
Scalpel: Optimizing Query Streams Using Semantic
Prefetching

by

Ivan Thomas Bowman

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2005

c© Ivan Thomas Bowman 2005

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Client applications submit streams of relational queries to database servers. For simple re-

quests, inter-process communication costs account for a significant portion of user-perceived la-
tency. This trend increases with faster processors, largermemory sizes, and improved database

execution algorithms, and this trend is not significantly offset by improvements in communica-
tion bandwidth.

Caching and prefetching are well studied approaches to reducing user-perceived latency.
Caching is useful in many applications, but it does not help if future requests rarely match pre-

vious requests. Prefetching can help in this situation, butonly if we are able to predict future re-
quests. This prediction is complicated in the case of relational queries by the presence of request

parameters: a prefetching algorithm must predict not only aquery that will be executed in the fu-
ture, but also the actual parameter values that will be supplied.

We have found that, for many applications, the streams of submitted queries contain patterns
that can be used to predict future requests. Further, there are correlations between results of ear-

lier requests and actual parameter values used in future requests. We present the Scalpel system, a
prototype implementation that detects these patterns of queries and optimizes request streams us-

ing context-based predictions of future requests.

Scalpel uses its predictions to provide a form of semantic prefetching, which involves com-
bining a predicted series of requests into a single request that can be issued immediately. Scalpel’s
semantic prefetching reduces not only the latency experienced by the application but also the to-

tal cost of query evaluation. We describe how Scalpel learnsto predict optimizable request pat-
terns by observing the application’s request stream duringa training phase. We also describe the

types of query pattern rewrites that Scalpel’s cost-based optimizer considers. Finally, we present
empirical results that show the costs and benefits of Scalpel’s optimizations.

We have found that even when an application is well suited forits original configuration, it

may behave poorly when moving to a new configuration such as a wireless network. The opti-
mizations performed by Scalpel take the current configuration into account, allowing it to select
strategies that give good performance in a wider range of configurations.

v

Acknowledgements

This document marks a milestone in a course of research that began in the fall of 2000, when
I had a long conversation with Kenneth Salem about problematic client applications that had been

plaguing my working days. I’d like to thank Ken for provokingme to formalize proposed solu-
tions and for helping me find a thesis-sized research problemwithin an unruly cloud of ideas. I

owe Ken a debt of gratitude for his guidance, encouragement,and understanding. His help has
been instrumental in completing this work.

I would also like to thank the other members of my examining committee—Kostas Konto-
giannis, Jeffrey Naughton, TamerÖzsu, and David Toman—for their thoughtful comments, ques-

tions, and suggestions. This final text has been improved by changes based on their comments on
earlier drafts.

Over the years, I have been fortunate to have the support of many people, and I would like to
thank my family, friends, and colleagues for their help and best wishes. My co-workers at iAny-

where Solutions have provided useful ideas and feedback, and helped to give me the flexibility
to complete my research while working full-time. In particular, I would like to thank my man-

ager, Glenn Paulley, for providing me with challenging problems, useful advice, interesting ref-
erences, and unflagging support. I’d also like to thank the other members of thedev qp team for

their encouragement and understanding during periods where I was working on multiple tasks:
Mike Demko, Dan Farrar, Anil Goel, Anisoara Nica, and Matthew Young-Lai were unfailing in

their support.

My friends have provided a source of strength and stability in my life, and I would like to

thank them for the encouragement, support, and humour they have provided over the years. The
banter list provided welcome distraction, as did occasionalevents.

My family has also contributed in uncountably many ways to the successful completion of

this work. The Bowmans, Browns, Carters, Farleys, Richardsons, and Sharpes were often in my
thoughts. My grandparents, Lloyd and Winnifred Richardson, provided me with model examples.
My brother, Don, also provided me with advice and feedback onearly versions of this research,

and I thank him for that. In particular, I would like to thank my mom, Nancy, for inspiring me by
her example, working hard to achieve her goals while still finding time to appreciate the world

around her.

Finally, it is with love and gratitude that I thank my wife Sherri for helping to motivate me to
start this course of study, then for being supportive and tolerant through many late nights, early

mornings, and working vacations.

vii

Dedication

For Dr. Lloyd T. Richardson

ix

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Using Prefetching .. . 5

1.3 Application Request Patterns 6

1.4 Thesis . 8

1.5 Outline . 8

2 Preliminaries 11

2.1 Scalpel System Architecture 11

2.2 Pseudo-Code Conventions 12

2.3 Model of Request Streams .. . 13

2.4 Notation for Strings and Sequences 15

3 Nested Request Patterns 17

3.1 Example of Nesting .. 18

3.2 Pattern Detector .. . 19

3.2.1 Context Tree . 19

3.2.2 Tracking Parameter Correlations 24

3.2.2.1 Overhead of Correlation Detection 27

3.2.3 Client Predicate Selectivity 29

3.2.4 Summary of Pattern Detection .. . 30

3.3 Query Rewriter .32

3.3.1 Nested Execution . 33

3.3.2 Query Rewrite Preliminaries 34

3.3.2.1 Algebraic Notation . 36

3.3.2.2 Lateral Derived Tables . 37

3.3.2.3 Choosing The Best Correlation Value 40

3.3.3 Unified Execution . 41

3.3.3.1 The Outer Join Strategy . 42

xi

3.3.3.2 The Outer Union Strategy . 46

3.3.4 Partitioned Execution .. . 50

3.3.4.1 The Client Hash Join Strategy 50

3.3.4.2 The Client Merge Join Strategy 52

3.3.5 Rewriting a Context Tree .. 55

3.3.5.1 Representing Run-Time Behaviour With ACTION Objects . . . 55

3.3.5.2 The REWRITE-TREE Procedure 58

3.3.6 Summary of Query Rewriter .60

3.4 Prefetcher .62

3.4.1 Mistaken Predictions .. 65

3.5 Pattern Optimizer .. . 65

3.5.1 Valid Execution Plans .66

3.5.2 Ranking Plans . 66

3.5.3 Exhaustive Enumeration .. 68

3.6 Experiments .68

3.6.1 Effects of Client Predicate Selectivity 70

3.6.2 Query Costs . 72

3.6.3 Number of Columns . 73

3.6.4 Execution Costs . 74

3.6.5 Scalpel Overhead . 76

3.7 Summary of Nested Request Patterns 76

4 Cost Model 79

4.1 Estimating Per-Request OverheadU0 . 80

4.2 Estimating the Cost of Interpreting Results 81

4.3 Estimating the Cost of Queries 82

4.3.1 Estimating the Cost of a Lateral Derived Table 83

4.3.2 Estimating the Cost of an Outer Union 85

4.4 Summary of Cost Model .86

xii

5 Batch Request Patterns 89

5.1 Example of Batch Pattern 91

5.2 Pattern Detector .. . 94

5.2.1 Models of Request Streams .95

5.2.1.1 Order-k Models . 96

5.2.1.2 Choosing a Context Length 99

5.2.1.3 Finite State Models . 101

5.2.1.4 Summary of Request Models 101

5.2.2 Suffix Trie Detection .102

5.2.2.1 Implicit Suffix Tries . 103

5.2.2.2 Estimating the Probability of a Future Request 103

5.2.2.3 Tracking Parameter Correlations 107

5.2.2.4 Summary of Suffix Trie Detection 111

5.2.3 A Path Compressed Suffix Trie .. 112

5.2.3.1 Estimating the Probability of a Future Request 118

5.2.3.2 Tracking Correlations . 120

5.2.3.3 Summary of Suffix Tree Detection 126

5.2.4 Summary of Pattern Detector .. . 126

5.3 Pattern Optimizer .. . 127

5.3.1 Cost Based Optimization .. 129

5.3.1.1 Feasible Prefetches . 132

5.3.1.2 Choosing the Best Feasible Prefetch 132

5.3.2 Building a Finite-State Model 135

5.3.3 Removing Redundancy . 136

5.3.4 Summary of the Pattern Optimizer 138

5.4 Query Rewriter .139

5.4.1 Alternative Prefetch Strategies 140

5.4.2 Rewriting with Join and Union .. . 144

5.4.3 Representing Run-Time Behaviour With ACTION Objects 144

5.4.4 Summary of Query Rewriter .148

5.5 Prefetcher .150

5.5.1 Summary of Prefetcher .154

5.6 Experiments .154

5.6.1 Effectiveness of Semantic Prefetching 154

5.6.1.1 Batch Length . 156

xiii

5.6.1.2 Useful Prefetches . 157

5.6.1.3 Breakdown of Costs . 159

5.6.2 Scalpel Training Overhead .. . 160

5.7 Summary of Batch Request Patterns 161

6 Combining Nested and Batch Request Patterns 163

6.1 Example Combining Nesting and Batches 163

6.2 Combining Context/Suffix Trees 165

6.3 Current Implementation 167

6.4 Summary of Combining Nested and Batch Request Patterns 168

7 Prefetch Consistency 169

7.1 Updates by the Same Transaction 169

7.2 Updates by Other Transactions 171

7.2.1 Weak Isolation . 171

8 Case Studies 175

8.1 Transaction Boundaries 175

8.2 Case 1:dbunload . 176

8.2.1 Characterization of the Program 176

8.2.1.1 A Java Version ofdbunload 177

8.2.1.2 Nested Queries . 181

8.2.2 Evaluating Scalpel Usingdbunload . 184

8.2.3 Batch Prefetching withdbunload . 184

8.2.4 Summary ofdbunload . 186

8.3 Case 2: SQL-Ledger Case Study 187

8.3.1 Configuring the System for Measurement 189

8.3.1.1 Perl to JDBC Bridge . 189

8.3.1.2 Primary Keys . 191

8.3.2 Parameters as Literals .. 191

8.3.3 Query Variants . 192

8.3.4 Complex Combined Queries .192

8.3.5 Nested Query Patterns .193

8.3.6 Performance Results .194

8.3.7 Preliminary Result for Batch Request Patterns 196

8.3.8 Summary of Case Studies . 198

xiv

9 Related Work 199

9.1 Prefetching .199

9.1.1 Prefetching Based on Physical Layout 200

9.1.2 Prefetching Based on Request Patterns 204

9.1.3 Semantic Prefetching .. 207

9.1.3.1 Static Analysis of Attributes 207

9.1.3.2 Value Prediction for Speculative Execution 208

9.1.3.3 Application Hints . 209

9.1.3.4 Type Reference Patterns . 210

9.1.4 Summary of Prefetching .212

9.2 Theoretical Underpinnings of Model-Based Prediction 212

9.3 Suffix Tries . 213

9.4 Processing Sequences of Queries 214

9.4.1 Batch Request Patterns .. 214

9.4.2 Nested Request Patterns .. 215

10 Conclusions and Future Work 219

10.1 Contributions .. . 220

10.2 Future Study .. 221

A Confidence Intervals 223

Bibliography 227

Author Index 247

Index 253

xv

Tables

3.1 Training overhead. .. . 29

3.2 Algebraic notation for query rewrites. 36

3.3 Types of ACTION objects. 56

3.4 Available computers. 69

3.5 Tested configurations and the per-request overheadU0 69

3.6 Summary of rewrite strategies. 77

4.1 Estimated quantities. 79

4.2 Tested configurations and the per-request overheadU0 81

4.3 Estimated overhead EST-INTERPRET(C, p, r) of interpreting combined result sets. 82

5.1 Run-time (µs) to executek queries using different prefetch strategies. 143

5.2 Mean time per iteration vs batch length (L). 157

5.3 Mean time (ms) per iteration vs proportion of useful prefetches (P) 159

8.1 Benefits of batch pattern optimization fordbunload. 186

8.2 Initial table sizes for scale factors SF1 and SF10. 188

8.3 Simulated user activities. 190

8.4 Costs of 500 user activities. 196

8.5 Preliminary results for batch request optimizations inSQL-Ledger. 197

8.6 Distribution of batch prefetch lengths. 198

xvii

Figures

1.1 A sample communication trace. 1

1.2 The difference between fine-grained and coarse-grainedcommunication. 2

1.3 The SQL-Ledger GET-OPEN-INVOICES function. 3

1.4 The join queryQopt combiningQ1 andQ2. 4

1.5 Example of a batch request pattern. 4

1.6 Joining queriesQ3 andQ4 with Q3;4. 5

2.1 Scalpel system structure during training phase 11

2.2 Scalpel system structure at run-time 12

2.3 Sample pseudo-code. .. . 13

2.4 Example of a Request Trace .. . 15

3.1 Scalpel components used for nested request patterns. 17

3.2 Sample data and sample output for Figure 3.3 19

3.3 An example of a nested request pattern. 20

3.4 Trace example for Figure 3.3. 21

3.5 Query contexts of Figure 3.4. 22

3.6 Pattern Detector methods to build context tree. 23

3.7 Tracking query parameter correlations 28

3.8 Monitoring counts to estimate selectivity of local predicates 31

3.9 Context tree constructed from Figure 3.4. 32

3.10 Fetch traces for alternate execution strategies of Figure 3.4 34

3.11 Contexts trees corresponding to traces in Figure 3.4. 35

3.12 Manually combined query joiningQ1 andQ2 37

3.13 Combined query joiningQ1 andQ2 (not legal SQL/2003) 38

3.14 Combined query joiningQ1 andQ2 using outer references in the ON condition . 38

3.15 Combined nested query joiningQ1 andQ2 usingLATERAL 39

3.16 The CHOOSE-CORRELATIONS procedure. 42

3.17 Combine procedure for outer join. 43

3.18 Outer join queries generated by COMBINE-JOIN. 44

xix

3.19 Combine procedure for outer union. 46

3.20 QueriesQ3 andQ2 combined using outer union. 47

3.21 QueriesQ1 andQ2 combined using client hash join. 50

3.22 Combine procedure for client hash join. 51

3.23 Combine Procedure for Client Merge Join 53

3.24 Combined inner query for the client merge join strategy. 54

3.25 Combine procedure to rewrite an entire context tree. 59

3.26 Steps of REWRITE-TREE. 60

3.27 Context tree after executing steps of Figure 3.26. 61

3.28 Sketch of execution of alternate strategies. 63

3.29 Estimating the cost of a plan. 67

3.30 Run times with varying predicate selectivity 71

3.31 Run times with varying query cost 72

3.32 Run times (s) with varying number of columns 73

3.33 Run time (s) with varying network configurations. 75

4.1 Run times with varying number of requests to the server. 80

5.1 Scalpel components used for batch request patterns. 90

5.2 Application generating a query batch. 92

5.3 An example trace containing query batches. 93

5.4 Overview of the Pattern Detector. 94

5.5 Order-k models for trace of Figure 5.3 . 98

5.6 Code to build a suffix trie. 104

5.7 Suffix trie after first 7 queries in trace. 105

5.8 Suffix trie for trace of Figure 5.3 106

5.9 Code to monitor parameter correlations. 108

5.10 Suffix trie with possible correlations after (a)‘xabcd’ and (b)‘xabcdb’. . . 109

5.11 Atomic suffix trie and path-compressed suffix trie forajbj , j = 3 112

5.12 Code to build suffix tree 114

5.13 Steps of building a suffix tree for‘aaabbb’. 115

5.14 Steps to convert the implicit suffix tree into an explicit suffix tree. 116

5.15 Suffix tree for trace of Figure 5.3 119

5.16 Steps of tracking correlations for a suffix tree. 123

5.17 Code to monitor parameter correlations in linear space/time. 124

5.18 Overview of the Pattern Optimizer. 128

xx

5.19 Example for choosing prefetches. 129

5.20 Choosing a list of queries to prefetch. 133

5.21 Choosing the best prefetch query. 134

5.22 Marking redundant nodes. 137

5.23 Overview of the Query Rewriter 139

5.24 Run-time to executek sequential queries using different prefetch strategies. .. . 141

5.25 Code to evaluate alternative prefetching approaches.. 142

5.26 Qdb: queriesQd andQb combined using a lateral derived table. 144

5.27 Qdbe: queriesQd, Qb, andQe combined using union and lateral derived tables. . 145

5.28 Result ofQdbe. 145

5.29 Building ACTION objects. 146

5.30 Generating a batch prefetch query. 149

5.31 Overview of the role of the Prefetcher. 150

5.32 Pseudo-code for Scalpel batch request Prefetcher. 151

5.33 Pseudo-code for prefetching. 153

5.34 Code for Generating Query Stream 155

5.35 Mean time per iteration with varying batch lengthL. 156

5.36 Mean time per iteration with varyingP . 158

5.37 Breakdown of execution costs. 160

5.38 Training overhead ondbunload case study. 161

6.1 An example containing nesting and batches. 164

6.2 Context tree for Figure 6.1. 164

6.3 Suffix trie for Figure 6.1. 165

6.4 Example trace generating context/kg/hi. 166

6.5 Example trace generating context/kg/h. 167

8.1 Pseudo-code fordbunload top-level requests (continued.) 179

8.2 Pseudo-code fordbunload top-level requests. 180

8.3 dbunload context tree identified by Scalpel. 182

8.4 Pseudo-code fordbunload to output database users. 183

8.5 Running time (s) ofdbunload on different network configurations. 185

8.6 SQL-Ledger system structure. 187

8.7 Nested request patterns found in SQL-Ledger. 193

8.8 SQL-Ledger elapsed database time (ms) for original and optimized requests. . . . 195

xxi

1 Introduction

Client applications submit streams of relational queries to database servers. For simple requests,

inter-process communication costs account for a significant portion of user-perceived latency.
This trend increases with faster processors, larger memorysizes, and improved database exe-
cution algorithms, and this trend is not significantly offset by improvements in communication

bandwidth.

A

B

C D

Server

E

F

Client

G

A Client prepares requestQ.
B Request on wire.
C Server interprets requestQ.
D Server executesQ.
E Server prepares replyR.
F Reply on wire.
G Client interprets replyR.

Figure 1.1: A sample communication trace.

Figure 1.1 shows a sample of a communication trace between a client program and a data-
base server. Of the cost components shown, only D representsquery processing costs, while the

remainder consist of communication overhead. For simple requests, the time spent actually ex-
ecuting a request (component D) can be a relatively small portion of execution time. We have

found that for simple queries, such as fetching a single row from an in-memory table, the execu-
tion time D represents less than 1.5% of the elapsed request time on a low-latency shared mem-

ory configuration; this percentage drops significantly withhigher latency connections.

The problem of latency is becoming increasingly relevant due to a number of trends. We have

seen exponential improvements in the number of requests that can be processed per second due to
improvements in processor speed, memory size, disk throughput, network bandwidth, and query

processing algorithms. During this same time period, the latency associated with these operations
has not improved at anything near the same rate. Patterson [143] presents compelling evidence

that latency has lagged bandwidth. Further, there is good reason to believe that this latency prob-
lem will not be solved to a significant extent by hardware advances. In addition to these trends

1

2 INTRODUCTION

that make latency increase relative to the other shrinking costs, new configurations such as wire-

less networks and high-latency WANs are increasingly beingused for data access. Applications
that work well in existing configurations may be unacceptably slow in these now environments

merely due to the structure of their request streams.

The requests submitted by some database client applications to servers contain fine-grained

access such as that shown in Figure 1.2(a). Requests that areindividually cheap add up to signif-
icant exposed latency and processing costs associated withthe overhead of formatting and inter-

preting each request. If these requests could be combined into a single request, we would elimi-
nate the per-request costs, giving a coarse-grained accesspattern as shown in Figure 1.2(b). This

pattern not only reduces user-perceived latency, it can also reduce execution costs (components
A, C, E and G), and it can even allow the server to choose a more efficient query execution plan.

For example, the server might be able to exploit data sharingbetween multiple requests.

Q1 Q2 Q3

(a) Fine-Grained Access

Q1;Q2;Q3

(b) Coarse-Grained Access

Figure 1.2: The difference between fine-grained and coarse-grained communication.

Fine-grained access can be converted to coarse grained access by prefetching anticipated re-
sults before they are requested. While this runs the risk of wasting work in the case that the re-

sults are not in fact needed, it can reduce the latency and overhead associated with many small
requests.

In a database setting, prefetching of future requests is notimmediately possible. In general,
requests are parameterized, and the values of the parameters may depend on the result of earlier

requests.

Our hypothesis is that existing client applications generate stylized patterns in their request

streams. We can implement an automated tool to detect these stylized patterns and prefetch an-
ticipated future requests. The goal of this system, which wecall Scalpel, is to reduce an objective

function defined on a cost model. This objective could be the time an application spends wait-
ing for database requests (exposed latency), or it could be the total time that the database server

spends processing requests.

We will demonstrate techniques that can be used for this automated detection, optimizing,

and rewriting system. We will evaluate the effectiveness ofthe techniques by considering their
effect on both synthetic benchmarks and on case studies of real-world applications.

1.1 MOTIVATION 3

1.1 Motivation

As an illustration of the kind of optimization we hope to achieve, consider the client-side data-
base application code shown in Figure 1.3.

function GET-OPEN-INVOICES(cust_id, currency)1

open c1 cursor for Q1:2

SELECT id, curr, transdate3

FROM ar4

WHERE customer_id = :cust_id5

AND ar.curr = :currency6

AND NOT ar.amount = ar.paid7

ORDER BY id8

while r1 ← fetch c1 do9

if currency 6= defaultcurrency then10

rate ← GET-EXCHANGE-RATE(r1.curr, r1.transdate)11

close c112

end13

function GET-EXCHANGE-RATE(curr, transdate)14

fetch row r2 from Q2:15

SELECT exchangerate FROM exchangerate16

WHERE curr=:curr AND transdate=:transdate17

return r2.exchangerate18

end19

Figure 1.3: The SQL-Ledger GET-OPEN-INVOICES function.

The code is adapted from SQL-Ledger, a web-based double-entry accounting system written
in Perl (we describe this application further in Chapter 8).The GET-OPEN-INVOICES function
retrieves a list of all open invoices for a given customer that were recorded with a given monetary

currency. If the given currency differs from the configured system default, then the exchange rate
for each invoice is retrieved using the GET-EXCHANGE-RATE function. When this application

runs, it issues a series of small single-table queries (Q1, Q2, Q2, Q2, . . .) to the database server. It
uses the results of these queries to perform a two-way, nested loops join on the client side.

The individual requests submitted by GET-EXCHANGE-RATE may be quite cheap (for exam-

ple, consisting of a single index lookup of an in-memory table). In this case, the execution time of
these inner queries is likely dominated by the fixed overheadcosts associated with opening a cur-

sor. This suggests that better performance could be achieved by combining several of these small
requests together, reducing the fixed overhead of many requests.

4 INTRODUCTION

For example, if Scalpel recognizes the nested query patternQ1, Q2, Q2, Q2, Q2, . . . gener-

ated by the application in Figure 1.3, it can replace the entire pattern with a single, larger query
similar toQopt, which is shown in Figure 1.4. QueryQopt performs the join at the server and re-

turns all of the data that would have been returned byQ1 and theQ2 queries.

SELECT id, curr, exchangerate, ...

FROM ar LEFT JOIN exchangerate er

ON ar.curr = er.curr AND ar.transdate=er.transdate

WHERE customer id = :cust id

AND ar.curr = :currency

AND NOT ar.amount = ar.paid

ORDER BY id

Figure 1.4: The join queryQopt combiningQ1 andQ2.

function BATCH-EXAMPLE(cust_id, get_shipto)20

fetch row r3 from Q3:21

SELECT name, tax_id, ship_id22

FROM customer c23

WHERE id = :cust_id24

if get_shipto then25

fetch row r4 from Q4:26

SELECT s.addr27

FROM shipto s28

WHERE s.ship_id=:c3.ship_id AND s.default = ‘Y’29

30

fetch row r5 from Q5:31

SELECT tax_rate FROM tax t WHERE t.tax_id=:c3.tax_id32

return r5.t133

end34

Figure 1.5: Example of a batch request pattern.

In addition to nested request patterns such as the one shown in Figure 1.3, we have found ex-
amples of what we call batch request patterns. A batch is a sequence of related queries. Figure 1.5

shows example code that generates a batch request pattern; this code is a simplified and modified
version of functions we found in the SQL-Ledger application. In the BATCH-EXAMPLE function,

two or three small queries are submitted to the database to retrieve different types of information
about a customer. Each of these is individually cheap, leading to a fine-grained access pattern.

We could consider speculatively executing requests in order to avoid fine-grained access. For

1.2 USING PREFETCHING 5

SELECT c.name, c.tax id, c.ship id, s.addr

FROM customer c LEFT JOIN shipto s

ON s.ship id = c.ship id AND s.default = ‘Y’

WHERE c.id = :cust id

Figure 1.6: Joining queriesQ3 andQ4 with Q3;4.

example, if we decide that queryQ4 follows Q3 sufficiently often, we could submit a combined

queryQ3;4 such as the one shown in Figure 1.6 when we see OPEN(Q3). This combined query
generates the results needed forQ3 andQ4. The per-request costs are only incurred once in this

case, although there is the risk that we will have executedQ4 unnecessarily.

1.2 Using Prefetching

Scalpel’s rewrites are based onpredictionsof future actions that will be performed by the client
application. When Scalpel seesQ1, it predicts thatQ1 will be followed by a series of nestedQ2

queries. Based on this prediction, it issuesQopt to the server rather thanQ1. If the application
then requestsQ2 as expected, Scalpel does not passQ2 to the server. Instead, it extracts the re-

quired data from the result ofQopt and returns that to the application. If the application behaves
unexpectedly, perhaps by issuing a different queryQ3, then Scalpel can simply forwardQ3 to the

server for execution. In this case Scalpel has done some extra work, sinceQopt is a larger and
more complex query thanQ1. However, Scalpel always returns correct results to the client. By re-

placingQ1 with Qopt, Scalpel implements a kind of prefetching. We call itsemantic prefetching

because Scalpel must understand the queriesQ1 andQ2 in order to generate an appropriateQopt.

There are two reasons to do semantic prefetching. First, it provides the query optimizer at

the server with more scope for optimization. For example, the application shown in Figure 1.3
effectively joins two tables at the client site. However, the server’s optimizer will be unaware that
the join is occurring. Scalpel’s rewrite makes the server aware of the join, allowing its optimizer

to consider alternative join methods that it may implement.

Second, by replacing many small queries with fewer larger queries, Scalpel can reduce the la-
tency and overhead associated with the interconnection network and the layers of system inter-

face and communications software at both ends of the connection. These costs can be quite sig-
nificant. We measured the cost of fetching a single in-memoryrow from several commercial re-

lational database management systems. Regardless of whether the client used local shared mem-
ory or an inter-city WAN to communicate with the server, overhead was consistently over 98.5%

of the total query time. For the application shown in Figure 1.3, this means that almost all of the
time spent issuingQ2 queries to the server is overhead.

6 INTRODUCTION

It may seem that the application developer should be responsible for avoiding nesting of the

form shown in Figure 1.3. For example, the two functions shown in Figure 1.3 could be replaced
by a single function that opensQopt (Figure 1.4). However, we have found that there is a place

for both manual application tuning and automatic, run-timeoptimization of application request
streams.

Manual tuning can clearly improve application performance, but run-time optimization has
some strengths that application tuning does not. First, run-time optimization can take advantage

of information that is not known at application developmenttime, or that varies from installa-
tion to installation. For example, when the monetary currency of the report differs from the de-

fault currency, the implementation of the GET-OPEN-INVOICES function shown in Figure 1.3 is
much worse than a revised implementation based on the join query of Figure 1.4. However, if the

report currency and the default currency are the same, the implementation of Figure 1.3 will per-
form best. For which of these circumstances should the implementation be tuned? The program-
mer may not know the answer to this question; worse, the answer may be different for different

instances of the program. Other examples of run-time information that may have a significant im-
pact on the performance of the application are program parameter values, data distributions, and

system parameters such as network latency. A run-time optimizer can consider these factors in
deciding how best to interact with the database server.

A second argument in favor of run-time optimization is a software engineering argument. Per-
formance is not the only issue to be considered when designing and implementing an application.

For example, the SQL-Ledger application actually callsget exchangerate from eight loca-
tions. Only one of these calls is shown in Figure 1.3. Rewriting get openinvoices to use

the join query of Figure 1.4 breaks the encapsulation of the exchange rate computation that was
present in the original implementation, resulting in duplication of the application’s exchange rate

logic. This kind of duplication can lead to increased development cost and possible maintenance
issues.

Finally, there is the issue of the time and effort required totune applications. While we do not
expect Scalpel to eliminate the need for manual applicationtuning, any performance tuning that
can be accomplished automatically can reduce the manual tuning effort. Scalpel may be partic-

ularly beneficial for tuning automatically or semi-automatically generated application programs,
for which there may be little or no opportunity for manual tuning.

1.3 Application Request Patterns

The example in Figure 1.3 shows one type of pattern that we have identified in database client

code. We have found that there are several such types of patterns that we can consider optimiz-
ing. We surveyed a small set of database application programs to identify the kinds of query pat-

1.3 APPLICATION REQUEST PATTERNS 7

terns they produce, and the prevalence of those patterns. Our sample included the following ap-

plications.

• SQL-Ledger: A web-based double-entry accounting system written in Perl.

• Slaschode:A web forum written in Perl.

• Compière: A Java-based ERP system.

• TM: A Java-based time-management GUI.

• dbunload : A C program that writes DDL to re-create the schema of a database.

In addition to these systems, we investigated a number of proprietary applications, ranging from

on-line order processing systems to report generating systems. While non-disclosure agreements
prevent us from giving details for those applications, the results of our analysis of those applica-
tions were consistent with the results from the applications listed above.

From our application sample, we identified three types of query patterns that are amenable to
optimization: batches, nesting, and data structure correlations.

BatchesA batch is a sequence of related queries. These individual queries could potentially be
replaced with a single, larger query. For example, considerthe BATCH-EXAMPLE function

shown in Figure 1.5.

Nesting In batches, each query is opened, fetched, and closed independently. In the nesting pat-
tern, one query is opened, and other queries are opened, executed, and closed for each row

of the outer query. Figure 1.3 showed an example of an application that generates a nest-
ing query pattern. The nesting pattern effectively implements a nested loops join in the ap-

plication.

Data Structure CorrelationIn the nesting pattern, inner queries are executed while theouter

query is open, expressing direct nesting in the application. In some cases, a client appli-
cation opens an outer query, fetches the results into a data structure, then closes the outer
query. Then, an inner query is executed for some or all of the values stored in the data struc-

ture. The performance impact of the data structure correlation pattern is similar to that of
the nesting pattern. However, the pattern may be more difficult to detect due to the indi-

rect nesting.

Batches were common in all of the applications we considered. Nesting or data structure cor-
relation also occurred in each of the applications, although less frequently than batches. Although

8 INTRODUCTION

nesting and data structure correlation are less common thanbatches, the potential payoff for op-

timizing these patterns is greater because they usually allow more database requests to be elimi-
nated. For example, the SQL-Ledger application in Figure 1.3 issuesQ2 once for each customer

invoice. All of these queries can be replaced by a single query. Although both nesting and data
structure correlation offer a large optimization payoff, nesting patterns are easier than data struc-

ture correlations to detect and optimize.

1.4 Thesis

The main hypothesis that we examine is the following. Moderndatabase applications contain sig-
nificant amounts of fine-grained access in their request streams. These fine grained requests con-

tain dependencies that prevent existing prefetching approaches from being used. We can exploit
the relational data model to efficiently recognize some of these types of patterns. Further, we

can use the query processing capabilities of theDBMS to effectively execute combined requests
that generate the needed results for prefetched queries. This process of semantic prefetching al-

lows not only significant reductions in total exposed latency, but also it offers savings in the CPU
costs associated with formatting and interpreting requests.

In this thesis, we present the Scalpel system, which detectspatterns in the request streams of
client applications and generates prefetching rules that reduce exposed latency. We use Scalpel to

evaluate this main hypothesis.

Our work provides the following contributions:

1. We identify and characterize two types of fine-grained request patterns that appear in
streams of requests toDBMSs.

2. We demonstrate effective techniques to automatically find these patterns.

3. We define and evaluate alternative strategies for prefetching the results of anticipated re-

quests.

We will show in the sequel that the problem of fine-grained patterns is common, and that our

automated detection and rewriting approach are effective at reducing the costs associated with
this type of pattern.

1.5 Outline

The remainder of this document is organized as follows. Chapter 2 covers preliminaries of nota-

tion that will be used throughout the document. Chapter 3 describes how Scalpel detects and opti-
mizes nested request patterns. Chapter 4 describes how Scalpel combines calibrated and observed

1.5 OUTLINE 9

timing information with server estimates to provide cost estimates for cost-based optimization.

Chapter 5 describes how Scalpel recognizes and optimizes batch request patterns. Even though
our prototype implements both nested and batch optimization, we have described them in isola-

tion for simplicity. Chapter 6 gives details of how nesting and batch patterns could be combined
in theory, and also describes the current (limited) combination used in the Scalpel prototype.

Scalpel fetches values before the client application submits an FETCH, which leads to con-
cerns that prefetching may introduce temporal anomalies. Chapter 7 addresses this issue by show-

ing how Scalpel ensures prefetch consistency.

Chapter 8 demonstrates the benefits of using Scalpel on real systems by presenting the results
of two case studies. Finally, Chapter 9 positions our results within the body of related work, and

Chapter 10 presents our conclusions and some topics for future study.

2 Preliminaries

2.1 Scalpel System Architecture

Scalpel operates in two phases. In the training phase (Figure 2.1), the Call Monitor monitors data-

base interface calls made by the application (passing them unchanged to theDBMS-provided In-
terface Library). The Pattern Detector analyzes the monitored requests to build a model of the re-

quest patterns that have occurred so far. At the end of the training phase, the Pattern Optimizer
uses this model to select an execution strategy for the observed requests. The Query Rewriter uses
the selected strategy to generate a set of request rewrite rules, which are recorded for use at run-

time. Scalpel’s rewrites are condition/action rules. The conditions (calledcontexts) identify sit-
uations in which a query rewrite can be applied and the actions describe what activities Scalpel

should perform at run-time when it observes a query being submitted in a particular context..

Client

Application

Call Monitor

O
p
e
n
,

F
e
t
c
h
,

C
l
o
s
e

Operating System

DB Client

Library

Pattern

Detector

Contexts +

Actions

Pattern

Optimizer

Query

Rewriter

DBMS

DB

Cost Model

Figure 2.1: Scalpel system structure during training phase. Scalpel components are shaded.

At run-time (Figure 2.2), the Call Monitor again monitors the client request stream and tracks
the current context. Each time the client opens a query, Scalpel checks the current context against

the rules in the rewrite database. If the context matches a rule condition, Scalpel applies the as-
sociated action to rewrite the current query. For example, an alternate query could be submitted

to fetch the original query’s results and also prefetch additional results; alternatively, the query
could be answered directly from prefetched data without consulting theDBMS.

11

12 PRELIMINARIES

Client

Application

Call Monitor

Open, Fetch, Close

DB Client

Library

DBMS

Prefetcher

Contexts +

Actions
 Operating System

DB

Figure 2.2: Scalpel system structure at run-time. Scalpel components are shaded.

2.2 Pseudo-Code Conventions

We use the following conventions in the pseudo-code of this document, which are generally based

on the conventions used by Cormen, Leiserson and Rivest [47]:

1. Block structure is indicated by indentation.

2. The symbol� is used to indicate that the rest of the line is a comment.

3. Variables are local to a procedure unless explicitly described as a global variable.

4. Arrays are accessed using the array name followed by a subscript in square brackets.

5. Lists are represented using comma-separated elements enclosed in square brackets. For ex-

ample, the expression[a, b, c] is a list with three elements. If an element of the
square-bracket expression is a list, the contents are expanded to generate a single (flat) list.

Lists are accessed using square brackets. Negative indexesare used to index from the end
of the list, soc[-1]=3 in the example below.

6. Tuples are represented with parentheses.

7. Strings are represented as double-quoted text. Concatenation is performed using the addi-
tion symbol (+). When concatenating a list to a string, the list is comma-separated.

8. Compound data types are formed of fields, and are describedthe usingstructure key-

word. A new object of a given type is created using thenew keyword, which can option-
ally specify initial values for fields in the order they are specified in thestructure defini-

2.3 MODEL OF REQUEST STREAMS 13

tion. If a value is not supplied in thenew call, it has the default value that is given in the

structure definition.

9. Fields are accessed by specifying an object name, a period(.), then the field name. For ex-
ample, the expressionC.keys represents the ‘keys’ field of object C.

structure SAMPLE-STRUCTURE35

flda=0 � Fieldflda with default 036

fldb=1 � Fieldfldb with default 137

end38

procedure SAMPLE-PROCEDURE39

� This is a comment.40

a ← 1 � Set variable a to value 141

o ← new SAMPLE-STRUCTURE � Set variable o to refer to a new object42

m ← NIL � Set variable m to refer to no object43

if a = 1 then � A conditional44

b ← [a, 2] � Set variable b to list [1,2]45

c ← [b, 3] � Set variable c to list [1,2,3]46

d ← “L:”+c � Set variable d to string “L:1,2,3”47

o.flda ← d � Set fieldflda of o’s object to string “L:1,2,3”48

m ← o � Set variable m to refer to same object as o refers to49

end50

Figure 2.3: Sample pseudo-code.

2.3 Model of Request Streams

When client applications submit requests to aDBMS, they do so using API calls to a client DB li-

brary provided by theDBMS vendor. These calls are used to prepare SQL statements for later
execution, to open cursors, fetch rows, and close cursors. The DB library implements these re-

quests using inter-process communication with theDBMS. There is significant variation in the
details of request streams processed by differentDBMS products. Various implementations may

be used even within individual products based on the settings of options. For example, prefetch-
ing of rows varies between products; within a single product, the details are affected by the se-
lected cursor type. Some products implement alazy closewhere a close request is not sent to

the DBMS immediately, instead being tacked on to the next request. Other products close a cur-
sor when the last row is fetched. Some products optimize queries when they are opened, others

when they are prepared.

In order to make our results broadly applicable, we use a simplified representation of a re-
quest stream. We assume that the client request stream consists of the following types of requests:

14 PRELIMINARIES

CONNECT: A CONNECT request connects a client application to the database server. Scalpel

monitors connections during training and run-time. In the training phase, Scalpel initial-
izes data structures to monitor the application’s requestsin order to detect patterns. In the

run-time phase, Scalpel loads stored condition/action pairs selected by an earlier training
period.

DISCONNECT: A D ISCONNECT request disconnects a client from the database server. Scalpel
monitors DISCONNECT requests and releases any resources associated with the client’s

connection.

EXECUTE: An EXECUTE request is used to modify data stored in theDBMS (for example, by
inserting, updating, or deleting a row). Scalpel monitors EXECUTE requests due to their

impact on the consistency of prefetched results.

OPEN: An OPEN request is used to send a query to the database server. It returns a cursor, which

is used by the application to retrieve rows from the query result. The first parameter of an
OPEN request is the query text. Queries may be parameterized. If so, the OPEN request also

includes a value for each query parameter.

FETCH: A FETCH request takes a cursor as an input parameter and either returns a single row of
the query result to the application or returns EOF to indicate the end of the result set.

CLOSE: A CLOSE request takes a cursor as an input parameter. It is used by theapplication to
indicate that it is finished retrieving rows from the query result.

We assume that CONNECT and DISCONNECTrequests are relatively infrequent and we typi-

cally do not shown them in examples unless they are relevant to a point of interest.

Figure 2.4(a) shows an example of a request stream that mightbe submitted by a client appli-

cation. In this example, there are two different queries submitted:Q1 andQ2. QueryQ2 is always
submitted while cursorc1 is open over queryQ1. Only one FETCH is performed on cursorc2, so

it does not return EOF on its first invocation. On the second invocation (line 8-10), an empty re-
sult set is returned. We also use aconcise trace notationfor displaying a request trace, and an

example of this is shown in Figure 2.4(b) for the requests of Figure 2.4(a). In the concise nota-
tion, we represent OPEN, FETCH and CLOSE requests with graphical symbols. Further, we show
only the primary keys of the fetched results.

In some cases, we are interested only in a sequence of requests all at the same nesting level.

In this case, we write a sequence such asQa, Qb, Qc, In this sequence trace notation, each
Qi represents OPEN(Qi), some number of FETCH calls, then CLOSE(Qi). Where the meaning is

clear from the context, we use only the subscripts of the queries, for example writingabc to mean
the sequenceQa, Qb, Qc.

2.4 NOTATION FOR STRINGS AND SEQUENCES 15

Operation Result

1 OPEN(Q1,1) c1

2 FETCH(c1) (A, 1)

3 OPEN(Q2,1) c2

4 FETCH(c2) (f)

5 CLOSE(c2)

6 FETCH(c1) (B, 1)

7 FETCH(c1) (D, 1)

8 OPEN(Q2,1) c2

9 FETCH(c2) EOF

10 CLOSE(c2)

11 FETCH(c1) EOF

12 CLOSE(c1)

A

f

B

D

⊥
⊥

OPEN

p FETCH value p

− FETCH NULL

⊥ FETCH at EOF

CLOSE

(a) Example trace (full) (b) Example trace (concise) (c) Legend

Figure 2.4: Example of a request trace in both (a) full form and (b) concise form.

2.4 Notation for Strings and Sequences

We use a notation for strings and sequences based on the usageof Hopcroft and Ullman [93].

This section outlines that notation.

A sequenceis a string of atomic symbols juxtaposed. The meanings of thesymbols vary be-
tween problem domains, and could be, for example, characters, page requests, or musical notes.

Regardless of the actual symbols used in a problem domain, werepresent symbols with the let-
tersa, b, c, andd, with or without subscripts, while we use letters such asw, x, y, andz to denote

strings. For example,w = abca is a string. The length of a stringw, denoted by|w|, is the num-
ber of symbols composing the string. The empty string is represented byε, and it is the string
consisting of zero symbols.

A prefixof a stringw is any number of leading symbols fromw, and asuffixis any number of

trailing symbols. For example, the stringabc has prefixesε, a, ab, andabc and suffixesabc, bc, c,
andε.

Theconcatenationof two stringsx, y is the string of length|x| + |y| formed by usingx as

a prefix andy as a suffix. This operation is denoted by juxtaposition, so that xy represents the
concatenation ofx followed byy.

16 PRELIMINARIES

A finite set of symbols is called analphabet, usually denoted byΣ. We useΣ∗ to represent

the (infinite) set of all possible strings formed using symbols from Σ, andΣn to represent the
(finite) set of all strings of lengthn overΣ.

3 Nested Request Patterns

One of the patterns we have observed in request streams isnesting. In a nesting pattern a client
application submits a database request while processing the rows of another cursor. By recogniz-

ing this pattern of requests, Scalpel can avoid the overheadof many fine-grained queries.

In this chapter, we describe how Scalpel detects, optimizes, rewrites, and prefetches nested
request patterns. Figure 3.1 shows Scalpel’s components that are used for nesting detection (in-

cluding both those components used during training (Figure2.1) and run-time (Figure 2.2). At
present, we discuss nested request patterns in isolation; in Chapter 5 we describe how Scalpel de-

tects batch request patterns, and in Chapter 6 we describe how Scalpel combines detection of
nested and batch request patterns.

Call Monitor

Cost Model

(Chapter 4)

Pattern Detector

(
Section
3.2)

A Context Tree (3.2.1)

with Correlations (3.2.2)

and Selectivities (3.2.3)

Pattern Optimzer

(
Section
3.5)

Query Rewriter

(Section
3.3)

Context Tree

With Strategies

(N,J,U,H,M)

Prefetcher

(Section
3.4)

Context Tree

with Rewritten

Queries and

Actions

Monitor-Open

Monitor-Fetch

 Monitor-Close

Run-Open

Run-Fetch

Run-Close

Figure 3.1: Scalpel components used for nested request patterns. Shaded components are de-

scribed in this chapter.

During the training period, Scalpel’s Call Monitor component intercepts OPEN, FETCH, and
CLOSEcalls from the client application. The Call Monitor component calls the MONITOR-OPEN,

MONITOR-FETCH, and MONITOR-CLOSE functions, which are implemented by the Pattern De-
tector (Section 3.2). The Pattern Detector builds acontext treedata structure to represent the struc-

17

18 NESTED REQUEST PATTERNS

ture of nesting that has been observed, predicted correlations between input parameters and ear-

lier values, and selectivity estimates.

After the training period is over, the Pattern Optimizer uses this context tree to decide on an
execution strategy for all of the nested request patterns found during the training period. The Pat-

tern Optimizer annotates the context tree with a selected strategy for each of the queries observed
in a nested pattern, then invokes the Query Rewriter. The Query Rewriter uses the strategies se-

lected by the Pattern Optimizer to generate rewritten, combined queries that will be submitted at
run-time in place of the original query. Further, the Query Rewriter adds ACTION objects as an-
notations to the context tree. These ACTION objects are used at run-time to inform Scalpel of

how each request should be answered. Finally, at the end of the training period, the context tree
is stored persistently for use at run-time.

At run-time, the Prefetcher loads the context tree from storage when it starts. As the appli-

cation submits requests, the Call Monitor component calls the RUN-OPEN, RUN-FETCH, and
RUN-CLOSE functions. These functions are defined by the Prefetcher component using the con-

text tree structure.

This chapter is organized as follows. Section 3.1 gives an example program that generates a
nested request pattern. This example will be used throughout the chapter. Section 3.2 describes
how Scalpel’s Pattern Detector observes a request stream todetect nested requests that are can-

didates for rewriting. Section 3.3 describes execution alternatives that the Query Rewriter can
generate for the candidates identified during the training period. Section 3.4 discusses how the

Prefetcher implements the alternative strategies that aregenerated by the Query Rewriter. Sec-
tion 3.5 describes how Scalpel’s Pattern Optimizer choosesbetween alternative valid execution

strategies. Finally, Section 3.6 provides experimental results illustrating the strengths and weak-
nesses of the various strategies.

3.1 Example of Nesting

Figure 1.3 showed an example of nesting that we found in the SQL-Ledger application. Nesting
occurs in that example because database access is encapsulated in functions, and these functions
are called while processing the rows returned from another request. While only two cursors are

involved in the nesting of Figure 1.3, generally an arbitrary tree can appear. Figure 3.3 shows an
artificially constructed example of nesting that demonstrates specific features of our approach.

Figure 3.2 shows sample data and corresponding output for the example in Figure 3.3.

There are three distinct functions in Figure 3.3, each opening a separate query (Q1,Q2, and
Q3). A call to the outer-most functionF1() produces a two-dimensional chart. For each row that

F1() fetches fromQ1, it outputs a row to the chart. For most rows,F1() callsF2(), which outputs
a single character enclosed in parentheses. Next,F1() outputs a colon (‘:’), then callsF3(). F3()

3.2 PATTERN DETECTOR 19

S(s1, s2, s3)

A 1 1
B 2 1
C 3 1
D 4 1
E 5 2

T (t1, t2)

f 1
g 10
h 2
i 12
j 3
k 13
l 14

V (v1, v2, v3)

V 1 10
W 1 11
X 2 12
Y 3 13
Z 3 14

Output ofF1(1)

A(f): [V(g) W(-)]

B#

C(j): [Y! Z(l)]

D(-): []

Figure 3.2: Sample data and sample output for Figure 3.3. Thefirst three tables show the contents

of tablesS, T , andV . The last table shows the chart generated by the callF1(1).

outputs a string enclosed in square brackets (‘[’,‘]’) withan entry for each row returned fromQ3.

For each row returned fromQ3, F3() outputs the attributer3.v1 then callsF2() which again
outputs a single character enclosed in parentheses. Function F2() is thus used in two different

contexts.F2() is called fromF1(), with parameterx supplied with the value ofr1.s2; it is also
called byF3() with x supplied with the valuer3.v2.

Figure 3.4 shows a trace of requests submitted by the programin Figure 3.3 using the sample
data of Figure 3.2. The ‘Context’ column shows the ordered list of queries that are open before
each of the application requests in the sample stream. The ‘Request’ column shows the request

and actual parameters submitted by the sample program, and the ‘Result’ column shows the result
of executing the request. The last two columns are discussedin Section 3.2.2.

3.2 Pattern Detector

The requests in Figure 3.4 are an example of a nesting pattern. If Scalpel can recognize this pat-
tern, it can rewrite it to avoid the nesting. The Scalpel Pattern Detector monitors the stream of re-

quests presented during the training period and constructsa model of this stream.

3.2.1 Context Tree

Notice that queryQ2 is opened in two different ways. It is opened as a result of a function call
F1 ↪→ F2, and it is also opened by the callF1 ↪→ F3 ↪→ F2. The behaviour of these two calls is

different: in the first case, the parameterx is correlated to attributer1.s2, while in the second
case,x is correlated to attributer3.v2. If we are to prefetch results forQ2, we must distinguish

between the two ways that it is invoked in order to correctly predict the parameter values that will
be used.

20 NESTED REQUEST PATTERNS

function F1(w)51

open c1 cursor for Q1:52

SELECT s1, s2 FROM S WHERE s3=:w ORDER BY s253

while r1 ← fetch c1 do54

PRINT(r1.s1)55

if r1.s1 6= ‘B’ then56

F2(r1.s2)57

PRINT(‘:’)58

F3(r1.s2)59

else60

PRINT(‘#’)61

PRINT-NEWLINE()62

close c163

end64

function F2(x)65

� QueryQ2 outputs at most one row66

open c2 cursor for Q2:67

SELECT t1 FROM T WHERE t2=:x68

r2 ← fetch c269

if r2 then70

PRINT(‘(’, r2.s1, ‘)’)71

else72

PRINT(‘(-)’)73

close c274

end75

function F3(y)76

PRINT(‘[’)77

open c3 cursor for Q3:78

SELECT v1, v2 FROM V WHERE v3=:y79

while r3 ← fetch c3 do80

PRINT(r3.v1)81

if r3.v1 6= ‘Y’ then82

f2 ← F2(r3.v2)83

else84

PRINT(‘!’)85

close c386

PRINT(‘]’)87

end88

Figure 3.3: An example of a nested request pattern.

3.2 PATTERN DETECTOR 21

Context Request Result Correlations

1 C0 : / OPEN(Q1,1) c1 { 〈1|C, 1〉 }

2 C1 : /Q1 FETCH(c1) (A, 1)

3 C1 : /Q1 OPEN(Q2,1) c2 {〈1|C, 1〉, 〈1|I, C1, 1〉, 〈1|O, C1, 2〉}

4 C2 : /Q1/Q2 FETCH(c2) (f)

5 C2 : /Q1/Q2 CLOSE(c2)
6 C1 : /Q1 OPEN(Q3,1) c3 {〈1|C, 1〉, 〈1|I, C1, 1〉, 〈1|O, C1, 2〉}

7 C3 : /Q1/Q3 FETCH(c3) (V, 10)

8 C3 : /Q1/Q3 OPEN(Q2,10) c2 {〈1|C, 10〉, 〈1|O, C3, 2〉}

9 C4 : /Q1/Q3/Q2 FETCH(c2) (g)

10 C4 : /Q1/Q3/Q2 CLOSE(c2)
11 C3 : /Q1/Q3 FETCH(c3) (W, 11)

12 C3 : /Q1/Q3 OPEN(Q2,11) c2 {〈1|O, C3, 2〉}

13 C4 : /Q1/Q3/Q2 FETCH(c2) EOF
14 C4 : /Q1/Q3/Q2 CLOSE(c2)
15 C3 : /Q1/Q3 FETCH(c3) EOF
16 C3 : /Q1/Q3 CLOSE(c3)
17 C1 : /Q1 FETCH(c1) (B, 2)

18 C1 : /Q1 FETCH(c1) (C, 3)

19 C1 : /Q1 OPEN(Q2,3) c2 {〈1|O, C1, 2〉}

20 C2 : /Q1/Q2 FETCH(c2) (j)

21 C2 : /Q1/Q2 CLOSE(c2)
22 C1 : /Q1 OPEN(Q3,3) c3 {〈1|O, C1, 2〉}

23 C3 : /Q1/Q3 FETCH(c3) (Y, 13)

24 C3 : /Q1/Q3 FETCH(c3) (Z, 14)

25 C3 : /Q1/Q3 OPEN(Q2,14) c2 {〈1|O, C3, 2〉}

26 C4 : /Q1/Q3/Q2 FETCH(c2) (l)

27 C4 : /Q1/Q3/Q2 CLOSE(c2)
28 C3 : /Q1/Q3 FETCH(c3) EOF
29 C3 : /Q1/Q3 CLOSE(c3)
30 C1 : /Q1 FETCH(c1) (D, 4)

31 C1 : /Q1 OPEN(Q2,4) c2 {〈1|O, C1, 2〉}

32 C2 : /Q1/Q2 FETCH(c2) EOF
33 C2 : /Q1/Q2 CLOSE(c2)
34 C1 : /Q1 OPEN(Q3,4) c3 {〈1|O, C1, 2〉}

35 C3 : /Q1/Q3 FETCH(c3) EOF
36 C3 : /Q1/Q3 CLOSE(c3)
37 C1 : /Q1 FETCH(c1) EOF
38 C1 : /Q1 CLOSE(c1)

Figure 3.4: Trace example for Figure 3.3. The first column gives the number of the request. The
second gives the context namedCi, which is the ordered list of open queries using path-separator
notation. The third column gives the request being processed and its parameters. The fourth col-
umn gives the rows returned by FETCH, and the last column is described in Section 3.2.2.

22 NESTED REQUEST PATTERNS

Scalpel usescontextsto distinguish different uses of a query. A context is an abstraction of

conditions within a request stream. By recording observations about application behaviour in spe-
cific contexts, we can distinguish between multiple uses of aquery. All observations about a re-

quest stream are applied to the appropriate context within the stream, and at run-time, the context
is used to decide what action to take when a request is submitted.

Our definition of context should be efficient to compute as we need to monitor the context

at run-time. Further, contexts should be sufficiently detailed to distinguish between requests that
will have distinct usage patterns.

We choose to use query nesting to identify contexts. We identify a context by the ordered list

of queries open when a request is submitted. We write contexts using path-separator notation to
emphasize the hierarchical nature of the list. For example,on line 3 of Figure 3.4,Q2 is opened in

contextC1, which has the path/Q1; on line 10, it is opened in contextC4 with the path/Q1/Q3.

C0 /

C1 /Q1

Q1

C2 /Q1/Q2

Q2

C3 /Q1/Q3

Q3

C4 /Q1/Q3/Q2

Q2

Figure 3.5: Query contexts of Figure 3.4.

Figure 3.5 shows the contexts corresponding to the program of Figure 3.3. The root context

represents is an empty sentinel node. Each of the descendantnodes of the root corresponds to a
context of open queries that was observed during the training period. Each node has an associated

identifier (C0, C1, . . . C4 in Figure 3.3) as well as the list of open queries representing the context.
An edge labelledQa between nodesCx andCy corresponds to an OPEN(Qa) request that was

observed in contextCx.

Figure 3.6 shows how the Pattern Detector builds the contexttree by monitoring requests.
The treeroot variable points to the root of the tree being created, andcurrctxt repre-

sents the current context of the request stream so far. When the client application submits re-
quest OPEN(Q,parms), the Call Monitor calls MONITOR-OPEN(Q, parms). This proce-

3.2 PATTERN DETECTOR 23

structure CONTEXT � Represent a condition within a request stream89

parent=NIL � The context this query is opened in90

path=[] � The list of open queries91

lastinput=[] � The most recent values of input parameters92

lastoutput=[] � The most recent values of fetched columns93

scope= ∅ � Possible sources of input values (Section 3.2.2)94

correlations=∅ � Set of Correlation objects that have always held (Section 3.2.2)95

counts=NIL � Information to estimate selectivities (Section 3.2.3)96

children= ∅ � A map of child contexts indexed by query97

alt=‘N’ � Alternative to use at run-time (Section 3.3)98

action=∅ � List of actions to perform at run-time (Section 3.4)99

end100

101

treeroot ← new CONTEXT � The root of the context tree102

currctxt ← treeroot � The current context103

procedure MONITOR-OPEN(Q, parms)104

child ← find (currctxt.children, Q)105

if child = NIL then106

child ← new CONTEXT(currctxt, [currctxt.path, Q])107

add(currctxt.opens, Q, child)108

INIT-CORRELATIONS(child, parms) � (Section 3.2.2)109

INIT-COUNTS(child) � (Section 3.2.3)110

else111

VERIFY-CORRELATIONS(child, parms) � (Section 3.2.2)112

UPDATE-COUNTS(child) � (Section 3.2.3)113

child.lastinput ← parms114

currctxt ← child115

end116

117

procedure MONITOR-FETCH(row)118

currctxt.lastoutput ← row119

currctxt.counts.numrows ← currctxt.counts.numrows + 1120

end121

122

procedure MONITOR-CLOSE()123

currctxt ← currctxt.parent124

end125

Figure 3.6: Pattern Detector methods to build context tree.

24 NESTED REQUEST PATTERNS

dure searches for the queryQ in the children of the current context (line 105). If it doesn’t find

it, then this is the first time the query has been observed in the context. MONITOR-OPEN creates
a new context and adds it to the children of the current context. If the child has previously been

seen, MONITOR-OPEN sets itslastinput field to the current parameters and updates book-
keeping information.

When the client application submits a FETCH request, the Call Monitor calls procedure

MONITOR-FETCH(row). This procedure updates thelastrow field of the current context. Fi-
nally, when the client application submits a FETCH request, the Call Monitor calls procedure
MONITOR-CLOSE, which moves the current context to the parent.

The structure of the context tree identifies the nesting present in a request stream. However,

Scalpel requires additional information if it is to be able to rewrite these patterns. Queries are of-
ten parameterized, and Scalpel must predict the actual values that will be submitted for future re-

quests if they are to be prefetched. The INIT-CORRELATIONS and VERIFY-CORRELATIONS pro-
cedures are used to track possible correlations between input parameters and other known quan-

tities.

3.2.2 Tracking Parameter Correlations

When functionF1() is called on line 56 of Figure 3.3, it callsF2() (line 57), leading to nested
queries. We would like to rewrite this pattern (for example using a join) in order to eliminate the

nesting. SinceQ2 is parameterized, Scalpel needs to predict not only thatQ2 will be executed, but
also the values of the input parameters that will be supplied. Otherwise, Scalpel will not be able

to derive an appropriate join query with which to replaceQ1. This prediction problem is similar
to that faced by hardware speculative execution [72, 181]. With speculative execution (discussed

further in Chapter 9), processor instructions can be speculatively executed based on predictions
of values that registers are likely to hold.

To accomplish this prediction, Scalpel tries to identify nested queries whose input parameter

values arecorrelatedto values that are available to Scalpel before the query is submitted. Specif-
ically, Scalpel considers input parameters that have the same value as an input or output parame-
ters of the queries in the current context. In the sample program of Figure 3.3, the input parame-

ter (x) of Q2 matches the second result column (s2) of Q1 when it is called from line 57.

In principle, we can observe this correlation by inspectingthe source code of the applica-
tion. For a human, it is relatively easy to recognize the correlation in this simple example; further,

the tools of program analysis also offer a hope to find such correlations automatically. Data flow
analysis can identify cases where one variable is guaranteed to have the same value as another.

However, there are practical and theoretical limitations with a source-level analysis. Implement-
ing a source-level analysis for complex object-oriented systems is relatively difficult [21], and

3.2 PATTERN DETECTOR 25

such an analysis would necessarily be conservative. Even with a very careful data analysis imple-

mentation, decidability results tell us that there exist programs with a correlation that holds in all
possible executions of a program yet cannot be detected. Further to this theoretical objection, sys-

tems can contain correlations that hold only in particular installations (including install-time pa-
rameters and user behaviour). A source-level analysis would likely not be able to detect these cor-

relations.

For these reasons, we do not use a source-level analysis of the client program to find correla-
tions. Instead, we infer the presence of correlations by observations of the values in the request

stream presented during the training period. For example, consider the request trace of Figure 3.4.
In each call OPEN(Q3, y), the value ofy matches the value of the second column of the row re-

turned by the most recent FETCH(Q1). By monitoring input and output parameter values, Scalpel
learns to predict correlations between the input parameters of the inner query and the input and

output parameters. In contrast to a source-level analysis,Scalpel finds all correlations that will al-
ways hold in all future executions (as we will see, it also maymake some incorrect predictions).
However, Scalpel does not detect correlations that are the result of functional dependencies. For

example, we could have an input parameterx that is always supplied the valuew + 1 wherew

is a prior output parameter. A source-level analysis might find such a correlation (with the lim-

itations discussed previously). We could combine trace-based detection with source-level analy-
sis; however, we have not observed such functional correlations in the systems we examined, so

we expect the benefits of combination to be relatively slight.

Scalpel uses an object of type CORRELATION to represent the fact that a parameter has al-
ways been equal to a particularcorrelation source. We write a correlation for parameteri as

l = 〈i|T, c, p〉 to indicate that parameteri is being predicted, whereT represents a particular type
of correlation andc andp identify the particular source.

At present, we consider three types of CORRELATION objects (each identified by a single-

charactercorrelation type):

Input Parameter (I)The value of an input parameter to an outer OPEN request.

Output Parameter (O)The value of a column in the most recently fetched row of an enclosing
context.

Constant (C)A constant value that is the same every time the query is opened in the given con-
text.

Figure 3.4 shows the possible correlations for each input parameter of an OPEN request that

are generated after the request is processed by Scalpel. Forexample, on line 3 we show the set
{〈1|C, 1〉, 〈1|I, C1 , 1〉, 〈1|O, C1 , 2〉}. The meaning of this is that Scalpel currently guesses that

26 NESTED REQUEST PATTERNS

the formal parameter at index 1 of queryQ3 in contextC1 is always equal to all of the following

values:

• The constant value 1 (〈1|C, 1〉)

• The first input parameter ofQ1 (〈1|I, C1, 1〉)

• The second columnc1.s2 from the most recently fetched row ofQ1 (〈1|O, C1, 2〉)

On line 19, Scalpel has reduced its guess to{〈1|O, C1, 2〉} because the actual value ofx on line

19 does not match the other two correlation sources.

The Pattern Detector maintains aparameter contextin the context tree data structure so that
Scalpel can identify these parameter correlations. For each CONTEXT objectC, Scalpel records
the most recent input parameters observed in thelastinput field and the most recently fetched

row in thelastoutput field. Together, thelastinput andlastoutput fields form a pa-
rameter context.

We can find the the parameter context at each point in the request stream of Figure 3.4 by

considering the last fetched result (column 4) and the inputparameters (column 3) for each cur-
sor that is currently open. A CORRSOURCEobject is used to identify each value in the parameter

context by specifying the context from which the values are drawn, atype of I or O to indi-
cate input or output parameters respectively, and aparameter field that gives the index of the

parameter of interest.

The Pattern Detector observes the values of input parameters to OPEN requests. Figure 3.7

shows the code used to track correlation values. When a new contextC is first created, the INIT-
SCOPE procedure initializes thescope field of C. This scope contains the set of all possible

CORRSOURCEobjects to which Scalpel considers the input parameters ofC could be correlated.
At present, Scalpel initializes the scope ofC to include the scope of its parent contextP in com-

bination with the the parameter context ofP . This definition overloads the correlation detection
(scope) with the structural detection (nesting). In principle, these do not need to be the same.

After initializing the scope of the new context, INIT-CORRELATIONS builds the initial set of
CORRELATION for each input parameteri based on the CORRSOURCE objects inscope that

have the same current value as the input parameteri (line 154). In addition to elements of the
scope field, INIT-CORRELATIONS also adds a constant CORRELATION object of type “C” ini-

tialized with the current value of the parameter. This constant CORRELATION will detect if a pa-
rameter is always supplied with the same constant value within the context.

The INIT-CORRELATIONSprocedure initialized thecorrelations field of a context to re-

flect the set of all correlations that held on the first OPEN call. The VERIFY-CORRELATIONS pro-
cedure is called on subsequent OPEN calls to find correlation values that no longer hold. For each

3.2 PATTERN DETECTOR 27

stored CORRELATION objectc, VERIFY-CORRELATIONS compares the current value of the in-

put parameterparms[c.inparam] to the current value of the source predicted byc. If the
supplied value of the input parameter does not match the current value of the CORRELATION ob-

ject,c is removed from thecorrelations set.

The parameter correlations in Figure 3.4 are the manifestations of actual parameter correla-
tions in the application code of Figure 3.3. In general, correlations observed by Scalpel during
training may be the result of actual variable correlations in the application. However, they may

also be mere coincidence. If we use a sufficiently long training period, most such coincidences
should be discovered and eliminated from consideration. However, there is no guarantee that cor-

relations inferred by the pattern detector will actually hold at run-time. This may cause Scalpel
to generate semantic prefetches that are not useful. Since Scalpel can recognize such prefetches

at run-time, this may impact the system’s performance but itwill not cause Scalpel to return in-
correct query results to the application.

Thecorrelations set for a context records correlations for all input parameters (identi-
fied by theinparam value). When we are interested in the correlations in setC that apply to a

particular input parameteri, we use the CORRFORPARM(C,i) function.

DEFINITION 3.1 (CORRFORPARM(C,I))
If C is a set of correlations for requesta, andi identifies a parameter ofa, then we define COR-

RFORPARM(C,i) as follows:

CORRFORPARM(C, i) = {c ∈ C | c.inparam = i} (3.1)

Function CORRFORPARM(C,i) identifies the subset of correlations withinC that apply to para-
meteri of a.

We say that a queryQ is fully predicted in context C if we have a non-empty corre-

lation set for each input parameter ofC2, the Q-child of C. That is, for each parameteri,
CORRFORPARM(C2.correlations, i) 6= ∅. At the conclusion of the training phase, the Pattern

Detector passes a set of candidate context/query pairs to the Pattern Optimizer. A context/query
pair (C,Q) is a rewrite candidate ifQ is fully predicted in contextC. Thus, the pattern detec-
tor reports(C,Q) as a candidate if Scalpel can predict the future values of allinput parameters

to Q based on correlations that have always held during the training period whenQ is opened in
contextC. The FULLY-PREDICTED(C) procedure reports TRUE for all contexts that are fully pre-

dicted.

3.2.2.1 Overhead of Correlation Detection

In the worst case, every input parameter may be correlated toeach input parameter or output col-
umn of every outer query. If we have a nesting depth ofD with C output columns andP input

28 NESTED REQUEST PATTERNS

structure CORRSOURCE126

type=? � The type of correlation: I for input, O for output, or C for constant127

context=NIL � The source context or NIL128

parameter=0 � The parameter number for I and O types129

end130

structure CORRELATION131

inparam=? � The input parameter that is being predicted132

type=? � The type of correlation: I for input, O for output, or C for constant133

context=NIL � The source context or NIL134

parameter=0 � The parameter number for I and O types135

value=NIL � The constant value for C types136

end137

138

� Initialize the scope of a new context to include the parameters of all enclosing contexts139

procedure INIT-SCOPE(C)140

P ← C.parent141

scope ← [P.scope]142

for i ← 1 to P.lastinput.length do143

scope ← [scope, new CORRSOURCE(“I”, P, i)]144

for i ← 1 to P.lastoutput.length do145

scope ← [scope, new CORRSOURCE(“O”, P, i)]146

C.scope ← scope147

end148

149

procedure INIT-CORRELATIONS(C, parms)150

INIT-SCOPE(C)151

scope ← C.scope152

for i = 1, parms.length do153

for s ∈ C.scope where CURR-VALUE(s) = parms[i] do154

n ← new CORRELATION(i, s.type, s.context, s.parameter)155

corrs ← corrs ∪ n156

corrs ← corrs ∪ new CORRELATION(i, “C”, parms[i])157

C.correlations ← corrs158

end159

160

procedure VERIFY-CORRELATIONS(C,parms)161

corrs ← C.correlations162

valid ← { c ∈ corrs | CURR-VALUE(c) = parms[c.inparam] }163

C.correlations ← validcorrs164

end165

Figure 3.7: Tracking query parameter correlations

3.2 PATTERN DETECTOR 29

parameters per query, this givesD(C + P) possible correlation sources; each of the input para-

meters of the innermost query may be correlated to all of these. Overall, we haveO(DP) input
parameters in the entire nest, givingO(D2P (C + P)) correlations we must consider.

The correlation detection algorithm we have presented is polynomial. A slightly more com-

plicated linear algorithm exists. However, we have found that even the polynomial approach has
reasonable overhead for the actual systems we examined. Table 3.1 shows the open-time for a

query with varying numbers of outer queries opened (Depth),varying number of columns for
each query (Cols), and varying number of parameters for the innermost query (Parms). The time

for the unmodified program is shown (Original) compared to the time during training (Training).
Testing was performed with a local client (configuration LCL, defined in Section 3.6).

Depth Cols Parms Original (ms) Training (ms)

1 10 1 2.64 3.15

10 10 1 2.62 3.31

10 10 10 2.88 3.34

40 100 100 14.95 198,368.17

Table 3.1: Training overhead.

The overhead of the correlation detection algorithm is reasonable so long as the product
D(C +P) is not too high. For the configuration we tested, results weregood so long as this prod-

uct did not exceed 1000. In the actual systems we examined, wedid not find any cases where this
product exceeded 100. However, the poor scalability of the polynomial algorithm indicates that a

linear algorithm may be preferable in a practical implementation.

3.2.3 Client Predicate Selectivity

If Scalpel’s Pattern Detector produces a candidate context/query pair(C,Q), this means that
wheneverQ occurs within contextC, the input parameters ofQ can be predicted using val-

ues available inC. However, this does not imply thatQ occurs every timeC occurs. Predicates
within the client application may dictate thatQ occurs in some cases but not in others. For ex-

ample, in Figure 1.3, an application predicate on line 10 determines whether the correlated in-
ner query will occur inside the outer query. Similarly, predicates in Figure 3.3 on line 56 and 82

control whether nested queries are submitted. The selectivity of client predicates is important to
Scalpel because it affects the costs of the various semanticprefetching strategies that Scalpel’s

optimizer will consider. During the training phase, Scalpel estimates client predicate selectivi-
ties and then uses these estimates during cost-based optimization.

30 NESTED REQUEST PATTERNS

Scalpel counts the number of rows fetched from the outer query and the number of times that

the inner query is opened. The ratio EST-P is computed as an estimate of the probability that the
inner query will be opened for each out row at run-time. For example, if 200 rows are fetched

from the outer query and the inner query is opened 120 times, we will use the estimate EST-P =

0.6. At present, we do not consider the case where an inner query is opened more than one time

for a particular outer row (this is addressed in Chapter 6); therefore, we are assured that the ratio
is a reasonable probability estimate (EST-P ∈ [0, 1]).

There is a difference between the predicates of Figure 1.3 and Figure 3.3. The predicates on
line 56 and 82 of Figure 3.3 depend on values returned from theouter query. These predicates

may have different values for different rows ofQ1 andQ3 respectively. In contrast, the predicate
currency 6= defaultcurrency (line 10, Figure 1.3) depends only on an input parame-
ter to theget openinvoices function. This predicate will have the same result for all calls to

OPEN(Q2) corresponding to a single open ofQ1. For some instances ofQ1, the inner query will
not be opened at all for any row. This situation could also occur if the predicate on line 82 of Fig-

ure 3.3 return false for every row ofQ3 associated with one particular call toF3(). For example,
this can occur if a particular instance of the outer query returns no rows.

Two of the execution strategies that we consider (describedin Section 3.3) cost less to exe-
cute if the inner query is not opened at all for a single instance of the outer query. We use a sec-

ond parameter EST-P0 to estimate the probability that the inner query will be executed for a par-
ticular instance of the outer query. We maintain a countC.numprtopens for each contextC;

this counts the number of instances of the parent query for which the inner query is opened at
least once. We compute the ratio ofC.numprtopens to the number of instances of the par-

ent query and we use this ratio as the value of EST-P0. For example, if the outer query is opened
5 times and the inner query is submitted for only 2 of these instances, Scalpel will use the esti-
mate EST-P0 = 0.4.

Figure 3.8 shows routines that are used to maintain counts inorder to estimate the EST-P and
EST-P0 selectivities. Section 3.5.2 describes how Scalpel uses the EST-P and EST-P0 estimates

for each context/query pair in order to estimate the costs ofvarious execution strategies.

3.2.4 Summary of Pattern Detection

All of information gathered during the training period is combined into the context tree data
structure. Figure 3.9 shows the context tree for the programof Figure 3.3. As described in Sec-

tion 3.2.1, this model shows the structural nesting of queries (via thechildren field). Further,
Section 3.2.2 described how thecorrelations field is maintained by the Pattern Detector

during the training period to predict the values that will beused in future executions of the asso-
ciated queries. Finally, Section 3.2.3 described how the EST-P and EST-P0 fields are maintained

3.2 PATTERN DETECTOR 31

structure COUNTS166

lastprtopen=1 � The last open # of parent for which this context opened167

numprtopens=1 � The number of opens of parent for which this context opened168

numrows=0 � The number of rows fetched in this context169

numopens=1 � The number of times this context was entered170

end171

172

procedure INIT-COUNTS(C)173

P ← C.parent174

C.counts ← new COUNTS(P.counts.numopens)175

end176

177

procedure UPDATE-COUNTS(C)178

pcnt ← C.parent.counts179

cnt ← C.counts180

cnt.numopens ← cnt.numopens + 1181

if pcnt.numopens 6= C.lastprtopen then182

C.lastprtopen ← pcnt.numopens183

cnt.numprtopens ← cnt.numprtopens + 1184

end185

186

function EST-P(C)187

pcnt ← C.parent.counts188

cnt ← C.counts189

return cnt.numopens / pcnt.numrows190

end191

192

function EST-P0(C)193

pcnt ← C.parent.counts194

cnt ← C.counts195

return cnt.numprtopens / pcnt.numopens196

end197

Figure 3.8: Monitoring counts to estimate selectivity of local predicates

32 NESTED REQUEST PATTERNS

Legend

C0 /

C1 N /Q1

1 1 〈1|C, 1〉

Q1

C2 N /Q1/Q2

3/4 1/1 〈1|O, C1, 2〉

Q2

C3 N /Q1/Q3/Q2

3/4 1/1 〈1|O, C1, 2〉

Q3

C4 N /Q1/Q3/Q2

3/4 2/3 〈1|O, C3, 2〉

Q2

id alt path

EST-P EST-P0 correlations

Figure 3.9: Context tree constructed from Figure 3.4. Nodesshow an identifier for each context

(id), execution alternative (alt), query path (path), estimates EST-P and EST-P0, and the set
of correlations for each input parameter (correlations).

to estimate how often a nested query will be executed. These estimates are used to choose an ap-

propriate execution strategy.

The context tree data structure represents the culminationof all of the information gathered
by the Pattern Detector. The context tree provides the link between the Pattern Detector and Pat-

tern Optimizer, which selects the execution method that will be used at run-time. The selected
method is shown in Figure 3.9 using thealt field; in this example, all nodes are annotated with
‘N’ to indicate a nested strategy. After optimization, the context tree contains everything that is

needed by the Prefetcher to execute the appropriate action at run-time when a query is submitted.

3.3 Query Rewriter

Given a context tree, Scalpel’s optimizer selects an execution strategy for each of the nodes in
the tree. Figure 3.10(a) shows the request trace of Figure 3.4 (submitted by the program in Fig-

ure 3.3). The trace is shown in the concise trace notation described in Section 2.3. This trace in-
cludes 10 cursor opens, returning a total of 12 rows (and 3 empty result sets). Each of the result

3.3 QUERY REWRITER 33

sets returned in this sample trace is small, and the cost of each request is dominated by the inter-

process communication cost. Further, the number of cursor opens depends on the number of rows
returned byQ1 andQ2. While the number of opens is small with this tiny data set, itcould grow

significantly for larger examples. In order to provide better performance, Scalpel considers alter-
nate execution strategies that submit fewer OPEN requests to the database server.

There are three fundamental approaches to the execution of these nested queries: nested, par-

titioned, or unified execution:

Nested ExecutionThe nested query can be executed in a nested fashion, as it wasoriginally exe-
cuted by the client program. Figure 3.10(a) is an example of nested execution.

Unified ExecutionThe second approach, calledunifiedby Fernández, Morishima and Suciu [67],

combines the inner and outer queries into a single query. Theresult of this combined query
encodes the rows of both the outer and inner queries. Figures3.10(c) and (d) are exam-

ple of unified execution: in this example, a single cursor is opened over a result encoding
all values needed by the application.

Partitioned ExecutionPartitioned execution combines all of the executions of theinner query
(within a particular outer query) into a single query. A rewritten version of the inner query
is submitted once to the server. The results of the rewritteninner query are merged at the

client with the results for the outer query. This effectively executes the nested query like a
distributed join in which the inner table is moved to the outer table’s location and joined

there. Figure 3.10(e) and (f) are example of partitioned execution. A rewritten query is sub-
mitted to the server at most once for each time that the immediately enclosing query is sub-

mitted. This contrasts with the nested execution strategy,where the number of OPEN re-
quests is proportional to the number of rows returned from the outer query.

In the remainder of this section, we describe these execution strategies in more detail.

3.3.1 Nested Execution

Figure 3.10(a) illustrates the nested execution strategy for the application fragment of Figure 3.3.
Although fixed per-request costs are associated with each invocation of the inner query, the nested

execution strategy is appropriate when the selectivity of local predicates guarding the inner query
is expected to be very low, i.e., when the inner query is oftennot executed at all. For example, this

will be true for theget openinvoices function in Figure 1.3 if the report currency is usu-
ally the same as the default currency.

34 NESTED REQUEST PATTERNS

A

f

V

g

W

⊥

⊥

B

C

j

Y

Z

l

⊥

D

⊥

⊥

⊥

A f

V g

W −

⊥

B h

C j

Y k

Z l

⊥

D −

⊥

⊥

A f V g

A f W −

B h X i

C j Y k

C j Z l

D − − −

⊥

0 A − − − −

1 − f − − −

2 − − 0 V −

2 − − 1 − g

2 − − 0 W −

0 B − − − −

1 − h − − −

2 − − 0 X −

2 − − 1 − i

0 C − − − −

1 − j − − −

2 − − 0 Y −

2 − − 1 − k

2 − − 0 Z −

2 − − 1 − l

0 D − − − −

⊥

A

j

h

f

⊥

V

Z

X

W

Y

⊥

g

⊥

B

C

l

k

⊥

D

⊥

A

f

V

g

W

⊥

B

C

h

j

X

Y

Z

k

l

⊥

D

⊥

⊥

⊥

(a) Nested (b) Hybrid (c) Outer Join (d) Outer Union (e) Hash (f) Merge

Figure 3.10: Fetch traces for alternate executions of Figure 3.4. The following strategies are
shown: (a) nested execution, (b) a hybrid of nested execution and outer join, (c) outer join, (d)
outer union, (e) client hash join, and (f) client merge join.Attributes in the combined queries that

were not returned in the original strategy are shaded (theseare redundant attributes). The con-
text tree for each of these traces is shown in Figure 3.11.

3.3.2 Query Rewrite Preliminaries

If the nested execution strategy is used, Scalpel does not rewrite the application’s queries. How-

ever, the partitioned and unified strategies do require query rewrites, and these rewrites share
common requirements, which are described in this section. Section 3.3.2.2 describes a SQL con-

struct (lateral derived tables) that is quite helpful in these rewrites. Section 3.3.2.3 discusses how
input parameter markers are rewritten.

3.3 QUERY REWRITER 35

C0 -

C1 N

Q1

C2 N

Q2

C3 N

Q3

C4 N

Q2

C0 -

C1 N

Q1

C2 J

Q2

C3 N

Q3

C4 J

Q2

(a) Nested Plan (b) Outer Join / Nested Hybrid

C0 -

C1 N

Q1

C2 J

Q2

C3 J

Q3

C4 J

Q2

C0 -

C1 N

Q1

C2 U

Q2

C3 U

Q3

C4 U

Q2

(c) Outer Join Plan (d) Outer Union Plan

C0 -

C1 N

Q1

C2 H

Q2

C3 H

Q3

C4 H

Q2

C0 -

C1 N

Q1

C2 M

Q2

C3 M

Q3

C4 M

Q2

(e) Client Hash Join Plan (f) Client Merge Join Plan

Figure 3.11: Context trees corresponding to traces in Figure 3.10. Only theid andalt fields are
shown.

36 NESTED REQUEST PATTERNS

3.3.2.1 Algebraic Notation

The following notation is used to express rewrites and demonstrate their correctness. For a full de-
finition of the constructs used, see the definitions used by Paulley [145] and Galindo-Legaria [75].

Symbol Definition

r[A] Tuple formed by projecting tupler on attributesA

(r, s) Tuple formed by using values of tupler followed bys

πALL [A](R) Project relationR onto attributesA; preserve duplicates

πDIST[A](R) Project relationR onto attributesA; eliminate duplicates

σ[p](R) Select rows ofR that satisfy predicatep

RA×x̄,M E(x̄) Apply operator with mappinḡx = M

RALOJ
x̄,M E(x̄) Outer apply operator with mappinḡx = M

R
⊎

T Duplicate-preserving union of relationsR andT

sch(R) Attributes ofR

KEY[R] A key of R

NULLS(A) A tuple formed withNULL for each attribute inA

ROWID(r) A unique identifier for tupler, possibly using virtual attributes

Table 3.2: Algebraic notation for query rewrites.

The projection operatorsπALL [A](R) andπDIST[A](R) take a relational argumentR and a tu-

ple A = (a1, a2, . . . , an) of attributes. The elementsai can be simple attributes (ai ∈ sch(R)).
We also permitai to be scalar functions of these attributes and constant values; this exten-

sion allows us to better represent SQL queries, where the SELECT list allows not only at-
tributes but scalar expressions. The results of projectinga tupler on attributesA is given by

r[A] = (a1(r), a2(r), . . . , an(r)). The expressionπALL [A]R represents the projection of rela-
tion R on attributesA, and this is the result of performing the tuple-wise projection on each tuple

in relationR.

The apply operatorRA×x̄,M E(x̄) takes a relational argumentR, a parameterized relational
expressionE(x̄) with parameter tuplēx = (x̄1, x̄2, . . . , x̄n), and a list of attributesM =

(M1,M2,Mn). As with the projection operations, we allow the elements ofM to refer to at-
tributes ofR or scalar functions of those attributes. The result is formed by evaluating expression

E for each rowr ∈ R, using the substitution values̄x = r[M]. Formally, we have the following:

RA×x̄,M E(x̄) =
⊎

r∈R

[

{r} × E(x̄ = r[M])
]

(3.2)

3.3 QUERY REWRITER 37

Here,E(x̄ = s) represents the results of relational expressionE evaluated under the parameter

binding x̄i = si, i ∈ 1, . . . , n.

The outer apply operatorRALOJ
x̄,M E(x̄) is defined similarly, except that it retains rowsr ∈ R

where the expressionE(x̄ = r[M]) is empty. This construct is similar in effect to an outer join,
and concatenatesNULL values to tupler in place of the attributes ofE.

RALOJ
x̄,M E(x̄) = RA×x̄,M E(x̄)

⊎





⊎

r∈R | E(x̄=r[M])=∅

{(r, NULLS(sch(E)))}



 (3.3)

As with outer joins, we note that the result of the outer applyoperatorRALOJ
x̄,M E(x̄) includes

every tuple ofR at least one time (more often if there are multiple joining tuples).

3.3.2.2 Lateral Derived Tables

Figure 3.12 illustrates one way to combine queryQ1 andQ2 from the example application of
Figure 3.3. The query is expressed using a join in an unnestedstyle, and is likely to execute ef-

ficiently. However, the algorithm for combining the two queries requires a flattening of the nest-
ing relationship that is present in the client application.This is a non-trivial procedure that has

been studied extensively for the case when the nesting is present within a single query.

SELECT S.s1, S.s2, T.t1

FROM S LEFT JOIN T ON T.t2 = S.s2

WHERE S.s3=:w

Figure 3.12: Manually combined query joiningQ1 andQ2

If we could combine the two queries into a single nested query, we could rely on rewrite op-
timizations implemented in theDBMS optimizer to unnest the query and generate an efficient ac-

cess plan. For example, if we could write a query such as the one in Figure 3.13, we could easily
express the application’s query nesting, allowing theDBMS query optimizer to select the best ex-
ecution strategy. Unfortunately, the query in Figure 3.13 is not legal according to SQL/2003. The

reference toP.s2 within queryI is anouter reference. The outer reference is not within the
scope ofP, and is therefore disallowed.

Shanmugasundaram et al. [166] used a clever approach to combine queries, relying on the
fact that the scope clause of a table reference includes all of the join conditions for joins contain-

ing the table reference. Their approach would result in the query in Figure 3.14. This approach
works adequately for queries consisting of select-project-join (SPJ), where the correlation value

38 NESTED REQUEST PATTERNS

SELECT P.s1, P.s2, I.t1

FROM (SELECT s1, s2

FROM S

WHERE s3=:w) P,

(SELECT t1

FROM T

WHERE t2=P.s2) I

Figure 3.13: Combined query joiningQ1 andQ2 (not legal SQL/2003)

is used only in predicates in theWHERE clause of the inner query. However, this approach does

not work with cases where the correlations appear in more complex contexts such as anON con-
dition of an outer join in theFROM clause or in an expression in theSELECT list. The approach

does not work at all for grouped, distinct, or unioned queries. Even in the cases where this ap-
proach does work, the resulting queries will not be executedefficiently unless theDBMS simpli-

fies the generatedON condition.

WITH P AS (SELECT s1, s2

FROM S

WHERE s3=:w) P,

I AS (SELECT t2, t1

FROM T) I

SELECT P.s1, P.s2, I.t1

FROM P LEFT JOIN I ON (I.t2 = P.s2)

Figure 3.14: Combined query joiningQ1 and Q2 using outer references in the ON condition

(Shanmugasundaram et al.’s Approach [166])

Fortunately, SQL/99 [13] introduced a new construct calleda lateral derived tables, and this
feature makes it easy to express nesting in theFROM clause. Using the keywordLATERAL we

are able to write a query in the style of Figure 3.13 that is legal. TheLATERAL keyword signals
that the inner derived table contains outer references.

The syntax:

FROM <table reference list>,

LATERAL (<query expression>) <correlation name>

has the following semantics. LetTRL be the<table reference list>. Let QE be the
<query expression>. The SQL withinQE can contain references to attributes ofTRL; these

3.3 QUERY REWRITER 39

are calledouter references. Let TRLR be the multiset of rows resulting fromTRL. Let QE(r)

represent the multiset resulting from evaluatingQE with attributes ofr supplied as actual para-
meters to the corresponding outer references. The result oftheFROM clause above is the follow-

ing multiset:

{| (r, q) | r ∈ TRLR, q ∈ QE(r) |} (3.4)

This definition is equivalent to the algebraic apply operator TRLR A×x̄,M QE(x̄) defined by
Galindo-Legaria [75] and outlined in Section 3.3.2.1. Figure 3.15 shows how the illegal query

of Figure 3.13 can be corrected using theLATERAL keyword.

SELECT P.s1, P.s2, I.t1

FROM (SELECT s1, s2

FROM S

WHERE s3=:w) P,

LATERAL

(SELECT t1

FROM T

WHERE t2=P.s2) I

Figure 3.15: Combined nested query joiningQ1 andQ2 usingLATERAL

The lateral derived table construct allows Scalpel to generate a single SQL query that directly

matches the application semantics that it infers from monitoring the request stream. By using lat-
eral derived tables, Scalpel allows theDBMS optimizer to select the best execution strategy. Unfor-

tunately, theLATERAL construct is not yet widely supported in commercialDBMSs. Of the three
commercial systems we considered in our experiments, one system supported theLATERAL con-

struct directly while the other two supported the same semantics using (distinct) vendor-specific
syntax.

The query in Figure 3.15 has a shortcoming: rows from the outer query will not be included
in the result unless there is at least one row from the inner with matching currency and transac-

tion date. If these rows must be included, an equivalent of anouter join must be used to preserve
the rows from the outer queries (the table references that precede the lateral derived table in the

FROM clause). The SQL/2003 standard does not provide support fordirectly expressing a lateral
derived table operating in an outer join with outer references to the preserved side of the outer

join. It is possible to simulate this behaviour using the existing syntax by introducing an addi-
tional outer join, but the result does not directly express the desired behaviour, and the additional

complexity may lead to more optimization costs or poor execution plans. Two of the three com-
mercialDBMSs we considered do support usingLATERAL-style derived tables in outer joins.

40 NESTED REQUEST PATTERNS

Although there is existing commercial support for expressing nesting in theFROM clause

which preserves rows in the face of an empty inner table expression, the syntax is product-
dependent. We define an extension to SQL/2003,LEFT OUTER LATERAL, which provides the

required outer join semantics:

FROM <table reference list>,

LEFT OUTER LATERAL (

<query expression>

) <correlation name>

The result of theFROM clause above is the following multiset:

{| (r,Q) | r ∈ TRLR, q ∈ QE(r) |}
⊎

{| (r, NULLS(QE)) | r ∈ TRLR,QE(r) = ∅ |} (3.5)

Again, this definition is equivalent to the algebraic outer apply operatorTRLR ALOJ
x̄,M QE(x̄)

defined by Galindo-Legaria [75] and outlined in Section 3.3.2.1. The corresponding RIGHT

OUTER LATERAL and FULL OUTER LATERAL are not meaningful because the right side
of the construct can not be evaluated without a row from the left side to provide outer bindings.

We translate this syntax to vendor specific language dialects as necessary. For systems that
do not support a vendor-specific outer join variant ofLATERAL derived tables, we can translate

aLEFT OUTER LATERAL construct to standards compliant SQL.

We may be curious as to whether theLATERAL construct is really needed, or whether it is
merely a syntactic convenience that simplifies the rewriting. Galindo-Legaria [75, 76] answered

this question by showing that any query containing aLATERAL construct can be rewritten into
an equivalent query with noLATERAL constructs. This shows thatLATERAL merely provides

a syntactic convenience, and does not extend the class of queries that can be posed. In prin-
ciple, this result shows that the approach used by Shanmugasundaram et al. [166] could be ex-
tended to handle arbitrary queries. In practice, the rewriting defined by Galindo-Legaria [75] gen-

erates queries that are much less amenable to optimization.Contemporary query optimizers are
not, in general, able to recover the original nested query from the flattened variant. For this rea-

son, theLATERAL construct is more than syntactic sugar in practice: it allows Scalpel to pro-
vide a query to theDBMS optimizer in a form that allows cost-based rewrite decisions. Scalpel

uses theLATERAL construct to directly encode the nesting detected in the application code, leav-
ing all rewrite optimizations to theDBMS query optimizer.

3.3.2.3 Choosing The Best Correlation Value

The combined query in Figure 3.15 replaced the parameterx of queryQ3 with the outer refer-
enceP.s2. This replacement was based on the predicted parameter correlations found by the

3.3 QUERY REWRITER 41

Pattern Detector and shown in Figure 3.4. In the case that thecorrelations set contains only

a single entry for a parameteri, there is only one choice for replacement. In other cases, how-
ever, multiple sources are predicted as possible parametercorrelations. During the training pe-

riod, each of these sources always had the same value as the actual parameter value supplied
when opening the associated query. For example, on line 3 theformal parameterx of queryQ3

is believed to be always equal to{1, w, c1.s2} (expressed with thecorrelations set
{〈1|C, 1〉, 〈1|I, C1 , 1〉, 〈1|O, C1 , 2〉}).

During training, all of the candidate correlation sources had the same value each time the as-
sociated query was opened, so there is no reason to believe that any of them will provide better

predictive ability at run time. That leaves us free to chooseany of these sources. Our choice of
predictor has an impact on the cost of combined queries. If wechoose an output attribute of the

outer query, the combined query will have an outer reference. Alternatively, if we select a COR-
RELATION of a constant literal or input parameter, then the value is available when we open the

combined query and does not require an outer reference in thecombined query.

In order to minimize the cost of combined queries, we select an CORRELATION object in the

following priority order:

1. Constants (type ‘C’)

2. Input parameters (type ‘I’)

3. Output attributes (type ‘O’), ordered from highest ancestor down).

The CHOOSE-CORRELATIONS procedure is shown in Figure 3.16. This procedure is used to
select the appropriate CORRELATION for each input parameter of contextC. After making its se-

lections of parameters, CHOOSE-CORRELATIONS modifies the query associated with the context
by replacing parameter markers. For correlations of type constant, the marker is replaced with the

literal constant value. For input parameters, the marker isreplaced with an updated marker that
will select the value from the appropriate input parameter of an opened cursor. For output para-
meters, the CHOOSE-CORRELATIONS replaces the original parameter marker with an outer ref-

erence to an attribute of the derived table representing thepredicted source query.

3.3.3 Unified Execution

Under the unified execution strategy, Scalpel uses theLATERAL construct to combine the inner
and outer queries into a single query which returns all of therows that would have been returned

by the individual outer and inner queries. When the Prefetcher observes the application opening
the outer query (in the correct context), it submits insteadthe combined query. The Scalpel sys-

tem then uses the cursor opened over the combined query to respond to the application’s requests
to fetch rows from the original inner and outer queries that were combined.

42 NESTED REQUEST PATTERNS

procedure CHOOSE-CORRELATIONS(C)198

correlations ← C.correlations199

sql ← C.query200

for i ← 1 to correlations.length do201

corrs ← CORRFORPARM(correlations,i)202

cs ← CHOOSE-BEST(corrs) � Select the best source by priority203

sql ← REPLACE-PARAMETER(i,cs) � Replace the parameter marker text204

C.query ← sql205

end206

Figure 3.16: The CHOOSE-CORRELATIONS procedure.

Many unified strategies are possible. Scalpel’s optimizer currently considers two representa-
tive unified strategies, one that combines the outer and inner queries using an outer join and an-

other which combines them using an outer union. The optimizer (described in Section 3.5) sets
thealt field of nodes in the context tree to ‘J’ to select the outer join strategy and ‘U’ to se-
lect the outer union strategy. We describe these two strategies next.

3.3.3.1 The Outer Join Strategy

Scalpel forms a combined join query using a lateral derived table expression. The procedure for

combining the texts of the outer and inner queries is shown Figure 3.17. Given the texts of the
outer and inner queries, this procedure will produce a derived table expression similar to the one

shown in Figure 3.15, except thatLEFT OUTER LATERAL is used in place ofLATERAL to en-
sure that all rows of the original outer query are included inthe result. In addition, the combi-

nation procedure adds anORDER BY clause that matches theORDER BY clause of the original
outer query, if that query has one. Thus, Scalpel would addORDER BY S.s1 to the combined

query shown in Figure 3.15 since the original outer queryQ1 (from theF1() function in Fig-
ure 3.3) was so ordered.

The COMBINE-JOIN function operates on a single nodeC in the context tree at a time. First,
it identifiesjoin children, the child contexts ofC that are annotated with alternative ‘J’.

Second, it calls CHOOSE-CORRELATIONS to select what value will be used to predict the in-
put parameter values that will be submitted in the future. Recall that Section 3.2.2 described how

the Pattern Detector finds a set of CORRELATION objects for each input parameter. Each of these
CORRELATION objects represents a value that could be used to predict the values of the input

parameter. The CHOOSE-CORRELATIONS procedure chooses one of these predictions for each
input parameter, and rewrites the query text based on the choice. Next, COMBINE-JOIN gener-

ates the combined query text by combining the outer and innerqueries using theLEFT OUTER

LATERAL keyword and adding anORDER BY clause if needed.

3.3 QUERY REWRITER 43

function COMBINE-JOIN(C)207

join_children ← [child ∈ C.children | child.alt = ‘J’]208

sql = “SELECT P.*”209

for i ← 1 to join_children.length do210

sql += “, I”+i+“.*”211

sql += “FROM (”+C.query+“) P”212

for i ← 1 to join_children.length do213

child ← join_children[i]214

CHOOSE-CORRELATIONS(child)215

sql += “, LEFT OUTER LATERAL (”+child.query+“) I”+i”216

if C.query.orderby 6= ∅ then217

sql += “ORDER BY ”+C.query.orderby218

return sql219

end220

Figure 3.17: Combine procedure for outer join.

The join strategy can significantly reduce per-query overhead as compared to the nested ex-
ecution strategy. It also increases the scope of the server’s optimizer by exposing join operations

to it. For the example of Figure 3.3, Scalpel can combineQ2 with its parentsQ1 and, separately,
with Q3. Figure 3.10(b) illustrates the execution trace that wouldresult if these two combina-
tions were performed whileQ3 was executed in its original nested form (the associated context

tree is shown in Figure 3.11(b)). As compared to Figure 3.3, in which all queries are nested, the
number of query invocations is reduced from ten to four, and the server’s optimizer is explic-

itly made aware that the results ofQ1 are being joined to the results ofQ2 ont2=C1.s2 while
the results ofQ3 are also being joined to the results ofQ2 ont2=P.v2. These joins would oth-

erwise have been hidden in the application’s code. Figure 3.18 shows the combined queries re-
turned by COMBINE-JOIN for this example.

At present, Scalpel considers the join strategy only when itcan determine that the inner query

(or queries) will return at most one row. Scalpel’s query analyzer implements a support routine,
AT-MOST-ONE(Q) to identify queries that return at most one row. For example,if the t2 at-
tribute is a candidate key for theT table, Scalpel can conclude that the queryQ2 will return at

most one row [145]. This function acts as an oracle that must be correct when it returns true, but
is allowed to return false for queries that can only return one row. These errors lead to missed

cases where a join strategy would have been possible, but they do not pose a correctness problem.

The at-most-one condition, together with the use ofLEFT OUTER LATERAL, ensures that
the combined query will return exactly as many rows as the original outer query. TheORDER

BY clause ensures that these rows will be returned in the order in which they would have been
returned by the original outer query. Thus, decoding the result of the combined join query is

44 NESTED REQUEST PATTERNS

SELECT P.*, I1.*
FROM (SELECT s1, s2

FROM S

WHERE s3=:w) P,

LEFT OUTER LATERAL

(SELECT t1

FROM T

WHERE t2=P.s2) I1

ORDER BY P.s2

SELECT P.*, I1.*
FROM (SELECT v1, v2

FROM V

WHERE v3=:y) P,

LEFT OUTER LATERAL

(SELECT t1

FROM T

WHERE t2=P.v2) I1

(a) Combination ofQ1 andQ2 (b) Combination ofQ3 andQ2

Figure 3.18: Outer join queries generated by (a) COMBINE-JOIN(C1) and (b)

COMBINE-JOIN(C3) for the context tree in Figure 3.11(b).

straightforward. When the application performs a FETCH on the outer query, Scalpel consumes
the next row from the combined query’s cursor and extracts the values that correspond to the outer

query’s columns. When the application performs a FETCH on an inner query, Scalpel simply ex-
tracts the attributes required by that query from the current row of the combined query. Scalpel

identifies the case where all attributes of the inner query are NULL because there is no matching
inner row for the outer row, and returns an empty result set inthis case. This case is distinguished

from a case where all attributes happen to be NULL by requiring that at least one non-null at-
tribute of the inner query is included in the combined result(for example, a key column).

It is possible to use join-based strategies under less restrictive circumstances than those con-

sidered by Scalpel. However, doing so may introduce substantial additional redundancy into the
the results of the combined query, which will increase its cost. Figure 3.10(c) illustrates the re-

sult of executing all four queries from the example of Figure3.3 as a single combined outer join
query. The shaded parts of the join query result indicate those portions of the result that are re-

dundant. These redundant data are computed by the combined join query, but they should not be
returned to the application when it performs FETCH operations on its open cursors. Redundancy

generated by the unrelated inner queries can generate excessive overhead due to the duplication
of attributes and rows. This redundancy is not present to a great extent in this example since, al-

thoughQ2 in C2 is unrelated toQ3, Q2 returns at most one row. In general, contextC2 andC5

could both return many rows for a single row ofC1, and the combined result set would encode the
cross product of these two result sets. This led Shanmugasundaram et al. [166] to label this ap-

proach “redundant relations”, and they stopped considering it after finding that the performance
was poor.

Not only does such redundancy add processing and data redundancy, it also complicates the
decoding procedure, since it must now determine which values from the result set are dupli-

3.3 QUERY REWRITER 45

cates. In general, it is also possible that Scalpel would have to fetch backwards on the combined

query’s cursor in order to provide the correct return value for an application’s FETCH. This would
require either buffering or a scrollable cursor for the combined query. Where supported, scrol-

lable cursors are often more expensive than forward-only cursors. Furthermore, fetching back-
ward may reintroduce some of the the per-request latency that the unified strategy is designed to

avoid, since fetching backward may require that rows be re-fetched from the server. By restrict-
ing the join strategy to situations in which the inner queries satisfy the AT-MOST-ONE(Q) predi-

cate, Scalpel avoids all of this complexity and cost.

LEMMA 3.2 (OUTER JOIN STRATEGY IS SOUND)
The Outer Join strategy returns the correct multiset of rowsto the outer and inner queries.

PROOF. Let Q1 be the outer query, andQ2(x̄) be an inner query with parametersx̄ that returns
at most one row. Our correlation detection gives us a mappingM that gives the values of̄x given

a rowr ∈ Q1. Then, we define a combined queryQC as follows:

QC = Q1ALOJ
x̄,M Q2(x̄) (3.6)

The combined query is submitted to the database server, and the outer query is answered using
the following projection:

Q′1 = πALL [sch(Q1)]
(

QC

)

(3.7)

SinceQ2(x̄) returns at most one row,QC has exactly the same number of rows asQ1, corre-
sponding to tuples ofQ1 extended either with a single matching row fromQ2(x̄) or with NULL

values. Therefore,Q′1 = Q1 and the correct rows are returned for the inner query.

When an instance of the the inner queryQ2(x) is submitted while the outer query is posi-
tioned on a rowr identified byROWID(r) = r1, Scalpel first checks thatx = r[M]; if not, the

original query is submitted unmodified. If the predicted correlations match, then the inner query
is answered with the following:

Q′2 = πALL [sch(Q2)]

(

σ[ROWID(Q1) = r1 ∧ ¬NULL -SUPPLIED(Q2)]
(

QC

)

)

(3.8)

The selection and projection operations used to define queryQ′2 give the following:

Q′2 = Q2(r[M]) (3.9)

Since we have checked thatx = r[M], therefore the returned resultQ′2 = Q2(x) and the inner

query returns the desired multiset of rows.

The above argument shows the outer join strategy is sound forjoining a single inner query;
the extension to two or more inner queries is straightforward. �

46 NESTED REQUEST PATTERNS

3.3.3.2 The Outer Union Strategy

The outer union strategy is illustrated in Figure 3.10(d). Each query is represented by distinct

columns in the result of the combined query. Each row corresponds to a tuple that would have
been returned by one of the original queries, with NULL values supplied for the columns corre-

sponding to the other queries.

function COMBINE-UNION(C)221

union_children ← [child ∈ C.children | child.alt = ‘U’]222

parent_order_key ← [C.orderby, C.keys]223

numcols ← COUNT-COLUMNS(C, union_children)224

sql = “SELECT ”+[parent_order_key,“U.*”]225

sql += “FROM (”+C.query+“) P”226

227

inner_order ← []228

type ← 0229

offset ← COUNT-COLUMNS(C)230

sql += “, LATERAL (”231

sql += “SELECT ”+[type,“P.*”, NULL -L IST(numcols - offset)]232

sql += “FROM (VALUES(1)) DT_OneRow”233

for i ← 1 to union_children.length do234

child ← union_children[i]235

CHOOSE-CORRELATIONS(child)236

type ← type + 1237

sql += “UNION ALL SELECT ”+[type,NULL -L IST(offset)]238

offset ← offset + COUNT-COLUMNS(child)239

sql += [“I”+i+“.*”, NULL -L IST(numcols - offset)]240

sql += “FROM (”+child.query+“) I”+i241

inner_order ← [inner_order, child.orderby]242

sql += “) U(type, ”+ [“u”+i for i = 1 to numcols]+ “)”243

sql += “ORDER BY ”+[parent_order_key,“U.type”,inner_order]244

return sql245

end246

247

function NULL -L IST(n) � Generate a list ofn NULL values248

nulls ← []249

for i ← 1 to n do250

nulls ← [nulls, NULL]251

return nulls252

end253

Figure 3.19: Combine procedure for outer union.

3.3 QUERY REWRITER 47

SELECT P.s2 AS orderkey1, P.s1 AS orderkey2,

U.*
FROM (SELECT s1, s2

FROM S

WHERE s3 = :w

) P,

LATERAL

(SELECT 0, P.*, NULL

FROM (VALUES(1)) DT OneRow

UNION ALL

SELECT 1, NULL, NULL, I1.*
FROM (SELECT t1

FROM T

WHERE t2 = P.s2) I1

) U(type, u1, u2, u3)

ORDER BY 1, 2, U.type

s2 s1 type u1 u2 u3

A 1 0 A 1 −
A 1 1 − − f

B 2 0 B 2 −
B 2 1 − − h

C 3 0 C 3 −
C 3 1 − − j

D 4 0 D 4 −

(a) Combined query (b) Sample output

Figure 3.20: QueriesQ3 andQ2 combined using outer union.

The procedure for combining outer and inner queries using outer union is given in Figure

3.19. Figure 3.20 shows the result of applying the combination procedure to queriesQ1 and the
nestedQ3 query of our running example. The first two columns of the combined query’s result

(orderkey1 andorderkey2) are the ordering column and key ofQ1 respectively. The third
column is atype field, which is used to ensure that Scalpel can unambiguously determine which

of the original queries a particular row of the outer union result is associated with. In the example
from Figure 3.20, rows resulting from the original outer query are tagged with type0, while those

from the inner query have type1. In the more general case, Scalpel assigns a distinct type field
value to each of the inner queries. TheORDER BY clause is used to ensure that resulting rows
appear in the order in which they will be required the application. The rows are ordered first by

the ordering attributes of the outer query (o1 in this case, an alias fors2), then by a candidate key
of the outer query (k1 here, an alias fors1), then by the type field. This ordering prefix ensures

that all of the inner query tuples that correspond to a particular outer tuple are grouped together in
the result. Any ordering attributes of the inner queries arethen appended so that rows within each

group are relatively ordered as specified by the originalORDER BY clause. For someDBMSs, it
may be possible to eliminate the type field by relying on the sort order ofNULL [166].

The first branch of the generatedUNION construct is responsible for generating the rows cor-
responding to the outer query. This is accomplished by selecting the attributes of the outer de-

48 NESTED REQUEST PATTERNS

rived table as outer references fromDT OneRow, a specially constructed table that returns a sin-

gle row. AVALUES clause is used to generate the required single row; forDBMSs that do not sup-
port theVALUES construct, a missingFROM clause can be used instead. The effect of the first

branch of theUNION is to include a tuple in the union for each row of the outer query. This en-
sures that there is exactly one encoded outer row for each rowreturned from the outer query. For

this strategy, an outer join is not needed because of theDT OneRow construct.

Theparent order ordering attributes must be taken from the outer query derived table
(P), not the union (U) because the attributes of the union are supplied withNULL values when en-

coding inner rows. Putting these ordering attributes in theselect list of the combined query leads
to data redundancy: the ordering attributes of an outer row are duplicated for all corresponding in-

ner rows. Worse, with our current formulation the ordering attributes are duplicated in the rows
encoding an outer result row if they were already selected asattributes. Some of theDBMS sys-
tems we tested support an extension to SQL/2003 that allows aresult to be ordered by attributes

that are not in the select list. This approach avoids the dataredundancy associated with return-
ing these duplicated values. Scalpel could exploit this vendor-specific capability. Alternatively,

Scalpel could be extended to avoid duplicating ordering attributes in the encoded inner rows.
These changes would provide better performance, especially when the ordering attributes are a

significant contributor to the row size. At present, we have not implemented these extensions.

Unlike the join strategy, the outer union strategy can be applied regardless of the number of
rows returned by the inner query. When the application performs a FETCH on either the outer

query or the inner query, Scalpel obtains the next row from the combined query’s cursor and ex-
tracts the values that correspond to the original query’s columns. A change in the value of the type

field (for example, from1 to 0) indicates that there are no more inner query tuples for the cur-
rent row of the outer.

LEMMA 3.3 (OUTER UNION STRATEGY IS SOUND)

The Outer Union strategy returns the correct multiset of rows to the outer and inner queries.

PROOF. Let Q0 be the outer query, andQ1, . . . Qn be then inner queries. Let UNULLS(j, k)

be defined as follows:

UNULLS(j, k) = (NULLS(sch(Qj)), NULLS(sch(Qj+1)), . . . NULLS(sch(Qk))) (3.10)

The UNULLS() construct allows us to represent supplyingNULL for all of the attributes of a
range of queries.

Let USCHEMA(i) be defined as follows:

USCHEMA(i) =
(

i, UNULLS(0, i − 1), sch(Qi), UNULLS(i + 1, n)
)

(3.11)

3.3 QUERY REWRITER 49

The USCHEMA() construct defines the schema of branchi of the combined query. It contains a

type field with valuei, NULL values for all queries that precedeQi in the encoded result set, the
attributes ofQi, and, finally,NULL values for all queries that followQi.

The combined queryQC is formed as follows:

QC = Q0A×x̄,I

(

{(0, x̄, UNULLS(1, n)}
⊎

i=1,...,n

πALL [USCHEMA(i)]Qi

(

x̄[Mi]
)

)

(3.12)

whereI = sch(Q0) is used to represent the identity mappingr[I] = r.

When the original outer queryQ0 is submitted, Scalpel instead returns the following:

Q′0 = πALL [sch(Q0)]

(

σ[type= 0](Qc)

)

(3.13)

Applying the projection and selection criteria simplifies this to:

Q′0 = Q0A×x̄,I

(

{(x̄)}
)

(3.14)

=
⊎

r∈Q0

{r} (3.15)

The result ofQ′0 contains exactly one rowr corresponding to each rowr in Q0. Thus,Q′0 = Q0,

and Scalpel returns the correct multiset of rows for the outer query.

When the outer cursor is positioned on a rowr1 identified byr1[KEY[Q0]] = k1 and the

application submits an inner queryQi(x), Scalpel first checks that the predicted correlations
x = r1[Mi] hold; if not, the original query is submitted unmodified. If so, Scalpel answers the in-

ner query with the following:

Q′i = πALL [sch(Qi)]

(

σ[type= i ∧ KEY[Q0] = k1](Qc)

)

(3.16)

Applying the selection predicates simplifies the expression as follows:

Q′i = πALL [sch(Qi)]

(

{r1}A×x̄,I

(

πALL [USCHEMA(i)]Qi

(

x̄[Mi]
)

)

)

(3.17)

If we apply the projections and expand the apply operator, weobtain the following simplified

form:

Q′i = Qi

(

r1[Mi]
)

(3.18)

Since we have already checked thatx = r1[Mi], this givesQi(x) = Q′i, and the correct mul-
tiset of rows is also returned for each inner queryQi. �

50 NESTED REQUEST PATTERNS

3.3.4 Partitioned Execution

Under the unified execution strategies the combined query isissued when the application first
opens the originalouter query. In contrast, under a partitioned strategy, the rewritten, combined

query is issued when the application first opens the originalinner query of a query/context pair.
There are many possible partitioned strategies, of which Scalpel’s optimizer currently considers

two: theclient hash joinstrategy and theclient merge joinstrategy. The optimizer (described in
Section 3.5) sets thealt field of nodes in the context tree to ‘H’ to select the client hash join
strategy and ‘M’ to select the client merge join strategy. Wedescribe these two strategies next.

3.3.4.1 The Client Hash Join Strategy

Under this strategy, the inner query is combined with the outer using a lateral derived table like
the one shown in Figure 3.21. This gives a single statement that retrievesall of the desired rows

from the inner query for all possible outer rows. The first time that the inner query is executed by
the application, the combined query is submitted instead tothe server. All result rows are fetched
and stored in a hash table at the client using the parameters of the inner query from the result

set (PD.s2 in Figure 3.21) as the hash key. When the application opens the inner query, Scalpel
searches the hash table using the inner query parameter values as the lookup key to determine the

tuples that should be returned to the application. When the outer query is closed, the hash table is
discarded.

SELECT PD.*, I.*
FROM (SELECT DISTINCT s2

FROM (SELECT s1, s2

FROM S

WHERE s3=:w) P) PD,

LATERAL

(SELECT t1

FROM T

WHERE t2=PD.s2) I

Figure 3.21: QueriesQ1 andQ2 combined using client hash join.

Figure 3.22 shows the procedure for combining queries underthe client hash join strategy.

This is similar to the procedure that is used under the unifiedouter join strategy (Figure 3.17).
However, there are a few important differences. First, the partitioned approach rewrites a single

CONTEXT by combining it with its parent. Second, only the attributesof the outer query that pro-
vide parameter values to the inner query are included in the result for partitioned execution. In

3.3 QUERY REWRITER 51

Figure 3.21, onlys2 is needed, nots1. Also, each distinct combination of inner query parame-

ter values need only be included once in the outer table. If there are several rows with the same
s2 value, they will all generate the same inner rows. Figure 3.21 shows how aDISTINCT key-

word can be used to achieve avoid duplicating inner rows. Finally, LEFT OUTER LATERAL is
not needed, since any correlation values that result in an empty inner query can be left out of the

client hash table.

function COMBINE-HASH(C)254

P ← C.parent255

corrs ← CHOOSE-CORRELATIONS C256

sql = “SELECT PD.*, I.*”257

sql += “FROM (SELECT DISTINCT ”+corrs258

sql += “ FROM (”+P.query+“) P)”259

sql += “) PD, LATERAL (”+C.query+“) I”260

if C.orderby 6= ∅ then261

sql += “ORDER BY ”+C.orderby262

return sql263

end264

Figure 3.22: Combine procedure for client hash join.

Figure 3.10(e) illustrates the the situation in which the client hash join strategy is used for

all four of the queries nested underQ1. While the nested strategy opens 10 cursors, the parti-
tioned client hash join strategy only opens 5 cursors. Furthermore, the number of opened cursors

in the partitioned execution strategy does not depend on thenumber of rows returned from outer
queries. However, this strategy does require sufficient memory at the client to hold the hash ta-

ble, and the CPU of the client machine may make the hash lookups slower than the original,
nested strategy.

In the example of Figure 3.10(e), Scalpel combines inner query Q2 with outer queryQ3.

The combined query is executed at most once perinstanceof the parent queryQ3. Scalpel does
not need to execute the combined query if the application never opensQ2 under a particular in-

stance ofQ3. Thus, in the example, the combined query is executed twice,because the appli-
cation opensQ3 three times, but in one of those cases it never opens the nested queryQ2 be-

causeQ3 returns no rows. In general, it would be possible to combineQ2 with both its parentQ3

and grand-parentQ1 so that the combined query would have to be opened (at most) once per in-

stance ofQ1. Whether this strategy is preferable to combining only withthe immediate parent de-
pends on costs and query selectivities. Although it would certainly be possible to consider these

alternatives, at present Scalpel only considers the hash join combination of a query with its im-
mediate parent from the context tree.

52 NESTED REQUEST PATTERNS

LEMMA 3.4 (CLIENT HASH JOIN STRATEGY IS SOUND)
The client hash join strategy returns the correct multiset of rows for the outer and inner query.

PROOF. Let Q1 be an outer query andQ2(x̄) be an inner query with parametersx̄. The client
hash join strategy does not modify the outer query. However,it computes the results for all invo-
cations of the inner query with the following combined queryQC :

QC =
(

πDIST[M](Q1)
)

A×x̄,M Q2(x̄) (3.19)

The combined queryQC returns the results ofQ2(x̄) evaluated with each distinct set of outer
bindings fromQ1.

When an instance of the inner queryQ2(x) is submitted while the outer cursor is positioned
on a rowr, Scalpel first checks that the predicted correlationsx = r[M] hold; if not, the original

query is submitted unmodified. If the predictions do hold, then Scalpel answers the instance of
the inner query using the hash table that was filled from the combined queryQC as follows:

Q′2 = πALL [sch(Q2)]
(

σ[r[M] = x](QC)
)

(3.20)

= πALL [sch(Q2)]

(

σ[r[M] = x]
(

(

πDIST[M](Q1)
)

A×x̄,M Q2(x̄)
)

)

(3.21)

Since Scalpel has checked thatx = r[M] for the current outer rowr, we know that there is at

least one rowr in Q1 such thatx = r[M]. Applying the distinct projectionπDIST[M](Q1) and the
selection criteriaσ[r[M] = x] therefore gives the following simplification:

Q′2 = πALL [sch(Q2)]
(

{r} A×x̄,M Q2(x̄)
)

(3.22)

= Q2(r[M]) (3.23)

= Q2(x) (3.24)

The setQ′2 that Scalpel returns for an invocation ofQ2(x) contains exactly the desired mul-
tiset of rows.

�

3.3.4.2 The Client Merge Join Strategy

The client hash join strategy amounts to a distributed hash join executed at the client. Similarly,

the client merge join strategy amounts to a distributed merge join implemented at the client. For
this to work properly, Scalpel must ensure that the inner andouter tuples arrive at the client in the

proper order for merging.

The merge join approach consists of opening rewritten versions of both the outer query and
the inner query. The outer query is rewritten so that the result has a known total ordering, and so

3.3 QUERY REWRITER 53

that it includes those attributes that we guess will be used as correlation parameters to the inner

queries (based on our training period). The inner query is rewritten by combining it with the orig-
inal outer query so that it returns matching inner rows forall of the rows of the outer query. This

is similar to the rewriting that is done to the inner query under the client hash join strategy. How-
ever, under the client merge join strategy, the rewritten inner query is ordered to match the known

ordering that we imposed on the outer query results, as well as any order requirements specified
in the original inner query.

function COMBINE-MERGE(C)265

P ← C.parent266

corrs ← CHOOSE-CORRELATIONS C267

parent_order ← [P.orderby, P.keys]268

sql = “SELECT ”+parent_order+“, C.*”269

sql += “FROM ((”+P.query+“) P)”270

sql += “, LATERAL (”+C.query+“) C”271

sql += “ORDER BY ”+[parent_order, C.orderby]272

� The parent query will be modified to be ordered byparent_order (Figure 3.25 line 294)273

return sql274

end275

Figure 3.23: Combine Procedure for Client Merge Join

Figure 3.23 shows the procedure for producing the combined inner query, and Figure 3.24
shows the query that would result from combining the inner and outer queries from our running

example. In this case, the rewritten inner query is ordered by P.Id, which is the sort order of the
outer query. No additional ordering constraints are imposed by the original inner query. In Sec-

tion 3.3.5, we show how the parent query is is modified to include the ordering attributes needed
to totally order the results (Figure 3.25 line 294).

The first time that the inner query is opened, Scalpel submitsinstead the combined query. In
response to a FETCH on the inner query, Scalpel first checks the values of the sorting and key

attributes of the current row of the outer query. It then advances the cursor of the combined inner
query to the first row for which the corresponding attributesdo not exceed the current values from

the outer. If combined query’s sorting attributes match those of the current outer tuple, Scalpel
returns the values of the inner query attributes. If they exceed those of the current outer tuple, this
indicates the end of the application’s inner query’s resultset. Scalpel closes the combined inner

query’s cursor when the outer query’s cursor is closed.

Figure 3.10(f) illustrates the the situation in which the client merge join strategy is used for
all four of the queries nested underQ1. As was the case for the client hash join, Scalpel only

considers the merge join combination of a query with its immediate parent from the context tree,
e.g.,Q2 is combined withQ3 but not withQ1. Thus, the resulting pattern of query instances is

54 NESTED REQUEST PATTERNS

SELECT P.s2 o1, P.s1 k1, I.*
FROM (SELECT s1, s2

FROM S

WHERE s3=:w) P,

LATERAL

(SELECT t1

FROM T

WHERE t2=P.s2) I

ORDER BY o1, k1

Figure 3.24: Combined inner query for the client merge join strategy.

almost the same as that of the client hash join strategy, except for the ordering of the result of the

combined inner queries. Unlike the hash join strategy, the merge join strategy does not require
that the result set of the combined inner query be stored at the client. However, the merge join
strategy does impose an additional sorting burden on the server. Scalpel’s optimizer uses its cost

model to choose between these alternatives.

LEMMA 3.5 (CLIENT MERGE JOIN STRATEGY IS SOUND)
The client merge join strategy returns the correct multisetof rows for both the outer and inner

queries.

PROOF. LetQ1 be an outer query andQ2 an inner query that is executed using the client merge
join strategy.

The client merge join strategy modifies only the ordering specification of the outer query, by
appending additional attributes to ensure a total ordering. Therefore, the multiset of rows returned

for the outer query is correct.

A combined inner queryQC is formed to return all inner rows as follows:

QC = Q1 A×x̄,M Q2(x̄) (3.25)

When the outer cursor is positioned on rowr identified byr[KEY[Q1]] = k1 and an instance
of the inner queryQ2(x) is submitted, Scalpel first checks that the predicted correlationsr[M] =

x hold. If so, then Scalpel answers the query with the following results from the combined query:

Q′2 = πALL [sch(Q2)]
(

σ[KEY[Q1] = k1]
(

QC

)

)

(3.26)

= πALL [sch(Q2)]
(

σ[KEY[Q1] = k1]
(

Q1 A×x̄,M Q2(x̄)
)

)

(3.27)

(3.28)

3.3 QUERY REWRITER 55

We know that exactly one rowr exists inQ1 with r[KEY[Q1]] = k1. If we push the selection

criteria down, we can simplify to the following:

Q′2 = πALL [sch(Q2)]
(

{r} A×x̄,M Q2(x̄)
)

(3.29)

= πALL [sch(Q2)]
(

{r} ×Q2

(

r[M]
)

)

(3.30)

= Q2

(

r[M]
)

(3.31)

= Q2(x) (3.32)

Therefore, Scalpel returns the desired multiset of rows forthe outer and inner queries of the

client merge join strategy. �

3.3.5 Rewriting a Context Tree

The preceding section described rewrite procedures that generate a rewritten query for each of the

execution strategies we consider. The unified rewrite methods combine a context with its unified
children while the partitioned rewrites combine a context with its parent. Each of these rewrite

procedures operates on an individual CONTEXT node at a time. In this section, we describe how
Scalpel rewrites an entire context tree by operating on one context at a time. First, Section 3.3.5.1

describes how Scalpel uses ACTION objects to represent steps the Prefetcher should follow to im-
plement the prefetch strategies. Next, Section 3.3.5.2 describes how the REWRITE-TREE proce-

dure (Figure 3.25) rewrites an entire context tree. Finally, Section 3.3.6 provides a summary of
rewriting a context tree.

3.3.5.1 Representing Run-Time Behaviour With ACTION Objects

In addition to the rewritten query text, REWRITE-TREE generates information that is used at run-

time to direct the Prefetcher component how to respond to requests from the client application.
This information is recorded in ACTION objects. Each ACTION object contains anacttype

field that indicates how the action should be applied. Further, the ACTION object contains a
resultquery field that contains the query text that defines the result set returned when the ac-
tion is used, and asubmitquery that contains the rewritten combined query. For example,

for contextC2 in Figure 3.11(c) we would have an ACTION object of type SUBMIT-HASH. The
resultquery field would be the text of queryQ2, and thesubmitquery field would be the

text of the combined query shown in Figure 3.21.

The ACTION objects encapsulate the operations that will be performed on behalf of a single

execution strategy for a contextC. TheC.resultquery field specifies the query text that de-
fines the result set returned by the ACTION object. When the client submitsresultquery, the

56 NESTED REQUEST PATTERNS

Prefetcher uses internal bookkeeping in the ACTION to find if the desired result is already avail-

able. For example, for the client hash join strategy, the Prefetcher searches in a hash table of
prefetched results. When the prefetched results are not available, thesubmitquery is passed

on to theDBMS to retrieve the results for the current request and to prefetch additional results.
For example, in the client hash join case the combined query is submitted and the results are used

to fill a hash table.

S C Action Type Description

‘J’ P INTERPRET-JOIN Pass combined query to next action inactions. Re-
turn only original attributes at the parent context.

‘J’ C DECODE-JOIN Read attributes from current parent row. If this row was
null-supplied, return an empty result set.

‘U’ P INTERPRET-UNION Pass combined query to next action inactions. Re-

turn rows to parent that have type attribute of 0.

‘U’ C DECODE-UNION Move forward in parent’s result set until a row with the

appropriate type field is found; return all such rows.

‘M’ P INTERPRET-MERGE Pass ordered query to next action inactions. Return
only original attributes.

‘M’ C SUBMIT-MERGE Submit combined, ordered query toDBMS. Return all
rows from the combined result set that match the or-

dering attributes of the current parent row.

‘H’ C SUBMIT-HASH Submit the combined query to theDBMS, and popu-
late a hash table with the results. Satisfy OPEN requests

from the hash table.

‘N’ C SUBMIT-NEST Submit the query to theDBMS.

Table 3.3: Types of ACTION objects. The first column is the execution strategy for whichthe type

is used, and the second column isC if the action type applies to the context itself orP if it applies
to the parent context. The third column gives theacttype value, and the last column describes
how it is used.

The client hash join strategy generates an ACTION object only for the child context that is

rewritten. In contrast, the client merge join needs to change not only the query that is submitted
at the child context, but also the query for the parent. The parent query is altered to add order-

ing attributes that ensure a total ordering permitting merging of result rows. For the client merge
join, an ACTION of type SUBMIT-MERGE is associated with the child, while an ACTION of type

3.3 QUERY REWRITER 57

INTERPRET-MERGE is used for the parent context. The SUBMIT-MERGE indicates that the com-

bined, ordered query should be submitted for the child, and result sets are interpreted by advanc-
ing on the combined, ordered result set. The INTERPRET-MERGE specifies that a variant of the

parent query should be submitted, rewritten to provide a total ordering. The result of this rewritten
query is interpreted by returning a result set to the client containing only the original attributes.

The SUBMIT-HASH and SUBMIT-MERGE types of action submit a query directly to the

DBMS. In contrast, actions of type INTERPRET-MERGE are associated with the parent context,
which will also have an execution strategy of its own. For example, in Figure 3.11 the contextC3

will have an action of type INTERPRET-MERGE corresponding toC4, and it will also have an ac-
tion of type SUBMIT-MERGE resulting from its own annotation with strategy ‘M’. Actions are
maintained in an ordered listactions for each context.

Theactions list may have multiple ACTION objects with a type prefixed by INTERPRET-

before the final ACTION object. Each of these INTERPRET- actions has the effect of interpret-
ing the result set that answers the associatedresultquery from a result set that answers the

associatedsubmitquery. For example, a subset of the columns may be returned (INTERPRET-
MERGE, INTERPRET-JOIN) or a subset of the rows and columns (INTERPRET-UNION). The

Prefetcher never directly submits a query for a INTERPRET- action. Instead, thesubmitquery
is used when constructing the next action in the list. Thesubmitquery of the preceding AC-

TION object always matches theresultquery of this next object. At the end of the list is an
ACTION object with a type prefixed with SUBMIT- or DECODE- (described in the sequel).

The partitioned strategies create a SUBMIT- action for the associated context, leading to a

combined query being submitted for the child at run-time. Incontrast, the unified strategies do
not submit any query at the child context, instead submitting a single unified query at the parent
context. This is represented in the context tree by associating DECODE-JOIN or DECODE-UNION

as the last element in theactions list for the child objects and associating INTERPRET-JOIN or
INTERPRET-UNION as a non-final element of the parent’sactions list. The REWRITE-TREE

procedure calls APPEND-ACTION to add ACTION objects to theactions field of a context as
it processes the tree. The APPEND-ACTION procedure also modifies the text of thequery field

of the context to reflect thesubmitquery of the most recently added action. In this way, the
query field of the context is maintained with the currently needed query as the rewrite proceeds.

Table 3.3 summarizes the ACTION types supported by Scalpel and outlines how they are used

at run-time. In the next section, we describe how the REWRITE-TREE procedure builds the AC-
TION objects for the entire context tree.

58 NESTED REQUEST PATTERNS

3.3.5.2 The REWRITE-TREE Procedure

Figure 3.25 shows the REWRITE-TREE procedure. Scalpel calls REWRITE-TREE for the root of
the context tree (treeroot) to generate the combined queries for all nodes in the context tree.

First, REWRITE-TREE(C) recursively rewrites all child nodes (line 291). This recursive rewrit-
ing will modify the query field of the child contexts, complete theiractions lists, and pos-

sibly add ACTION objects to the listC.actions. Next, if any child uses the client merge join
strategy, REWRITE-TREE adds an ACTION object of type INTERPRET-MERGE to C.actions.

Next, if there are any ‘J’-annotated children, REWRITE-TREE calls COMBINE-JOIN(C) to

generate a combined querynsql that retrieves the original result set required byC and the at-
tributes needed for all ‘J’-annotated children. A call to APPEND-ACTION(C, INTERPRET-

JOIN, nsql) adds a new ACTION objectA that will be used to pass on the combined query
nsql and interpret the results for the contextC. Further, theC.query field is updated to con-

tain the combined query textnsql.

Similarly, if there are any ‘U’-annotated children ofC, then REWRITE-TREE calls COMBINE-

UNION(C). In this case, however, theC.query field used in COMBINE-UNION(C) (line 226)
will be the modified query that was returned by COMBINE-JOIN(C) (if there are ‘J’-annotated

children). In this way, the query combine procedures build on the results of prior calls as the con-
text tree is modified in place.

After combining any unified children ofC, REWRITE-TREE modifiesC to reflect the strat-

egy C.alt that was selected for it. IfC is annotated with a unified strategy, then REWRITE-
TREE adds an action of type DECODE-JOIN or DECODE-UNION. No query will be submitted

for C at run-time; instead, the results will be interpreted from the combined results ofC’s par-
ent context. If, on the contrary,C is annotated with a partitioned strategy, then REWRITE-TREE

calls COMBINE-HASH or COMBINE-MERGE to generate a combined querynsql. These calls
combine the currentC.query with the parent query. If the unified rewrite procedures modified
C.query, then the modified query is used when generating the combinedpartitioned query. This

combined query will be submitted to theDBMS at run-time when no prefetched results are avail-
able, and this fact is recorded by adding an ACTION object of type SUBMIT-HASH or SUBMIT-

MERGE with the new combined query text. Finally, if the contextC is annotated with strategy
‘N’, then an ACTION object of type SUBMIT-NEST is added toC.actions. This action will

submit the current query stored inC.query. This could be the original query text, or the re-
sult of a unified combined procedure.

Figure 3.21 shows a sample trace of REWRITE-TREE when processing the context tree shown

in Figure 3.27(a), and Figure 3.27 shows the state of the context tree after steps in the sample
trace.

3.3 QUERY REWRITER 59

structure ACTION276

acttype= “” � The type of action to perform277

resultquery=NIL � The query defining the result set278

submitquery=NIL � The combined query that will be submitted instead279

... � Additional bookkeeping information is omitted280

end281

282

procedure APPEND-ACTION(C, type, submitquery)283

A ← new ACTION(type, C.query, submitquery)284

C.query ← submitquery � Change the current query285

C.actions ← [C.actions, A] � Append the new action286

end287

288

procedure REWRITE-TREE(C)289

for child ∈ C.children do290

REWRITE-TREE(child)291

if ∃ { child ∈ C.children | child.alt = ‘M’}292

� If any child uses strategy ‘M’, submit a rewritten query thatis totally ordered293

nsql ← ADD-KEYS-TO-ORDER-BY(C.query)294

APPEND-ACTION(C, INTERPRET-MERGE, nsql)295

if ∃ { child ∈ C.children | child.alt = ‘J’}296

nsql ← COMBINE-JOIN(C)297

APPEND-ACTION(C, INTERPRET-JOIN, nsql)298

if ∃ { child ∈ C.children | child.alt = ‘U’}299

nsql ← COMBINE-UNION(C)300

APPEND-ACTION(C, INTERPRET-UNION, nsql)301

case C.alt302

when ‘J’ then APPEND-ACTION(C, DECODE-JOIN, C.query)303

when ‘U’ then APPEND-ACTION(C, DECODE-UNION, C.query)304

when ‘H’ then305

nsql ← COMBINE-HASH(C)306

APPEND-ACTION(C, SUBMIT-HASH, nsql)307

when ‘M’ then308

nsql ← COMBINE-MERGE(C)309

APPEND-ACTION(C, SUBMIT-MERGE, nsql)310

when ‘N’ then APPEND-ACTION(C, SUBMIT-NEST, C.query)311

end312

Figure 3.25: Combine procedure to rewrite an entire contexttree.

60 NESTED REQUEST PATTERNS

1 REWRITE-TREE(C1)

2 REWRITE-TREE(C2)

3 APPEND-ACTION(C2, DECODE-JOIN, Q2)

4 REWRITE-TREE(C3)

5 REWRITE-TREE(C4)

6 APPEND-ACTION(C4, DECODE-JOIN, Q2)

7 Q3b← COMBINE-JOIN(C3)

8 APPEND-ACTION(C3, INTERPRET-JOIN, Q3b)

9 APPEND-ACTION(C3, DECODE-UNION, Q3b)

10 Q1b ← COMBINE-JOIN(C1)

11 APPEND-ACTION(C1, INTERPRET-JOIN, Q1b)

12 Q1c ← COMBINE-UNION(C1)

13 APPEND-ACTION(C1, INTERPRET-UNION, Q1c)

14 APPEND-ACTION(C1, SUBMIT-NEST, Q1c)

Figure 3.26: Steps of REWRITE-TREE.

3.3.6 Summary of Query Rewriter

When Scalpel detects nested request patterns in a client’s request stream, it can choose between
alternative execution strategies, some of which prefetch the results for future inner queries based

on predictions made using a context tree.

Unified execution strategies provide a modified query that issubmitted at the root of a nested
pattern. The modified query combines the result set for the requested root query, and also en-

codes the results of inner queries that are predicted to be executed in the future. The outer join
unified strategy uses aLEFT OUTER LATERAL derived table construct to join the results re-

quest for the parent query with the inner query results. As this strategy is only used when the in-
ner queries return at most one row, the combined query returns exactly the same number of rows
as the original root query.

The outer union strategy is another unified strategy that combines the parent query with an
outer union of the inner queries, augmented with a type attribute that represents the query associ-

ated with each row. Again, theLATERAL derived construct is used to combine the outer and in-
ner queries. In this case, aLEFT OUTER LATERAL is not needed as the outer union returns at

least one row for each row of the outer query.

In contrast to the unified execution strategies, the partitioned execution strategies operate with
a single context. The client hash join strategy submits a combined query that returns all of the

rows needed for the inner query associated with all rows of the outer query. These rows are added
to a hash table, and individual OPEN requests for the inner query are satisfied from the hash table.

3.3 QUERY REWRITER 61

C1 N Q1

∅

C2 J Q2

∅

C3 U Q3

∅

C4 J Q2

∅

C1 N Q1

∅

C2 J Q2

DECODE-JOIN

C3 U Q3

∅

C4 J Q2

∅

(a) After step 1 (b) After step 3

C1 N Q1

∅

C2 J Q2

DECODE-JOIN

C3 U Q3

∅

C4 J Q2

DECODE-JOIN

C1 N Q1

∅

C2 J Q2

DECODE-JOIN

C3 U Q3b

DECODE-UNION

INTERPRET-JOIN

C4 J Q2

DECODE-JOIN

(c) After step 6 (d) After step 9

C1 N Q1b

INTERPRET-JOIN

C2 J Q2

DECODE-JOIN

C3 U Q3

DECODE-UNION

INTERPRET-JOIN

C4 J Q2

DECODE-JOIN

C1 N Q1c

SUBMIT-NEST

INTERPRET-UNION

INTERPRET-JOIN

C2 J Q2

DECODE-JOIN

C3 U Q3b

DECODE-UNION

INTERPRET-JOIN

C4 J Q2

DECODE-JOIN

(e) After step 11 (f) After step 14

Figure 3.27: Context tree after executing steps of Figure 3.26. Nodes show the context, execution

strategy, current query, and list of actions (C.actions) ordered from bottom to top.

62 NESTED REQUEST PATTERNS

The client merge join strategy is similar to the client hash join strategy, except that it uses or-

dering on the server instead of a hash table on the client. Theparent query is modified to guaran-
tee a total ordering, and a combined version of the inner query is submitted matching the parent’s

order. Individual OPEN requests for the inner query are satisfied by fetching forward on the com-
bined result set. A comparison of the current value of ordering attributes from the parent row is

used to determine where the prefetched result set for the inner query begins and ends within the
combined result.

Scalpel uses the REWRITE-TREE to prepare a context tree for execution. This procedure tra-
verses the tree in depth-first order. For each contextC in the tree, it fills in the fieldC.actions

with a list of ACTION objects. These objects describe how the Prefetcher should respond to OPEN,
FETCH, and CLOSE requests for the context. After rewriting the tree, the contexts and associated

actions lists provide all of the information needed to execute the selected execution strate-
gies at run time. The results of REWRITE-TREE are stored persistently in the context tree for use

at run-time, and the Prefetcher is responsible for performing these specified actions.

3.4 Prefetcher

When the client application submits OPEN requests to the database server, Scalpel intercepts

these requests and tracks the current context. If the context and query matches an edge in the op-
timized tree, Scalpel executes an alternative query instead and responds to the application’s OPEN

request by decoding the alternate result set. Figure 3.28 gives a simplified sketch of how the al-
ternate strategies are executed by the Prefetcher.

First, on line 319 Scalpel verifies that all correlation predictions made by the Pattern Detector
(Section 3.2.2) hold for this OPEN request. If the correlations do not hold, Scalpel’s correlation

prediction has failed, and the stored execution strategy cannot be used.

If the predicted parameters match the actual values supplied, then the stored execution strat-
egy is executed. The activities required by each ACTION objects in theactions list are per-

formed in order until the last action, which always returns aresult set. For a child context as-
signed a unified strategy, the last action is prefixed with DECODE-, meaning that the result set is
decoded from a combined query submitted by the context’s parent. For contexts assigned a par-

titioned strategy, the last action in the list is prefixed with SUBMIT-, meaning that a combined
query is submitted and used to prefetch the needed data.

Each list may have one or more INTERPRET- actions before the final action (SUBMIT- or

DECODE-). Any INTERPRET- actions control how the result set is interpreted for the client (for
example, by removing columns or skipping rows from other branches of a union strategy). Ta-

ble 3.3 summarizes the ACTION types supported by Scalpel and outlines how they are used at
run-time.

3.4 PREFETCHER 63

currctxt ← treeroot � The current context313

function RUN-OPEN(Q, parms)314

C ← find (currctxt.children, Q)315

C.lastinput ← parms316

currctxt ← C317

318

if not CHECK-CORR-PREDICTIONS(action,parms) then319

� Correlation prediction failed: submitQ to DBMS unmodified320

321

for A ∈ C.actions do322

assert Q = A.resultquery323

case A.acttype324

when INTERPRET-JOIN then ...325

when INTERPRET-UNION then ...326

when INTERPRET-MERGE then ...327

when DECODE-JOIN then328

if NULL -SUPPLIED(...) then � Return a cursor over an empty result set329

else � Return an interpreted cursor on parent’s current row330

when DECODE-UNION then331

� Move parent’s cursor forward until its type field matchesA.type.332

if Not-Found then � Return a cursor over an empty result set333

else � Return an interpreted cursor on the parent rows matchingA.type.334

when SUBMIT-HASH then335

if A.cachedresults = NIL then336

� SubmitQ to DBMS and load theA.cachedresults hash table with the results337

rs ← find (A.cachedresults, parms)338

if rs = NIL then � Return a cursor over an empty result set339

else return rs340

when SUBMIT-MERGE then341

if A.cursor = NIL then342

� SubmitQ to DBMS and setA.cursor to the result set343

� Move forward in combined cursor to first row matching parent key344

if Not-Found then � Return a cursor over an empty result set345

else � Return an interpreted result over combined rows matching the parent key346

when SUBMIT-NEST then347

� Submitt.combinedqueryo DBMS348

Q ← A.submitquery349

� This point is not reached; a result set is returned from within the above loop.350

end351

Figure 3.28: Sketch of execution of alternate strategies.

64 NESTED REQUEST PATTERNS

As RUN-OPEN processes theC.actions list, it considers the value ofA.acttype field.

For types INTERPRET-JOIN, INTERPRET-UNION, and INTERPRET-MERGE, no query is submit-
ted immediately (lines 325–327). Instead, these ACTION objects change the way a result set is

interpreted, for example by restricting the attributes returned. The details for these types are omit-
ted.

Action objects of type DECODE-JOIN and DECODE-UNION are associated with contexts that
have been assigned strategy ‘J’ or ‘U’. In this case, no queryis submitted. Instead, the result set

for the OPEN request is generated by interpreting the combined result set that was opened for the
parent context. It may be that the combined query contains norow corresponding to the queryQ.

In this case, an empty result set is returned. Otherwise, a result set is returned that generates its
rows based on the cursor in the parent context.

The partitioned strategies have a single action associatedwith each partitioned child (anno-
tated with SUBMIT-HASH or SUBMIT-MERGE). These actions submit a combined query the first

time that the partitioned child’s query is submitted for an instance of the outer query.

The SUBMIT-HASH action loads a hash table with the results of its combined query. The hash

table is indexed by the parameter values that are predicted to be submitted on future opens of the
inner query, and the entries in the hash table are buffered result sets. The hash table is loaded by

finding or adding the appropriate result set for each row of the combined query, then adding the
row to the buffered result set. The SUBMIT-HASH action satisfies OPEN requests using buffered
result sets from the hash table (if found) or an empty result set (if no match is found).

The SUBMIT-MERGE action submits a combined query that is ordered to match the order-
ing specification and key of the parent query. Recall that theparent query was modified to be to-

tally ordered (line 294). The SUBMIT-MERGEaction satisfies OPEN requests by moving forward
in the combined result set until either a row is found with order/key attributes matching the par-

ent query’s current order/key or until a row is found beyond these attributes. In the first case, the
action returns an interpreted result set that returns rows from the combined results set with the

current order/key values; in the second case, an empty result set is returned.

Scalpel uses an ACTION object of type SUBMIT-NEST to indicate that the optimizer has se-

lected a nested execution strategy for a context. Every timean OPEN request is submitted for the
context, Scalpel sends an OPEN request to theDBMS for thesubmitquery associated with the

action object. This is either the original query or a combined query generated by unified chil-
dren of the context.

The RUN-OPEN function returns a result set at run-time. Further, Scalpel’s Prefetcher im-
plements RUN-FETCH and RUN-CLOSE (not shown). The RUN-FETCH function generates rows

based on the selected strategy, and also maintains thecurrctxt.lastoutput field with the
most recently fetched row, allowing the predicted correlations to be verified. The RUN-CLOSE

3.5 PATTERN OPTIMIZER 65

function updates thecurrctxt global variable to point to the parent context. Further, RUN-

CLOSE releases all prefetched results for the inner queries nested as children of the close query.

3.4.1 Mistaken Predictions

All of the unified and partitioned rewriting strategies thatScalpel considers depend on the query
attribute correlations that it learns during its training phase. If these learned correlations hold dur-

ing the run-time phase, then Scalpel can use its rewritten queries to return the appropriate values
in response to the application’s FETCH requests as we have already described. However, Scalpel

must be prepared to cope with the possibility that its predictions will be wrong.

At run-time, whenever the application opens an inner query for which Scalpel has deter-

mined to use a unified or partitioned execution strategy, Scalpel first checks whether the expected
attribute correlations actually hold (line 319). That is, it compares the inner query’s parameter

values with the values from the current rows of the outer query (or queries) with which the in-
ner query is expected to be correlated. If they all match, then the correlation has held as expected

and Scalpel can proceed to answer the application’s subsequent FETCH requests using its rewrit-
ten query. If any correlations do not hold, then Scalpel cannot use the rewritten query as planned.

Instead, Scalpel submits theoriginal, unmodified inner queryto the server and uses the results of
that query to provide values to the application.

Since a single rewritten query normally takes the place of many instances of the original in-

ner query, it may be the case that Scalpel issuesboththe rewritten inner query and one or more in-
stances of the original query to the server. For example, under the partitioned strategies, Scalpel

issues the rewritten, combined query the first time the application attempts to open the original in-
ner query. If that first inner query instance is properly correlated, Scalpel will issue its rewritten

query. However, the next instance of the inner query may not be properly correlated, and Scalpel
will be unable to use the already-opened rewritten query to answer it as planned. In this case, it

must issue the original query to obtain a correct answer for the application.

These cases, when they occur, constitute failures of Scalpel’s semantic prefetching strategies.

Such failures cause Scalpel to do extra work, since it may execute queries that are wholly or par-
tially unnecessary. However, since Scalpel is always free to issue the application’s original, un-

modified query, they do not lead to incorrect answers.

3.5 Pattern Optimizer

Section 3.3 described five alternative strategies that can be employed to execute a nested query
pattern. After the training phase has built a context tree identifying rewrite candidates, an opti-

66 NESTED REQUEST PATTERNS

mization step is used to determine which of these execution strategies will be used for each con-

text in the tree.

3.5.1 Valid Execution Plans

Consider a nodeT that appears in the context tree (for example, nodeC2 in Figure 3.5). If the
FULLY-PREDICTED procedure returns TRUE for T , then the parameters of the queryQ associ-
ated withT can be predicted based on the context of execution and we can consider executingQ

using other strategies than the original (nested) strategy. Scalpel can executeQ using the nested
(‘N’), outer join (‘J’), outer union (‘U’), client hash-join (‘H’) or client merge-join (‘M’) ex-

ecution strategy. A plan is described by a context tree in which each context is annotated with
‘N’, ‘J’, ‘U’, ‘H’ or ‘M’. For example, Figure 3.11 shows six plans for the context tree exam-

ple of Figure 3.3. These strategies correspond to the execution traces shown in Figure 3.10.

With 5 possible annotations per node, there are up to5n possible execution strategies for a

tree withn contexts. Of these5n strategies, some are not permitted. Section 3.3.3.1 described the
at-most-one condition restriction for the outer join strategy. We rely on the AT-MOST-ONE(Q)

support function to identify queries for which the join strategy is permitted. In addition, the root
node of the context tree and the immediate children of the root node can only be annotated with

the nested strategy as these contexts have no parent query with which to combine. A final compli-
cation results from the way that Scalpel rewrites the child contexts annotated with the outer union
strategy (‘U’). The encoded results for these children are ordered by increasingtype values.

The ordering matches the order that the original child queries were submitted by the client appli-
cation. If the application were to submit the child queries in an alternate order, Scalpel would not

be able to decode the prefetched results for all children. For this reason, Scalpel does not con-
sider strategies where two contexts are annotated with ‘U’ if they were observed to be submitted

in conflicting orders during the training period.

The enumeration algorithm iterates through all of the plansthat are permitted by the above

rules and the optimizer selects the plan with the lowest estimated cost.

3.5.2 Ranking Plans

We rank execution plans using estimates of the response time(in seconds) experienced by the

client application. Scalpel’s Cost Model is responsible for estimating cost parameters needed for
optimization. The implementation of the Cost Model is described in Chapter 4. We describe our

ranking algorithm based on the following support routines which are defined in Chapter 4.

EST-COST(Q) Estimate the total cost for queryQ, including server, client, and communication
cost elements based on observed costs and server estimates.

3.5 PATTERN OPTIMIZER 67

EST-ROWS(Q) Estimate the number of rows returned byQ.

EST-INTERPRET(T,numopens,numrows) Estimate the cost of processing the ACTION ob-

jects in T.actions to interpret the results for contextT . The estimate is based on
numopens application calls to OPEN returning a total ofnumrows rows. For example,

for the client hash join strategy, estimate the cost to addnumrows rows to a hash table and
look up a result setnumopens times.

The Cost Model provides estimates of the cost of individual requests; in order to rank strate-
gies, we use the routine EST-COST-TREE (Figure 3.29) to estimate the cost of an entire context

tree based on the costs of the requests submitted by the tree.

function EST-COST-TREE(T, prtopens)352

prtrows ← EST-ROWS(T.parent.query)353

qrows ← EST-ROWS(T.query)354

nopens ← EST-P(T) × prtopens × prtrows355

partopens ← EST-P0(T) × prtopens356

case T.alt357

when ‘N’ then cost ← nopens × EST-COST(T.query)358

when ‘J’ or ‘U’ then359

� No query is submitted at this node360

� The only cost is associated with interpreting the encoded results (line 364)361

when ‘H’ or ‘M’ then362

cost ← partopens × EST-COST(T.query)363

cost ← cost + EST-INTERPRET(T, nopens, partopens)364

for child ∈ T.children do365

cost ← cost + EST-COST-TREE(child, nopens)366

return cost367

end368

Figure 3.29: Estimating the cost of a plan.

Figure 3.29 gives an overview of how Scalpel estimates the cost of a context tree with associ-
ated execution strategies. The EST-COST-TREE function estimates the cost of a tree that has ex-

ecution strategies assigned to each node and a rewritten query generated by the REWRITE-TREE

procedure.

The EST-COST-TREE function is called with a contextT andprtopens, the estimated
number of times that the query associated the parent contextis opened. The call EST-COST-

TREE(treeroot,1) is used to estimate the cost of one execution of the entire context tree.

If nodeT is annotated with a the nested strategy (‘N’), then the queryQ associated withT is
executed every time that a row is returned from the outer query and the local predicates pass. We

68 NESTED REQUEST PATTERNS

usenopens to estimate this number, calculated by multiplyingprtrows (the estimated num-

ber of rows returned from the parent context’s query) byprtopens and EST-P (an estimate of
the probability of executing the inner query for each outer row). The cost estimate for an ‘N’

node isnopens multiplied by the expected cost of executingT.query one time (returned by
EST-COST).

If nodeT is annotated with a unified strategy (‘U’ or ‘J’), thenT.query is not actually ex-

ecuted at run time. Instead, the rows for the node are decodedfrom a combined result set submit-
ted by the parent context. The cost associated directly withthe contextT consists of the client’s

cost to interpret the combined result rows, and the EST-INTERPRET function provides an esti-
mate of these costs (line 364).

The partitioned strategies do not execute their rewritten query every time the application sub-
mits the inner query. Instead, they execute the rewritten query at most once for every time that

the parent context’s query is opened. The variablepartopens is initialized with the estimate
(based on EST-P0(T)) of how often the rewritten query will be submitted. The costof the parti-

tioned strategies is estimated using the product ofpartopens and the estimated query cost. In
addition, the cost of interpreting the results of the combined query is included in the estimate for

these strategies (line 364).

So far, thecost variable has been initialized to an estimate for the costs directly associated
with nodeT . Children ofT may also introduce costs by executing other queries. The EST-COST-

TREE function recurses to account for the cost of child requests.

3.5.3 Exhaustive Enumeration

Exhaustive enumeration provides one way to choose an execution plan. With this approach,
Scalpel exhaustively enumerate all plans for a context tree. For each enumerated plan that is valid

according the above rules, REWRITE-TREE is be used to assign rewritten queries to each node in
the tree. Finally, plans are ranked by estimating the cost toexecute the tree one time, using cost

estimation methods provided by the Cost Model applied to therewritten requests associated with
the rewritten context tree. The plan for the tree with the lowest estimated cost is stored persis-

tently in the ‘Contexts+Rewrites’ store (Figure 2.1). These stored context and actions are used at
run-time to perform the actions selected by the optimizer.

3.6 Experiments

The costs associated with execution strategies depend on a number of factors described in the ear-

lier sections. This section presents experiments that givea sense of how these factors combine to
affect system performance. Table 3.4 shows the computers used in the experiments, and Table 3.5

3.6 EXPERIMENTS 69

Computer Processor O/S

A 1.8 GHz Pentium IV Windows XP

B 2× 2.2GHz Pentium XEON Windows 2003 Server

C 3GHz Pentium IV Windows XP

D 733MHz Pentium III Windows 2000

Table 3.4: Available computers.

Name Client Server Communication Link U0 Overhead (ms)

LCL C C Local shared memory 0.3

LAN1 B C 1Gbps LAN 1.1

LAN0.1 B C 100Mbps LAN 1.4

WiFi A C 11Mbps 802.11b WiFi 11.6

WAN A D 1Mbps Cable modem + WAN 468.9

Table 3.5: Tested configurations and the per-request overheadU0

shows the configurations of these computers. We ran our testswith three commercialDBMS prod-

ucts. The license agreements prevent us from identifying them. As results for all three systems
were consistent (although with different constants) we show results for only oneDBMS product.

We tested a sample program with a single outer queryQ0. We used a number of inner queries
Q1, Q2, . . . , QF, with F set to 2 unless otherwise noted. All inner queries are executed for each

row of the outer query that passes any local predicates. The outer query returns2048/F rows
from a sequential scan with a range predicate (this setup gives a constant number of inner query

opens when varying fanoutF). Each inner query returnsR rows for each invocation using an
index range scan (R is set to 1 by default so that the outer join strategy can be compared). We

used an additional outer join in each query that allowed us tovary the server cost of the query
without affecting the number of rows returned.

All tests were run with JDK 1.5.0 and JDBC drivers provided bytheDBMS vendors. The data-
base instance was fully cached to minimize the variance in server costs. A prototype implementa-

tion of Scalpel was used for the experiments; combined queries were automatically combined us-
ing theLATERAL keyword for one of theDBMS systems, and vendor-specific equivalents for the

other two systems.

In our experiments, we vary the following factors:

70 NESTED REQUEST PATTERNS

Fanout (F) The number of inner queries executed for each outer row.

Selectivity (P0) A predicate selectivity independent of values in the outer rows.

Selectivity (P1) A predicate selectivity dependent on values in the outer rows.

Inner Rows (R) The number of rows returned from the inner queries.

Inner Columns (L) The number of integer columns in each inner query.

Outer Cost (CO) The cost of the outer query.

Inner Cost (CI) The cost of the inner query.

All results show the average of a number of repetitions, withthe number of repetitions se-
lected so that the standard error of the mean (σM) is less than5% of the mean for each mea-

surement. The SQL statements were prepared once for each factor combination and prepare time
is not included in the reported measurements. We use slightly different settings of the indepen-

dent variable for each of the strategies to reduce overlap inthe resulting charts.

3.6.1 Effects of Client Predicate Selectivity

Scalpel uses two parameters, EST-P and EST-P0, to model the selectivity of client predicates, as

discussed in Section 3.2.3. In our experiments, we vary the selectivities of two predicates (called
P0 andP1) in the driver program. PredicateP0 is evaluated once per instance of the outer query.

If it is false, the inner query is not executed at all. The selectivity of P0 corresponds to the es-
timate EST-P0. The second predicate,P1, controls how many times the inner query is submit-

ted relative to the number of rows fetched from the outer query. The estimate EST-P is equal to
a combined predicate selectivity ofP = P0 × P1. Figure 3.30 shows the run-time of the nested,
unified, and partitioned execution strategies with varyingselectivity of theP0 andP1 client pred-

icates.

In Figure 3.30(a), the selectivity ofP1 is fixed at 1.0 and the selectivity ofP0 is varied. In
Figure 3.30(b),P0 is fixed at 1 andP1 is varied using the same values asP0. With a selectivity of

P1 = 0, the inner query is never submitted and the behaviour is equivalent to theP0 = 0 case: the
partitioned approaches are equivalent to nested (both executing only the outer query). We avoid
this discontinuity by omitting the settingP1 = 0.

For the original nested execution strategy, execution timeis proportional to the product

P = P0 × P1. The outer query is always executed one time, and the two inner queries are exe-
cuted an average of|Q0|P times. Because the nested strategy depends on the product ofP0 and

P1, it has similar behaviour in both Figure 3.30(a) and (b). Forlow values ofP , the nested strat-
egy is optimal. With smallP values, the inner queries are only rarely executed, and no resources

3.6 EXPERIMENTS 71

N

N

N

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

U U U U U U U U

H
H

H
H

H
H

H H

M
M

M
M

M
M

MM

J J J J J J J J

N

N

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

U U U U U U U UH H H H H H H H

M M M M M M MM

J J J J J J J J

(a) Varying selectivityP0 (P1 = 1) (b) Varying selectivityP1 (P0 = 1)

Figure 3.30: Run times with varying predicate selectivity on configuration LCL.

are wasted fetching unneeded results. The run time of the nested strategy grows rapidly with in-
creasingP , as the inner queries are executed for more and more outer rows.

For the unified execution strategy, the execution time is largely independent of the selectivi-

ties ofP0 andP1. Regardless of the results of these predicates, the unified query is executed and
all rows are fetched by the client. While most of the costs of the unified strategy are indepen-

dent ofP , there is a slight linear dependence resulting from the costof decoding the attributes
for the inner queries. If an inner query is not opened, its attributes are not decoded from the com-

bined result set, leading to slightly lower run-times.

The partitioned execution strategy fetches all possible rows from the rewritten inner query

when an inner query is first opened (theP0 predicate evaluated to true). This gives the partitioned
strategy a strong dependence on theP0 selectivity. TheP1 selectivity also has a small effect: for

the client hash join strategy, it changes the number of lookups performed in the hash table; for the
client merge join strategy, it changes the number of rows that are interpreted from the combined

result set. Figure 3.30(b) shows the relatively weak dependence of the partitioned strategies on
theP1 selectivity.

72 NESTED REQUEST PATTERNS

N

N

N

N

N

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U

U

U

U

U

H

H

H

H

H

M

M

M

M

M

J

J

J

J

J N

N

N

N

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

U

U

U

U

U

H

H

H

H

H

M

M

M

M

M

J

J

J

J

J

(a) Outer query cost factor (b) Inner query cost factor

Figure 3.31: Run times with varying query cost on configuration LCL with P0 = 1, P1 = 0.5.
Outer and inner cost factors are not directly comparable.

3.6.2 Query Costs

The execution costs of different optimization strategies depends on the cost of the outer and inner
queries that are combined. Figure 3.31 shows the execution times of nested, unified, and parti-

tioned strategies for our sample program. Predicate selectivity was fixed atP0 = 1 andP1 = 0.5.

The nested strategy increases linearly with the cost of the outer. The unified strategies also in-

creases linearly with the cost of the outer, and the slope of increase is the same as the nested strat-
egy for the cost of the outer query: both strategies execute the outer query once. In contrast, the

partitioned strategies execute the outer query once for each of the child queries in addition to the
original, for a total of three executions. This gives the partitioned strategies a higher dependence

on the cost of the outer query. Figure 3.31(a) shows the run time for each the execution strate-
gies when varying the cost of the outer query.

When we consider instead the cost of the inner queries, we findthat all of the prefetching
strategies behave in a similar way. The unified and partitioned strategies both compute the result

of these inner queries for all outer rows, while the nested strategy only evaluates the inner query
when theP1 predicate passes (with selectivity 0.5 in this experiment). WhenP1 is less than 1, the

prefetching strategies are cheaper than nested when the inner query cost is relatively low, but be-
come more expensive with increasing cost of the inner query.Figure 3.31(b) shows the run time

3.6 EXPERIMENTS 73

N
N

N
N

N

N

N

0 10 20 30 40 50

0

1

2

3

4

5

6

U
U

U
U

U
U

U

H H H H H
H H

M M M M M M M
N

N
N

N

N

N

N

0 10 20 30 40 50

0

1

2

3

4

5

6

U

U

U

U

U

U

U

H H
H H

H H H

M M M M M M M

(a) FanoutF = 2 (b) FanoutF = 8

Figure 3.32: Run time (s) with varying number of columns in inner queries on configuration LCL
with P0 = 1, P1 = 1, R = 8. Note that the outer join (‘J’) strategy could not be compared as

more than one row is returned from the inner queries.

for each the execution strategies when varying the cost of the two inner queries. With this config-

uration, the nested strategy submits 1024 inner queries while the prefetching strategies compute
the results for all 2048 predicted inner queries.

3.6.3 Number of Columns

If we vary the number of columns returned by the inner queries, the cost of executing the nested
pattern increases. Figure 3.32 shows the run-time for different strategies with varying number of

columns in the inner queries. Figure 3.32(a) uses a fanout ofF = 2, while Figure 3.32(b) uses
F = 8.

There are several effects contributing to the increasing execution cost with an increasing num-

ber of columns. First, the per-request overhead increases because more resources are needed to
initialize and describe communication buffers for more columns. This increase has the most im-

pact on the nested strategy because it submits the largest number of requests. Second, the server
and client computation costs increase due to the higher number of columns that are formatted and

interpreted for each row fetched. Third, the cost of sort operations grows as the size of the materi-
alized rows grows. This factor affects the outer union and client merge join strategies as they both

74 NESTED REQUEST PATTERNS

add ordering attributes, possibly leading to a sort being added to the execution plan used by the

DBMS. In our tests, the original queries already had sort operations, so this factor did not have an
effect. Finally, the client cost for hash join increases as the size of the rows stored in the hash ta-

ble increase. More columns require more memory and more timespent copying the data into the
hash table.

The merge, hash, and nested strategies have similar behaviour with both fanoutF = 2 and
F = 8. In contrast, the union strategy has a higher slope with a configuration of 8 inner queries.

The union strategy encodes a combined result set into a single unioned result usingNULL values
to represent attributes that are not appropriate for a givenrow. The total number ofNULL values

returned grows with the product of the query fanoutF and the total number of columns in all the
queries that are combined.

3.6.4 Execution Costs

Figure 3.33 shows the CPU costs and total time for each of the strategies. Results are shown for a

configuration withP0 = 1, P1 = 1
8 , and an inner cost factorCI = 8. One row was returned from

each invocation of the two inner queries.

Client and server CPU costs were measured using O/S functions andDBMS-specific requests
respectively. The difference between elapsed execution time and the measured CPU costs is la-

belledlatency. In cases where the elapsed time was less than the sum of the server costs, a nega-
tive latency is shown.

The server costs for the WAN case are higher for two reasons: the server machine is slower,
and packet compression was used.

There are several interesting observations that we can drawfrom Figure 3.33.

First, the original nested execution strategy is not significantly slower than the optimal strat-
egy (join) in the LCL configuration. It is reasonable for system developers to select a nested strat-

egy for this case, especially considering the difficulty of estimating the selectivity of local predi-
cates and the complexity of manually combining queries.

Second, we observe that the join and merge strategies arefaster in the LAN1 and LAN0.1
configurations than in the LCL configuration. The LAN configurations allow for overlap between

server processing and client processing (the machine D usedin LCL is a uni-processor). The
nested strategy, on the other hand, takes more than 1.5 timesas long in the LAN1 configuration
and more than 2 times as long in the LAN0.1 configuration when compared to the LCL configu-

ration.

Third, the unified and partitioned execution strategies reduce not only latency but also the
client and server CPU costs. This cost savings results from fewer messages that need to be for-

3.6 EXPERIMENTS 75

-0.1

0.0

0.1

0.2

0.3

0.4

J H M U N

(a) Shared Memory (LCL)

-0.1

0.0

0.1

0.2

0.3

0.4

J H M U N

(b) 1Gbps (LAN1)

-0.1

0.0

0.1

0.2

0.3

0.4

J H M U N

(c) 100Mbps (LAN0.1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

J H M U N

(d) 11Mbps (WiFi)

55.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

J H M U N

(e) 5Mbps (WAN)

Latency (Elapsed - (Server+Client))

Client CPU Time

Server CPU Time

Figure 3.33: Run time (s) with varying network configurations andP1 = 1
8 , CI = 8. Note that

the bar for ‘N’ is truncated in figure (e), with an actual height of 55.4s.

matted, sent, and interpreted. Even in the LCL configuration, all strategies but union use less

server CPU time than the nested strategy, despite the selectivity P1 = 1
8 .

Finally, while the savings for the LAN configuration are low in absolute terms (about 125ms),

the savings are very significant for WiFi and WAN; for example, with a wireless configuration the
joined strategy saves nearly 1.5s of elapsed time, and the savings grows to 100s with the WAN

setup.

The original nested execution strategy is close to optimal for a local connection. Even if a

LAN configuration is considered, absolute benefits are modest for an single execution of the outer
and inner query (hundreds of milliseconds) so system developers might decide to use the simpler

nested implementation. However, the server costs are 50% lower with the joined variant. Further,
if other deployments with higher network latency are used inthe future, the nested implementa-

tion will be unsatisfactory. Finally, the predicate selectivity P1 = 1
8 is quite low. If the value of

P1 in particular configurations is higher, then the nested strategy will be far from optimal.

76 NESTED REQUEST PATTERNS

3.6.5 Scalpel Overhead

The Scalpel system monitors all database requests during training. At run-time, all OPEN requests

are intercepted. If a query is not being re-written, the original query is submitted to theDBMS and
the result set is wrapped in a monitor object that can detect when the cursor is closed. This mon-
itoring is needed to maintain the current context for triggering rewrites.

We measured the overhead Scalpel adds to opening a query. With a local configuration (LCL),

the overhead is27µs per query, or7.0%. The overhead is the same for all network setups, and
drops to1.6% in the LAN configuration due to the higher base cost.

The overhead would be reduced if Scalpel were integrated with the vendor-provided JDBC
driver (for example, eliminating the need to use wrapper objects to track the current context).

However, the overhead seems acceptable as it is low in absolute terms, and consists entirely of
client CPU time. Even with current overhead levels, significant gains can be made without signif-
icantly impacting user interaction due to the benefits of rewrites performed by the Scalpel system.

3.7 Summary of Nested Request Patterns

We have found that client applications submit request streams that contain nested requests. This
nesting appears when an outer query is opened and an inner query is submitted while the outer

query is still open. Typically, the inner query has input parameter values that are supplied with
values fetched from the database. In this way, we can view a nested request pattern as a type of

distributed join implemented in the client code.

While input parameters to inner requests are typically drawn from output columns of the en-

closing query, we have also found that, in some cases, they are equal to an input parameter of an
enclosing query. In some instances, the input parameter is always equal to a constant value. We

monitor correlations between input parameters and these three types of sources. At the end of a
training period, we predict future parameter values based on correlations that have always held

so far.

From a performance standpoint, it would appear that a join inclient application code is not

a good idea. There are software engineering reasons that might make it difficult to avoid such a
join without destroying desirable properties such as encapsulation. In other cases, we have found

that the nested execution strategy is, in fact, optimal (at least in particular configurations). This
optimality can arise as a result of local predicates in the client application that limit the number

of inner requests to a fraction of the rows returned by the outer query. We use two parameters
to estimate the effects of local predicates: EST-P0 estimates the probability that the inner query

will be executed at all for an instance of the outer query, while EST-P estimates the proportion of
rows of the outer for which the inner query is submitted.

3.7 SUMMARY OF NESTED REQUEST PATTERNS 77

After a training period, Scalpel identifies a context tree that represents the nested structure

we observed. An optimization step is used to select an execution strategy for each node in the
tree. There are three broad classes of strategy that we consider: nested execution, unified exe-

cution, and partitioned execution. Nested execution corresponds to the original strategy, where
an inner request is submitted up to once per row of the outer. If a node is executed with a uni-

fied strategy, then at run-time a single request is submittedto retrieve the results for the parent
node and the unified child node. In contrast, with partitioned execution a separate cursor is sub-

mitted for the parent node and child node. However, unlike the nested execution strategy, the par-
titioned execution strategy opens at most one inner cursor per instance of the outer, instead of for

each row of the outer. Table 3.6 summarizes the strategies that we consider.

Strategy Symbol AddsORDER BY Probability

Nested Execution N No EST-P(C)

Outer Union Strategy U Yes 1

Outer Join Strategy J No 1

Client Hash Join H No EST-P0(C)

Client Merge Join M Yes EST-P0(C)

Table 3.6: Summary of rewrite strategies. The first column gives the name of the strategy, and

the second gives the symbol used to represent it. The third column indicates whether the strategy
requires that we add anORDER BY clause to the rewritten query, and the last column shows the
quantity that determines how often results are retrieved for inner queries.

The unified and partitioned execution strategies that we consider encode the desired result set
as the result of a combined query. We decode this result set toretrieve the desired results. The

outer union strategy encodes a parent query and one or more inner queries using an outer union
rewrite, where each query is associated with a separate union branch. AnORDER BY clause is

added to ensure that rows for inner queries come after the associated outer query and in the re-
quired order. The outer union strategy computes the result of the inner queries for each outer row.

The outer union strategy can be used when the inner queries return 0 or more rows (empty re-
sult sets are detected by a missing union branch). The additional NULL values returned by the
outer union strategy contribute to a higher communication cost, which is partly why the outer

union strategy is out-performed by the outer join strategy when it can be used.

The outer join strategy can only be used for inner queries that return at most one row. Inner
queries are combined with their parent using outer joins. There is no need to add extraORDER

BY elements, and, as with the outer union strategy, the result of each inner query is computed for
each outer row.

78 NESTED REQUEST PATTERNS

In contrast to the unified strategies, the partitioned strategies use a separate cursor for the par-

ent query and each child query; as such, they incur one extra per-request overheadU0 per child.
However, the rewritten query for child is only submitted if theP0 predicate is true. We have ob-

served some client applications where the inner query is either submitted for all rows of one in-
stance of the outer, or none. The partitioned strategies typically outperform the unified strategies

in this case as the rewritten, combined query is only submitted when the first inner request is sub-
mitted, meaning that the results for inner rows are actuallyneeded

In the client hash join strategy, a rewritten query is submitted when the inner query is first ob-
served. This rewritten query encodes the results of the inner query evaluated for all rows of the

outer query. These multiple results are stored in a hash table, which is used to satisfy future re-
quest. The client hash join requires sufficient client memory to hold the combined results. Fur-

ther, the approach may not reduce latency if the client CPU isnot fast enough to make fetching
results from the hash table faster than the per-request latencyU0. An alternative that avoids these

concerns is the client merge join.

In the client merge join strategy,ORDER BY elements are added to the parent query when it

is submitted to ensure that the outer rows are totally ordered. When an inner query is submitted, a
rewritten request is submitted to retrieve the results of the inner query evaluate for all outer rows.

This rewritten request hasORDER BY elements that return the encoded result sets in the same
(total) order as the adjust parent query. In this way, inner queries are satisfied by fetching forward

in the combined result set, effectively performing a distributed merge join on the client.

By using a training period, Scalpel identifies nested request patterns. Using cost-based opti-

mizations, the execution strategy estimated to be cheapestis selected. We have found that, even
where optimal, the original nested execution may perform very badly when moving to another

configuration with different predicate selectivity or network latency. The context-based prefetches
performed by Scalpel can significantly reduce the exposed latency of these applications; in many

cases, the execution costs at the client and server are also reduced due to the lower number of
messages.

4 Cost Model

In order to make effective cost-based rewrite decisions, the Pattern Optimizer needs estimates of
various cost parameters. The Cost Model is responsible for providing these estimates. In gen-

eral, the cost for a query can be represented as a vector, withone component for each resource
being used. For example, we could have components associated with client cost, communica-

tion cost, and server cost. With the cost vector, we associate a total latency caused by a request.
This latency can be estimated using the sum of estimated server, communication, and client costs.

Clearly, other ranking functions can be used instead; for example, we could choose to rank based
only on server execution costs, or we could attempt to createa more precise model of latency
by estimating the amount of overlap for server, network, andclient processing costs. In the cur-

rent implementation, we concentrate only on ranking by total latency, expressed in seconds. For
this reason, we do not show costs as vectors, but instead showthe scalar latency.

Table 4.1 shows the quantities estimated by the Cost Model. The EST-COST(Q) and
EST-ROWS(Q) functions are estimates for queries which have either been observed during a

training period or are a combination of such queries formed by the Query Rewriter. The valueU0

is an estimate of per-request overhead. The EST-INTERPRET(C, p, r) function estimates the cost
of interpreting the results of an encoded result set for context C.

Quantity Description

EST-COST(Q) Estimated cost forQ

EST-ROWS(Q) = |Q| Estimated rows returned byQ

U0 Overhead of a single request

EST-INTERPRET(C, p, r) Cost of interpreting results for contextC with p opens,r rows

Table 4.1: Estimated quantities.

Scalpel’s Cost Model uses a combination of calibration, observed quantities, and support rou-
tines provided by the DBMS in order to provide the estimates in Table 4.1.

79

80 COST MODEL

4.1 Estimating Per-Request Overhead U0

When we submit a request to a database server, the total latency is a result of several compo-

nents: formatting and transmitting the request via inter-process communication, finding the ap-
propriate execution plan for the request (either by optimizing or finding a stored plan), initializ-

ing the execution data structures, and, finally, executing the selected plan. All but the last of these
costs represents a fixed per-request overhead. This overhead is independent of the cost of execut-

ing the selected plan (although it may depend on factors suchas the complexity of the query).

We can assess the impact of this per-request overhead using an experiment inspired by Bern-

stein, Pal and Shutt [19]. We create a tableT1 containing 1024 rows of rows, each with an inte-
ger primary key and 100 integer columns. We fetch all 1024 rows from the table by submittingN

range queries, each of which retrieves1024/N rows using a range predicate on the primary key.

0 200 400 600 800 1000

0

50

100

150

200

0 50 100 150 200 250

0

20

40

60

80

(a) T (N) ≈ 0.217N + 18 (b) T (N) ≈ 0.329N + 12

Figure 4.1: Run times (ms) with varying number of requests tothe server. Dashed lines show the
results of linear regression; however, a linear regressionis not well justified by these results.

Figure 4.1 shows the result of this experiment on the LCL configuration (described in Ta-
ble 3.5). In principle, the server performs the same amount of useful work (fetching rows), while

the per-request overhead is performedN times. This would lead us to expect a linear relation-
ship between run-time andN , where the slope of the relationship isU0 and the intercept is the

server cost to fetch the desired rows. Figure 4.1(a) shows the results ofN requests withN = 2i

for i ∈ [0, 10]. Clearly the run timeT (N) is proportional toN , but it does not appear to be a lin-

4.2 ESTIMATING THE COST OF INTERPRETING RESULTS 81

ear relationship: compare the points to the linear regression shown with a dashed lines. There

is more changing in this experiment than just the number of times the per-request costs are in-
curred. Figure 4.1(b) removes the top two and bottom two datapoints providing a region that is

more closely approximated by a linear model (having a coefficient of determinationR2 = 0.995

compared toR2 = 0.965 for Figure 4.1(a)), but the use of a linear model to estimateU0 using the

slope does not appear to be well justified.

We take the results shown in Figure 4.1 as confirmation that there are per-request overheads,
but the approach does not provide a good estimate of this cost. Instead, we time the cost of a

query that we expect to have very low server execution costs.We time the execution of a query
that fetches a single row with a constant value:

SELECT T.x

FROM (VALUES (1)) T(x)

For this simple query, the server execution costs (apart from per-request overhead) are negli-
gible. When Scalpel is configured for a particular installation, it uses a calibration step to estimate

U0. Scalpel executes the above request a number of times and uses the average execution time as
the estimate ofU0 for the configuration. Table 4.2 shows the calibrated value for each of the con-

figurations that we have tested (the configuration details are given in Table 3.5).

Configuration U0 (ms)

LCL 0.27

LAN1 1.1

LAN0.1 1.4

WiFi 11.6

WAN 468.9

Table 4.2: Tested configurations and the per-request overheadU0

4.2 Estimating the Cost of Interpreting Results

When we prefetch, we submit a combined query that returns an encoding of multiple result sets.

At run-time, we interpret this encoded result set to return the desired result sets. This interpreta-
tion adds extra costs in the client process. We calibrate this cost by comparing the execution time

when interpreting the multiple result sets to the run time ifwe just fetch the rows of the com-
bined query without interpretation.

82 COST MODEL

Type T Estimated Overhead (µs)

Nested Execution N 18.1p + 0.07r

Outer Union U 32.4p + 11.08r

Outer Join J 27.0p + 0.00r

Client Hash Join H 26.5p + 8.68r

Client Merge Join M 22.7p + 4.63r

Table 4.3: Estimated overhead EST-INTERPRET(C, p, r) of interpreting combined result sets.

As with U0, Scalpel uses a calibration step when it is configured for a particular installation
to estimate the overhead of each execution strategy. Table 4.3 shows the estimated linear combi-
nation EST-INTERPRET(C, p, r) for each typeT of interpretation that could be used forC. The

p parameter represents the number of encoded result sets, andr represents the number of rows.
The values in Table 4.3 are the result of a linear regression based on 100 iterations of each type

with a combination of opens and fetches.

The results in Table 4.3 represent the overhead of interpreting result sets from an encoded re-
sult set, except for the first row. The Nested Execution results represent the overhead of keeping

track of query open and close requests when no prefetching isperformed. As such, this is an es-
timate of the cost of the Call Monitor overhead.

4.3 Estimating the Cost of Queries

In addition to estimates ofU0 and EST-INTERPRET(C, p, r), the Pattern Optimizer needs to esti-

mate the cost of queries, along with the number of rows they will return. Estimates are needed not
only for queries that we have observed during the training period, but also for composite queries

generated by the Query Rewriter.

For someDBMS products, we can define functions SRV-COST(Q) and SRV-ROWS(Q) that

give the server’s estimate of the cost and cardinality of a query. We could use these functions
to implement EST-COST(Q) and EST-ROWS(Q) regardless of whether we have previously ob-

servedQ. In principle, this approach has several appealing qualities. Unfortunately, it also has
significant limitations. First, theDBMS query optimizer’s cost estimates typically don’t include

communication latency (as these costs are incurred by each of the plans the optimizer consid-
ers). This latency is an important cost that Scalpel seeks tominimize, and it is therefore impor-

tant to have a reasonable estimate of this latency in the sameunits as the cost estimate. Second,
the query optimizer typically does not have the values of host variables when generating a plan,

4.3 ESTIMATING THE COST OF QUERIES 83

and therefore can only give a generalized estimate for any parameter values. In contrast, Scalpel

has observed actual parameter values from the application.If the training period is representative
of run-time, these observed costs will be more accurate thanthe server’s estimates. Finally, the

estimates used by theDBMS are intended only to rank plans in relative order. These estimates of-
ten do not translate well to linear approximations of cost that can be combined with external cal-

ibrated values such as latency.

We have found that, where possible, it is better to estimate the cost of individual queries
by monitoring the execution costs and row counts. We looselyfollow an approach suggested by

Zhu [209] and Rahal, Zhu and Larson [147]. During the training period, the Cost Model ob-
serves for each submitted queryQ the number of rows returned by (AVG-ROWS(Q)) and the av-

erage running time (AVG-COST(Q)). For a queryQ that has been observed during training, we
use the averages as our estimate (Equation 4.1 and Equation 4.2).

EST-COST(Q) ≡ AVG-COST(Q) (4.1)

EST-ROWS(Q) ≡ AVG-ROWS(Q) (4.2)

In addition to estimates for queries observed during training, Scalpel needs estimates for

queries that are generated by the Query Rewriter. We have never observed these combined queries
being executed, so we cannot base estimates on past behaviour. Instead, we use an analytical

model to estimate these cost attributes. This model estimates the parameters of a combined query
using estimates of the components of the query. Further, if aSRV-COST function can be defined,

Scalpel incorporates predictions made by theDBMS so that the Pattern Optimizer can detect op-
portunities where theDBMS chooses a strategy that performs better than the naı̈ve approach.

The Query Rewriter combines queries using two basic constructs: lateral derived tables and

outer unions. We represent these constructs using symbols as follows. QueryQi⊗Qj is the query
formed by using an outer queryQi joined toQj with a lateral derived table as described in Sec-

tion 3.3.2.2. If we are using instead a left outer lateral derived table, we writeQi⊗̂Qj. We use
the notationQi]̂Qj]̂Qk]̂ . . .]̂Qm to represents the outer union of queriesQi, Qj , . . .Qm as de-

scribed in Section 3.3.3.2.

4.3.1 Estimating the Cost of a Lateral Derived Table

Given a combinationQi ⊗ Qj, we would like to produce an estimate EST-COST(Qi ⊗ Qj) and
also EST-ROWS(Qi⊗Qj). Recall that, by the definition of the semantics of lateral derived tables,

the combined result set contains each row ofQi concatenated with the result ofQj evaluated un-
der the outer bindings supplied by that row. A straightforward implementation technique for this

84 COST MODEL

operator is based on nested-loops joins. We use JNL-COST(Qi, Qj) and JNL-ROWS(Qi, Qj) to

estimate the attributes ofQi ⊗Qj using the nested-loops model:

JNL-COST(Qi ⊗Qj) ≡ EST-COST(Qi) + EST-ROWS(Qi)× (EST-COST(Qj)− U0) (4.3)

JNL-ROWS(Qi ⊗Qj) ≡ EST-ROWS(Qi)× EST-ROWS(Qj) (4.4)

Equation 4.3 uses a nested-loops model to estimate the cost of (Qi ⊗Qj) based on estimates

for the component queriesQi andQj. Note that we subtractU0 for the inner because it is not
submitted from the client application, and therefore we assume that we saveU0. The number of

rows in the result is the product of the outer and inner table.To estimate the parameters for a left
outer lateral derived table, we modify the above row count estimate usingmax to account for the

outer join preserving all outer rows as shown in Equation 4.2. We use the same estimate for the
cost of an inner and outer lateral derived table (Equation 4.1). Although there is a difference in

the communication costs for NULL-supplied values, we do notcurrently include estimates for
this difference.

JNL-COST(Qi⊗̂Qj) ≡ JNL-COST(Qi ⊗Qj) (4.5)

JNL-ROWS(Qi⊗̂Qj) ≡ max(JNL-ROWS(Qi ⊗Qj), EST-ROWS(Qi)) (4.6)

We assume that the nested loops cost estimate JNL-COST(Qi⊗̂Qj) provides an upper bound
on the execution time. The nested loops strategy is available to the server, and we assume that

the DBMS query optimizer does not choose a more expensive strategy bymistake. However, the
DBMS may in fact be able to use a more efficient join strategy. We canuse SRV-COST to find such

cases, but the earlier limitations we noted make it difficultto incorporate the results of SRV-COST

directly. Instead, we define a function SRV-SAVINGS (Equation 4.7) that estimates the relative
savings the server predicts for executing two queries usinga better strategy that the naı̈ve nested

loops join.

SRV-SAVINGS(Qi ⊗Qj) =
SRV-COST(Qi ⊗Qj)

SRV-COST(Qi) + SRV-ROWS(Qi)× SRV-COST(Qj)
(4.7)

The value SRV-SAVINGS(Qi ⊗ Qj) is the ratio of the server’s estimated cost for joiningQi

andQj to the cost of performing a nested loops join when we use the server’s cost estimates in-

stead of Scalpel’s predictions. The value of SRV-SAVINGS(Qi⊗Qj) is close to 1 when the server
chooses a straightforward nested loops strategy (or one with a similar cost). If the server discov-

ers a better strategy (for example, by finding a better join algorithm or by exploiting shared subex-
pressions as suggested by Sellis [160]), the ratio SRV-SAVINGS(Qi ⊗Qj) will be less than 1.

4.3 ESTIMATING THE COST OF QUERIES 85

Equation 4.7 gives the relative benefit estimated by theDBMS query optimizer for combining

the outer and inner query into one request. This quantity will vary between 0 and 1, with 1 mean-
ing there is no benefit to the server and values close to 0 meaning that there is substantial benefit.

If we maintained separate cost components in a vector, we would apply the SRV-SAVINGS multi-
plier to the server cost component of EST-COST. As we represent cost as a scalar representing a

combination of server, communication, and client costs, itis not possible to apply the reduction
only to the server components. Instead, we apply the reduction to the entire estimated cost. We

use a configuration parameterK with 0 ≤ K ≤ 1 to form a weighted average between Scalpel’s
unmodified prediction (JNL-COST(Qi ⊗ Qj)) and using the full effect of the estimated savings

(SRV-SAVINGS(Qi, Qj) × JNL-COST(Qi ⊗ Qj)). With a K value near 0, we pay little atten-
tion to the server’s predicted savings; near 1, we apply mostof the effect of the savings. Equa-
tions 4.10 shows how we define the weighted average. One complication is the cost ofU0. The

savings in server cost resulting from combiningQi andQj into one query does not reduce the
per-request overheadU0. Therefore, we remove this quantity before forming the weighted aver-

age.

J = JNL-COST(Qi ⊗Qj)− U0 (4.8)

S = SRV-SAVINGS(Qi ⊗Qj) (4.9)

EST-COST(Qi⊗Qj) ≡ KSJ + (1−K)J + U0 (4.10)

The estimate provided by EST-COST(Qi ⊗ Qj) is a blending of estimates from theDBMS

query optimizer and an estimate Scalpel makes assuming a nested loops strategy. TheK parame-

ter controls how much credence is given to the server’s estimates.

4.3.2 Estimating the Cost of an Outer Union

The queryQi]̂Qj]̂Qk]̂ . . .]̂Qm represents an outer union. The result will have atype col-
umn, and a distinct set of columns for each branch of the union. The number of columns in the

result of each query affects the overall cost due to the introduction ofNULL values. Section 3.6.3
provided results exploring the effects of increasing the number of columns involved in an outer

union. The costs do increase with an increasing number of columns, but this increase is relatively
insignificant when considering the other errors present in the cost estimation. Therefore, we elect

to ignore this parameter, and we estimate the cost ofQi]̂Qj]̂Qk]̂ . . .]̂Qm to be the same as the
(inner) unionQi]Qj]Qk] . . .]Qm. We compute this pairwise as follows:

86 COST MODEL

EST-COST(Qi]Qj) ≡ EST-COST(Qi) + EST-COST(Qj)− U0 (4.11)

EST-ROWS(Qi]Qj) ≡ EST-ROWS(Qi) + EST-ROWS(Qj) (4.12)

As with lateral derived tables, we could consider using the estimates from theDBMS opti-
mizer to reduce this cost estimate in cases where theDBMS is able to do something clever, such as

exploiting common sub-expressions in the combined query. This approach would allow Scalpel
to favour combining queries when multi-query optimizations make it favourable, but a naı̈ve im-

plementation does not. At present, we do not include this complication as theDBMS products we
tested do not appear to exploit such opportunities.

4.4 Summary of Cost Model

The Pattern Optimizer needs to rank alternative execution strategies based on estimates of their

cost. The Cost Model uses a combination of explicit calibration, measurements of queries dur-
ing training, andDBMS-provided support routines to estimate the cost parametersneeded by the

Pattern Optimizer.

When estimating the cost of a query that was submitted by the client application, Scalpel uses

measurements of the run-time during the training period. Inprinciple, we could use server sup-
port routines, but we have found that such an approach omits estimates for quantities such com-

munication costs that are important to Scalpel but not important to theDBMS.

We cannot use prior behaviour to estimate the cost attributes of the queries generated by the
Query Rewriter. Instead, we estimate the cost of these queries by considering the operations that

we used to generate them, namely lateral derived tables and outer unions. An upper bound for the
cost of a lateral derived table can be found using the traditional formula for nested loops joins

(augmented to account for the reduction inU0). This estimate will be too high in the case that the
DBMS is able to choose a better join strategy. We use a function SRV-COST if it is available to de-

fine SRV-SAVINGS, an estimate of the relative savings achieved by combining the queries that
were separate in the application into a single join. We use SRV-SAVINGS to reduce our nested-
loops cost. This reduction applies to all elements of the cost, including client, server, and commu-

nication cost; the reduction should only be applied to the server component, but we do not have
access to this separate value, although we do avoid applyingthe reduction toU0. We use a con-

figuration parameterK to control the weight we give to the estimates provided by theDBMS.

The Query Rewriter also combines queries using outer union operations. At present, Scalpel

ignores the cost of supplying redundantNULL values in outer unions. This cost is non-zero, but
our experiments show that it is relatively insignificant compared to both other cost attributes and

4.4 SUMMARY OF COST MODEL 87

the quite high errors associated with other estimates. Withthis change, we estimate the cost of

outer unions as we would for (inner) unions. While it is possible to define a SRV-SAVINGS ad-
justment for unions, we did not do so because we have found that the DBMS products we study

do not exploit opportunities in this case.

The Cost Model is used by Scalpel’s Pattern Optimizer to rankvarious strategies based on an
estimate of the total latency associated with each strategy. While the estimates contain inaccuracy
due to sampling error and approximations, this approach allows the Pattern Optimizer to select a

strategy that we can expect to perform well relative to the rejected strategies.

5 Batch Request Patterns

Chapter 3 described how Scalpel can detect and optimize nested patterns within requests submit-
ted by an application to the database server. While nesting patterns offer substantial opportuni-
ties for improvement, they occur relatively infrequently in the database applications that we stud-

ied. In these applications, we found that there are sequences of queries which allow us to predict
the most likely queries that will be submitted in the future.We call these sequences of queries

batches. By identifying batches, Scalpel can prefetch future queries before they are submitted, re-
ducing the overhead associated with per-request overhead.This reduction in overhead results in

a reduced response time for users, and also can lead to lower execution costs.

Figure 1.5 (page 4) shows function BATCH-EXAMPLE, an example of a function that gener-
ates a batch of requests. After queryQ3 is submitted, queryQ4 is submitted if a local predicate

is TRUE (line 25). If we could recognize this pattern and find thatQ4 is submitted sufficiently of-
ten followingQ3, then we could prefetch the results forQ4 when we recognize queryQ3. When

Q3 is submitted, we would instead send a modified queryQ3;4 that generates the results required
for both queries.

If we prefetch the results forQ4 and the application subsequently submits it, we would save

the latency associated with one database request,U0. This type of savings is less than we achieved
with the nesting rewrites, where we can save several or even hundreds of times the per-request la-
tency. However, these batch patterns occur frequently in the client applications we investigated.

Rewriting these batch patterns can also save a significant amount of exposed latency, and can even
reduce server costs due to the smaller number of messages that are interpreted and formatted.

It may be the case that the local predicate evaluates to FALSE andQ5 is submitted instead of

Q4; then, we have wasted the work of evaluating results forQ4 in the combined queryQ3;4. We
need to predict the probability thatQ4 will follow Q3 and weigh this against the cost ofQ4 to

decide whether it is worthwhile prefetching the results forQ4 because the expected savings are
greater than the expected increase in cost due to wasted prefetching.

In order to make decisions about what queries to prefetch, weneed to predict the sequence of

queries that can follow a given request, and also have an estimate of both the cost of each request
and the likelihood that it will be executed. This information is not enough, though, to prefetch

the results of future queries. As with nested request patterns, queries are parameterized; in gen-
eral, the actual values used for parameters can depend on theresults of earlier queries. If we are to

89

90 BATCH REQUEST PATTERNS

prefetchQ4 whenQ3 is submitted, we need to be able to predict the actual value used for the for-

mal parameters of the query. In this example, theship id column returned fromQ3 is used as
the actual parameter value when openingQ4. We do not know this quantity whenQ3 is opened,

so we cannot supply it as a parameter from the client when we submit the modifiedQ3;4. In-
stead, we use a join to combine queryQ3 andQ4 into one request, where theship id attribute

of Q3 is used in place of the formal parameter ofQ4. In this example, we could use a combined
request such as the one shown in Figure 1.6.

Figure 5.1 shows the components of the Scalpel system that are used to detect, optimize,

rewrite, and prefetch batch request patterns. Scalpel usesthe same system structure to detect
batch request patterns as was used for nested request patterns (Figure 3.1). For ease of exposi-

tion, we have presented nesting and batch patterns separately as if they are implemented in isola-
tion. In fact, the two approaches are combined in our prototype (as described in Chapter 6).

Call Monitor

Cost Model

(Chapter 4)

Pattern Detector

(
Section
5.2)

A Suffix Trie

with Correlations

and Selectivities

Pattern Optimizer

(
Section
5.3)

Query Rewriter

(Section
5.4)

Finite State Model

With Prefetch Choices

Prefetcher

(Section
5.5)

Finite State

Model with

Rewritten

Queries and

Actions

Monitor-Open

Monitor-Fetch

 Monitor-Close

Run-Open

Run-Fetch

Run-Close

a

b
 a

a

b

a

c

a

b

a

c

Figure 5.1: Scalpel components used for batch request patterns. Shaded components are described

in this chapter.

During the training phase (Figure 2.1), the Pattern Detector component (Section 5.2) identi-
fies batch request patterns. These patterns are encoded in a suffix trie data structure, annotated

with probability estimates and predicted correlations between query input parameters and pre-
viously observed values. The suffix trie structure corresponds to the context tree structure used

for nested request patterns. After the training period has completed, the Pattern Optimizer (Sec-
tion 5.3) uses the patterns detected by the Pattern Detectorcomponent to choose prefetches that

will be executed at run-time. The Pattern Optimizer removesthe significant redundancy that is
present in the suffix trie data structure, producing a compact finite state model that contains a

5.1 EXAMPLE OF BATCH PATTERN 91

set of states and edges corresponding to predicted requests. For each edge in the model, the Pat-

tern Optimizer associates a list of anticipated future queries that should be prefetched. The Query
Rewriter (Section 5.4) combines these lists of queries to build a single query that prefetches the

result for the original query and all prefetched queries. These combined queries are stored per-
sistently with the finite state model. At run-time, the Prefetcher (Section 5.5) tracks the current

state within the model and executes the prefetches associated with edges in the tree (selected by
the Pattern Optimizer) using the combined queries generated by the Query Rewriter.

In addition to the sections shown in Figure 5.1, Section 5.1 gives an example program that
generates batches of queries; this example will be used throughout the chapter. Section 5.6 pro-

vides experimental results illustrating the strengths andweaknesses of the various strategies. Fi-
nally, Section 5.7 summarizes the results for batch requestpatterns.

In summary, batch patterns are common in the client applications that we studied. We can re-

duce the latency exposed to users of the application and reduce server costs by recognizing op-
portunities where we can prefetch the results of queries in anticipation of their execution. In or-

der to prefetch effectively, we need to be able to predict a likely sequence of requests that follow
the current request. We need to estimate the probability that each request in the sequence will be

executed; combined with an estimate of the cost of the query and the per-request latency, this al-
lows us to choose whether to prefetch a request. Finally, we need to predict the source of para-
meter values for all prefetched queries. We use these correlation predictions to generate a rewrit-

ten query that fetches not only the results for the immediately requested query, but also the re-
sults for anticipated future queries.

5.1 Example of Batch Pattern

Figure 5.2 shows a subset of a database application that issues a series of small queries to a re-
lational database server. This particular example is a simplified, artificially constructed applica-

tion designed to show particular features of our approach. However, its features are a compos-
ite of some of those that we observed in a set of database applications that we studied (described

in Chapter 8).

The GETCUSTOMER function takes a partially-filled customer structure (cust info) as in-

put, and retrieves additional customer information from the database. It first issues queryQa to
retrieve the customer name and account number. If the application does not already have ship-

ping information for the customer, it calls the GETDEFAULTSHIPTO function to obtain the cus-
tomer’s default shipping address. Finally, the application checks the customer’s outstanding bal-

ance (Qc) and uses that information to determine the available credit.

In addition to the GETCUSTOMER function that retrieves information about customers, Fig-
ure 5.2 contains the GETVENDORORDER function that is used to generate a parts order for a ven-

92 BATCH REQUEST PATTERNS

function GETCUSTOMER(cust_info)369

fetch row r1 from a:370

SELECT name, accno371

FROM customer c372

WHERE c.id = :cust_info.id373

cust_info.name ← r1.name374

if not cust_info.shipto then375

cust_info.shipto ← GETDEFAULTSHIPTO(cust_info)376

fetch row r3 from c:377

SELECT SUM(amount - paid) AS balance378

FROM ar a379

WHERE a.accno = :r1.accno380

cust_info.balance ← r3.balance381

end382

383

function GETDEFAULTSHIPTO(info)384

fetch row r2 from b:385

SELECT addr386

FROM shipto s387

WHERE s.shipid = :info.id AND s.default=‘Y’388

return r2.addr389

end390

391

function GETVENDORORDER(vendor_info)392

fetch row r4 from d:393

SELECT name394

FROM vendor v395

WHERE v.id = :vendor_info.id396

vendor_info.name ← r4.name397

vendor_info.mailto ← GETDEFAULTSHIPTO(vendor_info)398

� Find parts supplied by the vendor that need re-stocking.399

open c5 cursor for e:400

SELECT partname, invlevel - onhand AS qty401

FROM part p402

WHERE p.vendor_id = :vendor_info.id AND p.onhand < p.invlevel403

ORDER BY partname404

while r5 ← fetch c5 do405

ADDORDER(vendor_info, r5.partname, r5.qty)406

close c5407

end408

Figure 5.2: Application generating a query batch.

5.1 EXAMPLE OF BATCH PATTERN 93

Query Input Output Possible Correlations

1 Qx (42) (501) 〈1|C, 42〉
2 Qa (101) (‘Alice’, 501) 〈1|C, 101〉
3 Qb (101) (‘1500 Robie St.’) 〈1|C, 101〉, 〈1|I,-1, 1〉
4 Qc (501) ($400.00) 〈1|C, 501〉, 〈1|O,-2, 2〉, 〈1|O,-3, 2〉
5 Qd (201) (‘Mary’) 〈1|C, 201〉
6 Qb (201) (‘1400 Barrington St.’) 〈1|C, 201〉, 〈1|I,-1, 1〉
7 Qe (201) { (‘Bell’,3), (‘Tire’,6) } 〈1|C, 201〉, 〈1|I,-1, 1〉, 〈1|I,-2, 2〉
8 Qa (121) (‘Bob’, 537) 〈1|C, 121〉
9 Qc (537) ($0.00) 〈1|C, 537〉, 〈1|O,-1, 1〉

10 Qx (43) (31337) 〈1|C, 43〉
11 Qa (107) (‘Cindy’, 523) 〈1|C, 107〉
12 Qb (107) (‘1100 Sackville St.’) 〈1|C, 107〉, 〈1|I,-1, 1〉
13 Qc (523) ($800.00) 〈1|C, 523〉, 〈1|O,-2, 2〉
14 Qy (189) (‘Elbereth’) 〈1|C, 189〉
15 Qd (255) (‘Ned’) 〈1|C, 255〉
16 Qb (255) (‘1200 Weber St.’) 〈1|C, 255〉, 〈1|I,-1, 1〉
17 Qe (255) { (‘Pedal’,7), (‘Seat’,3)} 〈1|C, 255〉, 〈1|I,-1, 1〉, 〈1|I,-2, 1〉
18 Qz (42) (‘Xyzzy’) 〈1|C, 42〉, 〈1|I,-17, 1〉

Figure 5.3: An example trace containing query batches. Eachrow in the table represents a com-
plete query sequence including OPEN,FETCH, and CLOSE. The Query column gives the name of

a query from Figure 5.2, Input gives the values of query parameters, and Output gives the row re-
turned by the FETCH calls. QueryQe returns multiple rows, shown as a set; other queries are

shown with a single tuple. The last column will be explained in Section 5.2.2.3.

dor. Function GETVENDORORDER is passed a partially-filled vendor structure (vendor info)

as input, which it then fills in with additional information fetched from the database. First, it re-
trieves the vendor’s name by submitting queryQd; next, it calls GETDEFAULTSHIPTO to find

the default mailing address for the vendor. Finally GETVENDORORDER builds a list of parts sup-
plied by the vendor that need to be ordered because there are fewer on hand than the desired in-
ventory level.

Figure 5.3 shows a sample trace generated by a program that contains the code in Figure 5.2,

as well as other code that we have not shown. Each row of the trace table in Figure 5.3 represents
a complete query subsequence (OPEN, FETCH, and CLOSE). This sample trace shows examples

94 BATCH REQUEST PATTERNS

of calls to GETCUSTOMER (positions 2-5, 8-9, 11-13) and GETVENDORORDER (positions 5-7,

15-17). In addition, other queries may be submitted from portions of the batch application outside
of the code shown in Figure 5.2. QueriesQx, Qy, andQz are examples of this at trace positions

1,10,14, and 18.

5.2 Pattern Detector

In the sample program of Figure 5.2, queryQb is issued afterQa if the predicate on line 375
is true. If this predicate is true sufficiently often, then itwould be more efficient to prefetch the

results forQb whenQa is submitted by the application. The Pattern Detector monitors the client
application during the training phase to build a model that is used by the Pattern Optimizer to

make prefetching decisions. Figure 5.4 shows the structureof the Pattern Detector used for batch
request patterns.

Call Monitor

Pattern Detector
(
Section
5.2)

Model of Client

(Section 5.2.1)

Pattern Optimizer

(
Section
5.3)

Monitor-Open

Monitor-Fetch

 Monitor-Close

a

b

a

c

c
b
 abc$

bc$

c$

Suffix Trie

(Section 5.2.2)

Path Compressed Suffix Trie

(Section 5.2.3)

5.2.2.1
 n.children

5.2.2.2
 n.count

5.2.2.3
n.correlations

5.2.3.1
Children(n)

5.2.3.2
Count-Occurrences(n)

5.2.3.3
Correlations(n)

Figure 5.4: Overview of the Pattern Detector.

In order to make effective prefetching decisions, we need topredict the probability of future

requests based on the history of requests we have observed. Section 5.2.1 describes how we can
construct a model of a request stream that will allow us to estimate the probability of future re-

5.2 PATTERN DETECTOR 95

quests. In particular, Section 5.2.1 describes the order-k model, which usesk previous requests

to predict the next request.

As we will see, it is difficult to choose an appropriatek value before training commences. In-

stead of choosing a particulark value, Scalpel builds a trie-based data structure that contains
all order-k models that can be built for a trace. After the training is over, the Pattern Optimizer

can use this data structure to select a locally goodk value for different portions of the trie. Sec-
tion 5.2.2 describes this suffix trie data structure. Section 5.2.2.1 describes how Scalpel builds the
structure, and Section 5.2.2.2 shows how Scalpel uses the structure to estimate the probability of

future requests. In addition to probabilities, the suffix trie structure is used to maintain informa-
tion about correlations that have always held during the training period. This correlation detec-

tion is described in Section 5.2.2.3.

The suffix trie described in Section 5.2.2 requires quadratic space and time. More efficient lin-

ear algorithms have been available for some time [80, 132, 180, 191]. In particular, Ukkonen [180]
provides a novel approach that builds a space-efficient suffix trie on-line as requests are observed.

In Section 5.2.3, we show how this algorithm can be extended for our purposes. Section 5.2.3.1
shows how this compressed trie can be used to provide counts for probability estimation. Sec-
tion 5.2.3.2 demonstrates how the compressed trie data structure can be used maintain the corre-

lation information needed to make the rewrites needed for prefetching without disturbing the line
space/time bound.

Finally, Section 5.2.4 summarizes the Pattern Detector anddescribes how it passes informa-
tion to the Pattern Optimizer (Section 5.3).

5.2.1 Models of Request Streams

We can consider the client application and its inputs to be astochastic processwith an unknown
structure. If we use the sequence trace notation described in Section 2.3, then each trace of re-

quests is a sequence of queries (ignoring for now the detailsof OPEN, FETCH, CLOSE used for
each query). Each query in this trace is associated with arandom variableXi. We useΣ as the

set of all possible queries, soXi ∈ Σ. The stochastic process is characterized by the joint proba-
bility mass functions shown in Equation 5.1.

p(x1x2 . . . xn) = Pr{X1 = x1,X2 = x2, . . . ,Xn = xn} n = 0, 1, 2, . . . (5.1)

Equation 5.1 defines an infinite set of joint probability massfunctions, each associated with

n, the length of strings described by the function. The functionp(x1x2 . . . xn) gives the probabil-
ity that a request trace generated by the client applicationwill begin with the specific sequence of

96 BATCH REQUEST PATTERNS

requestsx1x2 . . . xn. The joint probability mass functions are related by the rules shown in Equa-

tion 5.2 and Equation 5.3.

p(ε) = 1 (5.2)

∀σ ∈ Σ∗ p(σ) =
∑

a∈Σ

p(σa) (5.3)

For prefetching, we are particularly interested in the conditional probabilityp(a|x1x2 . . . xn)

defined in Equation 5.4.

p(a|x1x2 . . . xn) =
p(x1x2 . . . xna)

p(x1x2 . . . xn)
(5.4)

This conditional probability gives the probability that the querya will be submitted after observ-
ing the query sequencex1x2 . . . xn. This conditional probability is exactly the quantity thatwe

need to decide if it is worthwhile to prefetch requesta after observing the sequencex1x2 . . . xn.

The probability distribution of the stochastic process associated with the client application is
not available to Scalpel directly; instead, Scalpel buildsa modelof the request source based on

observations of sequences of requests the application generates during the training period. This
model approximates the conditional probability function based on the training. In order to explain

how Scalpel models the client application, we begin with a restricted class of models, the class of
order-k models.

5.2.1.1 Order-k Models

A stochastic process can have a special structure where eachrandom variableXn depends only

on thek preceding variables, and is conditionally independent of all preceding random variables.
In this case, we say the stochastic process is order-k.

DEFINITION 5.1 (ORDER-k STOCHASTIC PROCESS)

A discrete stochastic process is said to be order-k if Equation 5.5 holds for alln = 1, 2, . . . and
for all xi ∈ Σ :

Pr{Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1}
= Pr{Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,Xn−k+1 = xn−k+1}

(5.5)

For an order-k stochastic process, the probability that the next query isa depends only on

the k previous requests. We can build a graph-based model of an order-k stochastic process as
follows.

5.2 PATTERN DETECTOR 97

DEFINITION 5.2 (ORDER-k MODEL)

Let Σ be the set of all possible queries extended with#, an out-of-band value. LetS = Σk be
a set of states, andδ be a transition function defined byδ(x1x2 . . . xk, a) = x2 . . . xka. That is,

δ(x1x2 . . . xk, a) is the state associated with the string formed by the concatenation of the last
k − 1 queries of the previous state followed bya. Let s0 = #k be the initial state and let̂p(xi|s)
be a conditional probability mass function giving the estimated probability of observingxi when
in states ∈ S. Then,M = 〈S,Σ, δ, s0, p̂〉 is an order-k model of request sequences.

An order-k states ∈ S = Σk is a string ofk queries. We say that the model is in states after
observing a tracet = rs that begins with any stringr and ends withs. When processing a trace

from the beginning, there arek − 1 queries observed before we enter a ‘real’ state. These are
handled by padding the trace on the left withk copies of an out-of-band value#.

Figure 5.5 shows the order-k contexts that we observe in the trace of Figure 5.3 (k between 0

and 5). Nodes in these graphs are labelled with strings of length k representing contexts that we
have observed in the trace. Edges are annotated with the query that leads to transitions between

the contexts, and with a count of how many times the transition was observed. It is important to
note that the nodes shown in Figure 5.5 aresparsein the sense that not all of the states of the

order-k model are shown. Only those states that were actually observed are shown, while the full
model containsΣk states.

Figure 5.5 suggests how we can definep̂(xi|s), the estimated probability that queryxi will
be submitted when the model is in states. If we maintain a count COUNT-OCCURRENCES(σ, t)

of how many times stringσ occurred in tracet, then we can estimatêp(xi|s) as shown in Equa-
tion 5.6:

p̂(xi|s) =
COUNT-OCCURRENCES(sxi)

COUNT-OCCURRENCES(s)
(5.6)

That is, we estimate the probability that queryxi will be submitted when the model is in states

based on the proportion of times in the training period that we observedxi submitted when the
model was in states.

The order-0 model has a single context,ε. This model does not consider any previous re-
quests, and it estimates the probability that the next request will be xi based on the relative fre-
quency ofxi in the training period. For example, querya was observed 3 times in the trace of

length 18, givingp̂(a|ε) = 1
6 . In contrast, query‘b’ was observed 4 times, givinĝp(b|ε) = 2

9 .
There may be specialized situations where an order-0 model is helpful for prefetching. In gen-

eral, we need to consider longer contexts in order to make more specific predictions.

In the order-1 model, context‘b’ is observed 4 times, followed 2 times by a‘c’ and 2 times

by‘e’. This givesp̂(c|b) = 0.5 andp̂(e|b) = 0.5. In contrast, the order-2 model has two distinct
contexts‘ab’ and‘db’. Context‘ab’ is observed 2 times and followed each time by‘c’,

98 BATCH REQUEST PATTERNS

#
 x
x,1

a

a,2

b
b,2

c,1

x,1

d

d,1

c,2

y

y,1

d,1

b,2

c

e

e,2

a,1
 z

z,1

##

#x

x,1

xa

a,1

ab

b,2

bc

c,2

cd

d,1

db

b,1

cy

y,1

yd

d,1

b,1
be

e,2

ez

z,1

ea

a,1

ac

c,1

cx

x,1

a,1

###
 ##x
 #xa
 xab
 abc

bcd

bcy

x,1
 a,1
 b,1
 c,2
 y,1

d,1

cyd
cdb

ydb
dbe

b,1

e,1

d,1

b,1

e,1

bez

z,1
bea

a,1

eac

c,1

acx

x,1

cxa

a,1
 a,1

a,3
b,4

c,3

d,2

e,2

x,2

y,1

z,1

####
 ###x
 ##xa
 #xab
 xabc

abcy

x,1
 a,1
 b,1
 c,1

abcd

d,1

y,1

bcdb

cdbe
dbea
beac

eacx

acxa

cxab

bcyd

cydb

ydbe

dbez

d,1

b,1

e,1

z,1

b,1

e,1

a,1

c,1

x,1

a,1

b,1
 c,1

#####
 ####x
 ###xa
 ##xab
 #xabc
 #abcd
 abcdb

cxabc
 acxab
 eacxa
 beacx
 dbeac
 cdbea
 bcdbe

xabcy
 abcyd
 bcydb
 cydbe
 ydbez

x,1
 a,1
 b,1
 c,1
 d,1
 b,1

e,1
a,1
c,1
x,1
a,1
b,1
c,1

d,1
y,1
 b,1
 e,1
 z,1

k
= 0

k
= 1

k
= 2

k
= 3

k
= 4

k
= 5

Figure 5.5: Order-k models for trace of Figure 5.3:xabcdbeacxabcydbez. Edges are

labelled with the query subscript that causes the transition between contexts (nodes) and with a
count of how many times that transition was observed in the sample trace.

5.2 PATTERN DETECTOR 99

and‘db’ is also observed 2 times and followed each time by‘e’. This givesp̂(c|ab) = 1.0 and

p̂(e|db) = 1.0. It appears that the order-2 model is better than the order-1and order-0, at least for
predicting the request that will followQb. This raises the question of how we should choose an

appropriate context lengthk.

5.2.1.2 Choosing a Context Length

We might assume that larger contexts provide better predictions. With a sufficiently long training

period, this is true (with the ‘sufficiently’ depending onk, being at leastO(|Σ|k)). However, the
largerk value means that individual contexts are observed less frequently in a trace of finite size.

This low frequency is most obvious for those contexts that did not occur at all in the training
period: the order-k model can provide no estimate for the probability of future actions in these

missing contexts. For example, consider the sequence‘yab’. This sequence did not occur in the
training period, so an order-3 model cannot make a prediction for the next request. An order-2
model, on the other hand, provides a prediction that the nextrequest will be‘c’; in this case,

that prediction turns out to be correct due to the structure of GETCUSTOMER. For this instance,
an order-2 model is preferable to a model of order 3 or higher. This problem can also occur when

predicting the probability of a queryxi that has never been observed when the model was in state
s, even ifs has been observed during training.

The difficulty of providing a probability estimate for a situation that has not previously oc-
curred has long been recognized as an issue of philosophicaland practical importance. Hume [96]
noted that there is no rational basis for using empirical observations of the past to make predic-

tions of future conditions that do not match what we have measured, and Kant [100] expanded on
this topic in hisCritique of Pure Reason. In practice, we may need to assign a specific probabil-

ity to events that have not previously been observed (even though there is no purely rational basis
for making such an assignment). This problem affects fields such as data compression and infor-

mation theory, where it is usually known as thezero frequency problem. Bell, Cleary and Wit-
ten [16] provide a description of the problem as it applies tothe data compression field and Wit-

ten and Bell [195] summarize solutions that have been applied for data compression. In arith-
metic compression, a non-zero probability must be selectedfor every possible symbol; solutions

to the zero-frequency problem in this field consist of choosing a specific probability estimate for
each of the symbols that may occur next. In contrast to the compression field, the specific proba-
bility values are not important to Scalpel. When we have not observed a situation during our train-

ing period, Scalpel can merely select to not prefetch in thatcase, without deciding on any partic-
ular probability estimate for any unobserved contexts.

The problem of low frequencies is most obvious when we have not observed a context at all
during a trace; however, even when we do observe a context, itis likely that we observe it less fre-

100 BATCH REQUEST PATTERNS

quently in a model with higher orderk. For the contexts that we have observed, we are less con-

fident in the inferences provided by the context. For example, consider a trace ending in‘cdb’.
In an order-2 context, we have observed‘db’ two times, and both times it was followed by‘e’.

This givesp̂(e|db) = 1. In an order-3 context, we have observed‘cdb’ only one time, again fol-
lowed by‘e’. This result also giveŝp(e|cdb) = 1. Both the order-2 and order-3 have the same

estimate for the probability of the next request being‘e’, but we might have more confidence
in the order-2 prediction as it has been tested one more time.The difference for this short sam-

ple trace is slight, but we can imagine much longer cases where an order-k1 model makes a pre-
diction based on 1000 observations while an order-k2 model has only one relevant observation

to form a prediction. In a very real sense, we have less confidence in the prediction made by the
order-k2 model. We can formalize this doubt using aconfidence intervalfor the predicted proba-
bility p̂(xi|s).

DEFINITION 5.3 (CONFIDENCE INTERVAL FOR p(xi|s))
Let n be the count of times that states was observed during training, andX be the count of how
many timesxi was observed when the trace was in states. Let α be a pre-specified significance

level, and letκ = zα/2 be the100(1−α/2)-th percentile of the standard normal distribution. Let
p̂(xi|s) = X/n. Let ñ = n + κ2 andX̃ = X + κ2/2. Let p̃ = X̃/ñ. We estimatep(xi|s) as

p̂(xi|s) and use the following confidence interval:

CI = CONFIDENCE-INTERVAL (X,N) = p̃ ± κ

√

p̃(1− p̃)

ñ
(5.7)

The confidence intervalCI is based on a proposal by Agresti and Coull [6]. The interval is not
centered about̂p (although it does containŝp). Instead, it is centered about a pointp̃ that is closer

to 0.5; the movement toward the center reduces with increasingn. For example, with a 95% con-
fidence interval, we haveκ = 1.96. For the order-3 prediction of̂p(e|cdb), this gives an interval

CI = [0.17, 1.04]. The order-2 prediction is slightly better atCI = [0.29, 1.05] and our hypo-
thetical example with a longer trace giving 1000 observations is tightened toCI = [0.995, 1.001].

The definition of intervalCI may include values that are greater than 1 or less than 0. The Agresti-
Coull definition that we use above is conservative in that it gives intervals that are wider than the

Wilson intervals [194] they approximate, but we prefer thisdefinition due to its simplicity. Ap-
pendix A provides more background on this choice of interval.

When making a decision about prefetching request‘e’, we must consider the confidence in-
terval, the payoff if we guess correctly, and the penalty forguessing wrong. This topic is explored

further in Section 5.3.

If k is too small, Scalpel may miss valuable special cases and parameter correlations. On the
other hand, unnecessarily large values ofk can lead to overly specific predictions. With longer

5.2 PATTERN DETECTOR 101

contexts, each specific context will only be observed infrequently. Therefore, much longer train-

ing periods are needed to avoid missing predictions or excessively wide confidence intervals
Clearly there is some relationship between the number of states in the ‘true’ model of the appli-

cation and the choice ofk that will give the best predictions. However, the stochastic process as-
sociated with the client application is is not available to Scalpel, and it can therefore not be used

to select an appropriatek value.

For these reasons, Scalpel defers choosing context lengthsuntil the end of its training period,
at which point it needs to make effective prefetching decisions. During training, Scalpel builds a

trie-based data structure to capture all of the relevant information about the training trace ofn re-
quests for all possible context lengths0 ≤ k < n. After training is complete, the Pattern Opti-

mizer uses the trie to select contexts that are sufficiently long to provide predictions of parameter
correlations and predicate selectivity, but as short as possible in order to be generally applicable.

Scalpel may choose a different context length for each individual prefetching rule. The result-
ing model is no longer an order-k model, as individual states may correspond to different context
lengths. We use a more general finite-state model to represent the results of the optimization.

5.2.1.3 Finite State Models

The class of finite state models is an extension of the class oforder-k models to a setting where
the states in the model do not need to be identified with any particular string of queries.

DEFINITION 5.4 (FINITE STATE MODEL)
A finite-state model(FSM)M of requests is a five-tupleM = 〈S,Σ, δ, s0, p̂〉, whereS is a finite

set of states,Σ is the set of all possible queries,δ : S × Σ 7→ S is a transition function, ands0

is an initial state. The function̂p : S × Σ 7→ [0, 1] is an estimated conditional probability mass

function wherêp(xi|s) estimates the probability of observing requestxi ∈ Σ when the model is
in states ∈ S.

Scalpel’s Pattern Optimizer generates a finite state model,with edges in the model anno-
tated with prefetch actions that the Prefetcher should apply. The Prefetcher also uses a finite state

model to track the current state at run-time and execute the selected prefetch activities.

5.2.1.4 Summary of Request Models

We consider a client application to be a stochastic process.At each positioni in its request se-

quence, we have a random variableXi. We are particularly interested in predicting the proba-
bility that the next request will be a particular queryxi, in order to assess whether it is worth-

while prefetchingxi. The stochastic process has an associated probability distribution Pr{X1 =

x1,X2 = x2, . . . ,Xi−1 = xi−1} that assigns a probability to every sequence of requests. Ifwe

102 BATCH REQUEST PATTERNS

knew this distribution, we could estimate the probability that the next request isxi based on the

conditional probability mass functionp(xi|x1x2 . . . xi−1).

The probability distributionPr is not known to Scalpel, so we build a model during a
training period. We use this model to estimate the conditional probability mass function as

p̂(xi|x1x2 . . . xi−1). Scalpel bases its model on a class called order-k models. These predict the
probability of the next query based only on the previousk queries.

There does not appear to be a good reason to select any particular k value. Choosing ak that
is too small risks missing important special cases, while largek values require long training pe-

riods in order to make useful predictions. Instead of selecting a singlek value, Scalpel maintains
information that constructs order-k models for allk values in parallel. At optimization time, an

appropriate context length is selected for each prefetch decision. This choice is guided by a con-
sideration of the expected benefits of the prefetch (if it is correct), the costs (if it is mistaken),

and a confidence interval for the prediction that is constructed in a way that controls the num-
ber of mistakes we expect Scalpel to make.

In order to construct all order-k models in parallel, Scalpel builds a suffix-trie data structure.
This suffix trie encodes all of the statistical information that Scalpel needs to build the order-k

models.

5.2.2 Suffix Trie Detection

A suffix triefor a stringT of lengthm is atrie data structure [73] that contains the set ofm words
that are suffixes ofT .

DEFINITION 5.5 (SUFFIX TRIE)
A suffix trie τ for stringT of lengthm is a rooted, directed tree with exactlym leaves. Each edge

in the tree is labelled with a character fromT , and no two edges out of a node have the same
label. Every noden is identified by the string corresponding to the edge labels on the path from

the root ton. The string of each leafLi is equal to the suffixT [i..m] of stringT .

Figure 5.6 provides an algorithm that builds a suffix trie data structure as queries are submit-
ted. If we use the sequence trace notation described in Section 2.3, then each query is considered

to be a character in the sequenceT of requests contained in the trie.

When the client application submits an OPEN(Q,parmvals) request, the Call Monitor

component intercepts the call and passes the correspondingqueryQ and input parameter value
list to MONITOR-OPEN. Similarly, when the application calls FETCH() to return a row from

the query result, the Call Monitor invokes MONITOR-FETCH, passing it a copy of the returned
row. Scalpel records the input parameters in the OPEN call and output parameters returned by

the FETCH call in order to perform correlation detection (as we did when recognizing nested re-
quest patterns). This correlation detection is described in Section 5.2.2.3.

5.2 PATTERN DETECTOR 103

Figure 5.7 shows the suffix trie built after the each of the first few queries of Figure 5.3 have

been submitted. Nodes in the trie represent the contexts that have been observed within the trace,
and are labelled with unique identifiers. Edges are labelledwith the subscripts of queries from

the trace. Each node represents the context consisting of the queries labelled on the path from the
root to that node. Thus, node 1 represents the context‘a’ while node 2 represents the context

‘ab’. The root node, labelledΛ, represents the single context of lengthk = 0. Each node has a
suffix link, which is shown with a dashed link in Figure 5.7. Suffix links represent context gen-

eralization. For example, the suffix link for node 2, which represents the context‘ab’, points to
node 3, which represents the more general context‘b’. Figure 5.8 shows the suffix trie built for

the entire trace of Figure 5.3. We have left the suffix links out of Figure 5.8 to reduce clutter. Fig-
ure 5.8 contains$ characters; the purpose of these is described next in Section 5.2.2.1.

5.2.2.1 Implicit Suffix Tries

The algorithm in Figure 5.6 builds animplicit suffix trie. The tree does not necessarily contain

a leaf for every suffix of the trace as required by Definition 5.5. For example, in Figure 5.7 (e)
we have observed a string of length 6, but there are only 5 leaves in the trie. The problem is that
there is a suffix,‘b’, of the observed trace that is a prefix of another suffix (‘bcdb’). If we

wish to convert an implicit suffix trie into an explicit suffixtrie, we do so by adding anout-of-

band characterto the end of the observed trace. This character (represented as$ in keeping with

convention) does not appear elsewhere in the trace so it avoids this prefix problem.

The implicit suffix trie captures all of the information observed during training. In princi-

ple, it would be possible to define all of our algorithms to work with this implicit structure. How-
ever, we require explicit suffix trees to implement pattern detection efficiently (discussed further
in Section 5.2.3). For consistency, we use explicit suffix tries in the sequel. We add an out-of-band

character at the end of a trace to ensure this property.

5.2.2.2 Estimating the Probability of a Future Request

If noden is identified by a string of lengthk, then we say thatn is of orderk. The order-k nodes
of the suffix trie correspond to the nodes in the order-k models defined in Section 5.2.1.1. For

example, node 6 of Figure 5.7 corresponds to context‘b’ while node 9 corresponds to‘bc’.

In the order-k models shown in Figure 5.5, edges are annotated with the number of times

that the associated request was observed following the context of the node. These counts can be
used to estimate the future probability of observing the request when in the context. We maintain

similar information in the suffix trie by updating acount field on line 436. This count allows
Scalpel to estimate the probability of future requests.

104 BATCH REQUEST PATTERNS

structure NODE409

count=0410

parent=NIL411

suffix=NIL412

lastIn[i]=NIL � Last input param values413

lastOut[j]=NIL � Last fetched row414

correlations=∅ � Set of possible correlations415

end416

417

� Record query Q, with input parameter values InVals, in suffixtrie T418

procedure MONITOR-OPEN(T, Q, InVals)419

� start with node of longest suffix in T420

curr ← LONGESTSUFFIX(T)421

lastnewchild ← NIL422

while curr 6= NIL do423

n ← FindChild(curr, Q) � get query Q child of curr424

if n = NIL then425

n ← NEW-CHILD(T, curr, Q) � make new Q child of curr in T426

n.parent ← curr427

n.correlations ← FIND-CORRELATIONS(n, InVals)428

newchild ← n429

else430

VERIFY-CORRELATIONS(n, InVals)431

newchild ← NIL432

if lastnewchild 6= NIL then lastnewchild.suffix ← n433

lastnewchild ← newchild434

n.lastIn ← InVals435

n.count ← n.count + 1436

prev ← n437

curr ← curr.suffix438

� The suffix of the last new node is the root439

if lastnewchild 6= NIL then lastnewchild.suffix ← GetRoot(T)440

end441

442

procedure MONITOR-FETCH(T, fetchVals) � Record fetched values in trie T443

curr ← LONGESTSUFFIX(T)444

while curr 6= NIL do445

curr.lastOut ← fetchVals446

curr ← curr.suffix447

end448

Figure 5.6: Code to build a suffix trie.

5.2 PATTERN DETECTOR 105

Λ 1x Λ

1
x

2a

3
a

Λ

1

x

2a 4b

3a 5b

6

b

(a)‘x’ (b)‘xa’ (c) ‘xab’

Λ

1

x

2a 4b 7c 11d

3

a

5b 8c 12d

6b 9c 13d

10

c

14d

15

d

Λ

1

x

2a 4b 7c 11d 16b

3

a

5b 8c 12d 17b

6b 9c 13d 18b

10

c

14d 19b

15

d

20b

(d)‘xabcd’ (e)‘xabcdb’

Λ

1

x

2a 4b 7c 11d 16b 21e

3

a

5b 8c 12d 17b 22e

6
b

9
c

13d 18b 23e

26
e

10

c

14d 19b 24e

15

d

20b 25e

27

e

(f) ‘xabcdbe’

Figure 5.7: Suffix trie after first 7 queries in trace. A diamond represents the longest suffix within

the trie.

106 BATCH REQUEST PATTERNS

a
b

c
d

b e a c x a b c y d b e z $

y
d b e z $

c
x a b c y d b e z $

b

c

d
b e a c x a b c y d b e z $

y
d b e z $

e
a

c x a b c y d b e z $

z
$

d b e
a

c x a b c y d b e z $

z
$

c
d

b e a c x a b c y d b e z $

x a b c y d b e z $
y

d b e z $

e
a

c x a b c y d b e z $

z
$

x a b c d
b e a c x a b c y d b e z $

y
d b e z $

y d b e z $

z $

Figure 5.8: Suffix trie for trace of Figure 5.3. Suffix links are omitted.

LEMMA 5.6 (CONTEXT FREQUENCY IS MEASURED BY THECOUNT FIELD)
Let w be a string associated with a node in the implicit trie for string T of lengthm. Thecount

field of the node associated withw gives the count of the number of occurrences of wordw in T .

PROOF. Lety be the prefix ofw anda the last character ofw so thatw = ya. For each instance

of w in T, MONITOR-OPEN is invoked witha after processingαy for some stringα of length
l. The LONGESTSUFFIX function returns the node associated withαy, and the MONITOR-OPEN

procedure visits each suffixα[1..l]y, α[2..l]y, . . .α[l..l]y, eventually reaching nodey. Either it
finds a pre-existing nodeya = w and increments itscount field, or it creates a new node and

5.2 PATTERN DETECTOR 107

initializescount to 1. The only way to reach line 436 with nodew is after findingw as thea

child of y whenαy was the result of LONGESTSUFFIX for someα. Therefore, thecount of w

is updated exactly once for every occurrence ofw in T , which is the desired property. �

Lemma 5.6 tells us that thecount field of nodew counts how many timesw is observed in

the traceT observed during the training period. We can estimate the probability of observing a
requesta after a sequencew by considering the ratio of thecount of wa andw.

5.2.2.3 Tracking Parameter Correlations

The suffix trie structure that we have described so far can be used to predict the likelihood of fu-

ture requests. In addition to this probabilistic information, we must be able to predict the actual
parameter values that would be used if the request were submitted. In addition to structural infor-

mation, Scalpel maintains information about parameter correlations.

We use an approach similar to the one we used for nested request patterns (Section 3.2.2).

We record the values of input and output parameters in the suffix trie data structure, and look
for correlations that have always held throughout the trace. In Section 3.2.2, we considered three

possible predictors of future actual parameter values. We consider these same three predictors
for batch query patterns; however, we consider previous queries that have already been closed

instead of the currently open outer queries.

Constants (‘C’) If a query parameter is always supplied with the same value inevery instance of

a query within our training period, we may conclude that the parameter is a “variable that
won’t”.1

Input Parameters (‘I’) A query parameterpi may always have the same value as a parameterpj

of some previously submitted query. For example, in Figure 5.2, thevendor info.id

parameter of queryQe on line 404 is always equal to thevendor info.id parameter of
queryQd on line 396. At run-time, after observingQd, we can predict the value that will

be used for the parameter ofQe.

Output Parameters (‘O’) An input parameter may instead be correlated to a value returned by a

previous query. For example, ther1.accno parameter ofQc (line 380) is always equal
to the second column of the precedingQa (line 373). At run-time, we can use the results of

the previous query to predict the value used in a future request.

Recall that for nested request patterns, we maintained ascope field for each node in the
context tree. This scope listed a set of correlation source objects that were possible predictors of

1 From Osborn’s Law: “Variables won’t, constants aren’t”, Don Osborn

108 BATCH REQUEST PATTERNS

structure CORRELATION449

inparam=? � The input parameter predicted by this object450

type=? � The type of correlation: C-constant, I-input, or O-output451

value=NIL � For type C, the constant value452

prevcnt=NIL � For type I or O, the distance to the source query453

param=NIL � For type I or O, the parameter number454

end455

456

� Find possible correlations for node n and input parameter values InVals457

function FIND-CORRELATIONS(n, InVals)458

for i ← 1 to InVals.length do459

prevcnt ← 0460

curr ← n.parent461

corrs ← new CORRELATION(i, C, InVals[i])462

while curr 6= NIL do463

prevcnt ← prevcnt - 1464

for j ← 1 to curr.lastIn.length do465

if InVals[i] = curr.lastIn[j] then466

corrs ← corrs ∪ new CORRELATION(i, I, prevcnt, j)467

for j ← 1 to curr.lastOut.length do468

if InVals[i] = curr.lastOut[j] then469

corrs ← corrs ∪ new CORRELATION(i, O, prevcnt, j)470

curr ← curr.parent471

return corrs472

end473

� Verify correlations for node n and input parameter values InVals474

procedure VERIFY-CORRELATIONS(n, InVals)475

for c ∈ n.correlations do476

if InVals[c.inparam] 6= CURR-VALUE(c) then477

n.correlations ← n.outCorr[i] \ c478

end479

� Find the current value of a correlation source c relative to node n480

function CURR-VALUE(n, c)481

if c.type = C then return c.value482

else483

for prevcnt ← c.prevcnt to 0 do484

n ← n.parent485

if c.type = I then return n.lastIn[c.param]486

else return n.lastOut[c.param]487

end488

Figure 5.9: Code to monitor parameter correlations.

5.2 PATTERN DETECTOR 109

(a)

〈1|C, 42〉x 〈1|C, 101〉a
〈1|C, 101〉

〈1|I,-1, 1〉
b

〈1|C, 501〉

〈1|O,-2, 2〉

〈1|O,-3, 2〉

c 〈1|C, 201〉d

〈1|C, 101〉a
〈1|C, 101〉

〈1|I,-1, 1〉
b

〈1|C, 501〉

〈1|O,-2, 2〉
c 〈1|C, 201〉d

〈1|C, 101〉b 〈1|C, 501〉c 〈1|C, 201〉d

〈1|C, 501〉c 〈1|C, 201〉d

〈1|C, 201〉d

(b)

〈1|C, 42〉x 〈1|C, 101〉a
〈1|C, 101〉

〈1|I,-1, 1〉
b

〈1|C, 501〉

〈1|O,-2, 2〉

〈1|O,-3, 2〉

c 〈1|C, 201〉d 〈1|C, 201〉b

〈1|C, 101〉a
〈1|C, 101〉

〈1|I,-1, 1〉
b

〈1|C, 501〉

〈1|O,-2, 2〉
c 〈1|C, 201〉d 〈1|C, 201〉b

∅b 〈1|C, 501〉c 〈1|C, 201〉d 〈1|C, 201〉b

〈1|C, 501〉c 〈1|C, 201〉d 〈1|C, 201〉b

〈1|C, 201〉d 〈1|C, 201〉b

Figure 5.10: Suffix trie with possible correlations after (a) ‘xabcd’ and (b)‘xabcdb’.

input parameter values. For batch request patterns, the scope for a node in the suffix trie contains
all of the input and output parameters of queries that are ancestors of the node in the trie. In this

way, we allow a node in the trie to represent correlations to any query on a path from the node
to the root. For batch request patterns, we don’t explicitlymaintain thescope field (in order to
allow a linear-space implementation, described in Section5.2.3).

The input parameter values for the most recent instance of a node’s query are recorded

in the lastIn field, and the values returned by the most recent FETCH are recorded in the
lastOut field. Thecorrelations field of a node records possible sources of values that

could be used to predict the value of each input parameter. This field is maintained by the FIND-
CORRELATIONS and VERIFY-CORRELATIONS procedures

Scalpel uses an object of type CORRELATION (line 449) to represent an observed correla-

tion between an input parameter (identified by index ininparam) and a source of values that
may predict actual parameters at run-time. This structure is similar to the structure of the same

name used for nested request patterns (Figure 3.7). In Chapter 6, we describe how the two types
of correlations are maintained in parallel; for now, we present results as if CORRELATION ob-

jects are used only for batch request patterns. For nested request patterns, we recorded the source
of an input or output correlation in thecontext field using a reference to the appropriate con-

110 BATCH REQUEST PATTERNS

text that was the source of values. For batch request patterns, we instead use an integer value in

theprevcnt field. This alternate representation is needed to allow for an efficient implementa-
tion of the suffix trie correlation detection (described in Section 5.2.3.2).

For objects of type ‘I’ and ‘O’, theprevcnt field gives the distance to the preceding query
that contains the value of interest. For example, the immediately preceding query hasprevcnt

of −1, while the query preceding that is recorded as−2. Theparam field of the CORRELATION

object records the parameter number that is predicted to be the source of future actual values. For

CORRELATION objects of type ‘C’, thevalue member records the associated constant value;
theprevcnt andparam fields are unused.

The last column in Figure 5.3 shows the CORRELATION objects that Scalpel finds for each re-
quest in the trace. For example, in position 3 requestQb has input parameters(101). The value

101 matches the first input parameter of the immediately preceding query,Qa. Scalpel there-
fore finds that the first parameter ofQb could be correlated to the constant value 101, recorded as
〈1|C, 101〉. In this representation, the first number (1) is theinparam index of the input para-

meter being predicted, the ‘C’ indicates a correlation to a constant, and 101 is the constant value.
Alternatively, Scalpel also finds the first parameter ofQb could also be correlated to to input pa-

rameter 1 of the immediately preceding query, and this is recorded as〈1|I,-1, 1〉. The first num-
ber (1) again indicates theinparam index, the ‘I’ indicates this is an input parameter correla-

tion, the−1 indicates the source is the immediately preceding query, and the last value indicates
it is the first input parameter of the preceding query we are interested in.

The correlations between the input parameters of a request and previously observed values
depend on the context in which the request is submitted. In the context tree structure used to de-

tect nested request patterns (Section 3.2.2), each node in the tree represented a context. When a
new node was created, we initialized thecorrelations field of the node with a set of corre-

lations that held at that time. Every subsequent time the context was matched during the training
period, we re-checked each of the correlations stored in thecorrelations set, removing any
that no longer held. For batch request patterns, each context is represented by a node in the suffix

trie structure. Thecorrelations field of noden is initialized by FIND-CORRELATIONS with
a set of CORRELATION objects, and this set is re-checked by VERIFY-CORRELATIONSevery time

the context associated with the node is subsequently observed. In this way, thecorrelations
field of a node is maintained with the set of correlations thathave always held when observing

the query leading inton.

Figure 5.10 shows the set of CORRELATION objects maintained for each node after process-

ing (a) ‘xabcd’ and (b)‘xabcdb’. In Figure 5.10 (a), each request has only been seen
one time. As each node is added, MONITOR-OPEN calls FIND-CORRELATIONS (line 428). The

correlations set for each newly created node is based on the parameter values for the cur-
rent request and preceding request values. Because of this,thecorrelations set is the same

5.2 PATTERN DETECTOR 111

for each of the nodes created in response to a single request,except that shorter contexts elimi-

nate some of the correlations that are longer than the context. For example, contexts‘xab’ and
‘ab’ both have their set initialized to{〈1|C, 101〉, 〈1|I,-1, 1〉}, while the set for context‘b’ is

initialized to{〈1|C, 101〉} because there is no preceding query in that context.

The correlation set{〈1|C, 101〉} stored for context‘b’ represents the fact that the first pa-

rameter ofQb hasalwaysbeen equal to the value 101 every time it has been observed so far
in the trace. This gives us a prediction that the parameter will always have this value in the fu-

ture. In this case, the prediction turns out to be false, and Scalpel detects this after observing the
last request in‘xabcdb’. The MONITOR-OPEN function finds that node‘b’ already exists in

the trie, and calls VERIFY-CORRELATIONS (line 431). The result of CURR-VALUE(〈1|C, 101〉)
does not match the current parameter value of 201, so the correlation source is removed as a pos-
sible predictor.

5.2.2.4 Summary of Suffix Trie Detection

At the end of the training period, the suffix trie structure contains a node for every context (of any
lengthk) that was observed during the trace. The contexts contain acount field that is used to

estimate the likelihood of future requests, and they contain acorrelations field that records
correlations that have always held between input parameters and a known value every time that

the context was observed. Scalpel uses this information to select appropriate rewrite rules that
will be used at run-time

LEMMA 5.7 (SUFFIX TRIE BUILDS O(n2) NODES)
A suffix trie τ for stringT of lengthn contains at most1 + n(n + 1)/2 nodes.

PROOF. When processing characteri, we have the longest suffix asT [1..i] of lengthi. Every
iterationk (line 423) movescurr to a suffix nodeT [k..i]. There can be at mosti such suffixes
before we reach the root, so at mosti nodes are added when processing characteri of stringT .

Summing (including the root node), we get:

|T | ≤ 1 +
∑

i←1...n

i = 1 +
n(n + 1)

2
(5.8)

Further, this worst case bound is achievable. Consider the string a1a2 . . . am where each charac-

ter is novel. The FINDCHILD call (line 424) will never find an existing child, soi nodes are added
on each step. �

112 BATCH REQUEST PATTERNS

We can implement GETCHILD in amortizedO(1) time by either using an array of size|Σ|
or a dictionary such as a hash table (using the RAM model). In addition to theO(n2) time and
space needed to build the nodes of the suffix trie, the correlation detection requires additional

space and time. In the worst case, every input parameter is equal to every previous input or output
parameter. This work increases the overall time bound toO(n3m2), wherem is the number of

parameters per query.

5.2.3 A Path Compressed Suffix Trie

For traces of significant size, the asymptotic complexity ofMONITOR-OPEN is likely to be im-
practical. The asymptoticO(n2) bound can be achieved even with small alphabets|Σ| � n. For

example, consider the stringajbj , which gives the implicit suffix trie shown in Figure 5.11(a).

a

a

a
b b b $

b
b b $

b
b b $

b b

b
$

$

$$

a

a

a
bbb$

bbb$

bbb$

b b

b$
$

$$

(a) Suffix trie (b) Path-compressed suffix trie

Figure 5.11: Atomic suffix trie and path-compressed suffix trie for ajbj, j = 3

Figure 5.11(a) provides a suggestion for reducing the overall size of the trie. In Figure 5.11(a),
a number of nodes have only one child, and this was also true inFigure 5.8. We can combine these

branchless nodes, giving apath compressed suffix trieas shown in Figure 5.11(b). Path compres-
sion is a general approach for reducing the size of a trie. It was first introduced by Morrison [136]

as thePatricia treedata structure, and this term is often used in the literatureto describe this type
of structure. In the case of suffix tries, the termsuffix treeis used to indicate a suffix trie which

is encoded with path compression. It would perhaps be betterto following Nilsson and Tikka-
nen [141] and use the term path compressed suffix trie. This term is verbally distinguishable from

suffix trie (according to an editor’s note, Fredkin apparently used “Trie” as a derivation of re-
TRIEval; this would lead to ‘tree’ and ‘trie’ being homonyms). Further, ‘path compressed suffix

5.2 PATTERN DETECTOR 113

trie’ emphasizes both the underlying trie-based nature of the structure and its compact encod-

ing. However, we accept current practice and refer to a suffixtree when we mean a path com-
pressed suffix trie, and we pronounce trie as ‘try’ to avoid verbal ambiguity.

DEFINITION 5.8 (SUFFIX TREE)

A suffix treeT for string T of lengthm is a rooted, directed tree with exactlym leavesLi la-
belled withi = 1 . . . m. Every internal node (excluding the root) has at least two children. Each
edge in the tree is labelled with a nonempty substring ofT , and no two edges out of a node have

the same first character. Every noden is identified by the string corresponding to the edge la-
bels on the path from the root ton. Each leafLi is identified by the suffixT [i..m] of stringT .

As with the suffix trie, we run into difficulty if a suffix ofT is a prefix of another suffix of

T . We avoid this difficulty using the out-of-band character$, and define animplicit suffix tree

built from a prefixT [1..i] to be a suffix tree that may not have the desired number of leaves. An

(implicit) suffix treeTi for a prefixT [1..i] can be created from the (implicit) suffix treeτi by
combining all branch-free nodes into a single edge.

Path compression for a trie withm leaves gives a structure with at most2m+1 nodes, which
is an asymptotic improvement over the original definition. We could build a suffix tree by first

building the associated suffix trie structure then merging paths of branch-free nodes into a sin-
gle edge. This approach would not, however, improve our asymptotic bound. Instead, we imple-

ment anO(n) algorithm introduced by Ukkonen [180] (using a slightly different presentation
that more closely matches our existing MONITOR-OPEN procedure). Figure 5.12 shows the im-
plementation of MONITOR-OPEN-COMP, which builds a suffix tree for a trace while monitor-

ing correlations that have always held in, all inO(n) time and space. Figure 5.13 shows a trace
of the steps taken by MONITOR-OPEN-COMP when processing‘aaabbb’.

In order to meet theO(n) requirements, we need to be careful about our representation and
implementation. First, although the definition of a suffix tree suggests that edges are labelled by

strings, we cannot store distinct copies of these strings inO(n) space: there aren(n + 1)/2 char-
acters in then suffixes of ann-character string. Instead, we use an object of type STRPTR that

represents a substring ofT by storing the indexfirst of its first character andlast of the last
character (exclusive).

We use an object of type NODEPTR to refer tovirtual nodeswithin the suffix tree. These

virtual nodes are positions where the suffix trie has a branch-free node. The NODEPTR object
consists of fields, an explicit node(one that is actually present in the suffix tree) and a string

path represented by a STRPTR object. This string specifies a path to follow from nodes to the
implicit node, which may either be an explicit node or a position ‘within an edge’. For example,

in Figure 5.13 step 2:1, we have a NODEPTR of (0,‘a’) that refers to a virtual node. There are
multiple NODEPTR values that refer to the same node: Figure 5.13 step 6:1, NODEPTR values

114 BATCH REQUEST PATTERNS

structure STRPTR � Represent a substring ofT.trace489

first=0 � The index of first character490

last=0 � The index of last character (not inclusive)491

end492

structure NODEPTR493

s=NIL � TheNode starting the path494

path= new STRPTR(0,0) � The string on the path leading out ofs495

end496

structure TREE497

trace= ε � The string of queries so far498

tracker=new CORRTRACKER � S-sized sliding dictionary for correlation detection499

correlations=[] � A list of sets of CORRELATION objects500

root= new NODE � The root of the tree501

end502

� Record query Q, with input parameter valuesInVals, in suffix treeT503

procedure MONITOR-OPEN-COMP(T, Q, InVals)504

� Start with node of longest suffix in T that has been observed atleast twice505

curr ← LONGESTSUFFIX2(T)506

lastnewchild ← NIL; end_point ← FALSE507

� Add request Q to the trace508

T.trace ← T.trace + Q509

� Append the set of correlations that currently hold to listcorrelations510

corrs ← FIND-CORRELATIONS-COMP(T, InVals)511

T.correlations ← T.correlations + corrs512

while curr 6= NIL and not end_point do513

n ← FindChild(T, curr, Q) � get query Q child of curr514

if n = NIL then515

n ← NEW-CHILD(T, curr, Q) � make new Q child of curr in T516

newchild ← n.s517

else518

end_point ← VERIFY-CORRELATIONS-COMP(n, InVals)519

newchild ← NIL520

if lastnewchild 6= NIL then lastnewnchild.s.suffix ← n.s521

lastnewchild ← newchild522

curr ← GETSUFFIX(curr)523

� The suffix of the last new node is the root524

if lastnewchild 6= NIL and lastnewchild.s 6= T.root then525

lastnewchild.suffix ← T.root526

end527

Figure 5.12: Code to build suffix tree

5.2 PATTERN DETECTOR 115

Step curr n (517) n (520) Tree

1:1 (0, ε) NIL (0, a) 0 1a...

2:1 (0, ε) (0, a) NIL 0 1aa...

3:1 (0, a) (0, aa) NIL 0 1aaa...

4:1 (0, aa) NIL (2, b) 0 2aa
1ab...

3b...

4:2 (0, a) NIL (4, b) 0 4a

2a
1a...

3b...

5b...

4:3 (0, ε) NIL (0, b) 0

4a

2a
1ab...

3b...

5b...

6b...

5:1 (0, ε) (0, b) NIL 0

4a

2a
1abb...

3bb...

5bb...

7bb...

6:1 (0, b) (0, bb) NIL 0

4a

2a
1abbb...

3bbb...

5bbb...

7bbb...

Figure 5.13: Steps of building a suffix tree for‘aaabbb’. The first column shows the current
stepi:j wherei is the number of the call to MONITOR-OPEN-COMP andj is the number of the

iteration within one call. The next column shows the value ofthecurr variable on line 514. The
next two columns show the value of then variable after creating a new child (line 517) or finding

an existing one (line 520). The last column shows the structure of the tree at line 522. Nodes are
labelled in order of creation, with0 used for the root node.

116 BATCH REQUEST PATTERNS

Step curr n (517) n (520) Tree

7:1 (0, bb) NIL (8, $) 0

4a

2a
1abbb$

3bbb$

5bbb$

8bb

7b$

9$

7:2 (0, b) NIL (10, $) 0

4a

2a
1abbb$

3bbb$

5bbb$

10b

8b

7b$

9$

11$

7:3 (0, ε) NIL (10, $) 0

4a

2a
1abbb$

3bbb$

5bbb$

10b

8b

7b$

9$

11$

12$

Figure 5.14: Steps to convert the implicit suffix tree into anexplicit suffix tree. Columns have the

same meaning as in Figure 5.13. In the explicit suffix tree, there is a distinct leaf node for each
suffix of the trace, and we can count the occurrences of any substring by the number of leaf nodes

in the sub-tree below the associated node.

5.2 PATTERN DETECTOR 117

of (0,‘aa’), (4,‘a’), and(2, ε) all refer to the same explicit node. We say that a NODEPTR

n = (s, x) is in canonical formif there are no explicit nodes on the path froms following x.

The insight Ukkonen used in his presentation is that we can exploit the NODEPTR represen-
tation of edges to have all of the leaf nodes in the implicit suffix tree Ti automatically extended
as we add new characters. When creating a new leaf node, the algorithm labels the node with a

STRPTR object with alast value of∞. The interpretation of this is that the string extends to the
right including all new characters processed so far. When weadd a new character toT.trace,

we extend all of the edges to these leaf nodes with the new character.

This trick takes care of adding virtual nodes at the end of every branch-free edge to a leaf

node, and this is fundamental to the asymptotic improvementin running time. The original suf-
fix trie algorithm started updating at LONGESTSUFFIX and added new nodes by following suf-

fix links. For the first part of this update step, existing leafnodes were extended to form new leaf
nodes, until eventually the suffix link traversal reached aninternal node. With the∞ trick used by

Ukkonen, all of the leaf nodes that are to be updated are implicitly updated as soon as we add a
new character. Instead of starting the loop at LONGESTSUFFIX, we instead will start at the first in-

ternal node that was encountered in the original traversal.This internal node is the first node that
is not implicitly updated by the∞ trick, and it is the first place that a new explicit node might

need to be created.

We use LONGESTSUFFIX2 to identify this internal node that represents the new update point.

In the suffix tree structure, the internal node could be explicit or virtual. As we show in the fol-
lowing lemma, if we define LONGESTSUFFIX2(Ti) to be the node in treeTi that is the longest

context that has been observed at least two times in the traceT [1..i], then we identify the ap-
propriate update position that is the first location in the suffix-link traversal where a new explicit

node might be created when generating suffix treeTi+1.

LEMMA 5.9 (LONGESTSUFFIX2 IDENTIFIES THE UPDATE POINT)

If x is an explicit node in implicit suffix treeTi+1, thenx has been observed at least twice inTi.
PROOF. Sincex is explicit in Ti+1 for T [1..i + 1], it is branching. Therefore, there must be

y = xa andz = xb for a 6= b in T [1..i + 1]. Hence,x must occur at least twice inT [1..i]. �

By Lemma 5.9, the LONGESTSUFFIX2 identifies the most specific position where we might
need to create an explicit node. TheFindChild function checks if there is already aQ-labelled

edge fromcurr. If curr is an explicit node, this is checked by looking in a dictionary of child
nodes. Alternatively, ifcurr is a virtual node, thencurr has aQ child n if Q matches the next

request on the branch-free edge fromcurr. If Q does match, then the childn may either be an-
other virtual node, or an explicit node.

If FindChild returns NIL , then a new child is created by a call to NEW-CHILD (line 516).
We create a new leaf node child ofcurr starting withQ. In the case thatcurr is already an

118 BATCH REQUEST PATTERNS

explicit node, NEW-CHILD adds a new leaf node as a direct child ofcurr, and returns(curr, Q)

as the new (virtual) child node. In step 1:1 of Figure 5.13, a new leaf node is created as a child
of the root (node 0), and thenewchild variable is set to(0, a). Alternatively, if the NODEPTR

curr is a virtual node, then we must first split the edge thatcurr is on, creating a new internal
node. This is performed in each of the iterations 4:1, 4:2, 4:3 when request‘b’ is observed. The

NEW-CHILD returns a NODEPTR object in canonical form. The implementation of NEW-CHILD

is relatively straightforward, and is omitted here.

When a new child node is created, thesuffix field is NIL . We never set this field for leaf
nodes (nor do we attempt to follow it). Thesuffix field of newly created internal nodes is set

on the next loop iteration (or after the loop has terminated).

In Figure 5.6 (line 438)curr is moved to its suffix using thesuffix field. In Figure 5.12

(line 523) the GETSUFFIX function is used instead. Ifcurr has the value(s, ax), then GETSUF-
FIX(curr) returns(s, x) if s is the root node; otherwise,(s.suffix, ax).

5.2.3.1 Estimating the Probability of a Future Request

A final structural item we must account for is thecount fields. In the original MONITOR-OPEN

algorithm (Figure 5.6), we updated thecount field for each context on the suffix path from the

longest suffix to the root. That update gives the desired frequency property that we need to pre-
dict future queries (Lemma 5.6). In the path compressed suffix trie, we cannot perform such up-

dates in linear time. Instead, we defer calculating thecount for a node until after we have fully
processed stringT and, further, added the out-of-band character$.

LEMMA 5.10 (FREQUENCY IS MEASURED BY NUMBER OF LEAVES)

Let w = xy be a sub-string ofT with canonical NODEPTR of (x, y) in the explicit suffix treeT
for T$. Let c be the child node ofx found by followingy (if y = ε, thenc = x). The number of

occurrences ofw in T is given by the number of leaf nodes in the sub-tree rooted at nodec.

PROOF. Let ki, i = 1 . . . l be the first character position inT of each of thel occurrences ofw.
Let z be the string on the path from(x, y) to c. Because the edgex

yz−→ c is non-branching, we

know thatxy has always been followed byz in T . Further, by the properties of suffix trees, the
suffix T [ki..m] is a leaf inT with a label that starts withxy. Since the label starts withxy, xyz

must also be a prefix. Therefore, the leafT [ki..m] is in the sub-tree rooted atc = xyz. Finally, if
any leaf is in the sub-tree rooted atc, the path to the leaf starts withw = xy so it must be one of

theki occurrences accounted for. Therefore, the number of leaf nodes in the sub-tree rooted atc

is exactly the number of occurrences of stringw. �

5.2 PATTERN DETECTOR 119

a

bc
dbeacxabcydez$

ydbez$

cxabcydbez$

b

c

dbeacxabcydbez$

ydbez$

e acxabcydbez$

z$

dbe
acxabcydbez$

z$

c

dbeacxabcydbez$

xabcydbez$

ydbez$

e
acxabcydbez$

z$

xabc
dbeacxabcydbez$

ydbez$

ydbez$

z$

Figure 5.15: Suffix tree for trace of Figure 5.3. Suffix links are omitted to avoid clutter.

120 BATCH REQUEST PATTERNS

By using the approach of Ukkonen, we have shown an algorithm,MONITOR-OPEN-COMP

that builds a suffix tree for stringT in O(|T |) time and space. Figure 5.15 shows the suffix trie
that is built for the trace of Figure 5.3. In addition to the structural changes that give linear com-

plexity, we have adapted our correlation detection to run inlinear space and time.

5.2.3.2 Tracking Correlations

In the original MONITOR-OPEN algorithm (Figure 5.6), the FIND-CORRELATIONS procedure

for a noden considers all of the parent nodes ofn when finding initial correlations; this leads to
O(m2) time and space complexity inm the length of the trace. Further, when requestk + 1 is

observed, thek generalizations of the longest suffix are adjusted with VERIFY-CORRELATIONS-
COMP. We cannot support these operations directly in linear timeand space.

The problem of space complexity is inherent in our definitionof the correlations we are will-

ing to consider. In the suffix trie, we considered that each ofthe parameters of requestk + 1 can
be correlated to any of the parameters of any of thek previous requests. Instead of allowing cor-

relations of unbounded length, in the suffix tree representation we restrict the sources we con-
sider to theS previous requests, whereS is a configuration parameter used to indicate thescope

lengththat we consider. With this change, the size of thecorrelations sets for each input pa-
rameter are constant with respect to the trace lengthm. There is still a quadratic dependence on

r, the number of parameters per query: in the worst case, each input parameter can be corre-
lated to all of the parameters of prior queries. This leads toO(Sr2) space needed for correlation
sources for each of the nodes.

We use an object namedtracker (line 499) to maintain a dictionary over a sliding win-
dow of theS previous requests. This dictionary maps a value to a set of(type, prevcnt,

param) triples that identify prior input and output parameter values equal to the given value.

While the introduction of the scope lengthS makes the number of correlation sources for

each node constant with respect to trace size, there is another source of quadratic space complex-
ity. In the original implementation of MONITOR-OPEN, we stored correlations for each of the

O(n2) contexts encountered during the trace. The path compression reduced the number of phys-
ical nodes in the tree toΘ(n), but it is not clear that path compression is helpful in reducing
the recorded correlation sources. In fact, the very branch-free paths compressed in the suffix tree

may be exactly the sequences that we would like to prefetch, provided that we can predict the ac-
tual parameter values that will be used.

The algorithm of Ukkonen represents a suffix trie compactly by storing edge labels as indexes
into the string of requests. Many edges use the same character for their label, which gives the

asymptotic space savings. We use a similar approach for storing correlation information. We store
a single sequenceT.correlations for the suffix treeT. Each element in the sequence is a set

5.2 PATTERN DETECTOR 121

of CORRELATION objects. For each strings that appears in traceT , we define an index in this

sequence that holds the CORRELATION objects for strings; we call this position thecorrelation

homefor strings.

DEFINITION 5.11 (CORRELATION HOME)

The correlation home for a strings in traceT is the index of the last character of the first occur-
rence ofs in T . For example, in the trace shown in Figure 5.16, the correlation home for string

‘b’ and is 3, while the correlation home for string‘db’ is 6.

More than one string may have the same correlation home. For example, in Figure 5.16 the

strings‘b’,‘ab’, and‘xab’ all have the same correlation home (position 3). We would like to
store the CORRELATION objects for all of these strings in one set. However, each of these strings

may have a distinct set of CORRELATION objects. If we store these distinct sets separately, we
haven’t saved any space. Fortunately, we are able to exploita trick that relies on a subset relation-

ship between the stored sets.

LEMMA 5.12
Let s1 and s2 be two sub-strings of traceT where s1 and s2 have the same correlation

home position. Without loss of generality, lets1 be the shorter of these two strings. Then
CORRELATIONS(s1) ⊆ CORRELATIONS(s2), where CORRELATIONS(s) is the set of CORRE-

LATION objects that are associated withs.

PROOF. Sinces1 ands2 have the same correlation home position, we know they both end at

the same character position inT . This tells us thats1 must be a suffix ofs2 Therefore, every
time that we have observed strings2, we have necessarily observed its suffixs1. Hence, there

cannot be a correlation that has always held after observings1 but has not held at least once when
observings2. Thus, there cannot be a CORRELATION objectc ∈ CORRELATIONS(s1) wherec /∈
CORRELATIONS(s2). This gives the stated subset relationship. �

The subset relationship described in Lemma 5.12 tells us that we can store a single setC

at each correlation home positionm. If this setC contains all of the CORRELATION objects for

the longest strings associated with positionm, then it necessarily contains all of the CORRELA-
TION objects for all stringssi associated with positionm. It remains only to define the function

CORRELATIONS(T, si) that identifies the subset ofC that applies to each stringsi.

We accomplish this by augmenting the CORRELATION object with aminorder field. The

CORRELATIONS(T, s) function interprets the set of stored CORRELATION objects, returning only
those whoseminorder field is less than the length|s|. When we wish to remove a CORRELA-

TION objectc from the set associated with a strings, we do so by increasing thec.minorder
value to|s|. In this way, we removec from the results of CORRELATIONS(T, s) without affect-

ing the stored set for any longer strings that have the same correlation home. Theminorder
trick allows us to represent the correlations for multiple strings in a single location.

122 BATCH REQUEST PATTERNS

Figure 5.16 shows the implicit suffix tree after processing (a)‘xabcd’, (b)‘xabcdb’, and

(c) ‘xabcdbe’ (the first two correspond to Figure 5.10(a) and (b) respectively). The edges in
these trees are represented by STRPTR objects (indexes shown), and this allows sharing between

edges. For example, the‘a’ at position 2 is used in edge‘xabcd’ and‘abcd’. Figure 5.16 (e)
shows the contents of theT.correlations list of sets after processing‘xabcdbe’. The el-

ements of these sets are CORRELATION objects extended with theminorder field.

As each request in the trace is processed, thecorrelations list is extended (line 512)

with the correlations found by FIND-CORRELATIONS-COMP. The elements in the set appended
at stepi correspond to the result of FIND-CORRELATIONS in Figure 5.6 (line 428) on the first

iteration withcurr equal to the longest suffix in the existing tree. This generates all correla-
tions that hold when considering the entire list of preceding queries as the context. The corre-

sponding set of CORRELATION objects apply in the most specific context, but they do not apply
for some generalizations. For example, Figure 5.10 showed that the correlation〈1|O,-2, 2〉 is in-

cluded in the set for character‘c’ when it is observed in context‘xabc’ and‘abc’, but not
when it is executed in‘bc’. In this last context, there is only one preceding query to consider, so
we cannot include correlations to earlier requests. Theminorder field of this correlation is ini-

tialized to 2. The CORRELATIONS function therefore excludes this correlation when considering
context‘bc’ because|bc| = 2.

The position 4 in thecorrelations list represents the request‘c’, and in the path-

compressed suffix trie it is used for multiple edges. In Figure 5.16(a) it is used for the 4 longest
edges to represent information about request‘c’ when observed in the contexts‘xab’, ‘ab’,
‘b’, andε. The set of CORRELATION objects shown in position 4 is correct for the first con-

text‘xab’, but it contains a superset of the desired elements when we consider the generaliza-
tion contexts‘ab’, ‘b’, andε. We encode this subset property with the associatedminorder

field. Theminorder field gives the minimum context length for which the correlation has al-
ways held. We use aminorder value of 2 in the CORRELATION object〈1|O,-2, 2|2〉. The value

2 indicates that the correlation at position 4 has held everytime we have observed request‘c’

when the trace is in contextT [4− 2..4 − 1] (that is, when the trace is in context‘ab’).

When we create a new CORRELATION object for an input or output type correlation, we ini-
tialize theminorder field to the value ofprevcnt. In addition to setting theminorder for

new objects, we must also be able to remove a CORRELATION object associated with a particu-
lar edge without affecting the more specific edges sharing the same list position. For example, af-

ter processing the second‘b’ request, we recognize that the first parameter is not always equal
to the constant101. We would like to remove the CORRELATION object〈1|C, 101|0〉 from con-

text ε, while retaining it for context‘a’. We accomplish this removal operation by incrementing
theminorder field, giving 〈1|C, 101|1〉, which is shown in Figure 5.16. As we check correla-

5.2 PATTERN DETECTOR 123

[1..∞]: xabcd...

[2..∞]: abcd...

[3..∞]: bcd...

[4..∞]: cd...

[5..∞]: d...

[1..∞]: xabcdb...

[2..∞]: abcdb...

[3..∞]: bcdb...

[4..∞]: cdb...

[5..∞]: db...

[1..∞]: xabcdbe...

[2..∞]: abcdbe...

[3..3]: b
[4..∞]: cdbe...

[7..∞]: e...

[4..∞]: cdbe...

[5..∞]: dbe...

[7..∞]: e...

(a) (b) (c)

(d) x a b c d b e

〈1|C, 42|0〉 〈1|C, 10|0〉 〈1|C, 101|1〉 〈1|C, 501|0〉 〈1|C, 201|0〉 〈1|C, 201|0〉 〈1|C, 201|0〉

(e) 〈1|I,-1, 1|1〉 〈1|O,-2, 2|2〉 〈1|I,-1, 1|1〉 〈1|I,-1, 1|1〉

〈1|O,-3, 2|3〉 〈1|O,-2, 2|2〉

(f) 1 2 3 4 5 6 7

Figure 5.16: Steps of tracking correlations for a suffix tree. Figures (a), (b), and (c) show the tree
structure after processing‘xabcd’, ‘xabcdb’, and‘xabcdbe’ respectively. Edges are la-

belled with the STRPTR indexes and the associated sub-string. Figure (d) shows thetrace list
of characters processed in the trace, (e) shows thecorrelations list of sets of CORRELA-

TION objects that are stored in each position, and (f) gives the numerical index of each trace po-
sition.

tions with the VERIFY-CORRELATIONS-COMP procedure, we increase theminorder value to
effectively ‘remove’ a correlation that no longer holds in aparticular context.

The FIND-CORRELATIONS-COMP procedure (Figure 5.17) generates the set of CORRELA-

TION objects that hold for an observed request. For each input parameteri, it adds a new CORRE-
LATION object of type C (line 531) to represent the possibility thatthe request always has the same

value for the parameter. Next, it callsCurrSources to find all of the correlation sources within
theS-length window of previous requests that match the current input value. TheCurrSources

method is implemented as a map from a value to a set of CORRELATION objects. By using tech-
niques such as hashing, it can be implemented in amortizedO(Sr) time—proportional to the

number of matching sources. Each triple(type,prevcnt,param) is used to generate a new
CORRELATION object. Theminorder of the new object is initialized to-prevcnt (recall that

prevcnt is negative). The CORRELATION objects generated consist of all predictions that can
be made considering the current constant value of each inputparameter and a window ofS prior

124 BATCH REQUEST PATTERNS

� Find possible correlations for node n and input parameter values InVals528

procedure FIND-CORRELATIONS-COMP(T, InVals)529

for i ← 1 to InVals.length do530

corrs ← new CORRELATION(i, C, InVals[i], 0)531

for (type,prevcnt,param) ∈ CurrSources(T.tracker, InVals[i]) do532

nc ← new CORRELATION(i, type, prevcnt, param, -prevcnt)533

corrs ← corrs ∪ nc534

ADDINPUT(T.tracker,InVals)535

return corrs536

end537

538

� Record fetched tuple fetchVals in suffix trie T539

procedure MONITOR-FETCH(T, fetchVals)540

ADDOUTPUT(T.tracker,fetchVals)541

end542

543

� Identify a ‘home’ location for reference pairn = (s, x), used to store all correlations forn544

function CORR-HOME(T,n)545

� home identifies the last character of the first occurrence ofn = sx in T.trace546

return home547

end548

549

� Return the set of correlations that have always held at noden550

function CORRELATIONS(T,n)551

homecorrs ← T.correlations[CORR-HOME(T,n)]552

corrs ← { c ∈ homecorrs | STRINGORDER(n) > c.minorder }553

return corrs554

end555

556

� Verify correlations for node n and input parameter values InVals557

function VERIFY-CORRELATIONS-COMP(T, n, InVals)558

changed ← FALSE559

corrs ← CORRELATIONS(T, n)560

for c ∈ corrs do561

if InVals[c.inparam] 6= CURR-VALUE(c) then562

c.minorder = STRINGORDER(n)+1563

changed ← TRUE564

return not changed565

end566

Figure 5.17: Code to monitor parameter correlations in linear space/time.

5.2 PATTERN DETECTOR 125

requests. This set is assigned to then.correlations field.

Finally, the FIND-CORRELATIONS-COMP procedure adds the currentInVals to the dic-

tionary with a call to ADDINPUT (line 535). These will be considered as possible correlation
sources for future requests. Likewise, after a successful fetch, MONITOR-FETCH calls ADDOUT-

PUT (line 541) to add the most recent fetched values to the dictionary. The ADDINPUT and ADD-
OUTPUT methods remove values associated with a request more thanS in the past. In this way,

the size of the dictionary does not exceedO(S) requests orO(Sr) values. Overall, the amor-
tized time complexity does not exceedO(Sr).

The result of FIND-CORRELATIONS-COMP is a set of CORRELATION objects representing

the equality relationships that hold for the current OPEN request. For requestk, the MONITOR-
OPEN-COMP adds this set at positionk in list T.correlations (line 512). Each noden (vir-

tual or explicit) that is created at stepk corresponds to a stringT [i..k] that has not appeared earlier
in the trace. Therefore, the correlation home for each newlycreated noden is k. The set of COR-
RELATION objects is the same for all newly created nodes, except possibly where theprevcnt

of a CORRELATION exceeds the length of the string associated withn. We represent the length
of this string with STRINGORDER(n), and use theminorder field of the CORRELATION to ex-

clude the correlation from the set for nodes with a context that is too short.

The FIND-CORRELATIONS-COMP works with MONITOR-OPEN-COMP to find the initial set
of correlations for each newly created noden (virtual or explicit). The other facet of correlation

detection is the process of removing correlations that no longer hold. This is implemented in the
VERIFY-CORRELATIONS-COMP procedure.

First, we need a way to associate a node in the suffix tree (either explicit or virtual) with

its correlation home position. Recall that each noden can be expressed in canonical form as
n = (s, x) wheres is an explicit node andx is a string (possibly empty) leading out ofs.

The correlation home forn is the last position of the first occurrence of stringsx in the trace.
We use function CORR-HOME(T, n) to find this position. We can implement CORR-HOME ef-
ficiently in O(1) time by using the STRPTR representation ofx (we omit the details). The

CORRELATIONS(n) returns the set of CORRELATION objects for noden based on its correla-
tion home position (given by CORR-HOME(n)).

Consider a NODEPTR n with value(s, xa) found byFindChild (line 514). We have ob-

servedsxa before, and a previous call to MONITOR-OPEN-COMP has initialized the correlations
for noden as CORRELATIONS(n). It may be that some of these correlations no longer hold. The

VERIFY-CORRELATIONS-COMP function considers the set CORRELATIONS(n) of CORRELA-
TION objects. For each CORRELATION objectc, we compare the current value ofc to the asso-

ciated input value of the current query. If the values do not match, this represents a case where
a correlation that previously held in contextn no longer holds, hence a guessed true correlation

126 BATCH REQUEST PATTERNS

has been shown to be false. In this case, we increase thec.minorder field to be|sx|+ 1. This in-

crease effectively removesc from the set of possible correlations associated withn.

If any of the CORRELATION objects is removed from a set of possible correlations by increas-

ing theminorder field, then we setchanged to TRUE. If we reach a point in the iteration of
MONITOR-OPEN-COMP whereFindChild returns an existing childn and no correlation sets

change values (line 519), then we can halt the iteration. Anysuffix of curr will also have aQ
child, so the original algorithm by Ukkonen [180] terminated as soon as childn is found. If we

find that all of the guessed correlation sources for an existing childn still hold, then there will be
no changes in generalization nodes, which contain a subset of the guesses forn.

We have modified the original algorithm [180] to continue processing generalizations of

curr until no further changes are made by VERIFY-CORRELATIONS-COMP. We should be sus-
picious that this modification has affected our asymptotic complexity. Fortunately, we can see that

the additional cost of the extra iterations cannot exceedO(mSr2) for a trace of lengthm with
scope lengthS and maximum parametersr per request. We continue iterating beyond the origi-

nal algorithm every time that we remove at least one CORRELATION from noden. Since we ini-
tially createn with at mostSr2 of these objects, we will introduce at mostO(mSr2) extra work.

5.2.3.3 Summary of Suffix Tree Detection

Together, the above alterations allow us to build a suffix tree (or path compressed suffix trie) for a
lengthm trace of requests with at mostr parameters inO(mSr2) time and space. We convert the

implicit suffix tree into an explicit suffix tree by appending$ (without affecting our asymptotic
bound). The frequency of each context within the tree can be assessed by counting the number of
leaf nodes in the sub-tree rooted at the appropriate node. For each edgen

a−→ na, we maintain

a set of CORRELATION objects that represent correlations that have always held when requesta
was submitted while the trace was in contextn. This set is accessed with CORRELATIONS(T, na).

Thus, the path compressed suffix trie (or suffix tree) can be used to satisfy all of the requirements
of the atomic suffix trie, all in time and space that is linear in the number of requests.

5.2.4 Summary of Pattern Detector

In order to make semantic prefetching choices, we must predict the probability of future requests

and the parameter values that will be used if they are submitted. We have decided to limit our
choices to finite state models, which predict future behaviour based on a finite set of states.

A particular subset of finite state models is the order-k model, which makes these predictions
by defining contexts of thek preceding requests and using these to condition probability predic-

tions and predictions of parameter correlations. This approach runs into difficulty when selecting
an appropriate value ofk. There is no a-priori information that we can use to give a strict bound

5.3 PATTERN OPTIMIZER 127

on k. Choosing a low value ofk will miss special cases that have unique probability or corre-

lation behaviour, while a high value ofk reduces the generalization performed during training.
We introduced confidence intervals of the probability estimates given by the order-k model in or-

der to help with selecting an appropriatek value.

The suffix trie data structure provides a mechanism that letsus simultaneously maintain order-
k models for allk = 1 . . . n for a trace of lengthn + 1. After we have observed a trace, we can

make a post-hoc decision of the bestk value. Because we have the model for allk values, we can
select a variable-order order model that uses differentk values at different positions in the tree,
depending on the estimated query costs and correlation results.

The suffix trie structure gives us all that we need to make effective cost-based semantic

prefetching decisions. Unfortunately, the asymptotic complexity is O(m2) for a trace of length
m. It is possible to use the structure in practical implementations, for example by choosing an up-

per limit for k, say 100. Fortunately, we can avoid these ad-hoc limits and achieve better perfor-
mance by using a path-compressed suffix trie, which we can build in linear space and time.

In a path-compressed suffix trie, branch-free paths are compressed into string-labelled edges.

Strings are represented by pointers into the single string that represents all requests observed so
far. We define a configuration parameterS that limits the scope length of possible sources of cor-
relation values that we consider. A dictionary structure isused to map an input parameter valuev

to the set of CORRELATION objects that represent parameters within scopeS that matchv, and
we extend the suffix tree algorithm to initialize and maintain the set of correlations that have al-

ways held for a requestQ in contextc.

The suffix trie or suffix tree provides all the information that we need to make prefetching
decisions, and we describe that process in Section 5.3. After optimization, the Query Rewriter

is used to generate an alternate query that will fetch the results of the submitted query and also
prefetch the results specified by the optimizer.

5.3 Pattern Optimizer

Section 5.2 described how Scalpel builds a trie-based data structure during the training period.
The suffix trie summarizes frequency information and correlations that were observed during the

training period, and the Pattern Optimizer uses this information to make prefetching decisions.
Figure 5.18 gives an overview of the implementation of the Pattern Optimizer.

The Pattern Optimizer uses a cost-based decision process todecide what queries to prefetch.

Section 5.3.1 shows how we determine if a query is likely to besubmitted sufficiently often to be
worth prefetching. The Pattern Detector supplies a function COUNT-OCCURRENCES(n) that re-

ports how many times a noden was observed during the training period. The Pattern Optimizer
uses this frequency information to derive estimates (with confidence intervals) of the probability

128 BATCH REQUEST PATTERNS

a

b

a

c

c
b

Pattern Detector

(
Section
5.2)

Cost Model

(
Chapter
4)

Pattern

Optimizer

(
Section
5.3)

Children(n)

Count-Occurrences(n)

Correlations(n)

Est-Cost(a)

Est-Cost(a;b)

Cost-Based

Optimization

(
Section
5.3.1)

[b,c]

[]

a

[c]
b

[c]

b

[]

c

c
 []

c

a

[]
c

[]

a

[b,c]
 [c]
b
 []
c

[c]
b
 []
c

[]

c

Suffix Trie + List

of Queries to

Prefetch

Building a Finite

State Model

(
Section
5.3.2)

Removing

Redundancy

(
Section
5.3.3)

Query Rewriter

(
Section
5.4)

Redundancy-Removed

FSM with Query Lists

a

a

b
a

b

c

c

b

a

c

b

a

b

FSM + Query Lists

[b,c]

[]

a

[c]
b

b

c

c

c

a

a

b

Figure 5.18: Overview of the Pattern Optimizer.

5.3 PATTERN OPTIMIZER 129

of future requests. The Pattern Optimizer combines these probability estimates with a cost esti-

mate function EST-COST provided by the Cost Model in order to decide what queries to prefetch
when a demand fetch is sent to theDBMS. Scalpel is not able to prefetch a query if it cannot pre-

dict what values will be used for its parameters. The suffix trie built by the Pattern Detector pro-
vides a CORRELATIONS function that gives the predict correlation values (if any)for each para-

meter. The selected queries are stored as a list for each nodein the suffix trie.

The suffix trie does not directly provide all of the details needed at run-time. For example,
it is not clear what the Prefetcher should do when a request isseen that has never been seen at
a particular node in the suffix trie. Section 5.3.2 describeshow the Pattern Optimizer uses the

suffix trie to build a finite state model. This finite state model retains the lists of queries that were
selected for each node in the suffix trie.

The finite model generated directly from the suffix trie contains significant redundancy. Sec-

tion 5.3.3 shows how this finite state model can be simplified by removing this redundancy, gen-
erating a redundancy-removed finite state machine annotated with lists of queries to prefetch.

Finally, Section 5.3.4 summarizes the operation of the Pattern Optimizer. After the Pattern

Optimizer has built its simplified FSM, the Query Rewriter component (Section 5.4) modifies the
FSM by generating combined queries that implement the selected prefetches.

5.3.1 Cost Based Optimization

... n na1a1

na1a2

a2

na1a2a4
a4

...

na1a2a5

a5
...

na1a3

a3 na1a3a6
a6

...

na1a3a7

a7
...

Figure 5.19: Example for choosing prefetches.

Figure 5.19 shows a fragment of a suffix trie that we might find after the training period. Node
n represents a context associated with stringn = n1n2 . . . nk of requests, and the edge fromn to

na represents the fact that we have observed querya in the past when the trace was in contextn.
In an atomic suffix trie,n is a physical node; in a path compressed suffix trie,n = (s, x) may be

a physical node (x = ε) or virtual node.

We are interested in using cost estimates to decide what queries Scalpel should prefetch when
the application submits requesta1 after submitting the query sequencen. We could choose to

130 BATCH REQUEST PATTERNS

submita1 to the server unmodified. Alternatively, we could elect to prefetch a request we antici-

pate might be submitted in the future; for example,a2. In this case, we would submit a modified
query to the server that would fetch the results ofa1 and the predicted results fora2. If the appli-

cation then submitteda2 with parameter values that match our predictions, Scalpel would use the
results of the combined query to answera2 and would have saved the overhead of having to is-

suea2 to the server as a separate query. Clearly, the costs of thesetwo alternatives will depend on
the execution costs of the various queries involved, and on the likelihood thata2 will actually oc-

cur following requesta1 in contextn. We represent this likelihood with the conditional proba-
bility mass functionp(a2|na1), which gives the conditional probability that querya2 will occur

next, given that we have previously observed the sequencena1 of requests.

We can use the EST-COST function (defined in Chapter 4) to estimate the total execution cost

associated witha1 anda2 when they are executed unoptimized. This expected cost is given by
Equation 5.9:

EST-COST(a1) + p(a2|na1)× EST-COST(a2) (5.9)

If Scalpel does prefetcha2, the total cost will be the cost of executing the larger combined query
which prefetches results fora2 in addition toa1. In Section 5.4, we will describe how we form

this combined queries using strategies similar to the outerunion and outer join strategies we used
for nested patterns of requests. The combined query is implemented using an outer join strategy

if a1 returns at most one row; otherwise, an outer union approach is used. For now, we will de-
note the cost of this combined query by EST-COST(a1; a2), ignoring the details of which of these

approaches is used.

With these estimates of costs, we define PREFETCH-BENEFIT(n, a1, a2) as an estimate the

savings achieved by prefetching querya2 when querya1 is submitted after sequencen.

PREFETCH-BENEFIT(n, a1, a2) = EST-COST(a1) + p(a2|na1)× EST-COST(a2)

− EST-COST(a1; a2)
(5.10)

With the estimate of prefetching benefit given in Equation 5.10, it is worthwhile to prefetch

a2 whena1 is submitted in contextn if the following holds:

p(a2|na1) >
EST-COST(a1; a2)− EST-COST(a1)

EST-COST(a2)
= Pmin(n, a1, a2) (5.11)

The valuePmin(n, a1, a2) gives the minimum probability for which it is worthwhile to prefetch
querya2 whena1 is submitted in contextn. If we think the probability of observinga2 is greater

thanPmin(n, a1, a2), then we expect that it would be cheaper to prefetcha2.

The value ofPmin is defined by the expected benefit when prefetched results areuseful and
the cost when the results ofa2 are not useful. In fact, we can provide a lower bound onPmin by

5.3 PATTERN OPTIMIZER 131

considering the cost ofa2 relative to the per-request overheadU0. Recall that the EST-COST func-

tion (Chapter 4) provides Scalpel’s estimate of the latencyassociated with a request; the estimate
is derived using observations of costs during the training period and a cost model based on ei-

ther a nested loops join or union. Further, the estimate is combined with SRV-SAVINGS, an esti-
mate of the benefit the server can achieve if requests are submitted together instead of as separate

queries. The outer join strategy is used only if the outer query returns at most one row (|a1| ≤ 1),
otherwise the outer union strategy is used. Therefore, we can bound the cost of the combined

query as follows:

EST-COST(a1; a2) ≤ EST-COST(a1) + EST-COST(a2)− U0 (5.12)

Unless the database server is able to exploit sharing to execute the combined query more effi-

ciently than the two separate queries, the bound in Equation5.12 is tight. Equation 5.12 provides
an upper bound forPmin:

Pmin ≤ 1− U0

EST-COST(a2)
= Pmin0 (5.13)

The two sides of Equation 5.13 are equal unless the server is able to exploit sharing (correspond-
ing to SRV-SAVINGS < 1). If p(a2|na1) > Pmin 0, it is worth prefetching; otherwise, it might

still be worth prefetching if SRV-SAVINGS < 1, in which casePmin < Pmin 0.

In order to assess whether it is worthwhile prefetching a query, we need an estimate of

p(a2|na1) to compare toPmin. Equation 5.6 showed how we can computep̂(xi|s), an estimate
of the probability of requestx1 after the strings of requests. The definition of̂p(xi|s) in Equa-
tion 5.6 is based on COUNT-OCCURRENCES(σ, t), a count of how many times substringσ occurs

in stringt. The COUNT-OCCURRENCESfunction can easily be defined for a suffix trie data struc-
ture based on thecount field (as shown by Lemma 5.6). The COUNT-OCCURRENCESfunction

can also be defined for a path-compressed suffix trie based on the number of leaves below the as-
sociated node (shown in Lemma 5.10).

As discussed in Section 5.2.1.1, the point estimatep̂(xi|s) does not tell the whole story in
that it does not reflect how confident we are in the estimate. Equation 5.7 provides us with a con-

fidence intervalCI = [p0, p1] that expresses the amount of confidence we place in the estimate
p̂(xi|s).

We use the confidence interval to provide a prefetching decision as follows. If the low-point
of the confidence interval (p0) is greater thanPmin, then we will prefetch as the estimated value

p̂(a2|na1) is significantly greater thanPmin (at theα level of confidence). If the high-point of the
confidence interval (p1) is less thanPmin, we will not prefetch as the estimatêp(a2|na1) is sig-

nificantly lower thanPmin (at theα level). In the remainder of the cases,Pmin is inside the confi-
dence interval for̂p(a2|na1). In this case, we do not have enough information to decide whether

132 BATCH REQUEST PATTERNS

to prefetch or not. No matter how long the training period, there will be some contexts where we

have not made enough observations to make a definite decisions: this is a consequence of grow-
ing the context length on each request. In these cases, we have a contextn that is too specific to

provide a definite choice; however, there may be a shorter context n′ that has been observed suf-
ficiently often to be definite. We can use the suffix links in thesuffix trie data structure to explore

information about more general contexts that are suffixes ofn.

5.3.1.1 Feasible Prefetches

Before Scalpel decides whether it is beneficial to prefetch querya2 after observinga1 in context

n, it must first decide whether such a prefetch isfeasible. It is feasible to prefetcha2 if we can
make a prediction of the actual values that would be used for each parameter ofa2 if it were sub-
mitted. The Pattern Detector (Section 5.2) described how wemaintain sets of correlations that

have always held. In the atomic suffix trie data structure, these are stored in acorrelations
field of the node associated withna1a2. In the compressed suffix trie, the set is encoded in the

list elementT.correlations[i] wherei is the correlation home for stringna1a2, and the
encoded set is interpreted based on theminorder field of the CORRELATION objects and the

length |na1|. The CORRELATIONS(x) function was defined to find the set of CORRELATION

objects for the node identified with stringx (Figure 5.17). We extend CORRELATIONS(x) to

(atomic) suffix tries by returning thecorrelations field of the associated node..

The CORRELATIONS(na1) set contains correlations that apply to all of the parameters of

querya1. We use the function CORRFORPARM(C, i) to find the subset of correlations in setC

that apply to parameteri, following the same approach we used for nested request patterns (Def-

inition 3.1, page 27). Armed with these two functions, we candefine what it means for a request
to be feasible as follows.

DEFINITION 5.13 (FEASIBLE PREFETCH)
Requesta2 is a feasible prefetchwhen querya1 is submitted in contextn if there is a pre-

dicted correlation for each of ther parameters ofa2. Let C = CORRELATIONS(na1a2). Then
FEASIBLE(na1, a2) is defined as follows:

FEASIBLE(na1, a2) ⇐⇒ CORRFORPARM(C, i) 6= ∅ ∀ i ∈ [1, r] (5.14)

5.3.1.2 Choosing the Best Feasible Prefetch

There may be more than one feasible, beneficial prefetch froma given context. Thus, Scalpel
must decide which, if any, of these prefetches to make. When querya1 is submitted, Scalpel can

choose to prefetch ‘wide’ by prefetching several possible subsequent queries in the hope that one
will actually be requested aftera1. For example, Scalpel could prefetch the results for botha2

5.3 PATTERN OPTIMIZER 133

anda3 in Figure 5.19. Alternatively, Scalpel could prefetch ‘deep’ by prefetching a chain of can-

didates, each of which is predicted to follow it’s predecessor. For example, Scalpel could prefetch
botha2 anda4. Finally, we could also consider some combination of these two. For example, we

could prefetch querya2, a3, anda6. At present, the Scalpel prototype considers only prefetch-
ing ‘deep’; that is, chains of queries, each of which is predicted to be the best prefetch candidate.

� Choose queries to prefetch whena1 submitted aftern567

procedure CHOOSE-PREFETCH(n, a1)568

x ← ε � The list of queries to prefetch569

while |x| < M do570

� Choose the best feasible prefetch candidate571

best ← BEST-PREFETCH(n, a1, x)572

if best = NIL then break573

x ← x + best � Append to list of queries to prefetch574

� Annotate the nodena1 with the queries to prefetch whena1 is submitted after sequencen575

SET-PREFETCH(na1, x)576

end577

Figure 5.20: Choosing a list of queries to prefetch.

Figure 5.20 shows the CHOOSE-PREFETCHprocedure that is used to choose the list of queries
that should be prefetched whena1 is submitted after the query sequencen. Procedure CHOOSE-
PREFETCH uses a loop to find a chain of prefetch queries, which are stored for use at run-time.

We use a configuration parameterM to limit the maximum number of queries that Scalpel will
prefetch.

At each step of the loop, CHOOSE-PREFETCH uses the BEST-PREFETCH function (Fig-
ure 5.21) to find the best feasible candidate that should be prefetched after the query sequence

na1x has been observed. The BEST-PREFETCH function considers each queryb that was ob-
served followingna1x during the training period. The CHILDREN(na1x) function is used to find

these queries, abstracting the details of atomic or path compressed suffix trie. For each childb,
BEST-PREFETCHuses the SHOULD-PREFETCH function to decide whetherb is both feasible and

beneficial.

Once a best prefetch candidatebest is found, the loop proceeds by assuming thatbest

is executed next. In this way, a chain of prefetch queries is selected, conditionally assum-
ing that each selected query is actually used. We must also consider the conditional probabil-

ity that the entire chain is followed. SHOULD-PREFETCH accomplishes this by usingN =

COUNT-OCCURRENCES(na1) (the count of the originating contextna1) as the denominator

when forming the estimatêp and its confidence interval (line 598). The numerator uses the
full context lengthX = COUNT-OCCURRENCES(na1xb). This choice of denominator accounts

134 BATCH REQUEST PATTERNS

� Find the best requestb to prefetch ifa follows sequencena1x578

function BEST-PREFETCH(n, a1, x)579

best_b ← NIL � Best prefetch candidate580

best_benefit ← 0 � Expected benefit for prefetchingbest_b581

for b ∈ CHILDREN(na1x) do582

benefit ← SHOULD-PREFETCH(n, a1, x, b)583

if benefit > best_benefit then584

best_b ← b585

best_benefit ← benefit586

return best_b587

end588

589

� Return the expected benefit of prefetchinga2 whena1 is submitted after sequencen590

function SHOULD-PREFETCH(n, a1, x, b)591

� We should not attempt to prefetchb unless it is feasible afterna1x592

if not FEASIBLE(na1x, b) then593

� It is not feasible to prefetchb; use benefit of−∞594

return −∞595

N ← COUNT-OCCURRENCES(na1)596

X ← COUNT-OCCURRENCES(na1xb)597

CI ← CONFIDENCE-INTERVAL(X, N) � Equation 5.7598

pmin ← Pmin(n, a1x, b) � Equation 5.11599

if CI.high < pmin then600

� Prefetching is significantly worse (at theα level)601

return −∞602

else if Ci.low > pmin then603

� Prefetching is significantly better (at theα level)604

savings ← PREFETCH-BENEFIT(n, a1x, b) � Equation 5.10605

return savings606

else607

� Not enough information to decide; consider generalization608

if GETSUFFIX(n) 6= NIL then609

return SHOULD-PREFETCH(GETSUFFIX(n), a1, x, b)610

else611

return −∞612

end613

Figure 5.21: Choosing the best prefetch query.

5.3 PATTERN OPTIMIZER 135

for the conditional probability that all links along the chain na1x are followed. If SHOULD-

PREFETCH finds that there is insufficient evidence to form a firm decision about prefetching, it
returns the result for the generalization given by GETSUFFIX(n) (if it exists). When a context is

reached where there are no feasible prefetch candidates that are beneficial, the loop in CHOOSE-
PREFETCH terminates.

The CHOOSE-PREFETCH procedure identifies a list of queries to prefetch for each edge

n
a1−→ na1 in the tree. This prefetch list represents additional queries that should be prefetched

when we observe a querya1 being submitted at run-time after observing the string of queriesn.

The SET-PREFETCH function is used to associate this list with nodena1. The Query Rewriter
uses these lists to generate combined queries that fetch theresults fora1 and all queries in the

prefetch list. First, however, we define how the Pattern Optimizer uses the suffix trie data struc-
ture to build a finite state model.

5.3.2 Building a Finite-State Model

After selecting queries to prefetch, the result of pattern detection consists of a suffix trie (possibly
path compressed), where each node is annotated with a list ofqueries to prefetch. This structure

can be used as a form of finite state model during run-time. In this model, the nodes of the trie
form the states and edges are used to provide the transition function.

While the suffix trie does give a kind of finite state model, a transition function defined us-
ing only the edges observed during a finite training period cannot be considered to be complete.
We will certainly encounter novel requests in some context.This will occur due to the low num-

ber of observations for long contexts, particularly those associated with leaf nodes. When we en-
counter a novel request in a context, there is no edge to follow. We have no prefetching decisions

available, and no next state to move to.

We could implement a heuristic that adds an implicit transition to the root when we encounter

a novel request in a context. This approach is sound, but it ignores the fact that, while the cur-
rent request is novel in the specific context of the tree, it may have been observed in a more
general context that considers fewer of the preceding queries as a conditioning context. Instead,

we exploit the suffix links. When we encounter a querya that is novel at noden, we consider
GETSUFFIX(n) (if it exists). If there is a querya that was not observed at all during training, we

will not have an edge for it anywhere in the trie. Therefore, we use a transition to the root of the
trie. Our transition functionδτ is defined for suffix trieT as follows:

δτ (x, a) =















xa a ∈ CHILDREN(x) (C1)

δτ (y, a) ¬C1 ∧ y = GETSUFFIX(x) ∧ y 6= NIL (C2)

s0 ¬C1 ∧ ¬C2 (C3)

(5.15)

136 BATCH REQUEST PATTERNS

In the first case (C1), there is an edgex
a−→ xa recorded in the trie, andδτ uses a transition

based on that edge. In the second case (C2), querya is novel at nodex; we use the transition
defined by GETSUFFIX(x). In the final case (C3), the querya has not been seen at all during the

training phase. In this case, we use a transition tos0, the root node of the trie. Theδτ definition
in Equation 5.15 allows us to define a finite state modelMτ for suffix trie τ as follows.

DEFINITION 5.14 (FINITE STATE MODEL FORSUFFIX TRIE τ)
Let Σ be the set of all possible requests. LetSτ = {x ∈ Σ∗ | x ∈ NODES(τ)} be a set of states

corresponding to the nodes ofτ , and lets0 = ε ∈ Sτ be an initial state corresponding to the root
node ofτ . Let δτ be defined as in Equation 5.15, and letp̂(a|x) be a conditional probability mass

function given by the counts ofτ . With these settings, thenMτ = 〈Sτ ,Σ, δ, s0, p̂〉 is thefinite

state model for suffix trieτ .

With δτ defined as shown in Equation 5.15, all of the transitions intonodes ∈ S \ s0 are

caused by the same query. We use function GET-INCOMING(q) to identify this query. At run-
time, we enter stateq when we observe a call to OPEN(a) for querya = GET-INCOMING(q).

Definition 5.14 gives a model that can be used at run time. At each point in the trace, the cur-
rent stateq of modelMτ is the longest element ofτ that matches the current sequence of requests.
When processing requesta, Mτ moves to a new state by followingq′ = δτ (q, a). This new state

q′ has a list of queries that should be prefetched when querya is submitted to theDBMS. While
the definition ofMτ is sound,Mτ may be substantially larger than an equivalent model due to re-

dundancy introduced while building the suffix trie. In the next section, we describe how this re-
dundancy arises and how we can remove it.

5.3.3 Removing Redundancy

The finite state machineMτ that is build directly from a trie contains significant redundancy re-

sulting from having multiple context lengths that predict the same future behavior. To understand
this issue, consider the following contexts from Figure 5.15 (page 119):‘b’,‘ab’, and‘xab’.

This is a sequence of successively less general contexts, each of which ends with‘b’. Suppose
that, using the procedures described in Section 5.3.1.2, Scalpel has decided not to prefetch from
context‘b’, but to prefetch queryQc in context‘ab’. This may happen because Scalpel ob-

serves that the conditional probability of‘c’ after the sequence‘ab’ is higher than the condi-
tional probability of‘c’ after‘b’ alone. This is an example of Scalpel avoiding prefetching de-

cisions based on contexts that are too short.

As we consider successively more specific contexts, such as‘xab’, there are several pos-

sibilities. The procedures from Section 5.3.1.2 may also decide that it is worthwhile to prefetch
Qc in context‘xab’. Such a prefetching decision is redundant, because whenever the system

5.3 PATTERN OPTIMIZER 137

is in context‘xab’, it is also in the more general context‘ab’ for which the same prefetch-

ing decision has been made. Second, Scalpel may have found that context‘xab’ was not ob-
served enough times to make a definite prefetching decision.In that case, CHOOSE-PREFETCH

selects to prefetchQc in keeping with the generalized context‘ab’; again, the prefetch is re-
dundant. The final possibility is that prefetching‘c’ is definitely rejected for‘xab’ in favour

of either prefetching a more beneficial query or not prefetching at all. In this case,‘xab’ repre-
sents a special case of‘ab’, and the prefetching recommendation at‘xab’ is not redundant.

� Determine whether contextn is redundant614

function IS-REDUNDANT(n)615

if GETSUFFIX(n) = NIL then616

� The root node has no suffix, and it is not redundant.617

return FALSE618

if GET-PREFETCH(n) 6= GET-PREFETCH(GETSUFFIX(n)) then619

return FALSE620

else621

for child ∈ CHILDREN(n) do622

if ¬IS-REDUNDANT(child) then return FALSE623

end624

Figure 5.22: Marking redundant nodes.

Scalpel uses the IS-REDUNDANT(n) function shown in Figure 5.22 to determine whether or
not a given context noden is redundant. Noden is redundant if it has the same prefetch set as

its suffix, and, further, all of its child nodes are redundant. This definition of redundancy lets us
define a finite state machineM for suffix trie τ that avoids redundant nodes.

DEFINITION 5.15 (REDUNDANCY-REMOVED FINITE STATE MODEL FOR TRIE τ)
Let Σ be the set of all possible possible requests. LetQ be a set of states corresponding to the

non-redundant nodes ofτ , defined as follows:

S = {x ∈ Σ∗ | x ∈ τ ∧ ¬IS-REDUNDANT(x)} (5.16)

Let s0 = ε ∈ S be an initial state corresponding to the root node ofτ . Let δ be a modified defini-

tion of transition function modified from the definition ofδ in Definition 5.14 as follows:

δ(x, a) =















xa a ∈ CHILDREN(x) ∧ ¬IS-REDUNDANT(xa) (C1)

δ(y, a) ¬C1 ∧ y = GETSUFFIX(x) ∧ y 6= NIL (C2)

s0 ¬C1 ∧ ¬C2 (C3)

(5.17)

Then we say thatM = 〈S,Σ, δ, s0, p̂〉 is the redundancy-removed finite state model for suffix
trie τ , wherep̂ is a conditional probability mass function derived fromτ .

138 BATCH REQUEST PATTERNS

The redundancy-reduced finite state machineM has the same behaviour asMτ , although it

has fewer nodes. In particular, modelMτ contains states corresponding to the leaf nodes of trie
τ , even though these are never useful.

5.3.4 Summary of the Pattern Optimizer

After a training period that observes a traceT of requests, the Pattern Detector generates a suffix

trie τ that encodes a summary of the information gathered during the trace. The correlations that
were found to always hold during the training period are usedto find what prefetches arefeasible

in that we can predict actual values that would be used if the predicted request were submitted by
the application. Further, frequency information in the trie is used to generate confidence intervals

(at a pre-configured levelα) for the probability of executing a requesta when in a contextn based
on the ratio of COUNT-OCCURRENCES(na) to COUNT-OCCURRENCES(n).

These confidence intervals are used to determine whether it is worthwhile to prefetch a re-

questa. By comparing the estimated cost ofa to the per-request overheadU0, the confidence in-
terval is used to find if prefetchinga is a) definitely beneficial; b) definitelynot beneficial; or, c)
indeterminate. The last case occurs in a trie built even for avery long training period, as it is a

consequence of the low frequency components associated with the longest contexts in the trie.
When it is indeterminate whether it is prudent to prefetcha in contextn, we use suffix links in

the trie to use the prefetching decision in a generalizationof n where we have enough observa-
tions to make a definite decision.

The Pattern Optimizer finds a prefetch list for every contextin the suffix trie, whether it is an

explicit node or a virtual node. Therefore, the Pattern Optimizer usesO(n2) space inn the num-
ber of requests observed during the training period. Further, as currently stated the algorithm

could take up toO(n3) running time due to the traversal of suffix links; however, anO(n2) im-
plementation can be achieved with a little care to re-use previous results. The redundancy in the
atomic suffix trie suggests that a linear algorithm can be developed. However, such an approach

would also need a way to control the size of the finite state machine generated by the Pattern Op-
timizer. At present, the Pattern Optimizer could select up to O(n2) states with distinct prefetch-

ing choices. Implementing a linear complexity Pattern Optimizer is an important topic for future
study. At present, we have found that the current optimization time is not excessive for the sys-

tems we have tested.

After using CHOOSE-PREFETCH to identify a list of queries to prefetch for the contexts in
the suffix trie, the Pattern Optimizer generates a redundancy-removed finite state modelM for

the trie based onτ . Each noden in this trie is annotated with a list of queries that should be
prefetched when the machine transitions into the node. The Query Rewriter (Section 5.4) com-

5.4 QUERY REWRITER 139

bines this list of queries with the query on the edge enteringn in order to fetch the originally re-

quest results and all prefetched results.

5.4 Query Rewriter

The result of the Pattern Optimizer is a finite state modelM . Each staten in the model repre-
sents a context that the model might be in at run-time, and each state has an associated list of

queries that should be prefetched. The Query Rewriter constructs combined queries that can be
used to execute these prefetches, and it also builds a list ofACTION objects that describe how the

Prefetcher should execute the prefetches. Figure 5.23 shows an overview of the input the Query
Rewriter takes from the Pattern Optimizer and the output that it saves persistently for use at run-
time.

Pattern Optimizer

(
Section
5.3)

Query Rewriter

(
Section
5.4)

Redundancy-

Removed FSM

with Query Lists

[b,c]

[]

a

[c]
b

b

c

c

c

a

a

b

Persistent Store

[b,c]

[]

a

[c]
b

b

c

c

c

a

a

b

[Batch-Join]

[Batch-Join,

Batch-Union]

FSM with Action Lists

and Rewritten Queries

Figure 5.23: Overview of the Query Rewriter

Every staten except the initial states0 has the same labela on any edges entering the

state, and we represent this with GET-INCOMING(n). Further, the Pattern Optimizer has asso-
ciated a list of queries to prefetch with each staten; we represent this with GET-PREFETCH(n).

Finally, each staten has an associated set of correlations that are predicted to hold, given by
CORRELATIONS(n).

140 BATCH REQUEST PATTERNS

The Query Rewriter uses this information to generate (for each staten) a combined query

Q′ that encodes the results for GET-INCOMING(n) and also for the list GET-PREFETCH(n) of
queries that are to be prefetched. The combined query is built using rewrite rules and the corre-

lation predictions stored in CORRELATIONS(n). Further, the Query Rewriter adds ACTION ob-
jects as annotations to each state in the model. These ACTION objects are similar to those used

for nested request patterns (Section 3.3.5). These ACTION objects are used at run-time to inform
Scalpel of how each request should be answered. Finally, at the end of the training period, the fi-

nite state model with its ACTION annotations is stored persistently for use at run-time.

5.4.1 Alternative Prefetch Strategies

There are several mechanisms that we could consider for prefetching the results of future queries.
We evaluated the following approaches:

Batch requestsSeveralDBMS products allow a request OPEN(Q) to consist of abatch request

such asQ = q1; q2; . . . ; qk. The OPEN(Q) request returns a list of cursors, and the database-
access API (such as JDBC) provides a mechanism to move sequentially through the list of

cursors.

Stored procedureAs well as batches of queries, severalDBMS products supportstored proce-

dures. These allow procedural code to be executed by theDBMS. As with batch requests,
multiple cursors can be returned. While a batch request is specified in an OPEN call, a

stored procedure is created persistently in the database schema.

Join As with the nested patterns of Chapter 3, we can combine queries using an outer join.

Union A join approach uses separate columns for each of the original queries. If the original re-
sult sets are union-compatible then we can use a UNION to prefetch the desired results.

Even if the results are not union-compatible, we could use a construct similar to the outer-
union used for nested request patterns described in Section3.3.3.2.

We evaluated the above approaches to prefetching by using each approach to fetch a list of

queriesTQ(i) for i = 1 . . . k. Each queryTQ(i) fetches the single row from tableT with pri-
mary key equal toi as follows:

SELECT x FROM T WHERE pk = :i

In addition to the above 4 prefetch approaches, we considered a sequential strategy that exe-
cutes thek queries one at a time without prefetching. The sequential strategy corresponds to an

unoptimized sequence. We also include an IN-list query thatexploits the special structure of our
query list to fetch all of thek rows with a single scan ofT driven by an IN-list as follows:

5.4 QUERY REWRITER 141

S

S

S

0 10 20 30 40 50

0

1

2

3

4

5

6

I I I I I I I I I IP
P

P
P

P
P

P
P

P
P

J J J J J J J J J JB

B

B

B

B

B

B

B

B

B

Figure 5.24: Run-time (ms) to executek sequential queries using a sequential (S), batch request

(B), stored procedure (P), join (J), or in-list (I) strategy. Each point is the average of 1000 itera-
tions. Note: the union (U) strategy is not shown as it is very similar to the join approach (J). All

results are for configuration LCL.

SELECT x FROM T WHERE pk IN (1,2,...,:k)

The IN-list query is only possible because of the way we generate our test queriesTQ(i), and we
do not consider generating these types of prefetches. We include the IN-list query only because it
essentially provides a lower bound to the cost of getting ourk result rows.

Figure 5.25 shows the code we used to perform timings, Figure5.24 shows the measured re-

sults for the alternatives and Table 5.1 summarizes the results of a linear regression for each al-
ternative. All results were measured on configuration LCL (described in Section 3.6).

The batch request (B) and stored procedure (P) approaches eliminate the per-request com-
munication overhead. Further, their ability to use procedural code would make it convenient to

generate a prefetch request that uses parameters from earlier queries as input parameters to later
queries. Unfortunately, these approaches do not eliminatethe costs associated with crossing the

procedural/relational implementation boundary. The run-times for these approaches improve on
the sequential times (and the improvement increases if we move to configurations with higher

communication latency). However, the run-times are not very close to the lower bound we mea-
sured with the IN-list query.

142 BATCH REQUEST PATTERNS

function TQ(i) return “SELECT x FROM T WHERE pk=”+i end625

function BATCHQUERY(k)626

sql ← “BEGIN ”627

for i ←1 to k do sql ← sql + TQ(i) + “; ”628

sql ← sql + “ END”629

return sql630

end631

632

� Open a cursor overQ and fetch all of the rows (timing code not shown)633

function FALL(Q)634

open c cursor for Q ; do r ← fetch cuntil r = NIL; close c635

end636

function TIMESEQUENTIAL(k)637

for i ←1 to k do FAll(TQ(i))638

end639

function TIMEBATCHREQUEST(k)640

FAll(BatchQuery(k))641

end642

function TIMESTOREDPROCEDURE(k)643

execute (“CREATE PROCEDURE P() AS ”+ BatchQuery(k))644

FAll(“CALL P()”)645

execute (“DROP PROCEDURE P”)646

end647

function TIMEJOIN(k)648

sql ← “SELECT * FROM (”+ TQ(i) +“) DT1”649

for i ←2 to k do sql ← sql + “, (”+ TQ(i) +“) DT”+i650

FAll(sql)651

end652

function TIMEUNION(k)653

sql ← TQ(1)654

for i ←2 to k do sql ← sql + “UNION ALL ”+ TQ(i)655

FAll(sql)656

end657

function TIMEIN(k)658

sql ←“SELECT x FROM T WHERE pk IN (1 ”659

for i ←2 to k do sql ← sql + “, ”+ i660

sql ← sql + “) ”661

FAll(sql)662

end663

Figure 5.25: Code to evaluate alternative prefetching approaches.

5.4 QUERY REWRITER 143

Prefetch Approach Time (µs) Sample

Sequential (S) 139.8 + 343.0k TQ(1); TQ(2); . . . ;TQ(k)

Batch Request (B) 296.4 + 102.4k BEGIN TQ(1); TQ(2); ... END

Stored Procedure (P) 150.4 + 38.9k CALL P()

Join (J) 113.7 + 12.2k SELECT * FROM TQ(1),TQ(2),...

Union (U) 119.2 + 11.7k TQ(1) UNION ALL TQ(2) ...

IN-List (I) 167.4 + 4.4k
FAll(SELECT * FROM T

WHERE pk IN (1, 2, ..., k)

Table 5.1: Run-time (µs) to executek queries using different prefetch strategies. The last column
gives a sample of the calls during the test.

In contrast, the join (J) and union (U) approaches encode allof the requests as a single query.
In this way, all but one instance of the per-request costs areeliminated, including both the com-

munication costs and the costs of crossing the relational barrier. This reduction is substantial, and
these approaches are relatively close to the lower bound provided by the IN-list query. The addi-

tional cost for the join and union is caused by the cost of beginning an index scan on a quantifier.
The IN-list query initializes the search strategy for a single table, while the other two must initial-

izek quantifiers. Further, conceivably aDBMS could implement rewrite optimizations that trans-
form the query generated by the join or union approach into a form that is as fast as the IN-list

query. This would give a SRV-SAVINGS < 1, representing the fact that the server finds a more ef-
ficient strategy for the combined query than for the sum of theindividual requests. TheDBMS

products we tested did not benefit from such a transformation, but at least it is possible with such
a combination. It seems less likely that such a transformation would be used for the batch (B) or

stored procedure (P) approaches.

The batch request (B) and stored procedure (P) approaches seem be convenient targets of

rewrites because the procedural capabilities of these approaches allows simple handling of the
correlations between earlier parameter values and later input parameters. However, these meth-

ods are not supported by allDBMS products. Further, these methods do not (directly) allow for
rewrite optimizations that can reduce the total running time to the IN-list lower bound. Finally,

the savings provided by these methods is not very close to that achieved by the union and join
methods. For these reasons, we consider only the union and join prefetch strategies. With these

strategies, we must implement rewrites that supply values for the input parameters of prefetched
queries.

144 BATCH REQUEST PATTERNS

5.4.2 Rewriting with Join and Union

When considering join-based rewrites for nested patterns (Section 3.3.2.2) we introduced the lat-

eral derived table construct (and the outer-join variant thereof) for prefetching nested queries
using joins. We can also use this construct when generating prefetch queries for sequences of

queries. Figure 5.26 shows the result of combining queryQd andQb of Figure 5.2 using a lat-
eral derived table.

SELECT DT0.name, DT1.addr

FROM (SELECT name

FROM vendor v WHERE v.id = :vendor info.id) DT0

LEFT OUTER LATERAL

(SELECT addr

FROM shipto s

WHERE s.shipid = :vendor info.id) DT1

Figure 5.26:Qdb: queriesQd andQb combined using a lateral derived table.

The lateral derived table construct implements a form of join. If a query may return more than
one row, then the join introduces data redundancy. To avoid this, we use a union-based rewriting

similar to the outer union strategy we used for nested queries (Section 3.3.3.2). QueryQe of Fig-
ure 5.2 can return more than one row, so we use a union-based rewrite for it. Figure 5.27 shows

the union-based query we use to combine queriesQd, Qb, andQe.

QueryQdbe (Figure 5.27) uses a union with two branches. The first branch, associated with
type−1, returns the values of all at-most-one-row queries in the prefetch list (in this case,Qd and

Qb). As in the outer-union strategy used for nested patterns, we use aVALUES clause to generate
a derived tableDT OneRow that returns a single row.

The second branch of the union represents queryQe, which is at position2 in the prefetch list.
Therefore, it has atype value of2. This branch contains a derived tableDT2 based on queryQe.

The branch can return 0 or more rows. Figure 5.28 shows the result of the combined queryQdbe

when invoked with avendor info.id value of 201 (corresponding to line 4 of Figure 5.3).

5.4.3 Representing Run-Time Behaviour With ACTION Objects

Scalpel uses ACTION objects for batch request patterns in a way that is similar totheir use
for nested request patterns (Section 3.3.5.1). For each state in the finite state model, the Query

Rewriter associates a list of ACTION objects. Figure 5.29 shows how Scalpel generates these lists.

The ACTION objects have anacttype field that represents what action should be performed
at run-time. There are only two types of action used for batchrequest patterns: BATCH-JOIN,

5.4 QUERY REWRITER 145

SELECT DT UNION.*
FROM (SELECT name

FROM vendor v WHERE v.id = :vendor info.id) DT0

LEFT OUTER LATERAL

(SELECT addr

FROM shipto s

WHERE s.shipid = :vendor info.id) DT1,

LATERAL

(SELECT -1, DT0.name, DT1.addr, NULL, NULL

FROM (VALUES(1)) DT OneRow

UNION ALL

SELECT 2, NULL, NULL, DT2.*
FROM (SELECT partname, invlevel - onhand AS qty

FROM part p

WHERE p.vendor id = :vendor info.id

AND p.onhand < p.invlevel) DT2

) DT UNION(type, c1, c2, c3, c4)

ORDER BY DT UNION.type, DT UNION.c3

Figure 5.27:Qdbe: queriesQd, Qb, andQe combined using union and lateral derived tables.

type c1 c2 c3 c4

-1 ‘Mary’ ‘1400 Barrington St.’ NULL NULL

2 NULL NULL ‘Bell’ 3

2 NULL NULL ‘Tire’ 6

Figure 5.28: Result ofQdbe for vendor info.id=201 (line 4 of Figure 5.3)

which is used to decode the result set for a query that returnsat most one row, and BATCH-UNION,

used to decode the results of queries that might return more than one row. The GENERATE-
PREFETCH-ACTIONS function (Figure 5.29) is called for each staten in the finite-state model. It

generates an ACTION object for the querya that is used to enter staten (line 685). This ACTION

object will be used to respond to the original OPEN request, and this is accomplished by modify-

ing the associatedsubmitquery to be a combined query that returns results for all queries. To
begin with, thesubmitqueryassociated with this action is initialized witha; it will be changed

later after calling GENERATE-PREFETCH-QUERY (line 694).

In addition to the ACTION object for querya, GENERATE-PREFETCH-ACTIONS builds an
ACTION object for each queryq in the prefetch list associated with noden. Thesubmitquery

146 BATCH REQUEST PATTERNS

structure ACTION664

acttype= “” � The type of action to perform665

resultquery=NIL � The query defining the result set666

submitquery=NIL � The combined query that will be submitted instead667

... � Additional bookkeeping information is omitted668

end669

670

� Add a new ACTION object to staten671

procedure APPEND-ACTION(n, resultquery, submitquery)672

if AT-MOST-ONE(resultquery) then acttype ← BATCH-JOIN673

else acttype ← BATCH-UNION674

A ← new ACTION(acttype, resultquery, submitquery)675

n.actions ← [n.actions, A] � Append the new action676

end677

678

� Generate a list of ACTION objects for staten679

function GENERATE-PREFETCH-ACTIONS(n)680

a ← GET-INCOMING(n)681

prefetch ← GET-PREFETCH(n)682

683

� Add an action for the querya observed in current OPEN call684

APPEND-ACTION(n, a, a)685

for i ← 1...prefetch.length do686

� Get correlations predicted to hold for prefetch queryi687

corrs ← CORRELATIONS(n, i)688

q ← prefetch[i]689

submitquery ← REPLACE-PARAMETERS(q, corrs)690

APPEND-ACTION(n, q, submitquery)691

692

� Generate the combined query, and assign it to the action fora693

n.actions.submitquery ← GENERATE-PREFETCH-QUERY(n)694

end695

Figure 5.29: Building ACTION objects.

5.4 QUERY REWRITER 147

of these ACTION objects is initialized with a version ofq that has been modified to replace all

parameter references with an appropriate value source based on the correlations predicted to
hold for the parameter. The modifiedsubmitquery is generated by REPLACE-PARAMETERS

(line 690). This procedure (not shown) chooses a correlation source for each input parametert of
each queryq using the set of CORRELATION objects given by CORRELATIONS(n, i). For a COR-

RELATION objectc in CORRELATIONS(n, i), we have the following possibilities:

Constant If c.type = ‘C’, then c represents a constant. We replace parametert with the literal

value.

Input If c.type = ‘I’, then c represents the fact that parametert has always been equal to the input
parameter of a preceding query openedc.prevcnt requests earlier. Ifi + c.prevcnt ≤ 0,

then the value of the input parameter is available when the OPEN(q) request is submit-
ted; we replace parametert with a parameter filled with the value of the earlier input pa-
rameter. Otherwise, the input parameter is from a query in the prefetch listprefetch.

The value of this input parameter is not available when the OPEN(a) request is submit-
ted, hence we cannot use it directly. However, any such inputparameter is in turn corre-

lated to a source thatis available (the elements of the prefetch list are feasible, as checked
by the Pattern Optimizer). This correlation implies there is another correlation source avail-

able for parametert that we can use.

Output If c.type = ‘O’, then c represents the fact that parametert has always been equal to
the output parameter of a preceding query openedc.prevcnt requests earlier. As with in-
put correlations, we may havei + c.prevcnt < 0, which means the the value of the

prior output parameter has been fetched before the OPEN(a) request is submitted; in this
case, we replace parametert with a parameter filled with the value of the earlier out-

put parameter. Alternatively, for the output case we may have the input parametert of
prefetched queryprefetch[i]being correlated to the output columnp of a prior request

prefetch[j]. In that case, we replace the parameter with the text‘DT’+j+‘.c’+p.
This replacement text is an outer reference to a derived table representing the prior query.

If there are multiple elements for a single parameter in CORRELATIONS(n, i), we can choose
any of the CORRELATION objects (except for the restriction on type ‘I’ objects noted above);

all of the CORRELATION objects had the same current value on every execution of the con-
text. We choose a CORRELATION from the set according to the following ordering. First, any

constant (type ‘C’). These appear as constant literals in the combined query, requiring no addi-
tional work at run-time. Next, we consider any input or output source (type ‘I’ or ‘O’) that has a

prevcnt that draws a value available when OPEN(a) is submitted. These will be treated as in-
put parameters to the query, and Scalpel will supply the input parameter with a value that it has

148 BATCH REQUEST PATTERNS

previously observed. Finally, we use any output source (type ‘O’) that is an output parameter of

queryprefetch[j] for some0 ≤ j < i. In this case, the replacement text is an outer refer-
ence to a previous prefetch query’s derived table, and this is effectively a join condition.

The GENERATE-PREFETCH-ACTIONS procedure generates a list of ACTION objects for each
staten. It then calls the GENERATE-PREFETCH-QUERY function (line 694) to generate the com-

bined query that will be used at run time. This combined queryis assigned to thesubmitquery
field of the first ACTION object in the list for staten. Figure 5.30 shows the GENERATE-
PREFETCH-QUERY procedure that builds these combined queries. The procedure generates a

combined query that encodes the results of all thesubmitquery values associated with the
ACTION objects for staten.

5.4.4 Summary of Query Rewriter

After training, Scalpel identifies a list of queries that should be prefetched when we see an
OPEN(Q) request in a particular context. We considered four approaches to prefetching based on

batch requests, stored procedures, joins, and unions. We found that the procedural approaches are
useful for reducing communication latency, but they do not perform as well as the approaches that

use a single query, reducing the costs associated with crossing the procedural/relational bound-
ary. As a consequence, we considered only the union and join based approaches.

The GENERATE-PREFETCH-ACTIONS procedure is called for each staten, and builds a list

of ACTION objects. Each ACTION object is initialized with aresultquery set to the original
query text andsubmitquery initialized with a rewritten version of the query text that replaces

parameters with appropriate references based on predictedcorrelations. Theacttype field of
each ACTION object indicates how the query for the action is encoded in the combined result set,

with BATCH-JOIN used for join-encoded queries that return at most one row, and BATCH-UNION

used for union-encoded queries that may return multiple rows.

After generating the list of ACTION objects for staten, GENERATE-PREFETCH-ACTIONS

calls GENERATE-PREFETCH-QUERY to produce a combined query that encodes the results for
all of the ACTION submitquery fields. The GENERATE-PREFETCH-QUERY procedure com-

bines the queries together using joins (left outer lateral derived tables) for queries that return at
most one row and outer unions for queries that may return morethan one row. The procedure re-

turns the combined query text. The details of the run-time procedure are described next in Sec-
tion 5.5.

5.5 PREFETCHER 149

� Generate a combined query that encodes thesubmitquery results for all ACTION objects696

function GENERATE-PREFETCH-QUERY(n)697

actions ← n.actions698

any_union ← FALSE699

select_onerow ← []700

from ← NIL701

702

� Generate derived tables for the join-based queries703

for i ← 0...actions.length do704

if actions[i].acttype = BATCH-JOIN then705

if from = NIL then from ← “FROM (”706

else from ← from + “ LEFT LATERAL (”707

from ← from + actions[i].submitquery + “) DT”+ i708

select_onerow ← select_onerow + (“DT”+ i + “.*”)709

else710

any_union ← TRUE711

712

if not any_union then713

� There are no union-based actions; generate the join based query714

sql ← “SELECT ” + select_onerow715

sql ← sql + from716

else717

� Generate a union-based query, with a branch of type -1 for thejoin-based actions718

if from = NIL then from ← “FROM (”719

else from ← from + “ LEFT LATERAL (”720

from ← from + “ SELECT -1, ”+ select_onerow + AddNulls(...)721

for i ← 0...actions.length do722

if actions[i].acttype 6= BATCH-UNION then continue723

from ← from + ‘ UNION ALL ’724

from ← from + ‘SELECT ’+i+‘ AS type ’ + AddNulls(...)725

from ← from + ‘, DT’+i+‘.*’ + AddNulls(...)726

from ← from + ‘FROM (’+actions[i].submitquery+’) DT’+i727

from ← from+‘) DT_UNION(type,c1,c2,...)’728

sql ← ‘SELECT DT_UNION.* ’+from+‘ ORDER BY DT_UNION.type’729

for i ← 0...actions.length do730

if actions[i].acttype = BATCH-UNION then731

sql ← sql+AdjustOrderBy(actions[i].submitquery, ...)732

return sql733

end734

Figure 5.30: Generating a batch prefetch query.

150 BATCH REQUEST PATTERNS

Prefetcher

(
Section
5.5)

Persistent Store

FSM with Action Lists

and Rewritten Queries

Call Monitor

Run-Open

Run-Fetch

 Run-Close

[b,c]

[]

a

[c]
b

b

c

c

c

a

a

b

[Batch-Join]

[Batch-Join,

Batch-Union]

Query Rewriter

(
Section
5.4)

Figure 5.31: Overview of the role of the Prefetcher.

5.5 Prefetcher

Figure 5.31 gives an overview of how the Prefetcher integrates with the rest of Scalpel’s batch

request processing. After a training period has been completed, the Pattern Optimizer has con-
structed a finite-state modelM = 〈S,Σ, δ, s0, p〉. Further, the Query Rewriter has annotated each
staten in this model with a listn.actions that describe how queries should be processed

at run-time. The first element of this list has asubmitquery value that gives the query text
that should be submitted to theDBMS when request OPEN(a) is submitted. The Query Rewriter

stores this model persistently, and the Prefetcher loads the model when the application first uses
Scalpel. The Call Monitor component monitors calls the application makes to OPEN, FETCH, and

CLOSE. For each of these, the Call Monitor calls the appropriate RUN- method implemented by
the Prefetcher.

Scalpel maintains run-time state,R, that allows it to respond to application requests. The run-

time state includes the request modelM that was generated by the Pattern Optimizer and Query
Rewriter. In addition,R.qcurr records the current model state maintained by tracking requests

in the current sequence. FieldR.tracker is a VALUETRACKER object that maintains parame-
ter values from the previousS requests, whereS is the configured scope length parameter. Finally,

Rmaintains information about results that have already beenprefetched:pfCrsr is a cursor over
the combined, rewritten query;pfActions is the list of ACTION objects that were associated

5.5 PREFETCHER 151

structure R735

M=request model � The request model built after training736

qcurr = M.s0 � The current state737

pfCrsr=NIL � A cursor over the rewritten query738

pfRow=NIL � The first row ofpfCrsr containing all join-encoded results739

pfActions=[] � List of ACTION currently in use740

pfOffset=0 � Current offset inpfActions741

tracker=new VALUETRACKER � Maintain parameter values forS preceding requests742

end743

� Process an OPEN(a,InVals) request usingR744

function RUN-OPEN(R, a, InVals)745

ADDINPUT(R.tracker, InVals) � Add InVals to tracker746

� The next state is given by following thea edge fromR.qcurr747

nextstate ← R.M.δ(R.qcurr, a)748

749

� Try to find an ACTION object in the list of already prefetched results matchinga750

action ← NIL751

for i ← R.pfOffset...R.pfActions.length do752

if q = R.pfActions[i].resultquery then753

action ← R.pfActions[i]754

R.pfOffset ← i+1755

if action 6= NIL ∧ CHECK-CORR-PREDICTIONS(action, InVals) then756

� If a was prefetched with correctly predicted parameters, use prefetch757

crsr ← USE-PREFETCH(R, a, action)758

else if nextstate.actions 6= ∅759

� Submit combined query that encodesa and all prefetched queries760

R.pfActions ← nextstate.actions761

action ← R.pfActions[0]762

R.pfOffset ← 1763

crsr ←SUBMIT-PREFETCH(R, a, action, InVals)764

else765

� Submit the original query to theDBMS unmodified766

CLEAR-PREFETCH(R)767

crsr ←SUBMIT-UNMODIFIED(R, a, action, InVals)768

R.qcurr ← nextstate769

return crsr770

end771

Figure 5.32: Pseudo-code for Scalpel batch request Prefetcher.

152 BATCH REQUEST PATTERNS

with the most recent fetch sent to theDBMS, andpfOffset is the index withinpfActions in-

dicating the ACTION object that is expected to match the next OPEN request.

Figure 5.32 shows how Scalpel usesR to maintain the current stateqcurr, submit combined

queries to theDBMS, and decode prefetched results. The RUN-OPEN procedure is called by the
Call Monitor component of Scalpel when the client application submits OPEN(a,InVals).

First, RUN-OPEN adds the input parametersInVals to the VALUETRACKER object stored in
R.tracker (line 746). The VALUETRACKER is used to verify that predicted correlations actu-

ally hold and that prefetched results match what is requested. Next, RUN-OPEN usesR.M.δ to
find the next state that the model will move into after querya (line 748). Thenextstate ob-

ject holds bookkeeping information that may be used to execute this request.

Next, RUN-OPEN looks in the listR.pfActions to see if there is an ACTION object in the

list that matches querya. Even if such an ACTION object is found, the parameter values used to
prefetch the associated results might not match the actual values supplied in the call OPEN(a,
InVals). This would represent a failure of the training period in that a correlation that always

held during training is not true at some point during the run-time, but we give correct results in
this case by detecting the difference and avoiding the use ofinappropriate prefetched values. The

CHECK-CORR-PREDICTIONS function (not shown) compares actual parameter valuesInVals

to the predicted correlation sources identified in the ACTION object.

If an appropriate ACTION object is found fora and the predicted parameter values match the
actual values (InVals), then the needed results have already been prefetched and they are en-

coded inR.pfCrsr. The USE-PREFETCH function (line 758) returns a result set fora that is
implemented by decoding the results inpfCrsr using the rules described in the associated AC-

TION object. Function USE-PREFETCH is shown in Figure 5.33.

If no ACTION object inR.pfActions matches the current requesta, then no prefetched

results are available. Function RUN-OPEN will submit a demand fetch to theDBMS. If the
nextstate object has a non-empty list of ACTION objects, the SUBMIT-PREFETCH function
is called (line 764) to submit a combined query and decode theresults fora. Function SUBMIT-

PREFETCH is shown in Figure 5.33. If, on the other hand no prefetch actions have been speci-
fied innextstate, the SUBMIT-UNMODIFIED function is called (line 768) to submit requesta

to theDBMS without modification.

After a cursor is obtained, either by decoding prefetched results, submitting and decoding a

combined request, or submittinga to theDBMS unmodified, RUN-OPEN changes the current state
to nextstate (line 769).

Figure 5.33 outlines how Scalpel implements the SUBMIT-PREFETCH and USE-PREFETCH

functions. The SUBMIT-PREFETCH function opens a cursorR.pfCrsr over the rewritten, com-

bined query. Then, it fetches the first row from this cursor, storing the result inR.pfRow. This
will either be the only row (if all prefetched queries are at-most-one-row), or it will be the first

5.5 PREFETCHER 153

function SUBMIT-PREFETCH(R, a, action, InVals)772

� Submit the rewritten query773

open R.pfCrsr cursor for action.submitquery:774

R.pfRow ← fetch R.pfCrsr � Fetch values for join-encoded queries775

if R.pfRow = NIL776

� Querya returned no rows: we cannot use prefetch; return an empty cursor fora777

CLEAR-PREFETCH()778

return EMPTYCURSOR()779

else780

return USE-PREFETCH(R, a, action, InVals)781

end782

783

function USE-PREFETCH(R, a, action)784

if action.acttype = BATCH-JOIN then785

� If the results fora were null-supplied, return an empty cursor786

if NULL -SUPPLIED(R.pfRow, action) then return EMPTYCURSOR()787

else return JOINCURSOR(R.pfRow, action)788

else789

� Decode an outer-union encoded result set790

return UNIONCURSOR(R.pfCrsr, action)791

end792

Figure 5.33: Pseudo-code for prefetching.

branch ofDT UNION with type field of−1. It may be the case that the querya returns no rows

for the given input values. In this case (line 778), the prefetched results of the remaining queries
are not available: they are eliminated by the join with emptya. In this case, SUBMIT-PREFETCH

returns an empty cursor fora and clears the prefetched data structures by a call to CLEAR-
PREFETCH (not shown). Otherwise, if the first fetch was successful, SUBMIT-PREFETCH calls

USE-PREFETCH to interpret the results fora using the associated ACTION object.

Function USE-PREFETCH is called when we have a requesta with the appropriate result

set encoded by a previous demand fetch. USE-PREFETCH decodes this result according to the
rules in the ACTION object. For anacttype of BATCH-JOIN, the result is encoded in the field
R.pfRow. Either zero or one row is encoded fora, and this is determined using the NULL -

SUPPLIED function, which uses non-nullable fields identified in the ACTION object to determine
if the result was generated by the left outer lateral construct (and hencea is empty). If so, an

empty result set is returned; otherwise, a single-row result set is returned based on the appropri-
ate attributes ofR.pfRow.

Alternatively, if a has an ACTION object of type BATCH-UNION, then the results fora are
encoded as a branch of an outer union inR.pfCrsr. The USE-PREFETCH function returns a

154 BATCH REQUEST PATTERNS

UNIONCURSORobject that returns the rows ofR.pfCrsr that match thetype field specified

in the ACTION object.

When the client application submits a FETCH(crsr) request, Scalpel’s Call Monitor com-
ponent calls RUN-FETCH (not shown). If the cursor is a result of a prefetched result set (either

JOINCURSOR or UNIONCURSOR) the appropriate row is decoded from the prefetched results.
Otherwise, the fetch is submitted unmodified. In any case, the row returned is added to the VAL -

UETRACKER using the ADDOUTPUT function. This allows theR.tracker to be used to verify
that prefetched queries guessed input parameters correctly.

5.5.1 Summary of Prefetcher

At run-time, structureR is used to maintain state that permits prefetching. This state includesM ,
the finite state model generated during the training period.The model consists of a set of states
and transitions between them, and the transitions are optionally annotated with anAction ob-

ject that provides a prefetch that Scalpel should perform when the associated request is submit-
ted when in the originating state. When a prefetch request issubmitted, the first row of the com-

bined result is used to satisfy prefetched at-most-one-rowqueries, and the remaining queries are
satisfied by interpreting the branches of the union.

When a requestQ is submitted, it is compared to the list of prefetched results until a match

is found or the end of list is reached. If it is not found, a demand fetch will be sent to theDBMS,
along with any configured prefetch requests. IfQ is found in the listR.pfQ, then the results for

the query are available. The results are either interpretedfrom R.pfRow (if Q is at-most-one-
row) or interpreted as the rows of the combined result with atype field matching the query off-
set inR.pfQ.

5.6 Experiments

We performed a variety of experiments that were designed to answer two general questions. First,
how effective is semantic prefetching at reducing the execution time of query batches when they

occur? Second, how significant is the training overhead thatis introduced by the Scalpel system?
The first question is addressed in Section 5.6.1. The second is addressed in Section 5.6.2.

5.6.1 Effectiveness of Semantic Prefetching

To study the effectiveness of Scalpel’s prefetching, we consider a scenario in which Scalpel, dur-
ing its training phase, has identified a rewrite rule that predicts that a queryQ0 will be followed by

a batch of queriesQ1,Q2,. . .,QL. Each query is a simple single-row selection from a tableT, and
each predicted queryQi is correlated withQi−1, its immediately predecessor in the query batch.

5.6 EXPERIMENTS 155

We wrote a simple driver program, shown in Figure 5.34, to generate a run-time query stream

for Scalpel. The program generates the initial query,Q0, followed by a prefix of the remainder
of the batch, and then repeats thisN times. The length of the prefix is controlled by a selectivity

parameterP . WhenP = 1, each run-time batch is exactly as predicated in Scalpel’s rewrite rule.
WhenP < 1, some of the queries predicted in Scalpel’s rewrite rule arenot generated at run-

time. The selectivity parameter simulates the effect of predicates in application code which may
cause conditional execution of queries in a batch.

� N is the number of batches to generate.793

� L is the batch length.794

� P controls predicate selectivity.795

procedure GenQueryBatches(N, L, P)796

for iteration ← 1 to N do797

generate query Q0798

for i ← 1 to PL do799

generate query Qi800

end801

Figure 5.34: Code for Generating Query Stream

For each experiment, we choose values forN , L, andP and we execute the resulting query

stream twice, once without Scalpel and once with it. In the former case, which we callunopti-

mized, each query is passed directly to the database server for execution. In the latteroptimized

case, queries are passed through Scalpel, which applies itsrewrite rule to prefetch the results of
each query batch.

We studied five different system configurations with varyingnetwork latency. These config-

urations are described in Table 3.5. These configurations used a total of four different client and
server computers, the properties of which are described in Table 3.4

The driver program is implemented in Java using JDBC. All results are reported using Java 2
Standard Edition, version 1.5.0. A prototype version of Scalpel was used for the experiments. We

experimented with three different commercial database systems behind Scalpel. License restric-
tions prevent us from identifying them. In each case, the table T used by the queries was popu-

lated with 4096 rows and was fully cached. The results for thethree database systems were con-
sistent, although with different constants, so we have presented the results for only one system.

We useN = 1024 for all configurations except WAN, where only 256 iterationswere used due
to the very high latencies involved.

156 BATCH REQUEST PATTERNS

5.6.1.1 Batch Length

The benefit of prefetching depends on the number of queries that are successfully prefetched and

on the latency of the communication. In this experiment, we fixedP = 1, varied the batch length
L, and measured execution time on each of the five network configurations. SinceP = 1, this

experiment represents the ideal case in which Scalpel has accurately predicted the occurrence of
a query batch that does not involve any application predicates.

U

U

U

U

U

U

U

U

U

0 5 10 15 20 25 30

0

5

10

15

20

25

O
O

O
O

O
O

O
O

O

U

U

U

U

U

U

U

U

U

0 5 10 15 20 25 30

0

50

100

150

200

250

300

O O O O O O O O O

(a) LAN1 (b) WiFi

Figure 5.35: Mean time (ms) per iteration for unoptimized (U) and optimized (O) strategies with
varying batch lengthL, P = 1.

Figure 5.35 shows the results for two of the five system configurations. As the number of

successful prefetches increases, the relative benefit increases. One of the database systems that
we considered returned an error for a batch length of 45 due tothe complexity of the gener-

ated prefetch query (which contains a join between 46 quantifiers). Prefetching provides savings
even in the low-latency LCL configuration, although much higher gains are available as the inter-

connect latency grows (Section 3.6 summarizes the configuration LCL and the other configura-
tions we use). Table 5.2 summarizes the results of a linear regression for each of the five config-

urations. The slope of the prefetch strategy remains relatively constant in the different configura-
tions, while the original strategy incurs the per-request overhead for each additional query.

5.6 EXPERIMENTS 157

Setup Unoptimized Optimized

LCL 0.37 + 0.43L 0.26 + 0.32L

LAN1 0.75 + 0.76L 0.50 + 0.33L

LAN0.1 1.06 + 1.08L 1.28 + 0.35L

WiFi 10.35 + 9.16L 9.11 + 0.39L

WAN 653.27 + 456.58L 485.03 + 0.21L

Table 5.2: Mean time (ms) per iteration vs batch length (L).

5.6.1.2 Useful Prefetches

For the next experiment, we fixedL = 16 and varied the selectivity in the range0 ≤ P ≤ 1.

WhenP is small, only a small portion of the query batch prefetched by Scalpel is actually used by
the application. Such overly aggressive prefetching can occur for several reasons. First, Scalpel
may be unaware that some of the batch queries are conditional, i.e., there may be prediction er-

ror. Alternatively, Scalpel may be aware that part of the batch is conditional and yet decide, on a
cost basis, that prefetching is still worthwhile.

Figure 5.36 shows the results of our measurements for four configurations. All points are the
average of 1024 iterations. As expected, the unoptimized strategy has a strong dependence on the

proportionP of queries that are actually submitted, while the optimizedstrategy has only a weak
dependence onP . The prefetching strategy has a weak dependence onP because the costs as-

sociated with tracking the context as queries are opened, detecting if prefetched results are valid,
and interpreting the prefetched results are small, but non-zero.

In general, asP increases, there is a threshold above which the optimized (prefetching) strat-
egy becomes worthwhile. A comparison of the configurations in Figure 5.36 shows that this

threshold depends on system parameters: in particular, it depends on network latency. In the low-
latency LCL configuration, prefetching does not begin to payoff until P > 0.75. In the higher la-

tency LAN0.1 configuration, prefetching pays off onceP > 0.4. Even more aggressive prefetch-
ing is called for in higher latency configurations such as WiFi and WAN. These data demonstrate

one of the advantages of Scalpel’s run-time optimization strategy, since the amount of network la-
tency may not be known at development time, or may vary among instances of the application

program.

Table 5.3 summarizes the results of a linear regression for the experiment of Figure 5.36

with all configurations except WAN. For that configuration, the variations caused by sampling er-
ror exceed the effect of increasingP , and the slope derived from such an analysis is misleading.

158 BATCH REQUEST PATTERNS

U
U

U
U

U
U

U
U

U

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

OOOOOOOOO

U

U

U

U

U

U

U

U

U

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

OOOOOOOOO

(a) LCL (b) LAN0.1

U

U

U

U

U

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

OOOOOOOOO

U

U

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

OOOOOOOOO

(c) WiFi (d) WAN

Figure 5.36: Mean time per iteration for unoptimized (U) andoptimized (O) strategies withL =

16 and varyingP . All times in milliseconds except (d) in seconds.

5.6 EXPERIMENTS 159

However, we can see in Figure 5.36(d) that it is clearly much lower than the slope in the unopti-

mized case.

Setup Unoptimized Optimized

LCL 0.42 + 6.98P 5.02 + 0.19P

LAN1 0.75 + 12.10P 5.26 + 0.29P

LAN0.1 1.07 + 17.18P 6.43 + 0.26P

WiFi 9.28 + 147.28P 15.00 + 0.16P

WAN 354.1 + 8227.9P omitted

Table 5.3: Mean time (ms) per iteration vs proportion of useful prefetches (P)

5.6.1.3 Breakdown of Costs

Prefetching can act to reduce latency, but it also affects the processing costs at both the client and

the server. Prefetching can increase server costs by generating wasted work in cases when all of
the prefetched results are not used by the application. Scalpel also introduces additional costs at
the client for monitoring and rewriting the query request stream. On the other hand, Scalpel can

reduce processing overhead at both the client and the serverby reducing the number of OPEN

requests that are submitted.

Figure 5.37 shows a breakdown of total query execution timesfor the caseL = 16 and

P = 0.75. In the LCL configuration, total elapsed time is reduced primarily by a reduction in
client CPU costs (1.8ms to 0.6ms). Latency is relatively unaffected, but server processing costs

are increased (from 3.7ms to 4.5ms). This additional servercost is related to the work needed for
the 4 queries that are not fetched in the original strategy, and it is also related to the higher cost

of executing the combined query compared to the original single-table queries.

In the other network configurations, the situation with server costs is reversed: the optimized
strategies are slightly cheaper than the original. The additional costs that affect the LCL config-

uration are offset by the savings in interpreting and formatting messages. The unoptimized strat-
egy uses 104 communication packets with 3.4KB, while the optimized strategy uses only 8 pack-

ets with 1.4KB. This reduction was not as significant in the efficient shared memory link used in
the LCL configuration, but in the TCP/IP configurations it more than offsets the additional costs

associated with the 4 wasted prefetched results. These setups also enjoy client-side savings simi-
lar to those of the LCL setup, and also exhibit a more marked improvement in latency.

160 BATCH REQUEST PATTERNS

0

2

4

6

8

10

12

14

U O
LCL

0

2

4

6

8

10

12

14

U O
LAN1

0

2

4

6

8

10

12

14

U O
LAN0.1

0

20

40

60

80

100

120

140

U O
WiFi

0

1

2

3

4

5

6

7

U O
WAN

Server

Client

Latency

Figure 5.37: Breakdown of execution costs for unoptimized (U) and optimized (O) strategies,
with P = 0.75 andL = 16. Times in ms except WAN in s.

5.6.2 Scalpel Training Overhead

We assessed the overhead of Scalpel’s training algorithm using the dbunload case study (de-
scribed in more detail in Section 8.2). Figure 5.38(a) showsthe elapsed time for the unopti-

mized system (Scalpel not attached) and Scalpel in trainingmode for 9 databases (labelled A-I)
in the LAN1 configuration, withµ showing the average of all 9 executions. On average, train-
ing increases run-time by0.5 seconds, or 35%. Figure 5.38(b) shows the difference in execution

time between the unoptimized and training configurations for client CPU, server CPU, and la-
tency. In most of the tests, increases in client CPU cost accounted for most of the increase (on

average, 0.28s). However, server costs also increased (average of 0.13s) as did the request la-
tency (0.09s). The increase in client costs is expected due to the additional bookkeeping and opti-

mization steps performed by Scalpel during the training period. Scalpel also issues additional re-
quests to theDBMS to retrieve catalog information (in order to determine if a query will return at

most one row). These additional requests are responsible for part of the increase of server and la-
tency components. It is interesting to note that in two instances (C and I), the server costs were

lower during the training period. This is due to variance in the server costs and not any action of
Scalpel to reduce server costs during training.

5.7 SUMMARY OF BATCH REQUEST PATTERNS 161

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A B C D E F G H I �

Unoptimized Training

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A B C D E F G H I �

Client � Server � Latency �

(a) Elapsed time (s) (b) Increase by component (s)

Figure 5.38: Training overhead ondbunload case study.

5.7 Summary of Batch Request Patterns

Application programs that we have examined do not generate request streams that are uniformly
random. Instead, some sequences of requests are more likelythat others. By identifying common

sequences, we can choose to prefetch requests that are likely to be submitted, reducing the costs
associated with per-request overhead.

The Pattern Detector monitors a client application during atraining period, building a trie-

based data structure. This trie maintains frequency information that can be used to predict the
likelihood of future requests. The trie also maintains setsof correlations that have held each time

that a request is observed in a context.

The Pattern Optimizer uses the trie generated during training to select a list of queries to

prefetch. It uses the Query Rewriter to generate a combined query that returns the results for the
submitted query and any prefetched queries. The combined query is generated using lateral de-

rived tables and unions. The trie generated during trainingmay contain significant redundancy
as a result of including every context encountered during training in the trie. The Pattern Opti-

mizer generatesM , a redundancy-removed finite state model for traceT that selects states based
on the shortest contexts that provide distinct prefetch choices. The modelM is annotated with

162 BATCH REQUEST PATTERNS

Action objects that contain the combined query, list of prefetchedqueries, and predicted corre-

lation source for each input parameter of each prefetched request.

At run-time, Scalpel uses modelM to track the current state and submit prefetches. As OPEN

requests are intercepted by the Call Monitor, the Prefetcher uses theδ transition function defined

by M to move to the next state. If prefetched results are available, the Prefetcher checks that the
actual parameter values match the predicted values. If so, the prefetched results are decoded and
per-request overhead is eliminated. If a prefetched resultis not available, a demand fetch must

be submitted. In this case, theAction object is consulted for a combined query that should be
submitted instead of the current request.

Section 5.6 provided experimental results that demonstrated the effectiveness of rewriting

batch request patterns. Figure 5.24 shows the high overheadassociated with sequentially execut-
ing requests: over 97% of each of these requests is due to per-request overhead. Prefetching can

save some, but not all of this overhead. While prefetching isuseful in many cases, we must be
careful to consider the probability that requests will be submitted, as shown in Section 5.6.

By using a training period, Scalpel identifies opportunities where prefetching is beneficial.
Exploiting these opportunities significantly reduces the costs associated with per-request over-

head.

6 Combining Nested and Batch Request Patterns

Chapter 3 described how Scalpel identifies nested patterns of requests during a training period. In

these nested patterns, inner queries have parameters that are predicted to be equal to parameters
of outer queries (or perhaps a constant). The inner queries are executed up to once per row of

their parent query, although local predicates can prevent this. Based on observations during the
training period, the Pattern Optimizer uses the Cost Model to select an execution strategy for each
pattern of nested queries. The Query Rewriter generates combined queries that are issued instead

of the original to retrieve encoded results sets that are predicted to be needed.

Similarly, Chapter 5 described how Scalpel builds a trie-based data structure during a train-
ing period to predict batches of requests that occur when a prefix of requests can be used to pre-

dict a likely future sequence (with each request in the sequence representing an OPEN, FETCH∗,
CLOSE sequence). The predicted future queries are also predictedto have actual parameter val-

ues that are predicted to be equal to input or output parameters of the preceding queries (or pos-
sibly a constant). The future requests are not submitted every time the prefix is observed; instead,

Scalpel estimates this probability based on the relative frequency observed during a training pe-
riod. After the training period is complete, the Pattern Optimizer uses the Cost Model to select a
list of queries to prefetch for each prefix of requests. Finally, the Pattern Optimizer generates a

redundancy-removed finite state model that contains a set ofstates with associated queries gen-
erated by the Query Rewriter. These alternate queries are issued instead of the original to retrieve

encoded results sets that are predicted to be needed in the near future.

The optimizations performed by Chapter 3 and Chapter 5 are complementary, but were devel-
oped independently. In this chapter, we give a sketch of how we can simultaneously detect nested

and sequential patterns of execution. Treating these two types of pattern in a combined way al-
lows us to extend the set of prefetching opportunities that we can exploit.

6.1 Example Combining Nesting and Batches

Figure 6.1 provides an example of a program that generates both nested request patterns and
batches of predictable sequences of requests. This examplehas been artificially constructed to

demonstrate particular features of the combined approach.Figure 6.2 shows the context tree that
is created by Scalpel after observing traces generated byF4.

163

164 COMBINING NESTED AND BATCH REQUEST PATTERNS

function F4(p1)802

open c1 cursor for g:803

SELECT g1, g2 FROM G WHERE g3=:p1804

while r1 ← fetch c1 do805

if r1.g1 6= 0 then806

fetch row r2 from h:807

SELECT h1 FROM H WHERE h2=:p1808

fetch row r3 from i:809

SELECT i1 FROM i WHERE i2=:r2.h1810

fetch row r4 from j:811

SELECT j1 FROM J WHERE j2=:r3.i1 AND j3=:r1.g2812

else813

fetch row r5 from i:814

SELECT i1 FROM i WHERE i2=:r1.g1815

close c1816

fetch row r6 from k:817

SELECT k1 FROM K WHERE k2=:p1818

end819

Figure 6.1: An example containing nesting and batches.

C0 /

C1 /Qg

Qg

C2 /Qg/Qh

Qh

C3 /Qg/Qi

Qi

C4 /Qg/Qj

Qj

C1 /Qk

Qk

Figure 6.2: Context tree for Figure 6.1.

By itself, the nest-based optimizer might consider prefetching Qh, but it is unable to prefetch

Qi or Qj. The queryQi is used in two distinct ways. The first (line 810) uses an inputparame-
ter that depends on the preceding queryQh. The nesting prefetcher cannot generate a rewritten

query that provides the desired result. The second use ofQi (line 815) is an example that could
be handled by the nesting prefetcher. However, the context tree does not provide a way to dis-

tinguish this case from the previous case. The correlationsfor this second use are not monitored
separately, leading the nesting prefetcher to miss the correlation in this second case to the out-

6.2 COMBINING CONTEXT/SUFFIX TREES 165

put parameterr1.g1.

The context tree of Figure 6.2 identifies one opportunity to prefetch a nested pattern. If we

consider sequences of patterns, we can find more opportunities. Figure 6.3 shows two suffix tries
that we would find after observing the sequence of requests. Figure 6.3(a) shows the trie consid-
ering only queries that are immediate children of the root context /, while Figure 6.3(b) shows

the trie for the queries that are immediate children of context /Qg.

g k $

k
$

h

i j $

i
j

$

$
j

$
(a) Context/ (b) Context/Qg

Figure 6.3: Suffix trie for Figure 6.1; (a) shows the result atthe root context/, (b) shows the result
in context/Qg.

The suffix trie data structure allows us to identify additional prefetch opportunities. It iden-

tifies that queryQk always followsQg, with parameters that can be predicted once we observe
Qg. Further, the suffix trie is able to distinguish the two different uses ofQi. WhenQh is sub-

mitted, it is always followed byQi thenQj. However, it is not able to prefetchQj because it de-
pends on a parameter (r1.g2) that is drawn from an outer query, a source not considered bythe
batch prefetcher that we described.

The nesting and batch prefetchers are complementary, and wecan achieve more savings if we

combine the Pattern Detector for the two types of patterns. The combined Pattern Detector could
provide improved structural patterns (distinguishing thetwo uses ofQi), and also could find more
feasible prefetch candidates by considering a broader set of possible correlation sources.

6.2 Combining Context/Suffix Trees

For nested patterns, we represented contexts in the tree as asequence of queries separated by/.

Context/Qg/Qh is used to represent queryQh opened whileQg is currently open. For batch pat-
terns, we used sequences of characters to represent a context, where we show only the charac-

ter subscript of each query. In that notation, contexthij represents queryQj being submitted af-
ter Qh thenQi. We can combine these two notations as follows. For every query Qa that is cur-

rently open, the context contains a substringa/. We use sequences of characters to represent re-
quests preceding each of the open queries. With this combination, the context/kg/hi means we

166 COMBINING NESTED AND BATCH REQUEST PATTERNS

have processed a sequence such as the one shown in Figure 6.4.Note that at step 6, the context

would be/kg/h/ asQh is still open.

1 ck ← OPEN(Qk)

2 FETCH(ck)

3 CLOSE(ck)

4 cg ← OPEN(Qg)

5 ch ← OPEN(Qh)

6 FETCH(ch)

7 CLOSE(ch)

8 ci ← OPEN(Qi)

9 FETCH(ci)

10 CLOSE(ci)

Figure 6.4: Example trace generating context/kg/hi.

The trace in Figure 6.4 is consistent with the context/kg/hi. We can also consider gener-

alizations that use fewer preceding queries to define the context. With this approach, the trace
of Figure 6.4 is associated with the following contexts:{/kg/hi, /kg/i, /g/hi, /g/i}. These are

generalizations of the form given by the suffix tries we used for batch request patterns. The differ-
ence is that the generalization is occurring at two levels: the outermost level, and the level nested

inside an open queryg.

We can combine nesting and batch detection by using a generalization of the context tree data

structure. We build multiple suffix tries, each associated with a nesting level. The original context
tree moved to a single child node when a query was opened. Withthis proposal, we would move

to a set of children, with a different child associated with each of the nodes on the update path of
the suffix trie from the longest suffix to the root.

We would maintain a set of active contexts. These are contexts that match the current request
sequence. They may be nodes in the same suffix trie, for example/g/hi and/g/i, or they may be

nodes from separate tries rooted at different parent nodes,such as/kg/h and/g/h. When we ob-
serve a request OPEN(Qa), we would push the current setC1 of active contexts onto a stack and

form a new setC2. The new setC2 = {wa/ | w ∈ C1} is formed by appending the charac-
tersa/ to each elementw in setC1. When we observe the associated CLOSE() request, we would

pop the set of active contexts, returning toC1. Then, we would follow the approach of Figure 5.6
to generate all following nodes based on a walk along the frontier.

Figure 6.5 shows the set of active contexts after processinga sequence of requests that might
be generated by the code in Figure 6.1.

6.3 CURRENT IMPLEMENTATION 167

N Request Active Contexts After Request

1 cg ← OPEN(Qg) {/g/}
2 ch ← OPEN(Qh) {/g/h/}
3 CLOSE(ch) {/g/h, /g/}
4 ci ← OPEN(Qi) {/g/hi/, /g/i/}
5 CLOSE(ci) {/g/hi, /g/i, /g/}
6 cj ← OPEN(Qj) {/g/hij/, /g/ij/, /g/j/}
7 CLOSE(cj) {/g/hij, /g/ij, /g/j, /g/}
8 CLOSE(cg) {/g, /}
9 ck ← OPEN(Qk) {/gk/, /k/}

10 CLOSE(ck) {/gk, /k, /}
11 cg ← OPEN(Qg) {/gkg/, /kg/, /g/}
12 ci ← OPEN(Qi) {/gkg/i/, /kg/i/, /g/i/}
13 CLOSE(ci) {/gkg/i, /gkg/, /kg/i, /kg/, /g/i, /g/}
14 CLOSE(cg) {/gkg, /kg, /g, /}

Figure 6.5: Example trace generating context/kg/h.

In addition to the structure of the combined context tree/suffix trie, we must consider how to
detect correlations in this combined scheme. In the nestingapproach, we maintained a scope for

each context. This scope provided the set of correlation sources that we considered might predict
parameters of the nested queries. The batch detection used adictionary over a sliding window of
S previous requests. In the combined scheme, we could implement a dictionary that maintains

the values ofS previous requests at each level of nesting.

6.3 Current Implementation

The sketch in Section 6.2 described one way that we could integrate detection of nested and batch

request patterns. The integration is quite tight, allowingcorrelation detection to work across nest-
ing and sequence boundaries. Further, the information maintained during the training period per-

mits rewrites that simultaneously combine nests and batches. However, the time and space re-
quirements of the sketched approach are rather alarming. Itmay be possible that we can achieve

much of the benefit of the complete integration in a reasonable space limit if we can exploit the
significant redundancy present in the suffix tries. We leave this as an area of future consideration.

168 COMBINING NESTED AND BATCH REQUEST PATTERNS

At present, we have implemented a relatively modest approach to integrating nesting and

batch request pattern detection. Each of these is implemented separately, with its own correla-
tion detection. The batch Pattern Detector operates only onqueries opened at the top level of

nesting. The Pattern Detector, Pattern Optimizer, Query Rewriter, and Prefetcher operate in par-
allel for ach type of pattern. If the nested request optimizations choose an alternate strategy for a

query, that query is not considered by the batch request optimizer.

The results that we presented in Chapter 3 used only the nested request components; likewise,

results in Chapter 5 used only batch request components. Theresults that we present for case
studies in Chapter 8 use the combined approach described here.

Even this loose integration of nesting and batch detection is reasonably effective. The request

patterns used fordbunload are moderately (Section 8.2), but it does not appear it wouldbene-
fit much further from a more comprehensive integration of nesting and batch optimization. The

SQL-Ledger system has an even simpler structure within its nested requests, with at most two dis-
tinct queries opened inside an outer query. The full power ofintegrating batch and nesting detec-
tion would not help with predicting what queries will be executed next. However, the SQL-Ledger

case study does contain correlations between an inner queryand a preceding query. At present,
Scalpel’s loose integration does not detect this correlation, and it is unable to prefetch the associ-

ated query.

6.4 Summary of Combining Nested and Batch Request Patterns

There are application request patterns where a pattern detector can make more effective decisions

if it considers both nested and batch patterns. The combination can provide better structural pre-
dictions, for example by distinguishing special cases by considering both preceding queries and

nesting. Further, this approach extends the set of possiblecorrelations that we can consider. We
can consider a parameter of requestQa to be correlated to to requests that precededQa at the

same nesting level, to any enclosing request, and to any request preceding enclosing requests.

At present, our prototype implementation uses a loose integration of the optimizations for

nested request patterns and batch request patterns. When the two types of optimizations con-
flict, the actions selected by the nested request optimizer are use in preference. Our experience

with case studies suggests that the loose integration achieves most of the benefit that a full inte-
gration would give for the practical systems we examined. Itseems that shared correlation pre-

diction would be the biggest improvement for these systems.

7 Prefetch Consistency

The Scalpel system prefetches results before the client application submits the associated request.

This can lead to a data consistency problem, where prefetched data do not contain updates that
would have been observed if the data were not prefetched. There are two possibilities for these
updates: either they are performed by the current transaction (described in Section 7.1), or they

are performed by another transaction (Section 7.2).

7.1 Updates by the Same Transaction

When a transaction performs an update, it expects the results of that update to be reflected in
the results of future queries. If Scalpel has prefetched theresults of anticipated requests, these

prefetched results will not reflect the modifications.

In principle, it is possible that Scalpel could alter the update statement sent to the server so
that it returns enough information to modify Scalpel’s prefetched results to properly reflect the

changes. Alternatively, enough information could be returned to identify prefetched results that
are now stale, and Scalpel could merely send demand fetches for these stale results instead. The

altered update statement could perform a join between the updated rows and the combined queries
already prefetched by Scalpel. The updated row set is identified by the update statement and any
modifications performed by triggers executed in response tothe update.

This approach expends significant effort in implementationcomplexity and more expensive

updates in order to precisely determine which prefetched results are still valid. Another approach
could be based on a static analysis of the prefetch queries used by Scalpel and update statements

submitted by the same transaction. In some cases, the updates cannot possibly affect prefetched
results. For example, an update could apply to tables not referenced by the prefetch queries. If,

further, no triggers fired by the update could affect these results, then the update statement is not
a significant updateto the prefetched queries. If we statically analyze an update statement and
find it could not possibly affect our prefetched results, we could retain them; otherwise, we could

discard them and answer future queries that would have been satisfied by prefetched results with
results from a demand fetch. In this case, the work of prefetching the discarded results is wasted,

but no consistency problems are introduced.

At present, Scalpel implements a simple policy whereby it assumes thatanyupdate by a trans-
action is significant to prefetched results. Scalpel monitors all EXECUTE requests during training

169

170 PREFETCH CONSISTENCY

and at run-time. During training, Scalpel recognizes when an update could invalidate prefetched

data, and it chooses to avoid the prefetch in that case (as thework might be wasted). If an update
is encountered at run time that was not anticipated based on the training period, the prefetched re-

sults are not used to answer further OPEN requests. While this represents wasted work, it does
not affect consistency.

This simple policy of our current prototype is safe, if possibly sub-optimal, for OPEN requests

submitted after an update from the same transaction. However, there is another possible source
of data inconsistency. If there is a cursor already open overprefetched results, we should be con-

cerned that the rows fetched from the prefetch cursor match the semantics that were given with-
out prefetching.

SQL/99 [13] definescursor sensitivityas follows. If a change to SQL-data would have caused

different results to be returned by a cursor had the cursor been opened after the change, then the
change is said to be asignificantto the cursor. If the effects of a change are observed by a cursor,

the change is said to be avisible change. SQL/99 defines the following sensitivity values.

SENSITIVEIf a cursor is declared as SENSITIVE, then all significant changes are visible.

INSENSITIVEIf a cursor is declared as INSENSITIVE, then no significant changes are visible.

ASENSITIVEIf a cursor is declared as ASENSITIVE, then the visibility ofsignificant changes
is implementation dependent.

The default sensitivity is ASENSITIVE, which allows implementations to provide the most effi-
cient sensitivity.

In principle, Scalpel could use SENSITIVE cursors for its prefetched results. With the ex-

ception of the client hash join strategy, this would ensure that significant changes are visible, and
that cursors that are open and decoding prefetched data would give SENSITIVE semantics. How-

ever, typical implementations of SENSITIVE cursors are inefficient, requiring a demand fetch to
the server for each row. For now, Scalpel uses only ASENSITIVE sensitivity. If a cursor is opened

with either SENSITIVE or INSENSITIVE sensitivity, Scalpelsubmits it to the server for process-
ing (INSENSITIVE cursors could be supported by using INSENSITIVE for Scalpel’s prefetch

cursors, but that could require an INSENSITIVE cursor over the larger combined query results,
something which we avoid in the current prototype).

In summary, Scalpel guarantees prefetch consistency with respect to monitored updates done

by the same transaction. Prefetched results are not used forfuture OPEN requests after an EX-
ECUTE as it might possibly have been significant to the prefetched results. Scalpel only uses

prefetching for ASENSITIVE cursor types, which allows it todeliver results matching the re-
quested semantic using prefetched data.

7.2 UPDATES BY OTHER TRANSACTIONS 171

7.2 Updates by Other Transactions

Section 7.1 discussed prefetch consistency only with respect to modifications by the same trans-
action; in addition, we must consider the updates that may beperformed concurrently by other

transactions. While Scalpel can detect changes from the monitored connection, it cannot observe
changes made by other connections connected to the sameDBMS.

If prefetched results are not used across transaction boundaries, then prefetch consistency is

provided by the ACID properties of theDBMS (at least in theory). If prefetched results are used
across transaction boundaries, the ACID properties do not hold. We could consider approaches

similar to those that we considered in Section 7.1; for example, we could send additional requests
at the beginning of a new transaction to determine which prefetched results are (possibly) invalid,

then either update them or invalidate them. For example, we could use WITH HOLD cursors [13]
for Scalpel’s prefetched results, which would allow us to hold the cursor open across transaction

boundaries (for a single connection). Alternatively, we could follow an approach similar to that
proposed by Guo et al. [87], allowing the client applicationto specify whether it is willing to use
stale data prefetched from previous transactions.

At present, Scalpel does not use prefetched results across transaction boundaries. We have
found applications that would benefit from this type of prefetching (for example the SQL-Ledger
system, described in Section 8.3). The prefetching is useful when a high-level user operation is

accomplished by more than one sub-transactions. However, the benefit in these cases results from
batch request patterns, not from nested request patterns. Hence, we would save at most one in-

stance of the per-request overheadU0. It is possible a nested request pattern could be imple-
mented across transaction boundaries (using a WITH HOLD specification for the outer cursor).

However, we have not found instances of this in the systems weinvestigated. Therefore, it ap-
pears we do not lose much in practice by restricting ourselves to prefetching within transaction

boundaries.

7.2.1 Weak Isolation

The ACID properties ofDBMSs suggest that we need only prove consistency for a serial execu-

tion of individual transactions, as we have shown in Section7.1. However, full ACID properties
are not always guaranteed in practice. In some cases, clientapplications request a weak isola-

tion level that does not provide serializable semantics. Gray et al. [84] defined a number of de-
grees of consistency that are less than serializable. By lowering consistency, applications can im-

prove concurrent performance; presumably, semantic issues are controlled by additional applica-
tion logic. The SQL standard [13] defined four levels of isolation, with the intention that these

would provide an implementation-independent definition ofdegrees of consistency, without re-
ferring to a particular implementation, such as locking. Berenson et al. [18] pointed out that the

172 PREFETCH CONSISTENCY

definitions used in the SQL standard [13] are ambiguous; further, they fail to capture essential el-

ements of the original isolation definitions used by Gray et al. [84]. Berenson et al. proposed a
variant of the standard SQL definitions, but noted that thesealternate definitions were essentially

a disguised form of locking. Adya, Liskov and O’Neil [4, 5] provided a more generalized defini-
tion of isolation levels that can be used for optimistic protocols as well as for locking.

The anomalies related to relaxed concurrency are typicallyexacerbated by prefetching. Not
only can the original anomalies occur (such as dirty reads, non-repeatable reads, and phantoms),

but also new temporal anomalies can occur. A read requestr1 may observe the effects of an up-
date from another transaction, while a later requestr2 that is satisfied from prefetched data may

not observe the request. This situation only occurs when a demand fetch is sent to theDBMS af-
ter Scalpel has prefetched some results but before all of theprefetched results have been con-
sumed. One way to avoid introducing new temporal anomalies would be to detect this situation.

When any demand fetch is sent to theDBMS, Scalpel could discard any prefetched results.

While this approach has the theoretical benefit of avoiding introducing new temporal anom-

alies, it does so at the expense of limiting prefetch opportunities and wasting work. It seems likely
that application developers that select relaxed isolationlevels for efficiency would not prefer this

approach. Instead, a better approach would be to allow application developers to control the re-
cency of the data they receive. One approach is proposed by Guo et al. [87], whereby application

developers explicitly encode currency and consistency requirements.

Another approach is that of the snapshot isolation level. With snapshot isolation, defined by

Berenson et al., each transaction reads data that was committed as of the transaction start (addi-
tionally, the transactions own updates are reflected). Scalpel works very well in this environment,

as shown in Section 7.1. Scalpel does not introduce any new temporal anomalies in this situa-
tion, and the anomalies permitted by snapshot isolation arenot modified by Scalpel.

At present, Scalpel makes no attempt to avoid introducing new temporal anomalies at relaxed
isolation levels. If a transaction executes with serializable isolation, Scalpel produces consistent
and current data (with the cautions described in Section 7.1used for reflecting the transaction’s

own updates). If the weaker snapshot isolation is used, Scalpel does not introduce new anomalies.
Otherwise, Scalpel introduces temporal anomalies that arenot present in the original system, and

which are not described by the original isolation level selected by the transaction. An applica-
tion developer must be cautious when using Scalpel in this environment; it may be that the intro-

duced anomalies are acceptable in the quest for best possible performance, but it may be the case
that these must either be controlled through application logic or use of serializable isolation. Fi-

nally, we note that the issues related to prefetching data before they are used are similar to the
concerns of caching systems such as the MTCache described byGuo et al. [87]. In fact, prefetch-

ing and caching form very good complements; developments incaching semantics are useful in
describing the effects of prefetching, and prefetching canbe used by a cache to choose a victim to

7.2 UPDATES BY OTHER TRANSACTIONS 173

evict. It is an interesting topic for future study to consider how prefetching and caching can be in-

tegrated in a way that provides efficient results (avoiding the dangers of replication described by
Gray et al. [83]), while providing semantics that match the application developer’s needs.

8 Case Studies

We applied Scalpel to real-world systems to evaluate its effectiveness and how its features inter-
act with practical concerns. In Section 1.3, we described a set of client applications that we have

investigated to assess the possible benefits of Scalpel. We manually inspected these systems, and
found opportunities for optimizations based on nested request patterns and also batch request pat-

terns. We found batch opportunities in all of the systems we considered. While we did not find
nested request patterns in all of these systems, it did appear in several of the systems we consid-
ered.

In this chapter, we present detailed results for two of thesesystems as case studies of using

Scalpel in practical systems. Section 8.1 describes an issue that we found in both case studies—
the problem of how transaction boundaries are handled during training and at run-time. Sec-
tion 8.2 describes our investigation of thedbunload program. This program contains significant

nesting that is optimized effectively using Scalpel’s nesting rewrites. Batch request patterns also
offer an improvement, although their role is limited in manyconfigurations by the overwhelm-

ing number of requests associated with the nested patterns.Section 8.3 describes our work with
the SQL-Ledger system. SQL-Ledger is a web-based double-entry accounting system. The SQL-

Ledger system also provides several opportunities for optimizing nested request patterns.

8.1 Transaction Boundaries

One issue that we faced in both case studies is how Scalpel should deal with transaction bound-

aries. Thedbunload program uses a single transaction to generate the text to re-create a schema.
When we are training Scalpel, we would like to use a long tracethat is typical of the usage pat-

terns that we expect at run-time. In order to build a sufficiently long and representative trace with
dbunload, we need a way to uses several transactions in a single training period. We accom-

plish this with Scalpel by using special out-of-band queries. When a transaction ends, we en-
sure that all open queries are closed. At present, Scalpel does not supportWITH HOLD cursors,

which can be held open across transaction boundaries. Scalpel also uses an out-of-band charac-
ter in the suffix trie (or path compressed suffix trie) data structure, then moves the current update

point of the trie to the root. This out-of-band character allows multiple sequences to be combined
into one suffix trie. Gusfield [88] provides more details on the approach.

175

176 CASE STUDIES

The out-of-band queries allow Scalpel to build a single suffix trie that summarizes multi-

ple traces, and this allowsdbunload to be executed in several different configurations in order
to provide a realistic training period. A related concern isthat Scalpel might try to prefetch re-

sults in one transaction then use them in another. As discussed in Chapter 7, such an approach
leads to serialization anomalies. In particular, we found that the SQL-Ledger system tends to use

relatively short transactions. A single user activity might lead to more than one transaction be-
ing issued, and Scalpel’s batch request optimization couldreduce latency by prefetching across

session boundaries. At present, we do not permit such prefetches. The out-of-band queries in the
suffix trie are used to prevent rewrites that cross transaction boundaries.

8.2 Case 1: dbunload

The first case we considered is thedbunload program.dbunload is provided withAdaptive
Server Anywhere (ASA), a full-featuredDBMS produced by iAnywhere Solutions, a Sybase
company. Thedbunload program generates a text-based ‘unload’ of a database, suitable for re-
creating both the schema and instance data. When unloading data, the majority of the time is

spent unloading the instance data: this involves fetching row data from theDBMS, formatting it
as text, and outputting it. In this usage pattern, the cost ofoutputting the database schema is usu-

ally a negligible portion of the elapsed time. Thedbunload utility is also used extensively to un-
load only the schema for a database. For example, customers can use this approach to maintain re-

vision control of the database schema. A variation on this mode outputs the schema for only one
table or a small set of tables. Scalpel cannot improve the performance of the (coarse-grained) op-

erations used to unload instance data, so we focused on schema unloading operations.

8.2.1 Characterization of the Program

Thedbunload program works with database instances generated by severaldifferent versions of
ASA, including variations on different upgrade paths that may have been applied to upgrade older

database versions. These different versions have varying features, and some common features are
implemented differently in different versions. For example, two database versions store column

constraints in slightly different formats. Thedbunload program issues version detection queries
to determine the version level of the database instance to beunloaded. The results of the version
detection are stored in global configuration variables.

Thedbunload program is over 11 years old, and is implemented in C code. Allqueries are

submitted using a cursor abstraction layer implemented in ESQL. This abstraction layer provides
a simple OPEN,FETCH,CLOSE style interface. The OPEN interface takes as parameters a unique

cursor name and a SQL string. Any query input parameters are encoded in the SQL text using
string substitution. All fields returned from the cursor interface are returned as text strings.

8.2 CASE 1: DBUNLOAD 177

The query for each cursor is constructed dynamically using string formatting commands.

Query parameters are included in the query text using stringsubstitution. Further to parame-
ter substitution, queries are constructed based on dynamicconfiguration parameters that depend

on the results of the version detection queries and invocation parameters ofdbunload. An ap-
propriate variant of each query is generated by textually substituting appropriate variants into the

query to be submitted. For example, ifdbunload is used for a database instance without sup-
port for named constraints, the valueNULL is textually substituted in place of the field name that

stores the constraint name. In order to handle some complex versioning issues, global parame-
ters are used in some locations to generate subselects and additional joins in order to retrieve nec-

essary information. In general, textual substitution is used to generate arbitrary query constructs.

In addition to substitution based on global configuration parameters, some queries are sub-

mitted by a function that is called in multiple contexts, each requiring a different query variant.
For example, the code to unload a constraint for a column, table, foreign key, primary key, or de-
clared unique constraint is shared in theGetConstraints() function. This function is called

from four separate call sites withindbunload, and each call site generates a different variant of
the query.

The code ofdbunload is arranged into functions and modules following good C coding style.
There are 46 functions that open cursors, with 35 opening only one, 7 opening 2, 1 opening 3,

and 2 functions opening 5 cursors. In total, there are 63 different cursor open call sites within
dbunload. The presence of predicates within these functions means that these cursors are not

opened every time there is an opportunity to do so.

Functions that open cursors use a loop over the results if more than one row can be returned.

The body of these loops generates the text needed to re-create the associated schema object. In
some cases, the schema object has sub-structure nested within it. For example, a table schema

object generates the text for its and in these cases,dbunload typically calls other functions that
open cursors and output the text representation of the nested objects.

8.2.1.1 A Java Version of dbunload

The Scalpel prototype that we have implemented is written inJava with a JDBC interface. In

order to assess the benefits of using our proposed optimizations, we implemented a Java ver-
sion of thedbunload tool by transliterating the source from C/ESQL to Java/JDBC. The primary

changes of the source code were the following:

1. Use Java string concatenation (+) for string literals instead of C’s style (adjacent strings).

2. Use Java string comparisons instead ofstrcmp, etc.

3. Use exception handling instead of C-style return code checking.

178 CASE STUDIES

4. Replace uses of C preprocessor by either a) manually substitute one variant of a macro or

b) use Javafinal static boolean fields.

5. Rename cursor names that were ambiguous.

6. Replace uses of the ESQL cursor interface with calls to a Java cursor abstraction layer

based on JDBC.

The Java implementation ofdbunload is about 4400 lines of code, and it submits the same

queries as the original C version. Due to the different implementation, performance results can-
not be directly applied to improvements that could be made tothe C version, but they should be
considered indicative of what is possible.

Figures 8.1 and 8.1 show simplified pseudo-code for the top level requests issued by thedbun-
load tool. In this simplified pseudo-code, we use the notationQ(name[,parms...) to repre-
sent a query namedname being opened with an optional list of parameters. In cases that the query

returns a single row or simple list of strings, we use it notationally as a function call (for exam-
ple, on line 820). In other cases, the query may return more than one row and thedbunload pro-

gram processes the results using a loop. We show this asQ(name[,parms...) {...} (for
example, line 858).

The main-line for the program isDo-Unload (line 888). First, it callsGet-DB-Version
(line 822) to determine characteristics of the database instance being considered. This version in-

formation reflects whether the database contains various catalog tables and columns that were
added over the years in different versions ofASA. The results are stored in global variables

(V1 ...V27). Next, the main-line callsLoad-Exclude-Tables (line 851) to load a list of
system-defined schema objects that should not be output bydbunload. The names and types of

these excluded schema objects are stored in a table (EXCLUDEDOBJECT) that was added in a ver-
sion ofASA. TheLoad-Exclude-Tables procedure first issues a query to see if this data-
base instance has theEXCLUDEDOBJECT table; if so, it issues a second query to see if there are

any rows in the table. If both of these conditions are true, then the procedure loads in-memory ar-
rays of objects to be excluded using two distinct queries (C EXCLUDE andC EXCLUDEB) para-

meterized with the type of object to be stored in the appropriate array.

In combination,Get-DB-VersionandLoad-Exclude-Tablessubmit up to 34 OPEN

requests using 8 distinct queries. The presence of local predicates means that not all of these
queries are always executed. However, the predicates evaluate to false only for older versions of

databases. If we consider a customer that does a regular schema unload of a (current) database in-
stance, then all of these queries will be executed in sequential order. If Scalpel could predict this

case, it could avoid the costs associated with fine-grained access.

After initializing the version global variables and loading arrays of schema objects, the
Do-Unload mainline issues queries to retrieve the name of theDBO owner for the database (a

8.2 CASE 1: DBUNLOAD 179

procedure Table-Exists(own,tbl) return Q(C_TABLEEXISTS,own,tbl) end820

procedure Col-Exists(tbl,col) return Q(C_COLEXISTS,tbl,col) end821

procedure Get-DB-Version()822

V1 ← Table-Exists("SYS", "SYSGROUP")823

V2 ← Col-Exists("SYSCOLUMN", "scale")824

V3 ← Col-Exists("SYSCOLUMN", "column_type")825

V4 ← Col-Exists("SYSTABLEPERM", "referenceauth")826

V5 ← Table-Exists("SYS", "SYSINFO")827

V6 ← Table-Exists("SYS", "SYSATTRIBUTE")828

V7 ← Table-Exists("SYS", "SYSPROCEDURE")829

V8 ← Table-Exists("SYS", "SYSSYNC")830

V9 ← Col-Exists("SYSINDEX", "hash_limit")831

V10 ← Table-Exists("SYS", "SYSREMOTETYPE")832

V11 ← Table-Exists("SYS", "SYSREMOTEOPTIONTYPE")833

V12 ← Table-Exists("dbo", "ml_property")834

if V10 then V13 ← PubExists()835

V14 ← Col-Exists("SYSCOLUMN", "check")836

V15 ← Q(C_GETDBPROPERTY, "NamedConstraints")837

V16 ← Table-Exists("SYS", "SYSUSERTYPE")838

V17 ← TabCheck(encrypted pwd)839

V18 ← Col-Exists("SYSCOLPERM", "privilege_type")840

V19 ← Col-Exists("SYSARTICLE", "query")841

V20 ← Table-Exists("SYS", "SYSJAVACLASS")842

if V20 then V21 ← Q(C_JAVAEXISTS)843

V22 ← Table-Exists("rs_systabgroup", "rs_lastcommit")844

if V19 then V23 ←Q(C_GETDBPROPERTY, "FileVersion")845

V24 ← Table-Exists("SYS", "SYSCAPABILITY")846

V25 ← Table-Exists("SYS", "SYSEVENT")847

V26 ← Table-Exists("SYS", "SYSWEBSERVICE")848

V27 ← Col-Exists("SYSTABLE", "source")849

end850

procedure Load-Exclude-Tables()851

if Q(C_USEEXCOBJTBLA) and Q(C_USEEXCOBJTBLB) then852

Q(C_EXCLUDE,’P’) ; Q(C_EXCLUDE,’V’)853

Q(C_EXCLUDEB,’U’, ’E’) ; Q(C_EXCLUDE,’E’)854

Q(C_EXCLUDE,’T’)855

end856

procedure Do-Users()857

Q(C_DBSPACES) {...} ; Q(C_USERS,V10,V1) {...}858

end859

procedure Do-Logins() Q(C_SYSLOGIN) {...} end860

procedure Do-Servers()861

Q(C_SERVERS) {...} ; Q(C_CAPABILITIES) {...} ; Q(C_EXTLOGINS) {...}862

end863

Figure 8.1: Pseudo-code fordbunload top-level requests (continued.)

180 CASE STUDIES

procedure Do-User-Classes() Q(C.C_USERCLASSES) {...} end864

procedure Do-User-Tables() Q(C_TABLES,V10,V24,V9,V6) {...} end865

procedure Do-User-Views() Q(C_VIEWS,V1,V27) {...} end866

procedure Do-Events() Q(C_EVENTS,V27) {...} end867

procedure Do-Services() Q(C_SERVICES) {...} end868

procedure Do-Unload-Publications()869

if V8 then Q(C_PUBLICATIONSA) {...} else Q(C_PUBLICATIONSB) {...}870

end871

procedure Do-Mobilink() Q(C_MOBILINK) {...} end872

procedure Do-Unload-Remote-Options()873

Q(C_REMOTE_OPTIONS) {...}874

end875

procedure Do-Remote()876

Q(C_REMOTEMSGT) {...} ; Q(C_REMOTEPUB) {...}877

Q(C_REMOTESUBUID) {...} ; Do-Unload-Publications();878

Q(C_REMOTEE) {...}879

if V11 then Do-Unload-Remote-Options()880

end881

procedure Do-DBSync()882

ldt ← Col-Exists("SYSSYNC","last_download_time")883

Q(C_REMOTEF,ldt) {...}884

end885

procedure Do-Options() Q(C.C_OPTIONS) {...} end886

887

procedure Do-Unload()888

Get-DB-Version()889

Load-Exclude-Tables()890

G.dbo-name ← Q(C_DBO_NAME1)891

if not G.dba-name ← Q(C_DBO_NAME2) then G.dba-name ← Q(C_DBO_NAME3)892

G.charset ← Q(C_GETDBPROPERTY,"charset")893

if G.dbinfo ← Q(C_GETDBINFO) then894

Do-Users() ; Do-Logins()895

if V24 then Do-Servers()896

if V21 and not G.remove-java then Do-UserClasses()897

Do-User-Tables()898

if G.unload-schema then Do-User-Views()899

if V25 and G.unload-schema then Do-Events()900

if V26 and G.unload-schema then Do-Services()901

if V12 then Do-MobiLink()902

if V10 and G.unload-schema then903

if not G.dbsync-db then Do-Remote()904

if V8 then Do-DBSync()905

if G.unload-schema then Do-Options()906

end907

Figure 8.2: Pseudo-code fordbunload top-level requests.

8.2 CASE 1: DBUNLOAD 181

system-defined user that owns system-created schema objects) and a canonical version of the ac-

tive DBA user id. These retrieved values are stored in a global object, G. Retrieving the user ids
takes either 2 or 3 OPEN requests. Next,Do-Unload retrieves options used to create the data-

base instance using theC DBINFO query. This call fails if theSYSINFO table is not present (it
was not created in very early versions ofASA that are no longer supported).

At this point,dbunload has issued up to 39 OPEN requests using 13 distinct queries to gather

configuration information that will be used to control what gets output. Next,Do-Unload calls
13 procedures (Do-Users to Do-Options) to output statements to re-create schema objects.

Predicates based on global configuration values (G) and version information retrieved by earlier
queries (V1...V27) control which of these routines are actually invoked. Within each output

routine, one or more queries are opened and their result setsare processed in a loop. For exam-
ple,Do-Users opens two cursors and processes their rows. Within the body of each loop, text

is output to generate the appropriate statements. Further,additional (nested) queries may be sub-
mitted to gather more information about related objects. These nested queries are discussed in

Section 8.2.1.2.

In total, dbunload issues up to 61 top-level OPEN requests with 35 distinct queries. The se-
quence of requests is predictable, although predicates within dbunload prevent some possible

queries from being submitted, either because they are not appropriate for the version of the data-
base instance (predicates depending on results of earlier version-detection queries) or because of

input parameters the prevent the associated schema objectsfrom being unloaded. The sequence
of top-level queries is fixed, and the actual parameter values used to open queries can be predicted

based on the position in the sequence and the results of earlier requests. Scalpel can rewrite these
queries using predictions based on observed traces. While such a rewriting is beneficial, it has a
fixed benefit regardless of the size of the database instance being unloaded. The number of se-

quential requests that can be prefetched does not depend on the number of rows of any of the ta-
bles, but this is not the case when we look at the nested requests that are opened within the body

of the processing loops.

8.2.1.2 Nested Queries

The code in Figures 8.1 and 8.2 omitted nested queries that are submitted from within the process-

ing loop of an outer query. Figure 8.3 shows the context tree of nested requests discovered by
Scalpel. Five of the main output routines indbunload open nested queries to generate text for

nested objects. These nested queries are typically executed once for each row of the outer query,
although local predicates may prevent them from being executed in some cases. If Scalpel can

predict nested queries that will be executed, it can save a number OPEN requests that varies with
the size of the outer result sets. For large schemas, this type of prediction will have a much greater

182 CASE STUDIES

/

USERS

GROUPS

TYPES

TRIGGERSA

PROCEDURES

SAVEDSOURCE 1

PROCPERMS

LONGDEFN 1MESSAGES

TABLES

CONSTRAINTS 2

INDEXES LONGDEFNC

FKEYS
FKEYCOLUMN

TRIGGERSB

COLUMNSA CONSTRAINTS 1

LONGDEFNC

TABLEPERMSB

ISTABLEEMPTY

COLUMNSB

CONSTRAINTS 3

TABLEPERMSA COLPERM 1

TABLEEXISTS

VIEWS

TABLEPERMSB

LONGDEFN 2

TABLEPERMSA

SAVEDSOURCE 2

EVENTS

LONGEDFN 3

SCHEDULES

SAVEDSOURCE 3

PUBLICATIONSA PUBLICATION ARTICLE

PUBLICATIONSB PUBLICATION ARTICLE

Figure 8.3:dbunload context tree identified by Scalpel. Child-less top-level contexts are omitted.

8.2 CASE 1: DBUNLOAD 183

function DO-USERS()908

if V10 then909

remoteauthfield ← ‘UP.remotedbauth’910

else911

remoteauthfield ← ‘‘N’’912

if V1 then913

remarksfield ← ‘, UP.remarks’914

usergroupfield ← ‘, UP.user_group’915

else916

remarksfield ← ‘’917

usergroupfield ← ‘’918

open C_USERS cursor for USERS:919

SELECT user_id, user_name, password, resourceauth, dbaauth,920

scheduleauth, $remoteauthfield $remarksfield $usergroupfield921

FROM SYS.SYSUSERPERM UP922

ORDER BY user_id923

while r1 ← fetch C_USERS do924

if not SPECIAL-USER(r1.user_name) then925

� Write statements to create the user926

DO-USER-PERMS(r1.user_id, r1.user_name, ...)927

if V7 then928

if not G.exclude-procedures then929

DO-PROCEDURES(r1.user_id, r1.user_name, ...)930

if not G.exclude-triggers then931

DO-TRIGGERS(r1.user_id, r1.user_name, ...)932

if V16 then933

DO-USER-MESSAGES(r1.user_id, r1.user_name, ...)934

DO-USER-TYPES(r1.user_id, r1.user_name, ...)935

close C_USERS936

end937

function DO-USER-PERMS(user_id, user_name, ...)938

� Write statements to grant authorities to user (RESOURCE, DBA, etc.)939

if V1 then940

open C_GROUPS cursor for GROUPS:941

SELECT group_id.user_name942

FROM SYS.SYSUSERPERM GID, SYS.SYSGROUP G, SYS.SYSUSERPERM U943

WHERE GID.user_id = G.group_id944

AND U.user_id = G.group_member945

AND G.group_member = $user id AND ...946

while r2 ← fetch C_GROUPS do947

� Write statements to grant membership in the current group.948

close C_GROUPS949

end950

Figure 8.4: Pseudo-code fordbunload to output database users. Identifiers starting with$ repre-
sent text substitution within a query.

184 CASE STUDIES

impact than the batch prediction. For example, Doppelhammer et al. [57] described an SAP R/3

installation with 10,055 tables. Such a setup would take a significant length of time to unload, es-
pecially in a high-latency configuration.

Figure 8.4 shows an abstraction of a portion of theDo-Users procedure. This procedure
outputs SQL statements to re-create all of the users in a database, along with the procedures, trig-
gers, messages, and user-defined data types defined by each user.

The code supports a number of customizations, shown in Figure 8.4 asif statements using
global variables: both version variables (V1. . .V27) and global parameters (G) are used. For ex-

ample, theG.exclude-procedures predicate (line 929) controls whether procedures will
be output at all, based on user-configuration options. This predicate is similar in effect to theP0

predicate used in Section 3.6 because it does not depend on values from an outer query. The check
on line 925 is used to see if a user is a ‘special’ userid created by ASA (these do not need to be
re-created). In contrast to theG.exclude-procedures predicate, this predicate depends on

outer row values and it is therefore similar to theP1 predicate used in Section 3.6.

TheDo-Users procedure represents only a small portion of the overalldbunload program.

Figure 8.3 shows the queries ofdbunload that are involved in a nesting relationship (an addi-
tional 32 queries are opened at the top level and they are not displayed).

Thedbunload program can be run in either a complete mode where everythingis output, or

a very selective mode where specific types of objects are excluded or specific named objects are
included or excluded selectively.

8.2.2 Evaluating Scalpel Using dbunload

In order to evaluate the effectiveness of Scalpel, we performed a series of measurements ofdbun-
load when using Scalpel on a variety of network configurations. Weused 31 customer databases
to evaluatedbunload performance. Figure 8.5 shows the run-time with and withoutScalpel’s op-

timizations for these 31 databases on a variety of network configurations. These databases are la-
belled with A,B,. . . ,Z,α, β, θ λ, µ in order of increasing cost on the LCL configuration. In these

tests, all of Scalpel’s optimizations were permitted for nested request patterns, and we show the
time to unload the entire schema. The results show that Scalpel provides significant savings, even

in low latency configurations such as LCL (local shared memory).

8.2.3 Batch Prefetching with dbunload

The results in Figure 8.5 show the improvement Scalpel provides when optimizing only nested re-

quest patterns. We also considered the benefits provided only by batch prefetching. We randbun-
load in selective mode, outputting the schema for a single table in order to establish how much

8.2 CASE 1: DBUNLOAD 185

0

10

20

30

40

50

� � � � � Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

(b) Local Shared Memory (Optimized)

0

10

20

30

40

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z � � � � �
(c) 1Gbps TCP/IP (Original Strategy)

0

10

20

30

40

� � � � � Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

(d) 1Gbps TCP/IP (Optimized)

0

10

20

30

40

50

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z � � � � �
(e) 100Mbps TCP/IP (Original Strategy)

0

10

20

30

40

50

� � � � � Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

(f) 100Mbps TCP/IP (Optimized)

0

50

100

150

200

250

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z � � � � �
(g) 11Mbps WiFi TCP/IP (Original Strategy)

0

50

100

150

200

250

� � � � � Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

(h) 11Mbps WiFi TCP/IP (Optimized)

Legend:

0

10

20

30

40

50

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z � � � � �
(a) Local Shared Memory (Original Strategy)

Client CPU (s) Server CPU (s) Latency (s)

Figure 8.5: Running time (s) ofdbunload on different network configurations. Original times are

shown on the left in increasing order by cost, and times with nested request pattern optimizations
are shown on the right in the opposite order.

186 CASE STUDIES

of an improvement is possible for the portions of the application that Scalpel’s batch optimiza-

tions might apply to.

U O ∆ ∆%

OPEN calls 39 14 25 64%

Elapsed (ms) 997 336 661 66%

Client cost (ms) 109 78 31 29%

Server cost (ms) 47 63 -16 -33%

Packets toDBMS 190 69 121 63%

Packets to client 202 73 129 64%

Table 8.1: Benefits of batch pattern optimization fordbunload. Columns show unoptimized re-

sults (U), optimized results (O), absolute difference (∆ = U − O), and relative difference
(∆%=∆/U).

At the end of the training period, Scalpel stored information for 15 distinct queries and 46 con-

texts with prefetch size ranging from 0 to 19, average4.7. Of these, 18 had no prefetch queries as-
sociated. Of the 28 contexts with associated prefetches, the average number of prefetched queries

was8.1. For a typical execution ofdbunload, we observed 43 queries and built an atomic suf-
fix trie with 818 nodes; the path compressed suffix trie contained only 50 nodes.

Table 8.1 shows the benefits of using the optimizations we have described withdbunload run

in selective mode on a WiFi configuration. The table shows theunoptimized results (U) for the
system run without Scalpel attached, the optimized results(O), the difference∆ = U − O and

the percent difference∆% = ∆/U .

Scalpel’s optimizations are able to eliminate 25 of the OPEN requests that are sent to the
DBMS, which includes eliminating the per-request overhead for each of these. As a consequence,

total elapsed time was reduced by66%, and the client processing cost was also reduced by29%.
Interestingly, the server processing costs increased in the prefetching case. As all of the prefetches

in this test were useful, this extra cost must be related to optimizing and executing the complex
combined query.

8.2.4 Summary of dbunload

The results fordbunload are promising. When using all prefetching algorithms, Scalpel provides
significant savings, even in low-latency configurations. For example, the run-time for databaseµ

8.3 CASE 2: SQL-LEDGER CASE STUDY 187

is reduced from 45s to 25s in the LCL configuration, and from 40s to 17s in the LAN0.1 config-

uration. Scalpel acts to extend the set of systems for whichdbunload provides excellent results.
Without Scalpel’s optimizations,λ runs in 220s on a WiFi configuration; the optimizations al-

low it to run in 24s, which is faster than the 46s forλ in the LCL configuration.

While dbunload provides many opportunities for optimizing nested requestpatterns, it also

contains sequences of requests that can be predicted using Scalpel’s batch optimizer. When run
in selective mode to unload the schema for a single table, Scalpel provides an improvement of
661ms, or 66% in running time. This absolute improvement is present when running in the full

mode, but it is overshadowed in relative terms by the nested request patterns.

8.3 Case 2: SQL-Ledger Case Study

We investigated SQL-Ledger as a second case study. SQL-Ledger is a web-based double-entry

accounting system written in Perl. The system is configured with a DBMS storing persistent ac-
counting entries, a web server that executes Perl scripts toimplement business logic, and a web

browser that presents the user interface.

Figure 8.6 gives an overview of the structure of the SQL-Ledger system. A web browser

presents a user interface, and a web server executes the business logic using the common gate-
way interface (CGI). The SQL-Ledger business logic communicates with aDBMS using the Perl

DBI library and a vendor-specific DBD module. We use ‘V’ as a placeholder in Figure 8.6 to rep-
resent a specificDBMS implementation.

Web

Browser

Apache 2.0

Web Server
HTTP

SQL-Ledger

2.2.0
CGI

DBI
 ‘V’

Protocol

DBD::‘V’
 DBMS

‘V’

Machine B
Machine B
 Machine D

Figure 8.6: SQL-Ledger system structure. ‘V’ is used as a placeholder for a specificDBMS vendor

implementation.

In general, the web browser, business logic, andDBMS can be placed on separate machines.
We simulated a web user and the business logic on machine B, and used a commercialDBMS

188 CASE STUDIES

Rows Rows

table (SF1) (SF10) Description

customer 10 100 Customer name, address, and shipping in-
formation

parts 10 100 Part name, price, inventory, and description

makemodel 30 300 Name of a specific make and model of a part

partsgroup 2 20 Name of logical group of parts

customertax 20 200 Types of tax charged for each customer

partstax 20 200 Types of tax charged for each part

ar 100 10000 Invoices

invoice 1486 145020 Invoice line items

acc trans 4558 445060 Ledger entries for line items, tax, and total

Table 8.2: Initial table sizes for scale factors SF1 and SF10.

on machine D communicating using a 100Mbps LAN (configuration LAN0.1). The LAN0.1 and

other configurations are described in Section 3.6.

The web browser presents a menu of links to activities that a user can perform, such as adding
a transaction. Each of these activities may require multiple steps. For example, when adding an
invoice, a separate step is used for each invoice line. For each step, the user presses an Update

button that submits a partially completed form to the web server. The business logic scripts parse
the partially completed form, issue database requests to retrieve additional information, and for-

mat a new form to be returned to the user. The last step of a useractivity consists of using a Post
button to apply the requested changes to the database server.

Some of the business logic scripts that are executed during auser activity issue nested data-

base requests that might benefit from our proposed optimizations.

We populated the database with synthetic data and simulatedthe activities of a user work-

ing with the system. We focused only on the accounts-receivable activities. Table 8.2 shows the
tables that we populated with synthetic data and how many rows we used when generating the

data. We used two scale factors, SF1 and SF10, to simulate thesystem being used with different
configurations. Scale factor SF1 represents SQL-Ledger being used in a small company, while

SF10 represents the needs of a medium sized company. For eachinvoice in the initial popula-
tion, we generated an average of 14.5 line items selected using a uniform distribution of[10, 20).

The line item records are stored in tableinvoice, and each line item requires 3 records in ta-
bleacc trans due to the double-entry accounting requirements. In SF10, we use 100 times the

8.3 CASE 2: SQL-LEDGER CASE STUDY 189

initial invoices of SF1 to represent a company that not only has 10 times the customers but also

has been in business for 10 times as long.

We simulated a user performing accounts receivable activities with this synthetic data using
a remote browser emulator (RBE) implemented in Perl. Table 8.3 shows the activities that we

simulated based on the description in the SQL-Ledger manual[170]. For each activity, we show
the proportion of simulated sessions that perform the activity. We also show the steps that may

be performed by our emulated user during the activity and theaverage number of times the step
is performed during a simulated activity (Freq). For each step, we show the number of database

requests submitted for SF1 and SF10 in both the original setup and with Scalpel’s optimizations.

At SF1, the response times are quite reasonable. All individual step times are sub-second ex-
cept for two report activities (Tax Collected and A/R Aging). Both of these reports execute in un-

der 2 seconds. When moving to SF10, many operations remain quite quick; however, some op-
erations get significantly slower when moving to the higher scale factor. This slow-down may
be due to nested queries of the type optimized by Scalpel (leading to the higher rate of requests

shown in Table 8.3). We used the Scalpel prototype to assess the benefits of our proposed opti-
mizations in this system.

8.3.1 Configuring the System for Measurement

When we configured the SQL-Ledger system for analysis, we noted some interesting details about
the system and how it reacted with Scalpel’s optimizations.This section describes our measure-

ment setup and items that we discovered.

8.3.1.1 Perl to JDBC Bridge

The SQL-Ledger system is implemented in Perl using DBI, but our Scalpel prototype is imple-

mented in Java supporting JDBC. In order to use our prototypewith this case study, we used a
DBI-JDBC bridge (DBD::JDBC 0.64). Database requests from the Perl business logic are sent

via TCP/IP to a Java server process that executes appropriate JDBC calls. This is an atypical con-
figuration for SQL Ledger, and it introduces additional latency. The elapsed time for simulated

user sessions was up to 12 times slower for the measured activities when compared to a direct
DBI connection. This latency is higher for user activities with many small requests of the type

optimized by Scalpel. In order to provide a fair comparison,we stored a trace of JDBC requests
made by the Java server and replayed this trace either directly to the vendor’s JDBC driver or us-

ing the Scalpel prototype.

We used the following sequence of measurements:

1. Populate the SQL-Ledger database at SF1 or SF10.

190 CASE STUDIES

Database Requests

Original Optimized

Activity Freq SF1 SF10 SF1 SF10

A. Add Sales Invoice (35% of sessions) 206.6 1429.9 102.9 118.5

0. Navigate to start screen 1 19.0 19.0 19.0 19.0

1. Choose Customer, Invoice #, and Order #. 1 7.1 8.0 7.1 8.0

2. Choose account, currency, and exchange rate.1 1.0 1.0 1.0 1.0

3. Add one line item 10 138.0 1351.4 34.3 40.0

4. Select a part from a list. 7.5 0.0 0.0 0.0 0.0

5. Print a packing list. 1/3 0.4 0.4 0.4 0.4

6. Print invoice. 1/3 0.3 0.4 0.3 0.4

7. Post new invoice. 1 40.8 49.7 40.8 49.7

B. Add Cash Receipt (35% of sessions) 31.3 46.4 28.0 28.7

0. Navigate to start screen. 1 4.0 4.0 4.0 4.0

1. Choose customer. 1 11.8 26.2 8.5 8.5

2. Choose currency and exchange rate 1/2 0.5 0.5 0.5 0.5

3. Apply money to outstanding invoices. 1 1.0 1.0 1.0 1.0

4. Post the new receipt 1 14.0 14.7 14.0 14.7

C. Transaction History (10% of sessions) 58.3 85.0 49.3 71.5

0. Navigate to start screen. 1 2.0 2.0 2.0 2.0

1. Submit search criteria. 1 1.0 1.0 1.0 1.0

2. Navigate to a random invoice. 3 55.3 82.0 46.3 68.5

D. Tax Collected (10% of sessions) 3.2 3.1 3.2 3.1

0. Navigate to start screen. 1 2.0 2.0 2.0 2.0

1. Submit search criteria. 1 1.2 1.1 1.2 1.1

E. A/R Aging (10% of sessions) 9.2 63.4 4.0 4.0

0. Navigate to start screen. 1 2.0 2.0 2.0 2.0

1. Submit search criteria. 1 7.2 61.4 2.0 2.0

Table 8.3: Simulated user activities.

8.3 CASE 2: SQL-LEDGER CASE STUDY 191

2. Make a backup copy of the database.

3. Record a trace of JDBC operations performed while simulating 500 user activities in the

proportions and step frequency given in Table 8.3.

4. Restore the database from backup

5. Replay the stored trace using the vendor’s JDBC driver. Optionally configure Scalpel to
intercept requests for training or run-time optimization.

Steps (4) and (5) above can be repeated to test a variety of configurations.

Replaying a stored trace provides flexibility in measuring different configurations. However,

it requires that the results returned match the order they were seen when recording the trace. If
the order does not match, then the parameter values used fromthe trace file will not match what

the client application would have submitted. We avoid this complication by considering only the
client hash join (H) and outer join (J) strategies for rewriting nested request patterns. These two

strategies do not affect the order of rows from outer queriesso they can be used with replayed
workloads.

8.3.1.2 Primary Keys

Scalpel relies on finding a candidate key for queries to be optimized. Some of the SQL-Ledger

tables did not have an explicit key defined. We defined primarykeys for thear, customer,
defaults, exchangerate, andmakemodel tables based on attributes that appeared to be

a candidate key. Key creation is an important step to providethe most opportunities for effective
rewrites.

8.3.2 Parameters as Literals

The SQL-Ledger system generates most of its queries with parameter values embedded as literals

within the query text, although a few queries do contain parameter markers in the query text with
actual parameter values passed explicitly to the open request. We configured Scalpel to scan all

queries that do not contain parameter markers. Any constantliterals within the query are replaced
with parameter markers to generate a query template with separate actual parameter values. This
extra scanning adds to the overhead of Scalpel as all submitted queries must be scanned before

determining whether the query requires special action.

When detecting the possible source for a parameter, we extended the algorithm of Figure 3.7
to also consider parameters that have the same value for every execution. These parameters re-

sult from Scalpel’s inability to distinguish between substitution parameters in a dynamically gen-
erated query and constant literals that are the same for every invocation.

192 CASE STUDIES

8.3.3 Query Variants

The SQL-Ledger system generates queries dynamically basedon input from the user. For exam-

ple, theWHERE clause of a query may be built to include predicates for only the search fields sup-
plied by a user. Further, theORDER BY clause may be built to match user-specified sorting re-
quirements. In some cases, additional joins and subselect expressions are included based on con-

figuration parameters or user input.

The number of distinct queries generated dynamically can befairly high. For example, the
retrieve item function called during the Add Sales Invoice activity generates a query based

on 4 boolean conditionals, leading to up to 16 variants beingpresented at run time.

These query variants appear to Scalpel as distinct queries.Variants do not pose a problem for

correctness, but they require a longer training period in order to learn patterns for all of the dis-
tinct variants that can be submitted. If Scalpel could recognize that variants result from the same

dynamically generated query, this training time could be reduced and also the storage require-
ments for the context forest could be reduced.

8.3.4 Complex Combined Queries

The optimizations we have described generate more complex queries from simpler original
queries. This additional complexity raises the possibility that theDBMS query optimizer will

choose a plan that is worse than the original strategy while providing cost estimates to the con-
trary. We found this to be the case for the A/R Aging activity.In this activity, a report is gener-

ated with one line for each customer with outstanding amounts owing. An outer query is used to
iterate over these customers, and an inner query is submitted for each row. This inner query con-

tains a 4 branchUNION; each branch contains a join and a subselect. Scalpel uses the client hash
join (H) strategy to optimize this nested query.

We found that the optimized strategy took over 12s on the SF10database while the original
(nested) strategy took only a little over 8s. The problem wasthat theDBMS was selecting a sub-

optimal plan that was worse than the original nested strategy. The SQL-Ledger system does not
explicitly create database statistics for the tables it uses. After creating statistics for all pertinent

tables, we found that the optimized strategy executed in a little over 2s.

This problem raises two interesting points. First, the optimization decisions made by Scalpel

rely on estimates from theDBMS. If these estimates are in error, then poor optimization choices
will result in longer execution times. To some extent, such situations can be improved by com-

bining information that Scalpel obtains during the training period with theDBMS estimates. Sec-
ond, the complex queries generated by Scalpel’s rewrites may not be handled well with existing

DBMS technology. This appears to be especially true when using theLATERAL keyword or vari-
ants thereof. This problem could be avoided by using a product-specific interface to represent the

8.3 CASE 2: SQL-LEDGER CASE STUDY 193

combined queries instead of expressing the rewritten queryin SQL. Such an interface could sim-

ply combine query plans for the outer and inner query using a nested loops join in theDBMS.
This approach would eliminate the communication costs associated with the nested strategy in

the client, but it would not permit any improvements beyond communication costs. The approach
of directly specifying the execution plan follows a suggestion of Chaudhuri and Weikum [37]: it

reduces the uncertainty in execution costs at the expense ofmissing out on possible opportuni-
ties to choose a better strategy.

8.3.5 Nested Query Patterns

After configuring the system as described, we used Scalpel’straining mode on a SF1 database to

identify nested request patterns that present opportunities for optimization. We configured Scalpel
to consider only nested request patterns, ignoring for now the optimizations that can be achieved

by recognizing batch request patterns.

/Q1

1 1 ‘N’

/Q1/Q2

1 1 ‘H’

/Q1/Q3

1 1 ‘H’

/Q4

1 1 ‘N’

/Q4/Q5

1 1 ‘H’

A-Add Sales Invoice B-Add Cash Receipt

/Q6

1 1 ‘N’

/Q6/Q7

1 1 ‘H’

/Q8

1 1 ‘N’

/Q8/Q5

1 1 ‘N’

/Q9

1 1 ‘N’

/Q9/Q10

1 1 ‘H’

path

EST-P EST-P0 alt

Legend

C-Transaction History D-A/R Aging

Figure 8.7: Nested request patterns found in SQL-Ledger. Note that/Q8/Q5 is not a feasible

child of /Q8 because Scalpel did not predict the source of all correlation values.

Figure 8.7 shows the non-trivial context sub-trees detected by the Pattern Detector. Due to
query variants, the full context tree is actually somewhat larger. There were three variants ofQ1

discovered, and two variants ofQ9. These resulted in additional sub-trees; we have collapsed
these for a simpler presentation.

194 CASE STUDIES

Figure 8.7 also shows the measured predicate selectivity and the execution strategy selected

by Scalpel. OnlyQ5 can be used in a join strategy as the other queries could return more than one
row.

Note that queryQ5 appears in two contexts. QueryQ5 is submitted by the function

get exchangerate (described in Figure 1.3). Theget exchangerate function is called
from both get openinvoices in the Cash Receipt activity (giving context/Q4/Q5) and

by the functioncreate links in the Transaction History activity (giving context/Q8/Q5.
In the Cash Receipt activity, Scalpel discovers the correlation between thecurrency and
transaction date parameters and attributes ofQ4, the outer query. In the Transaction His-

tory activity, Scalpel discovers that thetransaction date is correlated to an attributes ofQ8.
However, thecurrency attribute does not match any attribute ofQ8. Because of this,/Q8/Q5

is not a feasible prefetch candidate.

Although the value ofcurrency cannot be predicted by looking at attributes of contain-
ing queries, the value could be predicted in two ways. First,the value ofcurrency is constant

within a particular execution ofQ8. Scalpel could recognize that the parameter is loop invariant.
Partitioned strategies could exploit a loop-invariant attribute correlation because they have the pa-

rameter values for the first submission of the inner query when the rewritten combined query is
submitted. Unified strategies could not use this correlation source. Second, thecurrency at-
tribute could be predicted by considering queries that sequentially precedeQ8. At present, the

correlation detection of nested request patterns and batchrequest patterns is not integrated (as de-
scribed in Chapter 6). This combination offers promise for extending the set of possible candi-

dates that can be detected.

8.3.6 Performance Results

Table 8.4 summarizes the performance results for a SF1 and SF10 database when executing a

stored trace of 500 user activities using the optimizationsselected for the nested query patterns
shown in Figure 8.7. The tests were performed using configuration LAN0.1 (Section 3.6). For the

tests with nested request patterns, we used a single SF1 trace for both training and timing, and we
used a separate SF10 trace for timing with the model built by training on the SF1 trace.

For SF1, the savings of latency are relatively modest. However, significant savings are
achieved in the number of queries submitted (a reduction of nearly half). This saving in queries

has a corresponding decrease in the associated network costs.

The training mode did not introduce a significant amount of latency, although it did increase
client processing costs due to the requirements of finding nesting patterns and identifying para-

meter correlations. The network and server costs are slightly higher during training due to the
need to retrieve catalog information from theDBMS.

8.3 CASE 2: SQL-LEDGER CASE STUDY 195

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

A-Add Invoice
(Original)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

A-Add Invoice
(Optimized)

0

10

20

30

40

0 1 2 3 4

B-Cash Receipt
(Original)

0

10

20

30

40

0 1 2 3 4

B-Cash Receipt
(Optimized)

0

50

100

150

0 1 2

C-Transaction History
(Original)

0

50

100

150

0 1 2

C-Transaction History
(Optimized)

0

20

40

60

80

0 1

D-Tax Collected
(Original)

0

20

40

60

80

0 1

D-Tax Collected
(Optimized)

0

400

800

1200

0 1

E-A/R Aging
(Original)

0

400

800

1200

0 1

E-A/R Aging
(Optimized)

Update Time
(s)

Legend

Outer Query
Time (s)

Nested Query
Time (s)

Remaining
Time (s)

(a) Scale Factor SF1

0

1000

2000

3000

0 1 2 3 4 5 6 7

A-Add Invoice
(Original)

0

1000

2000

3000

0 1 2 3 4 5 6 7

A-Add Invoice
(Optimized)

0

100

200

300

400

0 1 2 3 4

B-Cash Receipt
(Original)

0

100

200

300

400

0 1 2 3 4

B-Cash Receipt
(Optimized)

0

500

1000

1500

0 1 2

C-Transaction History
(Original)

0

500

1000

1500

0 1 2

C-Transaction History
(Optimized)

0

100

200

300

400

500

0 1

D-Tax Collected
(Original)

0

100

200

300

400

500

0 1

D-Tax Collected
(Optimized)

0

2000

4000

6000

8000

0 1

E-A/R Aging
(Original)

0

2000

4000

6000

8000

0 1

E-A/R Aging
(Optimized)

Update Time
(ms)

Legend

Outer Query
Time (ms)

Nested Query
Time (ms)

Remaining
Time (ms)

(b) Scale Factor SF10

Figure 8.8: SQL-Ledger elapsed database time (ms) for original and optimized requests. Each bar
represents a different step (Table 8.3).

196 CASE STUDIES

SF1 SF10

Original Optimized Training Original Optimized

Total time (s) 171.5 97.5 172.4 1,439.2 629.8

Server CPU (s) 29.3 23.9 38.6 578.8 283.7

Client CPU (s) 48.6 51.9 60.1 373.9 319.6

Queries Submitted 39,909 20,572 39,909 285,913 24,982

Top-Level 16,130 161,30 16,130 18,791 18,791

Nested 23,779 4,442 23,779 267,122 6,191

Update Requests 5,263 5,263 5,263 6,818 6,818

Network Packets 163,223 86,969 179,1811,200,287 160,583

Client→ Server 83,195 44,900 91,383 610,739 93,466

Server→ Client 80,028 42,069 87,798 589,548 67,117

Network Bytes (MB) 57.2 40.7 61.9 457.6 199.8

Client→ Server 22.2 15.9 23.5 137.2 22.1

Server→ Client 35.1 24.8 38.4 320.5 177.7

Table 8.4: Costs of 500 user activities. Optimized times include only nested request optimiza-

tions. Scalpel was trained and timed on a single SF1 trace, and timed only on a SF10 trace using
the same model built from the SF1 training period.

When we consider the SF10 database, the optimizations have amuch more dramatic effect.
The elapsed time is reduced by over 800s. Further, this savings in latency is associated with sig-
nificant reductions in server and client processing costs, along with lower communication costs.

Figure 8.8 shows the elapsed time for each of the steps performed by our simulated user. The
contributions of updates, top-level queries, and nested queries are shown separately. The remain-
ing time consists of Scalpel costs to decode the combined result (for example, looking up values

in a hash table) as well as overhead in our trace replay process.

All simulated activities except D-Tax Collected contain some nested requests. However, only
two activities benefit to a great extent from our rewrites: A-Add Invoice and E-A/R Aging. These

two activities improve significantly in the SF1 database anddramatically in the SF10 database.

8.3.7 Preliminary Result for Batch Request Patterns

The DBMS (B) we used with SQL-Ledger does not supportNULL values in the SELECT list as
we currently generate them for outer union rewrites. The other twoDBMS products that we tested

8.3 CASE 2: SQL-LEDGER CASE STUDY 197

were not such strict disciplinarians, but they are not supported by the SQL-Ledger system.DBMS

B does support our optimizations if an appropriate CAST is used to provide a data type for each
NULL value. As we have not extended Scalpel to track column data types, we present preliminary

results showing only the outer-join based rewrite. As this rewrite is only available for at-most-one
queries, this restricts the class of prefetches Scalpel considers.

Optimized

Unoptimized (Join Only) (Union+Join)

Queries submitted toDBMS 38,525 37,233 n/a

Peak # nodes n/a 23,525 23,525

FSM states n/a 27 38

States with any prefetch n/a 7 28

Queries prefetched 0 1,416 n/a

Useful 0 1,292 n/a

Wasted 0 124 n/a

Total latency 80.3 69.0 n/a

Table 8.5: Preliminary results for batch request optimizations in SQL-Ledger.

Table 8.5 shows preliminary results when using Scalpel’s batch request optimizations in the
LAN1 configuration. The last column shows results includingboth outer union and outer join

rewrites; only training results are shown as the outer unionstrategies cannot be executed. The
middle two columns give results with no optimizations and with only the outer join optimiza-

tions, respectively.

The second row shows the peak number of nodes in the suffix trie. An atomic suffix trie was

used; however, it does not show theO(n2) model size that is possible (this could be up toO(109)

for this many requests). The modest growth is due the moderately short transactions used by

SQL-Ledger. Each transaction is a separate trace, terminated with an out-of-band character ($) in
the trie. For this reason, the atomic suffix trie behaves reasonably in this setting.

After removing redundancy, we find a smaller FSM, with 27 states when using outer join only
(J) and 40 states with outer join and outer union (UJ). Of these, only 7 (J) and 28 (UJ) states have

an associated list of queries to prefetch: the remainder of the states are used to track context.

Table 8.6 shows the distribution of batch length for the optimization with only outer join (J)

and with both outer union and outer join (UJ). The J strategy is only able to prefetch 2 requests
at a time before encountering a query that might return more than one row. The outer union ap-

198 CASE STUDIES

Batch Length Join Only Union+Join

0 20 11

1 0 0

2 7 15

3 0 4

4 0 8

Table 8.6: Distribution of batch prefetch lengths.

proach does not have this restriction, and when we include itas well, we find prefetch lengths up
to 4 queries.

At run-time, the join-only approach prefetched results for1,416 queries. Of these prefetches,

1,292 were ultimately used, and the other 124 were wasted effort. Overall, the prefetching using
only outer joins saved about 14% of the latency associated with this test. If we consider also outer

union rewrites, it is likely we would save even more of this latency. Further, the savings would
also increase in higher latency configurations, such as WiFi, WAN, or even LAN0.1.

8.3.8 Summary of Case Studies

In summary, our examination ofdbunload and the SQL-Ledger system demonstrates that op-
portunities for our proposed optimizations do appear moderately often in at least some systems.

While opportunities for nested request rewrites are relatively rare, they can have substantial ben-
efit when they are optimized. There are significantly more opportunities for our batch-based
rewrites, and these also reduce overall latency.

Scalpel can identify these optimization opportunities using a training period that does not ex-

cessively degrade system performance, and it is able to automatically rewrite submitted requests
to take advantage of the selected optimizations. Some caution must be used when applying the

Scalpel system in order to get the most benefit. For example, in the SQL-Ledger study we needed
to add primary keys and ensure that database statistics werecreated before the full benefit of the

optimizations was achieved.

9 Related Work

In this chapter, we position our work within the field of related research. There has been a signifi-

cant amount of work on prefetching techniques for many different problem domains. Section 9.1
provides an overview of related work in this area, with particular reference to approaches simi-

lar to those we propose. In particular, prefetching techniques based on a probabilistic model of
past requests are closest to the results we have presented. Section 9.2 discusses the theoretical ba-
sis for this type of prediction.

Once we have predicted a likely sequence of future requests,we would like to process the

sequence efficiently. We have described how Scalpel generates combined queries. For nested re-
quest patterns, the combined query encodes the result of a join that we have detected in the clients

request stream; for batch request patterns, the combined query encodes the results for a predicted
sequence of queries. Section 9.4 discusses other work related to efficiently processing a known

sequence of queries.

9.1 Prefetching

The idea of prefetching has been applied in many different contexts in the field of computing.

Prefetching has long been supported for device I/O in operating systems [66, 152]. Smith [172]
provided an early bibliography of work related to prefetching and caching. Somewhat more re-

cently, prefetching has been used for prefetching data frommain memory into a processor cache.
Smith [174] provided an early survey of this field, and Vanderwiel and Lilja [182] provide a sur-

vey of recent results. An interesting use of prefetching is the idea ofhoarding, where files are
copied to a mobile device in anticipation of their being needed while disconnected from the high-
speed network. Several approaches to hoarding have been proposed based on predictive tech-

niques related to those we use [120, 121, 176, 177, 208].

The problems associated with fine-grained access are well known, and there are a number
of practical solutions that can improve performance by avoiding fine-grained access. In fact, the

problems of latency are becoming relatively more important; as Patterson [143] notes, prefetch-
ing is one way to address the pervasive problem that improvements in latency lag significantly

behind improvements in bandwidth. It appears that this gap is likely to widen over time due to
fundamental physical limitations in our system implementations.

199

200 RELATED WORK

A prefetching mechanism mustidentifyfuture requests that are likely to be submitted. In Sec-

tion 9.1.1, we describe related work on prefetching that uses the physical layout of data to iden-
tify the data to be prefetched. As we describe, this approachis simple to implement and exploits

the large and growing disparity between random and sequential access. However, it does not help
if the client access pattern does not match the physical layout. Section 9.1.1 also describes vari-

ous approaches that are used to re-order a clients access to better match the physical layout.

When a client’s reference pattern is not sequential and re-ordering is not feasible, a prefetch-

ing system may choose to use observations of the client’s previous reference behaviour to predict
future reference patterns. Section 9.1.2 describes related work that monitors the sequence of se-

lected data items to predict likely future items. This type of prediction scheme does not exploit
efficient sequential access, so it is not as useful for prefetching blocks from a disk. Instead, the ap-
proach is particularly useful when the granularity of the predicted item is large (for example, en-

tire files) or when the data stored can be efficiently accessedin random order (for example, when
fetching data from another workstations memory)

When using patterns of fetched data items, a prefetching approach needs space that is propor-
tional to the number of data items. Further, this approach does not offer suggestions when novel

sequences of data items are reference. Section 9.1.3 describessemantic prefetching. With seman-
tic prefetching, the server understands something about the data that is stored. For example, it

might know that a fetched object contains references to other objects. The server can use this un-
derstanding to make prefetching decisions that use theintensioninstead of theextension. In this

way, models may be smaller, and prefetching decisions can bemade when novel dataitemsare
referenced, provided that the data types are known.

Finally, Section 9.1.4 summarizes related prefetching approaches that have been previously
considered.

9.1.1 Prefetching Based on Physical Layout

Computer systems have long supported sequential prefetching for I/O, particularly from stream
oriented devices. Feiertag and Organick [66] describe the I/O support in the MULTICS system,

while Ritchie and Thompson [152] describe how the the Unix system was designed (influenced
by MULTICS) to default to sequential access. This default sequential access was used on the

premise that many files would be processed sequentially. With this access pattern, it is a very
good idea for the operating system and I/O components to prefetch data sequentially beyond the

last value requested by the client. If the client is following a sequential access pattern, then the
prefetched data will be used, reducing exposed latency. Themost appealing aspect of sequential

prefetching is its simplicity and low cost. It is simple for the server to implement, and it does not
require complicated analysis or bookkeeping. Further, if an application is scanning an entire file,

9.1 PREFETCHING 201

it is very likely to do so in sequential order, so the prefetching is likely to produce many hits. Fi-

nally, the most compelling advantage of sequential prefetching is that it does not cost very much
to read a few more pages sequentially ahead, so the cost of satisfying the prefetch request is low.

Gray [82] suggests that current trends indicate that sequential access will soon be 500 times faster
than random access. Even if we have a low hit rate for prefetched data, the increase in cost due to

prefetching will not be substantial, and the savings can be considerable.

Smith [173] investigated using sequential prefetching to improve the performance of database

applications using an IMS database. He found that sequential prefetching was very effective in
some cases, although it was important to detect sequential scans as opposed to random scans.

This detection was used to choose a variable number of blocksto fetch. Smith [175] also used
sequential prefetching when proposing a disk cache; however, in that case, Smith used only a

single block of read-ahead.

The actual reference behaviour of database systems has beenexamined by several researchers

[36, 55, 94, 99, 101, 187, 207]. Many database workloads do exhibit sequential access to data
pages. For example Hsu, Smith and Young [94] found that the TPC/D benchmark and several

real-world workloads exhibit access that is significantly aided by sequential prefetching. How-
ever, clearly not all workloads are sequential. Kearns et al. [102] found that almost any reference

behaviour may be found in the workload of a database system; however, they found that refer-
ence behaviour can be predicted and exploited.

Kotz and Ellis [109, 110] considered prefetching techniques within a single file when the con-
sumer is a multi-processor system executing. For example, the client could be executing a scien-

tific or database workload. They considered 4 strategies, each based on recognizing when a por-
tion of the reference behaviour is sequential. In this way, their proposed system can exploit se-

quential prefetching when it is useful, and avoiding the wasted work in regions of the reference
trace that do not exhibit sufficient locality of reference tomake sequential prefetching worth-

while.

While sequential prefetching is beneficial when the client is reading sequentially (for exam-

ple, processing an entire data set), there are also cases where a client demonstrates significant spa-
tial locality without using a sequential pattern. Prefetching can be achieved in this case by fetch-

ing data a page at a time, returning more data than requested from a region spatially near the re-
quested item. This approach shares the simplicity and low-cost benefits of sequential prefetching,

although it also only helpful if the client application doesexhibit locality within the prefetched
page size.

The page serverarchitecture ofOODBMSs is an example of this type heuristic to prefetch
objects into a client’s cache. When an application accessesan object that is not resident on the

client, a demand fetch is sent to the server for the appropriate page. The returned page contains
the requested object along with the other objects grouped nearby. Again, the incremental cost to

202 RELATED WORK

the server for fetching and transmitting the entire page instead of only one object is minimal (it

may even be cheaper to send the entire page rather than worrying about interpreting the contents
and copying out the single object). Here, the hope is that theapplication will be able to use some

of the other objects from the page, saving further demand fetches to the server.

Liskov et al. [129] extended the idea of page servers to fetchan arbitrary sized set of objects

in the neighborhood of the requested object in theTHOR project. Run-time monitoring was used
to decide the size of the neighborhood that would be prefetched. By using a variable-sized win-

dow, THOR was able to achieve the benefits of large, multi-page sequential prefetch, and also to
reduce to no prefetching in situations where the hit rate wastoo low to benefit the application.

Page servers are effective if the client application has an access pattern that exhibits local-
ity within a page: in that case, other objects in the page are also likely to be used. Further, in

many cases it is more efficient to ship entire pages than individual objects. However, the applica-
tion reference pattern may be such that only one or a small number of the objects on a page are
needed. In this case, significant resources are wasted. Voruganti,Özsu and Unrau [184, 185] pro-

pose a hybrid architecture, where pages or objects can be fetched from the server. This approach
achieves the benefits of a page server when the access patternmakes that effective, and avoids the

downside of a page server when the clients access pattern does not match the page layout.

Shao et al. [169] presented Clotho, which can be viewed as similar to the hybrid architecture

of Voruganti,Özsu and Unrau [184]. Clotho is a system that allows the layout of data on disk
to differ from the organization in memory. This flexibility allows different levels in the memory

hierarchy to provide efficient prefetching.

The approach of prefetching based on physical layout is simple to implement, and the cost

to the server for implementing the prefetching is low since prefetched data items are ‘nearby’ to
demand-fetched items. However, this approaches only produce good hit rates if the access pat-

tern mirrors the physical layout of the data. An applicationmay exhibit logical locality of refer-
ence that does not correspond to a physical local exploitable by a prefetching system. In a file sys-
tem, this can occur if a file that is accessed in logically sequential order becomes physically frag-

mented. In other cases, an algorithm may visit pages in an order that is logically relevant, such as
following disk pointers, but not physically sequential. Insuch cases, we may be able to re-order

the data so that the physical layout is useful for prefetching the access patterns submitted by the
client.

Akyürek and Salem [8, 9] suggested that we can convert locality of logical reference patterns
into physical locality by rearranging disk blocks for efficient access. Akyürek and Salem used

various first-order statistics to select an appropriate placement of disk blocks.

Yin and Flanagan [202] use a similar approach to re-order thepages needed to start up a pro-

gram. When a program loads, it may read in a number of program and configuration files. These
files are typically read in an order defined by the program control flow, which typically does not

9.1 PREFETCHING 203

match the physical layout of files on disk. Yin and Flanagan proposed five algorithms to choose

a re-ordering of disk blocks based on observed request sequences.

Rearranging data items is also possible for page serverOODBMS products. This tuning is dif-

ficult to achieve in general, and it is impossible for cases where two applications with different ac-
cess patterns access the same data. There is no single optimal arrangement in this case. The prob-

lem is similar to selection of clustered indexes. There are no perfect solutions, but on-line reorga-
nization can help to dynamically adjust the physical layoutof data in order to improve prefetch

performance. If the hit rate for prefetched data is low, system performance is likely to be worse
than a system without prefetching. Even though the incremental cost to the server is not high, use-
less prefetches still waste network bandwidth and pollute the clients cache.

It is not possible to organize one copy of data to match distinct access patterns. However, the
abstraction provide byDBMS products provides another possibility. We can have multiple copies

of all or part of a data set, and these can be organized in different ways. A materialized view
is one example of such an arrangement, and we can view index-only retrieval as another such

approach.

Gerlhof and Kemper [78] discussed practical details of implementing prefetching in a page-
basedOODBMS. They used a cost model that measured the expected speedup due to a prefetch-

ing strategy, and considered the cost of any administrativeoverhead and additional bandwidth
required for prefetching. They found that performance can be substantially improved using

prefetching, but the effectiveness is very dependent on theaccuracy of the prediction of future re-
quests, either through user hints or a predictor module. In order to improve the effectiveness, they

implementedprefetch support relations[79]. These are relations stored in the server that contain
the precomputed set of pages that are needed for a given operation with a particular set of para-

meter values.

In summary, prefetching based on physical layout is an obvious improvement. If data are fre-
quently accessed sequentially, it is a good idea to fetch extra data items before they are requested.

With this approach, the data store can use a simple heuristicthat indicates what items to prefetch.
The implementation is simple, and there is no need for complicated and memory intensive book-

keeping procedures. The most important benefit, however, isthe low cost of fetching additional
data items that are physically near the requested item. Fetching such nearby items can often be

done without head movement of a disk, while a seek would be required if the items were demand
fetched. This cost difference is an important reason for thepopularity of sequential prefetch-

ing. Access patterns that are not physically sequential areoften converted into sequential patterns
through rearrangement of the data or the fetch order so that this cost difference can be exploited.

204 RELATED WORK

9.1.2 Prefetching Based on Request Patterns

In order to avoid the problems associated with prefetching based on physical layout, Palmer and
Zdonik [142] proposed Fido, a cache that learns to fetch. TheFido system is based on training

anestimating prophetto recognize patterns of object references in order to predict future refer-
ences. The patterns were recognized using nearest-neighbour associative memory. The approach

of Palmer and Zdonik trained the associative memory offline on access traces, and used the asso-
ciative memory to predict future requests based on access patterns which approximately match a
pattern in the training trace.

Grimsrud, Archibald and Nelson [86] proposed using order-1predictors to prefetch from a

disk. A large table (called the adaptive table) contains a tuple for each cluster on the disk. The
tuple gives a prediction of the next cluster to be accessed, along with a weight that is used to

express the confidence the system has in the prediction. These next cluster predictions can be
used for prefetching; in conjunction, a disk rearrangementalgorithm could re-order the disk to

give efficient sequential access matching the logical orderof access.

Krishnan and Vitter [116, 117, 183] used an approach like that of Palmer and Zdonik [142] in

order to predict future object references based on observedreferences. Their work was based on
a Lempel-Ziv compression algorithm, which was used to detect patterns in a reference trace that

matched a pattern observed during training. Krishnan and Vitter [117] showed that this Lempel-
Ziv compression technique provides the theoretically bestexpected performance under arbitrar-

ily complex workloads. In practice, the Lempel-Ziv technique has some limitations; Curewitz,
Krishnan and Vitter [48] explored practical issues relatedto using compression for prefetching,
proposing a PPM-style compression algorithm as a practicalmethod for prediction.

Griffioen and Appleton [85] build a probability graph where the nodes are files and arcs rep-

resent a file being accessed after the previous one. This probability graph generates first-order
predictions based on files accesses. This allows their system to prefetch a file that is predicted to

be used in the near future based.

Lei and Duchamp [126] used a similar approach to Griffioen andAppleton [85]. They

monitored the files used by each program to build anaccess treethat encapsulates the pro-
grams file reference behaviour. Several access trees are stored for each program. When the cur-

rent access tree matches a previous tree (above a pre-set threshold), the stored tree is used to
prefetch all of the files that are anticipated to be needed forthe program (up to a pre-set limit,

PREFETCH CAPACITY with default 15). The approach of Lei and Duchamp is interesting in
that they are able to better exploit recency effects to give more benefit to more recent access trees.

Probabilistic approaches such as the compression-based predictors tend to treat all reference pat-
terns equally, without an inherent mechanism to age stale model.

9.1 PREFETCHING 205

Acharya, Franklin and Zdonik [3] used a simple prefetching heuristic to perform prefetch-

ing from a broadcast disk. Their approach was based on the estimated probability of a page be-
ing accessed in the future and an estimate of the time that would elapse before the page is again

available Their probability estimates were based on zero-order estimates, namely the relative fre-
quency of access for pages in the cache.

A number of other researchers have followed the approach of Curewitz, Krishnan and Vit-
ter [48] in using a PPM-style predictor. Bartels et al. [14] implemented a PPM-style predictor in

a Unix kernel to prefetch from a network of memory servers. Bartels et al. [14] found that the
choice of the orderm of the PPM model is important. They showed the unintuitive result (dis-

cussed in Section 5.2.1.2) that a longer context order may make worse predictions.

Madhyastha and Reed [130, 131] used neural networks and a hidden Markov model (HMM)

to predict future client behaviour. The class of hidden Markov models is strictly stronger than ei-
ther the order-k or even variable order Markov models that we employ (although order-k mod-
els can approximate hidden Markov models arbitrarily well with increasingk). There is a con-

cern that the models generated by Madhyastha and Reed may grow quite rapidly; while they
noted at most a linear growth in practice, they also employedpruning techniques to prevent ex-

cessive model growth. Madhyastha and Reed state that typically a file is accessed with only one
type of pattern; in this case, they train a HMM with one state per disk block. Alternatively, if mul-

tiple access patterns are used for a single file, Madhyastha and Reed suggest building a compos-
ite HMM that combines the results of separate HMMs built for the distinct access patterns.

White and Skadron [192] used a prefetching approach based ona target cache technique used
for indirect branch prediction in processor implementations. For each open file for a process, the

operating system maintains a fixed-size structure. This structure maintains the addresses of the
lastn fetches submitted by the application, using this value to access the target cache. This can
be seen to be an approximation of an order-m Markov model, but the implementation is designed

to work well with a small amount of memory and time needed at each step.

Deshpande [56] also found that (as discussed in Section 5.2.1.2) it is difficult to choose a spe-

cific k. Instead, they simultaneously build separate order-k models for each possiblek. Then, they
prune this global model using a support thresholdΦ. If a state has not been observed at leastΦ

times, it is pruned. Further, they use confidence intervals to detect states that do not provide a sig-
nificant difference in predicted probability; these statesare also pruned. The confidence intervals

are built based on a configured confidence levelα and the Wald approximation (Appendix A).

Drapeau, Roncancio and Guerrero [58] proposed using data mining techniques to find associ-

ation rules for prefetching in WWW meta-searchers. An off-line process identifies frequent item
sets to build a prediction model using earlier requests to predict future requests.

Predicting future object references based on patterns of object references can give very pre-
cise answers as to which objects should be prefetched if a pattern is correctly matched. However,

206 RELATED WORK

all approaches that predict future object references basedon past patterns of object references in-

troduce a number of practical problems. First, the storage requirement is proportional to the num-
ber of objects referenced. If we limit the amount of storage available, then we reduce the effec-

tiveness of the prediction. If we maintain this pattern information on the client machine, then the
time and space problems may not be acceptable. Second, patterns based on object references do

not generalize to semantically similar patterns that operate over different objects.

Wang et al. [186] explored how idle workstations can be used to make prefetching based on a

PPM-style compressor effective. The idle workstations offload the work of maintaining the PPM
model, allowing a higher order model to be used.

Kroeger and Long [118, 119] also used a PPM model to predict future accesses. However,
the prediction is done at the level of files, not data blocks. In this way, the size of the model is

significantly smaller. For example, their approach could recognize that certain files are accessed
after a specificMakefile is opened by programmake.

Yeh, Long and Brandt [201] also considered file-based prefetching. They considered the ben-
efit of augmenting an order-1 model with the program and user that caused a file to be opened. In

this way, they were able to achieve a 20% improvement over an unaugmented order-1 model. Fur-
ther, they considered prefetching more than one file at a time(referred to as ‘deep’ prefetching in

Section 5.3.1.2). In their configuration, they found that prefetching 2 files was most effective.

The prediction quality of predictors based on training is a concern. Amer et al. [10] suggest re-

ducing the number of prefetches in order to increase the number of useful prefetches. Brandt [23]
proposed a way to use a prediction based on a combination of multiple predictors. Brandt in-
cluded a null predictor so that prefetches would not be issued if they are not useful.

Kraiss and Weikum [114] used a continuous-time Markov-Chain model to assess which doc-
uments to prefetch from a large off-line media library. Theyfound that the precision afforded by

a Markov-Chain model was significantly better than simpler first-order statistics. However, they
found that the models grew to a few megabytes, with predictions taking on the order of millisec-

onds. Therefore, they cautioned about using such an approach directly for prefetching disk or
memory pages.

In summary, existing work on prefetching based on request patterns considers patterns that
have occurred in the individual items fetched. A request model is generated based on these indi-

vidual items and used to make prefetching decisions. Since these prefetching approaches build a
model on the individual data items previously fetched, theyneed storage proportional to the num-

ber of distinct objects in order to provide comprehensive predictions (although skew in the fre-
quency of object access may reduce this space substantially). For example, consider a disk-based

linked list where each page has a link to the next page. If the client traverses this list, the predic-
tor needs storage proportional to the number of nodes in order to make the best possible predic-

9.1 PREFETCHING 207

tions. If new nodes are inserted, the prefetching will fail until the model is updated with the new

relationships.

9.1.3 Semantic Prefetching

The prefetching approaches based on on physical layout and request patterns does not consider

the semantic meaning of the objects which the application isrequesting. In fact, these objects
contain a great deal of meta-information which could be usedto predict future requests. In the

disk-based linked-list example we described in the previous section, the server can predict the
next node to be accessed if it understands the semantics of the data items. Further, this prediction

does not rely on an expensive training period and large modelthat becomes easily obsolete.

Section 9.1.3.1 describes approaches based on static analysis of object attributes and relation-
ships. These approaches use heuristics that provide prefetching hints without necessarily consid-

ering past application history. Section 9.1.3.3 describeshow application hints have been used to
implement prefetching. These approaches rely on deriving application-specific hints that guide
prefetching and caching decisions. Section 9.1.3.2 describes proposed hardware-based value

predictors that are used for speculative execution in explicitly multi-threaded processors. Sec-
tion 9.1.3.4 outlines approaches based on models of requestbehaviour, where the model is built

using the pattern of object types accessed instead of the pattern of individual objects.

9.1.3.1 Static Analysis of Attributes

Ammar [11] considered prefetching in a teletext system. Thesystem presented a hierarchical tree
of pages to users. Ammar proposed that the client terminal could decode the links in a page, esti-

mate the probability of each link being taken, and use these to prefetch pages before the user re-
quested them. In this setup, the client terminal was not ableto prefetch future pages until a prior
demand fetch had completed. The proposal of Ammar [11] anticipated prefetching approaches

that have been proposed and implemented for the world-wide web (WWW). Davison [50] pro-
vides a summary of prediction approaches used for web request patterns.

Keller, Graefe and Maier [103] implemented anassembly operator which loaded the at-

tributes of demand-fetched objects in a breadth-first search fashion. While this approach might
be more expensive to implement than the approach based on thephysical layout, Keller, Graefe

and Maier described new execution techniques used to reducethe cost of assembling the objects.
In order to prevent massive blowup due to breadth-first search expansion, theassembly opera-

tor relied on developers specifying predicates usingUDFs that encode which objects should be
assembled.

208 RELATED WORK

Day [51] suggests using objects as the unit of transfer from the server to the client. In Day’s

approach, a breadth-first traversal of object attributes isused to find a prefetch group2, limited by
a constant number of objects. He also considered alternative strategies based on clustering (a sim-

ulation of paging approaches), depth-first search, and application hints. Further, Day’s approach
prefers to send objects already in the server cache and likely not in the client cache. Later,THOR

was changed [129] to use a sub-segment prefetching approachthat sends a group of objects lo-
cated on the same disk segment as the requested object. This approach allows the client to spec-

ify the size of the prefetch group. This approach was chosen because the object-graph approach
[51] generated small prefetch groups, particularly near the edges of the object graph.

Kossmann, Haas and Ursu [108] observed that a common style ofaccess for client applica-
tions is the ‘fetch then manipulate’ pattern. Applicationsfetch objects using a declarative query,

then manipulate their attributes and methods. A naı̈ve implementation would require a demand
fetch for objects returned by the query. Instead, the authors proposed allowing the query to re-

turn attributes that were not requested by the application.The benefit of returning extra attributes
is that they can eliminate demand fetches. However, this approach may cost more to execute, for

example if the results are sorted then there is additional data to be included in the sort. The au-
thors propose that this cost and benefit should be included during the join enumeration in order

to find the most effective cache loading plan. The approach suggested could provide one level of
prefetch, but did not consider fetching further objects or attributes.

The idea of prefetching state reachable from a demand-fetched object is more likely to find
relevant items to prefetch than an approach based solely on physical organization. However,

this comes at the price of increasing the cost of prefetching, since the objects referenced in the
breadth-first search are likely not ‘close’ to the requestedobject. Further, the approaches in this

section did not consider how likely it is that various attributes would be used or relationships fol-
lowed. This could lead to a significant amount of wasted prefetching.

9.1.3.2 Value Prediction for Speculative Execution

Several modern processors are able to speculatively execute instruction in anticipation of their be-
ing needed. For example, instructions may be fetched and decoded in anticipation of a particular

branch being taken. In some cases, this speculative execution is not directly possible because val-
ues produced by the executing program are not yet available.For example, a load instruction may
refer to a memory location that is not yet computed. To increase the amount of instruction-level

2 Day suggestspre-sendingwould be a better term, since the server determines the data to send. How-
ever, he uses the more traditionalprefetchingterm.

9.1 PREFETCHING 209

parallelism (ILP), a number of researchers [72, 181] have investigated techniques that use hard-

ware predictors that give a predicted value for each needed quantity. For example, a quantity may
be predicted to be equal to the last value that was observed. This prediction can provide good ac-

curacy when there is locality of reference. In some cases, the needed quantity is predicted to
be the previous value combined a fixed delta. This predictionapplies when an application uses

strided access to data. The value prediction used for hardware speculative execution is necessar-
ily simple because the prediction is performed in hardware for a large number of quantities.

9.1.3.3 Application Hints

One way to achieve accurate prefetching is to use hints from the client application. These hints
may be either a guess of future pages that might be accessed (leading tospeculative prefetch-

ing) or an accurate list of pages that will be used (leading toinformed prefetching). Patterson
et al. [144] described the TIP system, an implementation of informed prefetching and caching
that uses hints from client applications to decide how to prefetch and cache. The TIP system use

a cost-based model to dynamically allocate buffers betweenthe competing needs of caching and
prefetching.

The approach of manually inserted hints may make for effective prefetching decisions, but
it does require a substantial burden from the system developers. Mowry [137] proposed using

compiler modifications to automatically insert prefetch hints. Using the SUIF research compiler,
Mowry was able to achieve improvements of up to a factor of 2 byautomatically inserting prefetch

instructions.

Cao et al. [29] noted that, even with informed prefetching, the decision of what prefetches to

form is non-trivial. They allow applications to provide prefetching and caching hints, then em-
ploy an integrated caching and prefetching strategy which they show to be near optimal.

Chang and Gibson [35] used idle cycles when a workstation is waiting for an I/O to complete
in order to speculatively execute past an I/O stall. They used this speculative execution to predict

future reference behaviour. By providing these predictions to the TIP system [144], they achieved
speculative prefetching.

Specific algorithms can also be tuned to provide hints of future references. Chen, Gibbons
and Mowry [39] showed how prefetch instruction can be inserted to speed index scanning rou-

tines. Chen et al. [40] extended this by giving a fractal datalayout that improves the latency from
disk to memory and from memory to processor cache, while Chenet al. [38] described how to im-

prove hash join algorithms by prefetching data from main memory into a processor cache. This
reduces the significant amount of time that the CPU spends in cache stalls.

A recurring theme in database and operating systems research has been the idea of design-
ing algorithms and data structures that exploit sequentialaccess. One of the strengths of the re-

210 RELATED WORK

lational model proposed by Codd [45] is that it permits an efficient access method to be selected

based on the current query, rather than based on a single common usage pattern. Chamberlin
et al. [34] described how System R used a cost-based model to select an access method for each

relation, exploiting sequential access where costs warrant. More generally, Graefe [81] provides
an overview of several algorithms in the database field that are designed to maximize sequential

access to disks. In part, these algorithms are faster due to the inherently cheaper sequential ac-
cess; in part, this speedup is due to the benefit they achieve from effective prefetching.

9.1.3.4 Type Reference Patterns

As noted above, models based on sequences of object references do not generalize to semantically

identical patterns over different objects. The heuristic approaches described in Section 9.1.3.1
consider the data items being fetched, and use this to drive heuristics predicting future requests.

This approach, however, does not adapt to application-specific request patterns that don’t match
the selected heuristic. The prefetch hints described in Section 9.1.3.3 allow this type of adapta-

tion, but at the cost of application complexity. Another solution is based on a model of client ref-
erence behaviour when considering the object types being fetched instead of considering individ-

ual object identifiers. This approach learns patterns at theintension level rather than the exten-
sion level. Typically, such models are smaller and more generalizable than corresponding models
based on object identifiers.

Knafla[106, 107] considered the probability of an application navigating each of its relation-
ships to other objects using a Markov-Chain model. This statistical model gives estimates of the
probability of accessing subsequent pages. If the probability of accessing a page is high enough,

it is prefetched to the client.

Bernstein, Pal and Shutt [19] suggested that thecontextin which an object was fetched is an
important factor to consider when deciding which related objects should be prefetched. For ex-

ample, consider a query that returns a list of objectsa1, a2, . . . , ak. If we next see a request to
fetch thex attribute of objecta1, we may reasonably assume that we will soon fetch thex at-

tribute fora2 and the rest of theai in the list. This is much more likely than ifa1 anda2 were
fetched in different contexts, for example from different queries. The solution proposed by Bern-

stein, Pal and Shutt attempts to discover operations that should be applied to multiple objects, and
uses this as the basis for prefetching.

Han, Moon and Whang [89, 90] note that the approach of Bernstein, Pal and Shutt [19]

may perform poorly if an application uses a depth-first traversal scheme. In that case, objects
prefetched near the top of the access tree may be evicted before traversal returns to use them.

Han, Moon and Whang propose PrefetchGuide, an extension to the context-based prefetching of
Bernstein, Pal and Shutt. The PrefetchGuide data structurealso considers patterns in the types of

9.1 PREFETCHING 211

objects referenced, tracking collections of objects returned by queries and by attribute references.

In this way, it is able to detect iterative and recursive patterns. The iterative patterns are similar
to the nested request patterns that we optimize (Chapter 3).The PrefetchGuide structure is built

every time that a top-level query is used, and discarded whenthat query is closed. PrefetchGuide
prefetches individual objects as it observes the client application submitting prefetches.

Bowman and Salem [22] described a semantic prefetching approach based on a recognition

of nested request patterns of the type we describe in Chapter3. As described in Chapter 3, this
approach recognizes nested patterns that are equivalent toa distributed join. In contrast to the
work of Han, Moon and Whang, this approach replaces all of thefetches for a nested pattern with

a single join query, exploiting the relational processing power of the serverDBMS.

Yao and An [198–200] propose a system called SQL-Relay, which consider sequences of
queries in an OLTP or OLAP environment. They replace all literal constants to form a query tem-

plate, and represent a client application by a probabilistic model they calluser access patterns.
This model contains states and edges annotated with queriesand probabilities. States are identi-

fied with query templates, thereby forming an order-1 model.Further, the user access graph pre-
dicts values that will be used for parameters; these may be predicted to be a constant, input para-
meters of previous requests, or result attributes of previous requests. Yao and An [198, 199] show

how user access patterns can be used to guide prefetching. They considered three types of query
rewrites for prefetching: sequential, which prefetchesv whenu is submitted; union, which gen-

erates a union queryu] v to prefetchv whenu is submitted; and, probe-remainder, which sub-
mits a modifiedu′ that retrieves results foru and some of the results needed for the predictedv

query. For the probe-remainder approach, and additional ‘remainder’ queryv′ is required to re-
trieve the rest of the results forv. Both the union and probe-remainder approaches are only used

when queriesu andv fetch from the same relations. Further, a queryv that depends on result at-
tributes ofu cannot be prefetched until the results foru are returned (recall that Scalpel accom-

plishes this with a join-based rewriting, as described in Section 5.4.2). Yao, An and Huang [200]
also show how to use data mining techniques includingn-gram modeling and sequence align-

ment to identify database user sessions boundaries.

Bilgin et al. [20] also considered prefetching the results of anticipated future requests. Bil-

gin et al. described a procedure that, if provided with a probabilistic model of a client’s data ac-
cess graph, chooses a set of read-ahead queries that minimize the expected running time of the

application. A dynamic programming algorithm is used to select the optimal strategy. The work
Bilgin et al. [20] present so far considers only the optimization problem, relying on external mod-

ules to generate the combined queries and decode the resultsfrom the prefetched queries. In their
work, they also considered prefetching ‘deep’ as Scalpel does.

212 RELATED WORK

9.1.4 Summary of Prefetching

Prefetching mechanisms are widely used today to limit the latency associated with demand

fetches. There are several approaches to predicting the future requirements of applications, rang-
ing from simple patterns (such as sequential fetching) to more complicated approaches that mon-
itor application behaviour to train a predictive oracle. Alternatively, heuristics have been used to

generate statistical models of application behaviour in order to predict future behaviour.

The existing prefetching mechanisms can work effectively for particular workloads. How-
ever, they do not exploit an important observation: we may beable to encode fetches using a re-
lational operation such as join. If so, then we can exploit this realization to predict the future ac-

cess pattern of the application, or evenrewrite the requests using relational equivalences to use a
more efficient join-based strategy.

9.2 Theoretical Underpinnings of Model-Based Prediction

Prefetching is based on a prediction of future items that arelikely to be needed. This prediction
is often based on heuristics (such as sequential prefetching), but it has also been implemented

based on probabilistic models of the client based on experience. This modeling is an example of
machine learning, characterized by Laird and Saul [122] as discrete sequence prediction.

Shannon [168] provided seminal results on probabilistic characterizations of sequences. His
work was revolutionary to the broad field of information theory [15, 33, 49, 60, 61, 63, 69, 97, 122,

123, 127, 128, 133, 134, 148–151, 159, 188–190, 193, 210–214]. This field is concerned with the
theoretical modeling of sequences of symbols. As such, it provides a theoretical underpinning for

predictions based on a prior sequence, such as that used by Scalpel for batch request patterns.

Data compression has been used as the basis for several prefetching schemes. The reason for

this is due to the fact that a good data compressor will form a good predictor of future symbols.
Research on practical compression schemes therefore provides an excellent basis for prefetching

algorithms that are able to operate efficiently in space and time and produce good predictions.
This approach leverages the large body of excellent work on model based compression [17, 25–

28, 41–43, 46, 71, 135, 138–140, 150, 178, 188, 189, 193, 195,196, 204, 214].

In particular, the PPM algorithm introduced by Cleary and Witten [43] is the closest to our

work. Moffat [135] provided a careful implementation of PPMgiving an efficient implementa-
tion that produced quite good compression. The PPM algorithm relies on a bounded length suf-

fix trie, choosing to use prediction contexts that are long enough to match special cases while
avoiding the zero-frequency problem. Cleary, Teahan and Witten [41, 42] extended the PPM al-

gorithm to PPM*, which stores unbounded length contexts. Larsson [124] showed how the algo-
rithm of Ukkonen [180] can be extended so that a sliding window of text is used. Bunton [28]

9.3 SUFFIX TRIES 213

showed how path compressed suffix tries can be extended to maintain counts used for probabil-

ity estimation: unfortunately, this introduced a worst case O(n2) time component.

The models designed for information theory and data compression are concerned with pro-
viding precise estimates of the probability distribution of the next symbol given a preceding se-

quence. The precision of this estimate is measured by entropy, and even small errors lead to inef-
ficiencies in the compression or coding results. In contrast, Scalpel does not need a precise prob-

ability estimate; instead, it merely needs to know if prefetching a future query is significantly
cheaper (at theα level). Further, data compression techniques for the zero-frequency problem
form an important area of research, for example resulting inseveral variants of the PPM algo-

rithm that implement different definitions ofescape probabilitiesto handle novel characters in
a state. This issue does not affect Scalpel to the same extentas it can choose merely to avoid

prefetching in such a situation.

The field of language inference also deals with forming models of strings [1, 2, 7, 12, 31, 32,
53, 59, 62, 74, 91, 92, 95, 125, 138–140, 146, 153–157, 171, 179, 203–206]. In general, the idea of

language inference is to build a model of a language from a setof examples. We are particularly
interested in the recognition of stochastic grammars, which give predictions of likely future sym-

bols. This recognition is commonly accomplished by building a representation of the sequence
provided during training, then using state merging to combine states where the behaviour is suf-
ficiently ‘similar’.

Carrasco and Oncina [30–32] described an algorithm call ALERGIA (and variants thereof)

based on a building a prefix tree structure from a training sequence, then using state merging
based on similarity measures. A configuration parameter,α, is used to control how different two

nodes must be to avoid merging. In the worst case, the algorithm runs inO(n3) time.

Young-Lai and Tompa [203, 206] observed that the ALERGIA algorithm has particular dif-
ficulty with nodes that have been observed few times. They noted that the merging criteria used

in ALERGIA is not well founded, and added another configuration parameterβ to control the
type-II error during merging.

Our confidence-level approach is related to the setting ofα andβ above. When Scalpel finds
there is not sufficient information to make a prefetching decision, however, it is able to consider

a more generalized context or (safely) decide to make no prefetching decision. The consequence
of type-II errors are therefore lessened in Scalpel’s environment.

9.3 Suffix Tries

The suffix trie data structure is a trie [73] built for all of the suffixes of a string. The suffix trie for

a string contains significant redundancy. Path compressionis a general approach for reducing the
size of a trie. It was first introduced by Morrison [136] as thePatricia treedata structure, and this

214 RELATED WORK

term is often used in the literature to describe path compressed tries in general. Path compression

can be used for suffix tries, and the resulting structure is called a suffix tree (although we feel
that path compressed suffix trie is a more reasonable name). It is perhaps surprising that a suffix

tree can be built for a string in linear time; McCreight [132]attributes this discovery to Weiner,
and McCreight improves on the algorithm presented by Weiner, saving about 25% in space. The

algorithms of Weiner and McCreight are very important in giving efficient construction algorithm
for an important structure that is pervasively useful in thestring processing field Gusfield [88].

However, these algorithms were considered to be overly complex, and they were not widely used.
Many typical uses of suffix tries consisted of using atomic suffix trees, or asymptotically more

expensive construction algorithms.

Ukkonen [180] presented a novel implementation of a linear algorithm to build a suffix tree

that is significantly simpler than the two previous approaches. The key observation used by Ukko-
nen is the use ofopen edges. We refer to this as the∞ trick in Section 5.2.3. This trick is funda-

mental to the simplification provided by Ukkonen. In fact, Giegerich and Kurtz [80] conjecture
that if Weiner had seen this trick, he would have implementedthe simpler algorithm in 1973.

Bunton [28], demonstrated how path compressed suffix tries can be used to predict the prob-

ability of future characters in the PPM* algorithm, and de Rooij [54] presented similar results. In
both cases, the maintenance of count fields on-line during construction of the suffix tree leads to a

worst-caseO(n2) time complexity. We avoid this problem in our approach by using end-of-trace
markers ($). In this way, the number of leaves below a node provides the needed count.

9.4 Processing Sequences of Queries

If we know a sequence of queries that are to likely to be submitted, we can consider a variety

of ways to efficiently produce the needed results. For batch request patterns, Scalpel generates a
rewritten query using outer join and outer union constructs. Section 9.4.1 describes related work

that can produce efficient results for this type of sequence of requests.

Scalpel also considers nested patterns of requests. When Scalpel detects what it believes to
be a distributed join implemented in the client application, it generates a combined query using

outer joins, outer unions, client merge join, and client hash join strategies. Other researchers have
considered the problem of how to efficiently process a sequence of queries that involves nesting.

9.4.1 Batch Request Patterns

Sellis [160] presented early results that considered optimizing a known sequence of queries to-

gether, instead of one query at a time. In this way, the optimizer is able to choose locally sub-
optimal access plans that, through sharing, give a globallyoptimal plan. Sellis and Ghosh [161]

9.4 PROCESSING SEQUENCES OF QUERIES 215

showed that this optimization problem is, in general, NP-hard. However, they suggested heuris-

tics that in general give results that significantly improveon the naive approach. The idea of
multi-query optimization has been hampered to an extent because in current systems, theDBMS

does not have a good idea of future requests that will be executed. The query sequence detec-
tion of Scalpel therefore provides a nice complement to multi-query optimization.

In some cases, multi-query optimization can be used becauseof the special structure of re-
quests generated by the client. Kraft et al. [111–113] foundthat some OLAP tools intentionally

generate a sequence of queries to answer a single user request. In part, this sequence is designed
to limit the complexity of individual requests to avoid overloading theDBMS optimizer. Kraft

et al. suggest coarse grained optimization, which uses heuristic rewrites to optimize this (known)
sequence of queries.

9.4.2 Nested Request Patterns

A number of researchers have studied how to effectively execute queries that contain various
forms of nesting [52, 64, 65, 77, 98, 104, 105, 162]. The approaches developed in that work are ef-

fective at choosing efficient evaluation plans for the correlated combined queries that we gener-
ate. However, the techniques are not directly applicable tothe problem we consider because the

nesting appears in the application, not the queries.

Florescu et al. [70, 197] translate web-pages defined in a declarative language including

queries. In this approach, the authors are able to detect thesource of binding parameters when a
nested query is invoked. A single nested query may be used in more than one context; for some

contexts, simplifications can be used to improve the performance of the nested query. A nested
query can be simplified if the analysis can detect that a tuplefrom the outer query will appear in

the results of the inner query. The authors term this rewritequery simplification under precondi-

tions. For example, a nested query may include a1 : 1 join that retrieves attributes already avail-
able from a prior query. In this case, we can eliminate the join, using a single-table query to re-

trieve the new values. If there are multiple contexts of execution for the inner query, we may
be able to perform the optimization in only some of these contexts. Further, the authors propose

modifying queries in order to reuse their results in future queries. They identify aconservative

approach which does no extra work but does include additional attributes not present in the origi-

nal query, and anoptimisticapproach which additionally performs outer joins which load results
needed by subsequent operations. The primary focus of this work was to avoid re-evaluating com-

mon expressions in order to improve the performance of generating dynamic web content. The
issues of fine-grained access is not specifically addressed.

Shanmugasundaram et al. [166] and Fernández, Morishima and Suciu [67] studied efficient
mechanisms to generate nested XML results from relational data sources, and this was studied

216 RELATED WORK

further by Krishnamurthy [115] This work is similar to our work on combining nested queries,

although it differs in that the structure of the nesting is known from the XML query (we infer this
structure during a training period). Further, the combinedresult set is used to encode an XML

result, while we decode the combined result set to generate the original nested relational results.

Shanmugasundaram et al. [163–167] considered efficient ways to translate XML queries into
queries over a relational data model. In addition to stored procedure and correlated CLOB ap-

proaches (which do not appear to apply well to our problem), they considered outer union and
outer join strategies. They called the outer join strategies redundant relationsdue to the process-

ing and data redundancy introduced when unrelated childrenare combined with an outer query,
and they did not consider it further after initial results found it to perform poorly.

Fernández, Tan and Suciu [68] introduced SilkRoute, a system that maps relational data to

XML views. Initially, SilkRoute used a scheme similar to ourclient merge join. Individual queries
were ordered and merged at the client. Fernández, Morishima and Suciu [67] extended this ap-
proach to also consider the outer union approach suggested by Shanmugasundaram et al. [165].

They also rehabilitated the outer join approach, using it when the inner query returns at most one
row (therefore not introducing redundancy). They proposedoptimization based on a view-tree

structure to decided on which strategy would be used for eachportion of the nested sequence. Our
work extends theview tree reductionof Fernández, Morishima and Suciu, a heuristic that com-

bines all at-most-one-row queries with their outer query using joins. In our work, we choose the
queries to join together on the basis of a cost model that accounts for the effects of local predi-

cates that can appear in client application.

The combined queries generated by Shanmugasundaram et al. and Fernández, Morishima and
Suciu [67] moved correlated predicates from inner queries to the ON-condition of an outer join

(an example is shown if Figure 3.14). In contrast, we use aLATERAL derived table construct. The
LATERAL derived table is more general, allowing the inner query to use correlations in any loca-
tion.

Other researchers have considered how query results can be fetched before the query is actu-

ally requested. Sapia [158] proposes the PROMISE system, which uses a model of user behav-
iour to predict future OLAP queries that might be submitted.Prediction is made based on a pre-

diction profile that abstracts details of queries to detect higher level patterns. The prediction pro-
file can either be defined by domain experts, or possibly from an analysis of query logs (although

this process is not described). The predictions are used to aid in caching decisions and to prefetch
data into a cache.

The research on non-first-normal-form (NF 2) query languages in general [98] and XML in

particular is pertinent when we consider retrieving the encoded, nested result set that is used by
our approach. Instead of encoding the nested result in an outer union or outer join, the result

9.4 PROCESSING SEQUENCES OF QUERIES 217

could be directly expressed in a nested relational language. However, this research does not di-

rectly help our particular problem due to the presence of local predicates. If these predicates are
highly selective, then it is better to submit nested queriesthan a single decorrelated query.

10 Conclusions and Future Work

Latency is increasingly becoming a significant factor in database applications. Communication
latency lags significantly behind advances in individual process components, increasing the rel-
ative importance of latency. Further, adaptation of existing database applications to new high-

latency environments such as wireless access and WANs leadsto higher absolute latency.

Latency is increasingly becoming an important factor for database applications, and this prob-
lem is exacerbated by fine grained access. We have studied a number of applications, and we

present results for two of these in Chapter 8. All of the applications we studied had some se-
quences of related queries, which we call batch request patterns. For typical configurations, many

of these queries are quite cheap with respect to the per-request latencyU0, even for low-latency
local shared memory configurations. In addition to the prevalent batch request patterns that we

observed, we also found that there are examples of nested request patterns in existing database
applications. These nested patterns do not occur as frequently, but they can account for signifi-

cant latency due to the number of inner requests that are submitted.

While it is possible in some cases to rewrite applications manually to avoid generating these
fine-grained access patterns, such rewrites are complicated by a number of factors. One of these

is the fact that a nested approach is in fact optimal for some configurations of the application pro-
gram (for example, see Figure 3.30). In the cases where such optimal configurations are expected
to occur in the majority of client deployments, it is prudentto choose the nested implementation,

which is in any case easier to implement. Further, good software engineering practices may ar-
gue against the removal of nesting, as such removal might lead to the destruction of important

properties such as code encapsulation.

Instead of manual tuning, we have presented a system, Scalpel, which automatically detects
fine-grained nesting and batch request patterns. Scalpel uses a deployment-time training period

that monitors a request stream to automatically detect predictable patterns of queries. Further,
Scalpel maintains correlation information that is needed to predict the values that will be used for

future requests.

After the training period, a cost-based optimizer is used tochoose a prefetch strategy. Scalpel
leverages the query processing capabilities of theDBMS to generate a prefetch request that fetches

results for an original query and also for a list of predictedfuture queries. The relational process-
ing power is able to prefetch the results for requests that depend on the results of previous re-

219

220 CONCLUSIONS AND FUTURE WORK

quests, a capability that is not available to prefetching systems that do not consider request se-

mantics.

10.1 Contributions

We have presented techniques for recognizing nested request patterns. Even without prefetch-

ing, this recognition may prove useful to application developers, enabling them to identify ar-
eas for improving their application. Nested request patterns are recognized not only by the nested

structure of requests, but also by correlations between input parameters of the inner query and at-
tributes of the outer query.

We have developed four approaches to efficiently combine thenested request patterns that we
detect, based on the following: outer joins, outer unions, client hash joins, and client merge joins.

Our combined queries are implemented using theLATERAL construct (and its obvious exten-
sionLEFT OUTER LATERAL). In this way, the combined queries we generate closely match

the nesting structure that was implicitly present in the client application. In contrast with other ap-
proaches that are based on clever tricks such as moving correlated predicates into the ON condi-

tion of an outer join, our approach is general in that it supports correlation anywhere within the in-
ner query. While our approach does generate complex nested queries, this complexity merely ex-
poses the original complexity that was previously hidden inthe application code. In some cases,

theDBMS may be able to select a more efficient execution strategy for this request.

We showed how suffix tries can be used to find batch request patterns. Techniques such as
suffix tries have been used for prefetching in the past, but weextend these with the ability to track

correlations between input parameters and attributes of preceding requests.

We extended our suffix trie detection to path compressed suffix tries. In this way, we provided

a linear time algorithm that maintains a set of probabilistic predictions of future requests, com-
bined with a set of predicates that have always been true in the past. This algorithm is useful for

efficiently detecting batch request patterns. It may also prove useful in other situations where we
wish to efficiently learn a set of predicates that have alwaysbeen true given a variable-length con-

ditioning context.

We presented two techniques that can be used to prefetch the results of anticipated future

queries, based on outer joins and outer unions respectively. These techniques generate combined
queries that are efficiently executed by theDBMS and easily decoded to provide the original re-

sult sets.

Finally, we have presented experimental and case study evidence that the proposed techniques
are practical and useful for existing database applications.

10.2 FUTURE STUDY 221

10.2 Future Study

The work that we have presented has identified a number of areas that deserve further study.

Our original study of applications also identified data structure request patterns. In this pat-
tern, an ‘outer’ query is opened and its results are stored inan application data structure such as

a linked list; then, the ‘outer’ query is closed and an ‘inner’ request is submitted for the rows in
the data structure. The order of execution of the inner querydoes not necessarily match the origi-

nal order the rows were fetched in. These patterns are something of a combination of nesting and
batch request patterns. It remains an open question whetherthese patterns can be efficiently de-

tected. When found, they can be executed using techniques similar to those used for nested re-
quest patterns.

Another topic for future reflection is our choice of using an explicit training period. In some

respects, it would be better to have a dynamic implementation that continually adapts to chang-
ing configuration parameters. We chose to explicitly separate the training period for simplicity of

presentation, but we might consider combining the trainingand run-time phase. In such a com-
bined situation, we would be much more concerned about training costs. In particular, suffix tries

used for batch pattern detection would need to be implemented efficiently in a smaller amount of
memory.

The idea of integrating Scalpel into a system that provides semantic caching is appealing.

Scalpel could be used not only for prefetching anticipated requests, but also for providing sug-
gestions to a cache manager of the expected utility of each cached item. Such an integration

would also provide a stronger basis for the issues of data consistency that are faced by Scalpel. At
present, Scalpel provides results that are correct and consistent provided that a full ACIDDBMS is
used (or at least snapshot isolation). However, this consistency is achieved at the expense of fore-

going prefetching opportunities where it is not provably safe. For example, Scalpel does not cur-
rently prefetch across transaction boundaries, although we have identified applications where that

would be useful.

Finally, one topic that should be studied more thoroughly inthe future is how a database ap-
plication should be divided between a client process andDBMS. The relational model provides

only slight guidance with this: the limitations of SQL pose certain limits on what can be exe-
cuted in the server process. There is nothing, however, limiting what operations are performed

in the client application. As we have seen, current client applications implement the equivalent
of distributed joins and unions of results. It is clear that aclient application can implement all

of the relational operations, merely using aDBMS as a table store. We can consider automated
tools that detect specific logical operations that the application performs, such as our recogni-

tion of nested and batch request patterns. Alternatively, we could consider ‘cutting up’ an appli-
cation so that portions with fine-grained access to the data stored in theDBMS are executed in

222 CONCLUSIONS AND FUTURE WORK

the server process, while the remained execute in the clientprocess. In fact, this concept of cut-

ting up an application was the source of the name of our system: Scalpel.

A Confidence Intervals

It is perhaps surprising to non-statisticians that there isactive study on the topic of forming a con-

fidence interval for a binomial parameterp. The approach described in most introductory text-
books is based on the asymptotic normality given by the central limit theorem. LetX be the num-
ber of times a test is true out ofn trials. Then,̂p = X/n is an estimate ofp. The intervalCIS de-

fined in Equation A.1 is a100(1−α)% confidence interval forp, wherezc is the(1− c)th quan-
tile of the standard normal distribution.

CIS = p̂± zα/2

√

p̂(1− p̂) (A.1)

This definition of a confidence interval is one of the oldest; for example, Agresti and Coull [6]
attribute its use to Laplace in 1812. The intervalCIS is called theWald confidence intervalfor

p because it is based on inverting the Wald hypothesis test forp. The intervalCIS is the set of
valuesp0 havingP value exceeding significance levelα in testing the null hypothesisH0 : p =

p0 against the alternate hypothesisHa : p 6= p0 using the following test statistic:

z =
p̂− p0

√

(p̂(1− p̂)/n
(A.2)

The pointsp0 in the interval are those for which we cannot reject the null hypothesis (at theα

level of significance).

The confidence intervalCIS is simple to compute and easy to motivate, which is why it is tra-

ditionally used in introductory texts. However, as noted byBrown, Cai and DasGupta [24], the
standard interval tends to generate an interval that provides coverage probability rather lower than

the nominal significance level; this is partly due to the approximation of the central limit theo-
rem being somewhat weak with lown, but it is also a result of the discrete nature of the measured

quantities. Better introductory books do provide some guidance that the Wald interval should only
be used in some circumstances. For example, some suggest only using it if n > 30, others also

caution thatnp andn(1− p) should not be close to zero. In fact, Brown, Cai and DasGupta [24]
show that none of these cautions adequately captures the erratic coverage properties of the stan-

dard interval. Even with largen andp relatively far from the end-points, the standard confidence
interval can give results that fall seriously short of the stated significance level.

223

224 CONFIDENCE INTERVALS

When guidelines for using the standard interval are not met,advanced textbooks refer the

reader to an interval defined by Clopper and Pearson [44]. This interval is typically referred to as
the ‘exact’ interval, and it has often been considered the gold standard of confidence intervals for

binomial parameters. The Clopper-Pearson interval has endpoints that are solutions to the follow-
ing:

n
∑

k=X

(

n

k

)

pk
0(1− p0)

n−k =
α

2
(A.3)

X
∑

k=0

(

n

k

)

pk
0(1− p0)

n−k =
α

2
(A.4)

(except that the lower bound is 0 whenX = 0 and the upper bound is 1 whenX = n). This inter-
val is formed by inverting the equal-tailed binomial hypothesis test ofH0. The Clopper-Pearson

interval is guaranteed to have coverage ofat least1 − α, which is why it is often considered to
be better than the standard interval.

This assertion that the Clopper-Pearson interval is betterthan the standard is based on the
assumption that it is better to be conservative, having an interval definition that never falls below

the nominal coverage of the parameterα. However, this ‘exact’ interval achieves this guarantee
by consistently generating intervals that are wider than necessary, giving a coverage larger than

the nominal level. If the definition of a gold standard is thatit always give at least the nominal
coverage, we could as easily choose the unit interval[0, 1].

This complaint has led to recent calls for using a confidence interval that generally provide
coverage close to the nominal significance level. Agresti and Coull [6] suggest using an interval

that they believe was first proposed by Wilson [194]. This interval is based on the score test for
parameterp instead of the Wald test; the score test uses the log likelihood at the null hypothesis

level of the parameterp rather than the maximum likelihood estimatep̂ used by the Wald tests.

CIW =
X + z2/2

n + z2
± z

√
n

n + z2

√

p̂(1− p̂ +
z2

4n
(A.5)

The Wilson interval is shown in Equation A.5, where we letz = zα/2. It corrects two prob-
lems with the standard interval. First, the standard interval is centered about the ‘wrong’ point,p̂.

We can see that the Wilson interval is centered about the following weighted average:

p̂

(

n

n + z2

)

+
1

2

(

z2

n + z2

)

(A.6)

The mid-point falls between̂p and 1/2, with the movement toward1/2 diminishing asn in-
creases. This choice is a better mid-point for the confidenceinterval due to the skewed nature of

225

the binomial distribution. The second problem that the Wilson interval corrects is that the stan-

dard interval is in fact too wide in general. The low coverageis caused by the wrong center. For
these reasons, the Wilson interval appears certainly superior to the standard Wald interval. It can

be considered an improvement on the Clopper-Pearson interval if we are willing to accept some
cases where coverage falls below the nominal level.

The Wilson interval does have shortcomings of its own. First, it is relatively complex to mo-
tivate and present. More importantly, there is a small region [0, r) where the coverage of the Wil-

son interval drops seriously below the nominal level. A solution to both of these problems is pro-
vided by Agresti and Coull [6]. Agresti and Coull make the following suggestion. Let̃n = n+z2

andX̃ = X + z2/2. Let p̃ = X̃/ñ. Equation A.7 shows the confidence interval suggested by
Agresti and Coull.

CIAC = p̃± z

√

p̃(1− p̃)

n
(A.7)

In the case that we are choosing a 95% confidence interval,z = zα/2 = 1.96 ≈ 2. This gives
X̃ = X + 2 and ñ = n + 4, leading Agresti and Coull to call it the “add two successes and

two failures” approach. The Agresti-Coull interval has thefamiliar form of the standard Wald in-
terval, making it simpler to present. Further, it improves on the Wilson interval in that it avoids

the region of seriously low coverage experienced by the Wilson interval. However, this improve-
ment comes at the cost of being slightly conservative, with intervals that are slightly wider than

the Wilson interval. We choose to use the Agresti-Coull interval due to its simplicity and the im-
provements in regions ofp near 0 and 1.

In summary, the Clopper-Pearson confidence interval has traditionally been considered to be
the gold standard (usually called the ‘exact’ interval) because it always provides intervals with

coverage that isat least the nominal level, and usually more. This interval has not been tradi-
tionally popular because of the difficulty of computing the solutions to the endpoint equations.
Instead, the Wald interval is typically suggested by statistics text books (with varying levels of

guidance as to when it is appropriate). The Wald interval is based on a hypothesis test that uses
the normal approximation with the sample standard deviation. This approximation has disturbing

tendencies to produce erratic intervals that can fall alarmingly below the nominal coverage level,
even with reasonably largen andp relatively far from 0 and 1. The problem is that the Wald in-

terval is centered about the ‘wrong’ point, namely the maximum likelihood estimatêp = X/n.
The Wilson interval corrects this centering problem by using the score hypothesis test instead of

the Wald test. The Wilson interval is superior in all ways to the Wald interval, and it is superior
to the Clopper Pearson test if we believe it is better to be generally close to the nominal cover-

age while occasionally falling below this nominal level. Weuse the Agresti-Coull interval, which
is centered about the same point as the Wilson interval, but using a width that is generally slightly

226 CONFIDENCE INTERVALS

wider. This definition avoids small regions near 0 and 1 that cause the Wilson interval to fall be-

low the nominal level. Further, this definition allows for a simple presentation and motivation.

Bibliography

[1] Naoki Abe and Manfred K. Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. InProceedings of the third annual workshop on

Computational learning theory, pages 52–66. Morgan Kaufmann Publishers Inc., 1990.

[2] Naoki Abe and Manfred K. Warmuth. On the computational complexity of approximating

distributions by probabilistic automata.Machine Learning, 9(2-3):205–260, 1992.

[3] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Prefetching from broadcast
disks. InICDE ’96: Proceedings of the Twelfth International Conference on Data Engi-

neering, pages 276–285. IEEE Computer Society, 1996.

[4] Atul Adya. Weak Consistency: a Generalized Theory and Optimistic Implementations for

Distributed Transactions. PhD thesis, Massachusetts Institute of Technology, March1999.

[5] Atul Adya, Barbara Liskov, and Patrick O’Neil. Generalized isolation level definitions. In
Proceedings of the IEEE International Conference on Data Engineering, March 2000.

[6] Alan Agresti and Brent A. Coull. Approximate is better than exact for interval estimation
of binomial proportions.The American Statistician, 52(2):119–126, May 1998.

[7] Ahonen Ahonen.Generating Grammars for Structured Documents Using Grammatical

Inference Methods. PhD thesis, University of Helsinki, Finland, 1996.

[8] Sedat Akyürek and Kenneth Salem. Adaptive block rearrangement.ACM Transaction on

Computing Systems, 13(2):89–121, 1995.

[9] Sedat Akyürek and Kenneth Salem. Adaptive block rearrangement under Unix.Software–

Practice and Experience, 27(1):1–23, 1997.

[10] Ahmed Amer, Darrell D.E. Long, Jehan-François Pâris, and Randal C. Burns. File ac-
cess prediction with adjustable accuracy. InProceedings of the 2002 International Perfor-

mance, Computing and Communication Conference (IPCCC). IEEE, 2002.

[11] Mostafa H. Ammar. Response time in a teletext system–anindividual user’s perspective.
IEEE Transactions on Communications, COM-35(11), November 1987.

227

228 BIBLIOGRAPHY

[12] Dana Angluin and Miklós Csürös. Learning Markov chains with variable memory length

from noisy output. InProceedings of the tenth annual conference on Computational learn-

ing theory, pages 298–308. ACM Press, 1997.

[13] ANSI. Information Systems Database Language SQL, September 1999. ISO/IEC 9075-
1:1999.

[14] Gretta E. Bartels, Anna R. Karlin, Darrell Anderson, Jeffrey S. Chase, Henry Levy, and
Geoffrey Voelker. Potentials and limitations of fault-based Markov prefetching for virtual

memory pages. InSIGMETRICS ’99: Proceedings of the 1999 ACM SIGMETRICS inter-

national conference on Measurement and modeling of computer systems, pages 206–207.

ACM Press, 1999.

[15] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order Markov
models.Journal of Artificial Intelligence Research, 22:385–421, 2004.

[16] Timothy C. Bell, John G. Cleary, and Ian H. Witten.Text Compression. Prentice Hall,
1990.

[17] Timothy C. Bell, Ian H. Witten, and John G. Cleary. Modeling for text compression.ACM

Computing Surveys, 21(4), December 1989.

[18] Hal Berenson, Philip A. Bernstein, Jim N. Gray, Jim Melton, Patrick O’Neil, and Eliza-
beth J. O’Neil. A critique of ANSI SQL isolation levels. InProceedings of the 1995 ACM

SIGMOD International Conference on Management of Data, pages 1–10. ACM Press,
May 1995.

[19] Philip A. Bernstein, Shankar Pal, and David Shutt. Context-based prefetch for implement-
ing objects on relations. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,
Stanley B. Zdonik, and Michael L. Brodie, editors,VLDB’99, Proceedings of 25th Inter-

national Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scot-

land, UK, pages 327–338. Morgan Kaufmann, 1999.

[20] A. Soydan Bilgin, Rada Y. Chirkova, Timo J. Salo, and Munindar P. Singh. Deriving ef-
ficient SQL sequences via read-aheads. InData Warehousing and Knowledge Discov-

ery: 6th International Conference, DaWaK, volume 3181/2004, pages 299–308. Springer-
Verlag, September 2004.

[21] Ivan T. Bowman. Architecture recovery for object-oriented systems. Master’s thesis, Uni-
versity of Waterloo, 1999.

BIBLIOGRAPHY 229

[22] Ivan T. Bowman and Kenneth Salem. Optimization of querystreams using semantic

prefetching. InProc. ACM SIGMOD International Conference on Management ofData

(SIGMOD’04), pages 179–190, 2004.

[23] Karl S. Brandt. Using multiple experts to perform file prediction. Master’s thesis, Univer-

sity of California Santa Cruz, June 2004.

[24] Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval estimation for a bino-

mial proportion.Statistical Science, 16(2):101–133, 2001.

[25] Suzanne Bunton. A characterization of the dynamic Markov compression FSM with finite
conditioning contexts. InData Compression Conference (DCC ’95), March 1994.

[26] Suzanne Bunton.On-Line Stochastic Processes in Data Compression. PhD thesis, Uni-

versity of Washington, 1996.

[27] Suzanne Bunton. An executable taxonomy of on-line modeling algorithms. Technical Re-
port UW-CSE-97-02-05, University of Washington, 1997.

[28] Suzanne Bunton. Semantically motivated improvementsfor PPM variants.The Computer

Journal, 40(2/3), 1997.

[29] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated prefetching

and caching strategies. InSIGMETRICS ’95/PERFORMANCE ’95: Proceedings of the

1995 ACM SIGMETRICS joint international conference on Measurement and modeling of

computer systems, pages 188–197. ACM Press, 1995.

[30] Rafael C. Carrasco. Incremental construction and maintenance of minimal finite-state au-
tomata.Computational Linguistics, 28(2):207–216, 2002.

[31] Rafael C. Carrasco and Jose Oncina. Learning stochastic regular grammars by means of a

state merging method. InInternational Conference on Grammar Inference, 1994.

[32] Rafael C. Carrasco and Jose Oncina. Learning deterministic regular grammars from sto-

chastic samples in polynomial time.RAIRO (Theoretical Informatics and Applications),
33(1):1–20, 1999.

[33] Nicolo Cesa-Bianchi and Gabor Lugosi. On sequential prediction of individual sequences

relative to a set of experts. InCOLT’ 98: Proceedings of the eleventh annual conference

on Computational learning theory, pages 1–11. ACM Press, 1998.

230 BIBLIOGRAPHY

[34] Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen, Jim N. Gray, W. Frank

King III, Bruce G. Lindsay, Raymond A. Lorie, James W. Mehl, Thomas G. Price, Gi-
anfranco R. Putzolu, Patricia G. Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.

Traiger, Bradford W. Wade, and Robert A. Yost. A history and evaluation of system R.
CACM, 24(10):632–646, 1981.

[35] Fay Chang and Garth A. Gibson. Automatic I/O hint generation through speculative exe-

cution. InThird Symposium on Operating Systems Design and Implementation, February
1999.

[36] Surajit Chaudhuri, Prasanna Ganesan, and Vivek Narasayya. Primitives for workload sum-

marization and implications for SQL. InProceedings of the 29th VLDB Conference, 2003.

[37] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architecture: To-

wards a self-tuning RISC-style database system. InProceedings of the 26th International

Conf. on Very Large Databases, pages 1–10, Cairo, Egypt, September 2000.

[38] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons,and Todd C. Mowry. Improving

hash join performance through prefetching. InProceedings of the IEEE International Con-

ference on Data Engineering, March 2004.

[39] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving index performance

through prefetching. InProceedings of the 2001 ACM SIGMOD International Conference

on Management of Data, May 2001.

[40] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and GaryValentin. Fractal prefetch-

ing B+-trees: Optimizing both cache and disk performance. In SIGMOD ’02: Proceed-

ings of the 2002 ACM SIGMOD international conference on Management of data, pages
157–168. ACM Press, 2002.

[41] John G. Cleary and W. J. Teahan. Unbounded length contexts for PPM. The Computer

Journal, 40(2/3), 1997.

[42] John G. Cleary, W. J. Teahan, and Ian H. Witten. Unbounded length contexts for PPM. In
Data Compression Conference, pages 52–61, 1995.

[43] John G. Cleary and Ian H. Witten. Data compression usingadaptive coding and partial

string matching.IEEE Transactions on Communications, COM-32(4), April 1984.

[44] C.J. Clopper and E.S. Pearson. The use of confidence or fiducial limits illustrated in the
case of the binomial.Biometrika, 26(4):404–413, December 1934.

BIBLIOGRAPHY 231

[45] E.F. Codd. A relational model of data for large shared data banks.Communications of the

ACM, 13(6):377–387, 1970.

[46] Gordon V. Cormack and R. Nigel Horspool. Data compression using dynamic Markov
modelling. Computer Journal, 30(6):541–550, 1987.

[47] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. MIT Press, 1990.

[48] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical prefetching via data
compression. In Peter Buneman and Sushil Jajodia, editors,Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data, Washington, D.C., May 26-

28, 1993, pages 257–266. ACM Press, 1993.

[49] A.S. Davis. Markov chains as random input automata.The American Mathematical

Monthly, 68:264–267, March 1961.

[50] Brian D. Davison. Learning web request patterns. In A. Poulovassilis and M. Levene,
editors,Web Dynamics: Adapting to Change in Content, Size, Topologyand Use, pages

435–460. Springer, 2004.

[51] Mark Stuart Day.Client Cache Management in a Distributed Object Database. PhD the-
sis, MIT, 1995.

[52] Umeshwar Dayal. Of nests and trees: A unified approach toprocessing queries that con-
tain nested subqueries, aggregates, and quantifiers. In Peter M. Stocker, William Kent,

and Peter Hammersley, editors,VLDB’87, Proceedings of 13th International Conference

on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages 197–208. Mor-

gan Kaufmann, 1987.

[53] Colin de la Higuera and Franck Thollard. Identificationin the limit with probability one

of stochastic deterministic finite automata. InICGI-2000 : 5th International Colloquium

on Grammatical Inference, Lisbon, September 2000.

[54] Steven de Rooij. Methods of statistical data compression. Master’s thesis, University of
Amsterdam / Institute for Logic, Language, and Computation, September 2003.

[55] Peter J. Denning. The working set model for program behavior. In SOSP ’67: Proceed-

ings of the first ACM symposium on Operating System Principles, pages 15.1–15.12. ACM

Press, 1967.

[56] Amol Deshpande. Selective Markov models for predicting web-page accesses.ACM

Trans. Inter. Tech., 4(2):163–184, 2004.

232 BIBLIOGRAPHY

[57] Jochen Doppelhammer, Thomas Hoppler, Alfons Kemper, and Donald Kossmann. Data-

base performance in the real world: TPC-D and SAP/R-3. InProc. ACM SIGMOD Con-

ference, pages 123–134, 1997.

[58] Stephane Drapeau, Claudia Roncancio, and Edgard Benitez Guerrero. Generating associ-

ation rules for prefetching. InICDCS Workshop of Knowledge Discovery and Data Min-

ing in the World-Wide Web, pages F15–F22, 2000.

[59] Pierre Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference?

In Proceedings of the Second International Colloquium on Grammatical Inference and Ap-

plications, pages 25–37. Springer-Verlag, 1994.

[60] Yariv Ephraim and Neri Merhav. Hidden Markov processes. IEEE Transactions on Infor-

mation Theory, 48(6):1518–1569, June 2002.

[61] Eleazar Eskin.Sparse Sequence Modeling with Applications to Computational Biology

and Intrusion Detection. PhD thesis, Columbia University, 2002.

[62] Yann Esposito, Aurelien Lemay, Francois Denis, and Pierre Dupont. Learning probabilis-
tic residual finite state automata. In Pieter W. Adriaans, Henning Fernau, and Menno van

Zaanen, editors,Grammatical Inference: Algorithms and Applications, 6th International

Colloquium: ICGI 2002, Amsterdam, The Netherlands, September 23-25, 2002, Proceed-

ings, volume 2484 ofLecture Notes in Computer Science. Springer, 2002.

[63] Meir Feder, Neri Merhav, and Michael Gutman. Universalprediction of individual se-
quences.IEEE Transactions on Information Theory, 38:1258–1270, July 1992.

[64] Leonidas Fegaras. Query unnesting in object-orienteddatabases. In Laura M. Haas and
Ashutosh Tiwary, editors,SIGMOD 1998, Proceedings ACM SIGMOD International Con-

ference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 49–60.
ACM Press, 1998.

[65] Leonidas Fegaras and David Maier. Optimizing object queries using an effective calculus.

ACM Transactions on Database Systems, 25(4):457–516, 2000.

[66] R. J. Feiertag and E. I. Organick. The multics input/output system. InSOSP ’71: Proceed-

ings of the third ACM symposium on Operating systems principles, pages 35–41. ACM

Press, 1971.

[67] Mary F. Fernández, Atsuyuki Morishima, and Dan Suciu.Efficient evaluation of XML
middle-ware queries. InProc. ACM SIGMOD Conference, 2001.

BIBLIOGRAPHY 233

[68] Mary F. Fernández, Wang-Chiew Tan, and Dan Suciu. SilkRoute: trading between rela-

tions and XML.Computer Networks, 33(1–6):723–745, 2000.

[69] Lorenzo Finesso.Consistent Estimation of the Order for Markov and Hidden Markov

Chains. PhD thesis, University of Maryland, 1991.

[70] Daniela Florescu, Alon Y. Levy, Dan Suciu, and Khaled Yagoub. Optimization of run-time
management of data intensive web-sites. In Malcolm P. Atkinson, Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors,VLDB’99, Proceed-

ings of 25th International Conference on Very Large Data Bases, September 7-10, 1999,

Edinburgh, Scotland, UK, pages 627–638. Morgan Kaufmann, 1999.

[71] Pasi Franti and Timo Hatakka. Context model automata for text compression.The Com-

puter Journal, 41(7):474–485, 1998.

[72] Gabbay Freddy and Avi Mendelson. Using value prediction to increase the power of specu-
lative execution hardware.ACM Transactions on Computer Systems, 16(3):234–270, 1998.

[73] Edward Fredkin. Trie memory.Communications of the ACM, 3(9):490–499, 1968.

[74] Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and Linda
Sellie. Efficient learning of typical finite automata from random walks. InProceedings of

the twenty-fifth annual ACM symposium on Theory of computing, pages 315–324. ACM
Press, 1993.

[75] César Galindo-Legaria. Parameterized queries and nesting equivalencies. Technical Re-
port MSR-TR-2000-31, Microsoft Corporation, April 2000.

[76] César Galindo-Legaria and Milind Joshi. Orthogonal optimization of subqueries and ag-
gregation. InSIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international confer-

ence on Management of data, pages 571–581, New York, NY, USA, 2001. ACM Press.

[77] Richard A. Ganski and Harry K. T. Wong. Optimization of nested SQL queries revisited.

In Proceedings of ACM SIGMOD, 1987.

[78] Carsten Andreas Gerlhof and Alfons Kemper. A multi-threaded architecture for prefetch-

ing in object bases. In Matthias Jarke, Janis A. Bubenko Jr.,and Keith G. Jeffery, editors,
Advances in Database Technology - EDBT’94. 4th International Conference on Extend-

ing Database Technology, Cambridge, United Kingdom, March28-31, 1994, Proceedings,
volume 779 ofLecture Notes in Computer Science, pages 351–364. Springer, 1994.

234 BIBLIOGRAPHY

[79] Carsten Andreas Gerlhof and Alfons Kemper. Prefetch support relations in object bases.

In Malcolm P. Atkinson, David Maier, and Véronique Benzaken, editors,Persistent Object

Systems, Proceedings of the Sixth International Workshop on Persistent Object Systems,

Tarascon, Provence, France, 5-9 September 1994, Workshops in Computing, pages 115–
126. Springer and British Computer Society, 1994.

[80] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and Weiner: A unifying
view of linear-time suffix tree construction.Algorithmica, 19(3):331–353, 1997.

[81] Goetz Graefe. Query evaluation techniques in large databases.ACM Computing Surveys,
25(2), June 1993.

[82] Jim N. Gray. Interview: A conversation with Jim Gray.Queue, 1(4):8–17, 2003.

[83] Jim N. Gray, Pat Helland, Patrick O’Neil, and Dennis Sasha. The dangers of replication
and a solution. In H. V. Jagadish and Inderpal Singh Mumick, editors,Proceedings of the

1996 ACM SIGMOD International Conference on Management of Data, pages 173–182.
ACM Press, June 1996.

[84] Jim N. Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Granu-

larity of locks and degrees of consistency in a shared data base, pages 175–193. Morgan

Kaufmann Publishers Inc., 1998. Reprinted from Modeling inData Base Management
Systems. Amsterdam: Elsevier North-Holland, 1976.

[85] James Griffioen and Randy Appleton. Reducing file systemlatency using a predictive
approach. InProceedings of the USENIX 1994 Technical Conference, pages 197–208.

USENIX Association, January 1994.

[86] Knut Stener Grimsrud, James K. Archibald, and Brent E. Nelson. Multiple prefetch adap-

tive disk caching.IEEE Transactions on Knowledge and Data Engineering, 5(1):88–103,
1993.

[87] Hongfei Guo, Per-̊Ake Larson, Raghu Ramakrishnan, and Jonathan Goldstein. Relaxed
currency and consistency: How to say “good enough” in SQL. InSIGMOD ’04: Proceed-

ings of the 2004 ACM SIGMOD international conference on Management of data, pages
815–826. ACM Press, 2004.

[88] Dan Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press, 1997.

[89] Wook-Shin Han, Yang-Sae Moon, and Kyu-Young Whang. PrefetchGuide: capturing nav-

igational access patterns for prefetching in client/server object-oriented/object-relational
DBMSs. Information Sciences, 152(1):47–61, 2003.

BIBLIOGRAPHY 235

[90] Wook-Shin Han, Yang-Sae Moon, Kyu-Young Whang, and Il-Yeol Song. Prefetching

based on type-level access pattern in object-relational DBMSs. InProceedings of the 17th

International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany.

IEEE Computer Society, 2001.

[91] Philip Hingston. Inference of regular languages usingmodel simplicity. InProceedings

of the 24th Australasian conference on Computer science, pages 69–76. IEEE Computer

Society, 2001.

[92] Philip Hingston. Using finite state automata for sequence mining. InProceedings of

the twenty-fifth Australasian conference on Computer science, pages 105–110. Australian
Computer Society, Inc., 2002.

[93] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

[94] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. I/Oreference behavior of pro-
duction database workloads and the TPC benchmarks—an analysis at the logical level.

ACM Transactions on Database Systems, 26(1):96–143, 2001.

[95] Jianying Hu, William Turin, and Michael K. Brown. Language modeling with stochastic
automata. In1996 International Conference on Speech and Language Processing, October

1996.

[96] David Hume.An Enquiry Concerning Human Understanding. 1748.

[97] Phillipe Jacquet, Wojciech Szpankowski, and Izydor Apostol. A universal predictor based

on pattern matching.IEEE Transactions on Information Theory, 48(6), June 2002.

[98] G. Jaeschke and Hans-Jörg Schek. Remarks on the algebra of non first normal form rela-
tions. InProceedings of the ACM Symposium on Principles of Database Systems, March

29-31, 1982, Los Angeles, California, pages 124–138. ACM, 1982.

[99] Wei Jin, Xiabai Sun, and Jeffrey S. Chase. FastSlim: Prefetch-safe trace reduction for I/O
system simulation.ACM Transactions on Modeling and Computer Simulation, 11(2):125–

160, 2001.

[100] Immanuel Kant.The Critique of Pure Reason. 1781.

[101] John P. Kearns and Samuel DeFazio. Diversity in database reference behavior. InSIG-

METRICS ’89: Proceedings of the 1989 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pages 11–19. ACM Press, 1989.

236 BIBLIOGRAPHY

[102] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and

Linda Sellie. On the learnability of discrete distributions. In Proceedings of the twenty-

sixth annual ACM symposium on Theory of computing, pages 273–282. ACM Press, 1994.

[103] Tom Keller, Goetz Graefe, and David Maier. Efficient assembly of complex objects. In
James Clifford and Roger King, editors,Proceedings of the 1991 ACM SIGMOD Inter-

national Conference on Management of Data, Denver, Colorado, May 29-31, 1991, pages
148–157. ACM Press, 1991.

[104] Werner Kiessling. On semantic reefs and efficient processing of correlation queries with
aggregates. In A. Pirotte and Y. Vassiliou, editors,Proceedings of the Eleventh Interna-

tional Conference on Very Large Databases, pages 241–249, Stockholm, Sweden, August
1985.

[105] Won Kim. On optimizing an SQL-like nested query.ACM Transactions on Database Sys-

tems, 9(3), 1982.

[106] Nils Knafla. Analysing object relationships to predict page access for prefetching. In

Ronald Morrison, Mick J. Jordan, and Malcolm P. Atkinson, editors, Advances in Persis-

tent Object Systems, Proceedings of the 8th International Workshop on Persistent Object

Systems (POS8) and Proceedings of the 3rd International Workshop on Persistence and

Java (PJW3), Tiburon, California, 1998, pages 160–170. Morgan-Kaufmann, 1998.

[107] Nils Knafla.Prefetching Techniques for Client/Server, Object-Oriented Database Systems.
PhD thesis, Division of Informatics, University of Edinburgh, 1999.

[108] Donald Kossmann, Laura M. Haas, and Ioana Ursu. Loading a cache with query results.
In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
Michael L. Brodie, editors,VLDB’99, Proceedings of 25th International Conference on

Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 351–362.
Morgan Kaufmann, 1999.

[109] David F. Kotz. Prefetching and Caching Techniques in File Systems for MIMDMulti-

processors. PhD thesis, Duke University, 1991.

[110] David F. Kotz and Carla Schlatter Ellis. Practical prefetching techniques for multiproces-
sor file systems.Distributed and Parallel Databases, 1(1):33–51, 1993.

[111] Tobias Kraft. Rewrite-Strategien für generierte Anfragesequenzen im Online Analytical

Processing. Diploma thesis, Universität Stuttgart, 2002.

BIBLIOGRAPHY 237

[112] Tobias Kraft and Holger Schwarz. Chicago: A test and evaluation environment for coarse-

grained optimization. InProceedings of the 30th VLDB Conference, pages 1345–1348,
August 2004.

[113] Tobias Kraft, Holger Schwarz, Ralf Rantzau, and Bernhard Mitschang. Coarse-grained

optimization–techniques for rewriting SQL statement sequences. In Johann Christoph
Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger, and

Andreas Heuer, editors,Proceedings of 29th International Conference on Very LargeData

Bases (VLDB 2003). Morgan Kaufmann, September 2003.

[114] Achim Kraiss and Gerhard Weikum. Integrated documentcaching and prefetching in stor-

age hierarchies based on markov-chain predictions.VLDB Journal, 7(3):141–162, 1998.

[115] Rajasekar Krishnamurthy.XML-to-SQL Query Translation. PhD thesis, University of

Wisconsin–Madison, 2004.

[116] P. Krishnan.Online Prediction Algorithms for Databases and Operating Systems. PhD
thesis, Brown University, 1995.

[117] P. Krishnan and Jeffrey Scott Vitter. Optimal prediction for prefetching in the worst case.

SIAM Journal on Computing, 27(6):1617–1636, 1998. An extended abstract appears in
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington,

Vriginia, January 1994, pagees 392-401.

[118] Thomas M. Kroeger. Predicting file system actions fromreference patterns. Master’s the-
sis, University of California Santa Cruz, December 1996.

[119] Thomas M. Kroeger and Darrell D.E. Long. Design and implementation of predictive file
prefetching algorithm-usenix01. InProceedings of the 2001 USENIX Annual Technical

Conference, June 2001.

[120] Geoffrey Houston Kuenning.Seer–Predictive File Hoarding for Disconnected Mobile Op-

erations. PhD thesis, University of California, Los Angeles, 1997.

[121] Geoffrey Houston Kuenning, Wilkie Ma, Peter Reiher, and Gerald J. Popek. Simplifying

automated hoarding methods. InMSWiM ’02: Proceedings of the 5th ACM international

workshop on Modeling analysis and simulation of wireless and mobile systems, pages 15–

21. ACM Press, 2002.

[122] Philip Laird and Ronald Saul. Discrete sequence prediction and its applications.Machine

Learning, 15(1):43–68, 1994.

238 BIBLIOGRAPHY

[123] Glen G. Langdon, Jr. A note on the Ziv-Lempel model for compressing individual se-

quences.IEEE Transactions on Information Theory, IT-29, March 1983.

[124] N. Jesper Larsson. Extended application of suffix trees to data compression. In J. A. Storer
and M. Cohn, editors,ProceedingsData Compression Conference, pages 190–199, Snow-
bird, UT, 1996. IEEE Computer Society Press.

[125] Eric Lehman. Approximation Algorithms for Grammar-Based Data Compression. PhD

thesis, Massachusetts Institute of Technology, February 2002.

[126] Hui Lei and Dan Duchamp. An analytical approach to file prefetching. InUSENIX Con-

ference Proceedings, January 1997.

[127] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences.IEEE Transac-

tions on Information Theory, IT-22(11):75–81, 1976.

[128] Ronny Lempel and Shlomo Moran. Optimizing result prefetching in web search engines
with segmented indices.ACM Trans. Inter. Tech., 4(1):31–59, 2004.

[129] Barbara Liskov, Atul Adya, Miguel Castro, and QuintonZondervan. Safe and efficient
sharing of persistent objects in Thor. In H. V. Jagadish and Inderpal Singh Mumick, edi-

tors,Proceedings of the 1996 ACM SIGMOD International Conference on Management of

Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 318–329. ACM Press, 1996.

[130] Tara M. Madhyastha.Automatic Classification of Input/Output Access Patterns. PhD the-
sis, University of Illinois at Urbana-Champaign, 1997.

[131] Tara M. Madhyastha and Daniel A. Reed. Input/output access pattern classification using

hidden Markov models. InIOPADS ’97: Proceedings of the fifth workshop on I/O in par-

allel and distributed systems, pages 57–67. ACM Press, 1997.

[132] Edward M. McCreight. A space-economical suffix tree construction algorithm.Journal of

the ACM (JACM), 23(2):262–272, 1975.

[133] Neri Merhav and Meir Feder. Universal sequential learning and decision from individual
data sequences. InProceedings of the fifth annual workshop on Computational learning

theory, pages 413–427. ACM Press, 1992.

[134] Neri Merhav and Meir Feder. Universal prediction.IEEE Transactions on Information

Theory, 44(6):2124–2147, October 1998.

[135] Alistair Moffat. Implementing the PPM data compression scheme.IEEE Transactions on

Communication, 38(11):1917–1921, November 1990.

BIBLIOGRAPHY 239

[136] Donald R. Morrison. PATRICIA–practical algorithm toretrieve information coded in al-

phanumeric.Journal of the ACM (JACM), 15(4):514–534, 1968.

[137] Todd C. Mowry.Tolerating Latency Through Software-Controlled Data Prefetching. PhD
thesis, Stanford University, March 1994.

[138] Craig G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, University of
Waikato, 1996.

[139] Craig G. Nevill-Manning and Ian H. Witten. Compression and explanation using hierar-
chical grammars.The Computer Journal, 40(2/3), 1997.

[140] Craig G. Nevill-Manning and Ian H. Witten. Inferring lexical and grammatical structure

from sequences. InCompression and Complexity of Sequences, pages 265–274, June 1997.

[141] Stefan Nilsson and Matti Tikkanen. Implementing a dynamic compressed trie. In2nd

Workshop on Algorithm Engineering (WAE ’98), 1998.

[142] Mark Palmer and Stanley B. Zdonik. Fido: A cache that learns to fetch. In Guy M.

Lohman, Amı́lcar Sernadas, and Rafael Camps, editors,17th International Conference on

Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings,

pages 255–264. Morgan Kaufmann, 1991.

[143] David A. Patterson. Latency lags bandwidth.Communications of the ACM, 47(10):71–75,

2004.

[144] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. In-
formed prefetching and caching. InSOSP ’95: Proceedings of the fifteenth ACM sympo-

sium on Operating systems principles, pages 79–95. ACM Press, 1995.

[145] Glenn Norman Paulley.Exploiting Functional Dependence in Query Optimization. PhD

thesis, University of Waterloo, 2000.

[146] Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot

be approximated within any polynomial. InProceedings of the twenty-first annual ACM

symposium on Theory of computing, pages 421–432. ACM Press, 1989.

[147] Amira Rahal, Qiang Zhu, and Per-Åke Larson. Evolutionary techniques for updating query
cost models in a dynamic multidatabase environment.The VLDB Journal, 13(2):162–176,

2004.

[148] Jorma Rissanen. A universal data compression system.IEEE Transactions on Information

Theory, IT-29(5), September 1983.

240 BIBLIOGRAPHY

[149] Jorma Rissanen. Universal coding, information, prediction, and estimation.IEEE Trans-

actions on Information Theory, IT-30(4):629–636, July 1984.

[150] Jorma Rissanen. Complexity of strings in the class of Markov sources.IEEE Transactions

on Information Theory, 32(4):526–532, 1986.

[151] Jorma Rissanen and Glen G. Langdon, Jr. Universal modeling and coding.IEEE Transac-

tions on Information Theory, IT-27(1), January 1981.

[152] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system.Communications

of the ACM, 17(7):365–375, 1974.

[153] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-

quences. InProceedings of the twenty-first annual ACM symposium on Theory of comput-

ing, pages 411–420. ACM Press, 1989.

[154] Dana Ron.Automata Learning and its Applications. PhD thesis, Hebrew University, 1995.

[155] Dana Ron, Yoram Singer, and Naftali Tishby. Learning probabilistic automata with vari-

able memory length. InProceedings of the seventh annual conference on Computational

learning theory, pages 35–46. ACM Press, 1994.

[156] Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of acyclic
probabilistic finite automata. InProceedings of the eighth annual conference on Compu-

tational learning theory, pages 31–40. ACM Press, 1995.

[157] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilis-
tic automata with variable memory length.Machine Learning, 25(2–3), 1996.

[158] Carsten Sapia. PROMISE: Predicting query behaviour to enable predictive caching for

OLAP systems. InProceedings of the Second International Conference on DataWare-

housing and Knowledge Discovery (DAWAK 2000), September 2000.

[159] Stefan Schrödl and Stefan Edelkamp. Inferring flow ofcontrol in program synthesis by
example. Technical Report 121, Univerity of Freiburg, 1999.

[160] Timos K. Sellis. Multiple-query optimization.TODS, 13(1):23–52, 1988.

[161] Timos K. Sellis and Subrata Ghosh. On the multiple-query optimization problem.IEEE

Transactions on Knowledge and Dta Engineering, 2(2), 1990.

[162] Praveen Seshadri, Hamid Pirahesh, and T. Y. C. Leung. Complex query decorrelation. In

Proceedings of the 12th International Conference on Data Engineering, pages 450–459,
Washington - Brussels - Tokyo, February 1996. IEEE ComputerSociety.

BIBLIOGRAPHY 241

[163] Jayavel Shanmugasundaram.Bridging Relational Technology and XML. PhD thesis, Uni-

versity of Wisconsin–Madison, 2001.

[164] Jayavel Shanmugasundaram. Querying XML views of relational data. InProceedings of

the 27th VLDB Conference, 2001.

[165] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey, Bruce G.
Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing relational data as

XML documents. In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umesh-
war Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang, editors,VLDB 2000,

Proceedings of 26th International Conference on Very LargeData Bases, September 10-

14, 2000, Cairo, Egypt, pages 65–76. Morgan Kaufmann, 2000.

[166] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey, Bruce G.
Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing relational data as
XML documents.VLDB Journal, 10(2–3):133–154, 2001.

[167] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and
Jeffrey F. Naughton. Relational databases for querying XMLdocuments: Limitations and

opportunities. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editors,VLDB’99, Proceedings of 25th International Con-

ference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages
302–314. Morgan Kaufmann, 1999.

[168] Claude E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27:379–423,623–656, 1948.

[169] Minglong Shao, Jiri Schindler, Steven W. Schlosser, Anastassia Ailamaki, and Gregory R.

Ganger. Clotho: Decoupling memory page layout from storageorganization. InProceed-

ings of the 30th International Conference on Very Large DataBases, August 2004.

[170] Dieter Simader.SQL Ledger Accounting: User Guide and Reference Manual for Version

2.2. DWS Systems Inc., March 2004.

[171] Yoram Singer. Adaptive mixtures of probabilistic transducers. Neural Computation,

9(9):1711–1733, 1997.

[172] Alan Jay Smith. Bibliography on paging and related topics. SIGOPS Operating Systems

Review, 12(4):39–56, 1978.

[173] Alan Jay Smith. Sequentiality and prefetching in database systems.ACM Transactions on

Database Systems, 3(3):223–247, 1978.

242 BIBLIOGRAPHY

[174] Alan Jay Smith. Cache memories.ACM Computing Surveys, 14(3):473–530, 1982.

[175] Alan Jay Smith. Disk cache–miss ratio analysis and design considerations.ACM Trans.

Comput. Syst., 3(3):161–203, 1985.

[176] Carl Downing Tait.A File System for Mobile Computing. PhD thesis, Columbia Univer-

sity, 1993.

[177] Carl Downing Tait, Hui Lei, Swarup Acharya, and Henry Chang. Intelligent file hoard-

ing for mobile computers. InMobiCom ’95: Proceedings of the 1st annual international

conference on Mobile computing and networking, pages 119–125. ACM Press, 1995.

[178] W. J. Teahan.Modelling English Text. PhD thesis, University of Waikato, May 1998.

[179] Franck Thollard, Pierre Dupont, and Colin de la Higuera. Probabilistic DFA inference us-

ing Kullback-Leibler divergence and minimality. InProceedings of the Seventeenth Inter-

national Conference on Machine Learning, pages 975–982. Morgan Kauffman, 2000.

[180] Ukkonen. On-line construction of suffix trees.Algorithmica, 14:249–260, 1995.

[181] Theo Ungerer, Borut Robič, and JurijŠilc. A survey of processors with explicit multi-
threading.ACM Computing Surveys, 35(1):29–63, 2003.

[182] Steven P. Vanderwiel and David J. Lilja. Data prefetchmechanisms.ACM Computing

Surveys, 32(2):174–199, June 2000.

[183] Jeffrey Scott Vitter. Optimal prefetching via data compression. Journal of the ACM,

43(5):771–793, September 1996.

[184] Kaladhar Voruganti, M. Tamer̈Ozsu, and Ronald C. Unrau. An adaptive hybrid server
architecture for client caching ODBMSs. In Malcolm P. Atkinson, Maria E. Orlowska,

Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors,Proc. Int’l Conf. on

VLDB, pages 150–161, Edinburgh, Scotland, UK, 7–10 September 1999. Morgan Kauf-

mann.

[185] Kaladhar Voruganti, M. Tamer̈Ozsu, and Ronald C. Unrau. An adaptive data-shipping ar-
chitecture for client caching data management systems.Distributed and Parallel Data-

bases, 15(2):137–177, 2004.

[186] Jasmine Y.Q. Wang, Joon Suan Ong, Yvonne Coady, and Michael J. Feeley. Using idle

workstations to implement predictive prefetching. InHPDC ’00: Proceedings of the Ninth

IEEE International Symposium on High Performance Distributed Computing (HPDC’00),

BIBLIOGRAPHY 243

page 87. IEEE Computer Society, 2000. See also University ofBritish Columbia Technical

Report TR-00-06.

[187] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing the spatio-
temporal behavior of real traffic data.Performance Evaluation, 49:147–163, 2002.

[188] Marcelo J. Weinberger, Abraham Lempel, and Jacob Ziv.A sequential algorithm for the
universal coding of finite memory sources.IEEE Transactions on Information Theory,

38(3):1002–1014, May 1992.

[189] Marcelo J. Weinberger and Gadiel Seroussi. Sequential prediction and ranking in universal

context modeling and data compression. Technical Report HPL-94-111 (R.1), HP Com-
puter System Laboratory, January 1997.

[190] P.J. Weinberger. A universal finite memory source.IEEE Transactions on Information

Theory, 41(3):653–664, 1995.

[191] P. Weiner. Linear pattern matching algorithms. InProceedings of the 14th IEEE Annual

Symposium on Switching and Automata Theory, pages 1–11, 1973.

[192] Brian S. White and Kevin Skadron. Path-based target prediction for file system prefetch-

ings. Technical Report CS-2000-06, Department of ComputerScience, University of Vir-
ginia, February 2000.

[193] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. Thecontext tree weighting method: Ba-
sic properties.IEEE Transactions on Information Theory, 41(3):653–664, 1995.

[194] Edwin B. Wilson. Probable inference, the law of succession, and statistical inference.Jour-

nal of the American Statistical Association, 22(158):209–212, 1927.

[195] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: estimating the probabil-

ities of novel events in adaptive text compression.IEEE Transactions on Information The-

ory, 37(4):1085–1094, July 1991.

[196] Aaron D. Wyner and Jacob Ziv. Some asymptotic properties of the entropy of a station-
ary ergodic data source with applications to data compression. IEEE Transactions on In-

formation Theory, IT-35(6), November 1989.

[197] Khaled Yagoub, Daniela Florescu, Valérie Issarny, and Patrick Valduriez. Caching

strategies for data-intensive web sites. In Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang,

editors,VLDB 2000, Proceedings of 26th International Conference onVery Large Data

Bases, September 10-14, 2000, Cairo, Egypt, pages 188–199. Morgan Kaufmann, 2000.

244 BIBLIOGRAPHY

[198] Qingsong Yao and Aijun An. Using user access patterns for semantic query caching.

In 14th International Conference on Database and Expert Systems Applications, Prague,
Czech Republic, September 2003.

[199] Qingsong Yao and Aijun An. Characterizing database user’s access patterns. In15th In-

ternational on Database and Expert Systems Applications, (DEXA 2004), pages 528–538,

2004.

[200] Qingsong Yao, Aijun An, and Xiangi Huang. Finding and analyzing database user ses-
sions. InThe 10th International Conference on Database Systems for Advanced Applica-

tions (DASFAA 2005), April 2005.

[201] Tsozen Yeh, Darrell D.E. Long, and Scott A. Brandt. Increasing predictive accuracy

by prefetching multiple program and user specific files. InProceedings of the 16th An-

nual International Symposium on High Performance Computing Systems and Applications

(HPCS’02), 2002.

[202] Nianlong Yin and J. Kelly Flanagan. Reducing application load time by rearranging disk

data. Master’s thesis, Brigham Young University, 1998.

[203] Matthew Young-Lai. Application of a stochastic grammatical inference method to text

structure. Master’s thesis, University of Waterloo, 1996.See also Technical Report CS-
96-36.

[204] Matthew Young-Lai. Adding state merging to the DMC data compression algorithm.In-

formation Processing Letters, 70(5):223–228, June 1999.

[205] Matthew Young-Lai.Text Structure Recognition using a Region Algebra. PhD thesis, Uni-

versity of Waterloo, 2001.

[206] Matthew Young-Lai and Frank Wm Tompa. Stochastic grammatical inference of text data-

base structure.Machine Learning, 40(2):111–137, 2000.

[207] Philip S. Yu, Ming-Syan Chen, Hans-Ulrich Heiss, and Sukho Lee. On workload charac-

terization of relational database environments.IEEE Transactions on Software Engineer-

ing, 18(4), April 1992.

[208] Jinsuo Zhang, Abdelsalam (Sumi) Helal, and Joachim Hammer. UbiData: Ubiquitous mo-
bile file service. InSAC ’03: Proceedings of the 2003 ACM symposium on Applied com-

puting, pages 893–900. ACM Press, 2003.

[209] Qiang Zhu.Estimating Local Cost Parameters for Global Query Optimization in a Multi-

database System. PhD thesis, University of Waterloo, 1995.

BIBLIOGRAPHY 245

[210] Jacob Ziv. Coding of sources with unknown statistics–Part I: Probability of encoding error.

IEEE Transactions on Information Theory, IT-18(13):384–389, 1972.

[211] Jacob Ziv. Coding of sources with unknown statistics–Part II: Distortion relative to a fi-

delity criterion. IEEE Transactions on Information Theory, IT-18(13):389–394, 1972.

[212] Jacob Ziv. An efficient universal prediction algorithm for unknown sources with limited
training data.IEEE Transactions on Information Theory, 48(6), June 2002.

[213] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, IT-23(3):337–343, 1977.

[214] Jacob Ziv and Abraham Lempel. Compression of individual sequence via variable-rate
coding. IEEE Transactions on Information Theory, 24(5):530–536, September 1978.

Author Index

A
Abe, Naoki . 213
Acharya, Swarup . 199, 204
Adya, Atul . 171, 202, 207
Agresti, Alan . 100, 223–225
Ahonen, Ahonen . 213
Ailamaki, Anastassia 201, 202, 209
Akyürek, Sedat . 202
Amer, Ahmed .206
Ammar, Mostafa H. 207
An, Aijun . 211
Anderson, Darrell . 205
Angluin, Dana . 213
ANSI . 38, 170, 171
Apostol, Izydor . 212
Appleton, Randy . 204
Archibald, James K. 204
Astrahan, Morton M. 209

B
Barr, Rimon 37, 38, 40, 44, 215, 216
Bartels, Gretta E. 205
Begleiter, Ron . 212
Bell, Timothy C. 99, 212
Berenson, Hal . 171, 172
Bernstein, Philip A. 80, 171, 172, 210
Bilgin, A. Soydan . 211
Blasgen, Mike W. 209
Bowman, Ivan T. 24, 211
Brandt, Karl S. 206
Brandt, Scott A. 206
Brown, Lawrence D. .223
Brown, Michael K. 213
Bunton, Suzanne . 212, 214
Burns, Randal C. 206

C
Cai, T. Tony . 223
Cao, Pei . 209

Carey, Michael J. 37, 38, 40, 44, 215, 216
Carrasco, Rafael C. 213
Castro, Miguel . 202, 207
Cesa-Bianchi, Nicolo . 212
Chamberlin, Donald D. 209
Chang, Fay . 209
Chang, Henry . 199
Chase, Jeffrey S. .201, 205
Chaudhuri, Surajit . 192, 201
Chen, Ming-Syan . 201
Chen, Shimin . 209
Chirkova, Rada Y. 211
Cleary, John G. 99, 212
Clopper, C.J. .223
Coady, Yvonne . 206
Codd, E.F. 209
Cormack, Gordon V. .212
Cormen, Thomas H. 11
Coull, Brent A. 100, 223–225
Csürös, Miklós .213
Curewitz, Kenneth M. 204, 205

D
DasGupta, Anirban . 223
Davis, A.S. 212
Davison, Brian D. 207
Day, Mark Stuart . 207
Dayal, Umeshwar . 215
de la Higuera, Colin . 213
de Rooij, Steven . 214
DeFazio, Samuel . 201
Denis, Francois . 213
Denning, Peter J. 201
Deshpande, Amol . 205
DeWitt, David J. 216
Doppelhammer, Jochen . 181
Drapeau, Stephane . 205
Duchamp, Dan . 204
Dupont, Pierre . 213

247

248 AUTHOR INDEX

E
Edelkamp, Stefan . 212

El-Yaniv, Ran . 212

Ellis, Carla Schlatter .201
Ephraim, Yariv .212

Eskin, Eleazar . 212

Esposito, Yann . 213

F
Faloutsos, Christos . 201

Feder, Meir . 212
Feeley, Michael J. 206

Fegaras, Leonidas . 215

Feiertag, R. J. 199, 200

Felten, Edward W. .209
Fernández, Mary F. 33, 215, 216

Finesso, Lorenzo . 212

Flanagan, J. Kelly . 202

Florescu, Daniela . 215
Franklin, Michael J. 204

Franti, Pasi . 212

Fredkin, Edward . 102, 112, 213

Freund, Yoav . 213

G
Gabbay Freddy . 24, 208
Galindo-Legaria, César .34, 39, 40

Ganesan, Prasanna . 201

Ganger, Gregory R. .202

Ganski, Richard A. 215
Gerlhof, Carsten Andreas . 203

Ghosh, Subrata . 214

Gibbons, Phillip B. 209

Gibson, Garth A. 209
Giegerich, Robert . 95, 214

Ginting, Eka . 209

Goldstein, Jonathan . 171, 172

Graefe, Goetz . 207, 209

Gray, Jim N. 171, 172, 200, 209
Griffioen, James .204

Grimsrud, Knut Stener . 204

Guerrero, Edgard Benitez . 205

Guo, Hongfei . 171, 172
Gusfield, Dan . 175, 213

Gutman, Michael .212

H
Haas, Laura M. 208
Hammer, Joachim . 199
Han, Wook-Shin . 210, 211
Hatakka, Timo . 212
He, Gang . 216
Heiss, Hans-Ulrich . 201
Helal, Abdelsalam (Sumi) . 199
Helland, Pat . 172
Hingston, Philip .213
Hopcroft, John E. 14
Hoppler, Thomas . 181
Horspool, R. Nigel . 212
Hsu, Windsor W. 201
Hu, Jianying . 213
Huang, Xiangi . 211
Hume, David . 99

I
Issarny, Valérie .215

J
Jacquet, Phillipe . 212
Jaeschke, G. .215, 216
Jin, Wei . 201
Joshi, Milind .40

K
Kant, Immanuel . 99
Karlin, Anna R. 205, 209
Kearns, John P. .201
Kearns, Michael . 201, 213
Keller, Tom . 207
Kemper, Alfons . 181, 203
Kiessling, Werner . 215
Kim, Won . 215
King III, W. Frank .209
Knafla, Nils .210
Kossmann, Donald .181, 208
Kotz, David F. 201
Kraft, Tobias .215
Kraiss, Achim . 206
Krishnamurthy, Rajasekar . 215
Krishnan, P. 204, 205
Kroeger, Thomas M. .206
Kuenning, Geoffrey Houston . 199
Kurtz, Stefan . 95, 214

AUTHOR INDEX 249

L
Laird, Philip . 212
Langdon, Jr., Glen G. 212
Larson, Per-̊Ake .83, 171, 172
Larsson, N. Jesper . 212
Lee, Sukho . 201
Lehman, Eric . 213
Lei, Hui . 199, 204
Leiserson, Charles E. 11
Lemay, Aurelien . 213
Lempel, Abraham . 212
Lempel, Ronny . 212
Leung, T. Y. C. .215
Levy, Alon Y. 215
Levy, Henry . 205
Li, Kai . 209
Lilja, David J. .199
Lindsay, Bruce G. 37, 38, 40, 44, 209, 215, 216
Liskov, Barbara . 171, 202, 207
Long, Darrell D.E. 206
Lorie, Raymond A. 171, 209
Lugosi, Gabor . 212

M
Ma, Wilkie . 199
Madhyastha, Tara M. 205
Maier, David . 207, 215
Mansour, Yishay . 201
Mason, David .259
McCreight, Edward M. 95, 213
Mehl, James W. 209
Melton, Jim . 171, 172
Mendelson, Avi .24, 208
Merhav, Neri . 212
Miclet, L. 213
Mitschang, Bernhard . 215
Moffat, Alistair . 212
Moon, Yang-Sae .210, 211
Yang-Sae Moon . 210
Moran, Shlomo . 212
Morishima, Atsuyuki . 33, 215, 216
Morrison, Donald R. 112, 213
Mowry, Todd C. .209

N
Narasayya, Vivek . 201
Naughton, Jeffrey F. 216

Nelson, Brent E. 204
Nevill-Manning, Craig G. 212, 213
Nilsson, Stefan .112

O
O’Neil, Elizabeth J. 171, 172
O’Neil, Patrick . 171, 172
Oncina, Jose . 213
Ong, Joon Suan . 206
Organick, E. I. .199, 200
Özsu, M. Tamer . 202

P
Pal, Shankar .80, 210
Palmer, Mark .203, 204
Pâris, Jehan-François . 206
Patterson, David A. 1, 199
Patterson, R. Hugo . 209
Paulley, Glenn Norman 34, 43, 259
Pearson, E.S. 223
Pirahesh, Hamid 37, 38, 40, 44, 215, 216
Pitt, Leonard .213
Popek, Gerald J. 199
Price, Thomas G. .209
Putzolu, Gianfranco R. 171, 209

R
Rahal, Amira . 83
Ramakrishnan, Raghu . 171, 172
Rantzau, Ralf . 215
Reed, Daniel A. 205
Reiher, Peter . 199
Reinwald, Berthold37, 38, 40, 44, 215, 216
Rissanen, Jorma .212
Ritchie, Dennis M. .199, 200
Rivest, Ronald L. 11, 213
Robič, Borut . 24, 208
Ron, Dana . 201, 213
Roncancio, Claudia .205
Rubinfeld, Ronitt . 201, 213

S
Salem, Kenneth . 202, 211
Salo, Timo J. 211
Sapia, Carsten . 216
Sasha, Dennis .172
Saul, Ronald . 212

250 AUTHOR INDEX

Schapire, Robert E. 201, 213
Schek, Hans-Jörg . 215, 216
Schindler, Jiri . 202
Schkolnick, Mario .209
Schlosser, Steven W. .202
Schrödl, Stefan .212
Schwarz, Holger . 215
Selinger, Patricia G. 209
Sellie, Linda . 201, 213
Sellis, Timos K. 84, 214
Seroussi, Gadiel .212
Seshadri, Praveen . 215
Shanmugasundaram, Jayavel . . . 37, 38, 40, 44, 215, 216
Shannon, Claude E. 212
Shao, Minglong . 202
Shekita, Eugene J.37, 38, 40, 44, 215, 216
Shtarkov, Y.M. 212
Shutt, David .80, 210
Šilc, Jurij . 24, 208
Simader, Dieter . 189
Singer, Yoram . 213
Singh, Munindar P. 211
Skadron, Kevin . 205
Slutz, Donald R. 209
Smith, Alan Jay . 199, 201
Il-Yeol Song . 210
Stodolsky, Daniel . 209
Suciu, Dan . 33, 215, 216
Sun, Xiabai . 201
Szpankowski, Wojciech . 212

T
Tait, Carl Downing . 199
Tan, Wang-Chiew . 216
Teahan, W. J. 212
Thollard, Franck . 213
Thompson, Ken . 199, 200
Tikkanen, Matti . 112
Tishby, Naftali . 213
Tjalkens, T.J. 212
Tompa, Frank Wm . 213
Traiger, Irving L. 171, 209
Tufte, Kristin . 216
Turin, William . 213

U
Ukkonen . 95, 113, 126, 212, 214

Ullman, Jeffrey D. 14
Ungerer, Theo . 24, 208
Unrau, Ronald C. 202
Ursu, Ioana . 208

V
Valduriez, Patrick . 215
Valentin, Gary . 209
Vanderwiel, Steven P. 199
Vidal, E. 213
Vitter, Jeffrey Scott . 204, 205
Voelker, Geoffrey . 205
Voruganti, Kaladhar . 202

W
Wade, Bradford W. 209
Wang, Jasmine Y.Q. 206
Wang, Mengzhi . 201
Warmuth, Manfred K. 213
Weikum, Gerhard . 192, 206
Weinberger, P.J. 212
Weinberger, Marcelo J. 212
Weiner, P. 95, 214
Kyu-Young Whang . 210
Whang, Kyu-Young . 210, 211
White, Brian S. 205
Willems, F.M.J. 212
Wilson, Edwin B. 100, 224
Witten, Ian H. .99, 212, 213
Wong, Harry K. T. .215
Wyner, Aaron D. 212

Y
Yagoub, Khaled . 215
Yao, Qingsong . 211
Yeh, Tsozen . 206
Yin, Nianlong .202
Yona, Golan . 212
Yost, Robert A. 209
Young, Honesty C. 201
Young-Lai, Matthew . 212, 213
Yu, Philip S. 201

Z
Zdonik, Stanley B. 203, 204
Zelenka, Jim . 209
Zhang, Chun .216

AUTHOR INDEX 251

Zhang, Jinsuo . 199
Zhu, Qiang . 83
Ziv, Jacob . 212

Zondervan, Quinton .202, 207

Index

Italicized page numbers indicate the location of definitions.

SYMBOLS

ALOJ . 36, 37, 40, 45
A× . 36, 37, 39, 49, 52, 54, 55
πALL . 36, 45, 49, 52, 54, 55
πDIST . 36, 52
σ .36, 45, 49, 52, 54

A
access tree . 204
ACID . 171, 221
ACTION18, 55–59, 62, 64, 67, 139, 140, 144–154
Adaptive Server Anywhere 176, 178, 181, 184
ADD-KEYS-TO-ORDER-BY . 59
ADDINPUT . 124, 125, 151
ADDOUTPUT .124, 125, 154
ALERGIA .213
alphabet . 16, 112
APPEND-ACTION . 57–60, 146
ASAseeAdaptive Server Anywhere
ASENSITIVE . 170
assembly operator . 207
AT-MOST-ONE . 43, 45, 66, 146
AVG-COST . 83
AVG-ROWS .83

B
batch request . 140
BATCH-EXAMPLE . 4, 7, 89
BATCH-JOIN 144, 146, 148, 149, 153
BATCH-UNION 145, 146, 148, 149, 153
batches . 89
BEST-PREFETCH . 133, 134

C
Call Monitor . 11, 17, 18, 22, 24, 82, 102, 150, 152, 154,

162
canonical form . 117

CAST . 197
CGI .187
CHECK-CORR-PREDICTIONS 63, 151, 152

CHILDREN . 133–135, 137
CHOOSE-CORRELATIONS41–43, 46, 51, 53
CHOOSE-PREFETCH 133, 135, 137, 138

CLEAR-PREFETCH . 151, 153
client hash join . 34, 50–53, 56, 60, 67, 71, 78, 170, 191,

192, 214, 220

client merge join . . 34, 50, 52–54, 56, 58, 62, 71, 73, 78,
214, 216, 220

CLOB . 216

CLOSE 14, 15, 17, 21, 62, 93, 95, 150, 163, 166, 167, 176
coarse grained optimization . 215

COMBINE-HASH . 51, 58, 59
COMBINE-JOIN . 42–44, 58–60
COMBINE-MERGE . 53, 58, 59

COMBINE-UNION . 46, 58–60
common gateway interface . 187
concatenation . 15

concise trace notation . 14, 32
confidence interval . 100
CONFIDENCE-INTERVAL .100, 134

CONNECT . 14
CONTEXT . 23, 26, 50, 55

context tree . 17, 30, 60, 67, 77, 90
contexts . 22
CORR-HOME . 124, 125

correlated .24
CORRELATION . 25–28, 41, 42, 109, 110, 114, 121–123,

125–127, 132, 147

correlation home . 121
correlation source . 25
Correlation Type

‘C’ . 41, 107, 110, 147
‘I’ . 41, 107, 110, 147

253

254 INDEX

‘O’ . 41, 107, 110, 147, 148
correlation type . 25
CORRELATIONS 121, 122, 124–126, 129, 132, 139, 140,

146, 147
CORRFORPARM . 27, 42, 132
CORRSOURCE . 26, 28
Cost Model 66–68, 79, 83, 86, 87, 129, 163
COUNT-COLUMNS . 46
COUNT-OCCURRENCES . . . 97, 127, 131, 133, 134, 138
CURR-VALUE .28, 108, 111, 124
cursor sensitivity . 170

D
DBI . 187, 189
DBI-JDBC bridge . 189
DECODE- . 57, 62
DECODE-JOIN .56–61, 63, 64
DECODE-UNION . 56–61, 63, 64
DISCONNECT . 14

E
EMPTYCURSOR . 153
entropy .213
escape probabilities .213
EST-COST 66–68, 79, 82–86, 129–131
EST-COST-TREE . 67, 68
EST-INTERPRET . 67, 68, 79, 82
EST-P 30–32, 67, 68, 70, 76, 77, 193
EST-P0 30–32, 67, 68, 70, 76, 77, 193
EST-ROWS .67, 79, 82–84, 86
estimating prophet .204
EXECUTE . 14, 169, 170
explicit node . 113
explicit suffix trie . 103
extension . 200, 210

F
FALSE . 89, 114, 124, 137, 149
FEASIBLE . 132, 134
feasible prefetch . 132
FETCH . . 9, 14, 15, 17, 21, 24, 25, 44, 45, 48, 53, 62, 65,

93, 95, 102, 109, 150, 154, 163, 166, 176
Fido . 204
FIND-CORRELATIONS 104, 108–110, 120, 122
FIND-CORRELATIONS-COMP114, 122–125
FINDCHILD . 111
finite state model . 90, 135

finite state model for suffix trieτ 136
finite-state model . 101, 150
fully predicted . 27
FULLY-PREDICTED . 27, 66

G
GENERATE-PREFETCH-ACTIONS 145, 146, 148
GENERATE-PREFETCH-QUERY 145, 146, 148, 149
GET-EXCHANGE-RATE .3
GET-INCOMING136, 139, 140, 146
GET-OPEN-INVOICES . 3, 6
GET-PREFETCH 137, 139, 140, 146
GETCHILD . 112
GETCUSTOMER .91, 94, 99
GETDEFAULTSHIPTO . 91, 93
GETSUFFIX . 114, 118, 134–137
GETVENDORORDER . 91, 93, 94

H
‘H’ .seeNest Alternative ‘H’
hidden Markov model . 205
HMM .seehidden Markov model
hoarding . 199

I
iAnywhere Solutions . 176
ILP . 209
implicit suffix tree . 113
implicit suffix trie . 103
informed prefetching . 209
INIT-CORRELATIONS .23, 26, 28
INIT-SCOPE . 26, 28
INSENSITIVE .170
instruction-level parallelism . 209
intension .200, 210
INTERPRET- .57, 62
INTERPRET-JOIN . 56–61, 63, 64
INTERPRET-MERGE 56–59, 63, 64
INTERPRET-UNION 56, 57, 59–61, 63, 64
IS-REDUNDANT . 137
isolation . 90, 171, 172, 221

J
‘J’ .seeNest Alternative ‘J’
Java .189
JDBC . 189
JNL-COST . 84, 85

INDEX 255

JNL-ROWS .84
JOINCURSOR . 153, 154

K
KEY() . 36, 49, 54, 55

L
LAN . 74–76, 188
LAN0.1 69, 74, 81, 157–159, 187, 188, 194, 198
LAN1 69, 74, 81, 156, 157, 159, 160
LATERAL . 38–42, 60, 69, 216, 220
lateral derived table .144
lateral derived tables . 38
LCL . 69, 74, 75, 81, 141, 156–159
LEFT OUTER LATERAL 40, 42, 43, 51, 60, 220
LONGESTSUFFIX104, 106, 107, 117
LONGESTSUFFIX2 . 114, 117

M
‘M’ .seeNest Alternative ‘M’
M . 133
Markov-Chain .206, 210
model . 96
MONITOR-CLOSE . 17, 23, 24
MONITOR-FETCH17, 23, 24, 102, 104, 124, 125
MONITOR-OPEN . . 17, 22–24, 102, 104, 106, 110–113,

118, 120
MONITOR-OPEN-COMP 113–115, 120, 125, 126
MTCache . 172
MULTICS . 200
multiset . 39, 40, 45, 48, 52, 54, 55

N
‘N’ .seeNest Alternative ‘N’
Nest Alternative

‘H’ . 50, 56, 59, 66, 67, 193
‘J’ 42, 43, 56, 58, 59, 64, 66–68, 73
‘M’ . 50, 56, 57, 59, 66, 67
‘N’ 23, 32, 56, 58, 59, 66–68, 75, 193
‘U’42, 46, 56, 58, 59, 64, 66–68

NEW-CHILD . 104, 114, 117, 118
NIL . . . 13, 23, 28, 59, 63, 104, 108, 114–118, 133–135,

137, 142, 146, 149, 151, 153
NODEPTR .113, 114, 117, 118, 125
NODES .136
NULL . . 15, 36, 37, 45–49, 74, 77, 85, 86, 145, 177, 196,

197

NULL -L IST .46
NULL -SUPPLIED .45, 63, 153
NULLS() . 36, 37, 40, 48

O
OLAP . 211, 215, 216
OLTP . 211
OPEN 5, 14, 15, 17, 21, 22, 25, 26, 30, 33, 56, 60, 62, 64,

67, 76, 93, 95, 102, 125, 136, 140, 145–148,
150–152, 159, 162, 163, 166, 167, 170, 176,
178, 181, 186

open edges . 214
out-of-band character . 103
outer reference . 37
outer union . 34, 42, 46

P
path compressed suffix trie 112, 113
Patricia tree . 112, 213
Pattern Detector 11, 17–19, 22, 23, 26, 27, 29, 30,

32, 41, 42, 62, 90, 94, 95, 126, 127, 129, 132,
138, 161, 165, 168, 193

Pattern Optimizer 11, 18, 27, 32, 65, 79, 82,
83, 86, 87, 90, 91, 94, 95, 101, 127–129, 135,
138, 139, 147, 150, 161, 163, 168

Perl . 3, 7, 187, 189
PPM . 204, 212
PPM* . 212, 214
PREFETCH-BENEFIT . 130, 134
Prefetcher . 18, 32, 41, 55–57, 62, 64, 91, 101, 129, 139,

150, 151, 154, 162, 168
PrefetchGuide . 210, 211
prefix . 15
PROMISE . 216

Q
Query

Q1b . 60, 61
Q1c . 60, 61
Q1 . 3–5, 18, 20–22, 24–26, 30, 32, 33, 35, 37–39,

42–44, 47, 50, 51, 53, 61
Q2 . . .3–5, 8, 18–22, 24, 30, 32, 33, 35, 37–39, 43,

44, 47, 50, 51, 53, 55, 60, 61
Q3;4 .5, 89, 90
Q3b . 60, 61
Q3 . 4, 5, 18–22, 25, 26, 30, 32, 35, 40, 41, 43, 44,

47, 51, 53, 61, 89, 90

256 INDEX

Q4 . 4, 5, 89, 90
Q5 . 4, 89
Qa . 91, 93, 94, 107, 110
Qb93, 94, 99, 110, 111, 144, 145
Qc . 91, 93, 107, 136, 137
Qd . 93, 107, 144, 145
Qe . 93, 107, 144, 145
Qopt . 4–6
Qx . 93, 94
Qy . 93, 94
Qz . 93, 94

Query Rewriter 11, 18, 32, 60, 79, 82,
83, 86, 91, 127, 129, 135, 138–140, 144, 148,
150, 161, 163, 168

R
random variable . 95
redundancy-removed finite state model 163
redundancy-removed finite state model for traceT . .161
redundant relations . 216
REPLACE-PARAMETERS . 146, 147
REWRITE-TREE 55, 57–60, 62, 67, 68
ROWID() . 36, 45
RUN- . 150
RUN-CLOSE . 18, 64, 65
RUN-FETCH . 18, 64, 154
RUN-OPEN . 18, 63, 64, 151, 152

S
SAP R/3 . 184
sch() . 36, 37, 45, 48, 49, 52, 54, 55
scope length . 120, 126, 127, 150
SELECT . 196
semantic prefetching . 200
SENSITIVE . 170
sequence . 15
sequence trace notation 14, 95, 102
serializable .171, 172
SET-PREFETCH . 133, 135
SHOULD-PREFETCH .133–135
significant update . 169
SilkRoute . 216
snapshot isolation .172, 221
speculative prefetching . 209
SQL-Ledger 3, 4, 6–8, 18, 168, 171, 175, 176, 187–189,

191–193, 195–198
SQL-Relay . 211

SRV-COST . 82–84, 86
SRV-ROWS . 82, 84
SRV-SAVINGS . 84–87, 131, 143
stochastic process . 95
stored procedures . 140
STRINGORDER . 124, 125
STRPTR 113, 114, 117, 122, 123, 125
SUBMIT- . 57, 62
SUBMIT-HASH . 55–59, 63, 64
SUBMIT-MERGE .56–59, 63, 64
SUBMIT-NEST . 56, 58–61, 63, 64
SUBMIT-PREFETCH . 151–153
SUBMIT-UNMODIFIED .151, 152
suffix .15
suffix tree . 112, 113
suffix trie . 90, 102
SUIF .209
System R . 210

T
temporal anomalies .172
THOR . 202, 208
TIP . 209
trie . 102
TRUE . 27, 66, 89, 124, 126, 149
type field . 47

U
‘U’ .seeNest Alternative ‘U’
UNIONCURSOR . 153, 154
Unix . 200
UNULLS . 48, 49
USCHEMA . 48, 49
USE-PREFETCH . 151–153
user access patterns .211
User Defined Functions (UDFs) 207

V
VALUETRACKER . 150–152, 154
VERIFY-CORRELATIONS 23, 26–28, 104, 108–111
VERIFY-CORRELATIONS-COMP114, 120, 123–126
virtual nodes . 113
visible change . 170

W
Wald confidence interval . 223
WAN 2, 5, 69, 74, 75, 81, 155, 157–160, 198, 219

INDEX 257

weak isolation . 171
WiFi .69, 75, 81, 156–159, 198
WITH HOLD .171
WITH HOLD cursors .171, 175
world-wide web .207
WWW . 205,seeworld wide web

X
XML . 215, 216

Z
zero frequency problem . 99

Colophon

This document was prepared with the LATEX 2ε document preparation system, based on TEX ver-
sion 3.141592 in the MiKTEX 2.4 distribution. Illustrations were created withMETAPOST, the

PSTricks package v0.2l, Visio 10.0, the statistics packageR 1.9.0, Excel 9.0 and thedot graph
layout program from AT&T Bell Laboratories.

The typographic style of this document is based on thethesis.cls file originally devel-

oped by Glenn Paulley and modified slightly for this document. Dave Mason and Glenn Paulley
implemented thecode.sty used to format code samples.

Sample code was composed in XML and translated to LATEX 2ε or the Lua programming lan-
guage (for testing) using XSL. The document dependencies were managed withmake, with the

awk scripting language used for additional help.

The bibliography for this document was prepared using BIBTEX in combination with a cita-

tion database system developed by the author using Lua and Sybase Adaptive Server Anywhere
9.0.2. This system automatically generates the Author Index. All references cited in this paper

were stored in electronic form and read on-line. The ACM digital library and the University of
Waterloo library electronic journal collections thereby allowed several trees to be saved.

The text for this document was composed using Watcom vi 11.0 using the ‘crufty’ colour

scheme.

259

