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Abstract

Image understanding is a shared goal in all computer vision problems. This objective

includes decomposing the image into a set of primitive components through which one can

perform region segmentation, region labeling, object recognition and finally modeling the

interactions between recognized objects. However, due to the large intra-class variations

in appearance, shape and structure, extracting image primitives is highly challenging.

While images come in the form of intensity matrices, in order to cope with this large

variations, a high-level abstraction of images is required. Therefore, the main challenge

is to bridge the gap between the low-level pixel representation and the high-level abstract

image descriptors.

In recent years, we have witnessed a striking popularity of the learned image descriptors

using deep networks for visual recognition. The multi-layer architecture of these networks is

particularly useful in capturing the hierarchical structure of the image data: simple features

are detected at lower layers and fed into higher layers for extracting more complex and

abstract representations. Despite the remarkable representational power of deep networks,

training these models is computationally expensive. In addition, considering the lack

of enough labeled training data in many applications, over-fitting is a serious threat for

deep models with large number of free parameters. Also, there are innate issues with the

gradient-based optimization procedure used for parameter learning in these models.

This research is aimed at addressing the above issues by leveraging domain knowledge.

Particularly, we focus on tailoring deep networks for visual recognition through exploiting

the characteristics of the image data. These modifications tend to regularize deep models

and therefore, improve their generalization performance.

We propose novel ways for incorporation of image-specific domain knowledge into deep

networks. As part of this thesis, we show how one can significantly decrease the number

of free parameters in fully-connected architectures by exploiting the global characteristics

of the image data. For convolutional networks, a new multi-neighborhood architecture is

introduced which can capture scale-dependent features. In this architecture, the fine-scale

image structures (i.e., appearance features) are captured using a small-sized neighborhood

while coarse-scale characteristics (i.e., shape features) are detected by considering a wider

range area around each pixel. Besides, we propose an effective regularization method for
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deep networks in which a frequency parameter is devised to specifically treat the issues of

gradient-based optimization for training these models. Finally, we introduce a stage-wise

training framework for deep networks in which the learning process is broken down into

a number of related sub-tasks completed stage-by-stage, where the learned parameters at

each stage acts as a prior for the next stage. This goal is achieved through gradual injection

of the information presented in the training data so that in the early stages of training,

the coarse-scale properties of the data are captured while the finer-scale characteristics are

learned in later stages. The performance of the proposed methods are assessed on a number

of image classification data sets. Our comprehensive empirical analysis demonstrates that

these regularized networks offer a better discrimination and generalization performance

compared to their domain-oblivious counterparts.
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Chapter 1

Introduction

1.1 Motivation

Categorization [1] is a fundamental property of any intelligent agent. In computer vision,

object recognition is an essential ingredient in understanding the contents of an image.

In the context of everyday object recognition, the main challenge is to cope with the

large intra-class variations across different examples of each category. That is, for each

class of objects, there are many different possible configurations of shape, appearance and

structure. The images are delivered to us as a vast array of fine-scale pixels. However, the

intra-class variations ensure that at the pixel level it is nearly meaningless to talk about

recognizing “chair” or “cat”, since such objects obtain their identity at a much coarser

scale. We therefore see the challenge as one of extracting high-level abstract features from

low-level pixels.

For more than a decade, computer vision researchers had focused on engineering hand-

crafted features to generate higher-level image descriptors (e.g., edges) which could replace

pixel intensities [2, 3, 4, 5]. The main problem with engineered features is that they do

not generalize well across different tasks. Moreover, designing discriminative features for

each specific task requires expert knowledge and thus is an expensive process.

In recent years, the computer vision community has witnessed the success of “learned”

image descriptors [6, 7, 8, 9] against engineered hand-crafted features for image classifi-
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cation. Inspired by the visual recognition process in the human cortex [10], these feature

learning models generally follow a multi-layer, i.e., “deep”, architecture to capture high-

level abstract features. A deep network for feature learning consists of a stack of local or

non-local feature detectors where simple features (e.g., edges) are detected at lower layers

and fed into higher layers for extracting more complex representations (e.g., object parts).

The origin of deep models, and more specifically deep neural networks, dates back to

more than twenty years ago [11, 12]. However, training these networks for general use was

impractically slow. Therefore, by the beginning of 2000s, they were already overtaken by

other approaches such as kernel methods. This was certainly not the end of the story; the

significant growth in computational power (particularly in GPUs and distributed comput-

ing) and access to large labeled data sets (e.g., ImageNet [13]) paved the way for their

return in late 2000s.

The popularity of deep models spiked when it was shown that they outperform tradi-

tional methods in a number of important benchmarks [9, 14]. The exceptional performance

of deep models can be mainly attributed to their flexibility in representing a rich set of

highly non-linear functions [15, 16], as well as the devised methods for efficient training

of these powerful networks [7, 17, 18, 19]. Furthermore, employing various regularization

techniques [20, 21, 22] ensured that deep models with huge numbers of free parameters are

statistically desirable in the sense that they will generalize well to unseen data.

The automatic and generic approach of feature learning in deep models enables one

to use them across different applications (e.g., image classification [6, 23], speech recogni-

tion [24, 25], language modeling [26, 27] and information retrieval [28, 29]) with relatively

little adjustments. Therefore, deep models seem to be domain-oblivious in the sense that

in order to use them across different applications, only a small amount of domain-specific

customizations is required.

Ideally, the domain-obliviousness of deep networks is advantageous, as having access

to a universal and generic model reduces the hassles of adapting for new applications.

However, despite the remarkable advances in this area, training deep models with a huge

number of free parameters is an intricate and ill-posed optimization problem. In fact, based

on the No-Free-Lunch theorem [30], no algorithm can work well for all categorization tasks

unless it is given some prior knowledge about it. Therefore, incorporating some essential

parts of the domain knowledge as a prior into the learning procedure is essential to improve
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the model’s generalization performance.

In the case of visual data, effective and intuitive domain knowledge have been devised in

different areas of computer vision and image processing; there is a large body of literature

regarding the general characteristics of image data (e.g., [31, 32, 33]) or effective image

representations for visual recognition (e.g., [34, 35, 36]). The ideas, concepts and methods

that were utilized in these works are inspirational and can serve as a concrete form of

domain knowledge in image understanding.

Our research aims at tailoring deep networks for visual recognition through leveraging

the properties of the image data. This includes a set of new models and techniques which

enable us to incorporate domain knowledge into deep networks. These modifications tend to

regularize deep models and, therefore, enhance their performance for visual recognition. In

the following sections, we will elaborate further regarding our objectives and contributions.

1.2 Objectives

Despite the striking representational power of deep networks [15, 16] and the significant

advances in training them [17, 37], the use of these models for visual recognition is still

challenging. In particular, the huge number of free parameters in these models makes the

process of model fitting computationally hard and statistically unstable [38]. As discussed

in the previous section, the use of domain-knowledge can serve as a remedy for this issue.

In this dissertation, instead of fully relying on the representational power of deep models

in learning discriminative features, we want to leverage image-specific characteristics in

order to regularize and eventually improve deep networks. Motivated by this idea, this

research aims at addressing the following questions:

1. How can one tailor deep models for visual recognition?

2. How much benefit do we get by these adjustments?

In order to address the first question, we note that domain knowledge about visual

recognition can be incorporated into deep models in pursuit of the following objectives:
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• Improving optimization: In training deep networks, the optimal values for the

parameters are found through a gradient-based optimization procedure [39]. Image-

specific priors can be utilized to address the known issues of this optimization pro-

cedure (e.g., gradient instability) as well as improving the speed of convergence and

overall training time.

• Improving generalization: Deep networks usually have a huge number of free

parameters—much greater than the number of training samples—and thus are sub-

ject to over-fitting. Considering this fact, the image characteristics can be exploited

in order to restrict the search space for the parameters, and consequently regularize

these models. For instance, the parameters of deep networks can be initialized using

image priors. Furthermore, domain-specific regularization can be done by aggregat-

ing a set of deep models.

For the second question, the effect of incorporating image-specific knowledge in training

deep networks should be assessed empirically. Due to the large number of tunable hyper-

parameters, systematic analysis of the performance of deep networks is challenging. There

are a large number of phenomena interacting and it is difficult to disentangle their effects.

Therefore, it is easy to misinterpret the results and draw grand conclusions. In order

to prevent this issue, the experimental setup should be simple, controlled and revealing.

Moreover, one should not fully rely on the final recognition performance of the model.

To disclose the contributing factors in success of a model, careful inspection of the model

through a set of analytical experiments is required. We will take these considerations into

account in the design and analysis of our experiments.

1.3 Summary of Contributions

In pursuit of the described objectives, this research leads to the following contributions:

• Regularizing Restricted Boltzmann Machines (RBMs) [40]—the building block for

Deep Belief Networks (DBNs) [17]—through the use of global characteristics of the

input images at different levels of details. We propose Eigen-RBM, a generalization

of fully connected RBMs, with an efficient training strategy in which the number of
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free parameters is independent of the image size. In this method, the number of free

parameters is reduced by constraining the network weights to be a linear combination

of a set of “predefined” filters based on domain knowledge.

• Improved feature learning using convolutional networks [11] by using a multi-scale

representation of the input image. In order to capture image features at different

levels of detail, we propose multi-neighborhood convolutional networks in which fine-

scale image characteristics (i.e., appearance features) are captured through a small-

size neighborhood while coarse-scale image characteristics (i.e., shape features) are

detected by exploring a wider range of dependencies over a larger neighborhood.

In addition, we suggest a scalable learning strategy through which one can use an

already-trained single-scale network to extract multi-scale image features without

increasing the training cost. That is, the learning is performed only on the original

scale, but then the learned parameters are applied to an ensemble of networks at

different scales.

• Introducing a new general-purpose regularizer for training deep networks. We show

that weight decay, as a widely-used regularizer in deep networks, can exacerbate some

of the known optimization issues in training these models. In order to address this

problem, we propose Periodic Weight Decay (PWD), a generalization for basic weight

decay, in which a frequency parameter is devised to specifically treat the issues of

gradient-based optimization for training deep networks. Compared to basic weight

decay, PWD offers a faster convergence rate and a better generalization performance

for deep networks.

• Improved feature learning for visual recognition using a stage-wise training framework

for deep networks. In this method the network is steered towards capturing “typical”

characteristics of each category—instead of their “unique” features—through a se-

quence of related learning stages. To that end, during the early stages of training the

coarse-scale properties of the image are captured while the fine-scale characteristics

are learned in the subsequent stages. Moreover, the solution found in each stage acts

as a prior to regularize the next training stage.
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1.4 Thesis Structure

Following the sequence of the mentioned contributions, this thesis is organized in seven

chapters. Chapter 2 offers an overview on the deep learning literature with an empha-

sis on the important changes—in their architecture, training procedure and regularization

schemes—which played a pivotal role in their revival. In Chapter 3, we focus on the scal-

ability issue for RBMs and show that how the computational burden of training these

fully-connected models can be reduced by exploiting the global characteristics of the input

image. Our novel multi-neighborhood convolutional architecture along with its scalable

training strategy is presented in Chapter 4. Utilizing the multi-scale representations of

the input images, we propose a multi-neighborhood architecture that can effectively cap-

ture image features at different levels of details. The focus of Chapter 5 is on improving

the gradient-based optimization procedure in training deep models. In this chapter we

introduce Periodic Weight Decay (PWD) for regularizing deep networks and show that

it leads to a faster convergence and better generalization performance for deep models.

Subsequently, in Chapter 6 we introduce our novel stage-wise training framework for deep

networks in which the network is guided step-by-step towards a better solution by gradual

injection of the presented information in the visual data. Finally, the thesis is concluded in

Chapter 7.2.3 with a general discussion over the proposed methods and a set of directions

for future research.
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Chapter 2

Background and Literature Review

This chapter provides a review over the deep learning literature with the aim of highlighting

the pivotal factors in the revival of deep networks. Besides the significant growth in the

computational power (particularly in GPU and distributed computing), a set of important

changes in the model architecture and training procedure paved the way for the immense

popularity of deep networks. We first start by describing the architectural properties of

deep networks which distinguish them from their classical shallow counterparts. Then, after

giving an overview on the general framework for training neural networks, the challenges of

extending this framework to deeper networks is discussed. Finally, we focus on the necessity

of regularization for deep networks and review some of the widely-used regularization

techniques in training these models.

2.1 Model Architecture

The architectural properties of deep networks have a crucial impact on their success, and

set the stage for the efficient training of these models. In contrast to conventional shallow

networks, deep networks are especially useful for modeling high-dimensional and structured

data where higher level characteristics can be obtained by combining lower-level structures.

As it comes from its name, the most distinguished architectural property of these networks

is depth. In this section, the role of depth in the representational power of the network is
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discussed. Then, we show that how the local nature of network layers offers scalability to

high-dimensional data and captures the structural properties of the data.

2.1.1 Depth

The amazing representational power of neural network architectures was known since 1989

through the “universal approximation theorem” [41]. Based on this theorem, a single-

hidden-layer neural network with finite but large enough number of hidden neurons can

approximate any continuous function to any desired precision1. The quality of this ap-

proximation improves by increasing the number of hidden neurons. Given the striking

expressive power of a single hidden layer network, one may question the motives for having

a deeper architecture.

Despite the fact that single hidden layer architectures can represent any function, their

representation may not be efficient for some classes of functions [42]. That is, they might

need a huge number of neurons, parameters and consequently training examples. Further-

more, it has been proven that well-known single-level architectures like Gaussian Kernel

Machines and decision trees2 are sensitive to the curse of dimensionality [43, 44].

Recently, it has been theoretically shown that depth of the network can compensate

for its width. Sutskever and Hinton showed that in the case of limited width, the depth of

a network is the key factor in determining its expressive power [45]. Montufar et al. [15]

offered a comparative study between a narrow but deep model and a shallow network with

equal number of neurons in terms of the number of response regions. Based on this study,

a deep model can generate a larger number of response regions compared to its shallow

counterpart and thus, offers a better expressive power. A related result indicates that with

a 2-layer network, one needs an exponential number of neurons to represent a simple radial

function that is easily expressible with a small three-layer network [16].

On the other hand, many classes of data (e.g., image, speech and text data) have a

natural hierarchical structure. Capturing this hierarchical architecture and learning an

abstract representation of the data is a primary goal in various machine learning appli-

cations. For instance, image data can be described in different levels of abstraction (e.g.,

1Mild conditions on the activation function are required.
2Note that for decision trees level refers to the architectural level and not the level of the tree.
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Figure 2.1: Visualization of the learned features using a deep network [49]. This figure

shows the image patches that cause high activations in each network layer. Observe the

increasing level of abstraction as we move up in the network.

pixel intensities, edges, object parts, etc.). In particular, lower level structures can be

combined to create a higher level structure that corresponds to a more abstract concept.

This hierarchical nature of the data has led to the emergence of many successful multi-level

image models, including wavelet models [34, 46], scale-space models [47, 35] and pyramid

representations [36, 48]. Following this idea, the multi-layer architecture of deep networks

enables them to capture hierarchical characteristics of image data (see figure 2.1).

Inspiration from the human brain and more specifically the human visual system make

the desire for having deep architectures even more intense among AI researchers [10].

Evidence from neuroscience suggests that human brain is similar to a deep network, and

the input signals are passed through several layers of neurons where they are encoded in

different levels of abstractions [50].

More importantly, multi-layer neural networks offer an impressive performance gain

in many challenging learning problems especially in computer vision. Deep models have

outperformed their shallow counterparts with a large margin in major visual classification

benchmarks [51]. This practical advantage has been obtained through resolving a number

of training obstacles that deep models used to have.

The above factors have resulted in a dramatic increase in popularity for deep architec-

tures in recent years. Although convincing, our theoretical understanding of multi-layer
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networks is still limited and there are a lot of unanswered questions.

2.1.2 Locality

Before the substantial growth in the popularity of deep models, most of the employed neu-

ral network architectures were fully-connected [52, 53]. In fully-connected architectures

the number of parameters grows almost linearly with the dimensionality of the input.

Therefore, the use of fully-connected networks for high-dimensional data is impractical. In

addition, these networks ignore structural properties of the data for visual recognition. In

order to overcome these drawbacks, in recent deep architectures a set of locality constraints

are devised which make multi-layer models particularly useful for high-dimensional struc-

tured data [7, 8, 54]. The locality constraints, i.e., architectural regularizers, also include

a weight-sharing scheme. This scheme reduces the number of parameters by sharing the

same weights between different localities3. In addition, the network is equipped with an

abstraction mechanism to represent the hierarchical structure of the data when multiple

local layers are stacked.

Convolutional Models

In visual recognition, the most widely used models that benefit from local structures are

the convolutional networks [11, 7, 55]. These hierarchical models aim at learning a set

of local feature detectors or filters at each layer that are shared across the extent of the

image. The intuition behind this structure is that if a feature is believed to detect useful

information in some part of the image, then it can extract relevant information from

other parts of the image as well. Considering this shared nature of the connections and

the small size of the convolutional filters, the number of parameters that are needed to

be learned and stored reduces greatly. The filters are learned in a supervised mode using

classification error back-propagation [9] or in an unsupervised mode employing a generative

framework [7]. Figure 2.2 offers a schematic illustration of a single layer feature extractor

of this architecture. Given an N × N input image I, and a set of M ×M learned filters

3This idea is similar to having the same filter applied to different localities of the image in image

processing.
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Figure 2.2: Schematic diagram of feature extraction using a single layer convolutional

network. The input image is passed through a set of learned filters followed by a nonlinear

function ϕ and a pooling layer. All the filters have the same size.

{f1, f2, ..., fK}, the output H of the convolutional layer would be K images of size (N −
M + 1)× (N −M + 1) that are computed as:

Hk
ij = ϕ

(
(fk ∗ I)ij + bk

)
(2.1)

where ϕ(.) is a nonlinear activation function and bk is the learned bias of the layer. Note

that in this architecture, since all of the learned filters are of the same size (i.e., M ×M),

only a single-size neighborhood centered at each input pixel is considered.

Spatial Pooling

In order to capture abstract representations in a multi-layer network, higher level feature

detectors need information from progressively larger regions. Stemming from this fact,

the convolutional layer is usually followed by a “spatial pooling” (i.e., sub-sampling) layer

which shrinks the output of the convolution layer (see figure 2.2). More formally, a local

neighborhood N of size p × p is shrunk to a single pooling unit through a many-to-one

function Ψ(.). The pooling function Ψ(.) is commutative in the sense that changing the

order of the inputs does not change the output. This mechanism makes deep networks

more scalable while it allows the representations to be invariant to local transformations

(e.g., max-pooling makes the representations invariant to local translations of the input).

Conventional choices for pooling function Ψ(.) are the max and average functions.

However, for visual recognition, the use of average pooling has been discouraged [56, 57].
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Average pooling has the drawback of down-weighting strong activations since it considers

the effect of all elements, including the very small ones, in the pooling region. Moreover,

if the activation function ϕ(.) can generate both positive and negative values (e.g., tanh),

then applying average pooling causes the strong positive and negative activations to cancel

out each other. It has been shown that employing a stochastic pooling function acts as a

regularizer and can effectively reduce over-fitting [57].

2.2 Training

Among different types of artificial neural networks, feedforward networks are the most

extensively investigated models for image classification. The general framework for training

deep feedforward neural networks is similar to that of the classical (less deep) models.

In particular, stochastic gradient descent and error back-propagation are the essential

techniques used for training them. However, for efficiently training deeper networks, some

special considerations should be made. In fact, without addressing these considerations,

deep networks do not perform better than the shallow ones [58].

In this section, after introducing the notation, we explain the general training framework

for feedforward neural networks. For simplicity of further discussion, we assume that no

weight-sharing scheme is used. Afterwards, the challenges of extending this framework to

training a deep architecture are discussed. Finally, a number of strategies that paved the

way for efficient training of deep models are reviewed.

2.2.1 Notation

Given a feedforward neural network with L layers, each layer l is parametrized with a

weight vector W l and a bias vector bl. The input to each neuron j in the lth layer is

denoted by zlj and is defined by

zlj =
∑
k

wlkja
l−1
k + blj (2.2)
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where al−1 is the output (i.e., activation) vector of the previous layer. Given an activation

function ϕ, the activation of each neurn j is computed as

alj = ϕ(zlj). (2.3)

The input data xi is fed to the first layer (i.e., input layer) and the activation of the Lth

layer aLi is the estimated target using the network.

2.2.2 Optimization

The goal of training is to find the optimum values for the network parameters W and b

such that a loss function L is minimized on the training set {(xi, yi)}ni=1. For classifica-

tion problems, there are a number of real-valued loss functions which are related to the

prediction error. Among those, a basic choice would be the Mean Squared Error (MSE):

LMSE =
1

2n

∑
i

(yi − aL(xi))
2 (2.4)

where yi is the true target and aL(xi) is the estimated output for xi. Another popular loss

function is negative log-likelihood which is defined as

LNLL = − 1

n

∑
i

ln(aLyi(xi)) (2.5)

where aLyi denotes the activation of the certain output neuron that corresponds to the true

label. Note that the choice of the loss function and the activation function for the output

layer are interrelated. MSE is typically matched with a linear activation function in the

output layer while negative log-likelihood is used with a soft-max output layer which is

computed as

aLj = − ez
L
j∑

k e
zLk
. (2.6)

For the hidden layers, commonly a sigmoid activation function (i.e., σ(z) = 1
1+e−z ) is used.

The loss function L is minimized with respect to the network parameters using the

Stochastic Gradient Descent (SGD) algorithm [39]. SGD is a generalization of GD (i.e.,
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Gradient Descent) in which the gradient of the loss function is computed on a randomly

chosen subset of the training data, as an unbiased approximation of the gradient on the

entire training set. For each randomly selected training batch SGD takes the following

steps:

1. Forward Pass: Computes the network output (see figure 2.3a).

2. Backward Pass: Calculates the gradient of the loss function with respect to the

network parameters using error back-propagation.

3. Update: Update the parameters by taking a step in the opposite direction of the

gradient.

Error back-propagation [12] is an efficient algorithm for computing the gradient of the

loss function in which all of the partial derivatives are computed in a single backward pass.

It starts by computing the error signal δLj for the neurons of the output layer which is

defined as:

δLj =
∂L
∂zLj

(2.7)

=
∂L
∂aLj

ϕ′(zLj )

Then, the error is back-propagated to the earlier layers and interestingly for each layer l,

the error vector δl can be computed based on δl+1 which has been already calculated:

δlj =
∑
k

wl+1
jk δ

l+1
k ϕ′(zlj) (2.8)

Applying the chain rule, the partial derivatives of the loss function L with respect to the

network weights at each layer l can be computed in terms of the error at that layer and

the activations of its previous layer as follows:

∂L
∂wlij

=
∂L
∂zlj

∂zlj
∂wlij

(2.9)

= δlja
l−1
i
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(a) Forward Pass (b) Backward Pass

Figure 2.3: Schematic diagram of the forward pass and backward pass (error back-

propagation) in the training procedure of neural networks.

Similar to the weights, the partial derivatives of the loss function with respect to the biases

are calculated as

∂L
∂blj

=
∂L
∂zlj

∂zlj
∂blj

(2.10)

= δlj.

After estimating the gradients using error back-propagation, the network parameters
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are updated as follows.

wlij = wlij − γ
∂L
∂wlij

(2.11)

blj = blj − γ
∂L
∂blj

where γ is the learning rate for SGD.

A schematic diagram for the error back-propagation algorithm is presented in fig-

ure 2.3b.

2.2.3 Challenges

Although the standard SGD and error back-propagation are effective methods for training

shallow networks, their use for training deeper models is problematic. Therefore, the

performance of deep models will not be superior to that of shallow ones if the standard

training methods are used [58]. The main reason behind this deficiency is that the speed

of learning for different layers are not similar. Having different learning speeds for different

layers of the network is a fundamental consequence of using a gradient-base optimization

for a multi-layer architecture.

As a toy example, consider a neural network with three hidden layers with a single

hidden neuron in each layer (See figure 2.4) [59]. Considering (2.9) and (2.10), δl is directly

proportional to the size of the partial gradients. Therefore, it can be used as a rough

measure for the speed at which the parameters of layer l are learned. Now we compare the

learning speed of the output layer with that of the first hidden layer. Based on (2.7), δ4

becomes

δ4 = ϕ′(z4)
∂L
∂a4

. (2.12)

By repetitive application of (2.8), δ1 is computed as follows:

δ1 = ϕ′(z1)w2ϕ′(z2)w3ϕ′(z3)w4ϕ′(z4)
∂L
∂a4

(2.13)

= w2ϕ′(z1)w3ϕ′(z2)w4ϕ′(z3)δ4
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Figure 2.4: A toy network with three hidden layers for illustrating the gradient vanishing

problem.

Therefore, the gradient (i.e., the speed of learning) in an earlier layer is a product of

wϕ′(z) terms from all of its upper layers. Now, if a sigmoid activation function is used

(i.e., ϕ(z) = 1
1+e−z ), the magnitude of ϕ′(zl) is always less than 1/4. On the other hand,

the weights are usually initialized to small values (i.e., less than one). As a result, the

speed of the learning (i.e., the gradient) exponentially decreases (with respect to the layer

number) as we move backward from the top to the earlier layers. This phenomenon is

known as gradient vanishing or diffusion of gradients.

One may argue that the size of the weights grow during training and as a result, the

magnitude of wϕ′(z) might be greater than one. This situation could be equivalently prob-

lematic, because the gradient (i.e., the speed of the learning) tend to increase exponentially

as one moves backward to the earlier layers. This situation is called gradient exploding.

To recap, with the standard SGD, earlier layers of the network will have either pro-

gressively smaller speeds of learning, or larger ones. This will cause a slow convergence for

the first case, and instability in the later. Therefore, some measures should be taken to

overcome these difficulties.

2.2.4 Solutions

A number of methods have been proposed to tackle the difficulties of training deep neural

networks. Glorot and Bengio found that sigmoid activation functions are not suitable for

deep networks with random initialization [58]. Their analysis demonstrates that using

sigmoid activation function in a randomly initialized network drives the top layer neurons

to saturation around zero at the start of the training. To alleviate this problem, the

use of a different non-linearity such as softsign where ϕ(z) = 1
1+|z| is recommended. In
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addition, they proposed a normalized initialization scheme to protect the variance of the

back-propagated gradients from vanishing or exploding.

Rectified Linear Units (ReLUs) are arguably the most popular alternative for the prob-

lematic sigmoid neurons in deep neural networks [56, 19, 18]. The rectifier activation

function ϕ(z) = max(z, 0) prevents gradient vanishing because for active neurons, the ac-

tivation function behaves linearly. Also, it has been shown that this activation function

is biologically plausible and improves sparsity of the learned representations [19]. Supe-

rior recognition performance of ReLUs has been demonstrated for many deep learning

applications [56, 22].

Using Momentum-based gradient methods [60] in training deep networks improves the

speed of convergence and the quality of the found local minimum [61]. The key idea behind

momentum-based gradient descent is to update the parameters in directions more effective

than steepest descent by incorporating information about how the gradient is changing.

To that end, the speed of moving in directions which consistently reduce the cost function

is accumulated. More precisely, for each parameter w, a velocity vector v is considered and

updated based on the following rule:

v = µv − γ ∂L
∂w

(2.14)

where the momentum coefficient µ ∈ [0, 1) controls the contribution degree of previous

gradients. Accordingly, the gradient descent update rule (2.11) changes to w = w+v. It has

been shown that careful scheduling of the momentum coefficient increases the effectiveness

of SGD in training deep networks [61].

2.3 Regularization

Deep networks typically have a huge number of free parameters. Although exerting locality

and weight-sharing constraints reduces this number, still a large number of parameters

should be learned based on the training data. Therefore, the risk of over-fitting (i.e., poor

generalization) is high for deep models.

Having access to large labeled data sets (e.g., ImageNet [13]) alleviates this problem

to some extent. However, still the large number of parameters is a threat to the model
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generalization. Therefore, it is necessary to limit the degrees of freedom of the model in the

parameter space through employing a regularization technique. Beside the general-purpose

regularizers, special-purpose regularization schemes have been developed for deep networks.

The use of these regularizers has had a profound impact on the re-emergence of multi-

layer neural networks. In the following, we review some of the important regularization

techniques used in deep learning.

2.3.1 General-purpose regularizers

Two types of generalization error bounds have been proved for multi-layer neural net-

works [62]. The first one is based on the number of parameters in the network, and suggest

that to obtain a good generalization performance, the number of training data should grow

linearly with the number of network parameters [63].

In practice however, neural networks perform well even when the number of training

samples is considerably less than the number of network parameters (e.g., [64]). Motivated

by this observation, a second type of generalization error bound was shown based on the

size of the parameters [65]. This bound suggests that as long as the size (i.e., norm) of the

parameters is small, neural networks can have a good generalization performance—even

when the number of parameters is huge.

The successful application of general-purpose regularizers in training deep networks has

corroborated the theoretical role of the parameter sizes in the generalization performance

of neural network. One simple practice to control the size of the final weights is early

stopping [66]. Another relevant technique is the popular and widely used weight decay

regularizer [67, 68]. In this method, the cost function is augmented with a penalty term

R(w) which is based on the L2 or L1 norm of the weights. Therefore, the learner should

choose the smallest weight vector that solves the problem. Employing the L1 norm of the

weights as a regularizer promotes sparsity, allowing a few large weights [68]. Minimizing

the L2 norm of the parameters on the other hand pushes all the weights towards zero. A

more detailed description of weight decay method can be found in section 5.2.
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2.3.2 Pre-training

An important part of the gradient-based optimization methods is the initialization proce-

dure, where the starting point for the update process is determined. In convex optimiza-

tion, these initial values might affect the speed of convergence to the optimal solution. In

non-convex optimization however, the effect of initialization is more significant. In fact,

the initial values can change the local optimum that the gradient-based optimization will

end up to. This is the case for neural networks and therefore, the “quality” of the opti-

mization outcome depends crucially on the choice of initialization [61, 58]. Particularly,

for deep networks random initialization often leads to poor local minimums.

Pre-training methods address this issue by initializing the network parameters near

a good solution [17, 14, 20]. In these techniques, the initial values of the weights are

determined by layer-wise pre-tranining of the network, starting from the first layer. Layer-

wise pre-training is usually an unsupervised procedure where each layer is treated as a

Restricted Boltzmann Machine (RBM) [40] or an Auto-Encoder [69]. Pre-training acts

as a regularizer (i.e., a good prior) in the sense that it restricts the search-space for the

parameters. That is, the final values of the parameters will be close to their initial values

determined by an auxiliary objective function [70]. This explanation justifies the better

generalization performance of the pre-trained networks [70]. Similarly, transfer learning [21]

can be considered as a pre-training method and consequently a regularization scheme for

deep networks. More information about this subject can be found in section 6.2.

2.3.3 Dropout

One of the main approaches for preventing a model from over-fitting is model averaging.

In this approach, the output is computed by taking a weighted average over the predic-

tions using all possible configurations of the model parameters. However, for deep neural

networks—which typically have a large number of parameters—this kind of model averag-

ing is computationally intractable, both in training and test phases. One idea to alleviate

this problem is to approximate the averaging method by combining the predictions of only

a small ensemble of networks. However, this is still problematic, as the test-time compu-

tational complexity will still be high, and the small ensemble may not approximate the

whole distribution of possible models accurately enough.
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Dropout is an effective regularization technique for neural networks that addresses the

above concerns [37, 22]. In this method, for each presentation of each training data, a new

thinned network architecture is used. These different thinned architectures are produced

by random removal of neurons from the base architecture with a predefined probability

1− p. In each step of training, if a neuron is chosen to be dropped, then all of its outgoing

and incoming weights are removed. During the test time, a single network with the base

architecture is used in which the learned weights are scaled down by a factor p4. The

reason for this down-scaling is to make sure that the expected output of each neuron at

training time is the same as its actual output at the test time. The good generalization

performance of dropout is attributed to the fact that it prevents complex co-adaptation of

hidden units. That is, a hidden unit cannot rely on the presence of other hidden units and

thus the co-adaptations are weakened.

Drop-connect is also a similar method to dropout with the difference that, instead of

hidden neurons, the connections between neurons are randomly dropped [71].

4This down-scaling is applied only on the layer regularized with dropout.
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Chapter 3

Scalable Learning for Restricted

Boltzmann Machines

As mentioned in section 2.3.2, in the unsupervised pre-training of deep neural networks,

each layer is treated as a Restricted Boltzamnn Machine (RBM) [40]. RBM is a proba-

bilistic generative model widely used for feature learning in visual recognition [6, 17, 72].

RBM has a large number of free parameters and, therefore, the computational cost of

model-fitting is high, which limits its applicability to small-sized images. In this chapter

we propose Eigen-RBM, a scalable RBM for visual recognition in which the number of

free parameters to learn is independent of the image size. Eigen-RBM exploits the global

structure of the image and does not impose any locality or translation-invariance assump-

tions, and regularizes the network weights to be a linear combination of a set of predefined

filters. We show that, compared to basic RBM, Eigen-RBM can achieve similar or bet-

ter performance in both recognition and sample generation with significantly less training

time1.

1The materials in this chapter has been previously published in [73], where the thesis author is the first

author.
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3.1 Objective

One of the key challenges in visual recognition is the limited number of labeled data which

are hardly sufficient to train the discriminative models with a large number of parameters.

To cope with this problem, generative models can be used as domain-specific regularizers

for discriminative systems. These models impose additional constraints on the parameters

to perform well in generation as well as recognition.

Despite the merits of employing generative models in visual recognition, there are many

unresolved obstacles. Of these, one of the most important issues is that of high computa-

tional complexity. Although considerable advances have been made [7, 17], running these

algorithms requires special hardware and software support.

In this chapter, we focus on Restricted Boltzmann Machines (RBMs), the most widely-

used generative model for visual recognition, and study the issue of computational com-

plexity. The number of RBM parameters grows roughly quadratically with the size (i.e.,

the number of pixels) of the input image. Therefore, extending RBMs to high-resolution

images is not computationally tractable or desirable, since having large numbers of pa-

rameters is a threat to good model generalization. To address this problem, we propose

Eigen-RBM, a regularized extension of RBM, for visual recognition in which the number of

free parameters to learn is independent of the image size. Eigen-RBM exploits the global

structure of the image and does not impose any locality or translation-invariance assump-

tion, and regularizes the network weights to be a linear combination of a set of predefined

filters.

3.2 Background

3.2.1 Generative Models for Images

The basis of generative modeling approaches for image applications is the seminal work

by Geman and Geman [31]. The heart of any generative approach is modeling the prior

distribution of the data. However, due to the high-dimensionality and non-Gaussian statis-

tics of natural images [32], defining a generic prior model is quite challenging. Researchers

have evolved this model of [31] by investigating richer priors [74, 75, 76, 77].
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In the past decade we have witnessed a growth of attention [7, 8, 17] toward using

generative models for visual recognition. The problem of visual recognition has some

innate challenges, including a lack of labeled data and image occlusion, both of which can

be addressed in a generative framework:

- Unsupervised Learning: Labeled data is costly to produce, however generative models

are able to learn from unlabeled data.

- Occlusion: Investigating the generative property of a model, ambiguities in the raw

sensory inputs can be resolved by means of inferring the missing pixels [7, 8].

3.2.2 Restricted Boltzmann Machines

Restricted Boltzman Machines (RBMs) [40] are the most widely used generative model

for feature extraction in visual recognition [17, 54, 72, 78]. RBMs are bipartite undirected

graphical models with a set of binary hidden units h and a set of visible units v (binary

or real-valued) arranged in two layers. There are symmetric connections between these

two layers represented by weight matrix W (see figure 3.1). In this structure, visible units

correspond to input data (e.g., image pixels) and hidden units are the extracted abstract

representations. In order to capture more abstract features, RBMs can be stacked to

form deep architectures such as Deep Belief Networks [17] and Deep Boltzman Machines

(DBMs) [79].

In an RBM, the probability of a configuration (h,v) is

P (h,v) =
1

Z
exp
(
−E(h,v)

)
(3.1)

where Z is the partition function, with energy E(h,v)

E(h,v) =
1

2

∑
i∈vis

(vi − ci)2 −
∑
j∈hid

hjbj −
∑

i∈vis,j∈hid

viwijhj (3.2)

where b and c are the biases of the hidden and visible units. Given the joint distribution

P (h,v) (3.1), the probability that an RBM assigns to an input vector v can be obtained

from the marginal P (v). The parameters of an RBM can be optimized in a purely unsuper-

vised manner, based on maximizing the likelihood of the training data. Since maximizing
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Figure 3.1: Schematic diagram of Eigen-RBM in which filters (i.e., W:j) are defined as

linear combinations of a set of pre-defined filters.

P (v) with respect to the network weights does not have a closed-form solution, gradient

ascent is applied.

One key disadvantage is the large number of parameters to be learned, thus the ap-

plication of RBMs is limited to small-size images. Furthermore, having a large number of

parameters is always a threat to the good generalization of a model. One way of tackling

this problem is to reduce the number of parameters using a weight-sharing scheme [7, 8, 54].

Convolutional architectures [7] assume that the network weights (i.e., filters) are local and

stationary, however, in practice translation invariance is frequently violated.

3.3 Methodology

3.3.1 Eigen-RBM

Suppose that X ∈ Rd is a set of observed input variables and Y ∈ N is a set of latent output

variables drawn jointly from distribution P (X ,Y). Given a set of unlabeled observed

samples X = {x1, x2, . . . , xn} as n realizations of X , we are looking for a weight matrix

W which maps x to h such that the likelihood of the observations is maximized. We use

W:j to denote the weight vector that connects all of the units of the visible layer to hidden

unit hj.

In order to scale RBMs to realistic-sized images, we propose that the weights W:j to be
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Figure 3.2: Eigendigits filter bank: Eigen-decomposition of the training data. Observe

how the Eigendigits capture information at a variety of scales from coarse to fine.

defined as linear combinations of a set of predefined filters (see figure 3.1). That is, given

a filter bank F = {f1, f2, ..., fρ}, we define weight vector (i.e., filter) W:j as

W:j :=

ρ∑
k=1

αkjf
k (3.3)

where the size of the filter bank is much smaller than the number of visible units (i.e.,

ρ � d). In this way, the number of parameters is independent of the image size and

becomes instead a function of the size of the filter bank. In addition, the global structure

of the image is exploited and no locality or translation invariance assumption is imposed.

Training an RBM consists of learning the weights αkj of the filters in the filter bank.

Performing gradient ascent on the log-likelihood of the training data, the update rule for

coefficient αkj is computed as

∂logP (v)

∂αkj
=

∑
i∈vis

∂logP (v)

∂wij

∂wij
∂αjk

(3.4)

=
∑
i∈vis

(< vihj >data − < vihj >model)f
k
i

The freedom of choosing the filter bank enables us to capture different aspects of the image.

Since the filters are applied linearly to the image (rather than being convolved), a good

choice would be a filter bank that captures global information at different levels of details.

A simple choice for the filter bank could thus be the set of eigenvectors corresponding to

large eigenvalues of the covariance matrix of the training data. Figure 3.2 shows a sample
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(a) Basic RBM (b) Eigen-RBM

Figure 3.3: The learned filters for single digit training data (digit 2) as computed by Basic

RBM and Eigen-RBM. Notice the noisy corners of the learned filters by Basic RBM that

comes from the learning procedure.

of this filter bank for hand-written digits of MNIST data set [11]. The RBM with the

weights defined as linear combinations of Eigen-filters is Eigen-RBM.

To assess whether Eigen-RBM can produce similar results to basic RBM, which has

many more free parameters, both networks are trained with images of handwritten digit 2

taken from the MNIST data set. The filter bank in Eigen-RBM consists of the top 30

eigenvectors. As figure 3.3 shows, with about one twenty-seventh the number of parameters,

Eigen-RBM produces similar results to RBM. Although noise-reduction is not the objective,

it is interesting to observe the reduction of noise in the corners of the learned Eigen-RBM

filters: the Eigen-RBM filters are random combinations of Eigendigits, which are not noisy,

whereas the learned filters for basic RBM are initialized with random values.

3.3.2 Connection to PCA

Employing the top eigenvectors of the covariance matrix connects Eigen-RBM to Principal

Component Analysis (PCA) [80]. To see this connection, assume aj to be the input to

hidden unit unit hj. Considering the bipartite structure of RBM, aj is as follows:

aj = w1jv1 + w2jv2 + ...+ wdjvd. (3.5)

Defining W:j as a linear combination of a set of existing filters using (3.3), we have:
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aj = (α1jf
1
1 + ...+ αρjf

ρ
1 )v1 + (α1jf

1
2 + ...+ αρjf

ρ
2 )v2 (3.6)

+ ...+ (α1jf
1
d + ...+ αρjf

ρ
d )vd

= α1j(f
1 · v) + α2j(f

2 · v) + ...+ αρj(f
ρ · v)

where “·” denotes the inner product. Consequently, the idea of linear combination is

equivalent to defining RBM on the linear projection of the data:

aj = α1j v̂1 + α2j v̂2 + ...+ wρj v̂ρ (3.7)

where v̂ = {v̂1, v̂2, ..., v̂P} is the embedded data into the new lower-dimensional space.

Therefore, when f is are the top eigenvectors of the covariance matrix, as in Eigen-RBM,

it is equivalent to applying PCA on the images and then defining the visible units to be

the dimension-reduced data.

3.4 Results and Discussion

We conducted a set of experiments on a small version of MNIST2 data set of handwritten

digits to study the effectiveness of Eigen-RBM compared to that of RBM. The feature

learning procedure consists of two stages. In the first stage, the generative weights are

learned in a purely unsupervised manner. In the next phase, the learned generative weights

are fine-tuned using error backpropagation. The extracted representations are used to

classify the test set using a one-nearest-neighbor classifier [81].

In order to determine the optimum number of Eigendigits for Eigen-RBM, we use the

Akaike Information Criterion (AIC) [82]. AIC is a model selection criterion to moderate

the trade-off between the model complexity and the goodness-of-fit of the model. If the

underlying error is independently and normally distributed, AIC is defined as

AIC = 2ρ+ n ln(Erroravg) (3.8)

where ρ is the number of parameters (e.g., here Eigendigits), n is the number of samples

and Erroravg denotes the average error rate over the sample set [83]. As (3.8) indicates,

2A subset of 600 and 100 samples from each digit class is chosen randomly for training and testing,

respectively.
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Figure 3.4: The Akaike Information Criterion (AIC) [82] for Eigen-RBM averaged over

ten randomly selected subsets of MNIST data sets (6000 training samples and 1000 test

samples). Note that for both unsupervised and fine-tuned features, the optimum number

of Eigendigits, found by minimizing the AIC, are similar.

AIC rewards a high goodness of fit while it penalizes a large number of free parameters

to be estimated. Given a set of models, the model with the minimum AIC is preferred.

Figure 3.4 presents the computed AIC for Eigen-RBM for different numbers of Eigendigits,

illustrating that the required number of Eigendigits for both unsupervised and fine-tuned

models are similar. Based on this criterion, in Eigen-RBM we use the top 30 Eigendigits

of the data. Therefore, in the case of MNIST data set with 784-dimensional inputs, the

number of free parameters for Eigen-RBM is 30×|h| while in Basic RBM we have 784×|h|
parameters to learn. As a result, the number of free parameters in Eigen-RBM is near one

twenty-sixth the number of the parameters of basic RBM.

Figure 3.5 proposes a comparison between basic RBM and Eigen-RBM in terms of

recognition rate and running time. To ensure a fair comparison, both RBM and Eigen-

RBM are trained with the same number of epochs. This result demonstrates that with near

one twenty-sixth the number of the parameters of basic RBM, Eigen-RBM performs similar

to and even better than basic RBM for small number of hidden neurons. As illustrated

in figure 3.5 (b), for a large number of hidden neurons—which improves the recognition
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Figure 3.5: Comparing the basic RBM and Eigen-RBM in terms of classification error

rate and training time. For both methods equal number of training epochs has been used.

Training time has been computed for 10 epochs of unsupervised training. Observe that

the Eigen-RBM has a similar error performance relative to basic RBM (a), but with much

less training time (b).

performance—the difference between the training time of basic RBM and Eigen-RBM

becomes significant.

It is important to know that learning overcomplete representations3, such as RBM

features, runs the risk of learning trivial solutions [7]. To avoid this problem, one can

encourage the features to be sparse so that for each input only a small fraction of hidden

neurons becomes active [84, 85]. Without imposing any sparsity penalty, a side-effect

of the new weight-learning algorithm is to learn sparse representations. The histogram

in Figure 3.6 shows how often the hidden neurons are active for the training images4.

Evidently, compared to basic RBM, in Eigen-RBM there are many more hidden neurons

that are never active or active for a small fraction of time.

For the next step of this comparative study, we take a look at the mind of the network

3More sources of features than observations.
4This way of plotting the histogram of activations has been previously used in [86] for analyzing sparsity.
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Figure 3.6: A histogram of active hidden neurons averaged over ten random draws of small

MNIST data set. The histogram shows the number of hidden neurons that are active for

some fraction of the images. The left-most bin shows the number of neurons that are active

for 10% of the images, allowing us to conclude that Eigen-RBM representations are sparser

than those of basic RBM.

to see what the network believes in. For each class of digits on the complete MNIST data

set, an RBM and an Eigen-RBM both with 50 hidden units are trained. After training,

starting from a random binary input for the hidden layer, we run alternate Gibbs sampling

for 500 iterations. Figure 3.8 shows the generated samples for each class at different Gibbs

sampling iterations. As this figure shows, compared to basic RBM, Eigen-RBM, with

fewer free parameters, produces similar or better samples (e.g., digit 6, 7 and 8). In our

last experiment, the average number of active hidden units is measured on 1000 samples

drawn from each class of digits. As figure 3.7 illustrates, for all digit classes, Eigen-RBM

generates similar or better samples with more sparse representations than that of basic

RBM.

3.5 Summary

The focus of this chapter was on regularizing RBMs with fully connected architectures

through providing some prior knowledge about the global characteristics of the images
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Figure 3.7: Fraction of hidden units which are active for the generated samples of each

class using basic RBM and Eigen-RBM. For all digit classes Eigen-RBM generates similar

or better samples with more sparse representations than basic RBM.

(a) Basic RBM (b) Eigen-RBM

Figure 3.8: Generated samples using basic RBM and Eigen-RBM trained on single digit

classes. The rows show the sample evolution as a function of Gibbs sampling iterations.

Eigen-RBM, with fewer free parameters, produces similar or better samples (e.g., digits 6,

7 and 8).

at different levels of details. We presented Eigen-RBM, with a scalable weight-learning

algorithm in which the number of free parameters is independent of the image size. Com-

pared to basic RBM, Eigen-RBM has similar or better performance in both recognition and

sample generation, with much less training time. Without imposing any specific sparsity

regularization, the new weight learning algorithm leads to more sparse representations, the

subject of future work.
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It is possible to extend this regularization scheme to convolutional architectures as well.

For Convolutional RBMs (CRBMs) [7], since the filters are convolved with the local regions

in the image, the filter bank should be able to capture local information at different levels

of details. In this way, one choice would be the eigenvectors corresponding to the largest

eigenvalues of the covariance matrix of the local patches of the training data. Driving a

convolutional formulation for PCA, this filter bank for Eigen-CRBM can be generated. In

the next chapter, we will follow a related direction and show how to learn image features at

different levels of details through multi-neighborhood convolutional architectures in which

neighborhoods of different sizes around each pixel are explored.
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Chapter 4

Multi-Neighborhood Convolutional

Network

In this chapter we explore the role of scale for improved feature learning in convolutional

networks. We propose multi-neighborhood convolutional networks which are designed to

learn image features at different levels of detail. Utilizing nonlinear scale-space models, the

proposed multi-neighborhood model can effectively capture fine-scale image characteristics

(i.e., appearance) using a small-size neighborhood, while coarse-scale image structures (i.e.,

shape) are detected through a larger neighborhood. In addition, we introduce a scalable

learning method for the proposed multi-neighborhood architecture and show how one can

use an already-trained single-scale network to extract image features at multiple levels of

detail. The experimental results demonstrate the superior performance of the proposed

multi-scale multi-neighborhood models over their single-scale counterparts without an in-

crease in training cost1.

1The materials in this chapter has been previously published in [87], where the thesis author is the first

author.
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4.1 Objective

As discussed in section 2.1.2, most of the deep networks used for visual recognition follow

a convolutional architecture for feature learning. The conventional convolutional networks

used for image classification [54, 56, 88] are single-neighborhood, in the sense that for

each pixel only a single-size neighborhood centered on that pixel is considered, and single-

scale, in the sense that only the input image at a single level of detail (i.e., original input

representation) is used for extracting features.

However, to be sure, scale-dependent image features significantly predate the emergence

of deep learning, and there exist many effective image representation models with strong

theoretical and experimental justifications that have been employed in feature extraction.

In particular, there is a whole class of multi-scale image models, including wavelet mod-

els [34, 46, 89], scale-space models [35, 47, 90], and pyramid representations [36, 48, 91],

among many others.

We are motivated to study the intersection of these two fields – multi-scale image

representations and multi-layer networks. Multi-layer networks have achieved astonishing

learning performance [9, 37, 92], but are for computational reasons limited to learning

filters on rather small patches. Since multi-scale image features are sensitive to image

structure on all scales and can, in principle, involve relatively large regions of support in

their operations, we would like to explore the feature complementarity between the two

strategies, in which popular deep convolutional architectures are steered or guided to reflect

extracted scale-dependent attributes.

The idea of increasing the size of neighborhood (i.e., learning larger filters) to extract

more complex features was examined by Coates et al. [55] and they found that despite the

increase in the number of learned parameters, the recognition accuracy is not improved.

In this chapter, we show that increasing the neighborhood size improves the recognition

accuracy if we use a multi -neighborhood architecture. Ciresan et al. [93] introduced the

use of different image representations in a multi-column deep neural network for image

classification. Although successful, training the large number of parameters associated with

the multi-column architecture is computationally expensive. A multi-scale convolutional

neural network was introduced by Farabet et al. [23] specifically for scene labeling. Training

this model requires the representation of the images at different scales which makes the
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Figure 4.1: Scale space image representations from fine to coarse scale using iterative

bilateral scale space [94] with N = 4, σgp = 0.1 and σsp = 3. Observe the changes in the

level of details and how coarse-scale structures are preserved sharp while fine-scale details

are filtered away.

learning both computationally and conceptually complex. Furthermore, they extract an

equal number of features at different scales. However, there are fewer degrees of freedom

presented at coarse-scale image representations and therefore, a fewer number of features

should be extracted from those representations.

In this chapter we present an extension of deep convolutional models which can more

explicitly capture features at different levels of detail through the use of nonlinear scale-

space models [94], whereby we show how such a multi-scale model can be modified to a

multi-neighborhood architecture. Our proposed multi-neighborhood model captures fine-

scale image characteristics (i.e., appearance features) through a small-size neighborhood

and coarse-scale image characteristics (i.e., shape features) by exploring a wider range of

dependencies over a larger neighborhood. Finally, we propose a scalable learning strategy

for this multi-neighborhood architecture; we will demonstrate that with the same number

of parameters as for a single-neighborhood convolutional architecture, we can have a multi-

neighborhood model with higher recognition accuracy.

4.2 Background

Originally motivated by biological vision [35], scale-space models [35, 47, 90] are used to

perceive or extract image structures at multiple scales. Specifically, a scale-space represen-

tation of an image is a set of transformed images, each showing structures at a different
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scale from fine to coarse, normally accomplished via a smoothing-like transformation. Us-

ing a linear transformation (i.e., linear scale-space) all of the image regions, including sharp

edges, are blurred uniformly, normally an undesirable behavior, certainly in the context of

object recognition and shape analysis. In order to keep large-scale regions intact, specif-

ically a preservation of sharp edges, nonlinear scale-space models [94, 95, 96] have been

developed, such as the example in figure 4.1.

In this work we employ an iterative bilateral scale-space (IBSS) approach [94] as a

nonlinear multi-scale representation. The IBSS approach facilitates the decomposition of

details in an image based on a combination of both spatial and photometric differences.

As a result, we are able to obtain a nonlinear multi-scale representation where details are

well separated and well localized at their respective scales.

Suppose we have a color image Ic, where c represents the channel in what is here an

{R,G,B} color space. Letting j index the pixel location, then the IBSS multi-scale image

representation over S scales can be expressed as

Ic(j) =
{
Ic0(j), Ic1(j), Ic2(j), . . . , IcS−1(j)

}
(4.1)

where subscript 0 ≤ s ≤ S represents the scale. The scale set is initialized at the finest

scale (i.e., Ic0 ≡ Ic) and then recursively expressed over scale:

Ics(j) =

∑
q∈N

wgp
(
j,Nq

)
wsp
(
j,Nq

)
Ics−1 (Nq)∑

q∈N
wgp
(
j,Nq

)
wsp
(
j,Nq

) . (4.2)

Here Nq refers to the pixel location within a local neighborhood N , and wgp and wsp are

the Gaussian photometric and spatial weights, respectively, on j:

wgp
(
j,Nq

)
= exp

−1

2

(∥∥Ics−1(j)− Ics−1(Nq)∥∥
σgp

)2
 , (4.3)

wsp
(
j,Nq

)
= exp

[
−1

2

(
‖j −Nq‖

σsp

)2
]
. (4.4)

The parameters σgp and σsp denote the scaling constants controlling the weights associated

with photometric locality and spatial locality constraints. Therefore, in higher scale repre-

sentation of an image the value of each pixel is a weighted average of its local neighborhood
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in the previous scale. From the neighboring pixels, those with closer location and intensity

values contribute more in the new value of the target pixel.

4.3 Methodology

As figure 4.1 shows, the finer-scale representations of the image have more information

regarding details, such as texture, whereas coarse-scale representations are more suitable

for reflecting high-level structures such as shape. It is clear that a wider context than

texture and pixel details are required for capturing shape features, therefore coarser scale

representations should be further investigated. In order to capture a richer set of features

using a multi-scale convolutional architecture, it will be essential to have neighborhoods of

different sizes, consequently we need a multi-neighborhood architecture with small/large

neighborhoods at fine/coarse scales, respectively. An obvious challenge, however, in the

growth of neighborhood size is the increase in the number of model parameters that must

be learned, making even more complex an already expensive training procedure.

On the basis of this motivation and computational objection, we introduce two different

multi-scale multi-neighborhood architectures. Based on the nonlinear scale-space models

discussed in section 4.2, our purpose is to design a multi-scale convolutional architecture

with feature detectors sensitive over a range of scales.

Given the input image I ≡ I0, let I0, I1, ..., IS−1 be the representation of I on the S

scales without sub-sampling, that is

Is ∈ RN×N for all s ∈ {0, ..., S − 1}. (4.5)

Our baseline solution, the Uniform Multi-Scale architecture, presented in figure 4.2, is a

set of parallel feature extractors each with the same architecture2: K filters of size M ×M
and pooling size p, applied at each scale Is. The final feature vector V is obtained by

concatenating the extracted features Vs over scales. Essentially this architecture constructs

a fixed neighborhood around each pixel at multiple scales.

As equation 4.2 shows, a coarse-scale image representation Is is basically obtained by

eroding small structures from a finer scale Is−1. Keeping this in mind, the coarser the

2The architectural details of a basic convolutional layer can be found in section 2.1.2.
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Figure 4.2: Schematic diagram of the uniform multi-scale architecture. Scale-space repre-

sentations of the input image are passed through a set of parallel networks with uniform

architectures.

image scale clearly the less fine structures are present, therefore a greater degree of down-

sampling can be applied without losing salient information. Based on this fact, we propose

a multi-scale architecture called Multi-neighborhood in Input, shown in figure 4.3, in which

the input representation at each scale is down-sampled with a different ratio. That is,

before feeding Is to its corresponding network, the image is down-sampled by a factor rs,

where rs−1 < rs. Note that except the input, the rest of the network architecture is left

unchanged (i.e., K filters of size M ×M and pooling size p at each scale s).

A final strategy is to introduce aspects of scale in pooling. The Multi-neighborhood in

Pooling architecture is shown in figure 4.4. In this model, similar to the uniform multi-

scale architecture, all of the input images Is are of the same RN×N size, and are fed into S

parallel networks each with K filters of size M ×M ; the difference appears in the differing

pooling sizes where p0 < p1 < ... < pS−1.
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Figure 4.3: Schematic diagram of the multi-neighborhood in input architecture. Scale-

space representations of the input image are passed through a set of parallel networks with

larger neighborhood size for coarser scales by sub-sampling the input image.

4.4 Results and Discussion

In this section we discuss the process of efficiently training the three proposed multi-scale

architectures for feature extraction and then examine their performance, compared to each

other and to an equivalent single-scale architecture. For the experiments the standard

CIFAR10 data set [6] is used, consisting of colored images of size 32 × 32 for ten classes

of objects, each having 5000 training samples and 1000 test samples. Employing IBSS,

the representations of images at five different scales are generated (i.e., S = 5). More

explicitly, considering a local neighborhood of size of 4 (N in equation 4.2) and σgp = 0.1

(equation 4.3) and σsp = 3 (equation 4.4), the representations of image at scales 0, 3, 5, 7, 13

are used, the scales chosen as being representative of the original images at a variety of

meaningfully–different levels of detail from fine to coarse.

The three proposed multi-scale architectures are analyzed for both unsupervised and
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Figure 4.4: Schematic diagram of the multi-neighborhood in pooling architecture. Scale-

space representations of the input image are passed through a set of parallel networks with

a larger pooling size for coarser scales.

supervised feature learning. In unsupervised feature learning, similar to Coates et al [55],

K-means clustering is used to learn a filter bank of size 8, which is then used in a single-

layer convolutional model with max-rectifying nonlinearity and max-pooling of size 4 × 4

with stride 4. For supervised feature learning, at each scale a CNN with two layers of

convolution is used. Each convolutional layer uses 64 filters of size 5 × 5, max-rectifying

nonlinearity and pooling of size 3× 3 with stride 2. The pooling function for the first and

second layer are max and average, respectively. Note that for multi-layer feature learning

architectures, down-sampling of the input is only applied to the first layer and larger

pooling of the output is only applied to the last layer. After training each architecture, the

extracted features are passed to an L2-SVM classifier with the regularization parameter

determined by cross-validation.
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(a) Uniform

Scale 0

(b) Uniform

Scale 5

(c) Sub-sampled Input

Scale 5

Figure 4.5: Visualization of the learned filters on CIFAR10 using single-scale networks

across different scales. We observe that input sub-sampling (c) leads to learned edge-

detectors with a wider range of angles compared to learning without sub-sampling (b).

The learned filters in (c) are similar to those in (a), primarily differing in size.

4.4.1 Scalable Learning

As discussed in section 4.3, the proposed multi-scale architectures are composed of a set of

parallel feature extractors applied to the representations of the input image at an ensemble

of scales. The remaining question, then, is how to train these parallel single-scale networks.

A straightforward solution is to train each of these single-scale networks using the image

representation at the corresponding scale. Figure 4.5 shows the unsupervised learned filters

on CIFAR10 using the original image representation (i.e., scale 0) versus a coarse scale

input representation (scale 5) with and without input down-sampling. Two immediate

observations are:

1. For the coarse-scale input representation (figure 4.5b and 4.5c), input sub-sampling

(i.e., a larger neighborhood) leads to learned edge-detectors with a wider range of

angles compared to those learned without sub-sampling.

2. The learned filters using a coarse-scale input representation with a larger neighbor-

hood (figure 4.5c) are similar to those of scale 0 (figure 4.5a), primarily differing in

size.
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(a) Unsupervised Feature Learning (b) Supervised Feature Learning

Figure 4.6: Comparison of the learned features on CIFAR10 for single-scale networks

of each architecture across different scales using two training methods: 1) learning the

parameters of each single-scale network using the input representation at the corresponding

scale (noted by “param s” in the legend), and 2) reusing the learned parameters at the

original image representation (noted by “param 0” in the legend). Notice the comparable

or superior performance of the latter strategy for most of the cases except for supervised

training with sub-sampling in input at scales 7 and 13.

On that basis, one clear strategy to train a set of parallel single-scale networks is to

train the network for scale 0 (i.e., the original input representation) and then to reuse its

learned parameters for all of the single-scale networks. Figures 4.6 offers a comparative

study of two training methods for feature learning using a single-scale network:

1. Preserving those learned parameters from the original image representation. In this

case, 100 filters are learned in total.

2. Learning the parameters of each single-scale network using the input representation

at the corresponding scale. In this case, 100 filters are learned at each scale.

We observe that for these single-scale networks with different architectures, the preservation

of the learned parameters at scale 0 leads to comparable or superior performance for all of

the 12 cases in unsupervised learning and for 10 out of 12 cases in supervised learning. For
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supervised training with sub-sampling in input, the learned parameters at scales 7 and 13

produce better recognition rates compared to the learned filters at scale 0.

As a result, we have a plausible approach for scalable learning for the proposed multi-

scale architectures. We do not, in fact, need to train each single-scale block independently.

Instead, learning takes place at only scale 0 and then is propagated to the remaining

scales. Therefore, the computational complexity of training a multi-scale architecture is

unchanged from single-scale networks. Note that at the test time we still need to generate

the multi-scale representations of the data and pass the input image through multiple

parallel networks. Therefore, the test time complexity increases compared to a single-scale

network. In particular, the computational complexity at the test time increases almost

linearly with the number of scales.

4.4.2 Classification Results

Given the scalable learning algorithm in section 4.4.1, we evaluate the effectiveness of

the proposed architectures for image classification. First we focus on unsupervised fea-

ture learning. Figure 4.7 shows the recognition performance of different architectures

on the CIFAR10 data set as a function of the number of learned filters. Observe that,

with the same training cost, the three multi-scale architectures usually outperform the

single-scale counterpart, clearly demonstrating the advantage of extracting scale-dependent

or detail-dependent image representations. Among the multi-scale models, both of the

multi-neighborhood architectures (i.e., in input and in pooling) offer a better performance

than the uniform model, especially for larger numbers of filters. Therefore, these multi-

neighborhood architectures create the opportunity to avoid learning a larger number of

filters for a single-scale network, and instead obtaining the same or better classification

rate with a smaller number of filters.

A second test examines the proposed multi-scale architectures for supervised feature

learning. Table 4.1 illustrates the positive effect of extracting features at multiple scales.

Among the proposed multi-scale models, the multi-neighborhood architectures generate

more discriminative features due to exploring a wider range of dependencies over a larger

neighborhood. Also, for multi-scale models observe how the scalable learning strategy sub-

stantially reduces the training cost (i.e., the number of learned filters) while the recognition
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CNN Architecture No. of Scales Learned Filters Accuracy %

Single Scale: scale 0 1 128 74.98±0.29

Uniform Multi-scale* 5 128 75.45±0.11

Uniform Multi-scale 5 128× 5 76.08±0.43

Multi-neigh. Input* 5 128 76.20±0.33

Multi-neigh. Input 5 128× 5 76.74±0.21

Multi-neigh. Pooling* 5 128 76.01±0.27

Multi-neigh. Pooling 5 128× 5 76.43±0.09

Table 4.1: Recognition rate for the CIFAR10 data set using different two-layer CNN ar-

chitectures. For the starred architectures the CNN filters are learned only at the original

scale and then applied to all scales.
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Figure 4.7: Performance of unsupervised feature learning on the CIFAR10 data set using

different architectures as a function of the number of hidden neurons. Observe how utilizing

scale-scale representations and multi-neighborhood architectures improves the recognition

performance.

rate is still superior to that of their single-scale counterpart.

Finally, we evaluated the robustness of the proposed architectures to additive Gaussian

noise. As figure 4.8 shows, all of the three proposed multi-scale architectures are more
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Figure 4.8: Performance of supervised feature learning on the noisy CIFAR10 data set as a

function of the standard deviation of the Gaussian noise. Notice the superior performance

of multi-scale architectures in dealing with noise.

robust to noise than the classic single-scale strategy, particularly for higher levels of noise.

4.5 Summary

This chapter was focused on improved feature learning using convolutional networks through

providing some prior knowledge about the multi-scale representation of the input image.

We presented three multi-scale convolutional architectures, designed to learn image fea-

tures corresponding to different levels of detail. Utilizing nonlinear scale-space models, we

showed that a multi-neighborhood architecture can effectively capture fine-scale and coarse-

scale image characteristics. Our proposed scalable learning method allows a multi-scale

architecture to be based on an already-trained network. That is, the learning is performed

only on the original scale, but then the learned parameters are applied to an ensemble

of networks at different scales. Experiments on the CIFAR10 dataset illustrated that

multi-scale multi-neighborhood models outperform their single-scale counterparts without

learning new feature detectors for the higher scale representations of the data.
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The concentration of this work was on fusing the extracted features in each scale for

improved recognition. As a future direction, one can study the performance boost when

the decisions of the classifiers for each scale are combined as apposed to fusing the features.

Also, we believe that the real power of the proposed architectures emerges on much larger

input images where more detailed information is presented and thus the image can be

represented in more (different) levels of abstraction, the subject of future work.

Employing a multi-neighborhood architecture, similar to other ensemble learning schemes

for deep networks, increases the required amount of memory and computation at the test

time. One way to tackle this problem is to transfer the learned knowledge by the ensemble

into a smaller network [97, 98]. Another strategy would be a sequential training procedure.

That is, the found solution by a trained network using the coarse-scale properties of the

data can be used to regularize the subsequent fine-scale learning process. In this sequential

training procedure, it is crucial to attain a good generalization in each stage to keep the

subsequent stages away from over-fitting. Motivated by this necessity, before introducing

our stage-wise training framework in Chapter 6, a new regularization scheme for improving

the generalization performance of deep networks will be presented in the next chapter.
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Chapter 5

Periodic Regularization for Training

Deep Models

Weight decay [67, 68] is arguably the most widely used general-purpose regularizer in train-

ing neural networks. Despite its popularity, we show that applying this penalty function on

a network layer decreases the speed of learning in its previous layers. However, in a deep

network, earlier layers already suffer from slow-paced learning due to the so called problem

of diffusion of gradients. This issue becomes more critical when we notice practitioners

usually apply a larger weight decay to higher layers to avoid over-fitting. Motivated by

this problem, we propose Periodic Weight Decay (PWD) in which one can determine how

hard and how frequently the weights should be shrunken. In contrast to basic weight decay,

PWD is not a part of the objective function and thus it avoids shrinking the parameters

at every single update step. The experimental results on a number of image classification

data sets authenticate the faster convergence and better generalization of PWD over basic

weight decay.

5.1 Objective

The remarkable success of deep learning in computer vision applications [6, 9, 23] can be

attributed to two types of factors. The first type includes the general properties of deep
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models as a powerful off-the-shelf framework for learning: hierarchical architecture [10],

flexible structure with outstanding representational power (e.g., different types of lay-

ers [56], units [18, 92] and connectivity [11]), efficient training using parallel processing

and distributed computing, and desirable statistical properties when used along with regu-

larization techniques (i.e., avoid over-fitting despite the huge degrees of freedom) [37, 71].

The second set of factors are the domain specific adjustments that are made to deep mod-

els in order to customize them for computer vision tasks. These arrangements include

the use of pooling [7, 56, 57], convolutional weight-sharing [11, 54, 99], data augmenta-

tion [9, 69, 100], and multi-stage training [17, 21, 101].

In addition to the above adjustments, as discussed in section 2.3, in supervised train-

ing of a deep network with a large number of parameters, it is important to limit the

degrees of freedom in the parameter space to avoid over-fitting to the training data. In

order to address this problem, various general-purpose regularizers (e.g., Tikhonov regu-

larization [67], lasso [68] and dropout [37]) and domain specific priors (e.g., convolutional

weight-sharing [11], transformation invariance [7] and robustness to partial corruption of

the input [69]) have been proposed.

Among the general-purpose regularizers, weight decay [67, 68] is arguably the dominant

method in the statistics community. In neural networks, it is commonly used [102, 103, 104]

as an important ingredient in addition to other regularization techniques [37, 71]. While

the statistical advantages of weight decay are promising [65], one needs to be cautious

about the computational side-effects of its use. As these regularizers are convex, they can

safely be used in convex optimization problems [105]. However, this is not necessarily the

case in non-convex problems such as the training of neural networks.

The optimization method used in neural networks is (stochastic) gradient descent [106]

in which the parameters are updated by back-propagating the error from the output layer

to the earlier layers of the network1. An important issue with this method — especially

for deep networks — is the so called diffusion of gradients phenomenon, in which the error

is progressively vanishing as it is back-propagated to the earlier layers of the network [38].

As a result, the gradient of the objective function with respect to the weights of the earlier

1SGD is the most widely used method in training deep neural networks since it learns good parameters

much more quickly compared to far more elaborate optimization techniques [107].
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(a) (b)

Figure 5.1: Schematic diagram for diffusion of gradients. As figure (a) shows, the amount of

update (i.e., learning) for wl:j is proportional to the size of the error received by neuron j in

layer l, δlj. Figure (b) demonstrates that this error is directly proportional to the weighted

summation of the errors in the above layer back-propagated through wl+1
j: . Therefore, small

size for wl+1
j: , encouraged by weight decay, leads to slow learning in wl:j.

layers becomes small and a minor update takes place for those layers2. This problem could

become more severe when a weight decay penalty is employed. As figure 5.1 shows, the

amount of error that is back-propagated from a layer to its previous layer is proportional

to the size of its weights3. On the other hand, a weight decay regularizer—which will be

formally described in section 5.2—makes sure that the sizes of the parameters (i.e., their

norm) are small. Consequently, weight decay contributes to the diffusion of gradients. This

issue becomes more critical when we notice practitioners usually use larger weight decay

penalties for higher layers to over-fitting.

To put it in a nutshell, in training deep networks there is a regularization-optimization

trade-off with respect to the weights’ sizes: on the one hand the weights should be kept

small to avoid over-fitting, on the other hand, having small sized weights contributes to

2See section 2.2.3 for a detailed description of the diffusion of the gradients issue
3For example, if all of the weights in a layer are zero, then the error is not back-propagated to the

previous layers.

50



the issue of gradient vanishing.

Motivated by this problem, we propose a new weight decay framework for regularizing

deep neural networks, called Periodic Weight Decay (PWD), in which the regularizer is

no longer a part of the objective function. Instead, it acts as a second update step which

is applied periodically during the optimization. We can therefore decide how hard and

how frequently the weights should be penalized. This flexibility is especially useful for the

stochastic gradient descent method; given a decay frequency, the weights are regularized in

some of the update steps. Therefore, during the rest of the update steps they are allowed

to grow large enough to pass the gradient properly. Experimental results on a number of

well-known image classification data sets authenticate the faster convergence and better

generalization of PWD over basic weight decay.

5.2 Background

Training a feedforward neural network is a supervised learning procedure in which the

optimum value for the network parameters W is estimated through minimizing a non-

convex cost function C(W ). Given a loss function L(W ) and a regularization term R(W ),

C(W ) is defined as

C(W ) = L(W ) +R(W ). (5.1)

To prevent the network from over-fitting, one of the most commonly used regularization

techniques is weight decay or L2 regularization which is defined as

R(W ) =
λ

2
‖W‖22 (5.2)

where ‖.‖2 denotes the L2 norm and the regularization coefficient λ determines how greatly

the parameters should be penalized. Weight decay pushes the weights toward zero and so,

as (5.1) shows, the cost function has to compromise between minimizing the network loss

and finding small weights. As a result, the learner chooses the smallest weight vector

that solves the problem and hence irrelevant components of the weight vector are sup-

pressed [108]. Moody et al. [108] theoretically showed that having small weights prevents
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the network from learning the presented noise in the data and hence improves generaliza-

tion. In other words, it smooths out the behaviour of the network in response to small

changes in the input. Besides, there is a generalization error bound for neural networks

based on the size of the parameters which advocates the use of small weights [65].

To locally minimize the non-convex cost function (5.1) regularized with weight decay,

stochastic gradient descent (SGD) [39] is used and the parameters are updated based on

the following rule:

wt+1 = wt − γt ∂L
∂w
− γtλwt (5.3)

= (1− γtλ)wt − γt ∂L
∂w

where γt is the learning rate for the update step t. As (5.3) shows, before subtracting the

gradient, the weights are rescaled by a shrinkage coefficient of (1− γtλ) which justifies its

appellation, weight decay. Also, note that this shrinkage coefficient becomes less significant

(i.e., the penalty becomes more relaxed) during training since as a common practice the

learning rate γt follows an annealing schedule and decreases during learning. The effect of

this decrease in the dominance of the regularizer is studied in section 5.4.2.

In the basic framework for weight decay, since the regularizer is part of the objective

function, the parameters are downscaled at every single update step. This continuous

suppression of the weights can exacerbate the known issue of diffusion of gradients [38] in

training deep networks. Assume that wlij connects neuron i in layer l − 1 to neuron j in

layer l. Considering the gradient descent update rule (5.3), the amount of update (i.e.,

learning) for wlij depends on the gradient of the loss function with respect to this weight.

This gradient is proportional to the amount of error4 received by neuron j in layer l, δlj, in

error back-propagation. Therefore, when the magnitude of this received error is small, wlij
learns slowly. On the other hand, the amount of the error received by neuron j is directly

proportional to the size of weights which connects neuron j in l to all of the neurons in its

above layer (i.e., wl+1
j: ). More formally

∂L
∂wlij

∝ δlj ∝
∑
k

δl+1
k wl+1

jk . (5.4)

4The difference between the true and the estimated target that is defined based on the loss function L.

See section 2.2.2 for more details.
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According to (5.4), a small value for wl+1
:j reduces the amount of error received by neuron j

in layer l+ 1 and consequently the gradient of the loss function with respect to wlij. Based

on this result, applying weight decay on the weights of a layer reduces the gradient of the

loss function with respect to the parameters of its lower layer. In other words, decaying

the weights in a layer reduces the speed of learning in its earlier layers, especially when this

suppression occurs at each single update step. Considering the fact that in deep networks

earlier layers already suffer from slow-paced learning due to diffusion of gradients (i.e., lower

layers receive smaller gradient compared to the top layers of a network), exacerbating this

issue by applying a continuous penalty is not desirable.

5.3 Methodology

5.3.1 Periodic Weight Decay

Periodic weight decay (PWD) is a generalization of basic weight decay in which one can

determine how frequently the weights should be shrunken. This flexibility in deciding the

frequency of the decay is designed to address the issue of diffusion of gradients in basic

weight decay. The main idea behind PWD is to avoid shrinking the parameters at every

single update. Instead, the weights are allowed to grow for certain number of update steps

until a (more severe) penalty is applied. Therefore, during the initial update steps the

gradient is not affected by the regularizer and is properly passed backward to the earlier

layers. Then, when the parameters at the lower layers have grown larger and started

moving towards a local minimum, a relatively harsher penalty can be applied without

reducing the speed of learning.

Since the penalty is not applied in all of the update steps, the regularizer should be

disentangled from the loss minimizer in the objective function. Therefore, each update

step is divided into two stages. In the first stage, the weights are updated merely based on

the gradient of the loss function:

Ŵ t+1 = W t − γt∇wL (5.5)

The second stage is focused on regularizing the parameters and solves a minimization

problem to find a small-sized weight vector W t+1 which is close to Ŵ t+1, the solution of
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the first stage:

W t+1 = argmin
1

2

∥∥∥W t+1 − Ŵ t+1
∥∥∥2
2

+
λ

2

∥∥W t+1
∥∥2
2

(5.6)

This is a simple optimization problem and has a closed-form solution. Setting the gradient

to zero and substituting Ŵ t+1 from (5.5), the updated value for the weight vector W

becomes

W t+1 = βtŴ t+1

= βt
[
W t − γt∇wL

]
, (5.7)

where βt is defined as

βt =


1

1+λ
if t mod

⌊
nB
f

⌋
= 0

1 otherwise.

(5.8)

Here, f is the frequency of applying the regularizer in each training epoch and nB is the

total number of update steps (i.e., training batches) per epoch. That is, PWD pushes

the weights towards zero with the decay coefficient β and the frequency of f during each

training epoch. Also, note that, in contrast to basic weight decay, since the decay coefficient

β is not a function of the learning rate, the dominance of the penalty does not necessarily

decrease during training.

5.3.2 Extension to Multiple Layers

As demonstrated in (5.5) and (5.6), when PWD is applied, the parameters are updated

during two sub-steps. The first update is in favor of minimizing the loss while the second

update is focused on penalizing the solution of the first stage. Taking into account this

decoupling, it is important for the regularization step to not to disrupt the effect of the

loss minimization step. In order to fulfill this requirement, one way is to make sure that

applying the regularization step does not change the network’s predicted labels.

Interestingly, for neural networks with rectified linear units (ReLu) [18]— the most-

widely used activation function in deep learning literature—PWD can be applied to any
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(a) (b)

Figure 5.2: Schematic diagram of applying PWD on layer l of the network. The state of the

network before and after applying the decay has been depicted in (a) and (b), respectively.

The solid lines are used to show the weights (denoted by wl) and the dashed lines indicate

the biases (denoted by bl). Notice the difference between the update rule for the weights

and the biases. Decaying the weights of each layer (i.e., shaded lines) requires decaying

the biases of that layer and all of its upper layers (i.e., red lines).

of the network layers without changing the predicted labels5. Assume that βl is the PWD

coefficient for regularizing layer l. After computing Ŵ l,t+1 and b̂l,t+1 using (5.5), PWD is

applied to the weights as

W l,t+1 = βl,tŴ l,t+1. (5.9)

With shrinking b̂l,t+1 in the same way, the input to layer l is scaled down by factor βl,t.

If this shrinkage is transferred linearly to all of the above layers, the final output will be

scaled down linearly and thus the network’s prediction will not be affected. To achieve

this, the biases should be penalized6 as

bl,t+1 =
l∏

i=1

βi,tb̂l,t+1. (5.10)

Informally, decaying the weights of layer l requires decaying the biases of layer l and all of

its above layers (see figure 5.2).

5This property approximately holds for sigmoid networks if downscaling of the weights does not change

the status of the neurons (i.e., linear, saturated or inactive).
6In the case of basic weight decay, usually the biases are not penalized [109, 110].
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Algorithm 1 Backward Pass in SGD Training with PWD

Input: parameters [W, b], layer index l, total number of layers L, weight decay magnitude

β, weight decay frequency f , training epoch index epoch, batch index batch, total number

of batches nB, learning rate γ.

Output: update parameters [Wnew, bnew].

1: Update Weights: Wnew ← W −∇wL
2: Update Biases: bnew ← b−∇bL

3: Step size: s←
⌊
nB
f

⌋
4: Current Step: t← (epoch− 1)× nB + batch

5: if t mod s is 0 then

6: Regularizing Weights: W l
new ← βlW l

new

Regularizing Biases:

7: for all layer i ∈ [l, L] do

8: binew ← βlbinew
9: end for

10: end if

The PWD procedure is summarized in Algorithm 1.

5.3.3 Related Work

In the optimization literature, there is a body of work on disentangling the regularization

term from the objective function and applying the penalty in a separate step. Among them

one can name projected gradient methods [111, 112], truncated gradient [113] and forward-

backward splitting [105]. These methods are designed for convex loss and regularization

functions and are mostly focused on promoting sparsity for batch settings and online

learning. In contrast, PWD is motivated by the issue of diffusion of gradients in training

of multi-layer neural networks where the objective function is non-convex. Furthermore,

PWD is distinguished with its periodic nature; it does not suppress the weights at every

update step. That is, to tackle the gradient vanishing problem (see equation (5.4)), a

frequency parameter is introduced in the penalty function so that the weights are decayed

only in some of the update steps. This periodic scheme can be applied to max-norm
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regularizers [114] and other weight constraints as well.

5.4 Results and Discussion

In this section the efficiency of PWD in regularizing neural networks for image classifica-

tion is examined. First, the performance of PWD for various parameter configurations is

analyzed. Then, a comparative study with basic weight decay is conducted where their

speed of convergence and generalization performance are explored.

For the experiments, three different image classification data sets are used: CIFAR10 [6],

STL10 [115] and Street View House Numbers (SVHN) [116]. CIFAR10 consists of 32× 32

colored images of ten classes of objects, each having 50000 training samples and 10000 test

samples. STL10 is similar to CIFAR10 but with much fewer labeled training data, 500

training and 800 testing samples per class7. Here, the down-sampled version of STL (i.e.,

32×32) is used. For SVHN data set, the goal is to recognize the digit at the center of each

32× 32 RGB image and it includes 73257 training images and 26032 testing images8.

The convolutional neural networks used for the experiments have similar hyper-parameters

to [117]: convolutional layers with filters of size 5× 5 and max-rectifying non-linearity fol-

lowed by pooling of size 3× 3 with stride 2. In the first layer max-pooling is used, whereas

in the other layers average-pooling is adopted. In order to specify the number of layers,

filter for convolutional layers and neurons in fully-connected layers a convention is used.

For instance, 64C-64C-10F stands for a CNN with two convolutional layers, each with 64

filters, and a fully connected layer of size 10 neurons as the last layer. For these experiments

PWD is applied only to the fully connected layers which are more prone to over-fitting.

However, it can be used for convotional layers as well.

5.4.1 Analysis

As discussed in section 5.2, there is a direct relationship between the issue of gradient

diffusion and frequent decay of the weights. A follow-up question would be whether a

7For STL10 the unlabeled training set is not used for training.
8Note that for SVHN, the extra training images are not used.
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Figure 5.3: Classification performance for various values of PWD parameters for different

data sets and network architectures. The top row shows the classification error rate and

the bottom row displays the difference between train and test error as a measure of gener-

alization. Note that in all cases the superior performance (i.e., dark blue pixels) is observed

around the main diagonal. Also, these plots illustrate that the parameter configurations

above the main diagonal lead to under-fitting while those below the main diagonal are

more prone to over-fitting and explosion of the gradient (see column (c)).

greater but less frequent penalty can compensate for a smaller but more frequent one.

Table 5.1 displays the classification performance of a 64C-64C-10F CNN on CIFAR10

data set as a function of the PWD parameters: the decay coefficient β and the decay

frequency during each training epoch. As one moves down through the table rows, the

decay coefficient becomes less significant (a larger beta corresponds to a less significant

decay). Also, the first column of the table stands for applying PWD once per four epochs

while the last column corresponds to applying PWD at every single update at each epoch.

Considering the performance in each column, less significant penalty (i.e., moving down

through the rows) results in a larger difference between the test and train error, i.e.,
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Table 5.1: CIFAR10 classification performance for various values of PWD parameters (i.e.,

the decay coefficient β, and the decay frequency during each training epoch). The first

and last columns correspond to applying the weight decay once per four epochs and at

every single update step, respectively. The table shows the test and the train error for

a 64C − 64C − 10F network architecture and in each row the cell with lowest error rate

is shaded. The results for this data set advocates the use of a greater but less frequent

penalty.

HH
HHH

HHβ

Freq.
0.25 0.5 1 2 4 12 32 90 391

0.001
20.94

(14.49)

20.92

(15.43)

21.28

(16.45)

22.98

(19.65)

25.22

(22.79)

29.99

(28.38)

36.65

(35.94)

46.08

(46.25)

68.22

(68.47)

0.01
20.93

(14.41)

20.90

(15.36)

21.22

(16.44)

22.93

(19.64)

25.28

(22.61)

29.96

(28.43)

36.87

(35.97)

45.90

(46.04)

68.10

(68.56)

0.1
20.75

(13.65)

20.70

(14.72)

21.10

(15.94)

22.85

(19.52)

25.01

(22.41)

29.49

(27.98)

35.86

(34.88)

44.94

(44.94)

64.14

(64.76)

0.5
21.37

(9.00)

20.86

(10.49)

20.88

(13.77)

21.87

(17.27)

23.41

(20.12)

26.96

(25.07)

30.89

(30.07)

44.80

(44.46)

64.99

(65.14)

0.7
22.63

(6.22)

21.56

(8.70)

21.23

(11.86)

21.31

(15.69)

22.34

(17.83)

25.20

(22.69)

28.36

(27.32)

37.24

(36.80)

56.91

(56.97)

0.9
24.46

(5.77)

23.78

(7.57)

23.04

(8.87)

21.33

(11.79)

21.24

(14.23)

22.33

(17.72)

24.65

(22.08)

28.61

(27.56)

40.37

(39.43)

0.95
24.92

(4.68)

24.71

(6.03)

24.26

(7.24)

22.28

(10.41)

21.41

(11.26)

21.58

(15.32)

22.40

(18.81)

25.95

(23.88)

33.08

(32.03)

0.99
25.12

(0.19)

25.12

(0.45)

25.46

(4.42)

24.79

(6.90)

23.49

(7.40)

21.51

(10.02)

21.39

(12.44)

21.74

(16.97)

25.00

(22.63)

0.994
25.03

(0.16)

25.16

(0.19)

25.38

(0.63)

24.85

(4.83)

24.37

(6.05)

23.03

(8.14)

22.22

(11.59)

21.79

(15.11)

23.79

(20.59)

0.998
25.45

(0.14)

25.32

(0.15)

25.26

(0.19)

25.25

(0.65)

25.27

(1.59)

24.69

(6.06)

23.07

(7.63)

22.07

(11.46)

21.67

(16.08)

0.999
25.48

(0.13)

25.36

(0.15)

25.32

(0.16)

25.32

(0.20)

25.25

(0.42)

25.44

(5.51)

23.82

(5.77)

22.66

(9.05)

21.63

(13.34)
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over-fitting. On the other hand, increasing the frequency of the decay (i.e., moving right

through the columns) leads to an improved generalization, i.e., smaller difference between

the test and train error. Therefore, as the table shows, the best performance in each row

belongs to the parameter configurations around the main diagonal elements, where βfreq. is

approximately constant. This means that a less significant penalty should be applied more

frequently. In this case, the total number of update step during each epoch is a limit in the

sense that it determines the maximum possible decay frequency. Furthermore, applying a

large but less frequent penalty instead of a small but more frequent one reduces the average

number of operations per update step. Considering the superior performances in each row

(i.e., the shaded cells), this table suggests that applying a larger but less frequent penalty

offers a better performance compared to a less significant decay applied at every update

step.

To examine the universality of the above results, the experiment is repeated for different

data sets with different network architectures. As the top row in figure 5.3 shows, for all

of the three cases, the lowest test error rates (i.e., dark blue pixels) are obtained using the

parameter configurations around the main diagonal entries9. For the case of SVHN data

set, the optimization diverges for small and low frequency penalties due to the explosion of

the gradient (see the lower left corner of figure 5.3 (c))10. Therefore, when a low-frequency

weight-decay is applied, the penalty should be large enough to avoid the explosion of the

gradient. The second row of figure 5.3 illustrates the difference between the train and test

error as a measure of generalization. The diagonal pattern in these plots acknowledges the

fact that increasing the size and the frequency of the penalty improves generalization.

5.4.2 Comparative Study

This section begins with inspecting the performance of a CNN (64C-64C-10F) trained in

three different ways: 1) without weight decay 2) regularized with basic weight decay 3)

regularized with PWD. Figure 5.4 shows the progression of train and test error for these

9For the sake of readability, the parameter configuration for PWD is the same for all of the fully

connected layers.
10See section 2.2.3 for an explanation about the explosion of the gradient. Also, note that the poor

performance of the network in the upper right corner of the plot is due to a great and high-frequency

regularization which doesn’t let the network weights to grow large enough
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Figure 5.4: CIFAR10 classification performance throughout training for basic weight decay,

PWD and without weight decay in terms of (a) test error and (b) training loss. Notice the

faster convergence of PWD compared to basic WD especially at the start of the training

(i.e., epochs 1 to 50).

three approaches over 100 training epochs averaged over 10 different random initializations.

The optimum value of the parameters for PWD and basic weight decay are chosen using

cross-validation11. Based on this figure, it is evident that applying a form of weight decay

penalty is necessary to avoid over-fitting. Considering the progression of the performances

especially at the beginning of the training (e.g., before the epoch = 50), applying PWD

results in a faster converges than that of basic weight decay. This higher speed of conver-

gence in PWD is due to its low decay frequency (i.e, once per epoch in contrast to once

at every update step) which doesn’t suppress the back-propagated gradient in every single

update step.

As discussed in section 5.2, the decay coefficient in basic weight decay is a function of

the learning rate. On the other hand, In practice, the learning rate is decayed throughout

training (e.g., to 1/100th of its original value) so that the gradient descent takes shorter

steps and settles into a local minimum [57, 37]. As a result of this decay in the learning

11For PWD β = 0.1 with the decay frequency of once per two epochs and for basic weight decay λ = 0.06
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Figure 5.5: Effect of omitting PWD regularization (i.e, setting β to 1) for the last twenty

epochs of training on the classification performance of CIFAR10. For each choice of β

and f , the results after removing the decay are normalized to the respective case with

the penalty. The increased gap between train and test error for different configurations of

PWD parameters demonstrates that eliminating the regularizer even close to the end of

training leads to a significant drop in the generalization performance of the network.

rate, in basic weight decay the penalty becomes less and less significant during training.

In contrast, the decay coefficient β in PWD is independent of the learning rate and thus

the dominance of the penalty doesn’t decreases along the training epochs. To study the

effect of this difference, the performance of a network regularized with PWD is compared

to the case where the penalty is removed for a couple of final training epochs. Figure 5.5

illustrates the normalized performance of the network when the weight decay penalty is

removed for the last twenty epochs. Evidently, for all of the PWD parameter configurations,

omitting the penalty even close to the end of the training leads to a significant drop in the

generalization performance of the network. This result advocates against the decrease of

weight decay penalty throughout the training epochs.

The classification performance of PWD compared to basic weight decay for different

data sets and architectures is summarized in table 5.2. These results suggest that the

classification error of PWD is lower than basic weight decay. In the case of SVHN data

set, the difference between the produced error using PWD and basic weight decay is not
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statistically significant. The reason is that, for this data set the optimum frequency pa-

rameter in PWD, found by cross-validation, is 573—which means applying the penalty at

every single update step. This choice of the frequency parameter explains the similar test

error produced by PWD and basic weight decay for this data set. Considering the differ-

ence between the training and test error for these two regularizers, PWD offers a superior

generalization performance.

This improved generalization using PWD is important in two aspects. Firstly, as we

will see in section 6.4, in a stage-wise training framework [101] this better generalization is

crucial since it prevents the network from being over-fitted to the training data. Secondly,

the network has a higher potential to obtain improved performance by further training of

the network. We designed an experiment to examine the validity of this hypothesis. For

the corresponding networks of table 5.2, we continue training the network for an additional

50 epochs. In order to be able to further reduce the training loss, we removed the penalty

but with a sharp reduction in the learning rate by a factor of 0.01. According to the

literature [9, 71, 117], multiple sharp decreases of the learning rate close to the end of

training is a common practice to obtain state of the art results. Table 5.3 shows the test

error and the percentage of improvement obtained by this additional training for PWD

and basic weight decay12. Based on these results, the amount of improvement obtained for

PWD is larger than basic weight decay. This smaller improvement for basic weight decay

indicates that it is more prune to over-fitting compared to PWD.

5.5 Summary

The focus of this chapter was on weight decay as a widely-used general-purpose regularizer

for deep networks. We showed that the continuous decay of the weights during every

single update step can exacerbate the known issue of diffusion of gradients in training deep

networks. To address this problem, we proposed PWD as a generalization for basic weight

decay in which a frequency parameter is devised to avoid shrinking the weights at every

single update step. That is, the weights are allowed to grow large enough to properly

12This experiment is conducted for the last three rows of table 5.2 in which the produced training error

using PWD is significantly larger than that of basic weight decay.
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Table 5.2: Classification error rate for CIFAR10, STL10 and SVHN using PWD and basic

weight decay averaged over 10 random initializations. For each cell, the number in the

parenthesis shows the training error. For each data set, the number marked in bold is the

lowest test error (statistically significant according to paired t-test with p < 0.05). For

the SVHN data set, the difference between the test error of PWD and basic WD is not

statistically significant.

Data set Architecture Basic WD PWD

CIFAR10 64C-64C-10F 21.21 (13.17) 20.26 (14.03)

CIFAR10 64C-64C-64C-10F 20.99 (4.48) 20.00 (7.70)

STL10 64C-64C-10F 43.92 (18.50) 43.06 (25.36)

SVHN 64C-64C-128C-512F-10F 6.28 (2.32) 6.27 (4.12)

Table 5.3: Classification error rate after 50 epochs of additional training with reduced

learning rate (×0.01). The numbers in the parentheses show the percentage of improvement

obtained after this additional training. For each data set, the number marked in bold is

the lowest test error (statistically significant according to paired t-test with p < 0.05). The

smaller improvement for basic weight decay indicates that the trained networks using this

method is more close to be over-fitted to the training data compared to PWD.

Data set Basic WD PWD

CIFAR10 20.49 (2.38%) 19.19 (4.05%)

STL10 41.60 (5.28%) 40.29 (6.43%)

SVHN 5.97 (4.94%) 5.68 (9.41%)

pass the gradients for certain number of update steps until a (more severe) penalty is

applied. The experimental results on a number of image classification data sets illustrates

the improved generalization performance using PWD compared to basic weight decay. The

analysis suggests that applying a larger but less frequent penalty instead of a less significant

decay at every single update step leads to the faster convergence of the network especially

at the start of the training.

In contrast to basic weight decay, the decay coefficient in PWD is independent of

the learning rate and thus the dominance of the penalty does not decreases along the
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training epochs. This property contributes to the better generalization performance of

PWD compared to basic weight decay.

This improved generalization using PWD sets the stage for more complex training

procedures. In the next chapter, we introduce a stage-wise training strategy for deep

networks where the network is steered towards a good solution through a sequence of related

learning stages. In this sequential training framework, obtaining a good generalization in

each stage using PWD is vital to protect the subsequent stages from over-fitting.
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Chapter 6

Stage-wise Training: An Improved

Feature Learning Strategy for Deep

Models

In this chapter we show that network training performance can be improved using a stage-

wise learning strategy, in which the learning process is broken down into a number of related

sub-tasks that are completed stage-by-stage. The idea is to inject the information to the

network gradually so that in the early stages of training the coarse-scale properties of the

data are captured while the finer-scale characteristics are learned in later stages. Moreover,

the solution found in each stage serves as a prior to the next stage, which produces a

regularization effect and enhances the generalization of the learned representations. We

show that decoupling the classifier layer from the feature extraction layers of the network is

necessary, as it alleviates the diffusion of gradients and over-fitting problems. Experimental

results in the context of image classification support these claims1.

1The materials in this chapter has been previously published in [101], where the thesis author is the

first author.

66



6.1 Objective

As discussed in Chapter 2, there are two major obstacles in training deep nets:

Over-fitting stems from the very large number of parameters present in deep networks.

The key, then, is to employ regularization techniques to limit the degrees of freedom

in the parameter space. Among the classic regularizers for neural networks we find

early-stopping [118], Tikhonov regularization (i.e., L2 weight decay) [67] and lasso

(i.e., L1 regularization) [68]. Specialized regularizers for deep neural networks include

convolutional weight-sharing [11, 7], dropout [37] and drop-connect [71].

The diffusion of gradients is caused by the progressive vanishing of the error as it is

back-propagated to earlier layers of the network. The most widely used methods to

address this problem are layer-wise pre-training [17, 20], piecewise linear activation

functions [18] and transfer learning [119, 21].

Despite remarkable advances in this area, the training of deep networks remains challenging

and continues to motivate further developments. In particular, our research described in

this chapter focuses on the issues of over-fitting and gradient-diffusion into two questions

of interest:

1. How should computational resources be distributed between learning the classifier

and the feature extractors?

2. Should all of the information (i.e., constraints) be fed to the network at once? Or

is it preferable for the network to be guided step-by-step towards learning more

discriminative features through a gradual, strategic presentation of the information?

One of the structural properties of deep networks is that all of the feature extraction

layers and the classifier layer are trained at the same time. Recently, [120] showed that the

feature extractors at successive layers are co-adapted and there is a complicated interaction

between them. Therefore, training of feature extractor layers can not be factorized and

it is important to learn them “at the same time”. However the same limitation does not

necessarily apply to the classifier layer, leading to a question whether the classifier and
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feature extraction layers should be trained at the same time. Although in general coupled

training of the feature extractors and classifier results in a better performance [121, 122], it

is not clear to what extent these two steps should be co-adapted. In this research we show

that for deep nets, training indeed benefits from treating the classifier layer separately,

and that the problem of diffusion of gradient can be addressed by preventing the complex

co-adaptation of the feature extraction layers with the classification layer.

The second question that we raise in this chapter is whether we can increase the gen-

eralization of the learned features by the gradual injection of information to the network

during training. In particular, given an image classification problem, our goal is to develop

stage-wise learning, whereby the network is first steered in the direction of capturing dis-

criminative information related to coarse-scale structures (i.e., shape features). Then, by

gradually increasing the level of detail presented at the input, the learned feature extrac-

tors are fine-tuned to grasp the discriminative information related to the fine-scale image

characteristics (i.e., appearance features).

Motivated by these questions, we propose a stage-wise training framework for represen-

tation learning using deep networks in which over-fitting can be avoided through stage-wise

evolution of the information fed to the network, and whereby gradient diffusion can be ad-

dressed by decoupling the feature extraction layers from the classifier layer across successive

training stages.

6.2 Background

6.2.1 Layer-wise Pre-training

Layer-wise Pre-training [17] played a significant role in revitalizing deep nets. The main

idea behind this method is to train only one layer of the network at a time, starting from

the first layer. After training each layer, its computed output is considered as the input

for training the next layer. This layer-wise pre-training strategy is usually performed in

an unsupervised way because of two reasons: 1) cheap access to abundant unlabeled data,

2) avoiding over-fitting due to the large number of parameters per layer. The pre-trained

weights are used to initialize the network for a fine-tuning stage where all of the layers are

trained together.
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The optimization explanation for the effectiveness of layer-wise pre-training is that this

method initializes the network at a location where it is more likely to converge to a good

local minimum [20]. In addition, initializing the network parameters acts as a regularizer

in the sense that it restricts the parameters to the regions corresponding to the input

distribution [70].

Due to its layer-wise nature, this initialization method does not take into account the

interactions between successive layers of the network.

6.2.2 Transfer Learning

The goal of transfer learning for deep nets [21] is to use the related information in a base

data set to initialize the parameters of a model on a target data set. Assume that our

target task is to learn a deep net NT on the target data set DT . Given a base data set DB

with similar general properties to DT , one can train a deep net NB on that and transfer

the learned representations from NB to NT . The transferred features are used to initialize

some layers of NT which can be kept frozen or fine-tuned using DT , depending on the

size of DB and DT and their common characteristics. Since the specificity of the learned

features to the target task increases as we move towards the top layers of the network, this

method is used to initialize the early layers of the network2. Transfer learning is used to

prevent over-fitting specially when DB is much larger than DT . A thorough study of this

method for deep nets can be found in [120].

It is important to note that the applicability of transfer learning is limited to tasks that

are supported with a related and large base data set.

6.3 Methodology

Neural networks are discriminative models focused on minimizing the prediction error

with respect to some architectural priors, such as the number of layers, the number of

neurons at each layer, and the type of the activation function. To distinguish between

2Another reason is that early layers suffer more from the diffusion of gradients problem (see sec-

tion 2.2.3).
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(a) Classified as School Bus (b) Classified as Projector

Figure 6.1: Predicted classes using a deep neural network trained on ImageNet data set

for a set of produced images by evolutionary algorithms [123]. Note that the prediction

confidence for these images is high and around 99%. These counter-intuitve predictions

stem from the fact neural networks aim at learning features that are unique to each class,

as opposed to the typical features of a class.

different classes, these networks aim at learning features that are unique to each class, as

opposed to the typical features of a class [123]. However, this training strategy can produce

counter-intuitive results, for example how a deep network trained on the ImageNet data set

mistakenly classified a black and yellow striped pattern as a school bus [123] (see figure 6.1).

The reason for such a mistake is that in decision making no priority is assigned to the coarse

properties of the data compared relative to its detailed characteristics.

To address this problem, we propose a stage-wise training framework in which the

information in the training data is presented to the network gradually. In this way, at the

early stages of training the network has access to only a subset of the data, specifically the

coarse-scale properties of the data, such that the network learns to perform prediction by

extracting features at that coarse scale. Then, during the following stages, finer information

is provided to the network and the learned feature extractors from previous stages are

permitted to evolve to perform better predictions. In other words, the learned feature

extractors at each stage act as a prior for feature leaning at the next stage (see figure 6.2).
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6.3.1 Definition of a Training Stage

Let s ∈ {1, 2, ..., S} be the current stage of training. The training set in stage s is denoted

by Ts = {(xi,yi)}ns
i=1 ⊆ Xs×Ys, where Xs ⊂ Rps and Ys ⊂ {0, 1}c are the input and output

domains3. At stage s, the learning algorithm A(., .) takes the training set and the initial

value of the parameters W s,0 as input, and outputs the learned parameters W s,∞:

W s,∞ = A(Ts,W
s,0), (6.1)

where A is, in principle, any state of the art learning strategy currently established in the

research literature.

6.3.2 Connection between Successive Stages

Assuming that the network is randomly initialized at the first stage,

W1,0 := random (6.2)

a natural way of connecting successive stages would be as follows:

Ws,0 := Ws−1,∞ for all s ∈ {2, ..., S}. (6.3)

However, considering the multi-layer structure of the network and the properties of the

gradient-based learning, some layers of the network require a special treatment. In partic-

ular, the gradient-based strategy for training multi-layer networks suffers from the diffusion

of gradients problem: the back-propagated gradients vanish quickly as the depth of the

network increases. Consequently, the top layers learn faster than the more distant ear-

lier layers of the network. Furthermore the last layer of the network alone, the classifier

layer, has sufficient degrees of freedom (free parameters) to model the entire labeled data

by itself. Consequently, the classifier layer is more prone to over-fitting than the feature

extraction layers.

It follows, then, that in any sort of stage-wise training framework it is important to use

the previous stage to initialize the feature extraction layers, and not the classifier layer, to

avoid over-fitting at the classifier layer.

3Note that training instances of different stages can be from different domains.
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Figure 6.2: Schematic diagram of stage-wise training with information evolution. Note that

only the feature extractor layers (and not the classifier) are initialized using the previous

stage.

6.3.3 Stage-wise Information Evolution

In the proposed stage-wise framework, the training information passed to each stage should

be evolved gradually. Considering the definition of a training stage, this objective can be

met in a number of ways:

1. The evolution of the input domain Xs,

2. The evolution of the output domain Ys, or

3. The evolution of the training set Ts.

The focus of this chapter is on the evolution of the input domain. A discussion on the

other information evolution schemes will be presented in Chapter 7.2.3 as a direction for

future research.

Assume that XS is the original representation of the input data; that is, our target is to

arrive at the usual training data at the final stage S. We therefore require a stage-to-stage

mapping operator F which projects Xs, the input data at stage s, to lower-dimensional

Xs−1:

Xs−1 := F(Xs) (6.4)

F : Xs 7→ Xs−1 where ps > ps−1
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It is important to note that this information evolution method should be used with a con-

volutional weight-sharing scheme for all of feature extraction layers so that the number

of parameters becomes independent of the input dimension. The parameter count inde-

pendence is essential to allow learned parameters to be associated and connected between

successive stages using the method discussed in section 6.3.2.

In the case of image data, a choice for mapping F is the sub-sampling operation and a

stage-wise evolution of the input image can be obtained through sub-sampling the original

input samples with an increasing ratio. Therefore, at the early stages of training, the

network is focused on capturing coarse-scale image characteristics (i.e., shape features)

through considering a wider context around each pixel. As we move forward toward the

final stages, given more detailed information, the learned feature extractors are fine-tuned

to detect discriminative information in the fine-scale image structures (i.e., appearance

features).

6.4 Results and Discussion

We first conduct a set of experiments to understand how the proposed stage-wise training

framework for multi-layer neural network improves feature extraction. Then, we examine

the performance of a multi-stage trained network for image classification compared to an

equivalent single-stage trained counterpart.

For the analytical experiments the standard CIFAR10 data set [6] is used. This data set

consists of 32 × 32 colored images of ten classes of objects, each having 50000 training

samples and 10000 test samples. For the purpose of information evolution, each training

image is sub-sampled with 5 different increasing ratios (i.e., S = 5)4. The classification

performance of the stage-wise training are evaluated for STL10 [115] and Street View

House Numbers (SVHN) [116] data sets, as well. We used the labeled set in STL10 which

includes 500 training and 800 testing samples per class. The STL10 is similar to CIFAR10

but with much fewer training images of a larger size (i.e., 96 × 96). For SVHN data set,

4The size of the input training image at stages 1, 2, ..., 5 are 14 × 14, 16 × 16, 20 × 20, 23 × 23 and

32× 32, respectively.
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Confidently

Recogn. at

Confidently Recog. at

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Stage 1 1 0.957±0.002 0.956±0.003 0.957±0.000 0.954±0.003

Stage 2 0.608±0.004 1 0.953±0.003 0.949±0.002 0.938±0.003

Stage 3 0.477±0.004 0.748±0.004 1 0.950±0.002 0.930±0.004

Stage 4 0.426±0.004 0.665±0.004 0.848±0.003 1 0.929±0.004

Stage 5 0.386±0.003 0.597±0.005 0.754±0.003 0.844±0.003 1

Table 6.1: Connection between the learned models at different stages with evolved inputs.

The entry at row i and column j indicates “what ratio of the test samples that are correctly

classified (with high confidence) at stage i, are classified correctly (with high confidence)

at stage j?”. Note that despite the differences in the input data, the models learned at

successive stages are closely connected.

the goal is to recognize the digit at the center of each 32× 32 RGB image and it includes

73257 training images and 26032 testing images5.

For the stage-wise training, the architecture of the network is kept unchanged during

training stages. We use a convolutional neural network (CNN) with two feature extraction

layers (i.e., hidden layers) before the classification layer. The hyper-parameters of this

CNN are similar to that of [117] for CIFAR10: 64 filters of size 5×5 at each convolutional

layer followed by max-rectifying nonlinearity and pooling of size 3× 3 with stride 2. The

max and average pooling functions are used for the first and second layer, respectively. To

obtain a good generalization at each training stage, we use Periodic Weight Decay (PWD)

(proposed in Chapter 5) to regularize the learning process in each stage.

6.4.1 Analysis

Given the fact that different input data is used at different stages, we study how the

classification problem solved at each training stage is related to that of the other stages.

Table 6.1 shows the connection between the learned models at different stages with evolved

inputs. In this table, entry at row i and column j refers the to “what ratio of the test

5Note that for SVHN, the extra training images are not used.
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samples that are correctly classified (with high confidence) at stage i are classified correctly

(with high confidence) at stage j?”6. Considering the entries above the main diagonal, most

(i.e., more than 96%) of the samples that are recognized confidently at each scale are also

classified correctly in the subsequent stages. The entries below the main diagonal show

that the learned network at each stage is an improved version of the learned model at its

previous stage. This result is interesting in the sense that, despite the difference in the size

of the input data at each stage and consequently, different width of the context used for

feature extraction, there is a close relationship between the problems that we are solving

at successive stages.

In the next experiment, we factorize the effect of the learned feature extractors from

the classifier. In other words, we directly compare the statistical dependence between the

learned features (at each layer of the network) and the output variable for different training

strategies. In order to measure this dependence, we use the Hilbert-Schmidt Independence

Criterion (HSIC) [124]. Assume that we are given n samples belonging to c different classes.

Each sample is represented by a d-dimensional vector, which are the extracted features at

a specific layer of the network. Using HSIC, we can compute the dependence between the

extracted features Zd×n and their corresponding labels Yc×n as

HSIC(Z, Y ) := (n− 1)−2tr(HKHL) (6.5)

where K is a kernel of Z (e.g., ZTZ), L is a kernel of Y , and H is the centering matrix—

H = I−n−1eeT where e is a vector of all ones. In this experiment we use a linear kernel for

both Z and Y and normalize HSIC to have a maximum value of 1 (i.e., multiplying (6.5) by
(n−1)2
‖K‖F ‖L‖F

). Figure 6.3a shows the computed HSIC for the extracted features from the test

set using the trained network at different stages. This figure indicates that during stage-

wise training, the dependence between the learned features and the class labels increases.

Moreover, compared to singe-stage training, stage-wise training of the network improves

the quality of the extracted representations at all of the network layers in terms of their

dependence to the class labels.

Finally, we study the effect of the speed of the information evolution on the performance

of the learned features. We wonder how many training stages is required for a certain

6The confidence of a prediction comes from the output of the soft-max layer for the predicted class.
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Figure 6.3: (a) Dependency of the extracted features at each layer of the network to the

true class label across different stages of training. Observe how this dependency increase

during stage-wise training for the extracted features at both layers of the network. (b)

Performance of the learned features as a function of the level of information presented

to the network during stage-wise training. Notice how the gradual information evolution

during multiple training stages leads to a smaller error rate.

amount of information evolution to take place. As explained in the beginning of this

section, each input image is represented in 5 different levels of details such that level

5 corresponds to the original input representation. In this experiment we compare and

contrast three different training scenarios:

1. Single-stage training using the entire information (e.g., level 5)

2. Stage-wise training with a high speed of information evolution (e.g., jumping from

stage 1 to 5)

3. Stage-wise training with a slow speed of information evolution (e.g., stage 1 to 2, ...,

4 to 5).
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Figure 6.4: Classification performance of three methods (i.e., single-stage, stage-wise with-

out information evolution and stage-wise with information evolution) in terms of (a) test

error (b) training loss. Observe the superior performance of the stage-wise training strat-

egy on test data despite the better performance of its counterparts on the training loss,

which demonstrates the regularization effect of stage-wise training.

As figure 6.3b shows, it is important to increase the amount of training information fed to

the network gradually and during multiple stages.

6.4.2 Classification Results

In this section, we evaluate the classification performance of the learned representations

using the proposed stage-wise training framework. Three different training strategies are

compared:

1. Conventional single-stage training

2. Stage-wise training without information evolution (i.e., the level of details in training

images are the same for all stages)
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Figure 6.5: Classification performance of single-stage and stage-wise with information evo-

lution methods as a function of the number of training samples. Note that the gap between

the performance of the stage-wise framework and single-stage network appears to be more

significant for smaller training sizes.

3. Stage-wise training with information evolution (i.e., the level of details in training

images increases at successive stages).

The architecture of the trained networks using all of these three methods are the same

and is as discussed at the beginning of this section. Figure 6.4a demonstrates the superior

performance of the stage-wise training strategy on test data classification compared to

the conventional single-stage training. Furthermore, considering the training loss of these

methods shown in figure 6.4b, evolution of information during stage-wise training acts as a

regularizer and improves the generalization of the learned features. Note that these results

are obtained using a simple base-line two-layer network and can be applied to the state of

the art models without loss of generality.

A good regularizer should improve the generalization performance of the learned model

on small data sets. Considering this fact, we explore the performance of the model as

a function of the number of training samples. The result of this experiment is depicted

in figure 6.5. It can be observed that the gap between the performance of the stage-wise

model and its single-stage counterpart is more significant for small training sets, confirming
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the fact that stage-wise model performs a more effective regularization.

Finally, to assess the universality of the above results, the classification performance of

stage-wise training is examined for different data sets. Table 6.2 shows the classification

error rate for stage-wise training with information evolution compared to the conventional

single-stage training. These results confirm the improved recognition rate using a stage-wise

training where the information is gradually injected to the network. Comparing the results

for the CIFAR10 and STL10 data sets, the greater improvement for STL10 is due to the

smaller number of training samples for STL10 (see section 6.4), revealing the regularization

power of stage-wise training. Moreover, we observe a larger boost of performance for STL10

with large-sized images, which confirms the importance of capturing coarse-scale image

structures through considering larger neighborhoods at the early stages of training.

It is important to note that in the stage-wise training framework, obtaining a good

generalization performance (i.e., small difference between train and test error) in each

stage is essential to protect the subsequent stages from over-fitting. Considering this fact,

for all of the experiments of this chapter, we use Periodic Weight Decay (PWD)—proposed

in Chapter 5—to regularize the network. The reason for the choice of PWD over basic

weight decay is that, as demonstrated in section 5.4, regularizing the network using PWD

offers a much smaller difference between train and test error. To demonstrate this effect,

we compared the performance of these two regularizers for stage-wise training of STL10

data set7 during 10 stages. As figure 6.6 shows, using basic weight decay the network over-

fits after six stages of training. In contrast, regularizing the network using PWD avoids

over-fitting and the test error consistently decreases during all of the training stages and

finally leads to a superior test performance compared to basic weight decay.

6.5 Summary

In this chapter we proposed a stage-wise training framework with information evolution for

feature extraction using deep neural networks. In this framework, the network is steered

towards a good solution through a sequence of related learning stages, where the amount

of information provided to the network is gradually increased during these stages. More

7According to table 6.2, stage-wise training produces the highest performance boost for this data set.
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Table 6.2: Classification error rate for CIFAR10, STL10 and SVHN using stage-wise and

conventional single-stage training. The network architecture for all of the data sets is

the same and as described in the beginning of the section (i.e., 64C-64C-10F). Observe

the superior recognition performance of stage-wise training compared to its single-stage

counterpart.

Data set Image Size No. of Stages Single-stage Stage-wise

CIFAR10 32×32 5 20.70±0.46 18.72±0.49

SVHN 32×32 5 8.41±0.15 6.74±0.08

STL10-small 32×32 5 42.74±0.97 38.54±0.79

STL10-large 96×96 10 39.85±1.21 34.03±1.42
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Figure 6.6: Classification performance of stage-wise training for STL10 data set regularized

with two different methods (i.e., PWD and basic weight decay) in terms of (a) test error

(b) training loss. Observe how employing PWD prevents the stage-wise training from

over-fitting and leads to a smaller test error rate at the end of training.

specifically, at the early stages only coarse-scale properties were provided to the network;

then, using the solution found at the previous stage, as a prior for the next learning stage,

fine-scale learning takes place at the successive stages. In principle, stage-wise training
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acts as a regularizer.

Moreover, we showed that the classifier layer of the network requires a special treatment.

In fact, due to the problem of diffusion of gradients in deep models the classifier can over-

fit while the early layers are not still learned. This problem is alleviated in a stage-wise

framework, where the feature extraction layers are initialized using the previous stage while

the classifier layer is randomly initialized at the beginning of each stage.

The experimental analysis showed that the proposed framework improves the accuracy

of image classification for a number of data sets. The most important reason for such

an improvement is the regularization effect of the stage-wise training. In addition, it was

shown that the statistical dependence between the learned features and the class labels

increases stage-by-stage, eventually becoming larger than that of single-stage training.

This shows that the extracted features using stage-wise model are more discriminative.

Nevertheless, we believe that the real power of the proposed method emerges on higher-

dimensional inputs (e.g., larger images), as suggested by the great improvement for STL10

data set with large-sized images.

81



Chapter 7

Conclusion

This research was aimed at tailoring deep networks for visual recognition through exploiting

the characteristics of the image data. Incorporating domain knowledge into these networks

enabled us to address some of the innate challenges in the optimization procedure of these

models. This led to learning image descriptors with improved generalization performance.

This chapter summarizes the main contributions presented in this thesis and offers some

promising directions for future research.

7.1 Contribution Highlights

In recent years, we have witnessed a rapid growth in the application of deep networks for

different tasks and across various domains. In spite of the unique characteristics of each

domain, the adjustments that are made to these models to adapt them to the corresponding

domain is small. For instance, the architectures of deep networks used in visual recognition

tasks surprisingly resemble those used in speech recognition. Also, the algorithm used for

learning the parameters is almost the same. This research was built upon the fundamental

question that how much benefit one can get from incorporating the essential part of the

domain knowledge into these powerful models. Despite the remarkable advances in this

area, training deep networks is still computationally expensive. In addition, considering the

lack of enough labeled training data in many applications, over-fitting is a serious threat
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for deep models with a large number of free parameters. Motivated by these concerns, we

introduced new methods for embedding image-specific priors into deep networks. Moreover,

our comprehensive empirical analysis demonstrated that these regularized networks offer a

better discrimination and generalization performance compared to their domain-oblivious

counterparts. The main contributions of this thesis can be summarized as follows:

• Eigen-RBM: We addressed the computational burden of training fully-connected

Restricted Boltzmann Machines (RBMs) for visual recognition through utilizing some

prior knowledge about the global characteristics of the input images. We proposed a

generalization of RBMs, called Eigen-RBM, in which the number of free parameters

is independent of the image size. The key idea behind this reduction in the number of

free parameters is that Eigen-RBM regularizes the weights to be a linear combination

of a set of predefined filters obtained from exploiting the global structure of the

training images. Our empirical evaluations illustrated that compared to basic RBM,

Eigen-RBM can achieve similar or better performance—both for recognition and

sample generation—with much less training time.

• Multi-Neighborhood Convolutional Networks: Conventional convolutional ar-

chitectures are single-neighborhood, in the sense that they consider a single-size

neighbhorhood around each pixel for feature learning. We proposed multi-neighborhood

convolutional networks for visual recognition in which the fine-scale image struc-

tures (i.e., appearance features) are captured using a small-sized neighborhood while

coarse-scale characteristics (i.e., shape features) are detected by considering a wider

range neighborhood around each pixel. Moreover, we devised a scalable learning

strategy for multi-neighborhood architectures in which the parameters of an already

trained single-neighborhood network are exploited for multi-scale feature feature ex-

traction. The experimental results of visual recognition indicated that the learned

features using multi-neighborhood convolutional architecture are more discriminative

than that of their single-scale counterparts without increasing the training cost.

• Periodic Weight Decay (PWD): We detected an issue with the widely-used

weight decay regularizer in training deep networks. We showed that this popular

regularizer in fact contributes to the problem of diffusion of gradient in training deep

networks as a result of decaying the weights at every single update step. In order
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to resolve this issue, we proposed PWD, a periodic generalization of weight decay,

where one can determine how hard and how frequently the weights should be penal-

ized. The analysis of our experiment results revealed that the use of a larger but less

frequent penalty leads to faster convergence of the optimization process, compared

to the case where a small decay that is applied at every update step. Furthermore,

in contrast to basic weight decay, the decay coefficient in PWD is independent of the

learning rate and thus, the dominance of the penalty does not decreases during the

training epochs. The empirical evaluations showed that this constant dominance of

the penalty is essential in the superior generalization performance of PWD compared

to basic weight decay.

• Stage-wise Training: Inspired by the multi-scale characteristics of images, we pro-

posed a stage-wise training framework for training deep networks. In this framework,

the network is “guided” through the optimization procedure; it first learns to capture

generic features of each category using the coarse-scale representations of the training

images. Then, it fine-tunes the learned features at the later stages by providing the

detailed representation of the input images to the network. Moreover, the learned

representations at each stage acts as a prior for regularizing the parameter learning

in its subsequent stage. As a result, the network is guided towards capturing the

“typical” characteristics of each class instead of their “unique” features, which is a

problematic issue with the conventional training frameworks [123]. In contrast to

the ensemble learning schemes used for improved feature learning [87, 93], stage-wise

training does not increase the computational time and memory at the test time. The

experiments showed that stage-wise training improves the quality of the learned fea-

tures in terms of their dependence to the corresponding class label. Furthermore, the

trained networks using a stage-wise procedure outperform their single-stage coun-

terparts. The larger improvement in the case of small training sets promotes the

promising regularization effect of stage-wise learning.
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7.2 Future Work

The presented work in this thesis opens up several future research directions, a selection

of which is presented in this section.

7.2.1 Convolutional Eigen-RBM

For computational reasons, the use of convolutional architectures (e.g., convolutional RBMs)

for feature learning is limited to filters with rather small image patches. Therefore, these

methods find small-sized convolutional filters that only exploit a narrow range of dependen-

cies around each pixel. This problem can be addressed by extending the presented idea in

Chapter 3—which was designed for regularizing fully-connected RBMs—to convolutional

RBMs. That is, the convolutional filters should be constrained to be a linear combination

of a set of pre-defined filters. However, in this case, since the filters are applied convolu-

tionally, the pre-defined filters should be able to capture local characteristics of the input

images at different levels of details. This filter bank can be created by computing the

top eigenvectors of the covariance matrix of the local image patches. More precisely, we

need a convolutional extension for PCA in which instead of dot product, the eigenvectors

are convolved with the input images1. These eigenvectors that constitute the pre-defined

filter bank can be extracted from image patches of larger size to explore a wider range of

context around each pixel for the subsequent feature learning. Utilizing this idea one can

build a convolutional Eigen-RBM, as a generalization for convolutional RBMs, in which

larger-sized filters can be learned without increasing the number of free parameters.

7.2.2 Stage-wise Training with Output Evolution

The proposed stage-wise training framework in Chapter 6 was based on evolving the pre-

sented information in the input space gradually during the training stages. Considering

the definition of a training stage in section 6.3.1, another way of evolving the presented

information to the network could be through the output space. That is, the labeling of the

training data can change during different stages of training. At early stages of training,

1We have already derived a convolution extension for Supervised PCA [125] with closed-form solution.
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we try to estimate a more “general” or a “smoother” labeling function—i.e., we let the

network miss-classify some of the training data point. Then, we fine-tune the learned pa-

rameters by providing a modified labeling which is more “ragged” and closer to the true

labels of training data in the subsequent stages. In order to construct this set of evolving

labeling functions, one can utilize the dark knowledge idea presented in [97, 98]. These

works suggest that using the true labeling of the data for training the network parameters

does not necessarily lead to a better solution. In particular, they showed that a shallow

network can do as good as a deep network, if it is provided with the “softened” training

labels that the deep network generates. Inspired by this idea, one can build a set of evolv-

ing labeling functions by using the geometric average of the true labels and the smoothed

labels for stage-wise training2.

7.2.3 Regularization-based Knowledge Transfer for Stage-wise

Training

In stage-wise training (Chapter 6), the transfer of knowledge across subsequent stages was

carried out by initializing the parameters of each stage to those learned in the previous

stage. Therefore, the learning process at each stage acted as a pre-training step for its subse-

quent stage. A more direct way of transferring the learned knowledge would be through the

general-purpose regularizers. That is, the solution at each stage can be regularized to be as

close as possible to the solution found in its previous stage. Therefore, the cost function in

each stage has to compromise between minimizing the network loss and finding a parameter

configuration close to its previous stage. It is similar to L1 or L2 norm regularizer with the

difference that instead of weights themselves, the difference between the learned parameters

in two subsequent stages is pushed toward zero. This regulariztion-based transfer learning

scheme could be implemented using the proposed periodic framework in Chapter 5.

2We have obtained some promising preliminary results using this method.
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