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Abstract

Specific light transport models based on first-principles approaches have been proposed
for complex organic materials such as human skin and blood. The driving force behind
these efforts has been the high-fidelity reproduction of material appearance attributes with-
out one having to rely on the manipulation of ad hoc parameters. These models, however,
are usually considered excessively time consuming for rendering applications requiring in-
teractive rates. In this thesis, we address this open problem with respect to one of the
most challenging of these organic materials, namely the human iris. More specifically, we
present a framework that consists in the careful configuration of algorithms employed by
a biophysically-based iridal light transport model on the CUDA (Compute Unified Device
Architecture) parallel computing platform. We then investigate the sensitivity of iridal
appearance attributes to key model running parameters, namely spectral resolution and
number of sample rays, in order to obtain a practical balance between appearance fidelity
and performance on this platform. The results of our investigation indicate that predictive
light transport simulations can be effectively employed in the generation of iridal images
that are not only believable, but also controlled by biophysically meaningful parameters.
Although our investigation is centered at the human iris, we believe that it can be viewed
as a proof of concept, and the proposed configuration strategies and parameter space ex-
plorations can be employed to obtain similar results for other organic materials.
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Chapter 1

Introduction

The synthesis of realistic images of organic materials has always been a challenge for the

computer graphics community. One of the main research avenues in this area involves

the high-fidelity1 modeling [23] of appearance attributes [16]. Another avenue involves

the use of specialized GPUs (Graphics Processing Units) to enable the fast generation of

believable images for interactive applications (e.g., [11, 14, 28, 56]). As the advances in

this area continue, the demand for higher correctness to cost ratios in the rendering process

has been increasing accordingly.

The key aspect in this context is predictability, which is instrumental to increase the

fidelity of the image synthesis process [22, 23] and to make it less dependent on manual

tweaks [19]. To achieve predictable rendering results controlled by biophysically meaningful

parameters, one often needs to resort to light transport models developed using first-

1In this thesis, we consider the following definition of fidelity as stated by Gross [23]: “The degree to
which a model or simulation reproduces the state and behavior of a real world object or the perception of
a real world object, feature, condition, or chosen standard in a measurable or perceivable manner.”
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Figure 1.1: Image generated using modeled iridal data computed by the proposed frame-
work.

principles approaches. Due to their relatively high performance overhead, however, these

models are usually not considered for use in rendering applications with turnaround times

on the order of milliseconds.

Our investigation addresses these issues while focusing on the human iris, arguably one

of the most noticeable organic materials employed in the creation of virtual characters. As

pointed out by Lee et al. [31] and Walt Disney himself [57], natural-looking eyes are quite

desirable for entertainment applications depicting close-ups of human faces. From a life

sciences perspective, there is also a strong interest in the human iris’ chromatic attributes

and how they are determined by the propagation and attenuation of light within the iridal

tissues. For example, in the medical field, a number of studies have related the incidence

of several ocular diseases, such as the degeneration of ocular tissues [13] and melanoma

[48], to these attributes.
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The model known as ILIT (Iridal Light Transport) was specifically designed for the

predictive simulation of light interactions with the human iris [30]. It employs a ray-

optics formulation to simulate the scattering and absorption of light within the iridal

tissues using Monte Carlo methods. ILIT can provide radiometric responses (e.g., radiance

or reflectance) with distinct spectral resolutions, and its predictions have shown close

quantitative and qualitative agreement with measured data [3, 30]. Its algorithms, however,

are bound to incur relatively high processing times due to their stochastic nature.

As stated earlier, the current state of the art in realistic image synthesis enables either

the fast generation of believable images or the predictive generation of high-fidelity images

at the expense of higher computational time. To date, it seems that achieving high per-

formance and high fidelity are two conflicting goals. In this thesis, we address this timely

issue by answering the following question:

How can we generate realistic iridal images quickly (at interactive rates) without sacri-

ficing fidelity and predictability?

More specifically, we demonstrate that realistic depictions of the human iris can be obtained

using predictive simulations executed at interactive rates. That is, we present a framework

that consists in the configuration of the ILIT simulation algorithms on CUDA (Compute

Unified Device Architecture), the parallel computing platform and API (Application Pro-

gramming Interface) introduced by NVIDIA to facilitate general-purpose computations on

the GPU [10]. We then employ this framework to investigate the sensitivity of iridal ap-

pearance attributes to parameters directly associated with the light transport simulations’

running time, namely spectral resolution and number of sample rays. This allows us to
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maximize the performance gains provided by the proposed framework while maintaining

appearance fidelity. We believe that the methodology and observations derived from our

investigation can be used to obtain similar results for other complex organic materials.

1.1 Related Work

In this section, we briefly review relevant initiatives toward the generation of realistic

images of ocular structures, notably the human iris, within and outside the field of computer

graphics. Moreover, although a comprehensive review of CUDA applications is beyond the

scope of this research, we also highlight a number of selected works to illustrate the diverse

use of this platform.

1.1.1 Modeling and Rendering Ocular Structures

Different approaches have been employed by the computer graphics community to generate

realistic images of ocular structures, in particular the human iris. For example, Sager et

al. [51] proposed the rendering of an anatomically detailed eye model to be employed in a

surgical simulator. In their work, the iris was represented using a Gouraud shaded polygon

with colours specified by a colour ramp. Lefohn et al. [32] presented the first biologically-

motivated algorithm specifically designed for the rendering of realistic looking irides. Their

modeling approach was based on an ocular prosthetics methodology where several multi-

transparent layers are combined to create an artificial iris. Wecker et al. [58] proposed an

image-based technique that consists in decomposing photographs of the human iris into
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several components. These are then recombined to generate distinct synthetic iridal images.

Lam and Baranoski [30] then presented ILIT as the first biophysically-based appearance

model for the human iris.

After the development of ILIT, several works, mostly targeting the generation of be-

lievable iridal images in real time, followed. For example, Francois et al. [20] introduced an

image-based method for estimating both iridal morphology and optical parameters from

iridal photographs. The resulting iridal layered model was then employed in the real-

time rendering of believable eye images using the GPU. Pamplona et al [46] proposed

an image-based model for iridal pattern deformation to be used in conjunction with a

physiologically-based model for pupil light reflex. Chiang and Fyffe [11] used a GPU-

adapted normal mapping approach to generate believable eye representations for real-time

facial rendering purposes. The appearance of the human iris was modeled employing iridal

chromatic attributes obtained from photographs along with artistic tools to emulate effects

like caustics and refraction darkening. Jimenez et al. [27] presented a real-time shader-

based eye rendering solution for use in interactive applications. More recently, Bérard et

al. [5] presented a system to capture the geometry and texture of ocular structures.

The ocular structures, particularly the human iris, have also been object of detailed

modeling investigations outside the field of computer graphics. For example, Cai et al. [9]

created an anatomically-based parametric eyeball model as part of a surgical simulator.

Aiming at the testing of iris recognition algorithms for biometrics applications, Makthal

and Ross [35] proposed a technique based on stochastic methods to generate iridal textures,

while Zuo and Schmid [61] presented an anatomy-based method to synthesize iris images.

More recently, Wood et al. [59] used head scan geometry, image-based techniques and
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texture maps to build a collection of dynamic eye-region models for the purpose of training

computer vision systems.

1.1.2 CUDA Supported Applications

Historically, the GPU has been used for the acceleration of the 3D rendering pipeline (e.g.,

[33, 53, 52]). Phases of this pipeline are manipulated with shader programs. These shader

programs perform floating point operations on large sets of vertex and pixel data. All

vertices and pixels are independent from one another, which allows the GPU to execute

operations on these data constructs in parallel. GPU designers accomplish this by using

the SIMD (Single Instruction, Multiple Data) model of computation. Under this model, a

single instruction is executed on many different data points simultaneously [17]. GPUs are

designed with many more transistors devoted to floating point data processing instead of

flow control, scheduling and data caching [43]. This allows GPUs to be orders of magnitude

faster than CPUs for problems with a high level of data parallelism. Such a capability gave

rise to general purpose computing on the GPU (GPGPU). In addition, developers without

computer graphics programming knowledge have been able to leverage GPUs for compu-

tation through the use of APIs such as CUDA. Accordingly, the CUDA parallel platform

and API are being often exploited to enhance the performance of rendering systems and

to accelerate simulation algorithms used in different fields.

In computer graphics, for example, CUDA has been employed in the solution of order-

independent transparency problems [33] and in the adaptive tessellation of surface prim-

itives [53]. It has also been used in the implementation of a photon transport model [21]
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and a random walk generation method [41] for global illumination applications. Similarly,

examples of CUDA supported applications in the biomedical field include, but are not

limited to, the development of a real-time biological tissue deformation model for medical

training systems [60], the implementation of a ray-optics framework for the computation

of sieve factors associated with blood samples [40] and the deployment of a computational

tool for the simulation of radiation propagation within multi-layered tissues [15].

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes our proposed

framework for the configuration of the ILIT algorithms on the CUDA platform. Chapter 3

provides the data and procedures employed in the assessment of the proposed framework’s

efficacy and in the analysis of the effects of key ILIT running parameters on the fidelity of

modeled iridal responses. Chapter 4 presents the results of our research and discusses their

practical implications. Finally, Chapter 5 concludes the thesis and outlines directions for

future work.
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Chapter 2

Framework Description

In this chapter, we describe the steps involved in the reconfiguration of the ILIT algo-

rithms on the CUDA platform as well as the GPU optimizations performed to enhance the

efficiency of the proposed framework. Initially, for completeness, we concisely review the

main characteristics of the ILIT model [30] and outline relevant background information

about CUDA.

2.1 ILIT Model Overview

Within the ILIT ray-optics formulation, light propagation and attenuation within the iri-

dal tissues are simulated through random walks [29, 30]. The states of these stochastic

processes are represented by two groups of interfaces. The first group corresponds to in-

terfaces between surrounding media (air, tear film, cornea and aqueous humor) and the

iris. The second group corresponds to interfaces between adjacent iridal tissues, namely
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the anterior border layer (ABL), the stromal layer (SL) and the iris pigment epithelium

(IPE).

A ray traversing from one iridal layer to the next must pass the interface between

these layers. At these interfaces, the rays can be reflected or transmitted. The results of

these interactions are associated with the random walks’ transition probabilities. Light

scattering events affecting the direction of propagation of a given ray may also trigger the

transition from one state to another. Light absorption events, which are determined by

the presence of pigments in the iridal tissues, provide the termination probabilities for the

random walks. The absorption events are simulated considering the probability of absorp-

tion of light (ray) traveling a certain distance at a certain wavelength in the medium. This

probability, in turn, is computed taking into account the spectral absorption coefficients

and concentrations of the main pigments (melanins, hemoglobins, lutein, zeaxanthin and

bilirubin) found within the iridal layers.

Although each ray travelling within the iridal tissues is associated with a wavelength,

it is assumed that the energies of different wavelengths are decoupled. As a result, the

random walk performed by a given ray can be simulated independently of the random

walks performed by the other rays. Hence, each random walk simulation can potentially

be executed on a separate CUDA thread with minimal synchronization overhead.
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2.2 CUDA Background

The CUDA platform follows a heterogeneous programming model. In the following dis-

cussion, when referring to the CPU and RAM, we will use the word host for brevity, and

to the GPU and VRAM (Video RAM), the word device. Although CUDA can be used to

accelerate applications developed in different languages, we elected to employ the CUDA

C/C++ API in the proposed framework. Code accelerated through CUDA is encapsulated

within functions known as kernels. These functions are called from a host process and are

executed in parallel by a specified number of threads on the device. The threads, in turn,

are organized in a dimensional construct known as an execution grid. A 2D execution grid

contains 3D blocks of threads. Blocks are distributed evenly across the SM (Streaming

Multiprocessor) units on the device. Threads in each block are scheduled and executed in

groups of 32, which is known as a thread warp [10].

Thread synchronization may only occur for threads that are part of the same block.

Device memory is separate from host memory, and it is up to the host process to manage

allocations and transfers. It is worth noting that CUDA v6, used in this work, introduces

unified memory, which allows the video driver to manage all the memory transfers and

allocations automatically. When using unified memory, however, one may fall short of

achieving the maximum possible performance [24]. For this reason, we elected to perform

all allocations manually during the implementation of the proposed framework in order to

minimize runtime.

In the following paragraphs, we outline the relevant characteristics of the main com-

ponents of CUDA’s memory hierarchy employed in this research, namely the registers,
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the local memory, the shared memory and the global memory. The reader interested in

more detailed information about all components of this hierarchy is referred to the work

by Ryoo et al. [50].

Registers are the fastest type of memory that can be used by CUDA threads. Each SM

unit has a register file. The available registers are split evenly amongst all threads running

on an SM unit. Variables that do not fit into register space spill over to local memory.

Similar to registers, this memory is private to a thread. However, local memory is held

in VRAM, which is expensive to access (200-300 clock cycles) [50]. As a result, excessive

register spill over can be detrimental to performance.

The shared memory is a fast on-chip cache that is declared and initialized within kernel

code and has the scope of a thread block. Since all threads within the block have read/write

access to this memory, synchronization may be necessary.

The global memory is allocated and initialized outside the kernel by the host process.

All data required for a given application resides in this memory at the beginning of kernel

execution. It is implemented using VRAM. Data is copied into the global memory from

the host, and a pointer to this memory is passed into the kernel function where it can be

accessed by running threads.

2.3 Reconfiguration of ILIT Algorithms on CUDA

The GPU version of ILIT is implemented on CUDA as follows. For the most part, the ILIT

random walk algorithms were unchanged from their original (C++) CPU-based implemen-
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tation [36]. However, several adaptations had to be made in order to run the algorithms

on the GPU. A specific keyword (represented by _device_) was added before all functions

that are called during the execution of the algorithms. This keyword turns any arbitrary

C++ function into a CUDA kernel, and allows it to be called from any other CUDA kernel.

Figure 2.1 outlines the execution flow of the GPU-based ILIT implementation on

CUDA. First, VRAM is allocated and initialized on the GPU for relevant objects includ-

ing specimen characterization parameters (Chapter 3), spectral absorption coefficients and

simulation results. Next, the random number generator (RNG) is initialized and seeded on

the GPU for all threads and blocks through the setupRNG kernel. In this work, we used

the XORWOW RNG engine provided by the CUDA API [44].

All CUDA kernel launches (executions of kernel functions from the host) have a specific

syntax preceding them. This syntax (represented by <<< i,j >>>) specifies the set of

launch variables, where i and j correspond to the number of blocks and the number of

threads in each block, respectively. The values assigned to i and j are hardware and task

dependent. The selection of these values during this work is discussed in the next section.

Once the GPU completes the RNG initialization process, the runModel kernel (respon-

sible for the execution of ILIT’s random walk algorithms) is called for each wavelength

considered in the simulation. Finally, after the GPU finishes running all kernels, the re-

sults are copied back from VRAM and memory is deallocated.

The main operation aspects of the runModel kernel can be described as follows. The

CUDA API provides built-in threadIDx variables that enable a thread to determine its

location within a block. This allows the programmer to differentiate between different
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HOST DEVICE

Allocate VRAM

d_params

d_coeffs

d_results

h_params

h_coeffs

h_results

d_params

d_coeffs

d_results

<<<i,j>>>setupRNG setupRNG(...){...}

Wait for GPU

<<<i,j>>>runModel

Wait for GPU

h_results d_results

Deallocate 
VRAM

Time

runModel(...){...}

cudaMalloc

cudaMemcpy

Call Kernel

Call Kernel

cudaMemcpy

cudaFree

Repeated for every sampled wavelength

Figure 2.1: Diagram depicting the execution flow of the GPU-based implementation of
ILIT on the CUDA platform, including details about the communication between the CPU
(host) and GPU (device). Blue, gray and green boxes represent memory allocations, kernel
function calls and parallel GPU execution, respectively. Yellow arrows represent CUDA
API calls. The kernels setupRNG and runModel are responsible for setting up the random
number generator and executing light transport simulations, respectively. The objects
params, coeffs and results correspond to the specimen characterization parameters,

spectral absorption coefficients and simulation results, respectively.
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threads within the same block. The first thread within a block initializes and copies the

objects (specimen characterization parameters and spectral absorption coefficients) from

device memory to shared memory, and initializes a model object. This operation is per-

formed in each block. Once this is done, all j threads within a block execute the iridal light

transport simulations. The purpose of using shared memory is to minimize data transfer

between VRAM and SM units. As described in the previous section, shared memory is

implemented on chip (GPU die). Since threads do not need to modify parameters or co-

efficients, there is no synchronization overhead in this case, i.e., only reading accesses are

performed.

2.4 GPU-Specific Optimizations

In this section, we address the GPU-specific optimizations and considerations taken dur-

ing the implementation of the GPU version of ILIT. This version was developed using

NVIDIA’s GTX 980, which has been successfully employed to enhance the performance of

shading pipelines (e.g., [52]).

First, we selected the most appropriate combination of launch variables. The GTX 980

is able to execute blocks with up to 1024 threads in each block. Furthermore, the number of

threads per block should be a multiple of the thread warp size (32) to maximize hardware

utilization [42]. Through empirical testing (Appendix C), we determined that a block size

of 32 resulted in the fastest runtime for our simulation. Runtimes got progressively worse as

block size was increased up to 1024. Ultimately, we employed 3200 blocks (variable i), with

each block containing 32 threads (variable j). This combination yields roughly 105 threads,
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which is the number of sample rays used to obtain asymptotically-convergent simulated

spectrophotometric readings [4]. Increasing the thread count to higher numbers (e.g.,

106) caused the XORWOW RNG engine initialization to become slow, limiting potential

speedups. Hence, for simulations employing such a higher number of sample rays (usually

a multiple, denoted by k, of 105), we run these simulations k times on each thread.

Second, all double precision floats in the CPU-based implementation of ILIT were

replaced with single precision floats. This was motivated by the fact that consumer GPUs

tend to have much faster single precision performance compared to double precision. A

GTX 980 is capable of executing 32× more single precision floating point instructions

than double precision floating point instructions in a single clock cycle [43]. In addition,

all math functions (cos, sin, log ...) were replaced by intrinsic single-precision functions

provided by the CUDA API. Although these functions are less precise than their C++

counterparts, they use fewer instructions. As we demonstrate in Chapter 4, the use of

single precision floating point functions is sufficient for obtaining simulation results with

the same level of convergence and fidelity observed in the results provided by the (C++)

CPU-based implementation of ILIT.

Finally, we optimized thread occupancy, which is defined as the ratio between the

number of currently executing thread warps per SM unit to the maximum number of thread

warps. Higher thread occupancy allows for higher hardware utilization since memory access

latency can be compensated by executing a different warp during memory access stalls

[42]. This optimization was attained by selecting an appropriate number of registers to

be allocated for a thread. A GTX 980 can have up to 2048 threads in-flight on a single

SM unit, assuming every thread uses no more than 32 registers. Setting the number
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of registers to 32, however, caused excessive register spillover to occur, increasing global

memory access. Again through empirical testing (Appendix D), we determined that, by

using 64 registers, we can improve performance (less time spent accessing global memory)

at the expense of having a smaller number of active threads. We found this trade-off to be

acceptable and consistent with NVIDIA’s performance guidelines [42]: “Higher occupancy

does not always equate to higher performance - there is a point above which additional

occupancy does not improve performance. However, low occupancy always interferes with

the ability to hide memory latency, resulting in performance degradation.” Hence, we have

allocated 64 registers for each thread in this work.
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Chapter 3

Experimental Setup

In our experiments to assess the efficacy of the proposed framework and to find a practi-

cal balance between appearance fidelity and performance, we considered three specimens

with distinct levels of pigmentation. These specimens, henceforth referred to as lightly pig-

mented, moderately pigmented and darkly pigmented, are characterized by the biophysical

parameters depicted in Tables 3.1 and 3.2. The values assigned for these parameters corre-

spond to actual biophysical data provided in the scientific literature. The reader interested

in more detailed information about their sources is referred to the original publications

describing the ILIT model [30, 29]. Similarly, for the spectral absorption coefficients of

the pigments considered in our implementations of ILIT, we used measured data [29, 37]

also reported in the scientific literature. We note that the parameters depicted in Ta-

ble 3.1 were those effectively modified to characterize the three selected specimens, while

the parameters listed in Table 3.2 were kept fixed during our simulations.
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ILIT Darkly Moderately Lightly
Parameters Pigmented Pigmented Pigmented

Eumelanin mass 2.53E-2 mg 6.33E-3 mg 1.00E-4 mg
Pheomelanin mass 6.90E-3 mg 1.75E-3 mg 3.00E-5 mg
Eumelanin in the ABL 90% 50% 10%
Pheomelanin in the ABL 90% 50% 10%
Blood in the SL 7% 4% 1%

Table 3.1: Three sets of ILIT parameters employed to characterize the distinct iridal
specimens considered in this work.

We remark that the ILIT model can provide radiometric readings for distinct illumi-

nation and collection geometries. For example, one can obtain bidirectional reflectance

quantities by recording the direction of the outgoing rays using a virtual goniophotometer,

and directional-hemispherical reflectance quantities by integrating the outgoing rays with

respect to the collection hemisphere using a virtual spectrophotometer [4, 29]. The lat-

ter group of quantities was used in our analyses of the sensitivity of modeled readings to

changes in the ILIT key running parameters, namely spectral resolution (denoted by sr)

and the number of sample rays (denoted by nr). More specifically, we have computed iridal

directional-hemispherical reflectance curves within the spectral region between 400-700 nm

for the selected specimens (Figure 4.1). In the computation of these curves, we considered

an angle of incidence of 0◦ and distinct values for sr and nr. We note that the spectral

iridal reflectances computed for a given specimen tend to converge to specific values as nr

increases. We employed the curves associated with these values as the fidelity reference

curves in our analyses. To obtain these reference curves, we used sr equal to 1 nm (301

sample wavelengths) and nr equal to 106 rays. It is also worth mentioning that the re-

flectance curves depicted in this work match those that can be obtained through the online
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ILIT Parameters Value

Lutein mass 4.03E-6 mg
Zeaxanthin mass 1.54E-6 mg
ABL thickness 0.005675 cm
SL thickness 0.02855 cm
Volume fraction of fibroblasts in the ABL 0.33333
Volume fraction of collagen fibrils in the SL 0.9069
Radius of collagen fibers 30.0 nm
Concentration of hemoglobin in the blood 147 g/L
Percentage of oxygenated hemoglobin 50%
Concentration of carboxyhemoglobin in the blood 1.5 g/L
Concentration of methemoglobin in the blood 1.5 g/L
Concentration of sulfhemoglobin in the blood 0 g/L
Concentration of bilirubin in the blood 0.003 g/L
Refractive index of the fibroblasts 1.42
Refractive index of the ocular base 1.35
Refractive index of the air 1.0003
Refractive index of the tear film 1.337
Refractive index of the cornea 1.3771
Refractive index of the aqueous humour 1.336
Refractive index of the IPE 1.35

Table 3.2: Set of ILIT parameters kept fixed for the simulations that resulted in the
modeled reflectance curves depicted in this work.

version of the original implementation of the ILIT model [36] using the same parameter

values.

We also generated iris swatches to complement our analyses (Figures 4.2 and 4.3).

The swatches’ chromatic attributes were obtained from the convolution of the illuminant

spectral power distribution spectrum, the modeled reflectance data and the broad spectral

response of the human photoreceptors [25]. This last step was performed employing a

standard XYZ to sRGB conversion procedure as outlined in Appendix A. Unless otherwise

stated, the iris swatches and the additional images presented in this work were rendered
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Figure 3.1: Relative spectral power distribution of three CIE standard illuminants, namely
D65, D50 and A [45], considered in our investigation.

considering the CIE standard D65 illuminant (Figure 3.1).

Surely, the spectral responses of a given iridal specimen can vary from one measurement

point to another. Although one could modulate the values of the biophysical parameters

affecting its chromatic attributes according to the characteristics of its underlying iridal

structure, this process would require detailed information about the specimen’s morphol-

ogy (e.g., tissue thickness variations) which is not readily available. Hence, for practical

purposes, we have elected to use iridal texture variations to modulate the lightness of the

colors derived from the modeled reflectance data. For consistency, we employed the same

iridal texture for all swatches.

To assess appearance fidelity, we initially visually compared swatches (Figure 4.2) ren-
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dered using modeled reflectance data computed considering distinct spectral resolutions

and nr equal to 106 with their respective swatch reference, which was rendered using the

specimen’s fidelity reference curve. We assigned to sr integer factors of 300 nm (10, 30

and 50 nm) to ensure an uniform sampling of the visible spectral region of interest (from

400 to 700 nm).

Besides visual inspection, we also employed a device-independent CIE-based metric

to compare modeled results obtained using different combinations of simulation running

parameters. More specifically, we computed the CIELAB differences [54] between modeled

chromatic attributes and their corresponding reference values. These differences are defined

as

∆E∗ab =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2, (3.1)

where L∗, a∗ and b∗ correspond to the CIELAB color space dimensions calculated for the

modeled chromatic attributes (indicated by subscript 1) and their corresponding reference

values (indicated by subscript 2) using standard colorimetric formulas [8] and setting the

white point to the CIE D65 standard illuminant (Figure 3.1). The conversion of XYZ

values to L∗a∗b∗ coordinates is outlined in Appendix B.

We then repeated the comparisons for swatches (Figure 4.3) rendered using modeled

reflectance data computed considering different numbers of sample rays and the spectral

resolution determined in the previous set of comparisons. The purpose of these two sets of

comparisons was to find a practical balance between appearance fidelity and performance

(reduced computational time). By performing the comparisons in this order, we have at-

tributed more importance to sr. This choice was motivated by the fact that this parameter
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has a larger impact on the qualitative reproduction of appearance attributes.

To assess the performance gains associated with the execution of iridal light trans-

port simulations on the CUDA platform, we have compared the frameworks GPU-based

implementation of ILIT with a multithreaded CPU-based implementation of this model.

These two implementations are henceforth referred to as ILIT-GPU and ILIT-CPU, re-

spectively. Both implementations were tested on a server running Ubuntu 14.04 LTS with

2 hyperthreaded Intel Xeon E5-2630 2.4 GHz CPUs (comprising a total of 16 cores, 32

threads), 64GB of RAM and a GTX 980 GPU (whose relevant features have been outlined

in Chapter 2.4).
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Chapter 4

Results and Discussion

In this chapter, we compare the GPU- and CPU-based implementations of the ILIT model

and discuss the effects of adjusting key simulation parameters on the fidelity and compu-

tational cost of the modeled results. We also address issues regarding the usability of the

proposed framework and the reproducibility of our research findings.

4.1 Analysis of Fidelity and Performance Trade-offs

Initially, we compared the modeled reflectance curves provided by the ILIT-GPU and ILIT-

CPU implementations in order to assess the correctness of the reconfigured ILIT algorithms

employed by the proposed framework. As outlined in Chapter 2.4, ILIT-GPU is expected

to provide results with a lower precision than ILIT-CPU since the former employs single-

precision floating point arithmetic to maximize performance. The graphs presented in

Figure 4.1 demonstrate, however, that the effects of precision differences are negligible in
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comparison with random fluctuations associated with the stochastic nature of the ILIT

model. Such random fluctuations are expected, especially when one sets a relatively low

value for nr. However, as nr is increased, these fluctuations are reduced accordingly. As a

result, the curves computed by both ILIT implementations tend to show a close agreement.

We then proceeded to assess the computational gains that can be provided by the

proposed framework. As illustrated by the data presented in Table 4.2, ILIT-GPU outper-

formed the multithreaded CPU-based implementation of ILIT. We note that ILIT-GPU

has an initialization time of 200 ms, which was included in the figures depicted in Table 4.2.

This time corresponds to a call to the setupRNG kernel (Chapter 2.3) to seed and initialize

the state of the random number generator on the GPU.

For completeness, we also provide the corresponding speedup factors in Table 4.1. It is

worth noting that the recorded speedup factors of the ILIT-GPU with respect to a single

threaded CPU-based implementation of ILIT were on the order of 100×.

Number Darkly Moderately Lightly
of Rays Pigmented Pigmented Pigmented

103 4.57× 4.15× 3.94×
104 7.10× 7.90× 8.19×
105 16.95× 17.50× 15.44×
106 19.61× 14.62× 12.24×

Table 4.1: Speedup factors of the ILIT-GPU with respect to the multithreaded CPU-based
implementation of the ILIT model. These factors refer to the iridal light transport simu-
lations performed for the selected specimens, which were carried out considering distinct
numbers of rays and a spectral resolution of 1 nm.

24



400 500 600 700

wavelength (nm)

0

5

10

15

20

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

25

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

15

20

25

30

35

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

25
re

fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

15

20

25

30

35

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

25

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

15

20

25

30

35

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

0

5

10

15

20

25

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

400 500 600 700

wavelength (nm)

15

20

25

30

35

re
fl
e

c
ta

n
c
e

 (
%

) ILIT-GPU

ILIT-CPU

Figure 4.1: Comparisons of modeled reflectance curves computed for the selected iris
specimens using the CPU- and GPU-based implementations of ILIT. From left to right:
darkly pigmented, moderately pigmented and lightly pigmented specimen, respectively.
The curves were computed using distinct numbers of rays. From top to bottom: 103, 104,
105 and 106, respectively. All curves were computed considering a spectral resolution of
1 nm.
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Number Darkly
of Rays Pigmented

ILIT-GPU ILIT-CPU

103 0.39 s 1.80 s
104 0.40 s 2.87 s
105 0.75 s 12.78 s
106 4.04 s 79.33 s

Number Moderately
of Rays Pigmented

ILIT-GPU ILIT-CPU

103 0.41 s 1.71 s
104 0.46 s 3.70 s
105 1.12 s 19.62 s
106 7.54 s 110.29 s

Number Lightly
of Rays Pigmented

ILIT-GPU ILIT-CPU

103 0.46 s 1.81 s
104 0.54 s 4.49 s
105 1.62 s 25.04 s
106 12.18 s 149.27 s

Table 4.2: Running times recorded for the light transport simulations performed for the
selected specimens using the GPU-based (ILIT-GPU) and the multithreaded CPU-based
(ILIT-CPU) implementations of the ILIT model. The simulations were carried out consid-
ering distinct numbers of rays and a spectral resolution of 1 nm.

For applications aimed at providing predictable results at interactive rates, one should

strive to reduce running time without sacrificing appearance fidelity. With this guideline

in mind, we investigated the sensitivity of modeled chromatic attributes to key simulation

running parameters, namely sr and nr. We started with the former as we describe next.

Traditionally, image synthesis pipelines employ three sample wavelengths, whose selec-
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tion may vary from one user to another. For comparison purposes, we considered three

wavelengths, namely 463 nm, 504 nm and 600 nm, representative of the blue, green and

red regions of the light visible spectrum, respectively. As it can be verified by visually

inspecting the iris swatches presented in Figure 4.2, the results obtained when one consid-

ers only three sample wavelengths may differ markedly from more comprehensive spectral

solutions. They also indicate that the results tend to converge to a reference solution as

we increase the number of sample wavelengths (from 3 to 7, 11, 31 and 301). However,

in order to obtain an image with a high appearance fidelity with respect to this reference

solution, one does not necessarily need to resort to an extremely fine, and consequently

costly, spectral resolution. For example, as it can also be observed in the images presented

in Figure 4.2, using a sampling interval of 30 nm (11 wavelengths), the resulting swatches

show no distinguishable visible differences when compared to their respective reference

solutions obtained considering an interval of 1 nm (301 wavelengths).
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Figure 4.2: Iris swatches rendered using modeled reflectance data computed considering
different spectral resolutions. From top to bottom: swatches generated for the darkly
pigmented, moderately pigmented and lightly pigmented specimens, respectively. Leftmost
column: employing data sampled at three wavelengths (463 nm, 504 nm and 600 nm).
Subsequent columns, from left to right: employing data sampled from 400 to 700 nm at
every 50, 30, 10 and 1 nm, respectively. The simulations employed to obtain the modeled
data were carried out using 106 rays.

Spectral Darkly Moderately Lightly
Resolution Pigmented Pigmented Pigmented

50 nm 1.59 5.75 6.77
30 nm 0.27 0.33 0.38
10 nm 0.05 0.11 0.05

Table 4.3: CIELAB ∆E∗ab differences calculated for the selected specimens’ swatches (de-
picted in Figure 4.2) which were generated using modeled data computed considering three
distinct spectral resolutions and 106 rays. The ∆E∗ab differences were calculated with re-
spect to the specimens’ specific reference swatches (also depicted in Figure 4.2, rightmost
column) which were generated using modeled data computed considering a spectral reso-
lution of 1 nm and 106 rays.
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In order to quantitatively assess the fidelity of the swatches generated using modeled

data obtained considering sr equal to 10, 30 and 50 nm, we computed their ∆E∗ab differ-

ences (Equation 3.1) with respect to the corresponding reference solutions (Table 4.3). As

expected, these differences decreased as we reduced the spectral sampling intervals. More-

over, for sr equal to 30 nm, the ∆E∗ab values are smaller than 2.3±1.3, the experimentally-

determined perceptibility threshold for CIELAB chromatic differences [34]. These results

reinforced our observation that a sampling interval of 30 nm is sufficient to ensure appear-

ance fidelity.

After determining a suitable value for sr, we examined the impact of nr. Again, as it can

be verified by visually inspecting the iris swatches presented in Figure 4.3, a combination

considering a spectral resolution of 30 nm and 104 rays (second column from the left) is

sufficient to obtain results which closely agree with their corresponding reference solutions

(rightmost column). This aspect is also supported by the ∆E∗ab values (Equation 3.1)

computed for these swatches (generated using 104 rays and a spectral resolution of 30 nm)

with respect to the corresponding reference solutions. More specifically, by comparing these

differences (Table 4.4) with the the experimentally-determined perceptibility threshold of

2.3±1.3 [34], it can be verified that this combination of parameter values results in modeled

chromatic attributes that, for practical purposes, are indistinguishable from their reference

solutions as perceived by a human observer.

Considering the stochastic nature of the ILIT simulations, the CIELAB ∆E∗ab differences

may vary from one run to another. Hence, for the sake of transparency, we also computed

CIELAB ∆E∗ab differences averaged over 1000 runs (Table 4.5). These averaged values

confirmed our previous observations.
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Figure 4.3: Iris swatches rendered using modeled reflectance data computed considering
different numbers of sample rays. From top to bottom: swatches generated for the darkly
pigmented, moderately pigmented and lightly pigmented specimens, respectively. From the
leftmost column to the fourth column: swatches generated using modeled data obtained
considering a spectral resolution of 30 nm and 103, 104, 105 and 106 sample rays, respec-
tively. Rightmost column: reference solutions obtained considering a spectral resolution of
1 nm and 106 rays.

Darkly Moderately Lightly
Pigmented Pigmented Pigmented

1.16 0.63 0.57

Table 4.4: CIELAB ∆E∗ab differences computed for the selected specimens’ swatches (de-
picted in Figure 4.3, second column from the left), which were generated using 104 rays
and a spectral resolution of 30 nm. These ∆E∗ab values were computed with respect to
the specimens’ specific reference swatches (also depicted in Figure 4.3, rightmost column),
which were generated using modeled data computed considering a spectral resolution of 1
nm and 106 rays.
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Darkly Moderately Lightly
Pigmented Pigmented Pigmented

1.24± 0.62 0.98± 0.49 0.89± 0.42

Table 4.5: Averaged (over 1000 runs) CIELAB ∆E∗ab differences and their respective stan-
dard deviations computed for the selected specimens’ swatches, generated using 104 rays
and a spectral resolution of 30 nm. These ∆E∗ab values were computed with respect to
the specimens’ specific reference swatches (also depicted in Figure 4.3, rightmost column),
which were generated using modeled data computed considering a spectral resolution of 1
nm and 106 rays.

In terms of performance, as indicated by the data provided in Table 4.6, setting sr

equal to 30 nm and nr equal to 104 rays enables us to reduce the time spent in the

simulations to values below a latency time of 16 ms (associated with an update rate of

60Hz) appropriate for interactive applications [18]. We note that these values do not include

the GPU initialization time mentioned earlier since this step needs to be performed only

once for interactive applications. In other words, it does not need to be repeated for each

frame generated using modeled iridal data.

Darkly Moderately Lightly
Pigmented Pigmented Pigmented

3.72 ms 6.30 ms 9.71 ms

Table 4.6: Running times recorded for iridal light transport simulations performed for the
selected specimens using the GPU-based (ILIT-GPU) implementation of the ILIT model
with the spectral resolution and number of rays set to 30 nm and 104, respectively.

31



We fully recognize that the generation of realistic-looking human eyes is a challenging

process. As such, it requires due attention to be given to all stages of the rendering pipeline,

starting with the selection of geometrical models and textures representing the distinct

ocular structures. Clearly, these aspects are beyond the scope of this work, which focuses

on the iris’ spectral responses. However, we remark that these responses play a central role

in this process. Hence, we believe that the proposed framework can effectively contribute

to the interactive generation of images that are both believable and predictable depictions

of the human eye. This aspect is illustrated by the images presented in Figures 1.1, 4.4

and 4.5, which were rendered using modeled iridal data obtained considering the selected

combination of simulation running parameters, namely a spectral resolution of 30 nm and

104 rays.

Figure 4.4: Images generated using modeled iridal data computed for the darkly (left),
moderately (center) and lightly (right) pigmented iris specimens.
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Figure 4.5: Images generated using modeled iridal data computed for the darkly (top) and
moderately (bottom) pigmented iris specimens and considering two distinct CIE standard
illuminants, namely A (top) and D50 (bottom), whose relative spectral power distributions
are provided in Figure 3.1.
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4.2 Usability Issues

With respect to usability, we note that the proposed framework can be seamlessly inte-

grated into rendering systems that support GPU-based implementations. Alternatively, it

can be employed to provide iridal appearance data on demand for image synthesis appli-

cations running on different computational environments.

Finally, it is worth stressing that only a small subset of the ILIT parameters (Table 3.1)

needs to be modified so that one can obtain markedly distinct chromatic attributes for iri-

dal specimens. This is particularly convenient when one wants to streamline the image

generation process. If necessary, however, its detailed parameter space allows experimen-

tation with a wide range of biophysical factors affecting iridal appearance. Hence, besides

the support to the efficient rendering of realistic eye images for artistic and entertainment

applications, the ILIT-GPU can potentially be employed in educational and scientific ap-

plications involving rapid visualizations of iridal appearance variations as illustrated by its

online version [38].

4.3 Reproducibility Issues

As part of our investigation, we have made an effort to maximize reproducibility of our

findings. Reproducibility is an important aspect of scientific research since it allows other

researchers to verify the correctness of the results as well as employed methods. Fur-

thermore, providing executable code and data fosters collaboration and encourages future

expansion upon this work [47], which is especially important since light transport models
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such as ILIT can be useful tools in interdisciplinary research [2].

Accordingly, we have made the ILIT-GPU available online [38] in order to allow other

researchers to reproduce the results of our investigation and to employ our model in their

studies without having to implement it. The online implementation outputs the spectral

reflectance data, spectral reflectance curve as well as an iris swatch for a given set of model

parameters. A server with a GTX 980 GPU is used to host the model in order to provide

output in a timely manner. Figure 4.6 depicts the interface of the online implementation

of ILIT-GPU. In this interface, we provide a runtime breakdown of the model so our claims

can be verified.
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Chapter 5

Conclusion and Future Work

Distinct trends can be observed in rendering research. At one end of the spectrum, efforts

have been directed toward the fast generation of believable images for a large variety of

artistic and entertainment applications, from movie effects to video games. At the other

end of the spectrum, different initiatives have been aimed at the generation of images

with the highest possible level of biophysical correctness. Among these initiatives, one can

include the development of predictive appearance models for a large variety of natural and

man-made materials.

The simultaneous realization of high levels of performance and correctness is usually

problematic since researchers often have to sacrifice one to get the other. In this thesis, we

attempted to conciliate these seemingly conflicting goals by proposing a framework that

incorporates advances at both ends of the rendering research spectrum. More specifically,

by reconfiguring the light transport algorithms of the ILIT model on the CUDA platform,
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we were able to examine the trade-offs involving different combinations of key simulation

running parameters. Our findings indicate that high-fidelity appearance attributes can be

obtained through first-principles light transport algorithms executed at interactive rates.

Accordingly, these attributes can be employed in the efficient generation of iridal images

that are not only believable, but also predictable.

As future work, we plan to employ the proposed framework in the investigation of

physiological phenomena affecting iridal appearance attributes. We also intend to extend

our research to other organic materials. It is worth noting that some of the existing

stochastic light transport models developed for distinct human tissues, such as human

skin and blood, may differ significantly in terms of their specific simulation approaches.

Nonetheless, we believe that such differences would not represent insuperable obstacles.

Hence, we expect that similar combinations of simulation running parameters leading to the

generation of predictable images at interactive rates can also be found for these materials.
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Appendix A

Conversion from Spectral Reflectance

Data to sRGB Values

As indicated in Chapter 3, the modeled spectral reflectance data was converted to sRGB in

order to generate the iris swatches employed in our investigation. This appendix outlines

the main components of this conversion process, including the formulation for the conver-

sion from spectrum to XYZ, the conversion from XYZ to sRGB as well as the corresponding

implementation in Matlab.

A.1 Spectrum to XYZ Conversion

The XYZ tristimulus coordinates can be obtained from a given spectral reflectance curve

using the following equations [7]:
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X = K
700∑

λ=400

S(λ)x(λ)R(λ),

Y = K

700∑
λ=400

S(λ)y(λ)R(λ),

Z = K

700∑
λ=400

S(λ)z(λ)R(λ)

(A.1)

where x(λ), y(λ), z(λ) are CIE 1931 color-matching functions (two-degree observer), S(λ)

is the spectral power distribution of the illuminant, R(λ) is the spectral reflectance and K

is defined as

K =
100∑700

λ=400 S(λ)y(λ)
. (A.2)

A.2 XYZ to sRGB Conversion

The sRGB triple can be obtained from XYZ tristimulus values through a number of steps

described in the literature [12, 49] and concisely outlined in this section for completeness.

Initially, intermediate linear sRGB values Rl, Gl and Bl are computed using the following

equation:


Rl

Gl

Bl

 =


3.2404542 −1.5371385 −0.4985314

−0.9692660 1.8760108 0.0415560

0.0556434 −0.2040259 1.0572252



X

Y

Z

 , (A.3)
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where X, Y and Z are normalized tristimulus coordinates. The resulting intermediate

values are then used to compute the final sRGB triple:

R =


12.92Rl Rl <= 0.0031308

1.055R
1
2.4
l − 0.055 Rl > 0.0031308

,

G =


12.92Gl Gl <= 0.0031308

1.055G
1
2.4
l − 0.055 Gl > 0.0031308

,

B =


12.92Bl Bl <= 0.0031308

1.055B
1
2.4
l − 0.055 Bl > 0.0031308

.

(A.4)

This method assumes the use of the CIE standard D65 illuminant [26].

In cases where the XYZ tristimulus values were captured under a different illuminant,

chromatic adaptation to D65 is necessary [39]. This is done using the following equations

[6]:


X ′′

Y ′′

Z ′′

 =

[
MCAT

]−1

R′′

w

R′
w

0 0

0 G′′
w

G′
w

0

0 0 B′′
w

B′
w


[
MCAT

]
X ′

Y ′

Z ′

 ,

R′w

G′w

B′w

 =


X ′w

Y ′w

Z ′w


[
MCAT

]
,


R′′w

G′′w

B′′w

 =


X ′′w

Y ′′w

Z ′′w


[
MCAT

]
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where X ′, Y ′, Z ′ are tristimulus values under the captured illuminant, X ′′, Y ′′, Z ′′ are

tristimulus values under the target illuminant, X ′w, Y ′w, Z ′w are tristimulus coordinates of the

white point under the captured illuminant and X ′′w, Y ′′w , Z ′′w are tristrimulus coordinates of

the white point under the target illuminant. The matrix MCAT corresponds to a chromatic

adaptation transform [6]. A widely used choice for MCAT is the Bradford transform [55]:

MCAT =


0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

 . (A.5)

We note, however, that other chromatic adaptation transform matrices exist in literature

[6].

The color conversion from spectral reflectance data to sRGB was implemented using

functions provided by the Matlab Image Processing Toolbox [1] shown in Figure A.1.
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1 function rgb = getRGB(waves, refls)
2

3 %Create color transformation structure
4

5 % Transformation from xyz (1931 CIE XYZ tristimulus values
6 % (2 degree observer)) to srgb (Standard computer monitor RGB
7 % values (IEC 61966-2-1)), using adapted white point according
8 % to illuminant choice
9

10 %ill is 'd65', 'd50' or 'a'
11 [wI, iI] = illuminant(ill);
12 XYZ2sRGB = makecform('xyz2srgb','AdaptedWhitePoint',whitepoint(ill));
13

14 iI = interp1(wI,iI,waves);
15

16 % Multiply reflectance by illuminant spectral power distribution
17 refls = refls .* iI;
18

19 % Get xyz color matching functions for wavelengths
20 [¬, xyz] = spectrumRGB(waves);
21

22 % Compute integrals (Trapezoidal numerical integration) to get ...
XYZ triple

23 X = trapz(waves,xyz(1,:,1).*refls);
24 Y = trapz(waves,xyz(1,:,2).*refls);
25 Z = trapz(waves,xyz(1,:,3).*refls);
26 XYZ(1,:,1) = X;
27 XYZ(1,:,2) = Y;
28 XYZ(1,:,3) = Z;
29

30 % Modulate XYZ by intensity value
31 XYZ = XYZ/(trapz(waves,iI)*intensity);
32

33 % Apply color transformation to get resulting sRGB triple
34 rgb = applycform(XYZ, XYZ2sRGB);
35 rgb = reshape(rgb,[1 3]);
36

37 end

Figure A.1: The conversion pipeline from spectral reflectance data to sRGB as implemented
in Matlab. Spectral reflectance values are converted to XYZ tristimulus coordinates using
trapezoidal numerical integration, and a color transformation from XYZ to sRGB is applied
using functions provided by the Image Processing Toolbox [1].
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Appendix B

Steps in the Computation of

CIE1976 Color Differences

This appendix outlines the conversion from XYZ values to CIE 1976 L∗a∗b∗ coordinates

that is required to compute ∆E∗ab color differences [54] that were introduced in Chapter 3.

The L∗a∗b∗ coordinates can be obtained from the CIE 1931 XYZ values using the

following equations [8]:

L∗ =


116

(
Y
Yn

) 1
3 − 16, Y

Yn
> 0.008856

903.3
(
Y
Yn

)
Y
Yn
<= 0.008856

,

a∗ = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]
,

b∗ = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
(B.1)

53



where Xn, Yn and Zn are tristimulus coordinates of a selected white point (standard illu-

minant) and f(s) is defined as

f(s) =


s

1
3 s > 0.008856

7.787(s) + 16
116

s <= 0.008856

. (B.2)

We regard that the standard illuminant considered in the computation was D65 [26].

The XYZ to L∗a∗b∗ conversion as well as ∆E∗ab color difference calculation was imple-

mented using functions provided by the Image Processing Toolbox [1] in Matlab as shown

in Figure B.1.

1 %Convert colors from XYZ to LAB
2 c1 = xyz2lab([X1 Y1 Z1],'WhitePoint','d65')
3 c2 = xyz2lab([X2 Y2 Z2],'WhitePoint','d65')
4

5 %Compute the CIE76 Delta E Formula
6 val = sqrt((c1(1)-c2(1))ˆ2 + (c1(2)-c2(2))ˆ2 + (c1(3)-c2(3))ˆ2)

Figure B.1: Conversion from tristimulus XYZ coordinates to L∗a∗b∗ and computation of
the CIE1976 ∆E∗ab formula as implemented in Matlab. Functions provided by the Image
Processing Toolbox [1] are used to perform the color conversion.
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Appendix C

Effects of Different Block Sizes

on Runtime

As described in Section 2.4, in order to fully optimize the CUDA implementation of ILIT

for the GTX980 GPU, we needed to determine the most optimal launch parameters. To

find these launch parameters, we performed experiments to determine the effects of block

size on the overall runtime. As can be verified in Figure C.1, the overall trend for the

computationally-heavy runs (105 and 106 rays) indicates that a block size of 32 provides

the best runtime. In addition, one can also note that, for the less computationally-heavy

runs (103 and 104 rays), a different block size may be more effective. However, since we

are more concerned with the former scenario, we opted to use a block size of 32.
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Figure C.1: Effects of block size selection on runtime computed for the selected iris speci-
mens using the GPU-based implementation of ILIT. From left to right: darkly pigmented,
moderately pigmented and lightly pigmented specimen, respectively. The curves were com-
puted using distinct numbers of rays. From top to bottom: 106, 105, 104 and 103 rays,
respectively. All runtimes are averages of 10 distinct runs executed considering a spectral
resolution of 1 nm.
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Appendix D

Effects of Different Per-Thread

Register Allocation Configurations

on Runtime

As described in Section 2.4, in our efforts to minimize runtime of the CUDA implemen-

tation of ILIT, we performed experiments to determine the effects of different per-thread

register allocation configurations. The results are summarized in Table D.1. For the

computationally-heavy runs (105 and 106 rays), it can be seen that for 3 out of 6 tests, a

register allocation size of 64 provided the best runtimes. On the other hand, a similar trend

was not observed for the less computationally-heavy runs (103 and 104 rays). Again, since

the computrationally-heavy runs represent the most time consuming cases, we elected to

allocate 64 registers per thread.
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Register Darkly Moderately Lightly
Allocation Pigmented Pigmented Pigmented

32 4.03 s 7.55 s 12.24 s
64 4.04 s 7.54 s 12.18 s
128 4.01 s 7.54 s 12.23 s

compiler 4.00 s 7.53 s 12.23 s

Register Darkly Moderately Lightly
Allocation Pigmented Pigmented Pigmented

32 0.763 s 1.147 s 1.616 s
64 0.754 s 1.121 s 1.622 s
128 0.766 s 1.138 s 1.620 s

compiler 0.755 s 1.123 s 1.618 s

Register Darkly Moderately Lightly
Allocation Pigmented Pigmented Pigmented

32 0.410 s 0.475 s 0.558 s
64 0.405 s 0.470 s 0.548 s
128 0.404 s 0.460 s 0.567 s

compiler 0.405 s 0.468 s 0.543 s

Register Darkly Moderately Lightly
Allocation Pigmented Pigmented Pigmented

32 0.392 s 0.392 s 0.464 s
64 0.394 s 0.413 s 0.461 s
128 0.384 s 0.414 s 0.481 s

compiler 0.392 s 0.411 s 0.460 s

Table D.1: Effects of register allocation limit on runtime computed for the selected iris
specimens using the GPU-based implementation of ILIT. From top to bottom: 106, 105,
104 and 103 rays, respectively. All runtimes are averages of 10 distinct runs executed con-
sidering a spectral resolution of 1 nm. and block size set to 32. The term compiler indicates
runs where the register allocation limit was not set, and the appropriate parameters were
automatically determined by the compiler. Bold values correspond to minimum runtimes
obtained for a given column.
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