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Abstract

The purpose of the location-routing problem is to select facility locations, assign customers

to facilities, and design routes between facilities and customers. The most common objective

is to achieve minimal cost. In general, for the standard location-routing problem, the total

cost includes fixed costs to open Distribution Centers (DCs) plus the transportation costs

from facilities to customers. In this thesis, we also consider the variable cost of facilities’

operations. Two forms of the variable cost are proposed. One is a linear cost function with

a constant variable (operating) cost per unit; the other employs a concave function of total

throughput at any DC as its cost model. The latter is studied because economies of scale

can be achieved for large facilities. By economies of scale, we mean that the variable cost

per unit is a decreasing function of the number of units of throughput; that relationship is

expressed by a concave function.

Two solution methods are developed, both based on a genetic algorithm. After some

preliminary tests, one approach is employed for further testing. Computational experiments

of the model without variable cost are performed on published data sets. Then extensive

testing is done on modified data sets for cases with operating cost but without economies

of scale, and for other cases when economies of scale are present. Analysis of the influence

of economies of scale is provided. First, we briefly test how parameter values affect the

economies of scale. Then we extensively analyze the tradeoffs between operating costs of

facilities and transportation costs. Conclusions are drawn and further research is suggested.
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Chapter 1

Introduction

The location-routing problem (LRP) is an important application in supply chain man-

agement. That problem combines the facility location problem and the execution of vehicle

routes to customers from the chosen, open facilities. In more detail, the facility location

problem begins with a pre-defined set of feasible facility locations; the model helps to decide

which facilities to open. In the standard LRP, the goal is to minimize the total cost, which

includes the fixed costs of the open facilities and the transportation costs of the vehicle routes

between those facilities and the customers served. Throughout this thesis, the locations of

customers are assumed to be known and fixed.

1.1 Facility Location Problem

As noted, the facility location problem begins with a pre-defined set of facility sites. At

which locations should a facility be open? Each opened facility serves a group of customers.

Various objectives are studied. The most common is minimization of total cost, i.e. the fixed
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costs of open facilities plus the variable costs of satisfying the demands of those customers

allocated to each facility.

In some applications, e.g. Daskin (1982) and Gelvão (1996) and others, only the latter,

i.e. the variable costs, are included. Sometimes, the number of facilities to open and operate

is an input parameter of the model. The variable-cost objective may then be expressed

as the minimization of the total travel time or of the total distances between facilities and

customers; the minimization of the maximal travel time or cost; or the maximization of the

number of customers that can be served within a given distance or time.

Klose and Drexl (2005) classify the types of facility location models. In particular,

they review continuous location models and network location models. Various applications

of facility location models are discussed. Melo et al. (2009) provide a survey on facility

location problems associated with supply chain management. They discuss characteristics

that support decision making in strategic supply chain planning. The book by Daskin (2013)

is a treatise on the various types of facility location models, their applications, and the details

of a number of solution methodologies.

1.2 Vehicle Routing Problem

The vehicle routing problem refers to the problem of designing routes to customers,

from depots, where vehicles are stored. Usually, the objective is to minimize total cost.

This always includes the costs (in time or distance) of the vehicle routes; sometimes there

is an additional fixed cost for each vehicle utilized. Laporte (1992) discusses the main types

of solution methods, including both exact algorithms and heuristic approaches. As stated

2



by a number of publications, since the size of real-life problems is large, heuristics and

meta-heuristics are often more suitable. Laporte (1992) also mentions that exact algorithms

generally work only for small-size problems.

Eksioglu et al. (2009) classify more than 1000 papers on the vehicle routing problem

and present a taxonomic review, providing a detailed classification of models studied by the

researchers cited. They count those papers by year, by journal and by solution method,

respectively. They point out certain shortcomings in the performance of various solution

methods. Toth and Vigo (2014) summarize the definition and variants of vehicle routing

problems, examine main approaches, and discuss a variety of applications.

1.3 Location-Routing Problem

The location-routing problem has a variety of applications in logistics, combining the

decisions of locating one or more facilities and the optimization of routes. The standard,

or single-echelon, location-routing problem involves routing at only one level (See Sec. 2.1).

According to the literature, the two-echelon location-routing problem can be defined as a

model including factory, DCs and customers, with consideration of routing at each echelon

(between factory and DCs, and between DCs and customers). As mentioned by Prodhon

and Prins (2014) and Drexl and Schneider (2015), researchers have studied the two-echelon

location-routing problem for more than twenty years.

The majority of references consider routing from depots (warehouse or distribution centers)

to customers. Only a few papers consider a factory or supply source for the distribution

centers. Most publications thus do not worry about the flow of goods into the DCs. Rather,
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that supply of product is there, and routes are constructed from each DC to a number of

customers (retailers). The routing is only at that level, hence this is a single-echelon location-

routing problem. For instance, Perl and Daskin (1985) and Bookbinder and Reece (1988)

present models with multiple supply sources for DCs; products are shipped directly from

factories to each DC. Routes are then designed between DCs and customers.

1.4 Models Considering Economies of Scale

This thesis is concerned with economies of scale in the LRP. Such scale economies,

i.e. concave costs, have been discussed in the content of other problems, e.g. in warehouse

or plant operations. Manne (1964), Feldman et al. (1966), Soland (1974), and Kelly and

Khumawala (1982) discuss the facility location problem with non-linear operating costs at

the facilities. Cohen and Moon (1991) design a model to assign products to plants, where

those plants exhibit economies of scale with increased levels of production. Dupont (2008)

proposes a new type of model in which the objective function, including the fixed costs of

operation, production and transportation, is expressed as a single concave function.

To the best of our knowledge, the following paper is the only one that considers economies

of scale in dealing with the standard location-routing problem. Melechovsky et al. (2005)

treat a single-echelon problem, i.e. a problem with routing at only one level. Those authors

propose a non-linear cost function (but do not give its exact form) for the throughput of

products handled in each facility (DC), incorporating economies of scale in the single-echelon

location-routing problem. They emphasize solution methods. Further details are given in

Chapter 2.
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In practice, cost is of course associated with goods moving in or out of a facility. How-

ever, that facility-throughput cost is only sometimes studied in the LRP. And except in

Melechovsky et al. (2005) and this thesis, that cost has not included economies of scale.

Most often, that variable cost is a linear function of the throughput at the DC. However,

for many facilities, economies of scale are present in the real-world situation. To represent

such economies of scale, the operating cost, i.e. the variable cost of operation of each facility

(usually a distribution center or DC), should be a concave function of facility throughput.

Thus, our research problem in this thesis focuses on the influence of economies of scale on a

distribution center, when vehicle routes must also be considered. Introduction of economies

of scale thus has some practical value. The proposed problem is an integration of a facil-

ity location problem and a vehicle routing problem, with the presence of concave operating

costs at DCs. The latter costs are the variable costs of throughput at a distribution center.

Throughout this thesis, the terms “variable cost” and “operating cost” shall be synonymous.

1.5 Remainder of this Thesis

As mentioned, this thesis considers a location-routing problem with economies of scale.

Those economies of scale are expected to result in lower total cost. With respect to the

algorithms for solving a location-routing problem, meta-heuristic approaches have been the

most popular in the literature. With the inclusion of economies of scale, we will seek a meta-

heuristic that can obtain quality solutions to our location-routing problem in a reasonable

amount of computation time.

The remainder of this thesis is organized as follows: Chapter 2 presents a detailed literature
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review for the the location-routing problem. Next, we summarize published papers that

treat concave costs, whether in the facility location problem or related problems. Solution

methods for solving the location-routing problem are then discussed. Chapter 3 proposes

a formulation of the location-routing problem when there are variable costs. We employ a

concave power function to treat economies of scale.

Chapter 4 develops two hybrid meta-heuristic methods to solve this location-routing

problem with variable cost. Both methods are based on a genetic algorithm. These are

simulated annealing embedded within a genetic algorithm, and a genetic algorithm with

ant colony optimization. Chapter 5 discusses results for the performance of our proposed

methods, and presents arguments for the superiority of one of these algorithms. We employ

our chosen method to analyze the influence of economies of scale. A conclusion is provided

and future research directions are discussed in Chapter 6.
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Chapter 2

Literature Review

The classical versions of the location-routing problem include research on capacitated

depots and vehicles. Naturally, the earlier studies concerned problem with uncapacitated

depots. (e.g. Tuzun and Burke,1999). Nagy and Salhi (2007) do a survey which examines

the attributes of different location-routing models. Borges Lopes et al. (2013) consider each

LRP model in the form of a taxonomical classification. Prodhon and Prins (2014) survey the

research from years 2007 to 2013 on location-routing problems. They classify the literature

into ten main types. According to the findings in the latter references, there are 72 papers

in total which were published during those recent seven years, the majority concerned the

capacitated location-routing problem.

2.1 Single-echelon Location-Routing Problem

Drexl and Schneider (2015), in the most recent survey on location-routing problems,

define the standard LRP as a single-echelon problem. They do point out, however, that
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multi-echelon LRPs have also become attractive to researchers. We agree, that taking the

supply echelon into consideration, that is, adding the factory-DC shipments to the standard

model, has potential for industrial application.

Perl and Daskin (1985) present a mixed integer model for the LRP and propose a

heuristic solution method. Their model concerns the locations of DCs, and routes between

those DCs and customers. The supply sources for DCs are taken into consideration as well,

with equality of inbound and outbound flows at each open DC. The problem is decomposed

into three subproblems, for which corresponding methods are constructed. A case study is

discussed, showing the ability to solve a practical problem based on their approach.

Bookbinder and Reece (1988) propose an LRP model with capacited warehouses. Those

facilities also act as depots for vehicles in a distribution system. Warehouses are located,

taking into account that routes naturally need to be designed from warehouse facilities to

customers. Products are shipped from factories to customers via the facilities suggested by

the model. Two versions of the algorithm are presented, based on Benders decomposition.

2.2 Two-echelon Location-Routing Problem

By definition, many of the two-echelon LRPs discussed in recent years develop routes

at both levels. Sterle (2010) presents the two-echelon LRP model for a freight distribution

system. A Tabu search method is proposed, based on a decomposition into four subproblems.

A greedy randomized adaptive search procedure is proposed by Nguyen et al. (2012) for a

two-echelon LRP with one main depot in the first (upper) level, and multiple capacitated

satellites in the second layer between depot and customers. Routes are constructed from the
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satellites to customers. However, the depot is also allowed to serve customers directly.

2.3 Economies of Scale in Location or Production Prob-

lems

Although few publications have discussed economies of scale in the LRP, a number of

researchers have studied the location problem with economies of scale. The following papers

thus concern only location; there are no vehicle routes. Manne (1964) presents the first plant

location model that considers both the manufacturing and transportation cost, concentrat-

ing upon economies of scale in manufacturing. The manufacturing cost contains two parts;

one is a concave function of the amount produced at the given location, and the other is a

fixed charge. The transportation cost is linear. The model is solved by a steepest-ascent,

one-point move algorithm. The model has no capacity limitation.

Feldman et al. (1966) deal with the warehouse location problem, taking into consideration

a nonlinear warehouse operating cost and a linear transportation cost. To solve the model,

a heuristic with a drop-and-add routine was developed. The methodology was tested on

problem with four factories, forty-nine warehouse sites, and two hundred customer locations

that were laid out on a map of America. The proposed heuristic technique was said to

generate near-optimal solutions. Because the paper was published in the 1960s, the method

was tested only on two instances and not much data was shared.

Dupont (2008) presents a model of the uncapacited facility location problem. The total

cost function is concave. Those total costs include the fixed cost of opening the facility, as
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well as production costs and the cost of delivery. The total cost function exhibits concav-

ity with respect to the quantity delivered by the facility. The objective is to minimize the

total cost, subject to the demand of each customer. He mentions that the marginal cost is

decreasing because the overall cost is concave. The problem is formulated as a non-linear

optimization model with integer variables. Some properties of the model are proved. A

branch and bound approach is suggested, and a greedy algorithm is used to get the initial

solution. The proposed method can solve problems with 20−25 sites and more than 250

customers, given the running time allowed.

The work of Cohen and Moon (1991) emphasize production rather than location. How-

ever, their research is related to ours because of its treatment of economies of scale. Those

authors address a plant loading problem with the goal of minimizing total annual costs

including inbound (purchasing and transportation), production (fixed and variable), and

outbound (transportation and handling) costs by selecting inbound raw material flows, the

plant product mix, and outbound shipments of finished product. Cohen and Moon (1991)

consider the existence of scale and complexity (scope) effects at the plant level, which result

in the nonlinear production costs with respect to product-line volume. Specifically, if addi-

tional product lines are assigned to a plant, the plant must absorb additional fixed costs and

will experience higher (but less than proportional) variable production costs. To solve this

piecewise linear concave problem, they develop a variant of Benders decomposition which is

implemented in GAMS. The proposed solution algorithm works successfully with 3 product

groups, 4 plants, 10 DCs and 10 customers. That algorithm can be applied to problems with

a cost function of any shape that can be expressed as a piecewise linear function.
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2.4 Economies of Scale in Location-Routing Problems

To the best of our knowledge, only Melechovsky et al. (2005) discuss the LRP with

warehouse economies of scale, i.e. non-linear variable costs, and develop a mixed integer non-

linear model. They propose a meta-heuristic method which combines Variable Neighborhood

Search with Tabu Search. Those authors show that these two approaches together are better

than either one by itself. They focus on demonstrating the performance of the hybrid method.

However, they do not discuss the non-linear cost function in detail. They do mention that

those non-linear costs have an effect on the assignment of customers, in that a customer may

be served by a facility which is not the closest.

2.5 Solution Methods in Solving Location-Routing Prob-

lems

The influence of two NP-hard problems, namely the location problem and the vehicle

routing problem, makes it difficult to present an exact algorithm. There is thus only a small

number of publications on exact solution methods for the LRP. As stated by Prodhon and

Prins (2014), lower bounds have been obtained by only a few researchers, e.g. Belenguer

et al. (2011) and Contardo et al. (2014), namely those implementing exact methodologies.

Most location-routing problems therefore employ efficient meta-heuristics.

Wu et al. (2002) suggest such a method for solving the multi-depot location-routing

problem with limited homogeneous fleets. Meta-heuristic methods are developed respectively

for the location problem and the vehicle routing problem. Each subproblem is solved in a
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sequential and iterative manner by a simulated annealing algorithm with a tabu list to avoid

cycling. The approach of Wu et al. is efficient for solving problems with up to 85 customers.

Prins et al. (2006a) design a greedy randomized adaptive search procedure for a general

LRP with uncapacitated vehicles, based on the Clarke-Wright algorithm, combined with

a learning process. Prins et al. (2007) solve location routing problems with a heuristic

decomposition method. Their proposed method alternates between a facility-location phase,

solved by a Lagrangian-relaxation approach, and a routing phase, handled by a granular

Tabu search. Both formulations of Prins et al. are similar to that of Wu et al. (2002).

However, either approach of Prins et al. (2006a, 2007) is able to solve problems with a

greater number of customers than in Wu et al.

The model studied by Prins et al. (2007) is defined on a complete, weighted, and

undirected network. The objective is to minimize the total cost, including fixed costs of

depots plus total variable costs of the routes. Prins et al. (2007) compare their method with

other approaches, and find that they can improve 80% of the values obtained by others on

three data sets. They also analyze the factors that influence the cooperation and alternation

between the location phase and the routing phase in their method, pointing out that their

approach performs well on large scale instances.

Prins et al. (2007) tested their method on three data sets. Those are the publicly-available

instances of Tuzun and Burke (1999), Barreto (2004), and Prins et al. (2006a ). Prins et

al. (2007) were able to solve instances with up to 200 customers. We will solve instances

from these same data sets in our numerical experiments (Chapter 5) after first adapting or

extending those instances to include (concave) operating costs of facilities.

We now turn to Chapter 3 to introduce our two mathematical models. Both include
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operating costs of facilities, but only the second (Sec. 3.4) has economies of scale.
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Chapter 3

Mathematical Models

3.1 Problem Definition

We consider the location-routing problem with capacity on both depots and vehicles,

and introduce variable cost of DCs to the formulation. The optimal locations of distribution

centers are chosen from a set of feasible potential locations, taking into account that vehicle

routes must be operated from the chosen sites. That is, customers should be assigned to the

opened DCs and routes need to be constructed.

For the model without economies of scale, the preceding variable cost of a DC is expressed

as a unit operating cost multiplied by the total demand. When economies of scale are present,

a concave function of facility throughput is employed for calculating the variable cost of a

DC. Both formulations have the objective of achieving minimal total cost.

Several assumptions pertain to our model:

• The vehicles are homogeneous, each with the same capacity.
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• Each vehicle serves a route where total demands are within that capacity.

• There is a single product type.

• Facilities can have different capacities, but are the same in all other aspects. In other

words, each facility has the same unit operating cost.

3.2 Notation

The notation below applies to both of our proposed models, i.e. with and without the

economies of scale. The location routing problem with economies of scale can be character-

ized by the following parameters:

• I: set of indices of possible locations of DCs

• J : set of indices of customers

• L: L = I
⋃
J : set of nodes

• K: set containing vehicles in the fleet

• Ai: fixed cost of DC i, ∀i ∈ I

• U : unit operating cost of DCs for the case without economies of scale

• Cij: transportation cost from node i to node j, ∀i, j ∈ L

• W : vehicle capacity

• F : fixed cost per vehicle
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• Qi: maximum throughput (capacity) of DC i, ∀i ∈ I

• dj: demand of customer j, ∀j ∈ J

Variables

• xijk =


1 if node i is immediate predecessor of node j on the vehicle k ∀i, j ∈ L, ∀k ∈ K

0 otherwise

• vij =


1 if customer j is served by DC i

0 otherwise

• yi =


1 if DC i is open

0 otherwise

The objective of the model is to select locations, and at the same time, find best routes

with the minimum total cost. That includes the fixed cost to locate a facility, nonlinear

operating cost, and transportation cost. In addition, the following constraints should be

satisfied:

• Each customer must be assigned to a single route.

• Each route starts and ends at a DC.

• The total load of every vehicle is within its capacity limit.

• The total demand of the customers served by any one DC cannot exceed the capacity

of that DC.
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The problem can be modeled based on the classical location-routing model and a location

problem with economies of scale. The formulation presented below begins with the location-

routing model given by Prins et al. (2006a). Our model differs from that of Prins et al. by

the addition of the variable cost term in the objective function, but otherwise only in small

change in notation. The constraints (3.2) through (3.11) in Sec. 3.3 are identical to those

of Prins et al. (2006a). The objective function in the model [LRPV ] adds a variable-cost

term,
∑

j∈J Udj, which is not considered by Prins et al.

Note that when economies of scale are absent, the operating cost (variable cost) for that

model simply represents a constant addition to the objective function of models of Prins

et al. (2006a) and others that ignore operating cost. We include the variable-cost term so

that we may compare the results without economies of scale to those when economies of

scale are present. The latter model, [LRPES], is presented in Sec. 3.4. The constraints are

unchanged; the variable-cost term is replaced by Eq. (3.1) below.

That variable-cost term in the objective function of the model [LRPES] thus ensures that

the operating cost exhibits concavity. The concave variable cost function is fi; its argument

is the total throughput of facility i:

fi(
∑
j∈J

djvij) = γ(
∑
j∈J

djvij)
δ (3.1)

That total throughput is summed over each facility i in [LRPES]. The non-linear cost

function is illustrated in Figure 3.1, in which we set γ = 25 and δ = 2/3. With an increase in

the quantity handled at a DC, the operating cost per unit (the slope of the curve) decreases.

Attainment of such economies of scale requires that 0 < δ < 1 in Eq. (3.1).
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Figure 3.1: Variable cost function when γ = 25 and δ = 2/3

3.3 Model without Economies of Scale

The location-routing problem with variable cost but no economies of scale is:

[LRPV ] min z =
∑
i∈I

Aiyi +
∑
j∈J

Udj +
∑
i∈L

∑
j∈L

∑
k∈K

Cijxijk +
∑
i∈I

∑
j∈J

∑
k∈K

Fxijk

subject to

∑
k∈K

∑
i∈L

xijk = 1 ∀j ∈ J (3.2)

∑
j∈J

∑
i∈L

djxijk ≤ W ∀k ∈ K (3.3)

∑
j∈L

xijk −
∑
j∈L

xjik = 0 ∀k ∈ K, ∀i ∈ L (3.4)
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∑
i∈I

∑
j∈J

xijk ≤ 1 ∀k ∈ K (3.5)

∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀S ⊆ J, ∀k ∈ K (3.6)

∑
u∈J

xiuk +
∑

u∈L\{j}

xujk ≤ 1 + vij ∀i ∈ I,∀j ∈ J,∀k ∈ K (3.7)

∑
j∈J

djvij ≤ Qiyi ∀i ∈ I (3.8)

yi ∈ {0, 1} ∀i ∈ I (3.9)

vij ∈ {0, 1} ∀i ∈ I ∀j ∈ J (3.10)

xijk ∈ {0, 1} ∀i ∈ L ∀j ∈ L ∀k ∈ K (3.11)

The constraints will be discussed in the following section.

3.4 Model with Economies of Scale

[LRPES] min z =
∑
i∈I

Aiyi +
∑
i∈I

fi(
∑
j∈J

djvij) +
∑
i∈L

∑
j∈L

∑
k∈K

Cijxijk +
∑
i∈I

∑
j∈J

∑
k∈K

Fxijk

subject to

(3.2)-(3.11)

These two models are very similar; differences lie in the objective functions. The objective

function of each model is the sum of the operating cost including fixed cost, variable cost of

operation, and transportation cost between DCs and customers. In Section 3.3, the variable

cost is calculated by multiplying the total throughput by the unit operating cost. Since that

unit cost is a constant, the total operating cost in [LRPV ] can be calculated directly by
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the total demand of all customers. However, the model of Section 3.4 employs the power

function of Eq. (3.1); In [LRPES], the marginal operating cost of an opened DC decreases

with the number units of demand satisfied by that DC.

Otherwise, the two models satisfy the same constraints. Equality (3.2) guarantees that

each customer will be connected to a unique predecessor by a single vehicle. Constraint

(3.3) claims that the capacity of each vehicle will be respected. Relations (3.4) and (3.5)

ensure the continuity of routes, and that all vehicles travel back to the origin, i.e. the DC.

Sub-tours are eliminated by Constraint (3.6). Inequality (3.7) means that only those loca-

tions selected as DCs can become the origin of a route. Constraint (3.8) indicates that the

sum of customers’ demands satisfied by a given DC cannot exceed the capacity of that DC.

Constraints (3.9) - (3.11) show the binary nature of decision variables.

The two models, [LRPV] and [LRPES] (Secs. 3.3 and 3.4), will undergo intense com-

putational testing in Chapter 5. Before that, appropriate solution methods will need to be

considered. Chapter 4 addresses that issue.
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Chapter 4

Solution Methods

4.1 Overview

The combination of two NP-hard problems makes it difficult to present an exact algo-

rithm; this has reduced the number of publications on exact solution methods. A report on

the vehicle routing problem published by the School of Mathematics, University of Edin-

burgh (anon, n.d.) points out that exact methods have solved only “small” vehicle routing

problem instances, and could take days to solve a particular instance consisting of less than

one hundred customers. After experiments and comparison, that report suggests the use of

meta-heuristics.

There are four survey papers on the LRP published since the year 2000: Nagy and Salhi

(2007), Borges Lopes et al. (2013), Prodhon and Prins (2014), and Drexl and Schneider

(2015). The first three indicate that approximate or meta-heuristic approaches are more

suitable than exact algorithms. Prodhon and Prins (2014) emphasize the contrasting ap-

proaches for the location-routing problem. They present and compare various methods used
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to solve these problems. They point out that due to the complexity of the problem, very few

papers can obtain lower bounds or propose an exact method, and that exact methods can

solve only small instances.

The majority of papers thus develop meta-heuristics. According to the survey of Prod-

hon and Prins (2014), meta-heuristics give relatively better results than those of ordinary

heuristics, or even those of an optimization model when the allowed number of iterations is

limited. The survey also mentions the “hybridizing” of a heuristic approach with an exact

method, but this class does not give a better performance than the pure meta-heuristics.

Prodhon and Prins (2014) compare several methods. Adaptive large neighborhood search,

ant colony optimization, simulated annealing, and the greedy randomized adaptive search

procedure are the top four performers based on three data sets: Tuzun and Burke (1999),

Barreto (2004), and Prins et al. (2006a). (We remark that the first of these data sets treats

only the case in which the facilities are uncapacited.) The last two are the data sets against

which we test our algorithms in Chapter 5.

Meta-heuristics are thus efficiently employed in most location-routing problems. Some

methods might offer a good quality of solution but are poor in term of running time. Ant

colony optimization, however, gives a suitable compromise between them. Since the major-

ity of papers cannot obtain a lower bound, authors often illustrate their solution quality by

comparing their results with the best known results.

Melechovsky et al. (2005) use Tabu search, combined with a variable neighborhood

search, for a problem with warehouse economies of scale. Because there is no best known

result on this problem, they compare the solution obtained by their method with results

returned by purely Tabu search and pure variable neighborhood search, respectively. The

22



results show that the hybrid method gives a better performance.

4.2 Methods Considered

As mentioned above, we have chosen to employ meta-heuristics. We came up with two

methods based on genetic algorithms to address our problem: simulated annealing embedded

within a genetic algorithm, and a genetic algorithm with ant colony optimization. Details

of the first approach are in Sec.4.3 (See Figure 4.1). The flow chart of the second method is

given in Figure 4.8 and discussed in Sec. 4.4.

The foundation of either optimization algorithm is Darwin’s evolutionary theory. Choice

of location, customer aggregation, and vehicle selection are solved by our genetic system.

Routing improvement is addressed by the addition of a 2-opt routine in a simulated annealing

(SA) algorithm, or by ant colony optimization (ACO).

4.3 Simulated Annealing embedded within Genetic Al-

gorithm

The flow chart for this method is presented in Figure 4.1.

4.3.1 Generation of Feasible Solutions

We construct a number of random feasible solutions as our initial population as follows.

First, the algorithm develops a list of available DCs, and another list of customers that are

not yet served. Next, it randomly assigns a vehicle to any DC (i.e. depot) on the list, and
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Start
Construct fea-
sible solutions

Calculate fitness
of each solution

Select two solutions
as parents based
on their ranking

SA

SolutionFitness

Crossover process

Mutation process
Desired number
of generations?

No

Stop
Yes

Figure 4.1: Simulated Annealing embedded within Genetic Algorithm

then assigns customers to the nearest DC. Whenever a vehicle’s capacity is exceeded, a new

route is started. If any DC’s capacity becomes violated, that depot is eliminated from the

list of those available depots. Any customer already served would also be deleted from the

list of customers that are not yet served. The whole algorithm stops when that list no longer

contains any customers.

4.3.2 Coding and Decoding

The initial population is thus found as in Sec. 4.3.1, yielding the feasible solutions. The

algorithm then enters the next phase: coding each solution into a chromosome sequence.

Each sequence indicates one route, beginning at a particular DC and indicating the order in

which customers are served. Binary numbers are used to represent the DCs from which the

vehicles depart, and the customers that each vehicle serves. Each chromosome corresponds

to one vehicle.
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To be specific, binary number 0 means a certain DC or customer is not selected on this

vehicle; on the contrary, we use 1 to represent those selected. Figure 4.2 gives an example

with three potential DCs and five customers. Here, DCs D1 and D2 are opened. Thus, the

chromosomes shown in Figure 4.3, corresponding to Figure 4.2, are explained as vehicle 1

departing from depot 1 serving customers 2,3,5; and vehicle 2 departing from depot 2 serving

customers 1 and 4.

D1	
  

D3	
  

D2	
  

C3	
  

C1	
  

C4	
  

C5	
  

C2	
  

Figure 4.2: Sample customer assignments and routes

Figure 4.3: Two sample chromosomes, corresponding to Figure 4.2

25



4.3.3 Fitness Calculation

[FC] =
∑
i∈I

Aiyi +
∑
i∈I

fi(
∑
j∈J

djvij) +
∑
i∈V

∑
j∈V

∑
k∈K

Cijxijk +
∑
i∈I

∑
j∈J

∑
k∈K

Fxijk

+
∑
i∈I

P1 max(
∑
j∈J

djvij −Qiyi, 0) +
∑
k∈K

P2 max(
∑
i∈J

∑
I∈V

djxijk −W, 0)

[FC] denotes the calculation of the fitness function. It consists of facility operating cost,

transportation cost, the fixed cost of using a route, and two penalties. Each chromosome’s

fitness will be calculated by the function [FC]; smaller cost denotes a better level of fitness.

Eq. (4.1), below, thus involves the calculated fitness FCl of chromosome l.

The processes of crossover and mutation in our system may lead to infeasible solutions.

We thus add penalties to the fitness function, so that an infeasible solution will have a

lower fitness. P1 is the penalty coefficient that is applied when the capacity of any depot is

exceeded. P2 is the corresponding coefficient for the per-unit violation of a vehicle’s capacity.

The penalty coefficients P1, P2 need to be “large” (consistent with the other parameters in

the particular problem instance), so that the probability of an infeasible solution is small.

4.3.4 Selection and Route Optimization: 2-opt Exchange within

SA

All chromosomes are then decoded for the simulated annealing process. Route optimiza-

tion employs 2-opt exchange, which means that two particular customers interchange their

positions.

A genetic algorithm proceeds from one generation to the next. However, before allowing it

26



to do so, we have found that, within the genetic algorithm, it is helpful to employ simulated

annealing, to enhance the probability of selection for the next generation of those chromo-

somes that have a better fitness level. This use of simulated annealing, in combination with

a genetic algorithm, has been shown to be worthwhile in a previous publication about the

vehicle routing problem (Tuzkaya et al. 2012).

The possibility of accepting a worse solution follows the principle of simulated annealing.

Simulated annealing is a probabilistic meta-heuristic that imitates the annealing process in

metallurgy. The goal is to escape a local optimum. The whole algorithm starts with an initial

temperature and cooling-rate setting. The probability to accept a worse solution is calculated

by the formula: exp(− current cost−best cost
T

). The gap between current route cost and best cost,

and the temperature T , determines the chance to accept a worse solution. As we see from

this formula, if the gap between the two solutions is larger, acceptance of this inferior solution

would be less likely. Moreover, the temperature T becomes cooler (value becomes smaller)

after a certain number of iterations. This guarantees that the probability of accepting a

worse solution will gradually become smaller. The lowest cost of each chromosome explored

by this algorithm is returned as the “fitness” of that chromosome.

4.3.5 Crossover

Next, each solution receives its ranking based on the fitness (smaller cost means better

fitness and higher ranking). Then the system enters into our crossover process. Crossover

refers to the replacement of part of the structure of the two parent individuals to generate

new recombinations. Through crossover, the search capability of the genetic algorithm is
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improved. We select two chromosomes from the whole population (chromosomes with better

ranking have larger probability to be selected). These two solutions are crossed over, to

generate a totally new offspring. Specifically, two random numbers are initially drawn, then

all genes between these two numbers are exchanged so that we get two new offspring chromo-

somes. For example, as shown in Figure 4.4, the genes in the positions between numbers 5

and 7 of two parent chromosomes are exchanged. The other parts of the parent chromosomes

remain the same, and two offspring chromosomes are generated, as presented in Figure 4.5.

Figure 4.4: Parents-before crossover

Figure 4.5: Offspring-after crossover

4.3.6 Mutation

Mutation, an important process to escape local optima, is forced to occur to preserve

genetic diversity. A mutation causes a change in one or more genes of a chromosome. That

28



is, a previous value of 0 becomes 1, or vice-versa (See Figure 4.6).

Most mutated chromosomes become bad solutions or even infeasible. Therefore, the

mutation rate should be rather small. After defining our initial mutation rate, if a randomly-

drawn number from U(0, 1) is less than that mutation rate, the chromosome will progress

into mutation. There are two situations: customers on the original route will be switched to

another route, or a mutated route’s original depot will be randomly reassigned. As shown

in Figure 4.6, in this mutation, customer 2 is removed from the original route (Figure 4.3)

and served by vehicle 2 instead. Figure 4.7 depicts the second possibility. In this mutation,

vehicle 1 is re-assigned from depot 1 (see Figure 4.3) to depot 3.

Figure 4.6: Mutated chromosomes-reassignment of Customer 2

Figure 4.7: Mutated chromosomes-vehicle reassigned to different depot

4.4 Genetic Algorithm with Ant Colony Optimization

The method that we tested for route improvement is to employ ant colony optimization

within the genetic algorithm. Ant colony optimization has been used widely for solving rout-

29



ing problem, e.g. Yu et al. (2009) and Abdulkader et al. (2015). We previously suggested

the incorporation of simulated annealing within the GA. Now, however, we decided for ant

colony optimization within the genetic algorithm for our location-routing problem.

Start

Data Input

Chromosome initialization

Genetic Algorithm

Mutation

Crossover

DecodingAnt Colony Optimization

Calculate Objective

Function Value

Calculate Fitness LevelSelection

Iterations

complete?

No

Output

Yes

Stop

Figure 4.8: Flow chart of genetic algorithm with ant colony optimization
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Ant colony optimization algorithm was first introduced by Dorigo (1992). It is based on

the nature of ants’ behavior in seeking food. As mentioned by Dorigo and Stützle (2009), ant

colony optimization has since been successfully applied to various combinatorial optimization

problems. Hence we employ ACO to improve the routes from the genetic algorithm. Some

parts of this approach are the same for the case of simulated annealing within the GA (Fig.

4.1). Differences lie in chromosome selection and in route optimization. The flow chart of

Figure 4.8 shows the entire algorithm.

4.4.1 Selection

We employ “roulette wheel” selection. The probability that a given chromosome will be

selected is in direct proportion to its level of fitness. Let N denote the set of all chromosomes,

and n = |N | represent the cardinality. Suppose the size of the chromosome population is

n, and chromosome l has the fitness level of FCl (see Sec. 4.3.3). The probability that

chromosome l will be selected is then given by formula (4.1):

pl =
FCl∑
l∈N FCl

. (4.1)

Figure 4.9 illustrates that every chromosome occupies one part of the pie chart; the size of

the area is related to the chromosome’s level of fitness. Let ql be the cumulative probability

of chromosome l (l ∈ N), which can be calculated by Eq. (4.2):

ql =
∑
l∈N

pl (4.2)
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chromosome 1

chromosome 2

chromosome 3

chromosome 4

Figure 4.9: Roulette wheel selection

The following steps indicates how roulette wheel selection works:

• Generate a random number r from the uniform distribution on [0,1];

• Compare r with q1. If r ≤ q1, chromosome 1 is selected;

• If ql−1 < r ≤ ql(2 ≤ l ≤ n), chromosome l is selected.

4.4.2 Route Optimization: Ant Colony Optimization

Start Initialization

Choose the next point to

visit based on Eq. (4.3)

Calculate the length

of each trail, and

record the best one

Update the pheromone

level based on Equa-

tions (4.4) to (4.6)

Iterations

compelete?

No

Stop
Yes

Figure 4.10: Ant colony optimization-detailed flow chart
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In the solution obtained from previous steps (See Fig.4.8), ant colony optimization is used

to improve the (randomly-chosen) initial routes. The flow chart is shown in Figure 4.10.

Each of the m ants selects the next point to visit based on the probability pkij in Eq.(4.3).

No ant is allowed to go to those demand points already visited by itself; this is controlled

by a tabu list that records the visited points. An ant leaves pheromone on its trajectory.

At the beginning, the amount of pheromone is the same on every route. During the ACO

step in Figure 4.8, the quantity of pheromone (i.e. the pheromone level) decides the ant’s

movement. α, β, ρ are parameters chosen to control the relative importance of pheromone

and to update the information obtained by the ACO heuristic. Specifically, α controls the

influence of a trail and the effect of τij (See Eq. 4.3). β indicates the importance of ηij in

that equation. ρ is the rate of evaporation of pheromone. The following parameter values

are based on previous literature on ant colony optimization (Gaertner and Clark 2005, Çatay

2009): α = 1, β = 4, ρ = 0.1, and the number of iterations is set to 50.

Let ταij represent the concentration of pheromone on edge (i, j), and pkij denote the

probability of ant k moving from node i to node j. That is calculated by the formula:

pkij =


ταij ·η

β
ij∑

s∈allowedkτ
α
is
·ηβ
is

, j ∈ allowedk

0, otherwise

. (4.3)

ηij means the “visibility” of node j, as seen from node i. We take ηij(t) = 1
dij

, where dij

is the distance between i and j. allowedk = 0, 1, ...n− 1 − tabuk, and represents the list of

nodes that ant k can visit. After the ant finishes one iteration, the information on the route
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is updated by Equations (4.4) - (4.6):

τij ←− (1− ρ)τij + ∆τij (4.4)

∆τij =
m∑
k=1

∆τ kij (4.5)

∆τ kij =


Q
L′k
, if k-th ant traverses the edge (i,j )

0, otherwise

. (4.6)

In Equations (4.4) to (4.6), (1 − ρ) is less than 1, indicating that the concentration of

pheromone left over will decrease with time. ∆τ kij represents the quantity of pheromone left

by ant k on the edge between i and j, and L′k is the total distance that ant k has moved in

going from i to j. These equations are employed in each iteration of the ACO algorithm.

Sections 4.3 and 4.4 have thus summarized the methods that we consider. In Chapter

5, experiments are done for both approaches. We compare the results in terms of solution

quality and running time. And the one that gives a better performance will be employed for

the majority of tests.
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Chapter 5

Computational Results

The performance of the proposed solution methods is now evaluated. The suggested

algorithms are coded in Matlab 2015b, and tested on a computer with an i-5 Quad Core

processor running at 2.6 GHz and 16 GB of memory.

In the first group of experiments (Sec. 5.1), the number of demand points n ranges from 10

to 100, with m = 3, 7, or 15 potential depots(DCs) opened. The coefficient of transportation

cost Cij is 2, which means that this cost is twice the Euclidean distance traveled on arc (i, j).

Coordinates of DCs and demand points are generated from uniform distributions between [0,

50]. The capacity of each vehicle is 100. Opening a depot incurs a random cost in the range

of 800 to 1000. And the capacity Qi of each depot is 450. The demand of each customer is

generated uniformly in the range [20,30]. For the experiments without economies of scale,

we set the constant variable cost to be $8 per pallet. Here, we use 1 pallet of product as

the unit of demand. When economies of scale are present, we employ the function fi in Eq.

(3.1), whose initial slope (see Figure 3.1) corresponds to $8 per pallet.

For all experiments, we first set the parameters of Eq. (3.1) after preliminary tests
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for the cases when economies of scale are present. Then, from the derivative of Eq. (3.1)

f ′(x) = δγxδ−1, and, according to the average demand x in the particular data set, we set

f ′(x) as the initial slope

5.1 Comparison of SA and ACO

No economies of scale-ACO No economies of scale-SA

m n
number of
DC opened

fixed cost total cost CPU(s)
number of
DC opened

fixed cost total cost CPU(s)

3 10 1 0.86 3.26 5.86 1 0.86 3.26 5.85
20 2 1.66 6.85 10.65 2 1.66 6.85 11.67
30 2 1.66 8.42 19.16 2 1.66 8.54 19.37

7 30 2 1.76 8.54 22.0 2 1.76 8.56 23.2
30 2 1.66 8.78 22.8 2 1.66 8.80 23.7
50 4 3.50 12.0 50.3 4 3.48 12.2 52.9
50 4 3.52 12.1 51.7 4 3.52 12.6 54.1
70 4 3.52 15.8 97.0 4 3.52 15.9 101.1
70 4 3.52 15.6 96.1 4 3.52 15.6 100.3

15 100 6 5.28 18.9 307.7 6 5.30 19.2 309.9
100 7 6.10 20.8 309.8 7 6.10 21.1 310.2

Table 5.1: Algorithm comparison: No economies of scale

All costs in $000

With economies of scale-ACO With economies of scale-SA

m n
number of
DC opened

fixed cost total cost CPU(s)
number of
DC opened

fixed cost total cost CPU(s)

3 10 1 0.86 2.68 5.01 1 0.86 2.68 5.00
20 2 1.66 5.43 12.28 2 1.66 5.43 13.23
30 2 1.66 7.17 18.98 2 1.66 7.28 19.37

7 30 2 1.76 7.26 24.7 2 1.76 7.29 25.6
30 2 1.66 7.24 25.2 2 1.66 7.28 26.6
50 3 2.73 10.3 50.1 3 2.53 10.4 52.9
50 3 2.53 9.98 49.2 3 2.53 10.4 52.0
70 4 3.52 13.6 96.0 4 3.56 13.9 101.4
70 4 3.52 13.5 96.8 4 3.52 13.7 102.7

15 100 5 4.38 16.0 308.2 5 4.40 16.4 311.7
100 5 4.42 16.8 310.0 5 4.42 16.9 315.5

Table 5.2: Algorithm comparison: With economies of scale

All costs in $000

Tables 5.1 and 5.2 compare the results returned by the genetic algorithm with ant colony
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optimization, to those from simulated annealing containing an embedded genetic algorithm.

In those tables, we use γ = 25 and δ = 2/3(See Eq. 3.1). The model in Table 5.1 has

no economies of scale. Both tables show that for the small-size instance (3 DCs and 10 or

20 customers), the two algorithms give the same result. For example, when there are no

economies of scale, a single DC is opened with a fixed cost of $860 and total cost of $3,260

for the instance including 3 DCs and 10 customers. Running times are almost the same for

the two approaches.

Deviations begin to appear as the size of the instance grows. From Table 5.1, consider

the first row when m = 7 and n = 50. Both methods recommend four DCs, but since the

resulting fixed costs differ, we know that the methods open distinct DCs. Although the ACO

has a fixed cost of $3,500, $200 greater than that of SA, it has a lower total cost of $12,000.

Besides, the running time is shorter for ACO. For the same instances but for the model with

economies of scale, we find similar results in Table 5.2. In general, from the perspectives of

cost and running time, the genetic algorithm with ant colony optimization performs better

than simulated annealing embedded within a genetic algorithm in these experiments.

We suspect, but cannot prove, that the additional running time of SA over ACO may

became greater as the size of problem instances increase. We thus use ant colony optimization

with the genetic algorithm to test additional instances and analyze the influence of economies

of scale.
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5.2 Testing GA-ACO on Published Data Sets

In all groups of experiments, the ACO & GA algorithm is implemented with five runs

for each instance. We set the probability of crossover equal to 0.7. In this section, we set δ

= 2/3 in Equation (3.1). In each run of the same instance, to obtain a better solution, we

may change the size of the initial population, the number of generations, or the probability

of mutation.

Figure 5.1 presents solutions and shows the trend in total cost over successive generations.

This example has 5 DCs and 30 customers, and is solved by ant colony optimization with

genetic algorithm. (In this example, all data are randomly generated. Each DC has a

capacity ranging from 400 to 500, every customer’s demand is uniform in the interval [30,50],

vehicle capacity is 200, fixed cost of opening a DC ranges between 800 and 900, fixed cost to

use a vehicle is 20, and the coefficient of transportation is $1/km.). In this experiment, as

frequent occurs when economies of scale are present, we found that a given customer can be

assigned to a DC with a higher total throughput, instead of to the nearest one [Fig. 5.1(a)].
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Figure 5.1: Example with 5 potential DCs and 30 customers
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Note that often we cannot compare our algorithm with another paper dealing with

variable cost. Those authors may use their own data, to which we have no access. However,

the way we can illustrate the quality of our proposed method is by comparing results with

papers published on the standard LRP, when we and they employ public data sets. Three

data sets have been tested by a number of authors: instances introduced by Tuzun and

Burke (1999), by Barreto (2004), and by Prins et al. (2006a). For the second and third ones,

both the depots and vehicles are capacitated, which is the case in this thesis. Those are the

data sets on which we will illustrate and test our method. Whether for Barreto or Prins et

al, instances in our tables in this section follow the same sequence as in theirs.

5.2.1 Barreto’s Instances

We will conduct two groups of experiments on instances generated by Barreto (2004).

That data set, available at http : //prodhonc.free.fr/Instances/instances us.htm, con-

tains 13 instances, between which there are great differences in parameters. Here, there is

no fixed cost of using a vehicle. Depots and vehicles have capacities.

In the first group of experiments, we take away the variable cost, which makes the

model become a standard LRP. We compare the results of our proposed algorithm with the

best-known results (BKR) among GRASP (Prins et al., 2006a), a memetic algorithm with

population management (MA|PM, Prins et al., 2006b), and Lagrangean relaxation-granular

tabu search (LRGTS, Prins et al., 2007). The gap is calculated by Total Cost−BKR
BKR

× 100%.

Results are given in Table 5.3. Although the figures in Tables 5.1 and 5.2 are expressed

in $000, results in the remainder of the thesis will be given in “dollars”. This is in keeping
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Instance n m BKR Total Cost CPU(s) Gap(%)
Christofides69 50 5 565.6 608.1 65.23 7.51
Christofides69 75 10 861.6 861.6 127.18 0.00
Christofides69 100 10 842.9 906.7 330.57 7.57
Daskin95 88 8 355.8 370.4 262.67 4.13
Daskin95 150 10 44011.7 45109.4 1523.53 2.49
Gaskell67 21 5 424.9 424.9 25.11 0.00
Gaskell67 22 5 585.1 605.1 28.08 3.41
Gaskell67 29 5 512.1 512.1 34.54 0.00
Gaskell67 32 5 562.2 562.2 33.19 0.00
Gaskell67 32 5 504.3 528.1 64.23 4.72
Gaskell67 36 5 460.4 473.1 67.23 2.69
Min92 27 5 3062.0 3062.0 58.92 0.00
Min92 134 8 5809.0 6136.2 560.79 5.63

Table 5.3: Results for the instances of Barreto (2004)-no variable cost

with common practice in the literature.

From Table 5.3, we find that our proposed algorithm obtained the same results as BKR on

five of the thirteen instances. With the increase in the number of customers, a gap appears.

Although three instances have a gap over 5%, the overall results (median gap = 2.69%)

suggest that our proposed method may be acceptable.

The second group of experiments tests our proposed model containing DC operating

cost. γ, the coefficient of the variable cost function in Eq. (3.1), is equal to 1 (for instances

Gaskell67 when m=21, 22, 29 and 32), or 10 (remaining nine instances of Table 5.3). Of

course, γ refers to the model with economies of scale. For the case without economies of

scale, we set the operating cost per pallet equal to $0.06 (for instances Gaskell67 when m=21,

22, 29 and 32), or $1.50 (again, the nine other instances). Although $0.06 per pallet seems

very small, the demand is high and other costs are low. In such cases, we need to use a

figure as small as six cents per pallet, to enable the DC operating cost to be of the same

magnitude as the other costs in the model.
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(b) Convergence of optimal objective function value

Figure 5.2: Results of Gaskell67 (n=36, m=5), with variable cost but no economies of scale
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Figure 5.3: Results of Gaskell67 with n=36 and m=5, with economies of scale

δ = 2/3 in Eq. (3.1)

Table 5.4 provides the results, comparing the effects of economies of scale. For eight

among the eleven instances we tested, more depots are opened when there are no economies

of scale. In general, both the operating cost and total cost are lower when the DCs have
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economies of scale.

The reader will have noted that the two Daskin95 instances were not tested in Table 5.4.

Table 5.3, in the absence of operating cost, show that our method of solution is sound, even

for those two instances. However, with the inclusion of operating cost, not only allowed each

term in the total-cost function to be of the same order of magnitude, but the parameters

to achieve this should be “in proportion” to the respective parameters that reach attain

this approximate equally in the other instances. We were unable to achieve this for the two

Daskin95 instances.

Returning to the results of Table 5.4, Figures 5.2 and 5.3 compare solutions of the model,

without and with the economies of scale, for the instance Gaskell67 (with n=5 and m=36) of

Barreto (2004). (The specific data can be found in Table 5.4.) The total cost is lower when

there are economies of scale; just one DC is opened (Figure 5.3). In the case of operating

cost but no economies of scale, two DCs are used. There are four routes in both Figure 5.2

and Figure 5.3. Although the transportation cost is lower when two DCs are opened (Figure

5.2), the total cost is greater because there are no economies of scale.

5.2.2 Instances of Prins

First, as before, we leave off the variable cost, and test our algorithm on another set of

standard benchmarks, http : //prodhonc.free.fr/Instances/instances us.htm, designed by

Prins et al. (2006a). This set comprises 30 instances with capacitated depots and vehicles.

The number of depots is either 5 or 10, and the number of customers ranges from 20 to

200. The vehicle capacity W is equal to 70 or 150. Euclidean distance is used, and the
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transportation cost is 100 times the respective distance. The demand of each customer

is uniformly distributed between 11 and 20. Results are given in Table 5.5. The best-

known result is the terminal result obtained by GRASP or LRGTS for each respective

instance. The BKR are available at the same website as above. The gap is calculated by

Total Cost−BKR
BKR

× 100%.

As shown in Table 5.5, our proposed algorithm obtains the same results on the first four

instances. With an increase in the number of customers, a gap appears. For larger instances,

the running time increases rapidly. The performance of our designed method is sometimes

less acceptable; for three of 30 instances, we have a gap of over 10%. However, the median

gap is below 3%. Moreover, works such as Prins et al. (2007) and Ting and Chen (2013)

emphasize the performance of their algorithms on the standard LRP. The present research

concentrates on the effects of economies of scale. Therefore, in that regard, results show that

our method is acceptable to some extent.

Next, we experiment with those same instances of Prins et al. (2006a), but we now

add the variable cost. For the model with economies of scale, after some preliminary tests,

we set the coefficient of the power function to be γ = 55 in Eq. (3.1). For the one without

economies of scale, the operating cost is a constant $12 per pallet. Table 5.6 presents results

of this group of experiments. In the majority of instances, the two models open the same

number of DCs. Total cost and operating cost are both lower when there are economies of

scale, for all instances. In seven of those thirty instances, the model without economies of

scale uses one more DC than in the case of economies of scale. However, not all instances

open more DCs when there are no economies of scale; in the data set of Prins et al., the

fixed cost to open a facility is quite high. That fixed cost turns out to be much greater than
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n m W BKR Total Cost CPU(s) Gap(%)
20 5 70 54,793 54,793 17.29 0.00
20 5 150 39,104 39,104 17.35 0.00
20 5 70 48,908 48,908 16.98 0.00
20 5 150 37,542 37,542 17.57 0.00
50 5 70 90,111 93,188 33.41 3.41
50 5 150 63,242 65,606 30.99 3.74
50 5 70 88,298 90,886 28.08 2.93
50 5 150 67,340 70,847 27.64 5.20
50 5 70 84,055 85,081 32.01 1.22
50 5 150 51,822 52,979 35.23 2.23
50 5 70 86,203 88,530 37.65 2.69
50 5 150 61,830 62,690 34.08 1.39
100 5 70 275,993 280,527 200.70 1.64
100 5 150 214,392 217,588 192.87 1.49
100 5 70 194,598 200,470 210.24 3.01
100 5 150 157,173 159,550 181.55 1.51
100 5 70 200,246 204,322 203.91 2.03
100 5 150 152,586 155,509 185.34 1.92
100 10 70 290,429 311,771 181.08 7.34
100 10 150 234,641 262,322 168.70 11.79
100 10 70 244,265 255,008 178.02 4.40
100 10 150 203,988 210,535 160.23 3.21
100 10 70 253,344 271,946 192.61 7.34
100 10 150 204,597 216,173 179.77 5.66
200 10 70 479,425 491,926 1237.09 2.61
200 10 150 378,773 416,753 1101.84 10.03
200 10 70 450,468 500,571 1198.05 11.12
200 10 150 374,435 378,970 998.76 1.21
200 10 70 472,898 500,004 1201.78 5.73
200 10 150 364,178 376,850 1022.23 3.48

Table 5.5: Results for the instances of Prins et al. (2006a).

No DC operating cost, hence no economies of scale
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any savings in transportation cost. Figures 5.4 and 5.5 show the solutions and trends of in

the objective function for the models without and with economies of scale, for an instance

of Prins et al. (2006a) with n=50, m=5 and W=150. (See the bolded row in Table 5.6. )
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Figure 5.4: Results for n=50, m=5, and W=150, with variable cost, but no economies of
scale (See Table 5.6)
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Figure 5.5: Results for n=50, m=5, and W=150, with economies of scale (See Table 5.6)
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5.3 Influence of Economies of Scale

In the previous experiments, when we compared the models with a constant variable cost

per unit to those with economies of scale, we found that economies of scale have a positive

impact on the operating costs and on total costs. Also, fewer DCs were generally used when

economies of scale exist. To better understand the influence of economies of scale and the

effect of changes in parameters, we now test some additional cases.

5.3.1 Impact of Exponent δ
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Figure 5.6: Three variable cost functions with differing economies of scale

δ = 1/2, 2/3 or 3/4 in Eq. (3.1)

To present the effect of the economy-of-scale function on the operating costs and total

costs, we test six instances from the data sets of Barreto (2004) and of Prins et al. (2006a).
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To better understand the influence of the change in the exponent δ, we choose similar-size

instances from these two data sets and compare the results. In the previous section, we used

δ = 2/3 in Eq. (3.1) for all experiments with either data set (Tables 5.4 and 5.6). Here, we

test three values for this exponent: 1/2, 2/3 and 3/4.

n m Instance W δ Operating cost Total cost %
50 5 Barreto 160 1/2 395 990 39.9

2/3 1,064 1,657 64.2
3/4 1,750 2,340 74.8

50 5 Prins et al. 70 1/2 2,620 94,118 2.8
2/3 6,585 98,082 6.7
3/4 10,436 75,942 10.2

50 5 Prins et al. 150 1/2 2,189 68,660 3.2
2/3 5,756 72,275 7.9
3/4 9,430 68,660 12.4

100 10 Barreto 200 1/2 565 1550 36.2
2/3 1,625 2,559 63.5
3/4 2,810 3,713 75.7

100 10 Prins et al. 70 1/2 3,901 303,790 1.3
2/3 10,929 310,816 3.5
3/4 18,797 318,450 5.9

100 10 Prins et al. 150 1/2 3,837 240,421 1.6
2/3 10,896 247,428 4.4
3/4 18,102 254,651 7.1

Table 5.7: Impact of exponent δ on economies of scale

In Table 5.7, % in the last column indicates the percentage of total cost contributed by

operating cost. We see that with an increase in δ, the operating cost and the percentage of

operating cost in the total cost increase for all instances. As expected, the larger the δ, the

less the effect of economies of scale, as shown in Figure 5.6. Note that for instance of the

same size, operating cost represents a much larger percentage of the total cost in the data

set of Barreto (2004). That is because the fixed cost of opening a depot is much lower there
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than in the instances of Prins et al. (2006a). Also, in the latter instances, the transportation

cost is calculated as the distance multiplied by 100, plus the fixed cost of 1000 to use a

vehicle. (Recall that in the instance of Barreto, there is no fixed cost to use a vehicle; the

transportation cost is the distance multiply by 1.)

In conclusion, with other parameters remaining the same, the percentage of operating

cost in the total cost is an increasing function of δ. The economies of scale thus contribute

the greatest cost savings for a smaller value of δ. A reduced value of δ could be achieved,

e.g. by an improvement of technology employed in the operation of a DC.

5.3.2 Tradeoff Between Operating Cost and Transportation Cost

In previous sections, we noticed that, when economies of scale are present, fewer DCs

are often opened; customers may be assigned to a DC that is not the nearest, but which

has lower unit operating cost. In other words, the total fixed cost plus DC variable cost is

lowered, but the transportation cost is increased. Therefore, there is a tradeoff between the

costs of a DC and the transportation cost. To better understand this situation, we run some

additional experiments.

We again test the instances of Barreto (2004) and Prins et al. (2006a). In order to an-

alyze the tradeoff, we make the total cost of certain instances equal (within 3% deviation).

To achieve the approximate equality of total cost, particular cost parameters are changed.

That is done in three ways for each data set, referred to as types a, b, and c for instances

of Barreto (2004), and types d, e, and f for those of Prins et al. (2006a). Tables 5.9 and

5.10 give a summary of changes of those three types for each data set. “%” in all Tables
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5.9, 5.10 and 5.12 indicates the percent difference in transportation cost (increase in the

transportation costs between when there are economies of scale, and when those economies

are absent), relative to the total costs without economies of scale.

Type Description Results

a Add a fixed cost per vehicle to the original data set of Barreto (2004). Table 5.9

b

Based on the original parameters, double the fixed cost to open a DC,

and increase the unit transportation cost. The unit transportation cost is

doubled for cases without economies of scale, and multiplied by a factor

in the range [2.4, 3.6] when economies of scale are present.

Table 5.10

c

For each instance of Min92, the change in parameters is a combination

of types a and b. Add a fixed cost of using a vehicle, and increase the

unit transportation cost.

Tables 5.9 and 5.10

Table 5.8: Cost-parameter changes, Type a, b, c based on instances of Barreto (2004)

For type b, the multiplicative factor is chosen, for each instance, to make the respective

total costs approximately equal.

Results for types a and b are respectively shown in Tables 5.9 and 5.10. (Note that type

c in those tables strictly concerns the four instances of Min 92. Note also that Tables 5.9,

5.10 omit the two instances of Daskin95 that are contained in Table 5.4.)

For type a (Table 5.9), we first refer to the results of previous experiments presented

in Table 5.4. There, we found that to achieve similar total cost, we could add a fixed cost

per vehicle, or increase the unit transportation cost for the cases having economies of scale.

However, if we only increase the coefficient of transportation cost, that could influence the
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effect of economies of scale by opening more DCs than in the regular cases. We thus add

a fixed cost of using vehicles for all instances. (For both instances of Min 92 in Table 5.9,

type c, we also increase the unit transportation cost.) The preceding fixed costs are in the

interval [20,1000]. Every instance uses a distinct coefficient because there are differences in

all types of costs among each instance; sometimes those original costs differ greatly.

For each respective instance of type b (Table 5.10), we change some parameters to

equalize the total costs of those instances in the given row. To be specific, we double the

fixed cost of opening DCs. We also use $2/km as the the coefficient of transportation for the

cases without economies of scale, and between $2.40/km and $3.60/km as the transporta-

tion cost when economies of scale are present. Now consider the two instances of type c in

Table 5.10. For the first instance of Min92 [(n,m) = (27,5)], we made the preceding changes

plus one more, a fixed cost of $1200 per vehicle. That fixed vehicle cost is included in the

transportation cost for this instance, but not for the other [(n,m) = (134,8)]. It turns out

the demand per customer is much higher in that first instance. The particular parameters

used by Min et al. imply that equality of total cost cannot be achieved without the fixed

cost per vehicle. However, equality of total cost is attainable without a fixed vehicle cost,

when (n,m) = (134,8), the second instance of Min et al.

According to Tables 5.9 and 5.10, there is no distinct regularity in the change of per-

centage. The reason is that the parameters differ in each instance. And since the number

of opened DCs changes, the total fixed cost of those DCs will also change, contributing

to the difference in percentage in the final column. Nevertheless, in general, we find that

with the increase in the number of customers, the difference in transportation cost goes

up. For example, for the instance with 50 customers in Table 5.9, about 9% of the to-
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tal cost (without economies of scale) can be saved with the presence of those economies

of scale. That amount could be spent on additional transportation cost, to make up for

the effect of opening fewer DCs. If the number of customers or the total demand of those

customers is very large (instance Min 92 with m = 5, n = 27), the economies of scale save

even more on the operating cost. As a result, the difference in total cost between the case

without and with economies of scale is greater. And the percentage of the total cost that can

be re-distributed to transportation becomes large, on average 38% in that instance of Min92.

Type Description Results

d
Same as the data in Table 5.6. Only add the variable cost to the

original data set of Prins et al.

Table 5.12

e
Based on the original parameters in Table 5.6, increase the fixed

cost of using a vehicle.

Table 5.12

f

For one instance when (n,m) = (50, 5), and four instances

when (n,m) = (200, 10), increase the fixed cost of using a vehicle

and raise the unit transportation cost.

Tables 5.12

Table 5.11: Description of Type d, e, f based on instances of Prins et al. (2006a)

For the instances of Prins et al. (2006a), we employ similar measures as in those of

Barreto (2004). For type d, because the problem size is small (n = 20), we employ the same

data as in Table 5.6. The only difference compared to the original data set of Prins et al.

is that we add a variable cost. With respect to type e, we increase the fixed cost of using a

vehicle. As for type f , we also raise the unit transportation cost in addition to increasing the
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fixed cost of using a vehicle. Thus, the type f changes include the type e changes, relative

to the original data set of Prins et al.(2006a). Note that types d, e, f all add an operating

cost to that original data set.

Table 5.12 presents the results for those types. Instances in our tables follow the same

sequence as in Prins et al. Because we change nothing for type d and the numbers of opened

DCs are the same for cases with and without economies of scale, the percent difference in

transportation cost is very small, almost equal to 0. For type f , the five instances have the

same situation: the cases having no economies of scale open one more DC than those when

economies of scale are present. Therefore, to equalize the total cost, more money (savings

of fixed cost of opening DCs) can be spent on transportation. And the type-f percentages

are the largest among all instances, varying from 9.01 to 15.90. As for the instances of

type e, the percentages are in between; on average, an additional 2.78% of total cost can

be distributed to transportation when economies of scale are present, without increasing the

total cost. For the instances of Prins et al., since the fixed cost of opening a DC is very high,

the preceding tradeoffs are therefore not obvious. We would have to increase the other costs

quite significantly, to cancel the influence of such a high fixed cost.

In conclusion, the presence of economies of scale will affect the company’s decisions.

On one hand, operating cost can be saved. On the other hand, even though we need to

spend more on transportation, the total cost will not increase. That is, suppose greater

economies of scale can be achieved in DC operation. Those additional savings will permit

greater expenditure on transportation, without increasing the total cost.
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Chapter 6

Conclusions and Future Work

In this thesis, a location-routing problem with variable cost of DCs is discussed. The

problem minimizes the total cost, including fixed cost of opening DCs, operating cost which

changes with the throughput, and transportation cost. We present two objective functions.

Both consider operating cost of DCs, but one of them accounts for DC economies of scale.

We represent those concave costs by employing a power function γXδ, where X denotes the

throughput of the facility.

Since the LRP combines two NP-hard problems (facility location problem and vehicle

routing problem), the majority of papers use heuristics. We therefore consider two meta-

heuristic methods: simulated annealing embedded within a genetic algorithm, and a genetic

algorithm with ant colony optimization. Through preliminary tests, we decide to use the

genetic algorithm with ant colony optimization for further experiments in this thesis. We

first take away the variable cost part to compare the performance with other published

methods. Employing publicly-available data sets, the results show that our proposed method

is acceptable. The median gaps, relative to best known results, are less than 3% in Tables
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5.3 and 5.5.

Then, with those data sets, we compare the cases with variable cost and no economies

of scale, to those when economies of scale are present. We find that fewer DCs are opened

and total costs are lower for the cases with economies of scale. Moreover, we analyze the

influence of the exponent δ in the power function representing the economies of scale. We

first test the how the value of power δ affects the total cost. We test three values of δ,

and give mathematical proof, both showing that with an increase in δ, the operating cost

increases, and there is less of an impact of economies of scale. Next, we analyze the tradeoff

between operating cost and transportation cost. From previous experiments, we notice that

when economies of scale are present, fewer DCs are opened, hence the distances traveled are

greater. Scale of economies yield total costs that are lower, though the transportation costs

are larger, and the required number of vehicles will not decrease.

By changing some parameters, we make the total cost of certain instances approximately

equal to exhibit the tradeoff. We find that, without increasing the total cost, the savings

achieved by economies of scale permit additional expenditure on transportation. That may

enable the DCs to furnish enhanced service to retailers.

To the best of our knowledge, only one published paper on LRP (Melechovsky et al.

2005) considers concave cost at DCs or warehouses. And their focus is on demonstrating

the performance of the hybrid algorithm they proposed. They do not discuss the influence

of the concave costs. We are perhaps the first to carefully analyze the effects of economies

of scale in the LRP. Also, the published data sets with which most authors experimented do

not include the operating cost of DCs or warehouses. We add those variable cost parameters

to the original data sets. Taking account the operating costs helps to achieve solutions closer
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to reality.

A number of research directions can be explored in the future. First, for ongoing

research, variable cost can be considered as a part of the objective function for LRP. Even

if the problem had no need to discuss economies of scale, adding the operating cost of DCs

or warehouses has practical value.

Second, the model can be extended. Supply sources, i.e. plants, can be added to the

current model. Even more, economies of scale can be taken into account for the two-echelon

LRP, which considers the product from flow plants to DCs to customers, and routes are

developed at both levels. That is, we can introduce variable cost into the two-echelon LRP

to simulate real-world situations in the distribution system of a supply chain.

In addition, solution methods can be improved. Although results show that our proposed

method may be acceptable, the gap compared to the best known result (BKR) is not small for

some particular instances. Currently, the majority of research employs heuristic approaches,

even on the standard LRP. Because of the lack of a lower bound, we can only compare

with the BKR. Thus, new methods can be developed. Exact methods, based on Lagrangian

relaxation or a branch-and-price algorithm, would be helpful.
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Appendix A

Impact of Economies of Scale on

the Number of Opened DCs

Theorem. Opening more DCs will weaken the effect of economies of scale. In other

words, the operating cost will be larger. The cost function we employ in Eq.(3.1) is:

f(x) = γ(x)δ(γ > 1, 0 < δ < 1)

Assumption. Assuming the total demand is X units. The capacity of each DC will

be respected.

We start with a specific example: we compare the cost of opening two DCs with

opening one DC. When open two DCs, one serves A ∗ X units, and the other one

serves (1−A)X units (0 < A < 1). That is, the operating cost when two DCs opened
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is f1(x) = γ(AX)δ + γ[(1− A)X]δ, that of the one DC opened is f2(x) = γ(X)δ.

Proof.f1(X)− f2(X) = γ(AX)δ + γ[(1− A)X]δ − γ(X)δ = γ(X)δ[Aδ + (1− A)δ − 1]

Define g(A) = f1(X)− f2(X) for fixed X.

Take the derivative with respect of A : g′(A) = γ(X)δ[δAδ−1 − δ(1− A)δ−1]

Setting g′(A) = 0, we obtain Aδ−1 = (1− A)δ−1

Since δ < 1, we must have A = 1− A =⇒ A = 0.5.

Take the second derivative : g′′(A) = g′′(A) = γ(X)δ[δ(δ − 1)][Aδ−2 + δ(1− A)δ−2]

Since 0 < δ < 1, 0 < 1− δ < 1,

γ(X)δ > 0, [δ(δ − 1)] < 0, [Aδ−2 + δ(1− A)δ−2] > 0

Thus, g′′(A) < 0forA = 0.5.AndA = 0.5 is a global maximum.

=⇒ g(A)min = g(1) = g(0) = 1

=⇒ g(A) > 1when0 < A < 1.

Therefore, one DC will be opened for a lower operating cost.

Based on the proof of the specific case, we assume open n DCs cost more

than open (n-1) DCs. We will prove open (n+1) DCs cost more than

open n DCs.

That is, when open n DCs, the cost function is: fn(x) = γ(A1X)δ + γ(A2)X
δ + ... +

γ(AnX)δ.(A1 + A2 + .... + An = 1). When open n + 1 DCs, the cost is: fn+1(x) =
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γ(B1X)δ + γ(B2)X
δ + ...+ γ(BnX)δ + γ(Bn+1X)δ.(B1 +B2 + ....+Bn +Bn+1 = 1).

Proof. We want to prove fn+1(x) ≥ fn(x)

That is, we need show : Bδ
1 +Bδ

2 + ...+Bδ
n +Bδ

n+1 ≥ Aδ1 + Aδ2 + ...+ Aδn

Since 0 < δ < 1,
∑
n+1

Bi = 1, combine any two items, we must have Bδ
1 +Bδ

i ≥ (B1 +Bi)
δ

Thus, Bδ
1 +Bδ

2 + ...+Bδ
n +Bδ

n+1 ≥ (B1 +Bi)
δ +Bδ

2 + ...+Bδ
n+1

=⇒ Bδ
1 +Bδ

2 + ...+Bδ
n +Bδ

n+1 ≥ Aδ1 + Aδ2 + ...+ Aδn

Therefore, when economies of scale are present, fewer DCs will be opened to reach a

lower operating cost.
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