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Abstract

We investigate QKD protocols with two-way classical post-processing that are based on the well-known six-
state and BB84 signal states. In these QKD protocols, the source (Alice) sends quantum signals to the receiver
(Bob), who measures them, leaving only classical data on both sides. Our goal is to find the highest value of
the quantum bit-error rate (QBER) Q for which two-way classical post-processing protocols on the data can
distill secret keys. Using the BB84 signal states, such protocols currently exist for Q < 1

5 . On the other hand,
for Q ≥ 1

4 no such protocol can exist as the observed data is compatible with an intercept-resend attack. This
leaves the interesting question of whether successful two-way protocols exist in the interval 1

5 ≤ Q < 1
4 . For

the six-state signal states, the corresponding interval is known to be 5−
√

5
10 ≤ Q < 1

3 .

We search for two-way protocols because it turns out that within these intervals Alice and Bob’s corre-
lations are symmetrically extendable, meaning that Bob and the eavesdropper (Eve) are completely indistin-
guishable from Alice’s point of view, making any one-way Alice-to-Bob post-processing protocol insecure. A
two-way protocol might be able to break the symmetry between Bob and Eve, and it must do so in order to
distill a secret key because any two-way protocol will necessarily terminate with a one-way communication
step, at which point the symmetric extendability of Alice and Bob’s updated correlations must be checked
again.

We first show that the search for two-way protocols breaking the symmetric extendability of Alice and
Bob’s correlations can be restricted to a search over post-selection protocols if all we care about is whether
secret key can at all be distilled and not about the rate of distillation. We then provide strong analytical and
numerical evidence to suggest that no two-way classical post-processing protocol exists within the gap when
the six-state signal states are used.

Under quantum entanglement distillation protocols, it is known that secret key can be distilled right up to
the intercept-resend bounds of 1

4 and 1
3 for the BB84 and six-state signal states, respectively. We therefore want

to know whether classical post-processing protocols are just as good at distilling secret keys as quantum ones.
Our results appear to indicate that they are not.
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Chapter 1

Introduction

The amount of secret key that can be distilled from a quantum key distribution (QKD) protocol is a function
of the amount of noise in the channel linking the two parties, Alice and Bob, wishing to establish the secret
key in the presence of an eavesdropper, Eve. The amount of noise, as well as the statistics of the resulting
measurements performed by Alice and Bob on their physical systems, can be described by a quantum state ρAB.
QKD protocols based on the well-known BB84 [BB84] and six-state [Bru98; BG99] signal states, for example,
proceed with Alice sending signals through a quantum channel to Bob, who measures them, leaving both
Alice and Bob with classical data. They sacrifice some of their data to estimate a state ρAB that is consistent
with their data. They then decide whether or not the state is too noisy to proceed to distilling a secret key
using some classical post-processing protocols, typically error-correction and privacy amplification.

It was proved in Moroder et al. [MCL06] that if ρAB is symmetrically extendable to a copy of B then it
cannot be used to distill a secret key by one-way classical post-processing protocols involving communication
from Alice to Bob. The state ρAB is called symmetrically extendable to a copy of B if there exists a tripartite
state ρABB′ such that its marginal density matrices satisfy ρAB′ = ρAB. The system B′ is effectively a copy
of B, which means that if Alice tries to establish a secret key with Bob by communicating to him, and the
system B′ is in Eve’s possession, then Eve will be just as knowledgeable as Bob is about the key Alice is trying
to create, rendering it insecure. Symmetric extendability of ρAB, therefore, places a fundamental limit on
the noise tolerance of QKD protocols under one-way classical post-processing. (Error-correction and privacy
amplification, for example, are one-way classical post-processing protocols.) For QKD protocols using the
BB84 and six-state signal states in which the noise is characterized by a single quantity called the quantum
bit-error rate (QBER) Q, it is known from [MCL06] that the corresponding state ρAB

Q corresponding to Alice and

Bob’s correlations is symmetrically extendable for all Q ≥ 2−
√

2
4 ≈ 14.6% when the BB84 signal states are used

and for all Q ≥ 1
6 ≈ 16.6% when the six-state signal states are used.

Gottesman and Lo [GL03], however, established that Alice and Bob can still create a secret key beyond
these values if they execute a two-way post-processing protocol, and that they can do so up to Q = 18.9%
with the BB84 signal states and up to Q = 26.4% with the six-state signal states. Chau [Cha02] improved the
Gottesman-Lo protocol to increase the threshold up to the current values of 20% for the BB84 signal states
and 5−

√
5

10 ≈ 27.6% for the six-state signal states; see Figure 1.1. Later, Acin et al. [Ací+06] and Bae and
Acin [BA07] proved that secret key cannot be distilled beyond the Chau bounds using the two-way advantage
distillation protocol [Mau93] before error-correction and privacy amplification since in such cases there is an
eavesdropping attack that compromises the security of the key. Advantage distillation is a purely classical
post-selection protocol acting on blocks of data defined as follows: for each block of Alice and Bob’s data of

1



Chapter 1: Introduction

some pre-defined size,

1. Alice checks if her block of data is one of the strings 00 · · · 00 or 11 · · · 11, telling Bob “yes” or “no” (but
not the string she has);

2. Bob similarly checks if his data is one of the strings 00 · · · 00 or 11 · · · 11, telling Alice “yes” or “no”.

If both Alice and Bob announce “yes”, then they keep the first bit of the string they obtained and move to
the next block; if not, then they both discard the entire block and move the next block. Note that advantage
distillation is a two-way protocol. Its goal, intuitively, is to reduce Eve’s information about Alice and Bob’s
data by only retaining data on which Alice and Bob are highly correlated and discarding the rest. Myhr et
al. [Myh+09] showed that the current bounds obtained from advantage distillation correspond precisely to the
symmetric extendability bounds of the effective quantum state after it. In other words, advantage distillation is
able to “break” the symmetric extendability of Alice and Bob’s correlations beyond the one-way upper bounds
up to the current bounds, but not beyond them.

Now, it is known that neither a one-way nor a two-way protocol can be used to distill a secret key when-
ever the channel linking Alice and Bob is entanglement-breaking [CLL04] (see also [AMG03; AG05]). This fact
is often stated as Eve performing an intercept-resend attack. As indicated in Figure 1.1 below, this means that
for the BB84 and six-state signal states secret key cannot be distilled beyond Q = 1

4 and Q = 1
3 , respectively.

This leaves the question of whether there exists a two-way classical post-processing protocol allowing secret
key to be distilled in the yellow interval 1

5 ≤ Q < 1
4 with the BB84 signal states and 5−

√
5

10 ≤ Q < 1
3 with the

six-state signal states. The goal of this thesis is to try to answer this question.

Q
Six-State

BB84

0 1
2

1
6

2−
√

2
4

1
3
1
4

5−
√

5
10
1
5

Two-way advantage
distillation protocol

No one-way classical
protocol exists

Key Distillable Key Not Distillable

Intercept-resend attack

?

Figure 1.1: Key distillability by classical post-processing as a function of the QBER Q for QKD
with the BB84 and six-state signal states. The ability to distill secret key in the yellow region is
the subject of this thesis.

The fact that symmetric extendability prevents secret key distillation by one-way classical post-processing
is crucial in the quest for a two-way protocol since any two-way protocol must eventually terminate with a
one-way communication step. Since the state ρAB

Q is initially symmetrically extendable for all Q in the yellow
region, any successful two-way post-processing protocol must “break” the symmetric extendability of ρAB

Q
before the final round of one-way communication.

The yellow region of Figure 1.1 currently represents a gap between classical post-processing protocols (act-
ing on data arising from measurement of quantum states) and quantum post-processing protocols operating
on the quantum states themselves. It is known that as long as the state ρAB is entangled, Alice and Bob can
execute the (quantum) entanglement distillation protocol to distill a secret key. (See [Ben+96b; Ben+96a] for

2



Chapter 1: Introduction

a full description of entanglement distillation and [BB85; Deu+96] for a related protocol called quantum pri-
vacy amplification and its application to QKD.) This means that, using the BB84 and six-state signal states,
respectively, secret key can be distilled for all 0 ≤ Q < 1

4 and 0 ≤ Q < 1
3 . If there does exist a two-way clas-

sical post-processing protocol that can be used to distill a key within the gap, then we will have that classical
protocols are just as good as quantum protocols for QKD, while if there does not exist a successful two-way
protocol within the gap then there is an advantage to performing quantum post-processing. In particular, the
latter would imply the existence of “bound information”—the classical analogue of bound entanglement1—
which is classical information that contains secret correlations but from which no secret key can be distilled;
see [GW00; GRW01; GRW02; CP02; RW03; AG05] for more information. A previous comparison between clas-
sical and quantum post-processing protocols has been done in [GW99; Bru+03] for a more restricted class of
eavesdropping attacks than those considered here2 in which it was found that classical and quantum protocols
do equally well for distilling secret keys.

This thesis provides strong evidence, consisting of analytical and numerical results, to believe that there
does not exist a two-way post-processing protocol that can be used to distill a secret key within the gap. We
do this by first reducing the search for two-way protocols that might break the symmetric extendability of ρAB

Q
to protocols involving only one round of independent post-selection by Alice and Bob on a block of their data.
We then analyze the symmetric extendability of the post-selected states both analytically and numerically
over many classes of post-selection. This leads to updated threshold QBERs beyond which secret key cannot
be distilled. We show that for the post-selection classes tested none of these updated thresholds are inside the
gap.

1.1 Outline of the Thesis & Summary of Results

Chapter 2: Background

We start with a brief review of the mathematics of linear operators on finite-dimensional Hilbert spaces and
maps between them, particularly completely-positive maps and channels. We then proceed to a brief review
of quantum states. The end of the chapter is devoted to a general review of QKD, with particular emphasis
on protocols using the six-state and BB84 signal states. For these two types of protocols, we use symmetric
extendability to prove that one-way classical post-processing protocols cannot be used to distill a secret key
for QBER beyond 1

6 with the six-state signal states and beyond 2−
√

2
4 with the BB84 signal states.

Chapter 3: Symmetrically Extendable States

In this chapter, we define the notion of symmetric extendability of a bipartite quantum state and formulate the
existence of symmetrically extendable states as a semi-definite programming (SDP) problem. We also consider
the problem of explicitly constructing symmetric extensions of symmetrically extendable states, providing one
simple possible method of constructing a symmetric extension.

1Bound entangled states are entangled states that have zero distillable entanglement. See [Hor97; HHH98], where they were first
discussed.

2Those works considered only individual eavesdropping attacks, while the results in this thesis will hold for completely general
eavesdropping attacks. See §2.4.1 for details.

3



Chapter 1: Introduction

Chapter 4: Two-Way Protocols and Breaking Symmetric Extendability

In this chapter, we begin our search for two-way post-processing protocols that can break the symmetric ex-
tendability of Alice and Bob’s correlations for QBER within the gap. Since we are only concerned with whether
or not key can be distilled within the gap and not with the rate of key distillation, we manage to restrict our
search of protocols to those in which Alice and Bob merely perform an independent post-selection on blocks of
their data according to some classical error-correcting codes. We define the effective quantum state after this
post-selection, and use properties of these states to reduce the search of protocols even further by identifying
codes that give rise to the same effective state. By doing a numerical search, we are able to determine all the
inequivalent codes for small code sizes and block lengths.

At the end of the chapter, we look at some important ways of combining codes to obtain new ones and
examine the effect such combining has on the effective quantum states.

Chapter 5: Repetition Codes

In this chapter, we examine the symmetric extendability of the effective quantum states arising after post-
selection on repetition codes. The protocol defined by this post-selection is the advantage distillation protocol
that currently provides the best bounds on key distillability with two-way post-processing for both the six-state
and BB84 signal states. We use the result in [Che+14] to re-derive these bounds by analytically determining
the symmetric extendability of the effective states. We also use the special method of Chapter 3 to provide an
explicit construction of a symmetric extension of the states within the entire symmetric extendability region.

Chapter 6: Simplex Codes

The repetition codes generalize naturally to simplex codes, which are codes in which the Hamming distance
between any two distinct codewords is a constant. In this chapter, we examine the symmetric extendability
of the effective states arising after post-selection on these codes, using the result of [Ran09] to prove that
they cannot do better than repetition codes, hence proving that they cannot be used to break the symmetric
extendability of the original state within the gap. As in the previous chapter, we use the special method of
Chapter 3 to provide an explicit construction of a symmetric extension of the effective state within the entire
symmetric extendability region.

Chapter 7: Testing the Special Map

In this chapter, we show the results of applying the special method of constructing symmetric extensions
defined in Chapter 3 to over 540,000 randomly-selected codes of varying sizes and block lengths. All of these
tested codes are found to be symmetrically extendable within the gap. We indicate all those codes for which the
corresponding states are symmetrically extendable but whose symmetric extension could not be constructed
using the special method. In particular, we discover that there exist symmetrically extendable states arising
from post-selection on (linear) Reed-Muller codes whose symmetric extension cannot be constructed using the
special method.

The results of this chapter give very strong evidence that there does not exist a two-way classical post-
processing protocol that can distill a secret key within the gap.
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Chapter 8: Numerical Estimation of Thresholds

In this final chapter, we show the results of our numerical estimation of the threshold errors for the inequiv-
alent codes determined in Chapter 4. These threshold errors have distinctive trends as functions of the code
size and block length, all of which strengthen our belief that two-way post-processing protocols distilling a
secret key within the gap do not exist.
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Chapter 2

Background

We first review some background material needed for the main part of the thesis. The first section on linear
operators will review the definitions needed and will establish notational conventions. After brief reviews of
quantum channels and quantum states, we will review QKD with the six-state and BB84 signal states and will
derive the QBER upper bounds for one-way classical post-processing and for intercept-resend attacks.

2.1 Linear Operators

The main reference for this section is [Wat16]. All details pertaining to definitions and theorems, and proofs of
theorems, may be found there.

Throughout this thesis, we consider linear operators on finite-dimensional complex vector spaces en-
dowed with the Euclidean inner product, called complex Euclidean spaces for short. We will use H,K, etc. to
refer to such spaces and dH, dK, etc. to refer to their dimension. All such spaces are isomorphic to the Hilbert
space Cd, where d is the dimension, so that the Euclidean inner product can be written as

〈ψ|φ〉 =
d

∑
i=1

ψiφi ∀ ψ, φ ∈ Cd, (2.1)

where ψi refers to the complex conjugate of the components ψi ∈ C of ψ. When dealing with tensor-product
spaces, we will sometimes use subscripts to distinguish the tensor factors, for example, HA ⊗ HB, which will
sometimes be abbreviated as HAB. In such cases, we will quite often refer to the constituent spaces simply by
their subscripts and write, for example, |ψ〉AB or |ψ〉AB, to indicate that |ψ〉 ∈ HA ⊗HB. The set {|i〉A}dA−1

i=0 ⊂
HA satisfying 〈i|j〉 = δi,j for all 0 ≤ i, j ≤ dA − 1 will be called the standard (orthonormal) basis of HA. For tensor
product spaces, we will use the abbreviation |i, j〉AB ≡ |i〉A ⊗ |j〉B for the elements of the standard basis.

The set of all linear operators between H and K is denoted L(H,K). We will use the abbreviation L(H) ≡
L(H,H). For linear operators X ∈ L(HA ⊗ HB), we will sometimes write XAB or XAB, that is, with the tensor
factor labels as a superscript or a subscript, if the space on which the operator acts is important. Every operator
X ∈ L(H,K) can be associated with a matrix whose entry in row i and column j, denoted Xi

j
, is defined as

Xi
j
= 〈i|X |j〉 ∀ 0 ≤ i ≤ dK − 1, 0 ≤ j ≤ dH − 1.

6



Chapter 2: Background

L(H,K) is spanned by {|i〉 〈j| : 0 ≤ i ≤ dK − 1, 0 ≤ j ≤ dH − 1}, so for any A ∈ L(H,K) we will very often
write

X =
dK−1

∑
i=0

dH−1

∑
j=0

Xi
j
|i〉 〈j| .

For every X ∈ L(H,K):

1. X ∈ L(H,K) is called the entry-wise complex conjugate of A and is defined as

(X)i
j
= Xi

j
∀ 0 ≤ i ≤ dK − 1, 0 ≤ j ≤ dH − 1;

2. XT ∈ L(K,H) is called the transpose of X and is defined as

(XT)i
j
= Xj

i
∀ 0 ≤ i ≤ dH − 1, 0 ≤ j ≤ dK − 1;

3. X† ∈ L(K,H) is called the adjoint, Hermitian conjugate, or conjugate transpose of A and is defined as

X† = XT = XT.

Definition 2.1 Classes of Linear Operators

For any complex Euclidean space H, we define the following subsets of L(H):

1. Normal Operators: {X ∈ L(H) : XX† = X†X}.
2. Hermitian Operators: Herm(H) = {X ∈ L(H) : X† = X}.
3. Positive Semi-Definite Operators: Pos(H) = {X ∈ L(H) : X = Y†Y, Y ∈ L(H)}.
4. Density Operators: D(H) = {P ∈ Pos(H) : Tr(P) = 1}.
5. Isometric Operators: U(H,K) = {V ∈ L(H,K) : V†V = 1H}. This includes the set

U(H) := U(H,H) of all unitary operators on H, which are invertible and satisfy UU† = 1H

in addition to U†U = 1H.

Definition 2.2 The vec Map

For any H,K, the map vec : L(K,H)→ H⊗ K is defined by

vec (|i〉 〈j|) = |i〉 ⊗ |j〉 ∀ 0 ≤ i ≤ dH − 1, 0 ≤ j ≤ dK − 1. (2.2)

The map vec is an isomorphism between the vector spaces L(K,H) and H⊗K and it will be used repeatedly
throughout the thesis. The following identity will be particularly useful:

TrK(vec(X)vec(Y)†) = XY† ∀ X, Y ∈ L(K,H). (2.3)

7
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Theorem 2.3 Spectral Theorem

For any normal operator X ∈ L(H) there exists a unique collection of complex numbers
λ0, . . . , λdH−1 ∈ C and an orthonormal basis {|v0〉 , |v2〉 , . . . ,

∣∣vdH−1
〉
} of H such that

X =
dH−1

∑
k=0

λk |vk〉 〈vk| . (2.4)

The numbers λ0, . . . , λdH−1 are called the eigenvalues of X. They are defined by the condition X |vk〉 =
λk |vk〉 for all 0 ≤ k ≤ dH − 1, where {|vk〉}dH−1

k=0 are the associated eigenvectors of X. The set of all eigenvalues
(in which each eigenvalue may appear more than once according to its multiplicity) is called the spectrum of
X, denoted spec(X). The number of non-zero elements in spec(X) is called the rank of X.

The trace of X, defined as the sum Tr(X) = ∑dH−1
i=0 Xi

i
, can be written as Tr(X) = ∑λ∈spec(X) λ. The determi-

nant of X can be written as det(X) = ∏λ∈spec(X) λ.

The spectral theorem can be used to prove the following important fact that will be used repeatedly
throughout the thesis.

Theorem 2.4

An operator P ∈ L(H) is positive semi-definite if and only if every eigenvalue of P is non-
negative.

For P ∈ Herm(H), we will write P ≥ 0 or 0 ≤ P to indicate that P is positive semi-definite. More generally,
for X, Y ∈ Herm(H), we will write X ≥ Y or Y ≤ X to indicate that X−Y ∈ Pos(H).

By definition, P ∈ Pos(H) if and only if P = B†B for some B ∈ L(H). In fact, for every P ∈ Pos(H) there
exists a unique R ∈ Pos(H) such that P = R2 [Bha07]. Such an operator R is called the square root of P and we
will write it as R =

√
P. Given the spectral decomposition

P =
dH−1

∑
k=0

λk |vk〉 〈vk|

of P, it holds that
√

P =
dH−1

∑
k=0

√
λk |vk〉 〈vk| . (2.5)

The set of linear maps Λ : L(H) → L(K) will be denoted T(H,K) and is sometimes called the set of
superoperators. We will use the abbreviation T(H) ≡ T(H,H).

8



Chapter 2: Background

Definition 2.5 Important Subsets of T(H,K)

For any two complex Euclidean spaces H,K, we define the following subsets of T(H,K).

1. Positive maps: Maps for which Λ(P) ∈ Pos(K) for all P ∈ Pos(H).

2. Completely-positive maps: Maps for which 1L(Cd) ⊗Λ is positive for all d ≥ 1. The set of all
completely-positive maps is denoted CP(H,K).

3. Trace-preserving maps: Maps for which Tr(Λ(X)) = Tr(X) for all X ∈ L(H).

An important example of a map in T(HA ⊗HB,HB) is TrA, called the partial trace (over A). It is defined as

TrA = Tr⊗ 1L(HB), (2.6)

and it is the unique map satisfying the equation

TrA[X⊗Y] = Tr(X)Y ∀ X ∈ L(HA), Y ∈ L(HB).

The partial trace over B, denoted TrB, is defined analogously to TrA. The partial trace is trace-preserving, which
can be easily checked. It also happens to be completely-positive, though this is not obvious. For any operator
XAB ∈ L(HA ⊗HB), we will often write XA to mean TrB(XAB). Similarly, XB will refer to TrA(XAB).

Another important example, this time in T(HA ⊗ HB), is TA, called the partial transpose (on A), and it is
defined as

TA(X) = XTA ∀ X ∈ L(HA ⊗HB), (2.7)

where by definition
(XTA) i,j

k,`
= Xk,j

i,`
∀ 0 ≤ i, k ≤ dA − 1, 0 ≤ j, ` ≤ dB − 1. (2.8)

A similar definition holds for the partial transpose TB on B. The partial transpose is trace-preserving but not
completely-positive.

Definition 2.6 Choi Representation

The Choi representation of Λ ∈ T(HA,HB) is the operator J(Λ) ∈ L(HA ⊗HB) defined by

J(Λ) := (1L(HA) ⊗Λ)

(
dA−1

∑
k,k′=0

|k, k〉
〈
k′, k′

∣∣) =
dA−1

∑
k,k′=0

|k〉
〈
k′
∣∣⊗Λ(|k〉

〈
k′
∣∣). (2.9)

The Choi representation uniquely specifies the map, which means that any two maps Λ1 ∈ T(HA,HB) and
Λ2 ∈ T(HA,HB) are equal if and only if J(Λ1) = J(Λ2). As well, for Φ1 ∈ T(HA,HB) and Φ2 ∈ T(HB,HC), it
holds that

J(Φ2 ◦Φ1) = (1L(HA) ⊗Φ2)J(Φ1). (2.10)

An important fact that will be used throughout this thesis is the following.

Theorem 2.7 Completely-Positive Maps and the Choi Representation

A map Λ ∈ T(HA,HB) is completely-positive if and only if J(Λ) ∈ Pos(HA ⊗HB).

9
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This theorem can be used to establish that the partial trace is completely-positive while the partial trans-
pose is not completely-positive.

Now, J : T(HA,HB)→ L(HA⊗HB) is an isomorphism between T(HA,HB) and L(HA⊗HB) since the action
of Λ ∈ T(HA,HB) can be recovered from J(Λ) using

Λ(X) = TrA[(XT ⊗ 1B)J(Λ)] ∀ X ∈ L(HA). (2.11)

This means that, given any W ∈ L(HA⊗HB), we can define a map ΛW ∈ T(HA,HB), whose Choi representation
is W, by

ΛW(X) = TrA[(XT ⊗ 1B)W] ∀ X ∈ L(HA). (2.12)

This equation, along with Theorem 2.7, puts the set of positive semi-definite operators and the set of completely-
positive maps in one-to-one correspondence, meaning that each positive semi-definite operator has an associ-
ated completely-positive map defined by (2.12). This fact will be used repeatedly throughout the thesis.

Definition 2.8 Natural Representation

The natural representation of Λ ∈ T(HA,HB) is the operator K(Λ) ∈ L(HA ⊗ HA,HB ⊗ HB) de-
fined by

vec (Λ(X)) = K(Λ)vec(X) ∀ X ∈ L(HA). (2.13)

Like the Choi representation, the natural representation uniquely specifies the map. As well, for Φ1 ∈
T(HA,HB) and Φ2 ∈ T(HB,HC), it holds that

K(Φ1 ◦Φ2) = K(Φ1)K(Φ2). (2.14)

Definition 2.9 Shuffling Map

For any two complex Euclidean spaces H and K, define the map S : L(H⊗ K) → L(H⊗H,K⊗
K), called the shuffling map, as follows:

S(|k, `〉
〈
k′, `′

∣∣) = ∣∣`, `′
〉 〈

k, k′
∣∣ (2.15)

for all 0 ≤ k, k′ ≤ dH − 1 and all 0 ≤ `, `′ ≤ dK − 1.

It follows from the definition of the shuffling map that for all X ∈ L(H⊗ K)

(S(X))`,`′
k,k′

= X k,`
k′,`′

∀ 0 ≤ k, k′ ≤ dH − 1, 0 ≤ `, `′ ≤ dK − 1. (2.16)

The shuffling map is important because is allows us to convert between the Choi and natural representations
of maps in T(H,K), as the following proposition proves.

Proposition 2.10

For any Λ ∈ T(H,K), it holds that
K(Λ) = S(J(Λ)).
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PROOF: By writing

J(Λ) =
dH−1

∑
k,k′=0

dK−1

∑
`,`′=0

(J(Λ)) k,`
k′,`′
|k, `〉

〈
k′, `′

∣∣ ,

so that

Λ(|k〉
〈
k′
∣∣) = dK−1

∑
`,`′=0

(J(Λ)) k,`
k′,`′
|`〉
〈
`′
∣∣ ∀ 0 ≤ k, k′ ≤ dH − 1,

we have

S(J(Λ)) =
dH−1

∑
k,k′=0

dK−1

∑
`,`′=0

(J(Λ)) k,`
k′,`′

∣∣`, `′
〉 〈

k, k′
∣∣ .

Therefore, for all 0 ≤ i, i′ ≤ dH − 1,

S(J(Λ))vec(|i〉
〈
i′
∣∣) = S(J(Λ))

∣∣i, i′
〉
=

dK−1

∑
`,`′=0

(J(Λ)) i,`
i′,`′

∣∣`, `′
〉
= vec

(
Λ(|i〉

〈
i′
∣∣)) .

So S(J(Λ)) acts by definition as a natural representation of Λ. By uniqueness of natural representations, it is
the natural representation of Λ, that is, S(J(Λ)) = K(Λ). �

2.2 Quantum Channels

Definition 2.11 Quantum Channel

A quantum channel is a completely-positive and trace-preserving map in T(H,K) for some H,K.
The set of all quantum channels Φ ∈ T(H,K) is denoted C(H,K).

Quantum channels are viewed as representing the most general kind of evolution of a quantum system.
Evolution given by the Schrödinger equation, for example, corresponds to a unitary channel. The unitary
channels is a simple class of quantum channels defined as Φ(X) = UXU† for some unitary U ∈ U(H).

The following theorem provides three important facts about quantum channels.
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Theorem 2.12 Characterization of Quantum Channels

For a quantum channel Φ ∈ C(HA,HB), the following hold:

1. J(Φ) is positive semi-definite and TrB[J(Φ)] = 1A.

2. Φ has the operator-sum decomposition, called a Kraus decomposition or a Kraus representa-
tion of Φ,

Φ(X) =
r

∑
i=1

AiXA†
i ,

r

∑
i=1

A†
i Ai = 1A, (2.17)

where r ≥ rank(J(Φ)). The set {Ai}r
i=1 is called the Kraus operators of Φ.

3. Φ can be written in Stinespring form,

Φ(X) = TrE[VXV†],

where V : HA → HB ⊗HE is an isometry and dE ≥ rank(J(Φ)). V is sometimes called an
isometric extension, or purification, of Φ.

One possible set of Kraus operators for a channel Φ ∈ C(HA,HB) is the the set {Ai}rank(J(Φ))
i=1 defined by

Ai |k〉A =
√

λi(〈k| ⊗ 1B) |φi〉AB ∀ 0 ≤ k ≤ dA − 1,

where {λi}rank(J(Φ))
i=1 are the non-zero eigenvalues of J(Φ) and {|φi〉AB}rank(J(Φ))

i=1 are the corresponding (or-
thonormal) eigenvectors. With this set of Kraus operators, one possible isometric extension V of Φ is one in
which dE = rank(J(Φ)) and

V =
rank(J(Φ))

∑
i=1

Ai ⊗ |ei〉E ,

where {|ei〉E}rank(J(Φ))
i=1 is any orthonormal basis for HE.

In the characterization theorem above, the condition that J(Φ) is positive semi-definite follows from the
complete-positivity of Φ, while the condition TrB[J(Φ)] = 1A is the result of Φ being trace-preserving. Sim-
ilarly, for the Kraus representation of Φ given in (2.17), the fact that Φ(X) = ∑r

i=1 AiXA†
i follows from the

complete-positivity of Φ, while the condition ∑r
i=1 A†

i Ai = 1A is the result of Φ being trace-preserving.
This means that any completely-positive map can be represented in the form (2.17), except that possibly
∑r

i=1 A†
i Ai ≤ 1A since completely-positive maps are not generally trace-preserving. Finally, the fact that

Φ(X) = TrE[VXV†] follows from the complete-positivity of Φ, while the condition that V is an isometry is
the result of Φ being trace-preserving.

By observing that when Φ ∈ C(HA,HB) the operator ρΦ := 1
dA

J(Φ) is positive semi-definite and has

unit trace, that is, ρΦ ∈ D(HA ⊗ HB), we obtain a one-to-one correspondence between the set D :=
{

ρ ∈
D(HA ⊗ HB) : TrB(ρ) = 1A

dA

}
of density operators and the set of all channels C(HA,HB), a correspondence

that is sometimes called state-channel duality or the Choi-Jamiolkowski isomorphism. Specifically, by (2.12), every
density operator ρ ∈ D defines a channel Φρ ∈ C(HA,HB) according to

Φρ(X) = dATrA[(XT ⊗ 1B)ρ] ∀ X ∈ L(HA),

and every channel Φ ∈ C(HA,HB) defines the density operator ρΦ = 1
dA

J(Φ) ∈ D(HA⊗HB). Density operators
not in D will, by Theorem 2.7, correspond to completely positive maps according to (2.12).
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The Stinespring form Φ(ρ) = TrE[VρV†] of a CP map or channel Φ ∈ T(HA,HB) has the following physical
interpretation: the input state ρ ∈ D(HA) interacts with its environment, modelled by the space HE, via the
isometry V, leaving the system and environment in the joint state VρV†. The state of the system resulting
from this interaction is then given by tracing over, or “ignoring”, the environment. If we instead ask what
happsn to the environment after the interaction, then we obtain the following.

Definition 2.13 Complementary Map

For Φ ∈ CP(HA,HB) in Stinespring form,

Φ(X) = TrE[VXV†] ∀ X ∈ L(HA),

the map Φc ∈ CP(HA,HE) complementary to Φ is defined by

Φc(X) = TrB[VXV†] ∀ X ∈ L(HA).

Φc is unique up to isometries on HE.

Definition 2.14 Degradable and Anti-degradable CP Maps

A completely-positive map Φ ∈ CP(HA,HB) is called degradable if there exists a quantum chan-
nel E ∈ C(HB,HE), called the degrading map, such that

E ◦Φ = Φc.

Φ is called anti-degradable if its complement Φc is degradable, that is, if there exists a quantum
channel E ∈ C(HE,HB) such that

E ◦Φc = Φ.

XA XA

YB YB

ZE ZE

Φ Φ

Φc Φc

E E

Φ degradable Φ anti-degradable

Figure 2.1: Degradable and anti-degradable CP maps Φ ∈ T(HA,HB).

As indicated in Figure 2.1 above, degradable CP maps Φ are those whose complements may be simulated
by processing, or “degrading”, the output of Φ using E, while anti-degradable maps are those than can be
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simulated by degrading the output of the complementary map Φc using E.

2.2.1 Pauli Channels

An important class of channels in C(C2, C2) is the Pauli channels {Ψ~p : ~p = (px, py, pz) ∈ R3, px, py, pz ≥
0, px + py + pz ≤ 1}, where

Ψ~p(X) = pI X + pxσxXσ†
x + pyσyXσ†

y + pzσzXσ†
z ∀ X ∈ L(C2), (2.18)

pI = 1− px − py − pz, and σx, σy, σz are the Pauli operators and are defined in the standard basis of C2 as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2.19)

We will sometimes use the alternative notation σ1 ≡ σx, σ2 ≡ σy, and σ3 ≡ σz to refer to them. They are
traceless Hermitian operators satisfying σ2

x = σ2
y = σ2

z = 1C2 . Together with σ0 ≡ 1C2 , {1C2 , σx, σy, σz} forms an
orthogonal basis for L(C2). As such, any operator X ∈ L(C2) can be written as

X =
1
2

3

∑
i=0

αi(X)σi, αi(X) := Tr(X†σi). (2.20)

Ψ~p has Kraus operators

AI =
√

pI1C2 , Ax =
√

pxσx, Ay =
√

pyσy, Az =
√

pzσz,

so that an isometric extension of Ψ~p is

VΨ~p = AI ⊗ |0〉E + Ax ⊗ |1〉E + Ay ⊗ |2〉E + Az ⊗ |3〉E .

The Choi representation of Ψ~p is
J(Ψ~p) = 2ρBell(~p),

where
ρBell(~p) = pI

∣∣Φ+
〉 〈

Φ+
∣∣+ px

∣∣Ψ+
〉 〈

Ψ+
∣∣+ py

∣∣Ψ−〉 〈Ψ−∣∣+ pz
∣∣Φ−〉 〈Φ−∣∣ (2.21)

and ∣∣Φ+
〉

:=
1√
2
(|0, 0〉+ |1, 1〉),

∣∣Φ−〉 :=
1√
2
(|0, 0〉 − |1, 1〉),∣∣Ψ+

〉
:=

1√
2
(|0, 1〉+ |1, 0〉),

∣∣Ψ−〉 :=
1√
2
(|0, 1〉 − |1, 0〉)

(2.22)

are the Bell states. They form an orthonormal basis for C2 ⊗C2 and feature prominently throughout the thesis.
Density operators that are diagonal in this basis are called Bell-diagonal states and will be explored further in
§2.3.1.

An important subset of the Pauli channels comes from setting px = py = pz =
Q
2 for some 0 ≤ Q ≤ 2

3 :

Ψ( Q
2 , Q

2 , Q
2 )
(X) =

(
1− 3Q

2

)
X +

Q
2

σxXσ†
x +

Q
2

σyXσ†
y +

Q
2

σzXσ†
z

= (1− 2Q)X +
Q
2
(X + σxXσ†

x + σyXσ†
y + σzXσ†

z )

= (1− 2Q)X + Tr(X)Q1C2 ,
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where in the last step we used the fact that

1
2
(X + σxXσ†

x + σyXσ†
y + σzXσ†

z ) = Tr(X)1C2 ∀ X ∈ L(C2).

The channels {∆Q : 0 ≤ Q ≤ 2
3} defined by

∆Q(X) = (1− 2Q)X + Tr(X)Q1C2 ∀ X ∈ L(C2) (2.23)

are called depolarizing channels. ∆ 1
2
≡ ∆ is called the completely-depolarizing channel.

The Pauli operators and Pauli channels can be generalized to spaces of dimension higher than two, as we
will see in Chapter 6.

2.3 Quantum States

The set of possible physical states of a quantum system is modelled by the set D(H) of density operators on
a complex Euclidean space H. If a system consists of a set of n subsystems labelled 1, 2, . . . , n, then the set of
states is D(H1 ⊗ H2 ⊗ · · · ⊗ Hn), where Hi is the underlying space of subsystem i. The subsystems are also
sometimes called registers.

The set of density operators is a convex set, which by definition means that for any ρ1, ρ2 ∈ D(H), pρ1 +
(1− p)ρ2 ∈ D(H) for all p ∈ [0, 1]. The sum pρ1 + (1− p)ρ2 is called a convex combination of ρ1 and ρ2 and can
be generalized to arbitrary probability distributions {pi}n

i=1, so that p1ρ1 + p2ρ2 + · · · pnρn is called a convex
combination of ρ1, ρ2, . . . ρn ∈ D(H)1. The convex hull of a subset D of density operators is the set of all density
operators that may be written as a convex combination of the density operators in D. The extremal points of
a convex set are those elements of the set that cannot be written as a non-trivial convex combination of other
elements in the set. An important consequence of the definition of extremal points is that any convex set is the
convex hull of the set of its extremal points.

The set of extremal points of the set D(H) is called the set of pure states. Pure states have unit rank and are
of the form |ψ〉 〈ψ| for some unit vector |ψ〉 ∈ H. We commonly refer to the pure state |ψ〉 〈ψ| as |ψ〉, although
this identification is unique only up to a complex phase factor since for any α ∈ C with |α|2 = 1 the vector
|φ〉 := α |ψ〉 has the same corresponding pure state as |ψ〉: |φ〉 〈φ| = |α|2 |ψ〉 〈ψ| = |ψ〉 〈ψ|. Since pure states
are extremal points in H, any density operator can be written as a convex combination of pure states.

Theorem 2.15 Schmidt Decomposition

Any non-zero vector |ψ〉 ∈ H⊗ K can be written in the form

|ψ〉 =
n

∑
k=1

√
sk |ek〉 ⊗ | fk〉 ,

where n = min{dH, dK}, {sk}n
k=1 is a set of positive real numbers, and {|e1〉 , . . . , |en〉} ⊂ H,

{| f1〉 , . . . , | fn〉} ⊂ K are orthonormal sets.

1The notion of convex sets and convex combination, as well as the notions of convex hull and extremal points to be described
below, are defined for any subsets of elements of a vector space, not just for the space of density operators.
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Definition 2.16 Purification

A pure state |ψ〉 ∈ H⊗ K is called a purification in K of ρ ∈ D(H) if TrK(|ψ〉 〈ψ|) = ρ.

Given two purifications |ψ〉 , |φ〉 ∈ H ⊗ K in K of a density operator ρ ∈ D(H), there exists a unitary
U ∈ U(K) such that

|φ〉 = (1H ⊗U) |ψ〉 .

This fact is often called the unitary equivalence of purifications.

Theorem 2.17 State Purification

For any ρ ∈ D(H) there exists a purification |ψ〉 ∈ H⊗ K in K of ρ with dK ≥ dH.

An important fact that we use in this thesis, which can be verified using (2.3), is that for any ρ ∈ D(H)
vec(
√

ρ) ∈ H⊗ K is a purification of ρ in K, where dK = rank(ρ).

Definition 2.16 and Theorem 2.17 can be generalized to apply to arbitrary positive semi-definite operators,
not just to density operators. This allows us to prove the following fact about the complements of completely-
positive maps.

Proposition 2.18

Given a Φ ∈ CP(HA,HB), the Choi representation of the complementary map Φc ∈ CP(HA,HE)
is given by (up to isometries on HE)

J(Φc) = TrB[|ψ〉 〈ψ|Φ],

where |ψ〉Φ ∈ HA ⊗HB ⊗HE is a purification of J(Φ) in HE.

PROOF: Let VΦ ∈ U(HA,HB ⊗HE) be an isometric extension of Φ for some space HE with dE ≥ rank(J(Φ)).
Then,

(1A ⊗VΦ)

(
dA−1

∑
k=0
|k, k〉AA

)
=: |ψ〉Φ

is a purification in HE of J(Φ) by definition of the action of Φ in Stinespring form. Therefore, by definition of
the action of Φc in Stinespring form, we have

TrB[|ψ〉 〈ψ|Φ] = TrB[(1A ⊗VΦ)

(
dA−1

∑
k,k′=0

|k, k〉
〈
k′, k′

∣∣) (1A ⊗VΦ)
†] = (1L(HA) ⊗Φc)

(
dA−1

∑
k,k′=0

|k, k〉
〈
k′, k′

∣∣) = J(Φc),

as required. �
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Definition 2.19 Separable and Entangled States

A density operator ρ ∈ D(H⊗ K) is called separable if there exists n ∈ N, collections {τi : 1 ≤
a ≤ n} ⊆ D(H) and {ξi : 1 ≤ a ≤ n} ⊆ D(K), and a probability distribution {pi : 1 ≤ i ≤ n}
such that

ρ =
n

∑
i=1

piτi ⊗ ξi.

A density operator that is not separable is called entangled.

An important theorem due to Peres and Horodecki [Per96; HHH96], sometimes called the Postive-Partial-
Transpose (PPT) criterion, gives a necessary and sufficient condition for density operators on C2 ⊗ C2 to be
separable.

Theorem 2.20 PPT Criterion

A density operator ρ ∈ D(C2 ⊗C2) is separable if and only if ρT2 , the partial transpose of ρ on
the second tensor factor, is positive semi-definite.

For density operators ρ ∈ D(CdA ⊗CdB) on higher-dimensional spaces, the PPT criterion is merely neces-
sary and not sufficient for separability. It can still be useful, however, since if ρTB has a negative eigenvalue,
then ρ is entangled.

A purification is an example of what is called an extension of an operator, a concept that is particularly
important in this thesis.

Definition 2.21 Extension of an Operator

For any X ∈ L(H), an operator Y ∈ L(H⊗ K) is called an extension of X to K if

TrK(Y) = X.

For any XA ∈ L(HA), XAB will be used to denote an extension of XA to HB.

The following important fact tells us that an arbitrary extension of a positive semi-definite operator can be
“reached” from its purification by some quantum channel.

Theorem 2.22

For any extension Y ∈ Pos(H⊗ L) of X ∈ Pos(H) to L there exists Λ ∈ C(K,L) such that

(1L(H) ⊗Λ)(|ψ〉 〈ψ|) = Y,

where |ψ〉 ∈ H⊗ K is a purification of X in K.
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2.3.1 Two-Qubit Bell-Diagonal States

Two-qubit Bell-diagonal states comprise density operators that are diagonal in the Bell basis introduced in
(2.22). Recall from (2.21) that they have the general form

ρBell(~p) = pI
∣∣Φ+

〉 〈
Φ+
∣∣+ px

∣∣Ψ+
〉 〈

Ψ+
∣∣+ py

∣∣Ψ−〉 〈Ψ−∣∣+ pz
∣∣Φ−〉 〈Φ−∣∣ , (2.24)

where~p = (px, py, pz) satisfies px + py + pz ≤ 1, and pI = 1− px− py− pz. An important class of Bell-diagonal
states that will be considered in this thesis is the isotropic states2, which for 0 ≤ Q ≤ 2

3 are defined as

ρiso(Q) = (1− 2Q)
∣∣Φ+

〉 〈
Φ+
∣∣+ Q

2
1C2⊗C2 . (2.25)

We can observe using (2.23) that ρiso(Q) is proportional to the Choi representation of the depolarizing channel
∆Q.

Now, just as (2.20) gives us a decomposition of any X ∈ L(C2) in terms of the Pauli operators, any X ∈
L(C2 ⊗C2) can be written as3

X =
1
4

3

∑
i,j=0

αi,j(X)σi ⊗ σj, αi,j(X) := Tr[X†(σi ⊗ σj)]. (2.26)

Under this decomposition, ρBell(~p) has the form

ρBell(~p) =
1
4
(1C2 ⊗ 1C2 + αxσx ⊗ σx + αyσy ⊗ σy + αzσz ⊗ σz), (2.27)

where αx = α1,1(ρBell(~p)), αy = α2,2(ρBell(~p)) and αz = α3,3(ρBell(~p)) are given by

αx = pI + px − py − pz, αy = −pI + px − py + pz, αz = pI − px − py + pz. (2.28)

Using this decomposition, we observe that ρBell(~p) is invariant under σx ⊗ σx and σz ⊗ σz: for all ~p,

(σx ⊗ σx)ρBell(~p)(σx ⊗ σx) = ρBell(~p),
(σz ⊗ σz)ρBell(~p)(σz ⊗ σz) = ρBell(~p).

(2.29)

We also see from this decomposition that ρBell(~p) is invariant under transposition: for all ~p,

(ρBell(~p))T = ρBell(~p), (2.30)

since σT
x = σx, σT

z = σz, and σT
y = −σy ⇒ (σT

y ⊗ σT
y ) = σy ⊗ σy.

We can assume without loss of generality that the coefficients {pI , px, py, pz} satisfy the following [BA07],

pI = max{pI , px, py, pz}, pz = min{pI , px, py, pz}, (2.31)

2Isotropic states ρ ∈ D(Cd ⊗ Cd) are defined by the condition [HH99] (U ⊗U)ρ(U ⊗U)† = ρ for all U ∈ U(Cd). These states
are often erroneously called Werner states, which are strictly-speaking a completely different class of states [Wer89] defined by the
condition (U ⊗ U)ρ(U ⊗ U)† = ρ for all U ∈ U(Cd). While for the two-qubit case the isotropic and Werner states are unitarily
equivalent, which is why the names are often used interchangeably, this is not so in higher dimensions.

3An analogous decomposition holds for any operator in L((C2)⊗n) for any n.
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since any Bell-diagonal state not of this form can be put into this form by means of the following local operators
that transform the Bell basis elements:∣∣Φ+

〉 〈
Φ+
∣∣↔ ∣∣Φ−〉 〈Φ−∣∣ :

i
2
(1− iσz)⊗ (1− iσz),∣∣Φ−〉 〈Φ−∣∣↔ ∣∣Ψ+

〉 〈
Ψ+
∣∣ :

1
2
(σx + σz)⊗ (σx + σz),∣∣Ψ+

〉 〈
Ψ+
∣∣↔ ∣∣Ψ−〉 〈Ψ−∣∣ :

1
2
(1 + iσz)⊗ (1− iσz).

Proposition 2.23

Every state ρBell(~p) = pI |Φ+〉 〈Φ+|+ px |Ψ+〉 〈Ψ+|+ py |Ψ−〉 〈Ψ−|+ pz |Φ−〉 〈Φ−| of the form
(2.31) is separable if and only if

pI ≤ px + py + pz.

PROOF: We will use the PPT criterion of Theorem 2.20 to prove this. In the standard basis of C2 ⊗ C2, we
have

ρBell(~p) =


pI+pz

2 0 0 pI−pz
2

0 px+py
2

px−py
2 0

0 px−py
2

px+py
2 0

pI−pz
2 0 0 pI+pz

2


Then, the partial transpose (ρBell(~p))

T2 is

(ρBell(~p))
T2 =


pI+pz

2 0 0 px−py
2

0 px+py
2

pI−pz
2 0

0 pI−pz
2

px+py
2 0

px−py
2 0 0 pI+pz

2

 ,

which has eigenvalues

pI + px + py − pz, pI + px − py + pz, py + pz + pI − px, py + pz − pI + px.

Non-negativity of these eigenvalues leads to the conditions

pI ≥ pz − py − px, pI ≥ py − pz − px, pI ≥ px − py − pz, pI ≤ py + pz + px. (2.32)

The last of these, which is the claimed inequality, is clearly necessary for the positive semi-definiteness of
(ρBell(~p))

T2 and hence for the separability of ρBell(~p) by the PPT criterion. We now prove that it is also sufficient.

Assuming pI ≤ px + py + pz, because pI = max{pI , px, py, pz}, we can write this inequality as

pz + px ≥ pI − py ≥ −(pI − py) = −pI + py ⇒ pI ≥ py − pz − px,

which is the second inequality in (2.32) above. Next,

pI ≤ px + py + pz ⇒ py + pz ≥ pI − px ≥ −(pI − px) = −pI + px ⇒ pI ≥ px − py − pz,

which is the third inequality in (2.32) above. Finally,

pI ≤ px + py + pz ⇒ py + px ≥ pI − pz ≥ −(pI − pz) = −pI + pz ⇒ pI ≥ pz − py − px,

which is the first inequality in (2.32) above. So the inequality pI ≤ py + pz + px is also sufficient for the positive
semi-definiteness of (ρBell(~p))

T2 and hence for the separability of ρBell(~p). �
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2.3.2 Measurements

Physical measurements of a quantum system are modelled by positive operator-valued measures (POVMs), which
are sets M = {Πa}a∈I ⊂ Pos(H) satisfying ∑a∈I Πa = 1H. The elements of the index set I are used to label
the outcomes of the measurement. Given a quantum state ρ ∈ D(H), the random variable OM,ρ describing the
outcomes of the measurement has by definition probability distribution

Pr[OM,ρ = a] = Tr[Πaρ]. (2.33)

Quite often, measurements are described using observables, which by definition are Hermitian operators in
L(H). The POVM corresponding to a measurement of an observable is the set of projection operators appearing
in its spectral decomposition and the outcome set I is the set of its eigenvalues.

For every state ρ, the POVM M defines the ensemble {(pM,ρ(a), ρM,a)}a∈I , where

pM,ρ(a) := Pr[OM,ρ = a], ρM,a :=
√

Πaρ
√

Πa

pM,a
.

This is not the only ensemble one can define. Quite often, one writes Πa = M†
a Ma for all a ∈ I for some

collection {Ma}a∈I ⊂ L(H) and sets

ρM,a =
MaρM†

a
pM,ρ(a)

,

In both cases, the collections {Ma}a∈I and {√Πa}a∈I are the Kraus operators of a channel giving rise to the
state ρM after measurement defined as

ρM := ∑
a∈I

pM,ρ(a)ρM,a = ∑
a∈I

MaρM†
a

(
or ∑

a∈I

√
Πaρ
√

Πa

)
. (2.34)

Physically, the ensemble corresponding to a measurement represents the probabilistic knowledge of the
experimenter performing the measurement about the outcome that occurred. Sometimes, the experimenter
will want to post-select certain outcomes of the experiment that are desired. Suppose some subset Is ⊆ I
represents these desired, or “successful” outcomes of the experiment. The state (2.34) after measurement can
be written as

ρM = ∑
a∈Is

MaρM†
a + ∑

a∈I\Is

MaρM†
a .

The state after post-selection on Is is then taken to be

ρsucc
M :=

∑a∈Is
MaρM†

a

psucc
M,ρ

, where psucc
M,ρ := ∑

a∈Is

pM,ρ(a) = Tr

(
∑
a∈Is

MaρM†
a

)
.

2.4 Quantum Key Distribution

The goal of quantum key distribution (QKD) is to use the laws of quantum physics to establish a secret key
between two parties, conventionally called Alice and Bob, in the presence of an eavesdropper, conventionally
called Eve. The key is then used to communicate securely between Alice and Bob using for example the
one-time pad encryption scheme (see [Lüt14] for details and further motivation).
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To achieve their goal, Alice and Bob have access to a classical communication channel that is authenticated,
which means that Eve can only listen to Alice and Bob, not alter the messages being sent. They also have
access to a quantum channel that is not authenticated, meaning that Eve can tamper with the channel in any
way that is allowed by quantum physics. For the purpose of security analysis, the channel and Eve are not
distinguished: any alteration of the signals through the channel is assumed to be due to Eve.

A QKD protocol is typically split into a quantum phase and a classical phase, which proceed as follows.

Quantum Phase

1. Distribution: Alice prepares an ensemble {(pi, |ψi〉)}i of states according to a probability distribution
{pi}i and sends signals with these states to Bob through the quantum channel several times.

2. Measurement: Bob measures each of the signals sent by Alice using a POVM MB = {Bi}i.

Classical Phase

1. Parameter Estimation and Continuation Decision: Alice and Bob use the information about the signals
sent and the measurement results obtained to estimate the probabilities pi|j that Bob got measure-
ment outcome i given that Alice sent signal j. These probabilities allow Alice and Bob to estimate
Eve’s information about the measurement results. If they determine that Eve has obtained too much
information, then they abort the protocol; otherwise, they continue to error-correction and privacy
amplification.

2. Key Map: Alice and Bob execute some local operation to transform their data4 into strings called raw
keys.

3. Error-Correction: Alice and Bob communicate over the classical channel to correct any discrepancies
in their raw keys, which may have arisen from Eve tampering with the quantum channel during
the quantum phase. This results in equal strings between Alice and Bob but gives Eve additional
information about the key.

4. Privacy Amplification: This step takes the strings held by Alice and Bob and maps them to a shorter
string that can be proved to be uncorrelated with Eve5. The result is a secret key.

Note that at least some of the states in the ensemble used by Alice should be non-orthogonal, otherwise
Eve could simply intercept the signals sent by Alice, perform a measurement to perfectly distinguish them, and
resend them to Bob without ever being detected. Also, the parameter estimation step involves communication
between Alice and Bob over the classical authenticated channel in order to obtain an estimate of the probabili-
ties {pi|j}i,j. This means that they will be sacrificing some amount of their data since all information announced
could be accessed by Eve. We will assume throughout this thesis that Alice and Bob have enough data so that
they can determine the probabilities {pi|j}i,j exactly. This assumption holds in the so-called infinite-key limit,
in which the number of signals distributed between Alice and Bob during the distribution step approaches
infinity. All statements and analyses concerning secret key distillation will assume this limit throughout this
thesis.

The error-correction and privacy amplification steps are collectively called one-way (classical) post-processing
protocols as they require classical communication to establish a secret key using the raw key data from either

4Alice’s data consists of the signals sent and Bob’s data consists of the results of his measurement on the signals.
5See [BBR88; ILL89; Ben+95] for privacy amplification in the presence of an eavesdropper with classical information and [KMR05;

RK05; Ren05] for privacy amplification in the presence of an eavesdropper with quantum information, which is most relevant to QKD.
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Alice or Bob6. Throughout this thesis, we will assume without loss of generality that one-way post-processing
protocols are used to establish a secret key using Alice’s raw key. Also, as alluded to in the introduction, Alice
and Bob might first execute the advantage distillation protocol (involving communication from Alice to Bob
and from Bob to Alice) before performing the key map step and subsequently error-correction and privacy
amplification. Any such additional protocol will be generally referred to as a two-way (classical) post-processing
protocol.

QKD protocols with quantum phase as described above are typically called prepare-and-measure (PM) pro-
tocols. An alternative, but equivalent approach is to let an untrusted source distribute bipartite entangled
particles to Alice and Bob, who then measure them using pre-specified POVMs MA = {Ai}i and MB = {Bj}j.
QKD protocols with such a quantum phase are called entanglement-based (EB) protocols. In EB protocols, both
Alice and Bob perform measurements while in PM protocols only Bob measures. For the parameter estimation
step in EB protocols, Alice and Bob use some of their measurement results to estimate the set of states ρAB that
are consistent with their observations, that is, states ρAB satisfying

Pr[OMA,ρ = i, OMB,ρ = j] = Tr[(Ai ⊗ Bj)ρ
AB] ∀ i, j,

where Pr[OMA,ρ = i, OMB,ρ = j] represents the observed statistics. The remaining error-correction and privacy
amplification steps proceed as in PM protocols.

Source-Replacement Scheme

EB and PM protocols are equivalent since any PM protocol can be converted to an EB protocol by placing the
entanglement source in Alice’s lab. This conversion is done using the so-called source-replacement scheme and
is described in [Lüt14]. The idea is to identify the ensemble {(pi, |ψi〉)}i prepared by Alice with the state

|ψ〉AA′
source := ∑

i

√
pi |mi〉A ⊗ |ψi〉A

′
,

where {|mi〉}i is an orthonormal set, and let MA = {|mi〉 〈mi|}i. Alice’s measurement of the register A with
this POVM effectively prepares the A′ register in the required signal states with the correct probabilities, which
is then sent to Bob. Any interaction by Eve while the signals are being sent to Bob will change the state from
|ψ〉AA′

source to another state ρAB, which they must then estimate during parameter estimation as described above.

2.4.1 Attack Strategies

An attack strategy consists of a pair (N,M), where N represents Eve’s interaction with the signals while they
are travelling from Alice to Bob (in the PM scenario) or while the signals are being distributed amongst both
of them (in the EB scenario), and M is a POVM describing the measurement Eve performs to gain information
about the key bits. The interaction N is implemented by attaching a probe to the signal being sent and per-
forming the interaction in the joint signal-and-probe system. The POVM M then measures the probe. Attack
strategies are typically put into three classes7.

6Typically, the communication in such protocols is also only in one direction, though this is not required. “One-way” simply refers
to the fact that the raw key from only one of the parties is being used to establish the secret key.

7See also [BA07] for a concise summary of these attack strategies with some additional details not provided here.
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Individual Attacks
Eve interacts with the signals individually and in the same way each time as they are being sent from
Alice to Bob and measures her probes individually immediately after. For protocols that include a step
called sifting to be described below, Eve might wait until the end of sifting before making her measure-
ment.

Collective Attacks
Eve interacts with the signals individually and in the same way each time as they are being sent from
Alice to Bob. Instead of measuring the probes individually, however, she measures them collectively.
She might even wait until after the classical post-processing phase to do the measurement.

Coherent/Joint Attacks
Eve does not interact individually with the signals but uses a probe to interact with them coherently as
one large entity. She then waits until a time of her choosing before measuring.

For the purpose of analyzing QKD protocols, it is common to use the entanglement-based picture. As
mentioned above, Eve’s interaction then results in a state ρAB := (1L(HA) ⊗ N)(|ψ〉 〈ψ|AA′

source) that Alice and
Bob must estimate before proceeding to the one-way classical post-processing protocols. In individual and
collective attacks, the state ρAB is of product form, ρAB = (σAB)⊗n, where n is the number of signals distributed
and σAB is the state describing the correlations between Alice and Bob for each signal. In coherent attacks, the
state ρAB need not have product form and there could indeed be correlations between the different signals
corresponding to Eve using her probe to interact with multiple signals at the same time.

Individual attacks are weaker than collective ones, so it is common nowadays to prove security against
collective attacks. During parameter estimation, Alice and Bob can then simply estimate σAB corresponding to
one signal. In fact, it was proved in [Ren05] (see also [Ren07; CKR09]) using the quantum de Finetti theorem
that coherent attacks cannot be stronger than collective attacks for protocols that are symmetric in the different
uses of the channel; in particular, for such protocols, security against collective attacks implies security against
general coherent attacks. Therefore, for protocols that are symmetric in the use of the channel, the assumption
of a collective attack, and hence of a product form for the state ρAB, does not give Eve an advantage.

Since in collective attacks Eve can arbitrarily delay her measurement, we assume that she has a quantum
memory to store her quantum information. For the security analysis of QKD protocols, her quantum informa-
tion, along with Alice and Bob’s classical information, is described by an extension ρABE to HE of ρAB, but since
by Theorem 2.22 there exists a channel on the purification space that maps to ρABE from a purification of ρAB,
we make the worst-case assumption throughout this thesis that Eve’s knowledge corresponds to a purification
of ρAB.

Having estimated the state ρAB during parameter estimation, Alice and Bob must decide whether or not
to continue to the one-way classical post-processing protocols to distill a secret key. The following important
result in [MCL06] gives a condition under which a secret key definitely cannot be distilled by any one-way
classical post-processing protocol.

Theorem 2.24 Symmetric Extendability and One-Way QKD [MCL06]

If Alice and Bob’s measurement results are consistent with a state ρAB that has a symmetric ex-
tension to a copy of B, then there does not exist a one-way Alice-to-Bob classical post-processing
protocol to distill a secret key.
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PROOF: If ρAB is symmetrically extendable to ρABB′ , then by Theorem 2.22 there exists a channel on the
purification space HE mapping a purification of ρAB to ρABB′ . Since the purification register E, and therefore
B′, is assumed to belong to Eve, it holds that Eve can perform a local quantum operation such that ρAB′ = ρAB

by definition of symmetric extendability. Under one-way Alice-to-Bob communication, it therefore holds that
Eve is just as knowledgeable about Alice’s key information as Bob is, so that the resulting key is not secure. �

As described in the introduction, it might be possible to break the symmetry between Bob and Eve result-
ing from a symmetrically extendable state ρAB by first performing a two-way post-processing protocol followed
by the one-way Alice-to-Bob error-correction and privacy amplification protocols. The existence of such addi-
tional two-way post-processing protocols is the subject of this thesis.

It is worth mentioning that no classical post-processing protocol distilling secret key exists whenever ρAB

is separable. One-way protocols do not exist by Theorem 2.24 above since all separable states are symmetri-
cally extendable, as we will see in Chapter 3. Nor do two-way protocols exist that can break this symmetric
extendability of separable states since separable states remain separable, and hence symmetrically extendable,
after any two-way protocol. Separable states correspond to intercept-resend attacks in which Eve intercepts the
signals being sent from Alice, measures them, and resends to Bob the signal corresponding to her measurement
result.

2.4.2 Six-State Signal States

QKD protocols with the six-state signal states [Bru98; BG99] are defined by the following ensemble of six pure
qubit states prepared by Alice:

|0〉 , |1〉 , |±〉 :=
1√
2
(|0〉 ± |1〉), |±i〉 :=

1√
2
(|0〉 ± i |1〉). (2.35)

Recalling the Pauli operators defined in equation (2.19), we have that the first two states {|0〉 , |1〉} are eigen-
vectors of σz, so we call them the z-basis; the second two states {|+〉 , |−〉} are eigenvectors of σx, so we call
them the x-basis; the last two states {|+i〉 , |−i〉} are eigenvectors of σy, so we call them the y-basis. These three
bases are pairwise mutually-unbiased, which is to say that all the outcomes of measurement in one basis of any
state prepared in another basis have probability 1

2 .

The following analysis, as well as the analysis in §2.4.3 below, has been adapted from [Myh10]. Alice
chooses with probabilities qA

x , qA
y , qA

z a signal at random (with probability 1
2 ) from the x-, y-, or z-basis, respec-

tively, and sends it to Bob. Bob measures the signal using the POVM MB =
{

B(x)
0 , B(x)

1 , B(y)
0 , B(y)

1 , B(z)
0 , B(z)

1

}
,

where
B(x)

0 := qB
x |+〉 〈+| , B(x)

1 := qB
x |−〉 〈−| ,

B(y)
0 := qB

y |+i〉 , 〈+i| , B(y)
1 := qB

y |−i〉 〈−i| ,
B(z)

0 := qB
z |0〉 〈0| , B(z)

1 := qB
z |1〉 〈1| .

(2.36)

That is, Bob chooses with probabilities qB
x , qB

y , qB
z to measure in either the x-, y-, or z-basis, respectively. The

x, y, z superscripts on the POVM elements label the basis choice, and the 0, 1 subscripts label the outcomes of
the measurement in the chosen basis.

To get the equivalent EB protocol, we use the source-replacement scheme outlined above. The source state
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on Alice is by definition

|ψ〉AA′
source =

√
qA

x
2
|m0〉 ⊗ |+〉+

√
qA

x
2
|m1〉 ⊗ |−〉+

√
qA

y

2
|m2〉 ⊗ |+i〉

+

√
qA

y

2
|m3〉 ⊗ |−i〉+

√
qA

z
2
|m4〉 ⊗ |0〉+

√
qA

z
2
|m5〉 ⊗ |1〉 ,

and measuring using the POVM {|mi〉 〈mi|}5
i=0 prepares the A′ register in the states to be sent to Bob through

the channel. Due to the linear dependence of the signal states, however, we can write |ψ〉AA′
source as

|ψ〉AA′
source =

1√
2
(|u0〉 ⊗ |0〉+ |u1〉 ⊗ |1〉), (2.37)

where

|u0〉 =
1√
2

(√
qA

x |m0〉+
√

qA
x |m1〉+

√
qA

y |m2〉+
√

qA
y |m3〉+

√
2qA

z |m4〉
)

,

|u1〉 =
1√
2

(√
qA

x |m0〉 −
√

qA
x |m1〉+ i

√
qA

y |m2〉 − i
√

qA
y |m3〉+

√
2qA

z |m5〉
)

.

The state (2.37) is nothing but the Schmidt decomposition (recall Theorem 2.15) of |ψ〉AA′
source. Since |u0〉 and

|u1〉 are linearly independent and orthogonal, they span a two-dimensional subspace of HA, so we can simply
relabel them as |0〉 and |1〉, respectively, to get

|ψ〉AA′
source =

1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). (2.38)

Therefore, instead of measuring using the POVM {|mi〉 〈mi|}5
i=0, Alice can measure in the two-dimensional

subspace using the POVM MA := {Π |mi〉 〈mi|Π†}5
i=0, where Π = |0〉 〈u0|+ |1〉 〈u1| and

Π |m0〉 〈m0|Π† = qA
x |+〉 〈+| =: A(x)

0 , Π |m1〉 〈m1|Π† = qA
x |−〉 〈−| =: A(x)

1 ,

Π |m2〉 〈m2|Π† = qA
y |−i〉 〈−i| =: A(y)

0 , Π |m3〉 〈m3|Π† = qA
y |+i〉 〈+i| =: A(y)

1 ,

Π |m4〉 〈m4|Π† = qA
z |0〉 〈0| =: A(z)

0 , Π |m5〉 〈m5|Π† = qA
z |1〉 〈1| =: A(z)

1 ,

where as before the x, y, z superscripts label the basis choice and the 0, 1 subscripts label the outcomes of the
measurement in the chosen basis. Therefore, measurements by Alice in either the x-, y-, or z-bases prepares a
state in the same basis in the A′ register. For the x- and z-bases, the prepared state is the same as the one left
on the A register after the measurement, while for the y-basis the prepared state is opposite to the one left in
the A register after measurement.

An additional step, which occurs either before or after parameter estimation, is called sifting. In sifting,
Alice and Bob, through discussion over the classical channel, announce their basis choices and discard those
signals for which their basis choices did not coincide.

Parameter Estimation

After Alice’s measurement, the register A′ is sent to Bob, giving an eavesdropper the opportunity to interact
with it. This means that once Bob has received the signals and made his measurement the correlations between
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Alice and Bob will be described by the state ρAB = (1L(HA) ⊗N)(|ψ〉 〈ψ|AA′
source), where N is the interaction and

|ψ〉AA′
source is as written in (2.38)8. Using (2.26), we have that any quantum state ρAB can be written in the Pauli

operator basis as

ρAB =
1
4

3

∑
i,j=0

αi,j(ρ
AB)σA

i ⊗ σB
j , αi,j(ρ

AB) = Tr[ρAB(σA
i ⊗ σB

j )],

where by normalization α0,0(ρAB) = 1. This leaves Alice and Bob with 15 parameters to estimate, which they
can do since αi,j(ρ

AB) is nothing but the expectation value of their measurements of the corresponding Pauli
operator. In particular, by observing that

σA
i =

1
qA

i

(
A(i)

0 − A(i)
1

)
∀ i 6= 0,

σB
j =

1
qB

j

(
B(j)

0 − B(j)
1

)
∀ j 6= 0,

we have

αi,j(ρ
AB) =

Tr
[
ρAB(A(i)

0 − A(i)
1 )⊗ (B(j)

0 − B(j)
1 )
]

qA
i qB

j
=

p(i,j)0,0 − p(i,j)0,1 − p(i,j)1,0 + p(i,j)1,1

qA
i qB

j
∀ i, j 6= 0, (2.39)

where

p(i,j)k,` ≡ Tr[ρAB(A(i)
k ⊗ B(j)

` )] = Pr
[(

OMA,ρ = k, OMB,ρ = `
)⋂(

Alice chose basis i,
Bob chose basis j

)]
.

The remaining coefficients with either i = 0 or j = 0 can be determined using the fact that

A(i)
0 + A(i)

1 = qA
i 1A and B(i)

0 + B(i)
1 = qB

i 1B ∀ i ∈ {x, y, z}.

An important quantity is the quantum bit-error rate (QBER) Qi, which is defined as the probability that Alice
and Bob disagree on their measurement outcome given that they measured in the same basis i. It is equal to

Qi := Pr
[(

OMA,ρ 6= OMB,ρ
) ∣∣∣(Alice, Bob chose basis i)

]
=

Pr
[
(Alice, Bob chose basis i)

⋂ (
OMA,ρ 6= OMB,ρ

)]
Pr [Alice, Bob chose basis i]

=
Pr
[
(Alice, Bob chose basis i)

⋂ (
OMA,ρ = 0, OMB,ρ = 1

)]
qA

i qB
i

+
Pr
[
(Alice, Bob chose basis i)

⋂ (
OMA,ρ = 1, OMB,ρ = 0

)]
qA

i qB
i

⇒ Qi =
p(i,i)0,1 + p(i,i)1,0

qA
i qB

i
∀ i ∈ {x, y, z}.

(2.40)

The states ρAB with which we are interested in this thesis are those that arise from Eve performing a Pauli
channel interaction Ψ~p as defined in (2.18). We have then that the state ρAB, which is proportional to the

8Since (2.38) is nothing but the state
∣∣Φ+

〉
, ρAB is simply proportional to the Choi representation of N.
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Choi representation of Ψ~p, is Bell-diagonal. Since Bell-diagonal states can be written in the form (2.27), the
Bell-diagonal state consistent with the measurement outcomes of Alice and Bob is

ρAB =
1
4

3

∑
i=0

αi,i(ρ
AB)σA

i ⊗ σB
i ,

where by using (2.39)

αi,i(ρ
AB) =

Tr[ρAB(A(i)
0 − A(i)

1 )⊗ (B(i)
0 − B(i)

1 )]

qA
i qB

i

=
p(i,i)0,0 − p(i,i)0,1 − p(i,i)1,0 + p(i,i)1,1

qA
i qB

i
=

p(i,i)0,0 + p(i,i)1,1

qA
i qB

i
−Qi

=
p(i,i)0,0 + p(i,i)0,1 + p(i,i)1,0 + p(i,i)1,1

qA
i qB

i
− 2Qi.

But
p(i,i)0,0 + p(i,i)0,1 + p(i,i)1,0 + p(i,i)1,1 = Tr

[
ρAB (A(i)

0 + A(i)
1 )︸ ︷︷ ︸

qA
i 1A

⊗ (B(i)
0 + B(i)

1 )︸ ︷︷ ︸
qB

i 1B

]
= qA

i qB
i .

Therefore,
αi,i(ρ

AB) = 1− 2Qi ∀ i ∈ {1, 2, 3}.
Therefore, in the case of a Pauli channel interaction9, it is enough for Alice and Bob to estimate the three QBERs
Qi in order to estimate ρAB instead of the usual 15 parameters. This also means that they can perform sifting
before parameter estimation. In the Bell basis, ρAB has the form

ρAB
~Q

:=
(

1− 1
2
(Qx + Qy + Qz)

) ∣∣Φ+
〉 〈

Φ+
∣∣+ 1

2
(Qz −Qx + Qy)

∣∣Ψ+
〉 〈

Ψ+
∣∣

+
1
2
(Qx −Qy + Qz)

∣∣Ψ−〉 〈Ψ−∣∣+ 1
2
(Qy −Qz + Qx)

∣∣Φ−〉 〈Φ−∣∣ .
(2.41)

In other words, the noise parameters ~p = (px, py, pz) characterizing the Pauli channel interaction are

px =
1
2
(Qz −Qx + Qy), py =

1
2
(Qx −Qy + Qz), pz =

1
2
(Qy −Qz + Qx).

If in addition to the assumption of a Pauli channel interaction we take Qx = Qy = Qz = Q, that is, equal
QBER in each basis, then we get

ρAB
Q :=

(
1− 3

2
Q
) ∣∣Φ+

〉 〈
Φ+
∣∣+ Q

2

∣∣Φ+
〉 〈

Φ+
∣∣+ Q

2

∣∣Ψ−〉 〈Ψ−∣∣+ Q
2

∣∣Φ−〉 〈Φ−∣∣
= (1− 2Q)

∣∣Φ+
〉 〈

Φ+
∣∣+ Q

2
1A ⊗ 1B,

(2.42)

which is the isotropic state (2.25). The Pauli channel giving rise to this state is the depolarizing channel ∆Q.
This noise model with equal QBER in each basis is the most commonly analyzed one for the six-state protocol,

9We do not have to assume, as implied here, that Eve performs a Pauli interaction. As described in [BA07; Myh10], before
measuring their particles Alice and Bob can perform a symmetrization procedure called twirling that takes any state and makes it
Bell-diagonal, effectively making Eve’s interaction a Pauli channel.
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and it will be the focus of this thesis10. As seen before, positive semi-definiteness of the state requires that
0 ≤ Q ≤ 2

3 , although in this case it is enough to let 0 ≤ Q ≤ 1
2 since the classical mutual information between

Alice and Bob’s measurement results based on a single copy of the state ρAB
Q is equal to [Bru98] 1+Q log2(Q)+

(1−Q) log2(1−Q), which vanishes11 at Q = 1
2 .

In the case of equal QBER in each basis, in order to distill a secret key after parameter estimation using
one-way post-processing protocols, by Theorem 2.24 ρAB

Q must not have a symmetric extension. In Chapter 3,
we will see that

Tr[(ρB)2] ≥ Tr[(ρAB)2]− 4
√

det (ρAB) (2.43)

is necessary and sufficient for the symmetric extendabiliy of any two-qubit state ρAB ∈ D(C2 ⊗C2). By apply-
ing this condition to ρAB

Q , we get

1
2
≥
(

1− 3Q
2

)2

+ 3
(

Q
2

)2

− 4

√(
1− 3Q

2

)(
Q
2

)3

,

which can be simplified to
1
4
(2Q− 1)3(6Q− 1) ≤ 0.

This holds for Q ≥ 1
6 , which means that ρAB

Q is symmetrically extendable beyond Q = 1
6 . In other words,

beyond Q = 1
6 , the one-way error-correction and privacy amplification protocols will not lead to a secret key.

As well, by the PPT criterion, we get that ρAB
Q is separable for all Q ≥ 1

3 , which means that beyond Q = 1
3

neither a one-way nor a two-way protocol can be used to distill a secret key.

Q
0 1

2
1
6

1
3No one-way classical

protocol exists
No one-way or two-way
classical protocol exists

Separable

Symmetrically Extendable

Figure 2.2: Properties of the isotropic state ρAB
Q characterizing the Alice-Bob correlations for

QKD protocols using the six-state signal states with equal QBER in each basis.

2.4.3 BB84 Signal States

QKD protocols with the BB84 [BB84] signal states are defined by the following ensemble of four pure qubit
states prepared by Alice:

|0〉 , |1〉 , |±〉 = 1√
2
(|0〉 ± |1〉).

10For each signal, Alice and Bob hold two pieces of information: the basis choice and the measurement result in the chosen basis
(for PM protocols, Alice holds for each signal the basis choice and the signal sent from that basis). The case of equal QBER in each basis
that we consider here is equivalent to Alice and Bob forgetting their basis choice and considering only the average QBER Q =

Qx+Qy+Qz
3

since this gives rise to the same state ρAB
Q characterizing Alice and Bob’s correlations. See §2.2.7 of [Myh10] for details.

11The mutual information between Alice and Bob is needed to calculate the rate of secret key distillation; if it vanishes, then no
secret key is possible.
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They are the first four of the six-state signal states corresponding to the mutually-unbiased x- and z-bases.
Alice sends with probabilities qA

x , qA
z a signal at random (with probability 1

2 ) from one of the two bases. The
POVM MB used by Bob to measure the signal sent to him from Alice is

B(x)
0 = qB

x |+〉 〈+| , B(x)
1 = qB

x |−〉 〈−| ,
B(z)

0 = qB
z |0〉 〈0| , B(z)

1 = qB
z |1〉 〈1| .

Passing to the equivalent EB protocol using the source-replacement scheme is done similarly to the six-state
signal states. The source state is

|ψ〉AA′
source =

√
qA

x
2
|m0〉A ⊗ |+〉A

′
+

√
qA

x
2
|m1〉A ⊗ |−〉A

′
+

√
qA

z
2
|m2〉A ⊗ |0〉A

′
+

√
qA

z
2
|m3〉A ⊗ |1〉A

′

=
1√
2
(|u0〉 ⊗ |0〉+ |u1〉 ⊗ |1〉),

where

|u0〉 =
1√
2

(√
qA

x |m0〉+
√

qA
x |m1〉+

√
2qA

z |m2〉
)

,

|u1〉 =
1√
2

(√
qA

x |m0〉 −
√

qA
x |m1〉+

√
2qA

z |m3〉
)

.

As with the six-state signal states, |u0〉 and |u1〉 are linearly independent and orthogonal, so we can write
|ψ〉AA′

source = 1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉), so that the POVM {|mi〉 〈mi|}3

i=0 projected onto the two-dimensional
subspace of A spanned by |u0〉 , |u1〉 is

A(x)
0 = qA

x |+〉 〈+| , A(x)
1 = qA

x |−〉 〈−| ,
A(z)

0 = qA
z |0〉 〈0| , A(z)

1 = qA
z |1〉 〈1| .

The sifting step is done in exactly the same way as with the six-state signal states.

In the parameter estimation step, since Alice does not send signals from the y-basis nor does Bob measure
in the y-basis, the POVMs MA,MB do not allow Alice and Bob to uniquely estimate the state ρAB since deter-
mining the parameters α2,i(ρ

AB) and αi,2(ρ
AB) for all 0 ≤ i ≤ 3 requires a y-basis measurement. In particular,

the y-basis QBER Qy cannot be estimated. Assuming as before a Pauli channel interaction with Qx = Qz = Q,
and letting x := Q− Qy

2 , we get from (2.41)12

ρAB
Q,x := (1− 2Q + x)

∣∣Φ+
〉 〈

Φ+
∣∣+ (Q− x)

∣∣Ψ+
〉 〈

Ψ+
∣∣+ x

∣∣Ψ−〉 〈Ψ−∣∣+ (Q− x)
∣∣Φ−〉 〈Φ−∣∣ . (2.44)

The classical mutual information between Alice and Bob’s measurement results is the same for ρAB
Q,x as for ρAB

Q ,
which means that we again only consider Q in the interval

[
0, 1

2

]
. For ρAB

Q,x to be positive semi-definite, we
therefore require x ∈ [0, Q] for all 0 ≤ Q ≤ 1

2 .

Unlike protocols using the six-state signal states, in which for each Q there exists only one state ρAB
Q con-

sistent with Alice and Bob’s measurement results, we see that in protocols using the BB84 signal states there
exists for each Q a set {ρAB

Q,x}x∈[0,Q] of states consistent with Alice and Bob’s measurement results. This means

12As with the six-state signal states, forgetting the basis choice and considering the average QBER will lead to the same state ρAB
Q,x

characterizing Alice and Bob’s correlations.
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that to use Theorem 2.24 to determine, as with the six-state signal states, the threshold QBER beyond which
one-way classical post-processing protocols will not distill a secret key, we must find the highest QBER Q for
which the set {ρAB

Q,x}x∈[0,Q] does not contain a symmetrically extendable state. Applying the condition (2.43) to
ρAB

Q,x tells us that ρAB
Q,x is symmetrically extendable if and only if

1
2
≥ (1− 2Q + x)2 + 2(Q− x)2 + x2 − 4

√
(1− 2Q + x)(Q− x)2x,

which can be simplified to

1
4
(1− 2Q)2(36Q2 − 64Qx− 12Q + 32x2 + 8x + 1) ≤ 0.

Since (1− 2Q)2 is always non-negative, we seek the largest Q such that FQ(x) := 36Q2− 64Qx− 12Q+ 32x2 +
8x + 1 > 0 for all 0 ≤ x ≤ Q. FQ is a quadratic function of x for all Q and is in fact convex (or “concave up”,
which is due to the fact that F′′Q(x) = 64 for all x), which means that the positivity of FQ can be determined by
the number of its roots, which in turn can be determined by its discriminant, which is

(8− 64Q)2 − 4(32)(36Q2 − 12Q + 1).

FQ will be positive if it has no real roots, which is when the discriminant is negative, that is, when

(8− 64Q)2 − 4(32)(36Q2 − 12Q + 1) < 0⇒ −8Q2 + 8Q− 1 < 0⇒ Q <
2−
√

2
4

≈ 14.64%.

This means that for all Q ≥ 2−
√

2
4 there exists x such that ρAB

Q,x has a symmetric extension, so that for this range
a secret key cannot be distilled by one-way classical post-processing protocols.

We must also find the highest QBER Q for which the set {ρAB
Q,x}x∈[0,Q] does not contain a separable state

as this will give us an interval of the QBER in which there exists an intercept-resend attack that excludes
secret key distillation by any post-processing protocol. Using the PPT criterion, we find that ρAB

Q,x is entangled

whenever
(

ρAB
Q,x

)TB
is negative, which is when at least one of the eigenvalues of

(
ρAB

Q,x

)TB
, which are

1
2
− x, 2Q− x− 1

2
, x−Q +

1
2

,

is negative. 1
2 − x < 0 is never satisfied since x can only be in the interval [0, Q] and we don’t consider any Q

beyond 1
2 . Similarly, Q ≤ 1

2 means that x − Q + 1
2 < 0 will also never be satisfied. Negativity of the second

eigenvalue gives x > 2Q− 1
2 , which means that the second eigenvalue will be negative for all x ∈ [0, Q] if and

only if 2Q− 1
2 < 0 ⇒ Q < 1

4 . Therefore, for all Q less than 1
4 the second eigenvalue will be negative for all

x ∈ [0, Q], which means that ρAB
Q,x will be entangled for all x ∈ [0, Q]. For Q ≥ 1

4 , there exists x such that ρAB
Q,x is

separable, hence no post-processing protocol can be used to distill a secret key in this range.

Q
0 1

2
2−
√

2
4

1
4No one-way classical

protocol exists
No one-way or two-way
classical protocol exists

Separable

Symmetrically Extendable

Figure 2.3: Properties of the state ρAB
Q,x characterizing the Alice-Bob correlations for QKD pro-

tocols using the BB84 signal states with equal QBER in each basis.
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2.4.4 Classical and Quantum Post-Processing Protocols

So far, QKD protocols have been described as having a quantum phase and a classical phase. The quantum
phase, which can be either prepare-and-measure-based or entanglement-based, involves distribution and mea-
surement of quantum signals. The classical phase consists of some classical post-processing protocol, typically
error-correction and privacy amplification, which leads to a secret key as long as Eve’s initial information from
the quantum phase is not too high.

It is worth mentioning, as done in [BA07], that QKD protocols with entanglement-based quantum phase
can be modified in the following way. Instead of having Alice and Bob measure their particle-pairs immedi-
ately after receiving them and then performing a classical post-processing protocol, they can retain them and
sacrifice some of them to test whether or not they are entangled. If they are, then they can continue with entan-
glement distillation/quantum privacy amplification [Ben+96b; Ben+96a; BB85; Deu+96] to transform the states of
the remaining particle-pairs to several (potentially fewer) copies of the maximally entangled state |Φ+〉. They
can then measure each of these particles in the z-basis and obtain the same completely random and secure key.

(ρAB)⊗n

(|Φ+〉)⊗m

pAB

SECRET
KEY

Measure

Entanglement
Distillation

Measure

Classical
Distillation

Figure 2.4: Quantum and classical post-processing protocols for distilling secret key from en-
tangled states. Starting with n copies of the entangled state ρAB, Alice and Bob can perform
the quantum entanglement distillation protocol, which takes the n copies of ρAB and produces
some m < n copies of |Φ+〉 states, which can then be measured to yield a secret key. Alterna-
tively, Alice and Bob can first measure their states, leading to a joint probability distribution
pAB from which classical distillation methods (like error-correction and privacy amplification)
can lead to a secret key. (Adapted from [BA07].)

Entanglement distillation protocols are examples of protocols involving local (quantum) operations and
classical communication (LOCC). The classical communication can be either one-way or two-way. The sym-
metric extendability of the initial state ρAB is not relevant when Alice and Bob perform entanglement distilla-
tion since the protocol is defined by the condition that at the end of the protocol they end with copies of the
pure maximally entangled state |Φ+〉. On the other hand, classical distillation protocols fall under the class of
protocols involving local operations and public communication (LOPC). A general analysis and comparison
of the LOCC and LOPC classes of protocols is done in [Chr+07; Hor+09] (see also [CP02]).

Entanglement distillation is an alternative route to secret key distillation from classical distillation. Re-
markably, however, by adapting the ideas of entanglement distillation protocols for use in a classical setting
[LC99] and by using the equivalence of one-way entanglement distillation protocols and quantum error cor-
rection [Ben+96a], Shor and Preskill obtained their well-known proof of the security of QKD with the BB84
signal states and one-way classical post-processing [SP00]. The analogous proof of security with the six-state
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signal states was provided by Lo [Lo01]. In fact, the work by Gottesman and Lo [GL03] and Chau [Cha02]
leading to the current best bounds for QKD with the BB84 and six-state signal states with two-way classical
post-processing was done using this entanglement distillation proof technique modified to hold in the two-
way scenario.

Of course, classical post-processing protocols can be analyzed by using classical information-theoretic
tools directly. One of the earliest proofs of this type for QKD with the BB84 signal states and one-way commu-
nication was in [Ben02], with subsequent proofs for more general protocols under one-way communication
in [Mat04; RGK05; KGR05] (see also [Ren05]). Each of these security proofs reproduced the BB84 threshold
QBER determined by Shor-Preskill. In the two-way communication scenario, [Ren05; Ací+06; BA07; KBR07]
used information-theoretic tools to prove security of QKD with the BB84 and six-state signal states with the
additional advantage distillation protocol [Mau93] before error-correction and privacy amplification, and they
obtained the same current best upper bounds as Chau.

As outlined in Chapter 4, though we are interested in two-way classical post-processing protocols, our
approach to finding two-way protocols that are better than advantage distillation is based only on breaking
the symmetric extendability of the initial state ρAB

Q . As a result, we are not concerned with efficiencies nor with
key rates achieved by the protocols, as was the case with the aforementioned security proofs. As we will see,
this allows us to greatly simplify the problem of finding two-way protocols in the gap, reducing it to simply
checking the symmetric extendability of a broad class of quantum states corresponding to Alice and Bob’s
updated correlations after an effective post-selection protocol.
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Chapter 3

Symmetrically Extendable States

In this chapter, we formally define the notion of symmetric extendability of a positive semi-definite operator
and go through some of the relevant properties of symmetrically extendable states. We will write down a semi-
definite program (SDP) that can be used to determine the symmetric extendability of an arbitrary positive
semi-definite operator and will draw the connection between symmetrically extendable operators and anti-
degradable CP maps that is crucial to many of the results of this thesis. Finally, we will look at a special way
of constructing symmetric extensions.

3.1 Definition and Properties

Definition 3.1 Symmetrically Extendable Operator

An operator PAB ∈ Pos(HA ⊗ HB) is called symmetrically extendable to a copy of B if there exists
an extension PABB′ ∈ Pos(HA ⊗HB ⊗HB′) of PAB to HB′ , with dB′ = dB, such that

TrB[PABB′ ] = PAB.

An equivalent definition is the following: XAB ∈ Pos(HA ⊗ HB) is called symmetrically extendable to a
copy of B if there exists an extension XABB′ ∈ Pos(HA ⊗HB ⊗HB′) of XAB to HB′ , with dB′ = dB, such that

(1L(HA) ⊗ SWAPBB′)XABB′(1L(HA) ⊗ SWAPBB′)
† = XABB′ ,

that is, XABB′ is invariant under swapping of B and B′, where

SWAPBB′ :=
dB−1

∑
i,j=0
|j, i〉 〈i, j| ∈ L(HB ⊗HB′ ,HB′ ⊗HB). (3.1)

This definition of a symmetrically extendable operator is equivalent to the one provided since for any extension
XABB′ invariant under swapping of B and B′ we have that

TrB[XABB′ ] = TrB′ [XABB′ ] = XAB,
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Chapter 3: Symmetrically Extendable States

with the last equality following by definition of XABB′ being an extension of XAB to HB′ . Conversely, for any
symmetric extension PABB′ satisfying the definition provided,

PABB′ + (1L(HA) ⊗ SWAPBB′)PABB′(1L(HA) ⊗ SWAPBB′)
†

2

is invariant under swapping of B and B′.

From now on, throughout this thesis, by symmetrically extendable we will always mean symmetrically ex-
tendable to an operator on a copy of the second tensor factor. The set of symmetrically extendable operators in
Pos(H⊗K) will be denoted SymExt(H,K). In the following, we discuss properties of symmetrically extendable
states relevant to this thesis. More information can be found in [ML09] (see also [Myh10]).

SymExt(HA,HB) is convex since for any PAB
1 , PAB

2 ∈ SymExt(HA,HB) with symmetric extensions PABB′
1

and PABB′
2 it holds that PAB := pPAB

1 + (1− p)PAB
2 has symmetric extension PABB′ := pPABB′

1 + (1− p)PABB′
2

for all p ∈ [0, 1], so that PAB ∈ SymExt(HA,HB). SymExt is also a cone, meaning that for any symmetrically
extendable P, the operator αP is symmetrically extendable for all α ≥ 0.

All separable states are symmetrically extendable, since for any separable state

ρAB =
n

∑
i=1

piτ
A
i ⊗ ξB

i

one has the symmetric extension

ρABB′ =
n

∑
i=1

piτ
A
i ⊗ ξB

i ⊗ ξB′
i .

This means that all states without symmetric extension must be entangled1.

SymExt(HA,HB) is preserved under local unitaries, for if V ∈ U(HA) and W ∈ U(HB), then for all P ∈
SymExt(HA,HB)

QAB := (V ⊗W)PAB(V ⊗W)†

has symmetric extension
QABB′ := (V ⊗W ⊗W)PABB′(V ⊗W ⊗W)†,

where PABB′ is a symmetric extension of PAB. More generally, SymExt(HA,HB) is preserved under any channel
acting locally on HB and any CP map acting locally on HA, that is, for all PAB ∈ SymExt(HA,HB),

QAB := (Φ⊗Ψ)(PAB)

has symmetric extension
QABB′ := (Φ⊗Ψ⊗Ψ)(PABB′)

for all Φ ∈ CP(HA) and all Ψ ∈ C(HB), where PABB′ is a symmetric extension of PAB. Even more generally,
SymExt(HA,HB) is preserved under one-way A → B LOCC channels [NH09] since such channels are of the
form [Wat16]

Ξ = ∑
a∈I

Φa ⊗Ψa

for some finite set I, a collection {Φa : a ∈ I} ⊂ CP(HA) satisfying ∑a∈I Φa ∈ C(HA) and a collection {Ψa : a ∈
I} ⊆ C(HB).

1The separability of states turns out to be connected to the infinitely symmetrically extendable states, that is, to states that can be
extended to arbitrarily many copies of B, not just to one copy of B. See [DPS02; DPS04] for more information.
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Chapter 3: Symmetrically Extendable States

The following theorem uses the correspondence between CP maps and positive semi-definite operators
of Theorem 2.7 to draw a correspondence between anti-degradable CP maps and symmetrically extendable
positive semi-definite operators. In particular, it tells us that P ∈ Pos(HA ⊗HB) is symmetrically extendable if
and only if its corresponding CP map ΦP ∈ CP(HA,HB) is anti-degradable.

Theorem 3.2

For every anti-degradable Φ ∈ CP(HA,HB) there exists PΦ ∈ SymExt(HA,HB). Conversely, for
every P ∈ SymExt(HA,HB) there exists an anti-degradable ΦP ∈ CP(HA,HB).

PROOF: Suppose Φ is anti-degradable with degrading channel E ∈ C(HE,HB′), where dB′ = dB and dE ≥
rank(J(Φ)). Let PAB

Φ := J(Φ). By Theorem 2.7, PAB
Φ ∈ Pos(HA ⊗HB). Then, letting |ψ〉ABE

Φ be a purification of
PAB

Φ in HE, define
PABB′

Φ := (1L(HAB) ⊗ E)(|ψ〉 〈ψ|ABE
Φ ).

Since E is trace-preserving, it holds that PABB′
Φ is an extension of PAB

Φ to HB′ . By Proposition 2.18,

TrB[PABB′
Φ ] = (1L(HA) ⊗ E)

(
TrB[|ψ〉 〈ψ|ABE

Φ ]︸ ︷︷ ︸
J(Φc)

)
= (1L(HA) ⊗ E)(J(Φc)) = J(E ◦Φc) = J(Φ) = PAB

Φ ,

where the second-last equality holds due to the anti-degradability of Φ. So PAB
Φ ∈ SymExt(HA,HB) with

symmetric extension PABB′
Φ .

Conversely, suppose PAB ∈ SymExt(HA,HB) with symmetric extension PABB′ ∈ Pos(HA ⊗ HB ⊗ HB′). By
Theorem 2.7 and (2.12), the map ΦP ∈ T(HA,HB) defined by

ΦP(X) = TrA[(XT ⊗ 1B)PAB] ∀ X ∈ L(HA)

is completely-positive. Let |ψ〉ABB′R be a purification of PABB′ in HR. It is also a purification of PAB in HB′ ⊗HR.
By Proposition 2.18, PAB′R = TrB[|ψ〉 〈ψ|ABB′R] = J(Φc

P), where Φc
P ∈ CP(HA,HB′ ⊗HR) is a map complemen-

tary to ΦP. Then, defining the channel E = TrR, we get that

J(E ◦Φc
P) = (1L(HA) ⊗ E)(J(Φc

P)) = TrR[PAB′R] = PAB′ = PAB = J(ΦP),

where we have used the fact that PABB′ is a symmetric extension of PAB, so that PAB′ = PAB. Since Choi
representations of maps uniquely specify them, we have that E ◦Φc

P = ΦP, that is, ΦP is anti-degradable. �

There are two known analytical results about the existence of symmetric extensions. First is the one con-
jectured and proved for rank-2, Bell-diagonal, and σz ⊗ σz-invariant two-qubit states in [ML09; Myh10], and
later proved for arbitrary two-qubit states in [Che+14].

Theorem 3.3 Symmetric Extendability in D(C2 ⊗ C2) [Che+14]

A state ρAB ∈ D(C2 ⊗C2) is symmetrically extendable if and only if

Tr[(ρB)2] ≥ Tr[(ρAB)2]− 4
√

det (ρAB). (3.2)
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The second result is in [Ran09] and pertains to states in D(Cd ⊗ Cd) for any integer d ≥ 2 with a certain
symmetry. We will state and use the result in Chapter 6.

Since existence criteria for symmetric extendability do not exist for arbitrary quantum states, we will use
two different strategies in this thesis to determine the symmetric extendability of a state for which no existence
criteria exist: numerically searching using semi-definite programming, and attempting to explicitly construct
a symmetric extension.

3.2 Symmetric Extendability as an SDP

The following semi-definite program (SDP) [Wat16; Myh10; VB96] can be used to determine the symmetric
extendability of any PAB ∈ Pos(HA ⊗HB).

min. t
subject to RABB′ + t1ABB′ ≥ 0,

TrB[RABB′ ] = PAB,
TrB′ [RABB′ ] = PAB.

(3.3)

Letting topt(PAB) be the optimal value2 of t for PAB, if an operator RABB′ satisfies the two partial trace con-
ditions and is positive semi-definite, then RABB′ will be a symmetric extension of PAB and topt will be equal
to the negative of its smallest eigenvalue. If a positive semi-definite RABB′ satisfying the two trace conditions
does not exist, then a symmetric extension of PAB does not exist and the smallest eigenvalue of RABB′ will be
negative, so topt will be equal to the negative of that eigenvalue, that is, topt will be positive. The sign of topt
therefore indicates the existence of a symmetric extension of PAB: if topt ≤ 0, then a symmetric extension exists;
if topt > 0, then a symmetric extension does not exist. The formulation of symmetric extendability as an SDP
was first done by Doherty et al. [DPS04; DPS02] in the context of determining the separability of quantum
states.

3.3 Constructing Symmetric Extensions

Writing an arbitrary PAB ∈ Pos(HA ⊗HB) as

PAB =
dA−1

∑
k,k′=0

dB−1

∑
`,`′=0

(PAB) k,`
k′,`′
|k, `〉

〈
k′, `′

∣∣ ,

we have that a symmetric extension PABB′ ∈ Pos(HA ⊗HB ⊗HB′) of PAB, if it exists, must satisfy by definition

TrB(PABB′) = TrB′(PABB′) = PAB.

Writing PABB′ as

PABB′ =
dA−1

∑
i,i′=0

dB−1

∑
j,k

j′,k′=0

x i,j,k
i′,j′,k′
|i, j, k〉

〈
i′, j′, k′

∣∣ ,

2We will omit the dependence of topt on PAB if the operator is understood from the context.
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we have the following constraints

TrB′(PABB′) = PAB :
dB−1

∑
k=0

x i,j,k
i′,j′,k

= (PAB) i,j
i′,j′
∀ 0 ≤ i, i′ ≤ dA − 1, 0 ≤ j, j′ ≤ dB − 1,

TrB(PABB′) = PAB :
dB−1

∑
j=0

x i,j,k
i′,j,k′

= (PAB) i,k
i′,k′
∀ 0 ≤ i, i′ ≤ dB − 1, 0 ≤ k, k′ ≤ dB − 1,

PABB′ Hermitian : x i,j,k
i′,j′,k′

= xi′,j′,k′
i,j,k
∀ 0 ≤ i, i′ ≤ dA − 1, 0 ≤ j, j′, k, k′ ≤ dB − 1.

The rest of the matrix elements of PABB′ must be chosen so that it has non-negative eigenvalues, which will
ensure that PABB′ is positive semi-definite. There might be more than one way to choose them, which means
that if a symmetric extension exists it will generally not be unique.

Now, given the spectral decomposition of PAB,

PAB =
r−1

∑
k=0

λk |vk〉 〈vk| ,

where r = rank(PAB), we can form the following purification of it in HE1 ⊗HE2 , with dE1 = dA and dE2 = dB,

|ψ〉ABE1E2 = vec
(√

PAB
)
=

r−1

∑
k=0

√
λk |vk〉AB ⊗ |vk〉E1E2 .

Writing PABB′ from above using the eigenbasis {|vk〉 : 0 ≤ k ≤ r− 1} of PAB, we get

PABB′ =
r−1

∑
k,k′=0

|vk〉 〈vk′ |AB ⊗ XB′
k
k′

, (3.4)

where
XB′

k
k′

:= (〈vk| ⊗ 1B′)PABB′(|vk′〉 ⊗ 1B′),

is a function of the matrix elements
{

x i,j,k
i′,j′,k′

}
i,j,k

i′,j′,k′

of PABB′ . By Theorem 2.22, PAB is symmetrically extendable

if and only if there exists a channel E ∈ C(HE1 ⊗HE2 ,HB′) such that

(1L(HAB) ⊗ E)(|ψ〉 〈ψ|ABE1E2) = PABB′ , (3.5)

or, by (3.4),

E
(
|vk〉 〈vk′ |E1E2

)
=

XB′
k
k′√

λkλk′
∀ 0 ≤ k, k′ ≤ r− 1. (3.6)

Equivalently, if PAB is symmetrically extendable with symmetric extension PABB′ , then by taking the partial
trace over B on both sides of (3.5) and using the definition of symmetric extension, we get

(1L(HA) ⊗ E)(PAE1E2) = PAB. (3.7)

This is nothing but the statement of the anti-degradability of the map ΦPAB defined by PAB by (2.12) since
J(ΦPAB) = PAB ⇒ J(Φc

PAB) = PAE1E2 ⇒ E ◦Φc
PAB = ΦPAB . This means that the existence of a channel E satisfy-

ing (3.7) is necessary and sufficient for the symmetric extendability3 of PAB. Fung et al. [Fun+14] examine this

3Though we have used a particular purification to prove this result, note that it is independent of the purification.
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condition and determine necessary and sufficient criteria for the existence of the channel E; however, these
criteria are non-constructive and rephrase the problem in terms of the existence of other mathematical objects
that is generally difficult to check.

To summarize, we have that PAB is symmetrically extendable with symmetric extension PABB′ if and only
if (3.6) and (3.7), which are equivalent, hold. (3.6) provides a way of analytically constructing E, which we will
do for a particular class of states in Chapter 5, while (3.7) can be used to numerically search for E using the
following SDP.

min. t
subject to XE1E2B′ + t1E1E2B′ ≥ 0,

TrB′ [XE1E2B′ ] = 1E1E2 ,
TrE1,E2

[(
(PAE1E2)TE1E2

⊗ 1B′
)
(1A ⊗ XE1E2B′)

]
= PAB.

(3.8)

Like the previous SDP, if X satisfies the constraints and the optimal value of t is negative, then X is positive
semi-definite, which means that PAB is symmetrically extendable and X is the Choi representation of the
channel E constructing the symmetric extension PABB′ of PAB given by (3.5). If t is positive, on the other hand,
then a symmetric extension of PAB does not exist.

3.3.1 A Special Construction

Now, suppose E from (3.5)/(3.7) has the form

E = N ◦ TrE2 (3.9)

for some N ∈ T(HE1 ,HB′). In the natural representation, this decomposition becomes, by (2.14),

K(E) = K(N)K(TrE2).

The statement that PAB is symmetrically extendable, equivalently the requirement that E satisfies E ◦Φc
PAB =

ΦPAB , then becomes
N ◦ TrE2 ◦Φc

PAB = ΦPAB ⇔ K(N)K(TrE2)K(Φ
c
PAB) = K(ΦPAB).

We can combine K(TrE2)K(Φ
c
PAB) to K(TrE2 ◦Φc

PAB), and since dE1 = dA, the operator K(TrE2 ◦Φc
PAB) is square.

If it is invertible, then N satisfies
K(N) = K(ΦPAB)K(TrE2 ◦Φc

PAB)
−1. (3.10)

If N is completely-positive and trace-preserving, then a symmetric extension of PAB exists and it is given by
(3.5). If N is not completely-positive, then a symmetric extension of PAB might still exist since symmetric ex-
tensions are not unique. In other words, it could be that a map E of a different form satisfies (3.5)/(3.7)4. The
shuffling map S, which satisfies S(J(N)) = K(N) by Proposition 2.10, can be used to find the Choi representa-
tion of N, using which the complete-positivity of N can be determined. We prove in Appendix A that the Choi
representation of N is equal to

J(N) = S−1

[
S
(

PAB
)

S
(

S
(√

PAB
)T

S
(√

PAB
))−1

]
. (3.11)

This formula allows us to calculate J(N) for any PAB ∈ Pos(HA ⊗ HB). As stated before, if J(N) is positive
semi-definite and TrB′ [J(N)] = 1E1 , then PAB is symmetrically extendable with symmetric extension

PABB′ = (1L(HAB) ⊗N)(PABE1) = TrE1

[(
(PABE1)TE1 ⊗ 1B′

)
(1AB ⊗ J(N))

]
. (3.12)

4See §3 of [Bra15] for more information about the non-uniqueness of degrading maps.
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If not, then the symmetric extendability of PAB can still be determined by running either one of the SDPs (3.3)
or (3.8).

The inspiration for this particular choice (3.9) of the degrading map E comes from the fact that it constructs
a symmetric extension throughout the symmetric extendability region for particular classes of states that will
be considered in Chapters 5 and 6.

3.4 Two-Qubit Bell-Diagonal States

By applying the necessary and sufficient condition (3.2) to the two-qubit Bell-diagonal state ρAB
Bell(~p) of (2.21),

we get that it is symmetrically extendable to a copy of B if and only if

1
2
≥ p2

I + p2
x + p2

y + p2
z − 4

√
pI px py pz.

When this holds, there exists a symmetric extension of the form

ρABB′
Bell (~p,~β) :=

1
8
(1C2 ⊗ 1C2 ⊗ 1C2 + βx1C2 ⊗ σx ⊗ σx + αxσx ⊗ 1C2 ⊗ σx

+ αxσx ⊗ σx ⊗ 1C2 + βy1C2 ⊗ σy ⊗ σy + αyσy ⊗ 1C2 ⊗ σy

+ αyσy ⊗ σy ⊗ 1C2 + βz1C2 ⊗ σz ⊗ σz + αzσz ⊗ 1C2 ⊗ σz

+ αzσz ⊗ σz ⊗ 1C2),

(3.13)

for some choice of the open parameters ~β = (βx, βy, βz) such that it is positive semi-definite, where αx, αy, αz
are given by (2.28). The proof of this can be found in [Myh10]. We will use this result in Chapter 5.
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Chapter 4

Two-Way Protocols & Breaking Symmetric
Extendability

The goal of this thesis is to determine whether there exist two-way post-processing protocols better than ad-
vantage distillation that allow Alice and Bob to distill a secret key using measurement data from either the
six-state or the BB84 signal states with equal QBER Q in each basis. Specifically, we want to know whether
such two-way protocols exist in the interval 5−

√
5

10 ≤ Q < 1
3 for the six-state signal states and 1

5 ≤ Q < 1
4 for

the BB84 signal states. Recall that within these intervals Alice and Bob’s initial correlations are symmetrically
extendable, which means that any successful two-way protocol must first break the symmetric extendability
of the correlations so that they can then proceed to the one-way error-correction and privacy amplification
protocols.

In this chapter, we look at general two-way post-processing protocols that might break the symmetric ex-
tendability of Alice and Bob’s correlations. As shown in [Myh+09], the problem can be simplified if all we care
about is whether a secret key can be distilled and not about the rate of key distillation. We recapitulate those
arguments and then show that the simplification leads to a manageable class of effective protocols involving
announcements of a relatively simple type on blocks of data, which can be modelled on the quantum states as
a local, independent post-selection by Alice and Bob. The remainder of the chapter is devoted to examining
the post-selected states and reducing the search of protocols within the simplified class of effective protocols
by determining announcements that are equivalent for the purpose of breaking symmetric extendability.

4.1 General Two-Way Protocols & Reduction to an Effective Protocol

As shown in Figure 4.1, the most general two-way protocol consists of a sequence of one-way communication
rounds in alternating directions, which continuously alters the effective state shared between Alice and Bob,
followed by a final round of one-way communication that we assume is from Alice to Bob and consists of
error-correction and privacy amplification. By Theorem 2.24, the effective state just before error-correction and
privacy amplification must not have a symmetric extension in order to successfully create a secret key. This
means that the symmetric extendability of the initial state ρAB

0 must be broken in one of the rounds prior to the
final round, and the round that breaks it has to be a one-way communication round from Bob to Alice since
symmetric extendability is preserved under one-way Alice-to-Bob communication, as we have seen in Chapter
3. Bob’s action in the round that breaks the symmetric extendability of the initial state can be described by some
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completely-positive map. Letting {Ki}i be the Kraus operators of the map corresponding to this round, we
must have that

σAB := ∑
i
(1A ⊗ Ki)τ

AB(1A ⊗ Ki)
† = ∑

i
piσ

AB
i

is not symmetrically extendable, where τAB is the state prior to the round, pi = Tr[(1A⊗Ki)τ
AB(1A⊗Ki)

†] and
σAB

i = 1
pi
(1A ⊗ Ki)τ

AB(1A ⊗ Ki)
† for all i. For this state to not be symmetrically extendable, at least one of the

states σAB
i must not be symmetrically extendable, that is, at least one of the Kraus operators alone must break the

symmetric extendability of τAB. On the other hand, if all σAB
i are symmetrically extendable, then so will σAB

by convexity of the set of symmetrically extendable states. This means that for the purpose of determining
whether a secret key can be distilled, it is enough to look at filtering operations (that is, CP maps with one
Kraus operator) performed by Bob.

Alice BobρAB
0

1st Round
ρAB

1

2nd Round
ρAB

2|1

...
...

Nth Round
ρAB

N|1,2,...,N−1

Error-
Correction,

Privacy
Amplification

ρAB
N|1,2,...,N−1 must not

be symmetrically extendable.

Guess Alice’s
Announcements &

Perform
Corresponding

Operations

Alice BobρAB
0

Break
Symmetric
Extension

ρAB
eff

Error-
Correction,

Privacy
Amplification

ρAB
eff must not

be symmetrically extendable.

Figure 4.1: A general two-way post-processing protocol to break the symmetric extendability
of the initial state ρAB

0 followed by the error-correction and privacy amplification protocols to
distill a secret key. If all we care about is whether a secret key can be distilled after such a
protocol and not about the rate of key distillation, then the two-way protocol can be reduced
to simply one round of Bob-to-Alice communication, which must break the symmetric extend-
ability of the initial state, followed by error-correction and privacy amplification.

Next, we can reduce the finite number of one-way rounds to two. As shown in Figure 4.1, for each of the
blocks being processed prior to the final round (that is, prior to the Nth round) of two-way communication,
Bob can guess Alice’s announcement and perform the corresponding operations on his blocks. In the Nth
round, Bob will announce the results of his operations to Alice. Then, in the final round, Alice will announce to
Bob her results for each of the blocks. Based on this announcement, Bob will know whether or not his guesses
were correct. For the tiny fraction of blocks in which Bob guessed correctly, Alice and Bob can proceed to the
remaining one-way error-correction and privacy amplification steps as long as the symmetric extendability
of the initial state was broken during Bob’s announcement. This means that if a successful two-way protocol
with multiple rounds can break the symmetric extendability of the initial state, then the same protocol reduced
to only two rounds as just described can also break the symmetric extendability of the initial state, albeit with
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possibly lower success probability and lower key rate.

So far, we have shown (as was originally done in [Myh+09]) how a general two-way protocol can be
reduced to one round of local operations by Bob on a block of his data. In this thesis, we are considering QKD
protocols with the BB84 and six-state signal states, which means that after parameter estimation Alice and Bob
merely hold classical bits resulting from their measurements. The conditional quantum states in Figure 4.1 are
then defined by appropriately representing the operations on the classical bits quantum-mechanically such
that if the initial measurement had been delayed until after the quantum operation then the resulting statistics
would be the same as the statistics obtained from the classical operations on the classical bits1.

Now, the only possible classical operations on blocks of data are functions of the form f : {0, 1}n → {0, 1}k

for some function f (for some n and k) and/or post-selection (that is, keeping data of some desired types and
discarding the rest). Most generally, the block size as well as the functions and post-selection performed, will
vary from round to round; however, as argued above, for our purposes it is enough to simply consider one
round of such operations performed by Bob. The post-selection is defined by the triple (n, m,P), where n, m ≥ 1
and the post-selection set P = {Pk}m−1

k=0 ⊆ {0, 1}n is a set of n-bit strings with n being the block size. Quantum-
mechanically, this purely classical post-selection can be described by the Kraus operator2

AP :=
m−1

∑
k=0
|k〉 〈Pk| . (4.1)

The result of any function f performed before or after post-selection can always be incorporated by appropri-
ately modifying the post-selection. This means that we only have to consider post-selection operations.

The initial correlations between Alice and Bob on a block of their data of size n are described by the state
(ρAB)⊗n, where ρAB as before describes Alice and Bob’s correlations after one round of signal state distribution
and measurement. The state resulting from one round of post-selection on P performed by Bob is then

(1An ⊗ AP)(ρ
AnBn

)(1An ⊗ AP)
†, (4.2)

where
ρAnBn

:= W
(

ρAB
)⊗n

W†, (4.3)

and W ∈ U(HA1B1 ⊗HA2B2 · · · ⊗HAnBn ,HA1 A2···An ⊗HB1B2···Bn) rearranges the subsystems as follows:

W |a1, b1, a2, b2, . . . , an, bn〉A1B1 A2B2···AnBn = |a1, a2, . . . , an, b1, b2, . . . , bn〉A1 A2···AnB1B2···Bn (4.4)

for all 0 ≤ a1, . . . , an, b1, . . . , bn ≤ 1. In what follows, we will also allow Alice to perform a post-selection
defined by a Kraus operator of the type (4.1) since doing so will make the problem mathematically simpler, as
we will see later.

Now, with the class of filters (4.1), we can define an effective protocol as follows: after Alice and Bob agree
on a block size n and on sets P = {Pk}mA−1

k=0 and Q = {Q`}mB−1
`=0 of n-bit strings:

1. Alice checks if her block of data is contained in P and announces either “yes” or “no” to Bob.

1Delaying measurements until after a quantum computation and replacing any intermediate classical processing of measurement
data by quantum operations is called the principle of deferred measurement [NC00].

2Note that the form of the Kraus operator assumes that the data results from measurement in the z-basis only; however, since we
are only considering QKD protocols with the BB84 and six-state signal states in the case of equal QBER in each basis, the measurement
statistics are the same in each basis, so nothing is gained by using, for example, a filter like |0〉 〈+++| + |1〉 〈+−+| + · · · , which
corresponds to data from measurement in the x-basis.
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2. Bob similarly checks if his block of data is in Q, announcing to Alice either “yes” or “no”.

If both Alice and Bob announce “yes”, they each retain the set index of the string obtained; if not (that is, either
Alice, Bob, or both announce “no”), then the entire block of data is discarded. In this effective protocol, Alice
and Bob merely perform an independent post-selection on their data according to the sets P,Q, which we will
call announcement sets. The advantage distillation protocol is a special case of this effective protocol in which
P = Q = {0n, 1n}. We will examine these sets in the context of breaking symmetric extendability in Chapter 5.

With the BB84 and six-state signal states, the data held by Alice and Bob after their measurements can be
described by multiple copies of the Bell-diagonal states (2.42) and (2.44):

ρAB
Q,x = (1− 2Q + x)

∣∣Φ+
〉 〈

Φ+
∣∣+ (Q− x)

∣∣Φ−〉 〈Φ−∣∣
+ (Q− x)

∣∣Ψ+
〉 〈

Ψ+
∣∣+ x

∣∣Ψ−〉 〈Ψ−∣∣ , 0 ≤ x ≤ Q (BB84),

ρAB
Q =

(
1− 3

2
Q
) ∣∣Φ+

〉 〈
Φ+
∣∣+ Q

2

∣∣Φ−〉 〈Φ−∣∣+ Q
2

∣∣Ψ+
〉 〈

Ψ+
∣∣+ Q

2

∣∣Ψ−〉 〈Ψ−∣∣ (Six-State).

If the effective protocol described above is successful, then using the six-state signal states the updated
(unnormalized) state shared by Alice and Bob, which we denote ρÃB̃

Q,(P,Q), is

ρÃB̃
Q,(P,Q) := (AP ⊗ AQ)(ρ

AnBn

Q )(AP ⊗ AQ)
†. (4.5)

The state ρAn B̃
Q,(Bn,Q) corresponds to the case of Alice post-selecting on Bn := {0, 1}n, that is, on all bit strings,

which is effectively not a post-selection at all since ABn = 1An . A natural choice of an announcement set for
Alice that we will consider is P = Q, that is, Alice and Bob post-select on the same set. We will write ρÃB̃

Q,P

instead of ρÃB̃
Q,(P,P) when this is the case.

By taking the QBER Q to be within the gap 5−
√

5
10 ≤ Q < 1

3 , we can now determine the existence of a two-
way post-processing protocol that can be used to distill a secret key by determining whether there exist sets
P,Q such that the state ρÃB̃

Q,(P,Q) does not have a symmetric extension. If ρÃB̃
Q,(P,Q) does have a symmetric extension

for all 5−
√

5
10 ≤ Q < 1

3 no matter the choice of sets P,Q, then there does not exist a two-way post-processing
protocol to distill a secret key beyond the current bounds.

For the BB84 signal states, forming the corresponding filtered states as per (4.5), we obtain for each Q and
every pair (P,Q) of announcement sets the states {ρÃB̃

(Q,x),(P,Q)}x∈[0,Q]. Determining the symmetric extendability

of these states in the gap 1
5 ≤ Q < 1

4 means determining the symmetric extendability of ρÃB̃
(Q,x),(P,Q) for each

value of the open parameter x ∈ [0, Q]. For simplicity, we will throughout the rest of the thesis deal with only
the six-state signal states and the corresponding filtered states ρÃB̃

Q,(P,Q).

Being subsets of the n-bit strings {0, 1}n, the sets P and Q used to form the filtered states ρÃB̃
Q,(P,Q) corre-

sponding to the effective protocol described above can essentially be thought of as binary (classical) error-
correcting codes—which by definition are subsets of {0, 1}n—with the strings Pk, Q` in the sets being the code-
words3. It is common to write the codewords as the rows of a matrix, and we will do so throughout this thesis.
We now go through some of the basic error-correction notation and terminology that will be used in later
chapters.

3A good reference on error-correcting codes is [MS77].
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The bitwise XOR operation ⊕ between two strings in {0, 1}n is defined as the string in which each position
of the string is obtained by performing the XOR operation on the corresponding positions of the two strings,
where the XOR operation is defined as

0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0

The bitwise AND operation � between two strings in {0, 1}n is defined as the string in which each position of
the string is obtained by performing the AND operation on the corresponding positions of the two strings,
where the AND operation is defined as

0 AND 0 = 0, 0 AND 1 = 0, 1 AND 0 = 0, 1 AND 1 = 1

The set {0, 1}n together with the addition⊕ and the scalars {0, 1} forms an n-dimensional vector space4. More
generally, the set {0, 1}n together with the addition ⊕ and the multiplication � forms a ring.

For any α ∈ {0, 1}n, |α| is called the Hamming weight of α and is defined as the number of ones in the string
α. For any α, β ∈ {0, 1}n, it holds that [MS77]

|α⊕ β| = |α|+ |β| − 2|α� β|. (4.6)

For any α = α1 · · · αn and β = β1 · · · βn in {0, 1}n, the dot product α · β is defined as α · β = α1β1 + · · · +
αnβn (mod 2). For any α ∈ {0, 1}n, α is called the complement of α and is defined as the n-bit string with the
1s in α replaced by 0s and the 0s replaced by 1s. It holds that α⊕ α = 11 · · · 11 and α� α = 00 · · · 00 for all
α ∈ {0, 1}n.

Error-correcting codes P = {Pk}m−1
k=0 that are closed under addition are called linear codes. The closure prop-

erty of linear codes ensures that the number m of codewords is equal to 2k for some k ≤ n. Since linear codes
are themselves vector spaces of dimension k over the same scalar set {0, 1}, there exists a basis {B1, B2, . . . , Bk}
of the code such that any codeword Pi ∈ P can be written as Pi = αi,1B1 ⊕ αi,2B2 ⊕ · · · ⊕ αi,kBk for some string
αi = αi,1αi,2 · · · αi,k ∈ {0, 1}k for all 0 ≤ i ≤ 2k − 1. It follows that for each linear code P there exists a n× k
binary matrix GP, called the generator matrix of P, whose k columns are the strings B1, . . . , Bk, such that

Pi = GPαi ∀ 0 ≤ i ≤ 2k − 1. (4.7)

In this equation, the codewords Pi and the strings αi are considered column vectors of size n and k, respectively.
Linear codes are specified using the notation [n, k, d] whenever the code has block size n, 2k codewords, and
minimum distance d. In Appendix E we examine in detail the filtered states resulting from post-selection on
linear codes.

Non-linear codes are those that are not closed under addition. Their codewords cannot be written in the
form (4.7). One might imagine that non-linear codes might be more powerful than linear codes and therefore
capable of breaking the symmetric extendability of ρAB

Q beyond the current bounds. Both the numerical and
analytical evidence we provide in this thesis indicates that this is not the case. In fact, all that appears to matter
is the size of the code and not whether it is linear or non-linear.

4.2 Structure of the Filtered States

Starting with

AP =
mA−1

∑
k=0
|k〉 〈Pk| , AQ =

mB−1

∑
`=0
|`〉 〈Q`|

4The scalar multiplication is defined in the expected way: for any α ∈ {0, 1}n, 0α = 0n and 1α = α.
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for some P = {Pk}mA−1
k=0 and Q = {Q`}mB−1

`=0 , we can write the filtered state ρÃB̃
Q,(P,Q) defined by (4.5) as

ρÃB̃
Q,(P,Q) =

mA−1

∑
k=0

mB−1

∑
`=0

(
ρÃB̃

Q,(P,Q)

)
k,`

k′,`′
|k, `〉

〈
k′, `′

∣∣ÃB̃ , (4.8)

where(
ρÃB̃

Q,(P,Q)

)
k,`

k′,`′
:= 〈Pk, Q`| ρAnBn

Q |Pk′ , Q`′〉 = 〈Pk,1, Q`,1| ρAB
Q |Pk′,1, Q`′,1〉 · · · 〈Pk,n, Q`,n| ρAB

Q |Pk′,n, Q`′,n〉 . (4.9)

By writing ρAB
Q in the standard basis of C2 ⊗C2 as

ρAB
Q =


1−Q

2 0 0 1−2Q
2

0 Q
2 0 0

0 0 Q
2 0

1−2Q
2 0 0 1−Q

2

 , (4.10)

it holds that

〈a, b| ρAB
Q
∣∣a′, b′

〉
=

(
Q
2

)a⊕b (1− 2Q
2

)(a⊕b)(a⊕a′) (1−Q
2

)a⊕b−(a⊕b)(a⊕a′)

δa⊕b,a′⊕b′δ(a⊕b)(a⊕a′),0

for all 0 ≤ a, b, a′, b′ ≤ 1. Therefore,

(
ρÃB̃

Q,(P,Q)

)
k,`

k′,`′
=

(
Q
2

)|Pk⊕Q`| (1− 2Q
2

)|(Pk⊕Q`)�(Pk⊕Pk′ )|

×
(

1−Q
2

)|Pk⊕Q`|−|(Pk⊕Q`)�(Pk⊕Pk′ )|
δPk⊕Q`,Pk′⊕Q`′ δ(Pk⊕Q`)�(Pk⊕Pk′ ),0

n .

(4.11)

However, using the fact that

|Pk ⊕Q`| = n− |Pk ⊕Q`|,
|(Pk ⊕Q`)� (Pk ⊕ Pk′)| = |Pk ⊕ Pk′ | − |(Pk ⊕Q`)� (Pk ⊕ Pk′)|,

we get (
ρÃB̃

Q,(P,Q)

)
k,`

k′,`′
=

(
1− 2Q

2

)|Pk⊕Pk′ | (Q
2

)|Pk⊕Q`|

×
(

1−Q
2

)n−|Pk⊕Pk′ |−|Pk⊕Q`|
δPk⊕Q`,Pk′⊕Q`′ δ(Pk⊕Q`)�(Pk⊕Pk′ ),0

n .

(4.12)

The Kronecker delta δPk⊕Q`,Pk′⊕Q`′ indicates that the matrix elements of the filtered state are non-zero if and
only if Pk ⊕Q` = Pk′ ⊕Q`′ , which means that the filtered state has a block structure with blocks characterized
by the sums Pk ⊕Q`. By defining the set

C = {Pk ⊕Q` : 0 ≤ k ≤ mA − 1, 0 ≤ ` ≤ mB − 1}, (4.13)

it holds that the (ordered) standard basis {|k, `〉ÃB̃ : 0 ≤ k ≤ mA − 1, 0 ≤ ` ≤ mB − 1} can be changed to the
new (ordered) basis ⋃

c∈C
{|k, `〉ÃB̃ : Pk ⊕Q` = c}
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by a unitary V that simply reorders the standard basis elements and leaves the filtered state in a block-diagonal
form:

VρÃB̃
Q,(P,Q)V

† =
⊕
c∈C

M(c)
Q,(P,Q), (4.14)

where M(c)
Q,(P,Q) are the blocks. The state ρÃB̃

Q,(P,Q) can then be written as

ρÃB̃
Q,(P,Q) = ∑

c∈C
∑

(k,`,k′,`′)
∈Ic×Ic

(
ρÃB̃

Q,(P,Q)

)
k,`

k′,`′
|k, `〉

〈
k′, `′

∣∣ , (4.15)

where
Ic := {(k, `) : Pk ⊕Q` = c}. (4.16)

4.2.1 No Post-selection by Alice

The state ρAn B̃
Q,(Bn,Q) resulting from no post-selection by Alice is

ρAn B̃
Q,(Bn,Q) = (1An ⊗ AQ)

(
ρAnBn

Q

)
(1An ⊗ AQ)

†.

If we order the set Bn such that the elements of Q come first, then as a matrix in the standard basis, ρAn B̃
Q,(Bn,Q)

has the following block-matrix form:

ρAn B̃
Q,(Bn,Q) =

[
ρÃB̃

Q,Q X
X† ρÃB̃

Q,(Qc,Q)

]
,

where X = (AQ ⊗ AQ)(ρ
AnBn

Q )(AQc ⊗ AQ)
† and Qc = Bn \ Q.

4.3 Symmetric Extendability of the Filtered States

As stated earlier, the key to the existence of two-way post-processing protocols allowing Alice and Bob to
distill a secret key in the gap is determining the symmetric extendability of the states ρÃB̃

Q,(P,Q) for all Q in
the gap resulting from Alice post-selecting on set P and Bob post-selecting on set Q. Equivalently, we can
determine the anti-degradability of the CP maps ΦQ,(P,Q) ∈ CP(HÃ,HB̃) defined by ρÃB̃

Q,(P,Q) according to (2.12):

ΦQ,(P,Q)(X) = TrÃ

[
(XT ⊗ 1B̃)ρ

ÃB̃
Q,(P,Q)

]
∀ X ∈ L(HÃ). (4.17)

Since general existence criteria for the symmetric extendability of states on spaces of arbitrary dimension are
presently not known, as outlined in Chapter 3 we will be determining the symmetric extendability of the states
ρÃB̃

Q,(P,Q) either using an SDP or by attempting an explicit construction (either numerically or analytically) of a
symmetric extension of the state.
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4.3.1 Estimating Threshold Error Rates

For given sets P and Q, we obtain the one-parameter family
{

ρÃB̃
Q,(P,Q)

}
Q∈[0, 1

2 ]
of states for which we can define

the function TP,Q :
[
0, 1

2

]
→ R by

TP,Q(Q) = topt(ρ
ÃB̃
Q,(P,Q)), (4.18)

where topt(ρÃB̃
Q,(P,Q)) is the solution to the SDP (3.3). Recall that the sign of topt indicates the symmetric extend-

ability of the state: if topt is positive, then the state is not symmetrically extendable and if topt is non-positive,
then the state is symmetrically extendable. This means that the zero(s) of TP,Q will give us the threshold er-
ror(s) at which the symmetric extendability of the family of states changes. Since there is only one threshold
of 1

6 for the original isotropic states
{

ρAB
Q

}
Q∈[0, 1

2 ]
, with the states being symmetrically extendable above it,

we expect that for any sets P,Q there will be only one threshold, call it Q∗P,Q. In other words, we expect the
parameter space of ρÃB̃

Q,(P,Q) to look something like Figure 4.2. We would like to find sets P,Q such that Q∗P,Q

is inside, or even right at the upper end of the gap at 1
3 , since this would indicate the existence of a two-way

post-processing protocol distilling a secret key within the gap.

Q
0 1

6
1
2

Q∗P,Q 5−
√

5
10

1
3

Gap

Not Symmetrically
Extendable

Symmetrically Extendable

Figure 4.2: The expected parameter space of the state ρÃB̃
Q,(P,Q) for arbitrary P,Q.

As stated earlier, it should be enough to break the symmetric extendability of ρAB
Q by post-selecting only on

Bob’s data. The following fact states that if post-selection by Bob only cannot break symmetric extendability,
then post-selection by Alice as well will have no effect on breaking symmetric extendability.

Proposition 4.1

Suppose that for some announcement set Q the state ρAn B̃
Q,(Bn,Q) is symmetrically extendable with

symmetric extension ρAn B̃B̃′
Q,(Bn,Q). Then, for any announcement set P, the state ρÃB̃

Q,(P,Q) is symmet-
rically extendable.

PROOF: We first observe that

ρÃB̃
Q,(P,Q) = (AP ⊗ 1B̃)ρ

An B̃
Q,(Bn,Q)(AP ⊗ 1B̃)

†.

Now, consider the state
ρÃB̃B̃′

Q,(P,Q) := (AP ⊗ 1B̃ ⊗ 1B̃′)ρ
An B̃B̃′
Q,(Bn,Q)(AP ⊗ 1B̃ ⊗ 1B̃′)

†.

Then,
TrB̃′

[
ρÃB̃B̃′

Q,(P,Q)

]
= (AP ⊗ 1B̃)TrB̃′

[
ρAn B̃B̃′

Q,(Bn,Q)

]
(AP ⊗ 1B̃)

† = ρÃB̃
Q,(P,Q)
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and
TrB̃

[
ρÃB̃B̃′

Q,(P,Q)

]
= (AP ⊗ 1B̃)TrB̃

[
ρAn B̃B̃′

Q,(Bn,Q)

]
(AP ⊗ 1B̃)

† = ρÃB̃
Q,(P,Q),

where we have used the fact that ρAn B̃B̃′
Q,(Bn,Q) is a symmetric extension of ρAn B̃

Q,(Bn,Q). Therefore, by definition, ρÃB̃B̃′
Q,(P,Q)

is a symmetric extension of ρÃB̃
Q,(P,Q). Since P was arbitrary, the proof is complete. �

The converse of this proposition is generally not true, meaning that if ρAn B̃
Q,(Bn,Q) is not symmetrically ex-

tendable, then a post-selection on P by Alice might make ρÃB̃
Q,(P,Q) symmetrically extendable. This means that,

in general, Q∗P,Q ≤ Q∗Bn,Q, which means that having Alice post-select has the undesired effect of potentially
moving the threshold away from the gap. On the other hand, for the purpose of efficient numerical analysis
using the SDP (3.3), letting Alice post-select is advantageous since this reduces the dimension of her system
from 2n to something smaller. Fortunately, supported by the data we will see in Chapter 8, and the analytic
proof in §5.3 for a particular class of linear codes, we conjecture the following.

Conjecture 1

For all announcement sets P,
Q∗P ≡ Q∗P,P = Q∗Bn,P.

In other words, when Alice and Bob post-select on the same set, the converse of Proposition 4.1 appears to
hold, meaning that we can let Alice and Bob post-select on the same set without compromising our ability to
find thresholds within the gap.

4.3.2 Constructing Symmetric Extensions

The other way to determine the symmetric extendability of states that was described in Chapter 3 is explicitly
constructing a channel on a purification of the state. In particular, we saw that for any state ρAB the existence
of a channel E satisfying (1L(HA)⊗E)(ρAE1E2) = ρAB is necessary and sufficient for the symmetric extendability
of ρAB, where ρAE1E2 = TrB[|ψ〉 〈ψ|ABE1E2 ] and |ψ〉ABE1E2 = vec(

√
ρAB) is a purification of ρAB in HE1E2 .

For the one-parameter family
{

ρÃB̃
Q,P

}
Q∈[0, 1

2 ]
resulting from Alice and Bob post-selecting on the same set P,

we have the following conjecture about the form of a channel EQ,P ∈ C(HE1 ⊗HE2 ,HB̃′) such that

ρÃB̃
Q,P = (1L(HÃ)

⊗ EQ,P)(ρ
ÃE1E2)

for all Q ≥ Q∗P:

Conjecture 2

For all announcement sets P, there exists a channel N(Q,Q∗P),P
∈ C(HB̃′ ,HB̃′) for all Q ≥ Q∗P such

that
EQ,P = N(Q,Q∗P),P

◦ EQ∗P,P. (4.19)

In other words, the channel constructing a symmetric extension can be split into two steps: the first that
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on its own constructs a symmetric extension at the threshold Q∗P, and the second that acts as a post-processing
step that completes the construction of a symmetric extension beyond the threshold. It necessarily holds due
to the form of (4.19) that

N(Q∗P,Q∗P),P
= 1L(HB̃′ )

.

The channel EQ∗P,P constructing a symmetric extension at the threshold Q∗P can be found numerically by first
numerically estimating Q∗P and then using the SDP (3.8).

Note that the special case E = N ◦ TrE2 covered in §3.3 is also composed of two steps. As we will see in
Chapters 5 and 6, it holds that EQ∗P,P = TrE2 whenever P is a repetition code or a simplex code. This special
case will also provide a useful and efficient way of numerically checking the symmetric extendability within
the gap of the filtered states for arbitrary P, the results of which will be presented in Chapter 7.

4.4 Equivalent Announcement Sets

In this section, we show that announcement sets differing by certain basic operations, namely addition of each
element of the set by some bit string and a permutation of each element in the set, leave the corresponding
state unchanged, meaning that states generated using announcement sets differing by these operations will
have exactly the same symmetric extendability bounds. Throughout this section, Sn refers to the permutation
group on n elements.

Proposition 4.2 Invariance Under Addition and Permutation

For any announcement sets P = {Pk}mA−1
k=0 and Q = {Q`}mB−1

`=0 of n-bit strings, it holds that

1. For any α ∈ {0, 1}n, the sets P⊕ α := {Pk ⊕ α}mA−1
k=0 and Q⊕ α := {Q` ⊕ α}mB−1

`=0 satisfy

ρÃB̃
Q,(P⊕α,Q⊕α) = ρÃB̃

Q,(P,Q);

2. For any π ∈ Sn, the sets π(P) := {π(Pk)}mA−1
k=0 and π(Q) := {π(Q`)}mB−1

`=0 satisfy

ρÃB̃
Q,(π(P),π(Q)) = ρÃB̃

Q,(P,Q),

where for Pk = Pk,1Pk,2 · · · Pk,n the string π(Pk) is defined as π(Pk) =
Pk,π(1)Pk,π(2) · · · Pk,π(n).

PROOF:

1. For any α ∈ {0, 1}n, we have by definition

AP⊕α =
mA−1

∑
k=0
|k〉 〈Pk ⊕ α| and AQ⊕α =

mB−1

∑
`=0
|`〉 〈Q` ⊕ α| .

Now5,
|Pk ⊕ α〉 = (σx)

α |Pk〉 ,
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and similarly for |Q` ⊕ α〉. Therefore,

AP⊕α = AP(σ
A
x )α and AQ⊕α = AQ(σ

B
x )

α.

Therefore,

ρÃB̃
Q,(P⊕α,Q⊕α) = (AP⊕α ⊗ AQ⊕α)(ρ

AnBn

Q )(AP⊕α ⊗ AQ⊕α)
†

= (AP ⊗ AQ)((σ
A
x )α ⊗ (σB

x )
α)(ρAnBn

Q )((σA
x )α ⊗ (σB

x )
α)†(AP ⊗ AQ)

†.

Since each copy ρAB
Q of ρAnBn

Q is Bell-diagonal, which means that (σx ⊗ σx)ρAB
Q (σx ⊗ σx)† = ρAB

Q as seen in
(2.29), it holds that

((σA
x )α ⊗ (σB

x )
α)(ρAnBn

Q )((σA
x )α ⊗ (σB

x )
α)† = ρAnBn

Q .

Therefore,
ρÃB̃

Q,(P⊕α,Q⊕α) = (AP ⊗ AQ)(ρ
AnBn

Q )(AP ⊗ AQ)
† = ρÃB̃

Q,(P,Q),

as required.

2. Defining the operator Φπ as
Φπ = ∑

α∈{0,1}n

|π(α)〉 〈α| ,

it holds that

Aπ(P) =
mA−1

∑
k=0
|k〉 〈π(Pk)| =

mA−1

∑
k=0
|k〉 〈Pk|Φ†

π = APΦ†
π,

and similarly Aπ(Q) = AQΦ†
π. But Φ†

π = Φ−1
π by the unitarity of Φπ, and Φ−1

π = Φπ−1 , which can be
easily verified. Therefore,

ρÃB̃
Q,(π(P),π(Q)) = (Aπ(P) ⊗ Aπ(Q))(ρ

AnBn

Q )(Aπ(P) ⊗ Aπ(Q))
†

= (AP ⊗ AQ)(ΦAn

π−1 ⊗ΦBn

π−1)(ρ
AnBn

Q )(ΦAn

π−1 ⊗ΦBn

π−1)
†(AP ⊗ AQ)

†.

Since ρAnBn

Q is invariant under all permutations of the A and B sub-registers6, meaning that for all σ ∈ Sn

(ΦAn

σ ⊗ΦBn

σ )(ρAnBn

Q )(ΦAn

σ ⊗ΦBn

σ )† = ρAnBn

Q ∀σ ∈ Sn,

we have that
ρÃB̃

Q,(π(P),π(Q)) = (AP ⊗ AQ)(ρ
AnBn

Q )(AP ⊗ AQ)
† = ρÃB̃

Q,(P,Q),

as required. �

We now prove the intuitively-expected result that the ordering of the strings in the sets P and Q is irrelevant
to the question of the symmetric extendability of the filtered states.

5For any α = α1α2 · · · αn ∈ {0, 1}n, (σx)α stands for σα1
x ⊗ σα2

x ⊗ · · · ⊗ σαn
x , where σ0

x = 1C2 and σ1
x = σx.

6This is simply due to the fact that ρAn Bn

Q , as defined in (4.3), is formed from the tensor product (ρAB
Q )⊗n.

50



Chapter 4: Two-Way Protocols & Breaking Symmetric Extendability

Proposition 4.3 Unitary Invariance Under Permutation of Codewords

For any two announcement sets P = {Pk}mA−1
k=0 and Q = {Q`}mB−1

`=0 , consider for any πA ∈ SmA

and any πB ∈ SmB the announcement sets

P(πA) := {P(πA)
k }mA−1

k=0 , Q(πB) := {Q(πB)
` }mB−1

`=0 ,

where

P(πA)
k = Pπ−1

A (k) ∀ 0 ≤ k ≤ mA − 1, Q(πB)
` = Qπ−1

B (`) ∀ 0 ≤ ` ≤ mB − 1.

It holds that
ρÃB̃

Q,(P(πA),Q(πB))
= (ΦπA ⊗ΦπB) ρÃB̃

Q,(P,Q) (ΦπA ⊗ΦπB)
† ,

where the unitaries ΦπA and ΦπB are defined as

ΦπA =
mA−1

∑
k=0
|πA(k)〉 〈k| , ΦπB =

mB−1

∑
`=0
|πB(`)〉 〈`| .

PROOF: This follows from the fact that Pk = P(πA)
πA(k)

for all 0 ≤ k ≤ mA − 1 and that Q` = Q(πB)
πB(`)

for all
0 ≤ ` ≤ mB − 1, which means that

ΦπA AP =
mA−1

∑
k=0

ΦπA |k〉 〈Pk| =
mA−1

∑
k=0
|πA(k)〉

〈
P(πA)

πA(k)

∣∣∣ = mA−1

∑
k′=0

∣∣k′〉 〈P(πA)
k′

∣∣∣ = A
P(πA)

and

ΦπB AQ =
mB−1

∑
`=0

ΦπB |`〉 〈Q`| =
mB−1

∑
`=0
|πB(`)〉

〈
P(πB)

πB(`)

∣∣∣ = mB−1

∑
`′=0

∣∣`′〉 〈P(πB)
`′

∣∣∣ = A
Q(πB) . �

Reordering the codewords therefore changes the states by some local unitaries, and since we know from
Chapter 3 that symmetrically extendable states are preserved under local unitaries, it holds that reordering the
codewords has no effect on the symmetric extendability bounds of the filtered states.

Proposition 4.4

For any two announcement sets P = {Pk}mA−1
k=0 and Q = {Q`}mB−1

`=0 of n-bit strings, consider the
sets P̂ and Q̂ of (n + x)-bit strings defined by

P̂ = {0xPk}mA−1
k=0 , Q̂ = {0xQ`}mB−1

k=0

for some x ≥ 1. It holds that7

ρÃB̃
Q,(P̂,Q̂) =

(
1−Q

2

)x

ρÃB̃
Q,(P,Q).

7More generally, this result holds for the sets P̂ = {αPk}mA−1
k=0 and Q̂ = {αQ`}mB−1

`=0 for any α ∈ {0, 1}n, though for our purposes
letting α = 0n will be sufficient, as we will see shortly.
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PROOF: We have by definition

ρÃB̃
Q,(P̂,Q̂) = (AP̂ ⊗ AQ̂)(ρ

An+x Bn+x

Q )(AP̂ ⊗ AQ̂)
†

=
mA−1

∑
k,k′=0

mB−1

∑
`,`′=0

〈0xPk, 0xQ`| ρAn+x Bn+x

Q |0xPk′ , 0xQ`′〉 |k, `〉
〈
k′, `′

∣∣
= 〈0x, 0x| ρAx Bx

Q |0x, 0x〉
mA−1

∑
k,k′=0

mB−1

∑
`,`′=0

〈Pk, Q`| ρAnBn

Q |Pk′ , Q`′〉 |k, `〉
〈
k′, `′

∣∣
︸ ︷︷ ︸

ρÃB̃
Q,(P,Q)

.

Now, from (4.10), one finds that

〈0, 0| ρAB
Q |0, 0〉 = 1−Q

2
,

so that

〈0x, 0x| ρAx Bx

Q |0x, 0x〉 = 〈0, 0| ρAB
Q |0, 0〉 · · · 〈0, 0| ρAB

Q |0, 0〉︸ ︷︷ ︸
x times

=

(
1−Q

2

)x

.

Therefore,

ρÃB̃
Q,(P̂,Q̂) =

(
1−Q

2

)x

ρÃB̃
Q,(P,Q),

as required. �

The previous proposition tells us that if all the codewords of both announcement sets P and Q have a
zero in a common location, then removing those zeros from the codewords will not affect the symmetric
extendability bounds of the filtered states since the set of symmetrically extendable states is a cone, as stated
in Chapter 3.

Given Propositions 4.2 and 4.3 above, it suffices for our purposes to look at announcement sets which do
not differ by any of the following:

1. A fixed constant added to each string. This means that we need only consider announcement sets begin-
ning with the string 0n.

2. A fixed permutation applied to each string.

3. A permutation of the strings themselves within the set. This means that we need only consider an-
nouncement sets written in, say, increasing numerical order.

4. A combination of 1 and 2.

For a given block size n and a given number of codewords m, by Proposition 4.4 we may also remove from all
possible announcement sets those that contain a column of zeros when the announcement set is written as a
matrix with each codeword forming a row. Note that this can only be done if the two announcement sets P

and Q being used to form the state have a column of zeros of the same width (in Proposition 4.4, that width
was x). If not, then this can only be done if (1) P can be written as P = |P1|P2| (this notation will be defined in
§4.5.1), where the block size of P1 is x; (2) P = Q; or (3) if P = Bn (which is a special case of (1)). Since the latter
two cases are our main concern, we will always remove announcement sets that contain a column of zeros.
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We can indeed exclude announcement sets with a column of zeros when P = Bn since we will see in
the next section that if P = Bn and Q = {0xQ̂`}` for some set Q̂ = {Q̂`}` of (n − x)-bit strings, then since
Bn = |Bx|Bn−x| and Q = |{0x}|Q̂|, we have that

ρÃB̃
Q,(Bn,Q) = W

(
ρÃ1 B̃1

Q,(Bx ,{0x}) ⊗ ρÃ2 B̃2
Q,(Bn−x ,Q̂)

)
W†

for some unitary W. Since ρÃ1 B̃1
Q,(Bx ,{0x}) is separable (B̃1 is one-dimensional), it is trivially symmetrically ex-

tendable, which means that ρÃB̃
Q,(Bn,Q) is symmetrically extendable if and only if ρÃB̃

Q,(Bn−x ,Q̂)
is symmetrically

extendable.

4.4.1 Number of Inequivalent Announcement Sets

For given block lengths n and announcement set sizes m, we can use the equivalences developed in the previ-
ous section to determine the inequivalent announcement sets as follows: take all combinations of announce-
ment sets starting with the zero string and without any columns of zeros and search over all possible com-
binations of permutations and bit strings. Doing this for (n, m) = (3, 3), we obtain only two inequivalent
announcement sets: 

000
101
110

 ,


000
110
111

 .

When (n, m) = (3, 4), there are five inequivalent announcement sets:
000
011
100
111

 ,


000
011
101
110

 ,


000
100
101
110

 ,


000
100
110
111

 ,


000
101
110
111

 .

The search over all permutations and bit strings grows very rapidly with n since the number of permutations
is n! and the number of bit strings is 2n. This means that for each n we have to search n! · 2n combinations of
permutations and bit strings to determine all the inequivalent sets. By doing this for some small (n, m) pairs,
we obtain the following table giving us the number of inequivalent announcement sets.
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n
m

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1
3 1 2 5 3 3 1
4 1 3 13 24 47 55 73 56 50 27 19 6 4 1
5 1 4 28 104
6 1 6
7 1 7
8 1 9
9 1
10 1
11 1
12 1

Table 4.1: Number of inequivalent announcement sets for some small block lengths n and
announcement set sizes m. The highest possible m for each n such that the announcement set
is non-trivial is 2n − 1. Blank cells are undetermined.

For all n ≥ 2 and m = 2, there is always only one inequivalent announcement set, which is {0n, 1n}.

4.5 New Announcement Sets from Old Ones

We now go through two methods of combining codes that are relevant to this thesis. The main reference for
this section is [MS77], wherein one can find many more ways of combining codes to obtain new ones.

4.5.1 The Direct Sum Construction

For any code P = {Pk}m1−1
k=0 of block length n1 and any code Q = {Q`}m2−1

`=0 of block length n2, the direct sum
|P|Q| of P and Q is defined as

|P|Q| = {PkQ` : 0 ≤ k ≤ m1 − 1, 0 ≤ ` ≤ m2 − 1}8. (4.20)

It is natural to adopt the following two-index labelling of the elements of |P|Q|:

(|P|Q|)(i,j) = PiQj ∀ 0 ≤ i ≤ m1 − 1, ∀ 0 ≤ j ≤ m2 − 1. (4.21)

Then, by definition (4.1), the filter A|P|Q| used to post-select on |P|Q| is

A|P|Q| =
m1−1

∑
k=0

m2−1

∑
`=0

Ã |k, `〉 〈PkQ`|A
n1+n2 . (4.22)

Note that dÃ = m1m2, so that HÃ
∼= HÃ1

⊗HÃ2
, where dÃ1

= m1 and dÃ2
= m2. It then follows, as we show in

Proposition B.1 of Appendix B, that for sets P1 = {P1,k}
mA1−1
k=0 and Q1 = {Q1,`}

mB1−1
`=0 of n1-bit strings, and for

8The notation PkQ` is meant to indicate that the two strings Pk and Q` are put together to form one larger (n1 + n2)-bit string.
This is called the direct sum of P and Q because if both P and Q are linear codes with generator matrices GP and GQ, respectively, then
G|P|Q| = GP ⊕ GQ, that is, the generator matrix of |P|Q| is the direct sum of the generator matrices of P and Q.
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sets P2 = {P2,k}
mA2−1
k=0 and Q2 = {Q2,`}

mB2−1
`=0 of n2-bit strings, we have

ρÃ1 Ã2 B̃1 B̃2

Q,(|P1|P2|,
|Q1|Q2|)

= W
(

ρÃ1 B̃1
Q,(P1,Q1)

⊗ ρÃ2 B̃2
Q,(P2,Q2)

)
W†, (4.23)

where W = SWAPÃ2 B̃1
is the unitary operator that swaps the HÃ2

and HB̃1
spaces and is defined analogously

to (3.1). In other words the filtered state resulting from post-selection on direct sum of codes is equal (up to
ordering of the tensor factors) to the tensor product of the filtered states resulting from post-selection on the
codes forming the direct sum. It is then straightforward to show that ρÃ1 Ã2 B̃1 B̃2

Q,(|P1|P2|,
|Q1|Q2|)

is symmetrically extendable if

ρÃ1 B̃1
Q,(P1,Q1)

and ρÃ2 B̃2
Q,(P2,Q2)

are symmetrically extendable. This result can be extended to apply to announcement
sets formed from a direct sum of an arbitrary number of announcement sets. If P1,P2, . . . ,Pk and Q1,Q2, . . . ,Qk

are two sets of k announcement sets, with resulting filtered states ρÃ1 B̃1
Q,(P1,Q1)

, ρÃ2 B̃2
Q,(P2,Q2)

, . . . , ρÃk B̃k
Q,(Pk ,Qk)

, then

ρÃ1···Ãk B̃1···B̃k

Q,(|P1|···|Pk |,
|Q1|···|Qk |)

= W
(

ρÃ1 B̃1
Q,(P1,Q1)

⊗ · · · ⊗ ρÃk B̃k
Q,(Pk ,Qk)

)
W†,

where W performs the appropriate tensor factor swapping. Then, ρÃ1···Ãk B̃1···B̃k

Q,(|P1|···|Pk |,
|Q1···|Qk |)

is symmetrically extendable if

ρÃ1 B̃1
Q,(P1,Q1)

, . . . , ρÃk B̃k
Q,(Pk ,Qk)

are all symmetrically extendable.

4.5.2 Levenshtein’s Construction

Let P = {Pk}m1−1
k=0 be an announcement set of n1-bit strings and Q = {Q`}m2−1

`=0 be an announcement set of
n2-bit strings. The Levenshtein construction from a copies of P and b copies of Q, denoted aP + bQ, is obtained
by pasting a copies of the codewords of P side-by-side with b copies of the codewords of Q side-by-side and
omitting the last m2 −m1 rows of Q (if m1 < m2) or omitting the last m1 −m2 rows of P (if m1 > m2), as shown
in the diagram below.

P P P
a

Q Q

b

Omit

Figure 4.3: The Levenshtein construction aP+ bQ.

aP+ bQ is a new announcement set with block size n1 + n2 and size min{m1, m2}. If m1 = m2 = m, then
we can write

aP+ bQ = {Pk · · · Pk︸ ︷︷ ︸
a times

Qk · · ·Qk︸ ︷︷ ︸
b times

: 0 ≤ k ≤ m− 1}.

In this case, we show in Proposition B.2 that if Alice and Bob both filter on aP+ bQ, then

ρÃB̃
Q,aP+bQ =

(
ρÃB̃

Q,P

)◦a
◦
(

ρÃB̃
Q,Q

)◦b
, (4.24)

where ◦ denotes the Hadamard product (also sometimes called the Schur product), which for two matrices A and
B of the same size is defined as

(A ◦ B)k
`
= Ak

`
Bk
`
∀ k, `. (4.25)
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The Levenshtein construction aP of a copies of an announcement set P is a simple way of increasing the block
length of a code while keeping the number of codewords constant. We will use this construction in Chapter 6.

Summary

In this chapter, we have looked at general two-way post-processing protocols that might break the symmetric
extendability of Alice and Bob’s initial correlations for QKD protocols using the six-state signal states when-
ever the QBER Q is in the gap

[
5−
√

5
10 , 1

3

]
. By not caring about the resulting rate of key distillation, we have

managaed to reduce the problem to looking at the symmetric extendability of states resulting from Alice and
Bob performing an independent post-selection on error-correcting codes. We have conjectured that it is suffi-
cient to consider Alice and Bob post-selecting on the same code, and we have also conjectured a general way
of constructing symmetric extensions of the resulting states. We have also looked at equivalence of codes and
the effect of combining codes in particular ways on the post-selected states.

Having laid all of this groundwork, we are now ready to begin looking more closely at particular codes
P,Q and the symmetric extendability of the resulting filtered states ρÃB̃

Q,(P,Q). We will start with the repetition
codes Rn, then move to the more general simplex codes S(n, d, m).
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Repetition Codes

The repetition codes Rn of block size n are defined as

Rn = {0n, 1n} ∀ n ≥ 1.

The post-selection protocol obtained from this code is advantage distillation, which as explained in the intro-
duction currently provides the best-known lower bound of 5−

√
5

10 for QKD with the six-state signal states. In
this chapter, we will derive this bound using our new framework along with the condition (3.2), which deter-
mines the symmetric extendability of ρÃB̃

Q,Rn
for all n ≥ 1. This will reproduce the known result from [Myh+09]

that advantage distillation cannot be used to break symmetric extendability beyond 5−
√

5
10 . The derivation

provided here using our new framework is considerably simpler than that original one, which involved ana-
lytically solving the SDP associated with the updated states.

Next, we will use (3.11) to find the channel N such that N ◦ TrE2 constructs a symmetric extension of ρÃB̃
Q,Rn

and will discover that it works throughout the symmetrically extendable region of the states (that is, for all
Q ≥ Q∗Rn

) for all n ≥ 1. Finally, we will prove Conjecture 2 for repetition codes by showing, using the strategy
given by (3.6), that TrE2 alone constructs a symmetric extension of ρÃB̃

Q,Rn
at Q = Q∗Rn

for all n ≥ 1.

It is worth mentioning that the filter ARn = |0〉 〈0n|+ |1〉 〈1n| that we will use here as part of our framework
had been used previously in [KBR07] to generalize the one-way security proofs of QKD presented in [RGK05;
KGR05].

5.1 Derivation of Current Security Bounds from Symmetric Extendability Crite-
rion

Recalling that

ρAB
Q =


1−Q

2 0 0 1−2Q
2

0 Q
2 0 0

0 0 Q
2 0

1−2Q
2 0 0 1−Q

2

 ,
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it can be shown using (4.12) that

ρÃB̃
Q,Rn

=



(
1−Q

2

)n
0 0

(
1−2Q

2

)n

0
(

Q
2

)n
0 0

0 0
(

Q
2

)n
0(

1−2Q
2

)n
0 0

(
1−Q

2

)n


Note that ρÃB̃

Q,R1
= ρAB

Q . For convenience, we define

q0 =

(
Q
2

)n

, q1 =

(
1−Q

2

)n

, q2 =

(
1− 2Q

2

)n

,

which are non-negative for all 0 ≤ Q ≤ 1
2 and all n ≥ 1. Also, using the figure below, we have that q1 ≥ q0

and q1 ≥ q2 for all 0 ≤ Q ≤ 1
2 and all n ≥ 1, and q2 ≥ q0 for all 0 ≤ Q ≤ 1

3 for all n ≥ 1.

0.0 0.1 0.2 0.3 0.4 0.5

Q

0.0

0.2

0.4

0.6

0.8

1.0
Q
1−Q
1− 2Q

Now, we want to determine the symmetric extendability of the states ρÃB̃
Q,Rn

for each n ≥ 1. Note first that
these states are Bell-diagonal (recall the general form (2.21) of such states) with eigenvalues

pI = q1 + q2, pz = q1 − q2, px = q0, py = q0 (5.1)

in the canonical form (2.31). Their separability is therefore given by Proposition 2.23, using which we get that
for all n ≥ 1 ρÃB̃

Q,Rn
is separable for Q ≥ 1

3 , the same as for the original states ρAB
Q . Since all separable states are

symmetrically extendable, it must be that the symmetric extendability threshold Q∗Rn
is less than or equal to 1

3
for all n ≥ 1. Using (5.1), we find that

det
(

ρÃB̃
Q,Rn

)
= q2

0(q
2
1 − q2

2), Tr
[(

ρÃB̃
Q,Rn

)2
]
= 2q2

0 + 2q2
1 + 2q2

2, and Tr
[(

ρB̃
Q,Rn

)2
]
= 2q2

1 + 2q2
0 + 4q0q1.
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Therefore, the condition

4
√

det
(

ρÃB̃
Q,Rn

)
≥ Tr

[(
ρÃB̃

Q,Rn

)2
]
− Tr

[(
ρB̃

Q,Rn

)2
]

, (5.2)

which is necessary and sufficient for the symmetric extendability of ρÃB̃
Q,Rn

, becomes

4
√

q2
0(q

2
1 − q2

2) ≥ 2q2
2 − 4q0q1. (5.3)

Squaring both sides of this inequality and simplifying gives

16q2
0q2

1 − 16q2
0q2

2 ≥ 4q4
2 − 16q2

2q0q1 + 16q2
0q2

1

⇒ 4q4
2 − 16q2

2q0q1 + 16q2
0q2

2 = 4q2
2(q

2
2 − 4q0q1 + 4q2

0) ≤ 0

⇒ q2
2 − 4q0q1 + 4q2

0 ≤ 0.

Substituting the definitions of q0, q1, q2 into the last inequality above gives

4Q2n − 4Qn(1−Q)n + (1− 2Q)2n ≤ 0. (5.4)

Let
fn(Q) := 4Q2n − 4Qn(1−Q)n + (1− 2Q)2n. (5.5)

The root(s) of fn give us Q∗n ≡ Q∗Rn
for all n ≥ 1, that is, the threshold error(s) beyond which ρÃB̃

Q,Rn
is symmet-

rically extendable. It turns out that in the interval
[
0, 1

3

]
there exists only one root, hence only one threshold

error, for all n. Moreover, as shown in Figure 5.1, the threshold increases monotonically with n, which means
that Q∗∞ := limn→∞ Q∗n is the highest possible threshold with advantage distillation, and it is the number we
seek.

n Q∗n
1 0.16666
2 0.21507
3 0.23441
4 0.24772
5 0.25105
6 0.25531
7 0.25836
8 0.26064
9 0.26241
10 0.26383

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

n

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Q
∗ n

Figure 5.1: (Left) A table of Q∗n from n = 1 to n = 10. (Right) A plot of Q∗n from n = 1 to n = 40.
Indicated in yellow is the gap.
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Now, it holds that 4Q2n ≤ (1− 2Q)2n for all Q ≤ 1
2+2

1
n

for all n ≥ 1. This means that as n increases, fn

tends to f̃n for all Q ≤ 1
3 , where

f̃n(Q) := −4Qn(1−Q)n + (1− 2Q)2n. (5.6)

Therefore, we have that Q∗∞ = Q̃∗∞, where Q̃∗∞ := limn→∞ Q̃∗n and Q̃∗n is the root of f̃n in the interval
[
0, 1

3

]
,

which can be shown to be

Q̃∗n =

(
4
( 1

4

) 1
n + 1

)
−
√(

4
( 1

4

) 1
n + 1

)2

− 4
( 1

4

) 1
n

(
4
( 1

4

) 1
n + 1

)
2
(

4
( 1

4

) 1
n + 1

) .

Therefore,

Q̃∗∞ = Q∗∞ =
5−
√

5
10

.

This is exactly the current best-known lower bound for QKD with the six-state signal states and two-way
classical post-processing that was first derived in [Cha02]. We have thus used our framework to show, as was
originally done in [Myh+09] by analytically solving the SDP (3.3), that advantage distillation cannot break the
symmetric extendability of Alice and Bob’s initial correlations beyond 5−

√
5

10 .

The analysis for the BB84 signal states using ρAB
Q,x is a bit more involved: since for every Q there exists

a family {ρAB
Q,x}x∈[0,Q] consistent with Alice and Bob’s measurement results, to determine the highest possible

threshold with advantage distillation we must determine for each n > 1 the highest possible Q such that the set
{ρÃB̃

Q,x,Rn
}x∈[0,Q] does not contain a symmetrically extendable state, where ρÃB̃

Q,x,Rn
:= (ARn ⊗ ARn)(ρ

AnBn

Q,x )(ARn ⊗
ARn)

†. We go through the analysis in Appendix C.

5.2 The Special Construction of a Symmetric Extension

Let us now use the the special map E = N ◦TrE2 presented in §3.3 to explicitly construct a symmetric extension
of ρÃB̃

Q,Rn
. Recall that whether or not the special map can construct a symmetric extension of any state depends

on whether N is completely-positive, which depends on whether the eigenvalues of J(N) are non-negative.

We will be making use of the following identities throughout this section:

1. (q∗2)
2 = 4q∗0q∗1 − 4(q∗0)

2;

2.
√
(q∗1)2 − (q∗2)2 = q∗1 − 2q∗0 ;

3. q∗2 =
√

q∗0
(√

q∗1 + q∗2 +
√

q∗1 − q∗2
)

;

4. q∗0 = 1
2

(
q∗1 −

√
(q∗1)2 − (q∗2)2

)
;

5. 2q∗0 =
√

q∗0
(√

q∗1 + q∗2 −
√

q∗1 − q∗2
)

;

6. q∗1 = q∗0 +
1
2 q∗1 +

1
2

√
(q∗1)2 − (q∗2)2,

(5.7)

where, for example, q∗0 refers to q0 evaluated at the thresholds Q∗n. These identities can be proved using (5.3),
which at Q∗n holds with equality.
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We can use formula (3.11) to determine that the Choi representation of N is

J(N) =

[
q2

1 − q2
0 + ∆

2∆
+

q2√
q0 (
√

q1 + q2 +
√

q1 − q2)

]
︸ ︷︷ ︸

Λ1

∣∣Φ+
〉 〈

Φ+
∣∣

+

[
q2

1 − q2
0 + ∆

2∆
− q2√

q0 (
√

q1 + q2 +
√

q1 − q2)

]
︸ ︷︷ ︸

Λ2

∣∣Φ−〉 〈Φ−∣∣

+

[
∆− q2

1 + q2
0

2∆

]
︸ ︷︷ ︸

Λ3,4

(∣∣Ψ+
〉 〈

Ψ+
∣∣+ ∣∣Ψ−〉 〈Ψ−∣∣) ,

(5.8)

where
∆ ≡ q2

0 + (q1 + q0)
√

q2
1 − q2

2 + q1q0.

It holds that

TrB̃′ [J(N)] =

(
q2

1 − q2
0 + ∆

∆
+

∆− q2
1 + q2

0
∆

)(
1Ã
2

)
= 1Ã,

which means that N is trace-preserving.

The eigenvalues of J(N) are in the square brackets of the expression above for J(N), and for N to be
completely-positive, and hence for a symmetric extension of ρÃB̃

Q,Rn
to be constructed using N ◦ TrE2 , we need

them to be non-negative for at least some subset of Q ≥ Q∗n for all n ≥ 1.

Writing ∆ above as

∆ = (q0 + q1)

(
q0 +

√
q2

1 − q2
2

)
,

the condition Λ3,4 ≥ 0 can be simplified to

(q0 + q1)

(
q0 +

√
q2

1 − q2
2

)
= ∆ ≥ q2

1 − q2
0

⇒ q0 +
√

q2
1 − q2

2 ≥ q1 − q0

⇒
√

q2
1 − q2

2 ≥ q1 − 2q0

⇒ q2
1 − q2

2 ≥ q2
1 − 4q0q1 + 4q2

0

⇒ 4q2
0 − 4q0q1 + q2

2 ≤ 0.

The last line is the condition (5.4) for ρÃB̃
Q,Rn

to be symmetrically extendable. So Λ3,4 vanishes at Q∗n for all n ≥ 1
and is positive for all Q > Q∗n. Furthermore, by using identities 2 and 3 from (5.7), we obtain

∆|Q=Q∗n
= −(q∗0)2 + (q∗1)

2 ∀n ≥ 1,

which leads to

Λ2|Q=Q∗n
=

(q∗1)
2 − (q∗0)

2 − (q∗0)
2 + (q∗1)

2

−2(q∗0)2 + 2(q∗1)2 − 1 =
2(q∗1)

2 − 2(q∗0)
2

2(q∗1)2 − 2(q∗0)2 − 1 = 1− 1 = 0 ∀ n ≥ 1.
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Therefore, Λ2 also vanishes at Q∗n for all n ≥ 1 and Λ2 > 0 for all Q > Q∗n. And since Λ1 ≥ 0 for all 0 ≤ Q ≤ 1
2

and all n ≥ 11, it holds that the eigenvalues of J(N) are non-negative for all Q ≥ Q∗n for all n ≥ 1, which means
that N ◦ TrE2 constructs a symmetric extension of ρÃB̃

Q,Rn
throughout its symmetrically extendable region for all

n ≥ 1. Not only that, but by using again identities 2 and 3 from (5.7) we obtain

J(N)|Q=Q∗n
= (1 + 1)

∣∣Φ+
〉 〈

Φ+
∣∣ = 2

∣∣Φ+
〉 〈

Φ+
∣∣ = J(1L(HB̃′ )

) ∀ n ≥ 1.

In other words, for all n ≥ 1, TrE2 alone constructs a symmetric extension of ρÃB̃
Q,Rn

when Q = Q∗n. This

proves for repetition codes Conjecture 2 that the channel constructing a symmetric extension of ρÃB̃
Q,Rn

can be
decomposed into two steps, the first being the channel that on its own constructs a symmetric extension at
the threshold Q∗n and the second channel that, by virtue of being completely-positive and trace-preserving for
all Q beyond the threshold, acts like a post-processing step that completes the construction of a symmetric
extension for all Q > Q∗n.

5.2.1 Derivation of the Channel at the Threshold

In this section, we go through the arguments that lead to the discovery that the channel TrE2 , as we have just
seen, constructs a symmetric extension of ρÃB̃

Q,Rn
at the threshold value Q∗n for all n ≥ 1.

Now, ρÃB̃
Q,Rn

is Bell-diagonal, so writing the general symmetric extension (3.13) of a Bell-diagonal state in
the Bell basis on HÃ,HB̃, we get

ρÃB̃B̃′
Q,Rn

(~β) =
∣∣Φ+

〉 〈
Φ+
∣∣ÃB̃ ⊗ (q2 + q1)

(
1

2

)B̃′

+
∣∣Φ−〉 〈Φ+

∣∣ÃB̃ ⊗
(

βz

4
− q0

2
+

q1

2

)(σz

2

)B̃′

+
∣∣Ψ+

〉 〈
Φ+
∣∣ÃB̃ ⊗

(
βx

4
+

q2

2

)(σx

2

)B̃′

+
∣∣Ψ−〉 〈Φ+

∣∣ÃB̃ ⊗
(

βy

4
+

q2

2

)(
iσy

2

)B̃′

+
∣∣Φ+

〉 〈
Φ−
∣∣ÃB̃ ⊗

(
βz

4
− q0

2
+

q1

2

)(σz

2

)B̃′

+
∣∣Φ−〉 〈Φ−∣∣ÃB̃ ⊗ (q1 − q2)

(
1

2

)B̃′

+
∣∣Ψ+

〉 〈
Φ−
∣∣ÃB̃ ⊗

(
βy

4
− q2

2

)(
iσy

2

)B̃′

+
∣∣Ψ−〉 〈Φ−∣∣ÃB̃ ⊗

(
βx

4
− q2

2

)(σx

2

)B̃′

+
∣∣Φ+

〉 〈
Ψ+
∣∣ÃB̃ ⊗

(
βx

4
+

q2

2

)(σx

2

)B̃′

+
∣∣Φ−〉 〈Ψ+

∣∣ÃB̃ ⊗
(

q2

2
− βy

4

)(
iσy

2

)B̃′

+
∣∣Ψ+

〉 〈
Ψ+
∣∣ÃB̃ ⊗ q0

(
1

2

)B̃′

+
∣∣Ψ−〉 〈Ψ+

∣∣ÃB̃ ⊗
(

q1

2
− q0

2
− βz

4

)(σz

2

)B̃′

+
∣∣Φ+

〉 〈
Ψ−
∣∣ÃB̃ ⊗

(
−βy

4
− q2

2

)(
iσy

2

)B̃′

+
∣∣Φ−〉 〈Ψ−∣∣ÃB̃ ⊗

(
βx

4
− q2

2

)(σx

2

)B̃′

+
∣∣Ψ+

〉 〈
Ψ−
∣∣ÃB̃ ⊗

(
q1

2
− q0

2
− βz

4

)(σz

2

)B̃′

+
∣∣Ψ−〉 〈Ψ−∣∣ÃB̃ ⊗ q0

(
1

2

)B̃′

,

(5.9)

where recall that ~β = (βx, βy, βz) are open parameters that need to be chosen such that the resulting operator
is positive semi-definite. This expression is the analogue to (3.4).

1This is due to the fact that q0, q1, q2 are non-negative for all 0 ≤ Q ≤ 1
2 for all n ≥ 1 and that q1 ≥ q0, so that q2

1 − q2
0 ≥ 0.
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Lemma 5.1

The choice
βx = βy = 4q0, βz = 2q1 − 6q0

makes ρÃB̃B̃′
Q,Rn

(~β) positive semi-definite for all Q ≥ Q∗n for all n ≥ 1.

PROOF: Substituting βx = βy = 4q0 and βz = 2q1 − 6q0 into (5.9) gives us

ρÃB̃B̃′
Q,Rn

(4q0, 4q0, 2q1 − 6q0) =
∣∣Φ+

〉 〈
Φ+
∣∣ÃB̃ ⊗ (q2 + q1)

(
1

2

)B̃′

+
∣∣Φ−〉 〈Φ+

∣∣ÃB̃ ⊗ (q1 − 2q0)
(σz

2

)B̃′

+
∣∣Ψ+

〉 〈
Φ+
∣∣ÃB̃ ⊗

(
q0 +

q2

2

) (σx

2

)B̃′

+
∣∣Ψ−〉 〈Φ+

∣∣ÃB̃ ⊗
(

q0 +
q2

2

)( iσy

2

)B̃′

+
∣∣Φ+

〉 〈
Φ−
∣∣ÃB̃ ⊗ (q1 − 2q0)

(σz

2

)B̃′

+
∣∣Φ−〉 〈Φ−∣∣ÃB̃ ⊗ (q1 − q2)

(
1

2

)B̃′

+
∣∣Ψ+

〉 〈
Φ−
∣∣ÃB̃ ⊗

(
q0 −

q2

2

)( iσy

2

)B̃′

+
∣∣Ψ−〉 〈Φ−∣∣ÃB̃ ⊗

(
q0 −

q2

2

) (σx

2

)B̃′

+
∣∣Φ+

〉 〈
Ψ+
∣∣ÃB̃ ⊗

(
q0 +

q2

2

) (σx

2

)B̃′

+
∣∣Φ−〉 〈Ψ+

∣∣ÃB̃ ⊗
(q2

2
− q0

)( iσy

2

)B̃′

+
∣∣Ψ+

〉 〈
Ψ+
∣∣ÃB̃ ⊗ q0

(
1

2

)B̃′

+
∣∣Ψ−〉 〈Ψ+

∣∣ÃB̃ ⊗ (q0)
(σz

2

)B̃′

+
∣∣Φ+

〉 〈
Ψ−
∣∣ÃB̃ ⊗

(
−q0 −

q2

2

)( iσy

2

)B̃′

+
∣∣Φ−〉 〈Ψ−∣∣ÃB̃ ⊗

(
q0 −

q2

2

) (σx

2

)B̃′

+
∣∣Ψ+

〉 〈
Ψ−
∣∣ÃB̃ ⊗ (q0)

(σz

2

)B̃′

+
∣∣Ψ−〉 〈Ψ−∣∣ÃB̃ ⊗ q0

(
1

2

)B̃′

.

(5.10)

As a matrix in the standard basis of C2 ⊗C2 ⊗C2, this is equal to

ρÃB̃B̃′
Q,Rn

(4q0, 4q0, 2q1 − 6q0) =



q1 − q0 0 0 0 0 q2
2

q2
2 0

0 q0 q0 0 0 0 0 q2
2

0 q0 q0 0 0 0 0 q2
2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
q2
2 0 0 0 0 q0 q0 0
q2
2 0 0 0 0 q0 q0 0
0 q2

2
q2
2 0 0 0 0 q1 − q0


,

and it has eigenvalues

0, 0,
q0 + q1

2
− 1

2

√
(3q0 − q1)2 + 2q2

2,
q0 + q1

2
+

1
2

√
(3q0 − q1)2 + 2q2

2,

each with multiplicity two. The fourth eigenvalue is non-negative for all Q ∈
[
0, 1

2

]
and all n ≥ 1 due to the

non-negativity of q0, q1, q2, while simplification shows that the third eigenvalue is non-negative if and only if

4Q2n − 4Qn(1−Q)n + (1− 2Q)2n ≤ 0,
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which is exactly the condition (5.4), so that the third eigenvalue is non-negative for all Q ≥ Q∗n for all n ≥ 1.
This proves that ρÃB̃B̃′

Q,Rn
(4q0, 4q0, 2q1 − 6q0) is positive semi-definite for all Q ≥ Q∗n for all n ≥ 1 and therefore is

a symmetric extension of ρÃB̃
Q,Rn

throughout its symmetrically extendable region for all n ≥ 1. �

Now, from the purification

|ψ〉ÃB̃E1E2
Q,Rn

= vec
(√

ρÃB̃
Q,Rn

)
=
∣∣Φ+

〉ÃB̃ ⊗
√

q1 + q2
∣∣Φ+

〉E1E2 +
∣∣Φ−〉ÃB̃ ⊗

√
q1 − q2

∣∣Φ−〉E1E2

+
∣∣Ψ+

〉ÃB̃ ⊗√q0
∣∣Ψ+

〉E1E2 +
∣∣Ψ−〉ÃB̃ ⊗√q0

∣∣Ψ−〉E1E2 ,

a channel EQ,Rn such that (1L(HÃB̃)
⊗ EQ,Rn)

(
|ψ〉 〈ψ|ÃB̃E1E2

Q,Rn

)
= ρÃB̃B̃′

Q,Rn
(4q0, 4q0, 2q1 − 6q0) must satisfy

EQ,Rn

(∣∣Φ+
〉 〈

Φ+
∣∣) = EQ,Rn

(∣∣Φ−〉 〈Φ−∣∣) = EQ,Rn

(∣∣Ψ+
〉 〈

Ψ+
∣∣) = EQ,Rn

(∣∣Ψ−〉 〈Ψ−∣∣) = 1B̃′

2
,

EQ,Rn

(∣∣Ψ+
〉 〈

Φ+
∣∣) = EQ,Rn

(∣∣Φ+
〉 〈

Ψ+
∣∣) = q0 +

q2
2√

q0(q1 + q2)

(
σB̃′

x
2

)
,

EQ,Rn

(∣∣Ψ−〉 〈Φ−∣∣) = EQ,Rn

(∣∣Φ−〉 〈Ψ−∣∣) = q0 − q2
2√

q0(q1 − q2)

(
σB̃′

x
2

)
,

EQ,Rn

(∣∣Ψ−〉 〈Φ+
∣∣) = −EQ,Rn

(∣∣Φ+
〉 〈

Ψ−
∣∣) = q0 +

q2
2√

q0(q1 + q2)

(
iσB̃′

y

2

)
,

EQ,Rn

(∣∣Φ−〉 〈Ψ+
∣∣) = −EQ,Rn

(∣∣Ψ+
〉 〈

Φ−
∣∣) = q2

2 − q0√
q0(q1 − q2)

(
iσB̃′

y

2

)
,

EQ,Rn

(∣∣Φ−〉 〈Φ+
∣∣) = EQ,Rn

(∣∣Φ+
〉 〈

Φ−
∣∣) = q1 − 2q0√

q2
1 − q2

2

(
σB̃′

z
2

)
,

EQ,Rn

(∣∣Ψ−〉 〈Ψ+
∣∣) = EQ,Rn

(∣∣Ψ+
〉 〈

Ψ−
∣∣) = σB̃′

z
2

.

(5.11)

These conditions are the analogue to (3.6), and they define EQ,Rn on an orthonormal basis, which therefore
uniquely defines it. It is manifestly trace-preserving.

Theorem 5.2

For all n ≥ 1, EQ∗n,Rn = TrE2 .

PROOF: Using identities 3 and 5 from (5.7), we get that at Q∗n for all n ≥ 1,√
q∗0
(
q∗1 + q∗2

)
= q∗0 +

q∗2
2

and
√

q∗0
(
q∗1 − q∗2

)
=

q∗2
2
− q∗0 .
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Using as well identity 2 from (5.7) gives us after substitution into (5.11)

EQ∗n,Rn

(∣∣Φ+
〉 〈

Φ+
∣∣) = EQ∗n,Rn

(∣∣Φ−〉 〈Φ−∣∣) = EQ∗n,Rn

(∣∣Ψ+
〉 〈

Ψ+
∣∣) = EQ∗n,Rn

(∣∣Ψ−〉 〈Ψ−∣∣) = 1B̃′

2
,

EQ∗n,Rn

(∣∣Ψ+
〉 〈

Φ+
∣∣) = EQ∗n,Rn

(∣∣Φ+
〉 〈

Ψ+
∣∣) = σB̃′

x
2

,

EQ∗n,Rn

(∣∣Ψ−〉 〈Φ−∣∣) = EQ∗n,Rn

(∣∣Φ−〉 〈Ψ−∣∣) = −σB̃′
x
2

,

EQ∗n,Rn

(∣∣Ψ−〉 〈Φ+
∣∣) = −EQ∗n,Rn

(∣∣Φ+
〉 〈

Ψ−
∣∣) = iσB̃′

y

2
,

EQ∗n,Rn

(∣∣Φ−〉 〈Ψ+
∣∣) = −EQ∗n,Rn

(∣∣Ψ+
〉 〈

Φ−
∣∣) = iσB̃′

y

2
,

EQ∗n,Rn

(∣∣Φ−〉 〈Φ+
∣∣) = EQ∗n,Rn

(∣∣Φ+
〉 〈

Φ−
∣∣) = σB̃′

z
2

,

EQ∗n,Rn

(∣∣Ψ−〉 〈Ψ+
∣∣) = EQ∗n,Rn

(∣∣Ψ+
〉 〈

Ψ−
∣∣) = σB̃′

z
2

,

which one can verify after some work is equal to the action of TrE2 on the Bell basis. �

5.3 No Post-Selection by Alice

We now consider the case of Bob post-selecting on a repetition code, as before, but Alice not post-selecting. The
corresponding filtered states are ρAn B̃

Q,(Bn,Rn)
, and in this section we use the special map (3.9) to prove Conjecture

1 for repetition codes, that is, the following theorem.

Theorem 5.3

Q∗Bn,Rn
= Q∗Rn

for all n ≥ 1. Therefore, ρAn B̃
Q,(Bn,Rn)

is symmetrically extendable for all 5−
√

5
10 ≤

Q ≤ 1
3 for all n ≥ 1.

We know already from Proposition 4.1 that if ρAn B̃
Q,(Bn,Rn)

is symmetrically extendable, then so is ρÃB̃
Q,Rn

, which

implies that Q∗Bn,Rn
≥ Q∗Rn

. We will now show that Q∗Bn,Rn
≤ Q∗Rn

also holds, that is, if ρÃB̃
Q,Rn

is symmetrically

extendable, then so is ρAn B̃
Q,(Bn,Rn)

.

Since the repetition codes are linear, the states ρAn B̃
Q,(Bn,Rn)

are a special case of the states ρAn B̃
Q,(Bn,Q) correspond-

ing to no post-selection by Alice and post-selection by Bob on a linear code Q, which are analysed in §E.2 of
Appendix E. In that section, we have a general expression (E.19) for the eigenvalues of the Choi representation
of N corresponding to the special map, and we apply those formulas to the repetition codes in §E.2.1. From the
analysis in §E.2.1, we obtain the following results about the eigenvalues {Λu,v : 0 ≤ u ≤ 2n − 1, 0 ≤ v ≤ 1} of
J(N) for ρAn B̃

Q,(Bn,Rn)
:

1. The eigenvalues Λ0,0, Λ0,1, Λ2n−1,0, Λ2n−1,1 are equal to the eigenvalues Λ1, Λ2, Λ3, Λ4 of J(N) for ρÃB̃
Q,Rn

from (5.8).
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2. The remaining eigenvalues {Λu,0, Λu,1 : 1 ≤ u ≤ 2n − 2} are equal to

Λu,0 = Λu,1 =
Q|Pu|(1−Q)n−|Pu|

Q|Pu|(1−Q)n−|Pu| + Qn−|Pu|(1−Q)|Pu| , (5.12)

which are non-negative for all 0 ≤ Q ≤ 1
2 for all n ≥ 1.

Therefore, from §5.2 above, we have that Λ0,0 is non-negative for all 0 ≤ Q ≤ 1
2 for all n ≥ 1, that Λ0,1, Λ2n−1,0,

and Λ2n−1,1 vanish at Q∗Rn
for all n ≥ 1 (and are positive beyond Q∗Rn

), and that for 1 ≤ u ≤ 2n − 2 the
eigenvalues Λu,0, Λu,1 are non-negative for all 0 ≤ Q ≤ 1

2 for all n ≥ 1. The map N is therefore completely-
positive for all Q ≥ Q∗Rn

for all n ≥ 1, which means that ρAn B̃
Q,(Bn,Rn)

is symmetrically extendable whenever ρÃB̃
Q,Rn

is symmetrically extendable. In other words, Q∗Bn,Rn
≤ Q∗Rn

for all n ≥ 1. Therefore, Q∗Bn,Rn
= Q∗Rn

for all n ≥ 1,
as required, which proves Theorem 5.3.

Summary

In this chapter, we have used the framework developed in Chapter 4 to examine repetition codes. We proved
the upper bound of 5−

√
5

10 that had previously been proven in [Cha02] using entanglement distillation tech-
niques adapted to a classical setting as described in §2.4.4 and proven in [Myh+09] using advantage distilla-
tion and symmetric extendability. We subsequently proved Conjecture 2 for repetition codes, which states that
the channel constructing a symmetric extension of the filtered states can be decomposed into two channels,
the first that alone constructs a symmetric extension at the thresholds Q∗Rn

and the second that constructs a
symmetric extension for all QBERs beyond the thresholds. We then proved Conjecture 1 for repetition codes,
which states that the thresholds with and without post-selection by Alice are the same.
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Simplex Codes

We now move on to announcement sets P = {Pk}m−1
k=0 of n-bit strings in which

|Pk ⊕ Pk′ | = d ∀ k 6= k′

for some 1 ≤ d ≤ n. Such announcement sets are called simplex codes, and we will denote them S(n, d, m),
where m is the number of codewords. We may omit the parameters in the specification of the code if they
are understood from the context. These codes are a natural generalization of the repetition codes that we
just looked at in the previous chapter. Indeed, notice that for all n ≥ 1, S(n, n, 2) = Rn. In fact, up to the
equivalences described in Chapter 4, the repetition codes are the only two-codeword simplex codes.

In this chapter, we will examine the states ρÃB̃
Q,S arising from Alice and Bob post-selecting on the same sim-

plex code S. We will derive an analytic expression for the map N in (3.9) and prove that, just like repetition
codes, this map gives a symmetric extension of ρÃB̃

Q,S for any simplex code throughout its symmetrically extend-
able region, and that TrE2 alone works at the threshold. All of this analysis will be very similar to the analysis
for repetition codes, and in fact we will find that simplex codes cannot beat the current best bound obtained
from repetition codes.

Since without loss of generality we can always let the first codeword in the announcement set be 0n,
simplex codes of distance d will be such that each non-zero codeword has Hamming weight d. This leads to
the following.

Proposition 6.1

For any simplex code S(n, d, m) such that m > 2, d must be even. In particular, m = 2 for all d
odd.

PROOF: Suppose that m > 2. The distinct strings u, v (neither equal to 0n) in S each have Hamming weight d
by the paragraph above the statement of the proposition and they satisfy |u⊕ v| = d by definition of the code.
Now,

|u⊕ v| = |u|+ |v| − 2|u� v|.
Letting y = |u� v|, |u| = |v| = d = |u⊕ v| means that 2d− 2y = d ⇒ d = 2y, that is, d is an even number. It
follows that any simplex code of odd constant distance d must have size two. �
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In other words, simplex codes with more than two codewords can only have even distances, and odd-
distance simplex codes can only have two codewords. Odd-distance simplex codes are therefore always repe-
tition codes.

Simplex codes can be both linear and non-linear. An example of a linear simplex code with parameters
(n, d, m) = (3, 2, 4) is 

000
101
011
110

 .

An entire family of linear [2r − 1, r, 2r−1] simplex codes Sr := S(2r − 1, 2r−1, 2r) (for r ≥ 2) has generator
matrices whose rows are equal to all the non-zero r-bit strings. For example, the code above corresponds to

r = 2 and has generator matrix

0 1
1 0
1 1

, and the code



0000000
1010101
0110011
1100110
0001111
1011010
0111100
1101001


corresponding to r = 3 has generator matrix 

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Another way of realizing these codes is as the rows of the rth-order Hadamard matrices H̃⊗r with the 1 entries
replaced by zeros, the −1 entries replaced by ones, and the first column omitted, where the Hadamard matrix
H̃ is defined as

H̃ :=
[

1 1
1 −1

]
. (6.1)

So the r = 2 linear simplex code above is realized as

H̃⊗2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 −→


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 −→


0 0 0
1 0 1
0 1 1
1 1 0

 ,
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and the r = 3 linear simplex code is realized as

H̃⊗3 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


−→



0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1


−→



0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1


.

Examples of non-linear simplex codes are


000,
011,
101

 ,


0000,
0011,
0101,
1001

 , and


00000,
00011,
00101,
01001,
10001

 . (6.2)

Each of these is a simplex code with constant distance two and is a member of the class S(n, 2, n) of codes
(n ≥ 2) with codewords

Pk = 00 · · · 00︸ ︷︷ ︸
n−k−1
times

1 00 · · · 00︸ ︷︷ ︸
k−1

times

1, k 6= 0. (6.3)

(The codes displayed above are for n = 3, 4, 5.) More generally, for any code S(n, d, m), we can obtain codes
with higher distances while keeping the number of codewords constant by pasting the code side-by-side with
itself k times using Levenshtein’s construction, giving codes kS(n, d, m) = S(kn, kd, m) for all n ≥ 2, 2 ≤ m ≤ n,
and k ≥ 1. For example, for any r ≥ 2 and k > 1, the codes kSr are linear simplex codes that are not in the Sr
class (that is, for any k > 1, kSr is not equal to Sr′ for some r′).

6.1 Eigenvalues of the Filtered States

In this section, we provide analytic expressions for the eigenvalues of the states ρÃB̃
Q,S arising from post-selection

by Alice and Bob on any simplex code S.

First, consider the discrete Weyl operators {Wa,b}m−1
a,b=0 ⊆ L(Cm) defined as [Wat16]

Wa,b = X(a)Z(b), X(a) =
m−1

∑
k=0
|k + a〉 〈k| , Z(b) =

m−1

∑
k=0

e
2πikb

m |k〉 〈k| , (6.4)

where the addition in X is modulo m. These operators are the generalizations to m dimensions of the Pauli
operators (2.19) on qubits that we saw in Chapter 2. Using them, we define the m-dimensional generalizations
of the qubit Bell states (2.22) as

|Φa,b〉 = (1Cm ⊗ X(a)Z(b)) |Φ0,0〉 ∀ 0 ≤ a, b ≤ m− 1, (6.5)

where

|Φ0,0〉 =
1√
m

m−1

∑
k=0
|k, k〉 . (6.6)
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Like the qubit Bell states, these states form an orthonormal basis for Cm ⊗Cm.

In Proposition D.1 of Appendix D, we prove that the spectral decomposition of ρÃB̃
Q,S is

ρÃB̃
Q,S =

m−1

∑
a,b=0

λa,b |Φa,b〉 〈Φa,b| ,

where the eigenvalues {λa,b}m−1
a,b=0 are

λ0,0 =

(
1−Q

2

)n

+ (m− 1)
(

1− 2Q
2

)d (1−Q
2

)n−d

λ0,1 = λ0,2 = · · · = λ0,m−1 =

(
1−Q

2

)n

−
(

1− 2Q
2

)d (1−Q
2

)n−d

λ1,0 = λ1,1 = · · · = λm−1,m−1 =

(
Q
2

)d (1−Q
2

)n−d

,

(6.7)

which can be written compactly as

λa,b = ((λ0,0 − λ0,1)δb,0 + λ0,1 − λ1,0) δa,0 + λ1,0. (6.8)

It holds that
λ0,0 ≥ λ0,1 ≥ λ1,0 ∀ 0 ≤ Q ≤ 1

2
, ∀ n, d ≥ 1, ∀ m ≥ 2. (6.9)

The fact that λ0,0 ≥ λ0,1 is easy to see since λ0,0 = λ0,1 + m
(

1−2Q
2

)d ( 1−Q
2

)n−d
. To show that λ0,1 ≥ λ1,0, we

use the inequality
(x + y)n ≥ xn + yn,

which holds for all x, y ≥ 0 and n ∈N. From this, we obtain

(Q + 1− 2Q)d = (1−Q)d ≥ Qd + (1− 2Q)d ⇒ 1−
(

1− 2Q
1−Q

)d

≥
(

Q
1−Q

)d

.

Multiplying both sides by
(

1−Q
2

)n
gives(

1−Q
2

)n

−
(

1− 2Q
2

)d (1−Q
2

)n−d

︸ ︷︷ ︸
λ0,1

≥
(

Q
2

)d (1−Q
2

)n−d

︸ ︷︷ ︸
λ1,0

,

which is our sought-after inequality.

To determine the separability of ρÃB̃
Q,S, we can try to use the PPT criterion by calculating

(
ρÃB̃

Q,S

)TB̃
and

determining when, if any, of its eigenvalues are negative. This is due to the fact that the PPT criterion is
only necessary, not sufficient, for the separability of density operators on higher-dimensional spaces. This
means that positivity of the eigenvalues of the partial transpose will give no indication as to the separabil-
ity/entanglement of the state, while negativity of the eigenvalues of the partial transpose indicates that the
state is entangled. Fortunately, as we prove in Proposition D.2, the partial transpose of ρÃB̃

Q,S has a negative
eigenvalue, and it does so for Q ≤ 1

3 for all S. Therefore, as with the repetition codes, we have that the separa-
bility of the filtered states ρÃB̃

Q,S is unchanged from that of the original isotropic states ρAB
Q . This means that the

symmetric extendability thresholds Q∗S must satisfy Q∗S ≤ 1
3 for any simplex code S.
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6.1.1 The Corresponding Channels

Just as we saw in §2.2.1 that the Pauli channels (2.18) had Kraus operators proportional to the Pauli operators
and Choi representation proportional to qubit Bell-diagonal states, the discrete Weyl operators (6.4) on Cm

can be used to define a class of channels whose Choi representations are proportional to the m-dimensional
Bell-diagonal states. These channels are of the form

Υ~p(X) =
m−1

∑
a,b=0

pa,bWa,bXW†
a,b ∀ X ∈ L(Cm), (6.10)

where {pa,b}m−1
a,b=0 is a probability distribution. The Choi representation is then

J(Υ~p) = m
m−1

∑
a,b=0

pa,b |Φa,b〉 〈Φa,b| . (6.11)

Now, we have just seen that the states ρÃB̃
Q,S are Bell-diagonal. After normalizing, we have that TrB̃

[
ρÃB̃

Q,S

]
=

1Ã
m , so that the states (after normalization) correspond to quantum channels. The states also have three distinct

eigenvalues. Substituting the eigenvalues into (6.10), we obtain the channel ΦQ,S ∈ C(HÃ,HB̃) corresponding
to ρÃB̃

Q,S:
ΦQ,S(X) = (λ0,0 − λ0,1)X + m2λ1,0∆(X) + m(λ0,1 − λ1,0)Ω(X) ∀ X ∈ L(HÃ), (6.12)

where ∆ is the completely-depolarizing channel and Ω is the completely-dephasing channel, which are defined
as [Wat16]

∆(X) =
Tr(X)

m
1B̃ =

1
m2

m−1

∑
a,b=0

Wa,bXW†
a,b ∀ X ∈ L(HÃ)

and

Ω(X) =
m−1

∑
a=0

Xa
a
|a〉 〈a| = 1

m

m−1

∑
c=0

W0,cXW†
0,c ∀ X ∈ L(HÃ).

6.2 Symmetric Extendability of the Filtered States

In this section, we use the result in [Ran09] to determine the thresholds Q∗n,d,m ≡ Q∗
S(n,d,m) beyond which the

filtered states ρÃB̃
Q,S are symmetrically extendable.

The result in [Ran09] pertains to a particular subclass of the Bell-diagonal states in D(Cm ⊗Cm), namely,
those that are “U2-invariant”, where the set U2 is defined as

U2 = {U ⊗U : U ∈ U1},
U1 = {U ∈ U(Cm) : U diagonal in the standard basis}.

As shown in that work, m-dimensional Bell-diagonal states that are U2-invariant have only three distinct eigen-
values. In particular,

ρ =
m−1

∑
k,`=0

xk,` |Φk,`〉 〈Φk,`|
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is U2-invariant if and only if

xk,` =


a if k = ` = 0,
b if k 6= ` = 0,

1−a−(m−1)b
m(m−1) otherwise

(6.13)

for some a, b ≥ 0, a ≥ b such that x := a + (m − 1)b ≤ 1. For all m ≥ 2, such states are symmetrically
extendable if and only if

a− b ≤ 2

√
(1− x)(2x− 1)

m− 1
+

m− 2
m− 1

(1− x). (6.14)

Now, comparing the eigenvalues (6.13) of U2-invariant states with the eigenvalues (6.7) of ρÃB̃
Q,S from the

previous section, we find that after normalization they have exactly the same form as (6.13). This means that
the states ρÃB̃

Q,S are U2-invariant, which means that (6.14) can be used to determine their symmetric extend-
ability. Before using (6.14), however, the eigenvalues of the state must be normalized. Using as in Chapter
5

q0 =

(
Q
2

)d

, q1 =

(
1−Q

2

)d

, q2 =

(
1− 2Q

2

)d

,

and using the fact that

Tr[ρÃB̃
Q,S] = λ0,0 + (m− 1)λ0,1 + m(m− 1)λ1,0 = m

(
1−Q

2

)n

+ m(m− 1)
(

Q
2

)d (1−Q
2

)n−d

,

we get that the normalized eigenvalues λ̂0,0 = λ0,0

Tr[ρÃB̃
Q,S]

, λ̂0,1 =
λ0,1

Tr[ρÃB̃
Q,S]

and λ̂1,0 =
λ1,0

Tr[ρÃB̃
Q,S]

are

λ̂0,0 =
q1 + (m− 1)q2

mq1 + m(m− 1)q0
, λ̂0,1 =

q1 − q2

mq1 + m(m− 1)q0
, λ̂1,0 =

q0

mq1 + m(m− 1)q0
.

Additionally, using x = 1−m(m− 1)λ̂1,0, substitution into (6.14) gives us

m
q2

X
−m(m− 2)

q0

X
≤ 2

√
m
(q0

X

) (
1− 2m(m− 1)

(q0

X

))
as the necessary and sufficient condition for the symmetric extendability of ρÃB̃

Q,S, where X ≡ mq1 +m(m− 1)q0.
After much simplification, this becomes

q2
2 − 2(m− 2)q0q2 − 4q0q1 + m2q2

0 ≤ 0. (6.15)

As a check, we may let m = 2 and d = n, so that the corresponding code is just the repetition code Rn examined
in the previous chapter. This gives us q2

2 − 4q0q1 + 4q2
0 ≤ 0, which is exactly the condition (5.4), as expected.

Now, substituting the definitions of q0, q1, q2 into (6.15) gives us

gd,m(Q) := (1− 2Q)2d − 2(m− 2)Qd(1− 2Q)d − 4Qd(1−Q)d + m2Q2d ≤ 0. (6.16)

The root(s) of gd,m gives us the threshold Q∗n,d,m beyond which ρÃB̃
Q,S is symmetrically extendable. Notice that

this function depends only on the parameters d and m of the code and not on the block length n. This is a
reflection of Proposition 4.4, which we recall tells us that adding extra zeros to codewords does nothing to the
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symmetric extendability of the resulting state. It also tells us that, for example, the codes S(4, 2, 4) =


0000
0011
0101
1001


(which is non-linear) and S(3, 2, 4) =


000
011
101
110

 (which is linear) have the same threshold.

Now, let us consider the linear simplex codes Sr described at the beginning of this chapter. Figure 6.1
below plots the thresholds for some of these codes. As with the repetition codes, the threshold increases
monotonically with the distance (which, recall, is d = 2r−1 for these codes) and appears to converge to 5−

√
5

10 .

1 2 3 4 5 6 7 8 9 10 11

r

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Q
∗ S

r

Figure 6.1: Thresholds for the simplex codes Sr up to r = 10. The region highlighted in yellow
is the gap.

We can also consider the class of simplex codes S(mk, 2k, m) corresponding to Levenstein’s constructions
of the codes S(m, 2, m) defined in (6.3). Table 6.1 below contains the thresholds for some of these codes. For
m > 2 and k ≥ 1, all of these codes are non-linear. Note that for m = 2, S(2k, 2k, 2) = R2k, that is, m = 2 simply
gives us the even-order repetition codes.
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m
k

1 2 3 4 5 6 7 8 9

2 0.215080 0.244721 0.255315 0.260645 0.263831 0.265946 0.267452 0.268578 0.269453
3 0.205719 0.242574 0.254725 0.260470 0.263777 0.265929 0.267446 0.268577 0.269452
4 0.197825 0.240594 0.254155 0.260299 0.263723 0.265912 0.267441 0.268575 0.269452
5 0.191015 0.238757 0.253605 0.260129 0.263670 0.265894 0.267435 0.268573 0.269451
6 0.185041 0.237041 0.253072 0.259963 0.263617 0.265877 0.267429 0.268571 0.269450
7 0.179728 0.235432 0.252555 0.259798 0.263565 0.265860 0.267424 0.268569 0.269450
8 0.174952 0.233916 0.252054 0.259635 0.263512 0.265843 0.267418 0.268567 0.269449
9 0.170622 0.232483 0.251568 0.259475 0.263460 0.265826 0.267413 0.268565 0.269449

10 0.166667 0.231125 0.251095 0.259317 0.263409 0.265810 0.267407 0.268563 0.269448

Table 6.1: Thresholds for the simplex codes S(mk, 2k, m).

Noting that k parametrizes the distance of the code, we see that for each distance the repetition code
(corresponding to the first row of the table) always has the highest threshold and that increasing the number
of codewords decreases the threshold. Not only that, but as the distance increases the thresholds of m > 2
non-repetition codes appear to converge to the threshold of the repetition code. This convergence is clearer
from Figure 6.2 below, in which the repetition code thresholds are indicated in black.

1 2 3 4 5 6 7 8 9

k

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Q
∗ S

(m
k,

2k
,m

)

m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 6.2: Thresholds for the simplex codes S(mk, 2k, m) from Table 6.1. The region highlighed
in yellow is the gap.

Indeed, from (6.16) we see that for any simplex code, the contribution to gd,m from the m-dependent terms
2(m− 2)Qd(1− 2Q)d and m2Q2d diminishes compared to the other terms as the distance d increases. That is,
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for any simplex code, by keeping m fixed and increasing d using Levenstein’s construction, it holds that

1. m2Q2d ≤ (1− 2Q)2d for all Q ≤ 1

2+(m2)
1
d

;

2. m2Q2d ≤ 4Qd(1−Q)d for all Q ≤ 1

1+
(

m2
4

) 1
d

;

3. 2(m− 2)Qd(1− 2Q)d ≤ (1− 2Q)2d for all Q ≤ 1

2+(2(m−2))
1
d

; and

4. 2(m− 2)Qd(1− 2Q)d ≤ 4Qd(1−Q)d for all Q ≥ (m−2
2 )

1
d−1

2(m−2
2 )

1
d−1

.

This means that as d increases, gd,m tends to (1− 2Q)2d − 4Qd(1− Q)d = f̃d(Q), where we recall the function
f̃ from (5.6) in Chapter 5. This means that 5−

√
5

10 , which is the root of f̃d as d→ ∞, is the best possible threshold
that can be achieved with a simplex code. We have therefore proved the following theorem, which tells us that
simplex codes cannot beat repetition codes, that is, simplex codes cannot break symmetric extendability in the
gap.

Theorem 6.2

For any simplex code S, ρÃB̃
Q,S is symmetrically extendable for all 5−

√
5

10 ≤ Q ≤ 1
3 .

Now, we have already seen in Table 6.1 and Figure 6.2 the trend that the simplex codes S(mk, 2k, m) with
m > 2 of distance 2k cannot beat the repetition codes R2k = S(2k, 2k, 2) with the same distance. The same
data reveal that increasing the number of codewords while keeping the distance constant has the effect of
decreasing the threshold. We examine this effect more closely in Figure 6.3 by plotting the thresholds for
S(mk, 2k, m) as a function of m instead of k.
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Figure 6.3: Thresholds for the simplex codes S(mk, 2k, m) as a function of the number of code-
words m.

6.3 The Special Construction of a Symmetric Extension

We now show that the special map N ◦ TrE2 of §3.3.1 is optimal for simplex codes; that is, like repetition codes,
the special map constructs a symmetric extension of ρÃB̃

Q,S for all simplex codes S throughout their symmetrically

extendable regions. Furthermore, we show that the channel TrE2 alone constructs a symmetric extension of ρÃB̃
Q,S

at the threshold Q∗S.

By using formula (3.11) for J(N), we find that

J(N) =
m−1

∑
u′,v′=0

Λu′,v′ |Φu′,v′〉 〈Φu′,v′ | ,

where the eigenvalues {Λu′,v′}m−1
u′,v′=0 of J(N) for ρÃB̃

Q,S are

Λu′,v′ =
1
m
− (λ0,0 + (m− 1)λ0,1 −mλ1,0)δu′,0 − 1

m (λ0,0 + (m− 1)λ0,1 −mλ1,0)

2
√

λ0,1λ0,0 + (m− 2)λ0,1 + m(m− 1)λ1,0

+
((λ0,0 − λ0,1)(mδv′,0 − 1)) δu′,0

2
√

λ1,0λ0,0 + 2(m− 1)
√

λ1,0λ0,1 + m(m− 2)λ1,0
∀ 0 ≤ u′, v′ ≤ m− 1,
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which means that

Λ0,1 = Λ0,2 = · · · = Λ0,m−1 and Λ1,1 = Λ1,2 = · · · = Λm−1,m−1.

In other words, like the eigenvalues of the filtered states, there are only three distinct eigenvalues of J(N),
which are

Λ0,0 =
1
m

+

(
1− 1

m

)
(λ0,0 + (m− 1)λ0,1 −mλ1,0)

2
√

λ0,1λ0,0 + (m− 2)λ0,1 + m(m− 1)λ1,0

+
(m− 1)(λ0,0 − λ0,1)

2
√

λ1,0λ0,0 + 2(m− 1)
√

λ1,0λ0,1 + m(m− 2)λ1,0
,

(6.17)

Λ0,1 =
1
m

+

(
1− 1

m

)
(λ0,0 + (m− 1)λ0,1 −mλ1,0)

2
√

λ0,1λ0,0 + (m− 2)λ0,1 + m(m− 1)λ1,0

+
λ0,1 − λ0,0

2
√

λ1,0λ0,0 + 2(m− 1)
√

λ1,0λ0,1 + m(m− 2)λ1,0
,

(6.18)

and

Λ1,0 =
1
m
− 1

m
λ0,0 + (m− 1)λ0,1 −mλ1,0

2
√

λ0,1λ0,0 + (m− 2)λ0,1 + m(m− 1)λ1,0
. (6.19)

It holds that Λ0,0 ≥ Λ0,1, since λ0,0 ≥ λ0,1, and that Λ0,0 ≥ Λ1,0. Figure 6.4 below contains plots of the
eigenvalues for some simplex codes.
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Figure 6.4: The eigenvalues Λ0,0, Λ0,1 and Λ1,0 of J(N) for six simplex codes. The region
highlighted in yellow is the gap.
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The plots above give the indication that Λ0,0 is positive for all 0 ≤ Q ≤ 1
2 —hence positive throughout the

gap—for all simplex codes, and that Λ0,1 and Λ1,0 vanish at the same point in the interval
[
0, 1

2

]
for all simplex

codes. The former is verified by examining (6.17) directly, while proof of the latter is given in Lemma D.3 of
Appendix D.

Now, we require N to be a channel, which means that it must be completely-positive and trace-preserving.
From the expression of J(N) above, we find that TrB̃[J(N)] = 1E1 , so that N is trace-preserving. It remains,
therefore, to prove the complete-positivity of N, which requires proving the non-negativity of the eigenvalues
{Λu′,v′}m−1

u′,v′=0 of J(N). Since Λ0,0 is positive for all 0 ≤ Q ≤ 1
2 , and since by Lemma D.3 Λ0,1 and Λ1,0 vanish

at the same point, it is sufficient to consider the non-negativity of the eigenvalue Λ1,0. From the proof of the
same lemma, we have that the condition Λ1,0 ≥ 0 is equivalent to the condition

√
λ0,0 −

√
λ0,1 ≤ m

√
λ1,0.

After using the definitions of λ0,0, λ0,1, λ1,0, this condition becomes

2
d
2 m
√

Qd + 2
d
2

√
(1−Q)d − (1− 2Q)d − 2

d
2

√
(1−Q)d + (m− 1)(1− 2Q)d ≥ 0. (6.20)

If we simplify this further, we obtain the condition

(1− 2Q)2d − (2m− 4)(1− 2Q)dQd + m2Q2d − 4Qd(1−Q)d ≤ 0, (6.21)

which is exactly the condition (6.16) obtained in the previous section using the necessary and sufficient condi-
tion for the symmetric extendability of ρÃB̃

Q,S. This means that Λ0,1 and Λ1,0 vanish at the thresholds Q∗n,d,m and
are positive above it, which means that N is completely-positive for all Q ≥ Q∗n,d,m, which means that N ◦ TrE2

can be used to construct a symmetric extension of ρÃB̃
Q,S throughout its symmetrically extendable region. In

particular, at Q∗n,d,m, the eigenvalue Λ0,0 can be shown to be equal to

Λ∗0,0 =
1
m

+ 1− 1
m
− 1 + m = m.

Therefore,
J(N)|Q∗n,d,m

= m |Φ0,0〉 〈Φ0,0| ⇒ N(X) = X ∀ X,

that is, N is merely the identity map at the threshold, which means that TrE2 alone constructs a symmetric
extension of ρÃB̃

Q,S at the threshold, exactly as we observed with the repetition codes in the previous chapter.
This proves Conjecture 2 for simplex codes.

Summary

In this chapter, we looked at the filtered states arising from Alice and Bob post-selecting on a simplex code S,
which is a generalization of the repetition codes Rn to more than two codewords in which the pairwise Ham-
ming distance between distinct codewords is a constant. The class of states ρÃB̃

Q,S and ρÃB̃
Q,Rn

have essentially the

same structure: while ρÃB̃
Q,Rn

is diagonal in the two-dimensional Bell basis, ρÃB̃
Q,S is diagonal in the m-dimensional

Bell basis, where m is the size of the simplex code S. As well, both classes of states have only three distinct
eigenvalues, which extends to the eigenvalues of J(N) corresponding to the special map E = N ◦ TrE2 . We
proved that this special map is optimal for the states ρÃB̃

Q,S in the sense that it can be used to construct a sym-
metric extension of them throughout their symmetrically extendable regions. Furthermore, we showed that
TrE2 alone constructs a symmetric extension at the thresholds. Most importantly, we proved that there does
not exist a simplex code whose threshold is within the gap, proving that simplex codes cannot beat repetition
codes, and therefore cannot break symmetric extendability in the gap.
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Chapter 7

Testing the Special Map

In this chapter, we test the special map E = N ◦ TrE2 from §3.3.1 to see how often it can construct symmetric
extensions of the filtered states resulting from Alice and Bob post-selecting on the same code. We start with
the special class of linear codes called first-order Reed-Muller codes and find that the special map is not able to
construct a symmetric extension for some values in the gap even though the filtered states are symmetrically
extendable throughout the gap. We then move on to numerical testing of the special map on around 540,000
randomly-selected codes. We find that all the filtered states are symmetrically extendable throughout the gap
but that there were approximtely 1% of the codes for which the special map could not construct a symmetric
extension.

7.1 First-Order Reed-Muller Codes

The rth first-order Reed-Muller code RMr can be defined as RMr = S′r ∪ S′r, where S′r := S(2r, 2r−1, 2r) is the
linear simplex code Sr from Chapter 6 without the first column of zeros removed from the corresponding
binary Hadamard matrix1. For example, with r = 2, we get

H⊗2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 −→


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 ,

so that

S′2 =


0000
0101
0011
0110

⇒ RM2 =



0000
0101
0011
0110
1111
1010
1100
1001


.

1More generally, Reed-Muller codes are defined in terms of Boolean functions, as described in [MS77]. Conveniently, first-order
Reed-Muller codes can be defined in the simpler way described here without the Boolean function formalism.
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It is straightforward to use (E.10) to determine that the eigenvalues of the filtered state ρÃB̃
Q,RMr

correspond-
ing to both Alice and Bob post-selecting on RMr are

λ0,b =


(

1−Q
2

)n
+
(

1−2Q
2

)n
+ 2(nδb,0 − 1)

(
1−2Q

2

) n
2
(

1−Q
2

) n
2

, 0 ≤ b ≤ 2r − 1,(
1−Q

2

)n
−
(

1−2Q
2

)n
, 2r ≤ b ≤ 2 · 2r − 1.

λ2r ,b =

(
Q
2

)n

∀ 0 ≤ b ≤ 2 · 2r − 1,

λa,b =


(

Q
2

) n
2
(

1−Q
2

) n
2
+ (−1)Binr+1(b)·Binr+1(a)

(
1−2Q

2

) n
2
(

Q
2

) n
2

, a 6= 0, 2r, 0 ≤ b ≤ 2r − 1,(
Q
2

) n
2
(

1−Q
2

) n
2 − (−1)Binr+1(b)·Binr+1(a)

(
1−2Q

2

) n
2
(

Q
2

) n
2

, a 6= 0, 2r, 2r ≤ b ≤ 2 · 2r − 1.

(7.1)

We can then use (E.15) to calculate the eigenvalues of J(N) to see if these states are symmetrically extend-
able and, if they are symmetrically extendable, whether a symmetric extension can be constructed using our
special construction.

80



Chapter 7: Testing the Special Map

0.0 0.1 0.2 0.3 0.4 0.5

Q

−1.0

−0.5

0.0

0.5

1.0
r = 2

0.0 0.1 0.2 0.3 0.4 0.5

Q

−1.0

−0.5

0.0

0.5

1.0
r = 3

−3
−2
−1

0
1
2
3 ×10−3

0.0 0.1 0.2 0.3 0.4 0.5

Q

−1.0

−0.5

0.0

0.5

1.0
r = 4

−1.0

−0.5

0.0

0.5

1.0 ×10−5

Figure 7.1: Eigenvalues of J(N) for the Reed-Muller codes RM2, RM3, and RM4. The region
highlighed in yellow is the gap.

The plots above are of the six distinct eigenvalues of J(N) for the states ρÃB̃
Q,RM2

, ρÃB̃
Q,RM3

, and ρÃB̃
Q,RM4

. Using
the SDP (3.3), we have that all of these states are symmetrically extendable throughout the gap. Yet, while the
J(N) eigenvalues for r = 2 are all positive in the gap, looking closely at the eigenvalues for r = 3 and r = 4,
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we find from looking at the insets that in each of these cases the eigenvalue corresponding to the black line is
negative for some values at the lower end of the gap. This means that, though the states ρÃB̃

Q,RM3
and ρÃB̃

Q,RM4
are symmetrically extendable throughout the gap, a symmetric extension cannot be constructed throughout
the gap using the special map. This trend of negative eigenvalues for J(N) continues for increasing r. This
example tells us that there exist linear codes for which the special map is not able to construct a symmetric
extension throughout the gap even when the state is symmetrically extendable.

7.2 Numerical Testing

In this section, we use our special map (3.9) to numerically test the symmetric extendability of filtered states
using an estimated 540,000 inequivalent announcement sets for block sizes up to n = 20. As mentioned in
§3.3, if the second part N of the map is completely-positive, then the state is symmetrically extendable, which
means that the SDP (3.3), which generally takes longer to complete, does not need to be run. The SDP is only
run if N fails to be completely-positive. Table 7.1 below displays the results.

For each (n, m) pair in Table 7.1, if the number of inequivalent announcement sets was known (which was
the case for the (n, m) pairs in Table 4.1), then all of them were tested. If not, then 5000 sets, not necessarily dis-
tinct, were chosen at random and tested. For each announcement set, we determined the smallest eigenvalue
of J(N) for the QBER values of 0.28, 0.29, 0.30, 0.31, 0.32, and 0.33 within the gap. If for each of these QBERs the
smallest eigenvalue of J(N) was positive, then J(N) was positive-semidefinite and the corresponding filtered
state was symmetrically extendable at that QBER; if not, then the SDP (3.3) was run using yalmip [Lof04] on
MATLAB with the solver SCS [ODo+16].

Determining whether two announcement sets are equivalent (as per the equivalences determined in §4.4)
is very similar to the process of determining the number of inequivalent announcement sets for a given (n, m)
pair. As such, determining the equivalence of two announcement sets becomes very time-consuming, espe-
cially for larger block sizes. Therefore, to determine for each (n, m) class not in Table 4.1 how many of the 5000
randomly-selected sets were inequivalent, we used the fact that equivalent announcement sets would give the
same set of eigenvalues of J(N), in particular the same smallest eigenvalue. This fact allowed us to determine
(up to numerical precision) how many of the 5000 sets selected were inequivalent (indicated in the “tested”
columns of Table 7.1 below), which means that the number of inequivalent sets actually tested could be lower
than the number shown. The “failed” columns indicate the number of announcement sets tested for which
the smallest eigevalue of J(N) was negative for at least one of the tested QBER values. In all cases, including
those announcement sets in the failed columns, we found the corresponding filtered states were symmetrically
extendable for all six values of the QBER tested within the gap.

Numerical results for inequivalent linear codes up to block length 9 and size 16 were obtained by Myhr in
[Myh10] by solving the SDP (3.3). The results here include linear and non-linear codes of higher block lengths.
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n
m 3 4 5 6 7 8 9 10 11 12 13 14

Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed Tested Failed
3 2 0 5 0 3 0 3 0 1 0
4 3 0 13 0 24 0 47 0 55 0 73 0 56 0 50 0 27 2 19 3 6 2 4 1
5 4 0 28 0 104 0 4302 0 4723 0 4677 0 4337 0 3735 2
6 6 0 1412 0 4078 0 4895 0 4975 0 4979 0 4957 1 4881 12
7 7 0 2097 0 4579 0 4975 0 4997 0 5000 0 4998 0 4995 9
8 9 0 2529 0 4779 0 4991 0 4999 0 5000 0 5000 4 5000 2 5000 6 5000 3 5000 13
9 289 0 2877 0 4871 0 4996 0 5000 0 5000 0 5000 0 5000 0

10 341 0 3201 0 4899 0 4996 0 5000 0 5000 0 5000 0 5000 3 5000 11
11 325 0 3143 0 4861 0 4995 0 5000 0 5000 0 5000 0 5000 5
12 327 0 3143 0 4871 0 4997 0 5000 0 5000 0 5000 0 5000 7
13 297 0 3008 0 4835 0 4993 0 5000 0 5000 0 5000 0 5000 11
14 268 0 2864 0 4778 0 4981 0 5000 0 5000 0 5000 3 5000 6
15 254 0 2704 0 4724 0 4984 0 5000 0 5000 0 5000 0 5000 10
16 201 0 2489 0 4653 0 4980 0 4999 0 5000 0 5000 0 5000 2
17 204 0 2364 0 4543 0 4981 0 5000 0 5000 0 5000 0 5000 1
18 130 0 2177 0 4471 0 4971 0 5000 0 5000 0 5000 0 5000 1
19 100 0 1913 0 4359 0 4964 0 5000 0 5000 0 5000 0 5000 1
20 74 0 1758 0 4280 0 4948 0 4998 0 5000 0 5000 0 5000 1 5000 1 5000 1 5000 1 5000 3

Table 7.1: Results of the numerical testing of the special construction for various (n, m) pairs.
Blank cells were untested.

The exact total number of (estimated) inequivalent sets tested was 548,818. The total number of failed
sets was 128, which amounts to a failure percentage of approximately 0.2%. Most of these sets failed only at
Q = 0.28 and worked for all of the other five QBERs tested. We keep in mind that the actual total number of
inequivalent sets tested might be less since equivalence of sets was determined using equality of the smallest
eigenvalue of J(N), which is accurate only up to numerical precision.
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Numerical Estimation of Thresholds

As described in §4.3.1, for a given pair of announcement sets P,Q, we can numerically search for the symmetric
extendability threshold Q∗P,Q corresponding to the one-parameter family {ρÃB̃

Q,(P,Q)}Q∈[0, 1
2 ]

of states. In this
chapter, we go through the results of this numerical estimation for all the inequivalent announcement sets in
Table 4.1 for the case of Alice and Bob performing the same post-selection.

The search for the thresholds was done as follows: for each announcement set P, we selected 200 points
in the interval [0.16, 0.33] and found the SDP solution topt(ρÃB̃

Q,P) for each of these points, giving us an estimate
of the function T(P,Q) (defined in (4.18)) in the interval. By finding the curve of best fit to these points, we
estimated the point at which the curve changed sign, which by definition is the threshold. The results are
tabulated below and analyzed in §8.1.
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(n, m) Q∗ Q∗
max

(2, 2) 0.2151 0.2151
(2, 3) 0.1824 0.1824
(3, 2) 0.2344 0.2344
(3, 3) 0.2057 0.2121 0.2121
(3, 4) 0.2151 0.1978 0.1765 0.1949 0.2025 0.2151
(3, 5) 0.2075 0.1955 0.1815 0.2075
(3, 6) 0.1845 0.1824 0.2008 0.2008
(3, 7) 0.1788 0.1788
(4, 2) 0.2447 0.2447
(4, 3) 0.2267 0.2281 0.2307 0.2307
(4, 4) 0.2153 0.2344 0.2224 0.2154 0.1978 0.2073 0.2133 0.2209 0.2236 0.2230 0.2090 0.2144 0.2257 0.2344

(4, 5)
0.2126 0.2164 0.2070 0.2287 0.2059 0.2068 0.2178 0.2195 0.2186 0.1713 0.2138 0.2034 0.1923 0.2044 0.1961

0.2287
0.2026 0.2129 0.2028 0.2051 0.2036 0.2155 0.2179 0.2212 0.2078

(4, 6)

0.1971 0.2057 0.2011 0.2236 0.2162 0.2023 0.2120 0.2121 0.2121 0.2024 0.2151 0.2117 0.2000 0.2088 0.2042

0.2236
0.2038 0.2102 0.1983 0.2042 0.2084 0.2109 0.2009 0.2235 0.2235 0.2128 0.2107 0.2107 0.2129 0.2129 0.2118
0.2146 0.2172 0.1792 0.1952 0.2057 0.1882 0.2064 0.1954 0.1989 0.2046 0.1963 0.2008 0.1952 0.2057 0.2022
0.2010 0.2130

(4, 7)

0.1993 0.2079 0.1892 0.1975 0.2050 0.1949 0.2133 0.1984 0.2190 0.2100 0.2099 0.2140 0.2081 0.2087 0.2082

0.2190
0.2081 0.2081 0.2086 0.2069 0.1984 0.2047 0.2009 0.2006 0.2040 0.2131 0.2047 0.2098 0.2047 0.1999 0.1971
0.1971 0.2025 0.2023 0.2014 0.2058 0.2009 0.2040 0.1984 0.1973 0.2189 0.2084 0.2064 0.2084 0.2084 0.2103
0.1813 0.1999 0.1901 0.1900 0.1990 0.1914 0.1949 0.1986

(4, 8)

0.2151 0.1978 0.1903 0.1983 0.2030 0.2030 0.1970 0.1765 0.1949 0.1949 0.1841 0.2045 0.2034 0.2042 0.2005

0.2151
0.2041 0.2123 0.1970 0.2025 0.2116 0.2072 0.2033 0.1987 0.1923 0.2072 0.1964 0.2015 0.1923 0.2015 0.2063
0.2012 0.2046 0.2062 0.2066 0.2047 0.2069 0.2094 0.2045 0.2045 0.2045 0.2064 0.2045 0.2015 0.2008 0.1955
0.1954 0.1963 0.1996 0.2031 0.1978 0.1958 0.2015 0.2062 0.2111 0.2062 0.1978 0.1984 0.2030 0.1902 0.1954
0.1952 0.1987 0.1951 0.2148 0.2148 0.2148 0.2025 0.2044 0.2044 0.1781 0.1825 0.1866 0.1909

(5, 2) 0.2511 0.2511
(5, 3) 0.2384 0.2365 0.2401 0.2416 0.2416

(5, 4)
0.2344 0.2447 0.2331 0.2358 0.2281 0.2224 0.2253 0.2262 0.2254 0.2299 0.2309 0.2339 0.2361 0.2331 0.2345

0.2447
0.2225 0.2258 0.2235 0.2269 0.2230 0.2261 0.2274 0.2335 0.2356 0.2363 0.2278 0.2298 0.2381

(5, 5)

0.2305 0.2288 0.2284 0.2398 0.2323 0.2307 0.2199 0.2299 0.2202 0.2276 0.2177 0.2402 0.2233 0.2218 0.2217

0.2402

0.2270 0.2270 0.2242 0.2262 0.2287 0.2315 0.2292 0.2311 0.2307 0.2331 0.2296 0.2312 0.2182 0.2333 0.2209
0.2138 0.2191 0.1910 0.2034 0.2188 0.2209 0.2122 0.2201 0.2045 0.2118 0.2102 0.2194 0.2226 0.2109 0.2182
0.2201 0.2164 0.2195 0.2209 0.2209 0.2326 0.2202 0.2224 0.2216 0.2236 0.2219 0.2242 0.2193 0.2234 0.2193
0.2200 0.2219 0.2242 0.2228 0.2201 0.2235 0.2279 0.2235 0.2248 0.2271 0.2287 0.2215 0.2224 0.2292 0.2292
0.2311 0.2296 0.2316 0.2284 0.2288 0.2288 0.2307 0.2304 0.2328 0.2331 0.2062 0.2113 0.2173 0.2191 0.2210
0.2209 0.2130 0.2182 0.2223 0.2212 0.2224 0.2240 0.2239 0.2254 0.2250 0.2292 0.2312 0.2349 0.2269

(6, 2) 0.2553 0.2553
(6, 3) 0.2426 0.2430 0.2457 0.2439 0.2474 0.2484 0.2484
(7, 2) 0.2584 0.2584
(7, 3) 0.2494 0.2507 0.2478 0.2508 0.2502 0.2524 0.2530 0.2530
(8, 2) 0.2606 0.2606
(8, 3) 0.2536 0.2513 0.2540 0.2543 0.2513 0.2545 0.2545 0.2559 0.2563 0.2563

Table 8.1: Numerical estimation of thresholds with post-selection by Alice and Bob on the
inequivalent announcement sets in Table 4.1. The last column indicates the highest threshold
in the (n, m) class.

To test Conjecture 1, which is that Q∗Bn,P = Q∗P for all P, we can perform exactly the same threshold
estimation procedure for the states ρÃB̃

Q,(Bn,P) corresponding to no post-selection by Alice and post-selection by
Bob on the inequivalent sets P of Table 4.1. The results are tabulated in Table 8.2 and plotted in Figure 8.1.
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(2, 2)
Q∗P 0.2151

Q∗Bn,P 0.2151

(2, 3)
Q∗P 0.1824

Q∗Bn,P 0.1824

(3, 2)
Q∗P 0.2344

Q∗Bn,P 0.2344

(3, 3)
Q∗P 0.2057 0.2121

Q∗Bn,P 0.2057 0.2121

(3, 4)
Q∗P 0.2151 0.1978 0.1765 0.1949 0.2025

Q∗Bn,P 0.2151 0.1978 0.1765 0.1966 0.2025

(3, 5)
Q∗P 0.2075 0.1955 0.1815

Q∗Bn,P 0.2075 0.1956 0.1833

(3, 6)
Q∗P 0.1845 0.1824 0.2008

Q∗Bn,P 0.1845 0.1824 0.2008

(3, 7)
Q∗P 0.1788

Q∗Bn,P 0.1788

(4, 2)
Q∗P 0.2447

Q∗Bn,P 0.2447

(4, 3)
Q∗P 0.2267 0.2281 0.2307

Q∗Bn,P 0.2267 0.2381 0.2307

(4, 4)
Q∗P 0.2153 0.2344 0.2224 0.2154 0.1978 0.2073 0.2133 0.2209 0.2236 0.2230 0.2090 0.2144 0.2257

Q∗Bn,P 0.2153 0.2344 0.2224 0.2197 0.1978 0.2074 0.2133 0.2209 0.2236 0.2230 0.2093 0.2159 0.2257

(4, 5)
Q∗P

0.2126 0.2164 0.2070 0.2287 0.2059 0.2068 0.2179 0.2195 0.2186 0.1713 0.2138 0.2034 0.1923 0.2044 0.1961
0.2026 0.2129 0.2028 0.2051 0.2036 0.2155 0.2179 0.2212 0.2078

Q∗Bn,P
0.2126 0.2164 0.2102 0.2287 0.2088 0.2074 0.2179 0.2195 0.2186 0.1713 0.2138 0.2037 0.1947 0.2102 0.1961
0.2026 0.2129 0.2030 0.2054 0.2058 0.2155 0.2179 0.2212 0.2080

(4, 6)

Q∗P

0.1971 0.2057 0.2011 0.2236 0.2162 0.2023 0.2120 0.2121 0.2121 0.2024 0.2151 0.2117 0.2000 0.2088 0.2042
0.2038 0.2102 0.1983 0.2042 0.2084 0.2109 0.2009 0.2235 0.2235 0.2128 0.2107 0.2107 0.2129 0.2129 0.2118
0.2146 0.2172 0.1792 0.1952 0.2057 0.1882 0.2064 0.1954 0.1989 0.2046 0.1963 0.2008 0.1952 0.2057 0.2022
0.2010 0.2130

Q∗Bn,P

0.1993 0.2057 0.2011 0.2236 0.2162 0.2041 0.2120 0.2121 0.2121 0.2026 0.2152 0.2117 0.2057 0.2088 0.2060
0.2044 0.2102 0.1995 0.2075 0.2086 0.2109 0.2010 0.2235 0.2235 0.2128 0.2107 0.2107 0.2129 0.2129 0.2118
0.2146 0.2172 0.1817 0.1975 0.2057 0.1908 0.2064 0.2021 0.1992 0.2049 0.2005 0.2008 0.1968 0.2057 0.2023
0.2011 0.2130

(5, 3)
Q∗P 0.2384 0.2365 0.2401 0.2416

Q∗Bn,P 0.2384 0.2365 0.2401 0.2416

(5, 4)
Q∗P

0.2344 0.2447 0.2331 0.2358 0.2281 0.2224 0.2253 0.2262 0.2254 0.2299 0.2309 0.2339 0.2361 0.2331 0.2345
0.2225 0.2258 0.2235 0.2269 0.2230 0.2261 0.2274 0.2335 0.2356 0.2363 0.2278 0.2298 0.2381

Q∗Bn,P
0.2345 0.2447 0.2331 0.2358 0.2281 0.2224 0.2257 0.2262 0.2254 0.2299 0.2309 0.2339 0.2361 0.2331 0.2345
0.2225 0.2258 0.2235 0.2288 0.2230 0.2261 0.2274 0.2335 0.2356 0.2363 0.2278 0.2298 0.2381

Table 8.2: Comparison of thresholds with and without post-selection by Alice on the inequiv-
alent announcement sets in Table 4.1 for each (n, m) pair indicated in the left-most column.
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Figure 8.1: Comparison between the thresholds Q∗P with and Q∗Bn ,P without post-selection by
Alice on the inequivalent announcement sets P in Table 4.1. The dots represent the announce-
ment sets, and the colour of the dots, as given by the colorbars adjacent to the plots, indicate
the difference between the thresholds.

We see that most of the thresholds Q∗Bn,P without post-selection by Alice are the same as the thresholds
Q∗P with post-selection by Alice up to at least four decimal places. There are some thresholds without post-
selection that are the same as the corresponding thresholds with post-selection only up to two or three decimal
places. It might be possible to get better agreement in these cases by taking more than 200 points in the
estimation procedure. Overall, though, the data provides reasonably good evidence to support Conjecture 1
that Q∗Bn,P = Q∗P for all P.

8.1 Trends and Analysis

By plotting Q∗max for each (n, m) class from Table 8.1, we obtain the following.
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Figure 8.2: The highest thresholds Q∗max as indicated in the right-most column of Table 8.1.

It is clear from this plot that for each n, the m = 2 announcement set, which is the repetition code Rn, gives
the highest threshold. As m increases beyond 2, the maximum threshold tends to decrease. As well, for fixed
m, the maximum threshold increases with increasing n, with a clear indication that the thresholds converge
towards the value 5−

√
5

10 obtained using repetition codes. Along with the data from Chapter 7, this strengthens
our belief that there does not exist a code whose corresponding filtered state is not symmetrically extendable
within the gap, hence our belief that no successful two-way post-processing protocol exists within the gap.

On closer inspection of Table 8.1, we also observe that there are several instances in the (n, m) = (4, 6),
(4, 7), (4, 8), (5, 4), and (5, 5) classes in which two inequivalent announcement sets appear to have the same
threshold since they agree up to at least six decimal places. The announcement sets are listed in the table
below.
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(n, m) Q∗ Announcement Sets

(4, 6) 0.205719 2, 35, 44



0000
0101
0110
1000
1101
1110


,



0000
1000
1010
1011
1100
1101


,



0000
1010
1011
1100
1101
1110



0.212056 8, 9



0000
0110
0111
1000
1101
1111


,



0000
0110
0111
1000
1110
1111



0.204239 15, 19



0000
0110
1001
1011
1100
1111


,



0000
0110
1001
1100
1110
1111



0.223548 23, 24



0000
0111
1000
1011
1100
1111


,



0000
0111
1000
1100
1110
1111



0.210679 26, 27



0000
0111
1010
1011
1100
1101


,



0000
0111
1010
1100
1101
1110



0.212884 28, 29



0000
0111
1010
1100
1101
1111


,



0000
0111
1010
1100
1110
1111



(4, 7) 0.199302 1, 49



0000
0010
0011
0100
0101
1000
1001


,



0000
1000
1010
1011
1100
1101
1110


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0.208108 16, 17



0000
0110
0111
1000
1100
1101
1111


,



0000
0110
0111
1000
1100
1110
1111



0.204702 21, 26, 28



0000
0110
0111
1001
1011
1100
1110


,



0000
0110
1000
1011
1100
1110
1111


,



0000
0110
1000
1100
1101
1110
1111



0.200910 22, 36



0000
0110
0111
1001
1011
1100
1111


,



0000
0110
1001
1100
1101
1110
1111



0.204004 24, 37



0000
0110
0111
1010
1011
1100
1101


,



0000
0110
1010
1011
1100
1101
1110



0.199949 29, 48



0000
0110
1001
1010
1100
1101
1110


,



0000
1000
1001
1010
1100
1110
1111



0.197099 30, 31



0000
0110
1001
1010
1100
1101
1111


,



0000
0110
1001
1010
1100
1110
1111


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0.218946 40, 41



0000
0111
1000
1011
1100
1110
1111


,



0000
0111
1000
1100
1101
1110
1111



0.208448 44, 45



0000
0111
1010
1011
1100
1101
1111


,



0000
0111
1010
1100
1101
1110
1111



(4, 8) 0.197825 2, 50, 56



0000
0011
0101
0110
1000
1011
1101
1110


,



0000
0110
0111
1010
1011
1100
1101
1110


,



0000
0110
1000
1010
1011
1100
1101
1110



0.203015 5, 6



0000
0100
0110
1000
1001
1011
1110
1111


,



0000
0100
0110
1000
1001
1101
1110
1111



0.204501 12, 38
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
00000
01111
10110
11000
11101

,


00000
10111
11000
11011
11100

,


00000
10111
11000
11100
11110


0.231085 23, 76


00000
01111
10110
11000
11111

,


00000
10111
11000
11100
11111


0.218156 28, 45


00000
10000
10110
11001
11111

,


00000
10100
11000
11110
11111


0.228442 3, 79


00000
01011
01100
10010
10101

,


00000
10111
11001
11010
11100


0.220949 36, 49


00000
10011
10100
11000
11111

,


00000
10101
10110
11000
11111


0.230704 6, 24


00000
01100
01111
10001
10010

,


00000
01111
10110
11001
11111


0.223458 66, 68


00000
10110
11001
11011
11100

,


00000
10110
11001
11100
11110


0.222430 73, 96


00000
10110
11010
11100
11111

,


00000
11001
11010
11100
11111


0.228821 80, 81


00000
10111
11010
11100
11101

,


00000
10111
11010
11100
11110



93



Chapter 8: Numerical Estimation of Thresholds

Table 8.3: Inequivalent announcement sets from Table 4.1 that appear to have the same thresh-
olds, as indicated by the results in Table 8.1. The numbers beside the threshold indicate the
location of the set in Table 8.1.

In almost all cases, the two (or three) sets differ by only one codeword, and that one codeword is almost
always a permutation of the codeword from the other set. Of course, the thresholds may merely be very close
to each other and not the same, though we cannot exclude the possibility that they are the same and that
therefore there exists an additional equivalence relation between announcement sets, one that is much deeper
than the ones determined in §4.4. It remains to be explored the effects of making very small changes to a code
on the symmetric extendability of the corresponding filtered state.
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Summary

This thesis investigated the existence of two-way classical post-processing proctocols distilling secret keys
for QKD protocols using the six-state and BB84 signal states with equal QBER in each basis. Specifically,
we wanted to know whether there exist two-way protocols whenever the QBER Q of the protocol is within
the gap

[
5−
√

5
10 , 1

3

)
(with the six-state signal states) and

[ 1
5 , 1

4

)
(with the BB84 signal states). Since quantum

entanglement distillation protocols are known to distill secret keys right up to the entanglement limits of 1
3

and 1
4 , the question of key distillation within the gap using two-way classical post-processing protocols is

equivalent to the question of whether classical key distillation protocols are just as good as quantum ones for
distilling secret keys. The answer appears to be no, that is, there does not exist a two-way post-processing
protocol distilling secret key within the gap.

Below is a summary of the results of this thesis:

• (Chapter 3) A method more efficient than SDPs for checking the symmetric extendability of bipartite
states based on the special map (3.9).

• (Chapter 4) A new framework, building on the arguments presented in [Myh+09], for determining the
existence of two-way post-processing protocols distilling secret keys. In this framework, we need only to
check the symmetric extendability of Alice and Bob’s correlations after post-selection by Bob on a block
of his data according to some error-correcting code, though we allow Alice to perform post-selection as
well. We determine equivalences of codes based on symmetric extendability and determine the number
of inequivalent codes for small block lengths and code sizes in Table 4.1. We conjecture (Conjecture
1) that allowing Alice and Bob to post-select on the same code is equivalent (in terms of symmetric
extendability) to allowing only Bob to post-select. We also conjecture (Conjecture 2) a two-step procedure
for constructing symmetric extensions of the post-selected states.

• Proof, using the new framework, of the result known from [Myh+09] that advantage distillation (cor-
responding to post-selection on repetition codes) cannot break symmetric extendability beyond 5−

√
5

10
using the six-state signal states (Chapter 5) and beyond 1

5 for the BB84 signal states (Appendix C). We
also prove Conjecture 1 and Conjecture 2, both using the special map from Chapter 3.

• (Chapter 6) Proof that post-selection on simplex codes, which generalizes advantage distillation, can-
not break symmetric extendability in the gap. We also prove Conjecture 2 using the special map from
Chapter 3.

• (Chapter 7) When Alice and Bob post-select on a first-order Reed-Muller code, the special map from
Chapter 3 is not always able to construct a symmetric extension within the gap even though the resulting
states are symmetrically extendable. We then show the results of testing over 540,000 codes using the
special method from Chapter 3. We found that all of the resulting states were symmetrically extendable
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within the gap and that the special method failed to construct a symmetric extension within the gap for
less than 1% of the codes.

• (Chapter 8) Numerical estimation of the symmetric extendability thresholds from post-selection by Alice
and Bob on the inequivalent codes in Table 4.1 reveal that for any given block length, the repetition code
threshold is always the highest, with thresholds decreasing as the number of codewords increases. We
also provide evidence for the truth of Conjecture 1 in Table 8.2 and Figure 8.1.

All the results of this thesis strengthen our belief that in the gap two-way post-processing protocols dis-
tilling secret keys do not exist for QKD protocols using the six-state signal states with equal QBER in each
basis. In particular, the value 5−

√
5

10 of the QBER appears to be a point beyond which classical correlations
arising from entangled quantum states cannot be used to distill secret key. As mentioned in the introduction,
this suggests the existence of bound information, which was first conjectured in [GW00] and discussed sub-
sequently in [GRW01; GRW02; CP02; RW03; AG05]. In these works, the authors discuss the possibility that
bound information might arise from measurement of bound entangled states. Though an example of a bound
entangled state with positive distillable key upon measurement was then found in [Hor+05], this result does
not completely rule out the existence of bound information arising from bound entangled states, so that the
existence of bound information remains an open problem. Our results add to the possibilities by indicating
that bound information might arise even upon measuring entangled states with distillable entanglement.
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Appendix A

Proof of Formula (3.11)

By (3.10) and Proposition 2.10, we have

K(N) = S(J(N)) = K(ΦPAB)K(TrE2 ◦Φc
PAB)

−1 ⇒ J(N) = S−1
[
K(ΦPAB)K(TrE2 ◦Φc

PAB)
−1
]

.

But
K(ΦPAB) = S(J(ΦPAB)) = S(PAB), K(TrE2 ◦Φc

PAB)
−1 =

(
S(J(TrE2 ◦Φc

PAB)
)−1 ,

and using the purification

|ψ〉ABE1E2 =
dA−1

∑
k,k′=0

dB−1

∑
`,`′=0

(√
PAB

)
k,`

k′,`′
|k, `〉AB ⊗

∣∣k′, `′〉E1E2 = vec
(√

PAB
)

(A.1)

of PAB in HE1E2 , we get by Proposition 2.18 that

J(Φc
PAB) = TrB[|ψ〉 〈ψ|ABE1E2 ] = PAE1E2 ⇒ J(TrE2 ◦Φc

PAB) = (1L(HA) ⊗ TrE2)J(Φc
PAB) = PAE1 ,

which means that
K(TrE2 ◦Φc

PAB)
−1 =

(
S(J(TrE2 ◦Φc

PAB)
)−1

= S(PAE1)−1.

Now, using (A.1),

PAE1 = TrB,E2

[
|ψ〉 〈ψ|ABE1E2

]
=

dA−1

∑
k,k′
i,i′ =0

(
dB−1

∑
`,`′=0

(√
PAB

)
k,`

k′,`′

(√
PAB

)
i,`

i′,`′

) ∣∣k, k′
〉 〈

i, i′
∣∣AE1 .

By definition of the shuffling map,(√
PAB

)
k,`

k′,`′
= S

(√
PAB

)
`,`′
k,k′

=
(

S
(√

PAB
)T)

k,k′
`,`′

∀ 0 ≤ k, k′ ≤ dA − 1, 0 ≤ `, `′ ≤ dB − 1

and (√
PAB

)
i,`

i′,`′
= S

(√
PAB

)
`,`′
i,i′

=

(
S
(√

PAB
))

`,`′
i,i′

∀ 0 ≤ i, i′ ≤ dA − 1, 0 ≤ `, `′ ≤ dB − 1,

which means that

PAE1 =
dA−1

∑
k,k′
i,i′ =0

(
S
(√

PAB
)T

S
(√

PAB
))

k,k′
i,i′

∣∣k, k′
〉 〈

i, i′
∣∣AE1 ⇒ PAE1 = S

(√
PAB

)T

S
(√

PAB
)

.
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Therefore,

J(N) = S−1

[
S
(

PAB
)

S
(

S
(√

PAB
)T

S
(√

PAB
))−1

]
,

as required.
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Chapter 4 Proofs

Proposition B.1

For sets P1 = {P1,k}
mA1−1
k=0 and Q1 = {Q1,`}

mB1−1
`=0 of n1-bit strings, and for sets P2 = {P2,k}

mA2−1
k=0

and Q2 = {Q2,`}
mB2−1
`=0 of n2-bit strings, it holds that

ρÃ1 Ã2 B̃1 B̃2

Q,(|P1|P2|,
|Q1|Q2|)

= W
(

ρÃ1 B̃1
Q,(P1,Q1)

⊗ ρÃ2 B̃2
Q,(P2,Q2)

)
W†,

where W = SWAPÃ2 B̃1
is the unitary operator that swaps the HÃ2

and HB̃1
spaces and is defined

analogously to (3.1).

PROOF: By (4.22), it holds that

ρÃ1 Ã2 B̃1 B̃2

Q,(|P1|P2|,
|Q1|Q2|)

= (A|P1|P2| ⊗ A|Q1|Q2|)(ρ
An1+n2 Bn1+n2
Q )(A|P1|P2| ⊗ A|Q1|Q2|)

†

=

mA1−1

∑
i,i′=0

mA2−1

∑
j,j′=0

mB1−1

∑
k,k′=0

mB2−1

∑
`,`′=0

|i, j, k, `〉
〈
i′, j′, k′, `′

∣∣ 〈P1,iP2,j, Q1,kQ2,`
∣∣ ρAn1+n2 Bn1+n2

Q
∣∣P1,i′P2,j′ , Q1,k′Q2,`′

〉
.

Then, by (4.9), 〈
P1,iP2,j, Q1,kQ2,`

∣∣ ρAn1+n2 Bn1+n2
Q

∣∣P1,i′P2,j′ , Q1,k′Q2,`′
〉

= 〈P1,i, Q1,k| ρAn1 Bn1
Q |P1,i′ , Q2,k′〉

〈
P2,j, Q2,`

∣∣ ρAn2 Bn2
Q

∣∣P2,j′ , Q2,`′
〉

=
(

ρÃ1 B̃1
Q,(P1,Q1)

)
i,k

i′,k′

(
ρÃ2 B̃2

Q,(P2,Q2)

)
j,`

j′,`′

for all 0 ≤ i, i′ ≤ mA1 − 1, 0 ≤ k, k′ ≤ mB1 − 1, 0 ≤ j, j′ ≤ mA2 − 1, 0 ≤ `, `′ ≤ mB2 − 1. Also, by definition of
W = SWAPÃ2 B̃1

W |i, k, j, `〉Ã1 B̃1 Ã2 B̃2 = |i, j, k, `〉Ã1 Ã2 B̃1 B̃2
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for all 0 ≤ i ≤ mA1 − 1, 0 ≤ k ≤ mB1 − 1, 0 ≤ j ≤ mA2 − 1, 0 ≤ ` ≤ mB2 − 1, so that

ρÃ1 Ã2 B̃1 B̃2

Q,(|P1|P2|,
|Q1|Q2|)

= W

mA1−1

∑
i,i′=0

mA2−1

∑
j,j′=0

mB1−1

∑
k,k′=0

mB2−1

∑
`,`′=0

(
ρÃ1 B̃1

Q,(P1,Q1)

)
i,k

i′,k′

(
ρÃ2 B̃2

Q,(P2,Q2)

)
j,`

j′,`′
|i, k〉

〈
i′, k′

∣∣Ã1 B̃1 ⊗ |j, `〉
〈

j′, `′
∣∣Ã2 B̃2

W†

= W
(

ρÃ1 B̃1
Q,(P1,Q1)

⊗ ρÃ2 B̃2
Q,(P2,Q2)

)
W†,

as required. �

Proposition B.2

For the Levenshtein construction of a copies of P = {Pk}m−1
k=0 of n1-bit strings and b copies of

Q = {Q`}m−1
`=0 of n2-bit strings, it holds that

ρÃB̃
Q,aP+bQ =

(
ρÃB̃

Q,P

)◦a
◦
(

ρÃB̃
Q,Q

)◦b

PROOF: By definition (4.9) for the matrix elements of the filtered state in the standard basis, for all 0 ≤
k, k′, `, `′ ≤ m− 1 we have(

ρÃB̃
Q,aP+bQ

)
k,`

k′,`′

= 〈Pk · · · PkQk · · ·Qk, P` · · · P`Q` · · ·Q`| ρAan1+bn2 Ban1+bn2
Q |Pk′ · · · Pk′Qk′ · · ·Qk′ , P`′ · · · P`′Q`′ · · ·Q`′〉

=
(
〈Pk, P`| ρAn1 Bn1

Q |Pk′ , P`′〉
)a (
〈Qk, Q`| ρAn2 Bn2

Q |Qk′ , Q`′〉
)b

=

((
ρÃB̃

Q,P

)
k,`

k′,`′

)a ((
ρÃB̃

Q,Q

)
k,`

k′,`′

)b

.

The result follows by definition (4.25) of the Hadamard product. �
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Repetition Codes with the BB84 Signal States

In the standard basis of C2 ⊗C2,

ρAB
Q,x =


1−Q

2 0 0 1
2 − 3Q

2 + x
0 Q

2
Q
2 − x 0

0 Q
2 − x Q

2 0
1
2 − 3Q

2 + x 0 0 1−Q
2

 , (C.1)

so that the filtered state ρÃB̃
Q,x,Rn

after post-selection on repetition codes is

ρÃB̃
Q,x,n =


q1 0 0 q2
0 q0 q3 0
0 q3 q0 0
q2 0 0 q1

 , (C.2)

where we define

q0 =

(
Q
2

)n

, q1 =

(
1−Q

2

)n

, q2 =

(
1
2
− 3Q

2
+ x
)n

, q3 =

(
Q
2
− x
)n

. (C.3)

This state is Bell-diagonal with eigenvalues

q1 + q2, q1 − q2, q0 + q3, q0 − q3. (C.4)

The eigenvalues of
(

ρÃB̃
Q,x,n

)TB̃
are

q1 + q3, q1 − q3, q0 + q2, q0 − q2.

Similar to the analysis in §2.4.3, finding for each n > 1 the highest Q such that the states {ρÃB̃
Q,x,n}x∈[0,Q] are

entangled, we obtain by the PPT criterion

q1 + q3 < 0, q1 − q3 < 0, q0 + q2 < 0, q0 − q2 < 0.

The first and third of these conditions is never satisfied as q0, q1, q2, q3 are non-negative for all n ≥ 1, for all
0 ≤ Q ≤ 1

2 , and for all 0 ≤ x ≤ Q. The second and fourth conditions lead to

1
2
−Q + x < 0 and 2Q− x− 1

2
< 0
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for all n > 1, which are the same conditions obtained in §2.4.3 for the original unfiltered states. Therefore, for
all n > 1, the separability boundary for the class of states {ρÃB̃

Q,x,Rn
}x∈[0,Q] is 1

4 , just as for the unfiltered states.
Now,

det
(

ρÃB̃
Q,x,Rn

)
= (q2

1 − q2
2)(q

2
0 − q2

3),

Tr
[(

ρÃB̃
Q,x,Rn

)2
]
= 2q2

1 + 2q2
2 + 2q2

0 + 2q2
3,

Tr
[(

ρB̃
Q,x,Rn

)2
]
= 2q2

0 + 2q2
1 + 2q0q1.

(C.5)

Therefore, the condition (3.2) for the symmetric extendability of ρÃB̃
Q,x,Rn

is

4
√
(q2

1 − q2
2)(q

2
0 − q2

3) ≥ 2q2
2 + 2q2

3 − 4q0q1. (C.6)

Squaring both sides of this inequality and simplifying gives

q2
3(4q2

1 − 2q2
2 − 4q0q1 + q2

3) + q2
2(4q2

0 − 4q0q1 + q2
2) ≤ 0. (C.7)

The thresholds Q∗n are defined as the largest Q such that the set {ρÃB̃
Q,x,Rn

}x∈[0,Q] does not contain a symmetrically
extendable state. To determine them, we must find for each n the largest Q such that the left-hand side of (C.7)
is positive for all 0 ≤ x ≤ Q, as positivity of the left-hand side of (C.7) means that ρÃB̃

Q,x,n is not symmetrically
extendable. Doing this for up to n = 40, we obtain the plot in Figure C.1. As with the six-state signal states,
the threshold increases monotonically with n, gradually approaching 1

5 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

n

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

Q
∗ n

Figure C.1: Advantage distillation thresholds for the BB84 signal states from n = 1 to n = 40.
Indicated in yellow is the gap.

Like in the analysis for the six-state signal states, we want to determine the threshold in the limit n → ∞
and confirm that it is 1

5 . Similar to that analysis, it holds that as n increases q0, q3 vanish more quickly relative
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to q1, q2, so that for large n the inequality (C.7) tends to −4q0q1 + q2
2 ≤ 0, which becomes after substituting the

defintions of q0, q1, q2 and simplifying

− 4Qn(1−Q)n + (1− 3Q + 2x)2n ≤ 0. (C.8)

Simplifying further leads to (1− 3Q + 2x)2 ≤ 4
1
n Q(1−Q). Therefore, in the limit n→ ∞, we obtain (1− 3Q +

2x)2 ≤ Q(1−Q). Simplifying this condition leads to

hQ(x) := 4x2 + (4− 12Q)x + 1− 7Q + 10Q2 ≤ 0. (C.9)

This condition is necessary and sufficient for ρÃB̃
Q,x,Rn

to be symmetrically extendable in the limit n → ∞. We

would like to determine, in this limit, the highest possible Q such that ρÃB̃
Q,x,n is not symmetrically extendable

for all 0 ≤ x ≤ Q. This means that we must determine the highest Q such that hQ(x) > 0 for all 0 ≤ x ≤ Q.

It holds that hQ is a quadratic function of x and is convex (or “concave up”, which is due to the fact that
h′′Q(x) = 8 for all 0 ≤ x ≤ Q). Also, its vertex is at 3

2 Q− 1
2 , which is negative for all Q < 1

3 , and the value of the
vertex is −Q + Q2. hQ will be positive for all x if its vertex is positive, but the condition −Q + Q2 > 0 leads to
Q < 0 or Q > 1, neither of which are permissible. Therefore, in our interval of interest of 0 ≤ Q ≤ 1

2 the vertex
of hQ will be negative, which means that for FQ to be positive for all 0 ≤ x ≤ Q both of the zeros of FQ must be
negative. The roots of FQ are

−(4− 12Q)± 4
√

Q(1−Q)

8
. (C.10)

The root with the negative sign is negative for all 0 ≤ Q < 1
2 , while negativity of the root with the positive

sign leads to 4
√

Q(1−Q) < 4− 12Q, which has solution Q < 1
5 . Equivalently, the root with the positive sign

is negative if and only if hQ(0) is positive, that is, when 1− 7Q + 10Q2 > 0. This holds for Q > 1
2 , which is

not permissible, and for Q < 1
5 , as before. This means that for all Q ≥ 1

5 there exists x ∈ [0, Q] such that ρÃB̃
Q,x,Rn

is symmetrically extendable, meaning that symmetric extendability cannot be broken beyond 1
5 . We have thus

used our framework to reproduce the known result that for the BB84 signal states advantage distillation cannot
break the symmetric extendability of Alice and Bob’s initial correlations beyond 1

5 .
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Chapter 6 Proofs

Proposition D.1

For any simplex code S(n, d, m), the resulting state ρÃB̃
Q,S is diagonal in the m-dimensional Bell

Basis (6.5).

PROOF: From (4.12), we have that the block M(0n)
Q,S has off-diagonal elements

(
1−2Q

2

)d ( 1−Q
2

)n−d
and diagonal

elements
(

1−Q
2

)n
, so that in general the elements of the M(0n)

Q,S block are

(
ρÃB̃

Q,S

)
k,k
`,`

=

(
1−Q

2

)n
(

δk,` + (1− δk,`)

(
1−Q

2

)−d (1− 2Q
2

)d
)
∀ 0 ≤ k, ` ≤ m− 1.

For c 6= 0n, each block M(c)
Q,S is diagonal since the strings of the set always have at least one common position

with a 1, so that the condition c� (Pk ⊕ Pk′) = 0n—the condition for non-zero off-diagonal elements—is never
satisfied.

Therefore, ρÃB̃
Q,S has the form

ρÃB̃
Q,S =

m−1

∑
k,`=0

(
ρÃB̃

Q,S

)
k,k
`,`
|k, k〉 〈`, `|︸ ︷︷ ︸

M(0n)
Q,S

+ ∑
c 6=0n

∑
(k,`)∈Ic

(
ρÃB̃

Q,S

)
k,`
k,`
|k, `〉 〈k, `|︸ ︷︷ ︸

M(c)
Q,S, c 6=0n

. (D.1)
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Writing the first term of this expression in the m-dimensional Bell basis gives

m−1

∑
k,`=0

m−1

∑
a,b

a′,b′=0

(
ρÃB̃

Q,S

)
k,k
`,`
|Φa,b〉 〈Φa,b|k, k〉︸ ︷︷ ︸

1√
m e−

2πibk
m δk,k+a

〈`, `|Φa′,b′〉︸ ︷︷ ︸
1√
m e

2πib′`
m δ`,`+a′

〈Φa′,b′ |

=
m−1

∑
k,`=0

m−1

∑
a,b

a′,b′=0

(
ρÃB̃

Q,S

)
k,k
`,`

e−
2πibk

m e
2πib′`

m δa,0δa′,0 |Φa,b〉 〈Φa′,b′ |

=
m−1

∑
k,`=0

m−1

∑
b,b′=0

1
m

(
1−Q

2

)n

δk,`e−
2πibk

m e
2πib′`

m |Φ0,b〉 〈Φ0,b′ |︸ ︷︷ ︸
1©

+
m−1

∑
k,`=0

m−1

∑
b,b′=0

1
m

(
1−Q

2

)n−d (1− 2Q
2

)d

(1− δk,`)e−
2πibk

m e
2πib′`

m |Φ0,b〉 〈Φ0,b′ |︸ ︷︷ ︸
2©

.

Now,

1© =
m−1

∑
b,b′=0

1
m

(
1−Q

2

)n
(

m−1

∑
k=0

e
2πi
m (b−b′)k

)
︸ ︷︷ ︸

mδb,b′

|Φ0,b〉 〈Φ0,b′ | =
m−1

∑
b=0

(
1−Q

2

)n

|Φ0,b〉 〈Φ0,b| ,

and

2© =
m−1

∑
k,`=0

m−1

∑
b,b′=0

[
1
m

(
1−Q

2

)n−d (1− 2Q
2

)d

e−
2πibk

m e
2πib′`

m

− 1
m

(
1−Q

2

)n−d (1− 2Q
2

)d

δk,`e−
2πibk

m e
2πib′`

m

]
|Φ0,b〉 〈Φ0,b′ |

=

(
1−Q

2

)n−d (1− 2Q
2

)d

|Φ0,0〉 〈Φ0,0| −
m−1

∑
b=0

(
1 + p

4

)n−d (1− 2Q
2

)d

|Φ0,b〉 〈Φ0,b|

Therefore, the first term of (D.1) is equal to

m−1

∑
b=0

[(
1−Q

2

)n

+ (δb,0m− 1)
(

1− 2Q
2

)d (1−Q
2

)n−d
]
|Φ0,b〉 〈Φ0,b| .

The second term of (D.1) can be written as

∑
c 6=0n

∑
(k,`)∈Ic

(
ρÃB̃

Q,S

)
k,`
k,`
|k, `〉 〈k, `| =

m−1

∑
k,`=0
k 6=`

(
ρÃB̃

Q,S

)
k,`
k,`
|k, `〉 〈k, `| .
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Writing this in the Bell basis, and using
(

ρÃB̃
Q,S

)
k,`
k,`

=
(

Q
2

)d ( 1−Q
2

)n−d
, gives

m−1

∑
k,`=0
k 6=`

(
ρÃB̃

Q,S

)
k,`
k,`
|k, `〉 〈k, `| =

m−1

∑
k,`=0
k 6=`

m−1

∑
a,b

a′,b′=0

(
ρÃB̃

Q,S

)
k,`
k,`
|Φa,b〉 〈Φa,b|k, `〉︸ ︷︷ ︸

1√
m e−

2πibk
m δ`,k+a

〈k, `|Φa′,b′〉︸ ︷︷ ︸
1√
m e

2πib′k
m δ`,k+a′

〈Φa′,b′ |

=
m−1

∑
k,`=0
k 6=`

m−1

∑
b,b′=0

(
Q
2

)d (1−Q
2

)n−d 1
m

e
2πi
m (b′−b)k |Φ`−k,b〉 〈Φ`−k,b′ |

=
m−1

∑
`′=1

m−1

∑
k=0

m−1

∑
b,b′=0

(
Q
2

)d (1−Q
2

)n−d 1
m

e
2πi
m (b′−b)k |Φ`′,b〉 〈Φ`′,b′ |

=
m−1

∑
`′=1

m−1

∑
b,b′=0

(
Q
2

)d (1−Q
2

)n−d

δb,b′ |Φ`′,b〉 〈Φ`′,b′ |

=
m−1

∑
`′=1

m−1

∑
b=0

(
Q
2

)d (1−Q
2

)n−d

|Φ`′,b〉 〈Φ`′,b| .

Therefore,

ρÃB̃
Q,S =

m−1

∑
b=0

[(
1−Q

2

)n

+ (δb,0m− 1)
(

1− 2Q
2

)d (1−Q
2

)n−d
]
|Φ0,b〉 〈Φ0,b|

+
m−1

∑
a=1

m−1

∑
b=0

(
Q
2

)d (1−Q
2

)n−d

|Φa,b〉 〈Φa,b| ,
(D.2)

that is, ρÃB̃
Q,S is diagonal in the Bell basis, as required. �

Proposition D.2

For any simplex code S(n, d, m), the state ρÃB̃
Q,S is separable for all Q ≥ 1

3 .

PROOF: We first observe from (D.1) that the block M(0n)
Q,S becomes diagonal after taking the partial trans-

pose, while the matrix elements previously corresponding to off-diagonal elements of M(0n)
Q,S now become

off-diagonal elements of the blocks M(c)
Q,S with c 6= 0n. All such blocks contain 2× 2 sub-blocks supported

on orthogonal subspaces that can be diagonalized by the Hadamard matrix H defined in (6.1). In fact, all such

sub-blocks are the same. This means that the distinct eigenvalues of
(

ρÃB̃
Q,S

)TB̃
are(

1−Q
2

)n
,(

1−Q
2

)n−d
((

Q
2

)d
+
(

1−2Q
2

)d
)

,(
1−Q

2

)n−d
((

Q
2

)d
−
(

1−2Q
2

)d
)

.

The first and second eigenvalues are never negative, while negativity of the third eigenvalue easily leads to
the condition Q < 1

3 , which is the range of values for which ρÃB̃
Q,S is entangled. ρÃB̃

Q,S is therefore separable for all
Q ≥ 1

3 . Since the simplex code S was arbitrary, the proof is complete. �
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Lemma D.3

For all simplex codes, the roots of Λ0,1 and Λ1,0 are equal in the interval 0 ≤ Q ≤ 1
2 .

PROOF: Let λ∗0,0, λ∗0,1 and λ∗1,0 be the eigenvalues of ρÃB̃
Q,S at the value of Q for which Λ1,0 = 0. Let Λ∗0,1 be the

eigenvalue Λ0,1 evaluated at that same value. From the expression of Λ1,0 in (6.19), Λ1,0 = 0 gives us

1
m

+
− 1

m λ∗0,0 − m−1
m λ∗0,1 + λ∗1,0

2
√

λ∗0,1λ∗0,0 + (m− 2)λ∗0,1 + m(m− 1)λ∗1,0

= 0.

This leads to

λ∗0,0 + (m− 1)λ∗0,1 −mλ∗1,0 = 2
√

λ∗0,1λ∗0,0 + (m− 2)λ∗0,1 + m(m− 1)λ∗1,0

⇒ λ∗0,0 − 2
√

λ∗0,1λ∗0,0 + λ∗0,1 = m2λ∗1,0

⇒
(√

λ∗0,0 −
√

λ∗0,1

)2
= m2λ∗1,0

⇒
√

λ∗0,0 −
√

λ∗0,1 = ±m
√

λ∗1,0.

Since λ0,0 ≥ λ0,1 for all simplex codes for all 0 ≤ Q ≤ 1
2 , we have that

√
λ∗0,0 −

√
λ∗0,1 = m

√
λ∗1,0. Now,

Λ∗0,1 = 1−
λ∗0,0 − λ∗0,1

2
√

λ∗1,0λ∗0,0 + 2(m− 1)
√

λ∗1,0λ∗0,1 + m(m− 2)λ∗1,0

,

and using
√

λ∗0,0 −
√

λ∗0,1 = m
√

λ∗1,0, we obtain

2
√

λ∗1,0λ∗0,0 + 2(m− 1)
√

λ∗1,0λ∗0,1 + m(m− 2)λ∗1,0 = 2
√

λ∗1,0

(√
λ∗0,0 + (m− 1)

√
λ∗0,1 +

1
2

m(m− 2)
√

λ∗1,0

)
=

2
m

(√
λ∗0,0 −

√
λ∗0,1

)(√
λ∗0,0 + (m− 1)

√
λ∗0,1 +

1
2
(m− 2)

(√
λ∗0,0 −

√
λ∗0,1

))
=

2
m

(√
λ∗0,0 −

√
λ∗0,1

) (√
λ∗0,0 + m

√
λ∗0,1 −

√
λ∗0,1 +

m
2

√
λ∗0,0 −

m
2

√
λ∗0,1 −

√
λ∗0,0 +

√
λ∗0,1

)
=

2
m

(√
λ∗0,0 −

√
λ∗0,1

) m
2

(√
λ∗0,0 +

√
λ∗0,1

)
=
(√

λ∗0,0 −
√

λ∗0,1

) (√
λ∗0,0 +

√
λ∗0,1

)
= λ∗0,0 − λ∗0,1.

Therefore,

Λ∗0,1 = 1−
λ∗0,0 − λ∗0,1

λ∗0,0 − λ∗0,1
= 0,

as required. �
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Linear Codes

We consider here general linear codes, which we recall from §4.1 form a (linear) subspace of the vector space
of the n-bit strings, that is, they are closed under the bitwise-XOR addition⊕. We will let P denote an arbitrary
linear code of size 2m for some m < n, and we will consider the two cases of Alice and Bob both post-selecting
on P and of only Bob post-selecting on P. The corresponding filtered states have a much more general struc-
ture than the states from Chapters 5 and 6, and there are no known analytical results about their symmetric
extendability. In particular, there is no analytical approach to determining the thresholds Q∗P, and the channel
TrE2 alone might not construct a symmetric extension of ρÃB̃

Q,P at those thresholds. Therefore, the special map
N ◦ TrE2 might not construct a symmetric extension of the filtered states throughout the gap. Nevertheless, we
will determine the structure of the filtered states and determine the eigenvalues of J(N) so that it is possible to
determine whether or not the special map will work for a given linear code.

Throughout this chapter, we will let Binn(k) stand for the n-bit binary representation of the decimal num-
ber k. For example, Bin3(5) = 101. Also, for non-negative integers x and y, we will let x⊕ y denote the unique
non-negative integer satisfying Binn(x⊕ y) = Binn(x)⊕ Binn(y), where n is the smallest block size such that
both x and y can be represented as n-bit binary strings.

E.1 Post-Selection by Alice and Bob

When Alice and Bob post-select on the same linear code P of size 2m for m < n, it holds due the closure of
linear codes that the sets C and Ic defined in (4.13) and (4.16), respectively, satisfy:

1. C = P;

2. |Ic| = 2m for all c ∈ C.

In other words, each block M(c)
Q,P can be labelled by a codeword in P, and the size of each such block is 2m ×

2m. Furthermore, since dÃ = dB̃ = 2m, we can think of the filtered state ρÃB̃
Q,P ∈ D(C2m ⊗ C2m

) as residing

in the space D
(
(C2 ⊗ · · · ⊗C2)︸ ︷︷ ︸

m times

⊗ (C2 ⊗ · · · ⊗C2)︸ ︷︷ ︸
m times

)
of a pair of m qubits through the isomorphism |a, b〉 ↔

|Binm(a), Binm(b)〉 for all 0 ≤ a, b ≤ 2m − 1. In other words, after post-selection, Alice and Bob effectively hold
m qubits instead of n that they had initially.
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For convenience, we will always assume that the codewords in P are ordered such that

Pi ⊕ Pj = Pi⊕j ∀ 0 ≤ i, j ≤ 2m − 1. (E.1)

With this ordering, the set IPk = {(i, j)|Pi ⊕ Pj = Pk} can be written as IPk = {(`, ` ⊕ k) : 0 ≤ ` ≤ 2m − 1}
for all 0 ≤ k ≤ 2m − 1. This ordering of P can be achieved in the following way: pick any (ordered) basis
{B1, B2, . . . , Bm} of P. We then let

Pk = (Binm(k))1B1 ⊕ (Binm(k))2B2 ⊕ · · · ⊕ (Binm(k))mBm ∀ 0 ≤ k ≤ 2m − 1.

Then, it holds that

Pk⊕` = (Binm(k⊕ `))1B1 ⊕ (Binm(k⊕ `))2B2 ⊕ · · · ⊕ (Binm(k⊕ `))mBm

= ((Binm(k))1 ⊕ (Binm(`))1) B1 ⊕ ((Binm(k))2 ⊕ (Binm(`))2) B2 ⊕ · · · ⊕ ((Binm(k))m ⊕ (Binm(`))m) Bm

= (Binm(k))1B1 ⊕ (Binm(k))2B2 ⊕ · · · ⊕ (Binm(k))mBm

⊕ (Binm(`))1B1 ⊕ (Binm(`))2B2 ⊕ · · · ⊕ (Binm(`))mBm

= Pk ⊕ P`,

as required.

Proposition E.1

For any linear code P, the resulting filtered state ρÃB̃
Q,P satisfies(

ρÃB̃
Q,P

)
k⊕j,`⊕j

k′⊕j,`′⊕j

=
(

ρÃB̃
Q,P

)
k,`

k′,`′
∀ 0 ≤ k, `, k′, `′, j ≤ 2m − 1. (E.2)

In particular, the state can be written as

ρÃB̃
Q,P =

2m−1

∑
j=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕j
`,`⊕j
|k, k⊕ j〉 〈`, `⊕ j| .

Additionally, the matrix V such that VρÃB̃
Q,PV† =

⊕2m−1
k=0 M(Pk)

Q,P = ∑2m−1
k=0 |k〉 〈k| ⊗ M(Pk)

Q,P can be
written as

V =
2m−1

∑
k,`=0
|k, `〉 〈`, `⊕ k| .

PROOF: The fact that
(

ρÃB̃
Q,P

)
k⊕j,`⊕j

k′⊕j,`′⊕j

=
(

ρÃB̃
Q,P

)
k,`

k′,`′
follows from the definition of the matrix elements of ρÃB̃

Q,P as

written in (4.12) and from the fact that Pk⊕` = Pk ⊕ P`.

Next, as described above, by identifying the blocks M(c)
Q,P with the codewords of P, and using the fact that

IPj can be written as IPj = {(`, `⊕ j) : 0 ≤ ` ≤ 2m − 1} for all 0 ≤ j ≤ 2m − 1, we have by (4.15)

ρÃB̃
Q,P =

2m−1

∑
j=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕j
`,`⊕j
|k, k⊕ j〉 〈`, `⊕ j| ,

as required.
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Finally, letting V = ∑2m−1
k,`=0 |k, `〉 〈`, `⊕ k|, we get

VρÃB̃
Q,PV† =

2m−1

∑
i,j

i′,j′=0

2m−1

∑
`′=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕`′
`,`⊕`′
|i, j〉

〈
j, j⊕ i|k, k⊕ `′

〉 〈
`, `⊕ `′|j′, j′ ⊕ i′

〉 〈
i′, j′

∣∣
=

2m−1

∑
i,j

i′,j′=0

2m−1

∑
`′=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕`′
`,`⊕`′

δj,kδj⊕i,k⊕`′δ`,j′δ`⊕`′,j′⊕i′ |i, j〉
〈
i′, j′

∣∣
=

2m−1

∑
i,i′=0

2m−1

∑
`′=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕`′
`,`⊕`′

δk⊕i,k⊕`′︸ ︷︷ ︸
δi,`′ ∀k

δ`⊕`′,`⊕i′︸ ︷︷ ︸
δi′ ,`′ ∀`

|i, k〉
〈
i′, `
∣∣

=
2m−1

∑
i,i′=0

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕i
`,`⊕i

δi,i′ |i, k〉
〈
i′, `
∣∣

=
2m−1

∑
i=0
|i〉 〈i| ⊗

2m−1

∑
k,`=0

(
ρÃB̃

Q,P

)
k,k⊕i
`,`⊕i
|k〉 〈`|︸ ︷︷ ︸

M
(Pi)
Q,P

=
2m−1

∑
i=0
|i〉 〈i| ⊗M(Pi)

Q,P,

as required. �

The matrix elements of the blocks M(Pk)
Q,P from the previous proposition are equal to(

M(Pk)
Q,P

)
`
`′
=
(

ρÃB̃
Q,P

)
`,`⊕k
`′,`′⊕k

∀ 0 ≤ `, `′, k ≤ 2m − 1. (E.3)

Proposition E.2

For all 0 ≤ k ≤ 2m − 1, the blocks M(Pk)
Q,P satisfy(

M(Pk)
Q,P

)
`
`′
=
(

M(Pk)
Q,P

)
`⊕j
`′⊕j

∀ 0 ≤ `, `′, j ≤ 2m − 1. (E.4)

PROOF: Follows from (E.2) and (E.3). �

The proposition above states that the blocks M(Pk)
Q,P are essentially “translation-invariant” with respect to

the addition ⊕. They are fully specified by their first row, since(
M(Pk)

Q,P

)
`
`′
=
(

M(Pk)
Q,P

)
`⊕`
`′⊕`

=
(

M(Pk)
Q,P

)
0

`⊕`′
∀ 0 ≤ `, `′ ≤ 2m − 1.

The following useful lemma tells us how to diagonalize any matrix A with such a translation-invariance prop-
erty.
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Lemma E.3

Let A be a 2m × 2m matrix for some m ≥ 1 satisfying

A `
`′
= A `⊕j

`′⊕j
∀ 0 ≤ `, `′, j ≤ 2m − 1. (E.5)

It holds that
H⊗m AH⊗m = D,

where H is the normalized Hadamard matrix H̃ from (6.1),

H =
1√
2

H̃ =
1√
2

[
1 1
1 −1

]
, (E.6)

and D is the diagonal matrix of eigenvalues {λk}2m−1
k=0 ,

λk ≡ Dk
k
=

2m−1

∑
`′=0

(−1)Binm(`′)·Binm(k)A0
`′
∀ 0 ≤ k ≤ 2m − 1. (E.7)

PROOF: Writing H as

H =
1√
2

1

∑
i,j=0

(−1)ij |i〉 〈j| ,

we have that

H⊗m =
1

(
√

2)m

2m−1

∑
`,`′=0

(−1)Binm(`)·Binm(`′) |`〉
〈
`′
∣∣ , (E.8)

where we recall the dot product · on binary strings defined in §4.1. Since A `
`′
= A `⊕j

`′⊕j
for all 0 ≤ j ≤ 2m − 1, we

can write A `
`′
= A 0

`⊕`′
for all 0 ≤ `, `′ ≤ 2m − 1, so that

A =
2m−1

∑
`,`′=0

A 0
`⊕`′
|`〉
〈
`′
∣∣ .

Now, the rows {|vk〉}2m−1
k=0 of H⊗m, defined by

|vk〉 = H⊗m |k〉 = 1
(
√

2)m

2m−1

∑
`=0

(−1)Binm(`)·Binm(k) |`〉 ,

satisfy

A |vk〉 =
2m−1

∑
j,j′,`=0

A 0
j⊕j′

1
(
√

2)m
(−1)Binm(`)·Binm(k) |j〉

〈
j′|`
〉︸ ︷︷ ︸

δj′ ,`

=
2m−1

∑
j=0

(
2m−1

∑
`=0

A 0
j⊕`

1
(
√

2)m
(−1)Binm(`)·Binm(k)

)
|j〉

=
2m−1

∑
j=0

(
2m−1

∑
`′=0

1
(
√

2)m
A0

`′
(−1)Binm(`′⊕j)·Binm(k)

)
|j〉 .
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Then, since

Binm(`
′ ⊕ j) · Binm(k) = (Binm(`

′)⊕ Binm(j)) · Binm(k) = Binm(`
′) · Binm(k) + Binm(j) · Binm(k),

where the addition + in the above equation is modulo 2, we get that

A |vk〉 =
2m−1

∑
j=0

(
2m−1

∑
`′=0

A0
`′
(−1)Binm(`′)·Binm(k)

)
1

(
√

2)m
(−1)Binm(j)·Binm(k) |j〉

=

(
2m−1

∑
`′=0

(−1)Binm(`′)·Binm(k)A0
`′

)
︸ ︷︷ ︸

λk

(
2m−1

∑
j=0

1
(
√

2)m
(−1)Binm(j)·Binm(k) |j〉

)
︸ ︷︷ ︸

|vk〉

= λk |vk〉 ,

which means that H⊗m AH⊗m = D, as required. �

By using from (E.8) the fact that

(−1)Binm(`)·Binm(`′) =
(

H̃⊗m)
`
`′
∀ 0 ≤ `, `′ ≤ 2m − 1,

observe that the eigenvalues (E.7) can be written as

~λ = H̃⊗m ~A, ~λ :=


λ0
λ1
...

λ2m−1

 , ~A :=


A0

0
A0

1
...

A 0
2m−1

 .

An expression of this type is called a Hadamard transform. Therefore, the eigenvalues of any matrix A with
the translation-invariance property (E.5) are simply given by the Hadamard transform of the first row of the
matrix.

Using the fact that the blocks of ρÃB̃
Q,P have this translation-invariance property, and the previous lemma,

we obtain the following.
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Theorem E.4

For any linear code P, the resulting filtered state ρÃB̃
Q,P is diagonalized by WV, where

V =
2m−1

∑
k,`=0
|k, `〉 〈`, `⊕ k| , W =

2m−1⊕
k=0

H⊗m.

The eigenvectors {|va,b〉}2m−1
a,b=0 of ρÃB̃

Q,P are

|va,b〉 =
1

(
√

2)m

2m−1

∑
`′=0

(−1)Binm(b)·Binm(`′)
∣∣`′, `′ ⊕ a

〉
∀ 0 ≤ a, b ≤ 2m − 1, (E.9)

and the corresponding eigenvalues are

λa,b =
2m−1

∑
`′=0

(−1)Binm(b)·Binm(`′)
(

ρÃB̃
Q,P

)
0,a

`′,`′⊕a

∀ 0 ≤ a, b ≤ 2m − 1. (E.10)

Proposition E.5

The eigenvectors {|vk,`〉}2m−1
k,`=0 of ρÃB̃

Q,P in (E.9) have the following properties:

1. |v0,0〉 = |Φ0,0〉, where |Φ0,0〉 was defined in (6.6).

2. For all 0 ≤ a, b ≤ 2m − 1,

|va,b〉 = (1C2m ⊗U(a)V(b)) |v0,0〉 ,

where U(a) ∈ U(C2m
) and V(b) ∈ U(C2m

) are unitary operators defined by

U(a) |`〉 = |`⊕ a〉 ∀ 0 ≤ `, a ≤ 2m − 1 (E.11)

and
V(b) |`〉 = (−1)Binm(b)·Binm(`) |`〉 ∀ 0 ≤ `, b ≤ 2m − 1. (E.12)

3. TrB̃ [|vk,`〉 〈vk,`|] = 1
2m 1Ã for all 0 ≤ k, ` ≤ 2m − 1;

4. Viewed as vectors in the space of a pair of m qubits,

|vk,`〉 = W(
∣∣βx1,y1

〉
⊗
∣∣βx2,y2

〉
⊗ · · · ⊗

∣∣βxm,ym

〉
),

where x = x1x2 · · · xm := Binm(k), y = y1y2 · · · ym := Binm(`),

|β0,0〉 :=
∣∣Φ+

〉
, |β0,1〉 :=

∣∣Φ−〉 , |β1,0〉 =
∣∣Ψ+

〉
, |β1,1〉 :=

∣∣Ψ−〉 (E.13)

are the two-qubit Bell states from (2.22), and W is the operator on m pairs of qubits from
(4.4). Furthermore, viewed as operators on the space of a pair of m qubits,

U(k) = (σx)
x and V(`) = (σz)

y ∀ 0 ≤ k, ` ≤ 2m − 1.

118



Appendix E: Linear Codes

PROOF:

1. Follows from substitution.

2. Follows from substitution.

3. We have for all 0 ≤ k, ` ≤ 2m − 1

|vk,`〉 〈vk,`| =
2m−1

∑
j,j′=0

1
2m (−1)Binm(`)·Binm(j)+Binm(`)·Binm(j′) |j, j⊕ k〉

〈
j′, j′ ⊕ k

∣∣ ,

so that

TrB̃ [|vk,`〉 〈vk,`|] =
2m−1

∑
j,j′=0

1
2m (−1)Binm(`)·Binm(j)+Binm(`)·Binm(j′)δj⊕k,j′⊕k |j〉

〈
j′
∣∣

=
1

2m

2m−1

∑
j=0

(−1)Binm(`)·Binm(j)+Binm(`)·Binm(j)︸ ︷︷ ︸
1 ∀j

|j〉 〈j|

=
1

2m

2m−1

∑
j=0
|j〉 〈j|

=
1

2m 1Ã,

as required.

4. This follows from the isomorphism |k, `〉 ↔ |x1, x2, . . . , xm, y1, y2, . . . , ym〉 and the fact that

∣∣βx,y
〉
=

1√
2

1

∑
`=0

(−1)`y |`, `⊕ x〉 ∀ 0 ≤ x, y ≤ 1. �

The last part of the proposition above tells us that the states ρÃB̃
Q,P are unitarily-equivalent to multi-qubit

Bell-diagonal states. The symmetric extendability of such states was examined extensively in [Myh10] using
the symmetries of the states but without reaching a full resolution in terms of some necessary and sufficient
criteria except in the case m = 1, which is covered by (3.2).

Proposition E.6

The states ρÃB̃
Q,P are invariant under U(a)V(b)⊗U(a)V(b) for all 0 ≤ a, b ≤ 2m − 1, that is,

(U(a)V(b)⊗U(a)V(b))ρÃB̃
Q,P(U(a)V(b)⊗U(a)V(b))† = ρÃB̃

Q,P ∀ 0 ≤ a, b ≤ 2m − 1.

119



Appendix E: Linear Codes

PROOF: First, for any 0 ≤ a, a′, b, b′, k, ` ≤ 2m − 1, it holds that

(U(a)V(a′)⊗U(b)V(b′)) |vk,`〉

=
1

(
√

2)m

2m−1

∑
j=0

(−1)Binm(j)·Binm(`)(−1)Binm(a′)·Binm(j)(−1)Binm(b′)·Binm(j⊕k) |j⊕ a, j⊕ k⊕ b〉

=
1

(
√

2)m

2m−1

∑
j=0

(−1)Binm(j)·Binm(`⊕a′⊕b′)(−1)Binm(b′)·Binm(k) |j⊕ a, j⊕ k⊕ b〉

= (−1)Binm(b′)·Binm(k)(−1)Binm(a)·Binm(`⊕a′⊕b′) 1
(
√

2)m

2m−1

∑
j′=0

(−1)Binm(j′)·Binm(`⊕a′⊕b′) ∣∣j′, j′ ⊕ k⊕ b
〉

︸ ︷︷ ︸
|vk⊕a⊕b,`⊕a′⊕b′〉

= (−1)Binm(b′)·Binm(k)(−1)Binm(a)·Binm(`⊕a′⊕b′) |vk⊕a⊕b,`⊕a′⊕b′〉 .

Therefore,

(U(a)V(b)⊗U(a)V(b)) |vk,`〉
= (−1)Binm(b)·Binm(k)(−1)Binm(a)·Binm(`) |vk,`〉 ∀ 0 ≤ a, b, k, ` ≤ 2m − 1.

(E.14)

Writing ρÃB̃
Q,P in its spectral decomposition therefore gives us

(U(a)V(b)⊗U(a)V(b))ρÃB̃
Q,P(U(a)V(b)⊗U(a)V(b))†

=
2m−1

∑
k,`=0

λk,`(U(a)V(b)⊗U(a)V(b)) |vk,`〉 〈vk,`| (U(a)V(b)⊗U(a)V(b))†

=
2m−1

∑
k,`=0

λk,` |vk,`〉 〈vk,`|

= ρÃB̃
Q,P,

as required. �

Both the block structure and the property (E.2) of ρÃB̃
Q,P are implied by the proposition above since for all

0 ≤ k, `, k′, `′ ≤ 2m − 1(
ρÃB̃

Q,P

)
k,`

k′,`′
= 〈k, `| ρÃB̃

Q,P
∣∣k′, `′〉

= 〈k, `| (U(a)V(b)⊗U(a)V(b))ρÃB̃
Q,P(U(a)V(b)⊗U(a)V(b))† ∣∣k′, `′〉

= (−1)Binm(k⊕`⊕k′⊕`′)·Binm(b)
(

ρÃB̃
Q,P

)
k⊕a,`⊕a

k′⊕a,`′⊕a

∀ 0 ≤ a, b ≤ 2m − 1.

Taking b = 0 gives (E.2), while taking a = 0 gives(
ρÃB̃

Q,P

)
k,`

k′,`′
= (−1)Binm(k⊕`⊕k′⊕`′)·Binm(b)

(
ρÃB̃

Q,P

)
k,`

k′,`′
∀ 0 ≤ b ≤ 2m − 1.

This implies that(
ρÃB̃

Q,P

)
k,`

k′,`′
=

1
2m

2m−1

∑
b=0

(−1)Binm(k⊕`⊕k′⊕`′)·Binm(b)

︸ ︷︷ ︸
2mδk⊕`⊕k′⊕`′ ,0=2mδk⊕`,k′⊕`′

(
ρÃB̃

Q,P

)
k,`

k′,`′
=
(

ρÃB̃
Q,P

)
k,`

k′,`′
δk⊕`,k′⊕`′ ,
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which is precisely the statement of the block structure of the state from (4.12).

Now, by using (3.11), it holds that the Choi representation of N corresponding to the special map is

J(N) = ∑2m−1
k′,`′=0

[
∑2m−1

k,`=0

(
∑2m−1

a,b=0
1

2m λa,b(−1)Binm(b⊕`′)·Binm(k)+Binm(`)·Binm(a⊕k′)

∑2m−1
a′ ,b′=0

√
λa′ ,b′λa′⊕k,b′⊕`

)]
|vk′,`′〉 〈vk′,`′ | , (E.15)

where {λa,b}2m−1
a,b=0 and {|vk′,`′〉}2m−1

k′,`′=0 are the eigenvalues and eigenvectors defined in (E.10) and (E.9), respec-
tively. It is straightforward to show from this that N is trace-preserving.

As with the eigenvalues of ρÃB̃
Q,P, we have that the eigenvalues {Λu,v}2m−1

u,v=0 of J(N) can be written as the
following Hadamard transform:

~Λ = H⊗2m~D,

where

~Λ =


Λ0,0
Λ0,1

...
Λ2m−1,2m−1

 , ~D =


D0,0
D0,1

...
D2m−1,2m−1

 , Dk,` =
(H⊗2m~λ)k,`(

H⊗2m(H⊗2m
√
~λ ◦ H⊗2m

√
~λ)
)
`,k

and

~λ =


λ0,0
λ0,1

...
λ2m−1,2m−1

 ,
√
~λ =


√

λ0,0√
λ0,1
...√

λ2m−1,2m−1

 ,

and ◦ is the Hadamard product defined in (4.25). The form of the denominator of the elements of ~D follows
from the fact that

2m−1

∑
a,b=0

√
λa,bλa⊕k,b⊕` = 2m

(
H⊗2m(H⊗2m

√
~λ ◦ H⊗2m

√
~λ)
)

k,`
,

which is straightforward to verify.

E.1.1 The Corresponding Channels

By using from Proposition E.5 the fact that

TrB̃[|vk,`〉 〈vk,`|] =
1

2m 1Ã ∀ 0 ≤ k, ` ≤ 2m − 1,

it holds that after normalization, TrB̃[ρ
ÃB̃
Q,P] =

1
2m 1Ã, so that the CP map ΦQ,P ∈ T(HÃ,HB̃) corresponding to

ρÃB̃
Q,P is (after normalization) in fact a channel. Its Kraus representation can be obtained from the following

general fact.
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Proposition E.7

Any map Φ : L(HA) → L(HB) with dA = dB = 2m for some m > 1 such that its Choi represen-
tation is of the form

J(Φ) =
2m−1

∑
a,b=0

pa,b |va,b〉 〈va,b|

(that is, J(Φ) is diagonal in the basis {|va,b〉}2m−1
a,b=0) has Kraus representation

Φ(X) =
1

2m

2m−1

∑
a,b=0

pa,b(U(a)V(b))(X)(U(a)V(b))†

for all X ∈ L(HA).

PROOF: Using the fact that

|va,b〉 = (1A ⊗U(a)V(b)) |Φ0,0〉 ∀ 0 ≤ a, b ≤ 2m − 1

and that

|Φ0,0〉 〈Φ0,0| =
1

2m J(1L(HA))⇒ (1A ⊗U(a)V(b))J(1L(HA))(1A ⊗U(a)V(b))† = J((U(a)V(b))(·)(U(a)V(b))†),

we get that

J(Φ) =
1

2m

2m−1

∑
a,b=0

pa,b J((U(a)V(b))(·)(U(a)V(b))†),

so that

Φ(X) = TrA [(XT ⊗ 1B)J(Φ)]

=
1

2m

2m−1

∑
a,b=0

pa,b TrA

[
(XT ⊗ 1B)J((U(a)V(b))(·)(U(a)V(b))†)

]
︸ ︷︷ ︸

(U(a)V(b))(X)(U(a)V(b))†

=
1

2m

2m−1

∑
a,b=0

pa,b(U(a)V(b))(X)(U(a)V(b))†,

as required. �

By the proposition above, the filtered states ρÃB̃
Q,P formed from a linear code P correspond to the following

set of CP maps,

ΦQ,P(X) =
2m−1

∑
k,`=0

λk,` (U(k)V(`)) X (U(k)V(`))† ∀ X ∈ L(HÃ), (E.16)

where the eigenvalues {λk,` : 0 ≤ k, ` ≤ 2m− 1}were defined in (E.10). They are covariant under the operators
{U(a)V(b) : 0 ≤ a, b ≤ 2m − 1}, which is to say that for all X ∈ L(HÃ)

U(a)V(b)ΦQ,P(X)(U(a)V(b))† = ΦQ,P

(
U(a)V(b)X(U(a)V(b))†

)
∀ 0 ≤ a, b ≤ 2m − 1.
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Proposition E.8

The set of operators {U(a) : 0 ≤ a ≤ 2m − 1} and {V(b) : 0 ≤ b ≤ 2m − 1} defined in (E.11)
and (E.12), respectively, have the following properties:

1. U(a) and V(b) are Hermitian, satisfying U(a)2 = V(b)2 = 1C2m , for all 0 ≤ a, b ≤ 2m − 1;

2. U(a)V(b) = (−1)Binm(a)·Binm(b)V(b)U(a) for all 0 ≤ a, b ≤ 2m − 1.

3. U(a)U(a′) = U(a ⊕ a′) for all 0 ≤ a, a′ ≤ 2m − 1 and V(b)V(b′) = V(b ⊕ b′) for all
0 ≤ b, b′ ≤ 2m − 1.

4. The set {U(a)V(b) : 0 ≤ a, b ≤ 2m − 1} is an orthogonal basis for L(C2m
).

PROOF:

1. This is clear by writing U(a) and V(b) as

U(a) =
2m−1

∑
`=0
|`⊕ a〉 〈`| and V(b) =

2m−1

∑
`=0

(−1)Binm(b)·Binm(`) |`〉 〈`| ∀ 0 ≤ a, b ≤ 2m − 1.

2. Holds by straightforward computation using the forms of U(a) and V(b) above.

3. Follows by straightforward computation.

4. Firstly, there are (2m)2 operators in the set {U(a)V(b) : 0 ≤ a, b ≤ 2m − 1}, which is also equal to the
dimension of L(C2m

). Now, let Xa,b := U(a)V(b). Then,

Tr[Xa,b] = Tr [U(a)V(b)] = Tr

[
2m−1

∑
j=0

(−1)Binm(b)·Binm(j) |j⊕ a〉 〈j|
]
=

2m−1

∑
j=0

(−1)Binm(b)·Binm(j)δj,j⊕a

= δa,0

2m−1

∑
j=0

(−1)Binm(b)·Binm(j)

= 2mδa,0δb,0.

This means that
Tr[X†

a,bXc,d] = Tr[V(b)U(a)U(c)V(d)]

= Tr [U(a⊕ c)V(b⊕ d)]
= 2mδa,cδb,d ∀ 0 ≤ a, b, c, d ≤ 2m − 1.

which means that {Xa,b : 0 ≤ a, b ≤ 2m − 1} is an orthogonal set1. Consequently, it is linearly indepen-
dent. Since it also contains (2m)2 elements, it necessarily spans the space L(C2m

). �

The last part of the proposition above implies that any operator X ∈ L(C2m
) can be written in the basis

{U(a)V(b) : 0 ≤ a, b ≤ 2m − 1} as

X =
1

2m

2m−1

∑
a,b=0

αa
b
(X)U(a)V(b), αa

b
(X) := Tr

[
X† (U(a)V(b))

]
.

1For any complex Euclidean space H, the inner product on L(H) being used here is the Hilbert-Schmidt inner product defined as
〈A, B〉 = Tr(A†B) for all A, B ∈ L(H).
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As well, any operator X ∈ L(C2m ⊗C2m
) can be written as

X =
1

(2m)2

2m−1

∑
a,b

a′,b′=0

αa,a′
b,b′
(X)U(a)V(b)⊗U(a′)V(b′), αa,a′

b,b′
(X) = Tr

[
X† (U(a)V(b)⊗U(a′)V(b′)

)]
.

E.2 No Post-Selection by Alice

We now let Q be a linear code and let P = Bn be the set corresponding to no post-selection by Alice. The
following facts then hold about the corresponding filtered states ρAn B̃

Q,(Bn,Q):

1. C = P, which follows from the fact that {Pk ⊕Q`}2n−1
k=0 = P for all 0 ≤ ` ≤ 2m − 1. So the blocks M(c)

Q,(Bn,Q)
can be labelled by the elements of Bn.

2. |Ic| = 2m for all c ∈ C; in particular, without loss of generality, we make take

IPk = {(Dec(Q`)⊕ k, `)}2m−1
`=0 ∀ 0 ≤ k ≤ 2n − 1,

where Dec(Q`) is the decimal representation of Q`, which follows from the fact that for all 0 ≤ ` ≤ 2m− 1
Q` = PDec(Q`).

3. The matrix V such that VρAn B̃
Q,(Bn,Q)V

† =
⊕2n−1

k=0 M(Pk)
Q,(Bn,Q) is given by

V =
2n−1

∑
k=0

2m−1

∑
`=0
|k, `〉 〈Dec(Q`)⊕ k, `| ,

with

M(Pk)
Q,(Bn,Q) =

2m−1

∑
`,`′=0

(
M(Pk)

Q,(Bn,Q)

)
`
`′
|`〉
〈
`′
∣∣ ,

(
M(Pk)

Q,(Bn,Q)

)
`
`′
=
(

ρÃB̃
Q,(Bn,Q)

)
Dec(Q`)⊕k,`

Dec(Q`′ )⊕k,`′
.

As in the previous section, it holds that(
M(Pk)

Q,(Bn,Q)

)
`⊕j
`′⊕j

=
(

M(Pk)
Q,(Bn,Q)

)
`
`′
∀ 0 ≤ `, `′, j ≤ 2m − 1, ∀ 0 ≤ k ≤ 2n − 1,

which means that M(Pk)
Q,(Bn,Q) is diagonalized by H⊗m for all 0 ≤ k ≤ 2n − 1. Consequently, the following holds.
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Theorem E.9

The state ρAn B̃
Q,(Bn,Q) is diagonalized by WV, where

V =
2n−1

∑
k=0

2m−1

∑
`=0
|k, `〉 〈Dec(Q`)⊕ k, `| , W =

2n−1⊕
k=0

H⊗m.

The eigenvectors {|va,b〉 : 0 ≤ a ≤ 2n − 1, 0 ≤ b ≤ 2m − 1} are

|va,b〉 =
1

(
√

2)m

2m−1

∑
`=0

(−1)Binm(b)·Binm(`) |Dec(Q`)⊕ a, `〉 , (E.17)

and the corresponding eigenvalues {λa,b : 0 ≤ a ≤ 2n − 1, 0 ≤ b ≤ 2m − 1} are

λa,b =
2m−1

∑
`=0

(−1)Binm(b)·Binm(`)
(

ρAn B̃
Q,(Bn,Q)

)
a,0

Dec(Q`)⊕a,`
. (E.18)

By using (3.11), it holds that the Choi representation of N corresponding to the special map is

J(N) = ∑2n−1
u=0 ∑2m−1

v=0

[
1

22m ∑2m−1
s,s′,`′=0

(
∑2m−1

b=0 λDec(Q
`′ )⊕u,b(−1)Binm(b)·Binm(s⊕s′)

σDec(Qs)⊕u,Dec(Qs′ )⊕u

)
(−1)Binn(`′)·Binn(Dec(Qs′ )⊕u)

×(−1)Binm(v)·Binm(s⊕s′)

]
|vu,v〉 〈vu,v| , (E.19)

where

σa,a′ :=
2m−1

∑
`′,s=0

(
A(Dec(Qs)⊕ a′, Dec(Qs)⊕ a)

)
s
`′
(−1)Binn(s⊕`′)·Binn(a′) ∀ 0 ≤ a, a′ ≤ 2n − 1, (E.20)

where (
A(k, k′)

)
`
`′
=

1
22m

2m−1

∑
b,b′=0

√
λk,bλk′,b′(−1)Binm(b⊕b′)·Binm(`⊕`′) ∀ 0 ≤ k, k′ ≤ 2n − 1,

∀ 0 ≤ `, `′ ≤ 2m − 1
(E.21)

and {λa,b : 0 ≤ a ≤ 2n − 1 0 ≤ b ≤ 2m − 1} are the eigenvalues of ρAn B̃
Q,(Bn,Q). It is straightforward to show from

this that N is trace-preserving.

E.2.1 Repetition Codes

Using the formula in Theorem E.9, the eigenvalues of ρAn B̃
Q,(Bn,Rn)

are

λa,0 =
(

Q
2

)|Pa| ( 1−Q
2

)n−|Pa|
+
(

1−2Q
2

)n−|Pa|
δPa,0n ,

λa,1 =
(

Q
2

)|Pa| ( 1−Q
2

)n−|Pa| −
(

1−2Q
2

)n−|Pa|
δPa,0n

∀ 0 ≤ a ≤ 2n − 1. (E.22)

Note that the eigenvalues λ0,0, λ0,1, λ2n−1,0 and λ2n−1,1 coincide with the eigenvalues (5.1) of the state ρÃB̃
Q,Rn

obtained from post-selection by both Alice and Bob on Rn.
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Using the formula (E.19), then, the eigenvalues of the Choi representation of N are

Λu,v =
1
4

1

∑
s,s′=0

(
∑1

`′,b=0 λDec(Q`′ )⊕u,b(−1)b·(s⊕s′)(−1)Binn(`′)·Binn(Dec(Q`′ )⊕u)

σDec(Qs)⊕u,Dec(Qs′ )⊕u

)
(−1)v·(s⊕s′)

=
1
4

[(
λu,0 + λu,1 + (−1)Binn(1)·Binn(u)(λ2n−1⊕u,0 + λ2n−1⊕u,1)

σu,u

)

+ (−1)v

(
λu,0 − λu,1 − (−1)Binn(1)·Binn(u)(λ2n−1⊕u,0 − λ2n−1⊕u,1)

σu,2n−1⊕u

)

+ (−1)v

(
λu,0 − λu,1 + (−1)Binn(1)·Binn(u)(λ2n−1⊕u,0 − λ2n−1⊕u,1)

σ2n−1⊕u,u

)

+

(
λu,0 + λu,1 − (−1)Binn(1)·Binn(u)(λ2n−1⊕u,0 + λ2n−1⊕u,1)

σ2n−1⊕u,2n−1⊕u

)]
for all 0 ≤ u ≤ 2n − 1 and for all 0 ≤ v ≤ 1, where

σa,a′ =
(

A(a′, a)
)

0
0
+ (−1)Binn(1)·Binn(a′) (A(a′, a)

)
0
1

+ (−1)Binn(1)·Binn(a′) (A(2n − 1⊕ a′, 2n − 1⊕ a)
)

1
0
+
(

A(2n − 1⊕ a′, 2n − 1⊕ a)
)

1
1

for all 0 ≤ a, a′ ≤ 2n − 1, where(
A(k, k′)

)
0
0
=

1
4

(√
λk,0λk′,0 +

√
λk,0λk′,1 +

√
λk,1λk′,0 +

√
λk,1λk′,1

)
,(

A(k, k′)
)

0
1
=

1
4

(√
λk,0λk′,0 −

√
λk,0λk′,1 −

√
λk,1λk′,0 +

√
λk,1λk′,1

)
,(

A(k, k′)
)

1
0
=
(

A(k, k′)
)

0
1

,(
A(k, k′)

)
1
1
=
(

A(k, k′)
)

0
0

for all 0 ≤ k, k′ ≤ 2n − 1.

Straightforward calculations using (E.21) show that

(A(0, 0))0
0
=

1
4

(√
λ0,0 +

√
λ0,1

)2
,

(A(0, 0))0
1
=

1
4

(√
λ0,0 −

√
λ0,1

)2
,

(A(2n − 1, 2n − 1))0
0
=

1
4

(√
λ2n−1,0 +

√
λ2n−1,1

)2
,

(A(2n − 1, 2n − 1))0
1
=

1
4

(√
λ2n−1 −

√
λ2n−1,1

)2
,

(A(0, 2n − 1))0
0
=

1
4

(√
λ0,0 +

√
λ0,1

) (√
λ2n−1,0 +

√
λ2n−1,1

)
,

(A(0, 2n − 1))0
1
=

1
4

(√
λ0,0 −

√
λ0,1

) (√
λ2n−1,0 −

√
λ2n−1,1

)
,

(A(2n − 1, 0))0
0
=

1
4

(√
λ2n−1,0 +

√
λ2n−1,1

) (√
λ0,0 +

√
λ0,1

)
,

(A(2n − 1, 0))0
1
=

1
4

(√
λ2n−1,0 −

√
λ2n−1,1

) (√
λ0,0 −

√
λ0,1

)
,
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which leads to

σ0,0 =
1
2
(λ0,0 + λ0,1 + λ2n−1,0 + λ2n−1,1) ,

σ0,2n−1 =
√

λ2n−1,0λ0,1 +
√

λ2n−1,1λ0,0,

σ2n−1,0 =
√

λ0,0λ2n−1,0 +
√

λ0,1λ2n−1,1,

σ2n−1,2n−1 =
√

λ2n−1,0λ2n−1,1 +
√

λ0,0λ0,1.

Therefore, the eigenvalues {Λ0,0, Λ0,1, Λ2n−1,0, Λ2n−1,1} are equal to

Λ0,0 =
1
4

(
2 +

λ0,0 − λ0,1 − λ2n−1,0 + λ2n−1,1√
λ2n−1,0λ0,1 +

√
λ2n−1,1λ0,0

+
λ0,0 − λ0,1 + λ2n−1,0 − λ2n−1,1√

λ0,0λ2n−1,0 +
√

λ0,1λ2n−1,1

+
λ0,0 + λ0,1 − λ2n−1,0 − λ2n−1,1√

λ2n−1,0λ2n−1,1 +
√

λ0,0λ0,1

)
,

Λ0,1 =
1
4

(
2− λ0,0 − λ0,1 − λ2n−1,0 + λ2n−1,1√

λ2n−1,0λ0,1 +
√

λ2n−1,1λ0,0
− λ0,0 − λ0,1 + λ2n−1,0 − λ2n−1,1√

λ0,0λ2n−1,0 +
√

λ0,1λ2n−1,1

+
λ0,0 + λ0,1 − λ2n−1,0 − λ2n−1,1√

λ2n−1,0λ2n−1,1 +
√

λ0,0λ0,1

)
,

(E.23)

Λ2n−1,0 =
1
4

(
λ2n−1,0 − λ0,0 + λ2n−1,1 − λ0,1√

λ2n−1,0λ2n−1,1 +
√

λ0,0λ0,1
+

λ2n−1,0 + λ0,0 − λ2n−1,1 − λ0,1√
λ0,0λ2n−1,0 +

√
λ0,1λ2n−1,1

+
λ2n−1,0 − λ0,0 − λ2n−1,1 + λ0,1√

λ2n−1,0λ0,1 +
√

λ2n−1,1λ0,0
+ 2

)
,

Λ2n−1,1 =
1
4

(
λ2n−1,0 − λ0,0 + λ2n−1,1 − λ0,1√

λ2n−1,0λ2n−1 +
√

λ0,0λ0,1
− λ2n−1,0 + λ0,0 − λ2n−1,1 − λ0,1√

λ0,0λ2n−1,0 +
√

λ0,1λ2n−1,1

− λ2n−1,0 − λ0,0 − λ2n−1,1 + λ0,1√
λ2n−1,0λ0,1 +

√
λ2n−1,1λ0,0

+ 2

)
.

(E.24)

Using from (E.22) the fact that λ2n−1,0 = λ2n−1,1, the eigenvalues written above simplify to

Λ0,0 =
1
2
+

1
2

λ0,0 − λ0,1√
λ2n−1,0λ0,1 +

√
λ2n−1,0λ0,0

+
1
4

λ0,0 + λ0,1 − 2λ2n−1,0

λ2n−1,0 +
√

λ0,0λ0,1
,

Λ0,1 =
1
2
− 1

2
λ0,0 − λ0,1√

λ2n−1,0λ0,1 +
√

λ2n−1,0λ0,0
+

1
4

λ0,0 + λ0,1 − 2λ2n−1,0

λ2n−1,0 +
√

λ0,0λ0,1
,

Λ2n−1,0 =
1
2
+

1
4

2λ2n−1,0 − λ0,0 − λ0,1

λ2n−1,0 +
√

λ0,0λ0,1
= Λ2n−1,1.

(E.25)

These are exactly the same as the eigenvalues (6.17), (6.18), (6.19) (with m = 2) of J(N) (equivalently, Λ1, Λ2, Λ3, Λ4

from (5.8)) obtained for ρÃB̃
Q,Rn

.

The remaining eigenvalues Λu,v, for 1 ≤ u ≤ 2n − 2 and 0 ≤ v ≤ 1, have a relatively simple form.
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Lemma E.10

For all 1 ≤ u ≤ 2n − 2, it holds that

Λu,0 = Λu,1 =
Q|Pu|(1−Q)n−|Pu|

Q|Pu|(1−Q)n−|Pu| + Qn−|Pu|(1−Q)|Pu| . (E.26)

PROOF: We start by observing from (E.22) that

λu,0 = λu,1 =

(
Q
2

)|Pu| (1−Q
2

)n−|Pu|
, ∀ 1 ≤ u ≤ 2n − 2.

Then, the general expression for the eigenvalue Λu,v can be simplified to

Λu,v =
1
4

(
2λu,0 + 2(−1)Binn(1)·Binn(u)λ2n−1⊕u,0

σu,u
+

2λu,0 − 2(−1)Binn(1)·Binn(u)λ2n−1⊕u,0

σ2n−1⊕u,2n−1⊕u

)
.

Since for all 1 ≤ u ≤ 2n − 2 it holds that

(A(u, u)) `
`′
=

1
2

(
λu,0 + (−1)`⊕`

′
λu,0

)
= λu,0δ`,`′ ,

we have that
σu,u = λu,0 + λ2n−1⊕u,0 = σ2n−1⊕u,2n−1⊕u ∀ 1 ≤ u ≤ 2n − 2.

Therefore, Λu,v simplifies to

Λu,v =
λu,0

λu,0 + λ2n−1⊕u,0
∀ 1 ≤ u ≤ 2n − 2, ∀ 0 ≤ v ≤ 1,

which further simplifies to the required form. �
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