure 8: The joining of two clades Ci, Cj into a new clade C(ij).

T ←− NEIGHBOUR-JOINING (S, M)

1 Start with clade set C = {C1, .., Cn}, where each Ci

22

- is simply the leaf i ∈ S.

2 WHILE (C has more than 2 elements)

3 compute for clade i, the normalizing constant

- ui =
∑

k 6=i
Dik

n−2

4 choose i, j for which D(Ci,Cj) − ui − uj is smallest.

5 Join cluster Ci, Cj into new cluster (Cij), and update

- tree T as described in Figure(8).

6 Compute and store the distances between the new cluster (Cij)

- with all the other clusters Ck: D(ij),k = 1
2 (Dik + Djk −Dij)

7 C = C − Ci − Cj + C(ij)

8 return T .

The NJ algorithm is guaranteed to terminate since each iteration of lines 3-

7 results in a net decrease of one element of the clade set C. Thus NJ will run

for n − 2 iterations where n is the size of the original set S (i.e. no of leaves).

During each iteration of lines 4-5, we must perform pairwise computations of

the form D(x, y) between all pairs x, y ∈ S. This involves at most n2 lookups

from the distance matrix M . In line-6, we must perform an additional O(n)

computations and updates to the distance matrix M . This yields a total worst

running time of O(n3), but realistically has a running time of O(n2). Thus NJ

is a very efficient algorithm.

Moreover, if the inferred evolutionary distances are true relative to each other,

then an additive relationship is induced.

Definition 3 - Additive Matrix If a distance matrix M on set S is additive,

then the following condition must hold:

In the underlying phylogeny T with leaves labelled by S, two leaves i, j are

23

neighbours iff

D(i, j) + D(x, y) ≤ D(i, x) + D(j, y) ∀x, y 6= i, j ∈ S ¯

NJ has the property that if the distance matrix M is additive, then the estimate

tree it produces will be the real underlying phylogeny. The difficulty is real life

is that most datasets used to describe the leaves set S does not hold enough

information for existing distance estimation methods to generate the set of ad-

ditive distances required by NJ.

2.5 Quartet Based Methods

Quartet methods is a hybrid method based on the observation that a phylogeny

is uniquely described by its set of induced quartets. A quartet is a set of 4 se-

quences and a quartet topology is simply the phylogeny (i.e. the actual unrooted

evolutionary tree) on these 4 sequences. A given quartet (a, b, c, d) has four pos-

sible topologies, denoted ab|cd, ac|bd, ad|bc, abcd. A quartet topology ab|cd is

a

e

h

bgfd

c

c

a

d

b

c

a

d

ba

d

a bc

b d c

Figure 9: A quartet a,b,c,d, its four topologies, and its induced topology in tree

T

induced in a phylogeny T iff PT (a, b) ∩ PT (c, d) = ∅, where PT (a, b) is the path

in tree T between leaves a, b. Figure (9) shows a quartet, its four topologies

24

and its induced topology in a tree. Quartet methods in general consists of two

stages, a quartet set inference stage (QI), and a re-combination or tree inference

(TI) stage. Figure (10) shows a diagram of quartet based methods for inference.

1
6

2
3

4
6

2
3

2
3

4
5

1
2
3
4
5
6

1
4

2
3

1
5

2
3

1
5

4
6

1
3

4
6

1
5

6 5
1
6

2
5

3
2

6
5

4
6

2
5
341 2

54

26

2 4

4
3

1 4
5 6

{

4 6

5

2 3
1

TI

Q

T’

S = QI

Q

Figure 10: A quartet based method consists of two components (QI, TI).

The first stage consists of inferring all
(
n
4

)
quartet topologies over an input

data set S of n objects. In essence we are inferring the phylogenetic relation-

ship on all possible quartets of S, denoted by set Q. Any existing phylogenetic

method can be used for constructing Q, depending partly on the type of data

characterizing S. Any sequence based methods such as ML or parsimony can be

used to infer the set of quartet topologies. Distance based methods on quartets

such as the popular weak four point condition, or the ordinal quartet method

[29] can also be used. Let us examine the weak four point condition:

Definition 4 - Weak Four Point Condition

Given 4 organisms, a, b, c, d along with the pairwise estimated distances D(i, j),

i, j ∈ {a, b, c, d}, the following condition enables us to infer the quartet topology:

D(a, b) + D(c, d) < min{D(a, c) + D(b, d), D(a, d) + D(b, c)} =⇒ ab | cd

D(a, c) + D(b, d) < min{D(a, d) + D(b, c), D(a, b) + D(c, d)} =⇒ ac | bd

D(a, d) + D(b, c) < min{D(a, b) + D(c, d), D(a, c) + D(b, d)} =⇒ ad | bc

25

Else abcd ¯

The theoretical justification for the weak four point condition on inferring quar-

tet topologies is based on the following observation:

If D provides an accurate estimate of the true pairwise evolutionary distances (in

either a relative or absolute sense), then for any quartet a, b, c, d, exactly one of

the above condition will be observed. This is called the four point condition.[8].

The recombination stage takes the information provided by Q and combines

these quartets to form an estimate T ′ of the unknown phylogeny T . Most of the

existing quartet methods re-combine the quartets using a tree-building scheme

by recovering or inferring the edges of the unknown phylogeny.

Definition 5 - edge of a phylogeny

An edge e in an evolutionary tree T is defined by the bipartition (X,Y) where

X,Y denotes the leaves set of the two disjoint sub-trees of T resulting from

removing e. ¯

We can view the inferred quartet set Q as containing many small pieces of

clues to the big picture. The difficulty is that some of the smaller pieces of the

puzzle contains errors. Specifically set Q will contains quartet errors.

Definition 6 - Quartet error

Given an inferred quartet set Q on input S, a quartet topology ab|cd ∈ Q is a

quartet error if ab|cd /∈ QT , where QT is the quartet set induced by the unknown

phylogeny T . ¯

Current quartet based methods rely on the underlying assumption that although

set Q will contain errors, and most of the quartet topologies in Q are indeed in-

duced in T . Thus to best infer T , the recombination stage will build an estimate

T ′, whose induced quartet set QT ′ maximizes its consistency with Q. Formally,

26

quartet based methods try to solve some variation of the following optimization

problem:

Maximum Quartet Consistency (MQC)

Instance: A set Q of inferred quartet topologies over input set S.

Goal: Find an evolutionary tree T ′ on input S that maximizes | QT ′ ∩Q |. This

then estimates the unknown phylogeny T .

An equivalent optimization problem is the Minimum Quartet Error problem:

Minimum Quartet Error (MQE)

Instance: A set Q of inferred quartet topologies over input set S.

Goal: Find an evolutionary tree T ′ that minimizes | QT ′ −Q |.

The above two optimization problems infers an estimate T ′ of the real phy-

logeny T , such that T’ maximizes the support or minimizes the distance from

the guide set Q. Thus if Q is reasonably close to the quartet set QT , then the

quartet method will produce a tree very close to the true phylogeny. The follow-

ing theorem [27] relates the amount of quartet error allowable on the inferred

quartet set Q, but still retain enough information about T .

Theorem 1

Consider input set S and its phylogeny T . Assume we have a quartet set Q

estimating QT . If each edge e = (X, Y) ∈ T has less than

(| X | −1)(| Y | −1)/2 (18)

quartet errors, then T is the unique evolutionary tree that minimizes | QT −Q |.
¯

proof- Consult [27].

In essence, Theorem 1 justifies quartet based methods in the context of the

27

MQE or MQC problem. Consider a quartet method and input dataset S. The-

orem 1 stipulates that on input S, if the quartet method infers the quartet set Q,

satisfying (18) wrt the unknown T , then Q contains enough information for the

re-combination stage of the method to recover the phylogeny T . Moreover this

is accomplished if the re-combination stage solves the MQE (or MQC) problem.

Thus the effectiveness of a quartet method is dictated by the following:

• In the first stage, its estimation Q of QT should be sufficiently close, ideally

satisfying equation (18).

• In the re-combination stage, it should as best as possible solve the MQE/MQC

problem.

On the first point, the accuracy of the inferred quartet set Q depends on the

effectiveness of the phylogenetic inference method employed on a particular

quartet set. Some quartets where one or more of its sequences have undergone

convergent evolution might result in a quartet error. Or a quartet may have

two long branches in its topology in QT , thus making it hard for most phy-

logenetic methods to correctly infer its topology. The concept of taxanomic

sampling have been proposed to improve the accuracy of Q, by specifically han-

dling some of these pathological cases. The idea of quartet taxanomic sampling

is to infer the topology of a quartet (a, b, c, d) ⊂ S by considering a larger set

(a, b, c, d, e, f, ..) ⊆ S, and infer the evolutionary tree on this larger set, then

extracting the quartet topology on (a, b, c, d). Taxanomic sampling have been

shown to affect certain pathological cases such as long branch attraction cases

[24, 25], as well as on quartets in the Felsenstein zone [21]. But in general,

taxanomic sampling does not seem to be effective on the overall accuracy of

quartets in Q, as shown by an experimental study by [2].

In [1], a method is been developed to identify those sequences that might con-

tribute to quartet errors. These so called ‘bad apples’ can be isolated, and

quartets involving them can be dealt with differently than other sequences. For

example, taxanomic sampling can be employed on quartets involving the bad

28

apples and normal inference methods can be employed on the other sequences.

The art of designing quartet based methods falls mostly on the algorithm for

facilitating the re-combination stage. In essence if all quartet methods use

the same set of inferred quartets, it is the re-combination stage that dictates

both its computational efficiency and its effectiveness at solving the MQC/MQE

problem. Next we examine several quartet based methods, specifically their re-

combination stages.

2.5.1 Quartet Puzzling

Quartet puzzling [51] uses a heuristic approach to solving the MQE problem in

its quartet re-combination stage. Given a set of inferred quartets Q on input

S, puzzling first randomly permutes the set of leaves in some random order

O = {s1, s2, .., sn}. Then a tree estimate is constructed by iteratively adding

the leaves of the input set S to the existing tree. Initially the tree is on the first

four leaves in O, s1, s2, s3, s4, as induced by Q. The rest of the sequences of S

are then successively inserted as given by the ordering in Q, onto the branches

of the core tree. For each sequence s to be added to the existing tree T ′, puzzle

penalizes each edge of T ′ for accepting s for insertion based on the consensus of

the quartets in Q involving s. Specifically, for all quartets involving s ∈ Q of the

form sa | bc, each edge in T ′ along the path from b to c, (i.e. ∀e ∈ T ′P (b, c)), gets

a penalty of 1. In other words, we penalize all edges of T ′ that disagree with a

particular quartet topology of Q involving s. When done for all quartets of Q

involving s, we are in essence implicitly evaluating all the edges of T ′ as candi-

dates for insertion of s, with the objective of minimizing the number of quartet

errors. The sequence s is then inserted into the edge with the minimum penalty

score. Thus quartet puzzling is a heuristic for solving the MQE problem. This

randomization of sequences and subsequent constructing of the estimated tree

is repeated several times and finally those compatible edges that occur in more

29

a

b c

a

b c

Figure 11: Suppose sa | bc ∈ Q. The dashed edges on the left tree shows those

edges which should be penalized since inserting a sequence s into them would

contradict the support of sa | bc. The same tree on the right shows those edges

that actually gets penalized using puzzling’s penalty.

than half of the estimated trees are returned as the resulting phylogeny. Note

that the resulting tree might not be fully resolved, and is not guaranteed to be

the optimal solution to the MQE problem.

The effectiveness of the puzzling heuristic for solving the MQE problem has

not been formally investigated. However one shortcoming in the edge penalty

scoring might adversely affect its effectiveness for the MQE problem, as de-

scribed in [3], [30]. Note that the goal of puzzling at some step in the tree

construction stage is to insert the new sequence s into an edge of T ′ such that

the number of quartets in Q disagreeing with it is minimized. To achieve this,

Puzzling penalize, for every given quartet sa | bc ∈ Q, the edges in T ′ on the

path from b to c. In fact, puzzling can underestimate the penalty of inserting s

onto some edge(s). The example in figure (11) is a modified version of the one

from [30] that illustrates this.

30

2.5.2 Hypercleaning

Hypercleaning [3] solves the MQE problem using two stages. Stage 1 consists

of recovering the set, denoted Best(Q,m), of all possible edges e = (X, Y) with

less than a certain amount of quartet errors with respect to Q. The parameter

m defines the error tolerance. Stage 2 then consists of some method of selecting

a subset of compatible edges of Best(m) as the estimated phylogeny. We use

the notion of a bipartition for an edge as described in definition 5.

Stage 1- Hypercleaning recovers all edges with less than certain amount of quar-

tet errors wrt Q. This requires a scoring function on edges, and a threshold on

the scores for deciding which edges should be selected based on their scores.

Definition 7 - scoring function σ((X, Y), Q)

Given an edge e = (X,Y), its score, denoted σ((X, Y), Q) is given by

σ((X, Y), Q) =
4 | Q(X, Y)−Q |

| X | (| X | −1) | Y | (| Y | −1)
(19)

where Q(X,Y) is the set of all quartet topologies in Q induced by the edge

(X, Y) as described below

Q(X, Y) = {all quartet topologies, ab | cd, such that a, b ∈ X, c, d ∈ Y } (20)

and the term

| Q(X,Y)−Q |

is simply the number of quartet errors across edge e wrt Q, defined by those

quartet topologies in Q(X,Y) not appearing in Q. ¯

Note that an edge e = (X,Y) has
(
X
2

)(
Y
2

)
induced quartet topologies. Thus, the

scoring on an edge defined in equation (19) is in essence the normalized number

of quartet error across e wrt Q. This normalization is necessary for comparing

the support of two edges with different bipartition sizes can be pairwise com-

pared. Under such a scoring function σ, HyperCleaning on parameter m returns

31

the set, denoted Best(m,Q), of all edges supported by Q under the following

scoring threshold:

Best(m, Q) = {(X, Y) :: σ((X,Y), Q) <
2m

| X | |Y | } (21)

Combining Equation (19) and Equation (21), we see that Hypercleaning recovers

all edges e = (X, Y) with the following quartet error bound:

σ((X,Y), Q) (22)

=
4 | Q(X,Y)−Q |

| X | (| X | −1) | Y | (| Y | −1)
(23)

<
2m

| X || Y | such that (24)

| Q(X, Y)−Q |< m
(| X | −1)(| Y | −1)

2
(25)

Thus HyperCleaning returns all edges whose number of quartet errors wrt Q is

less than the bound in Equation(25). Consequently, for m = 1, HyperCleaning

recovers all edges whose quartet error is less than |X|−1|Y |−1
2 . Note that this

cutoff is precisely the amount of quartet errors allowed on the edges of the true

phylogeny wrt Q, such that solving the MQE problem on Q will indeed recover

the real edges of T . Thus if indeed the edges of the underlying true phylogeny

T has fewer than the specified amount of quartet (errors) discrepancies wrt Q,

then the set Best(m = 1, Q) returned by Hypercleaning will contain the edges

of the true phylogeny.

However if the inferred quartet set Q is not an accurate estimate of QT , then

the pre-condition specified in Theorem 1 might not be met. Thus there may be

edges in the underlying T whose number of quartet errors may be larger than
(|X|−1)(|Y |−1)

2 with respect to the inferred quartet set Q. In this case the set

Best(m = 1, Q) returned by HyperCleaning will not contain all the edges of T .

But by increasing the parameter m, HyperCleaning has the following guarantee:

Theorem 2

Given an inferred quartet set Q, HyperCleaning on input parameter m will cor-

rectly recover all edges of the underlying phylogeny eT = (X,Y) ∈ T whose

32

quartet errors wrt Q is bounded by

Q(X,Y)−Q <
m(| X | −1)(| Y | −1)

2

consult [3] for details. ¯

This makes HyperCleaning a powerful tool for recovering the edges of the un-

derlying phylogeny T .

On input m, the HyperCleaning algorithm runs in bounded polynomial time

on the order of

O(n5f(2m) + n7f(m)) (26)

where f(x) = 4m2(1 + 2m)4m [3]. This theoretical upper bound is however

very loose, and in practice (e.g. in the implementation given in [3]), the actual

running time is much lower.

One interesting property of the HyperCleaning algorithm is that its running

time depends on the amount of error in the inferred quartets Q from input

S. This is not observed in other (current) phylogenetic methods. Although no

formal analysis has been performed, the following intuitive argument illustrates.

The running time of HyperCleaning is dictated by 2 parameters, the size of

the input dataset n, and the value m. From Theorem 2, we see that m basically

controls the threshold on the amount of error (as defined in Equation (19)), an

edge e can have with respect to Q and still be recovered. The question then be-

comes, given a certain Q, how large must we set m such that the set Best(m,Q)

returned by HyperCleaning contains all or most of the edges of the underlying

phylogeny T . Clearly if Q is very strongly correlated with QT then a small m

value suffices. In one extreme if Q = QT (i.e. the inferred quartet set Q contains

no errors), then an arbitrary small m → 0 is sufficient since HyperCleaning (see

Theorem 2) will return all edges with zero quartet errors with respect to Q,

which are exactly those edges of T .

33

Consequently the accuracy of the quartet set Q with respect to QT dictates

how large we need to set m and thus affects the running time of HyperCleaning.

Realistically, under input data set of moderate difficulty, the inferred quartet

set Q will contain quartet errors wrt QT . Our simulation shows that under ran-

domly sampled dataset S, in the form of aligned sequences from the Ribosomal

Database Project (RDP) [35] the inferred quartet set Q on S has on average

15% − 30% quartet error wrt QT . This along with Theorem-2 implies that in

order for HyperCleaning to recover all the underlying edges of T , we must raise

the value of m accordingly, which in turn increases the running time.

Consider a reasonable situation where we are given a dataset with more than

50 leaves. Moreover this dataset (say in the form of aligned sequences) imposes

sufficiently many quartet errors on Q with respect to QT , as to require m = 20

for HyperCleaning to recover all edges of T . Running HyperCleaning on n ≥ 50

and m ≥ 20 renders the running time computationally intractable (in the real-

istic running time and not theoretical sense).

Note that any method for improving the accuracy of the inferred quartet set Q

with respect QT not only improves the accuracy of the estimate as in any other

quartet methods, but will also improve HyperCleaning’s running time.

In chapter 3 we introduce a major component of this thesis, a space/time trade-

off mechanism which at the expense of increasing memory, will significantly

reduce the running time as to make HyperCleaning tractable on large datasets.

2.6 Effectiveness Assessment of Phylogenetic Methods

The effectiveness of a phylogenetic inference method (i.e. an estimator) can

be measured by a combination of several factors. In the following section we

describe these factors, which will be subsequently used in chapter 6 as effective-

34

ness metrics for our comparative analysis.

The four important metrics for measuring effectiveness are: consistency, ro-

bustness, accuracy, and scalability. 4

i) Consistency - an estimator is consistent if the probability of a correct ap-

proximation approaches 1 as the number of input data approaches infinity. In

other words, it is desirable that an estimator satisfies the monotonic improving

property that as the estimator receives more information, its estimation gets

more accurate. A phylogenetic inference method is consistent if the probabil-

ity that the ‘inferred’ phylogeny is the actual phylogeny approaches 1 as the

amount of data per taxa (i.e. amount of data per leaf) increases. As stressed

in [31], the two main problems with consistency is that

• Since we cannot run an estimator with its input data approaching infinity,

it is impossible to empirically conclude if it is consistent or not. The only

way to show consistency is through mathematical proofs which is feasible

only with unrealistic simplifying assumptions, such as the assumption of

additivity in the neighbour joining method.

• Even if an inference method is consistent, it is not sufficient to conclude

that it is monotonic improving, which is what we are really after in an

inference method [31], [26].

ii) Robustness - most phylogenetic inference methods have a set of assumptions

under which they perform optimally. For example Neighbour Joining assumes

that the distances given to it are additive, and Quartet Methods assumes that

the inferred quartet set Q on input set S contains no or very little quartet errors.

Robustness is concerned about the degradation of the accuracy of the inference

method when its assumptions are violated.

iii) Accuracy - the accuracy of an inference method tries to categorize the

4Note that although the effectiveness measure is not governed by a method’s efficiency, in

practise the computational efficiency is a major factor governing the usefulness of a method.

35

amount of ‘deviation’ of the inferred tree from the actual tree. Many met-

rics have been proposed for accuracy, such as the number of edges not shared

[44], [43] , or the number of cut-paste operations required to turn the inferred

tree into the true phylogeny.

Another notion of accuracy is that of relative accuracy which can be measured

as the ratio between the number of correct edges shared between an estimate

tree and the real phylogeny and the total number of edges recovered in an es-

timate tree. This measure is useful for comparing two estimators where one or

both produces estimates that are not fully resolved trees.

iv) Scalability - this deals with the important issue of the accuracy of the esti-

mator as the size of the input problem grows. [31] supports the doctrine that

estimators tend to decrease in accuracy as the size of the tree grows. The notion

of scalability directly affects accuracy and we are mostly interested in the ‘rate’

at which accuracy or relative accuracy is affected (degrades) as the size of the

tree grows.

36

3 HyperCleaning∗

In this section, we provide an overview of the HyperCleaning∗ algorithm and

how it extends the HyperCleaning algorithm. Then we focus on the first ex-

tension of the algorithm - incorporating weighted quartets. We will formally

introduce the notion of a weighted quartet set, and propose an algorithm along

with the necessary definitions for recovering the best edges with respect to the

weighted quartet set, with the accuracy guarantees similar to those given by

HyperCleaning on an unweighted quartet set. Finally we formally introduce

the concept of collapsing an unresolved phylogeny and the subsequent update

of the quartet set to reduce the size of the input but without loss of information.

This enables us to formulate a collapsing mechanism to decrease the running

time of our algorithm. The details of incorporating collapsing into the algorithm

presented here will be covered in chapter 4.

3.1 Overview of HyperCleaning∗

HyperCleaning∗ (HC*) is an extension of the HyperCleaning algorithm (HC).

Similar to HC, HC* recovers all edges below a certain error threshold with re-

spect to the inferred quartet set Q. HC* extends HC in two aspects:

i) HC∗ introduces a more general notion of a quartet set, called a weighted quar-

tet set (or witness set). Consequently the definition of an edge score σ(e,Q),

the error threshold on returned edges as in Equation 64, and the algorithm for

efficiently constructing the set Best(m,Q) must be modified in light of the new

weighted quartet set W . The motivation is in line with what the Short Quartet

Method [15] hints at, that some quartets are more informative about the under-

37

lying phylogeny than others, and should have more weight in the re-combination

stage. Moreover given a single quartet, we should also allow for non-zero weights,

representing confidence, to all three of its topologies. Weighted quartets provide

a context for facilitating these notions.

ii) Introducing a ‘collapsing’ mechanism that enables a speedup in running

time of recovering edges, at the expense of more memory. Recall that HC on

low values of m might not return enough edges in Best(m, Q) for deriving a

fully resolved tree. But on high values of m, HC might be too time consuming

given its high degree polynomial running time as given in Equation (26). Under

the new collapse mechanism, we could run HC* on a low value of m, and take

only the top scoring edges. This induces an unresolved tree, also called a cluster

tree. Figure(12) shows a cluster tree and its induced clusters.

4

53

2

1

...
...

6

7

9

8

11

10

12

7

3 5
4

...

11

10

12

...

...

6

Figure 12: An unresolved cluster tree on S with 12 leaves, and 3 of its clusters.

Notion - Cluster Tree : Given set S of n leaves, an unrooted resolved bi-

nary tree on S has n− 3 internal edges (i.e. edge not incident to a leaf). Any

set of l < n − 3 compatible edges on S induces a cluster tree. A cluster in a

cluster tree consists of an internal vertex with its adjacent leaves.

38

Note that this notion of a cluster tree which is only used to motivate the fol-

lowing discussion. In the next section, we formally define cluster tree in the

context of HC*’s collapsing mechanism. In essence, the collapsing mechanism

enables HC* to run at a low value of m, returning the set Best(m,W) of edges

which will induce an unresolved tree, or a cluster tree. The collapsing mecha-

nism will then collapse all but one of the clusters in this unresolved tree. The

remaining single cluster can be viewed as simply a star topology on a set of

leaves and collapsed nodes. Moreover this cluster set should be much smaller

than the original input set S. We can then run HC* on this smaller cluster set,

and attempt to resolve edges that lie in that cluster by using a higher value of

m. In other words, we reduce the size of input size n, such that we can raise the

size of input parameter m, allowing more edges to be resolved without accruing

the high cost of added computational time. Figure (13) shows the idea. The

collapsing mechanism guarantees no information loss during the collapse, such

that any edges recovered by HC∗ under a collapsed cluster, will have the same

score with respect to W as under no collapsing with the original input set S,

by raising the value of m to the necessary level.

In the next two sections, we present the Hypercleaning* algorithm.

3.2 HC* using Weighted Quartets

HC* adopts a more general notion of a quartet set, and subsequently general-

ized notions of quartet errors/support of edges with respect to the quartet set.

From here in we use the definition of an edge as a bipartition (see Def 5 on page

24). HC* uses the notion of a weighted quartet set on input dataset S:

Definition - Weighted Quartet Set (Witness Set)

39

Use collapsing mechanism
to collapse all but one
cluster. Collapsed
clusters in this case
reduces to a
single supernode s1

1

4

5

9
10

s1

Run HC* on thie
reduced input size
with a higher m (e.g. m=10)

1

4

5

9
10

e1

e2

e3

e4

2

3
6

11

12

8

Consider the resulting
tree thus fa ...

Employ collasping
again. This time
our choice of which
cluster remains induces
two collapsed supernodes.

s1

s2

6

3

12

run HC* on this
reduced set with
a higher m value

REPEAT ...

1

4

5

9

10
s1

e1

e2

e3

e4

2

3
6

11

12

8

1
4

5

10

7

9
run HC* on m=2
recovers 4 edges:
e1, .., e4
resulting in following
cluster tree

1
2

3

4

5

67
8

9

10

11

12

Figure 13: Running HC* with low values of m and further resolution of the

unresolved tree by recursively collapsing the problem into smaller instances and

then running HC* with higher values of m on these smaller problems.

40

A weighted quartet set W on input S consists of the following set:

W = { (ab | cd, w(ab | cd)),

(ac | bd, w(ac | bd)),

(ad | bc, w(ad | bc))) :: for all quartets a, b, c, d ∈ S},

where w(ab | cd) ≥ 0 is a weighting that W assigns to the quartet topology

ab | cd being induced in the underlying phylogeny T . One restriction on the

weights is that they be non-negative. If the quartet weights are arrived at using

probabilistic methods, where the weights represents confidence, then another

restriction might be that the weights of the three topologies on a given quartet

sum to 1. HC∗ however does not require such a restriction to hold. ¯

The weighted quartet set W can be viewed as a generalized version of Q, where

in Q each quartet a, b, c, d has exactly one topology with weight 1. The purpose

of W is to allow degrees of confidence to be assigned to quartet topologies. Note

that the cardinality of W on input set S is 3
(|S|

4

)
.

We defer the actual construction of the witness set W from the given input

data until section 5.

Under this more general notion of quartet set, we must also generalize the

definition of a support and its dual, the distance, of an edge with respect to W .

Definition - distance function of an edge e = (X,Y)

Given an edge e = (X,Y), its quartet error with respect to W , is given by

σ(e = (X, Y),W) =

∑
ab|cd∈Q(X,Y) w(ac | bd) + w(ad | bc)

(|X|
2

)(|Y |
2

) (27)

where Q(X, Y) is the set of quartet topologies induced by e. ¯

HC* on input set S and parameter m returns the set denoted Best(m,W) of all

edges on S whose distance with respect to W is less than 2m
|X||Y | . Specifically,

41

HC* returns

Best(m, W) = {(X,Y) :: σ((X, Y), W) <
2m

| X || Y | } (28)

Consequently from (27), (28) yields the following lemma:

Lemma 1

Given input S and a corresponding inferred weighted quartet set W , HC* on in-

put m, will recover an edge set containing all edges e = (X, Y) in the underlying

phylogeny, provided the following error bound it met:

σ(e,W) < m
| X − 1 || Y − 1 |

2

¯

3.2.1 The Algorithm

HC* on input S, m produces the edge set Best(m,W) satisfying Equation (28)

by first producing for every two leaves x, y ∈ S, the set:

Bestxy(m,W) = { e = (X, Y) such that x ∈ X, y ∈ Y, (29)
∑

ax|by∈W (X,Y)

w(ay | bx) + w(ab | xy) < m} (30)

This set Bestxy in essence consists of edges with leaves x, y in its left and right

partites respectively, whose set of induced quartets Q(X,Y) has a quartet error

score bounded by m with respect to W . The construction of this set is recursive

and is defined in the following theorem. Moreover the set Bestxy(m,W) will

also allow trivial edge ({x}, {y}). Note that this trivial edge induce no quartets.

Procedure 1 - Constructing Bestxy(m,Wk)

42

Given leaves x, y ∈ S, and 1 ≤ k ≤ n. The following recurrence relation-

ship defines the set Bestxy(m,Wk) with respect to the set Bestxy(m, Wk−1),

where we denote Bestxy(m,W) = Bestxy(m,Wn). Wk are those quartets of W

induced by the leaves in the sequence Sk = {x, y, v1, v2, .., vk−2} ⊆ S.

If k = 1 then Bestxy(m,W1) = ∅.
If k = 2 then

∀x, y ∈ S, Bestxy(m, W2) = { ({x}, {y}) }

For k ≥ 3

Bestxy(m,Wk) = all edges e ∈ Lxy ∪Rxy satisfying Equation (30) where W = Wk

(31)

where the construction of Lxy, Rxy are as follows:

Lxy = {(X ∪ {sk}, Y) | (X, Y) ∈ Bestxy(m,Wk−1)}

Rxy = {(X,Y ∪ {sk}) | (X, Y) ∈ Bestxy(m,Wk−1)}

and leaf {sk} is the kth leaf drawn from the sequence Sk = (x, y, v1, v2, ...vk−2) ⊆
S. ¯

Theorem 3 - Given input set S and weighted quartet set W , the set re-

turned by Procedure 1, i.e. Bestxy(m,Wk) for k = n, defines Bestxy(m,W) as

given in (30).

proof - Consider an arbitrary edge e = (X ∪ {sk}, Y) ∈ Best(m, Wk) (simi-

lar arguments can be made for the symmetric case (X, Y ∪ {sk})). We have

three possible cases:

case i) Non-trivial case, where both | X ∪ {sk} |, | Y |≥ 1. For this case

let us define

Errwith =
∑

skx|y′y∈Q(X∪{sk},Y)

w(sky′ | xy) + w(xy′ | sky) (32)

43

Errwithout =
∑

x′ 6=sk,x6=sk|y′ 6=y∈Q(X∪sk,Y)

w(x′y | xy′) + w(x′y′ | xy) (33)

Since (X ∪ {sk}, Y) ∈ Best(m,Wk), Equation (30) implies

Errwith + Errwithout < m, therefore, (34)

Errwithout < m (35)

which implies that

(X,Y) ∈ Bestxy(m, Wk−1)

as required.

case ii) Trivial case where | X |= ∅. In this case e = (X ∪{sk}, Y) = ({sk}, Y).

By definition, e ∈ Bestxy(m,Wk−1) since there are no quartets running across e.

case iii) Trivial case where | Y |= ∅. By definition e ∈ Bestxy(m, Wk−1).

¯

The ultimate goal of HC* is to return the set of edges Best(m,W) as described

in Equation (28). The goal of the sets Bestxy(m,Wk) for all x, y ∈ S and

1 ≤ k ≤ n defined above is to facilitate an efficient bottom up construction of

the set Best(m, W). This is achieved by the following recursive construction.

Procedure 2 - Constructing the set Best(m,Wk)

On input set S of n leaves, the set Best(m,Wk), is defined recursively from

Best(m,Wk−1), for 2 ≤ k ≤ n, where Best(m, W) = Best(m,Wn). Wk is the

subset of quartets of W induced by the subset of leaves Sk = {v1, v2, ..., vk} ⊆ S.

If k = 1 then Best(m,W1) = ∅.
If k ≥ 2 then

Best(m,Wk) = all edges e ∈ L ∪R ∪Msatisfying Equation(21) where Q = Wk

44

where the sets L,R, M are constructed as follows:

L = {(X ∪ {sk}, Y) :: (X, Y) ∈ Best(m,Wk−1)}

R = {(X, Y ∪ {sk}) :: (X, Y) ∈ Best(m,Wk−1)}

M =
⋃

x∈Sk−1

Bestxsk
(m, Wk)

Theorem 4 - Given input S and W , the resulting set Best(m,Wk) for k = n

defines the set Best(m,W) as given by Equation (28).

proof - Consider an arbitrary edge e = (X ∪ {sk}, Y)

(X ∪ {sk}, Y) ∈ Best(m, Wk) (36)

If (X,Y) ∈ Best(Wk−1, m) then we are done. Otherwise we must show that

(X, Y) ∈ M .

Since (X ∪ {sk}, Y) ∈ Best(m,Wk) we have

σ((X ∪ {sk}, Y),Wk) <
2m

| X ∪ {sk} | · | Y | (37)

Since (X,Y) 6∈ Best(m,Wk−1) then we have

σ(Wk−1, (X,Y)) ≥ 2m

| X | · | Y | (38)

Now we define the term sin, denoting the sum of errors (distances) of all quartets

across ((X ∪{sk}), Y) involving sk. Also let us denote sout as the sum of errors

of all quartets across ((X ∪ {sk}), Y) not involving sk.

sin =
∑

ask|cd∈Q(X∪sk,Y)

w(ac|skd) + w(ad|skc) (39)

sout =
∑

a 6=sk,b6=sk|cd∈Q(X∪sk,Y)

w(ac|bd) + w(ad|bc) (40)

45

From our assumption (37), we have the following

sin + sout <
m(| X ∪ {sk} | −1) · (| Y − 1 |)

2
(41)

But from assumption (38), we have

sout ≥ m(| X | −1) · (| Y | −1)
2

(42)

From (41), (42), we conclude that

sin <
m | {sk} | · (| Y | −1)

2
(43)

Consider the sum of quartet errors across edge (X ∪ {sk}, Y) involving both

y ∈ Y and sk, denoted error(y, sk):

error(y, sk) =
∑

xsk|yy′∈Q(X∪{sk},Y)

w(sky | xy′) + w(sky′ | xy) (44)

Let us assume that error(y, sk) ≥ m, for all y ∈ Y which implies that

∑

xsk|yy′∈Q(X∪{sk},Y)

w(sky | xy′) + w(sky′ | xy) ≥ m (45)

Consequently, we make the following observation

∑

y∈Y

(∑

xsk|yy′∈Q(X∪{sk},Y)

w(sky | xy′) + w(sky′ | xy)
)
≥ m(| Y |) (46)

Since for non-trivial cases, | Y |≥ 2, we make note of the following

2sin ≥
∑

y∈Y

(∑

xsk|yy′∈Q(X∪{sk},Y)

w(sky | xy′) + w(sky′ | xy)
)

(47)

Thus, (43), (46), and (47) gives us

2
m | {sk} | · | Y − 1 |

2

> 2sin

≥
∑

y∈Y

(∑

xsk|yy′∈Q(X∪{sk},Y)

w(sky | xy′) + w(sky′ | xy)
)

≥ m | Y |

46

The above says that m | {sk} | · | Y − 1 |= m | Y − 1 |> m | Y |, such that we

have contradiction | Y − 1 |>| Y |. Thus our assumption that error(y, sk) > m

for all y ∈ Y must be false. Specifically we can find at least one y ∈ Y such that

error(y, sk) < m

Thus the above along with (30) and (44) says that

(X ∪ {sk}, Y) ∈ Bestsky(m, Wk)

Thus (X ∪ {sk}, Y) ⊆ M as required. ¯

Procedures 1 and 2 in essence describe the recursive construction of the set

Best(m,W). The efficiency is that at each stage for 1 ≤ k ≤ n, the cardi-

nality of the set Best(m, W)k is inherently constrained by the size of the sets

Best(m,Wk−1) and Bestxy(m,Wk), with the guarantee that Best(m,W) does

not miss any edges. This in essence constrains the edge space to be searched

through, whereas the naive search on n leaves involves searching through 2n

edges.

3.2.2 Cluster Tree, Collapsing and HC*

In the beginning of this chapter we intuitively motivated the reason for intro-

ducing the collapsing mechanism. Figure 13 shows an example of how collapsing

can reduce existing problem into several instances of smaller problems. In this

section we provide some formal definitions and the goal behind collapsing. The

next chapter will examine the collapsing mechanism in detail, and its affect on

how HC* recovers edges, as defined by Theorems 3 and 4. The goal of collapsing

is to enable HC* to run on a small value of m which is both fast and memory

efficient, since m directly effects the amount of quartet errors permitted and

in turn the size of the sets Best(m,Wk), Bestxy(m,Wk), 1 ≤ k ≤ n. On small

47

values of m however, the set Best(m,W) returned by HC∗ might not contain

n − 3 compatible edges to yield a tree estimate, inducing a cluster tree. The

goal is to iteratively collapse the cluster tree into instances of a single cluster

(i.e. a star tree) on a smaller set of vertices. Then we can run HC∗ on these

star trees with higher values of m to recover the unresolved edges.

Let us now formally define some terminologies required for introducing the col-

lapse mechanism. The following three definitions are mutually referencing.

Definition -Cluster Tree

A cluster tree T is a tree consisting of edges and vertices, where each vertex

is either a leaf, an internal vertex (i.e. non-leaf), or a supernode. Note that a

regular tree is a cluster tree whose vertices are either leaves or internal vertices.

¯

Definition -Cluster

Given a cluster tree T , a cluster Ci ∈ T is the set of vertices consisting of

exactly one internal vertex, along with its neighbouring leaves and supern-

odes. The leaves of a cluster Ci are denoted Leaves(Ci), and the supernodes

(see following definition) in Ci are denoted SuperNodes(Ci). Thus we have

Ci = an internal node∪SuperNodes(Ci)∪Leaves(Ci). An internal vertex with

no adjacent leaves or supernodes is a trivial cluster. Let Clu(T) be the set of

all clusters in T . ¯

Definition - Supernode

A supernode c of a cluster tree T , is a degree-1 vertex, denoting some collapsed

cluster Ci. ¯

Definition - Cluster Collapse

Given a cluster tree T and cluster Ci ∈ T , the cluster can be collapsed into a

single node ci, only if the resulting node ci is a degree-1 vertex in the remaining

48

5

4

3

6

7 8 9
10

11

12

13

14

15

16

17

2

1
1

3

2

4

C = { 13, 4, 5 } ,

C = { 15, 7, 8 } ,

C = {16, 6 } ,

6

C = { 17, 9, 10, 11 },5

C = { 14 }
}

Clu (T) = { C = { 12, 1, 2, 3 } ,

Figure 14: An unresolved cluster tree, with clusters C1, .., C6. C6 is a trivial

cluster

tree. After the collapse, the tree remains a connected tree, but has one more

supernode and one less cluster. ¯

Figure (15) illustrates a valid and an invalid cluster collapse.

Definition - Full Collapse of a tree : Full • (T | Ci)

Given a (cluster) tree T , its full collapse with respect to cluster Ci, denoted

Full • (T | Ci) is the ordering of all the clusters Cj 6= Ci ∈ Clu(T), and the

subsequent collapse in turn of these ordered clusters. The ordering must be

valid, in the sense that each cluster, on its turn to collapse, must be collapsible

as in previous definition, wrt T . ¯

The result of the sequence of collapses is single cluster C∗i = Ci ∪ {s1, ..., sk},
k <| S |, and the corresponding tree topology on C∗i is simply the star topology.

We will now show that it is always possible to correctly collapse the clusters of

a cluster tree until only one (pre-determined) cluster remains.

Lemma - Generating a valid collapse ordering for Full • (T | Ci)

49

(1)

7

8

4

(3)
6

1

2(4)

2
6 7

3

1

(2)

2
6 7

3

1

8

3

5

4

4

55

Figure 15: The cluster tree T in (1) has 3 clusters: C6 = {6, 1, 2}, C7 = {7, 3},
and C8 = {8, 4, 5}. (2) denotes the valid collapse of cluster C8 since the resulting

vertex satisfies the definition of a supernode. (3) shows the valid collapse of

cluster C6. In (4), the collapse of cluster C7 is not valid since the resulting

vertex does not satisfy the definition of a supernode.

50

(e)

5

4

3

6

7 8 9
10

11

12

13

14

15

16

17

2

1

(c)

5

4

6

7

13

16

5

4
13

14

8

14

15

(a) (b)

(f)

5

4

3

6

7 8

13

14

15

16

2

1
12

c5

5

4
13

14

7 8

15

(d)

5

4
13

c3

 c2
 c2

 c2 c2

c5

c3

c4

c6

Figure 16: The collapsing of cluster tree T given in (Fig 14) into a single cluster,

denoted by Full • (T | C2). A valid collapse ordering is (C5, C1, C3, C6, C4). (a)

is the original tree, (b) collapses cluster C5 into supernode c5. (c) collapses

cluster C1 into supernode s2. (d) collapses cluster C3 into supernode c3. (e)

collapses cluster C4 into supernode c4. (f) cluster C6, which now has 2 adjacent

supernodes as a result of previous rounds of collapsing, is itself collapsed into

supernode c6. The result is a cluster tree consisting of a single cluster (4,5 c2,

c6), of size 4.

51

Given tree T with k clusters, a valid ordering of the clusters can be obtained by

sorting all clusters 6= Ci by decreasing distance from Ci, where the dist(C, D)

between two clusters is simply the number of edges between their closest ver-

tices. Ties in the ordering can be settled arbitrarily.

proof−Suppose an invalid collapse occurs at some given point during a full

collapse of some cluster tree: Full • (T | Ci), say during collapsing cluster

Ck 6= Ci. Specifically, assume that collapsing cluster Ck yields a vertex ck of

degree > 1 (i.e. a supernode). This means that cluster Ck had two or more

distinct adjacent clusters Cp1 , Cp2 , ..., Cpd
prior to its collapse. Since the cluster

tree T does not have a cycle, exactly one of these clusters, say Cp1 is closer

to cluster Ci than Ck, and all other adjacent clusters Cp2 , ..., Cpd
are one edge

further from Ci than Ck. But these adjacent clusters under the above collapsing

scheme should already have been themselves collapsed into supernodes. Thus

we have a contradiction, as required..

¯

Figure (16) shows a collapsing of a cluster tree into a single cluster using a

valid collapse ordering.

Definition - Size and Cardinality of Vertices

Given a vertex s, we define its size as

Size(s) =





1 if s is a leaf or internal vertex
∑

v∈Cs
Size(v) if s is a supernode, and Cs

is the cluster collapsed into s

The cardinality of a vertex s, denoted | s | is 1 if s is a leaf or an internal

vertex, and the number of elements in its corresponding cluster if s is a supern-

ode. ¯

Given a supernode s denoting some collapsed cluster Cs, we can also define

52

its expansion, as follows:

Definition - Expanding a supernode: exp(s)

Consider a supernode s resulted from collapsing a cluster Cs. The expansion

of s, denoted exp(s) is a recursive procedure, which returns a set of leaves as

follows:

exp(s) =
{

Leaves(Cs)
⋃

∀s′∈SuperNode(Cs)

exp(s′)
}

¯

In the context of collapsing, an edge e = (X,Y) defined by its bipartition

of vertices also becomes more general. In a normal tree T , an edge e = (X,Y)

consists of two disjoint but pairwise complete sets on the leaves S. In a cluster

tree TC , an edge e′ = (X ′, Y ′) also consists of two disjoint, pairwise complete

sets on all degree-1 vertices in TC . In other words the bipartites of an edge are

the leaves and supernodes in TC . Given an edge e = (X, Y) in a cluster tree

TC , consider the following definition:

Definition - Expansion of an edge e = (X, Y) in a cluster tree

Given an edge e = (X, Y) in cluster tree TC , its full expansion, denoted Exp(e =

(X, Y)) returns the edge e′ = (X ′, Y ′) where X ′, Y ′ is a bipartition on the origi-

nal leaves set S. Formally, the Exp(e = (X, Y)) is recursively defined as follows:

Exp(e = (X, Y))

= (X ′, Y ′)

=
(

Leaves(X)
⋃

s∈SuperNode(X)

exp(s) ,

Leaves(Y)
⋃

s∈SuperNode(Y)

exp(s)
)

Having the above definitions on a cluster tree, collapsing, and expanding under

a cluster tree, we are ready to formally state the definition of what it means for

53

HC* to achieve information loss-less collapsing of the cluster tree into a single

cluster, and subsequent resolution of edges on that cluster.

Definition - HC* Information loss-less edge recovering under collapsing

Given input set of leaves S for which we wish to infer the phylogeny, and in-

ferred quartet set W , assume that HC* is at some stage of collapsing some

semi-resolved cluster tree into a star topology tree, whose leaves are on the

cluster set:

C = {l1, l2, ..lk, s1, .., sp} (48)

consisting of leaves and supernodes. We wish to construct the weighted quartet

set W ∗ on the vertices of C, such that running HC* on input C using W ∗, will

return the edge set Best(m,W ∗) with the following accuracy guarantee:

∀ edges e ∈ Best(m,W ∗) :: σ(e,W ∗) = σ(e∗ = Exp(e),W) (49)

Such a weighted quartet set W ∗ is the precondition for information lossless res-

olution of the cluster C. ¯

3.2.3 The HC* algorithm under collapsing

Consider an input cluster set C consisting of vertices (i.e. leaves and supern-

odes), and a weighted quartet set W on these vertices. 5 The objective is then

to modify the existing HC* algorithm in the previous chapter, such that run-

ning HC* on input set C with some parameter m will return the set of edges

Best(m,W), satisfying the accuracy bound given in Lemma-1. As we will see, it

suffices to make modifications to the definitions (given in Equations 27, 28) of

quartet error bounds across an edge in sets Bestxy(m, Wk), and Best(m,Wk).

5The initial input set of leaves S is a specific instance of the problem, where S is simply a

cluster of leaves. But in general the input cluster after some rounds of collapsing consists of

leaves and/or supernodes.

54

The algorithms for constructing the sets as given in Theorems 3, 4 will extend

to this general case.

3.2.4 Constructing Bestxy(m,W)

On input set of vertices C, parameter m, and the weighted quartet set W on

C, the set Bestxy(m,Wk) is defined as

Bestxy(m,Wk) = {(X, Y) ::
∑

ax|by∈Q(X,Y)

w(ay|bx) + w(ab|xy)
Size(x)Size(y)

< m} (50)

where Wk is the subset of W induced by the sequence of vertices. Sk =

{x, y, v1, v2, ..., vk−2} ⊆ C, and Size(x) as given by definition in section 3.2.2.

Moreover any trivial edges with either zero or one element in either of its two

partites belongs to Bestxy(m,Wk) The only modification of this definition is

the normalizing constant, which now takes into account the ‘actual’ number of

leaves in the partites, and not just the number of vertices. In particular we ob-

serve that Size(x)Size(y) = (| X ′ |)(| Y ′ |), where (X ′, Y ′) = Exp(e = (X,Y)).

Note that under collapsing, some of the nodes might become supernodes, there-

fore a quartet involving one or more supernodes must have some appropriate

weight definition. In short, this is accomplished by updating the quartet set W

and is a central issue with loss-less collapsing, which will be addressed in the

next chapter.

Having modified our definition of the amount of quartet errors across an edge,

the algorithm presented in Procedure 2 for constructing Bestxy(m, Wk) now

generalizes to the collapsing case. We state Theorem-3 again, and prove it un-

der the new definition of edge error.

Procedure 3 - Constructing Bestxy(m,W) under collapsing

55

If k = 1 then Bestxy{m,Wk} = ∅, since W1 does not contain any biparti-

tions.

Else If k = 2, then Bestxy{m, Wk} = {({x}, {y})}.
Else If k ≥ 3, then

Bestxy(m,Wk) = all edges e ∈ Lxy ∪Rxy satisfying Equation (50)

where

Lxy = {(X ∪ {sk}, Y) | (X, Y) ∈ Bestxy(Wk−1,m)}

Rxy = {(X,Y ∪ {sk}) | (X, Y) ∈ Bestxy(Wk−1,m)}

and the vertex {sk} is the kth element drawn from the sequence

Sk = {x, y, v1, v2, ..., vk−2} ⊆ C. ¯

Theorem 5 - Given input S and W , the set constructed under Procedure

3, i.e. Bestxy(m,Wk), for k = n satisfies the definition of Bestxy(m,W) as

given in definition (50) .

proof− Consider a bipartition e = (X ∪ {sk}, Y) ∈ Bestxy(m,Wk) (similar

arguments can be made for edge e = (X, Y ∪ {sk}) ∈ Best(m,Wk)).

We have three cases :

case i) Non-trivial case, where both |X ∪ {sk}|, |Y | ≥ 1. In this case, (X,Y) is

non-trivial. Moreover let us define

Errwith =
∑

skx|y′y∈Q(X∪{sk},Y)

(w(sky′|xy) + w(xy′|sky))
Size(x)Size(y)

Errwithout =
∑

x′ 6=sk,x6=sk|y′y∈Q(X∪{sk},Y)

(w(x′y|xy′) + w(x′y′|xy))
Size(x)Size(y)

Such that by our assumption, since (X ∪ {sk}, Y) ∈ Bestxy(m,Wk), then

Errwith + Errwithout < m, such that (51)

Errwithout < m (52)

56

which implies that

(X,Y) ∈ Bestxy(m, Wk−1)

as required.

case ii) Trivial case where | X |= ∅, such that the edge in question e =

(X, Y) = ({sk}, Y). By our construction, {sk} must be the vertex {x}, such

that e = ({x}, Y) ∈ Bestxy(Wk−1,m). This can be seen by considering the ini-

tial edge ({x}, {y}) ∈ Bestxy(m,W2) for k = 2, and the iterative construction

of the set R as k = 3, .., k − 2.

case iii) Trivial case where | Y |= ∅ is not possible for k ≥ 1 due to our

construction. ¯

3.2.5 Constructing Best(m,Wk)

The algorithm for constructing the set Best(m,WK) does not need to be modi-

fied, provided we make the following simple modification to the definition given

in (28) on the scoring of an edge (i.e. the number of quartet errors across an

edge).

The set Best(m, Wk) is defined as follows

Best(m,Wk) = {(X, Y) | σ(Wk, (X, Y)) <
2m

Size(X)Size(Y)
} (53)

where Wk are those quartets in W induced by Sk.

Procedure 4 - Constructing Best(m,Wk) under collapsing

If k = 1 then Best(m,Wk) = ∅,

57

Else if k ≥ 2, then

Best(m,Wk) = all edges e ∈ L ∪R ∪M satisfying Equation(53)

where

L = {(X ∪ {sk}, Y) | (X, Y) ∈ Best(m,Wk−1)}

R = {(X,Y ∪ {sk}) | (X, Y) ∈ Best(m, Wk−1)}

M =
⋃

y∈Sk−1

Bestysk
(m, Wk)

Theorem 6 - Given input S,W , the resulting set returned by Procedure

4, i.e. Best(m, Wk) for k = n defines the set Best(m, W) as given in definition

(53).

proof− Assume we have a bipartition (X ∪ {sk}, Y) ∈ Best(Wk, m) (similar

arguments can be made for the symmetric case (X, Y ∪ {sk})). If (X, Y) ∈
Best(Wk−1, m) then we are done. But if (X, Y) /∈ Best(Wk−1,m) then

We must show that (X, Y) ∈ M .

First we observe the following facts:

((X ∪ {sk}, Y) ∈ Best(Wk, m) (54)

⇔ σ(Wk, (X ∪ {sk}, Y)) <
2m

Size(X ∪ {sk})Size(Y)
(55)

⇔
∑

ab|cd∈Q(X∪sk,Y) w(ac|bd) + w(ad|bc)
(
Size(X)

2

)(
Size(Y)

2

) <
2m

Size(X ∪ {sk})Size(Y)
(56)

⇔
4

∑
ab|cd∈Q(X∪sk,Y) w(ac|bd) + w(ad|bc)

Size(X ∪ {sk})(Size(X ∪ {sk})− 1)Size(Y)(Size(Y)− 1)
(57)

<
2m

Size(X ∪ {sk})Size(Y)
(58)

⇔
2

∑
ab|cd∈Q(X∪sk,Y) w(ac|bd) + w(ad|bc)

(Size(X ∪ {sk})− 1)(Size(Y)− 1)
< m (59)

58

⇔
∑

ab|cd∈Q(X∪sk,Y)

w(ac|bd) + w(ad|bc) (60)

<
m(Size(X ∪ {sk})− 1)(Size(Y)− 1)

2
(61)

it follows that

(X, Y) /∈ Best(Wk−1,m) (62)

⇔
∑

ab|cd∈Q(X,Y)

w(ac|bd) + w(ad|bc) (63)

≥ m(Size(X)− 1)(Size(Y)− 1)
2

(64)

Now we define the term sin, denoting the sum of errors (distances) of all quartets

across ((X ∪{sk}), Y) involving sk. Also let us denote sout as the sum of errors

of all quartets across ((X ∪ {sk}), Y) not involving sk.

sin =
∑

ask|cd∈Q(X∪sk,Y)

w(ac|skd) + w(ad|skc) (65)

sout =
∑

a 6=sk,b6=sk|cd∈Q(X∪sk,Y)

w(ac|bd) + w(ad|bc) (66)

We see from (61), that

sin + sout <
m(Size(X ∪ {sk})− 1)(Size(Y)− 1)

2
(67)

and from (64), that

sout ≥ m(Size(X)− 1)(Size(Y)− 1)
2

(68)

From (67), (68), we conclude that

sin <
m(Size({sk})(Size(Y)− 1)

2
(69)

At this stage, we are ready to show that (X, Y) ⊆ M . Let us define error(y) as

the sum of quartet errors across (X ∪ {sk}, Y) involving both y ∈ Y and sk.

error(y) =
∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy))
Size(y)Size(sk)

Let us assume that

error(y) ≥ m, for all y ∈ Y (70)

59

which implies that for all y ∈ Y ,

∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy)) ≥ mSize(y) Size(sk) (71)

such that,

∑

y∈Y

(
∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy))) >
∑

y∈Y

(mSize(y)Size(sk))

(72)

Moreover, we notice that

2sin ≥
∑

y∈Y

(
∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy))) (73)

Inequality (69), along with (72) and (73) gives us

2(
m(Size(Y)− 1)(Size({sk}))

2
)

> 2sin

= m(Size(Y)− 1)(Size({sk})

≥
∑

y∈Y

(
∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy)))

>
∑

y∈Y

(mSize(y)Size(sk))

= mSize(Y)Size(sk)

From the above set of equations, we have

m(Size(Y)− 1)(Size({sk})) > m Size(Y) Size({sk}), which implies

(Size(Y)− 1) > Size(Y)

which is a contradiction.

Thus our assumption that error(y) ≥ m for all y ∈ Y , must be false. Specifi-

cally, we can find at least one y ∈ Y such that error(y) < m, i.e.

⇔
∑

xsk|yy′∈Q(X∪{sk},Y)

(w(sky|xy′) + w(sky′|xy))
Size(y)Size(sk)

< m

But this implies that

(X ∪ {sk}, Y) ∈ Bestsky(Wk,m)

Such that (X ∪ {sk}, Y) ⊆ M as required. ¯

60

4 HC* collapsing mechanism

We examine the collapsing mechanism as introduced in Chapter 3 for speeding

up the weighted Hypercleaning algorithm. WLOG, consider the resulting cluster

tree T induced by the edges returned by Hypercleaning on input set S of vertices.

We can reduce the input size n of vertices by collapsing all but one of the clusters

in T . The collapsing mechanism that achieves this has the following abstract

signature

(W ′, T ′) ← COLLAPSE(W,T)

with the original cluster tree and the corresponding quartet set as input, it

returns an updated quartet set on the reduced vertex set V (T ′). Moreover, the

collapser must guarantee that any subsequent edges recovered by Hypercleaning

on T ′, W ′, should have the same distance score as under the original (T,W)

pair. See Figure(17) for an illustration. Recall that two input parameters

(m, n), where m stipulates the error allowance on returned edges, and n is the

size of input, dictate the running time of the algorithm. Under collapsing, we

effectively reduce the input size of the problem, thereby allowing us to increase

the m value, in a computationally efficient manner, for resolving additional

edges within some unresolved cluster on the current tree estimate.

4.1 Updating W for achieving loss-less collapsing

Phylogenetic inference of a given leaves set S by HC* becomes an iterative pro-

cess, where each iteration resolves some subset of the n − 3 unrooted edges of

an estimate phylogeny. The resulting cluster tree is then collapsed into a single

cluster of vertices C. The cluster set C is then fed into HC* as input, along

with quartet set W ′ induced by C. As such, any subsequent edge e resolved

by HC* (e.g. e ∈ Best(m,W ′)) must satisfy Equation (49) of definition of a

61

e

W , n=14

T

e

T’

W’ , n=5

1

2

3

4
5

6 7

8

9

10
11

12
13

14

a

b

c

de

e = ({ 1, 2, 12, 13, 14 }, { 3, 4, 5, 6, 7, 8, 9, 10, 11 }) e = ({ a, b }, { c , d, e })

Figure 17: The top half of the diagram shows the reduction of the input size from

n = 14 to n = 5 vertices by the collapsing mechanism. The main requirement

of the collapser is that any subsequent resolution of an edge under W ′ must

have the same distance/support score as under the original quartet set W , as

illustrated by the bottom half. In essence σ(e, W) = σ(e, W ′), where W,W ′ are

weighted quartet sets defined under the n = 14, n = 5 vertex sets respectively.

62

loss-less edge recovering under collapsing. The following pseudo-code outlines

the HC* inference procedure under collapsing:

COLLAPSE-RESOLVE

INPUT: T ′: cluster tree, HC∗: algorithm, W : quartet set

OUTPUT: Resolved tree: T

0 k = 0;

1 T k = T ′;

2 V k = V (T); W k = W ;

3 WHILE (T k not fully resolved)6

4 FOR some cluster Ci ∈ Clu(T (k))

5 W k+1, V k+1 ← COLLAPSEk

(
Full • (T (k) | Ci), V k,W k

)

6 Best(m,W k+1) = HC∗(V k+1,m, W k+1)

7 T k+1 ← insert compatible edges e ∈ Best(m,W k+1) into T k

8 k = k + 1

9 V k = V (T k)

For the remaining of this chapter, we examine the COLLAPSE procedure.

4.1.1 Algorithm for Updating W

Recall that in an effort to reduce the size of our leaves set, we collapse some

unresolved cluster tree TC into a single cluster Ci on a smaller set of vertices.

To do so, we must first define a valid collapse ordering: Full • (TC | Ci), and

collapse each of the clusters in turn until only a single cluster remains. Then

we proceed to run HC∗ on this small cluster of vertices in an attempt to resolve
6Alternatively, we could demand that T k is resolved to some user specified threshold, and

then apply other methods to resolve the few remaining edges. Some applications might only

require that only most of the edges of the underlying phylogeny be estimated.

63

more edges. However, any edge recovered this way must satisfy the information

loss-less criteria. Consider an inductive case, where we have already done k

number of collapses in our Full • (TC | Ci) operation, resulting in the current

cluster tree T
(k)
C , with vertex set V (k), and the weighted quartet set W (k) on V k.

Assume that the quartet set W k satisfies the loss-less condition. Consequently

for any edge e = (X, Y) on V k, we have:

σ(e = (X, Y),W k) = σ(Exp(e),W)

where W is the quartet set on the original input set S of leaves. Now consider

collapsing a new (non-trivial) cluster C into supernode c, such that the updated

vertex set becomes: V k+1 = V k−C +c. We then need to construct an updated

weighted quartet set W k+1 on V k+1 satisfying the loss-less condition. In the

following procedure, we define this COLLAPSE mechanism.

Procedure W k+1, V k+1 ← COLLAPSEk(Full • (T k
C | Ci), V k,W k)

Given some unresolved cluster tree T k
C on vertex set V k with weighted quartet

set W k, we wish to collapse all the clusters of T k
C except Ci. The collapse or-

dering is defined by Full • (T k
C | Ci). Without loss of generality, suppose the

collapse ordering is given by:

C1, C2, ..., Ci−1, Ci+1, ..., Cq

The procedure COLLAPSE is parametrized by the aforementioned ordering

and can be characterized by a sequence of corresponding function calls:

W(1), V(1) ← COLLAPSEk
1 (V k,W k, C1)

W(2), V(2) ← COLLAPSEk
2 (V(1),W(1), C2)

. . .

W(q−1), V(q−1) ← COLLAPSEk
q−1(V(q−2),W(q−2), Cq−2)

W k+1, V k+1 ← COLLAPSEk
q (V(q−1),W(q−1), Cq−1)

64

The following defines the actual algorithm for the procedure:

COLLAPSEk
j+1(V

k
(j),W

k
(j))

for j = 0, . . . , q− 1, while in next theorem we prove its correctness in satisfying

the information loss-less precondition. Note that V 0,W 0 corresponds to the

original input vertex set and its quartet set V k,W k.

Procedure W(j+1), V(j+1) ← COLLAPSEk
(j+1)

(
V(j), W(j), C

)
,

Assume we are in the k-th iteration of Full • (TC) | Ci). Given some vertex set

V(j), and quartet set W(j), j = 0, ..., q − 1, where we assume that W(j) on V(j)

satisfies the information loss-less precondition. Assume we want to collapse a

cluster C 6= Ci ⊆ V(k) into supernode s, such that we have V(j+1) = V(j)−C +s.

Thus, we construct an updated weighted quartet set W(j+1) on V(j+1) as follows,

to satisfy the loss-less precondition:

Consider the following combinations of quartet: (a, b, c, d) ∈ V(j+1) = V(j) −
C + s, where these vertices do not have to be all distinct 7

C1 (a, b, c, d), where a 6= b 6= c 6= d ∈ V(j+1) − s :

For all such quartets, assign:

w(j+1)(ab | cd) = w(j)(ab | cd) (74)

w(j+1)(ac | bd) = w(j)(ac | bd) (75)

w(j+1)(ad | bc) = w(j)(ad | bc) (76)

7Quartets can be of the form (a, a, b, c) since a might be a supernode which semantically

represents collapsed leaves and or other supernodes. As such when we consider the distance

score for a quartet topology a, a | b, c, we take into account the following alternative: a, b | a, c

which represents all quartets of the form a1, b | a2, c, where a1, a2 are two collapsed vertices

in supernode a. A quartet of the form (a, a, a, b) is impossible since no supernode can span

across an edge.

65

C2 (a, a, c, d), where a 6= c 6= d ∈ V(j+1) − s :

For quartets of this form, assign:

w(j+1)(ac | ad) = w(j)(ac | ad) (77)

C3 (a, b, c, c), where a 6= b 6= c ∈ V(j+1) − s :

For quartets of this form, assign:

w(j+1)(ac | bc) = w(j)(ac | bc) (78)

C4 (a, a, b, b), where a 6= b ∈ V(j+1) − s :

For quartets of this form, assign:

w(j+1)(ab | ab) = w(j)(ab | ab) (79)

C5 (a, a, s, s), where a ∈ V(j+1) − s

For these quartets, assign:

w(j+1)(ab | ab) =
∑

c,d∈C

w(j)(ac | ad) +
∑

c∈C

w(j)(ac | ac) (80)

C6 (a, b, c, s), where a 6= b 6= c, a, b, c ∈ V(j+1) − s:

For quartets of this form, assign:

66

w(j+1)(ab | cs) =
∑

d∈C

w(j)(ab | cd) (81)

w(j+1)(ac | bs) =
∑

d∈C

w(j)(ac | bd) (82)

w(j+1)(bc | as) =
∑

d∈C

w(j)(bc | ad) (83)

C7 (a, b, s, s), where a 6= b ∈ V(j+1) − s

For these quartets, assign:

w(j+1)(as | bs) =
1
2

∑

c,d∈C

(
w(j)(ac | bd) + w(j)(ad | bc)

)
(84)

+
∑

c∈C

w(j)(ac | bc) (85)

C8 (a, a, b, s), where a 6= b ∈ V(j+1) − s

For these quartets, assign:

w(j+1)(ab | as) =
∑

d∈C

w(j)(ab | ad) (86)

¯

Theorem

Given the above definition of COLLAPSEk
(j+1) on the (j+1) st cluster collapse

in the sequence of collapses as given by Full • (TC | Ci), the resulting weighted

quartet set W(j+1) on the updated vertex set V(j+1) satisfies the information

loss-less precondition.

proof- Consider an arbitrary edge e = (X,Y) on vertex set V(j), and all the

67

quartet topologies that span across e. Let C be the cluster to be collapsed, and

assume without loss of generality C ⊆ Y . Specifically, these quartet topologies

must fall into one of the ten cases illustrated in Fig(18).

Case 1) Quartet topology of the form (ab | cd), where

a 6= b ∈ X; c 6= d ∈ Y ; a, b, c, d ∈ V(j) \ C (87)

This quartet topology contributes the following amount to the score σ(e,W(j))

w(j)(ac | bd) + w(j)(ad | bc)

But since a, b, c, d /∈ C, it follows that a, b, c, d ∈ V(j+1)\s. Thus these quartets

will appear in W(j+1) and their contribution to the distance score σ(e,W(j+1)

will be:

w(j+1)(ac | bd) + w(j+1)(ad | bc) (88)

The quartet weights in Equation (88) are covered by C1 in the procedure for

constructing W(j+1).

Case 2) Quartet topology of the form (aa | cd), where

a ∈ X; c 6= d ∈ Y ; a, c, d ∈ V(j) \ C (89)

This quartet topology contributes the following amount to the score σ(e,W(j))

2w(j)(ac | ad)

But since a, c, d /∈ C, it follows that a, c, d ∈ V(j+1) \ s. Thus all quartets of

the form (aa | cd) ∈ W(j) will also be in W(j+1), contributing the same distance

score to σ(e,W(j+1)):

2w(j+1)(ac | ad) (90)

The quartet weights in Equation (90) are covered by C2 in the procedure for

constructing W(j+1).

68

c

c

c
c

c

c

a

b

X

1)

5)

7)

9)

3)

a

X

b

b

X

a

X

b

a

X

a

c

c

d

c
c

d

Y

e

e

e

e

e
C

C

C

C

Y

Y

Y

C

Y

a

a

X

2)

X

a

X

a

6)

8)

10)

4)

a

a

X

a

X

c

d

c

c
d

C

C

C

C

C

e

e

e

e

e

Y

Y

Y

Y

Y

a

aa

b

c

d

d

Figure 18: Given some vertex set V(j), consider an edge e = (X, Y) , where

X∪Y = V(j). Any quartet across edge e falls into one of the above 10 categories.

69

Case 3) Quartet topology of the form (ab | cc), where

a 6= b ∈ X; c ∈ Y ; a 6= b 6= c ∈ V(j) \ C (91)

This quartet topology (ab | cc) contributes the following distance score to

σ(e, Wj):

2w(j)(ac | bc)

But since a, b, c /∈ C, it follows that all quartets of the form (ab | cc) ∈ W(j) will

also be in W(j+1), contributing the same distance score to σ(e,W(j+1)):

2w(j+1)(ac | ad) (92)

The quartet weights in Equation (92) are covered by C3 in the procedure for

constructing W(j+1).

Case 4) Quartet topology of the form (aa | bb), where

a ∈ X; b ∈ Y ; a, b ∈ V(j) \ C (93)

This quartet topology contributes the following amount to the distance score

σ(e, W(j)) :

2w(j)(ab | ab)

But since a, b /∈ C, it follows that a, b ∈ V(j+1) \ s. Thus all quartets of this

form in quartet set Wj will also be in quartet set Wj+1, contributing the same

amount to the distance score σ(e, W(j+1)):

2w(j+1)(ab | ab) = 2w(j)(ab | ab) (94)

⇔ w(j+1)(ab | ab) = w(j)(ab | ab) (95)

The quartet weights in Equation (95) are covered by C4 in the procedure for

constructing W(j+1).

70

Case 5) Quartet topology of the form (ab | cd) where

a 6= b ∈ X; c 6= d ∈ Y ; a, b, c ∈ V(j) \ C, and d ∈ C (96)

This quartet topology contributes the following amount to the distance score

σ(e, W(j)):

w(j)(ad | bc) + w(j)(ac | bd)

For a given fixed a, b, c, consider the collection of all quartet topologies (ab | cd),

for all d ∈ C. The total contribution of these quartets to distance σ(e,W(j)) is

given by
∑

d∈C

w(j)(ac | bd) + w(j)(ad | bc)

Thus when cluster C gets collapsed into supernode s, then all the above quartet

topologies in W(j) reduce to a single quartet topology (ab | cs) ∈ W(j+1). Thus

in quartet set W(j+1), for every quartet topology (ab | cs), we must set its

distance to

w(j+1)(ac | bs) + w(j+1)(bc | as) =
∑

d∈C

w(j)(ac | bd) + w(j)w(ad | bc) (97)

The quartet weights in Equation (97) are covered by C6 in the procedure for

constructing W(j+1).

Case 6) Quartet topology of the form (aa | bc) where

a ∈ X; b 6= c ∈ Y ; a, b ∈ V(j) \ C, and c ∈ C (98)

This quartet topology contributes the following amount to the distance score

σ(e, W(j))

2w(j)(ab | ac)

For some fixed a, b, c, consider the collection of all quartet topologies (aa |
bc), ∀c ∈ C. These quartets contribute the following amount to the distance

σ(e, W(j)) ∑

c∈C

2w(j)(ab | ac)

71

Thus when the cluster C gets collapsed into supernode s, then all the above

quartets of the form (aa | bc) in W(j) reduce to a single quartet topology (aa |
bs) ∈ W(j+1). Thus in W(j+1), we set the distance for (aa | bs) to:

2w(j+1)(ab | as) =
∑

c∈C

2w(j)(ab | ac) (99)

⇔ w(j+1)(ab | as) =
∑

c∈C

w(j)(ab | ac) (100)

The quartet weights in Equation (100) are covered by C8 in the procedure for

constructing W(j+1).

Case 7) Quartet topology of the form (ab | cc), where

a 6= b ∈ V(j) \ C; c ∈ C. (101)

This quartet topology (ab | cc) contributes the following distance score to

σ(e, Wj):

2w(j)(ac | bc)

The collection of all such quartet topologies (ab | cc), for some fixed a, b and

for all c ∈ C, then makes the following total contribution to the distance score

σ(e, W(j)) ∑

c,c∈C

2w(j)(ac | bc) (102)

When C is collapsed into supernode s, all of the above quartet topologies in

W(j) get reduced to a single quartet topology (ab | ss) ∈ W(j+1), Thus in quar-

tet set W(j+1), for every quartet of the above form, part of its distance score

comes from the set of all collapsed quartets as described above. The remaining

contribution to the distances for quartet topology of the form (ab | ss) is covered

in Case 8 (see below).

Case 8) Quartet topology of the form (ab | cd), where

a 6= b ∈ V(j) \ C, c 6= d ∈ C

72

This quartet topology (ab | cd) contributes the following distance score to

σ(e, Wj):

w(j)(ac | bd) + w(j)(ad | bc)

The collection of all such quartet topologies (ab | cd), for some fixed a, b and for

all c, d ∈ C, contributes the following amount to the distance score across edge

e. Thus when C collapses into supernode s, all of the above quartet topologies

reduces into a single quartet (ab | ss) ∈ W(j+1) , which we note is the same

topology as in Case 7). In quartet set W(j+1), for every quartet of the form:

(ab | ss), part of its distance score comes from the set of collapsed quartets as

mentioned above, which contributes the following total:

∑

c,d∈C

w(j)(ac | bd) + w(j)(ad | bc)

Thus the total distance score on quartet topology ab | ss (as covered by this

and Case-7) is as follows:

2w(j+1)(as | bs) = (103)(∑

c,d∈C

w(j)(ac | bd) + w(j)(ad | bc)
)

+ 2
∑

c∈C

w(j)(ac | bc) (104)

⇔ w(j+1)(as | bs) = (105)(
1
2

∑

c,d∈C

w(j)(ac | bd) + w(j)(ad | bc)
)

+
∑

c∈C

w(j)(ac | bc) (106)

The quartet weights in Equation (106) are covered by C7 in the procedure to

construct the weighted quartet set W(j+1). ¯

Case 9) Quartet topology of the form (aa | cc), where a ∈ V(j) \ C, and

c ∈ C. This quartet contributes the following score to σ(e,W(j))

2w(j)(ac | ac), if c = d

Thus the set of all such quartets contribute a total of following to σ(e, W(j))

∑

c∈C

(
2w(j)(ac | ac)

)

When C is collapsed into supernode s, then all these quartets reduces to a single

quartet (aa | ss) in V(j+1). The above distances contribute partially to all the

73

quartet distances across the quartet topology aa | ss. The remaining distances

are covered in Case-10.

Case 10 Quartet topology of the form (aa | cd), where a ∈ V(j) \ C, and

c 6= d ∈ C. This quartet contributes the following score to σ(e,W(j))

2w(j)(ac | ad), if c 6= d

Thus the set of all such quartets contribute a total of following to σ(e, W(j))

∑

c,d∈C

(
2w(j)(ac | ad)

)

When C is collapsed into supernode s, then all these quartets reduces to a single

quartet (aa | ss), in V(j+1). Note this is the same quartet topology as in Case-9.

Thus in total, the sum of all distances across quartet (ac | ss) is given by:

2w(j+1)(as | as) =
∑

c,d∈C

2w(j)(ac | ad) +
∑

c∈C

2w(j)(ac | ac) (107)

⇔ w(j+1)(as | as) =
∑

c,d∈C

(w(j)(ac | ad) +
∑

c∈C

(w(j)(ac | ac) (108)

The quartet weights in Equation (108) are covered by C5 in the procedure to

construct the weighted quartet set W(j+1). ¯

Given an arbitrary edge e = (X,Y), X ∪ Y = V(j), the above cases cover all

possibilities of a quartet across e. Moreover we construct the quartet set W(j+1)

such that the distance scores of all quartets across e on W(j) is accounted for in

some corresponding quartet across e on W(j+1). Thus through our construction,

we have

σ(e = (X, Y ∪ c),W(j+1)) = σ(e = (X,Y ∪ C),W(j)) (109)

But from our inductive assumption on j, we have that

σ(e = (X,Y ∪ C),W(j)) = σ(Exp(e),W) (110)

Thus we have

σ(e,W(j+1)) = σ(Exp(e),W)

74

as required by the information loss-less precondition.

¯

Thus the collapsing mechanism is defined by a collapsing scheme Full•(TC | Ci),

on our original unresolved tree TC , initially on quartet set W . The procedure

COLLAPSE is defined by a sequence of procedure calls:

COLLAPSE1, COLLAPSE2, ..., COLLAPSEq

where COLLAPSEk
j , j = 1, . . . , q executes the jth collapse as dictated by

FULL • (TC | CI). When collapsing the j-th cluster, procedure COLLAPSEk
j ,

ensures that an updated quartet set W(j) on the resulting vertex set V(j) will

satisfy the information loss-less condition. After all clusters except Ci have

been collapsed, we have a single cluster C∗i on vertex set V(q) along with the

corresponding weighted quartet set W(q).

75

5 Results, Future Work and Conclusion

In this last section, we summarize the performance of the HC∗ algorithm in

terms of its efficiency and effectiveness. The experiments were performed on real

data sets sampled from the Ribosomal Database (RDP) [35]. All experiments

are carried out using a PentiumII-350MHz PC with 256Megs of memory running

Linux. Finally we list some related open problems/futures works followed by

the conclusion.

5.1 Efficiency of HyperCleaning∗

One aspect of efficiency is the measure the speedup of HC∗ over HC. To show

this, we designed the following experiment which utilizes a feature of HC∗’s

collapsing mechanism: the ability to incorporate external knowledge about the

inference problem at hand to significantly speedup its run time. Consider some

given set S of n objects on which we wish to infer the phylogeny. Suppose that

by some external means such as biological experiment, we resolve a deep edge

(i.e. e = (X, Y) where | X | and | Y | are rough 1
2n). Under HC∗ we can

incorporate this edge into the inference procedure by having it induce a cluster

tree consisting of two large clusters of roughly equal size. HC∗ can then col-

lapse one of the clusters into a supernode and resolve edges from the remaining

cluster. This effectively reduces the original input space by half. Moreover,

we can initially pick a small m value for resolving high confidence edges from

the one cluster. After one round of collapsing, HC∗ incorporates all compatible

edges from the resulting set Best(m,W) into the estimate tree and proceeds to

pick the next largest cluster to resolve. The procedure iterates until all n − 3

non-trivial edges of the tree are inferred. Figure (19) depicts screen captures

of the iterative collapse and resolution of a randomly sampled RDP 30-taxon

76

tree under this scheme. The top-left window shows the original star tree as re-

solved by a single deep edge, inducing two large clusters. The top-right window

shows one round of collapse, resolution, where some edges in the top cluster

are resolved. The middle-left window shows the collapse and resolution of the

bottom cluster. This iterative process continues until the final resolved tree as

given in the bottom-right window. Note that for the original HC algorithm, the

knowledge of a deep edge cannot be exploited in this fashion.

For the experiment we randomly sampled 30-taxon and 45-taxon trees from

the RDP database. We ran both HC and HC∗ on these trees under the condi-

tion of resolving almost all of the n − 3 underlying non-trivial edges. For HC

we picked a sufficiently high m value (m = 20 for 30-taxon trees, and m = 25

for 45-taxon trees) and then selected those compatible edges of the resulting

Best(m,W) set in a greedy fashion. For HC∗ we incorporated one deep edge

to facilitate the iterative process for inferring the compatible edges in the tree

estimate. For each sample tree, we compared the running time (CPUtime),

the amount of edges recovered and the accuracy on both HC and HC∗. Tables

(1), (2) shows the results on the 30-taxon, 45-taxon samples respectively. The

metric used for accuracy is based on the Robinson-Foulds (RF) measure, where

the RF accuracy is the number of edges (i.e. bipartitions) shared between the

candidate tree and the true target tree.

Another aspect of efficiency is the comparison of the run-time of HC∗ com-

pared to the run-time of efficient implementations of the established methods,

specifically Parsimony, Neighbour Joining, and Quartet Puzzling. Note that

Maximum Likelihood methods will not be considered, since even the fastest im-

plementation of ML employing heuristics (e.g. fastDNAML, or ML in the PAUP

package) become computationally impractical on large data sets. We ran HC∗

against the PAUP [52] package implementation of neighbor joining (paupNJ),

parsimony (paupPars), and quartet puzzling (papuPuzPars) which uses parsi-

77

Figure 19: The iterative collapse and resolution of a 30-taxon tree. Images

generated by InVest.
78

Comparison of running time: HC vs. HC∗ on 30-taxon trees

HC HC∗

tree time (s) res accuracy time (s) res accuracy

1 492 27 12 10 27 14

2 298 24 8 17 27 7

3 342 26 10 15 26 13

4 349 25 13 10 27 16

5 290 24 16 14 26 17

Table 1: Efficiency measure on 30-taxon tree. The time column measures the

CPU usage in seconds, ‘res’ is the amount of edges resolved, and accuracy is the

number of correctly inferred edges. For HC, the m value was set to 20.

Comparison of running time: HC vs. HC∗ on 45-taxon trees

HC HC∗

tree time (m:s) res accuracy time (m:s) res accuracy

1 212:57 36 18 1:43 40 20

2 246:13 38 19 1:15 37 20

3 201:24 36 20 1:43 39 21

4 217:22 38 21 1:49 40 23

5 230:18 37 19 1:44 41 21

Table 2: Efficiency measure on 45-taxon tree

79

30 35 40 45 50 55 60 65
0

200

400

600

800

Size of Input

A
vg

 ti
m

e
fo

r
ne

ar
−

fu
ll

re
so

lu
tio

n
(s

ec
)

paupNJ
paupPars
paupPuzpars
HC*

Figure 20: Experimental run time of the inference methods with respect to

input size

avg run time on paupNJ paupPars paupPuzPars HC∗

30-taxon 1.2 1.9 20.4 17.1

45-taxon 2.3 9.6 110.9 92.5

65-taxon 4.0 22.8 523.7 923.4

Table 3: Comparison of average run time in seconds across methods

mony to construct its quartet set. We randomly sampled six trees from the

RDP of sizes 30 and 45. Then we took the average (CPUtime) runtime of each

of the methods. Table (3) summarizes the results and Figure(5.1) shows the

plot of the rough approximation of the average runtime across these methods

as a function of input size.

80

5.2 Effectiveness of HyperCleaning∗

To test the accuracy of HC∗, we designed an experiment using real dataset by

taking a random sample of subtrees of various sizes of the RDP database. Next

we ran our implementation of HC∗ against paupNJ, paupPars and paupPuzPars.

We also used fastDNAml implementation [37] of ML on the smaller datasets,

which became computationally intractable for larger datasets with greater than

30 leaves. Tables (4) and (5) lists the accuracy of the methods on 30-taxon and

45-taxon trees. The witness quartet set Q that HC∗ used was generated with

fastDNAml.

Tree Edges recovered : max (/ 27)

paupNJ paupPars paupPuzPars HC∗ fastDNAml

0 8 12 13 14 16

1 11 11 11 14 13

3 13 13 13 15 12

5 5 9 7 8 7

7 12 12 11 14 13

8 11 15 15 15 19

10 10 15 11 16 17

11 16 15 17 16 15

12 11 15 18 17 15

14 7 8 8 10 11

15 15 13 15 13 13

16 10 11 13 14 14

mean(%) 39.81 46.00 46.91 54.00 51.00

Table 4: Comparison of Methods across 12 Randomly Sampled 30-Taxon RDP

Trees

81

Tree Edges recovered : max (/ 42)

paupNJ paupPars paupPuzPars HC∗ (w fastDNAml)

0 11 17 10 20

1 19 20 21 26

2 20 24 22 21

3 19 21 20 23

4 13 18 17 21

5 21 19 16 19

6 12 15 17 23

7 14 21 21 20

8 20 23 21 24

9 17 19 21 22

10 18 19 19 19

11 19 24 19 24

mean(%) 40.29 49.60 44.45 54.00

Table 5: Comparison of Methods across 12 45-Taxon RDP Trees

5.3 Future Work

There are many interesting problems and extensions on HC∗ algorithm that re-

mains unanswered. First we examine some practical problems which the author

intends to follow up on, some practical but open issues, and finally we present

some open issues that are of theoretical interest.

Follow Ups - The reported results were performed on several small scale exper-

iments where the datasets are randomly sampled from real (difficult) datasets.

In would also be very useful to test HC∗ on various input parameters such as

82

various shallow and deep trees (i.e. trees with small and large sequence diver-

gence amongst their edges), or select trees that exhibit cases of long-branch

attraction amongst some subset of their leaves. Moreover we could run sim-

ulations studies, whereby we can control indirectly the quality of the inferred

quartet sets by tweaking the parameter space such as the sequence length, edge

lengths and various assumptions on the models of evolution. A comparative

analysis of the robustness of HC∗ vs. the other quartet methods (e.g. Puzzling)

across the various parameter space might be interesting.

Currently a more substantial simulation study is in progress, where ten ran-

dom topologies on taxon set of size: 30, 50, 70, and 100 are randomly sampled

from the RDP database. For each topology, we adopt the HYK model [33] of

evolution of sequences using the SeqGen [40] sequence generator along the tree

topologies using a wide spectrum of parameter values on the HYK model of

evolution as follows:

• The default transversion/translation rate of: {4 : 1}.

• A rate heterogeneity of: α = {0.5, 1.0, 2.0}.

• Leaves of sequence lengths: {500, 1000, 2000}.

• Branch length scaling factor of: {0.4, 1.0, 2.0}.

Thus in total, a set of 10*3*3*3=270 datasets are produced for each of the taxon

set sizes: 30, 50. For computational efficiency reason, we randomly picked

a subset of 54 out of the 270 datasets on taxon sets of sizes: 70, 100. On

these (simulated) true data sets, we proceed to test the effectiveness of HC∗

as an approximation method for ML, in that we use fastDNAml to infer the

quartet sets, and subsequently employ HC∗ to assemble the quartet set into

a phylogeny hypothesis. For comparison, we ran the data sets on the PAUP-

Parsimony, PAUP-NJ, and TREE-PUZZLE [51] methods. The measure of ac-

curacy is the standard Robinson-Foulds measure. Results and interpretation

will be appended as errata when made available (scheduled for early 2002).

83

Open Issues - Given the set Best(m,W) of best supported edges returned by

HC∗, it is not guaranteed that all edges are mutually compatible. We adopted

the greedy solution of iteratively adding the next compatible edge with respect

to the existing compatible set in a top down manner. In essence we have the

following optimization problem: given set Best(m,W), we wish to select the

maximal set of compatible edges, denoted CE that minimizes

∑

(X,Y)∈CE

σ(W, (X, Y))

. Note this can be thought of as the sum of L1 norms on the bipartitions. For

a variation on the above optimization problem, consult [7] where the objective

function is based on L∞ rather than L1 norms on the bipartitions.

Another open issue is the construction of weighted quartets for improving the

accuracy and/or robustness of the latter inference step. Given a set of n leaves,

clearly some subset of these quartets are more important or dependable than

others. An interesting problem is how to recognize these so called ‘good’ and

‘bad’ apples and construct the weighted quartet set to reflect this. Another in-

teresting idea is to employ ensemble learning techniques to construct a combined

classifier of multiple experts (i.e. inference methods) to improve the baseline

quality of the quartet set. To date not many work has been done in this area.

The HC∗ method effectively takes the ‘art’ out of constructing the edges from

the quartet witness set, in that it returns the set of all edges in the order of

decreasing support from the quartet set. Moreover as seen in chapter 2, the per-

formance of HC∗ rests on the degree of quality of the quartet set. The challenge

now rests on the efficient and accurate inference of the quartet set. Further

work in improving the quartet inference stage includes:

• The quartet inference stage is inherently an O(n4) complexity task given

input of size n. Often on input sizes of moderate to large size such as

n > 300, the quartet inference stage itself becomes a dominant process

over the HC∗ algorithm. As such it would be beneficial to identify from

84

the input set S, a subset S′ ⊆ of ‘bad apples’ that can be problematic

in that they induce a relatively larger proportion of the quartet errors

in the resulting quartet set. In essence we are trying to remove those

pathologically hard leaves for which to infer quartet topologies on. The

benefit of this is twofold: i) the remaining input set S/S′ is smaller and

thus more computationally efficient to infer the corresponding quartet

set, and ii) the resulting edges recovered by HC∗ should be more accurate.

However the tradeoff is that the resulting tree will cannot be fully resolved

with respect to the original input set S, and thus we must perform post

processing of those ‘bad apple’ leaves to elucidate their position in the

resulting unresolved phylogeny.

• In an attempt to improve the quality of the inferred quartet set, an ensem-

ble learning approach may be adopted. As such we construct an ensemble

E = {E1, .., Ek} of a mixture of individual experts (i.e. phylogenetic in-

ference methods) and combine their collective evidence in an attempt to

‘boost’ the accuracy of the quartet set. Many strategies for combining

expert evidence may be tried such as weighted voting [11], linear combi-

nation of experts using Kernel based methods such as Maximum Margins

[22], [47], or Support Vector Machines [10].

Theoretical Issues - HC∗ lacks theoretical analysis both in terms of runtime

and memory requirements. In the worst case, we proposed a worst case memory

bound of 3k(
(
n
4

)
) on input size n (see appendix) and small constant k. However

the author believe that this bound is very loose and in reality that HC∗ should

take no more than 2k(
(
n
4

)
) memory under amortized analysis. The average

runtime complexity is non-trivial to analyze since the average case depends

on several factors, such as the average size of the clusters, average number of

clusters in an unresolved tree, and the quality of the quartet set.

85

References

[1] Badger, J., Hu, M., and Kearney, P. Identifying bad apples in infer-

ring phylogenetic trees. Manuscript (2002).

[2] Badger, J., and Kearney, P. Picking fruit from the tree of life: Com-

ments on taxanomic sampling and the quartet method. In Proceedings

of the 16th ACM Symposium on Applied Computing (2001), ACM Press,

pp. 61–67.

[3] Berry, V. e. a. A practical algorithm for recovering the best supported

edges of an evolutionary tree. In Proceedings of the 11th ACM-SIAM Sym-

posium on Discrete Algorithms (2000), ACM Press, pp. 287–296.

[4] Blanchette, M. Gene order breakpoint evidence in animal mitochondrial

phylogeny. Journal of Molecular Evolution 49 (1999), 191–203.

[5] Blanchette, M. Algorithms for phylogenetic footprinting. In Proceedings

of the 5th Conference on Research in Computational Molecular Biology

(2001), ACM Press, pp. 49–58.

[6] Bruno, W., Socci, N., and Halpern, A. Weighted neighbour joining:

A likelihood-based approach to distance based phylogeny reconstruction.

Molecular Evolution Biology 17 (2000), 189–197.

[7] Bryant, D. Structures in biological classifications. PhD Thesis, Depart-

ment of Mathematics, University of Canterbury (1997).

[8] Buneman, P. The Recovery of trees from measures of dissimilarity. Ed-

inburgh University Press, 1971.

[9] Chen, K., Durand, D., and Colton, M. Notung: Dating gene dupli-

cations using gene family trees. In Proceedings of the 4th Conference on

Computational Molecular Biology (2000), ACM Press, pp. 96–106.

[10] Cortes, C., and Vapnik, V. Support-vector networks. Machine Learning

20 (1995), 273.

[11] Duda, R., and Hart, P. Pattern Classification. Wiley and Sons, 2001.

86

[12] During, R., Eddy, S., Krogh, A., and Mitchison, G. Biological Se-

quence Analysis: Probabilistic Models for Protein and Nucleic Acids. Cam-

bridge University Press, 1998.

[13] Eisen, J. Phylogenomics: improving functional predictions for uncharac-

terized genes by evolutionary analysis. Genome Research 8 (1998), 163–

167.

[14] El-Mabrouk, N., Bryant, D., and Sankoff, D. Reconstructing the

pre-doubling genome. In Proceedings of the 3rd Conference on Computa-

tional Molecular Biology (1999), ACM Press, pp. 154–163.

[15] Erdos, P., Rice, K., Steel, M., Szekely, L., and Warnow, T. The

short quartet method. International Congress on Automata, Languages

and Programming (1997).

[16] Farris, J. Method for computing wagner trees. Systematic Zoology 34

(1970), 21–34.

[17] Felsenstein, J. Evolutionary trees from DNA sequences: A maximum

likelihood approach. Journal of Molecular Evolution 17 (1981), 368–376.

[18] Fitch, W. Toward defining the course of evolution: Minimum change for

a specific tree topology. Systematic Zoology 20 (1971), 406–416.

[19] Frey, B. Graphical Models for Machine Learning and Digital Communi-

cations. MIT press, 1998.

[20] Friedman, N., Ninio, M., and Pe’er, I. A structural EM algorithm for

phylogenetic inference. In Proceedings of the 5th Conference on Computa-

tional Molecular Biology (2001), ACM Press, pp. 132–140.

[21] Graybeal, A. Is it better to add taxa or characters to a difficult phylo-

genetic problem? Systematic Botany 47 (1998), 9–17.

[22] Grove, A., and Schuurmans, D. Boosting in the limit: Maximizing

the margin of learned ensembles. In Proceedings of the 15-th National

Conference on Artificial Intelligence (1998), vol. 15, AAAI.

87

[23] Hallett, M., and Lagergren, J. Efficient algorithms for lateral gene

transfer problems. In Proceedings of the 5th Conference on Computational

Molecular Biology (2001), ACM Press, pp. 149–156.

[24] Hendy, M., and Penny, D. A framework for the quantitative study of

evolutionary trees. Systematic Zoology 38 (1989), 297–309.

[25] Hillis, D. Approaches for assessing phylogenetic accuracy. Systematic

Biology 44 (1995), 3–16.

[26] Hillis, D., and Huelsenbeck, J. Hobgoblin of phylogenetics. Nature

369 (1994), 363–364.

[27] Jiang, T., Kearney, P., and Li, M. Orchestrating quartets: approxi-

mation and data correction. In Proceedings of the 39th IEEE Symposium

on Foundations of Computer Science (1998), 416–425.

[28] Jukes, C., and Cantor, C. Evolution of Protein Molecules in Mam-

malian Protein Metabolism. Academic Press, 1969.

[29] Kearney, P. The ordinal quartet method. Proceedings of the 2nd Annual

International Conference on Computational Molecular Biology (1998), 125–

134.

[30] Kearney, P. Phylogenetics and the Quartet Method. Current Topics in

Computational Biology. Springer-Verlag and Tsinghua University Press,

2000.

[31] Kim, J. Large scale phylogenetics and measuring the performance of phy-

logenetic estimators. Systematic Biology 47 (1998).

[32] Kimura, M. A simple method for estimating evolutionary rates of base

substitutions through comparative studies in nucleotide sequences. Journal

of Molecular Biology 16 (1980), 111–120.

[33] Li, M., Badger, J., Xin, C., Kwong, S., Kearney, P., and Zhang,

H. An information based sequence distance and its applications to whole

genome mitochondrial phylogeny. Bioinformatics (2001).

88

[34] Li, W. Molecular Evolution. Sinauer Associates Inc., Sunderland, MA,

US, 1997.

[35] Maidak, B., Cole, J., Lilburn, T., Parker, C., Saxman, P., Farris,

R., Garrity, G., Olsen, G., Schmidt, T., and Tiedje, J. The RDP-II

(Ribosomal Database Project). Nucleic Acids Research 29 (2001), 171–173.

[36] Nei, M., and Kumar, S. Molecular Evolution and Phylogenetics. Oxford

University Press, 2000.

[37] Olsen, G., Matsuda, H., Hagstrom, R., and Overbeek, R. Fastd-

naml: a tool for construction of phylogenetic trees of dna sequences using

maximum likelihood. Current Applications in Biosciences 10 (1994), 41–

48.

[38] Patterson, D. Tree of Life. http://ag.arizona.edu/tree/eukaryotes/eukaryotes.html,

2000.

[39] Pellegrini, M., Marcotte, E., Thompson, M., Eisenberg, D., and

Yeates, T. Assigning protein functions by comparative genome analysis:

protein phylogenetic profiles. Proceedings of Natural Academy of Science,

USA 96 (1999), 4285–4288.

[40] Rambaut, A., and Grassly, N. Seq-gen: An application for the monte

carlo simulation of dna sequence evolution along phylogenetic trees. Com-

put. Appl. Biosci. 13 (1997).

[41] Ranwez, V., and Gascuel, O. Quartet based phylogenetic inference:

Improvements and limits. Mol. Biol. Evol. (2001), 1103–1116.

[42] Rehmsmeier, M., and Vingron, M. Phylogeny meets sequence search.

Proceedings of the 14th German Conference on Bioinformatics (1999), 66–

72.

[43] Robinson, D., and Foulds, L. Comparison of phylogenetic trees. Math-

ematical Biosciences 53 (1981), 131–147.

89

[44] Rohlf, F. Consensus indices for comparing classifications. Mathematical

Biosciences 59 (1981), 131–144.

[45] Saitou, N., and Rei, M. The neighour joining method: A new method

for reconstructing phylogenetic trees. Mol. Bio. Evol. 4 (1987), 406–425.

[46] Sankoff, D. Time Warps, String Edits, and Macromolecules. CSLI Pub-

lications, 1982.

[47] Schapire, R., Freund, Y., Bartlett, P., and Lee, W. Boosting

the margin: A new explanation for the effectiveness of voting methods.

Machine Learning 14 (1997).

[48] Stanhope, M., Lupas, A., Italia, M., Koretke, K., Volker, C.,

and Brown, J. Phylogenetic analysis do not support horizontal gene

transfers from bacteria to vertebrates. Nature 411 (2001), 940–944.

[49] Steel, M. The complexity of reconstructing trees from qualitative char-

acters and subtrees. Journal of Classification 9 (1992), 91–116.

[50] Steel, M., and Penny, D. Parsimony, likelihood, and the role of models

in molecular phylogenetics. Mol. Biol. Evol. 17 (2000), 839–850.

[51] Strimmer, K., and Haeseler, A. Quartet puzzling: a quartet maximum

likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13

(1996), 964–969.

[52] Swofford, D. PAUP Version 4.0. Sinauer Associates, Sunderland, MA,

http://www.lms.si.edu/PAUP/.

[53] Swofford, D., Olsen, G., Waddell, P., and Hillis, D. Molecular

Systematics, 2 ed. Sinauer Associates, MA, 1996.

[54] Waterman, S., Smith, T., Singh, M., and Beyer, W. Additive evo-

lutionary trees. Journal of Theoretical Biology 64 (1977), 199–213.

90

A Implementation Issues

In the next few pages, we examine some data structure and implementation

related issues one should consider in implementing HyperCleaning∗. The fol-

lowing serves as a roadmap and is neither a formal specification or a claim to

the most efficient way of doing things.

A.1 Implementations of Best(Wk,m), and Bestxy(Wk,m)

Given our input set S on n leaves, consider the construction of the sets Bestxy(m,WK)

for all x, y ∈ 1, .., n and Best(Wk,m) for k = 1, .., n. For a given value of

k, observe that we only require the sets BestxyWk−1,m, ∀x, y ∈ 1, .., n, and

Best(Wk−1,m). i.e. we only need the information from the previous k value.

We can implement this using a slice approach where during each iteration on k,

we keep only the necessary information on the previous slice. Figure (21) is a dia-

grammatic illustration of the requirements for constructing the set Best(Wk,m).

The diagram also shows the structure of the sets Bestxy(Wk,m), Best(Wk,m).

We examine several structure related issues:

1. For a set Bestxy(Wk, m), k = 1, .., n, note that Bestx=i,y=j(Wk, m) is

equivalent to the set Bestx=j,y=i since both represent the set of edges

involving quartets on labels i, j, 1, 2, .., k where two of vertices on each

quartet are i, j. Thus in its implementation, we only need to construct

and keep one copy which can be done using a lexicographical ordering

2 ≤ x ≤ n, 1 ≤ y < x

. This is reflected in figure (21).

2. As shown in figure (21), each cell in the table representation of Bestxy(m, Wk)

and Best(m,Wk) corresponds to a set of edges. Since the most frequent

91

operation on the sets Bestxy(m,Wk) and Best(m,Wk) is membership

testing, it seems reasonable that we should implement a split set using

a hashtable. One concern about hashing an edge/biparition is the eval-

uation of its hash function value. Note that two edges can be the same,

but have different left/right partite ordering and ordering of labels within

a paritite. For example the following two edges e1, e2 are the same:

e1 = ({1, 2, 3}, {4, 5, 6, 7}) e2 = ({5, 4, 7, 6}, {1, 3, 2})

Thus we must adopt a hash function that accounts for this situation. To

get around the ambiguity of the left and right partite, we maintain the

invariant that the left partite of an edge is the larger of the two. This

invariant is checked and updated if necessary after any operation that

changes the sizes of the partites of an edge. The exception is when both

partites have the same cardinality, which must be dealt with separately.

Since two given partites can have the same elements but in an different

order, we must examine all the elements when evaluating the hash function

value on a split. In our implementation, we used two bitvectors VL, VR , for

the left and right partitie respectively. For every element i in the partite

X, we would set the ith bit in vector VX . To compute the hash value,

we chopped both bitvectors into segments of length sizeof(int), padding

it with zeros if necessary. Then we took the XOR of the segments of VL

followed by summing the result with each and every segment of VR. The

above scheme of representing a split and evaluating its hash value seems

to to work well in terms of minimizing the number of collisions between

different splits.

A.2 Collapsing and Shifting Indices

To facilitate the collapsing algorithm, we introduce a Collapser class, that should

be responsible for the following:

92

xy xy

xy

 x=i, y=j

y
x

. . .

. . .

. . .

Best (W , m)

. . .

Best (W , m)k−1

k−1Best (W , m) kBest (W , m)

k−1Split table for entry Best (W , m)

k

y
x

Figure 21: Constructing the set Best(W,k) for some current value of k requires

only information from the previous slice k − 1. i.e. the sets: Bestxy(W,k −
1), ∀x, y ∈ 1, ..n, and Best(W,k − 1).

93

label

v_i 1 2

2 5
. . .

11 3 1 2 75 10

1 2 3 4 5 6 n_i
pos.v_i−1

v_i . . .

. . .
pos.v_i−1

v_i 1 2

Collapser _i

parent Collapser
tree_i−1

W_i

Vertex_set

Tree_i

. . .

Vertex

label
type
degree

v_nv2v1

prev_leaves_Index

prev_superNode_Index

Intern_node

Cluster

. . .
c_1 c_2 . . .

Clusters

Vertices[]

neighbors[]
vertices[]

leaves[]

supernodes[]

Figure 22: The Collapser class diagram, with its major attributes.

1. Given a cluster tree T i−1, induce the individual clusters and evaluate a

valid collapse ordering

2. The collapse of the tree into a star topology based on some ordering

3. Updating the quartet set W i−1 into the appropriate new set W i

We can then run Hypercleaning on the labels of the start topology using quartet

set W i.

Figure (22) is a class diagram of Collapser, its major attributes, and their struc-

tures. The following lists the major attributes:

• parent-Collapser: references the Collapser object from the previous round

of collapsing

• treei−1: references the cluster tree object that will be collapsed by the

current Collapser. A tree object has two major attributes: 1)V ertex-

Set[]: a vector of Vertices (both internal and leaf nodes) of the tree, and

94

2)Clusters[]: a vector 8 A valid collapse ordering generated by the Col-

lapser object uses the information from its treei−1 → Clusters[] field.

• leaves[]: a vector of leaves remaining after the corresponding cluster tree

(treei−1) have been collapsed. This field is set to NULL prior to the

collapse of the cluster tree.

• supernodes[]: a vector of supernodes remaining after the collapse of the

cluster tree. This field is set to NULL prior to the cluster tree’s collapse.

Each supernode object in this vector MUST have a record of its size (i.e.

number of leaf nodes collapsed into it thus far).

• vertices[]: a vector of the label of all the vertices after the collapse of

the cluster tree. This vector can be simply a concatenation of the labels

of the nodes from the leaves[] and supernodes[] vectors. This vector

makes it convenient when we construct the updated quartet set W i to

lexicographically generate all
(
n
4

)
quartets by nested loops along the nodes

of this vector.

• The vectors prev superNode index[], prev leaves Index[], provides a map-

ping on the vertices (both leaves and supernodes) between the current and

previous round of collapsing. This mapping scheme of keeping track of

the index of the leaf/supernode labels from one round of collapsing to the

next is necessary since for a particular round, those leaves and/or supern-

odes in a cluster to be collapsed can be located anywhere in the leaves[],

supernodes[] and vertices[] vectors. Consequently in the updated vec-

tors, the indices in these vectors are now shifted, and a correspondence

between the before/after collapsing must be established. Thus this →
prev leaves Index[i] = k says that the leaf label in this → leaves[i] on

the current round (i.e. after the collapsing) can be found in the kth entry

of this → parentCollapser → leaves[]. Or that the leaf label has its cor-

responding entry in index k in the previous round. Figure(23) illustrates

8We use terms like vectors, tables, structures, classes, and use of class diagrams only

for descriptive purposes and do not adopt any assumptions about their implementation or

structural properties, unless explicitly stated.

95

2

3

5

7

8

1 2 3 4 5 6 7

3 2 6 4 1 5 7

prev_SuperNode_
Index

2

4

16

3

5

7

Collapser_i−1

vertices index

label

superNodes
 { }

Collapser_i

label

index

vertices

prev_leaves_index

1 2 3 4

3 2 5 7

superNodes

index

index

label (8)

1

index 1

n/a

1 2 3 4 5

1 2 6 7 −

Figure 23: Reordering of vertex indices after one round of collapse.

such a case.

A.3 Maintaining collapse history to perform Exp()

Consider the resulting set Best(m, Wm) as a result of m rounds of collapsing.

Thus we have in total m collapser objects, each keeping a legacy of the neces-

sary data attributes from the previous rounds of collapse. In order to perform

the Exp() operation on the edges e ∈ Best(m, Wm), it is necessary for us to

maintain all m collapser objects in memory, although it is not necessary to keep

all of their attributes. For example, when going from i to i+1 collapsing where

i + 1 ≤ m, we require only the quartet set W i for constructing the next quartet

set W i+1. Thus at any given time, we only need to keep the current collapser

and its parent collapser object’s weighted quartet sets. However we must keep

96

all the other attributes such as the treei, and the indices mapping the current

and previous vertex indices since these information are required to perform the

Exp() operation on all the edges returned by Best(m,Wm). Thus in the worst

case, we need 3Mem(W) amount of memory, where Mem(W) is the amount of

memory required to store the initial quartet set W on
(
n
4

)
quartets, since during

collapsing, we only need enough memory to store two other weighted quartet

sets with equal or less number of quartets. Since the memory requirement for

storing these quartets are of much higher order than the memory to store the

other attributes of the collapser objects or to store the edges in the Best(m,W i
k)

and Bestxy(m, W i
k) sets, then a rough estimate of the memory required to run

HC∗ on set S of n elements is in the worst case O(3
(
n
4

)
). Given that a quartet

can be represented by four shorts (for the four labels) and three floats (for the

scores of the three topologies) say taking 20 bytes in total, then the memory

requirements is approximately in the worst case O(60
(
n
4

)
) bytes.

97

