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Abstract

In many practical large scale computational problems, the calculation of partial deriva-
tives of the object function f with respect to input parameters are entailed and the dimen-
sion of inputs n is much larger the one of outputs m. The use of reverse mode automatic
differentiation (AD) is mostly efficient as it computes the gradient in the same amount of
runtime as f regardless of the input dimension n. However, it demands excessive memory.
To enjoy the runtime efficiency of reverse mode without paying unaffordable memory, struc-
tured reverse mode has been proposed and succeeded in several applications. Due to the
fundamental difficulty in automatic structure detection, structured reverse mode has not
been fully automated. This thesis, instead of trying to solve to structure detection problem
for a completely generic piece of code, is devoted to the analysis and implementation of
deploying structured reverse mode to a generic class of problems with a known structure,
nested Monte Carlo simulations. We reveal the general structure pattern of Monte Carlo
simulations in financial applications. Space/time tradeoff on deploying structured reverse
mode are discussed in details and numerical experiments using Variable Annuity program
are conducted to corroborate the analysis. Significant memory and runtime reductions
are observed. We argue such contribution is important as nested Monte Carlo simulations
accommodates several large scale computations in financial services that are crucial in
practice.
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Chapter 1

Background and Motivation

In various large scale computations, the target function is a scalar or of low dimensional
with a much higher dimensional input, and derivatives calculation is entailed. In such
scenarios, reverse mode automatic differentiation (AD) becomes the unique choice due to
its superior runtime efficiency over alternative approaches such as forward mode AD and
finite difference. However, reverse mode’s excessive memory requirement may impede its
deployment for large scale computations. Structured reverse mode, an general approach
to relax reverse mode’s memory requirement while maintaining reverse mode’s celebrated
runtime efficiency, has been proposed but yet to be automated. Case dependent studies
have proven structured reverse mode’s effectiveness, yet there has not been any systematic
investigations on its deployment to a generic class of computational problems, nested Monte
Carlo simulations. In this thesis, we reveal structures of nested Monte Carlo simulations
and research how to best utilize such generic structure pattern to achieve efficient reverse
mode computation. Numerical experiments using Variable Annuities are conducted and
significant memory reduction are found in accordance with theoretical analysis.

1.1 Why Automatic Differentiation?

1.1.1 Importance and cost of Derivatives

In numerous computational applications, in addition to the function value of a continuous
function f , its (partial) derivatives with respect to the inputs are also required.
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In optimization where the target function is to be minimized, we use derivatives (gradi-
ent and Hessian) to sketch the local profile of the optimized function, guiding the algorithm
towards the next iterative point. The vanishing of first order derivatives signals a local
extremum and the positive definiteness of the second order derivatives confirms the genuine-
ness of the local minimum. The use of derivatives is ubiquitous in non-linear optimization.

In financial applications, the target function is usually the present value of a financial
instrument, whether obtained from PDE approach or Monte Carlo simulation. There we
need its derivatives with respect to a list of parameters, such as current price, volatility,
interest rate, time etc., to hedge away the corresponding risk exposures they represent.
Derivative information is often needed for the sake of risk management and reporting pur-
poses as well.

As crucial as derivatives are among those applications, the calculation of derivatives
takes a longer time to run than the original function itself, whose run time may already be
prohibitive. To quantify that the cost of computing the derivatives, the following notations
are introduced:

Definition 1.1. ω(c) stands for the runtime of the source code c in a default environment.

Definition 1.2. ω(∂ac) stands for the runtime to calculate the derivatives of the differ-
entiable function fc, which the source code c represents, using approach a in a default
environment.

The phrase ‘in a default environment’ is crucial as runtime critically depends on the pro-
gramming languages used, the computational power of the machine and also the software
packages deployed.

Definition 1.3. The Runtime Ratio of an approach a to calculate the derivatives of the
differentiable function fc that a source code c represents is defined as:

Ta(c) ≡
ω(∂ac)

ω(c)
(1.1)

Such a ratio measure removes most language and machine dependency. Suppose fc has
nc scalar inputs and mc scalar outputs, i.e. fc : Rnc → Rmc . By ‘derivatives’, we mean
the Jacobian Jij = ∂zi

∂xj
, i ∈ {1, · · · ,mc}, j ∈ {1, · · · , nc}, z = fc(x). 1

1Depending on the problem, sometimes only derivatives with respect to a subset of input variables are
needed. In such case, we consider the input variables whose derivatives with respect to are not requested
to be parameters that we pass to the function, rather than part of the ‘input’.
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Finite difference (FD) calculates approximations to the derivatives. However, FD only
calculates derivatives with respect to one input at each run, i.e.:

TFD(c) ≈

{
nc, Forward/Backward difference

2nc, Central difference
(1.2)

When the dimension of the input is too large–larger than 103 for example–using FD
to obtain derivatives becomes impractical. One famous example is the stagnation of the
artificial neural network field in the 70s after Marvin Minsky and Seymour Papert pub-
lished Perceptrons: An Introduction to Computational Geometry where they ‘showed’ the
training of deep neural networks is practically impossible due to large number of inputs.
For instance, modern deep neural networks can have parameters up to 107. For complex
financial applications such as LIBOR model, 104 − 106 inputs scalars of which derivatives
are requested are common. When the original function already has a prohibitive runtime,
obtaining the derivatives with runtime ratio more than 104 is unacceptable. Reverse mode
AD rides to the rescue.

1.1.2 Reverse mode Automatic Differentiation

AD calculates the derivatives exactly and automatically[1]. Furthermore, reverse mode
AD[2] computes the gradient within constant runtime ratio, regardless of number of inputs.

In Griewank’s On Automatic Differentiation[3], it reads:

“...Thus we can conclude that under quite realistic assumptions the evaluation
of a gradient requires never more than five times the effort of evaluating the
underlying function itself...”

It is such guaranteed O(1) runtime ratio scaling that opens the doors for efficient deriva-
tive calculations in large scale optimizations[4] and financial instrument pricing[5][6][7].
More precisely:

TRev(c) = χ(c) (1.3)

where χ(c) is a factor that depends on the details of c however is upper-bounded as
Griewank stated: χ 6 5. The crucial difference with TFD(c) is that it scales with mc
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but not nc.

We should note that gradient means specifically the derivatives of a scalar function.
Indeed, for most applications, target function whose derivatives are of interest is scalar.
In optimization, f is scalar simply because only scalar has natural order therefore can be
optimized. In finance, the present value of an instrument is a scalar as well.

1.2 Why Structured Reverse Mode?

1.2.1 Bottleneck of Reverse Mode in large scale computation

Reverse mode calculates derivatives with respect to all inputs at once. However, this is
at the cost of memory: a typical space/runtime tradeoff. Reverse mode literally evaluates
the derivatives of the original function in a backwards fashion which requires saving all the
intermediate variables, potentially demanding a much larger memory than the one needed
for the original function evaluation.

Definition 1.4. σ(c) is the amount of memory needed for executing c, in units of bytes,
in a default environment.

Definition 1.5. σ(∂ac) is the amount of memory needed for computing the derivatives
of the function fc, which the source code c represents, using approach a in a default
environment.

Similar to runtime, the size of memory depends on the programming language used2.

Definition 1.6. The Space ratio of an approach a to calculate the derivatives for the
differentiable function fc that a source code c represents is defined as:

Sa(c) ≡
σ(∂ac)

σ(c)
(1.4)

Such a ratio measure largely removes the programming language dependency.

2As basic data types are implemented differently and different memory management schemes (static or
dynamic) might be used.
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The bottleneck for reverse mode is that such space ratio SRev(c) as defined above can be
excessive, typically scaling linearly with the depth of the original function. Such memory
requirement is the bottleneck to apply reverse mode for modern large scale computations,
motivating the birth of structured reverse mode.

1.2.2 Structured Reverse Mode

To tackle the extensive space requirements that reverse mode suffers, systematic approaches
have been developed [8][9][10]. The space requirements of reverse mode comes from the fact
that all intermediate variables during the entire computation need to be saved such that
we can propagate the derivatives backwards. To release spaces, only a subset of variables
are stored, i.e. checkpoints, which are chosen such that original computational graph can
be recovered as we propagate the derivatives. Such method is called ‘checkpointing’ or
‘structured reverse mode’, since observation of the structural pattern of f ’s source code is
critical for the approach to be effective.

Checkpointing can significantly relax the space requirements of reverse mode at a
marginal cost of runtime and can be deployed recursively. For 1 level of checkpointing,
denoted as approach “StrRev”, only 1 additional run of f is done. We have:

ω(∂StrRevc) = ω(∂Revc) + ω(c) (1.5)

hence:

TStrRev(c) = TRev(c) + 1 = 1 +mc · χ(c) (1.6)

The additional function run reduces the memory to:

σ(∂StrRevc) ∼
√
σ(∂Revc)σ(c) (1.7)

hence:

SStrRev(c) ∼
√
SRev(c) (1.8)

The bigger picture is: reverse mode obtains great time efficiency at the cost of space. Yet
it is an extreme case of time/space tradeoff. Structured reverse mode offers a generalized
spectrum of the same tradeoff with naive reverse mode as a special case. What is remarkable
is that by increasing T by 1, S is reduced exponentially compared to straight forward reverse
mode.
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1.3 How to structure Reverse Mode

Structured Reverse Mode seems to be the holy grail for large scale computation: it resolves
the memory overflow issue of reverse mode and maintain its powerful runtime efficiency.
However, the performance of structured reverse mode depends on what structure is de-
ployed, in other words, how checkpoints are selected. There’s no exploitable structure for
a generic piece of code and for certain codes, though unlikely a practical one, that the
structured reverse mode does not improve over reverse mode itself at all.

People have made progress on algorithms that automatically find optimal positions of
checkpoints to truly automate structured reverse mode [11][12][13]. Unfortunately, the
automation has yet to achieve full generality. So far, even if a natural checkpointing of c
exists, there’s no guarantee that the algorithm would find it.

Motivation of this thesis: Instead of focusing on algorithms that can automatically
detects code structure, we research on how to best deploy structured reverse mode with a
given structure. Such structure is general, and in fact, for any nested simulations in finan-
cial applications. Variable Annuities, as a practical example, has the according structure
and will be used for numerical experiments.

1.4 Guide to the reader

The thesis is organized in the following way: Chapter I motivates the thesis; Chapter
II presents the idea of structured reverse mode automatic differentiation and discusses
how different uses of structure affect the tradeoff between space and runtime; Chapter III
discusses the use of Monte Carlo simulations in financial applications, its rate of efficiency
and its structure; Chapter IV provides the technical background for Variable Annuities
program and reveal its structure; Chapter V, the core part of the thesis, is dedicated to
the deployment of structured reverse mode in nested simulation with theoretical analysis
and numerical experiments; Appendix contains the technical details that are entailed to
make the thesis self-contained.
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Chapter 2

Structured Reverse Mode

In this chapter, we explain the basic framework and computational aspects of AD, and
introduce the idea and mathematics of structured reverse mode using a simple uniform
sequential program.

2.1 Understanding Reverse Mode

AD comes from the observation that any code at runtime1 is an ordered collection of basic
analytic operations. The derivatives of the basic operations2 are easy to compute. If we
compute the derivatives for all the basic operations involved and process them as dictated
by the chain rule, we shall arrive at the exact derivatives. Let’s use such a framework to
decompose a given source code c.

2.1.1 Decomposition of source code

For an arbitrary given source code c of a differentiable function f : Rn → Rm, denote
its input as x ∈ Rn and output as z ∈ Rm. The code at runtime can be decomposed

1Notice the clause “at runtime” is crucial. Codes typically have loops and conditional expressions. We
don’t know exactly what part of the code will be executed, how many times that a particular snippet of
code would be run, and what are the specific order of execution before completing the code’s execution.
What we are referring to is the resulting computations of the source code.

2Such as add, subtract, multiply, divide, trigonometry functions, exponential, logarithm etc.
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chronologically as: 

y1 = b1(Arg1) = b1(x)

y2 = b2(Arg2)
...

yk−1 = bk−1(Argk−1)

z = bk(Argk)

(2.1)

k is the total number of basic operations that f is composed of, which depends on the input
x in general. Argi stands for the set of non-constant3 arguments given to the elementary
function bi (b stands for basic). Every bi is a basic operation, hence it takes either 1 or 2
arguments.

With the above understanding, we have:

∀i ∈ {1, · · · , k}

{
|Argi| ∈ {1, 2}
Argi ∈ {x, y1, · · · , yi−1}

(2.2)

3We don’t consider constants as intermediate variables y. By constant, we mean anything that does
not depend on x.
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2.1.2 Calculation of Jacobian

When AD is invoked, derivatives of all the basic operations {b} are calculated and assigned
properly in the following extended Jacobian matrix JE of {bi}ki=1:

JE ≡



∂b1
∂x

−I O · · · · · · · · · O
∂b2
∂x

∂b2
∂y1

−I . . . · · · · · · ...
∂b3
∂x

∂b3
∂y1

∂b3
∂y2

−I . . . · · · ...
...

...
... . . . . . . . . . ...

∂bk−2

∂x

∂bk−2

∂y1

∂bk−2

∂y2
· · · ∂bk−2

∂yk−3
−I O

∂bk−1

∂x

∂bk−1

∂y1

∂bk−1

∂y2
· · · · · · ∂bk−1

∂yk−2
−I

∂bk
∂x

∂bk
∂y1

∂bk
∂y2

· · · · · · · · · ∂bk
∂yk−1


≡
(
A B
C D

)
(2.3)

A =
(
(∂b1
∂x

)T , · · · , (∂bk−1

∂x
)T
)T

B =



−I O · · · · · · · · · O
∂b2
∂y1

−I . . . · · · · · · ...
∂b3
∂y1

∂b3
∂y2

−I . . . · · · ...
...

... . . . . . . . . . ...
∂bk−2

∂y1

∂bk−2

∂y2
· · · ∂bk−2

∂yk−3
−I O

∂bk−1

∂y1

∂bk−1

∂y2
· · · · · · ∂bk−1

∂yk−2
−I


C =

∂bk
∂x

D =
(
∂bk
∂y1

· · · ∂bk
∂yk−1

)
(2.4)

Notice that x, y, b(·) might be vectors hence each block in JE, A,B,C,D might be matrices.
I and O are identity matrix and matrix of all zero of appropriate size. Denoting ni as yi’s
dimension, i.e. bi’s output dimension, ∂bi

∂yj
would be a ni × nj matrix. B is lower block

triangular and has identity matrix along the diagonals, hence non-singular. B is also sparse
for each b takes at most 2 arguments, i.e. each row has no more than 3 non-zero elements.
By definition: {

Adx+Bd{y} = 0

Cdx+Dd{y} = dz
⇒ dz = (C −DB−1A)dx ≡ Jdx (2.5)

{y} =
(
yT1 , · · · , yTk−1

)T
9



where we have denoted y in column vectors forms. Such computation is related to the
Schur complement of JE’s submatrix. Hence the derivatives are computed as:

J = C −DB−1A (2.6)

2.1.3 Intuitive example

Readers that are familiar with reverse mode may skip this section. Consider a simple
sequential code c∗ that calculates f ∗ with the following structure:

Arg∗i+1 =

{
{x} i = 0

{y∗i } otherwise
(2.7)

We will use ∗ superscript to indicate reference to the special sequential case of f ∗. Due to
the structure in Arg∗i , A∗, b∗, C∗, D∗ can be simplified:

A∗ =
(

(
∂b∗1
∂x

)T , O, · · · , O
)T

b∗ =



−I O · · · · · · · · · O
∂b∗2
∂y1

−I . . . · · · · · · ...

O
∂b∗3
∂y2

−I . . . · · · ...
... . . . . . . . . . . . . ...
...

... . . . ∂b∗k−2

∂yk−3
−I O

O · · · · · · O
∂b∗k−1

∂yk−2
−I


C∗ = O

D∗ =
(
O, · · · , O,

∂b∗k
∂yk−1

)
(2.8)

Hence the Jacobian can be explicitly calculated as:

J∗ = C∗ −D∗(B∗)−1A∗ =
∂b∗k
∂y∗k−1

·
∂b∗k−1

∂y∗k−2

· · · ∂b
∗
2

∂y∗1
· ∂b

∗
1

∂x
(2.9)

as expected. Now how would AD compute the above product for each of the two modes?
Reverse mode has a forward sweep and a backward sweep where forward mode only have
the forward phase. For the forward phase in both modes, ∂b

∗
i+1

∂y∗i
for ∀i would be computed.

10



Forward mode AD keeps updating ∂y∗i
∂x

and stores the results. In this example, once ∂b∗i+1

∂y∗i

is obtained, forward mode left multiplies it to ∂b∗i
∂y∗i−1

· · · ∂b
∗
1

∂x
then stores the result as ∂y∗i+1

∂x
.

In contrast, reverse mode simply stores all the ∂b∗i+1

∂y∗i
and does not do any computation in

the forward phase. In the backwards phase, reverse mode computes backwards, i.e. ∂b∗i
∂y∗i−1

is multiplied to the right of ∂b∗k
∂y∗k−1

· · · ∂b
∗
i+1

∂y∗i
until the whole product is done. Let’s inspect

the runtime complexities of both modes.

• Forward mode: The above matrix products are time ordered from right to left,
which is order the forward mode operates. It first left multiplies ∂b∗2

∂y∗1
to ∂b∗1

∂x
. Recall-

ing the complexity of multiplying a a × b matrix to a b × c matrix is O(abc), ∂b∗2
∂y∗1

is

of size n2×n1 and
∂b∗1
∂x

is of size n1×n, such multiplication gives O(nn1n2) complexity.

The resulting matrix ∂b∗2
∂y∗1

∂b∗1
∂x

is now of size n2 × n. Then ∂b∗3
∂y∗2

is left multiplied to get
∂b∗3
∂y∗2

∂b∗2
∂y∗1

∂b∗1
∂x

of size n3 × n with O(nn2n3) operations. So on and so forth.

Hence overall runtime complexity of forward mode is:

ω(∂Forc
∗) ∼ n · [

k−2∑
i=1

nini+1 + nk−1m] (2.10)

• Reverse mode: As explained, the first computation would be ∂b∗k
∂y∗k−1

· ∂b
∗
k−1

∂y∗k−2
which

takes O(mnk−1nk−2) resulting in a matrix of size m×nk−2. And then O(mnk−2nk−3)
to a m× nk−3 matrix. So on and so forth.

Hence overall complexity for reverse mode is:

ω(∂Revc
∗) ∼ m · [

k−2∑
i=1

nini+1 + n1n] (2.11)

We see reverse mode and forward mode scales differently. k � 1, hence
∑k−2

i=1 nini+1 � n1n

and
∑k−2

i=1 nini+1 � nk−1m, therefore the terms in the square brackets of both runtime

11



complexity expressions are asymptotically the same. In fact,

ω(c∗) ∼ n1n+
k−2∑
i=1

nini+1 + nk−1m (2.12)

represents the complexity of the function itself (since a step from y∗i to y∗i+1 generally has
complexity nini+1). Now we can tell why reverse mode is more efficient when the input
dimension is large and the output dimension is small. When computing derivatives for f ∗,
forward mode’s computations’ matrices always have nc columns where as reverse mode’s
computations involves matrices of mc rows. Other scalings are asymptotically the same.
Forward mode computes the Jacobian matrix one column (each input) at a time while
reverse mode computes one row (each output) at a time.{

TFor(c) ∼ nc

TRev(c) ∼ mc
(2.13)

∗ superscript is dropped since the above is true in general. Note when a gradient is needed,
i.e. mc = 1, reverse mode computes it at once.

2.2 Structuring Reverse Mode

Having observed the runtime behavior, we inspect the space ratio of both modes of AD.
In the above example, forward mode takes storage:

σ(∂Forc
∗) ∼ n

k
max
i=1
{ni}+

k
max
i=1
{σ(b∗i )} (2.14)

since it is keeping ∂yi
∂x

. The first term is negligible and the second part is just:

σ(c∗) ∼ k
max
i=1
{σ(b∗i )} (2.15)

Hence the space ratio S of forward mode on c∗ is O(1).

SFor(c
∗) =

σ(∂Revc
∗)

σ(c∗)
∼ nmaxki=1{ni}+ maxki=1{σ(b∗i )}

maxki=1{σ(b∗i )}
∼ 1 (2.16)

For reverse mode, storage of all the intermediate variables is required. Denote:

12



Definition 2.1. The Tape Size σ̄(c) of a source code c is defined as:

σ̄(c) = Storage needed for all intermediate variables during execution of c

(except those created within basic operations) and the Computational Graph of c
(2.17)

Definition 2.2. σ(y) is the storage needed to store the variable y in a default environment.

therefore:

σ(∂Revc) = σ̄(c) (2.18)

For sequential program f ∗, we have:

σ̄(c∗) =
k∑
i=1

σ̄(b∗i ) ∼
k∑
i=1

σ(b∗i ) (2.19)

where we have used the fact that B∗ is basic operations hence no intermediate variables
are stored and the storage for the type of basic operation have been neglected. Therefore:

SRev(c∗) =
σ(∂Revc

∗)

σ(c∗)
=
σ̄(c∗)

σ(c∗)
∼

∑k∗

i=1 σ(b∗i )

maxk
∗
i=1{σ(b∗i )}

∼ k∗ (2.20)

reverse mode’s space ratio scales linearly with the depth of the function k∗ whereas the
one of forward mode is O(1). The O(k) space ratio may impede the use of reverse mode
for large scale computations despite its significant runtime advantages. Let’s see how
structured reverse mode reduces the undesirable space complexity of reverse mode while
maintaining its runtime efficiency.

2.2.1 Basic Idea of Checkpointing

Reverse mode’s space complexity comes from storing all intermediate variables that a pro-
gram have ever created. If such storage is not kept, the derivatives cannot be successfully
propagated in the backward phase. However, viewing the whole program as a concatena-
tion of multiple subprograms, divide and conquer can be deployed.

The original idea of multilevel differentiation is found in [8] and further developed in
[10]. Only the checkpoint variables, instead of all, are stored in the forward sweep. During
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backward sweep, reverse mode is applied to the tape segments between checkpoints one at
a time. Obtaining the checkpoints needs one additional evaluation of the original function.
Therefore time ratio T only increase by 1 however the space ratio S is reduced exponen-
tially, as it turns out for a typical code.

Checkpoints {Pi}npi=1 are essentially an ordered collection of subsets of all intermediate
variables {yi}ki=1. However, not any ordered collection of subsets of {yi}ki=1 qualifies as a
set of checkpoints. As the full formulation involves cumbersome notations and is not of
importance for the following discussion, we leave it to Appendix B.1 and only states its
definition and the qualifying property.

Definition 2.3. Given a code c, its input x, output z and all intermediate variables {yi}ki=1

in c’s resulting computation, a selection of checkpoints {Pi}np+1
i=0 is an ordered collection of

subsets of {yi}ki=1 s.t.: 
P0 = {x}
Pi ⊆ {yi}ki=1 ∀i ∈ {1, · · · , np}
Pnp+1 = {z}
Pi < Pi+1 ∀i ∈ {1, · · · , np − 1}

(2.21)

where P1 < P2 means ∀y ∈ P1 and ∀y′ ∈ P2, y appears strictly chronologically earlier than
y′ in the execution of c.

Definition 2.4. A selection of checkpoints {Pi}np+1
i=0 of code c is admissible if there exist

code {Wi}np+1
i=1 s.t. the following ordered execution has exactly the same set of intermediate

variables as c:

y1 = b1(Arg1) = b1(x)

y2 = b2(Arg2)
...

yk−1 = bk−1(Argk−1)

z = bk(Argk)

⇔



P1 = W1(P0) = W1(x)

P2 = W2(x, P1)
...

Pnp = Wnp(x, P1, · · · , Pnp−1)

z = Pnp+1 = Wnp+1(x, P1, · · · , Pnp)

(2.22)

The set of all y and empty set ∅ are two trivial admissible selections of checkpoints.
All discussions afterwards will be based on an admissible selection of checkpoints. Now we
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Algorithm 1 Structured Reverse Mode
function strReverseMode(x, Code c, Admissible selection of checkpoints {Pi}npi=1)

Evaluate the code c once and store {Pi}npi=1.
Apply reverse mode on code segment Wnp+1. Then on Wnp etc. Until we fully

propagate the derivatives to x.
end function

calculate what runtime and space ratio can be achieved for reverse mode. The algorithm
of structured reverse mode given {Pi}npi=1 is simply4:

For illustration of structured reverse mode, see Appendix B.3. By saving only {Pi}npi=1,
space complexity is reduced. Storage comes from two parts5: (a) storage of checkpoints
(b) storage of intermediate variables during reverse mode on each segment Wi. Hence:

σ(∂StrRevc) =

np∑
i=0

σ(Pi) +
np+1
max
i=1

σ(∂RevWi) =

np∑
i=0

σ(Pi) +
np+1
max
i=1

σ̄(Wi) (2.23)

We see there is tradeoff in the density of checkpoints. The first term would increase if we
increase the density and the second term would increase if we decrease the density.

For runtime, we have an additional run of c regardless of the selection of the checkpoints.

ω(∂StrRevc) = ω(c) + ω(∂Revc)

as we mentioned in the first chapter.

2.2.2 A program of uniform checkpoint structure

In previous subsection, we defined what is an admissible selection of checkpoints and cal-
culated the runtime and space of the structured approach. However, all are rather abstract
and general, therefore hard to quantify. The objective of this subsection is to understand
what checkpoints arrangement yields desirable space and runtime ratio overall. Let’s study
a uniform program in which quantities of interest can be easily computed therefore several
useful insights can be drawn.

4The detailed numerical procedure of “derivatives propagation” can be found in Appendix A.
5The storage required by the original function evaluation σ(c) is neglected since it is negligible for

reasonable implementations.
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Suppose the code c0 has been divided by an admissible selection of checkpoints {Pi}k−1
i=1

into subprograms {Wi}ki=1. c0 is also‘uniform’ such that runtime and space computation is
simplified:

∀i ∈ {1, · · · , k}


ω(Wi) = ω0

χ(Wi) = χ0

σ(Wi) = σ̂0

σ̄(Wi) = σ̄0

(2.24)

∀i ∈ {1, · · · , k − 1} σ(Pi) = σ0 (2.25)

Since σ0 is the space to store the input of W : P , σ̂0 the space needed during computation
of W , and σ̄0 is the full tape of W . It follows that:

σ0 6 σ̂0 6 σ̄0 (2.26)

It also follows that: 

ω(c0) = kω0

ω(∂Revc0) = χ0m · kω0

σ(c0) = σ̂0

σ(∂Revc0) = kσ̄0

TRev(c0) = χ0m

SRev(c0) = kσ̄0/σ̂0

(2.27)

As inspired by (2.23), there’s a tradeoff in the density of checkpoints. Empty set, as an
admissible checkpoint selection that leads to naive reverse mode, represents the extreme
that minimizes the first term (storage of checkpoints) and reaching the maximum of the
second term (storage for reverse mode on subprograms). The set of all y is the other ex-
treme, minimizes the second term (storage for reverse mode on subprograms) and reaching
the maximum of the first term (storage of checkpoints). To find a balanced tradeoff with-
out worrying about admissibility, the selection of checkpoints {Pi}k−1

i=1 is further assumed
to be Markovian as well6.

Definition 2.5. An admissible selection of checkpoints is Markovian if each of its repli-
cating code segments Wi+1 only takes x and the previous checkpoint Pi as its input.

6It turns out it is not too strong an assumption as such structure is universal in finance applications.
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Theorem 2.6. A subset of a Markovian admissible collection of checkpoints is also an
Markovian admissible selection of checkpoints.

For proof of Theorem 2.6, see Appendix B.2. In light of Theorem 2.6, any subset
{Qi}npi=1 of {Pi}k−1

i=1 would be admissible. As admissibility is always satisfied, we only need
to find an optimal subset {Qi}npi=1 to minimize our space cost. Suppose {Qi}npi=1 divides the
code c0 into {Vi}np+1

i=1 , denoting its indexing of {Pi}k−1
i=1 as qi:

∀i ∈ {0, · · · , np + 1} Qi = Pqi (2.28)

The following relation should hold:

0 = q0 < q1 < · · · < qnp < qnp+1 = k (2.29)

Hence (2.23) can be rewritten as:

σ(∂StrRevc0) =

np∑
i=0

σ(Qi) +
np+1
max
i=1

σ̄(Vi) = (np + 1)σ0 + σ̄0 ·
np

max
i=0

(qi+1 − qi) (2.30)

Given a fix number of checkpoints, it is obvious that evenly separated checkpoints are
favorable since the first term does not depend on the distribution of Qi, and the second
term can be minimized with equally spaced checkpoints. We assume k � 1 and np � k
hence the difference between floor( k

np+1
) and k

np+1
can be neglected as such difference would

be at most a sub-leading term asymptotically.

σ(∂StrRevc0) ≈ (np + 1)σ0 +
k

np + 1
σ̄0 > 2

√
kσ0σ̄0 (2.31)

Hence we see that the optimal number of checkpoints are:

n̂p =

√
σ̄0

σ0

k − 1 ∼
√
σ̄0

σ0

k (2.32)

n̂p indeed scales less than k hence our assumption np � k holds. For later convenience,
we denote7:

S0 = σ0/σ̂0 (2.33)

7S0 is just a quantity that appears frequently in later formula, not a space ratio of the code piece W :
it is not even greater than 1 since σ0 6 σ̂0.
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Hence using structure halves the order of magnitude of space ratio compared to a
straightforward reverse mode and only adds 1 to the runtime ratio:{

TStrRev(c0) = 1 + TRev(c0) = 1 + χ0m

SStrRev(c0) ≈ 2
√
kσ0σ̄0/σ̂0 = 2

√
SRev(c0)S0

(2.34)

providing a space efficient alternative to the bare reverse mode.

Notice the dimensionless combination σ̄0
σ0

is a key factor in expressions of n̂p and space
ratio S. As σ̄0 is the amount of computation done at each checkpoint, σ0 is the size of
input, it conceptually represents a ratio of “computation per input”:

Definition 2.7. The computation per input (CPI) ratio Ω(c) of a code c is defined as:

Ω(c) =
σ̄(c)

σ(xc)
(2.35)

where xc is the input of c.

For Wi, σ̄0σ0 is exactly the CPI ratio:

Ω(Wi) ≡ Ω0 =
σ̄0

σ0

∀i ∈ {1, · · · , k} (2.36)

2.2.3 Recursive structure

We see in (2.34) that for the uniform code c0 of length k, we can apply structured reverse
mode to obtain significant improvement of space ratio by marginally increment in runtime
ratio. Just as divide and conquer normally works, such structure can be applied recursively.

We relax np from being n̂p, and then apply structured reverse mode with n′p checkpoints
again on each piece of tape Vi. Denoting such 2-level structure to be approach Str2Rev,
we obtain:

σ(∂Str2Revc0) ≈ (np + n′p + 2)σ0 +
k

(np + 1)(n′p + 1)
σ̄0 > (np + 1)σ0 + 2

√
kσ0σ̄0√
np + 1

> 3k
1
3σ

2
3
0 σ̄

1
3
0 (2.37)
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the equal sign is reached when:{
n̂p = ( σ̄0

σ0
k)

1
3 − 1 ∼ ( σ̄0

σ0
k)

1
3 = (Ω0k)

1
3

n̂′p =
√

σ̄0
σ0

k
n̂p+1

− 1 = n̂p ∼ (Ω0k)
1
3

(2.38)

Interestingly, n̂′p = n̂p exactly. The above optimal number of checkpoints achieves the
following runtime and space ratio:{

TStr2Rev(c0) = 1 + TStrRev(c0) = 2 + χ0m

SStr2Rev(c0) ≈ 3k
1
3 (σ0/σ̂0)

2
3 (σ̄0/σ̂0)

1
3 = 3S

1
3
Rev(c0)S

2
3
0

(2.39)

We can see a pattern already. As a natural generalization, using structure of level l, we
would have:

TStrlRev(c0) = l + χ0m

SStrlRev(c0) = (l + 1)k
1
l+1 (σ0/σ̂0)

l
l+1 (σ̄0/σ̂0)

1
l+1 = (l + 1)S

1
l+1

Rev(c0)S
l
l+1

0

SStrlRev(c0)/S0 = (l + 1)(SRev(c0)/S0)
1
l+1

(2.40)

achieved when:

n(1)
p = · · · = n(l)

p ≡ (
σ̄0

σ0

k)
1
l+1 − 1 ∼ (

σ̄0

σ0

k)
1
l+1 = (Ω0k)

1
l+1 (2.41)

The consistency condition changes from np � k to
∏l

i=1 n
(l)
p � k, which is satisfied for all

l ∈ Z+ since the left hand side scales as kl/(l+1), which is less than k.

It might seem meaningless to calculate everything accurately since we are dealing with
an artificial example. Also l and the distribution of checkpoint positions represented by
np are fundamentally discrete no matter how we pretend they can achieve the non-integer
optimal value.

Yet there are two general conclusions that we can draw: (1) the optimal arrangement
of checkpoints is the one that evenly divides the computation (2) to achieve the best space
ratio, the optimal level l is not infinity. When too many level of structures are used, more
space are actually needed. To find out the best level depth l, we find the argmin with
respect to l by taking derivatives of the In of SStrlRev(c0)/S0:

0 ≡ ∂

∂l
In[
SStrlRev(c0)

S0

] =
∂

∂l
(In(l + 1) +

1

l + 1
In[
SRev(c0)

S0

]) =
1

l + 1
− 1

(l + 1)2
In[
SRev(c0)

S0

]
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which we can solve for the optimal l̂:

l̂ = In[
SRev(c0)

S0

]− 1 = In[Ω0k]− 1 (2.42)

where we can realize the following runtime and space ratio:{
T̂StrRev(c0) = In[Ω0k] + χ0m− 1 ∼ lnk

ŜStrRev(c0) = S0eIn[Ω0k] ∼ lnk
(2.43)

with:

n̂p = e− 1 (2.44)

Somehow e shows up in a funny way. Of course it is not possible to have non-integer valued
number of checkpoints, hence np = 2 is likely the best choice meaning a tertiary recursive
structure achieves the lowest space ratio.

We conclude that for such code with a uniform Markovian checkpoint structure, recur-
sively structured reverse mode gives a logarithmic scaling in terms of function depth k in
both runtime and space ratio, in accord with [10].

2.2.4 Efficient frontier of the runtime/space tradeoff

In analogy to portfolio optimization we consider the tradeoff between expected return and
variance, an efficient frontier of space/runtime ratio for our uniform program c0 can be
drawn.

The efficient frontier of space/runtime ratio for c0 is given by the following formula:{
S = S0(T − T0 + 1)(Ω0k)1/(T−T0+1)

T0 = TRev(c0) = χ0m
(2.45)

where have use S and T to denote space and runtime ratio respectively.

In Figure 2.1, log scale is used for the space ratio. Points on the curve are the pairs
of runtime/space ratio achieved with different levels of structures. As noted, runtime ra-
tio increases linearly with the level of structure however the space ratio does not always
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Figure 2.1: Efficient frontier of the runtime ratio and space tradeoff of the uniform code
c0 when χ0m = 4.5,Ω0k = 7000, S0e = 0.01

decrease. After passing the optimal level depth l̂ which is about 8 here (corresponds to
Runtime ratio T = 8 + χ0m = 12.5), space ratio also goes up when we increase level of
structure (represented by crosses on the red dashed line). Hence the right part of the curve
is inefficient in both space and time hence is not on the efficient frontier.

This efficient frontier is different from portfolio analysis setting since we are trying to
minimize both space and runtime ratio compared to variance minimization coupled with
expected return maximization. Our efficient frontier is of finite size as represented by the
unfilled circles on the blue solid curve which are essentially from bare reverse mode to
structured reverse mode of level l̂. We see the bare reverse has an extremely high space
ratio, more than 2.5 order of magnitude than the minimal space ratio in the example.
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We observe that space ratio can be drastically reduced even when we only have very
few layers of structure. The amount of space released per runtime decreases ‘exponentially’
as we increase the level of structure and would turn negative after O(logk) level of layers.

2.2.5 Concluding remarks

We have made a few important observations above. However, they are based on our simple
example of a program with uniform Markovian admissible checkpoints, one may wonder
which ones of them generalize? As we will see in Chapter 3, for Monte Carlo simulations
in financial applications, the program always displays a Markovian admissible checkpoint
structure. Hence:

(1) Within each level of structure, the checkpoints should separate the amount of com-
putations as evenly as possible.

(2) It is not always beneficial to increase the level of structure. Too many layers of
structure are inefficient in both runtime and space and should be avoided.

(3) The first few levels of structure performs best in terms of trading runtime for space
reduction. Being easier to implement, just one or two levels could be sufficiently
efficient in practice.

We see the choice of structure architecture is not trivial. However, previous discussions
are dealing with our simple uniform program example. In practice, even revealing the
structure of a given code is non trivial. And it is a lot harder to determine the optimal
checkpoints positions when the code segments W contain varied amount of computations.
In the following Chapter 3 and Chapter 4, we are going to introduce Monte Carlo simula-
tions and Variable Annuities. With the ‘structure’ mindset developed in this chapter, we
are ready to put their computations into perspectives. In Chapter 5, a general framework
of structure design for nested simulations will be formulated.
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Chapter 3

Monte Carlo simulation in Finance

This chapter discusses the convergence of Monte Carlo algorithm, and how different ap-
proaches of derivatives calculations lead to distinct rate of efficiency. As reverse mode AD
calculates exact derivatives efficiently, forward mode AD calculate exact derivative ineffi-
ciently, FD calculates approximations inefficiently, their rates of efficiency show hierarchy.
Finally, general structure of Monte Carlo simulations in financial applications are revealed.

3.1 Convergence of Monte Carlo

Monte Carlo methods in general are computational algorithms that obtain certain prop-
erties of random variables, mostly the mean, by repeated random sampling on them. The
convergence of Monte Carlo algorithm on mean estimation is guaranteed by central the-
orem. If we define the following rate of efficiency, a simple Monte Carlo algorithm would
have βmc = 0.5. See Appendix C.1.

Definition 3.1. The rate of efficiency βa ∈ (0,∞] of an algorithm a to compute a scalar
quantity y is defined via the following asymptotics1:

|ya − y| ∼ O(M−βa
a ) (3.1)

where ya is the approximation of y that approach a computes, and Ma is the complexity
of a’s runtime.

1For simplicity, float point accuracy is considered ∞ precision. For algorithm with O(1) complexity
and floating point accuracy, rate of efficiency is set to be ∞ by default.
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It can be showed that rate of efficiency of a Monte Carlo deploying approach a to draw
samples is:

βmc(a) = βsmc(a) =
βa

2βa + 1
∈ (0,

1

2
] (3.2)

The rate of efficiency of Monte Carlo is naturally the harmonic mean of a’s rate of effi-
ciency βa and the suppose-to-be rate of efficiency of Monte Carlo βmc = 0.5. For proof, see
Appendix C.2.

Whereas such rate of efficiency is at most 0.5, Monte Carlo’s rate of efficiency scaling
is excellent for its independence of the problem’s dimensionality2. In finance, Monte Carlo
and PDE are THE3 two approaches for pricing financial instruments without analytic
expressions. PDE scales as: 

|xpde − x| ∼ ∆xγa

Mpde ∼ ∆x−d

βpde = γa/d

(3.3)

where d is the dimensionality of the problem, γa is the convergence rate of the PDE
approach, which depends on the time stepping method used and the regularity of the
priced instrument. Best situation we have γa = 2 resulting in βpde = 2/d which still suffers
from the curse of dimensionality despite being superior for d = 1. The best for Monte
Carlo is 1/2 hence d = 4 is usually considered as a critical dimension beyond which Monte
Carlo’s efficiency would be higher than PDE in general.

3.2 Convergence of Monte Carlo derivatives

Monte Carlo estimates the mean of a random variable. However in many applications,
derivatives of the mean are requested as well. Finite difference provides the most natural
approximation and is easy to implement. Automatic differentiation computes the exact
derivatives of each sample automatically. Let’s compute their rates of efficiency.

2Dimensionality might affect implicitly on the complexity of sampling M through βa since it is harder
to draw sample in a higher dimensional space. Yet βa as a scaling usually is not affected.

3Binomial tree or other state tree algorithm can be viewed as special cases of PDE approach.

24



3.2.1 Finite Difference

We start with central difference since it has the highest accuracy for regular problems.
Assuming a C4 function f that can be computed up to certain level of accuracy using
certain algorithm, it is natural to have the following trade-off:

∂αf
∗(α0) ≡ f ∗(α0 + ∆α)− f ∗(α0 −∆α)

2∆α

=
f(α0 + ∆α)− f(α0 −∆α)

2∆α
+
ε+ − ε−

2∆α

= ∂αf(α0) +
1

6
∂3
αf(α0)∆α2 +

ε+ − ε−
2∆α

+
1

48
[∂4
αf(ξ1) + ∂4

αf(ξ2)]∆α3

where we have use ∗ to indicate approximation of the true value and ε are the errors of
the approximation. α is whose derivatives we are interested in, and we have use central
difference of size ∆α. We cannot take ∆α too small otherwise the third term will blow up
even though finite difference approximation is improving (2nd and 4th terms will diminish).

Assume we take a step size ∆α small enough such that the third order term is negligible:

1

4!
|∂4
αf(α)|∆α4 � 1

3!
|∂3
αf(α)|∆α3 ∀α ∈ [α0 −∆α, α0 + ∆α] (3.4)

Also let’s assume the approximation error ε± is of size ε0. Hence our optimal choice of ∆α
and its resulting approximation error of the derivative would be:{

∆α∗ = ( 3ε0
|∂3αf(α0)|)

1
3

|∂αf ∗(α0)− ∂αf(α0)| > 1
2
(3ε0)

2
3 |∂3

αf(α0)| 13 ∼ O(ε
2
3
0 )

(3.5)

Now suppose our approximation algorithm is Monte Carlo. The above analysis indicates
our rate of efficiency using central differences to obtain the derivatives of the mean obtained
via Monte Carlo is at best:

βcd_mc 6
2

3
βmc ≡ β̂cd_mc (3.6)

where cd stands for central difference. Similar analysis yields:

βfd_mc = βbd_mc 6
1

2
βmc ≡ β̂fd_mc = β̂bd_mc (3.7)
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where fd and bd stands for forward difference and back difference respectively.

We should be alerted by the 6 sign here. It indicates we have to change the finite
different size ∆α as we attempt to increase the accuracy of the algorithm. Take Monte
Carlo for example. Suppose we don’t scale ∆α accordingly. If we look back at (3.4), the
term ε+−ε−

2∆α
∼ ε/∆α does diminish when we decrease ε by drawing more samples. However

1
6
∂3
αf(α0)∆α2 is a fundamental bias that finite difference has, it would not diminish unless

we gradually decrease ∆α when we scale up our algorithm. In otherwise, β = 0 if we take
a fixed ∆α!

Picking the finite difference size ∆α is tricky. The optimal choice depends on the higher
order derivatives of the unknown function f , which is impossible to know in advance and
hard to obtain if requested.

3.2.2 Pathwise Finite Difference

Above is a blackbox approach of finite difference. However for Monte Carlo simulation
where we have the structure of repeated i.i.d sampling, we have the pathwise approach
which takes the finite difference at each sample level before taking the mean to obtain the
final result.

We can apply the analysis as in (3.4). At each sample level, our rate of efficiency
to compute derivatives change to β′a 6 2

3
βa for central difference and β′′a 6 1

2
βa for for-

ward/backward difference. Viewing a′, which is the finite difference of a’s sampling out-
put, as the new sampling algorithm for the Monte Carlo, we arrive at the following rate of
efficiency for pathwised finite difference:{

βpcd_mc = β′mc = β′a
2β′a+1

6 2βa
4βa+3

≡ β̂pcd_mc

βpfd_mc = βpbd_mc = β′′mc = β′′a
2β′′a+1

6 βa
2(βa+1)

≡ β̂pfd_mc = β̂pbd_mc
(3.8)

which improves over their non-pathwised counterpart:{
β̂pcd_mc = 2βa

4βa+3
> 2βa

3(2βa+1)
= 2

3
βmc = β̂cd_mc

β̂pfd_mc = β̂pbd_mc = βa
2(βa+1)

> βa
2(2βa+1))

= 1
2
βmc = β̂fd_mc = β̂bd_mc

(3.9)
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3.2.3 Automatic Differentiation

Automatic Differentiation is naturally pathwise4. Since AD computes the exact derivatives,
it keeps the rate of efficiency at each sample level5. Hence we have:

βad_mc = βmc (3.10)

which is strictly better than the one of pathwise finite difference.

βa βfd/bd βpfd/pbd βcd βpcd βad βmc(a)

∞ 1/4 (0.25) 1/2 (0.50) 1/3 (0.33) 1/2 (0.50) 1/2 (0.50) 1/2 (0.50)
2 1/5 (0.20) 1/3 (0.33) 4/15 (0.27) 4/11 (0.36) 2/5 (0.40) 2/5 (0.40)
1 1/6 (0.17) 1/4 (0.25) 2/9 (0.22) 2/7 (0.28) 1/3 (0.33) 1/3 (0.33)

1/2 1/8 (0.12) 1/6 (0.17) 1/6 (0.17) 1/5 (0.20) 1/4 (0.25) 1/4 (0.25)

Table 3.1: Comparison of rates of efficiency of different approaches to calculate derivatives
of a Monte Carlo program

Table 3.1 summarizes the rates of efficiency of using different approaches to obtain
derivatives of a Monte Carlo simulation. We observe a hierarchy where AD achieve the
highest rate of efficiency, the same as the Monte Carlo of the original function; pathwise
finite difference performs better than its non-pathwised counterpart; central difference con-
verges faster than forward/backward differences. Yet as finite difference yields at most an
approximation, using AD leads to faster convergence.

In this section, we have discussed the convergence properties of Monte Carlo approaches.
We see that using finite difference to approximate derivatives of values computed from
Monte Carlo simulation can be inefficient and the choice of finite different size is unam-
biguous. Since the bias of the finite difference approximation is unknown, even a confidence
interval of the derivative is hard to draw. AD circumvents such problem by the exact com-
putation of the derivative at sample level. In terms of rate of efficiencies of these algorithms,
AD’s performance is strictly better than pathwise central difference, the best among the
finite difference approach families.

4Pathwise in this chapter means in terms of taking derivatives, which is at sampling algorithm level.
In Chapter V, pathwise means in terms of computation, which is at implementation level.

5Finite difference has inferior performance on accuracy because it is forced to take small step size which
inevitably dampens the original accuracy. AD has no such problem.
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3.3 Nested simulation in Financial Applications

So far we have discussed Monte Carlo of 1 level of sampling. In financial application, nested
simulation is typically required for P&L analysis. We demonstrate its usage in financial
applications by examples of option hedging program and then reveal its general structure.

3.3.1 Risk Neutral World simulation

Monte Carlo becomes a pivotal approach to price financial instrument by the establishment
of risk neutral measure. It essentially allows one to solving one specific point in the un-
derlying space of PDE by computing an expectation value under the risk neutral measure.
One can also justify Monte Carlo to price assets by first using no-arbitrage arguments to
establish Black-Scholes type PDE, and then Feynman-Kac formula relates the solution to
the PDE to the expectation value of the outputs of underlying stochastic processes6 which
can be computed via Monte Carlo sampling.

Let’s demonstrate a simple example of option pricing. Consider an European put option
with strike K, maturity T on a stock with current price S0 and underlying Geometric
Brownian Motion of drift µ and volatility σ. The risk free rate is r. In risk neutral world,
we have:

dSt = rStdt+ σStdWt (3.11)

where Wt is a Wiener process. For generality, we pretend the exact solution of such SDE is
not available and therefore an approximation by discretizing the time dimension is in need.
For numerical consistency, we make a change of variable to Xt ≡ logSt by Ito’s Lemma:{

Xt ≡ logSt

dXt = (r − σ2

2
)dt+ σdWt

(3.12)

Then we discretize the stochastic process into N steps with step size ∆t = T/N :

∀i ∈ {1, · · · ,M}, n ∈ {1, · · · , N}


X

(i)
0 = logS0

X
(i)
n = X

(i)
n−1 + (r − σ2

2
)∆t+ σ

√
∆t · Z(i)

n

Z
(i)
n ∼ N(0, 1)

(3.13)

6In the risk neutral measure.

28



where M is number of Monte Carlo sampling. The upper index is of different samplings
where the lower index is of different time grid points. Finally, we compute the discounted
expected payoff P to be the value of our option V :

V = e−rTEQ[P (S)] ≈ e−rT

M

M∑
i=1

max{0, K − eX
(i)
N } (3.14)

3.3.2 Real World simulation

In previous subsection, we have given an example of pricing a derivative in the risk neutral
world. To understand the projected P&L of a hedging program, what we need to simulate
is instead, a real world process.

Aside from switching probability measure, updated option greeks are requested at each
time step in the real world process which invokes one run of Monte Carlo simulation in the
risk neutral world. Let’s briefly describe our nested simulation program again using the
European put option example.

Suppose only delta hedging with the underlying as hedging instrument is concerned.
MO sampling and NO time steps are taken in the outer simulation and MI and NI for
the inner one. ∆tO = T/NO, ∆tIn = (T − n∆tO)/NI . X

(i)
n denotes the log price in the

outer simulation: i ∈ {1, · · · ,MO} is the outer sampling index, n ∈ {0, · · · , NO} is the
outer time step index. X(i,j)

n,m is the log price in the inner simulation where j ∈ {1, · · · ,MI}
is the inner sampling index, m ∈ {0, · · · , NI} is the inner time step index. Denote the
value of the bank account as B(i)

n , number of shares holding in the underlying as α(i)
n , and

the value of the option as V (i)
n . Suppose we use central difference with step size ∆X to

calculate delta for hedging, two perturbed versions of X(i,j)
n,m are denoted as X(i,j)

n,m,±. The
perturbed option value is denoted as V (i,j)

n,± , the original value V (i,j)
n and the projected value
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V
(i)
n . Accordingly, we have:

∀


i ∈ {1, · · · ,MO}
j ∈ {1, · · · ,MI}
n ∈ {1, · · · , NO}
m ∈ {1, · · · , NI}



X
(i)
0 = logS0

X
(i,j)
n,0 = X

(i)
n

X
(i,j)
n,0,± = X

(i)
n ±∆X

X
(i)
n = X

(i)
n−1 + (µ− σ2

2
)∆tO + σ

√
∆tO · Z(i)

n

X
(i,j)
n,m = X

(i,j)
n,m−1 + (r − σ2

2
)∆tIn + σ

√
∆tIn · Z

(i,j)
n,m

X
(i,j)
n,m,± = X

(i,j)
n,m−1,± + (r − σ2

2
)∆tIn + σ

√
∆tIn · Z

(i,j)
n,m,±

V
(i,j)
n = max{0, K − eX

(i,j)
n,NI }

V
(i,j)
n,± = max{0, K − eX

(i,j)
n,NI ,±}

V
(i)
n = 1

MI

∑MI

k=1 V
(i,k)
n e−r(T−n∆tO)

α
(i)
n = − 1

MI

∑MI

k=1(V
(i,k)
n,+ − V

(i,k)
n,− )/(eX

(i,k)
n,0,+ − eX

(i,k)
n,0,−)

B
(i)
0 = −V (i)

0 − α
(i)
0 S0

B
(i)
n = B

(i)
n−1e

r∆tO − (α
(i)
n − α(i)

n−1)eX
(i)
n

Z
(i)
n ∼ N(0, 1)

Z
(i,j)
n,m ∼ N(0, 1)

Z
(i,j)
n,m,± ∼ N(0, 1)

(3.15)

After which we obtain MO samples of the portfolio relative P&L Πi

Π(i) = (V
(i)
N + α

(i)
N e

X
(i)
N +B

(i)
N )/V0 (3.16)

The above seems quite complicated yet it is just hedging a simple European option. We
will discuss the structure in the next section.

3.4 General Structure of Monte Carlo simulation in Fi-
nance

The Monte Carlo approach in finance is a general framework which can accommodates the
valuation of various kinds of financial instruments. Any financial Monte Carlo algorithm
has a common structure. For the purpose of applying structured reverse mode, let’s reveal
these structures.
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3.4.1 Single layer Monte Carlo

The first generic structure is the parallel structure of independent sampling of identical
distribution as we see in Figure 3.1. The second structure is the sequential path structure
as with financial application demonstrated in Figure 3.2.

Figure 3.1: Parallel structure of generic Monte Carlo algorithm estimating the mean of
random variable X

The structure of independent sampling is perfect for parallelism yet it does not provide
any structure for checkpointing at all. In contrast, the sequential path structure is perfect
for checkpointing.

As we can see in Figure 3.2, each sampling path looks like the simple uniform sequential
linear example code c0 that we’ve discussed in depth at the end of the previous chapter.
Therefore all our analysis of checkpoint deployment apply.

Nevertheless, the put option program in Figure 3.2 is only an example. One might
wonder, how general is such structure? How often do we encounter such structure pattern
in real world applications? Is it robust enough to accommodate any marginal changes to
the model?

The answer is yes: the abstract structure, as demonstrated in Figure 3.3, with Figure
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Figure 3.2: Sequential path structure of Monte Carlo using an European put option pricing
example

3.2 as a special case, is indispensable in financial applications.

Ξ
(i)
n is the complete state variable of the underlying process, whatever it might be, of

the i-th sampling at n-th timestep. The checkpoint structure is evident as only state of
the previous node Ξn along with input X is needed to process to the next node Ξn+1.

Comparing with Figure 3.2, we can make the following correspondence: the auxiliary
variable X = InS is the state variable Ξ of the underlying processes; the equivalent input
X of Figure 3.3 in Figure 3.2 is essentially X = (S0, K, T, r, σ). Parameters K,T, r, σ are
not explicitly shown in Figure 3.2 though they participate in each transition between the
nodes just as in Figure 3.3.

In such structure, the set {Ξi}Ni=0 is naturally a Markovian admissible selection of check-
points, ready for deployment of structured reverse mode. Now we elaborate on why we
claim such structure is universal for financial instrument pricing:
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Figure 3.3: Abstract sequential path structure of Monte Carlo in financial applications

(1) Sequential structure from time stepping: For any financial instrument, timestep-
ping is an indispensable part of the algorithm. Whatever stochastic processes are,
discretization of time dimension is demanded. Whereas step size can be variable in
certain algorithms, sequential structure maintains.

(2) Augmented Markovian aspect of practical financial instruments:

The claim is, for any realistic financial instrument, with a finite dimensional aug-
mentation to the state of the process, the evolution of the augmented state process
would become Markovian.

Such claim is obviously true for path independent instruments. For path-dependent
instruments, the payoff depends on the history of underlying processes instead of
only the final state. However, such path dependency has to be finite dimensional for
any realistic financial instrument.

For example, for Asian option, path dependency is via the mean of the underlying,
hence is only a 2-dimensional dependency: (S̄p, Tp)–how old the option is Tp and
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what the mean S̄p in the past is. With augmentations of (S̄p, Tp), total mean can be
calculated without further information of the history:

S̄tot =
S̄pTp +

∫ T
Tp
S(t)dt

T

which determines the final payoff of the option. As for underlying processes of the
augmentation: {

dS̄p(t) = S(t)−S̄p(t)

Tp(t)
dt

dTp(t) = dt
(3.17)

For look-back option, path dependency is 1-dimensional: the historical high value
maxt6Tp St completes the augmentation. For barrier option, it is a 1-dimensional
dependency as well: whether the barrier has been hit or not.

If such path dependency can not be reduced to a finite dimensional features of the
history, the payoff of the instrument cannot be robustly defined, which is impossible
in practice. Hence, after properly augmenting the state of the underlying processes,
we are guaranteed to have such a Markovian sequential path structure.

This concludes our discussion of structure in single layer Monte Carlo.

3.4.2 Nested Monte Carlo

The structure of the nested simulation at each level is the same as the one of single layer
Monte Carlo. Schematic flow diagram is drawn in Figure 3.4.

We will discuss how to deploy structured reverse mode to the nested structure in details
in Chapter 5. In the next chapter, Variable Annuities is introduced as a practical example
of nested simulation with the structure that we’ve discusses at the end of this chapter.
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Figure 3.4: Abstract nested Monte Carlo simulation in financial applications
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Chapter 4

Variable Annuities

This chapter introduces Variable Annuities (VA) and a program of VA pricing with minimal
details. VA is a practical example suited for this thesis’s analysis for its following properties:
(1) nested Monte Carlo simulations in financial application (2) large scale computation
whose runtime is prohibitive (3) derivatives are demanded and target function is scalar
with high dimensional input. After full description of its computation, we show how
VA’s computations can be massage into the general structured template that the previous
chapter presents in Figure 3.3.

4.1 General background

Variable Annuities, also known as “segregated funds”, are deferred, fund-linked annuity
contracts. It is composed of two parts: an investment in an underlying fund that the
contract links to, and guarantees on top of the investment. The guarantees are various
protections and benefits that an insurance company provides in case of contingencies. Such
insurance products realize payoff annually hence the name ‘annuities’. It is ‘variable’ for
there are numerous possible combinations of guarantees and multiple forms of additional
features on top of the guarantees such as ratchet, roll-up, step-up etc.

Once the contract is established, the policy holder pays the premium to the insurance
company, which can be a one time up-front payment, or there can be a pay-out phase
that lasts for several years. The premium received is invested in the linked funds and the
value of the account will fluctuate with the fund’s performance onwards. For the insur-
ance company, each guarantee is an embedded option that the policy holder longs hence
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itself shorts. The insurance company benefit from such product by charging an annual
management fee on the fund account. The existence of each guarantee increases the priced
annual fee to cover its negative payoff to the company. The pricing of the management fee
is high enough such that the collected fees are expected to hit certain profitability target
besides paying off the contingency claims and low enough to maintain competitiveness in
the market.

The guarantees associated with variable annuities are called “GMxB” as self-explained
by the names of common guarantees: Guaranteed Minimum Withdrawn Benefit (GMWB),
Guaranteed Minimum Accumulation Benefit (GMAB), Guaranteed Minimum Death Ben-
efit (GMDB), Guaranteed Minimum Income Benefit (GMIB) etc. Each guarantee has
distinct contingency claims.

As with any embedded options, VA is priced in the risk neutral measure. On top of
pricing, the company needs to hedge its exposure to price risk of the underlying funds as
well as the interest rate risk exposure since VA contracts have very long duration. Other
risk factors may require hedging as well. Such hedging naturally invites the deployment of
AD. Since we care about the overall P&L of the portfolio including the hedging practice,
nested Monte Carlo simulations are needed where the outer loop simulates real world
process in P measure whereas the inner loop operates in risk neutral world Q measure.

4.2 Definition and formulation

For simplicity, we only deal with contracts involving GMWB and GMDB. We further
simplify the accumulation phase, if any, to a single up-front premium payment.

4.2.1 Evolution of VA Accounts

We will describe the evolution of all the accounts associated with VA in details in accord
with [14]. The linked fund will be referred to as the underlying. The account where the
premium P is invested into is denoted as A. We denote the price of the linked fund at
time t as St. At stands for the value of account A at year t. Hence A0 = P . Each contract
has an annually charged management fee φ as a percentage of the account A.
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Figure 4.1: High level process of pricing and risk managing VA, credit from Anthony Vaz’s
Linkedin page’s PPT Complexities of Variable Annuity Management, page 28

For GMWB, the contact specifies the guaranteed withdrawal amount (usually about
5%-8% of the premium P ), which we denoted as GE. GE is the maximal allowed with-
drawal each year. The maximal total withdrawal amount available at year t is denoted as
GW
t . Initially, GW

0 = P and it decreases as withdraws occur.

GMDB is a money back guarantee upon the death of the insured. We denote the
amount of guaranteed death benefit at year t to be GD

t . Initially GD
0 = P since it is money

back guarantee. In the case the contract also has GMWB, GD
t might decrease such that

GD
t>0 < P due to pro rata adjustments caused by withdrawals. In the case that GD < A

upon death, the full account value A would be returned, not just the guaranteed death
benefit GD. Precisely, the evolution of At, GW

t , G
D
t are:

• Initialization: 
A+

0 = P

GW
0 = P

GE = P · xw
GD

0 = P

(4.1)

where xw is the rate of withdrawal as specified on the contract. Here we are modelling
a contract with both GMWB and GMDB. If a contract only has GMDB or GMWB,
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set xw = 0 or GD
0 = 0 would suffice.

There are two periods in any year t. The first period is from t+ to (t + 1)− where
the stock price S changes and consequently the account value A, the policy holder
may decease within such period hence a GMDB contingency may occur; the second
period is from (t + 1)− to (t + 1)+, where the customer can withdraw money from
the account if allowed hence a GMWB contingency may occur. Now we model the
evolution of the VA account for each period.

• From t+ to (t+ 1)−: 
A−t+1 = A+

t
St+1

St
(1− φ)

Ft+1 = A+
t
St+1

St
φ

Dt+1 = max{0, GD
t − A−t+1}

(4.2)

here φ is the annualized rate of management fee. We have used Ft+1 to denote the
collected fee at the end of year t; and Dt+1 denote the amount that the insurance
company needs to pay in case of GMDB contingency. We see first the account value
changes according to the underlying since it is linked to it, and then a fee is charged.
If the policy holder dies, all money left in the account is returned and the company
will pay the difference if account value is less than the GMDB.

• From (t+ 1)− to (t+ 1)+:

Et+1 = min{GW
t , G

E}
GW
t+1 = GW

t − Et+1

A+
t+1 = max{0, A−t+1 − Et+1}

Wt+1 = max{0, Et+1 − A−t+1}
GD
t+1 = GD

t ·
A+
t+1

A−t+1

(4.3)

we have used Et+1 to denote the amount of withdrawal by the policy holder at end of
year t; Wt+1 to denote the amount that the company needs to pay in case of GMWB
contingency.

Et+1 = (A−t+1 − A+
t+1) +Wt+1

We see the withdraw is either covered by the account or the insurance company.
Such identity is easy to prove using expression of A+

t+1 and Wt+1 as well the identi-
ties: min{A,B}+ max{A,B} = A+B and −max{·} = min{−·}.
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In (4.3), the first equation says the withdrawal cannot exceed annual limit GE as well
as the total limit GW

t . Second equation simply says the allowed maximal total with-
drawal GW decreases as the policy holder withdraws. Since Et+1 6 GW

t , GW
t+1 > 0

is always non-negative. The third equation says that the account value decreases
as the policy holder withdraw Et+1 yet it cannot go negative. The fourth equation
calculates the amount of GMWB contingency. The last equation is the so called pro
rate adjustment of GMDB. Essentially the GMDB shrinks proportionally depending
on the percentage of the withdrawal.

We see that the first equation here assumes that the customer withdraws the maximal
allowed amount each year. For justification, see Appendix D.1.

• End of contract: maturity

The above fully specifies the dynamics of variable annuity account with GMWB and
GMDB until the maturity of the contract. Each contract has a maturity T after
which the contract expires. At maturity, the account value is returned back to the
customer. Some other guarantee offers certain benefits at maturity however GMDB
and GMWB does not.

4.2.2 Calculation of variable annuities P&L

The profit comes from management fee, which is recorded in variable Ft, the loss comes
from guarantee benefit paid to the policy holder, which is recorded in variable Dt,Wt.
Weighting them by appropriate discount factors, we get the sum as the present value of
the contract.

PV =
T∑
t=1

(Ft1
A
t−1 −Dt1

D
t−1 −Wt1

A
t )disct (4.4)

where 1Dt is a binary random variable that is 1 if the policy holder dies within t-th year
(implying he/she is alive up to the beginning of t-th year). Similarly, 1At is a binary random
variable that is 1 if the policy holder survives up to t-th year. Both variable depends on
aliveness of the policy holder. disct is the discount factor at year t. The interpretation is:
fee Ft is always charged as long as the policy holder is alive at the beginning of t-th year;
depending on whether the policy holder dies within t-th year, death or withdrawal benefit
might incur.
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Three sources of stochasticity/uncertainty are present: (1) Underlying processes, the
stock price and interest rate etc. (2) The aliveness of the policyholder, such could be
viewed as a two state Markov chain with death as the absorbing state (3) The behavior of
the policy holder. (1) can be straight forwardly modelled and sampled via Monte Carlo.
(3) has been simplified under maximal withdrawal assumption. For (2), we will simply use
its exact mean and variance if needed since we assume the aliveness of the policyholder is
independent of all other random variables.

According to common actuarial practice, we assume the mortality rate only depends
on gender and current age. We denote the mortality rate as:

qgx = Probability of a person aged x and gender g dies in the next year (4.5)

and probability of survival:

xp
g
t = Probability of a person aged x and gender g survives the next t years (4.6)

We drop the gender upper index afterwards. By definition, we have the following equations
due to our Markovian assumption of live-death process:{

xpt+1 = xpt · (1− qx+t)

xp0 = 1
(4.7)

Essentially, (1) the probability of surviving to the beginning of next year is the probability
of surviving to beginning of the current year times the probability of surviving the current
year (2) as the contract is still valid at t = 0, the policy holder must be alive hence xp0 = 1.

Since the live-death process is just a 0-1 binary random variable at each step:

∀n ∈ Z+

{
E[(1At )n] = xpt

E[(1Dt )n] = xpt · qx+t

(4.8)

when we have used the fact that for 0-1 binary variable 1n = 1. Now we can take the
expectation value over the policy holder’s live-death status as:

PV =
T−1∑
t=0

xpt[Ft+1 −Dt+1qx+t −Wt+1(1− qx+t)]disct+1 (4.9)

The discount factor will be given by the underlying interest rate process. With all
described, the pricing computation of the VA contract is complete.
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4.2.3 Hedging of Variable Annuities

Given the significant size of the portfolio, any risk factors should be properly hedged. As
noted, we have at least price risk and interest rate risk to hedge. Indeed, in practice, delta-
rho hedge is usually deployed. Second order hedge is rarely exercised hence first order AD
suffice for VA program. For details of VA hedging, see Appendix D.2.

As insurance companies are regulated, capital/reserve needs to be calculated besides
pricing. For details regarding regulations, see Appendix D.3.

4.3 Computational aspects of VA program

After describing the VA program in details, we go back to the computational schemes of
the thesis.

4.3.1 Computing cost

We have mentioned that VA’s runtime is prohibitive, let’s make a qualitative estimate.
The following parameters can be typical in practice: (1) A portfolio of N = 105 contracts
(2) Maturity T = 25 years (3) Annual timestepping ∆t = 1 year is used (4) Inner Monte
Carlo sampling MI = 1000 (5) Outer Monte Carlo sampling MO = 1000. (5) c = 30 flops
per contract per time step1. As result, cNMIMO(T/∆t)2/2 ≈ 1015 flops are estimated for
one run of nested Monte Carlo. Using a GHz (109 flops per second) machine, we need on
the scale of 106 seconds, which is on the scale of week. If we want to price the contract, i.e.
find out the appropriate annual management fee φ instead of calculating P&L with given
management fee, more than one run would be required by iterative algorithms. The VA
program is indeed computationally intense.

4.3.2 Structure of computation

We show that the VA program possesses the structure in Figure 3.4.
130 is estimated by ∼8 flops (Operations involving A+, A−, D,E,W,GW,GD) with a factor of ∼4 from

the extra calculation of derivatives.
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Figure 4.2: Wrapping up state vectors and parameters of the VA program

For VA, the state vector at inner loop Ξn,m would be (A+, GW , GD, PV ) where PV is
the cummulative present value of VA contract in risk neutral world; the state vector at
outer loop Ξn is (A+, GW , GD, H,B) where H are the holdings in the hedging instruments,
B is the bank account. After completion of the inner loop Monte Carlo, the present value
of VA is computed, its Greek with respect to relevant risk factors are computed at the
same time by AD. All are feedback to the outer loop node and the state vector at the outer
loop is iterated.

We conclude that VA program does follow the general structure as in Figure 3.4.
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4.4 Concluding remarks

From detailed descriptions in this chapter, we observe the VA program has the following
properties indeed (1) nested Monte Carlo simulations in financial application (2) large
scale computation whose runtime is prohibitive (3) first order derivatives are demanded
and target function is scalar with high dimensional input. Therefore, a matching target
for deploying structured reverse mode AD. Furthermore, VA’s computing structure does
fit into our general framework as demonstrated in Figure 3.4.

In the next chapter, detailed analysis on deploying structured reverse mode AD on nest
simulations will be discussed. VA program will serve the numerical experiments in the
next chapter.
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Chapter 5

Structured Reverse Mode in nested
simulations

In Chapter 2, we have introduced the fundamentals of structured reverse mode and drawn
useful insights from a simple example; in Chapter 3 and 4, we have revealed the general
structures in single layered and nested Monte Carlo simulation as well as its application
to VA. Now we are ready to combine everything together and thoroughly analyze various
approaches to deploy structured reverse mode to nested simulation. Numerical results from
VA would be used to corroborate the theoretical analysis.

5.1 Utilization of structure

At the end of Chapter 2, the exact optimal structure has been computed on a clean simple
example: the optimal number of checkpoints as each level, the optimal number of level for
memory reduction, even the Euler number e shows up. Such accuracy is not necessary nor
practical1. We focus on straight forward implementation, i.e. taking the natural check-
point structure in Monte Carlo simulation in financial application as in Figure 3.4 without

1Code segments between the elementary Markovian checkpoints might vary in their computational
burden, in which case finding the optimal checkpoints distribution is non-trivial and only offers marginal
improvement over the straight forward checkpoints structure. In addition, the optimal checkpoint position
depends on the memory requirement of all code segments, which is not known in advance, therefore
impossible to implement in advance.
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finer selection.

The most important aspects of structured reverse mode are the revelation and efficient
utilization of structure. The revelation of structure has been covered in Chapter 3 for Monte
Carlo simulations in financial applications, however efficient utilization of the revealed
structure is non-trivial and counter-intuitive for nested simulations as we will see in this
section.

5.1.1 Merit of Structure

Definition 5.1. Merit of Structure αa for a code c using a structured reverse mode ap-
proach a is defined as:

αa =
σ(∂Revc)

σ(∂ac)
(5.1)

Larger αa is, more beneficial to use structured reverse mode a. If α ≈ 1, then the space
improvement using structure is poor.

For a Monte Carlo simulation withM sampling and state vector Ξ, we have the following
admissible checkpoints selection:

c(i) =



Ξ
(i)
1 = W1(X)

Ξ
(i)
2 = W2(X,Ξ

(i)
1 )

...
Ξ

(i)
L = WL(X,Ξ

(i)
L−1)

V (i) = WL+1(X,Ξ
(i)
L )

z =
1

M

M∑
i=1

V (i)

where L is the length of each individual path, typically the number of time steps. ci stands
for the code of each sampling. Since the state vectors are in the same form, we denote:

σ(Ξi
n) = σ0 ∀i ∈ {1, · · · ,M}, n ∈ {1, · · · , L} (5.2)

Now recall the fundamental equation (2.23):

σ(∂StrRevci) =
L∑
i=1

σ(Ξi) +
L+1
max
i=1

σ̄(Wi) = Lσ0 +
L+1
max
i=1

σ̄(Wi) (5.3)

46



whereas the bare reverse mode costs memory of:

σ(∂Revci) =
L+1∑
i=1

σ̄(Wi) (5.4)

σ̄(Wi) might depend on index i, yet asymptotically,
∑L+1

i=1 σ̄(Wi) ∼ L · maxL+1
i=1 σ̄(Wi).

Hence we have the following merit of structure for straightforward implementation:

αstr =

∑L+1
i=1 σ̄(Wi)

Lσ0 + maxL+1
i=1 σ̄(Wi)

=

∑L+1
i=1 Ω(Wi)

L+ maxL+1
i=1 Ω(Wi)

∼ LΩ

L+ Ω
6 min{L,Ω} (5.5)

We see that αstr is greater when both the length of the sequential path (timestepping) L
and W ’s typical CPI ratio2 Ω increase, and is upper bounded by them. Number of time
steps L is usually large, 103 for example, as is required by accuracy. Therefore W ’s CPI
ratio Ω becomes crucial in structured reverse mode’s efficacy.

Notice that we have assumed all computations are done in pathwise fashion hence the
number of sampling M does no show up. As such parallelism seems trivial to be explored
for single layered Monte Carlo, it is not for nested simulations.

5.1.2 Nested Simulations

Denote the number of outer loop sampling as Mo and the one of inner MI . The length
of the outer loop sampling path being L, the length of inner loop sampling path at time
step n at outer loop being Ln. The function Ln depends on specific applications and as
we will see below, affects whether or not it is worth diving into the deepest structure in
the simulation. We will discuss the merit of structure for all possible combinations of
approaches.

Pathwise1-Structure1

Nested simulation can be viewed as single layered simulation with another single layered
simulation as the sampling drawing algorithm.

2For definition of CPI ratio, see 2.35.
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c(i) =



Ξ
(i)
1 = W1(X)

Ξ
(i)
2 = W2(X,Ξ

(i)
1 )

...
Ξ

(i)
L = WL(X,Ξ

(i)
L−1)

V (i) = WL+1(X,Ξ
(i)
L )

c(i,j)
n =



Ξ
(i,j)
n,1 = Wn,1(X,Ξ

(i)
n )

Ξ
(i,j)
n,2 = Wn,2(X,Ξ

(i,j)
n,1 )

...
Ξ

(i,j)
n,L = Wn,Ln(X,Ξ

(i,j)
n,Ln−1)

V
(i,j)
n = Wn,Ln+1(X,Ξ

(i,j)
n,Ln

)

z =
1

Mo

Mo∑
j=1

V (i) Ξ
(i)
n+1 =

1

MI

MI∑
j=1

V (i,j)
n (5.6)

Hence previous analysis apply. W(·) as the sample drawer for the outer loop, are single
layered simulation now. Hence Ω(W(·)) at least has a factor of MI , which is 103 at mini-
mal. Therefore we expect the merit of structure for structuring the outer loop αstr � 1.
Therefore structuring the outer Monte Carlo simulation should be preferred. To be more
precise, denote:

Ω(Wn,m) = Ω0 ∀n ∈ {1, · · · , L},m ∈ {1, · · · , Ln + 1} (5.7)

It follows that:

Ω(Wn) =

MI∑
j=1

Ln∑
m=1

Ω0 = MILnΩ0 (5.8)

Ln depends on specific applications. However since Ω(·) > 1, Ω(Wn) > MILn � Ln > 1,
according to (5.5):

αpath1str = Mo

∑L
i=1 Ω(Wi)

L+ maxLi=1 Ω(Wi)
= Mo

MIΩ0

∑L
i=1 Ln

L+MIΩ0 maxLi=1{Ln}
6MoL (5.9)

The Mo factor in front is due to pathwising the outer loop. We observe though CPI ratio
contains the factor MI , the merit of structure of plain structured reverse mode at outer
loop does not. This is unsatisfactory because MI is typically large. A natural idea would
be to see the merit of structure when both inner loop and outer loop are structured.

Pathwise2-Structure2

Assume pathwise on both levels. At inner loop, we store checkpoint variables Ξ
(i,j)
n,m costing

Lnσ0 space. The reverse mode on W(·,·) requires Ω0σ0 storage; at outer loop, we store
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checkpoint variables Ξ
(i)
n , costing Lσ0 space. The reverse mode on W(·) is the structured

reverse mode on W(·,·) hence no more space is counted. Therefore:

σ(∂path2str2c) = (L+
L

max
n=1
{Ln})σ0 + Ω0σ0 (5.10)

αpath2str2 = MoMI
Ω0

∑L
i=1 Ln

L+ maxLn=1{Ln}+ Ω0

(5.11)

We see the merit of structure of two layers of structure is at least on the order ofMoMI , of-
fering a considerable improvement over Pathwise1-Structure1. Yet is it due to the pathwise
or structure in the inner loop?

Pathwise2-Structure1

If we only use the outer loop structure but pathwise at both levels, we would need Lσ0 to
store the outer loop checkpoints, and σ0Ω0 maxLn=1 Ln instead of MIσ0Ω0 maxLn=1{Ln} for
use of reverse mode.

σ(∂path2strc) = (L+ Ω0
L

max
n=1
{Ln})σ0 (5.12)

αpath2str = MoMI
Ω0

∑L
i=1 Ln

L+ Ω0 maxLn=1{Ln}
(5.13)

Such merit of structure is at the scale of ∼ MoMI as well. We still observe a strict im-
provement over Pathwise1-Structure1. While Pathwise2-Structure2 seems to be a strict
improvement over Pathwise2-Structure1, such improvement could be marginal depending
on Ln’s behavior. Moreover, as a 2-level structure, Pathwise2-Structure2 needs one addi-
tional run of the original function and is more complex to implement.

Now let’s observe the interaction between structure and pathwise approaches.

Pathwise1

Only pathwise the outer loop brings a factor of Mo improvement over naive reverse mode:

αpath1 = Mo (5.14)
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Pathwise2

One might think pathwising both loops simply brings factor of MoMI improvement yet it
is not true. Since no structure is used, the reverse mode cannot really pathwise the inner
loop since the path structure at the outer loop is given to reverse mode as a blackbox and
the inner pathwise structure lives in each node of the path inside the blackbox. As a result,
pathwising the computation at inner loop does save space for original function valuation,
yet the reverse mode is still recording all the results for the inner loop at the same time,
giving a merit of structure at Mo, no improvement over Pathwise1 at all.

αpath2 = Mo (5.15)

5.1.3 Application to VA contract pricing

With general insights from previous section, we apply the analysis to VA contract pricing.
Consider annual timestepping, hence the path length of the inner loop Ln would be:

Ln = L− n+ 1 (5.16)

as there are less and less year to project later in the future. The CPI ratio Ω0 for VA
at inner loop is O(1), about 2 ∼ 3. Effectively Ω0 � L.

Plugging in we have the merit of structure for VA contract pricing as summarize in
Table 5.1. Notice that since each contract is priced separately hence we do not include the
number of contract N factor here as it is irrelevant.

We see that Pathwise2-Structured2 and Pathwise2-Structured1 have similar performance
since the CPI factor Ω is not large enough for Ω/2 � 1. Taking the longer runtime
and more complex implementation of Pathwise2-Structured2 into account, we conclude
Pathwise2-Structured would be the best choice in terms of runtime and space trade off for
VA program.

5.1.4 Important Points

A few observations are in order based on the space counting of the doubly nested VA
problem:
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Approach Checkpoints ReverseAD Overall Merit
Straight forward 0 MoMIΩL

2/2 MoMIΩL
2/2 1

Structured1 MoL MoMIΩL MoMIΩL L/2
Structured1,2 MoMIL MoMIΩ MoMI(Ω + L) ≈ ΩL/2

Pathwise1 0 MIΩL
2/2 MIΩL

2/2 Mo

Pathwise1-Structured1 L MIΩL MIΩL MoL/2
Pathwise1-Structured1,2 MIL MIΩ MI(Ω + L) ≈MoΩL/2

Pathwise2 0 MoMIΩL
2/2 MoMIΩL

2/2 1
Pathwise2-Structured1 MoL MoΩL MoΩL MIL/2
Pathwise2-Structured1,2 2MoL MoΩ Mo(Ω + 2L) ≈MIΩL/4

Pathwise1,2 0 MIΩL
2/2 MIΩL

2/2 Mo

Pathwise1,2-Structured1 L ΩL ΩL MoMIL/2
Pathwise1,2-Structured1,2 2L Ω Ω + 2L ≈MoMIΩL/4

Table 5.1: Approaches and their space requirement decomposition for VA problem. All
space are in units of σ0, the space needed to store 1 state vector of the problem.
Mo,MI , L� 1 is assumed and subleading term is neglected. L� Ω > 1.

(1) Without structure at the outer loop, we wouldn’t be able to exploit the pathwise
structure in the inner loop at all. As we can see, Pathwise2 requires the same amount of
space as with Pathwise. Hence only using pathwise implementation in nested Monte Carlo
cannot even exploit all levels of parallel path structure but only the first one, emphasizing
the importance of sequential structure utilization.

(2) With structure at the outer loop, the path structure of the inner loop is only par-
tially exploited: Pathwise-Structured’s checkpoints memory does not have MI factor, the
reverse AD memory stills scales with MI . Hence it is always better to fully exploit path
structure to the deepest level and it is only possible when the second deepest level has
been structured.

(3) It is not always better to apply structure to every level of nested Monte Carlo. As
we can see the space complexity of the Pathwise2-Structured2 is not significantly reduced
from Pathwise2-Structured. Whether or not sequential structure should be used at the
last level of nested Monte Carlo needs discretion while it is generally beneficial to apply
sequential structure up to the second to last level.

51



5.2 Implementation and Experiments

We now move to implementation of structured reverse mode and numerical experiments
on VA.

5.2.1 Template for Structured Reverse mode AD

We choose Matlab as implementation environment and use ADMAT 2.0 as our AD tools.

The pseudo code for the following matlab program can be found in Appendix E. Ran-
dom seeding is not important in computational aspects as we are able to complete all
analysis without mentioning it at all, yet it is crucial to handle them properly for imple-
mentation. One reason being that AD essentially can only handle deterministic algorithms
or algorithms with given pseudo randomness. In addition, correct pathwise differentiation
for Monte Carlo simulations cannot work at all without explicitly keeping track of random
seeds.

We have showed the code template for Structured1 approach in Listing 5.1. In the
implementation, the first argument is the input x. The second argument W is the matrix
associated with the reverse mode3. The third argument Para is a struct that contains all
the inputs that we do not require derivatives on. Random seeds and other “global infor-
mation” are also stored in and referenced from Para.

The structure pattern is encoded within the code and is inherited from the input as
well. The fourth input node_I is essentially the function handle of W(·,·) in Equation (5.6)
“node transition for the Inner loop”. The fifth input init_O is the function handle of W1

that initialize the state vector for the outer loop at the beginning of the sampling path
“Initialization of outer loop state vector”. The sixth input transit_O is the function handle
of W>1 that transit the state vector from one to the next one at the outer loop “transition
process at the Outer loop”. The last input N is the number of time steps/length of the
sequential path at the outer loop.

Listing 5.1: Structured1 reverse mode AD template

3The dimension of W is m× dW where m is the dimension of output z and dW 6 m. In case of scalar
output, W=1.
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1 function [f,Df,tapeSize] = AD_str_vec(x,W,Para,node_I,init_O,transit_O,N)
2 %% Obtain size
3 dimX = numel(x);
4 [~,dimW] = size(W);
5 %% Forward Sweep
6 % Preallocate for seeds
7 Seeds_O(N+1) = rng; % Not N+2 since no emit_O
8
9 Seeds_O(1) = rng;
10 Para.Seed = Seeds_O(1);
11
12 y_O = cell(1,N+1); % Outer loop checkpoints
13 y_O{1} = feval(init_O,x,Para);
14 for i = 1:N
15 % Outer loop action
16 Seeds_O(i+1) = rng;
17 Para.Seed = Seeds_O(i+1);
18 Para.t = i−1;
19 % Para.Path_Index_O is already set
20 y_O{i+1} = feval(transit_O,[x;y_O{i}],Para);
21 end
22 %% Backward Sweep
23 %% 1. Reverse mode at last step: Initialize w, vf
24
25 % W: N+1(dimf) * dimW;
26
27 f = zeros(N+1,1);
28 w = cellmat(1,N+1,1,1); % dimNode * dimW matrix each
29 Df = zeros(dimX,dimW);
30
31 % Keep track of maximum tape!
32 tapeSize = 0;
33
34 for t = N:−1:0
35 Para.Seed = Seeds_O(t+1);
36 Para.t = t; % Pass current time to Para
37 [f(t+1),JT,tapeSize] = Reverse_Combo([x;y_O{t+1}],node_I,1,1,Para,

tapeSize);
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38 Df = Df + JT(1:dimX,:) * W(t+1,:);
39 w{t+1} = JT(dimX+1:end,:);
40 end
41
42 %% 2. Propagate derivative back
43
44 v = cellmat(1,N+1,1,1); % dimNode * dimW matrix each
45
46 % Note that j = t+1 in the below loop.
47 for j = N:−1:1
48 w{j+1} = w{j+1} + v{j+1};
49 Para.Seed = Seeds_O(j+1);
50 Para.t = j−1;
51 [~,JT,tapeSize] = Reverse_Combo([x;y_O{j}],transit_O,size(y_O{j+1},1),w

{j+1},Para,tapeSize);
52 Df = Df + JT(1:dimX,:) * W(j,:); % AD contribution of x
53 v{j} = v{j} + JT(dimX+1:end,:); % AD contribution of y_O{j}
54 end
55
56 %% 3. Handle the initial step
57
58 w{1} = w{1} + v{1};
59 Para.Seed = Seeds_O(1);
60
61 [~,dvf] = Reverse_Combo(x,init_O,size(y_O{1},1),w{1},Para);
62
63 Df = Df + dvf;

Various approaches introduced in previous section have been implemented to corrobo-
rate the analysis. We leave the explicit code of the templates in Appendix E.

5.2.2 VA program

Since we do not have real data of Variable Annuity contracts, we artificially generate
contracts and policy holders assuming a reasonable distribution of all properties.
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Evolution of VA account

The evolution of VA block is plotted in Figure 5.1.
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Figure 5.1: Demonstration of the evolution of VA block

Among all the details, we observe the highest two curves are the projected value of VA
and the dollar delta of VA. It decays linearly since the policy holder is withdrawing the
same amount of money annually by assumption.

Effects of Hedging

The hedged and unhedged P&L of a VA program are compared in Figure 5.2. The plotted
lines in the upper part is the accumulative present value P&L trajectory of the whole VA
block. We can see the hedged P&L is much less volatile than the unhedged P&L. The
lower part of the figure is plotting annual P&L of the VA block, the hedge and together.
We see the hedge position shows strong negative correlation with the value of VA block
P&L resulting in a overall P&L of much smaller volatility.
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Figure 5.2: Demonstration of hedging effect on VA product

5.2.3 Numerical results

Reverse mode versus forward mode

As shown in the Chapter 1, for a scalar function, reverse mode’s runtime ratio is indepen-
dent of the input size whereas forward mode’s runtime ratio scales linearly with the input
size. The loglog plot in Figure 5.3 verifies such scaling behavior.

The crossover in the experiment happens when the input size is about 102. Hence it
verifies the motivation to use reverse mode in large scale computation.

Merit of Structure

The comparison between different approaches on the same nested simulation is presented in
Table 5.2. We see the structured reverse mode not only offers promised memory reduction
in accord with theory, it runs faster as well due to less intensive usage of non-local memory.
It is worth noting that the VA program in Table 5.2 is tiny as it only has 5 sampling at
outer loops, 1000 sampling at inner loop and 2 contracts in total. Yet it already requires
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Figure 5.3: Runtime ratio comparison between forward mode and reverse mode on a scalar
function using VA program

Approach Runtime Memory Merit(exp) Merit(Theory)
Naive 1.01 min 2.37 GB 1 1
Struct1 27.3 s 1.08 GB 2.2* 12.5
Path1 59.1 s 487 MB 5 5

Path1-Struct1 10.1 s 19.4 MB 125.04 125
Path1,2-Struct1 14.6 min* 19.0 KB 1.31× 105 1.25× 105

Table 5.2: Comparison of runtime and memory of different approaches on the same VA
program. Maturity T = 25, i.e. length of path L = 25. Mo = 5, MI = 1000, N = 2.

more than 2GB memory due to its remarkable complexities.

We see some merit of structure of numerical results are quite different from theory.
We note that tracking of memory usage of the particular AD package used in Matlab
environment is tricky. The theoretic merit value is not precise and is rather with an order
of magnitude accurary.
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5.3 Conclusion and Future works

In this thesis, we revealed the general structure of Monte Carlo simulations in financial
applications and investigated all possible deployments of structured reverse mode utilizing
the structure.

Monte Carlo simulations in financial applications have the following universal structure:
(1) Individual sampling structure, of which can be utilized to parallelize computation (2)
Each sampling is a sequential time stepping path. (3) Depending on the instrument in
question, specific form of state vector could be extracted and naturally serves as a Marko-
vian admissible selection of checkpoints.

For nested Monte Carlo simulation, general observations on deploying of structured
reverse mode have been made: (1) It is always beneficial to parallelize the individual
sampling and structure the sequential timestepping computation at outer loop. Without
structuring the outer loop, the individual sampling structure at the inner loop is enclosed
in blackbox and cannot be exploited. (2) Parallelizing both sampling loops and structuring
the outer loop is enough to provide a factor ofMoMI reduction over the space ratio of bare
reverse mode. It is the best approach among one level structured reverse mode AD. (3)
Parallelizing both sampling loops and structuring both loops may further reduce space
ratio however only marginally. As for Variable Annuities, it does not reduce memory re-
quirement yet has longer runtime for being 2-level structure. (4) Excessive use of memory
might lead to longer runtime. Structured reverse mode outperforms bare reverse mode by
smaller memory and shorter runtime as shown in numerical experiments.

Hence the final conclusion for deploying structured reverse mode AD to nested Monte
Carlo simulation is: to structure the outer loop and pathwise both loops. Extract the state
vectors for the underlying financial instrument first and then identify the fully wrapped
node transition processes (timestepping). Then structured reverse mode can be used: the
pseudo code, algorithm, and working implementation of template can be found in this
thesis.

Future works could be devoted to more fine tuned optimal checkpoint selection. Though
we have discussed the optimal checkpoint selections in Chapter 2, we are only using the
natural checkpoints in the final chapter. It is true that such optimal choice depends on
parameters that are not known before the program runs, yet it is nevertheless possible to
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extract such information, such as Ω0, by completing a single inner loop simulation and
then adjust accordingly. In principle, assuming the universal structure of nested Monte
Carlo simulation in finance, full automation of optimal checkpoint selection is achievable.
However complex the actual code might be, wrapped full automation can leads to significant
ease for users with less knowledge of AD, making the runtime/space efficiency power of
structured reverse mode more accessible.
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Appendix A

Calculation of derivatives in structured
reverse mode

Structured reverse mode only differs from vanilla reverse mode in the dealing with inter-
mediate variables and memory, they propagate the derivatives in the same way.

Suppose the code c is decomposed as follows:

y1 = W1(x)

y2 = W2(x, y1)
...

yk = Wk(x, y1, · · · , yk−1)

z = Wk+1(x, y1, · · · , yk)

(A.1)

where y could be an admissible selection of checkpoints and W is the wrapped code
segment, or y is the intermediate variables and W is basic operations. For definition of
admissible selection of checkpoints see Section 2.2.1. Similar to Equation (2.3), we have
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the following extended Jacobian:

JE =



∂W1

∂x
−I O · · · · · · · · · O

∂W2

∂x
∂W2

∂y1
−I . . . · · · · · · ...

∂W3

∂x
∂W3

∂y1

∂W3

∂y2
−I . . . · · · ...

...
...

... . . . . . . . . . ...
∂Wk−2

∂x

∂Wk−2

∂y1

∂Wk−2

∂y2
· · · ∂Wk−2

∂yk−3
−I O

∂Wk−1

∂x

∂Wk−1

∂y1

∂Wk−1

∂y2
· · · · · · ∂Wk−1

∂yk−2
−I

∂Wk

∂x
∂Wk

∂y1

∂Wk

∂y2
· · · · · · · · · ∂Wk

∂yk−1



≡



J1
x −I O · · · · · · · · · O

J2
x J2

y1
−I . . . · · · · · · ...

J3
x J3

y1
J3
y2
−I . . . · · · ...

...
...

... . . . . . . . . . ...
Jk−2
x Jk−2

y1
Jk−2
y2

· · · Jk−2
yk−3

−I O

Jk−1
x Jk−1

y1
Jk−1
y2

· · · · · · Jk−1
yk−2

−I
Jkx Jky1 Jky2 · · · · · · · · · Jkyk−1


(A.2)

Reverse mode AD has the input of a W matrix, and the output it computes is the
product JTW where J is the Jacobian matrix of the target function. Such call to bare
reverse mode is denoted as:

[z, JTW ] = reverseAD(x, c,W ) (A.3)

where c is the code to differentiated. Hence we have the following algorithm [15]:

Note in the comments we have related the intermediate variables∇f(·),∇c(·) to extended
Jacobian JE defined above. The computation completed is essentially J = C − DB−1A
where the inverse of the lower triangular matrix B is implicitly done in the double loop.
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Algorithm 2 Structured Reverse Mode
function strReverseAD(x, {Wi}k+1

i=1 , W )
k = #W -1
for i = 1 to k do

yi = Wi(x, y1, · · · , yi−1)
end for
[z, JTW ] = reverseAD({x, y1, · · · , yk},Wk+1,W )
[∇f,∇f1, · · · ,∇fk] = JTW . ∇f = (Jkx )TW,∇fi = (Jkyi)

TW
for i = 1 to k do

vi = 0
end for
for i = k to 1 do

wi = ∇fj + vi
[∼, JTW ] = reverseAD({x, y1, · · · , yi−1},Wi, wi)
[∇ci,∇ci1, · · · ,∇cii−1] = JTW . ∇ci = (J ix)

Twi,∇cij = (J iyj)
Twi

∇f = ∇f +∇ci
for j = 1 to i-1 do

vj = vj +∇cij
end for

end for . Memory of ∇ci and ∇cij is released at the end of each iteration
return [z,∇f ]

end function
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Appendix B

Properties of checkpoints selection

B.1 Admissibility of checkpoints selection

To mathematically formulate the above statement, we first define checkpoints as a selection
of {y} denoted as {Pi}npi=1:

Pi ≡ ypi pi ∈ {1, · · · , k} ∀i ∈ {1, · · · , np}
p0 ≡ 0 < p1 < p2 < · · · < pnp−1 < pnp < pnp+1 ≡ k (B.1)

To be consistent, we should also have:{
P0 ≡ x

Pnp+1 ≡ z
(B.2)

And we denote all the other {y} using the following notation:

∀i ∈ {0, · · · , np}

{
I

(i)
j ≡ ypi+j,∀j ∈ {1, · · · , li}
li = pi+1 − pi

(B.3)

namely, {I ij}
li−1
j=1 are the intermediate variables between checkpoint Pi and Pi+1. If we order

all the variables chronologically, we would get the following:

x = P0 → I
(0)
1 · · · → I

(0)
l0−1 → P1 · · · → Pnp → I

(np)
1 · · · → I

(np)
lnp−1 → Pnp+1 = z (B.4)
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We reformulate our program f as follows:

P1 = bp1(Arg1) ≡ W1(Parg1) = W1(x)

P2 = bp2(Arg2) ≡ W2(Parg2)
...

Pnp = bpnp (Argnp) ≡ Wnp(Pargnp)

Pnp+1 = bnp+1(Argnp+1) ≡ Wnp+1(Pargnp+1)

⇔ z = bk(Argk) ≡ Wnp+1(Pargnp+1)

(B.5)

where we basically wrap up each piece of the computational tape from Pi to Pi+1 into a
non-elementary function Wi+1, and putting all the code segments {W} in order recovers
the original code c:

c⇔ W1 +W2 + · · ·+Wnp ∀checkpoint selection{Pi}npi=1 (B.6)

b and Arg follows the same notation as in previous chapters; Parg stands for principal
arguments which we define as follows:

Definition B.1. Given a code c and a selection of checkpoints {Pi}np+1
i=0 , the respective

principle arguments are defined as follows:

Pargi = (∪pij=pi−1+1Argj)− (∪pij=pi−1+1{yj}) ∀i ∈ {1, · · · , np + 1} (B.7)

We see that the principal argument Pargi is a set difference. The set being subtracted is
a collection of all arguments that have appeared in code segmentWi, and the set subtracted
by is just all the intermediate variables from Pi−1 to Pi. Hence its meaning is clear: Wi’s
dependencies previous to Pi−1. If the checkpoints constitute a fully encapsulated division
of the code, we should expect the following to hold:

Pargi+1 ⊆ {P0, · · · , Pi} ∀i ∈ {0, · · · , np} (B.8)

Hence we have:

Definition B.2. A selection of checkpoints {Pi}npi=1 for code c is called admissible when
either of following equivalent conditions are satisfied ∀i ∈ {0, · · · , np}:

(1)Pargi+1 ⊆ {P0, · · · , Pi}
(2)∀j ∈ {1, · · · , li},Argpi+j ⊆ {P0, · · · , Pi, I(i)

1 , · · · , I(i)
j−1} (B.9)
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B.2 Proof of Theorem 2.6

Here we prove the following theorem:

Theorem 2.6. A subset of a Markovian admissible collection of checkpoints is also an
Markovian admissible selection of checkpoints.

Proof : Denote {Pi}npi=1 as the basis Markovian admissible checkpoint selection. We
prove in the following that any subset {Qi}nqi=1 ⊆ {Pi}

np
i=1 is also a Markovian admissible

checkpoint selection.

We denote {Qi}nqi=1’s indexing of {Pi}npi=1 by {qi}nqi=1:

Qi ≡ Pqi qi ∈ {1, · · · , np} ∀i ∈ {1, · · · , nq}
q0 ≡ 0 < q1 < q2 < · · · < qnq−1 < qnq < qnq+1 ≡ np + 1 (B.10)

Since {Pi}npi=1 is Markovian, the code c are equivalent to the following computation.

c =



P1 = W1(P0) = W1(x)

P2 = W2(x, P1)
...

Pnp = Wnp(x, Pnp−1)

z = Pnp+1 = Wnp+1(x, Pnp)

(B.11)

By constructing the following replicating code segment {Vi}nq+1
i=1 :

∀i ∈ {0, · · · , nq} Vi+1(x,Qi) =



Pqi+1 = Wqi+1(x,Qi) = Wqi+1(x, Pqi)

Pqi+2 = Wqi+2(x, Pqi+1)
...

Pqi+1−1 = Wqi+1−1(x, Pqi+1−2)

Qi+1 = Pqi+1
= Wqi+1

(x, Pqi+1
)

(B.12)
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We prove {Qi}nqi=1 is indeed a Markovian admissible checkpoint selection:

c =



Q1 = V1(Q0) = V1(x)

Q2 = V2(x,Q1)
...

Qnq = Vnq(x,Qnq−1)

z = Qnq+1 = Vnq+1(x,Qnq)

(B.13)

Q.E.D.

B.3 Illustration of Structured Reverse Mode

Given an admissible selection of checkpoints, we’ve illustrated bare reverse mode in Figure
B.1 and structured reverse mode in Figure B.2. Those variables in grey color either haven’t
been computed, or has been computed yet is no longer stored. When the direction of the
arrow gets flipped, it indicates that the derivative has been back propagated over this point
using the algorithm in Appendix A. 6 snapshots are shown in Figure B.1:

Figure B.1: Demonstration of Naive Reverse Mode: see text for detailed explanation.

(1) Code starts to run

(2) One computational step is done

(3) Computation is done all the way to the output, forward sweep is complete, all inter-
mediate variables are kept, backward sweep will start
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(4) Derivatives are propagated for one computational step

(5) Derivatives are propagated for another computational step

(6) The full derivatives have been propagated back to the input, reverse mode is complete

Figure B.2: Demonstration of Structured Reverse Mode: see text for detailed explanation.

10 snapshots are shown in Figure B.2:

(1) Code starts to run

(2) Computation is done up to P1

(3) Intermediate variables between x and P1 are no longer stored. Occupied memory are
released

(4) Similar processes are done until we reached the output1. We are left with x, z and
all the checkpoints {Pi}npi=1.

1There is actually no need to drop intermediate variables between Pnp and z since we immediately need
them in the next step. Nevertheless such action clearly distinguishes forward phase and backward phase.
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(5) The code segment from Pnp to z is reconstructed

(6) Reverse mode is applied on the code segment between Pnp and z, derivatives are
propagated to Pnp

(7) The code segment from Pnp−1 to Pnp is reconstructed

(8) Reverse mode is applied on the code segment between Pnp−1 and Pnp , derivatives are
propagated to Pnp−1

(9) Similar processes are repeated and derivatives have reached P1. Code segment be-
tween x and P1 is reconstructed.

(10) Reverse mode is applied on the code segment between x and P1, derivatives are
propagated to input x. Structured Reverse Mode is complete.
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Appendix C

Technical details of Monte Carlo
Convergence

C.1 Justification of mean estimation

Monte Carlo algorithms that aim to estimate expectation values are justified by the central
limit theorem. We first define what does it mean to converge in distribution:

Definition C.1. A series of one dimensional random variable {Xi}i∈Z+ converge in dis-
tribution to a cumulative distribution function Φ(·) when the following equation holds:

lim
n→∞

Pr[Xn 6 z] = Φ(z) ∀z ∈ R (C.1)

which is denoted as X d−→ φ where φ is the partial distribution function of Φ.

Then we can state the central limit theorem:

Theorem C.2. Suppose {Xi}i∈Z+ is a sequence of i.i.d. random variables with E[X] = µ
and Var[X] = σ2 <∞. Then we have:

√
n

(
[
1

n

n∑
i=1

Xi]− µ
)

d−→ N(0, σ2) (C.2)

73



Using Monte Carlo, one can construct {X̄i}i∈Z+ :

X̄n =
1

n

n∑
i=1

Xi (C.3)

Therefore by central limit theorem:

X̄n ∼ N(µ, (
σ√
n

)2)⇔ p(X̄n|µ, σ) ≈ N(µ, (
σ√
n

)2) (C.4)

Hence we can infer the unknown value µ to have the following posterior:

µ ∼ N(X̄n, (
σ√
n

)2)⇔ p(µ|X̄n, σ) ≈ N(X̄n, (
σ√
n

)2) (C.5)

if we have a uniform priori belief on µ.

C.2 Convergence of Cascaded Mean estimation

We refine the definition of rate of efficiency as follows:

Definition C.3. The rate of efficiency βa ∈ (0,∞] of an algorithm a to compute a scalar
quantity y is defined via the following asymptotics1:

|ya − y| ∼ O(M−βa
a )⇔


|E[ya − y]| ∼M

−βea
a

std[ya − y] ∼M
−βsa
a

βa = min{βea, βsa}
(C.6)

where ya is the approximation of y that approach a computes, and Ma is the complexity
of a’s runtime.

It is βea and βsa that determines the rate of efficiency for cascaded algorithms as we will
see below. Superscript e stands for ‘expectation’, s stands for ‘standard deviation’. For
deterministic algorithm, std[ya − y] ∼ 0 hence βsa = ∞, βa = βea. Rate of efficiency not
being ∞ implies the existence of a precision-runtime tradeoff. Table C.1 gives examples of
rate of efficiency:

1For simplicity, float point accuracy is considered ∞ precision. For algorithm with O(1) complexity
and floating point accuracy, rate of efficiency is set to be ∞ by default.
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Algorithm βe βs β

Sampling 1x2+y261 where x, y ∼ U [0, 1] ∞ ∞ ∞
Monte Carlo estimation of π ∞ 1/2 1/2

Sampling lognormal variable by timestepping 1 ∞ 1
Monte Carlo calculation of an European option 1/3 1/3 1/3

1D PDE with implicit timestepping 1 ∞ 1
1D PDE with Crank-Nicolson timestepping 2 ∞ 2

Table C.1: Algorithm examples with their rate of efficiencies. 1st and 3rd algorithm are
essentially the sampling algorithm of the 2nd and 4th Monte Carlo algorithms.

If the sampling process of the Monte Carlo has O(1) complexity and is error-free, then
overall rate of convergence is βe =∞, β = βs = 0.5. Otherwise, the rate of efficiency would
be lower.

Suppose we are using Monte Carlo sampling of M times on the random variable X.
Each sample x(i)

a of X is given by algorithm a as an estimator of the true sample x(i).

∀i ∈ {1, · · · ,M}

{
x

(i)
a = x(i) + ε

(i)
a

|ε(i)a | ∼M−βa
a

(C.7)

The second condition means the following:

|ε(i)a | ∼M−βa
a ⇔


|E[εa]| ∼M

−βea
a

std[εa] ∼M
−βsa
a

βa = min{βea, βsa}
(C.8)

The Monte Carlo estimator is:

x̄mc(a) ≡
1

M

M∑
i=1

x(i)
a =

1

M

M∑
i=1

x(i) +
1

M

M∑
i=1

ε(i)a (C.9)

where mc(a) stands for the Monte Carlo algorithm using approach a to draw samples.
Therefore, overall error would be:

x̄mc(a) − E[X] =
1

M

M∑
i=1

x(i) − E[X] +
1

M

M∑
i=1

ε(i)a (C.10)
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Central limit theorem applies to both terms. The first term would be normally distributed
at mean 0 with standard deviation O(M− 1

2 ). For the second term, the scale of its mean is
given by a’s rate of efficiency βea, while the scale of its standard deviation is given by a’s
rate of efficiency βsa and further reduced by O(M− 1

2 ). Correlation between two terms is
not important if any2.{

|E[x̄mc(a) − E[X]]| ∼ O(M
−βea
a )

std[x̄mc(a) − E[X]] ∼ O(max{M− 1
2 ,M− 1

2M
−βsa
a }) = O(M− 1

2 )
(C.11)

A consistent choice of Ma would be:

M̂a ∼M1/2βea (C.12)

since scaling lower affects accuracy while higher does not offer improvement. Such optimal
choice of Ma leads to:

Mmc(a) ∼M · M̂a ∼M
1+ 1

2βea

|E[x̄mc(a) − E[X]]| ∼

{
0, if βea =∞
M− 1

2 , otherwise
∼M

−βe
mc(a)

mc(a)

std[x̄mc(a) − E[X]] ∼M− 1
2 ∼M

−βs
mc(a)

mc(a)

(C.13)

Hence overall rate of efficiency of a Monte Carlo deploying a to draw samples reads:

βemc(a) =

{
∞, if βea =∞
βea

2βea+1
, otherwise

(C.14)

βmc(a) = βsmc(a) =
βea

2βea + 1
∈ (0,

1

2
] (C.15)

The rate of efficiency of Monte Carlo is naturally the harmonic mean of a’s rate of efficiency
βea and the suppose-to-be rate of efficiency of Monte Carlo β∗mc = 0.5. This completes the
proof of (3.2).

The following observations can be made. If a is an unbiased stochastic algorithm, i.e.
βea =∞, we always have βmc = 0.5 regardless of βsa, even if βsa < 0.5. If a is a second order
deterministic algorithm, i.e. βea = 2, then βmc = 0.4. If a is a linearly converging algorithm,
i.e. βea = 1, we have βmc = 1/3. If a is a biased Monte Carlo with trivial sampling, i.e.
βa = 0.5, then we only have βmc = 1/4.

2The two terms might be correlated depending on whether or not εa correlates with xa. Yet such
correlation does not matter for asymptotic calculations of rate of efficiencies.
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Appendix D

Details of Variable Annuities

D.1 Modelling of policy holder behavior

The policyholder withdraws the maximal amount allowed each year is a reasonable possi-
bility not a necessity. A quant may say the rigorous treatment should be to incorporate
customer behavior into the model. However it would introduce much complication and is
not suited for Monte Carlo setting. Besides there are no natural ways to model customer
behavior since there’re no rationales to assume they behave rationally or perform the op-
timal strategy. “(1) Coming up with certain utility function (2) use dynamic programming
to construct the optimal strategy as governed by the utility (3) use the optimal strategy
as an input to the pricing model” might be one theoretical approach. However, the utility
function approach is a theoretical convenience after all. The practical approach would be
to statistically model one or several representative policy holders using internal data. Yet
in literature, researchers have found that under reasonable utility functions, there’s little
difference in the contract pricing between assuming policy holders with optimal strategy
and assuming maximal allowed withdrawal strategy each year. On line 518-520, it reads
“. . .This suggests that for a large family of parameters, the policyholder withdraws at
nearly the contract rate.. . . ”[16]. Hence we will use this convenient approximation of cus-
tomer behavior: withdrawing contract rate each year.

Besides deciding how much to withdrawal each year, a policy holder might also consider
revoking the whole contract, which is called "full surrender"1, where the contract is termi-

1Partial surrender means withdrawing above maximal allowed amount in which case certain penalty
will be charged.
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nated and all money in the investment account is retrieved. Such behavior is captured in
practice using lapse curve, a statistical measure of the percentage of contracts that ends
prematurely each year.

D.2 Practical considerations of VA hedging

D.2.1 On second order hedging

Second order hedging on VA is not practically desirable for the following reasons:

(1) The payoff of VA has lots of piecewise linear part due to ratchet, roll-up, step-up
feature. For such function, taylor expansion around each point has a very limited effective
radius. In other words, second order derivatives are not well defined and discontinuous at
many points. Hence second order method might not be effective as it is supposed to be.

(2) The VA itself is already computationally intensive. It would be way too expensive
to compute the second order derivative of VA present value with reasonable accuracy as
first order derivatives are already incurring too much computational burden.

(3) Second order hedging requires additional hedging instruments which might not be
available or is just too expensive. For delta-rho hedge, it is common to short2 stock/index
(the underlying) future to hedge price risk and interest rate swap to handle interest rate
risk.

The reason that shorting future is preferred over longing put option is for being cheaper.
Longing put option is perfect for VA hedging in the sense that it provides full protection if
the underlying plunges, at the mean time, it only minimally affects the potential gain when
the underlying performs well, i.e. it hedges only the loss but not the profit. Nevertheless,
futures are cheaper (per delta exposure), simple, standard and are chosen by practitioners.

Neither future nor interest rate swap provide gamma exposure. If second order method
is used, more expensive and complicated instruments have to be involved.

2To compensate the put-option like guarantee payoff that the company shorts
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D.2.2 The computational cost of hedging

Hedging introduces colossal complexities into the pricing of VA:

(1) Single layer Monte Carlo to Nested Monte Carlo: Without hedging, a single
layer Monte Carlo in risk neutral world and another single layer Monte Carlo in real
world for projected cash flows suffice for pricing. When hedging is involved, at each
node of real world projection, a risk neutral pricing to decide how much hedging
instruments to be rebalanced is demanded, promoting single layer Monte Carlo to
nested Monte Carlo, which doubles the magnitude of runtime, not to mention the
cost of obtaining accurate derivatives.

(2) Time stepping needs to much denser in principle: In practice, price risk
hedging usually requires daily rebalancing at minimal. However, annual time stepping
is already enough for the original VA pricing framework since the annuity realizes
payoff annually. To incorporate hedging fully, one has no choice but to match the
time stepping to whatever hedging requires, if hedging accuracy is required and the
computational burden could be afforded.

D.3 Other indispensable details of VA program

Besides hedging off exposures, insurance companies are also regulated to have capital and
reserve depending on the risk involved in the business. AG43 reserve and C-3 phase II
capital are the common requirements. Quantities such as the projected cash flow at each
year at the 30% worst scenario, for example, would be something important for capital
and reserve specification.

Since runtime is always excessive if all details are included for VA, people has proposed
in literatures [17][18] to first use Monte Carlo to do full pricing on certain representative
contracts, which is selected by appropriate unsupervised learning algorithms, then use
such data to train a regression machine in supervised way, and finally take the prediction
from the learnt regression machine for all other contracts as approximated results. Such
approach could significantly reduce the runtime with unguaranteed yet reasonable accuracy.
The selection of representative contracts is also done in practice.

79



Appendix E

Codes and Templates

E.1 Pseudo code templates

E.1.1 General

Assumed the reverse mode AD has the following input and output:

Algorithm 3 Straight forward reverse mode AD
function ADMAT_RVS(x, f(·), W )

...Compute y = f(x) and v = W TJ , but not J = fx(x)...
return [y, v]

end function

Pathwise Monte Carlo can be completed by the following template.

The structured reverse mode assumes the initialise, transit, and emit code structure.

E.1.2 Markovian Process

The set up of the previous algorithm has a general path dependency. For a Markovian
path, we have the simplified version.
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Algorithm 4 Pathwise AD for Monte Carlo Simulation
function MC_Reverse_AD(x, init(·), Node_Process(·, {·}), emit(·, {·}), W , M , N)

y = 0
v = 0
for i=1 to M do

[yc, vc] = ADMAT_str(x, init(·), Node_Process(·, {·}), emit(·, {·}), W , N)
y = y + yc
v = v + vc

end for
return [y, v]/M

end function
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Algorithm 5 Node structured reverse mode AD for a single Monte Carlo path
function ADMAT_str(x, init(·), transit(·, {·}), emit(·, {·}), W , Nsteps)

dimX = #Elements of x
dimW = #Columns of W
dimF = #Rows of W
seeds = Nsteps+1 × 1 vector of random number generator (RNG) status
seeds(1) = rng . Record initial RNG status
y0 = init(x)
dimNode = #Elements of y0
y = dimNode × Nsteps+1 matrix (each column a node data)
y(:, 1) = y0
for i = 1 to Nsteps do

seeds(i+1) = rng . Record intermediate RNG status
y(:, i+ 1) = transit(x, {y(:, 1), · · · , y(:, i)})

end for
w = Nsteps+1 × 1 vector of dimNode × dimW matrix
[f, vf, w(1), · · · , w(end)] = ADMAT_RVS(x, y(:, 1), · · · , y(:, end), emit(·, {·}), W )
v = Nsteps+1 × 1 vector of dimNode × dimW matrix of zero
dv = Nsteps × 1 vector of dimNode × dimW matrix of zero
for j = Nsteps to 1 do

w(j + 1) = w(j + 1) + v(j + 1)
rng(seeds(j+1)) . Restore RNG status
[∼, dvf, dv(1), · · · , dv(j)] = ADMAT_RVS(x, y(:, 1), · · · , y(:, j),transit(·, {·}),

w(j))
vf = vf + dvf
for i = 1 to j do

v(i) = v(i) + dv(i)
end for

end for
w(1) = w(1) + v(1)
rng(seeds(1))
[∼, dvf ] = ADMAT_RVS(x, init(·), w(1))
vf = vf + dvf
return [f, vf ]

end function
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Algorithm 6 Node structured reverse mode AD for a Markovian Monte Carlo path
function ADMAT_str(x, init(·), transit(·, ·), emit(·, ·), W , Nsteps)

dimX = #Elements of x
dimW = #Columns of W
dimF = #Rows of W
seeds = Nsteps+1 × 1 vector of random number generator (RNG) status
seeds(1) = rng . Record initial RNG status
y0 = init(x)
dimNode = #Elements of y0
y = dimNode × Nsteps+1 matrix (each column a node data)
y(:, 1) = y0
for i = 1 to Nsteps do

seeds(i+1) = rng . Record intermediate RNG status
y(:, i+ 1) = transit(x, y(:, i))

end for
w = Nsteps+1 × 1 vector of dimNode × dimW matrix of zero
[f, vf, w(end)] = ADMAT_RVS(x, y(:, end), emit(·, ·), W )
v = Nsteps+1 × 1 vector of dimNode × dimW matrix of zero
dv = dimNode × dimW matrix of zero
for j = Nsteps to 1 do

w(j + 1) = w(j + 1) + v(j + 1)
rng(seeds(j+1)) . Restore RNG status
[∼, dvf, dv] = ADMAT_RVS(x, y(:, j), transit(·, ·), w(j))
vf = vf + dvf
v(j) = v(j) + dv

end for
w(1) = w(1) + v(1)
rng(seeds(1))
[∼, dvf ] = ADMAT_RVS(x, init(·), w(1))
vf = vf + dvf
return [f, vf ]

end function
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