This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acs.analchem.5b02239

Supporting Information

Numerical modeling of Solid Phase Microextraction focused on uptake kinetics

Md. Nazmul Alam¹, Luis Ricardez-Sandoval², Janusz Pawliszyn^{1*},

^{1*}Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

²Dept. of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada

Figure SI-1. Boundary conditions used for mass transport in the coating/solution interface.

Figure SI- 2. Effect of coating thickness on the extraction of benzene at the maximum stirring speed (2500 rpm). Three different coating thickness (97, 56 and 15 μ m) by keeping the same fiber core diameter (55 μ m) was compared.

Figure SI- 3. The extracted amount in fiber coating as a function of time for various values of the analyte diffusion coefficient in sample solution. The symbols and lines correspond, respectively, to analytical (well-mixed case) and finite element results.

Figure SI- 4. Simulation results for chlorpromazine (K_D of 5.4×10⁻⁴ M) with different k_f and k_r values. k_f values are calculated based on the equation $K_D = k_r / k_f$. The influence of the different physically relevant kr values on the enhancement of the extraction rate was negligible. For all these experiments, $\beta >> 1$ and $\gamma << 1$.

Figure SI- 5. Extraction time profile is affected by the value of K_{fs} at $k_r = 1e^{-3}$, (a). The effect of k_r on extraction time profile at $K_{fs} = 5 e^{-5}$, (b).

Table S-1. Parameters	used for pyrene a	and chlorpromazine	extraction by l	PDMS and	l polyacrylate
coating respectively.					

Symbols	Pyrene ^⁴		chlorpromazine ⁵	Units	Definition
K_d	1.17E-07		5.5E-05	М	Equilibrium dissociation constant
k_{f}	8.58E+06		7.3E+04	$M^{-1}s^{-1}$	Forward rate constant
<i>k</i> _r	1		3.96	S ⁻¹	Reverse rate constant
C_A	1.0		100.0	μM	Concentration of analyte
	0.47,	1.4,			
$C_{\scriptscriptstyle B}$	23.34	-	600.0	μM	Concentration of matrix (HSA)
K_{fs}	1.95E+04		7.3E+02		Fiber distribution constant
D_s	4.37E-06		4.3E-05	cm ² s ⁻¹	Diffusivity of analyte in sample
D_{f}	Ds/6		6.50E-11	cm ² s ⁻¹	Diffusivity of analyte in fiber
					Diffusivity of Analyte-matrix in
D_{AB}	5.90E-07		1.0E-07	cm^2s^{-1}	solution
rc	55		55	μm	Radius of fiber core
rf	28.5		35	μm	Coating thickness
L	10		10	mm	Radius of sample vessel

Table SI-2. parameters for heigher Kd case (diffusion controlled).

K _d	5.0E-05	nM	Equilibrium dissociation constant
\mathbf{k}_{f}	2.0E+04	$M^{-1}s^{-1}$	Forward rate constant
\mathbf{k}_{r}	1.0E+00	S ⁻¹	Reverse rate constant
C _A	1.2E-04	Μ	Concentration of analyte
C _B	2.0E-04	Μ	Concentration of matrix (HSA)
\mathbf{K}_{fs}	5.0E+07		Fiber distribution constant
\mathbf{D}_{s}	4.3E-05	cm ² s ⁻¹	Diffusivity of analyte in sample
\mathbf{D}_{f}	Ds/6	cm ² s ⁻¹	Diffusivity of analyte in fiber
D_{AB}	1.0E-07	cm ² s ⁻¹	Diffusivity of Analyte-matrix in solution
rc	55	μm	Radius of fiber core
rf	10	μm	coating thickness
L	10	mm	Radius of sample vessel

Table SI-3. Parameters for lower Kd (unbinding controlled)

Kd	5.0E-09	nM	Equilibrium dissociation constant
kf	2.0E+06	$M^{-1}s^{-1}$	Forward rate constant
kr	1.0E-02	s^{-1}	Reverse rate constant
CA	1.1E -0 4	Μ	Concentartion of analyte
CB	1.0E-04	Μ	Concentartion of matrix (HSA)
Kfs	5.0E+07		Fiber distribution constant
Ds	4.3E-05	cm ² s ⁻¹	Diffusivity of analyte in sample
Df	Ds/6	cm^2s^{-1}	Diffusivity of analyte in fiber
DAB	1.0E-07	cm ² s ⁻¹	Diffusivity of Analyte-matrix in solution
rc	55	μm	Radius of fiber core
rf	10	μm	coating thickness
L	1	mm	Radius of sample vessel