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Abstract

The reconstruction of a phase surface from the observed principal values is required for a

number of applications, including synthetic aperture radar (SAR) and magnetic resonance

imaging (MRI). However, the process of reconstruction, called “phase unwrapping”, is an

ill-posed problem. One class of phase-unwrapping algorithms uses smoothness prior mod-

els to remedy this situation. We categorize this class of algorithms according to the type

of prior model used. Motivated by this categorization, we propose that phase-unwrapping

algorithms be tested by generating phase surfaces from the prior models, and then quanti-

fying the deviation of each reconstructed surface from the corresponding original surface.

Finally, we present results of the new testing method on a selection of phase-unwrapping

algorithms, including a new algorithm.
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Chapter 1

Introduction

There are several different applications in which measurements are taken by aiming a

signal at the object to be observed. The signal is reflected or refracted by the object and

the changed signal is then received by measurement equipment. In these applications, the

phase of the signal is related to the quantity we wish to measure. For example, in synthetic

aperture radar (SAR) interferometry, terrain elevation measurements are reconstructed

from radar signal phase [GP98]. In magnetic resonance imaging (MRI), the water/fat

separation in tissue can be determined from the signal phase [GP98]. Optical interferometry

can measure the vibrations of a surface using laser phase [NPD00]. There are many other

similar applications.

However, in all of these problems the process of extracting the phase from the measured

signal “wraps” the absolute phase so that all the recovered phase values fall within a single

wavelength. This wrapped phase cannot be used for measurements. Thus a key step to the

processing of the signal’s information is to recover the absolute phase from the wrapped

values, a process known as “phase unwrapping”.
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CHAPTER 1. INTRODUCTION 2

Unfortunately, phase unwrapping in its most general form is an ill-posed problem,

so it cannot be solved without the addition of further information of some kind. Some

phase-unwrapping algorithms, designed to be used for a particular application, use in-

formation that relates to that application. However, since there are such a variety of

phase-unwrapping applications, it is useful to have algorithms that use only a general idea

of the “smoothness” of the unwrapped phase to solve the problem.

To test a general phase-unwrapping algorithm, it is not satisfactory to run the algo-

rithm on hand-selected data, either from real-world applications or from phase surfaces

constructed by the tester, because hand-selected data cannot represent the full range of

potential surfaces. Moreover, real-world data lacks a known solution to which the algo-

rithm’s reconstruction can be compared.

However, we find that phase-unwrapping algorithms that do not include application-

specific data nearly always make use of one of two models for the original phase surface.

We therefore suggest that these two models be used to generate surfaces with which we

can test phase-unwrapping algorithms. Because the surfaces are simulated and not real,

the ground truth is known, so we can quantify the discrepancy between the reconstructed

phase and the true phase. Because the surfaces are generated randomly, they can represent

the full range of phase unwrapping problems that satisfy the two models.

To introduce this quantitative testing method, we organize this paper as follows.

In Chapter 2 we formulate the phase unwrapping problem in the most general terms

possible, note that it is an ill-posed problem, and discuss the type of information that can

be included to make the problem well-posed.

In Chapter 3 we cast the phase-unwrapping problem as a probabilistic problem and

discuss the models that are used by general algorithms.
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In Chapter 4 we introduce a new method for testing general phase-unwrapping algo-

rithms, describe some specific phase-unwrapping algorithms including a new algorithm for

phase unwrapping, and present the results of our testing methods on these algorithms.

In Chapter 5 we summarize our conclusions, list the contributions of this paper, and

give some suggestions for future work.



Chapter 2

The phase unwrapping problem

For many applications it is necessary to know the real-valued phase of a signal, since this

quantity is related to some phenomenon of interest. However, it is usually the case that

measurements can extract only the “principal values” of the signal phase, that is, values

within a single wavelength. Therefore it is necessary to attempt to reconstruct the phase

from its principal values, a process known as “phase unwrapping”.

Mathematically, we can express the phase-unwrapping problem as follows. The “abso-

lute” phase is a continuous differentiable function s : R→ R where R is a two-dimensional

region in R2. The process of measuring s adds noise n : R → R to the true phase and

then wraps it to within a single wavelength. Let u = s+ n represent the noisy true phase.

For simplicity, and without loss of generality, we take the unit of measurement to be the

wavelength, and we shift the wrapping interval to zero. Then w : R → [0, 1) given by

w = u mod 1 is the wrapped noisy phase. Note that if we take the noise n to be continu-

ous and differentiable, then u will be continuous and differentiable. However, even if u is

continuous, w is at most piecewise continuous.

4



CHAPTER 2. THE PHASE UNWRAPPING PROBLEM 5

So far we have defined our functions on a continuous domain. However in practice

we can perform measurements only at discrete points within this domain. To simplify

notation we will assume that R is a rectangular region [xmin, xmax] × [ymin, ymax] (if R

is not rectangular we can cover it with a rectangular R′ and extend the definitions of

s and n to R′ by giving them default values outside of R). Partition [xmin, xmax] into

xmin = x1 < x2 < . . . < xM = xmax and [ymin, ymax] into ymin = y1 < y2 < . . . < yN = ymax.

Then the set of points G = {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} forms a grid in R. We will

assume that the measurements of s occur at the points of G (in practice, measurements

are always performed along such a grid).

Most algorithms that perform phase unwrapping make use of the discrete partial deriva-

tives of functions on R. To simplify the form of the discrete partial derivative expressions,

we make two further assumptions. The first is that the points xi are equally spaced,

and likewise the points yj are equally spaced. The second is that the spacing between

points is equal in the x- and y- directions. We can express these two assumptions as

xi+1 − xi = yj+1 − yj = c for all 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1. Having made these

assumptions, we can without loss of generality take c = 1, so that the discrete partial

derivatives take the form of differences. These assumptions are used only for calculating

discrete approximations to partial derviatives, and therefore could be relaxed by replacing

differences in the discussions below with the appropriate approximation.

Let sij = s(xi, yj), nij = n(xi, yj), uij = u(xi, yj), and wij = w(xi, yj). Then uij =

sij + nij and wij = uij mod 1. Note that due to the latter expression, uij − wij is an

integer. Let kij = uij − wij ∈ Z. We will use bold symbols to denote the vector or matrix

of values at grid points: thus s = {sij}, u = {uij}, and so forth.

In summary, the discrete phase unwrapping problem is as follows: given a set of MN
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noisy, wrapped phase measurements w, unwrap the measurements and filter out the noise

to obtain the true phase values s. It is immediately clear that such a problem is not well-

posed; even ignoring the effects of noise (setting n = 0), there are infinitely many choices

for the set of s that satisfy wij = sij mod 1. Each of these sets could be a measurement

at discrete points of a continuous differentiable phase function s. In particular we could

simply take sij = wij everywhere. However, such a trivial solution is not useful for most

applications. This is because although they are often not explicitly included in the problem

statement, there are certain properties that make one solution preferable to another. To

remove the ambiguity of the phase unwrapping problem we need to quantify what makes

one solution more desirable than another.

To begin with, all phase-unwrapping algorithms arbitrarily fix one reference point as

“zero”. This is necessary because there is no reasonable way to prefer one absolute phase

surface to another if they differ only by an integer constant, since the integer shift of the

original phase is lost in the wrapping operation. Having fixed this reference point, some

algorithms base their phase surface preference on additional information that is specific

to a particular application. However, we shall be concerned only with algorithms whose

formulation of preferable solutions is not specific to any particular application, but rather

indicates only a preference for “smooth” phase functions.

Since even to reconstruct the noisy absolute phase from the wrapped phase is an ill-

posed problem to which restrictions must be added, many phase-unwrapping algorithms do

not attempt to recreate the absolute phase s. Instead, these algorithms simply reconstruct

the noisy phase u from the observations w (this can be followed with a separate “filtering”

or “smoothing” algorithm that reduces noise). In the discussions that follow, algorithms

that unwrap and remove noise at once are distinguished by the use of the variable s for the
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reconstructed points. Those algorithms that only unwrap but do not filter noise instead

reconstruct u.

2.1 Choosing an assumption

To see what type of extra assumption might be made in order to produce meaningful

solutions to the phase unwrapping problem without including application-specfic data, in

this section we discuss the most popular assumption and the reasoning behind its choice.

Many phase-unwrapping algorithms, and in particular all of those discussed in Ghiglia and

Pritt’s seminal book [GP98], assume that most of the measurements of the signal from

which the phase is extracted are not aliased. That is, the assumption is that the grid

on which the measurements have been made is fine enough so that the local differences

between the true phase values sij are nearly always less than half of the wavelength. We call

this assumption Itoh’s assumption, for reasons we discuss below. Mathematically, Itoh’s

assumption is that

|(∆xs)ij| < 1/2 (2.1)

|(∆ys)ij| < 1/2 (2.2)

for most i, j, where we define

(∆xf)ij = f(i+1)j − fij for all 1 ≤ i ≤M − 1, 1 ≤ j ≤ N (2.3)

(∆yf)ij = fi(j+1) − fij for all 1 ≤ i ≤M, 1 ≤ j ≤ N − 1 (2.4)

for any function f on our grid.
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There are two reasons why most phase unwrapping strategies employ this assumption.

The first is practical: it is thought [GP98] that most measurements for which phase un-

wrapping is needed are not aliased. The second reason is theoretical, and begins with an

analysis of a one-dimensional phase unwrapping problem. Itoh [Ito82] showed that in a

one-dimensional phase unwrapping problem, the (noisy) absolute phase can be uniquely re-

constructed from the wrapped phase when the local absolute phase differences are less than

half a wavelength. Mathematically, suppose that g(x) is the wrapped version of a single-

variable phase function h(x). We are given the wrapped measurements {gi = g(xi)}N
i=1 at

unit-spaced points such that gi = hi mod 1 for some unknown {hi = h(xi)}N
i=1. For each

1 ≤ i ≤ N − 1, if

|hi+1 − hi| < 1/2 (2.5)

then [Ito82]

hi+1 − hi = W (gi+1 − gi) (2.6)

where

W (x) =
((
x+ 1

2

)
mod 1

) − 1
2
= x− rnd(x) (2.7)

This means that we can find (hi+1 − hi) for all 1 ≤ i ≤ N − 1. So, starting from an

arbitrarily fixed reference point h1 = g1, we can find the absolute phase at each point by

the recursive equation

hi+1 = hi +W (gi+1 − gi) for all 1 ≤ i ≤ N − 1. (2.8)

The repeated application of (2.8) is known as Itoh’s algorithm.
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We can view Itoh’s algorithm as an integration of h along its single dimension. Denote

the derivative of h with respect to x as hx. We can approximate this derivative on the

interval [xi, xi+1] by its value at the midpoint, which in turn is approximated by a first-

order finite difference. Thus our estimate of the derivative hx on the interval [xi, xi+1] is

given by

hx(x) 
 (hx)i+ 1
2


 (hi+1 − hi)

=W (gi+1 − gi)

(2.9)

where the subscript i + 1
2
indicates a value at the point midway between xi and xi+1. So

Itoh’s algorithm is a method of estimating hi+1 using the equation

hi+1 = hi +

∫ xi+1

xi

hx(x)dx (2.10)

where the estimate of the derivative is calculated from the wrapped phase values. That is,

Itoh’s algorithm finds the phase at xi+1 by integrating an estimated derivative along the

path joining xi to xi+1. Note that the estimate of the derivative is only reasonable when

the assumption (2.5) holds.

The analogue of Itoh’s algorithm in two dimensions is to estimate the absolute phase

gradient from the wrapped phase differences, and then to use the estimated gradient to

reconstruct the absolute phase. Since for the phase unwrapping problem wij = uij mod 1,

by analogy with the one-dimensional case we can write

(∆du)ij = W ((∆dw)ij) (2.11)

whenever

|(∆du)ij| < 1/2 (2.12)
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for each of d = x, y. Note that we cannot say anything about the true phase surface points

s due to the addition of noise, so the assumption required is actually stronger than the form

of Itoh’s assumption in (2.1)-(2.2). Let us suppose that (2.12) holds for d = x, y at nearly

every applicable i and j. It is then reasonable to approximate (∆du)ij by W ((∆dw)ij) on

the grid. Using a standard finite-difference technique, we approximate the partial derivative

function ux between the points (xi, yj) and (xi+1, yj) by the difference (∆xu)ij. Likewise uy

between (xi, yj) and (xi+1, yj) is approximated by (∆yu)ij. Thus the local approximations

are

ud(x, y) 
 (∆du)ij (2.13)


 W ((∆dw)ij) (2.14)

for each of d = x, y, at each applicable i and j. Having an estimate of the gradient of the

absolute phase, the pair of two-dimensional equations that correspond to (2.10) are

u(i+1)j = uij +

∫ (xi+1,yj)

(xi,yj)

ux(x, y)dx (2.15)

and

ui(j+1) = uij +

∫ (xi,yj+1)

(xi,yj)

uy(x, y)dy. (2.16)

in which we use the local estimates of ux(x, y) and uy(x, y) given by (2.14).

Notice, however, that there are two possible ways to obtain an estimate for u(i+1)(j+1)

given an estimate for uij and the corresponding gradient estimates. We can first apply

(2.15) and then apply (2.16), or we can apply (2.16) and then (2.15). As far as we have

seen, there is no reason that the two different estimates obtained by these two different

methods should be the same. Extending this to the general case, there are many possible
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orders of application of (2.15) and (2.16) between two points (xi, yj) and (xk, yl). Each

of these orders represents a different path of integration through the domain. Presumably

each one of these different paths could lead to a different estimated value for ukl. This

problem is not present in the one-dimensional version of Itoh’s algorithm, since in one

dimension there is only one possible path between two points.

Vector calculus theory [Ste99] tells us that if we use the true values of ux(x, y) and

uy(x, y) in (2.15) and (2.16), then the integrals along any path between (xi, yj) and (xk, yl)

must be the same. This means that we can choose any path between (xi, yj) and (xk, yl)

to find ukl given uij and the gradient – the integral is then said to be path-independent.

However, we do not know the gradient of the absolute phase; we can only estimate it

from the wrapped phase differences. Since the values we use in (2.15) and (2.16) are only

estimates and not the true absolute phase gradient, it may indeed be the case that different

paths of integration between two points produce differing estimates.

Fortunately it is not required that the estimate of the absolute phase gradient used

in equations (2.15) and (2.16) be equal to the true absolute phase gradient in order for

integrals on the grid to be path-independent. It is enough that the following condition be

satisfied: that

∮
C

∇̂u = 0 (2.17)

for any closed curve C in the domain, where ∇̂u is our estimate of the absolute phase

gradient. When (2.17) is satisfied, then ∇̂u is in fact the gradient of some single-valued

differentiable function, and so its integral must be path-independent. Using a standard
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finite-difference approximation, the discrete analogue of this condition is that

K−1∑
k=1

(
δ(ik+1, ik + 1)(∆xu)ikjk

+ δ(ik+1, ik − 1)(−(∆xu)ik−1jk
)

+δ(jk+1, jk + 1)(∆yu)ikjk
+ δ(jk+1, jk − 1)(−(∆yu)ikjk−1

)
)
= 0 (2.18)

where δ is the discrete delta function, iK = i1, jK = j1, and for each 1 ≤ k ≤ K − 1

either ik+1 = ik and jk+1 = jk ± 1, or ik+1 = ik ± 1 and jk+1 = jk. The condition (2.18)

states that the sum of the discrete estimated derivatives around a discrete closed path in

the domain must be zero. This condition can be reduced to a simpler form by noting that

any closed curve in a grid can be expressed as a sum of two-by-two closed curves. If the

sum of the derivatives around a closed curve in the grid is not zero, the sum of derivatives

around at least one of the two-by-two closed curves that comprise it must also be nonzero.

Therefore it is sufficient to check that the sum of the partial derivatives around each of

the two-by-two closed curves in the grid is zero. So a necessary and sufficient condition for

path-independent integrals in the grid is that

(∆yu)ij + (∆xu)i(j+1) − (∆yu)(i+1)j − (∆xu)ij = 0 (2.19)

for all 1 ≤ i ≤M−1, 1 ≤ j ≤ N−1. Note that the step of discretizing the derivative cannot

possibly produce path-dependent integrals, since if we know the true finite differences,

(2.19) is always equal to zero. Path-dependent integrals can therefore only introduced

by approximating the finite differences. When we use Itoh’s assumption, we approximate

(∆du)ij by W ((∆dw)ij). If Itoh’s assumption (2.12) holds at a particular i, j, these two

are equal, so (2.19) cannot be violated. Therefore a violation of (2.19) on a particular

two-by-two square in the grid must be caused by a violation of (2.12) somewhere in that

square. We call squares that violate (2.19) under the approximation ̂(∆du)ij = W ((∆dw)ij)
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residues. Thus each residue in a grid indicates a location at which Itoh’s assumption is

violated (though not all violations may be so indicated). It is possible to make use of this

information to help guide the phase unwrapping process.

Itoh’s assumption is essentially a method of enforcing smoothness in the solution of

the phase unwrapping problem. There are many notions of smoothness that could be

used in place of these assumptions. However, these conditions are particularly useful

theoretically because whenever they hold, the absolute phase can be exactly reconstructed,

and because we can identify some locations at which the assumption is violated. Practically,

this assumption makes sense because we often expect that the originating signal is not

aliased.



Chapter 3

A probabilistic framework for phase

unwrapping

We have seen that the phase unwrapping problem is ill-posed, and therefore we must include

additional information to obtain a meaningful solution. We have discussed as an example

one possible assumption and the reasoning behind this choice. However, having selected

an assumption that reflects the desired properties of a good solution, we need some way

of making use of this information in our algorithm. In this chapter we introduce a natural

and structured method for combining our additional assumptions with the relationship

between the observed data and the unknown solution.

Phase unwrapping is the process of making a “best guess” for the unknown and un-

observable absolute phase s using our measurements w. Under the Bayesian framework,

the true conditional distribution pR
s|w of the unknown absolute phase given the observed

wrapped phase captures all of the information necessary to make such a choice, regardless

of the criterion we use to decide whether our choice is “best”. Of course, there is no way to

14
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determine the true distribution pR
s|w. Instead, we choose a model ps|w of this distribution,

and so the quality of our decisions is limited by the quality of our model. Therefore we

can view the phase unwrapping problem as consisting of two parts: finding a reasonable

model ps|w, and and then making a choice of s based on this distribution.

For most problems, including the phase unwrapping problem, it is often easier to de-

compose the desired distribution ps|w using Bayes’ theorem

ps|w =
pw|sps
pw

(3.1)

where we can find pw by

pw =

∫
s

pw|sps, (3.2)

and then to model the distributions pw|s and ps. This is because pw|s and ps have natural

interpretations related to the problem, and so it is generally easier to decide on a reasonable

model for each of these distributions. In particular, Bayes’ theorem can be interpreted as

a way of modifying our original beliefs about the unknown phenomenon, using the new

information introduced by observing the measurable data, to obtain a new belief about the

unknown phenomenon. The original beliefs are represented by ps, the modifying influence

by pw|s and the new beliefs by ps|w.

Using this interpretation, the conditional distribution pw|s of the observed data given

the unobserved phenomenon is known as the “likelihood”, and is indicative of the way

in which the data w are generated from the phenomenon s. For the phase unwrapping

problem, we saw in Chapter 2 that the measurement process adds noise to s and then

wraps the noisy version of s into [0, 1) to obtain w. The likelihood needs to model this

process.
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The distribution ps of the unknown quantity is called the “prior” distribution. In

general it expresses an a priori preference for certain estimates of s over others. This is

particularly important in the context of the phase unwrapping problem, since in the absence

of such a preference the phase unwrapping problem admits infinitely many solutions. The

prior distribution we choose must express our prior knowledge of the problem; that is,

what it is that makes one solution more meaningful than another. In the context of phase

unwrapping it is usually desirable that the original function s is “smooth” in some sense,

so the prior distribution usually prefers smooth surfaces.

Viewing the phase unwrapping problem from this probabilistic perspective, we need

to perform the following steps. First, we must choose a prior probability model that

expresses the desired properties of the solution. Second, we must choose a likelihood

model that expresses the way in which the wrapped phase is generated from the unwrapped

phase. Third, we must calculate ps|w, the “posterior” distribution, through Bayes’ theorem.

Finally, we can decide on an estimate of the absolute phase using the posterior distribution.

This framework provides not only an estimate of the unwrapped phase, but also a way to

judge the quality of the estimate, in the form of the posterior distribution.

3.1 Estimating the absolute phase from the posterior

There are several ways of choosing an estimate of s knowing ps|w. One common method

[NPD00] is to choose a mode of the posterior distribution, that is, to find

s∗ = argmax
s

ps|w(s,w). (3.3)
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The estimate s∗ found using such a procedure is known as the maximum a posteriori (MAP)

estimate, since we are choosing a value at which the posterior distribution has a maximum.

It can be shown to be a Bayes-optimal estimate with respect to a delta loss function [BS94].

Other commonly used estimates are the mean or median of the posterior. However, the

MAP estimate has the advantage that the estimation takes the form of an optimization of

the posterior, which is computationally easier than the calculation of the expectation of a

loss function with respect to the posterior required by Bayes-optimal estimates in general.

Since for an MAP estimate we are concerned only with a maximization with respect

to the unknown variables s, we need only know ps|w up to additive and multiplicative

constants that do not depend on s. In particular, since pw does not depend on s, we can

write

s∗ = argmax
s

ps|w(s,w) (3.4)

= argmax
s

ps|w(s,w)pw(w) (3.5)

= argmax
s

ps,w(s,w) (3.6)

= argmax
s

pw|s(s,w)ps(s) (3.7)

Due to (3.7) it is not necessary to actually calculate the integral in (3.2) to find the MAP

estimate. We need merely multiply the prior and the likelihood to obtain the joint distri-

bution of s and w. In fact, some algorithms do not directly model the prior distribution

and likelihood, but instead arrive at the joint distribution through other means. These

algorithms then make use of (3.6).

It is often possible to simplify the optimization process by transforming the problem
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to the logarithmic domain. Since the logarithm is an increasing function, we will have

s∗ = argmax
s

log
(
pw|s(s,w)ps(s)

)
(3.8)

= argmax
s

(
log pw|s(s,w) + log ps(s)

)
(3.9)

In fact, in many cases the prior distribution and the likelihood are of the form

ps(s) = exp (−fs(s)) (3.10)

pw|s(s,w) = exp (−fw,s(s,w)) , (3.11)

for some functions fs, fw,s, in which case the optimization becomes

s∗ = argmin
s

(fw,s(s,w) + fs(s)) (3.12)

Placing the optimization in the form (3.12) often makes the optimization process more

efficient, but there is a second reason for making such a transformation. The above shows

that any phase-unwrapping algorithm that is an optimization of the form in (3.12) can be

viewed as a probabilistic algorithm in which the likelihood is given by (3.11) and the prior

is given by (3.10). Therefore we can compare any such “optimization” phase-unwrapping

algorithm to any “probabilistic” algorithms within the same probabilistic framework. This

framework allows us to see what assumptions are implicitly made, in the form of the prior

distribution and likelihood, about the nature of the desired solution and the nature of the

relationship between the observed data and the generating process respectively.

3.2 Estimating differences in place of point values

So far we have expressed the phase unwrapping problem as the problem of estimating the

point absolute phase values s given the point wrapped absolute phase values w. However,
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it is possible to change the variable of estimation in several ways. One method is to view

the phase unwrapping problem as the problem of recreating a surface from its gradient

field. As we saw in Section 2.1, if we know the true discrete gradient field of a surface

we can reconstruct it up to a constant (which is the best we can ever hope to do for the

phase unwrapping problem). We do not know the true gradient field of the absolute phase

surface, but we can attempt to estimate it from the wrapped phase gradients. Let ∆f

represent the set of all x- and y-direction differences of the function f , that is

∆f ={(∆xf)ij | 1 ≤ i ≤M − 1, 1 ≤ j ≤ N}

∪ {(∆yf)ij | 1 ≤ i ≤M, 1 ≤ j ≤ N − 1}
(3.13)

for any function f on the region R in question. Then the problem is to find p∆s|∆w and

then make a choice of ∆s based on this distribution. To make use of Bayes’ theorem, we

choose a prior distribution p∆s and a likelihood p∆w|∆s.

However, we need to be careful when making our choice of ∆s based on p∆s|∆w. Since

according to vector calculus [Ste99] the set of possible gradient fields is

C =
{
∆s ∈ RMN−M−N

∣∣(∆ys)ij + (∆xs)i(j+1) − (∆ys)(i+1)j − (∆xs)ij = 0 for each i, j
}
,

(3.14)

that is, the set of conservative vector fields, the MAP estimate should be calculated as

∆s∗ = argmax
∆s∈C

p∆s|∆w(∆s,∆w). (3.15)

This estimate is in fact equivalent1 to the MAP estimate of s produced by setting ps(s) =

p∆s(∆s) and pw|s(w, s) = p∆w|∆s(∆w,∆s). However, since constrained optimization is

1In the sense that ∆s∗ can be obtained by taking the differences of s∗, and s∗ can be obtained up to

a constant by integrating ∆s∗.
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generally less efficient than unconstrained optimization, it would be preferable to avoid

restricting the optimization to C. This can be done by injecting a preference for conserva-

tive vector fields into the prior distribution p∆s. For example, we can multiply the prior

distribution by

c(∆s) =
∏
δ
(
(∆ys)ij + (∆xs)i(j+1) − (∆ys)(i+1)j − (∆xs)ij, 0

)
, (3.16)

which puts all of the probability mass on conservative vector fields, and therefore is essen-

tially the same as performing the constrained optimization. Alternatively we can multiply

the prior distribution by

c(∆s) =
∏

exp

(
− 1

2σ2
c

((∆ys)ij + (∆xs)i(j+1) − (∆ys)(i+1)j − (∆xs)ij)
2

)
, (3.17)

which places higher mass on conservative vector fields and lower mass on nonconservative

vector fields. The degree of the preference is controlled by σc. The “relaxed” curl constraint

(3.17) is not guaranteed to produce conservative vector fields as estimates, but (depending

on σc) will do so often enough to make it useful. Its advantage over the “strict” curl

constraint (3.16) is that it may make the optimization more efficient.

3.3 Prior models

In the rest of this chapter we discuss some models that have been applied to the phase

unwrapping problem. We begin by a discussion of prior distribution models. As mentioned

above, a prior distribution for the phase unwrapping problem needs to quantify what makes

one solution preferable to another. It is possible to do this via an application-specific prior

model of the unwrapped phase [CF00, CZ01]. However, we restrict our discussion to
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models that do not include application-specific data, but rather indicate only a preference

for “smooth” solutions. Solving ill-posed problems by adding smoothness constraints is

a well-established technique known as regularization. Both of the prior models discussed

below have their origins in the application of regularization to surface reconstruction in

computer vision [Sze90].

3.3.1 The first-order prior

The first measure of smoothness we consider is the squared first derivatives of the phase

function s [FKMM00, SGPV99, AFKM01, KFPM01, FKP01]. That is, the smaller s2x+s
2
y,

the “smoother” the function s. In discrete terms this corresponds to preferring small values

of

∑
(s(i+1)j − sij)

2 +
∑

(si(j+1) − sij)
2 (3.18)

Following the discussion in Section 3.1 above, we write this as an exponential-form prior

distribution over the absolute phase point values as

ps(s) ∝
∏

exp

(
− 1

2σ2
p

(s(i+1)j − sij)
2

) ∏
exp

(
− 1

2σ2
p

(si(j+1) − sij)
2

)
(3.19)

We can instead write this as a prior over the absolute phase differences

p∆s(∆s) ∝
∏

exp

(
− 1

2σ2
p

((∆xs)ij)
2

) ∏
exp

(
− 1

2σ2
p

((∆ys)ij)
2

)
(3.20)

The first-order prior, also known as the “membrane” model, is not very satisfactory as a

smoothness criterion, since it does not satisfy the intuitive notion of what it means to be

smooth. Rather it prefers solutions that change locally by small amounts, which does not

prevent solutions from being jagged. However it is still commonly used as a prior for phase

unwrapping because of its simple form and its relation to Itoh’s assumption.



CHAPTER 3. A PROBABILISTIC FRAMEWORK FOR PHASE UNWRAPPING 22

3.3.2 The second-order prior

A more intuitive notion of smoothness uses the second derivatives of the absolute phase

function s [MR95, SGPV99, GNPS98]. Accordingly smoother functions have smaller sums

of squared second derivatives s2xx + s2xy + s
2
yx + s2yy. In discrete terms, we prefer solutions

with smaller sums∑
((∆xs)(i+1)j − (∆xs)ij)

2 +
∑

((∆ys)i(j+1) − (∆ys)ij)
2

+
∑

((∆xs)i(j+1) − (∆xs)ij)
2 +

∑
((∆ys)(i+1)j − (∆ys)ij)

2
(3.21)

Again, we write a prior distribution over the absolute phase point values as an exponential

form of this summation

ps(s) ∝
∏

exp

(
− 1

2σ2
p

(s(i+2)j − 2s(i+1)j + sij)
2

)
∏

exp

(
− 1

2σ2
p

(si(j+2) − 2si(j+1) + sij)
2

)
∏

exp

(
− 1

σ2
p

(s(i+1)(j+1) − s(i+1)j − si(j+1) + sij)
2

) (3.22)

or a prior distribution over the absolute phase differences as

p∆s(∆s) ∝
∏

exp

(
− 1

2σ2
p

((∆xs)(i+1)j − (∆xs)ij)
2

)
∏

exp

(
− 1

2σ2
p

((∆ys)i(j+1) − (∆ys)ij)
2

)
∏

exp

(
− 1

2σ2
p

((∆xs)i(j+1) − (∆xs)ij)
2

)
∏

exp

(
− 1

2σ2
p

((∆ys)(i+1)j − (∆ys)ij)
2

)
(3.23)

This prior, also known as the “thin plate” model, is more satisfactory as a measure of

smoothness than the first-order model, because it prefers solutions in which adjacent dif-
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ferences have similar values. This corresponds more closely to the intuitive notion of

smoothness.

3.4 Likelihood models

The likelihood needs to model the process by which the wrapped phase is generated from

the unwrapped phase. As with prior distributions, it is possible to use an application-

specific likelihood model [PRS00]. However, we discuss only likelihood models that do

not relate specifically to particular applications, but model the transformation of the un-

wrapped phase into the wrapped phase more generally.

3.4.1 The Lp-norm likelihood

The Lp-norm likelihood model [Cos96, Cos98, Fly97, GP98, GZW88, MR95] makes use of

Itoh’s assumption. Recall from Section 2.1 that wherever

|(∆ds)ij| < 1/2, (3.24)

we will have

(∆ds)ij =W ((∆dw)ij) (3.25)

where d = x, y. If we assume that Itoh’s assumption (3.24) holds nearly everywhere in R,

it is reasonable to attempt to match the unwrapped phase differences to the transformed

wrapped-phase differences. The measure that is used to evaluate the quality of the match

is the Euclidean Lp norm, which is defined as

np(x, y) = |x− y|p (3.26)
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for p > 0 and as

np(x, y) =


 0 x = y

1 x �= y
(3.27)

for p = 0. Thus the Lp-norm model requires the minimization of

∑
np((∆xs)ij,W ((∆xs)ij)) +

∑
np((∆ys)ij,W ((∆ys)ij)) (3.28)

with respect to either the unwrapped phase values s or the unwrapped phase differences

∆s. We can view the Lp-norm model from a probabilistic perspective by setting it into

the form described in Section 3.1. That is, we can define a likelihood relating the absolute

phase and wrapped phase point values by

pw|s(w, s) ∝
∏

exp

(
− 1

2σ2
l

np(s(i+1)j − sij,W (w(i+1)j − wij))

)
∏

exp

(
− 1

2σ2
l

np(si(j+1) − sij,W (wi(j+1) − wij))

) (3.29)

or a likelihood relating the absolute phase and wrapped phase differences by

p∆w|∆s(∆w,∆s) ∝
∏

exp

(
− 1

2σ2
l

np((∆xs)ij,W ((∆xw)ij))

)
∏

exp

(
− 1

2σ2
l

np((∆ys)ij,W ((∆yw)ij))

) (3.30)

Several algorithms maximize the Lp-norm likelihood without first multiplying it by a prior

distribution [Cos96, Cos98, Fly97, GP98, GZW88]. This can be viewed as setting the joint

distribution ps,w or p∆s,∆w equal to the exponential form described above and then finding

the MAP estimate, or instead as finding a maximum likelihood (ML) estimate.

The Lp-norm likelihood model is actually a family of models, since its effects are differ-

ent depending on the choice of p. For p = 0, the likelihood attempts to match the absolute



CHAPTER 3. A PROBABILISTIC FRAMEWORK FOR PHASE UNWRAPPING 25

phase differences with the transformed wrapped phase differences at as many locations as

possible. At places where they do not match, the amount of separation does not matter.

The L0 model is sometimes considered to be the best of the Lp models. However, the

maximization of the L0 model has been shown to be NP-hard [CZ00]. Still, some “branch

cut” minimization algorithms like Goldstein’s algorithm [GZW88], which can be viewed

as this type of algorithm since the reconstructed phase differences match the transformed

wrapped phase differences everywhere except across the branch cuts, approximate the L0

model reasonably well and produce good results [CZ00].

Using the L1-norm likelihood model is an attractive option, since the global maximum of

this model can be found reasonably efficiently using either network programming techniques

[Cos96, Cos98] or using Flynn’s algorithm [Fly97]. These algorithms combine the L1 model

with the functional transformation F1 below to change the variable of estimation. The L1

model has been found to produce good results in practice [CZ00].

Finding the global maximum of the L2 likelihood model is extremely efficient, since it

can be done for example through a cosine transform [GP98]. However, L2 solutions tend

to “smooth” the surface too much, so estimates based on an L2 model are not as good

as L0 and L1 estimates [CZ00]. For p > 2 this problem increases, so Lp-norm likelihood

models with p > 2 are not generally used [GP98].

3.4.2 “Functional” likelihoods

“Functional” likelihoods arise when we use relationships between the wrapped and un-

wrapped phase to write some of our variables as functions of other variables. Instead of

using Bayes’ theorem, we change the variable of estimation to find the joint probability of
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the observed and unobserved variables. The idea is to use the relations

wij = uij mod 1 (3.31)

uij = wij + kij (3.32)

from Chapter 2 to transform the noisy absolute phase point values u to the wrapped phase

values w and the integer shifts k; or similarly to transform absolute phase differences to

wrapped phase differences and integer shift differences. Essentially, we are ignoring the

stochastic nature of the relationship between the absolute phase and the wrapped phase,

and instead treating it as a deterministic relationship.

From probability theory, we know that if A is a random variable and B = f(A) where

f is reasonably well-behaved2, then B is a random variable and

Pr(B ∈ S) = Pr(f(A) ∈ S) = Pr(A ∈ f−1(S)) (3.33)

where f−1(S) = {a|f(a) ∈ S} is the inverse image of S [Pfe90]. The transformations

that we will look at involve a map f : R → Z × [c, d) such that f is a bijection and

the inverse function of f is f−1(y, z) = y + z. Let X be a real-valued random variable

and let (Y, Z) = f(X). Then Y, Z are random variables. If S = {y} × [z1, z2], then

f−1(S) = [y + z1, y + z2], so from (3.33)

Pr(Y = y, z1 ≤ Z ≤ z2) = Pr(y + z1 ≤ X ≤ y + z2) (3.34)

=

∫ y+z2

y+z1

pX(x)dx (3.35)

=

∫ z2

z1

pX(y + z)dz (3.36)

2f must be a Borel function.
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where the last line is a standard change of variable. But by definition,

Pr(Y = y, z1 ≤ Z ≤ z2) =

∫ z2

z1

pY,Z(y, z)dz (3.37)

therefore

pY,Z(y, z) = pX(y + z) (3.38)

Thus we have shown that when the random variables X,Y, Z are related by a function

f with the properties defined above, then the probability densities of X and Y, Z are

related by (3.38). If we think of pX as a prior distribution, and choose f so that one of

the variables Y, Z is observed and the other is unobserved, then applying the function f

transforms the prior into a joint distribution that we can use to find an estimate of the

unobserved variable using (3.6). In phase unwrapping, the wrapped phase is observed, so

we need a function that satisfies the above properties while transforming the absolute phase

into the wrapped phase (or a function of the wrapped phase) and some other unobserved

variable. We consider two such functions.

The first mapping [GNPS98, SGPV99, Cos96, Cos98, Fly97] we consider is used to

transform differences. It is defined as F1 : R → Z × [−1
2
, 1

2
) given by

F1(x) = (rnd(x),W (x)) (3.39)

where rnd(x) =
⌊
x+ 1

2

⌋
rounds its argument to the nearest integer, and W (x) is the
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wrapping operation of (2.7). Note that x = W (x) + rnd(x). Then

F−1
1 (y, z) = {x | rnd(x) = y and W (x) = z} (3.40)

= {x | rnd(x) = y} ∩ {x | W (x) = z} (3.41)

=

[
y − 1

2
, y +

1

2

)
∩ {z + n | n ∈ Z} (3.42)

= y + z (3.43)

So F1 is a bijection and the inverse function of F1 is F−1
1 (y, z) = y + z. Applying F1 to

(∆du)ij gives (κdij, ωdij) where ωdij =W ((∆du)ij) = W ((∆dw)ij) and κdij = rnd((∆du)ij).

Thus by (3.38) we can write

pκ,ω(κ,ω) = p∆u

(
(∆du)ij = κdij + ωdij

)
(3.44)

Thus applying F1 transforms a prior distribution over ∆u to a joint distribution over κ

and ω. Since we know ω, we can use this joint distribution in (3.6) to find a MAP estimate

of κ. Then we simply apply the inverse of F1 to each pair κdij, ωdij to obtain an estimate

of the noisy absolute phase differences.

The second mapping [AFKM01, KFPM01, FKP01] we consider transforms point values

rather than differences. F2 : R → Z × [0, 1) given by

F2(x) = (�x� , x mod 1) (3.45)

Then

F−1
2 (y, z) = {x | �x� = y and x mod 1 = z} (3.46)

= {x | �x� = y} ∩ {x | x mod 1 = z} (3.47)

= [y, y + 1) ∩ {z + n | n ∈ Z} (3.48)

= y + z (3.49)
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So F2 is a bijection and the inverse function of F2 is F−1
2 (y, z) = y+ z. Applying F2 to uij

gives (kij, wij). Thus by (3.38) we can write

pk,w(k,w) = pu

(
uij = kij + wij

)
(3.50)

Again, applying F2 transforms a prior distribution over u to a joint distribution over the

unknown k and the known w, so we can use this distribution in (3.6) to find a MAP

estimate of k. Then we simply apply the inverse of F2 to each pair kij, wij to obtain an

estimate of the noisy absolute phase point values.

Both F1 and F2 achieve the similar goal of decomposing the absolute phase into two

parts, an integer part and a “fractional” part. These two “functional” likelihoods differ

mainly because F1 is used to transform differences, while F2 is used to transform point

values.

3.4.3 Gaussian likelihood

Another possible likelihood arises from modelling the noise as Gaussian [FKMM00]. Recall

from Chapter 2 that

sij + nij = wij + kij (3.51)

for each i, j, where nij is the noise, wij is the observed wrapped phase, and kij is an integer

shift. If we model the noise as a Gaussian random variable with mean zero and variance

σ2
l , then

pwij ,kij |sij
(wij, kij, sij) ∝ exp

(
− 1

2σ2
l

(wij + kij − sij)
2

)
(3.52)
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Marginalizing out kij gives

pwij |sij
(wij, sij) ∝

∑
kij∈Z

exp

(
− 1

2σ2
l

(wij + kij − sij)

)
(3.53)

Assuming that the wij are independent, we get a likelihood of the form

pw|s(w, s) ∝
∏
ij

∑
kij∈Z

exp

(
− 1

2σ2
l

(wij + kij − sij)

)
(3.54)

This likelihood seems to model the generating process well, but it may be too complex to

admit efficient optimization.

3.5 Summary

Clearly there are many possible ways of combining the prior and likelihood models that

we have discussed. In Table 3.1 we summarize the combinations that have been applied

to the phase unwrapping problem. Two types of prior model, a first-order model and a

second-order model, have been commonly used (“-” in the table indicates that no prior

model was used; i.e. that the likelihood took the place of the joint). Several likelihood

models have been used. In addition, some algorithms estimate absolute phase differences,

in which case a curl constraint, either “strict” or “relaxed”, must be added to the problem.

When absolute phase point values are estimated, no curl constraint is necessary.

We have seen that a probabilistic framework provides a structured way of combining our

prior beliefs about phase surfaces with the actual observed wrapped phase. There are many

possible variations within this structure, including the choice of prior and likelihood models,

and the choice of estimation variable. Because of this, nearly every phase unwrapping

algorithm can be cast into this framework. This provides us with a way of comparing

algorithms that are seemingly very different.
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Table 3.1: Summary of phase unwrapping models.

Prior Likelihood PV/Diff Curl Constraint Reference

- L0 differences strict [GZW88]

- L1 + F1 differences strict [Cos96, Cos98]

- L1 + F1 point values N/A [Fly97]

- L2 point values N/A [GP98]

1st-order gaussian point values N/A [FKMM00]

1st-order/2nd-order F1 differences relaxed [SGPV99]

1st-order F2 differences relaxed [AFKM01]

1st-order F2 differences strict [KFPM01, FKP01]

2nd-order L2 point values N/A [MR95]

2nd-order F1 differences relaxed [GNPS98]

Moreover, when viewed within this framework, there are relatively few different types of

prior and likelihood model that have been used by general phase-unwrapping algorithms.

The fact that phase-unwrapping algorithms can be categorized in this manner suggests the

testing method we develop in the next chapter.



Chapter 4

Testing phase unwrapping methods

In order to be able to choose a phase unwrapping method, we need to judge the success

of phase unwrapping algorithms in an unbiased way. However, there is little consensus

regarding which method should be used to evaluate phase unwrapping algorithms.

One possibility is to test the algorithms on real-world problems. Of course, it is usually

the case that these problems consist merely of noisy wrapped phase values and have no

“known” solution. This means that the results can only be compared to the results of

other algorithms. The comparison is judged by visual inspection or other ad hoc methods

which are not trustworthy as measures of success. In a few cases [CZ00, CZ01] real-

world problems have been tested that have “known” solutions through other means of

measurement. However, since the other means also may introduce error, it is difficult

to determine which of the reconstructions is responsible for discrepancies between them.

Moreover, secondary means of measurement may not be available for all applications of

phase unwrapping.

Another possibility is to test the algorithms on simulated data. In this case, we begin

32
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with a “known” surface, so the problems of judging success are eliminated. However, we

are left with the question of how to choose the simulated datasets. Many authors hand-

construct datasets in order to produce particular features that introduce complexity into

the phase unwrapping process. However, such “toy” surfaces may be biased toward some

algorithms and against others, and in any case, likely do not represent the full range of

phase unwrapping features. Sometimes an application-specific probability model is used

to generate simulated datasets. This approach is promising since it provides “ground

truth” without the bias introduced by hand-constructed data, and it would be ideal for

phase-unwrapping algorithms that are specific to that application. However, unless we use

models of many different phase-unwrapping applications, this method does not give an

overall picture of how well a non-specific algorithm performs.

4.1 A new method for testing

In Chapter 3 we saw that many general phase-unwrapping algorithms rely on one of the

three following assumptions about the nature of the original phase surface:

1. That it is modelled well by

ps(s) ∝
∏

exp

(
− 1

2σ2
p

(s(i+1)j − sij)
2

) ∏
exp

(
− 1

2σ2
p

(si(j+1) − sij)
2

)
(4.1)
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2. That it is modelled well by

ps(s) ∝
∏

exp

(
− 1

2σ2
p

(s(i+2)j − 2s(i+1)j + sij)
2

)
∏

exp

(
− 1

2σ2
p

(si(j+2) − 2si(j+1) + sij)
2

)
∏

exp

(
− 1

σ2
p

(s(i+1)(j+1) − s(i+1)j − si(j+1) + sij)
2

) (4.2)

3. That |(∆ds)ij| < 1
2
for nearly all i, j (algorithms that use an Lp-norm likelihood are

based on this assumption).

Note that (1) and (3) above are related: both concern first-order differences. With an

appropriately chosen σp, (1) could indeed be said to incorporate (3), since (1) will require

“nearly all” first-order differences to be less than 1
2
(e.g. with σp = 1

2
about 68% of

differences will be less than 1
2
; with σp = 1

4
more than 95% will be).

Since general phase-unwrapping algorithms resolve the ambiguity of the phase-unwrapping

problem by assuming either (1) or (2) as a prior model for the absolute phase, it makes

sense that we can judge an algorithm based on how it performs on surfaces drawn from

these models. Therefore we propose that phase-unwrapping algorithms can be well tested

by evaluating their performance on data that is created by drawing surfaces from the

distributions (4.1) and (4.2) and then wrapping each surface into [0, 1).

Drawing the surfaces from these distributions provides us with a “ground truth” surface,

so no ad hoc methods need be used to evaluate the quality of the unwrapping; rather we

can define an error metric between the estimate provided by an algorithm and the true

surface. It also eliminates the problem of bias introduced by hand-selecting toy problems

for testing, since the surfaces are generated randomly. Finally, by drawing enough surfaces

from these distributions, we will encounter every possible feature that can be described by
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either (4.1) or (4.2), rather than just the types of features that are specific to one type of

phase-unwrapping application.

In summary, we suggest that phase-unwrapping algorithms should be tested by the

following procedure:

1. Draw a random surface s from either (4.1) or (4.2).

2. Calculate the wrapped phase by wij = (sij + nij) mod 1, using some noise model.

3. Use the algorithm to find an estimate ŝ of s.

4. Compare the estimate to the original surface using some error measure.

We have applied this method to several phase-unwrapping algorithms. The first three,

Costantini’s algorithm, Flynn’s algorithm, and the least-squares algorithm, are all Lp-norm

maximum likelihood methods; and represent the best of the general phase-unwrapping

algorithms presented by Ghiglia and Pritt [GP98]. The fourth method, the Frey-Koetter

algorithm [KFPM01, FKP01], is a recent method that shows potential to improve on these

three methods. Finally, we apply this testing procedure to a new algorithm that combines

a first-order prior and a functional likelihood. In the next section we describe the details

of each of these algorithms, and in Section 4.3 we describe the details of the experimental

method and present results.
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4.2 Tested algorithms

4.2.1 Goldstein’s algorithm

We mentioned in Section 3.4.1 that maximizing the L0-norm likelihood model is NP-hard.

However there are algorithms that approximately maximize this likelihood, usually us-

ing some heuristic methods. Goldstein’s algorithm [GZW88] approximately maximizes

the L0 likelihood by growing an approximately minimum set of “branch cuts”. The

process is based on Itoh’s assumption. Recall from Section 2.1 that in any area of the

grid in which there are no residues, the set of transformed wrapped phase differences

{W ((∆xw)ij),W ((∆xw)ij)} is a gradient field, by definition of a residue. If Itoh’s assump-

tion holds on the area, this gradient field is actually the gradient field of the noisy absolute

phase u. Thus it is reasonable to try to divide the grid into areas without residues and

then integrate each of these areas using Itoh’s algorithm.

This is not quite satisfactory since we need an estimate of u at all of the grid points,

including ones that are part of residues. But it is actually sufficient to prevent integration

paths from travelling completely around groups of unbalanced residues [GP98], where we

call a group of residues balanced if the sum of the residues is zero. This avoids inconsistent

results by eliminating some of the paths whenever there are multiple paths that result in

different point estimates of u.

Goldstein’s algorithm joins residues with “branch cuts” in such a way that each disjoint

branch cut is balanced. The integration that follows is prevented from crossing these branch

cuts, and thus integration paths can only encircle groups of balanced residues. Since the

integration does not cross over branch cuts, the gradient of the resulting estimate will not

match the transformed wrapped phase differences wherever a branch cut passes through
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the grid. Thus the length of the branch cuts is related to the L0 norm.

To approximately minimize the length of the branch cuts (and thus the L0 norm),

Goldstein’s algorithm uses heuristic methods to “grow” a branch cut outward from an

initial residue. The branch cut is extended to nearby residues, or to the border of the grid,

until the group of connected residues is balanced. Because of the way that the branch

cuts are grown, it is possible for sections of the grid to be completely isolated from other

sections. If this happens there is no way to relate the phase in one section to another

section. This often results in large discrepancies between the original surface and the

surface reconstructed by Goldstein’s algorithm.

Our implementation follows the description of the algorithm in [GP98].

4.2.2 Costantini’s algorithm

Costantini’s algorithm [Cos96, Cos98] exactly optimizes the L1-norm likelihood model

through a transformation into a “minimum cost flow” problem on a graph. To maximize

the L1 likelihood, we must minimize

∑
|(∆xs)ij −W ((∆xw)ij)|+

∑
|(∆ys)ij −W ((∆yw)ij)| (4.3)

with respect to either the point values s or the differences ∆s. In order to be able to see

the minimum-cost-flow structure, Costantini first applies the transformation F1 (3.39) to

(4.3) to obtain

∑
|κxij + ωxij −W ((∆xw)ij)|+

∑
|κyij + ωyij −W ((∆yw)ij)| (4.4)

=
∑

|κxij|+
∑

|κyij| (4.5)
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which we minimize with respect to κ. Since this means we are dealing in differences, a

curl constraint is required. Under F1 a strict curl constraint

(∆ys)ij + (∆xs)i(j+1) − (∆ys)(i+1)j − (∆xs)ij = 0 (4.6)

becomes

κyij + ωyij + κxi(j+1) + ωxi(j+1) − κy(i+1)j − ωy(i+1)j − κxij − ωxij = 0, (4.7)

or

κyij + κxi(j+1) − κy(i+1)j − κxij = −ωyij − ωxi(j+1) + ωy(i+1)j + ωxij. (4.8)

Now the graph problem structure can be seen through the change of variables

e+xij = max(0, κxij) (4.9)

e−xij = −min(0, κxij) (4.10)

e+yij = max(0, κyij) (4.11)

e−yij = −min(0, κyij) (4.12)

so that

κxij = e
+
xij − e−xij (4.13)

|κxij| = e+xij + e
−
xij (4.14)

κyij = e
+
yij − e−yij (4.15)

|κyij| = e+yij + e
−
yij. (4.16)

Thus our problem becomes

min
v+,v−

∑
e+xij + e

−
xij +

∑
e+yij + e

−
yij (4.17)
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subject to

e+yij − e−yij + e
+
xi(j+1) − e−xi(j+1) − (e+y(i+1)j − e−yij)− (e+xij + e

−
xij) =

− ωyij − ωxi(j+1) + ωy(i+1)j + ωxij (4.18)

for each i, j, and subject to e+dij ≥ 0, e−dij ≥ 0 for d = x, y and all i, j. This is a minimum

cost flow problem on a graph with one vertex vij for each constraint (4.18), plus an extra

“earth” node. The edges of the graph are formed by connecting each vertex vij to each

of its neighbours v(i−1)j, v(i+1)j, vi(j−1), vi(j+1) by a directed edge to and a directed edge

from that neighbour (subscripts out of range refer instead to the “earth” node). The

variables e+xij, e
−
xij represent the flow on the edge from vi(j−1) to vij and from vij to vi(j−1)

respectively, while the variables e+yij, e
−
yij represent the flow from vij to v(i−1)j and from

v(i−1)j to vij respectively.

Due to this formulation of the problem as a minimum cost flow on a graph, we can use

standard minimum cost flow techniques to find the exact minimization very efficiently. Our

implementation uses the minimum cost flow solver MCFv1.2, written by Andreas Loebel

[Loe00].

4.2.3 The least-squares algorithm

The least-squares algorithm exactly maximizes the L2-norm likelihood. This is equivalent

to minimizing

∑
|(∆xs)ij −W ((∆xw)ij)|2 +

∑
|(∆ys)ij −W ((∆yw)ij)|2 (4.19)

with respect to either the point values s or the differences ∆s. It can be shown [GP98]

that the minimization of (4.19) with respect to the point values s is equivalent to solving
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the discrete Poisson equations

(∆xs)(i+1)j − (∆xs)ij + (∆ys)i(j+1) − (∆ys)ij =

W ((∆xw)(i+1)j)−W ((∆xw)ij) +W ((∆yw)i(j+1))−W ((∆yw)ij) (4.20)

with appropriate (Neumann) boundary conditions. The discrete Poisson equations can

in turn be solved very efficiently using either fast fourier transforms or discrete cosine

transforms [GP98]. We use an implementation of the discrete cosine transform method

written by Nemanja Petrovic.

4.2.4 The Frey-Koetter algorithm

The model used by Frey-Koetter algorithm [KFPM01, FKP01] combines the first-order

prior (3.19) with a strict curl constraint (3.16) and the “functional liklihoood” F2 (3.45).

Thus the joint distribution is

p∆k,∆w(∆k,∆w) ∝
∏

exp

(
− 1

2σ2
p

((∆xw)ij + (∆xk)ij)
2

)
∏

exp

(
− 1

2σ2
p

((∆xw)ij + (∆xk)ij)
2

)
∏
δ
(
(∆yk)ij + (∆xk)i(j+1) − (∆yk)(i+1)j − (∆xk)ij, 0

)
(4.21)

There are no wij in the curl constraint here, since

(∆yk)ij + (∆yw)ij + (∆xk)i(j+1) + (∆xw)i(j+1)

− (∆yk)(i+1)j − (∆yw)(i+1)j − (∆xk)ij − (∆xw)ij (4.22)

=
(
(∆yk)ij + (∆xk)i(j+1) − (∆yk)(i+1)j − (∆xk)ij

)
+

(
(∆yw)ij + (∆xw)i(j+1) − (∆yw)(i+1)j − (∆xw)ij

)
(4.23)

= (∆yk)ij + (∆xk)i(j+1) − (∆yk)(i+1)j − (∆xk)ij (4.24)
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because the curl of the observed wrapped phase w must be zero.

To maximize the joint distribution (4.21) directly is difficult because of its form, so

instead the authors first find an approximation q∆k|∆w to the posterior p∆k|∆w and then

use the approximation in the maximization.

The posterior is approximated using “loopy” probability propagation, an extension of

probability propagation to models that contain cycles in their graphical representation.

Probability propagation itself is a technique that was designed to perform exact inference

in models that whose graphical representation is a tree. However, when it is applied to

models with cycles there is no guarantee on the quality of the approximation (in fact, the

algorithm may not “converge” to a single distribution at all). However, for some models,

“loopy” probability propagation has proven very efficient at obtaining approximate values

close to the true posterior probabilities.

The form of the approximation q∆k|∆w treats each (∆dk)ij as independent, so once the

algorithm has completed we can find the MAP estimate of ∆k∗ from the approximation

by

(∆dk)
∗
ij = argmax

(∆dk)ij

q(∆dk)ij |∆w((∆dk)ij,∆w) (4.25)

for each i, j. Then we reconstruct an estimate of the absolute phase gradient field by

adding (∆dk)
∗
ij to (∆dw)ij at each i, j.

In order to obtain the absolute phase point values from the estimate of its gradient

field, we need to integrate it. However, because we only obtain an approximation of the

posterior, the strict curl constraint may not be satisfied by the gradient field estimate. If

the constraint is satisfied by the gradient estimate, the estimate is integrated directly. If it

is not satisfied, the Frey-Koetter algorithm projects the gradient estimate onto the space
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C of conservative vector fields (3.14), and then integrates the result.

We use an implementation of the Frey-Koetter algorithm written by Brendan Frey.

The value σp required by the algorithm is automatically estimated from the wrapped

phase variance. To make the computation possible, it is necessary to restrict the range

of each (∆dk)ij. This implementation restricts the range to {−1, 0, 1}. For our tests, we

try at first 50 iterations. If the vector field returned is non-conservative, we try 50 more

iterations. If the estimate is still non-conservative after these 100 iterations, it is projected

onto the space of conservative vector fields and the result integrated.

4.2.5 A new algorithm for phase unwrapping

Our model is a combination of the first-order prior (3.19) with the functional likelihood

(3.45). Combining the two gives a joint distribution of the form

pk,w(k,w) ∝
∏
ij

exp

(
1

2σ2
p

(w(i+1)j + k(i+1)j − wij − kij)
2

)

· exp
(

1

2σ2
p

(wi(j+1) + ki(j+1) − wij − kij)
2

) (4.26)

To maximize this joint distribution directly requires the solution of

argmin
k

∑
(w(i+1)j + k(i+1)j − wij − kij)

2 +
∑

(wi(j+1) + ki(j+1) − wij − kij)
2 (4.27)

This is a non-linear integer programming problem, which is very costly to solve in general.

Therefore we choose instead to approximate the posterior distribution pk|w with a mean-

field distribution

qρ(k,ρ) =
∏
ij

ρijkij
(4.28)
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where ρ = {ρijl} are the parameters on which the qρ-distribution depends. To make

the approximation as tight as possible, we minimize a “distance” between the approxi-

mating distribution and the model distribution. The “distance” measure1 we choose is

the Kullback-Leibler (KL) divergence, which is commonly used to measure the amount of

separation of two distributions [Fre98]. The KL divergence between qρ and pk|w is given

by

D(qρ||pk|w) =
∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk|w(k,w)
(4.29)

We minimize (4.29) with respect to the parameters ρijkij
of qρ, with the constraint that∑

kij
ρijkij

= 1 for each i, j (since {ρijkij
}kij∈Z must be a probability distribution). Thus

the problem is to find

ρ∗ = argmin
ρ

D(qρ||pk|w) (4.30)

= argmin
ρ

D(qρ||pk|w)− log pw(w) (4.31)

= argmin
ρ

∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk|w(k,w)
− log pw(w) (4.32)

= argmin
ρ

∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk|w(k,w)
−

∑
k

qρ(k,ρ) log pw(w) (4.33)

= argmin
ρ

∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk|w(k,w)pw(w)
(4.34)

= argmin
ρ

∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk,w(k,w)
(4.35)

= argmin
ρ

M(ρ,k,w) (4.36)

1KL-divergence is not a true distance since it is not symmetric.
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where

M(ρ,k,w) =
∑
k

qρ(k,ρ) log
qρ(k,ρ)

pk,w(k,w)
(4.37)

We minimizeM via an iterative scheme by setting the partial derivatives to zero, and based

on the resulting equations (see Appendix A) update one ρijkij
while keeping all others fixed.

Due to the form of the approximation qρ, the update equation for ρijkij
depends only on the

distributions of its horizontally- and vertically-adjacent neighbours. This means that we

can satisfy the constraint that
∑

kij
ρijkij

= 1 for each i, j by calculating all ρijkij
for a fixed

i, j, and then normalizing the values over the range of kij. It also suggests a “checkerboard”

update strategy where the distribution of every other point is calculated simultaneously,

followed by the calculation of the distributions of the remaining points (different schedules

are are also possible).

Once we have estimated ρ∗, our approximation qρ to the posterior pk|w is fully deter-

mined. Since it is a discrete distribution, to choose the MAP estimate of k∗ from this

distribution simply means choosing

k∗ij = argmax
kij

ρijkij
(4.38)

for each i, j. Then an estimate of the absolute phase is reconstructed by adding the integer

shift k∗ij to wij at each point.

For our tests we updated the value of each ρijkij
1000 times. We use a fixed value of

σp = 0.8, chosen from trial runs on toy surfaces. For computation purposes, the range for

each kij must be limited. Our tests restrict the kij values to fall between -5 and 5, a range

wide enough so that the true kij values of the surfaces tested are likely to fall within it,

while small enough so that the computation does not grow too costly.
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4.3 Results

We have tested Goldstein’s algorithm (GOLD), Costantini’s algorithm (COST), the least-

squares algorithm (LSQ), the Frey-Koetter algorithm (FK), and the new algorithm (NEW)

described above using the method described in Section 4.1.

The first step is to sample a surface from (4.1) or (4.2). We do this via Gibbs sampling, a

Markov chain Monte Carlo technique (see Appendix B). At each Gibbs sampling iteration

we sample a single surface point sij from the conditional distribution psij |{skl|(k,l) �=(i,j)}. If

none of the conditional distributions are identically zero, and we repeat this procedure

enough times, Markov chain theory tells us that eventually the set of points we have

drawn is a sample from ps(s). Because (4.1) is a Gaussian distribution over the first-

order differences of s, and (4.2) is a Gaussian distribution over the second-order differences

of s, it turns out that for both cases, the conditional distributions psij |{skl|(k,l) �=(i,j)} are

Gaussian. This means that the conditional distributions are not identically zero, and so

the conditions required for Gibbs sampling are satisfied. It also means that it is easy to

perform the sampling required at each iteration of the Gibbs sampling algorithm.

To generate the surface samples, it is necessary to choose the size of the surface, the

variance σ2
p, and a number of iterations. All of the results we present are on a surface of

size 100 by 100. Because of the way in which the surfaces are wrapped (see below), it is not

necessary to choose different variances for the sampled surfaces. Thus the variance for all

surfaces is set at 0.1. Finally, each surface is generated by sampling every point 5000 times,

so that a total of (5000)(100)(100) = 50 000 000 Gibbs iterations are performed. Figure

4.1 shows an example of a first-order surface generated from (4.1) using this technique,

and Figure 4.4 shows an example of a second-order surface generated from (4.2).
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Once the phase surface is generated, we must wrap it into the interval [0, 1). To simplify

the experiment, we choose to ignore the effects of noise. Instead of varying the variance

of the model from which the surface is generated, we produce a similar effect by varying

the wavelengths used to wrap the surfaces. Accordingly we wrap the phase surface using

20 wavelengths. The wavelengths are equally spaced in the logarithmic domain from a

minimum value equal to the variance of the surface to a maximum value large enough so

that the entire surface lies within a single wavelength. This means that at the maximum

value there are no wrappings, so all algorithms should reconstruct the surface exactly.

After reconstructing the absolute phase using a particular algorithm, we compare the

resulting estimate to the original surface using two different error measures. The first is

the mean squared error (MSE) between the point values of the original surface and the

estimate, and the second is the MSE between the first-order differences of the original

surface and the estimate. We use two measures for the comparison since the point-value

measure may be biased toward algorithms that reconstruct point values (LSQ and NEW),

while the difference measure may be biased toward algorithms that reconstruct differences

(GOLD, COST, and FK).

As the wavelength decreases, more wrappings occur when the absolute phase is trans-

formed into the wrapped phase, so the absolute phase is more difficult to reconstruct. On

the other hand, as the wavelength increases, eventually the entire surface will lie within a

single wavelength, so no wrappings occur. In this case the absolute phase should be easy

to reconstruct (it is simply equal to the wrapped phase). Therefore we should expect that

as the wavelength decreases, the mean squared error in both differences and point values

should grow large, while as wavelength increases, the mean squared error should tend to

zero.
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Figure 4.2 shows, for each of five first-order surfaces and for each tested algorithm,

the mean squared error of the point values of the reconstructed absolute phase versus the

wavelength λ. Similarly, Figure 4.3 shows the mean squared error of the differences of

the reconstructed phase for the same surfaces. Each of the curves in these figures have

a “waterfall” shape that satisfies the expected properties described above. Both figures

show that the Frey-Koetter algorithm performs the best on this type of surface, since its

MSE is the first to fall as the wavelength increases, while at small wavelengths its MSE is

competitive with the other algorithms. Costantini’s algorithm is close behind. The MSE

of the new algorithm and Goldstein’s algorithm fall more quickly than that of the least-

squares algorithm as the wavelength increases, but the MSE of the least-squares algorithm

falls earlier than that of these two. Finally, we observe that Goldstein’s algorithm has a

very large MSE compared to the other algorithms when the wavelength is small. This is

probably because at small wavelengths, residues will be close together, so branch cuts will

join residues that should not be joined for a correct unwrapping.

Figure 4.5 shows, for each of five second-order surfaces and for each tested algorithm,

the mean squared error of the point values of the reconstructed absolute phase versus the

wavelength. Similarly, Figure 4.6 shows the mean squared error of the differences of the

reconstructed phase for the same surfaces. Again we see the waterfall shape for each curve.

The difference-measure graphs show much the same result as the difference-measure graphs

for the first-order surfaces, except that the new algorithm performs consistently worse than

the other four algorithms.

However, for second-order surfaces there are differences between the point-value-measure

graphs and the difference-measure graphs. Notably, using the point-value measure all of

the algorithms fare worse at small wavelengths than they do using the difference measure.
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Figure 4.1: Example of a generated first-order surface
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Figure 4.2: Point value MSE for five first-order surfaces
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Figure 4.3: Difference MSE for five first-order surfaces
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Figure 4.4: Example of a generated second-order surface
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Figure 4.5: Point value MSE for five second-order surfaces
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Figure 4.6: Difference MSE for five second-order surfaces
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This was not the case for the first-order surfaces. The point-value measure graphs also

show that the MSE of all of the algorithms, except the new algorithm, drop to zero at ap-

proximately the same wavelength, which is not true when the difference measure is applied.

However, using either the point-value measure or the difference measure, the new algorithm

performs consistently worse than the other algorithms, except at small wavelengths where

Goldstein’s algorithm again displays a large MSE.

There is one other notable artifact in the second-order surface graphs: the MSE of the

Frey-Koetter algorithm rises sharply when very large wavelengths (compared to the surface

height) are reached. This is due to a limitation of the implementation: when the variance

σ2
p estimated from the wrapped phase is too small, underflow results, and the probability

propagation becomes unreliable. This happens when large wavelengths are used because

the wrapped phase is normalized to fall within [0, 1).

The graphs of MSE versus wavelength that we produce by testing phase-unwrapping

algorithms using this method allow us to quantitatively compare the performance of the

tested algorithms. On first-order phase surfaces, the best algorithm is the Frey-Koetter

algorithm, followed by Costantini’s algorithm, the least-squares algorithm, the new al-

gorithm, and Goldstein’s algorithm. For second-order phase surfaces, the Frey-Koetter

algorithm is again the best, followed by Costantini’s algorithm, the least-squares algo-

rithm, Goldstein’s algorithm, and the new algorithm. All of the algorithms perform better

on first-order surfaces than on second-order surfaces. This is as expected, since all of the

tested algorithms rely on a first-order, rather than a second-order, model for the unwrapped

phase surface.



Chapter 5

Conclusions

The phase unwrapping problem in its most general form is not well-posed. It therefore

is necessary to make additional assumptions in order to produce useful solutions. There

are two possible approaches to making assumptions. The first approach is to make use

of additional information specific to a particular application, and therefore to create an

algorithm that can only be used on that application. The second approach is to make

general assumptions about the behaviour of absolute phase surfaces to create an algorithm

with a wide range of possible application.

When the second approach is used, it is usually the case that one of two assumptions

are made about the absolute phase. Both of these are probability models that describe

the smoothness of the phase. Since these algorithms use these models for the absolute

phase, it is reasonable to test the algorithms on surfaces generated from the two models.

Accordingly we suggest a method for testing general phase-unwrapping algorithms by gen-

erating surfaces from the assumed prior models, wrapping the surfaces and applying the

algorithms, and comparing the reconstructed phase to the original phase using an error
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measure.

There are two advantages of this approach to testing general algorithms. The first

is that since we use simulated data, we can compare the reconstruction directly to the

“ground truth”, and quantify the discrepancies between the two. The second advantage is

that since the absolute phase surfaces are randomly generated, they can represent the full

range of problems that satisfy the assumed models.

We have used this testing method to compare five algorithms, including a new algo-

rithm. The results show that the Frey-Koetter algorithm has the best performance on

surfaces generated from the two prior models, followed closely by Costantini’s algorithm.

The least-squares algorithm obtains tolerable results on the surfaces. Finally, Goldstein’s

algorithm and our new algorithm do not perform as well on the tested surfaces as the other

algorithms.

5.1 Summary of contributions

• A new quantitative method for testing general phase-unwrapping algorithms, based

on models used for the absolute phase.

• A new algorithm for phase unwrapping that combines a first-order prior model with

a functional likelihood, and that approximates the resulting posterior distribution

using a mean-field distribution.

• A categorization of general phase-unwrapping algorithms according to the prior and

likelihood models used.
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5.2 Future work

• When testing algorithms using the new method, noise could be added to the generated

surfaces before they are wrapped, so that the effects of noise on the algorithms could

be compared.

• Other error measures could be used to quantify the discrepancy between the recon-

structed phase and the true phase.

• Recently an algorithm has been found that can maximize the joint probability (4.26)

of the new algorithm exactly [DL01]. This method, if found to be reasonably efficient,

could replace the mean-field approximation we use.

• Better general phase-unwrapping algorithms might be created by combining the prior

and likelihood models of Sections 3.3 and 3.4 in new ways. Moreover, new prior and

likelihood models might be developed.



Appendix A

Details of the new algorithm

We wish to minimize

M(ρ,k,w) =
∑
k

qρ(k,ρ) log qρ(k,ρ)−
∑
k

qρ(k,ρ) log pk,w(k,w). (A.1)

with respect to ρ. Expanding M using the form of pk,w from (4.26) and the form of

approximation qρ from (4.28), the first term of M becomes
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∑
k

qρ(k,ρ) log qρ(k,ρ) =
∑
k

∏
i′j′
ρi′j′ki′j′ log

∏
ij

ρijkij
(A.2)

=
∑
k

∏
i′j′
ρi′j′ki′j′

∑
ij

log ρijkij
(A.3)

=
∑
ij

∑
k

∏
i′j′
ρi′j′ki′j′ log ρijkij

(A.4)

=
∑
ij

∑
k11

∑
k12

· · ·
∑
kmn

ρ11k11 · · · (ρijkij
log ρijkij

) · · · ρmnkmn (A.5)

=
∑
ij

∑
k11

ρ11k11 · · ·
∑
kij

(ρijkij
log ρijkij

) · · ·
∑
kmn

ρmnkmn (A.6)

=
∑
ij

∑
kij

(ρijkij
log ρijkij

) (A.7)

and the second term of M becomes

∑
k

qρ(k,ρ) log pk,w(k,w)

=
∑
k

∏
i′j′
ρi′j′ki′j′ log

∏
ij

[
exp

(
1

2σ2
(w(i+1)j + k(i+1)j − wij − kij)

2

)

· exp
(

1

2σ2
(wi(j+1) + ki(j+1) − wij − kij)

2

)]
(A.8)

=
∑
k

∏
i′j′
ρi′j′ki′j′

∑
ij

1

2σ2

(
(w(i+1)j + k(i+1)j − wij − kij)

2

+ (wi(j+1) + ki(j+1) − wij − kij)
2

)
(A.9)

=
1

2σ2

∑
ij

( ∑
kij

∑
k(i+1)j

ρijkij
ρ(i+1)jk(i+1)j

(w(i+1)j + k(i+1)j − wij − kij)
2

+
∑
kij

∑
ki(j+1)

ρijkij
ρi(j+1)ki(j+1)

(wi(j+1) + ki(j+1) − wij − kij)
2

)
(A.10)
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Thus

M(ρ,k,w) =
∑
ij

∑
kij

(ρijkij
log ρijkij

)

+
1

2σ2

∑
ij

( ∑
kij

∑
k(i+1)j

ρijkij
ρ(i+1)jk(i+1)j

(w(i+1)j + k(i+1)j − wij − kij)
2

+
∑
kij

∑
ki(j+1)

ρijkij
ρi(j+1)ki(j+1)

(wi(j+1) + ki(j+1) − wij − kij)
2

)

(A.11)

We minimize (A.11) by taking its partial first derivatives

∂M(ρ,k,w)

∂ρijkij

=1 + log ρijkij

+
1

2σ2
p

∑
k(i−1)j

ρijk(i−1)j
(wij + kij − w(i−1)j − k(i−1)j)

2

+
1

2σ2
p

∑
k(i+1)j

ρijk(i+1)j
(w(i+1)j + k(i+1)j − wij − kij)

2

+
1

2σ2
p

∑
ki(j−1)

ρijki(j−1)
(wij + kij − wi(j−1) − ki(j−1))

2

+
1

2σ2
p

∑
ki(j+1)

ρijki(j+1)
(wi(j+1) + ki(j+1) − wij − kij)

2

(A.12)

and setting them equal to zero. To approximately solve the nonlinear system we update

the value of each ρijkij
individually while leaving the other variables fixed. The update
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equation for ρijkij
is thus

ρijkij = exp

(
−

(
1

2σ2
p

∑
k(i−1)j

ρijk(i−1)j
(wij + kij − w(i−1)j − k(i−1)j)

2

+
1

2σ2
p

∑
k(i+1)j

ρijk(i+1)j
(w(i+1)j + k(i+1)j − wij − kij)

2

+
1

2σ2
p

∑
ki(j−1)

ρijki(j−1)
(wij + kij − wi(j−1) − ki(j−1))

2

+
1

2σ2
p

∑
ki(j+1)

ρijki(j+1)
(wi(j+1) + ki(j+1) − wij − kij)

2 + 1

))
.

(A.13)



Appendix B

Gibbs sampling

Gibbs sampling is a Monte Carlo technique that is used to draw samples from a (joint)

distribution that is difficult to sample from directly. It can be used when the conditional

probability of each variable of the distribution given the other variables takes a form that

is reasonably easy to sample from. That is, to use Gibbs sampling to sample from pX(X)

where X = (X1, X2, . . . , Xn). we need to be able to easily draw samples from

pXi|{Xj |j �=i}(X1, X2, . . . , Xn) (B.1)

for each 1 ≤ i ≤ n. The process of Gibbs sampling is as follows.

1. Let X(0) = (X
(0)
1 , X

(0)
2 , . . . , X

(0)
n ). Let t = 0.

2. Draw an integer i without replacement from 1 to n.

3. Draw a value Y from pXi|{Xj |j �=i}(X(t)).

4. Let X(t+1) = (X
(t)
1 , . . . , X

(t)
i−1, Y,X

(t)
i+1, . . . , X

(t)
n ). Let t = t+ 1.
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5. Repeat (2)-(4) until we have drawn each integer from 1 to n. Reset so that all integers

from 1 to n are marked as undrawn.

6. Repeat (2)-(5) for some number of iterations.

The effect of performing the above algorithm is to simulate a single realization of a par-

ticular type of Markov chain. Markov chains in general are sequences of random variables

X(0),X(1), . . . that share a common range S and whose distributions are related by

pX(t+1)|{X(0),X(1),... ,X(t)} = pX(t+1)|X(t) (B.2)

that is, the distribution of X(t+1) is conditionally independent of {X(0),X(1), . . . ,X(t−1)}
given X(t). This means that

pX(t+1)(X(t+1)) =

∫
S

pX(t+1)|X(t)(X(t+1),X)pX(t)(X)dX (B.3)

for each t. The conditional probabilities pX(t+1)|X(t) are generally referred to as transition

distributions since they represent the “transition” from X(t) to X(t+1). Because of this

relation, the distributions of the sequence X(0),X(1), . . . is fully determined by specifying

the transition distributions and the initial distribution pX(0) .

The Markov chain to which Gibbs sampling is related has transition distributions

pX(t+1)|X(t)(X(t+1),X(t)) =pXi|{Xj |j �=i}(X
(t)
1 , . . . , X

(t)
i−1, X

(t+1)
i , X

(t)
i+1, . . . , X

(t)
n )

·
∏
j �=i

δ(X
(t+1)
j , X

(t)
j )

(B.4)
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for each t. We can show that if one of the distributions pX(t) is equal to the original joint

distribution pX, then pX(t+1) will be equal to pX as well:

pX(t+1)(X(t+1))

=

∫
pX(t+1)|X(t)(X(t+1),X)pX(t)(X) dX (B.5)

=

∫
pXi|{Xj |j �=i}(X1, . . . , Xi−1, X

(t+1)
i , Xi+1, . . . , Xn)

∏
j �=i

δ(X
(t+1)
j , Xj)

· pX(X) dX (B.6)

=

∫
pXi|{Xj |j �=i}(X1, . . . , Xi−1, X

(t+1)
i , Xi+1, . . . , Xn)

∏
j �=i

δ(X
(t+1)
j , Xj)

· pXi|{Xj |j �=i}(X)p{Xj |j �=i}(X1, . . . , Xi−1, Xi+1, . . . , Xn) dX (B.7)

= pXi|{Xj |j �=i}(X(t+1))p{Xj |j �=i}(X
(t+1)
1 , . . . , X

(t+1)
i−1 , X

(t+1)
i+1 , . . . , X(t+1)

n )∫
pXi|{Xj |j �=i}(X

(t+1)
1 , . . . , X

(t+1)
i−1 , Xi, X

(t+1)
i+1 , . . . , X(t+1)

n ) dXi (B.8)

= pX(X
(t+1)) (B.9)

Because pX is unchanged by the transitions of the Gibbs sampling Markov chain, we call

it an invariant distribution of the chain. Note that if pX(T ) = pX then pX(t) = pX for all

t > T .

As long as each of the conditional distributions (B.1) is not identically zero, we are

assured that (1) there is a nonzero probability that the Markov chain will move from one

state to any other state after enough iterations (the chain is then said to be irreducible)

and (2) that the chain has a nonzero probability of remaining in the same state [Nea93].

The combination of these conditions imply that the Markov chain is ergodic: for t large

enough, pX(t)(X(t)) = π(X(t)) for some (unique) invariant distribution π, no matter what

is chosen for the initial distribution pX(0) . Since this invariant distribution must be unique,
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and we have already shown that pX is invariant under the transition distributions (B.4),

we can conclude that this Markov chain converges to the joint distribution.

Therefore, as long as each of the conditional probabilities (B.1) is not identically zero,

for all iterations t after some iteration T each of the values X(t) produced by the algorithm

described at the top of this section is a sample from the joint distribution pX.
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