
New Convex Relaxations for the Maximum Cut
and VLSI Layout Problems

by

Miguel Nuno Ferreira Fialho dos Anjos

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2001

c© Miguel Nuno Ferreira Fialho dos Anjos 2001

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

It is well known that many of the optimization problems which arise in applica-

tions are “hard”, which usually means that they are NP-hard. Hence much research

has been devoted to finding “good” relaxations for these hard problems. Usually a

“good” relaxation is one which can be solved (either exactly or within a prescribed

numerical tolerance) in polynomial-time. Nesterov and Nemirovskii showed that

by this criterion, many convex optimization problems are good relaxations. This

thesis presents new convex relaxations for two such hard problems, namely the

Maximum-Cut (Max-Cut) problem and the VLSI (Very Large Scale Integration of

electronic circuits) layout problem.

We derive and study the properties of two new strengthened semidefinite pro-

gramming relaxations for the Max-Cut problem. Our theoretical results hold for

every instance of Max-Cut; in particular, we make no assumptions about the edge

weights. The first relaxation provides a strengthening of the well-known Goemans-

Williamson relaxation, and the second relaxation is a further tightening of the first.

We prove that the tighter relaxation automatically enforces the well-known triangle

inequalities, and in fact is stronger than the simple addition of these inequalities to

the Goemans-Williamson relaxation. We further prove that the tighter relaxation

fully characterizes some low dimensional faces of the cut polytope via the rank of

its feasible matrices. We also address some practical issues arising in the solution

of these relaxations and present numerical results showing the remarkably good

bounds computed by the tighter relaxation.

For the VLSI layout problem, we derive a new relaxation by extending the “tar-

iii

get distance” concept recently introduced by Etawil and Vannelli. The resulting AR

(Attractor-Repeller) model improves on the NLT (Non-linear optimization Layout

Technique) method of van Camp et al. by efficiently finding a good initial point for

the NLT solver. Because the AR model is not a convex optimization problem, we

isolate the source of the non-convexity and thereby derive a convex version of the

model. This derivation leads to the definition of certain generalized target distances

with an interesting practical interpretation. Finally, we present numerical results

that demonstrate the potential of the AR model.

iv

Acknowledgements

There is one elementary truth the ignorance of which kills countless

ideas and splendid plans: that the moment one definitely commits

oneself, then Providence moves too. All sorts of things occur to help

one that would never otherwise have occurred. A whole stream of events

issues from the decision, raising in one’s favour all manner of unfore-

seen incidents and meetings and material assistance which no man could

have dreamed would have come his way. Whatever you can do or dream

you can, begin it. Boldness has genius, power and magic in it.

Begin it now.

– Johann Wolfgang von Goethe

The stream of events that led to this thesis started ten years ago, in May 1991,

when Henry Wolkowicz agreed to take me on as an NSERC Summer Undergraduate

Research Assistant. In the course of my Assistantship, I was truly impressed by

his boundless enthusiasm, his supervisory availability, and his everflowing stream

of ideas. After seven years of studying and working elsewhere, it was a privilege

to return to Waterloo and complete my Ph.D. under his supervision. Thank you,

Henry, for the confidence you had in me.

During my work on this thesis, several other researchers showed a keen interest

in my work and encouraged me with their helpful questions and suggestions. I

wish to thank Anthony Vannelli for introducing me to the VLSI layout problem

and for our many inspiring discussions on the subject. I thank Michael Jünger

and Frauke Liers for acquainting me with the application of Maximum-Cut to spin

glasses and for providing me with the torusgen code for generating instances of such

structures. I also thank Jim Geelen, Michel Goemans, Christoph Helmberg, Jean

v

Lasserre, Franz Rendl and Levent Tunçel for their insightful remarks on various

parts of this thesis.

The financial assistance of the Fonds pour la Formation de Chercheurs et l’Aide

à la Recherche (Fonds FCAR) of Québec, through a three-year Doctoral Research

Scholarship, was greatly appreciated. The additional support provided by the De-

partment of Combinatorics & Optimization through a University of Waterloo Grad-

uate Scholarship and a William Tutte Postgraduate Scholarship for 2000 was also

very appreciated.

Finally, it was also during my 1991 sojourn in Waterloo that I met a wonderful

person who is God’s greatest blessing to me. Julie, you know that this thesis would

not have been completed without your unfailing love, patience, and support.

Delight yourself in the Lord

And he will give you the desires of your heart.

Commit your way to the Lord;

Trust in him and he will do this.

– Psalm 37:4-5

vi

Contents

1 Introduction 1

1.1 The Max-Cut Problem and Quadratic Boolean Optimization 2

1.2 Convex Relaxations of the Max-Cut Problem 3

1.3 Symmetric Matrices and Semidefinite Programming 5

1.3.1 Linear Operators on Symmetric Matrices 6

1.3.2 Positive Semidefinite Matrices 7

1.3.3 Semidefinite Programming 10

1.4 The VLSI Layout or Floorplanning Problem 11

1.5 Structure of this Thesis . 12

2 Formulations of Max-Cut and New Semidefinite Relaxations 14

2.1 Formulations of the Max-Cut Problem 14

2.2 Well-Known Relaxations of Max-Cut 20

2.3 SDP Relaxations via Lagrangian Relaxation 23

2.3.1 First Lifting via Lagrangian Relaxation 24

2.4 First Strengthened SDP Relaxation 25

2.4.1 Second Lifting via Lagrangian Relaxation 25

vii

2.4.2 Direct Second Lifting . 33

2.4.3 Properties of the First Strengthened Relaxation 35

2.5 Second Strengthened SDP Relaxation 38

2.5.1 Definition and Some Properties of the Set Fn 41

2.5.2 Testing for Membership in Fn 46

2.5.3 Examples Proving Strict Inclusions 50

3 Projection onto the Minimal Face and Computational Results 53

3.1 The Barycenter and a Projection onto the Minimal Face 54

3.2 Comparison of the Relaxations for Selected Graphs 64

3.3 Application of SDP3 to Spin Glass Problems 70

3.3.1 The Ising Model . 71

3.3.2 Max-Cut Formulation . 72

3.3.3 Further Modelling Issues . 73

3.3.4 Computational Study of the Semidefinite Relaxations SDP1

and SDP3 for Ising Spin Glass Problems 75

3.3.5 Summary of Empirical Observations 88

4 Rank Characterization of the Faces of C3 90

4.1 Ranks of Matrices in Low Dimensional Faces of Cn 91

4.2 Ranks of Matrices in En . 93

4.3 Ranks of Matrices in C3 . 94

4.4 Rank Connections Between F3 and C3 99

5 Ranks and Low Dimensional Faces of the Cut Polytope 117

viii

5.1 Rank Characterization of Vertices 119

5.2 Rank Characterization of One-Dimensional Faces 121

5.2.1 Implications of Rank-Two for X ∈ Fn 121

5.2.2 Algorithm for Constructing the Vertex Cuts 125

5.2.3 Uniqueness of Y and Rank Characterization 137

5.3 Counter-Example for the Rank-Three Case 141

6 Derivation of the AR Model for VLSI Layout 143

6.1 Previous Related Methods . 144

6.1.1 The DISCON Method . 144

6.1.2 The NLT Method . 145

6.2 Derivation of the AR Model . 147

6.2.1 The Stage-2 Model of the NLT Method 147

6.2.2 Target Distance Concept . 149

6.2.3 Enforcing the Target Distances 151

6.2.4 Additional Design Features of the AR Model 152

6.2.5 The AR Model . 153

6.3 Convex Version of the AR Model 154

6.3.1 Generalized Target Distances 160

7 Numerical Experiments with the AR model 162

7.1 Solution Methodology . 162

7.2 Numerical Results . 165

7.2.1 Macro-Cell Placement Example 166

7.2.2 Medium-Sized Macro-Cell Placement Example 173

ix

7.2.3 Alternative Medium-Sized Macro-Cell Example 176

7.2.4 Facility Layout Example . 179

8 Conclusions and Directions for Future Research 183

8.1 New Semidefinite Relaxations for the Max-Cut Problem 184

8.2 New AR Model for VLSI Layout . 186

A Matrices B̄ and Λ̄ for Example 2.5.8 188

B Weighted Adjacency Matrix for Problem with n = 12 in Table 3.1 195

Bibliography 196

x

List of Tables

3.1 Computational comparison of all Max-Cut relaxations for selected

test problems . 65

3.2 Computational comparison of SDP1, SDP2P, and SDP3P on ran-

domly generated graphs with non-negative edge weights 69

3.3 Problem descriptions and time to compute the SDP bounds 77

3.4 Computed SDP bounds and their optimality 78

3.5 SDP bounds for 15 two-dimensional instances with ±1 pairwise in-
teractions, 5 rows, 4 columns, and 50% negative interactions 80

3.6 SDP bounds for 15 two-dimensional instances with Gaussian pairwise

interactions, 5 rows, 4 columns . 81

3.7 Results for 30 two-dimensional instances with ±1 pairwise interac-
tions, 4 rows, 6 columns; instances B01 to B15 have 60% negative

interactions, and instances B16-B30 have 40% negative interactions 83

3.8 Results for 30 three-dimensional instances with Gaussian pairwise

interactions, 3 rows, 3 columns, 3 layers 84

xi

3.9 Computational comparison of the bounds SDP1 and SDP3 on toroidal

graphs for larger values of n (all times are as reported by SBmethod);

the exact Max-Cut values were computed by Liers [70] 87

7.1 Comparison of iteration counts between NLT and AR 182

xii

List of Figures

2.1 A chordless cycle of length 4 in the graph GY of Y 47

2.2 A chordless cycle of length c in the graph GY of Y 48

3.1 Antiweb AW2
9 . 67

6.1 Motivation of the concept of target distances 151

6.2 Graph of the convex function fij for several values of cij and tij . . 159

7.1 Effect of scaling on the function f(z) = 1
z
− 1, z > 0 163

7.2 Optimal layout for the first macro-cell example 166

7.3 Starting configuration for the first macro-cell example 167

xiii

Chapter 1

Introduction

It is well known that many of the optimization problems which arise in applications

are “hard”, which usually means that they are NP-hard. Hence much research has

been devoted to finding “good” relaxations for these hard problems. Usually a

“good” relaxation is one which can be solved (either exactly or within a prescribed

numerical tolerance) in polynomial-time. Nesterov and Nemirovskii [77] showed

that by this criterion, many convex optimization problems are good relaxations.

This thesis introduces two new approaches for constructing convex relaxations

for hard optimization problems:

1. The construction of tighter semidefinite programming (SDP) relaxations for

the Maximum-Cut (Max-Cut) problem, and hence for the general quadratic

boolean optimization problem (QBP), via the use of new formulations and a

second lifting procedure;

2. A generalization of the attractor-repeller paradigm to placement and layout

1

CHAPTER 1. INTRODUCTION 2

problems, such as the VLSI (Very Large Scale Integration of electronic cir-

cuits) layout problem.

We provide theoretical and computational evidence showing that these approaches

improve on previous methods in the literature.

In this chapter we briefly introduce these two problems as well as some defini-

tions, notation, and well-known results relevant to the material in this thesis. We

then conclude with an outline of the structure of the thesis.

1.1 The Max-Cut Problem and Quadratic Boolean

Optimization

The Max-Cut Problem (MC) is a discrete optimization problem on undirected

graphs with weighted edges. Given such a graph, the problem consists in finding

a partition of the set of nodes into two parts so as to maximize the sum of the

weights on the edges that are cut by the partition (we say that an edge is cut

if it has exactly one end on each side of the partition). In this thesis we will

assume that the graph in question is complete (if not, edges of zero weight can

be added to complete the graph without changing the problem). Furthermore, we

place no restrictions on the edge weights (so, in particular, negative edge weights

are permitted). We will show in Chapter 2 that this problem is equivalent to

the seemingly more general Quadratic Boolean Problem (QBP), which consists

of finding the global maximum (or minimum) of a quadratic function subject to

boolean constraints on the variables. Quadratic boolean optimization problems

CHAPTER 1. INTRODUCTION 3

are of interest for applications in circuit layout design and statistical physics (see

Barahona et al. [12], Lengauer [68] for example). An application of Max-Cut to

the study of spin glasses is presented in Section 3.3.

As a result of the celebrated work of Goemans and Williamson [41], the Max-Cut

problem has become the flagship problem for studying applications of semidefinite

programming to combinatorial optimization [40, 85, 38, 39, 50, 44, 49, 14, 22, 47,

etc.]. Furthermore, the Max-Cut problem is closely related to the so-called cut

polytope, an important and well-known structure in the area of integer program-

ming. The book by Deza and Laurent [30] presents a wealth of theoretical results

about the cut polytope, and some connections to general integer programming are

elaborated in Helmberg et al. [48].

It is well known that Max-Cut is an NP-hard problem (see Karp [58]) and

that it remains NP-hard for some restricted versions, see Garey and Johnson [37]

for example. As we have already mentioned, much research has focused on find-

ing relaxations of the Max-Cut problem. The next section presents several such

relaxations.

1.2 Convex Relaxations of the Max-Cut Problem

We will derive new convex relaxations for the Max-Cut problem using semidefinite

programming (SDP). Several polyhedral and semidefinite relaxations for Max-Cut

have been studied in the literature [8, 9, 10, 19, 18, 20, 43, 89, 90, 64, 65, 62, 66,

67, 83, 28, 82, 81, 59, 71, 86, 87, etc.]. A copositive relaxation for general quadratic

programming, which includes the QBP, was proposed in Quist et al. [84]. However,

CHAPTER 1. INTRODUCTION 4

it is NP-hard in general to optimize a linear function over this relaxation.

We are particularly interested in relaxations obtained via procedures that in-

volve some form of lifting and projecting of variables between spaces of varying

dimensions. Lift-and-project procedures that find polyhedral relaxations for {0, 1}
programs have been studied by several authors, e.g. Balas et al. [9, 10, 8], Sherali

and Adams [86, 87], and Lovász and Schrijver [71], whose procedure was generalized

by Kojima and Tunçel [59].

Lovász and Schrijver [71] define a procedure, denoted N+, that can be iterated

to obtain tighter and tighter semidefinite relaxations of the convex hull of feasible

integer points for {0, 1} programs. A key result is that iterating the N+ procedure d

times, where d is the number of integer variables in the problem, yields exactly the

convex hull of all the integer points. For Max-Cut, d equals the number of edges with

non-zero weight and this convex hull is the aforementioned cut polytope. Recently,

Laurent [62] studied the relaxation N+(Mn), whereMn denotes the metric polytope

formally defined in Section 2.2, and its relationship to the SDP relaxations which

we derive in Chapter 2.

Another way to obtain SDP relaxations is via the application of the theory of

moments and its dual theory, the representation of strictly positive polynomials over

compact sets. The recent work of Lasserre [61] introduces a family of semidefinite

programming relaxations corresponding to liftings of polynomial boolean problems

into higher and higher dimensions. Lasserre presents necessary and sufficient con-

ditions under which the optimal value of Max-Cut is attained after a finite number

of such liftings. A related SDP relaxation for Max-Cut which is also in a higher

CHAPTER 1. INTRODUCTION 5

dimension was recently proposed by Parrilo [80].

Yet another way to derive these relaxations is through Lagrangian duality (see

Poljak et al. [83], Lemaréchal and Oustry [67] for example). In this approach one

takes a formulation of Max-Cut and forms its Lagrangian dual. The dual of the

dual yields an SDP relaxation, denoted by SDP1 in this thesis. It is equivalent

to the Shor relaxation [88] and the S-procedure of Yakubovitch [95, 96]. One

advantage of this approach over the two previously mentioned is that it is possible to

choose the (possibly redundant) constraints that are included in the primal problem

formulation. This choice determines the structure and properties of the resulting

SDP relaxation. This is the approach we will use to derive new strengthened SDP

relaxations in Chapter 2.

1.3 Symmetric Matrices and Semidefinite Pro-

gramming

The SDP relaxations are defined over the space Sn of n×n real symmetric matrices.
This space has dimension t(n) := n(n+1)/2 and inner product 〈A,B〉 = traceAB.
We let e denote the vector of ones (all vectors will be column vectors) and E = e eT

denote the matrix of all ones; their dimensions will be clear from the context.

We also let ei ∈
m denote the ith unit vector in
m and define the elementary

matrices

Eij :=
1

2
(ei e

T
j + ej e

T
i).

For any vector v ∈
m, we let ‖v‖ :=
√
vTv denote the �2 norm of v. We let A ◦B

CHAPTER 1. INTRODUCTION 6

denote the Hadamard (elementwise) matrix product.

We will consider matrices in the space St(n)+1. If Y ∈ St(n)+1, we index the

rows and columns of Y by 0, 1, . . . , t(n). We will be particularly interested in the

vector x obtained from the first (0th) row (or column) of Y with the first element

dropped. Thus, in our notation, x = Y1:t(n),0.

1.3.1 Linear Operators on Symmetric Matrices

We will sometimes make use of operator notation and operator adjoints. The adjoint

of a linear operator A : X → Y is denoted A ∗ and satisfies (by definition)

〈A x, y〉 = 〈x,A ∗y〉 ∀x ∈ X,∀y ∈ Y.

Given a matrix S ∈ Sn , we now define several useful operators. The operator

diag (S) returns a vector containing the entries on the diagonal of S. Given v ∈
n,

the operator Diag (v) returns an n × n diagonal matrix with the vector v on the
diagonal. It is straightforward to check that Diag is the adjoint operator of diag .

The operator vec applied to an n × n matrix forms a vector of length n2 by

stacking the columns of the matrix argument. The operator Mat is the inverse

of vec . Other operators that will be used in this thesis are the symmetric vec-

torizing operator svec and its inverse operator sMat . The operator svec satisfies

s = svec (S) ∈
t(n) where s is formed column-wise from S and the strictly lower

triangular part of S is ignored. Its inverse is the operator sMat, so

S = sMat (s)⇔ s = svec (S).

CHAPTER 1. INTRODUCTION 7

Note that the adjoint of sMat is not svec, but rather the operator dsvec which acts

like svec except that the off-diagonal elements are multiplied by 2. We will also

make use of the compound operators

vsMat (x) := vec (sMat (x)) and sdiag (x) := diag (sMat (x)).

Their adjoints are

vsMat ∗(x) = dsvec
[
1

2

(
Mat (x) + Mat (x)T

)]
.

and

sdiag ∗(x) = dsvecDiag (x).

1.3.2 Positive Semidefinite Matrices

An n× n real symmetric matrix A is said to be positive semidefinite if

xT Ax ≥ 0 for all x ∈
n. (1.1)

We denote positive semidefiniteness of A by A � 0. If inequality (1.1) holds strictly
for all non-zero x ∈
n, the matrix A is said to be positive definite. Equivalently,

A is positive semidefinite if all its eigenvalues are non-negative, and it is positive

definite if all its eigenvalues are positive. The set of positive semidefinite matrices

in Sn form a cone, denoted by Pn. We will omit the subscript when the dimension
of the underlying space is clear from context.

CHAPTER 1. INTRODUCTION 8

We will also state and prove results involving ranks of matrices. The following

facts about rank will be useful (see for example Horn and Johnson [51]):

The following statements about a given m× n matrix A are all equivalent:

1. rankA = k;

2. There exist k, and no more than k, rows of A that constitute a linearly

independent set;

3. There exist k, and no more than k, columns of A that constitute a linearly

independent set;

4. There is a k× k submatrix of A with non-zero determinant, but all (k+1)×
(k + 1) submatrices of A have determinant 0;

5. The dimension of the range of A is k.

Furthermore, the following hold:

1. If rows and/or columns are deleted from A, then the rank of the resulting

submatrix cannot be greater than the rank of A;

2. rank (AB) ≤ min{rank (A), rank (B)} whenever the product AB is defined;

3. rank (A+B) ≤ rank (A) + rank (B) whenever the sum A+B is defined.

We will regularly use the principal submatrices of a given positive semidef-

inite matrix. These are defined as follows: Given A ∈ Sn , for every subset
{i1, . . . , ik} ⊆ {1, . . . , n}, the principal submatrix of A corresponding to this sub-

set is the k × k submatrix obtained by deleting the n − k rows and columns of A

CHAPTER 1. INTRODUCTION 9

whose indices are not in the subset. A leading principal submatrix is a principal

submatrix corresponding to a subset of the form {1, 2, . . . , l}. The determinant of
a (leading) principal submatrix is a (leading) principal minor. We will make use of

the following well-known results (see for example Horn and Johnson [51]):

1. Every principal submatrix of a positive semidefinite matrix is positive semidef-

inite.

2. Every principal submatrix of a positive definite matrix is positive definite.

3. If A is positive definite, then all principal minors of A are positive.

4. Any non-negative linear combination of positive semidefinite matrices is pos-

itive semidefinite.

5. For any matrix C ∈ Sn , if A is positive semidefinite then CTAC is also

positive semidefinite.

This last fact means that positive semidefiniteness is unaffected by congruences.

One well-known congruence that will be useful in this thesis involves the so-called

Schur complement. Suppose that we partition A as:

A =


 A1 A2

AT
2 A3




where the principal submatrices A1 and A3 are square and A1 is positive definite.

Then A � 0 if and only if A3 − AT
2 A

−1
1 A2 � 0.

CHAPTER 1. INTRODUCTION 10

The matrix A3 − AT
2 A

−1
1 A2 is the Schur complement of A1 in A. We will mostly

be interested in applying the above theorem with A1 having dimension 1, that is,

A1 = A1,1.

1.3.3 Semidefinite Programming

Semidefinite programming problems are optimization problems of the form

max < Q,X >

s.t. A(X) = b
X � 0
X ∈ Sn

where A(X) = b represents a linear operator on the matrix X.
From a theoretical point of view, given a semidefinite programming problem, we

can find in polynomial-time an approximate solution to within any (fixed) accuracy

using interior-point methods. This follows from the seminal work of Nesterov and

Nemirovskii [77]. They also implemented the first interior-point method for SDP in

[75]. Independently, Alizadeh extended some of the interior-point polynomial-time

algorithms from linear programming to SDP and studied applications to discrete op-

timization [2, 3]. The recent Handbook of Semidefinite Programming by Wolkowicz

et al. [94] gives an up-to-date treatment of theory and algorithms.

CHAPTER 1. INTRODUCTION 11

1.4 The VLSI Layout or Floorplanning Problem

The VLSI (Very Large Scale Integration of electronic circuits) layout problem, or

floorplanning problem, consists in finding the optimal positions for a given set

of modules of fixed area (but perhaps varying dimensions) within a facility. The

objective is to minimize the distances between pairs of modules that have nonzero

connection “costs”. If the modules have varying dimensions, then finding their

optimal shapes is also a part of the problem.

This is indeed a hard problem; even the restricted version where the shapes

of the modules are fixed and the optimization is taken over a fixed finite set of

possible module locations is NP-hard. (This restriction is known as the Quadratic

Assignment Problem (QAP), see for example Pardalos and Wolkowicz [79].) For

this reason, most of the approaches in the literature are based on heuristics.

Recently, Etawil and Vannelli [32] introduced a “target distance” model for the

placement of uniformly sized modules. One important feature of this target distance

model is its convexity and indeed the results reported in [32] show that the convex

model significantly outperforms heuristic-based approaches in terms of both quality

and efficiency. The model of Etawil and Vannelli is based on the application of an

attractor-repeller model to the placement problem. For this purpose, one interprets

the usual quadratic cost function as an “attractor” which wants to cluster all the

modules together so as to minimize the total cost. This undesired configuration is

made unrealizable by the introduction of “repeller” terms which keep the modules

from clustering and therefore achieve a placement where all the modules are spread

out.

CHAPTER 1. INTRODUCTION 12

1.5 Structure of this Thesis

Armed with the preliminaries set out in this chapter, we proceed in Chapter 2 to

present some well-known formulations of Max-Cut and then to derive some new

formulations. Following this we focus on relaxations of Max-Cut and use the new

formulations to derive strengthened SDP relaxations. We then discuss some of the

properties of these relaxations, including their polynomial-time solvability and their

strengthening properties with respect to previous relaxations.

In Chapter 3 we examine the structure of the SDP relaxations more closely and

construct a projection onto the minimal face of the positive semidefinite cone where

the so-called Slater’s strict feasibility condition holds for both the primal and the

dual problems. This condition guarantees strong duality and hence the efficiency

of practical interior-point methods. We then perform a variety of numerical exper-

iments to compare the various Max-Cut relaxations and to explore the properties

of the new relaxations. We consider small graphs with special structure, randomly

generated graphs, and structured graphs arising from the application of Max-Cut

to the study of Ising spin glass models in statistical physics.

The computational strength exhibited by the tightest of the SDP relaxations,

denoted SDP3, is the motivation for our study of the geometry of its feasible set

in Chapters 4 and 5. In Chapter 4 we show that SDP3 completely captures the

geometry of the cut polytope for the complete graph on three nodes via the ranks

of its feasible matrices. Then in Chapter 5 we show that this characterization via

the rank of feasible matrices generalizes to some of the low dimensional faces of the

cut polytope of the complete graph with four or more nodes. These results shed

CHAPTER 1. INTRODUCTION 13

some light on the remarkable computational behaviour of the SDP3 relaxation.

We then proceed to derive a new convex relaxation for the VLSI layout problem

in Chapter 6. Our contribution is the AR (Attractor-Repeller) model which is

designed to improve upon the 3-stage approach of van Camp et al. [26]. We

generalize the target distance concept of Etawil and Vannelli so that the varying

areas of the modules as well as the other requirements of the floorplanning problem

can be accommodated within an attractor-repeller framework. The resulting AR

model replaces Stages 1 and 2 by a single mathematical model that finds a “good”

initial point for the solver of the van Camp et al. floorplanning model. However,

it turns out that the AR model is not a convex problem, and so in Section 6.3 we

isolate the source of the non-convexity and thereby derive a convex version of the

model, denoted CoAR.

Chapter 7 presents the results of our computational experiments with the AR

model on macro-cell layout and facility planning problems. Since the constraints of

the AR model are all linear, the model can be solved by applying a reduced-gradient

approach combined with a quasi-Newton algorithm. This is a significant advantage

for the AR model because in general we can expect the quasi-Newton algorithm

to be superlinearly convergent. We used the implementation of this algorithm in

MINOS 5.3 by Murtagh and Saunders [73, 1] Our computational results show the

potential of the AR model for floorplanning problems.

Finally, in Chapter 8 we summarize the contributions of this thesis and outline

some promising directions for future research.

Chapter 2

Formulations of Max-Cut and

New Semidefinite Relaxations

We begin this chapter by presenting some well-known formulations of Max-Cut

(MC) and also deriving some new formulations. We then introduce some well-

known relaxations of the Max-Cut problem that will be of particular relevance to

our work. After this introductory material, we derive a first strengthened relaxation

and prove some of its properties in Section 2.4. A second, tighter strengthened

relaxation is derived in Section 2.5.

2.1 Formulations of the Max-Cut Problem

Let the given graph G have node set {1, . . . , n} and let it be described by its
weighted adjacency matrix A = (wij). Let L := Diag (Ae)−A denote the Laplacian
matrix associated with the graph, where the linear operator Diag returns a diagonal

14

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 15

matrix with its diagonal formed from the vector given as its argument, and e denotes

the vector of all ones. Let the vector v ∈ {±1}n represent any cut in the graph via
the interpretation that the sets {i : vi = +1} and {i : vi = −1} form a partition of

the node set of the graph. (It is well known that the formulations over {0, 1}n and
{±1}n are equivalent, see for example Helmberg et al. [48]. We use the latter since
it is usually preferred in the application of SDP to Max-Cut.)

Following Mohar and Poljak [72], we can formulate Max-Cut as:

(MC1)
µ∗ = max 1

4
vTLv

s.t. v ∈ {±1}n

where here and throughout this thesis µ∗ denotes the optimal value of the Max-Cut

problem.

It is straightforward to check that

1

4
vTLv =

∑
i<j

wij

(
1− vivj
2

)

and that the term multiplying wij in the sum equals one if the edge (i, j) is cut,

and zero otherwise.

Further observe that v ∈ {±1}n ⇔ v2
i = 1, i = 1, . . . , n. This immediately

yields our second formulation for Max-Cut:

(MC2)
µ∗ = max 1

4
vTLv

s.t. v2
i = 1, i = 1, . . . , n.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 16

MC2 is a well-known and commonly used formulation for Max-Cut.

We now show that MC1 is equivalent to the seemingly more general quadratic

boolean problem:

(QBP)
µ∗ = max vTQv − 2cTv

s.t. v ∈ {±1}n.

Clearly, MC1 corresponds to the choice Q = 1
4
L and c = 0. Conversely, we in-

terpret MC1 as the problem of maximizing a homogeneous quadratic function of

v over the set {±1}n. We show that this problem is equivalent to QBP. (This

equivalence shows that all the results about Max-Cut extend to QBP.) This is done

by homogenizing QBP and thereby increasing the dimension by one. Indeed, given

vTQv − 2cTv, define the (n + 1) × (n + 1) matrix Qc obtained by adding a 0th

dimension to Q and placing the vector −c in the new row and column, so that

Qc :=


 0 −cT

−c Q


 .

If we consider the variable v̄ =

(
v0

v

)
∈ {±1}n+1 and the new quadratic form

v̄TQcv̄ = vTQv − 2v0(cTv),

then we get an equivalent Max-Cut problem:

µ∗ = max v̄TQcv̄

s.t. v̄ ∈ {±1}n+1.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 17

The equivalence to QBP follows from the observation that if v0 = 1 at optimality,

then v is optimal for QBP, whereas if v0 = −1 at optimality, then −v if optimal for
QBP. A similar homogenization of the linear terms to make them quadratic will be

used in Section 2.4.1 to derive the first strengthened SDP relaxation.

We will work extensively with the Max-Cut problem and its relaxations ex-

pressed in the space Sn . For this purpose, consider the change of variable X =

vvT , v ∈ {±1}n. Then vTQv = traceQX, and a well-known equivalent formulation
for Max-Cut is

(MC3)

µ∗ = max traceQX

s.t. diag (X) = e

rank (X) = 1

X � 0, X ∈ Sn ,

where diag denotes the linear operator that returns a vector containing the diagonal

elements of its matrix argument.

Having derived MC3, we will obtain yet another formulation in Sn by applying
Theorem 2.1.1. This theorem was first proved in Anjos and Wolkowicz [5]. We

present a simpler proof communicated to us by Tunçel [92].

Theorem 2.1.1 Let X be an n× n symmetric matrix. Then

X � 0, X ∈ {±1}n×n if and only if X = v vT , for some v ∈ {±1}n.

Proof: Write X =

(
1 xT

x X̄

)
and apply the Schur complement to obtain

X � 0 ⇔ X̄ − xxT � 0.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 18

Now X ∈ {±1}n×n and X � 0 implies diag (X) = e. Therefore diag (X̄−xxT) = 0
and the positive semidefiniteness implies X̄ − xxT = 0. Thus X̄ = xxT and

X =

(
1

x

)
·
(
1

x

)T

, as desired.

Theorem 2.1.1 shows that we can replace the requirement that the rank of X

be equal to one by the ±1 constraint on the elements of X. This yields our fourth
formulation of Max-Cut:

(MC4)

µ∗ = max 1
4
traceLX

s.t. diag (X) = e

X ◦X = E

X � 0, X ∈ Sn ,

where ◦ denotes the Hadamard (elementwise) product of matrices and E denotes

the matrix of all ones.

To obtain our next formulation, we add to MC4 the quadratic matrix constraint

X2 − nX = 0.

The validity of the constraint X2 − nX = 0 follows from the observation that

X2 = vvTvvT and vTv = n for all v ∈ {±1}n.
Our motivation for adding this constraint is that we will be using Lagrangian

duality to obtain new SDP relaxations. To obtain tighter bounds we therefore want

the duality gap incurred in the process to be as small as possible. The interest in

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 19

this quadratic constraint comes from the results in Anstreicher et al. [6, 7] where

the addition of such (redundant) constraints was shown to guarantee strong duality

for certain problems where duality gaps can exist.

Furthermore, we now show that after adding this constraint, we can remove

certain other constraints and obtain a formulation with only linear and quadratic

equality constraints. Indeed, since we can simultaneously diagonalizeX andX2, the

eigenvalues of X must satisfy λ2 − nλ = 0, which implies that the only eigenvalues
of X are 0 and n. This shows that the constraint X � 0 becomes redundant and

may be removed. Moreover, since the diagonal constraint implies that the trace of

X is n, we conclude that X must be rank-one and the rank constraint can also be

removed.

The resulting problem MC5 is thus another formulation of Max-Cut:

(MC5)

µ∗ = max traceQX

s.t. diag (X) = e

X ◦X = E

X2 − nX = 0.

We will make use of one more formulation in Sn . This formulation is obtained by
adding more quadratic constraints to MC5. Recall the change of variable X = vvT .

Since Xij = vivj and v
2
k = 1 for k = 1, . . . , n, the constraints

Xij = vivj = viv
2
kvj = vivk · vkvj = Xik ·Xkj

also hold for every rank-one X corresponding to a cut. Adding these constraints

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 20

to MC5, we obtain the formulation MC6:

(MC6)

µ∗ = max traceQX

s.t. diag (X) = e

X ◦X = E

X2 − nX = 0

Xij = XikXkj, ∀ 1 ≤ i, j, k ≤ n.

2.2 Well-Known Relaxations of Max-Cut

In this section we introduce some notation for well-known relaxations of the feasible

set of the Max-Cut problem.

The smallest convex set containing all the matrices X which are feasible for

MC5 is their convex hull, called the cut polytope:

Cn := conv{X : X = vvT , v ∈ {±1}n}.

Optimizing trace QX over Cn would yield exactly µ
∗, but an efficient description

of the cut polytope is not known.

A well-known relaxation of the cut polytope is the metric polytope Mn, defined

as the set of all matrices satisfying the triangle inequalities:

Mn := {X ∈ Sn : diag (X) = e, and
Xij +Xik +Xjk ≥ −1, Xij −Xik −Xjk ≥ −1,
−Xij +Xik −Xjk ≥ −1,−Xij −Xik +Xjk ≥ −1,
∀ 1 ≤ i < j < k ≤ n}.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 21

The triangle inequalities model the following constraints: for any three mutually

connected nodes in the graph, it is only possible to cut either zero or two of the

edges joining them. In fact, the triangle inequalities are sufficient to describe the

cut polytope for graphs with less than five nodes, i.e. Cn =Mn for n ≤ 4; however,
Cn � Mn for n ≥ 5, see for example Deza and Laurent [30]. Furthermore, if no

subgraph of G induced by edges with non-zero weights is contractible to K5, the

complete graph on 5 nodes, then Barahona [11] proved that the linear programming

problem

max trace QX

s.t. X ∈Mn

has optimal value equal to µ∗.

Denote the feasible set of MC3, less the rank constraint, by

En := {X ∈ Sn : diag (X) = e,X � 0}.

The set En is the elliptope studied in Laurent and Poljak [64, 65] and is a convex

relaxation of the feasible set of formulation MC5 since we dropped the rank con-

straint. With this notation, let us define the semidefinite programming relaxation

SDP1:

(SDP1)
ν∗1 = max traceQX

s.t. X ∈ En.

This SDP relaxation is well known and has been studied by Delorme and Poljak

[29], Goemans and Williamson [41], Laurent et al. [66], and Nesterov [76] among

others.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 22

Goemans and Williamson [41] provided estimates for the quality of the SDP1

bound for Max-Cut. They proved that the optimal value of this relaxation is at

most 14% above the value of the maximum cut, provided there are no negative edge

weights. More precisely,

µ∗ ≥ αGW ν∗1 ,

where αGW := min0≤θ≤π 2
π

θ
1−cos θ

≈ 0.87856, and since 1
αGW

≤ 1.14, we have that

ν∗1 ≤ 1.14µ∗. Furthermore, by randomly rounding a solution to the SDP relaxation,
they obtain a αGW -approximation algorithm, i.e. an algorithm that produces a cut

with value at least αGW times the optimal value. (Note that H̊astad [52] proved

that it is NP-hard to find a ρ-approximation algorithm for Max-Cut with ρ greater

than 0.9412.)

For the general case of Max-Cut with no restriction on the edge weights, Nes-

terov [76] recently proved constant relative accuracy estimates for the SDP1 bound.

To state Nesterov’s result, let us define the quantities µ∗, (ν1)∗ and s(β) as follows:

µ∗ = min vTQv

s.t. v ∈ {±1}n,

(ν1)∗ = min traceQX

s.t. X ∈ En,

and

s(β) := β ν∗1 + (1− β) (ν1)∗, β ∈ [0, 1].

(Note that µ∗ = 0 in the absence of negative edge weights.) Nesterov [76] proved

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 23

that without any assumption on the matrix Q,

|s(2
π
)− µ∗|

µ∗ − µ∗ ≤ π

2
− 1 < 4

7
.

Nesterov’s analysis is extended further in Nesterov [78] and Ye [97].

2.3 SDP Relaxations via Lagrangian Relaxation

In Section 2.4 we will derive a new strengthened SDP relaxation of Max-Cut by

applying the “recipe” presented in Poljak et al. [83]. For our purposes, this recipe

can be summarized as:

1. Choose a formulation of Max-Cut and take its Lagrangian dual;

2. Use the hidden semidefinite constraint in the Lagrangian dual to formulate it

as an SDP;

3. Take the dual of this SDP, i.e. the dual of the dual, to obtain the SDP

relaxation of Max-Cut.

Whenever the objective function or the constraints in the primal problem con-

tain a linear term, negative semidefiniteness of the Hessian (i.e. the hidden semidef-

inite constraint) is not sufficient for boundedness of the quadratic; feasibility of the

stationarity condition is also needed. Alternatively, one can replace the linear con-

straints by norm constraints, homogenize and use strong duality of the trust region

subproblem (see Stern and Wolkowicz [91]). The latter technique is used in Section

2.4.1.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 24

2.3.1 First Lifting via Lagrangian Relaxation

In this section we illustrate the above recipe by sketching the details of the deriva-

tion of the relaxation SDP1 starting with the formulation MC2 and using La-

grangian duality.

The Lagrangian dual of MC2 can be written as

µ∗ ≤ ν∗1 = min
y

max
v
vTQv − vT (Diag y)v + eTy.

The inner maximization has a hidden constraint, that is, the quadratic is bounded

above only if its Hessian is negative semidefinite. This is equivalent to the following

SDP:

ν∗1 = min eTy

s.t. Diag y � Q.

Slater’s (strict feasibility) constraint qualification holds for this problem. Therefore

its Lagrangian dual has the same optimal value and is precisely SDP1:

µ∗ ≤ ν∗1 = max traceQX

s.t. diag (X) = e

X � 0.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 25

2.4 First Strengthened SDP Relaxation

The derivation of SDP2 starts with the formulation MC5:

(MC5)

µ∗ = max traceQX

s.t. diag (X) = e

X ◦X = E

X2 − nX = 0.

We present two different derivations of the strengthened relaxation SDP2. The

first derivation follows the recipe in Poljak et al. [83] which was described and

illustrated in Section 2.3 while the second derivation is a direct second lifting us-

ing the motivation that cuts correspond to rank-one matrices in the strengthened

relaxation. Although the second derivation is simpler and can be done indepen-

dently, we also include the first one because it gives insight into how the choice of

(possibly redundant) constraints determines the SDP relaxation which we obtain

from the Lagrangian dual. Furthermore, once the result of the first derivation is

obtained, the second derivation of the same SDP becomes obvious. But it is not

clear how to directly derive an SDP that has not yet been formulated. (Note that

the equivalence of the two derivations follows from Theorem 9 of Poljak et al. [83]

and the discussion preceding that theorem.)

2.4.1 Second Lifting via Lagrangian Relaxation

To efficiently apply Lagrangian relaxation and not lose the information from the

linear constraint, we need to replace that constraint with the norm constraint

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 26

||diag (X) − e||2 = 0 and homogenize (see Poljak et al. [83]). We then lift this

matrix problem into a higher dimensional matrix space.

To keep the dimension as low as possible, we take advantage of the symmetry

of X. Recall that t(i) = i(i+1)
2

and that sMat is the linear operator which, given

a vector x ∈
t(n), returns a matrix X ∈ Sn obtained by filling in columnwise

the upper triangular part of X with the t(n) components of x and completing the

strictly lower triangle by symmetry. Thus we rewrite MC5 as

(MC5)

µ∗ = max trace (Q sMat (x)) y0

s.t. diag (sMat (x))Tdiag (sMat (x))

− 2eTdiag (sMat (x))y0 + n = 0
E − sMat (x) ◦ sMat (x) = 0
sMat (x)2 − n sMat (x)y0 = 0
1− y2

0 = 0

x ∈
t(n), y0 ∈
.

Note that this problem is equivalent to the previous formulation since we can change

X to −X if y0 = −1 is optimal.
We now take the Lagrangian dual of MC5. Introducing Lagrange multipliers

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 27

w, t ∈
 and T, S ∈ Sn , the dual is

ν∗2 = min
t,w,T,S

max
x,y0

{trace (QsMat (x)) y0
+w(diag (sMat (x))Tdiag (sMat (x))− 2eTdiag (sMat (x))y0 + n)
+traceT (E − sMat (x) ◦ sMat (x))
+traceS((sMat (x))2 − n sMat (x)y0)
+t(1− y2

0)}.

(2.1)

Note that moving the constraint 1− y2
0 into the Lagrangian does not increase the

duality gap, since the Lagrangian relaxation of the trust-region subproblem is tight

(see Stern and Wolkowicz [91]).

We now find the hidden semidefinite constraint in the dual problem (2.1). The

inner maximization of (2.1) is an unconstrained pure quadratic maximization, there-

fore its optimal value is infinity unless the Hessian is negative semidefinite in which

case x = 0, y0 = 0 is optimal. We proceed to calculate the Hessian and thus find

the hidden semidefinite constraint.

Recall the following linear operators:

• svec is the inverse of sMat , i.e. it forms a t(n)-vector columnwise from an

n × n symmetric matrix while ignoring the strictly lower triangular part of
the matrix;

• dsvec acts like svec but multiplies by 2 the off-diagonal entries of its (sym-
metric) matrix argument;

• Mat forms an n× n matrix columnwise from an n2-vector;

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 28

• vec is the inverse of Mat ;

• vsMat (x) := vec (sMat (x)).

Using traceQsMat (x) = xTdsvec (Q), and pulling out a 2 for convenience, we

get the constant part (no Lagrange multipliers) of the Hessian:

2HQ := 2

(
0 1

2
dsvec (Q)T

1
2
dsvec (Q) 0

)
.

The nonconstant part of the Hessian is made up of a linear combination of matrices,

i.e. it is a linear operator on the Lagrange multipliers.

To make the quadratic forms in (2.1) easier to differentiate we note that

dsvecDiag diag sMat = sdiag ∗sdiag (= Diag svec (I))

and rewrite the quadratic forms as follows:

sdiag (x)T sdiag (x) = xT (dsvecDiag diag sMat)x;

eT sdiag (x) = (dsvecDiag e)T x;

traceS(sMat (x))2 = 〈sMat (x) , S sMat (x)〉

= vsMat (x)Tvec (S sMat (x))

= xTvsMat ∗vec (SsMat (x))

= xT [vsMat ∗vec (SsMat)]x

= xT [vsMat ∗vecSMat vsMat]x

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 29

= xT [(Mat vsMat)∗ S (Mat vsMat)]x;

traceT (sMat (x) ◦ sMat (x)) = xT {dsvec (T ◦ sMat (x))}

= xT (dsvec (T ◦ sMat))x,

where the expression with S involves vsMat ∗vec instead of dsvec because SsMat (x)

may not be symmetric. (It is easy to verify that vsMat ∗vec reduces to dsvec if S is

symmetric.) However, the expression is still a congruence of S. The last expression

follows from the following easy result: If A,B ∈ Sn, then trace (A(B ◦ C)) =
trace (B(A ◦ C)).

For notational convenience, we let H(w, T, S, t) denote the negative of the non-

constant part of the Hessian, and we split it into four linear operators with the

factor 2:

2H(w, T, S, t) := 2H1(w) + 2H2(T) + 2H3(S) + 2H4(t)

= 2w

(
0 (dsvecDiag e)T

(dsvecDiag e) −sdiag ∗sdiag

)

+ 2

(
0 0

0 dsvec (T ◦ sMat)

)

+ 2

(
0 n

2
dsvec (S)T

n
2
dsvec (S) (Mat vsMat)∗ S (Mat vsMat)

)

+ 2t

(
1 0

0 0

)
.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 30

The matrix sdiag ∗sdiag ∈ St(n) is diagonal with elements determined using

eTi (sdiag
∗sdiag) ej = sdiag (ei)

T sdiag (ej)

=



1, if i = j = t(k), for some k

0, otherwise.

Similarly, letting T =
∑
i,j

tijEij, we have

dsvec (T ◦ sMat) =
∑
i,j

tijdsvec (Eij ◦ sMat) .

Then for fixed i, j, the matrix dsvec (Eij ◦ sMat) has element k, l equal to

eTk [dsvec (Eij ◦ sMat (el))] .

Similarly, we can find the k, l element of (Mat vsMat)∗ S (Mat vsMat) by cancelling

vec and Mat and evaluating

eTk vsMat
∗vec (SsMat (el)) .

Upon cancelling the factor of 2 on both sides of the constraint, we get the SDP

ν∗2 = min nw + traceET + trace 0S + t

s.t. H(w, T, S, t) � HQ.

If we take T sufficiently positive definite and t sufficiently large, then we can guar-

antee Slater’s constraint qualification. Therefore the dual of this SDP has the same

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 31

optimal value ν∗2 and it provides a strengthened SDP relaxation of Max-Cut:

(SDP2)

ν∗2 = max traceHQY

s.t. H∗
1(Y) = n

H∗
2(Y) = E

H∗
3(Y) = 0

H∗
4(Y) = 1

Y � 0, Y ∈ St(n)+1.

To express the linear operators H∗
i (Y), i = 1, 2, 3, 4, let us index the rows of Y by

0, 1, . . . , t(n) and partition it as

Y =

(
Y00 xT

x Ȳ

)
,

where Ȳ ∈ St(n).

It is straightforward to check that

H∗
2(Y) = sMat diag (Ȳ) and H∗

4(Y) = Y00,

so the constraints H∗
2(Y) = E and H∗

4(Y) = 1 are equivalent to diag (Y) = e. Also,

H∗
1(Y) is twice the sum of the elements in the first row of Y corresponding to the

positions of the diagonal of sMat (x) minus the sum of the same elements in the

diagonal of Ȳ , i.e.

H∗
1(Y) = 2svec (In)

Tx− traceDiag (svec (In))Ȳ .

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 32

The constraint H∗
1(Y) = n effectively requires that Y0,t(i) = 1, ∀ i = 1, . . . , n, as

shown in the proof of Lemma 2.4.1 below, and thus diag (sMat (x)) = e holds.

Finally, to find H∗
3(Y), recall that by definition

〈H3(S), Y 〉 = ndsvec (S)Tx− 〈
(Mat vsMat)∗ S (Mat vsMat) , Ȳ

〉
.

Taking adjoints,

〈S,H∗
3(Y)〉 = traceSnsMat (x)− 〈

S, (Mat vsMat) Ȳ (Mat vsMat)∗
〉

=
〈
S, nsMat (x)− (Mat vsMat) Ȳ (Mat vsMat)∗〉 .

Recall that (Mat vsMat)∗ = vsMat ∗vec is essentially (and in the symmetric case

reduces to) dsvec .

The constraint H∗
3(Y) = 0 implies immediately that if Y is feasible for SDP2,

then sMat (x) is positive semidefinite (and in fact feasible for SDP1). This is proved

in Lemma 2.4.3.

We now prove that the feasible set of SDP2 has no strictly feasible points.

Lemma 2.4.1 If Y is feasible for SDP2, then Y0,t(i) = 1, i = 1, . . . , n. Hence Y is

not positive definite.

Proof: Let Y be feasible for SDP2. The constraints H∗
2(Y) = E and H∗

4(Y) = 1

together imply that diag (Y) = e. The constraint H∗
1(Y) = n can be written as

2svec (In)
Tx− traceDiag (svec (In))Ȳ = n,

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 33

with Y =

(
1 xT

x Ȳ

)
. Since diag (Y) = e, traceDiag (svec (In))Ȳ = n and so

svec (In)
Tx = n, or equivalently

n∑
i=1

Y0,t(i) = n. Now Y � 0 implies every principal

minor of Y is nonnegative, so |Y0,t(i)| ≤ 1 must hold (again because diag (Y) = e).
So

n∑
i=1

Y0,t(i) = n⇒ Y0,t(i) = 1, i = 1, . . . , n. Hence each of the 2×2 principal minors
obtained from the subsets of rows and columns {0, t(i)}, i = 1, . . . , n equals zero.

Hence Y is not positive definite.

2.4.2 Direct Second Lifting

We can derive the SDP2 relaxation directly from MC5 using the rank-one relation-

ship

Y ∼=


 y0

x


(
y0 x

T
)
, X = sMat (x).

Using this approach we express the constraints that the elements of X are ±1 and
diag (X) = e as

diag (Y) = e and Y0,t(i) = 1, i = 1, . . . , n.

We also express the t(n + 1) constraints from X2 − nX = 0. The constraints

corresponding to equating the diagonal entries are clearly redundant. After they

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 34

are removed, the result is the SDP relaxation:

(SDP2)

ν∗2 = max traceHQY

s.t. diag (Y) = e

Y0,t(i) = 1, i = 1, . . . , n

Y0,T (i,j) =
1
n

n∑
k=1

YT (i,k),T (k,j), ∀ 1 ≤ i < j ≤ n

Y � 0, Y ∈ St(n)+1,

where

T (i, j) :=



t(j − 1) + i, if i ≤ j
t(i− 1) + j, otherwise.

Recall that t(i) = i(i+1)
2
, so T (i, i) = t(i).

Remark 2.4.2 The indices for the linear constraints in SDP2 may be thought of

as the entries of a matrix T constructed in the following way. Expanding the rela-

tionship X = sMat (x) we have:

X =



x1 x2 x4 . . .

x2 x3 x5 . . .

. . . xt(n)


 .

We can now define a matrix T by keeping only the indices of the entries of x:

T :=



1 2 4 . . .

2 3 5 . . .

. . . t(n)


 .

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 35

The first two sets of constraints imply that the 2× 2 leading principal minor of
any Y feasible for SDP2 is all ones. This gives us an alternative proof that every

feasible Y for SDP2 is singular. It also means that there is still some redundancy in

the constraints of SDP2, and in Chapter 3 we will make use of this fact to project

the feasible set of SDP2 onto a lower dimensional face of the positive semidefinite

cone where Slater’s constraint qualification holds. In doing so we will reduce the

dimension of the matrix variable, and hence the number of variables in the SDP

relaxation.

2.4.3 Properties of the First Strengthened Relaxation

We first note that the relaxation SDP2 can be solved in polynomial-time. If we

consider, say, the formulation MC1, we see that the original Max-Cut problem is

specified by the elements of the Laplacian matrix L (which is defined in terms of

the original edge weights wij) and by n, the number of nodes in the graph. We

first note that the matrix variable has t(t(n) + 1) = O(n4) scalar variables within

it, and that the number of linear equality constraints is

(t(n) + 1) + n+
n(n− 1)

2
= O(n2).

Hence both the number of variables and the number of constraints are polynomial in

n. Secondly, we consider the magnitude of the coefficients in the objective function

HQ and the linear constraints. The elements of HQ are all zeros or elements of

Q = 1
4
L, some unchanged and some divided by 2 (due to the action of the operator

1
2
dsvec (·)). Hence if we use, say, rational number representation, then the size of

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 36

the elements of HQ is linear with respect to the size of the elements of L. Finally,

all the coefficients of the linear constraints are zeros, ones, or 1
n
. Since the latter

can be represented with size proportional to n (again using rational representation),

we conclude that the data required to represent the relaxation SDP2 is polynomial

with respect to the data required to represent the original problem MC1. By the

work of Nesterov and Nemirovskii [77], it follows that, given a prescribed accuracy

ε > 0, we can use interior-point methods to find in polynomial-time an approximate

solution Yε satisfying

traceHQYε ≤ ν∗2 + ε.

(Polynomial-time means that the total number of arithmetic operations required to

compute Yε is bounded above by a polynomial function of the number of constraints,

the number of variables, and the size of the data required to represent SDP2.)

Our next result is that the matrix obtained by applying sMat to the first row of

a feasible Y is positive semidefinite, even though this nonlinear constraint was not

explicitly included in MC5. The use of operator notation yields a succinct proof of

this lemma.

Lemma 2.4.3 Suppose that Y is feasible for SDP2. Then

sMat
(
Y1:t(n),0

) � 0
and so is feasible for SDP1.

Proof: Using the partition Y =

(
1 xT

x Ȳ

)
, we see that Ȳ is positive semidefi-

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 37

nite. Rewriting the constraint H∗
3(Y) = 0 as

sMat (x) =
1

n
(Mat vsMat) Ȳ (Mat vsMat)∗ ,

we see that sMat (x) is a congruence of Ȳ . The result follows.

Consequently, the relaxation SDP2 is a strengthening of SDP1.

Theorem 2.4.4 The optimal values of SDP1 and SDP2 satisfy

ν∗2 ≤ ν∗1 .

Proof: Suppose that

Y ∗ =

(
1 x∗T

x∗ Ȳ ∗

)

solves SDP2. From Lemma 2.4.3, X∗ := sMat (x∗) is feasible for SDP1, therefore

ν∗2 = traceHQY
∗

= (dsvecQ)Tx∗

= traceQX∗

≤ ν∗1 .

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 38

2.5 Second Strengthened SDP Relaxation

The derivation of SDP3, the second strengthened SDP relaxation, starts with the

formulation MC6:

(MC6)

µ∗ = max traceQX

s.t. diag (X) = e

X ◦X = E

X2 − nX = 0

Xij = XikXkj, ∀ 1 ≤ i, j, k ≤ n.

The dual of MC6 will yield a relaxation tighter than SDP2 because an increase in the

number of constraints in the primal problem implies a greater number of Lagrange

multipliers in the dual. This gives us a smaller duality gap and hence a better

bound. Furthermore, there is an interesting connection between the constraints

Xij = XikXkj, ∀ 1 ≤ i, j, k ≤ n

and the metric polytope. This connection is first observed in the statement and

proof of Theorem 2.5.4 and will also be exploited in Chapter 4. Taking the dual of

the dual of MC6 (and removing redundant constraints in the resulting SDP) yields

the strengthened relaxation SDP3 defined below.

Alternatively, we can motivate SDP3 by considering that the rank-one matrices

X = vvT , v ∈ {±1}n have all their entries equal to ±1. Hence the corresponding
matrices Y feasible for SDP2 have all their entries in the first row and column equal

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 39

to ±1. Now consider the following constraints from SDP2:

Y0,T (i,j) =
1

n

n∑
k=1

YT (i,k),T (k,j), ∀ 1 ≤ i < j ≤ n,

for Y =

(
1 xT

x Ȳ

)
and x = svec (vvT). The entry Y0,T (i,j) is in the first row of Y

and therefore it is equal to 1 in magnitude. The corresponding constraint states

that it must be equal to the average of n entries in the block Ȳ . But each of these

n entries has magnitude at most 1, so for equality to hold, they must all have

magnitude equal to 1, and in fact they must all equal Y0,T (i,j).

Either approach yields the relaxation SDP3, which after the removal of clearly

redundant constraints may be written as:

(SDP3)

ν∗3 = max traceHQY

s.t. diag (Y) = e

Y0,t(i) = 1, i = 1, . . . , n

Y0,T (i,j) = YT (i,k),T (k,j), ∀ k,∀ 1 ≤ i < j ≤ n
Y � 0, Y ∈ St(n)+1.

We observe that since Y0,t(i) = 1, i = 1, . . . , n, it follows (as in Lemma 2.4.1 for

SDP2) that SDP3 has no strictly feasible points.

We also observe that SDP3 is solvable in polynomial-time. Indeed, the argu-

ments applied to SDP2 mostly carry through unchanged, except for two aspects

related to the modified constraints. The first is the fact that the number of linear

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 40

constraints is not O(n2), but rather

(t(n) + 1) + n+ n · n(n− 1)
2

= O(n3),

which remains polynomial in n. The second is that the coefficients of the linear con-

straints of SDP3 are all zeros and ones, that is, there are no longer any coefficients

equal to 1
n
. Therefore we again conclude that the data required to represent SDP3

is polynomial with respect to the data required to represent the original Max-Cut

problem and hence that an approximate solution of SDP3 to within any (fixed)

accuracy can be found in polynomial-time using interior-point methods [77].

Remark 2.5.1 We point out that for n = 3, SDP2 and SDP3 are equivalent.

Indeed, let us consider SDP2 and recall that if Y is feasible for SDP2, then Y0,t(i) =

1, i = 1, 2, 3 (by Lemma 2.4.1). Recall also that T (i, i) = t(i) and consider the 3×3
principal submatrix of Y corresponding to rows and columns {0, T (k, k), T (i, j)},
for fixed i, j such that 1 ≤ i < j ≤ 3 and for any k = 1, 2, 3. Since Y � 0 implies

this submatrix is also positive semidefinite, we have




1 1 Y0,T (i,j)

1 1 YT (k,k),T (i,j)

Y0,T (i,j) YT (k,k),T (i,j) 1


 � 0⇒ YT (k,k),T (i,j) = Y0,T (i,j).

This is easily verified. The general case of this implication is stated and proved in

Chapter 4 as Lemma 4.4.2.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 41

Consider now the pair i = 1, j = 2. The implication above shows that

Y0,T (1,2) = YT (1,1),T (1,2) and Y0,T (1,2) = YT (2,2),T (1,2) = YT (1,2),T (2,2).

Hence two of the three constraints of SDP3 for the given i, j also hold for SDP2.

Now the sum constraint of SDP2 implies

Y0,T (1,2) =
1

3

3∑
k=1

YT (1,k),T (k,2)

=
1

3

(
YT (1,1),T (1,2) + YT (1,2),T (2,2) + YT (1,3),T (3,2)

)
=

1

3

(
Y0,T (1,2) + Y0,T (1,2) + YT (1,3),T (3,2)

)

and therefore Y0,T (1,2) = YT (1,3),T (3,2) holds, which is precisely the third constraint of

SDP3 corresponding to i = 1, j = 2. The constraints for the pairs i = 1, j = 3 and

i = 2, j = 3 can be checked similarly.

Remark 2.5.6 below presents an example showing that this equivalence fails for

n ≥ 4.

2.5.1 Definition and Some Properties of the Set Fn

Let us define the projection of the feasible set of SDP3 onto Sn as

Fn := {X ∈ Sn : X = sMat (Y1:t(n),0), Y feasible for SDP3}.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 42

Since the feasible set of SDP3 is convex and compact, and since Fn is its image

under a linear transformation, it follows that Fn is also convex and compact. Also,

it is straightforward to verify that Fn contains the cut polytope.

Lemma 2.5.2 Cn ⊆ Fn.

Proof: Consider X = vvT , v ∈ {±1}n. Let

x = svec (X) and Y =

(
1

x

)(
1

x

)T

.

We show that Y is feasible for SDP3. Indeed, Y � 0 and Y0,0 = 1. Since xT (i,j) =

vivj, for 1 ≤ i ≤ j ≤ n,

YT (i,j),T (i,j) = (xT (i,j))
2 = vi

2vj
2 = 1.

Therefore diag (Y) = e. Also, Y0,t(i) = Y0,T (i,i) = xT (i,i) = vi
2 = 1.

Finally, for 1 ≤ i < j ≤ n,

YT (i,k),T (k,j) = xT (i,k)xT (k,j)

= vivkvkvj

= vivj

= xT (i,j)

= Y0,T (i,j).

Hence, each X = vvT , v ∈ {±1}n has a corresponding Y feasible for SDP3 and so

X ∈ Fn.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 43

The result now follows from the convexity of Cn and Fn.

Since every Y feasible for SDP3 is feasible for SDP2, by Lemma 2.4.3 we have:

Corollary 2.5.3 Fn ⊆ En.

By Lemma 2.5.2, we observe that µ∗ ≤ ν∗3 ≤ ν∗2 ≤ ν∗1 . We now prove an

additional property of SDP3 that is not inherited from SDP2, namely that the

matrices in Fn also satisfy all the triangle inequalities.

Theorem 2.5.4 Fn ⊆Mn.

Proof: Suppose X ∈ Fn, then X = sMat (Y1:t(n),0) for some Y feasible for SDP3.

Since Y0,t(i) = 1 ∀ i, it follows that diag (X) = e holds.
Given i, j, k such that 1 ≤ i < j < k ≤ n, let Yi,j,k denote the 4 × 4 principal

submatrix of Y corresponding to the indices {0, T (i, j), T (i, k), T (j, k)}. Let a =
Xij = Y0,T (i,j), b = Xik = Y0,T (i,k), c = Xjk = Y0,T (j,k). Then

Yi,j,k =




1 a b c

a 1 c b

b c 1 a

c b a 1



,

since diag (Y) = e and

Y0,T (i,j) = YT (i,k),T (k,j), Y0,T (i,k) = YT (i,j),T (j,k), Y0,T (j,k) = YT (j,i),T (i,k).

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 44

Applying the Schur complement,

Yi,j,k � 0 ⇔



1 c b

c 1 a

b a 1


−



a

b

c



(
a b c

)
� 0

⇔



1− a2 c− ab b− ac
c− ab 1− b2 a− bc
b− ac a− bc 1− c2


 � 0

which implies

eT



1− a2 c− ab b− ac
c− ab 1− b2 a− bc
b− ac a− bc 1− c2


 e ≥ 0.

Hence,

Yi,j,k � 0 ⇒ 3− (a+ b+ c)2 + 2(a+ b+ c) ≥ 0
⇔ γ2 − 2γ − 3 ≤ 0,where γ := a+ b+ c
⇔ (γ − 3)(γ + 1) ≤ 0
⇔ −1 ≤ γ ≤ 3
⇒ a+ b+ c ≥ −1.

Therefore, Xij +Xik +Xjk ≥ −1 holds for X.
Because multiplication of row and column i of Yi,j,k by −1 will not affect the

positive semidefiniteness of Yi,j,k, multiplying the two rows and two columns of Yi,j,k

with indices T (i, k) and T (j, k) and applying the same argument to the resulting

matrix, we obtain Xij −Xik −Xjk ≥ −1. Similarly, the inequalities −Xij +Xik −
Xjk ≥ −1 and −Xij −Xik +Xjk ≥ −1 also hold.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 45

We have thus proved:

Corollary 2.5.5 Cn ⊆ Fn ⊆ En ∩Mn.

Remark 2.5.6 Remark 2.5.1 pointed out that for n = 3, the relaxations SDP2

and SDP3 are equivalent. This remark shows explicitly that this equivalence fails

for n ≥ 4, and furthermore that the triangle inequalities are not enforced by SDP2.

Consider the weighted adjacency matrix

A =




0 4 1 1

4 0 1 0

1 1 0 0

1 0 0 0




for a graph with n = 4 nodes. Then the maximum cut has a weight of 6 and

is attained by the cut with node sets {1, 3}, {2, 4} and by the cut with node sets

{1}, {2, 3, 4}.
The computed SDP1 bound is 6.0625, that for SDP2 is 6.0112, and that for

SDP3 is 6.0000.

An optimal matrix X for SDP2, obtained by taking the sMat of the first column,

is 


1.0000e+ 00 −9.9485e− 01 −2.1943e− 02 −9.9747e− 01
−9.9485e− 01 1.0000e+ 00 −2.3659e− 02 9.9715e− 01
−2.1943e− 02 −2.3659e− 02 1.0000e+ 00 −1.2873e− 03
−9.9747e− 01 9.9715e− 01 −1.2873e− 03 1.0000e+ 00




CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 46

which violates a triangle inequality, since

X12 +X13 +X23 ≤ −1.0404 < −1,

and the triangle inequality requires that X12 +X13 +X23 ≥ −1.
Hence, we conclude that the relaxation SDP2 does not automatically enforce the

triangle inequalities when n ≥ 4.

In Section 2.5.3, we will prove that the inclusions in Corollary 2.5.5 are in fact

strict for n ≥ 5. However, because we do not have an explicit description of Fn,

first we need to address the issue of testing for membership in Fn. This is the focus

of the next section.

2.5.2 Testing for Membership in Fn

The set Fn is defined as the image of the feasible set of SDP3 under the linear

mapping sMat applied to the first row of every feasible matrix in SDP3. It is not

clear how to give an explicit description of Fn, but given X ∈ Sn , the question of
determining whether X ∈ Fn can be expressed as:

Given X ∈ Sn satisfying diag (X) = e, does there exist a matrix Y feasible for

SDP3 such that sMat (Y1:t(n),0) = X?

In this question, only some of the elements of Y are specified, namely the diag-

onal, the first row and column, and the elements fixed by the rank-two constraints.

The remaining elements are considered “free” and we ask whether it is possible

to choose them in such a way that the resulting matrix Y is positive semidefinite.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 47

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

T(i,j)

T(j,l) T(k,l)

T(i,k)

Figure 2.1: A chordless cycle of length 4 in the graph GY of Y

This problem is an instance of the positive semidefinite matrix completion problem,

which has been extensively studied (see for example [42, 63, 54]).

We can associate with the partial matrix Y a finite undirected graph GY =

(VY , EY) as follows: let the node set be VY := {0, 1, . . . , t(n)} and let the edge set
EY contain the edge (i, j) if and only if the entry Yi,j is fixed. Then GY is said to

be chordal if every cycle of length ≥ 4 has a chord, i.e. an edge between two non-

consecutive nodes. Grone et al. [42] showed that if the diagonal entries of Y are

specified and the principal minors composed of fixed entries are all non-negative,

then, if the graph GY is chordal, a positive semidefinite completion necessarily

exists. In our case, however, it is easy to see that the graph GY is not chordal for

n ≥ 4. It suffices to consider the cycle of length 4 depicted in Figure 2.1; since

(T (i, j), T (k, l)) "∈ EY and (T (i, k), T (j, l)) "∈ EY , we see that the cycle has no

chords. Moreover, chordless cycles of lengths 4, 5, . . . , n can be found in the graph

GY . Indeed, for every subset of c indices {i1, i2, . . . , ic} ⊆ {1, . . . , n}, c = 4, 5, . . . , n,
the graph contains the chordless cycle depicted in Figure 2.2. So we must use a

different approach.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 48

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

T(i ,i)1 2

T(i ,i)

T(i ,i)

T(i ,i)2 3

5 6

1 c

3 4T(i ,i)

4 5T(i ,i)

T(i ,i)c-1 c

Figure 2.2: A chordless cycle of length c in the graph GY of Y

Johnson et al. [55] present an interior-point method for finding an approximate

completion, if a completion exists. We use this approach to test membership in

Fn. Specifically, we proceed as follows: Given X ∈ Sn with diag (X) = e, let x =
svec (X) and let A ∈ St(n)+1 be some matrix which satisfies sMat (A1:t(n),0) = X and

furthermore satisfies all the constraints of SDP3 except (possibly) for the positive

semidefiniteness constraint. Define H ∈ St(n)+1 to be the {0, 1}-matrix satisfying
Hij = 0 if Aij is “free”, and Hij = 1 otherwise.

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 49

For example, if X = (Xij) is 3× 3, one possible choice of A is:

A =




1 1 X12 1 X13 X23 1

1 1 0 0 0 0 0

X12 0 1 0 X23 X13 0

1 0 0 1 0 0 0

X13 0 X23 0 1 X12 0

X23 0 X13 0 X12 1 0

1 0 0 0 0 0 1




where the “free” entries are filled with zeros. The corresponding matrix H is:

H =




1 1 1 1 1 1 1

1 1 0 0 0 0 0

1 0 1 0 1 1 0

1 0 0 1 0 0 0

1 0 1 0 1 1 0

1 0 1 0 1 1 0

1 0 0 0 0 0 1




.

To check whether A has a positive semidefinite completion, we consider the

problem:

c∗ = min ‖H ◦ (A−B)‖2
F

s.t. B � 0

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 50

and its dual:

d∗ = max ‖H ◦ (A−B)‖2
F − traceΛB

s.t. 2 H ◦H ◦ (B − A) = Λ
Λ � 0,

where ‖ · ‖F denotes the Frobenius matrix norm (see Johnson et al. [55] for more

details). Clearly if c∗ = 0, then the corresponding primal optimal solution B∗ is an

exact positive semidefinite completion of A. On the other hand, if we find a pair

(B̄, Λ̄) such that ‖H ◦ (A − B̄)‖2
F − trace Λ̄B̄ > 0, then because c∗ ≥ d∗ (by weak

duality), it follows that c∗ > 0 and hence A has no positive semidefinite completion.

Using this approach, we can find examples which prove that the inclusions in

Corollary 2.5.5 are in fact strict for n = 5, and hence for all n ≥ 5.

2.5.3 Examples Proving Strict Inclusions

In this section we prove that the inclusions in Corollary 2.5.5 are strict.

Example 2.5.7 Consider the matrix

X =




1 −1
4
−1

4
−1

4
−1

4

−1
4

1 −1
4
−1

4
−1

4

−1
4
−1

4
1 −1

4
−1

4

−1
4
−1

4
−1

4
1 −1

4

−1
4
−1

4
−1

4
−1

4
1



.

It is known that X "∈ C5 (see Laurent et al. [66]). Applying the algorithm described

in the previous section, we found a 16 × 16 matrix B∗ which is feasible for SDP3

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 51

and such that sMat (B∗
0,1:15) = X. The matrix B∗ is defined as

B∗
T (i,j),0 =



1, if i = j

−1
4
, otherwise

B∗
T (i,j),T (k,l) =



1, if (i, j) = (k, l)

3
8
, if (i, j) and (k, l) are disjoint

−1
4
, otherwise

Hence X ∈ F5.

Example 2.5.8 Consider the matrix

X =




1 −0.65 −0.65 −0.65 0.93

−0.65 1 0.3 0.3 −0.65
−0.65 0.3 1 0.3 −0.65
−0.65 0.3 0.3 1 −0.65
0.93 −0.65 −0.65 −0.65 1




It is easy to check that X ∈ E5 ∩ M5. Applying the algorithm described in the

previous section, we found feasible matrices B̄ and Λ̄ for which the dual objective

value is equal to 2.81 × 10−4 > 0. Hence c∗ > 0 and there is no matrix B feasible

for SDP3 such that sMat (B0,1:15) = X. Thus X "∈ F5. The matrices B̄ and Λ̄ are

given in Appendix A.

Hence we have proved that

CHAPTER 2. FORMULATIONS OF MAX-CUT AND NEW SEMIDEFINITE
RELAXATIONS 52

Theorem 2.5.9 Cn � Fn � En ∩Mn for n ≥ 5.

Theorem 2.5.9 shows that SDP3 is a strict improvement over the addition of

all the triangle inequalities to SDP1. In Chapter 3, we use the fact that every

feasible matrix for SDP3 is singular to project the feasible set of SDP3 onto a

lower dimensional face of the positive semidefinite cone where Slater’s constraint

qualification holds. In doing so we also reduce the dimension of the matrix variable,

and hence the number of variables in SDP3. We then present computational results

that demonstrate the strength of SDP3, illustrate the strict inequalities in Theorem

2.5.9, and motivate our further study of the geometry of Fn in Chapters 4 and 5.

Chapter 3

Projection onto the Minimal Face

and Computational Results

In this chapter we continue the study of the geometrical structure of the feasible

sets of our relaxations, and also present computational results that demonstrate

their strength. We will focus our attention on the relaxation SDP3 but we observe

at the end of Section 3.1 that the theoretical results in this chapter easily extend

to SDP2.

Let Fn denote the set of Y ∈ St(n)+1 that are feasible for SDP3. Since Fn

has no strictly feasible points, we seek to express Fn in a lower dimensional space.

We now show that this can be done without losing the sparsity of the constraints.

The approach we follow is along the lines of the work in Zhao et al. [99, 98] and

the general framework presented in Tunçel [93]. Our treatment here is specific to

the strengthened relaxations SDP2 and SDP3 and provides further insight into the

structure of these relaxations.

53

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 54

3.1 The Barycenter and a Projection onto the

Minimal Face

In this section we study the structure of the barycenter of the feasible sets of SDP2

and SDP3. From the direct second lifting in Section 2.4.2, it is clear that the 2n−1

matrices

Yv :=


 1

xv




 1

xv




T

, xv := svec (vv
T), v ∈ V := {±1}n

all belong to Fn. Furthermore, since these are the points we are interested in, we

want to project the feasible set onto Φ, the minimal face of the positive semidefinite

cone (in St(n)+1) such that Yv ∈ Φ ∀ v ∈ V.
Consider the barycenter of the set of points Yv:

Ŷ := 2−n
∑
v∈V

Yv.

By definition of Φ, Ŷ ∈ relintΦ. Since Φ is a proper face, we can find a mapping

from a lower dimensional positive semidefinite cone to Φ. We construct this map-

ping using the results of the next theorem, which describes the structure of the

barycenter Ŷ .

Let Pi,j denote the (t(n)+1)×(t(n)+1) permutation matrix equal to the identity
matrix with the ith and jth columns permuted. We define the (permutation) matrix

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 55

P as the following product of (n− 1) permutation matrices:

P := P2,t(2) P3,t(3) . . . Pn,t(n).

Theorem 3.1.1 The following statements hold for the barycenter Ŷ :

1. Ŷ is a {0, 1}-matrix and

Ŷij =



1, if i = t(k), j = t(l), k, l ∈ {1, . . . , n}, k "= l
1, if i = j ∈ {0, 1, . . . , t(n)}
0, otherwise.

2. The rank of Ŷ is t(n− 1) + 1 and the eigenvalues are (n + 1, 1, 0) with mul-

tiplicities (1, t(n− 1), n) respectively.

3. The null space and range space of Ŷ are

N (Ŷ) = R


 P


 V
0






and

R(Ŷ) = R


 P


 e 0

0 It(n−1)






respectively, where V ∈
(n+1)×n is any matrix such that

[
e V

]
is an

orthogonal matrix.

Proof:

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 56

1. Let v ∈ V and consider Yv. The elements of xv have the form (xv)j = vαvβ,

where j = t(β − 1) + α for α, β ∈ {1, . . . , n}, α "= β, and furthermore

(xv)j =




1, if vα = vβ

−1, otherwise.

First consider the case where α = β = k; here j = t(k) and it is clear that

(xv)t(k) = 1, k = 1, . . . , n. This holds independently of the choice of v so we

may conclude that


 1

xv




t(k)

= 1, k = 0, . . . , n, ∀ v ∈ V. (3.1)

Now suppose α "= β; then vα = vβ for exactly 2n−1 elements of V and vα "= vβ
for the other 2n−1 choices of v. Hence,

∑
v∈V

(xv)j = 0,∀ j "∈ {t(0), . . . , t(n)}. (3.2)

Equations (3.1) and (3.2) together imply that the 0th column of Ŷ equals∑n
k=0 et(k), i.e.

Ŷi,0 =



1, if i ∈ {t(0), . . . , t(n)}
0, otherwise.

By symmetry of Ŷ , Ŷ0,j = Ŷj,0, so it remains to examine Ŷi,j for i, j =

1, . . . , t(n).

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 57

The remaining t(n) columns of Ŷ are:

Ŷ:,j = 2
−n∑

v∈V
(xv)j


 1

xv


 ,

for j = 1, . . . , t(n). If i = j then Ŷi,i = 2
−n∑

v∈V (xv)
2
i = 1, so we now suppose

i "= j.

If i = t(k) and j = t(l) for some k, l ∈ {1, . . . , n}, k "= l, then

Ŷi,j = 2
−n∑

v∈V
(xv)t(k)(xv)t(l) = 1,

using (3.1).

If i "= t(k), ∀k but j = t(l), then

Ŷi,j = 2
−n∑

v∈V
(xv)i = 1,

using (3.1) and (3.2). The case i = t(k) but j "= t(l), ∀l is handled similarly.

Finally, if i "= t(k), ∀k, and j "= t(l), ∀l, then we need only observe that
((xv)i, (xv)j) = (1, 1) in exactly 2

n−2 elements of V , and the same count also
holds for each of the combinations (1,−1), (−1, 1), and (−1,−1). Thus

∑
v∈V

(xv)i(xv)j = 0

and hence Ŷi,j = 0.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 58

2. Define

ŶP := P
T Ŷ P =


 E 0

0 It(n)−n


 ∈ S(t(n)+1)×(t(n)+1).

Since this is a similarity transformation, Ŷ and ŶP have exactly the same

eigenvalues and it suffices to prove the result for ŶP . Also, ŶP is block di-

agonal, so its eigenvalues are those of the blocks. The lower block has the

eigenvalue 1 with multiplicity t(n)−n = t(n−1) (we have the set of standard
eigenvectors en+1, . . . , et(n)). The upper block is clearly rank-one; since

ŶP


 e

0


 = (n+ 1)


 e

0


 ,

n+1 is its only non-zero eigenvalue. For V as in the statement of the theorem,

ŶP


 V

0


 = 0. So the columns of V (extended with zeros) give a set of

eigenvectors for the zero eigenvalue, which has multiplicity n.

3. The result follows by the similarity of Ŷ and ŶP and the proof of the previous

part of the theorem.

Now define the matrix

W := P


 e 0

0 It(n−1)


 ∈
(t(n)+1)×(t(n−1)+1),

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 59

with e ∈
n+1. Then R(Ŷ) = R(W) andW provides a mapping from St(n)+1 to the

minimal face Φ: if Y ∈ Φ then Y = W YP W
T for YP ∈ St(n−1)+1, and we require

YP � 0 to stay in the positive semidefinite cone of the lower dimensional space.
The projected version of SDP3 is thus:

ν∗3 = max trace (W THQW)YP

s.t. trace (W TEiiW)YP = 1, i = 0, . . . , t(n)

trace (W TE0,t(i)W)YP = 1, i = 1, . . . , n

trace (W T (E0,T (i,j) − ET (i,k),T (k,j))W)YP = 0,

∀ k = 1, . . . , n, ∀ 1 ≤ i < j ≤ n
YP � 0, YP ∈ St(n−1)+1,

where Eij :=
1
2
(eie

T
j + eje

T
i). It remains to remove all the redundant constraints in

this projected problem.

Let wi denote the i
th column of W T . The construction of W implies wT

0 =

wT
t(i) = e

T
0 , ∀i ∈ {1, . . . , n}, and the remaining columns of W , i.e.

{wT
T (i,j) : i, j ∈ {1, . . . , n}, i < j} = {eT1 , eT2 , . . . , eTt(n−1)}

form a linearly independent set. (Together with wT
0 , they form a basis for
t(n−1)+1.)

Now, since W TEiiW = wiw
T
i and W

TE0,t(i)W = 1
2
(w0w

T
t(i) + w

T
t(i)w

T
0), we have

W TEt(i),t(i)W = w0w
T
0 = W

TE00W,∀ i ∈ {1, . . . , n}

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 60

and

W TE0,t(i)W = w0w
T
0 =W

TE00W,∀ i ∈ {1, . . . , n}.

Furthermore,

W T (E0,T (i,j) − ET (i,k),T (k,j))W =

1
2
{w0w

T
T (i,j) + wT (i,j)w

T
0 − wT (i,k)w

T
T (k,j) − wT (k,j)w

T
T (i,k)},

therefore if k = i or k = j then wT (i,k) = w0 or wT (k,j) = w0 respectively. Hence,

W T (E0,T (i,j) − ET (i,k),T (k,j))W = 0 if k = i or k = j, (3.3)

and the corresponding constraint is redundant. Removing all these redundant con-

straints, we obtain SDP3P:

(SDP3P)

ν∗3 = max trace (W THQW)YP

s.t. trace (W TEiiW)YP = 1,

i ∈ {0, 1, . . . , t(n)}\{t(1), . . . , t(n)}
trace (W T (E0,T (i,j) − ET (i,k),T (k,j))W)YP = 0,

∀ k "∈ {i, j},∀ 1 ≤ i < j ≤ n
YP � 0, YP ∈ St(n−1)+1.

It is straightforward to check that all the remaining constraints are linearly

independent. Moreover, we prove that Slater’s constraint qualification holds for

SDP3P. This implies that the optimal values of SDP3P and its dual are equal and

we can use a primal-dual interior-point algorithm.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 61

First we simplify our notation. We have the following primal-dual pair:

(SDP3P)

max trace C Y

s.t. diag Y = e

traceAijkY = 0, ∀ (i, j, k) ∈ J
Y � 0, Y ∈ St(n−1)+1

(DSDP3P)

min
t(n−1)+1∑

i=1

xi

s.t. S = Diag (x) +
∑

(i,j,k)∈J
yijkAijk − C

S � 0,
x ∈
t(n−1)+1, y ∈
(n−2)·t(n−1),

where

J := {(i, j, k) : i, j ∈ {1, . . . , n}, i < j, k "∈ {i, j}},

Aijk := W
T (E0,T (i,j) − ET (i,k),T (k,j))W ∀ (i, j, k) ∈ J

and

C := W THQW.

Lemma 3.1.2 Slater’s constraint qualification holds for SDP3P.

Proof: We consider the matrix Ỹ := It(n−1)+1. Since Ỹ (0, we simply need to

verify that it satisfies the equality constraints.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 62

Clearly, diag Ỹ = e. Now observe that

WW T = P


 e 0

0 It(n−1)





 eT 0

0 It(n−1)


 P T

= P


 E 0

0 It(n−1)


 P T

= P ŶP P
T

= Ŷ ,

where ŶP is the matrix defined in the proof of Theorem 3.1.1.

Using this observation, the second set of equality constraints for Ỹ may be

written as

trace (E0,T (i,j) − ET (i,k),T (k,j))Ŷ = 0, ∀ (i, j, k) ∈ J ,

and these equalities hold because

trace (E0,T (i,j) − ET (i,k),T (k,j))Ŷ = 0⇔ Ŷ0,T (i,j) = ŶT (i,k),T (k,j),

and by Theorem 3.1.1(1) both these entries of Ŷ are zero.

It is straightforward to prove that the same is true for the dual problem.

Lemma 3.1.3 Slater’s constraint qualification holds for DSDP3P.

Proof: Choosing ỹijk := 0 ∀ (i, j, k) ∈ J and x̃i := ‖dsvec (Q)‖1 + 1 ∀ i =

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 63

1, . . . , t(n− 1) + 1, the corresponding dual (slack) variable is

S̃ = (‖dsvec (Q)‖1 + 1)It(n−1)+1 − C

which is strictly diagonally dominant and has all its diagonal entries positive. Hence

S̃ is positive definite.

All the results in this section extend to SDP2. The corresponding projected

problem is

(SDP2P)

ν∗2 = max trace C YP

s.t. diag YP = e,

trace (W T RijW)YP = 0, ∀ 1 ≤ i < j ≤ n
YP � 0, YP ∈ St(n−1)+1,

where

Rij := n E0,T (i,j) −
n∑

k=1

ET (i,k),T (k,j).

Using equation (3.3), it is straightforward to check that

W T RijW = (n− 2)W T E0,T (i,j)W −
n∑

k=1, k 	∈{i,j}
W T ET (i,k),T (k,j)W .

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 64

3.2 Comparison of the Relaxations for Selected

Graphs

The relaxations SDP1, SDP2P, and SDP3P were compared for several interesting

problems using the software package SDPpack (version 0.9 Beta) [4]. For complete-

ness we also solved the metric polytope relaxation:

max trace QX

s.t. X ∈Mn,

and the relaxation obtained by adding all the triangle inequalities to SDP1:

max trace QX

s.t. X ∈ En ∩Mn.

The metric polytope relaxation is easily formulated as an LP and we solved it using

the Matlab solver LINPROG. The results are summarized in Table 3.1. The value

ρ equals the value of the optimal cut divided by the bound, and R.E. denotes the

relative error with respect to the optimal cut. A relative error equal to zero means

that the relative error was below 10−6.

The test problems in Table 3.1 are as follows:

• The first line of results corresponds to solving the relaxations for a 5-cycle,
denoted C5, with unit edge weights. This example is well known for almost

achieving the worst-case of the analysis of Goemans and Williamson [41].

Observe that SDP3P solves it exactly.

C
H
A
P
T
E
R

3.
P
R
O
J
E
C
T
IO

N
O
N
T
O

T
H
E

M
IN

IM
A
L
F
A
C
E

A
N
D

C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

65

Graph µ∗ SDP1 SDP2P Mn En ∩Mn SDP3P

bound bound bound bound bound

C5 4 4.5225 4.2889 4.0000 4.0000 4.0000
ρ = 0.8845 ρ = 0.9326 ρ = 1.0000 ρ = 1.0000 ρ = 1.0000
R.E.: 13.06% R.E.: 7.22% R.E.: 0% R.E.: 0% R.E.: 0%

K5 6 6.2500 6.2500 6.6667 6.2500 6.2500
ρ = 0.9600 ρ = 0.9600 ρ = 0.9000 ρ = 0.9600 ρ = 0.9600
R.E.: 4.17% R.E.: 4.17% R.E.: 11.11% R.E.: 4.17% R.E.: 4.17%

K5\e 6 6.2500 6.1160 6.0000 6.0000 6.0000
ρ = 0.9600 ρ = 0.9810 ρ = 1.0000 ρ = 1.0000 ρ = 1.0000
R.E.: 4.17% R.E.: 1.93% R.E.: 0% R.E.: 0% R.E.: 0%

K5 given 9.28 9.6040 9.4056 9.3867 9.2961 9.2800
by A(G) ρ = 0.9663 ρ = 0.9866 ρ = 0.9886 ρ = 0.9983 ρ = 1.0000

R.E.: 3.49% R.E.: 1.35% R.E.: 1.15% R.E.: 0.17% R.E.: 0%
12 13.5 12.9827 12.8571 12.6114 12.4967

AW2
9 ρ = 0.8889 ρ = 0.9243 ρ = 0.9333 ρ = 0.9515 ρ = 0.9603

R.E.: 12.50% R.E.: 8.19% R.E.: 7.14% R.E.: 5.10% R.E.: 4.14%
12 12.5 12.3781 12.0000 12.0000 12.0000

Pet. ρ = 0.9600 ρ = 0.9695 ρ = 1.0000 ρ = 1.0000 ρ = 1.0000
(n = 10) R.E.: 4.17% R.E.: 3.15% R.E.: 0% R.E.: 0% R.E.: 0%
Given in 88 90.3919 89.5733 89.3333 88.0029 88.0000
App.B ρ = 0.9735 ρ = 0.9824 ρ = 0.9851 ρ = 1.0000 ρ = 1.0000
(n = 12) R.E.: 2.72% R.E.: 1.79% R.E.: 1.52% R.E.: 3.3E − 5 R.E.: 0%

Table 3.1: Computational comparison of all Max-Cut relaxations for selected test problems

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 66

• The next three examples are for the complete graph on 5 nodes, denoted K5,

with different choices of edge weights.

– The second line in the table corresponds to K5 with unit edge weights on

all edges. In this example, none of the four SDP relaxations attains the

Max-Cut optimal value, and in fact they are not distinguishable. Only

the polyhedral relaxation M5 gives a noticeably weaker bound.

– The third line corresponds to K5 with unit edge weights on all but one

edge, which is assigned weight zero. For this example, the relaxationM5

attains the exact Max-Cut optimal value (q.v. Barahona’s result quoted

in Section 2.2), hence SDP3P is also exact, by Theorem 2.5.4.

– The fourth line corresponds to the K5 defined by the weighted adjacency

matrix

A(G) =




0 1.52 1.52 1.52 0.16

1.52 0 1.60 1.60 1.52

1.52 1.60 0 1.60 1.52

1.52 1.60 1.60 0 1.52

0.16 1.52 1.52 1.52 0



.

This problem is interesting because the optimal value is different for each

relaxation. Hence this example illustrates the second strict inclusion in

Theorem 2.5.9. Furthermore, SDP3P is the only relaxation that attains

the Max-Cut optimal value.

• The fifth line corresponds to the antiweb AW2
9 [30, Definition 29.1.1] with unit

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 67

edge weights1. The graph is depicted in Figure 3.1. This example also gives

a different optimal value for each relaxation; however, unlike the previous

example, SDP3P is not exact for this graph. Hence this example illustrates

both strict inclusions in Theorem 2.5.9.

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

Figure 3.1: Antiweb AW2
9

• The last two lines correspond to slightly larger graphs. The first one has

10 nodes; it is the well-known Petersen graph with unit edge weights. The

second one is a graph with 12 nodes that also gives a different result for each

relaxation; its weighted adjacency matrix is given in Appendix B.

The results of Table 3.1 cover only small problems. This is because solving the

relaxations SDP2P and SDP3P using SDPpack becomes extremely time-consuming

and requires large amounts of memory even for moderate values of n. To verify

the behaviour of the relaxations on larger problems, we considered two other SDP

packages. One was CSDP (version 2.3), a C implementation of an interior-point

method developed by Brian Borchers [16, 17] and accessible via the NEOS Server for

1Thanks to Franz Rendl for suggesting this example.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 68

Optimization [33] at http://www-neos.mcs.anl.gov/neos/. The second package

was SBmethod, a C++ implementation of the spectral bundle method developed

by Helmberg et al. [49, 46, 45]. Using these packages, we obtained the results

presented in Table 3.2. Again, a relative error equal to zero means that the relative

error was below 10−6.

We point out that for SBmethod, the termination precision parameter was set

(by default) to 10−5. This is the value used to determine whether the maximal

progress of the next step is small in comparison to the absolute value of the function

(see Helmberg [45] for more details). This setting explains the relative errors greater

than 10−6 in the SDP3P bound for n ≥ 30.
The bound SDP1 is known to be excellent both theoretically (ρ ≥ .878 by

Goemans and Williamson [41]) and empirically (ρ ∼= .97, see for example Helm-

berg et al. [50]). Nonetheless, these computational results show that SDP2P and

SDP3P frequently yield a strict improvement over SDP1, and that on randomly

generated test problems (with non-negative integer weights), the SDP3P relaxation

often yields the optimal value of Max-Cut. This motivates our study (in the next

section) of the application of SDP3P to spin glass problems.

For simplicity of notation, in the remainder of this chapter we drop the subscript

P but note that all computation is carried out using SDP3P.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 69

Number µ∗ SDP1 SDP2P SDP3P

of bound bound bound
nodes

10 648 666.428 656.8020 648.000
ρ = 0.9723 ρ = 0.9866 ρ = 1.0000
R.E.: 2.84% R.E.: 1.36% R.E.: 0%

11 1060 1084.345 1072.352 1060.000
ρ = 0.9775 ρ = 0.9885 ρ = 1.0000
R.E.: 2.30% R.E.: 1.17% R.E.: 0%

15 2290 2317.354 2301.634 2290.000
ρ = 0.9882 ρ = 0.9949 ρ = 1.0000
R.E.: 1.19% R.E.: 0.51% R.E.: 0%

16 2270 2318.867 2300.354 2270.000
ρ = 0.9789 ρ = 0.9868 ρ = 1.0000
R.E.: 2.15% R.E.: 1.34% R.E.: 0%

25 380 385.4737 383.6503 380.000
ρ = 0.9858 ρ = 0.9905 ρ = 1.0000
R.E.: 1.44% R.E.: 0.96% R.E.: 0%

30 1705.5 1751.600 1743.205 1705.578
ρ = 0.9737 ρ = 0.9784 ρ = 1.0000
R.E.: 2.70% R.E.: 2.21% R.E.: 4.6E − 5

33 1888.5 1932.968 1926.119 1888.564
ρ = 0.9770 ρ = 0.9805 ρ = 1.0000
R.E.: 2.35% R.E.: 1.99% R.E.: 3.4E − 5

36 27108.55 28305.28 27944.30 27108.81
ρ = 0.9577 ρ = 0.9701 ρ = 1.0000
R.E.: 4.41% R.E.: 3.08% R.E.: 9.8E − 6

Table 3.2: Computational comparison of SDP1, SDP2P, and SDP3P on randomly
generated graphs with non-negative edge weights

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 70

3.3 Application of SDP3 to Spin Glass Problems

An interesting application of the Max-Cut problem arises in the area of statistical

physics. We briefly sketch the context and relevance of Max-Cut to this field and

then present computational results. The background material presented here is

drawn from Fischer and Hertz [34], Jünger and Rinaldi [57], and Section 4.5 of

Deza and Laurent [30].

One of the models developed by physicists in their quest to understand con-

densed states of matter is the so-called spin glass model. Spin glasses are one of the

most complex kinds of condensed states studied in solid state physics and are not

hard to find experimentally. A spin glass is any system consisting of a collection

of magnetic moments (spins) whose low-temperature behaviour is disordered, in

contrast to the uniform or periodic behaviour found in magnets, for example. To

visualize one simple instance of such a system, consider a host non-magnetic metal

(e.g. gold) and a multitude of small magnetic particles diluted in the host metal.

The magnetic particles have a magnetic orientation (spin) which can be de-

scribed by a unit vector in
3. Since each spin generates a magnetic field, the

interactions between this field and every other spin will lead pairs of particles to

interact with each other and orient themselves in identical or opposite directions.

This interaction between pairs of spins is most evident at low temperatures and

yields a certain ordered configuration for the entire system. As a result, most of

the interesting behaviours of spin glasses correspond to states of minimal energy,

commonly called ground states.

To observe ground states experimentally requires the system to be cooled to-

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 71

wards 0oK very slowly and is thus quite time-consuming. Therefore mathematical

models have been developed in order to conduct such experiments using computer

simulations. Finding the ground state of a spin glass system is thus reduced to

the optimization problem of minimizing the Hamiltonian representing the total en-

ergy of the system. We now show how, under certain simplifying assumptions, this

optimization problem is in fact a Max-Cut problem.

3.3.1 The Ising Model

An important simplification of the spin glass model arises by assuming that each

spin can take only one of two possible orientations (“north” and “south”) and that

all the spins are parallel to each other. The three-dimensional vector describing the

spin of each particle can thus be reduced to a single scalar variable restricted to

the values +1 or −1. This simplification, first proposed by in 1925 by Ernst Ising
[53], leads to the well-known Ising model. This model also allows for the presence

of a constant external magnetic field.

Let us suppose that the spin glass has n particles and let vi ∈ {±1} denote the
magnetic orientation of particle i and let v0 denote the magnetic orientation of the

exterior magnetic field which has strength h. For any pair i, j of particles, let Jij

denote the magnitude of the interaction between them. For example

Jij = A
cos(Drij)

B3r3ij
,

where rij is the distance between the particles, and A, B, and D are given constants

which depend on the materials in the system. Then the energy of the system is

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 72

modelled by the Hamiltonian

H := −
n−1∑
i=1

n∑
j=i+1

Jijvivj − h
n∑
j=1

v0vj.

To find the ground state, we want to minimize H over the 2n possible configurations

of the Ising spins (we may assume v0 = +1 without loss of generality). Equivalently,

we can maximize −H.

3.3.2 Max-Cut Formulation

Let G be a complete graph with node set V = {0, 1, . . . , n} and with edge weights
equal to

wij = −Jij, for i, j = 1, . . . , n, i < j,

w0j = −h, for j = 1, . . . , n.

Next rewrite the Hamiltonian H as

H =
n−1∑
i=0

n∑
j=i+1

wijvivj

=
n−1∑
i=0

n∑
j=i+1:vi=vj

wijvivj +
n−1∑
i=0

n∑
j=i+1:vi 	=vj

wijvivj

=
∑

ij 	∈δ(S)

wij −
∑

ij∈δ(S)

wij,

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 73

where S = {i ∈ V : vi = +1} defines a cut in the graph and

δ(S) := {ij : i ∈ S, j ∈ V \S}

equals the set of edges that are cut. Note that vi = vj if and only if the edge

ij "∈ δ(S).
Now define the constant T to equal the sum of all the edge weights:

T :=
n−1∑
i=0

n∑
j=i+1

wij.

Then

H − T = −2
∑

ij∈δ(S)

wij

and so −H = 2
∑

ij∈δ(S)

wij − T . Therefore minimizing the Hamiltonian is equivalent
to the optimization problem:

max 2
∑

ij∈δ(S)

wij − T

s.t. v ∈ {±1}n,

which is a Max-Cut problem.

3.3.3 Further Modelling Issues

The pairwise interactions Jij in a spin glass may be non-zero for every pair of par-

ticles. Because these interactions decrease very rapidly as the distance between the

two particles increases, it is often assumed that Jij = 0 for pairs of particles “suf-

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 74

ficiently” far apart (the exception is the external field which interacts with every

particle in the system). This idea leads to the so-called short range interaction mod-

els, where the particles are placed at regular positions in a two- or three-dimensional

grid and the spin of each particle is assumed to interact only with its nearest neigh-

bours on the grid. The resulting arrangement corresponds to a grid graph.

However, if the grid is not sufficiently large, the behaviour of spins at the bound-

ary of the grid may lead to erroneous computational results. One way to alleviate

this problem in the simulation is to allow wrap-around and let the boundary spins

interact with their “neighbours” on the opposite grid boundary. The result is a

system with periodic boundary conditions and a toroidal graph structure. Because

of the limitations on the size of the SDP3 relaxations that we can solve, our com-

putational study will be limited to such toroidal graphs.

There are several models in the literature for generating the magnitudes and

signs of the pairwise interactions. We consider only two such models. The Gaussian

model draws the interactions from a Gaussian distribution, whereas the ±J model
draws the interactions from a binary distribution that takes on only ±1 values.
(The actual constant J can always be factored out in front of the Hamiltonian.)

All the Ising spin glass problems in our study were generated using the torusgen

codes from Jünger and Liers [56]. The generator of Gaussian instances uses mean 0

and variance 1. The generator of ±1 instances includes a parameter that specifies
the percentage of interactions valued at −1. The case where this is equal to 50% is

of particular interest in this context, therefore we experimented with values in the

range 40% to 60%.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 75

3.3.4 Computational Study of the Semidefinite Relaxations

SDP1 and SDP3 for Ising Spin Glass Problems

Our first two tables of computational results illustrate the behaviour of the relax-

ations SDP1 and SDP3 on 20 Ising spin glass problems. All the problems have

periodic boundary conditions. The numbering scheme for the problems is straight-

forward:

• G2-xx are two-dimensional Ising problems with pairwise interactions drawn
from a Gaussian distribution with mean 0 and variance 1;

• G3-xx are three-dimensional Ising problems with pairwise interactions drawn
from a Gaussian distribution with mean 0 and variance 1;

• PM2-xx and PM3-xx are (respectively) two- and three-dimensional Ising prob-
lems with ±1 pairwise interactions. For each problem, the percentage of

interactions valued at −1 is specified.

Table 3.3 gives the details for the problems we solved. For the case of problems

with ±1 interactions, we picked one configuration of the 2-D ±1 problems, namely
the 4× 4, and one configuration of the 3-D ±1 problems, namely the 2× 3× 3, and
varied the percentage of −1’s away from 50%.

Both SDP relaxations were solved using the CSDP package. The times reported

were calculated from the NEOS output and give an indication of the magnitude of

computational effort required for each bound. In particular, we see that problems

with 20 or more spins lead to an instance of SDP3 that typically takes over an hour

to solve using CSDP.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 76

Table 3.4 shows how the bounds SDP1 and SDP3 performed on each problem.

For both bounds, the value of ρ equals the ratio of the optimal Max-Cut value

to the SDP bound. (For all our test problems the dimensions are small so the

optimal Max-Cut value is easy to calculate). We also checked whether the optimal

matrices (in the space Sn) computed by CSDP for each problem were rank-one in

the following sense: a matrix was considered to be rank-one if the second largest

eigenvalue λ2 satisfied λ2 ≤ 10−6. In these cases the n × n matrix had entries
equal to ±1 to within the first several decimals and so by simple rounding of the
entries it was straightforward to read off the corresponding cut. All the cuts that we

extracted in this way achieved the value of the corresponding SDP (upper) bound

and thus were indeed optimal.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 77

Problem Spatial dim. # # # SDP1 SDP3
number and type of rows cols layers time time

interactions

G2-01 2-D Gaussian 3 4 - 0:0:13 0:0:53
G2-02 2-D Gaussian 4 5 - 0:0:09 1:28:21
G2-03 2-D Gaussian 5 4 - 0:0:11 1:28:21
G2-04 2-D Gaussian 6 4 - 0:0:08 14:56:55
G2-05 2-D Gaussian 4 4 - 0:0:10 0:11:29
G3-01 3-D Gaussian 2 2 4 0:0:07 0:26:50
G3-02 3-D Gaussian 3 3 2 0:0:08 1:1:32
G3-03 3-D Gaussian 2 3 2 0:0:07 0:0:52
G3-04 3-D Gaussian 2 4 2 0:0:11 0:10:51
G3-05 3-D Gaussian 5 2 2 0:0:10 1:28:21

PM2-01 2-D ± 1 3 4 - 0:0:08 0:0:52
(50% are -1)

PM2-02 2-D ± 1 4 4 - 0:0:10 0:11:20
(40% are -1)

PM2-03 2-D ± 1 4 4 - 0:0:08 0:10:49
(50% are -1)

PM2-04 2-D ± 1 4 4 - 0:0:14 0:10:50
(60% are -1)

PM2-05 2-D ± 1 5 4 - 0:0:09 2:53:06
(50% are -1)

PM3-01 3-D ± 1 2 3 3 0:0:13 0:33:24
(40% are -1)

PM3-02 3-D ± 1 2 3 3 0:0:13 0:33:21
(45% are -1)

PM3-03 3-D ± 1 2 3 3 0:0:08 0:59:36
(50% are -1)

PM3-04 3-D ± 1 2 3 3 0:0:15 0:31:49
(55% are -1)

PM3-05 3-D ± 1 2 3 3 0:0:14 0:34:54
(60% are -1)

Table 3.3: Problem descriptions and time to compute the SDP bounds

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 78

Problem SDP1 SDP1 SDP3 SDP3 optimal X optimal X
number bound ρ bound ρ for SDP1 had for SDP3 had

λ2 ≤ 10−6 λ2 ≤ 10−6

G2-01 9.3403 0.9825 9.1764 1.0000 No Yes
G2-02 16.2890 0.9775 15.9219 1.0000 No Yes
G2-03 11.1454 0.9666 10.7731 1.0000 No Yes
G2-04 11.8862 0.9288 11.0394 1.0000 No Yes
G2-05 9.6370 0.9985 9.6222 1.0000 No Yes
G3-01 13.9879 0.9999 13.9878 1.0000 No Yes
G3-02 18.1701 0.9720 17.6606 1.0000 No Yes
G3-03 4.7052 0.9730 4.5780 1.0000 No Yes
G3-04 8.0473 0.9192 7.3973 1.0000 No Yes
G3-05 11.7420 0.9942 11.6744 1.0000 No Yes

PM2-01 7.2087 0.8323 6.0000 1.0000 No No
PM2-02 15.2087 0.9205 14.0000 1.0000 No No
PM2-03 10.8416 0.7379 8.0000 1.0000 No No
PM2-04 10.1431 0.9859 10.0000 1.0000 No Yes
PM2-05 15.7962 0.8863 14.0000 1.0000 No No
PM3-01 20.0623 0.9470 19.0000 1.0000 No Yes
PM3-02 17.2188 0.8711 15.0000 1.0000 No No
PM3-03 15.4263 0.9075 14.0000 1.0000 No No
PM3-04 14.5197 0.9642 14.0000 1.0000 No Yes
PM3-05 9.4926 0.8428 8.0000 1.0000 No Yes

Table 3.4: Computed SDP bounds and their optimality

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 79

Next, we fixed one set of parameters and generated a batch of problems with

that set of parameters. We made the choices:

• ±1 pairwise interactions: 5 rows, 4 columns, 50% negative interactions (see

Table 3.5)

• Gaussian pairwise interactions: 5 rows, 4 columns (see Table 3.6)

For a closer look at the behaviour of the ranks of the optimal matrices, we also

kept track of how the ranks of the computed optimal 20 × 20 matrices compared
for both relaxations. The ranks were computed using a tolerance of 10−6, which

means that any eigenvalue with absolute value smaller than 10−6 was considered

to be zero for the purpose of rank determination. An asterisk (*) indicates that an

optimal cut could be read directly from the optimal matrix X by simple rounding

of the entries.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 80

Problem SDP1 SDP1 SDP3 SDP3 Rank of Rank of
number bound ρ bound ρ SDP1 opt. SDP3 opt.

matrix X matrix X

PM2-B01 14.2787 0.8404 12.0000 1.0000 3 13
PM2-B02 14.8775 0.9410 14.0000 1.0000 3 3
PM2-B03 14.8098 0.9453 14.0000 1.0000 3 2
PM2-B04 13.7604 0.8721 12.0000 1.0000 4 17
PM2-B05 15.5298 0.9015 14.0000 1.0000 3 4
PM2-B06 14.8426 0.9432 14.0000 1.0000 3 1 (*)
PM2-B07 15.5846 0.8983 14.0000 1.0000 3 5
PM2-B08 16.0907 0.8701 14.0000 1.0000 3 10
PM2-B09 14.1352 0.8489 12.0000 1.0000 3 15
PM2-B10 13.8398 0.8671 12.0000 1.0000 3 17
PM2-B11 14.7213 0.8151 12.1798 0.9852 3 17
PM2-B12 14.1478 0.8482 12.0000 1.0000 3 14
PM2-B13 14.6379 0.9564 14.0000 1.0000 4 2
PM2-B14 14.5681 0.8237 12.0746 0.9938 3 20
PM2-B15 14.0210 0.8559 12.0000 1.0000 3 17

Table 3.5: SDP bounds for 15 two-dimensional instances with ±1 pairwise interac-
tions, 5 rows, 4 columns, and 50% negative interactions

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 81

Problem SDP1 SDP1 SDP3 SDP3 Rank of Rank of
number bound ρ bound ρ SDP1 opt. SDP3 opt.

matrix X matrix X

G2-B01 18.8588 0.9977 18.8155 1.0000 2 1 (*)
G2-B02 14.7421 0.9731 14.3457 1.0000 2 1 (*)
G2-B03 13.2008 0.9157 12.0874 1.0000 3 1 (*)
G2-B04 12.5660 0.9911 12.4538 1.0000 2 1 (*)
G2-B05 9.8149 0.9483 9.3077 1.0000 2 1 (*)
G2-B06 17.2963 0.9742 16.8504 1.0000 2 1 (*)
G2-B07 10.5096 0.9452 9.9339 1.0000 3 1 (*)
G2-B08 11.4777 0.9340 10.7200 1.0000 4 1 (*)
G2-B09 19.4582 0.9894 19.2519 1.0000 3 1 (*)
G2-B10 13.8900 0.9456 13.1340 1.0000 2 1 (*)
G2-B11 16.4840 0.9770 16.1048 1.0000 2 1 (*)
G2-B12 22.7340 0.9569 21.7535 1.0000 2 1 (*)
G2-B13 13.9023 0.9675 13.4504 1.0000 2 1 (*)
G2-B14 11.1122 0.9848 10.9436 1.0000 2 1 (*)
G2-B15 15.9040 0.9628 15.3119 1.0000 3 1 (*)

Table 3.6: SDP bounds for 15 two-dimensional instances with Gaussian pairwise
interactions, 5 rows, 4 columns

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 82

To solve problems larger than n = 20, we used SBmethod [45]. We set the

termination precision parameter (-te) to 10−4 but even so solving SDP3 often

took several hours: in fact the time varied from a few minutes to over four hours

depending on the problem.

This weaker precision requirement meant that the eigenvalues of the optimal

matrices were not as clearly separated between zeros and non-zeros. Therefore

the simple rank-determination procedure used previously did not work as well.

Nonetheless, it was often possible to get an optimal cut from the optimal matrix

computed by SBmethod for SDP3 by applying the following simple heuristic: Take

the optimal matrix computed by SBmethod for SDP3 and round all its entries to

±1 according to sign. Of course, zeros may occur, but we do not concern ourselves
with this; we just wish to check how often this heuristic can extract an optimal

cut. Then check whether the resulting matrix is positive semidefinite (there is no

reason why this should be preserved after the rounding is done). If it is, then check

its rank and, if the rank equals one, then extract the corresponding cut and check

its optimality by comparing its value with the bound computed by SDP3. The

rightmost column in the next two tables indicates whether this heuristic actually

yielded an optimal cut.

For comparison purposes, we applied the same heuristic to SDP1. The results

are presented in Tables 3.7 and 3.8.

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 83

Problem SDP1 SDP1 SDP3 SDP3 Does SDP1 Does SDP3
number bound ρ bound ρ rounded rounded

opt. matrix X opt. matrix X
remain � 0 remain � 0

& yield opt. cut? & yield opt. cut?

PM2-2B01 14.1385 0.8487 12.0033 0.9997 No No
PM2-2B02 14.3700 0.9743 14.0002 1.0000 No Yes
PM2-2B03 15.2119 0.9203 14.0011 0.9999 No No
PM2-2B04 13.4624 0.8914 12.0013 0.9999 No No
PM2-2B05 13.6693 0.8779 12.0003 1.0000 No No
PM2-2B06 13.9242 0.8618 12.0011 0.9999 No No
PM2-2B07 14.4899 0.9662 14.0010 0.9999 No Yes
PM2-2B08 13.5102 0.8882 12.0002 1.0000 No Yes
PM2-2B09 13.2993 0.9023 12.0007 0.9999 No No
PM2-2B10 17.4753 0.9156 16.0015 0.9999 No Yes
PM2-2B11 13.2813 0.9035 12.0015 0.9999 No No
PM2-2B12 13.7794 0.8709 12.0010 0.9999 No No
PM2-2B13 13.4571 0.8917 12.0001 1.0000 No Yes
PM2-2B14 14.2686 0.9812 14.0001 1.0000 No Yes
PM2-2B15 14.6953 0.9527 14.0002 1.0000 No Yes

PM2-2B16 21.4629 0.9318 20.0022 0.9999 No No
PM2-2B17 21.3496 0.9368 20.0012 0.9999 No No
PM2-2B18 23.6477 0.9303 22.0056 0.9997 No No
PM2-2B19 21.4248 0.9335 20.0021 0.9999 No No
PM2-2B20 23.6510 0.9302 22.0016 0.9999 No No
PM2-2B21 23.3862 0.9407 22.0015 0.9999 No No
PM2-2B22 23.4821 0.9369 22.0020 0.9999 No No
PM2-2B23 23.3058 0.9440 22.0043 0.9998 No No
PM2-2B24 21.5622 0.9275 20.0056 0.9997 No No
PM2-2B25 24.0359 0.9153 22.0018 0.9999 No No
PM2-2B26 23.7228 0.9274 22.0025 0.9999 No No
PM2-2B27 23.4800 0.9370 22.0038 0.9998 No No
PM2-2B28 23.1365 0.9509 22.0037 0.9998 No No
PM2-2B29 21.9249 0.9122 20.0039 0.9998 No No
PM2-2B30 23.1911 0.9486 22.0036 0.9998 No No

Table 3.7: Results for 30 two-dimensional instances with ±1 pairwise interactions, 4
rows, 6 columns; instances B01 to B15 have 60% negative interactions, and instances
B16-B30 have 40% negative interactions

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 84

Problem SDP1 SDP1 SDP3 SDP3 Does SDP1 Does SDP3
number bound ρ bound ρ rounded rounded

opt. matrix X opt. matrix X
remain � 0 remain � 0

& yield opt. cut? & yield opt. cut?

G3-B01 20.7215 0.9220 19.1064 1.0000 No Yes
G3-B02 20.6533 0.9081 18.7550 0.9999 No Yes
G3-B03 23.2266 0.9407 21.8492 1.0000 No Yes
G3-B04 27.5300 0.9160 25.2183 1.0000 No Yes
G3-B05 30.4599 0.9401 28.6357 1.0000 No Yes
G3-B06 27.5609 0.9592 26.4379 1.0000 No Yes
G3-B07 20.6411 0.9311 19.2200 0.9999 No Yes
G3-B08 16.3548 0.8731 14.2789 0.9999 No Yes
G3-B09 23.3815 0.9066 21.1967 1.0000 No Yes
G3-B10 26.6095 0.9458 25.1687 1.0000 No Yes
G3-B11 26.9040 0.9757 26.2517 1.0000 No Yes
G3-B12 16.6815 0.9461 15.7827 0.9999 No Yes
G3-B13 22.6882 0.9459 21.4621 1.0000 No Yes
G3-B14 27.1578 0.9513 25.8363 1.0000 No Yes
G3-B15 25.7163 0.9935 25.5507 0.9999 No Yes
G3-B16 27.3973 0.9859 27.0125 0.9999 No Yes
G3-B17 19.9860 0.8980 17.9476 0.9999 No Yes
G3-B18 25.8479 0.9677 25.0144 1.0000 No Yes
G3-B19 25.4209 0.9339 23.7411 1.0000 No Yes
G3-B20 20.5478 0.8931 18.3532 0.9999 No Yes
G3-B21 20.1629 0.9719 19.5975 0.9999 No Yes
G3-B22 20.7638 0.9910 20.5795 0.9999 No Yes
G3-B23 27.5138 0.9273 25.5140 1.0000 No Yes
G3-B24 18.0188 0.9242 16.6527 1.0000 No Yes
G3-B25 20.7169 0.9399 19.4721 1.0000 No Yes
G3-B26 23.4681 0.9694 22.7506 1.0000 No Yes
G3-B27 26.9078 0.9495 25.5491 1.0000 No Yes
G3-B28 22.3647 0.9263 20.7178 1.0000 No Yes
G3-B29 19.2096 0.9626 18.4930 0.9999 No Yes
G3-B30 31.2686 0.9629 30.1105 1.0000 No Yes

Table 3.8: Results for 30 three-dimensional instances with Gaussian pairwise inter-
actions, 3 rows, 3 columns, 3 layers

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 85

Note that for every problem in Table 3.7 where this simple heuristic failed, the

SDP3 bound is very close to the optimal value of Max-Cut, i.e. ρ ≈ 1. Therefore

the computed optimal matrix X∗ ∈ Fn lies in, or very close to, an optimal face
of the positive semidefinite cone in Sn , and so a purification procedure similar to
those for linear programming (see for example Lewis [69], Kortanek and Zhu [60])

might be able to find an optimal cut starting from X∗ and confirm optimality with

the value of the SDP3 bound.

One final point about the bounds provided by SDP3 is that if we solve SDP3

using an algorithm that solves the dual problem, such as the bundle method imple-

mented in SBmethod, then it is possible to stop the algorithm before completion

and obtain an upper bound on µ∗, the value of the maximum cut. Because we stop

the algorithm before completion, such bounds can be computed for much larger

problems than those presented so far and can improve on the bound yielded by

SDP1, even when the latter is solved to optimality. Table 3.9 presents some evi-

dence of this for problems with n varying between 80 and 108.

When computing provably optimal solutions for NP-hard problems such as Max-

Cut, some kind of enumerative technique must usually be applied. In this context, it

is often worthwhile to compute good bounds at the current node of the enumeration

tree before branching. It may be worthwhile for such methods to invest the time

required to get a very tight bound using SDP3 at the root node of the enumeration

tree, and perhaps also at other branching nodes, to help reduce the combinatorial

explosion in the enumerative process. Current and future research efforts on solving

sparse structured SDPs (see [14, 27, 22, 23, 24, 25, 35, 36, 74]) may lead to efficient

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 86

methods for computing the SDP3 bound for large instances of Max-Cut.

C
H
A
P
T
E
R

3.
P
R
O
J
E
C
T
IO

N
O
N
T
O

T
H
E

M
IN

IM
A
L
F
A
C
E

A
N
D

C
O
M
P
U
T
A
T
IO

N
A
L
R
E
S
U
L
T
S

87

Dimension # # # Exact Exact SDP3 SDP3 SDP3
and type of rows cols layers Max-Cut SDP1 bound bound bound
interactions value bound after after after

µ∗ (time) 2 hours 4 hours 6 hours

3-D ±1 (50% −1) 4 4 5 70 80.1634 79.1668 79.0373 78.8684
n = 80 (1 sec.)

3-D ±1 (50% −1) 3 5 6 80 89.8366 89.6088 89.0331 88.8184
n = 90 (1 sec.)

2-D ±1 (50% −1) 5 19 - 66 74.4966 74.6724 74.3339 74.1664
n = 95 (2 sec.)

3-D ±1 (50% −1) 3 5 7 92 104.4611 112.3705 104.5821 103.8961
n = 105 (2 sec.)

3-D Gaussian 4 4 6 82.89442 90.0685 87.4646 86.2858 85.8233
n = 96 (3 sec.)

2-D Gaussian 9 11 - 55.34969 59.8389 60.5334 58.4295 57.8747
n = 99 (2 sec.)

2-D Gaussian 10 10 - 55.59722 58.8150 59.2651 57.4884 56.9097
n = 100 (3 sec.)

3-D Gaussian 3 4 9 71.94114 80.1510 83.2906 77.6150 76.5602
n = 108 (4 sec.)

Table 3.9: Computational comparison of the bounds SDP1 and SDP3 on toroidal graphs for larger values of n
(all times are as reported by SBmethod); the exact Max-Cut values were computed by Liers [70]

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 88

3.3.5 Summary of Empirical Observations

The computational results which we have presented for Ising spin glass problems

lead to the following empirical observations:

1. SDP3 always found the value of the optimal cut for the problems with Gaus-

sian distributed interactions.

2. SDP3 almost always found the value of the optimal cut for the problems with

± 1 interactions.

3. Furthermore, a very simple rounding procedure applied to the matrix X ob-

tained by solving SDP3 seems to often yield an optimal rank-one matrix and

hence an optimal cut: it found an optimal cut for all problems with Gaus-

sian distributed interactions, and also for several of the problems with ± 1

interactions.

4. The remarkable tightness of the bounds obtained with SDP3 may make it

worthwhile for enumerative techniques to invest the computational effort re-

quired to compute the bound at the root node of the enumeration tree, and

perhaps also at other branching nodes, in order to reduce the combinatorial

explosion in the enumerative process.

One interesting question is how to design a more sophisticated rounding pro-

cedure than the one used here. The rounding procedure should perhaps make use

of all the information contained in the optimal matrix Y computed by SBmethod,

instead of using only the matrix X ∈ Sn obtained from the first column of Y . Such

CHAPTER 3. PROJECTION ONTO THE MINIMAL FACE AND
COMPUTATIONAL RESULTS 89

a procedure might be related to the well-known randomized algorithm of Goemans

and Williamson [41], although it is worth noting that their analysis does not ap-

ply to Ising spin glass problems which have negative pairwise interactions (edge

weights). This question is the focus of continuing research.

The computational results presented in this chapter demonstrate the remark-

ably good bounds computed by the relaxation SDP3. The strength of SDP3 thus

motivates our focus on this tighter relaxation in Chapters 4 and 5 where we study

the geometry of the set Fn and connections to the ranks of the matrix Y feasible

for SDP3.

Chapter 4

Rank Characterization of the

Faces of C3

In Section 2.5 we proved that Fn ⊆ Mn for n ≥ 3. Using well-known results of

polyhedral theory, it immediately follows that F3 = C3, since the triangle inequali-

ties define all the facets of C3 (see for example Deza and Laurent [30, page 503]).

The polytope C3 is three-dimensional and, beside the face of dimension 3 that is

C3 itself, it has faces of dimensions 0 (vertices), 1, and 2 (facets).

In this chapter we prove that given Y ∈ F3, where F3 is the feasible set of SDP3

for the complete graph on 3 nodes, the rank of Y characterizes the dimension of

the face of C3 where X = sMat (Y1:6,0) lies. This shows explicitly the connection

between the rank of the variable Y of the second lifting and the possible locations of

the projected matrix X within C3. The results we prove for n = 3 cast further light

on how SDP3 captures all the structure of C3, and furthermore they are stepping

stones for studying similar rank relationships for n ≥ 4 in Chapter 5.

90

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 91

4.1 Ranks of Matrices in Low Dimensional Faces

of Cn

In this section we present some elementary facts about the cut polytope Cn. First

we recall from Deza and Laurent [30] the definition of k-neighbourliness: Given

k ≥ 1, a polytope is said to be k-neighbourly if, for every subset of at most k

vertices of the polytope, the convex hull of this subset of vertices is a face of the

polytope. This implies, in particular, that every subset of k vertices of the polytope

is affinely independent. In the proof of Lemma 4.1.1, we will make use of the fact

that the cut polytope is 2-neighbourly. The 2-neighbourliness property follows from

the fact that the cut polytope is, in fact, 3-neighbourly (see Deza and Laurent [30,

page 540]), but was first proved independently by Barahona and Mahjoub [13].

The results in Lemma 4.1.1 are elementary and reflect well-known results about

the cut polytope. However, because we study the cut polytope in the matrix space

Sn rather than in the vector space
t(n−1), these results are not explicitly stated

in the literature to the best of our knowledge. Hence we state and prove them for

completeness.

Lemma 4.1.1 Let v1, . . . , v2n−1 be elements of {±1}n that represent the 2n−1 dis-

tinct cuts possible for the complete graph on n nodes, n ≥ 3. By definition,

Cn = conv{vi vTi , i = 1, . . . , 2n−1}.

Then

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 92

1. X is a vertex of Cn if and only if X = vi v
T
i for some i ∈ {1, . . . , 2n−1}.

2. X is in the relative interior of a face of Cn of dimension 1 if and only if

X = α vi v
T
i + (1 − α) vj vTj for some α ∈ (0, 1) and {i, j} ⊆ {1, . . . , 2n−1},

i "= j.

Proof: To prove the first claim, note that if X is a vertex of Cn, then X must

be a generator of the convex hull, and thus X = vi v
T
i for some i ∈ {1, . . . , 2n−1}.

The converse is also straightforward to prove. For completeness, and because

the proof illustrates some interesting aspects of the structure of Cn, we present

a proof that follows the approach employed in Laurent and Poljak [64] to prove

Theorem 4.2.1 below.

Suppose X̄ = vi v
T
i . It suffices to prove that the normal cone N (Cn, X̄) is full

dimensional, i.e. has dimension t(n − 1) =
(
n

2

)
. For each pair of indices i, j,

1 ≤ i < j ≤ n, define the matrix

Bij :=




Eij, if X̄ij = 1

−Eij, if X̄ij = −1.

Then, for any X ∈ Cn,

〈
Bij, X − X̄

〉 ≤ 0 ⇔ 〈Bij, X〉 ≤
〈
Bij, X̄

〉
⇔ X̄ij Xij ≤ 1,

which holds since every element of X has absolute value at most 1. Hence, Bij ∈
N (Cn, X̄).

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 93

Since the set {Bij | 1 ≤ i < j ≤ n} is linearly independent and has dimension
t(n− 1), it follows that N (Cn, X̄) is full dimensional. Hence X̄ is a vertex of Cn.

To prove the second claim, first assume that X is in the relative interior of

a face of dimension 1. Then by definition of such a face, X is the strict convex

combination of two vertices, i.e. X is formed exactly as claimed.

Conversely, if X = α vi v
T
i + (1 − α) vj vTj , then the fact that the cut polytope

is 2-neighbourly implies that the convex hull of the vertices vi v
T
i and vj v

T
j is a

(one-dimensional) face of Cn, and hence X is in the relative interior of a face of

dimension 1.

4.2 Ranks of Matrices in En
For the elliptope, only the vertices of Cn are completely characterized by the rank

of X. Laurent and Poljak proved the following theorem (expressed here using our

notation):

Theorem 4.2.1 (Laurent and Poljak, Theorem 2.5 in Laurent and Poljak [64])

The elliptope En has precisely 2n−1 vertices, each of the form vi v
T
i for some

i ∈ {1, . . . , 2n−1}.

By Lemma 4.1.1, the vertices of En are thus exactly the vertices of Cn. However,

the correspondence between rank and geometric structure breaks down as soon as

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 94

we consider matrices with rank equal to 2. Indeed, for n = 3 consider the matrix

X̃ =




1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1


 .

It can easily be checked that X̃ ∈ E3 and has rank equal to two. However,

X̃12 + X̃13 + X̃23 = −3
2
< −1

and so X̃ violates the triangle inequality X12 +X13 +X23 ≥ −1. Hence X̃ "∈ C3.

In this chapter we prove Theorem 4.4.7 which shows that, in contrast to the

elliptope case, whenever Y ∈ F3 and X = sMat (Y1:6,0), the rank of Y completely

characterizes the dimension of the face of C3 in which X lies. In the next section,

we prove some results about the ranks of the matrices in C3. These results will be

used to prove the aforementioned characterization.

4.3 Ranks of Matrices in C3

For the rest of this chapter, we focus our attention on the polytope C3 and the

ranks of the matrices therein. First observe that there are four distinct cuts for the

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 95

complete graph K3, which we represent by the vectors

v1 =



1

1

1


 , v2 =




1

1

−1


 , v3 =




1

−1
1


 , and v4 =




1

−1
−1


 .

It is straightforward to check that every subset of three (or fewer) of these vectors

is linearly independent. Recall that X ∈ C3 if and only if

X =
4∑
i=1

αi vi v
T
i ,

4∑
i=1

αi = 1, αi ≥ 0, i = 1, 2, 3, 4. (4.1)

Lemma 4.3.1 X ∈ C3 is positive definite if and only if every convex combination

in (4.1) that equals X has at least three αi positive.

Proof: Every X ∈ C3 is equal to a sum of matrices each with rank (at most)

one, therefore

rank (X) = rank

(
4∑
i=1

αi vi v
T
i

)
≤

4∑
i=1

rank
(
αi vi v

T
i

)
.

If X is positive definite then rank (X) = 3, therefore at least three of the matri-

ces αi vi v
T
i must be non-zero. Hence at least three αi are positive in any convex

combination of vertices equal to X.

To prove sufficiency, suppose that every convex combination of vertices equal

to X has at least three αi positive. We prove that X is positive definite by contra-

diction.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 96

Suppose there exists w ∈
3 such that w "= 0 and X w = 0. Because every

subset of three vi’s forms a basis for
3, we may assume without loss of generality

that vT1 w "= 0 and vT2 w "= 0 (that is, at least two vi’s are not orthogonal to w).

Then

X w = α1 v1 (v
T
1 w) + α2 v2 (v

T
2 w) + α3 v3 (v

T
3 w) + α4 v4 (v

T
4 w) = 0 (4.2)

therefore

α1 (v
T
1 w) v

T
1 = −

[
α2 (v

T
2 w) v

T
2 + α3 (v

T
3 w) v

T
3 + α4 (v

T
4 w) v

T
4

]

and, multiplying by w on the right, we obtain that

α1 (v
T
1 w)

2 = − [
α2 (v

T
2 w)

2 + α3 (v
T
3 w)

2 + α4 (v
T
4 w)

2
]
.

Now observe that each term αi (v
T
i w)

2 is non-negative. Hence both sides of the

equation must equal zero. Since vT1 w "= 0, α1 = 0 must hold, and similarly α2 = 0

must also hold. This contradicts our assumption that every convex combination of

vertices equal to X has at least three αi positive.

Lemma 4.3.2 X ∈ C3 has rank equal to 1 if and only if X = vi v
T
i for some

i ∈ {1, 2, 3, 4}.

Proof: Sufficiency is immediate. So suppose X ∈ C3 has rank equal to 1. By

Lemma 4.3.1, every linear combination of vertices equal to X has at most two αi

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 97

non-zero. To get a contradiction, suppose that some linear combination equal to X

has two αi non-zero. Further suppose α3 = 0 and α4 = 0 without loss of generality.

Now proceed as follows:

1. Choose w1 ∈
3 such that vT2 w1 = 0 and v
T
1 w1 "= 0 (this is possible because

v1 and v2 are linearly independent). Then

X w1 = α1 (v
T
1 w1) v1 + α2 (v

T
2 w1) v2 = α1 (v

T
1 w1) v1,

where α1 (v
T
1 w1) "= 0. Hence v1 is in the range of X.

2. Similarly, choose w2 ∈
3 such that vT1 w2 = 0 and vT2 w2 "= 0, and conclude

that v2 is in the range of X.

Since {v1, v2} form a linearly independent set, the range of X has dimension at

least 2. But the rank of X equals the dimension of its range, hence rankX ≥ 2,

which is a contradiction. This concludes the proof.

Corollary 4.3.3 X ∈ C3 has rank equal to 2 if and only if there exists α ∈ (0, 1)
and i "= j, i, j ∈ {1, 2, 3, 4} such that X = α vi v

T
i + (1− α) vj vTj .

Proof: Again sufficiency is immediate by the linear independence of {vi, vj} for
i "= j, i, j ∈ {1, 2, 3, 4}. And, if rankX = 2 then

• by Lemma 4.3.1, every convex combination equal to X has at most two αi

non-zero;

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 98

• by Lemma 4.3.2, every convex combination equal to X has at least two αi

non-zero.

Hence the result.

We summarize our results on the ranks of matrices X ∈ C3 in the following

theorem:

Theorem 4.3.4 Let X ∈ C3, i.e.

X =
4∑
i=1

αi vi v
T
i ,

4∑
i=1

αi = 1, αi ≥ 0, i = 1, 2, 3, 4.

Then

• rankX = 1 ⇔ X is a vertex of C3;

• rankX = 2 ⇔ X is in the relative interior of a face of C3 of dimension 1.

• rankX = 3 ⇔ every convex combination of vertices equal to X has at least

three αi positive.

Proof: This result follows immediately from Lemmas 4.1.1, 4.3.1, 4.3.2, and

Corollary 4.3.3.

We see that while the vertices and one-dimensional faces of C3 are completely

characterized by the rank of X, knowledge of the rank of X is insufficient to dis-

tinguish whether X lies in the relative interior of a facet (face of dimension 2) or

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 99

in the interior of the cut polytope. We now prove that the rank of the variable Y

in the second lifting achieves this purpose.

4.4 Rank Connections Between F3 and C3
In order to simplify the proofs, for the rest of this chapter and in Chapter 5 we will

work with the matrix Y projected onto the minimal face. Note that the columns of

Y that are not explicitly considered in the minimal face, in this case columns 1,3,

and 6, are all equal to column 0. In general, whenever Y ∈ Fn, the columns indexed

by T (k, k) are all equal to column 0, since positive semidefiniteness of the 3 × 3
principal submatrix of Y corresponding to the rows and columns {0, T (k, k), T (i, j)}
gives




1 1 Y0,T (i,j)

1 1 YT (k,k),T (i,j)

Y0,T (i,j) YT (k,k),T (i,j) 1


 � 0⇒ YT (i,j),T (k,k) = YT (i,j),0.

The implication follows by symmetry and by Lemma 4.4.2 proved below. Hence,

the rank of Y ∈ Fn always equals the rank of its projection onto the minimal face,

and all the upcoming results in this chapter and the next hold identically for the

unprojected matrix Y .

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 100

Let us therefore set the notation (for the case n = 3):

X =




1 X12 X13

X12 1 X23

X13 X23 1


 and Y =




1 X12 X13 X23

X12 1 X23 X13

X13 X23 1 X12

X23 X13 X12 1



.

We will make use of the following well-known result from matrix theory (see for

example Theorem 4.3.8 in Horn and Johnson [51]):

Let A be a given n× n Hermitian matrix, let y be a given n-vector, and let a be a
given real number. Let Â be the (n + 1) × (n + 1) Hermitian matrix obtained by
bordering A with y and a as follows:

Â ≡


 A y

yT a


 .

Let the eigenvalues of A and Â be denoted by {λi(A)} and {λi(Â)} respectively,
and assume that they have been arranged in increasing order λ1(A) ≤ . . . ≤ λn(A)
and λ1(Â) ≤ . . . ≤ λn+1(Â). Then

λ1(Â) ≤ λ1(A) ≤ λ2(Â) ≤ λ2(A) ≤ . . . ≤ λn−1(A) ≤ λn(Â) ≤ λn(A) ≤ λn+1(Â).

The first lemma of this section establishes that the matrices Y with rank equal

to 1 map to the vertices of C3.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 101

Lemma 4.4.1 Let Y ∈ F3 and X = sMat (Y1:6,0). Then

rankY = 1⇔ rankX = 1.

Proof: First suppose rankY = 1. Then rankX ≤ 1, since X is a principal

submatrix of Y . But X "= 0, hence rankX = 1.

Now suppose rankX = 1. Since X � 0, Theorem 2.1.1 implies that X ∈
{±1}3×3. Hence, Y ∈ {±1}4×4 and since Y ∈ F3 implies Y � 0, Theorem 2.1.1

implies rankY = 1.

Having settled the vertex case, we proceed to prove some simple but very useful

facts about the higher rank occurrences of Y . First we state and prove a simple

technical lemma that will be useful in this chapter and the next.

Lemma 4.4.2 Suppose 

1 a b

a 1 c

b c 1


 � 0.

Then

1. If a2 = 1 then b = a c;

2. If b2 = 1 then a = b c;

3. If c2 = 1 then a = c b.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 102

Proof: We prove only the case b2 = 1. The other cases are proved similarly, or

may be reduced to this case by symmetrically permuting rows and columns of the

matrix.

Positive semidefiniteness of the matrix implies that its determinant is non-

negative, therefore

(1− c2)− a(a− bc) + b(ac− b) ≥ 0

which implies

−(b2 c2 + a2 − 2 a b c) ≥ 0,

since b2 = 1. Equivalently,

−(a− b c)2 ≥ 0

holds, and hence a = b c.

We note that all three implications of Lemma 4.4.2 may hold simultaneously.

This is exemplified by the matrix




1 1 −1
1 1 −1
−1 −1 1


 =




1

1

−1


 ·




1

1

−1




T

.

The next lemma establishes the possible ranks of Y whenever one or more of

the elements of X have absolute value equal to 1.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 103

Lemma 4.4.3 Let Y ∈ F3 and X = sMat (Y1:6,0). Then the following hold:

1. If |Xij| = 1 for some pair i, j, i "= j, then rankY ≤ 2.

2. If exactly one Xij has absolute value equal to 1, then rankY = 2.

3. If two or three off-diagonal elements of X have absolute value equal to 1, then

rankY = 1.

Proof: The proof considers the possible cases with at least one element Xij ∈
{±1}. If all three of X12, X13, and X23 are equal to ±1 then by Theorem 2.1.1,

rankY = 1. If two of them are equal to ±1, let us suppose without loss of generality
that |X12| = 1 and |X13| = 1. If X12 = 1 then the leading 3×3 principal submatrix
of Y is positive semidefinite, so applying Lemma 4.4.2,




1 1 X13

1 1 X23

X13 X23 1


 � 0⇒ X23 = X13,

and thus X23 also equals ±1, therefore rankY = 1 again. Similarly, X12 = −1 ⇒
X23 = −X13 ∈ {±1} and rankY = 1.

Finally, if exactly one of them equals ±1, suppose again without loss of gener-

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 104

ality that |X12| = 1. If X12 = 1 then X23 = X13 but neither equals ±1 and

Y =




1 1 X13 X13

1 1 X13 X13

X13 X13 1 1

X13 X13 1 1




which has rank equal to two. Similarly, X12 = −1⇒ X23 = −X13 and again

rankY = 2.

Lemma 4.4.4, which we now prove, is perhaps a surprising result. It shows that

if X ∈ F3 has rank equal to two, then one of its elements has absolute value equal

to one. Such a statement does not hold for the elliptope E3, as is demonstrated for

example by the matrix X̃ presented in Section 4.2. Lemma 4.4.4 will also be very

useful in the sequel.

Lemma 4.4.4 If X ∈ F3 and rankX = 2 then |Xij| = 1 for some i "= j.

Proof: If X has rank equal to 2 then X is singular. Clearly not all three off-

diagonal entries of X can equal zero. Suppose two elements of X equal zero, and

without loss of generality, that X12 = 0 and X13 = 0, so that

X =



1 0 0

0 1 X23

0 X23 1


 .

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 105

Since X is singular, detX = 0 holds and so

1−X2
23 = 0,

which implies X23 = ±1.
Now suppose at most one element of X equals zero. Since X is singular, there is

a linear dependency between its three columns and therefore there exist two scalars

α and β, not both zero, such that

1 = αX12 + β X13 (4.3)

X12 = α+ β X23 (4.4)

X13 = αX23 + β (4.5)

If α = 0 then equation (4.5) implies X13 = β, therefore equation (4.3) implies

X2
13 = 1 and we are done. Similarly, if β = 0 then equation (4.4) implies X12 = α,

therefore equation (4.3) implies X2
12 = 1 and we are again done.

Therefore we may suppose that α "= 0 and β "= 0. Using equations (4.4) and

(4.5) to substitute for X12 and X13 in equation (4.3) and solving for X23, we obtain

the equation

X23 =
1− α2 − β2

2αβ
. (4.6)

Now, rankX = 2 implies λ1(X) = 0 and therefore, by the interlacing of eigen-

values, λ1(Y) = 0. So detY = 0 and substituting for X12 and X13 in Y using (4.4)

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 106

and (4.5), we have

det




1 α+ β X23 αX23 + β X23

α+ β X23 1 X23 αX23 + β

αX23 + β X23 1 α+ β X23

X23 αX23 + β α+ β X23 1



= 0

which, upon expanding the determinant, is equivalent to

(1− 2α2 − 2β2 + α4 + β4 − 2α2 β2) (1− 2X2
23 +X

4
23) = 0. (4.7)

Equation (4.6) implies

X2
23 =

(1− α2 − β2)2

4α2 β2

=
1− 2α2 − 2β2 + α4 + β4 + 2α2 β2

4α2 β2

and therefore we have the equation

1−X2
23 =

4α2 β2 − (1− 2α2 − 2β2 + α4 + β4 + 2α2 β2)

4α2 β2

from which it follows that

−4α2 β2 (1−X2
23) = 1− 2α2 − 2β2 + α4 + β4 − 2α2 β2. (4.8)

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 107

Substituting for the first term on the left-hand side of equation (4.7) using

equation (4.8), we conclude that

(−4α2 β2 (1−X2
23)) (1− 2X2

23 +X
4
23) = 0

or, equivalently,

−4α2 β2 (1−X2
23)

3 = 0.

Since α "= 0 and β "= 0, we must have 1 − X2
23 = 0 ⇔ X23 = ±1. This concludes

the proof.

The next lemma shows that the rank correspondence between X and Y also

holds for the rank-two case.

Lemma 4.4.5 Let Y ∈ F3 and X = sMat (Y1:6,0). Then

rankY = 2⇔ rankX = 2.

Proof: If rankY = 2 then

λ1(Y) ≤ λ1(X) ≤ λ2(Y) ≤ λ2(X) ≤ λ3(Y) ≤ λ3(X) ≤ λ4(Y),

and λ1(Y) ≥ 0 by positive semidefiniteness.
Hence,

rankY = 2 ⇒ λ2(Y) = 0

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 108

⇒ λ1(X) = 0

⇒ rankX ≤ 2.

But by Lemma 4.4.1, rankX = 1⇔ rankY = 1. Hence rankX = 2.

Conversely, suppose that rankX = 2. By Lemma 4.4.4, Xij = ±1 for some pair
i, j, i "= j, and by Lemma 4.4.3 this implies rankY ≤ 2. Finally, by Lemma 4.4.1,

the rank of Y cannot equal 1 if rankX = 2. Hence rankY = 2.

The only remaining possible value for rankX is 3, i.e. X is full-rank and thus

lies in the relative interior of E3. This corresponds to Y having rank either 3 or 4.

The next lemma shows that the rank of Y being equal to 3 characterizes the cases

where one of the triangle inequalities holds tightly, and thus X lies in the relative

interior of a facet of C3.

Lemma 4.4.6 Let Y ∈ F3 and X = sMat (Y1:6,0). Then

rankY = 3 ⇔ rankX = 3 and one triangle inequality holds with equality.

Proof: First suppose that rankX = 3 and that

αX12 + β X13 + γ X23 + 1 = 0

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 109

holds for given α, β, γ ∈ {±1} such that αβ γ = 1. Then

Y




1

α

β

γ




=




1 + αX12 + β X13 + γ X23

X12 + α+ β X23 + γ X13

X13 + αX23 + β + γ X12

X23 + αX13 + β X12 + γ




=




1 + αX12 + β X13 + γ X23

1
α
(αX12 + α

2 + αβ X23 + α γ X13)

1
β
(β X13 + αβ X23 + β

2 + β γ X12)

1
γ
(γ X23 + α γ X13 + β γ X12 + γ

2)




= 0,

since α2 = 1, β2 = 1, γ2 = 1, and αβ = 1
γ
= γ, α γ = 1

β
= β, β γ = 1

α
= α.

Since 


1

α

β

γ



"= 0,

it follows that Y is singular, and so rankY ≤ 3. Since rankX = 3, by Lemmas

4.4.1 and 4.4.5, we conclude that rankY = 3.

Conversely, suppose that rankY = 3. By Lemmas 4.4.1 and 4.4.5, it follows that

rankX = 3. It remains to prove that one triangle inequality holds with equality.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 110

Since rankY = 3, performing Gaussian elimination on Y will yield a matrix

with the elements of the last row all equal to zeros. We will perform Gaussian

elimination on Y , but before proceeding, we first observe that rankX = 3 implies

X is positive definite and thus all its principal submatrices are nonsingular. Specif-

ically considering the top left 2 × 2 principal submatrix implies that 1 −X2
12 "= 0.

Furthermore,

detX = 1−X2
12 −X2

13 −X2
23 + 2X12X13X23 > 0

since X is positive definite. Because we also have

(1−X2
13)−

(X23 −X12X13)
2

1−X2
12

= 0 ⇔ 1−X2
12 −X2

13 −X2
23 + 2X12X13X23 = 0

⇔ detX = 0,

and the latter does not hold, we conclude that

(1−X2
13)−

(X23 −X12X13)
2

1−X2
12

"= 0. (4.9)

We can now perform Gaussian elimination on Y . Applying elementary row

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 111

operations, we reduce Y to the form




1 X12 X13 X23

0 1−X2
12 ∆231 ∆132

0 0 (1−X2
13)− ∆2

231

1−X2
12

∆123 − ∆231 ∆132

1−X2
12

0 0 0
(
(1−X2

23)− ∆2
132

1−X2
12

)
−

(
∆123−∆132 ∆231

1−X2
12

)2

(
(1−X2

13)−
∆2

231
1−X2

12

)




where we use the notation

∆ijk := Xij −XikXkj

for convenience.

So, rankY = 3 implies

(
(1−X2

23)−
∆2

132

1−X2
12

)
−

(
∆123 − ∆132 ∆231

1−X2
12

)2

(
(1−X2

13)− ∆2
231

1−X2
12

) = 0

⇔

(
(1−X2

23)−
∆2

132

1−X2
12

)(
(1−X2

13)−
∆2

231

1−X2
12

)
=

(
∆123 − ∆132∆231

1−X2
12

)2

⇔

[(1−X2
23)(1−X2

12)− (X13 −X12X23)
2][(1−X2

13)(1−X2
12)− (X23 −X12X13)

2]

(1−X2
12)

2

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 112

=
[(1−X2

12)(X12 −X13X23)− (X13 −X12X23)(X23 −X12X13)]
2

(1−X2
12)

2

⇔

(1−X2
12−X2

13−X2
23+2X12X13X23)

2 = (X12−2X13X23−X3
12+X12X

2
13+X12X

2
23)

2

and therefore exactly one of the following equalities holds:

(1−X2
12−X2

13−X2
23+2X12X13X23) = (X12−2X13X23−X3

12+X12X
2
13+X12X

2
23)

(4.10)

or

(1−X2
12−X2

13−X2
23+2X12X13X23) = −(X12−2X13X23−X3

12+X12X
2
13+X12X

2
23)

(4.11)

Both cannot hold because the left-hand side equals detX and is therefore non-zero.

Case 1: Equation (4.10) holds:

In this case, we have that equation (4.10) holds if and only if

1−X2
12 −X12 +X

3
12 − (X2

13 +X
2
23 − 2X13X23) +X12 (2X13X23 −X2

13 −X2
23) = 0

⇔

(1−X2
12)(1−X12)− (X13 −X23)

2 −X12 (X13 −X23)
2 = 0

⇔

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 113

(1−X12)
2(1 +X12)− (X13 −X23)

2(1 +X12) = 0.

Since we know X12 "= −1, the last equation is equivalent to

(1−X12)
2 = (X13 −X23)

2.

Therefore we have two subcases: either

1−X12 = X13 −X23 (4.12)

or

1−X12 = −(X13 −X23). (4.13)

If (4.12) holds, then the triangle inequality −X12 −X13 +X23 ≥ −1 holds with
equality. If (4.13) holds, then the triangle inequality −X12+X13−X23 ≥ −1 holds
with equality. Hence if equation (4.10) holds, we have indeed one triangle inequality

that holds with equality.

Case 2: Equation (4.11) holds:

In this case, we have that equation (4.11) holds if and only if

1−X2
12 +X12 −X3

12 − (X2
13 +X

2
23 + 2X13X23) +X12 (2X13X23 +X

2
13 +X

2
23) = 0

⇔

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 114

(1 +X2
12)(1−X12)− (1−X12)(X13 +X23)

2 = 0,

by an argument similar to the one in Case 1. This equation is equivalent to

(1 +X12)
2 = (X13 +X23)

2

therefore we again have two subcases: either

1 +X12 = X13 +X23 (4.14)

or

1 +X12 = −(X13 +X23). (4.15)

If (4.14) holds, then the triangle inequality X12 − X13 − X23 ≥ −1 holds with
equality. If (4.15) holds, then the triangle inequality X12 +X13 +X23 ≥ −1 holds
with equality. So if equation (4.11) holds, we also have one triangle inequality that

holds with equality.

This completes the proof.

Theorem 4.4.7 summarizes the case n = 3. It shows how the rank of Y charac-

terizes the dimension of the face of C3 where X lies.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 115

Theorem 4.4.7 Let Y ∈ F3 and X = sMat (Y1:6,0). Then X ∈ C3 and

• rankY = 1 iff X is a vertex of C3;

• rankY = 2 iff X lies in the relative interior of a face of C3 of dimension 1;

• rankY = 3 iff X lies in the relative interior of a facet (face of dimension 2)

of C3;

• rankY = 4 iff X lies in the relative interior of C3.

Proof: Since F3 = C3, the first two statements follow by Theorem 4.3.4 and

Lemmas 4.4.1 and 4.4.5. The third statement then follows from Lemma 4.4.6 and

the fact that the triangle inequalities define all the facets of C3. Finally, if no

triangle inequality holds with equality, then this last fact also implies that X must

lie in the interior of the cut polytope.

The following corollary is immediate.

Corollary 4.4.8 Let Y ∗ ∈ F3 be optimal for SDP3. Then ν∗3 = µ
∗, and if rankY =

3, then

ν∗3 < ν
∗
1 .

Proof: The equality follows from F3 = C3, and the strict inequality from the

fact that if rankY = 3, then X = sMat (Y1:6,0) ∈ relint E3 and hence cannot be

optimal for SDP1.

CHAPTER 4. RANK CHARACTERIZATION OF THE FACES OF C3 116

This concludes our study of the case n = 3. In the next chapter, we show that

the characterization of the vertices of the cut polytope via rankY = 1 extends

to all n ≥ 4. More interestingly, we show that the characterization of the one-

dimensional faces via rankY = 2 also holds for n ≥ 4. Furthermore, we will prove
that if rankY = 2 for n ≥ 3, then it is possible to extract the two rank-one matrices
(corresponding to cuts) which are the vertices of the one-dimensional face of the

cut polytope where X lies. Indeed, we will present an algorithm that does precisely

this.

Chapter 5

Ranks and Low Dimensional Faces

of the Cut Polytope

Theorems 4.2.1 and 2.1.1 show that SDP1 characterizes the vertices of Cn as exactly

those matrices in the elliptope that have rank equal to one. This implies that if X∗

is optimal for SDP1 and rankX∗ = 1 then ν∗1 = µ
∗, i.e. SDP1 yields the optimal

value of Max-Cut. Furthermore, since X∗ is rank-one, SDP1 also yields an optimal

cut.

In this chapter we show that this characterization extends to SDP3, i.e. Y ∈ Fn

is rank-one precisely whenX = sMat (Y1:t(n),0) is a vertex of the cut polytope. Thus,

if Y ∗ is optimal for SDP3 and rankY ∗ = 1 then X∗ = sMat (Y ∗
1:t(n),0) is also rank-

one, ν∗3 = µ
∗ holds, and SDP3 yields an optimal cut.

We then proceed to prove a stronger property for SDP3, namely that Y ∈ Fn is

rank-two if and only if X = sMat (Y1:t(n),0) is rank-two. In fact, this matrix X has

a very special structure which allows us to design a simple algorithm that extracts

117

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 118

from X two rank-one matrices (corresponding to cuts) which are the vertices of a

one-dimensional face of the cut polytope. Thus we prove that X lies in the relative

interior of a face of Cn of dimension 1. Hence, if Y ∗ is optimal for SDP3 and

rankY ∗ ≤ 2 then ν∗3 = µ
∗ holds, and SDP3 yields both the optimal value and an

optimal cut for Max-Cut (see Corollary 5.2.10).

For simplicity of the proofs, in this chapter we continue to work with the matrix

Y projected onto the minimal face. Recall that because the rank of Y ∈ Fn

always equals the rank of its projection onto the minimal face, all our results hold

identically for the unprojected matrix Y .

The study of the geometry of Fn for n ≥ 4 is complicated by the fact that

given X ∈ Fn, we do not immediately have a full description of the corresponding
variable Y feasible for SDP3. Indeed, as we observed in Section 2.5.2, we have only

partial knowledge about Y . Hence we have to address two different, but related,

issues:

1. Determine the possible value(s) that the unspecified elements of Y can take,

for a given X ∈ Fn;

2. Hence determine the possible rank(s) that the matrix Y can have, given the

rank of X.

We begin by settling the rank-one case. There are no surprises there, as the

matrix Y is unique for every rank-one X and the characterization of Theorem 4.4.7

carries through. We then proceed in Section 5.2 to the rank-two case where we

prove that, surprisingly, the characterization from Theorem 4.4.7 also holds.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 119

5.1 Rank Characterization of Vertices

The next theorem gives the complete description of the rank-one case.

Theorem 5.1.1 For Y ∈ Fn and X = sMat (Y1:t(n),0):

1. If rankX = 1 then the unspecified elements of Y are uniquely determined by

YT (i,j),T (k,l) = Xij Xkl

for all 4-tuples (i, j, k, l) of distinct elements from {1, . . . , n}. Hence Y is

uniquely determined by X.

2. rankY = 1 ⇔ rankX = 1 ⇔ X is a vertex of Cn.

Proof: If rankX = 1 then Theorem 2.1.1 implies |Xij| = 1 for all i, j, since

X is positive semidefinite. Given any 4-tuple (i, j, k, l) of distinct elements from

{1, . . . , n}, consider the 3× 3 principal submatrix of Y corresponding to rows and

columns {0, T (i, j), T (k, l)}:



1 Xij Xkl

Xij 1 y

Xkl y 1


 � 0,

where y denotes the element YT (i,j),T (k,l). By Lemma 4.4.2, |Xij| = 1 implies that

y = Xij Xkl. This proves the first claim.

The implication rankY = 1⇒ rankX = 1 is clear, and the implication

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 120

X is a vertex of Cn ⇒ rankX = 1

follows by Lemma 4.1.1.

If rankX = 1 then diagX = e implies Xij = vi vj for some v ∈ {±1}n and thus,
by Lemma 4.1.1, X is a vertex of Cn. Furthermore, let x = svec (v v

T) = svec (X),

so that xT (i,j) = vi vj, and consider the matrix

Ŷ =


 1

x




 1

x




T

=


 1 xT

x xxT


 .

It is clear that sMat (Ŷ1:t(n),0) equals X. Furthermore,

ŶT (i,k),T (k,j) = xT (i,k) xT (k,j) = vi vk vk vj = Xij = YT (i,k),T (k,j)

and

ŶT (i,j),T (k,l) = xT (i,j) xT (k,l) = vi vj vk vl = Xij Xkl = YT (i,j),T (k,l).

Hence, Ŷ = Y and so rankX = 1⇒ rankY = 1. This concludes the proof.

This settles the rank-one case. We proceed to the case where rankX = 2.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 121

5.2 Rank Characterization of One-Dimensional

Faces

5.2.1 Implications of Rank-Two for X ∈ Fn

In this section we prove that ifX ∈ Fn and rankX = 2, thenX has a very particular

structure. We first prove Lemma 5.2.1 which is a straightforward generalization of

previous results.

Lemma 5.2.1 If X ∈ Fn and rankX = 2, then for every triple (i, j, k) of distinct

indices from {1, . . . , n}, at least one of Xij, Xik, Xjk has absolute value equal to 1.

Proof: Given i, j, k, consider the 3×3 principal submatrix of X indexed by rows

and columns {0, T (i, j), T (i, k)}:

Xi,j,k =




1 Xij Xik

Xij 1 Xjk

Xik Xjk 1


 .

Since rankX = 2, rankXi,j,k ≤ 2, and clearly Xi,j,k � 0.
We have two cases. If rankXi,j,k = 1, then Theorem 2.1.1 implies |Xij|, |Xik|,

and |Xjk| all equal 1, and we are done. If rankXi,j,k = 2, then considering the 4×4

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 122

submatrix of Y 


1 Xij Xik Xjk

Xij 1 Xjk Xik

Xik Xjk 1 Xij

Xjk Xik Xij 1




and applying Lemma 4.4.4, we conclude that one of Xij, Xik, Xjk has absolute value

equal to 1.

We now apply Lemma 5.2.1 to prove a somewhat surprising result which is essen-

tial for proving the results in this chapter about characterizing the one-dimensional

faces of Cn.

Lemma 5.2.2 Suppose X ∈ Fn, n ≥ 4 and rankX = 2. Then there exists a scalar

α ∈ [0, 1) such that for all off-diagonal entries Xij of X, either

|Xij| = 1 or |Xij| = α.

Furthermore, there is at least one occurrence of ±α in the first row of X, i.e. there

exists j ∈ {2, . . . , n} such that |X1j| = α.

Proof: The proof is by contradiction. Suppose there exist α ∈ (−1, 1) and
β ∈ (−1, 1) such that |α| "= |β| and Xij = α, Xkl = β for indices i, j, k, l from

{1, . . . , n}. We have two cases.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 123

Case 1: {i, j} ∩ {k, l} "= ∅: In this case, suppose j = l without loss of generality,
so Xij = α and Xjk = β. Consider the 3× 3 principal submatrix of X:

Xi,j,k =




1 Xij Xik

Xij 1 Xjk

Xik Xjk 1


 � 0.

Clearly rankXi,j,k ≤ 2 and since |Xij| "= 1 and |Xjk| "= 1, by Theorem 2.1.1

rankXi,j,k "= 1. Hence rankXi,j,k = 2 and by Lemma 5.2.1, |Xik| = 1 holds.

Now, Lemma 4.4.2 implies Xij = XikXjk, so α = ±β and |α| = |β|, which is
a contradiction. This completes Case 1.

Case 2: {i, j} ∩ {k, l} = ∅: As in the first case, we consider the principal subma-
trix Xi,j,k of X which, as in Case 1, has rank equal to 2 (since |Xij| "= 1).

Therefore (by Lemma 5.2.1), either |Xik| = 1 or |Xjk| = 1.

If |Xik| = 1 then by Lemma 4.4.2, Xij = XikXjk, so |Xjk| = |Xij| = |α|. Now
consider another 3× 3 principal submatrix of X:

Xj,k,l =




1 Xjk Xjl

Xjk 1 Xkl

Xjl Xkl 1


 � 0.

Since |Xkl| "= 1, rankXj,k,l = 2. Hence one of its other two entries has absolute

value equal to one. But |Xjk| = |α| "= 1, hence |Xjl| = 1. By Lemma 4.4.2,

Xjk = XjlXkl and therefore |Xjk| = |Xkl|, or equivalently, |α| = |β|, which
contradicts our assumption that |α| "= |β|.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 124

Alternatively, if |Xjk| = 1 then since the principal submatrix Xi,j,k has rank

equal to 2, it follows that Xij = XjkXik, i.e. |Xij| = |Xik| = |α|. Now

consider the 3× 3 principal submatrix of X:

Xi,k,l =




1 Xik Xil

Xik 1 Xkl

Xil Xkl 1


 � 0.

Since |Xik| "= 1 and |Xkl| = |β| "= 1, |Xil| = 1 must hold. But then Lemma

4.4.2 implies |Xik| = |Xkl|, or equivalently, |α| = |β|, again a contradiction.
This completes Case 2, and the proof of the first claim.

Finally, suppose that |X1j| = 1 for all j = 2, . . . , n. Then the 3 × 3 principal
submatrix of X:

X1,i,j =




1 X1i X1j

X1i 1 Xij

X1j Xij 1


 � 0

implies, by Lemma 4.4.2, that |Xij| = 1 for all i, j. But then, since X � 0, Theorem
2.1.1 implies that rankX = 1, a contradiction. Hence, we conclude that there exists

j ∈ {2, . . . , n} such that |X1j| = α.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 125

5.2.2 Algorithm for Constructing the Vertex Cuts

In this section we present an algorithm which, given X ∈ Fn satisfying rankX = 2,

explicitly constructs two cut vectors v1 and v2 in {±1}n and non-negative scalars
α1, α2 such that

X = α1 v1 v
T
1 + α2 v2 v

T
2 , α1 + α2 = 1.

By Lemma 4.1.1, this immediately implies that X is in the relative interior of a

one-dimensional face of Cn.

We note that the case α = 0, where α is the scalar defined in the statement of

Lemma 5.2.2, will require special attention in the algorithm.

Algorithm 5.2.3 (Construction of Vertices for X ∈ Fn, rankX = 2)

Input: Matrix X ∈ Fn satisfying rankX = 2, and scalar α ∈ [0, 1) (as defined in

the statement of Lemma 5.2.2).

If α "= 0 then

1. Let α1 =
1+α

2
, α2 =

1−α
2

, (v1)1 = 1 and (v2)1 = 1.

2. For j = 2, 3, . . . , n

if X1j = 1 then let (v1)j = 1 and (v2)j = 1;

if X1j = −1 then let (v1)j = −1 and (v2)j = −1;

if X1j = α then let (v1)j = 1 and (v2)j = −1;

if X1j = −α then let (v1)j = −1 and (v2)j = 1.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 126

If α = 0 then by Lemma 5.2.2, and by symmetrically permuting rows and columns

if necessary, we may assume without loss of generality that X12 = α = 0. Note

that, with this assumption, if X1j = 0 then |X2j| = 1 by Lemma 5.2.1.

1. Let α1 =
1
2
, α2 =

1
2
, (v1)1 = 1, (v2)1 = 1, (v1)2 = 1 and (v2)2 = −1.

2. For j = 3, 4, . . . , n

if X1j = 1 then let (v1)j = 1 and (v2)j = 1;

if X1j = −1 then let (v1)j = −1 and (v2)j = −1;

if X1j = 0 then as observed above, we have two subcases:

if X2j = 1 then let (v1)j = 1 and (v2)j = −1;

if X2j = −1 then let (v1)j = −1 and (v2)j = 1.

Output: v1, v2, α1, and α2.

We demonstrate the application of Algorithm 5.2.3 in the following two exam-

ples.

Example 5.2.4 (α "= 0) Consider

X =




1 1
3
1 1

3

1
3
1 1

3
1

1 1
3
1 1

3

1
3
1 1

3
1



.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 127

It is straightforward to check that rankX = 2, and X ∈ F4 since

Y =




1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1
3

1
3
1 1

3
1
3
1 1

3
1 1

3
1 1

3

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1
3

1
3
1 1

3
1
3
1 1

3
1 1

3
1 1

3

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1
3

1
3
1 1

3
1
3
1 1

3
1 1

3
1 1

3

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1

1
3

1
3
1 1

3
1
3
1 1

3
1 1

3
1 1

3

1 1 1
3
1 1 1

3
1 1

3
1 1

3
1




∈ F4

and sMat (Y1:10,0) = X. Note that Lemma 5.2.2 holds with α = 1
3
.

Let us apply Algorithm 5.2.3:

• α1 =
1+α

2
= 2

3
, α2 =

1−α
2
= 1

3
, (v1)1 = 1 and (v2)1 = 1;

• X12 =
1
3
= α, so (v1)2 = 1 and (v2)2 = −1;

• X13 = 1, so (v1)3 = 1 and (v2)3 = 1;

• X14 =
1
3
= α, so (v1)4 = 1 and (v2)4 = −1.

Hence the algorithm yields α1 =
2
3
, α2 =

1
3
, v1 = (1, 1, 1, 1)

T and v2 = (1,−1, 1,−1)T .
It is easy to verify that α1 v1 v

T
1 + α2 v2 v

T
2 = X.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 128

Example 5.2.5 (α = 0) Consider

X =




1 0 0 −1
0 1 −1 0

0 −1 1 0

−1 0 0 1



.

Again rankX = 2, and X ∈ F4 because

Y =




1 1 0 1 0 −1 1 −1 0 0 1

1 1 0 1 0 −1 1 −1 0 0 1

0 0 1 0 −1 0 0 0 −1 1 0

1 1 0 1 0 −1 1 −1 0 0 1

0 0 −1 0 1 0 0 0 1 −1 0

−1 −1 0 −1 0 1 −1 1 0 0 −1
1 1 0 1 0 −1 1 −1 0 0 1

−1 −1 0 −1 0 1 −1 1 0 0 −1
0 0 −1 0 1 0 0 0 1 −1 0

0 0 1 0 −1 0 0 0 −1 1 0

1 1 0 1 0 −1 1 −1 0 0 1




∈ F4

and sMat (Y1:10,0) = X.

Note X12 = 0, so X12 = α holds. Applying Algorithm 5.2.3:

• α1 =
1
2
, α2 =

1
2
, (v1)1 = 1, (v2)1 = 1, (v1)2 = 1, and (v2)2 = −1;

• X13 = 0, so we check X23 (which must equal ±1): X23 = −1, so (v1)3 = −1

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 129

and (v2)3 = 1;

• X14 = −1, so (v1)4 = −1 and (v2)4 = −1.

Hence the algorithm yields α1 = 1
2
, α2 = 1

2
, v1 = (1, 1,−1,−1)T and v2 =

(1,−1, 1,−1)T . It is again easy to verify that α1 v1 v
T
1 + α2 v2 v

T
2 = X.

We now prove the correctness of Algorithm 5.2.3. It is straightforward to check

that α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1, and α1 − α2 = α. If we define

Xalg := α1 v1 v
T
1 + α2 v2 v

T
2 ,

we have the following result:

Lemma 5.2.6 Let X ∈ Fn, rankX = 2, and suppose that v1, v2, α1, and α2 are

computed by Algorithm 5.2.3. Then X = Xalg.

Proof: The proof has two cases which parallel the two cases in Algorithm 5.2.3.

However, first observe that for both cases,

Xalg
ii = α1 (v1)

2
i + α2 (v2)

2
i = α1 · 1 + α2 · 1 = 1,

therefore diag (Xalg) = e = diag (X) holds for both cases. Now consider each case

in turn.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 130

Case 1: α "= 0: First check that the first rows of X and Xalg are equal.

For j = 2, 3, . . . , n

Xalg
1j = α1 (v1)1 (v1)j + α2 (v2)1 (v2)j

=




α1 · (1) + α2 · (1) = 1, if X1j = 1

α1 · (−1) + α2 · (−1) = −1, if X1j = −1
α1 · (1) + α2 · (−1) = α1 − α2 = α, if X1j = α

α1 · (−1) + α2 · (1) = α2 − α1 = −α, if X1j = −α

therefore their first rows are equal.

Now for each pair of indices i, j from {2, . . . , n}, i "= j, Lemma 5.2.1 implies
that at least one of X1i, X1j, Xij has absolute value equal to 1. We consider

three cases:

If |X1i| = 1 then by Lemma 4.4.2, Xij = X1iX1j. Let X1i = σ, σ2 = 1,

hence the algorithm sets (v1)i = σ and (v2)i = σ. We now consider two

subcases:

If X1j = δ, δ
2 = 1 then the algorithm sets (v1)j = δ and (v2)j = δ and

therefore

Xalg
ij = α1 σ δ + α2 σ δ

= σ δ

= X1iX1j

= Xij.

If X1j = δ α, δ
2 = 1 then the algorithm sets (v1)j = δ and (v2)j = −δ

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 131

and therefore

Xalg
ij = α1 σ δ + α2 σ (−δ)

= δ (α1 − α2)σ

= (δ α)σ

= X1j X1i

= Xij.

Hence, if |X1i| = 1, we are done.

If |X1j| = 1 then again by Lemma 4.4.2, Xij = X1iX1j. Applying the same

argument as for the previous case, we are done.

Otherwise, we have X1i = σ α, σ
2 = 1, X1j = δ α, δ

2 = 1, and |Xij| = 1. In
this case, the algorithm sets

(v1)i = σ, (v2)i = −σ, (v1)j = δ, and (v2)j = −δ.

Furthermore, Lemma 4.4.2 impliesX1i = Xij X1j, which can be rewritten

as σ α = Xij δ α, and since α "= 0, Xij = σ δ (because δ
2 = 1). Now,

Xalg
ij = α1 σ δ + α2 (−σ) (−δ)

= (α1 + α2)σ δ

= σ δ

= Xij.

Therefore, if α "= 0, Xalg = X.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 132

Case 2: α = 0: As in the description of Algorithm 5.2.3, we suppose without loss

of generality that X12 = 0. Now,

Xalg
12 =

1

2
(v1)1 (v1)2 +

1

2
(v2)1 (v2)2 =

1

2
− 1

2
= 0 = X12,

as desired.

Next we consider the remaining non-diagonal entries of the first two rows of

Xalg. For each j = 3, 4, . . . , n, there are two cases:

either |X1j| = 1, so that X1j = σ, σ
2 = 1 and the algorithm sets (v1)j = σ

and (v2)j = σ. Then Lemma 4.4.2 implies X2j = X1j X12, and so X2j =

0. Now,

Xalg
1j = 1

2
(v1)j +

1
2
(v2)j

= σ = X1j,

and

Xalg
2j = 1

2
(v1)2 (v1)j +

1
2
(v2)2 (v2)j

= 1
2
σ − 1

2
σ

= 0 = X2j.

or X1j = 0, in which case Lemma 5.2.1 implies |X2j| = 1 so X2j = σ, σ
2 = 1,

and the algorithm sets (v1)j = σ, (v2)j = −σ. Thus,

Xalg
1j = 1

2
(v1)j +

1
2
(v2)j

= 1
2
σ + 1

2
(−σ)

= 0 = X1j

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 133

and

Xalg
2j = = 1

2
(v1)2 (v1)j +

1
2
(v2)2 (v2)j

= 1
2
σ + 1

2
(−1) (−σ)

= σ = X2j

This proves that the first two rows of Xalg and X are identical.

Now consider any pair of indices i, j from {3, . . . , n}, i "= j and the 4 × 4
principal submatrix of X:




1 X12 X1i X1j

X12 1 X2i X2j

X1i X2i 1 Xij

X1j X2j Xij 1



� 0.

Since X12 = 0, the top left 2×2 principal submatrix is invertible, so applying
the Schur complement, the above principal submatrix is positive semidefinite

if and only if


 1 Xij

Xij 1


−


 X1i X2i

X1j X2j




 1 0

0 1




−1 
 X1i X1j

X2i X2j


 � 0

⇔


 1− (X2

1i +X
2
2i) Xij − (X1iX1j +X2iX2j)

Xij − (X1iX1j +X2iX2j) 1− (X2
1j +X

2
2j)


 � 0. (5.1)

The fact that X12 = 0 also implies:

• by Lemma 5.2.1, that

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 134

– one of X1i, X2i has absolute value equal to 1, and

– one of X1j, X2j has absolute value equal to 1;

• by Lemma 4.4.2, that the other element of each of the above two pairs
must equal 0.

Hence,

X2
1i +X

2
2i = 1 and X2

1j +X
2
2j = 1,

and therefore the matrix inequality (5.1) implies that

Xij = X1iX1j +X2iX2j.

We can now proceed to checking that Xalg indeed equals the right-hand side

of this equation. There are four subcases:

Case i: |X1i| = 1 and |X1j| = 1: Let X1i = σ, σ
2 = 1 and X1j = δ, δ

2 = 1,

and we also know X2i = 0 and X2j = 0. The algorithm sets (v1)i = σ,

(v2)i = σ, (v1)j = δ and (v2)j = δ. Therefore,

Xalg
ij = 1

2
(v1)i (v1)j +

1
2
(v2)i (v2)j

= σ δ

= X1iX1j

= X1iX1j +X2iX2j, since X2iX2j = 0

= Xij.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 135

Case ii: |X1i| = 1 and |X2j| = 1: Let X1i = σ, σ
2 = 1 and X2j = δ, δ

2 = 1,

and also X2i = 0 and X1j = 0. The algorithm sets (v1)i = σ, (v2)i = σ,

(v1)j = δ and (v2)j = −δ. Therefore,

Xalg
ij = 1

2
(v1)i (v1)j +

1
2
(v2)i (v2)j

= 1
2
σ δ + 1

2
σ (−δ)

= 0

= X1iX1j +X2iX2j, since X1j = 0 and X2i = 0

= Xij.

Case iii: |X2i| = 1 and |X1j| = 1: Let X2i = σ, σ
2 = 1 and X1j = δ, δ

2 = 1,

and also X2j = 0 and X1i = 0. The algorithm sets (v1)i = σ, (v2)i = −σ,
(v1)j = δ and (v2)j = δ, and it is straightforward to check that X

alg
ij =

Xij by applying the same kind of argument as in the previous cases.

Case iv: |X2i| = 1 and |X2j| = 1: Let X2i = σ, σ
2 = 1 and X2j = δ, δ

2 = 1,

and also X1i = 0 and X1j = 0. The algorithm sets (v1)i = σ, (v2)i = −σ,
(v1)j = δ and (v2)j = −δ, and again it is straightforward to check that
Xalg

ij = Xij.

Therefore, if α = 0, Xalg = X also holds. This completes the proof.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 136

Corollary 5.2.7 For n ≥ 3,

X ∈ Fn and rankX = 2 if and only if

X is in the relative interior of a face of Cn of dimension 1.

Proof: If X ∈ Fn and rankX = 2, then Lemma 5.2.6 and Lemma 4.1.1 together

imply that X is in the relative interior of a face of dimension 1.

Conversely, suppose that X is in the relative interior of a face of dimension 1.

Then by Lemma 4.1.1 again, there exist vectors v1 and v2 in {±1}n, v1 "= v2, and
a scalar α ∈ (0, 1) such that X = α v1 v

T
1 + (1− α) v2 vT2 .

By convexity, X ∈ Fn, and clearly rankX ≤ 2. To complete the proof, we

suppose rankX = 1 and obtain a contradiction.

Clearly X � 0, therefore Theorem 2.1.1 implies |Xij| = 1 for all i, j. We may

also assume without loss of generality that (v1)1 = 1 and (v2)1 = 1. Since v1 "= v2,
there is an index j ∈ {2, . . . , n} such that (v1)j = −(v2)j. For such a choice of j,
we have

X1j = α (v1)j + (1− α) (v2)j
= α (v1)j + (1− α) (−(v1)j)
= (2α− 1) (v1)j.

But since α ∈ (0, 1), it follows that |2α− 1| < 1, and therefore

|X1j| = |(2α− 1) (v1)j| = |2α− 1| < 1,

a contradiction.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 137

5.2.3 Uniqueness of Y and Rank Characterization

This section proves the last implication required to obtain Theorem 5.2.9. We

show that if X ∈ Fn, i.e. if there exists Y ∈ Fn such that X = sMat (Y1:t(n),0), and

rankX = 2, then rankY = 2 holds.

Suppose X ∈ Fn and rankX = 2. Applying Algorithm 5.2.3, we find v1, v2,

α1, and α2 such that X = α1 v1 v
T
1 + α2 v2 v

T
2 . Define x1 := svec (v1 v

T
1) and

x2 := svec (v2 v
T
2), and consider

Y := α1


 1

x1





 1

x1




T

+ α2


 1

x2





 1

x2




T

=


 α1 + α2 (α1 x1 + α2 x2)

T

α1 x1 + α2 x2 α1 x1 x
T
1 + α2 x2 x

T
2


 .

Clearly rankY ≤ 2. Also, Y ∈ Fn (by convexity) and furthermore

sMat (Y1:t(n),0) = sMat (α1 x1 + α2 x2) = X.

Hence, rankY "= 1 by Theorem 5.1.1 (since rankX = 2). Thus rankY = 2 and it

suffices to prove that this is the only Y ∈ Fn such that X = sMat (Y1:t(n),0). This

is the result of the next lemma.

Lemma 5.2.8 Suppose X ∈ Fn and rankX = 2. Then the matrix Y ∈ Fn such

that X = sMat (Y1:t(n),0) is unique. Specifically, let α be the scalar defined in the

statement of Lemma 5.2.2; then for each 4-tuple (i, j, k, l) of distinct elements from

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 138

{1, . . . , n}, YT (i,j),T (k,l) equals exactly one of the values {1,−1, α,−α}.

Proof: Given X, the restriction that Y ∈ Fn fixes all the elements of Y except

those of the form YT (i,j),T (k,l), with i, j, k, l all distinct. We prove that all these

elements are also uniquely determined in terms of the elements of X. This proves

the uniqueness of Y .

We consider two cases:

Case 1: at least one of Xij,Xkl equals ±1: If so, then the positive semidefi-

niteness of the 3 × 3 principal submatrix of Y corresponding to rows and

columns {0, T (i, j), T (k, l)}:



1 Xij Xkl

Xij 1 y

Xkl y 1


 � 0,

where y denotes YT (i,j),T (k,l), implies (by Lemma 4.4.2) that y = Xij Xkl ∈
{±1,±α}, since at least one of Xij,Xkl equals ±1.

Case 2: both Xij,Xkl equal ±α: In this case, we write Xij = σ α, σ
2 = 1, Xkl =

δ α, δ2 = 1, and consider the 3× 3 principal submatrix of X:

Xi,j,k =




1 Xij Xik

Xij 1 Xjk

Xik Xjk 1


 � 0.

By Lemma 5.2.1, either |Xik| = 1 or |Xjk| = 1. Without loss of generality

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 139

(symmetrically permuting rows and columns if necessary) suppose |Xik| = 1.
Then let Xik = β, β

2 = 1, and observe that by Lemma 4.4.2, Xjk = XikXij =

β σ α. Now consider the 4× 4 principal submatrix of Y indexed by the rows

and columns {0, T (i, j), T (k, l), T (j, k)}:



1 σ α δ α β σ α

σ α 1 y β

δ α y 1 Xjl

β σ α β Xjl 1



� 0.

Applying the Schur complement, positive semidefiniteness of this submatrix

is equivalent to



1 y β

y 1 Xjl

β Xjl 1


−




σ α

δ α

β σ α







σ α

δ α

β σ α




T

� 0

⇔




1− α2 y − σ δ α2 β (1− α2)

y − σ δ α2 1− α2 Xjl − β σ δ α2

β (1− α2) Xjl − β σ δ α2 1− α2


 � 0.

Since |α| < 1, 1−α2 > 0 and so, scaling both rows and columns by 1√
1−α2 (this

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 140

is a congruence and therefore it does not affect positive semidefiniteness),

⇔




1 y−σ δ α2

1−α2 β

y−σ δ α2

1−α2 1
Xjl−β σ δ α2

1−α2

β
Xjl−β σ δ α2

1−α2 1


 � 0.

By Lemma 4.4.2, it follows that

y−σ δ α2

1−α2 = β
Xjl−β σ δ α2

1−α2

⇒ y − σ δ α2 = β Xjl − β2 σ δ α2

⇒ y = β Xjl ∈ {±1,±α}.

This completes the proof of the uniqueness of Y .

Theorem 5.2.9 For Y ∈ Fn and X = sMat (Y1:t(n),0),

rankY = 2 ⇔ rankX = 2 ⇔ X is in the relative interior of a face of Cn

of dimension 1.

Proof: Clearly rankY = 2⇒ rankX ≤ 2, and Theorem 5.1.1 implies rankX ≥
2, hence rankX = 2. We have just shown that if rankX = 2, then Y is unique,

and the construction of Y at the beginning of this section shows that rankY = 2.

Finally, the second equivalence is exactly the statement of Corollary 5.2.7.

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 141

Corollary 5.2.10 Let Y ∗ ∈ Fn be optimal for SDP3. If rankY ∗ ≤ 2 then

ν∗3 = µ
∗,

and furthermore Y ∗ yields an optimal cut for Max-Cut.

Proof: Theorems 5.1.1 and 5.2.9 imply that if rankY ∗ ≤ 2 then the matrix

X∗ = sMat (Y ∗
1:t(n),0) lies on the boundary of Cn, and hence ν

∗
3 = µ

∗. If rankY ∗ = 1

then rankX∗ = 1 so it is straightforward to extract the optimal cut from X∗.

Finally, if rankY ∗ = 2 then rankX∗ = 2 and Algorithm 5.2.3 yields two optimal

cuts.

5.3 Counter-Example for the Rank-Three Case

We conclude our study of the strengthened SDP relaxations by showing that the

equivalence of the ranks between Y and X = sMat (Y1:t(n),0) cannot be extended

beyond rank-two.

Of course, it follows from Theorems 5.1.1 and 5.2.9 that rankY = 3⇒ rankX =

3 for n ≥ 3. However, the converse fails for n = 3, and hence for all n ≥ 3. Indeed,

CHAPTER 5. RANKS AND LOW DIMENSIONAL FACES OF THE CUT
POLYTOPE 142

an easy counterexample is provided by the 3× 3 identity matrix since

Y =




1 1 0 1 0 0 1

1 1 0 1 0 0 1

0 0 1 0 0 0 0

1 1 0 1 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 1 0 1 0 0 1




is feasible for SDP3 and has rank equal to 4, whereas X = sMat (Y1:6,0) = I has

rank equal to 3.

Chapter 6

Derivation of the AR Model for

VLSI Layout

The VLSI layout (or floorplanning) problem consists in finding the optimal positions

for a given set of modules of fixed area (but perhaps varying dimensions) within a

facility. The objective is to minimize the distances between pairs of modules that

have a nonzero connection “cost” while ensuring that no modules overlap. If the

modules have varying dimensions, then finding their optimal shapes is also a part

of the problem.

Our contribution is the AR (Attractor-Repeller) model which is designed to

improve upon the 3-stage approach of van Camp et al.[26]. In this chapter we

motivate and derive the AR model which replaces Stages 1 and 2 by a single math-

ematical model that finds a “good” initial point for the solver of the Stage-3 model.

The design of the AR model is inspired by the work of Etawil and Vannelli [32]

for the VLSI placement problem. Because the AR model is not a convex optimiza-

143

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 144

tion problem, in Section 6.3 we isolate the source of the non-convexity and thereby

derive a convex version. Numerical results demonstrating the potential of the AR

model are presented in Chapter 7.

6.1 Previous Related Methods

The floorplanning problem has been throughly studied in the Operations Research

literature. In order to put our contribution in context, we begin by reviewing two

previous methods that relate closely to our new approach.

6.1.1 The DISCON Method

In 1980 Drezner introduced the DISCON (DISpersion-CONcentration) method [31].

To describe the DISCON method, let us suppose that the modules are labelled

1, . . . , N , where N is the total number of modules, and that:

1. Each module is a circle (or can be approximated by a circle) of given radius

ri, i = 1, . . . , N .

2. The distance between two modules is measured as the Euclidean distance

between the centres of the circles.

3. The non-negative costs cij per unit distance between modules i and j are

given.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 145

The DISCON method uses a formulation equivalent to

(DISCON)

min
(xi,yi)

∑
1≤i<j≤N

cij dij

s.t.

dij ≥ ri + rj, ∀ 1 ≤ i < j ≤ N,

where

• (xi, yi) denotes the centre of the ith module, and

• dij =
√
(xi − xj)2 + (yi − yj)2.

Drezner solves the DISCON problem using a penalty algorithm and a two-phase

approach:

• In Phase-1 (the dispersion phase), all the circles are dispersed far from the

origin. This phase provides a starting point for the next phase.

• In Phase-2 (the concentration phase), the circles are concentrated (i.e. they
are brought as close together as possible) and the resulting arrangement is

the final solution.

We point out that both the objective function and the feasible set of the DISCON

problem are non-convex. Furthermore, DISCON gives the user no control over the

dimensions of the resulting layout of the circles (modules).

6.1.2 The NLT Method

More recently, van Camp, Carter, and Vannelli [26] have introduced a technique

where all the modules as well as the facility are restricted to having fixed (given)

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 146

areas and rectangular shapes, but the dimensions of the rectangles are optimized

by a mathematical model.

Specifically, they introduce the following model, which we denote by vCCV:

(vCCV)

min
(xi,yi)

∑
1≤i<j≤N

cij dij

s.t.

|xi − xj| − 1
2
(wi + wj) ≥ 0 if |yi − yj| − 1

2
(hi + hj) < 0

|yi − yj| − 1
2
(hi + hj) ≥ 0 if |xi − xj| − 1

2
(wi + wj) < 0

1
2
wT − (xi + 1

2
wi) ≥ 0 for i = 1, . . . , N

1
2
hT − (yi + 1

2
hi) ≥ 0 for i = 1, . . . , N

(xi − 1
2
wi) +

1
2
wT ≥ 0 for i = 1, . . . , N

(yi − 1
2
hi) +

1
2
hT ≥ 0 for i = 1, . . . , N

min(wi, hi)− lmin
i ≥ 0 for i = 1, . . . , N

lmax
i −min(wi, hi) ≥ 0 for i = 1, . . . , N

min(wT , hT)− lmin
T ≥ 0

lmax
T −min(wT , hT) ≥ 0,

where (xi, yi) and dij are as previously defined, and

• wi, hi are the width and height of module i;

• lmin
i , lmax

i are the minimum and maximum allowable lengths for the shortest

side of module i;

• wT , hT are the width and height of the facility; and

• lmin
T , lmax

T are the minimum and maximum allowable lengths for the shortest

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 147

side of the facility.

Therefore, with the vCCV model, the user can input ranges for the shortest sides of

the modules and of the resulting facility, and the model optimizes all the dimensions

within the given ranges.

The NLT (Non-linear optimization Layout Technique) method is based on the

above model and employs a three-stage approach:

1. Stage-1 aims to evenly distribute the centres of the modules inside the facility;

2. Stage-2 aims to reduce the overlap between modules;

3. Stage-3 determines the final solution.

Stage-3 consists of solving the complete vCCV model, whereas the problems

solved at Stages 1 and 2 correspond to relaxations of the vCCV model. These

relaxations approximate each module by a circle whose radius is proportional to

the area of the module. The Stage-2 relaxation is presented in Section 6.2. We

also observe that the models for all three stages are solved using a penalty-based

method.

6.2 Derivation of the AR Model

6.2.1 The Stage-2 Model of the NLT Method

In order to motivate the AR model, we begin by introducing the Stage-2 model

used in the NLT method. (Recall that our objective is to improve on this Stage-2

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 148

model in terms of generating an initial point for the Stage-3 vCCV problem above.)

This model is a relaxation of vCCV where each module is approximated by a circle

whose radius is equal to half the square root of the area of the module.

Given all the radii ri, i = 1, . . . , N , the Stage-2 model (St-2) is:

(St-2)

min
(xi,yi),hT ,wT

∑
1≤i<j≤N

cij dij

subject to

dij ≥ ri + rj, ∀ i, j
1
2
wT ≥ xi + ri for i = 1, . . . , N

1
2
hT ≥ yi + ri for i = 1, . . . , N

1
2
wT ≥ ri − xi for i = 1, . . . , N

1
2
hT ≥ ri − yi for i = 1, . . . , N

lmax
T ≥ min(wT , hT) ≥ lmin

T .

The objective function is clear. As for the constraints, the first set of constraints

in this model are those used in DISCON:

dij ≥ ri + rj, ∀ 1 ≤ i < j ≤ N. (6.1)

These constraints prevent overlapping of any pair of circles.

Recall that in DISCON, the user has no control of the overall dimensions of the

final arrangement of circles. The model St-2 addresses this issue via the next four

sets of constraints, which require that all circles remain inside the facility, and the

last two constraints which ensure that the facility’s shortest dimension is within

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 149

the given bounds.

6.2.2 Target Distance Concept

A significant difficulty with the model St-2 is that the constraints (6.1) make the

feasible set of St-2 non-convex. In our new model, we enforce these constraints by

drawing on the target distance paradigm introduced by Etawil and Vannelli [32].

Note that if the constraints (6.1) are removed from St-2, then the (global)

optimal solution is simply to place all the circles with their centres at the same

point (since we assume all the costs cij are non-negative). One way to understand

why this happens is to interpret the objective function

∑
1≤i<j≤N

cij dij

as an attractor, i.e. a function that seeks to make the values dij as small as possible

by attracting all pairs of circles i, j to each other. To prevent this from happening,

we will add to the objective function a repeller term that seeks to enforce the

constraints (6.1).

For convenience we work with the squares of the distances between each pair of

circles. It is clear that this does not change the optimal layout. Let us therefore

define the variables

Dij := dij
2 = (xi − xj)2 + (yi − yj)2

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 150

and the parameters

tij := α (ri + rj)
2, ∀ 1 ≤ i < j ≤ N, where α > 0.

The parameters tij are key to our strategy for enforcing the constraints (6.1), i.e.

the separation of the circles representing the modules. The idea is that

the value
√
tij is the target distance between the pair of circles i, j.

Equivalently, tij is the target value for Dij, which is the square of the distance

between the circles i and j with radii ri and rj respectively.

The parameter α > 0 is introduced to provide some flexibility as to how tightly

the user wishes to enforce the constraints (6.1). In theory, our algorithm will ensure

that

Dij

tij
= 1

at optimality, so choosing α < 1 sets a target value tij that allows some overlap

of the areas of the respective circles, which means that a “relaxed” version of

the constraints (6.1) on the dij’s is enforced. Similarly, α = 1 means that there

should be no overlap and the circles should intersect at exactly one point on their

boundaries. This is illustrated in Figure 6.1. Note that the parameters tij may be

interpreted as a generalization of the constant d in Etawil and Vannelli [32] since

we need to set a different target for each pair of circles because of the variation

among the radii.

In practice, we choose α empirically in such a way that we achieve a reasonable

separation between all pairs of circles. The choice of α is explored further in the

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 151

r

r + r

jri

i j

Figure 6.1: Motivation of the concept of target distances

numerical experiments presented in Chapter 7. We now proceed to describing the

mathematical model used to enforce the target distances between pairs of circles.

6.2.3 Enforcing the Target Distances

For each pair of circles i and j, if their overlap becomes too large with respect to the

target distance tij, we penalize it by introducing the following term in the objective

function of the AR model:

f

(
Dij

tij

)

where the function f is defined by

f(z) =
1

z
− 1, z > 0.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 152

The choice of f(z) is inspired by the work of Etawil and Vannelli [32]. The

function (of one variable) f(z) is continuously differentiable and strictly decreasing

on (0,∞). We exploit these properties of f for our purposes as follows. We start
by placing the circles i and j in some initial configuration where Dij , tij, and

so
Dij

tij
> 1. Then, as the ratio

Dij

tij
decreases with the effect of the “attractor”

component of the objective function, the function f behaves as a monotonically

increasing “repeller”, and we let them interact until an equilibrium is attained.

By properly adjusting the value of the parameter α, we aim to attain this

equilibrium at the point where
Dij

tij
≈ 1, i.e. where the target distance is attained.

In other words, the “attractor” component of our objective function makes the two

circles move closer together and pulls them towards a layout where Dij = 0, while

the “repeller” component prevents the circles from overlapping.

6.2.4 Additional Design Features of the AR Model

Beyond the use of target distances, the AR model offers the user two other features

for layout design.

Firstly, the AR model offers the possibility to distinguish between two kinds of

modules: those that are mobile and those that are fixed (pads). This is motivated

by our intended application of this approach to macro-cell layout problems. We

present several such examples in Chapter 7. Another motivation is that it allows

for a multiple-round strategy for attacking large problems. The idea is that in each

round, the model is solved and some modules are chosen to be fixed before we

re-solve in the next round.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 153

Hence, in the AR model, we let M and P denote the set of (mobile) modules

and the set of (fixed) pads respectively. Note that target distances are introduced

only for pairs of mobile modules. For all mixed pairs, only the attractor term is

present in the objective function. That is, we permit overlap of a module and a

pad, and interpret such overlap as an indication that the module in question should

be placed very close to the pad.

Secondly, the ability to specify bounds on the desired dimensions of the rect-

angular facility, which is available in St-2, is also available in AR in the sense that

it allows the user to specify bounds wmin
T ≤ wmax

T on the width of the facility, and

hmin
T ≤ hmax

T on the height. In particular, if the user knows in advance that the

facility should have width w̄ and height h̄, then these constraints can be enforced

by setting

wmin
T = wmax

T = w̄, and hmin
T = hmax

T = h̄.

6.2.5 The AR Model

The above ideas yield the AR model:

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 154

(AR)

min

(xi, yi), i ∈M,
hT , wT

∑
i,j∈M∪P

cijDij +
∑

i,j∈M
f
(
Dij

tij

)

subject to

1
2
wT ≥ xi + ri and 1

2
wT ≥ ri − xi, for all i ∈M,

1
2
hT ≥ yi + ri and 1

2
hT ≥ ri − yi, for all i ∈M,

wmax
T ≥ wT ≥ wmin

T ,

hmax
T ≥ hT ≥ hmin

T .

We point out that the AR model has only linear constraints (on the variables

xi, yi, hT , and wT). From an optimization point of view, this is a significant

advantage over St-2. In Section 7.1 we discuss the methodology we employed to

test the efficiency of this model. However, we first derive in the next section a

convex version of the AR model.

6.3 Convex Version of the AR Model

The AR model as stated above is not a convex problem because, although all the

constraints are linear (and hence convex), the objective function is not convex. In

this section we show that, under the mild assumption that cij "= 0 for all pairs of

modules i, j ∈ M , an appropriate modification of the objective function yields a
convex problem. This convex problem can be thought of as a “convexification” of

the AR model, and its derivation will naturally lead us to define certain parameters

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 155

Tij. These parameters can be viewed as a generalization of the target distances tij,

and also have an interesting interpretation from a practical point of view. This is

further discussed in Section 6.3.1 below.

We begin by isolating the source of the non-convexity in the objective function

of the AR model. We will use the well-known fact that

If f :
m -→
 is twice continuously differentiable then f is convex over
a convex set C ⊆
m if its Hessian ∇2f is positive semidefinite for all

points in C.

(This and other elementary results from convex analysis are presented in for exam-

ple Bertsekas [15].)

Let us rewrite the objective function as

∑
i,j∈M

cijDij +
∑

i∈M,j∈P
cijDij +

∑
i,j∈P

cijDij +
∑
i,j∈M

(
tij
Dij

− 1
)
,

where we have applied the function f in the argument of the last summation. We

observe that

• The term ∑
i,j∈P

cijDij is constant, since the modules in P are fixed pads. Hence

we can omit this term from the objective function without changing the op-

timal solution.

• The term ∑
i∈M,j∈P

cijDij is convex. Indeed, since xj and yj are fixed, its Hes-

sian is a diagonal matrix whose diagonal entries are either 2 (for the rows

corresponding to xi and yi, i ∈ M) or 0 (for all the other rows). Such a ma-

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 156

trix is clearly positive semidefinite over the whole space and hence this term

is convex.

• Bringing the remaining two summations together, we can rewrite the remain-
der of the objective function as

∑
i,j∈M

cijDij +
tij
Dij

− 1.

This is where convexity can fail and where we now focus our attention.

We consider each term in this last summation independently, so without loss of

generality, let us consider the term

c12D12 +
t12
D12

− 1.

For clarity of the presentation, denote c12 by c, t12 by t and D12 by z. We have the

following result:

Theorem 6.3.1 Let g :
4 -→
 be given by

g(x1, x2, y1, y2) = c z +
t

z
− 1,

where c > 0, t > 0, and z > 0, z = (x1−x2)
2+(y1−y2)2. The following statements

hold for g:

1. If z ≥
√

t
c
, then the Hessian of g is positive semidefinite.

2. If z =
√

t
c
, then the gradient of g is zero.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 157

Proof: At any given point (x1, x2, y1, y2), define the vector

w :=




(x1 − x2)

−(x1 − x2)

(y1 − y2)
−(y1 − y2)




and the scalars ρ :=
(
c− t

z2

)
and σ := t

z3
.

It is straightforward to check that the gradient and Hessian of g are respectively

∇g = 2 ρw

and

∇2g = ρ




2 −2 0 0

−2 2 0 0

0 0 2 −2
0 0 −2 2



+ 4σ wwT .

Now, the matrix 


2 −2 0 0

−2 2 0 0

0 0 2 −2
0 0 −2 2




has only two distinct eigenvalues, namely 0 and 4, so it is positive semidefinite.

Furthermore,

z ≥
√
t

c
⇒ ρ ≥ 0,

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 158

and so the first term of ∇2g is positive semidefinite. In the second term, the rank-

one matrix wwT is positive semidefinite for any w, and the constant σ is always

positive. Hence the second term is also positive semidefinite. Since the sum of

positive semidefinite matrices is positive semidefinite, this proves the first claim.

The second claim is immediate:

z =

√
t

c
⇒ ρ = 0 ⇒ ∇g = 0.

For cij > 0, tij > 0, and z = (xi−xj)2+(yi− yj)2, define the piecewise function

fij(xi, xj, yi, yj) :=



cij z +

tij
z
− 1, z ≥

√
tij
cij

2
√
cij tij − 1, 0 ≤ z <

√
tij
cij
.

Figure 6.2 illustrates the function fij for various values of cij and tij. It was

generated by taking random vectors x, y,∆x, and ∆y and using h to parametrize the

change in z: for each step h, h = 0, 0.005, 0.010, . . . , 15, z = ‖x−y+h(∆x−∆y)‖2
2.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 159

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

Parameter h (∆ h = 0.005)

f ij (
 z

)

t
ij
 = 1

c
ij
 = 2

t
ij
 = 1

c
ij
 = 1

t
ij
 = 3

c
ij
 = 1

Figure 6.2: Graph of the convex function fij for several values of cij and tij

By construction, fij is continuous on
4, and since by Theorem 6.3.1

∇fij
(√

tij
cij

)
= 0,

fij is continuously differentiable on
4. Also by Theorem 6.3.1 and since

∇2fij = 0 for z <

√
tij
cij
,

we see that fij is convex over
4, since its Hessian is everywhere positive semidefi-

nite.

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 160

The “convexified” AR model, denoted CoAR, is then:

(CoAR)

min

(xi, yi), i ∈M,
hT , wT

∑
i∈M,j∈P

cijDij +
∑

i,j∈M
fij(xi, xj, yi, yj)

subject to

1
2
wT ≥ xi + ri and 1

2
wT ≥ ri − xi, for all i ∈M,

1
2
hT ≥ yi + ri and 1

2
hT ≥ ri − yi, for all i ∈M,

wmax
T ≥ wT ≥ wmin

T ,

hmax
T ≥ hT ≥ hmin

T .

6.3.1 Generalized Target Distances

From the construction of fij, we observe that the minimum value of fij is attained

for all the positions of modules i and j for which Dij ≤
√

tij
cij
. This includes the

case Dij = 0, i.e. both modules completely overlap. Since we do not want such a

solution to our layout problem, the algorithm employed to solve CoAR must use a

line search that knows the structure of fij and stops at a point where Dij ≈
√

tij
cij
,

that is, close to the boundary of the flat portion of fij.

Note that if Dij ≈
√

tij
cij
, then the corresponding layout of the two modules has

Dij proportional to tij. Therefore such a solution to the model CoAR still enforces

the target distances defined in Section 6.2.2.

Furthermore, if we define

Tij :=

√
tij
cij
, i, j ∈M, i "= j,

CHAPTER 6. DERIVATION OF THE AR MODEL FOR VLSI LAYOUT 161

then we can think of the parameter Tij as a generalized target distance for modules

i and j which takes both tij and cij into account. Indeed, it is reasonable that the

target distance be inversely proportional to cij since, from a practical point of view,

• if cij is small, then the two modules are likely to be placed far apart in the
layout, and correspondingly the generalized target distance should be large;

• if cij is large, then the opposite reasoning applies and the generalized target
distance should be small.

Chapter 7

Numerical Experiments with the

AR model

7.1 Solution Methodology

We tested the validity and efficiency of our attractor-repeller paradigm by solving

the (non-convex) AR model using the optimization package MINOS 5.3 [1] accessed

via the modelling language GAMS (release 2.25) [21] on a SUNSparc. The model

has 2|M |+ 2 variables and 4|M |+ 4 inequality constraints, all of which are linear.
Therefore only the objective function is non-linear and MINOS specifically exploits

this structure by applying a reduced-gradient approach combined with a quasi-

Newton algorithm (see Murtagh and Saunders [73]). This is a significant advantage

for the AR model because the quasi-Newton algorithm is generally superlinearly

convergent. In practice, this means that we are able to solve the AR model quite

efficiently even for large |M |. Some empirical evidence for the fact that the AR

162

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 163

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

20

25

Parameter h

K
*[

1/
z−

1]

K=1

K=5

K=10

Figure 7.1: Effect of scaling on the function f(z) = 1
z
− 1, z > 0

model can be solved more efficiently than the Stage-1/Stage-2 sequence of the NLT

method is presented in Section 7.2.

To accentuate the effect of the repeller function f(z) = 1
z
− 1 for z < 1, we

scale it by a large constant K. Indeed, even mild scaling of f can significantly

increase the “barrier” effect that occurs as soon as z decreases below 1, as the

graphs in Figure 7.1 show. Figure 7.1 was generated by taking random vectors

x, y, ∆x, and ∆y and using h to parametrize the change in Dij. For each step h,

h = 0, 0.005, 0.010, . . . , 20, z = ‖x− y + h(∆x−∆y)‖2
2. Note that we set tij = 1.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 164

Hence the problem we solve is

(AR)

min
(xi,yi),hT ,wT

∑
i,j∈M∪P

cijDij + K · ∑
i,j∈M

f
(
Dij

tij

)
subject to

1
2
wT ≥ xi + ri and 1

2
wT ≥ ri − xi, for all i ∈M,

1
2
hT ≥ yi + ri and 1

2
hT ≥ ri − yi, for all i ∈M,

wmax
T ≥ wT ≥ wmin

T ,

hmax
T ≥ hT ≥ hmin

T .

For our numerical tests, we chose

K = 10 ·
(∑
i,j∈M

cij

)

so thatK clearly dominates all the cost coefficients corresponding to pairs of mobile

modules in the objective function of AR.

Since the algorithm is an iterative method, MINOS requires the user to supply

an initial configuration. It is not clear a priori what the “best” starting configuration

is, so we place the centres of the |M | mobile modules at regular intervals around a
circle of radius r = wmax

T + hmax
T . Thus, letting θi =

2π(i−1)
|M | and r = wmax

T + hmax
T ,

we initialize the centre (xi, yi) of the i
th mobile module to

xi = r cos θi, yi = r sin θi, i = 1, . . . , |M |.

We did not solve the CoAR model because this would require a carefully de-

signed line search procedure, as discussed in Section 6.3.1. Furthermore, as the

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 165

results in Section 7.2 show, the non-convex AR model with scaling by K performs

remarkably well in practice, in spite of its lack of convexity.

7.2 Numerical Results

We present the results of applying the AR approach to four layout problems. These

examples illustrate the characteristics of the AR model. In the first three examples

some of the modules are fixed. Of course, our model applies equally to problems

where the position of every module may vary. This is illustrated in the last example.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 166

7.2.1 Macro-Cell Placement Example

We first apply our approach to a macro-cell layout example in which 8 modules

out of 19 are fixed. The optimal layout for this problem is shown in Figure 7.2.

This layout is optimal because any other layouts are obtained by pairwise cell

interchanges, and these clearly increase the total “wirelength”.

1
2

3 4
7

8

65

11 9

10

1 1
1

1 1

1 1

1

2

2

2

3

10

10 10

101010

10

10 1010
10

2

2
2

1

1

2
2

1

3

P1

P5

P4

P8

P2 P3

P7 P6

Figure 7.2: Optimal layout for the first macro-cell example

In Figure 7.2, the costs cij are indicated on the connections of the layout, and the

modules P1,. . .,P8 are fixed. (They represent peripheral pads in the macro-cell

circuit design.)

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 167

For our numerical tests, we used

wmin
T = 8, wmax

T = 10, hmin
T = 10, hmax

T = 14

and the radii for the mobile modules M1, . . ., M11 are (respectively)

1, 1.225, 0.5, 0.5, 0.707, 1.225, 1, 1, 1, 0.866, 1.225,

while each of the eight pads has radius equal to 0.5. The initial configuration used

is shown in Figure 7.3.

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

1

2

3
4

5

6

7

8

9
10

11

P

P P

P

P

PP

P

Figure 7.3: Starting configuration for the first macro-cell example

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 168

The results for varying values of α are as follows:

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

1

2

3

4

5

6

7

8

9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 1.0

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.1

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 169

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.05

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.01

Surprisingly, we find that setting α = 1.0 results in excessive separation of the

modules, which are thrown against the boundaries of the facility. Therefore we

need to reduce α in order to obtain a good placement.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 170

Furthermore, we find that the solution for α = 0.01 yields a layout which is very

similar to the (known) global optimal solution, as can be seen if we display them

side by side:

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.01

1
2

3 4
7

8

65

11 9

10

1 1
1

1 1

1 1

1

2

2

2

3

10

10 10

101010

10

10 1010
10

2

2
2

1

1

2
2

1

3

P1

P5

P4

P8

P2 P3

P7 P6

Clearly, the modules that have connections to pads are all located in the right

areas, and all the modules are quite close to their (known) optimal positions.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 171

Alternative Initial Configurations

It is unclear at this point how much the success of the AR model depends upon our

choice of initial configuration. Therefore we tested the robustness of the model for

this example by trying two alternative initial configurations.

The first alternative configuration and corresponding solution are:

−30 −20 −10 0 10 20 30

−25

−20

−15

−10

−5

0

5

10

15

20

25

1

2

3

4

5

6

7

8

9

10

11

P

P P

P

P

PP

P

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.01

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 172

The second alternative configuration and corresponding solution are:

−25 −20 −15 −10 −5 0 5 10 15 20 25

−20

−15

−10

−5

0

5

10

15

20

1

2

3

4

5

6

7

8

9

1011

P

P P

P

P

PP

P

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5

6

7

8
9

10

11

P

P P

P

P

PP

P

Optimal solution for α = 0.01

We see that with all three starting configurations, we always obtain the same

optimal solution. This illustrates the robustness of the AR model when applied to

this test problem.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 173

7.2.2 Medium-Sized Macro-Cell Placement Example

Next, we experimented with a larger test problem of macro-cell layout. Again, it

has the following optimal layout:

1

8 9

6

32

4 5

710 11

12
13

14

15

16

17 18

19

20 21

22

29

24

30
31 32

33
35

36

37 38

39 40 41

23
26

28

P5

P6

P7

P8

P9

P3P2P1

P4

P10P11P12

P13

P14

P15

P16

P17

P18

34

27

25

where cij = 1 for the connections with the lighter edges (these are connections

between mobile modules) and cij = 10 for the connections with the darker edges

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 174

(these are connections between fixed pads and mobile modules).

For our numerical tests, we used

wmin
T = 25, wmax

T = 30, hmin
T = 50, hmax

T = 60

and the radii for the mobile modules M1, . . ., M41 are (respectively)

1, 2, 1.414, 3, 3.317, 3.464, 2.450, 1.732, 1.732, 1.732, 1.414, 2.828, 2.646, 1, 1.414,

2, 1.414, 1, 2, 2.646, 2.828, 2.450, 2.450, 1.414, 2.450, 1.414, 1.414, 1.414, 2, 2.646,

1.414, 1.414, 1.414, 2, 1.414, 2, 1.414, 1.414, 2, 1, 2

while each of the 18 pads has radius equal to 0.5.

The initial configuration used was as described above, that is, the 41 mobile

modules were placed at regular intervals on a circle of radius 200.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 175

The result for α = 0.01 is:

−20 −15 −10 −5 0 5 10 15 20

−25

−20

−15

−10

−5

0

5

10

15

20

25

1

2 3

4

5
6

7
8 9

10
11

12
13

14

15

16

17
18

19

20

21
22

23

24

25

26

27
28

29

30
31

32

33

34 35

36

37
38

39 40

41

P P P

P

P

P

P

P

P

PPP

P

P

P

P

P

P

Note that, in comparison with the example in Section 7.2.1, we have significantly

increased the number of modules in the problem, and furthermore, the ratio of

fixed pads to mobile modules has decreased from 8/11 ≈ 0.73 to 18/41 ≈ 0.44.

Nonetheless, we again obtain from the AR model (with the same value of α = 0.01)

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 176

a solution whose layout is very similar to the (known) global optimal solution, i.e.

the modules are all quite close to their optimal positions.

7.2.3 Alternative Medium-Sized Macro-Cell Example

To further test the robustness of the AR model for macro-cell applications, we chose

our third example to be the same circuit as in the second example, but with even

fewer fixed pads. This example has now only 10 pads and therefore a ratio of fixed

pads to mobile modules of 10/41 ≈ 0.24. The dimensional bounds, radii, and initial
configuration were left unchanged, since our purpose is to make the proportion of

fixed pads smaller and observe the effect on the overall layout.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 177

The optimal layout for this third example is:

1

8 9

6

32

4 5

710 11

12
13

14

15

16

17 18

19

20 21

22

29

24

30
31 32

33
35

36

37 38

39 40 41

23
26

28

34

27

25

P10

P9

P8

P3

P4

P5

P6P7

P2P1

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 178

And the result (again leaving α = 0.01 unchanged) is:

−20 −15 −10 −5 0 5 10 15 20

−25

−20

−15

−10

−5

0

5

10

15

20

25
1 2 3

4

5 6

7
8

910
11

12
13

14
15

16
17 18

19

20
2122

23
24

25

26

27
28

29

30

31

32

33

34

35

36

37
38

39 40
41

P P

P

P

P

PP

P

P

P

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 179

We see that the obtained layout is not as clearly defined. Indeed, there are

two clusters of modules, one consisting of modules M29 and M35, and the other

consisting of modules M14, M15, M16, M17, and M22, whose circles overlap signif-

icantly and whose relative positions are either unclear or different from those in the

optimal layout. Nonetheless, the clusters themselves are in the correct area of the

layout and thus the overall result is still an excellent approximation of the optimal

layout.

We tried varying α between 0.005 and 0.02 with similar results. The key obser-

vation is that a lower ratio of fixed pads to mobile modules has little effect on the

overall optimal positions of the circles in the layout.

7.2.4 Facility Layout Example

Lastly, we applied the AR approach to the 10-facility example from van Camp et

al. [26]. This problem comes from an existing production plant and hence the

dimensions of the facility are fixed in advance. Therefore we set

wmin
T = wmax

T = 25, hmin
T = hmax

T = 51.

This problem has 10 mobile modules (departments) and, in contrast with our pre-

vious examples, has no fixed modules. We use the same approximating circles as

in van Camp et al. [26], therefore the radii for M1, . . ., M10 are set to

{7.7136, 5.2915, 6.3246, 4.4721, 5.4772, 4.4721, 3.8730, 4.6098, 7.4330, 5.4544}.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 180

These radii were chosen so that the radius of each circle equals half the square root

of the (given) area for each department. Also as in van Camp et al. [26], the costs

cij are as follows:

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0 0 0 0 0 218 0 0 0 0

M2 0 0 0 0 0 148 0 0 296 0

M3 0 0 0 28 70 0 0 0 0 0

M4 0 0 28 0 0 28 70 140 0 0

M5 0 0 70 0 0 0 0 210 0 0

M6 218 148 0 28 0 0 0 0 0 0

M7 0 0 0 70 0 0 0 0 0 28

M8 0 0 0 140 210 0 0 0 0 888

M9 0 296 0 0 0 0 0 0 0 59.2

M10 0 0 0 0 0 0 28 888 59.2 0

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 181

Here is the best layout we obtained:

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

1

2

3

4

5

6

7

8

9

10

Optimal solution for α = 2.0

We see that (for α = 2.0) the AR model yields a solution exhibiting a fairly

good separation of the circles. The optimal layout for this problem is not known,

and interestingly this solution is different from the Stage-2 solution reported in van

Camp et al. [26].

Furthermore, we can compare the AR model and the Stage-1/Stage-2 sequence

of models of the NLT method in terms of the computational effort required to

find a solution for the layout of the circles. We took the cumulative summary of

computational data reported in van Camp et al. [26] to solve the Stage-1 and

Stage-2 problems and compared the number of iterations with the results reported

by MINOS. The results are presented in Table 7.1 and illustrate the advantage of

having an efficient algorithm as is the case for the AR model.

CHAPTER 7. NUMERICAL EXPERIMENTS WITH THE AR MODEL 182

Number of
iterations

NLT method
(Stage-1 & Stage-2) 6607

AR model with
α = 2.0 31

Table 7.1: Comparison of iteration counts between NLT and AR

Finally, we remark that Etawil and Vannelli studied three possible choices of

“repeller” functions:

• z − ln(z)− 1;

• z + e1−z − 2;

• 1
z
− 1.

Any of these choices can be used in the AR model. Our experimental results showed

that the choice of 1
z
−1 outperformed the other two choices for the layout examples

which we considered.

Chapter 8

Conclusions and Directions for

Future Research

In this thesis we derived two strengthened semidefinite programming, and hence

convex, relaxations for the Max-Cut problem. We provided computational evidence

for their strengthening properties and proved several interesting properties of the

geometry of the tighter relaxation. We also derived a convex relaxation for the

VLSI layout problem where the modules are allowed to have (significantly) different

sizes. Furthermore, we provided computational evidence for the potential of this

relaxation to provide a reliable global placement for this hard layout problem.

Many exciting questions about both the theoretical and the computational as-

pects of these relaxations remain. We conclude by outlining in more detail the

achievements of this thesis as well as some of these possibilities for future research.

183

CHAPTER 8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH 184

8.1 New Semidefinite Relaxations for the Max-

Cut Problem

We derived and studied two strengthened semidefinite programming relaxations for

the Max-Cut problem and proved several interesting properties of these relaxations.

In particular, we proved that the tighter of these two relaxations corresponds to a

relaxation of the cut polytope that is strictly contained in the intersection of the

elliptope and the metric polytope. We also proved that for the tighter relaxation

SDP3, the rank of the matrix variable Y completely characterizes the faces of

dimension 0 and 1 of the cut polytope in Sn (upon projecting its first column into
Sn via the sMat operator). This is an improvement over the Goemans-Williamson
relaxation which characterizes only the zero-dimensional faces (vertices) in this way.

The study of the structure of the barycenter of the feasible sets of the strength-

ened relaxations SDP2 and SDP3 led us to explicitly exhibit a projection of the fea-

sible sets of these relaxations onto a face of the cone of positive semidefinite matrices

where Slater’s condition holds for both the primal and the dual SDPs, and hence

strong duality also holds. We also presented computational results demonstrating

that the relaxations SDP2 and SDP3 frequently yield a significant improvement

over SDP1, and that SDP3 often finds the optimal value of MC.

From a theoretical point of view, it would be quite interesting to characterize

all the weighted graphs, or at least some classes of weighted graphs, for which

SDP3 always yields the optimal value of the maximum cut. Perhaps an even more

desirable result would characterize the graphs for which SDP3 finds an optimal

CHAPTER 8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH 185

cut; our theoretical and computational results suggest that many weighted graphs

belong in this category. More ambitiously, it seems plausible that a guaranteed

approximation bound tighter than the Goemans and Williamson bound of αGW ≈
0.87856 holds for the optimal value of SDP3. It would be quite interesting to prove

such a worst-case bound, although one must keep in mind H̊astad’s result that it

is NP-hard to find an ρ-approximation algorithm for Max-Cut with ρ greater than

0.9412 [52].

Another intriguing question is how to design a more sophisticated rounding

procedure than the simple one which we used. The rounding procedure should

make better use of the information contained in the optimal matrix Y for SDP3.

Such a procedure might be related to the well-known randomized algorithm of

Goemans and Williamson [41], although their worst-case analysis does not apply

to Ising spin glass problems because these problems have negative edge weights, or

it might make use of the ideas in Nesterov’s relative accuracy analysis [76]. This is

the focus of ongoing research.

In this thesis, we did not address the design of computational algorithms tailored

to solve the new SDP relaxations. In particular, we did not address the question of

how to solve these relaxations efficiently by exploiting their structure and sparsity.

Both relaxations have structured constraints, the sparsity of which increases rapidly

with n. Current and future research efforts on sparse structured problems (see for

example [14, 22, 23, 24, 25, 27, 35, 36, 74]) may lead to efficient methods for solving

the relaxations. Such advances in the computational technology for solving SDPs

may well make it worthwhile for enumerative techniques to invest the computational

CHAPTER 8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH 186

effort required to compute the SDP3 bound at the root node of the enumeration tree,

and perhaps also at other branching nodes, in order to reduce the combinatorial

explosion in the enumerative process.

Finally, we point out that the direct lifting approach in Section 2.4.2 shows that

the strengthened relaxations SDP2 and SDP3 can also be used to compute bounds

for quartic Max-Cut problems, that is, polynomial problems of the form:

max
∑

1≤i<j<k<l≤n
HT (i,j),T (k,l) vivjvkvl +

∑
1≤i<j≤n

H0,T (i,j) vivj

s.t.

v2
i = 1, i = 1, . . . , n.

Further research is necessary to establish the efficiency of the new relaxations for

such problems as well as the theoretical properties which hold in this more general

context.

8.2 New AR Model for VLSI Layout

Our computational results show that the AR (Attractor-Repeller) model was robust

on several “optimal” floorplanning problems irrespective of the number of fixed pads

on the boundary. This new model globally places modules or cells of different sizes

in optimal two-dimensional locations. This global optimality is the most important

feature of this new model. When compared with the Stage-1/Stage-2 sequence of

the NLT method, the new AR model finds in just one stage, and furthermore much

more quickly and efficiently, a good initial point for the Stage-3 model of the NLT

CHAPTER 8. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH 187

method.

We isolated the source of the non-convexity in the AR model and derived a

convex version of the AR model, CoAR. We showed that the convex CoAR model

retains much of the structure of the AR model, and in particular the derivation of

the CoAR model leads to the definition of “generalized” target distances. However,

we further observed that the numerical solution of this model requires a carefully

designed line search algorithm. Further work is required to implement such an

algorithm.

Our results also show that the choice of the parameter α in the AR model has a

significant influence on the optimal solution. Hence the question of how to choose

α appropriately deserves further study.

Finally, we believe that the ideas presented in Sections 6.2 and 6.3 are applicable

to other layout problems. For example, they may be quite effective for solving an-

other important layout problem in circuit design, namely the standard-cell problem

(see for example Etawil and Vannelli [32]). In view of our computational results

here, this is yet another promising avenue for future research.

Appendix A

Matrices B̄ and Λ̄ for Example

2.5.8

The matrices B̄ and Λ̄ that follow satisfy

‖H ◦ (A− B̄)‖2
F − trace Λ̄B̄ = 2.81× 10−4.

188

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 189

The matrix B̄ is formed with the following columns:

Columns 1 through 7

1.0074 1.0000 -0.6475 1.0000 -0.6475 0.3026 1.0000

1.0000 1.0000 -0.6427 0.9927 -0.6427 0.3004 0.9927

-0.6475 -0.6427 1.0020 -0.6427 0.3013 -0.6487 -0.6427

1.0000 0.9927 -0.6427 1.0000 -0.6427 0.3004 0.9927

-0.6475 -0.6427 0.3013 -0.6427 1.0020 -0.6487 -0.6427

0.3026 0.3004 -0.6487 0.3004 -0.6487 1.0026 0.3004

1.0000 0.9927 -0.6427 0.9927 -0.6427 0.3004 1.0000

-0.6475 -0.6427 0.3013 -0.6427 0.3013 0.0257 -0.6427

0.3026 0.3004 -0.6487 0.3004 0.0257 0.3001 0.3004

0.3026 0.3004 0.0257 0.3004 -0.6487 0.3001 0.3004

1.0000 0.9927 -0.6427 0.9927 -0.6427 0.3004 0.9927

0.9300 0.9232 -0.6500 0.9232 -0.6500 0.3804 0.9232

-0.6475 -0.6427 0.9307 -0.6427 0.3369 -0.6487 -0.6427

-0.6475 -0.6427 0.3369 -0.6427 0.9307 -0.6487 -0.6427

-0.6475 -0.6427 0.3369 -0.6427 0.3369 0.0257 -0.6427

1.0000 0.9927 -0.6427 0.9927 -0.6427 0.3004 0.9927

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 190

Columns 8 through 14

-0.6475 0.3026 0.3026 1.0000 0.9300 -0.6475 -0.6475

-0.6427 0.3004 0.3004 0.9927 0.9232 -0.6427 -0.6427

0.3013 -0.6487 0.0257 -0.6427 -0.6500 0.9307 0.3369

-0.6427 0.3004 0.3004 0.9927 0.9232 -0.6427 -0.6427

0.3013 0.0257 -0.6487 -0.6427 -0.6500 0.3369 0.9307

0.0257 0.3001 0.3001 0.3004 0.3804 -0.6487 -0.6487

-0.6427 0.3004 0.3004 0.9927 0.9232 -0.6427 -0.6427

1.0020 -0.6487 -0.6487 -0.6427 -0.6500 0.3369 0.3369

-0.6487 1.0026 0.3001 0.3004 0.3804 -0.6487 0.0257

-0.6487 0.3001 1.0026 0.3004 0.3804 0.0257 -0.6487

-0.6427 0.3004 0.3004 1.0000 0.9232 -0.6427 -0.6427

-0.6500 0.3804 0.3804 0.9232 1.0000 -0.6500 -0.6500

0.3369 -0.6487 0.0257 -0.6427 -0.6500 1.0020 0.3013

0.3369 0.0257 -0.6487 -0.6427 -0.6500 0.3013 1.0020

0.9307 -0.6487 -0.6487 -0.6427 -0.6500 0.3013 0.3013

-0.6427 0.3004 0.3004 0.9927 0.9232 -0.6427 -0.6427

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 191

Columns 15 through 16

-0.6475 1.0000

-0.6427 0.9927

0.3369 -0.6427

-0.6427 0.9927

0.3369 -0.6427

0.0257 0.3004

-0.6427 0.9927

0.9307 -0.6427

-0.6487 0.3004

-0.6487 0.3004

-0.6427 0.9927

-0.6500 0.9232

0.3013 -0.6427

0.3013 -0.6427

1.0020 -0.6427

-0.6427 1.0000

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 192

and the matrix Λ̄ is formed with the following columns:

Columns 1 through 7

0.0148 -0.0000 0.0050 -0.0000 0.0050 0.0052 -0.0000

-0.0000 0.0000 0 0 0 0 0

0.0050 0 0.0039 0 0.0025 0.0027 0

-0.0000 0 0 0.0000 0 0 0

0.0050 0 0.0025 0 0.0039 0.0027 0

0.0052 0 0.0027 0 0.0027 0.0053 0

-0.0000 0 0 0 0 0 0.0000

0.0050 0 0.0025 0 0.0025 0 0

0.0052 0 0.0027 0 0 0.0001 0

0.0052 0 0 0 0.0027 0.0001 0

-0.0000 0 0 0 0 0 0

-0.0000 0 0.0000 0 0.0000 0 0

0.0050 0 0.0014 0 0 0.0027 0

0.0050 0 0 0 0.0014 0.0027 0

0.0050 0 0 0 0 0 0

-0.0000 0 0 0 0 0 0

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 193

Columns 8 through 14

0.0050 0.0052 0.0052 -0.0000 -0.0000 0.0050 0.0050

0 0 0 0 0 0 0

0.0025 0.0027 0 0 0.0000 0.0014 0

0 0 0 0 0 0 0

0.0025 0 0.0027 0 0.0000 0 0.0014

0 0.0001 0.0001 0 0 0.0027 0.0027

0 0 0 0 0 0 0

0.0039 0.0027 0.0027 0 0.0000 0 0

0.0027 0.0053 0.0001 0 0 0.0027 0

0.0027 0.0001 0.0053 0 0 0 0.0027

0 0 0 0.0000 0 0 0

0.0000 0 0 0 0.0000 0.0000 0.0000

0 0.0027 0 0 0.0000 0.0039 0.0025

0 0 0.0027 0 0.0000 0.0025 0.0039

0.0014 0.0027 0.0027 0 0.0000 0.0025 0.0025

0 0 0 0 0 0 0

APPENDIX A. MATRICES B̄ AND Λ̄ FOR EXAMPLE 2.5.8 194

Columns 15 through 16

0.0050 -0.0000

0 0

0 0

0 0

0 0

0 0

0 0

0.0014 0

0.0027 0

0.0027 0

0 0

0.0000 0

0.0025 0

0.0025 0

0.0039 0

0 0.0000

Appendix B

Weighted Adjacency Matrix for

Problem with n = 12 in Table 3.1

0 2 2 0 2 4 0 2 2 2 2 2

2 0 0 2 4 2 2 0 2 2 2 2

2 0 0 0 4 4 2 4 4 0 2 2

0 2 0 0 0 2 0 0 2 4 2 2

2 4 4 0 0 2 2 2 2 4 2 4

4 2 4 2 2 0 2 0 2 2 2 2

0 2 2 0 2 2 0 0 0 4 2 2

2 0 4 0 2 0 0 0 0 4 4 2

2 2 4 2 2 2 0 0 0 2 2 2

2 2 0 4 4 2 4 4 2 0 4 2

2 2 2 2 2 2 2 4 2 4 0 4

2 2 2 2 4 2 2 2 2 2 4 0

195

Bibliography

[1] GAMS – The Solver Manuals. GAMS Development Corporation, Washington, D.C.,

1996.

[2] F. ALIZADEH. Combinatorial Optimization with Interior Point Methods and

Semidefinite Matrices. PhD thesis, University of Minnesota, 1991.

[3] F. ALIZADEH. Interior point methods in semidefinite programming with applica-

tions to combinatorial optimization. SIAM J. Optim., 5:13–51, 1995.

[4] F. ALIZADEH, J.-P. HAEBERLY, M.V. NAYAKKANKUPPAM, M.L. OVERTON,

and S. SCHMIETA. SDPpack user’s guide – version 0.9 Beta. Technical Report

TR1997–737, Courant Institute of Mathematical Sciences, NYU, New York, NY,

June 1997.

[5] M.F. ANJOS and H. WOLKOWICZ. Strengthened semidefinite relaxations via a

second lifting for the max-cut problem. To appear in Special Issue of Discrete Applied

Mathematics devoted to Foundations of Heuristics in Combinatorial Optimization,

2001.

[6] K.M. ANSTREICHER, X. CHEN, H. WOLKOWICZ, and Y. YUAN. Strong dual-

196

BIBLIOGRAPHY 197

ity for a trust-region type relaxation of the quadratic assignment problem. Linear

Algebra Appl., 301(1-3):121–136, 1999.

[7] K.M. ANSTREICHER and H. WOLKOWICZ. On Lagrangian relaxation of

quadratic matrix constraints. SIAM J. Matrix Anal. Appl., 22(1):41–55, 2000.

[8] E. BALAS. A modified lift-and-project procedure. Math. Program., 79(1-3, Ser.

B):19–31, 1997.

[9] E. BALAS, S. CERIA, and G. CORNUEJOLS. A lift-and-project cutting plane

algorithm for mixed 0-1 programs. Math. Program., 58:295–324, 1993.

[10] E. BALAS, S. CERIA, and G. CORNUÉJOLS. Solving mixed 0-1 programs by a lift-

and-project method. In Proceedings of the Fourth Annual ACM-SIAM Symposium

on Discrete Algorithms (Austin, TX, 1993), pages 232–242, New York, 1993.

[11] F. BARAHONA. On cuts and matchings in planar graphs. Math. Program., 60(1,

Ser. A):53–68, 1993.

[12] F. BARAHONA, M. GRÖTSCHEL, M. JÜNGER, and G. REINELT. An applica-

tion of combinatorial optimization to statistical physics and circuit layout design.

Oper. Res., 36:493–513, 1988.

[13] F. BARAHONA and A. R. MAHJOUB. On the cut polytope. Math. Program.,

36(2):157–173, 1986.

[14] S.J. BENSON, Y. YE, and X. ZHANG. Solving large-scale sparse semidefinite pro-

grams for combinatorial optimization. SIAM J. Optim., 10(2):443–461 (electronic),

2000.

BIBLIOGRAPHY 198

[15] D.P. BERTSEKAS. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

2nd edition 1999.

[16] B. BORCHERS. CSDP 2.3 user’s guide. Optim. Methods Softw., 11/12(1-4):597–611,

1999.

[17] B. BORCHERS. CSDP, a C library for semidefinite programming. Optim. Methods

Softw., 11/12(1-4):613–623, 1999.

[18] E. BOROS, Y. CRAMA, and P.L. HAMMER. Upper bounds for quadratic 0 − 1
maximization. Oper. Res. Lett., 9:73–79, 1990.

[19] E. BOROS and P.L. HAMMER. The max-cut problem and quadratic 0-1 optimiza-

tion; polyhedral aspects, relaxations and bounds. Ann. Oper. Res., 33(1-4):151–180,

1991. Topological network design (Copenhagen, 1989).

[20] E. BOROS and P.L. HAMMER. Cut-polytopes, Boolean quadric polytopes and

nonnegative quadratic pseudo-Boolean functions. Math. Oper. Res., 18:245–253,

1993.

[21] A. BROOKE, D. KENDRICK, and A. MEERAUS. GAMS – A User’s Guide, Re-

lease 2.25. The Scientific Press, South San Francisco, CA, 1992.

[22] S. BURER and R.D.C. MONTEIRO. An efficient algorithm for solving the MAX-

CUT SDP relaxation. Technical report, Georgia Tech, Atlanta, GA, 1999.

[23] S. BURER, R.D.C. MONTEIRO, and Y. ZHANG. Interior-point algorithms for

semidefinite programming based on a nonlinear programming formulation. Technical

Report TR99-27, Department of Computational and Applied Mathematics, Rice

University, Houston, TX, 1999.

BIBLIOGRAPHY 199

[24] S. BURER, R.D.C. MONTEIRO, and Y. ZHANG. Solving semidefinite programs via

nonlinear programming part I: Transformations and derivatives. Technical Report

TR99-17, Department of Computational and Applied Mathematics, Rice University,

Houston, TX, 1999.

[25] S. BURER, R.D.C. MONTEIRO, and Y. ZHANG. Solving semidefinite programs

via nonlinear programming part II: Interior point methods for a subclass of SDPs.

Technical Report TR99-23, Department of Computational and Applied Mathemat-

ics, Rice University, Houston, TX, 1999.

[26] D.J. VAN CAMP, M.W. CARTER, and A. VANNELLI. A nonlinear optimization

approach for solving facility layout problems. Eur. J. Oper. Res., 57:174–189, 1991.

[27] C. CHOI and Y. YE. Solving sparse semidefinite programs using the dual scaling

algorithm with an iterative solver. Technical report, The University of Iowa, Iowa

City, IA, 2000.

[28] C. DELORME and S. POLJAK. Combinatorial properties and the complexity of a

max–cut approximation. Eur. J. Comb., 14:313–333, 1993.

[29] C. DELORME and S. POLJAK. Laplacian eigenvalues and the maximum cut prob-

lem. Math. Program., 62(3):557–574, 1993.

[30] M.M. DEZA and M. LAURENT. Geometry of Cuts and Metrics. Springer-Verlag,

Berlin, 1997.

[31] Z. DREZNER. DISCON: A new method for the layout problem. Oper. Res.,

28(6):1375–1384, 1980.

[32] H.A.Y. ETAWIL and A. VANNELLI. Target distance models for VLSI placement

problem. To appear in Journal of VLSI.

BIBLIOGRAPHY 200

[33] M.C. FERRIS, M.P. MESNIER, and J.J. MORÉ. NEOS and Condor: Solving

optimization problems over the Internet. Technical Report ANL/MCS-P708-0398,

Argonne National Laboratory, Mathematics and Computer Science Division, 1998.

[34] K.H FISCHER and J.A. HERTZ. Spin Glasses. Cambridge University Press, Cam-

bridge, 1991.

[35] K. FUJISAWA, M. KOJIMA, and K. NAKATA. Exploiting sparsity in primal–dual

interior-point methods for semidefinite programming. Math. Program., 79(1-3, Ser.

B):235–253, 1997.

[36] K. FUKUDA, M. KOJIMA, K. MUROTA, and K. NAKATA. Exploiting sparsity

in semidefinite programming via matrix completion I: general framework. Technical

Report B-358, Dept. of Information Sciences, Tokyo Institute of Technology, Tokyo,

Japan, 1999.

[37] M.R. GAREY and D.S. JOHNSON. Computers and Intractability: A Guide to the

Theory of NP–Completeness. Freeman, San Francisco, 1979.

[38] M.X. GOEMANS. Semidefinite programming in combinatorial optimization. Math.

Program., 79:143–162, 1997.

[39] M.X. GOEMANS. Semidefinite programming and combinatorial optimization. Doc.

Math., Extra Volume ICM 1998:657–666, 1998.

[40] M.X. GOEMANS and F. RENDL. Combinatorial optimization. In H. Wolkowicz,

R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite Programming:

Theory, Algorithms, and Applications, pages 343–360. Kluwer Academic Publishers,

Boston, MA, 2000.

BIBLIOGRAPHY 201

[41] M.X. GOEMANS and D.P. WILLIAMSON. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. J. Assoc.

Comput. Mach., 42(6):1115–1145, 1995.

[42] B. GRONE, C.R. JOHNSON, E. MARQUES de SA, and H. WOLKOWICZ. Positive

definite completions of partial Hermitian matrices. Linear Algebra Appl., 58:109–124,

1984.

[43] P.L. HAMMER, P. HANSEN, and B. SIMEONE. Roof duality, complementation

and persistency in quadratic 0-1 optimization. Math. Program., 28:121–155, 1984.

[44] C. HELMBERG. An Interior-Point Method for Semidefinite Programming and Max-

Cut Bounds. PhD thesis, Graz University of Technology, Austria, 1994.

[45] C. HELMBERG. SBmethod – A C++ implementation of the spectral bundle

method. ZIB preprint 00-35, Konrad-Zuse-Zentrum für Informationstechnik Berlin,

Takustraße 7, 14195 Berlin, Germany, October 2000.

[46] C. HELMBERG and K.C. KIWIEL. A spectral bundle method with bounds. ZIB

preprint SC-99-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takus-

traße 7, 14195 Berlin, Germany, November 1999.

[47] C. HELMBERG and F. OUSTRY. Bundle methods and eigenvalue functions. In

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite

Programming: Theory, Algorithms, and Applications, pages 307–337. Kluwer Aca-

demic Publishers, Boston, MA, 2000.

[48] C. HELMBERG, S. POLJAK, F. RENDL, and H. WOLKOWICZ. Combining

semidefinite and polyhedral relaxations for integer programs. In Integer Program-

BIBLIOGRAPHY 202

ming and Combinatorial Optimization (Copenhagen, 1995), pages 124–134. Springer,

Berlin, 1995.

[49] C. HELMBERG and F. RENDL. A spectral bundle method for semidefinite pro-

gramming. SIAM J. Optim., 10(3):673 – 696, 2000.

[50] C. HELMBERG, F. RENDL, R. J. VANDERBEI, and H. WOLKOWICZ. An

interior-point method for semidefinite programming. SIAM J. Optim., 6(2):342–361,

1996.

[51] R.A. HORN and C.R. JOHNSON. Matrix Analysis. Cambridge University Press,

Cambridge, 1990. Corrected reprint of the 1985 original.

[52] J. HÅSTAD. Some optimal inapproximability results. In STOC ’97 (El Paso, TX),

pages 1–10 (electronic). ACM, New York, 1999.

[53] E. ISING. Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31:253–258, 1925.

[54] C.R. JOHNSON. Matrix completion problems: a survey. Proceedings of Symposium

in Applied Mathematics, 40:171–198, 1990.

[55] C.R. JOHNSON, B. KROSCHEL, and H. WOLKOWICZ. An interior-point method

for approximate positive semidefinite completions. Comput. Optim. Appl., 9(2):175–

190, 1998.

[56] M. JÜNGER and F. LIERS. Private communication, 2000.

[57] M. JÜNGER and G. RINALDI. Relaxations of the max-cut problem and compu-

tation of spin glass ground states. In Operations Research Proceedings 1997 (Jena),

pages 74–83, Springer, Berlin, 1998.

BIBLIOGRAPHY 203

[58] R.M. KARP. Reducibility among combinatorial problems. In R. E. Miller and J.W.

Thatcher, editors, Complexity of Computer Computation, pages 85–103. Plenum

Press, New York, 1972.

[59] M. KOJIMA and L. TUNÇEL. Cones of matrices and successive convex relaxations

of nonconvex sets. SIAM J. Optim., 10(3):750–778 (electronic), 2000.

[60] K.O. KORTANEK and J.S. ZHU. New purification algorithms for linear program-

ming. Nav. Res. Logist., 35(4):571–583, 1988.

[61] J.B. LASSERRE. Optimality conditions and LMI relaxations for 0-1 programs.

Technical report, LAAS-CNRS, Toulouse, France, 2000.

[62] M. LAURENT. Tighter linear and semidefinite relaxations for max-cut based on the

Lovász-Schrijver lift-and-project procedure. To appear in SIAM J. Optim.

[63] M. LAURENT. A tour d’horizon on positive semidefinite and Euclidean distance

matrix completion problems. In Topics in Semidefinite and Interior-Point Methods,

volume 18 of The Fields Institute for Research in Mathematical Sciences, Commu-

nications Series, pages 51–76, Providence, Rhode Island, 1998.

[64] M. LAURENT and S. POLJAK. On a positive semidefinite relaxation of the cut

polytope. Linear Algebra Appl., 223/224:439–461, 1995.

[65] M. LAURENT and S. POLJAK. On the facial structure of the correlation matrices.

SIAM J. Matrix Anal. Appl., 17(3):530–547, 1996.

[66] M. LAURENT, S. POLJAK, and F. RENDL. Connections between semidefinite

relaxations of the max-cut and stable set problems. Math. Program., 77:225–246,

1997.

BIBLIOGRAPHY 204

[67] C. LEMARÉCHAL and F. OUSTRY. Semidefinite relaxations and Lagrangian du-

ality with application to combinatorial optimization. Technical Report 3710, Insti-

tut National de Recherche en Informatique et en Automatique, INRIA, St Martin,

France, 1999.

[68] T. LENGAUER. Combinatorial Algorithms for Integrated Circuit Layout. John

Wiley & Sons Ltd., Chichester, 1990.

[69] A.S. LEWIS. Extreme points and purification algorithms in general linear program-

ming. In Infinite programming (Cambridge, 1984), pages 123–135. Springer, Berlin,

1985.

[70] F. LIERS. Private communication, 2001.

[71] L. LOVÁSZ and A. SCHRIJVER. Cones of matrices and set-functions and 0-1

optimization. SIAM J. Optim., 1(2):166–190, 1991.

[72] B. MOHAR and S. POLJAK. Eigenvalues in combinatorial optimization. In Com-

binatorial and graph-theoretical problems in linear algebra (Minneapolis, MN, 1991),

pages 107–151. Springer, New York, 1993.

[73] B.A. MURTAGH and M.A. SAUNDERS. Large-Scale linearly constrained optimiza-

tion. Math. Program., 14(1):41–72, 1978.

[74] K. NAKATA, K. FUJISAWA, M. FUKUDA, M. KOJIMA, and K. MUROTA. Ex-

ploiting sparsity in semidefinite programming via matrix completion II: implementa-

tion and numerical results. Technical Report B-368, Dept. of Information Sciences,

Tokyo Institute of Technology, Tokyo, Japan, 2001.

BIBLIOGRAPHY 205

[75] Y.E. NESTEROV and A.S. NEMIROVSKII. Optimization over Positive Semidef-

inite Matrices: Mathematical Background and User’s Manual. USSR Acad. Sci.

Centr. Econ. & Math. Inst., 32 Krasikova St., Moscow 117418 USSR, 1990.

[76] Yu. NESTEROV. Semidefinite relaxation and nonconvex quadratic optimization.

Optim. Methods Softw., 9(1-3):141–160, 1998.

[77] Yu. NESTEROV and A. NEMIROVSKII. Interior-point polynomial algorithms in

convex programming. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1994.

[78] Yu. NESTEROV, H. WOLKOWICZ, and Y. YE. Semidefinite programming re-

laxations of nonconvex quadratic optimization. In H. Wolkowicz, R. Saigal, and

L. Vandenberghe, editors, Handbook of Semidefinite Programming: Theory, Algo-

rithms, and Applications, pages 361–419. Kluwer Academic Publishers, Boston, MA,

2000.

[79] P. PARDALOS and H. WOLKOWICZ, editors. Quadratic Assignment and Related

Problems. American Mathematical Society, Providence, RI, 1994. Papers from the

workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21, 1993.

[80] P.A. PARRILO. Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. PhD thesis, California Institute of Tech-

nology, 2000.

[81] S. POLJAK and F. RENDL. Node and edge relaxations for the max-cut problem.

Computing, 52:123–127, 1994.

[82] S. POLJAK and F. RENDL. Nonpolyhedral relaxations of graph-bisection problems.

SIAM J. Optim., 5(3), 1995. 467-487.

BIBLIOGRAPHY 206

[83] S. POLJAK, F. RENDL, and H. WOLKOWICZ. A recipe for semidefinite relaxation

for (0, 1)-quadratic programming. J. Global Optim., 7(1):51–73, 1995.

[84] A.J. QUIST, E. DE KLERK, C. ROOS, and T. TERLAKY. Copositive relaxation

for general quadratic programming. Optim. Methods Softw., 9:185–208, 1998.

[85] F. RENDL. Semidefinite programming and combinatorial optimization. Appl. Nu-

mer. Math., 29:255–281, 1999.

[86] H.D. SHERALI and W.P. ADAMS. A hierarchy of relaxations between the contin-

uous and convex hull representations for zero-one programming problems. SIAM J.

Discrete Math., 3(3):411–430, 1990.

[87] H.D. SHERALI and W.P. ADAMS. A hierarchy of relaxations and convex hull

characterizations for mixed-integer zero-one programming problems. Discrete Appl.

Math., 52(1):83–106, 1994.

[88] N.Z. SHOR. Quadratic optimization problems. Izv. Akad. Nauk SSSR Tekh. Kibern.,

222(1):128–139, 222, 1987.

[89] C. DE SIMONE. The cut polytope and the Boolean quadric polytope. Discrete

Math., 79(1):71–75, 1989/90.

[90] C. DE SIMONE. A note on the Boolean quadric polytope. Oper. Res. Lett.,

19(3):115–116, 1996.

[91] R. STERN and H. WOLKOWICZ. Indefinite trust region subproblems and nonsym-

metric eigenvalue perturbations. SIAM J. Optim., 5(2):286–313, 1995.

[92] L. TUNÇEL. Private communication, 1999.

BIBLIOGRAPHY 207

[93] L. TUNÇEL. On the Slater condition for the SDP relaxations of nonconvex sets.

Technical Report CORR 2000-13, University of Waterloo, Department of Combina-

torics and Optimization, 2000.

[94] H. WOLKOWICZ, R. SAIGAL, and L. VANDENBERGHE, editors. Handbook of

Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic

Publishers, Boston, MA, 2000. xxvi+654 pages.

[95] V.A. YAKUBOVICH. The S-procedure and duality theorems for nonconvex prob-

lems of quadratic programming. Vestnik Leningrad. Univ., 1973(1):81–87, 1973.

[96] V.A. YAKUBOVICH. Nonconvex optimization problem: the infinite-horizon linear-

quadratic control problem with quadratic constraints. Systems Control Lett.,

19(1):13–22, 1992.

[97] Y. YE. Approximating quadratic programming with bound and quadratic con-

straints. Math. Program., 84:219–226, 1999.

[98] Q. ZHAO. Semidefinite Programming for Assignment and Partitioning Problems.

PhD thesis, University of Waterloo, 1996.

[99] Q. ZHAO, S.E. KARISCH, F. RENDL, and H. WOLKOWICZ. Semidefinite pro-

gramming relaxations for the quadratic assignment problem. J. Comb. Optim.,

2(1):71–109, 1998.

