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Abstract

The edge space of a finite graph G = (V,E) over a field F is simply an assignment

of field elements to the edges of the graph. The edge space can equally be thought of

us an |E|-dimensional vector space over F. The cycle space and bond space are the

subspaces of the edge space generated by the cycle and bonds of the graph respectively.

It is easy to prove that the cycle space and bond space are orthogonal complements.

Unfortunately many of the basic results in finite dimensional vector spaces no

longer hold in infinite dimensions. Therefore extending the cycle and bond spaces to

infinite graphs is not at all a trivial exercise.

This thesis is mainly concerned with the algebraic properties of the cycle and bond

spaces of a locally finite, infinite graph. Our approach is to first topologize and then

compactify the graph. This allows us to enrich the set of cycles to include infinite

cycles. We introduce two cycle spaces and three bond spaces of a locally finite graph

and determine the orthogonality relations between them. We also determine the sum

of two of these spaces, and derive a version of the Edge Tripartition Theorem.
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Chapter 1

Introduction

1.1 An Outline

Graph theory has always been closely linked with topology and algebra. Perhaps the

best illustration of this point is in the theory of cycle spaces. Identify a subgraph of

a graph G = (V,E) with its characteristic vector in an |E|-dimensional vector space

over GF(2). The space of all such vectors is called the edge space of G. One can then

look at subspaces of the edge space generated by certain classes of subgraphs.

The most useful to this point is the edge space generated by the cycles of G, which

is called the cycle space of G. The cycle space has been mainly used in determining

planarity conditions of finite graphs. For example, Mac Lane (1937, see [5]) deter-

mined that a graph is planar if and only if the cycle space has a simple generating

set (a set such that any edge appears in at most 2 members of the set). Tutte (1963,

see [5]) later used cycle spaces to show that a 3-connected graph is planar if and only

if each edge lies in at most 2 peripheral cycles (the induced, non-separating cycles).

One can also rephrase the Four Colour Theorem in terms of cycle spaces: If G is

planar and bridgeless, then G is the union of two elements of the cycle space.

The edge space can be generalized to be taken over arbitrary fields. The members

of the cycle space are then precisely the circulations (or flows) of the graph, a topic
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CHAPTER 1. INTRODUCTION 2

which has far ranging applications in combinatorial optimization and graph theory

itself.

Recently Diestel and Kühn [6, 7], answering a question of Richter, developed a

theory of cycle spaces in infinite graphs. Their approach begins by topologizing a

graph by viewing the graph as a simplicial 1-complex. In the locally finite case they

then compactify the graph (using the Freudenthal compactification) and view a cycle

as any image of a circle (i.e. S1). This introduces the possibility of “infinite” cycles.

Their approach, while successful in generalizing some of the planarity results to

infinite graphs, also gives counterintuitive results. For example there may exist “cy-

cles” contained in the set of vertices and certain infinite paths may be admitted as

cycles.

Richter and Vella [11] approached the cycle space in a slightly different way. They

give a graph a topology which is not Hausdorff but nevertheless allows for a combina-

torial description of infinite cycles and trees. This approach provides a more intuitive

view of the cycle and bond spaces of a graph and is the starting point of this thesis.

We study the edge space of locally finite, infinite graphs over arbitrary fields. We

begin by defining the topology of Richter and Vella on the graph. We then briefly

study compactifications of graphs before turning toward the cycle space. In fact

in turns out that we can well define two cycle spaces and three bond spaces and

determine all orthogonality relations between them. Since we are working in infinite

dimensions, many of the standard results in linear algebra may not be applicable to

these spaces and so these results are not always trivial.

We are also able to derive a tripartition of the edges of a locally finite, infinite

graph which generalizes a result of finite graphs.

This thesis is organized as follows. The remainder of this chapter gives a brief

introduction to infinite graphs. The second chapter serves as a reference for the theory

of cycle spaces of finite graphs. The third chapter presents a discussion of infinite

dimensional vector spaces and so is vital to a study of the edge space of an infinite
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graph. The fourth chapter defines the topology we are using and how we can apply

it to locally finite, infinite graphs. We also examine the set of compactifications of

a graph, which turns out to be partially ordered. The fifth chapter defines what we

mean by cycle and bond spaces and proves the orthogonality relations between them.

Finally we end with some brief thoughts on the difficulty of extending our results to

more general infinite graphs.

1.2 Infinite Graphs

This section introduces some of the basic concepts of infinite graphs. Since many of

the concepts of finite graphs are exactly the same for infinite graphs, we only state

those which need modification or clarification. It should be assumed that any graph

theoretic term which is not defined here is the same as for finite graphs.

An infinite graph G = (V,E) is a graph defined in the usual way but where V is

an infinite set. A graph is locally finite if every vertex has finite degree. A graph is

(graph theoretically) connected if there exists a path of finite length between any two

vertices.

Proposition 1.1 Every connected graph in which every vertex has countable degree

has countably many vertices.

Proof. Let v be an arbitrary vertex. Then the set of vertices Vk at distance k is

a countable set. Since every vertex of the graph is in Vk for some k it follows that

|V (G)| is countable, being the countable union of countable sets.

A ray R = (v0, v1, . . .) is a sequence of infinitely many distinct vertices such that

vi is adjacent to vi+1 for all i ≥ 0. A ray is also called a 1-way infinite path. A double

ray or a 2-way infinite path consists of two rays R = (v0, v1, . . .) and R′ = (v0, v
′
1, . . .)

such that R ∩ R′ = {v0}. A tail of a ray R is simply a subray of R.
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Figure 1.1: A 2-way Infinite Ladder

An instructive example of a locally finite infinite graph is the 2-way infinite

ladder shown in Figure 1.1. The sequence R = (v0, v1 . . .) is a ray while R′ =

(. . . , v′
2, v

′
1, v0, v1, v2, . . .) is a double ray.

Two rays are said to be equivalent if they cannot be separated by a finite set

of vertices. This definition gives an equivalence relation on the set of rays and

we call each equivalence class an end. In Figure 1.1, the rays (u0, u1, u2, . . .) and

(u1, v1, v2, u2, . . . , ui, vi, vi+1, ui+1, . . .) are equivalent to R and so are in the same end,

which is there denoted by ω1. One may think of an end as an extra “point at infinity”.

A graph together with its set of ends is the Freudenthal compactification of the

graph. We will discuss compactifications further in Chapter 4.

A basic result that we will need is the following (see [5]):

Lemma 1.2 (König’s Infinity Lemma) Let G be an infinite graph and let V0, V1, . . .

be a sequence of disjoint non-empty finite vertex sets that partition V (G). Suppose

that for each Vi with i ≥ 1 every v ∈ Vi has a neighbour f(v) in Vi−1. Then G contains

a ray {v0, v1, . . .} with vi ∈ Vi for all i ≥ 0.

Proof. Let P be the set of all finite paths of the form v, f(v), f(f(v)), . . . that end

in V0. Since P is infinite and V0 is finite, there must be a subset P0 of P consisting

of infinitely many paths ending at the same vertex in v0 ∈ V0. Of the paths in P0
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there is a subset P1 consisting of infinitely many paths that go through the same

vertex v1 ∈ V1. Continuing in this way we get a sequence v0, v1, . . . which is infinite

by virtue of the fact that at the ith step we have an infinite set of paths beginning

with v0, v1, . . . vi.

We have only given an extremely terse introduction to infinite graph theory. The

subject is in fact rich with deep results and we refer the reader to [5] for an excellent

introduction to the subject.



Chapter 2

The Cycle Space of a Finite Graph

The material presented in this chapter is mainly based on Bondy and Murty [2],Godsil

and Royle [10] and Rosenstiehl and Read [13]. See Biggs [1] for a more advanced

discussion. The definitions and theorems are presented here solely as a reminder and

a reference to the reader.

2.1 The Basics

In this section we introduce the edge space and the cycle and bond spaces of a finite

graph.

Let F be a field and let G = (V,E) be a connected finite graph with an arbitrary

orientation on its edges. The set of functions {f : E(G) → F} is called the edge space

of G over F. Since the edge space is isomorphic as a vector space to the vector space

F
|E|, we denote the edge space simply by F

E. We always equip the edge space with a

vector product defined by uT v =
∑

e∈E u(e)v(e) for u, v ∈ F
E.

Note that although in general the spaces we will introduce in this section differ

slightly depending on the given orientation of the edges, the results all hold inde-

pendently of the orientation. Therefore when we talk about, for example, the “cycle

space” we mean the cycle space with respect to the given orientation.

6
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Figure 2.1: A cycle and a bond labelled by their corresponding edge space elements.

For each cycle C in G we may define an element c of the edge space (which we also

call a cycle) in the following way. First pick a direction of traversal D of C. Then

c(e) =















1 if e ∈ C and the orientation of e agrees with D

−1 if e ∈ C and the orientation of e disagrees with D

0 if e /∈ C.

An example of a cycle and its corresponding element in the edge space is given on

the left of Figure 2.1.

The subspace Z(G) of F
E generated by all linear combinations of cycles is called

the cycle space of G.

Given a spanning tree of G it is clear that any edge e /∈ T generates a unique

cycle in the subgraph T ∪ {e}, called a fundamental cycle of G. The corresponding

edge space cycle, where we adopt the convention that the direction of traversal always

agrees with the orientation of e, is also called a fundamental cycle.

Dual to the notion of the cycle space is the bond space (also called the cut space).

Let (A,B) be a partition of V (G). Let δ(A) be the set of edges with one end in A

and the other end in B. We define an element b of F
E (which we also call a bond, or

a cut, with vertex partition (A,B)) by
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b(e) =















1 if e ∈ δ(A) and if the head of e is in A

−1 if e ∈ δ(A) and if the tail of e is in A

0 if e /∈ δ(A).

An example of a bond and its corresponding element in the edge space is given

on the right of Figure 2.1. The bond space B(G) is the set of all linear combinations

of bonds of G. Let T be a spanning tree of G and let e ∈ T . Then T \ {e} partitions

V (G) into two parts A and B. The corresponding cut δ(A) is called a fundamental

bond of G. Note that e is the unique tree edge in the fundamental bond.

To simplify notation somewhat, we will usually denote the cycle and bond spaces

of a graph G by Z and B if no confusion occurs as to which graph G is under

discussion.

We now take a slightly different viewpoint of the cycle and bond spaces.

A circulation is an element c of the edge space such that for each vertex in G we

have

∑

e∈δin(v)

c(e) =
∑

e∈δout(v)

c(e) (2.1)

where δin(v) (respectively δout(v)) is the set of edges whose head (resp. tail) is v. In

other words, for each vertex the “flow” in equals the “flow” out. Note that in general

if c1 and c2 are circulations then so is c1 + c2.

Theorem 2.1 The set of circulations of a connected finite graph G is precisely its

cycle space.

Proof. Let C denote the set of circulations. Since each cycle is a circulation by

definition of cycle, we have Z ⊆ C.

Let f be a circulation. Let T be a spanning tree of G. Consider the circulation

z = f −
∑

e/∈T f(e)Z(T,e) where Z(T,e) is the fundamental cycle corresponding to an

edge e /∈ T . Since there exists a unique fundamental cycle corresponding to e it
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follows that the support of z (the set of edges for which z has a non-zero value) is

contained in T .

We claim that there can be no circulation with a non-zero edge value on an acyclic

graph. This is easily seen by noting that every acyclic graph H has a vertex v with

degree 1. Then δin(v) + δout(v) = 1 implies that the edge incident with v has value

zero in any circulation of H. The graph H \{e} is still acyclic and so one can apply an

inductive argument to show that every edge must have value zero in any circulation

of H.

Therefore we have z ≡ 0 and so f =
∑

e/∈T f(e)Z(T,e). Hence C ⊆ Z.

Given a subspace U of F
E, the orthogonal complement U⊥ is defined as the set of

vectors u such that uT v = 0 for all v ∈ U .

Theorem 2.2 Let G be a finite connected graph. Then Z = B⊥.

Proof. We first show that any cycle is orthogonal to every bond. So let c be a

cycle of G and let b be a bond of G. It is easy to see that c and b must have an

even number of edges in common, say e1, e2, . . . , e2k where we have ordered the edges

so that in a traversal of c, ei+1 is the first edge encountered after ei for every i.

Suppose that the orientations of both ei and ei+1 agree with respect to the traversal

of c, i.e. we have c(ei) = c(ei+1). Then we must have b(ei) = −b(ei+1). Thus

c(ei)b(ei) + c(ei+1)b(ei+1) = 0. On the other hand if we have c(ei) = −c(ei+1) then

we must have b(ei) = b(ei+1) and so again c(ei)b(ei) + c(ei+1)b(ei+1) = 0. It follows

that zT b = 0 and so Z ⊆ B⊥.

On the other hand, let z ∈ B⊥. Then in particular for each bond δ(v) with vertex

partition (v, V (G) \ {v}) we have that Equation 2.1 is satisfied by z. Hence z ∈ Z

and the result now follows.

Another way to look at the bond space is to assign potentials (elements of F) to

every vertex. That is, let q : V (G) → F be a function on the vertices of G. The
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potential difference of q is the function p : E(G) → F defined by p(vu) = q(v) − q(u)

where v is the head of the edge vu.

Another point of view is to consider a potential difference as a linear combination

of vertex cuts (in the edge space), where a vertex cut δ(v) of v ∈ V (G) is the cut

with vertex partition (v, V (G) \ {v}). Here, we take the potential at vertex v to be

the coefficient of δ(v) in the linear combination.

Theorem 2.3 Let G be a connected finite graph. Then the bond space of G is the

set of all potential differences.

Proof. Let P be the set of all potential differences. Then as noted above, P ⊆ B.

On the other hand let δ(A) be a bond whose vertex partition is (A,B). Define the

potential q by q(v) = 1 for all v ∈ A and q(v) = 0 for all v ∈ B. Then δ(X) is the

potential difference of q since every edge not in δ(X) has potential difference zero.

Thus b ∈ P and hence we see that B ⊆ P.

Therefore we have that the set of vertex cuts generates the bond space.

Fix a vertex v0 ∈ V (G). Define a potential q by q(v0) = 1 and q(v) = 0 for v 6= v0.

Define another potential q′ by q′(v0) = 0 and q′(v) = 1 for v 6= v0. If p and p′ are the

potential differences of q and q′ respectively then it is easy to see that p(e) = −p′(e)

for every e ∈ E(G). Since p is simply the vertex cut δ(v0) and p is a linear combination

of vertex cuts of vertices in V (G) \ {v} it follows that δ(v0) is linearly dependent on

the set {δ(v) | v ∈ V (G) \ {v}}. Therefore dim(B) ≤ |V (G)| − 1.

Another description of the cycle and bond spaces is via the incidence matrix.

Recall that the incidence matrix of an oriented graph G = (V,E) is the |V | × |E|

matrix D, rows indexed by the vertices and columns by the edges, defined as

D[v, e] =















1 if vertex v is the head of edge e

−1 if vertex v is the tail of edge e

0 otherwise.
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Theorem 2.3 is then simply saying that the bond space of a graph is the row space

of D and the cycle space is the null space of its incidence matrix.

Now let G be a connected graph and let T be any spanning tree of G. We noted

above that there exists a unique fundamental bond for every e ∈ T . Hence the set

of |V (G)| − 1 fundamental bonds is linearly independent, and therefore a basis of B

and we have dim(B) = |V (G)| − 1. Furthermore, by the rank-nullity theorem, we

get dim Z = |E(G)| − |V (G)| + 1. Since each edge e /∈ T is in a unique fundamental

cycle it follows that the set of |E(G)| − |V (G)| + 1 fundamental cycles is linearly

independent and thus forms a basis for Z.

As a final note for this section, although we have mainly considered connected

finite graphs, all the results extend in a straightforward manner to arbitrary finite

graphs. In this case, the dimension of the bond space of a graph G is |V (G)| − c

where c is the number of components of G and the dimension of the cycle space is

|E(G)| − |V (G)| + c.

2.2 The Edge Tripartition Theorem

In this section we consider the edge space over GF(2) of a finite graph G . In this

case the orientation on the edges is redundant and so we need not bother introducing

one. An element of the edge space corresponds to a subgraph of G. In particular the

cycle space is simply the set of all even subgraphs (i.e. subgraphs where each vertex

has even degree). Addition of two elements of the edge space is simply the symmetric

difference of the two subgraphs.

Now we know from linear algebra that since Z = B⊥ we have Z + B = (Z ∩B)⊥.

The elements of Z ∩ B are called bicycles .

A nice consequence of the above sum relation is as follows. Suppose B is a bicycle

of G. Then BT b = 0 for any cut b. Thus B induces an even subgraph of G. Now

consider the set of edges E ∈ GF(2)E (E is the all 1’s vector). Then ET B = 0 since
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B is even and thus E ∈ (Z ∩B)⊥. i.e. E = z + b for some even subgraph z and some

cut b. In other words:

Corollary 2.4 Let G be a finite graph. Then there exists a cut b of G with vertex

partition (A,B) such that the two subgraphs induced by A and B are even (we allow

one of A or B to be empty).

Let e denote both an edge in E(G) and its corresponding characteristic vector

in GF(2)E. Suppose e is contained in some bicycle B. Then eT B 6= 0 and so e /∈

(Z ∩ B)⊥ = Z + B. On the other hand, if e is not contained in any bicycle, then

eT B = 0 for every bicycle B. Hence e ∈ (Z ∩ B)⊥ = Z + B.

Now suppose we are in the latter case and assume that e = z + b = z′ + b′ where

z, z′ ∈ Z and b, b′ ∈ B. Then z + z′ = b+ b′ and so z + z′ is a bicycle. Now e does not

lie in a bicycle so it follows that either e lies in both z and z′ (and not in b and b′) or

e lies in both b and b′ (and not in z and z′). The point is that in every representation

of e as the symmetric difference of a cut and an even subgraph, e either always lies

in the cut or always lies in the even subgraph.

We have just proved the following theorem (see [13]).

Theorem 2.5 (Edge Tripartition Theorem) Let G be a finite graph. Then for

every edge e exactly one of the following three situations holds for e:

1. e is contained in some bicycle,

2. There exists a cut b such that b + e is an even subgraph, or

3. There exists an even subgraph H such that H + e is a cut.

The Edge Tripartition Theorem has found use in knot theory. The original paper

in fact was used to solve an old conjecture of Gauss concerning the sequence of crossing

points in a closed curve. The bicycle space can also be used to derive certain parity

results. For example let t(G) denote the number of spanning trees of G. Chen [3] (for
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char(F) = 2) and Shank [15] (for general finite fields with characteristic p) showed

that there exists a bicycle on G if and only if p divides t(G).



Chapter 3

On Infinite Dimensional Vector

Spaces

The first section of this chapter is a discussion of some of the differences between

finite and infinite dimensional vector spaces. We also introduce the thin span of an

infinite dimensional vector space which will play an important role in later chapters.

Section 3.2 introduces a new type of vector product that we will need in order to

discuss orthogonality of subspaces. Section 3.3 is devoted to one of the main results

of this thesis. Here we generalize to certain infinite dimensional spaces U and V , the

orthogonality relation U +V = (U⊥∩V⊥)⊥, which holds for finite dimensional spaces

but fails for general infinite dimensional spaces.

3.1 Finite vs. Infinite Dimensional Vector Spaces

The core of this thesis will be a study of the basic properties of the cycle space of a

locally finite infinite graph. The difficulty in extending the finite theory is that many

of the fundamental properties for finite dimensional spaces no longer hold in infinite

dimensions.

Let W be a vector space (finite or infinite dimensional) over a field F. We equip

14
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W with a notion of a vector product 〈·, ·〉 : W ×W → F (a symmetric bilinear form)

that satisfies the following:

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ W,

• 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ W,

• 〈λx, y〉 = λ〈x, y〉 for all x, y ∈ W, λ ∈ F.

For example the vector product we used with the edge space in Chapter 2 is a

symmetric bilinear form. Two vectors in W are said to be orthogonal if their product

is zero. The orthogonal complement of a subspace U is the set U⊥ of all vectors in

W that are orthogonal to every vector in U . Note that the term “complement” here

is somewhat of a misnomer as in general we do not always have U + U⊥ = W , where

U + U⊥ = {u + v | u ∈ U , v ∈ U⊥}.

In any case, if W is finite dimensional the following properties always hold for

subspaces V and U of W :

Fact 1. V⊥⊥

= V ;

Fact 2. V⊥ = U if and only if V = U⊥;

Fact 3. (V + U)⊥ = V⊥ ∩ U⊥;

Fact 4. V⊥ + U⊥ = (V ∩ U)⊥;

Fact 5. If U = V⊥ in (3) and (4), then the sum is a direct sum if and only if

U ∩ U⊥ = {0}.

Now suppose that W is an infinite dimensional vector space over a field F.

It is easy to verify that U ⊆ U⊥⊥

for any subspace U ⊆ W. Much of the cause of

our trouble (and the justification for this thesis!) is that the converse implication is not

necessarily true. For example suppose that W is the set of all sequences in R such that

the sequence {xi}i∈I is in W if and only if the series
∑

i∈I xi is absolutely convergent.
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Then we can define a symmetric bilinear form by 〈{xi}i∈I , {yj}j∈J〉 =
∑

i∈I xi

∑

j∈J yj.

Now if U is the subspace consisting of all finite sequences then clearly U⊥ = {0}, but

then U⊥⊥

= W .

Now Facts (1) and (2) are easily seen to be equivalent, and thus (2) does not nec-

essarily hold in infinite dimensions. Fact (3) in fact does hold in arbitrary dimensions.

Proposition 3.1 Let W be a vector space equipped with a symmetric bilinear form

〈·, ·, 〉 and let U and V be subspaces of W. Then

(V + U)⊥ = V⊥ ∩ U⊥.

Proof. If x ∈ V⊥ ∩ U⊥ then 〈x, v + u〉 = 〈x, v〉 + 〈x, u〉 = 0. On the other hand if

x ∈ (V+U)⊥ then 〈x, v+u〉 = 0 for all v ∈ V and u ∈ U . In particular if we set v = 0

then 〈x, u〉 = 0 for all u ∈ U , i.e. x ∈ U⊥. Similarly x ∈ V⊥ and so x ∈ U⊥ ∩ V⊥.

A proof of Fact (4) for the spaces that we consider in the sequel is one of the

core results of this thesis. For this, we will need the following elementary result from

linear algebra.

Lemma 3.2 (Fredholm’s Theorem (see [14])) Let F
m be the m-dimensional vec-

tor space over the field F equipped with the standard inner product. Let A be an m×n

matrix with entries in F and let b ∈ F
m. Then exactly one of the following holds:

1. There exists an x ∈ F
n such that Ax = b, or

2. There exists a y ∈ F
m such that yT A = 0 but yT b 6= 0.

Proof. Suppose (1) and (2) hold simultaneously. Then 0 = yT Ax = yT b 6= 0, a

contradiction.

Now suppose that (1) does not hold, that is, there does not exist an x such

that Ax = b. If C is the column space of A then this is equivalent to saying that

b /∈ C = (C⊥)⊥ so there exists a y ∈ C⊥ such that yT b 6= 0. But y ∈ C⊥ implies that

yT A = 0.
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We need to expand somewhat our definition of a subspace. Consider the vector

space F
α, where α is an ordinal number. We can think of F

α either as the set of

functions {f : α → F} or simply as the set of column vectors indexed by α. But if

u ∈ F
α then we write ui instead of u(i) for i ∈ α. A set U ⊆ F

α is called thin if for

all i ∈ α, there exists only finitely many u ∈ U such that ui 6= 0.

It makes sense to take infinite linear combinations of elements of distinct elements

of a thin set U as each i ∈ α will appear in only finitely many terms. The thin span of

a thin set U is the set of all linear combinations (finite or infinite) of distinct elements

of U . A thin subspace U of F
α is the thin span of a thin set U ⊂ F

α.

3.2 A Quasi-Bilinear Form

Some of the basic theorems for cycle spaces of finite graphs are concerned with orthog-

onality relations, e.g. the standard inner product of a cycle and a cut is always zero

where we view a cycle and a cut as elements in certain finite dimensional subspaces.

Since we wish to generalize these results to certain infinite dimensional spaces over

arbitrary fields it is necessary to define a vector product for these spaces. It will turn

out that these vector spaces are in fact isomorphic to F
α where α is either a finite

ordinal or the first transfinite ordinal, i.e., the order type of the natural numbers.

Hence we always assume that our vector space has a countable generating set.

Since we are generalizing we require that such a vector product coincide with the

standard inner product if the ordinal α is finite. A first attempt is to define the

product “◦” of two vectors v and w to be the “sum”
∑

i viwi. Of course in general

such a product is ill-defined, especially for finite fields. We thus have to make a

compromise. Our vector product will not be a symmetric bilinear form yet it will, in

a certain sense, “often” act as a symmetric bilinear form.

The essential idea is that for any vector v ∈ F
α we restrict the vectors that can

be “multiplied” with v. For example if we are working over the reals than we can
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say that v and w are multipliable if and only if the series
∑

i∈α viwi is absolutely

convergent. On the other hand we can just as well say that v and w are multipliable

if and only if they have only finitely many nonzero components in common.

The notion of convergence of series is captured by what we call a caste, which is

the subject of Definition 3.3.

Given a field F we let MP(F) be the set of multisets with elements in F. Note

that a member of MP(F) may have infinite cardinality even if F is finite.

Definition 3.3 Let F be a field. A caste of convergent series of F (or simply a caste

of F) is a set C ⊆ MP(F) together with a function Σ : C → F that satisfy the

following:

1. The set O of infinitely many zeroes is in C and Σ(O) = 0.

2. If M ∈ MP(F) has finite cardinality then M ∈ C and Σ(M) =
∑

x∈M x.

3. If M ∈ C and N ⊆ M then N ∈ C.

4. If M and N are in C then M ∪ N ∈ C and Σ(M ∪ N) = Σ(M) + Σ(N).

5. If α ∈ F and M ∈ C then αM := {αm | m ∈ M} ∈ C and Σ(αM) = αΣ(M).

6. Let M ∈ MP and suppose that for every m ∈ M we partition m into two parts,

i.e., xm and ym such that m = xm + ym. Furthermore suppose that Mx and

My, the set of multisets containing all the xm and ym respectively are both in C.

Then Σ(M) = Σ(Mx) + Σ(My).

A note on notation: following Property (2) we will often write
∑

x∈M x to mean

Σ(M) regardless of the cardinality of M and we will usually omit writing the function

Σ when declaring that a field has a caste, i.e. we simply say that F has the caste C.

An easy consequence of the axioms is that no member of a caste of F may have

infinitely many x’s for any x ∈ F \ {0}. This follows after noting that the set M =

{x, x, . . .} of infinitely many x’s can not be in C since we have M = M ∪ {x} so that



CHAPTER 3. ON INFINITE DIMENSIONAL VECTOR SPACES 19

Σ(M) = x+Σ(M), which is clearly impossible in a field. Thus the only possible caste

of a finite field is the family of all finite multisets of the field. The interesting case is

when the field has infinitely many elements.

In general when the field has characteristic zero, there are really only two possibil-

ities for a caste: the set of all finite sums, and the set of absolutely convergent series.

If the infinite field has characteristic p 6= 0 then there are still only two possibilities

for the caste: the finite series and the convergent series.

Now we define our vector product.

Definition 3.4 Let F
α be a vector space over a field F and let (C, Σ) be a caste of F.

For two vectors x and y in F
α, define the multiset M(x,y) = {xiyi|i ∈ α}.

The circle product with respect to C is the function ◦C : V ×V → F∪{∞} defined

by

◦C(x, y) =







Σ(M(x,y)) if M(x,y) ∈ C

∞ otherwise.

As with most binary operations we will always write x◦C y for ◦C(x, y). Also, when

C is fixed or understood then we shall simply write x◦y. Given two vectors x and y we

say that the circle product x◦C y is well-defined for x and y if M(x,y) ∈ C, (equivalently

if Σ(M(x,y)) ∈ F). In this case, the two vectors are orthogonal if x ◦C y = 0.

The support of a vector x ∈ F
α is the set supp(x) ⊆ α of non-zero components of

x. The vector x has finite support if it has only finitely many non-zero components.

Note that if x has finite support then x ◦ y is well defined for any vector y.

Lemma 3.5 Let x be a vector in F
ω and let C be a caste for F. Let Y = {y1, y2, . . . , yk}

be a finite set of vectors such that x ◦ yj is well-defined for each yj ∈ Y . Then

x ◦
∑k

i=1 yi is well defined and

x ◦
k
∑

i=1

yi =
k
∑

i=1

(x ◦ yi).
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Proof. We only prove the theorem for k = 2 since the result for general k follows

inductively. Suppose x ◦ y and x ◦ z are well-defined. Now M(x,y+z) = {xiyi + xizi |

i ∈ ω} and so by Property 5 of Definition 3.3 of caste we have that Σ(M(x,y+z)) =

Σ(M(x,y)) + Σ(M(x,z)), i.e. x ◦ (y + z) = x ◦ y + x ◦ z. Since Σ(M(x,y+z)) ∈ F it follows

that x ◦ (y + z) is well-defined.

The circle product is a quasi-bilinear form in the sense that if x ◦ y is well-defined

for two vectors x and y then it satisfies the properties of a bilinear form.

Lemma 3.6 Let x be a vector in F
α with finite support and let Y = {yi | i ∈ I} be a

thin family of vectors in F
α. Then

x ◦
∑

i∈I

yi =
∑

i∈I

x ◦ yi.

Proof. Since x has finite support all circle products in the theorem statement are

well-defined. Now M(x,
P

i∈I yi) = {xj(
∑

i∈I yi
j) | j ∈ α}. Since Y is a thin family

∑

i∈I yi
j is a finite sum for each j ∈ α. Since there are only finitely many nonzero xj

it follows that M(x,
P

i∈I yi) is a finite multiset and the result follows from Property (2)

in Definition 3.3.

For a set of vectors U in a vector space F
α over F with caste C define the orthogonal

complement of U to be the set U⊥ = {v ∈ F
ω | v ◦C x = 0 ∀x ∈ U}.

The following lemma is proved in the standard way.

Lemma 3.7 If U ⊆ V ⊆ F
ω then V ⊥ ⊆ U⊥.

3.3 Solving a System of Infinitely Many Linear

Equations

This section presents one of the main results of this thesis. Throughout this section

it will turn out that whenever we wish to take the circle products of vectors x and
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y, at least one of them will have finite support. Thus we will omit any mention of

caste and simply write xT y for their circle product in order to conform to standard

notation in linear algebra.

Theorem 3.8 Let F
α be a countable-dimensional vector space over a field F. Let V

and U be thin subspaces of F
α. Then

U + V = (U⊥ ∩ V⊥)⊥.

Proof. From Proposition 3.1 we know that U + V ⊆ (U + V)⊥
⊥

) = (U⊥ ∩ V⊥)⊥.

Let U and V be thin generating sets of U and V respectively and suppose that

b ∈ (U⊥∩V⊥)⊥. Construct an infinite matrix A whose columns consist of the vectors

in U and V . Then we wish to solve the infinite matrix equation Ax = b. Let us

arrange the columns of A so that for each row the finitely many non-zero entries are

at a finite distance from the left. This is accomplished as follows. First arrange the

k1 columns with non-zero entries in their first rows to be the first k1 columns of A.

Define c(1) = k1. Then for every i there exists finitely many (say ki) columns after

the c(i − 1)th column with non-zero entries. Set these columns to be the next ki

columns of A. Let c(i) = c(i − 1) + ki. Note that c(i) ≥ c(i − 1).

Given i let Ai denote the i × c(i) submatrix of A obtained by taking the first i

rows and first c(i) columns. Let bi be the finite vector consisting of the first i entries

of b. Then we claim that the finite linear system Aix = b is consistent. For suppose

there is no solution. Then by Theorem 3.2 there exists a y ∈ F
i such that yA = 0

and yb 6= 0. Consider ỹ ∈ F
α defined by taking the first i entries in ỹ to be the first

i entries in y respectively, and all other entries to be zero. Then ỹT c = 0 for every

column c of A and so ỹ ∈ (U⊥ ∩ V⊥). But ỹb 6= 0, a contradiction.

Note that we distinguish between the ith column of A and the member of U ∪ V

which the column represents. We will be performing some slight reordering of the

columns later on in this proof (solely for convenience), however when we write column

i we always mean the ith column in the current ordering of the columns.
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Each component (or variable) xc of x in a solution to Ax = b corresponds to the

column of A indexed by c ∈ U ∪ V . When we reorder the columns of A we also

reorder the variables of x to match the new ordering of the columns of A.

Finally for the remainder of this proof when we perform column reordering and

elementary row operations on Ai, we really mean that we are performing those same

operations on A. Considering Ai is simply a device to (hopefully) make the discussion

slightly more intuitive and to aid the readability of the proof.

First consider A1, which of course is just a 1 × c(1) row. Multiply this row by an

appropriate scalar so that the entry in column c(1) is 1. Call the 1 × 1 submatrix

consisting of this entry J1 and let B1 be the 1 × c(1) − 1 submatrix consisting of the

rest of A1. Here we allow a matrix to have zero rows or zero columns.

If the column in J1 represents c1 ∈ U ∪ V then we say that xc1 is a dependent

variable, depending on the variables corresponding to the columns in B1, which we

call the independent variables (even those whose entry is zero). These names come

from the fact that any values assigned to the independent variables determines the

value of xc1 .

Now suppose that we have reduced Ai−1 by row reductions and column reordering

to the form

[

Bi−1 Ji−1

]

, (3.1)

where Ji−1 is a matrix with i−1 rows such that each column has precisely one 1, and

each row has at most one 1. Furthermore if a row of Ji−1 is all zeros, then the same

row in Bi−1 is all zeros.

Consider Ai. Then the submatrix consisting of first i− 1 rows of the first c(i− 1)

columns is Ai−1 so we can reduce this submatrix to Form 3.1 to get a matrix of the

form
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



Bi−1 Ji−1 0

ai



 ,

where 0 is a [c(i) − c(i − 1)] × [i − 1] all zeros matrix and ai is the last row of Ai.

There are two cases to consider in deciding how to proceed.

Case 1: c(i) − c(i − 1) > 0. In this case all entries of ai in columns c(i − 1) +

1, . . . , c(i) are non-zero by our original ordering of the columns. First eliminate

(by elementary row reductions) all non-zero entries in ai in the columns indexed

by Ji−1. Then multiply ai by a scalar to make the entry in column c(i) equal

to 1.

Let Bi consist of the i rows of the columns in Bi−1 and the columns c(i − 1) +

1, . . . , c(i) − 1. Reorder the columns of Ai so that these last c(i) − c(i − 1) − 2

come immediately after the columns of Bi.

Let Ji be the i rows of the columns in Ji−1 together with column c(i). Note

that Ji satisfies the conditions on it which we claimed above. If column c(i)

represents ci ∈ U ∪ V then xci
is now a dependent variable, depending on all

the entries in row i of Bi.

Case 2: c(i) = c(i−1). In this case we again eliminate all non-zero entries in ai in the

columns corresponding to the columns of J . If this results in ai becoming an all

zero row then we simply add the row to Bi−1 and Ji−1 and move on. Otherwise

there exists a last column p(i) in B(i) with a non-zero entry. Multiply this row

by an appropriate scalar to change the entry in p(i) to 1.

Now we can eliminate all entries in column p(i) above row i to zero. In other

words, this column is now dependent. The crucial point about this entire process

is that every dependent variable in Ji−1 with a non-zero entry in column p(i)

has its independent variables reduced by one, and in such a way that it now
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only depends on earlier variables (earlier in the sense of columns closer to the

left). Now all we do is move column p(i) so that it is the column directly before

the columns of Ji−1. And we let Ji be the columns of Ji−1 together with the

column that we moved.

Now every variable in x either becomes dependent after adding some row, or it

stays independent forever. Therefore every dependent variable xc always depends

on finitely many independent variables, and furthermore after some finite amount of

iterations, the variables upon which xc is dependent remain fixed forever.

Theorem 3.8 immediately gives us the following generalization of Fredholm’s The-

orem.

Corollary 3.9 Let A be a a matrix over a field F with countably many rows and

columns. Furthermore suppose that every row of A has finitely many non-zero entries.

Let b be a column vector over F whose set of rows has the same cardinality as the set

of rows of A. Then precisely one of the following two possibilities occur:

1. There exists an x such that Ax is well defined and Ax = b, or

2. There exists a y with finite support such that yT A = 0 and yT b 6= 0.

Proof. Suppose both (1) and (2) occur. Since y and yT A have finite support it is a

straightforward calculation to show that (yT A)x = yT (Ax) is a well-defined equation.

But the left hand side equals zero, while the right hand side is not zero (since Ax = b)

and we have a contradiction.

If (1) does not occur then there does not exist an x such that Ax = b. By the

proof of Theorem 3.8 we must have that there exists an i such that Aix = bi has no

solution. Hence by Fredholm’s Theorem there is a y such that yT A = 0 and yT b 6= 0.

The extension of y to ỹ by taking ỹj = yj for 1 ≤ j ≤ i and ỹj = 0 for j > i has finite

support and is such that yT A = 0 and yT b 6= 0.



Chapter 4

Topology and Graphs

In this chapter we follow Vella [16] and Vella and Richter [11] by giving a graph a

topology which captures the combinatorial nature of the graph. Section 4.1 defines

this topology and derives some basic properties. In order to study the cycle and

bond spaces of a locally finite infinite graph, we then compactify the graph (viewed

as a topological space). It turns out that there can be many compactifications of a

graph, and the set of all compactifications can be partially ordered. Section 4.2 looks

at the compactifications of a graph. This section comprises new results only in the

sense that it is a specialization to graph theory of the theory of compactifications in

general topological spaces. Finally, Sections 4.3 and 4.4 discuss what we mean by a

spanning tree, a cycle and a bond of an infinite graph graph viewed as a compactified

topological space. The topology we define here and its related results (except Section

4.2) is developed much more completely in [16].

4.1 A Topology on a Graph

We begin this chapter by topologizing a graph in a nonstandard way.

Applying topology to graph theory usually begins by viewing a graph as a simpli-

cial 1-complex, i.e. we take each edge to be homeomorphic to the unit interval (0, 1)

25
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and we give the graph the identification topology. A basic open set at a vertex v is

the union of all half open intervals [v, ǫ), one for each edge containing v in the graph.

We call this topology the classical topology of the graph.

The classical topology of a graph certainly has nice topological properties, in par-

ticular the topology is normal (i.e., T4). The trade-off is that we have lost much of

the combinatorial structure of the graph. For example each graph cycle is homeo-

morphic to a circle. But then we cannot recover the number of vertices of the cycle

since there is no way to topologically distinguish points of a circle as there exists a

homeomorphism of the circle swapping any two given points. Thus we are forced to

somehow record the combinatorial meaning of a graph in some other way.

The fact of the matter is that a graph is a purely combinatorial object. Embedding

the graph is usually only a convenient visualization device. Therefore it seems to be in

some sense unfitting to study combinatorial and algebraic properties of a graph (such

as the cycle space) using a topology which is intrinsically based on the visualization

of the graph, rather than the combinatorial definition.

So we must make a choice: use the classical topology at the expense of losing much

of the combinatorial meaning of the graph, or define a new topology which keeps

the combinatorial structure of the graph at the expense of losing nice topological

properties. This thesis makes the latter choice.

Definition 4.1 Given a graph G = (V,E) define the natural topology on the point

set V ∪E by taking as the basic open sets the singletons {e} for every edge e and the

sets N(v) = {v} ∪ {e ∈ E|v ∈ e} for each vertex v.

Note that the closure of an edge is simply the edge and its incident vertices.

Substructures of a graph such as paths, trees and minors have their natural analogues

in the natural topology. For example, a graph H is a (graph theoretic) minor of a

graph G if and only if H is the image of a subgraph of G under a monotone map. (A

monotone map is a continuous function between two topological spaces such that the

inverse image of every point is connected).
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Since the topological and combinatorial descriptions of a graph both give the

essential structure of the graph we henceforth use the term “graph” to mean either

description.

Taking the natural topology has some disadvantages. The big one is that since

singletons may be open the natural topology is not even T1. However if the graph is

locally finite, it is at least weakly Hausdorff :

Definition 4.2 Let X be a topological space and let x and y be any two distinct points

in X. If there exists open sets Ux and Uy with x ∈ Ux and y ∈ Uy such that Ux ∩ Uy

is finite then we say that X is weakly Hausdorff.

In fact one can develop (as is done in [16]) a set of “weak” separation axioms in

parallel to the usual separation axioms.

4.2 Compactifications

This section outlines a theory of compactifications of infinite graphs. Most of the

topological results are specializations of known results, for example see Willard [8]

and Engelking [17].

Roughly speaking, a compactification of an infinite graph is the graph together

with “points at infinity”. More precisely a “point at infinity” (an end) is an equiv-

alence class of rays. An example that we have already seen is the Freudenthal com-

pactification in which two rays are equivalent if they cannot be separated by the

removal of finitely many vertices. The Freudenthal compactification will in a certain

sense (defined later) be the “maximum” compactification. On the other hand we can

simply declare all rays are equivalent, i.e., all rays converge to the same end. This

is the Alexandroff compactification, or 1-point compactification, and is the “least”

compactification. Figure 4.1 gives the possible compactifications of a triple ray (three

rays connected at one vertex). The lattice-like structure of the figure is intentionally

suggestive.
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Figure 4.1: Possible Compactifications of a triple ray
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Definition 4.3 Two rays are Halin equivalent if there exists infinitely many disjoint

paths between the two rays or equivalently, if no finite set of vertices separates the two

rays.

Let G be a locally finite graph and let Ω(G) be a set of points disjoint from

V (G)∪E(G) such that there exists a bijection between Ω(G) and the set of equivalence

classes of Halin equivalent rays. Each element of Ω(G) is called an end and we identify

an end with its corresponding equivalence class of Halin equivalent rays.

For any finite set S of vertices in G let C be a component of the graph G − S.

Then for any end ω either a tail of every ray in ω is in C or no ray of ω is in C. Let

Ω(C) ⊆ Ω(G) be the set of all ends that satisfy the former condition. If ω ∈ Ω(C)

we simply say that C contains ω.

Define a topology on V (G)∪E(G)∪Ω(G) by taking the natural topology on the

points of G and a basic open set of ω ∈ Ω(G) defined as follows. For any finite set of

vertices S let C be the component containing ω. Then a basic open set of ω is the set

C ∪Ω(C)∪ δ(C), where δ(C) is the set of edges with one end in C and the other end

in S. The Freudenthal compactification of G is the space φG = V (G)∪E(G)∪Ω(G)

equipped with this topology.

Now for any two ends ω1, ω2 ∈ Ω(G) there exists a finite set C whose removal from

the graph leaves ω1 and ω2 in two different components. Thus there exist disjoint

open sets containing ω1 and ω2 respectively. We say that Ω(G) is a Hausdorff set :

Definition 4.4 Given a subset A of a topological space X, we say that A is a Haus-

dorff set if for any two points of x, y ∈ A there exist disjoint open sets Ux ⊆ X and

Uy ⊆ X containing x and y respectively.

Note that G = φG, i.e. G is embedded in φG as a dense subset. The justification

of the term compactification is given by the following lemma.

Lemma 4.5 The Freudenthal compactification of a connected, locally finite graph is

compact and weakly Hausdorff.
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Proof. Since G is weakly Hausdorff we need only worry about the ends. Let ω ∈

Ω(G) be an end. If x ∈ V ∪ U then two open sets containing x and ω respectively

can easily be found. So suppose ω′ is another end of G. Let the ray R be in ω and

the ray R′ be in R′. Since ω 6= ω′ there exists a finite set of vertices that separates R

and R′, i.e. in G − S there exist distinct components C and C ′ containing ω and ω′

respectively. Then C ∪ Ω(C) and C ′ ∪ Ω(C ′) are two open sets containing ω and ω′

with finite (in fact empty) intersection. Hence φG is weakly Hausdorff.

Now let O be an open cover of φG. Let v0 ∈ V (G) be a fixed vertex and let Dn

denote the set of vertices at distance n from v0. Let Sn =
⋃n−1

i=0 Di, and for every

v ∈ Dn, let C(v) be the component of G − Sn containing v. Finally let C(v) be the

closure of C(v) in φG. The idea of the proof is to show that there exists some n such

that, for every v ∈ Dn, there exists an open set O(v) ∈ O containing C(v). Then

these open sets together with a finite subcover of G[Sn] (which exists as Sn is finite)

form a finite subcover of φG.

Suppose no such n exists. Then, for every n, there exists a non-empty set Vn

consisting of those vertices v ∈ Dn such that no O ∈ O contains C(v). Now if

v ∈ Vn then, for every neighbour u ∈ Dn−1 of v, we have C(v) ⊆ C(u). But then we

must have u ∈ Vn−1. Hence we may apply Konig’s Infinity Lemma 1.2 to find a ray

R = {v0, v1, . . .} with vi ∈ Vi for every i.

Now let ω be the end containing R and let O ∈ O be an open set containing ω.

Since O is open, O contains a basic neighbourhood of ω, i.e. there exists a finite

set S of vertices such that the component C of G − S together with the ends of C

is contained in O. Choose n large enough so that Sn contains both S and all its

neighbours. Let vn ∈ R. Then C(vn) lies inside φG − S and contains the tail of R

starting at vn. Hence C(vn) ⊆ C ⊆ O, a contradiction.

We now give a definition of a general compactification of a locally finite graph.

Let G be a locally finite graph. Let Ωφ(G) be the set of ends of the Freudenthal

compactification.
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Figure 4.2: Finding a finite subcover

Definition 4.6 A compactification of a locally finite graph G is a set cG = G∪Ωc(G)

together with a continuous, surjective map c : φG → cG such that: Ωc(G) is a

Hausdorff set, c is the identity on all points of G and c(Ωφ(G)) = Ωc(G).

So a compactification of a graph can be thought of us identifying its Halin ends

in some prescribed way. It is theoretically possible to be more liberal in defining a

compactification, for example by letting two rays converge to a unique end if they

share a tail. However even in a simple example such as an infinite ladder, we get

infinitely many ends! To avoid such an unwieldy situation we content ourselves to

restricting an end to contain any ray provided that all Halin equivalent rays are

contained in the same end.

The condition that Ωc(G) is a Hausdorff set is included as it is needed in the proof

of Theorem 4.8. We feel that it may be possible to replace this condition with a

weaker one, or none at all, but have not yet been able to do so.
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We can partially order the set of compactifications to form the lattice of compact-

ifications in the following way.

Definition 4.7 Let G be a locally finite graph and let c1G and c2G be two compacti-

fications of G. We write c1G ≤ c2G if there exists a continuous, surjective mapping

f : c2G → c1G such that f ◦ c2 = c1. Here the symbol “◦” is function composition.

Two compactifications c1G and c2G are equivalent if there exists a homeomor-

phism f : c1X → c2X such that f ◦ c1(x) = c2(x) for every x ∈ G.

Evidently if cG is a compactification of a locally finite graph then cG ≤ φG. On

the other hand it is easy to see that if ωG is the compactification (up to equivalence)

such that Ωω(G) consists of a single point then ωG ≤ cG. This is the Alexandroff

compactification of G.

Theorem 4.8 The set of compactifications of G is partially ordered by the “≤” re-

lation.

Proof. Reflexivity and transitivity are simple to prove so we only show antisymmetry.

Suppose we have compactifications c1G and c2G such that c1G ≤ c2G and c2G ≤ c1G.

Then there exist continuous, surjective f1 : c1G → c2G and f2 : c2G → c1G such that

f1 ◦ c1 = c2 and f2 ◦ c2 = c1.

We aim to show that f1 is a homeomorphism. Thus, we are done if we can show

that f1 ◦ f2(x) = x for all x ∈ c2G and f2 ◦ f1(x) = x for all x ∈ c1G.

Note that f2 ◦ f1 ◦ c1 = c1 and hence f2 ◦ f1(x) = x for all x ∈ c1(G) = G.

Now consider the set A = {x ∈ c1G|f2 ◦ f1(x) = x}. We claim that A is closed.

Consider AC = {x ∈ c1G|f2 ◦ f1(x) 6= x}, the complement of A in c1G. Since G ⊆ A,

we have that AC ⊆ Ωc1(G). Let x ∈ AC so that f2 ◦ f1(x) 6= x. Since x ∈ Ωc1(G) and

Ωc1(G) is a Hausdorff set we can find disjoint open sets U1 and U2 such that x ∈ U1

and f2 ◦ f1(x) ∈ U2.

Consider U = (f2 ◦ f1)
−1(U2) ∩ U1. Then clearly U is an open set containing x.

Furthermore suppose y ∈ U . Then y ∈ U1 and f2 ◦ f1(y) ∈ U2 and so y ∈ AC since

U1 and U2 are disjoint. Hence U ⊆ AC and so AC is open, i.e. A is closed.
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Figure 4.3: 1-way infinite ladder with proposed spanning tree edges darkened.

But we have that c1(G) ⊆ A and hence A = c1G since c1G = c1(G) ⊆ A. Thus

f2◦f1 is the identity on c1G. Similarly one can show that f1◦f2 is the identity on c2G.

It now follows that f1 is a homeomorphism and hence c1G and c2G are equivalent.

4.3 Spanning Trees

Spanning trees will play a fundamental role in our study of cycle spaces. The first task

is to precisely define what we mean by “spanning tree”. In classical graph theory a

spanning tree of a finite graph is defined to be a connected acyclic subgraph containing

every vertex of the graph. An obvious property of any finite tree is that the removal

of an edge disconnects the tree.

In extending the definition of a spanning tree to infinite graphs we must be careful.

As an example, consider the compactified 1-way infinite ladder L1 in Figure 4.3. Let

T be the subgraph containing the darkened edges. Certainly T is connected and

contains each vertex in the graph. But is T acyclic? If a cycle is a closed finite

walk then T is obviously acyclic. However a cycle in a finite graph can also be

characterized in other ways. For example, a finite connected graph is a cycle if and
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Figure 4.4: A compactified graph which is not graph theoretically connected but is

topologically connected.

only if the removal of any edge leaves the graph connected, whereas the removal of

any two edges disconnects the graph.

The key point in this last characterization is the term “connected”. Consider a

compactified graph cG consisting solely of two disjoint rays converging to the same

end ω. See Figure 4.4 for an illustration of cG. Now G is not graph theoretically

connected; however cG is topologically connected. For suppose H and K are two

nonempty disjoint open sets whose union is cG. Then without loss of generality

ω ∈ H. Since H is open there must exist a basic open neighbourhood N of ω

contained in H. Then N contains a proper subray of at least one of the rays. But

then K consists of one or two finite paths and so is not open as K does not contain

a basic neighbourhood of the vertex in the ray nearest to N , e.g. see the vertex v in

Figure 4.4. This contradicts the fact that K is open.

Definition 4.9 A cycle is a topologically connected compactified graph cG = (V,E, Ω)

such that, for each edge e ∈ cG, cG \ {e} is connected, but for any two distinct edges

e, f ∈ cG, cG \ {e, f} is disconnected.
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Thus in Figure 4.3, T is a cycle according to Definition 4.9. For the remainder of

this thesis we will always (unless otherwise noted) use the term cycle in the sense of

Definition 4.9. We can now define what we mean by a spanning tree.

Definition 4.10 A spanning tree T of a compactified graph cG = (V,E, Ω) is a

maximal acyclic topologically connected subset of E such that V ∪Ω ⊂ T . Equivalently,

T is a spanning tree if the subspace T is topologically connected but the removal of

any edge in T disconnects T .

The fact that a spanning tree always exists will be the focus of the remainder of

this section. Recall that the natural topology of the graph is weakly Hausdorff. Since

a compact Hausdorff space is normal it is natural to wonder if there is also a “weak”

analogue for normality and if the same sort of theorem holds. In fact it does.

Definition 4.11 Let X be a topological space and let C and D be disjoint and closed

in X. If there exist open sets UC ⊇ C and UD ⊇ D such that UC ∩ UD is finite then

we say that X is weakly normal.

Lemma 4.12 Any compact weakly Hausdorff topological space is weakly normal.

Proof. Let X be a compact weakly Hausdorff space and let C and D be disjoint

and closed in X. If one of C and D is empty then the theorem is trivial so suppose

neither is empty.

We first show that for every c ∈ C there exist open sets Uc and VD containing c

and D respectively such that Uc and VD have finite intersection. One could say we

are showing that X is weakly regular.

For every d ∈ D let Yd and Zd be open sets such that c ∈ Yd and d ∈ Zd and Yd∩Zd

is finite. Then
⋃

d∈D Zd is an open covering of D and hence has a finite subcovering,

Zd1 , . . . , Zdk
. Then VD =

⋃k
i=1 Zdi

and Uc =
⋂k

i=1 Ydi
are open sets containing D and

c respectively and VD ∩ Uc is finite as desired.

So for each c let Uc and V c
D be open sets containing c and D respectively where Uc∩

V c
D is finite. Since

⋃

c∈C Uc is an open covering of C there exists a finite subcovering,
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say Uc1 , . . . , Ucm
. Let U =

⋃k
i=1 Uci

and V =
⋂k

i=1 V ci

D . Then U and V are open sets

containing C and D such that U ∩ V is finite.

Theorem 4.13 Let X be a connected compact weakly Hausdorff space and let A ⊆ X.

Then there exists a minimal closed and connected subset C of X such that A ⊂ C.

Proof. Let C be a chain of closed connected subsets of X, each containing A, and

ordered by inclusion. Let Ĉ =
⋂

C∈C C. Then Ĉ is closed and contains A. We wish

to show that Ĉ is connected.

Suppose that Ĉ is disconnected, i.e. suppose there exist disjoint, closed and non-

empty sets H and K such that Ĉ = H∪K. Since X is weakly normal by Lemma 4.12,

we can find open sets UH ⊇ H and UK ⊇ K such that UH ∩ UK is a finite set.

Since H and K are closed, we may assume that H ∩ UK and K ∩ UH are both

empty as otherwise take, for example, U ′
K = UK ∩ HC , where HC is the complement

of H. It then follows that UH ∩UK ∩ Ĉ = ∅. Since UH ∩UK is finite, there must exist

a C1 ∈ C such that UH ∩ UK ∩ C1 = ∅.

Now suppose C1 6⊆ UH ∪ UK . If x ∈ C1 − (UH ∪ UK) then x /∈ Ĉ and so there is

a Cx ∈ C with x /∈ Cx. Since Cx is closed there is an open set Ux containing x and

disjoint from Cx. The union of all such Ux is a covering of C1− (U1∪U2) and so there

exists a finite subcover, say {Ux1 , Ux2 , . . . , Uxk
}. For each xi, Uxi

∩ Cxi
= ∅. Since k

is finite there is a C2 ∈ C disjoint from each Uxi
, 1 ≤ i ≤ k. But then C2 ⊆ C1 and

C2 is disjoint from C1 − (UH ∪ UK) and so C2 ⊆ UH ∪ UK .

Therefore there exists a C2 ∈ C such that C2 ⊆ C1 and C2 ⊆ UH ∪ UK . It follows

that (UH ∩ C2, UK ∩ C2) is a separation of C2, but C2 ∈ C and so is connected by

definition. We have therefore arrived at the contradiction.

The main result of this section is the following:

Corollary 4.14 Let cG = (V,E, Ω) be a compactification of a connected locally finite

graph. Then there is a subset T of cG such that (cG \E)∪T is connected, but for all

e ∈ T , (cG \ E) ∪ (T \ {e}) is not. In other words, T is a spanning tree.
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Proof. Apply Theorem 4.13 with X = cG and A = V ∪Ω. Then we take T = C ∩E

(so C = T ).

4.4 Cycles and Bonds

Throughout the remainder of this chapter we let G = (V,E) be a connected, locally

finite graph with compactification cG = (V,E, Ω(G)).

Definition 4.15 Let A and B partition V (G) ∪ Ω(G) into two disjoint, closed non-

empty sets. Then the set of edges δ(A) with exactly one end in A is called a bond

(also sometimes called a cut).

It turns out that as in finite graphs, the cycles and bonds of a graph are dual to

each other. Since we allow cycles with infinitely many edges, we may imagine there

to be bonds with infinitely many edges. This is (fortunately, as we will see) not true.

Theorem 4.16 Let G be a locally finite graph and let cG be a compactification of G.

Then every bond in cG is finite.

Proof. Suppose that A and B are two disjoint, nonempty, closed sets that partition

V (G) ∪ Ω(G). Since the topology on cG is weakly normal there exist open sets

UA and UB containing A and B respectively and such that UA ∩ UB is finite. But

δ(A) ⊆ UA ∩ UB and hence δ(A) is finite.

Let T be a spanning tree for cG and let e be an edge not in T with endpoints

u and v. We can apply Theorem 4.13 to T with A = {u, v} to obtain a minimal

closed and connected subset Pu,v of T containing u and v. One can think of Pu,v as

a (possibly infinite) path from u to v. It is not difficult to see that Pu,v ∪ e := Z(T,e)

is a cycle in T and hence a cycle in cG. Furthermore there exists precisely one such

cycle in T ∪ {e}. We call such a Z(T,e) a fundamental cycle of T .
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Dual to the notion of a fundamental cycle is a fundamental bond. Let e be an edge

in T with endpoints u and v. Then since T is minimally connected T \ {e} contains

two disjoint, non-empty closed components Tu and Tv. The set δ(Tu) := B(T,e) is

called a fundamental bond of T . Note that e is the only edge of T in B(T,e).

It is not difficult to check that given a spanning tree T of cG, an edge e ∈ E ∩ T

and an edge f ∈ cG \ T we have that e ∈ supp(Z(T,f)) if and only if f ∈ supp(B(T,e)).

A family of subsets F of G is called thin if each element of V ∪E appears in only

finitely members of F .

Theorem 4.17 Let cG be a compactified locally finite graph with spanning tree T .

Then the family of fundamental cycles of T is thin.

Proof. As noted above, if e /∈ T there exists precisely one fundamental cycle contain-

ing e. On the other hand, if e ∈ Z(T,f) for some edge f we have that f ∈ B(T,e). But

all bonds are finite and so there are only finitely many f with this property. Hence e

is in finitely many fundamental cycles.

In general the family of fundamental bonds of T is not thin. As an example

take G to be the 2-way infinite path with the Alexandroff compactification. Then a

spanning tree of T of G is the set E(G) \ {e} for an arbitrary edge e ∈ E(G), and

every fundamental bond contains e.



Chapter 5

The Cycle Spaces of an Infinite

Graph

This chapter comprises the core of this thesis. We generalize results of Chapter 2 to

locally finite infinite graphs. The first section translates the cycles and bonds of a

graph (in the sense of Section 4.4) into members of the edge space over a field F of the

graph. We then proceed to introduce two cycle spaces and two bond spaces. Richter

and Vella [11] considered only two of these (i.e. the thin cycle space and the finite

bond space). Section 5.2 gives orthogonality relations between these cycle and bond

spaces, although we will see that depending on F we might have to introduce a third

bond space to complete the orthogonality theory. Section 5.3 is a short discussion of

a fourth type of bond space introduced in [11]. We show that in the case of locally

finite graphs, it is a redundant space. Section 5.4 gives some simple consequences of

the orthogonality relations including a version of the Edge Tripartition Theorem.

5.1 The Cycle and Bond Spaces

We begin by introducing the edge space of a graph over a field F. We then move on

to translating the cycles and bonds of Section 4.4 into members of the edge space and

39
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we then define several cycle and bond spaces.

Throughout this section we let G = (V,E) be a locally finite graph and cG a

compactification of G. We also orient the edges of G in some fixed but arbitrary

manner.

Definition 5.1 Let F be a field. The edge space of a graph G is the set of func-

tions F
E := {f : E(G) → F}. Equivalently we can view the edge space as an |E|

dimensional vector space over F indexed by the edges of G.

Let C be a cycle in cG. We associate a member z ∈ F
E (which we also call a cycle)

with C as follows. First choose a direction of traversal D for C. In this context, D

is a cyclic ordering of the edges of C such that if (w, x, y, z) is a cyclic subsequence,

then x and z separate w and y. The existence of such a D is guaranteed by a result

in [11]. We then define z as follows:

z(e) =















1 if e ∈ C and the orientation of e agrees with D

−1 if e ∈ C and the orientation of e disagrees with D

0 if e /∈ C.

We will not usually explicitly distinguish between a cycle and its corresponding

member of the edge space. The context will always make clear which meaning we

intend.

We adopt the convention that for a fundamental cycle Z(T,e) of some tree T , the

direction of traversal always agrees with the orientation of e.

Definition 5.2 Let cG be a compactified locally finite graph. Let T be a spanning

tree of cG. We define the thin cycle space Zt to be the thin span of all fundamental

cycles of T . The finite cycle space Zf is the set of all finite linear combinations of

fundamental cycles of T such that z ∈ Zf only if z has finite support.
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The fact that both cycle spaces are independent of the choice of T follows from

the next two results. A circulation is an element c ∈ F
E such that

∑

e∈δin(X)

c(e) =
∑

e∈δout(X)

c(e) (5.1)

holds for every bond δ(X), where δin(X) is the set of edges in δ(X) whose head is in

X and δout(X) is the set of edges in δ(X) whose tail is in X. Note the slight difference

between the definition here and the definition of a circulation for finite graphs.

Theorem 5.3 Let cG be a compactified, locally finite graph. The thin cycle space of

cG is precisely the set of all circulations of cG (cf. Theorem 2.1).

Proof. Denote the set of all circulations of cG by Ct.

Every cycle is a circulation by the definition of cycle in F
E. Let z =

∑

c∈Z αcc be

a thin linear combination of a thin set of cycles Z. Let δ(X) be a bond of cG. Since

δ(X) is finite there exist only finitely many cycles {c1, c2, . . . ck} in Z containing edges

of δ(X). Clearly the finite sum of circulations is a circulation, and so z′ =
∑k

i=1 αcci

is a circulation and therefore satisfies equation (5.1) for δ(X). Since z′(e) = z(e) for

all e ∈ δ(X) it follows that for any bond δ(X), z satisfies equation (5.1) and hence z

is a circulation. Therefore Zt ⊆ Ct.

Now let c ∈ Ct. Consider the element z = c −
∑

e/∈T c(e)Z(T,e). Since a sum of

circulations is a circulation, we have that z ∈ Ct. As there exists a unique fundamental

cycle for each edge e /∈ T it follows that the support of z is contained in the edges of

T . But every fundamental bond has exactly one edge of T , and hence we must have

z(e) = 0 for every edge e ∈ T in order to satisfy the definition of a circulation. Hence

z = 0 and so c =
∑

e/∈T c(e)Ce. Hence c ∈ Zt and so Zt = Ct.

The reason behind the naming of the finite cycle space should become apparent

with the next result.
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Corollary 5.4 Let cG be a compactified connected locally finite graph. Then every

finite cycle is in Zf . Hence Zf is the set of all finite linear combinations of finite

cycles and at the same time is the set of all circulations with finite support.

Proof. The proof closely follows the proof of Theorem 5.3. So let Cf be the set of

all circulations with finite support. Let T be a spanning tree for cG. Let c be a

finite cycle and consider the edge space member c −
∑

e/∈T c(e)Z(T,e) ∈ Ct = Zt. By

reasoning similar to the proof of Theorem 5.3 it follows that c −
∑

e/∈T c(e)Z(T,e) = 0

and hence c =
∑

e/∈T c(e)Z(T,e) =
∑

e/∈T :c(e) 6=0 Z(T,e), which is a finite linear combination

of fundamental cycles. Since c has finite support it follows that c ∈ Zf .

Dual to the cycle spaces are the bond spaces. Given a bond δ(A) of a compactified,

locally finite graph cG we define an element of b ∈ F
E as follows.

b(e) =















1 if e ∈ δ(A) and if the head of e is in A

−1 if e ∈ δ(A) and if the tail of e is in A

0 if e /∈ δ(A).

Definition 5.5 The finite bond space Bf is the set generated by all finite linear

combinations of bonds of G. The thin bond space Bt is the set generated by (possibly

infinite) linear combinations of thin families of bonds.

We see in the next section that we can take as a basis for Bt the set of vertex cuts.

We will also need one more bond space Bw which fits between Bf and Bt but which

will be defined at a more convenient time.

5.2 Orthogonality Relations

In this section we explain in what sense cycle and bond spaces are duals. We begin

with the following easy fact.
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Lemma 5.6 Let cG be a compactified locally finite graph. Let F be a field with caste

C and let the edge space be F
E. Let z be a cycle in cG and b a bond in F

E. Then

z ◦ b = 0.

Proof. Since b has finite support z ◦ b is well defined. A cycle and a bond always

have an even number of edges in common by a result in [11]. If supp(b)∩ supp(z) = ∅

then z ◦ b = 0 trivially. Otherwise let e1 be an edge in both z and b. Follow z in

one direction until we get to the next edge e2 in supp(b) ∩ supp(z). If z(e1) = z(e2)

then we must have b(e1) = −b(e2). Conversely if z(e1) = −z(e2) then we must

have b(e1) = b(e2). In either case we have that z(e1)b(e1) + z(e2)b(e2) = 0. Since

|supp(b) ∩ supp(z)| is finite and even it follows that z and b are orthogonal.

We are now ready to prove the orthogonality relations between our cycle and bond

spaces. Since A = B⊥ does not in general imply that B = A⊥ we will need to prove

both equalities (if possible).

Theorem 5.7 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then B⊥

f = Zt.

Proof. Fix a spanning tree T of cG. Let z ∈ Zt. Then we know that z =
∑

e/∈T z(e)Z(T,e). But then for any b ∈ Bf we have by Lemma 3.6 that z ◦ b =
∑

e/∈T z(e)(Z(T,e) ◦ b) = 0. Hence Zt ⊆ B⊥
f .

Now let a ∈ B⊥
f . Consider z = a−

∑

e/∈T a(e)Z(T,e). We aim to show that z = 0 so

suppose not. First note that for any b ∈ Bf we have z◦b = a◦b−
∑

e/∈T a(e)(Z(T,e)◦b) =

0 and so z ∈ B⊥
f . Also we clearly have supp(z) ⊆ T . Since by assumption z 6= 0 there

exists an edge e ∈ T ∩ supp(z) and so B(T,e) ◦ z 6= 0, a contradiction. Thus z = 0 and

so B⊥
t = Zt.

Theorem 5.8 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then B⊥

t = Zf .
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Proof. If z ∈ Zf then by Theorem 5.4 we can write z as a finite linear combination

of finite cycles. Thus if b ∈ Bt it follows that b ◦ z = 0 and so z ∈ B⊥
t .

Now suppose z ∈ B⊥
t . Since B⊥

t ⊆ B⊥
f = Zt, it suffices to show that z has finite

support, by Theorem 5.4. Suppose z has infinite support.

Let W = {v1, v2, . . .} be an infinite set of pairwise non-adjacent vertices such that

for each vi there exists an ei ∈ δ(vi) ∩ supp(z). Consider b =
∑

i(−1)sz(ei)
−1δ(vi),

where s = 0 if ei ∈ δout(vi) and s = 1 if ei ∈ δin(vi). Then we should have z ◦ b = 0

but we have M(z,b) = {zebe | e ∈ E} ⊇ {1, 1, . . .} and thus M(x,y) /∈ C. Therefore

z ◦ b is not even well defined, let alone equal to zero, and so we have a contradiction.

Hence the support of z must be finite.

Theorem 5.9 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then Bt = Z⊥

f .

Proof. We immediately have (by Theorem 5.8) Bt ⊆ B⊥⊥

t = Z⊥
f .

Now let b ∈ Z⊥
f . We will show that we can write b as a sum of vertex cuts. So

b′ =
∑

v∈V (G) αvδ(v) and our task is to define the αv’s so that b = b′.

Let v0 be an arbitrary vertex and construct a (graph-theoretic) breadth first search

spanning tree T rooted at v0. We begin by setting αv0 = 0. Let v be any other vertex

of G. Then there exists a unique vertex w closer to v0 in T . If the head of edge vw is

v then set αv = αw + b(vw). If v is the tail of edge vw then set αv = −(αw) + b(vw).

It follows that for every edge vw in T (say with head at v), b′(vw) = αv −αw = b(vw)

as required.

Let wkw0 be any edge of E(G) \ E(T ) directed from wk to w0. Then there exists

a unique finite cycle z = {w0, w1, w2, . . . , wk−1, wk} in T ∪ e. For definiteness pick the

direction of traversal for z so that it agrees with the orientation of w0wk. Since z is

orthogonal to b we have

0 = z ◦ b = z(w0w1)b(w0w1) + z(w1w2)b(w1w2) + . . . z(wk−1wk)b(wk−1wk) + b(wkw0).
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Figure 5.1: Two possible sections of cycle z containing wi.

Thus

b(wkw0) = −(z(w0w1)b(w0w1) + z(w1w2)b(w1w2) + . . . z(wk−1wk)b(wk−1wk)).

In fact the right hand side reduces exactly to αw0 − αwk
= b′(w0wk). To see this note

that for every 1 ≤ i ≤ k − 1, αwi
appears only in b(wi−1wi) and b(wiwi+1). There are

four cases to consider depending on the orientations of the edges wi−1wi and wiwi+1.

However need only closely examine cases (a) and (b) in Figure 5.1, as the other two

are algebraically identical to one of these up to a factor of −1.

Case (a) Here we have z(wi−1wi) = z(wiwi+1) = 1. Therefore

z(wi−1wi)b(wi−1wi) + z(wiwi+1)b(wiwi+1) = (αwi
− αwi−1

) + (αwi+1
− αwi

).

Case (b) Here z(wi−1wi) = −z(wiwi+1) = 1. Therefore

z(wi−1wi)b(wi−1wi) + z(wiwi+1)b(wiwi+1) = (αwi
− αwi−1

) − (αwi
− αwi+1

).

In both cases the terms involving αwi
cancel out and so we have

αw0 − αwk
= b′(w0wk) = b(w0wk),

as desired.
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Figure 5.2: 2-way infinite path with 1-point compactification.

It is curious that since Zf is clearly independent of the compactification of G so

is Bt. This despite the fact that there can be a bond in a compactification cG which

is not a bond in a compactification c′G ≤ cG.

Deriving the orthogonal complement of Zt is where things get interesting. The

pattern so far would imply that we should have Z⊥
t = Bf . When the compactified

graph has finitely many bridges and F is finite this will indeed be the case. However,

consider the case when F = R, and the caste of R is the family of all absolutely conver-

gent series. Let us look at the 2-way infinite path with the 1-point compactification

as shown in Figure 5.2.

Here we have assigned an element b ∈ R
E defined by b(ei) = 1

2i for i ≥ 1 and

b(ei) = − 1
2i for i ≤ −1. Since there is essentially only one cycle z ∈ R

E (i.e. the

constant vector) it follows that b ◦ z = 0 and so b ∈ Z⊥
t . Recall that B(T,e) denote the

fundamental bond containing edge e ∈ T for some spanning tree T .

Definition 5.10 Let cG be a compactified locally finite graph. Let F be a field with
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caste C and let the edge space be F
E. Let T be a spanning tree for cG. The extended

finite bond space Bw is defined as follows. An element b is in Bw if and only if

b =
∑

e∈F αeB(T,e) where F ⊂ T is such that (
⋃

e∈F supp(B(T,e))) \ T is finite and

{αe | e ∈ T, |supp(B(T,e))| > 1} ∈ C.

Our next result shows that the extended finite bond space does not depend on

the choice of spanning tree. More importantly, we find that Bw is the orthogonal

complement of Zt.

Theorem 5.11 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then Z⊥

t = Bw.

Proof. In this proof we write x(e) for the eth entry of x ∈ F
E.

Let b =
∑

e∈F beB(T,e) ∈ Bw and let z =
∑

e/∈T zeZ(T,e) ∈ Zt. First we show that

b ◦ z is well defined and equal to zero. Now M(b,z) = {b(g)z(g) | g ∈ E(G)} =

{b(g)z(g) | g ∈ T} ∪ {b(g)z(g) | g ∈ E(G) \ T} so we simply need to show that the

latter two multisets are in C, and then that Σ(M(z,b)) is zero.

We automatically have L = {z(g)b(g) | g ∈ E(G) \ T} ∈ C since there are only

finitely many g such that b(g) is nonzero (by definition of Bw).

Consider the set

{z(g)b(g) | g ∈ T} = {z(g)b(g) | g ∈ T, |B(T,g)| > 1} ∪ {0 | g ∈ T, |B(T,g)| = 1},

where the equality follows since z(g) = 0 if |B(T,g)| = 1.

Let N = {z(g)b(g) | g ∈ T, |B(T,g)| > 1}.
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If g ∈ T we have

z(g) =
∑

e/∈T

zeZ(T,e)(g)

=
∑

e/∈T :g∈supp(Z(T,e))

zeZ(T,e)(g)

=
∑

e/∈T :e∈supp(B(T,g))

zeZ(T,e)(g)

=
∑

e∈supp(B(T,g))\T

zeZ(T,e)(g). (5.2)

Now
⋃

g∈F supp(B(T,g))\T is finite, so there are only finitely many edges e1, e2, . . . , ek

that give a nonzero value for ze in the sum of (5.2) for any g ∈ T . Hence

N =
k
⋃

i=1

{b(g)z(ei)B(T,g)(ei) | g ∈ T, |B(T,g)| > 1}

=
k
⋃

i=1

z(ei){b(g)B(T,g)(ei) | g ∈ T, |B(T,g)| > 1}

is in C since it is a finite union of members of C.

Hence b ◦ z is well-defined and

Σ(M(z,b)) = Σ(N) + Σ(L)

=
∑

g∈T

z(g)b(g) +
∑

g/∈T

z(g)b(g)

=
∑

g∈F

z(g)b(g) +
∑

g/∈T

(

z(g)
∑

e∈F

beB(T,e)(g)

)

=
∑

g∈F

z(g)b(g) +
∑

e∈F

be





∑

g/∈T

z(g)B(T,e)(g)



 (5.3)

=
∑

e∈F

be





∑

g∈E(G)

z(g)B(T,e)(g)





=
∑

e∈F

be(z ◦ B(T,e))

= 0,
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where Equation (5.3) follows since the sum on the right is finite. Hence b ∈ Z⊥
t .

To show the other containment let b ∈ Z⊥
t . First we show that





⋃

e∈T∩supp(b)

supp(δ(B(T,e))



 \ T

is finite. Suppose it is infinite.

We form two infinite sets of edges K = {e1, e2, . . .} and K ′ = {e′1, e
′
2, . . .} as

follows. Pick e1 ∈ T ∩ supp(b) such that B(T,e1) has an edge e′1 /∈ T . For i ≥ 1

pick ei ∈ T ∩ supp(b) such that B(T,ei) has an edge e′i not in T ∪
⋃

1≤j<i Bej
. Now

recursively define

βi = b(ei)
−1 −

∑

j<i:e′j∈B(T,ei)
\T

βjZ(T,e′j)
(ei).

Finally let z =
∑∞

i=1 βiZ(T,e′i)
∈ Zt.

Then

z ◦ b =
∑

g∈E(G)

z(g)b(g)

=
∑

g∈E(G)

∑

e′j∈K′

βiZ(T,e′j)
(g)b(g).

Consider the term corresponding to g = ei:

∑

e′j∈K′

βjZ(T,e′j)
(ei)b(ei) = βiZ(T,e′i)

(ei)b(ei) +
∑

e′j∈(K′\e′i)

βjZ(T,e′j)
(ei)b(ei)

=



b(ei)
−1 −

∑

j<i:e′j∈B(T,ei)
\T

βjZ(T,e′j)
(ei)



 b(ei)

+
∑

e′j∈(K′\e′i)

βjZ(T,e′j)
(ei)b(ei)

= 1,

where the last equality follows since the two sums are equal by the definition of K ′.

But then z ◦ b contains infinitely many ones, a contradiction since we should have

z ◦ b = 0. Hence
(

⋃

e∈T∩supp(b) supp(B(T,e)))
)

\ T is finite.
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Now consider A = b−
∑

e∈T∩supp(b) b(e)B(T,e) ∈ Z⊥
t . Since supp(A) ⊆ E(G)\T we

must have that A = 0 as otherwise there exists a fundamental cycle not orthogonal

to A. Hence b =
∑

e∈T∩supp(b) b(e)Be ∈ Z⊥
t .

Furthermore, for each edge g /∈ T , we must have that the set Ng = {b(e)B(T,e)(g)|e ∈

T} is in C. But since there are only finitely many g /∈ T such that there exists an

e ∈ T with g ∈ B(T,e) it follows that the union of the finitely many Ng’s is also in C

and hence {b(e)|e ∈ T, |BT , e| > 1} ∈ C. Hence b ∈ Bw.

Corollary 5.12 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then the following two properties of Bw hold:

1. Bf ⊆ Bw ⊆ Bt

2. B⊥
w = Zt

Proof. The first property follows since we trivially have Bf ⊆ Bw and Bw = Z⊥
t ⊆

Z⊥
f = Bt. For the second property we immediately have from the first property that

B⊥
w ⊆ B⊥

f = Zt ⊆ Z⊥⊥

t = B⊥
w .

In summary we have the following relations between the various cycle and bond

spaces of a compactified locally finite, finitely connected graph:

1. Zf ⊆ Zt

2. Bf ⊆ Bw ⊆ Bt

3. B⊥
t = Zf

4. Z⊥
f = Bt

5. B⊥
f = B⊥

w = Zt

6. Z⊥
t = Bw.

The final question which we have not attempted to solve yet is what is the subspace

A such that A⊥ = Bf? Such an A must be contained in Zt since A ⊆ A⊥⊥

= B⊥
f = Zt.
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5.3 The Strong Bond Space

In [11], Vella and Richter introduce another bond space, the strong bond space Bs.

The purpose of this short section is to show that this bond space is in fact redundant

for locally finite graphs.

Let G be a locally finite, connected graph with compactification cG. Let F be a

field with caste C so that the edge space of G is F
E.

Let S = {S ⊆ F
E | Bf ⊆ S, S is closed under sums of thin families}. So S ∈ S

if it contains the finite bond space and whenever F is a thin set of vectors in S, the

thin span of F is also in S.

The strong bond space is the set Bs =
⋂

S∈S S. Note that Bf ⊆ Bt ⊆ Bs and hence

B⊥
s ⊆ B⊥

t ⊆ B⊥
f .

Theorem 5.13 Let cG be a compactified locally finite graph. Let F be a field with

caste C and let the edge space be F
E. Then B⊥

s = B⊥
t . Furthermore, Bs = Bt.

Proof. We already have that B⊥
s ⊆ B⊥

t = Zf . So we only need the reverse contain-

ment. Now for any S ∈ S we have S⊥ ⊆ B⊥
s . Thus we need to show that for every

z ∈ Zf there exists some S ∈ S such that z ∈ S⊥. Consider the set S = {z}⊥.

Then we know that Bt ⊆ S so we simply need to show that {z}⊥ is closed under

sums of thin families. But if
∑

αbb is a sum of a thin family then z ◦ (
∑

αbb) = 0

by Lemma 3.6 since z has finite support and b ∈ {z}⊥. Therefore S ⊆ {z}⊥ and it

follows that Zf = B⊥
s .

Now we have Bs ⊆ B⊥⊥

s = B⊥⊥

t = Z⊥
f = Bt and hence Bs = Bt.

5.4 An Edge Tripartition Theorem

This section details some easy consequences of the main theorems of this thesis. The

first result should probably be expected.
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Theorem 5.14 Let G be a locally finite, connected graph with compactifications c1G

and c2G such that c1G ≤ c2G. Let F be a field with caste C and let the edge space of

G be F
E. Then Let Z i

t ,B
i
f , etc, be the thin cycle space, finite bond space, etc, in ciG.

Then we have:

1. Z2
f = Z1

f ,

2. B1
f ⊆ B2

f ,

3. Z2
t ⊆ Z1

t ,

4. B1
w ⊆ B2

w, and

5. B1
t = B2

t .

Proof. Clearly the finite cycle space is independent of the compactification of G.

Therefore (1) and (5) follow from Theorem 5.8 and Theorem 5.9

A cut in c1G is clearly a cut of c2G and hence B1
f ⊆ B2

f where Bi
f is the finite bond

space of ciG. Hence (B2
f )

⊥ ⊆ (B2
f )

⊥ and so Z1
t ⊆ Z2

t . The inclusion in (4) follows

from (3) by using Theorem 5.11 and Lemma 3.7.

We again point out the most surprising result of our investigations: the thin bond

space is independent of the compactification of G!

The second result is a direct application of Proposition 3.1 since the same proof

holds with the circle product.

Theorem 5.15 Let G be a locally finite, finitely connected graph with compactifica-

tion cG and let F be a field with caste C. Then we have:

• (Zt + Bt)
⊥ = Zf ∩ Bf ,

• (Zf + Bf )
⊥ = Zt ∩ Bt,

• (Zt + Bf )
⊥ = Zt ∩ Bw, and
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• (Zf + Bt)
⊥ = Zf ∩ Bt.

Proof. The proofs follow directly from Proposition 3.1 after noting that Zf ∩ Bw =

Zf ∩ Bf by virtue of the finiteness of the elements in Zf ∩ Bw.

The following result was the impetus to prove Theorem 3.8.

Theorem 5.16 Let G be a locally finite, connected graph with compactification cG

and let F be a field with caste C. Let F
E be the edge space of G. Then

Zt + Bt = (Zf ∩ Bf )
⊥.

Proof. Since Zt and Bt are the thin spans of thin generating sets we can apply

Theorem 3.8.

We can use Theorem 5.16 to prove an infinite version of the Edge Tripartition

Theorem. Let G be a locally finite, connected graph with compactification cG with

edge space over the field GF(2). Call the members of the set Zf∩Bf the finite bicycles

of G. Then the proof of the finite Edge Tripartition Theorem carries over directly,

except we replace “even subgraph” with “2-edge connected even subgraph” (since we

need to exclude the case of there being an end in the subgraph containing a single

ray, as otherwise the subgraph is not in Zt). Here we mean 2-edge connected in the

sense of topologically connected, that is, a graph is 2-edge connected if the removal

of any 2 edges disconnects the graph as a topological space.

Theorem 5.17 (Edge Tripartition Theorem for Finite Bicycles (cf. Theorem 2.5))

Let G be a compactified, locally finite, finitely connected graph. Then for every edge

e in G exactly one of the following three situations holds for e:

1. e is contained in a finite bicycle,

2. There exists a cut b such that b + e is a 2-edge connected even subgraph, or
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Figure 5.3: Examples of edge types in Theorem 5.17.

3. There exists a 2-edge connected even subgraph H such that H + e is a cut.

We call an edge type i if it falls into case i in Theorem 5.17.

As an example consider the (admittedly contrived) graph in Figure 5.3 with the

Freudenthal compactification. The darkened edges form a finite bicycle. The reader

can verify that edge e1 is type 1, edge e2 is type 2 (the empty graph is in Zt!) and e3

is type 3.

In some sense Theorem 5.17 does not have the right feel to it. Why should we

restrict ourselves to finite bicycles? For example, in the 2-way infinite ladder, the two

outer infinite cycles form a subgraph that is in the thin cycle space (obviously) as

well as in the thin bond space (it is the thin sum of the cut induced by every second

rung).

Let Zt ∩ Bt be called the thin bicycle space . Theorem 5.17 immediately implies

that (Zt ∩ Bt)
⊥ ⊆ Zt + Bt. The reverse inclusion seems to be the difficult case (if

true) since members of the thin bicycle space and members of Zt + Bt both could
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have infinite support, in which case determining their ◦-product could be impossible

(at least in the framework we have presented).

Another guess could be that Zf +Bf = (Zt∩Bt)
⊥. We have the inclusion Zf +Bf ⊆

(Zt ∩Bt)
⊥. But it is possible that (Zt ∩Bt) has only finite elements (as in Figure 5.3)

and so a member of (Zt ∩ Bt)
⊥ can have infinite support.

Of course there are several other sets of the form Bx +Zy which we could investi-

gate. It seems that Theorem 3.8 could be somehow applied except we would need to

prove further information about a solution x to Ax = b, e.g. that the variables in x

corresponding to, say the fundamental cycles, are non-zero only finitely often. This

seems to be an unlikely consequence of the proof of Theorem 3.8.



Chapter 6

Conclusion and Future Research

The investigations in this thesis can be broken down into three main parts. The

first is a study into the solvability of an infinite system of finite linear equations with

infinitely many variables. We showed that such a system can always be solved in such

a way that each variable can be found in a finite (although undetermined) amount of

time.

The second focus of study was the lattice of compactifications of a locally finite

graph. We showed that the set of compactifications of a locally finite graph indeed

forms a lattice. The results in this part of the thesis were only new in the sense of

their application to infinite graphs.

The final part and the main focus of this thesis was the study of the different cycle

spaces and their orthogonal complements. We defined two cycle spaces and three bond

spaces and determined the orthogonal complement relations between them. We were

able to find a tripartition of the edges of a locally finite, infinite graph, although the

tripartition is not quite as satisfying as it could possibly be.

Throughout this thesis we have almost always considered only locally finite graphs.

This is due to the fact that in this case, it makes sense to define a vector product

as often one of the vectors we wish to multiply has finite support. Therefore the

logical next step would be to attempt to generalize our results to graphs with vertices

56
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v

P

Figure 6.1: A Non-locally Finite Graph.

of infinite degree. However this presents some problems, not only algebraically, but

topologically as well.

One immediate problem is that our topology may no longer be weakly Hausdorff.

Another is that if there is a vertex of infinite degree, the graph and its Halin ends

may no longer be a compact space! Yet another problem is that there may exist a

(topological) spanning tree whose fundamental cycles do not form a thin set.

For example consider the 2-way infinite path P plus a vertex v such that v is

adjacent to every vertex in P . See Figure 6.1 for an illustration.

Take as a spanning tree the set of edges in P together with a single edge between

P and v. Then it is easy to see that this spanning tree can produce infinitely many

fundamental cycles using the edge between P and v.

On the other hand if we take as a spanning tree the set of all edges between P

and v (i.e. the “star” with centre v) then the fundamental cycles clearly do form a

thin set.

Thus it is not clear which spanning trees we should allow in this context. However

Diestel and Kühn [7] have derived a characterization of the spanning trees that gen-

erate the cycle space, however they use the classical topology extended to the ends

in a certain way. Therefore it would be interesting to see how their results extend to

the natural topology of Chapter 4.

In any case bonds may no longer be finite (as the “star” example above shows) so

it is unclear how the orthogonality results of Chapter 5 extend to graphs with vertices



CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 58

of infinite degree.

Another avenue of research is to study the extended finite bond space Bw. Al-

though we know that Bw = Bf when the edge space is over a finite field, it would be

pleasing to have a much more aesthetic description of Bw over other fields.

It seems clear that we have barely scratched the surface of the study of cycle

spaces of infinite graphs. We are sure that deep results await anyone who dares

venture further into this infinite space.
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in a compactification of a locally finite

graph, 37

in the edge space of a finite graph, 7

Bond space of a finite graph, 8

Caste, 18

Circle product, 19

Circulation

in a finite graph, 8

in an infinite graph, 41

classical topology, 26

Compactification of a locally finite graph,

31

Connected, graph theoretically, 3

Cycle

in a compactified graph, 34

in the edge space of a compactified

graph, 40

in the edge space of a finite graph, 7

Cycle space of a finite graph, 7

Direction of traversal, 40

Double ray, 3

Edge space

61



INDEX 62

of an infinite graph, 40

of a finite graph, 6

Edge Tripartition Theorem, 12

Ends of a compactification, 29

Equivalence of compactifications, 32

Extended finite bond space, 46

Finite bicycles, 53

Finite bond space, 42

Finite cycle space, 40

Fredholm’s Theorem, 16

Fredholm’s Theorem, infinite version, 24

Freudenthal compactification, 4, 29

Fundamental bond

in a finite graph, 8

in a compactified locally finite graph,

38

Fundamental cycle

in a compactified locally finite graph,

37

in a finite graph, 7

Halin equivalence of rays, 4, 29

Hausdorff set, 29

Incidence matrix of a finite graph, 10

Infinite graph, 3

Konig’s Infinity Lemma, 4

Lattice of compactifications, 32

Locally finite, 3

Minor of a graph, 26

Monotone map, 26

Natural topology, 26

Orthogonal, 15

Orthogonal complement

in the edge space of a finite graph, 9

in an arbitrary vector space, 15

with respect to the circle product, 20

Partial order on the set of compactifica-

tions, 32

Potential difference, 10

Potentials, 9

Quasi-bilinear form, 20

Ray, 3

Spanning tree in a compactification of a

graph, 35

Strong bond space, 51

Support of a vector, 19

Symmetric bilinear form, 15

Thin

set, 17, 38

span, 17

subspace, 17

Thin bicycle space, 54
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Thin bond space, 42

Thin cycle space, 40

Weakly Hausdorff, 27

Weakly normal, 35


