Scalpel: Optimizing Query Streams Using Semantic
Prefetching

by

Ivan Thomas Bowman

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2005

© Ivan Thomas Bowman 2005

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

| hereby declare that | am the sole author of this thesis. iStdagrue copy of the thesis, including
any required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronicallyahailto the public.

Abstract

Client applications submit streams of relational quer@gesldtabase servers. For simple re-
guests, inter-process communication costs account fagréfisant portion of user-perceived la-
tency. This trend increases with faster processors, larmggnory sizes, and improved database
execution algorithms, and this trend is not significantlisetf by improvements in communica-
tion bandwidth.

Caching and prefetching are well studied approaches tocieglwser-perceived latency.
Caching is useful in many applications, but it does not hifpture requests rarely match pre-
vious requests. Prefetching can help in this situationobiyt if we are able to predict future re-
guests. This prediction is complicated in the case of wtali queries by the presence of request
parameters: a prefetching algorithm must predict not omjyexry that will be executed in the fu-
ture, but also the actual parameter values that will be seghpl

We have found that, for many applications, the streams ahgitdd queries contain patterns
that can be used to predict future requests. Further, therecarelations between results of ear-
lier requests and actual parameter values used in futuoesex) We present the Scalpel system, a
prototype implementation that detects these patternsariegiand optimizes request streams us-
ing context-based predictions of future requests.

Scalpel uses its predictions to provide a form of semantéegpching, which involves com-
bining a predicted series of requests into a single reghastan be issued immediately. Scalpel's
semantic prefetching reduces not only the latency expegibiy the application but also the to-
tal cost of query evaluation. We describe how Scalpel letrmedict optimizable request pat-
terns by observing the application’s request stream duwitrgining phase. We also describe the
types of query pattern rewrites that Scalpel’s cost-bagtich@zer considers. Finally, we present
empirical results that show the costs and benefits of Scalpgiimizations.

We have found that even when an application is well suitedt$ooriginal configuration, it
may behave poorly when moving to a new configuration such asedess network. The opti-
mizations performed by Scalpel take the current configomaitito account, allowing it to select
strategies that give good performance in a wider range dfgumations.

Acknowledgements

This document marks a milestone in a course of research ¢gaintin the fall of 2000, when
I had a long conversation with Kenneth Salem about problieraiént applications that had been
plaguing my working days. I'd like to thank Ken for provokimge to formalize proposed solu-
tions and for helping me find a thesis-sized research problgin an unruly cloud of ideas. |
owe Ken a debt of gratitude for his guidance, encouragenagit,understanding. His help has
been instrumental in completing this work.

| would also like to thank the other members of my examiningiotttee—Kostas Konto-
giannis, Jeffrey Naughton, Tam@zsu, and David Toman—for their thoughtful comments, ques-
tions, and suggestions. This final text has been improvedagges based on their comments on
earlier drafts.

Over the years, | have been fortunate to have the support i§ people, and | would like to
thank my family, friends, and colleagues for their help aedtlwishes. My co-workers at iAny-
where Solutions have provided useful ideas and feedbackhelped to give me the flexibility
to complete my research while working full-time. In partam) | would like to thank my man-
ager, Glenn Paulley, for providing me with challenging peols, useful advice, interesting ref-
erences, and unflagging support. I'd also like to thank theranembers of thdev _gp team for
their encouragement and understanding during periodsenh&as working on multiple tasks:
Mike Demko, Dan Farrar, Anil Goel, Anisoara Nica, and Matthéoung-Lai were unfailing in
their support.

My friends have provided a source of strength and stabitityniy life, and | would like to
thank them for the encouragement, support, and humour they provided over the years. The
bant er list provided welcome distraction, as did occasicemaént s.

My family has also contributed in uncountably many ways ® shiccessful completion of
this work. The Bowmans, Browns, Carters, Farleys, Riclmrsilsand Sharpes were often in my
thoughts. My grandparents, Lloyd and Winnifred Richardsmavided me with model examples.
My brother, Don, also provided me with advice and feedbackamty versions of this research,
and | thank him for that. In particular, | would like to thankymmom, Nancy, for inspiring me by
her example, working hard to achieve her goals while stillifig time to appreciate the world
around her.

Finally, it is with love and gratitude that | thank my wife Shdor helping to motivate me to
start this course of study, then for being supportive anerémit through many late nights, early
mornings, and working vacations.

Vii

Dedication

For Dr. Lloyd T. Richardson

Contents

1

Introduction 1
1.1 Motivation o o 3
1.2 UsingPrefetching 5
1.3 Application Request Patterns 6
1.4 Thesis e
15 Outline
Preliminaries 11
2.1 Scalpel System Architecture e . 11
2.2 Pseudo-Code Conventions it 12
2.3 Modelof Request Streams e 13
2.4 Notation for Strings and Sequences waw .. 15
Nested Request Patterns 17
3.1 ExampleofNesting 18
3.2 PatternDetector e 19
3.21 ContextTree e
3.2.2 Tracking Parameter Correlations 24
3.2.2.1 Overhead of Correlation Detection 27
3.2.3 Client Predicate Selectivity 29
3.2.4 Summary of Pattern Detection 30
3.3 QueryRewriter e 32
3.3.1 Nested Execution 3
3.3.2 Query Rewrite Preliminaries 34
3.3.2.1 Algebraic Notation
3.3.2.2 LateralDerived Tables
3.3.2.3 Choosing The Best Correlation Value 40
3.3.3 Unified Execution
3.3.3.1 TheOuterJoinStrategy

Xi

19

Cost Model

Xii

3.3.3.2 TheOuterUnionStrategy 46
3.3.4 Partitioned Execution Lo 50
3.3.4.1 TheClientHashJoin Strategy 05
3.3.4.2 TheClientMerge JoinStrategy 25
3.35 RewritingaContextTree i n. 55
3.3.5.1 Representing Run-Time Behaviour With7/oN Objects . . . 55
3.3.5.2 The RWRITE-TREEProcedure 58
3.3.6 Summaryof Query Rewriter, 60
3.4 Prefetcher 62
3.4.1 Mistaken Predictions 65
3.5 Pattern Optimizer e 65
3.5.1 ValidExecutionPlans 66
3.5.2 RankingPlans e 66
3.5.3 Exhaustive Enumeration 68
3.6 Experiments 68
3.6.1 Effects of Client Predicate Selectivity 70
3.6.2 QueryCoStS. e e e 72
3.6.3 NumberofColumns 73
3.6.4 Execution COStS 74
3.6.5 ScalpelOverhead, 6 7
3.7 Summary of Nested Request Patterns 76
79
4.1 Estimating Per-RequestOverhdad. 80
4.2 Estimating the Cost of InterpretingResults 81
4.3 Estimatingthe Costof Queries i 82
4.3.1 Estimating the Cost of a Lateral Derived Table 83
4.3.2 Estimating the CostofanOuterUnion. 85
4.4 SummaryofCostModel 86

5 Batch Request Patterns

51
5.2

5.3

54

5.5

5.6

Example of BatchPattern
Pattern Detector
5.2.1 Models of Request Streams
5.21.1 OrdetrModels
5.2.1.2 ChoosingaContextlLength
5.2.1.3 Finite StateModels
5.2.1.4 Summary of RequestModels
5.2.2 Suffix Trie Detection
5.2.2.1 Implicit SuffixTries
5.2.2.2 Estimating the Probability of a Future Request
5.2.2.3 Tracking Parameter Correlations
5.2.2.4 Summary of Suffix Trie Detection
5.2.3 A Path Compressed SuffixTrie.
5.2.3.1 Estimating the Probability of a Future Request
5.2.3.2 Tracking Correlations
5.2.3.3 Summary of Suffix Tree Detection
5.2.4 Summary of Pattern Detector
Pattern Optimizer e
5.3.1 CostBased Optimization
5.3.1.1 Feasible Prefetches
5.3.1.2 Choosing the Best Feasible Prefetch
5.3.2 Building a Finite-State Model
5.3.3 RemovingRedundancy
5.3.4 Summary of the Pattern Optimizer
Query Rewriter e
5.4.1 Alternative Prefetch Strategies
5.4.2 Rewritingwith JoinandUnion
5.4.3 Representing Run-Time Behaviour Wit AoN Objects
5.4.4 Summaryof Query Rewriter
Prefetcher
5.5.1 SummaryofPrefetcher
Experiments
5.6.1 Effectiveness of Semantic Prefetching
5.6.1.1 BatchlLength

5.7

5.6.1.2 Useful Prefetches
5.6.1.3 BreakdownofCosts
5.6.2 Scalpel TrainingOverhead
Summary of Batch Request Patterns

Combining Nested and Batch Request Patterns

6.1
6.2
6.3
6.4

Example Combining Nestingand Batches
Combining Context/Suffix Trees
Current Implementation
Summary of Combining Nested and Batch Request Patterns.

Prefetch Consistency

7.1
7.2

Updates by the Same Transaction
Updates by Other Transactions
7.21 Weaklsolation

Case Studies

8.1
8.2

8.3

Transaction Boundaries
Case ldbunload
8.2.1 Characterization ofthe Program
8.2.1.1 AlJava Versionafbunload
8.2.1.2 NestedQueries.
8.2.2 Evaluating Scalpel Usirdpunload
8.2.3 Batch Prefetching witttbbunload
8.2.4 Summaryoflbunload
Case 2: SQL-LedgerCase Study
8.3.1 Configuring the System for Measurement
8.3.1.1 PerltoJDBCBridge
8.3.1.2 PrimaryKeys
8.3.2 Parametersasliterals
8.3.3 QueryVariants
8.3.4 Complex CombinedQueries
8.3.5 NestedQueryPatterns
8.3.6 PerformanceResults, .
8.3.7 Preliminary Result for Batch Request Patterns
8.3.8 SummaryofCase Studies

Xiv

9 Related Work 199

9.1 Prefetching e 199
9.1.1 Prefetching Based on PhysicalLayout 200
9.1.2 Prefetching Based on RequestPatterns. 204
9.1.3 Semantic Prefetching, 207
9.1.3.1 Static Analysis of Attributes 207
9.1.3.2 Value Prediction for Speculative Execution 208

9.1.3.3 ApplicationHints, 209

9.1.3.4 TypeReferencePatterns 021
9.1.4 SummaryofPrefetching 212
9.2 Theoretical Underpinnings of Model-Based Prediction 212
9.3 SuffixTries e e e e 12
9.4 Processing SequencesofQueries uwa... 214
9.4.1 BatchRequestPatterns 214
9.4.2 Nested RequestPatterns 215
10 Conclusions and Future Work 219
10.1 Contributions 220
10.2 Future Study e e e e 221
A Confidence Intervals 223
Bibliography 227
Author Index 247
253

Index

XV

Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.3

8.1
8.2
8.3
8.4
8.5
8.6

Trainingoverhead. inn 29
Algebraic notation for query rewrites. L. 36
Types of ATIONObjects. 56
Available computers. e 69
Tested configurations and the per-requestoverbigad 69
Summary of rewrite strategies. o 77
Estimated quantities. e 79
Tested configurations and the per-request overbigad 81
Estimated overheadsE INTERPRET(C, p, r) of interpreting combined result sets. 82

Run-time (iS) to executé: queries using different prefetch strategies. 143
Mean time per iteration vs batchlengfh)(. 157
Mean time (ms) per iteration vs proportion of useful ereties P) 159
Benefits of batch pattern optimization fiisunload. 186
Initial table sizes for scale factors SF1and SF10. 188
Simulated user activities. L e 190
Costs of 500 user activities. 196
Preliminary results for batch request optimizationS@L-Ledger. 197
Distribution of batch prefetchlengths. 198

XVii

Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

A sample communicationtrace. i 1
The difference between fine-grained and coarse-graioeununication. 2
The SQL-Ledger 61-OPEN-INVOICES function. 3
The join quen@),p combiningQ andQa. L. 4
Example of abatch requestpattern. 4
Joining querie§)s andQa wWith Qs.4.o L 5
Scalpel system structure during trainingphase 11
Scalpel system structure atrun-time, 12
Sample pseudo-code. 13
Example ofaRequest Trace mu. 15
Scalpel components used for nested request patterns. 17
Sample data and sample output for Figure 3.3 19
An example of anested request pattern. 20
Trace example forFigure 3.3. e 21
Querycontexts of Figure 3.4. e 22
Pattern Detector methods to build contexttree. 23
Tracking query parameter correlations, 28
Monitoring counts to estimate selectivity of local poades 31
Context tree constructed fromFigure3.4. 32
Fetch traces for alternate execution strategies of€ig.4 34
Contexts trees corresponding to tracesin Figure 3.4.. 35
Manually combined query joining; and@s 37
Combined query joinin@; and@- (not legal SQL/2003) 38
Combined query joinin@; and(@)- using outer references in the ON condition . 38
Combined nested query joinigyy and@, usingLATERAL 39
The GIOOSECORRELATIONSprocedure. v v v v v i v e e 42
Combine procedure forouterjoin. 0. 43
Outer join queries generated bI@BINE-JOIN. 44

XiX

3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

Combine procedure forouterunion.
Queries)s; and@- combined using outer union.
Querieg); and@, combined using client hash join.
Combine procedure for client hashjoin.
Combine Procedure for Client Merge Join
Combined inner query for the client merge join strategy.
Combine procedure to rewrite an entire contexttree.
Steps of RWRITE-TREE. v i v e e e e e e e e e e e

Context tree after executing steps of Figure 3.26.

Sketch of execution of alternate strategies.
Estimating the costofaplan.
Run times with varying predicate selectivity
Run times with varying querycost

Run times (s) with varying number of columns

Run time (s) with varying network configurations.
Run times with varying number of requests tothe server..

Scalpel components used for batch request patterns........
Application generating a query batch.
An example trace containing query batches.
Overview of the Pattern Detector.
Orderk models fortrace of Figure 5.3
Code to build a suffix trie.
Suffix trie after first 7 queriesintrace.
Suffix trie for trace of Figure 5.3
Code to monitor parameter correlations.
Suffix trie with possible correlations after (@)abcd’ and (b)* xabcdb’ .
Atomic suffix trie and path-compressed suffix triedés’, j = 3
Code to build suffixtree oL
Steps of building a suffix tree fomaabbb’

Steps to convert the implicit suffix tree into an explgtiffix tree.
Suffix tree for trace of Figure 5.3
Steps of tracking correlations for a suffixtree.

Code to monitor parameter correlations in linear stiave.

Overview of the Pattern Optimizer.

XX

5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
531
5.32
5.33
5.34
5.35
5.36
5.37
5.38

6.1
6.2
6.3
6.4
6.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Example for choosing prefetches., 129
Choosing a list of queries to prefetch. 133
Choosing the best prefetch query. o 134
Marking redundant nodes. e 137
Overview of the Query Rewriter 139
Run-time to execute sequential queries using different prefetch strategies.. .141
Code to evaluate alternative prefetching approaches.. 142
Qap: queriesQ)q and@y, combined using a lateral derived table. 144
Qave: queriesQq, @y, andQ, combined using union and lateral derived tables. . 145
Result ofgpe. -« « « o o o o o 145
Building ACTION Objects. 146
Generating a batch prefetchquery. 149
Overview of the role of the Prefetcher. 150
Pseudo-code for Scalpel batch request Prefetcher. 151
Pseudo-code for prefetching., 153
Code for Generating Query Stream e . 155
Mean time per iteration with varying batchlendgth 156
Mean time per iteration withvarying. 158
Breakdown of execution costs. L 160
Training overhead afbunload case study. 161
An example containing nesting and batches. 164
Contexttree for Figure 6.1. e 164
Suffixtrie for Figure 6.1. e 165
Example trace generating contgékxy/hi. 166
Example trace generating contékyy/h. 167
Pseudo-code fatbunload top-level requestsccobntinued) 179
Pseudo-code fatbunload top-level requests. 180
dbunload context tree identified by Scalpel. 821
Pseudo-code fatbunload to output database users. 183
Running time (s) ofibunload on different network configurations. 185
SQL-Ledger system structure. e 187
Nested request patterns found in SQL-Ledger. 193
SQL-Ledger elapsed database time (ms) for original atichized requests. . . . 195

XXi

Introduction

Client applications submit streams of relational quernieddtabase servers. For simple requests,
inter-process communication costs account for a signifipantion of user-perceived latency.
This trend increases with faster processors, larger memsiags, and improved database exe-
cution algorithms, and this trend is not significantly offbg improvements in communication
bandwidth.

Client A Client prepares requegt.
B Request on wire.

C Server interprets request
D Server executeq.

E Server prepares repR.

F Reply on wire.

Server G Client interprets replyr.

Figure 1.1: A sample communication trace.

Figure 1.1 shows a sample of a communication trace betwedard program and a data-
base server. Of the cost components shown, only D repregeatyg processing costs, while the
remainder consist of communication overhead. For simgeasts, the time spent actually ex-
ecuting a request (component D) can be a relatively smatignoof execution time. We have
found that for simple queries, such as fetching a single romfan in-memory table, the execu-
tion time D represents less than 1.5% of the elapsed reqoesph a low-latency shared mem-
ory configuration; this percentage drops significantly vhitigher latency connections.

The problem of latency is becoming increasingly relevamrt ua number of trends. We have
seen exponential improvements in the number of requestsdahde processed per second due to
improvements in processor speed, memory size, disk thmughetwork bandwidth, and query
processing algorithms. During this same time period, ttentzy associated with these operations
has not improved at anything near the same rate. Patterd@h pptesents compelling evidence
that latency has lagged bandwidth. Further, there is goasbreto believe that this latency prob-
lem will not be solved to a significant extent by hardware ades. In addition to these trends

2 INTRODUCTION

that make latency increase relative to the other shrinkosgs; new configurations such as wire-
less networks and high-latency WANSs are increasingly beisef for data access. Applications
that work well in existing configurations may be unacceptabw in these now environments

merely due to the structure of their request streams.

The requests submitted by some database client applisaitioservers contain fine-grained
access such as that shown in Figure 1.2(a). Requests thiataidually cheap add up to signif-
icant exposed latency and processing costs associatedheitiverhead of formatting and inter-
preting each request. If these requests could be combitea isingle request, we would elimi-
nate the per-request costs, giving a coarse-grained ggatesn as shown in Figure 1.2(b). This
pattern not only reduces user-perceived latency, it camralduce execution costs (components
A, C, E and G), and it can even allow the server to choose a nfficent query execution plan.
For example, the server might be able to exploit data shamétgeen multiple requests.

Q1 Q2 Q3 \ Q1;Q2;Q3 /

(a) Fine-Grained Access (b) Coarse-Grained Access

Figure 1.2: The difference between fine-grained and cognag@ed communication.

Fine-grained access can be converted to coarse grainessdmcprefetching anticipated re-
sults before they are requested. While this runs the riskasftiwg work in the case that the re-
sults are not in fact needed, it can reduce the latency anthead associated with many small
requests.

In a database setting, prefetching of future requests ismoediately possible. In general,
requests are parameterized, and the values of the paramedgrdepend on the result of earlier
requests.

Our hypothesis is that existing client applications gerestylized patterns in their request
streams. We can implement an automated tool to detect thdemed patterns and prefetch an-
ticipated future requests. The goal of this system, whicltcalieScalpel, is to reduce an objective
function defined on a cost model. This objective could be ithe &an application spends wait-
ing for database requests (exposed latency), or it coultidéotal time that the database server
spends processing requests.

We will demonstrate techniques that can be used for thisnsated detection, optimizing,
and rewriting system. We will evaluate the effectivenessheftechniques by considering their
effect on both synthetic benchmarks and on case studieslefvarld applications.

1.1 MOTIVATION 3

Motivation

As an illustration of the kind of optimization we hope to aslé, consider the client-side data-
base application code shown in Figure 1.3.

1 function GET-OPEN-INVOICES(cust _i d, currency)
2 open cl cursor for Qq:

3 SELECT id, curr, transdate

4 FROM ar

5 VWHERE custoner _id = :cust_id

6 AND ar.curr = :currency

7 AND NOT ar.amount = ar.paid

8 ORDER BY id

9

while r1 « fetch c1 do
if currency # defaul tcurrency then
rate <« GET-EXCHANGE-RATE(rl.curr, rl.transdate)
close c1
end
function GET-EXCHANGE-RATE(curr, transdate)
fetch row r 2 from Qs:
SELECT exchanger at e FROM exchanger at e
WHERE curr=:curr AND transdate=:transdate
return r 2. exchanger at e
end

L e S e = N PO Y SERY SN T
© 00 N o o~ W N P O

Figure 1.3: The SQL-Ledger €3-OPEN-INVOICES function.

The code is adapted from SQL-Ledger, a web-based doubtg-&tdtounting system written
in Perl (we describe this application further in Chapter)e GET-OPEN-INVOICES function
retrieves a list of all open invoices for a given customet tere recorded with a given monetary
currency. If the given currency differs from the configurgdtem default, then the exchange rate
for each invoice is retrieved using theeGEXCHANGE-RATE function. When this application
runs, itissues a series of small single-table quelibs @-,)2, Q-, . . .) to the database server. It
uses the results of these queries to perform a two-way,ch&xips join on the client side.

The individual requests submitted byfeGEXCHANGE-RATE may be quite cheap (for exam-
ple, consisting of a single index lookup of an in-memory¢abin this case, the execution time of
these inner queries is likely dominated by the fixed overloeasts associated with opening a cur-
sor. This suggests that better performance could be achiveombining several of these small
requests together, reducing the fixed overhead of many sexqjue

4 INTRODUCTION

For example, if Scalpel recognizes the nested query pa@erd)q, Q2, Q2, Q2. ... gener-
ated by the application in Figure 1.3, it can replace theaemattern with a single, larger query
similar to Q,pt, Which is shown in Figure 1.4. Quety,,; performs the join at the server and re-
turns all of the data that would have been returned)pyand the(), queries.

SELECT id, curr, exchangerate,
FROM ar LEFT JO N exchangerate er

ON ar.curr = er.curr AND ar.transdat e=er.transdate
WHERE custoner.d = :cust.d

AND ar.curr = :currency
AND NOT ar.anmpbunt = ar.paid
ORDER BY id

Figure 1.4: The join query),,; combining@; andQ)».

20 function BATCH-ExXAMPLE(cust i d, get_shipto)

21 fetch row r 3 from Q3:

22 SELECT nane, tax_id, ship_id

23 FROM cust omrer c

24 WHERE id = :cust_id

25 if get _shi pt o then

26 fetch row r 4 from Q4:

27 SELECT s. addr

28 FROM shipto s

29 WHERE s.ship_id=:c3.ship_id AND s.default = 'Y
30

31 fetch row r5 from Qs5:

32 SELECT tax rate FROMtax t WHERE t.tax_id=:c3.tax_id
33 return r5.t1

34 end

Figure 1.5: Example of a batch request pattern.

In addition to nested request patterns such as the one shdwgure 1.3, we have found ex-
amples of what we call batch request patterns. A batch isueseg of related queries. Figure 1.5
shows example code that generates a batch request patisrepde is a simplified and modified
version of functions we found in the SQL-Ledger applicationthe BaATCH-EXAMPLE function,
two or three small queries are submitted to the databasértevesdifferent types of information
about a customer. Each of these is individually cheap, hegidi a fine-grained access pattern.

We could consider speculatively executing requests inrdodavoid fine-grained access. For

1.2 USING PREFETCHING 5

SELECT c.nane, c.tax.id, c.ship.id, s.addr
FROM customer ¢ LEFT JO N shipto s

ON s.shipid = c.shipid AND s.default = 'Y
WHERE c.id = :cust.d

Figure 1.6: Joining querieQs and@4 with Q3.4.

example, if we decide that quedy, follows Q3 sufficiently often, we could submit a combined
query@s.4 such as the one shown in Figure 1.6 when we seeN({)3). This combined query
generates the results needed@rand Q4. The per-request costs are only incurred once in this
case, although there is the risk that we will have exec@tednnecessarily.

Using Prefetching

Scalpel's rewrites are based predictionsof future actions that will be performed by the client
application. When Scalpel se€k, it predicts that), will be followed by a series of nesteg,
queries. Based on this prediction, it issugs,: to the server rather tha@,. If the application
then requests), as expected, Scalpel does not p@ssto the server. Instead, it extracts the re-
quired data from the result @@, and returns that to the application. If the application eka
unexpectedly, perhaps by issuing a different qugsythen Scalpel can simply forwargs to the
server for execution. In this case Scalpel has done soma exirk, sinceQ), is a larger and
more complex query thaf);. However, Scalpel always returns correct results to tlemtiBy re-
placing@: with Q,p¢, Scalpel implements a kind of prefetching. We caliemantic prefetching
because Scalpel must understand the quéliesndQ), in order to generate an approprigg,.

There are two reasons to do semantic prefetching. Firstpitigies the query optimizer at
the server with more scope for optimization. For example,dpplication shown in Figure 1.3
effectively joins two tables at the client site. Howevee Herver’s optimizer will be unaware that
the join is occurring. Scalpel’s rewrite makes the servesravof the join, allowing its optimizer
to consider alternative join methods that it may implement.

Second, by replacing many small queries with fewer largerigs, Scalpel can reduce the la-
tency and overhead associated with the interconnectiomonletand the layers of system inter-
face and communications software at both ends of the cannedthese costs can be quite sig-
nificant. We measured the cost of fetching a single in-memonyfrom several commercial re-
lational database management systems. Regardless ofenfteticlient used local shared mem-
ory or an inter-city WAN to communicate with the server, dwvead was consistently over 98.5%
of the total query time. For the application shown in Figur@, this means that almost all of the
time spent issuing), queries to the server is overhead.

6 INTRODUCTION

It may seem that the application developer should be redgerfer avoiding nesting of the
form shown in Figure 1.3. For example, the two functions shawFigure 1.3 could be replaced
by a single function that open@,,; (Figure 1.4). However, we have found that there is a place
for both manual application tuning and automatic, run-tmpémization of application request
streams.

Manual tuning can clearly improve application performartmét run-time optimization has
some strengths that application tuning does not. Firsttimma optimization can take advantage
of information that is not known at application developmtnte, or that varies from installa-
tion to installation. For example, when the monetary cuyenf the report differs from the de-
fault currency, the implementation of thee® OPEN-INVOICES function shown in Figure 1.3 is
much worse than a revised implementation based on the jeiryaud Figure 1.4. However, if the
report currency and the default currency are the same, thieimentation of Figure 1.3 will per-
form best. For which of these circumstances should the im@fgation be tuned? The program-
mer may not know the answer to this question; worse, the ansag be different for different
instances of the program. Other examples of run-time infdion that may have a significant im-
pact on the performance of the application are program petexwalues, data distributions, and
system parameters such as network latency. A run-time @incan consider these factors in
deciding how best to interact with the database server.

A second argument in favor of run-time optimization is awafte engineering argument. Per-
formance is not the only issue to be considered when degjgmid implementing an application.
For example, the SQL-Ledger application actually cgi$ _exchanger at e from eight loca-
tions. Only one of these calls is shown in Figure 1.3. Remgitiet _.openi nvoi ces to use
the join query of Figure 1.4 breaks the encapsulation of dohange rate computation that was
present in the original implementation, resulting in doglion of the application’s exchange rate
logic. This kind of duplication can lead to increased depglent cost and possible maintenance
issues.

Finally, there is the issue of the time and effort requiretut® applications. While we do not
expect Scalpel to eliminate the need for manual applicdtioing, any performance tuning that
can be accomplished automatically can reduce the manuabgtesffort. Scalpel may be partic-
ularly beneficial for tuning automatically or semi-autoivally generated application programs,
for which there may be little or no opportunity for manualifm

Application Request Patterns

The example in Figure 1.3 shows one type of pattern that we lhantified in database client
code. We have found that there are several such types ofrmatteat we can consider optimiz-
ing. We surveyed a small set of database application pragtandentify the kinds of query pat-

1.3 APPLICATION REQUEST PATTERNS 7

terns they produce, and the prevalence of those pattermssample included the following ap-
plications.

e SQL-Ledger: A web-based double-entry accounting system written in.Perl

e Slaschode:A web forum written in Perl.

Compiere: A Java-based ERP system.

e TM: A Java-based time-management GUI.

dbunload : A C program that writes DDL to re-create the schema of a databa

In addition to these systems, we investigated a number girigtary applications, ranging from
on-line order processing systems to report generating@sysstWhile non-disclosure agreements
prevent us from giving details for those applications, #®uits of our analysis of those applica-
tions were consistent with the results from the applicatilisted above.

From our application sample, we identified three types ofypatterns that are amenable to
optimization: batches, nesting, and data structure airosis.

BatchesA batch is a sequence of related queries. These individuaiegicould potentially be
replaced with a single, larger query. For example, congiteBaTCH-EXAMPLE function
shown in Figure 1.5.

Nesting In batches, each query is opened, fetched, and closed indieypity. In the nesting pat-
tern, one query is opened, and other queries are openeditedeand closed for each row
of the outer query. Figure 1.3 showed an example of an apiglicthat generates a nest-
ing query pattern. The nesting pattern effectively implatae nested loops join in the ap-
plication.

Data Structure Correlationin the nesting pattern, inner queries are executed whileother
query is open, expressing direct nesting in the applicatiorsome cases, a client appli-
cation opens an outer query, fetches the results into a ttatztige, then closes the outer
query. Then, an inner query is executed for some or all of &hees stored in the data struc-
ture. The performance impact of the data structure coroelgtattern is similar to that of
the nesting pattern. However, the pattern may be more difficwdetect due to the indi-
rect nesting.

Batches were common in all of the applications we considéedting or data structure cor-
relation also occurred in each of the applications, althdags frequently than batches. Although

8 INTRODUCTION

nesting and data structure correlation are less commonbidiahes, the potential payoff for op-
timizing these patterns is greater because they usuatly afiore database requests to be elimi-
nated. For example, the SQL-Ledger application in FiguBaskues))- once for each customer
invoice. All of these queries can be replaced by a singleygudthough both nesting and data
structure correlation offer a large optimization payofisting patterns are easier than data struc-
ture correlations to detect and optimize.

Thesis

The main hypothesis that we examine is the following. Modkxtabase applications contain sig-
nificant amounts of fine-grained access in their requesrsise These fine grained requests con-
tain dependencies that prevent existing prefetching agmes from being used. We can exploit
the relational data model to efficiently recognize some ekéhtypes of patterns. Further, we
can use the query processing capabilities oftbes to effectively execute combined requests
that generate the needed results for prefetched queriéspiidtess of semantic prefetching al-
lows not only significant reductions in total exposed lajebat also it offers savings in the CPU
costs associated with formatting and interpreting reguest

In this thesis, we present the Scalpel system, which depedterns in the request streams of
client applications and generates prefetching rules #thtae exposed latency. We use Scalpel to
evaluate this main hypothesis.

Our work provides the following contributions:

1. We identify and characterize two types of fine-graineduest| patterns that appear in
streams of requests tIBMSS.

2. We demonstrate effective techniques to automaticaltytfiese patterns.

3. We define and evaluate alternative strategies for plafejdhe results of anticipated re-
quests.

We will show in the sequel that the problem of fine-grainedqvat is common, and that our
automated detection and rewriting approach are effectiveducing the costs associated with
this type of pattern.

Outline

The remainder of this document is organized as follows. @ngbcovers preliminaries of nota-
tion that will be used throughout the document. Chapter 8rile=s how Scalpel detects and opti-
mizes nested request patterns. Chapter 4 describes hopeBoainbines calibrated and observed

1.5 OUTLINE 9

timing information with server estimates to provide codineates for cost-based optimization.
Chapter 5 describes how Scalpel recognizes and optimizek bequest patterns. Even though
our prototype implements both nested and batch optimizati@ have described them in isola-
tion for simplicity. Chapter 6 gives details of how nestingdébatch patterns could be combined
in theory, and also describes the current (limited) contimnaused in the Scalpel prototype.

Scalpel fetches values before the client application stbari FETCH, which leads to con-
cerns that prefetching may introduce temporal anomalieap@r 7 addresses this issue by show-
ing how Scalpel ensures prefetch consistency.

Chapter 8 demonstrates the benefits of using Scalpel onystahss by presenting the results
of two case studies. Finally, Chapter 9 positions our reswithin the body of related work, and
Chapter 10 presents our conclusions and some topics faefatudy.

Preliminaries

Scalpel System Architecture

Scalpel operates in two phases. In the training phase @®d), the Call Monitor monitors data-
base interface calls made by the application (passing thmnamnged to thesms-provided In-
terface Library). The Pattern Detector analyzes the mgdtoequests to build a model of the re-
guest patterns that have occurred so far. At the end of tirérigaphase, the Pattern Optimizer
uses this model to select an execution strategy for the ebdeequests. The Query Rewriter uses
the selected strategy to generate a set of request rewld® which are recorded for use at run-
time. Scalpel’s rewrites are condition/action rules. Thaditions (calledcontext$ identify sit-
uations in which a query rewrite can be applied and the agtitmscribe what activities Scalpel
should perform at run-time when it observes a query beingn#itdd in a particular context..

Client _
Application

T

/— Cost Model \Open, Fetch, Close

Pattern Pattern)
Optimizer [~ Detector Call Monitor
DBMS
i DB Client

Query Contexts + Library
Rewriter Actions

Operating System

Figure 2.1: Scalpel system structure during training ph8salpel components are shaded.

At run-time (Figure 2.2), the Call Monitor again monitorgttlient request stream and tracks
the current context. Each time the client opens a queryp8ktahecks the current context against
the rules in the rewrite database. If the context matcheseacondition, Scalpel applies the as-
sociated action to rewrite the current query. For exampiggleernate query could be submitted
to fetch the original query’s results and also prefetch tiatul results; alternatively, the query
could be answered directly from prefetched data withousuattimg theDBMS.

11

12

PRELIMINARIES

Client <>
Application

1

Open, Fetch, Close

!

Prefetcher [«—»{ Call Monitor

x DBMS
DB Client

Library

Contexts + o ina s
Actions perating System

Figure 2.2: Scalpel system structure at run-time. Scalp@iponents are shaded.

Pseudo-Code Conventions

We use the following conventions in the pseudo-code of thizichent, which are generally based
on the conventions used by Cormen, Leiserson and Rivest [47]

1.

2.

Block structure is indicated by indentation.

The symbolb> is used to indicate that the rest of the line is a comment.

Variables are local to a procedure unless explicitly dieed as a global variable.
Arrays are accessed using the array name followed by arfptbis square brackets.

Lists are represented using comma-separated elematseshin square brackets. For ex-
ample, the expressioph a, b, c] is a list with three elements. If an element of the
square-bracket expression is a list, the contents are dggdan generate a single (flat) list.
Lists are accessed using square brackets. Negative indexesed to index from the end
of the list, soc[- 1] =3 in the example below.

. Tuples are represented with parentheses.

. Strings are represented as double-quoted text. Cortaiens performed using the addi-

tion symbol ¢). When concatenating a list to a string, the list is comnasaed.

. Compound data types are formed of fields, and are descititeedsingstructure key-

word. A new object of a given type is created using tiesv keyword, which can option-
ally specify initial values for fields in the order they areesified in thestructure defini-

2.3 MODEL OF REQUEST STREAMS 13

tion. If a value is not supplied in theew call, it has the default value that is given in the
structure definition.

9. Fields are accessed by specifying an object name, a geyidlden the field name. For ex-
ample, the expressidl keys represents the ‘keys’ field of object C.

35 structure SAMPLE- STRUCTURE

36 flda=0 > Fieldf | da with default O

37 fldb=1 > Fieldf | db with default 1

38 end

39 procedure SAMPLE- PROCEDURE

40 > This is a comment.

41 a «— 1 > Set variable a to value 1

42 0 < new SAMPLE- STRUCTURE > Set variable o to refer to a new object

43 m «— NiL > Set variable m to refer to no object

44 ifa = 1 then > A conditional

45 b — [a 2] D> Set variable b to list [1,2]

46 c «— [b, 3] > Set variable c to list [1,2,3]

47 d «— “L:"+c > Set variable d to string “L:1,2,3”

48 o.flda «— d > Set fieldf | da of o’s object to string “L:1,2,3”
49 m+« o > Set variable m to refer to same object as o refers to
50 end

Figure 2.3: Sample pseudo-code.

Model of Request Streams

When client applications submit requests temMs, they do so using API calls to a client DB li-
brary provided by theBMs vendor. These calls are used to prepare SQL statementstdor la
execution, to open cursors, fetch rows, and close curstwes.DB library implements these re-
guests using inter-process communication with bise1s. There is significant variation in the
details of request streams processed by diffepams products. Various implementations may
be used even within individual products based on the setiifigptions. For example, prefetch-
ing of rows varies between products; within a single prodtie details are affected by the se-
lected cursor type. Some products implemetdzy closewhere a close request is not sent to
the DBMS immediately, instead being tacked on to the next requesiergQiroducts close a cur-
sor when the last row is fetched. Some products optimizeiegi@rhen they are opened, others
when they are prepared.

In order to make our results broadly applicable, we use al8iptbrepresentation of a re-
guest stream. We assume that the client request streanstsoofsthe following types of requests:

14 PRELIMINARIES

CONNECT. A CONNECT request connects a client application to the databasers&walpel
monitors connections during training and run-time. In tteéning phase, Scalpel initial-
izes data structures to monitor the application’s requiesteder to detect patterns. In the
run-time phase, Scalpel loads stored condition/actiorssglected by an earlier training
period.

DiSCONNECT. A DISCONNECTrequest disconnects a client from the database servepebcal
monitors DSCONNECT requests and releases any resources associated with éhgscli
connection.

EXECUTE: An EXECUTE request is used to modify data stored in thems (for example, by
inserting, updating, or deleting a row). Scalpel monitosseEUTE requests due to their
impact on the consistency of prefetched results.

OPEN. An OPENrequest is used to send a query to the database serverrtisrataursor, which
is used by the application to retrieve rows from the querulte$he first parameter of an
OPENrequest is the query text. Queries may be parameterizedl. tis QPENrequest also
includes a value for each query parameter.

FETCH: A FETCH request takes a cursor as an input parameter and eithargetsingle row of
the query result to the application or returns EOF to indiche end of the result set.

CLosE A CLOSE request takes a cursor as an input parameter. It is used lapglieation to
indicate that it is finished retrieving rows from the querguit.

We assume that @NECT and DSCONNECTrequests are relatively infrequent and we typi-
cally do not shown them in examples unless they are relegampbint of interest.

Figure 2.4(a) shows an example of a request stream that iméghubmitted by a client appli-
cation. In this example, there are two different queriesrtibd: Q1 and@s. QueryQs is always
submitted while cursot; is open over querg);. Only one FETCH is performed on cursaty, SO
it does not return EOF on its first invocation. On the secorddation (line 8-10), an empty re-
sult set is returned. We also use@ncise trace notatioffor displaying a request trace, and an
example of this is shown in Figure 2.4(b) for the requestsigfife 2.4(a). In the concise nota-
tion, we represent €eN, FETCH and Q.OSE requests with graphical symbols. Further, we show
only the primary keys of the fetched results.

In some cases, we are interested only in a sequence of rellest the same nesting level.
In this case, we write a sequence suchasQy,, Q., - . .. In thissequence trace notatipeach
Q; represents @EN(Q;), some number of ETCH calls, then COosEQ);). Where the meaning is
clear from the context, we use only the subscripts of theigsiglior example writingibc to mean

the sequencé,, @y, Q..

2.4 NOTATION FOR STRINGS AND SEQUENCES 15

Operation Result
1 OPENQ@1,1) c1
2 FETCH(c1) (A1)
3 OPEN(Q2,1) ¢
4 FETCH(c2) (f)
5 CLOSE(c2)
6 FETCH(c1) (B,1) _
7 FETCH(c1) (D,1) A _
8 OPEN(Q2,1) ¢ E OPEN
9 FETCH(c;) EOF B p FETCHVvalue p
10 CLOSE(cs) D — FETCH NULL
11 FeTcHe) EOF E L FeTcHatEOF
12 OLosHc)) L | Close
(a) Example trace (full) (b) Example trace (concise) (c) dray

Figure 2.4: Example of a request trace in both (a) full forrd @) concise form.

Notation for Strings and Sequences

We use a notation for strings and sequences based on the afseggcroft and Ullman [93].
This section outlines that notation.

A sequencds a string of atomic symbols juxtaposed. The meanings o$yhabols vary be-
tween problem domains, and could be, for example, chamqiage requests, or musical notes.
Regardless of the actual symbols used in a problem domaingpvesent symbols with the let-
tersa, b, ¢, andd, with or without subscripts, while we use letters suclwas, y, andz to denote
strings. For exampley = abca is a string. The length of a string, denoted byw|, is the num-
ber of symbols composing the string. The empty string isesgmted by, and it is the string
consisting of zero symbols.

A prefixof a stringw is any number of leading symbols from and asuffixis any number of
trailing symbols. For example, the stringc has prefixes, a, ab, andabc and suffixesibe, be, ¢,
ande.

The concatenatiorof two stringsz, y is the string of lengthz| + |y| formed by usinge as
a prefix andy as a suffix. This operation is denoted by juxtaposition, sty represents the
concatenation af followed byy.

16 PRELIMINARIES

A finite set of symbols is called amphabet usually denoted by.. We useX* to represent
the (infinite) set of all possible strings formed using sytaldoom X, and X" to represent the
(finite) set of all strings of length overX.

Nested Request Patterns

One of the patterns we have observed in request streangsiigig In a nesting pattern a client
application submits a database request while processingivs of another cursor. By recogniz-
ing this pattern of requests, Scalpel can avoid the overb&athny fine-grained queries.

In this chapter, we describe how Scalpel detects, optimizegites, and prefetches nested
request patterns. Figure 3.1 shows Scalpel's componesitata used for nesting detection (in-
cluding both those components used during training (Fi@ui¢ and run-time (Figure 2.2). At
present, we discuss nested request patterns in isolati@hapter 5 we describe how Scalpel de-
tects batch request patterns, and in Chapter 6 we describeShalpel combines detection of
nested and batch request patterns.

Monitor-Open Run-Open

i . i Prefetcher
<«—— Monitor-Fetch Call Monitor Run-Fetch— (Section 3.4)

Pattern Detectd
(Section 3.2)

—

Monitor-Close Run-Close
7 N
% A Context Tree (3.2.1) N
with Correlations (3.2.2)
and Selectivities (3.2.3) Cost Model
(Chapter 4)

=

\4

(Section 3.5) (Section 3.3) Queries and
Actions

Context Tree
With Strategies
(N,J,U,H,M)

Y % Context Tree
Pattern Optimze Query Rewrite ?E with Rewritte

Figure 3.1: Scalpel components used for nested requestrmattShaded components are de-
scribed in this chapter.

During the training period, Scalpel’s Call Monitor compahétercepts ®EN, FETCH, and
CLoskEcalls from the client application. The Call Monitor companealls the MONITOR-OPEN,
MoNITOR-FETCH, and MONITOR-CLOSE functions, which are implemented by the Pattern De-
tector (Section 3.2). The Pattern Detector buildeatext treelata structure to represent the struc-

17

18 NESTED REQUEST PATTERNS

ture of nesting that has been observed, predicted cooefabetween input parameters and ear-
lier values, and selectivity estimates.

After the training period is over, the Pattern Optimizerauggs context tree to decide on an
execution strategy for all of the nested request pattennsdaluring the training period. The Pat-
tern Optimizer annotates the context tree with a selectatkegly for each of the queries observed
in a nested pattern, then invokes the Query Rewriter. They(Rewriter uses the strategies se-
lected by the Pattern Optimizer to generate rewritten, éoathbqueries that will be submitted at
run-time in place of the original query. Further, the QuepwiRter adds ATION objects as an-
notations to the context tree. Thes€AON objects are used at run-time to inform Scalpel of
how each request should be answered. Finally, at the ena afaiming period, the context tree
is stored persistently for use at run-time.

At run-time, the Prefetcher loads the context tree fromagterwhen it starts. As the appli-
cation submits requests, the Call Monitor component caksRUN-OPEN, RUN-FETCH, and
RuN-CLosE functions. These functions are defined by the Prefetchepoasmt using the con-
text tree structure.

This chapter is organized as follows. Section 3.1 gives amge program that generates a
nested request pattern. This example will be used througheuchapter. Section 3.2 describes
how Scalpel's Pattern Detector observes a request stredeteot nested requests that are can-
didates for rewriting. Section 3.3 describes executioaraittives that the Query Rewriter can
generate for the candidates identified during the trainiaigog. Section 3.4 discusses how the
Prefetcher implements the alternative strategies thagj@merated by the Query Rewriter. Sec-
tion 3.5 describes how Scalpel's Pattern Optimizer chobséseen alternative valid execution
strategies. Finally, Section 3.6 provides experimentallte illustrating the strengths and weak-
nesses of the various strategies.

Example of Nesting

Figure 1.3 showed an example of nesting that we found in thie-IS€iger application. Nesting
occurs in that example because database access is entapsulfanctions, and these functions
are called while processing the rows returned from anotbguest. While only two cursors are
involved in the nesting of Figure 1.3, generally an arbjttaee can appear. Figure 3.3 shows an
artificially constructed example of nesting that demonegfapecific features of our approach.
Figure 3.2 shows sample data and corresponding outputdaxtample in Figure 3.3.

There are three distinct functions in Figure 3.3, each opeaiseparate query)(,(Q», and
@3). A call to the outer-most functioft; () produces a two-dimensional chart. For each row that
F;() fetches from),, it outputs a row to the chart. For most row§() calls F; (), which outputs
a single character enclosed in parentheses. Ngxj,outputs a colon ('), then call$i(). F3()

3.2 PATTERN DETECTOR 19

S(s1, 82, 83) T(t1,t2) V(v1, v2,v3) Output of F; (1)
A 1 1 f 1 vV 1 10 A(f): [V(g) W-)]
B 2 1 g 10 w 1 11 B#
C 3 1 h 2 X 2 12 C(j): [Y' Z(1)]
D 4 1 i 12 Y 3 13 D(-): []
E 5 2 j 3 Z 3 14

k 13

I 14

Figure 3.2: Sample data and sample output for Figure 3.3fiidt¢hree tables show the contents
of tablesS, T, andV'. The last table shows the chart generated by thefGall).

outputs a string enclosed in square brackets (‘T',]) wéth entry for each row returned fro@y.
For each row returned fror@s, F5() outputs the attribute 3. v1 then callsF;() which again
outputs a single character enclosed in parentheses. Barfct{) is thus used in two different
contexts.F»() is called fromF (), with parameter: supplied with the value af1. s2; itis also
called byFj() with = supplied with the value 3. v2.

Figure 3.4 shows a trace of requests submitted by the progr&igure 3.3 using the sample
data of Figure 3.2. The ‘Context’ column shows the orderstddi queries that are open before
each of the application requests in the sample stream. Tégust’ column shows the request
and actual parameters submitted by the sample programharidésult’ column shows the result
of executing the request. The last two columns are discussgéction 3.2.2.

Pattern Detector

The requests in Figure 3.4 are an example of a nesting patt&aalpel can recognize this pat-
tern, it can rewrite it to avoid the nesting. The ScalpelétatDetector monitors the stream of re-
quests presented during the training period and constautisdel of this stream.

Context Tree

Notice that query))- is opened in two different ways. It is opened as a result ofnatfan call
I, — F5, and itis also opened by the cdll — F; — Fy. The behaviour of these two calls is
different: in the first case, the parameters correlated to attribute 1. s2, while in the second
case is correlated to attribute3. v2. If we are to prefetch results f@p,, we must distinguish
between the two ways that it is invoked in order to correctidict the parameter values that will
be used.

20 NESTED REQUEST PATTERNS

51 function Fi(w)

52 open c1 cursor for Qq:

53 SELECT s1, s2 FROM S WHERE s3=: w ORDER BY s2
54 while r1 « fetch c1 do

55 PRINT(rl.s1)

56 if rl.s1 # ‘B then

57 Fo(rl1.s2)

58 PRINT(‘:")

59 F3(rl.s2)

60 else

61 PRINT('#)

62 PRI NT- NEWLI NE()

63 close cl1

64 end

65 function F5(x)

66 > Query()- outputs at most one row
67 open c2 cursor for Qo:

68 SELECT t1 FROM T WHERE t 2=: X
69 r2 «— fetch c2

70 if r 2 then

71 PRINT(“(', r2.s1, ‘)")
72 else

73 PRINT(‘(-)")

74 close c2

75 end

76 function F5(y)

77 PRINT(‘[’)

78 open c3 cursor for Qg:

79 SELECT v1, v2 FROM V WHERE v3=:y
80 while r3 « fetch ¢3 do

81 PRINT(r3.v1)

82 if r3.v1l # Y then

83 f2 «— Fo(r3.v2)

84 else

85 PRINT(‘1")

86 close c3

87 PRINT(‘])

88 end

Figure 3.3: An example of a nested request pattern.

3.2 PATTERN DETECTOR

21

| Context Request Result | Correlations
1| Co:/ OPEN(Q1,1) 1 {{1C, 1) }
21 Ci1:/Q: FETCH(c1) (A4,1)
31 Ci1:/Q: OPEN(Q2,1) c2 {(1]C, 1), (1|1, C4, 1), (1|0, C1,2)}
41 Cs: /Ql/QQ FETCH(CQ) (f)
5| Csy: /Ql/QQ CLOSE(CQ)
6 Ci:/0Q1 OPEN(Q3,1) cs3 {(1|C, 1), (1], C4, 1), (1]O, C1,2) }
71 Cs:/Q1/Qs3 FETCH(c3) (V,10)
8| Cs: /Q1/Q3 OPEN(Q2,10) Cc2 {<1|C, 10), <1|O7 Cs, 2>}
9| Ci:/Q1/Q3/Q2 FETCH(c2) (9)
10| C4 : /Ql/Qg/Qz CLOSE(CQ)
11| Cs: /Q1/Qs FETCH(c3) (W,11)
121 C5: /Q1/Qs OPEN(Q2,11) C2 {(1]0,C3,2)}
13| Cu: /Q1/Q3/Q2 FETCH(c2) EOF
14| Cy: /Q1/Q3/Q2 CLOSE(c2)
15 Cs:/Q1/Qs FETCH(c3) EOF
16 | Cs: /Q1/Q3 CLOSE(C:;)
171 C1: /Q: FETCH(c1) (B,2)
18] C1:/Q: FETCH(c1) (C,3)
19| C1 : /Ql OPEN(QQ,S) Cc2 {<1|O7 C’17 2>}
20| C2: /Q1/Q2 FETCH(c2) ()
21| Cs - /Q1/Q2 CLOSE(CQ)
22| C1 /Q1 OPEN(Q3,3) Cc3 {<1|O7 Cl, 2)}
23| Cs:/Q1/Qs3 FETCH(c3) (Y, 13)
24| C3:/Q1/Qs3 FETCH(c3) (Z,14)
25| C3:/Q1/Qs3 OPEN(Q2,14) C2 {(1]0,C3,2)}
26| Cy: /Ql/Qg/Qz FETCH(CQ) (l)
27| Cy - /Q1/Q3/Q2 CLOSE(CQ)
28| Cs:/Q1/Qs3 FETCH(c3) EOF
29| Cs: /Q1/Q3 CLOSE(C:;)
30| Ci:/Qx FETCH(c1) (D, 4)
31| Cq: /Ql OPEN(Q2,4) Cc2 {<1|O7 Ch, 2>}
32| Cs: /Ql/QQ FETCH(CQ) EOF
33| Cq: /Ql/QQ CLOSE(CQ)
34| Ci: /Q1 OPEN(Q3,4) Cc3 {<1|O7 Cl, 2)}
35| Cs:/Q1/Qs3 FETCH(c3) EOF
36| Cs: /Q1/Q3 CLOSE(C:;)
37| Ci: /@ FETCH(c1) EOF
38| Cr:/ CLOSE(c1)

Figure 3.4: Trace example for Figure 3.3. The first colummegithe number of the request. The
second gives the context nam@g which is the ordered list of open queries using path-sépara
notation. The third column gives the request being prockasd its parameters. The fourth col-
umn gives the rows returned byefFcH, and the last column is described in Section 3.2.2.

22 NESTED REQUEST PATTERNS

Scalpel usesontextsto distinguish different uses of a query. A context is an raosion of
conditions within a request stream. By recording obsemnatabout application behaviour in spe-
cific contexts, we can distinguish between multiple usesaiery. All observations about a re-
guest stream are applied to the appropriate context witlgistream, and at run-time, the context
is used to decide what action to take when a request is sugamnitt

Our definition of context should be efficient to compute as wedto monitor the context
at run-time. Further, contexts should be sufficiently detaio distinguish between requests that
will have distinct usage patterns.

We choose to use query nesting to identify contexts. We iiemtontext by the ordered list
of queries open when a request is submitted. We write cantesihg path-separator notation to
emphasize the hierarchical nature of the list. For exangpldine 3 of Figure 3.4¢), is opened in
contextCy, which has the patfi@;; on line 10, it is opened in contekt, with the path/Q,/Qs.

Co|/|

Q1
/071 /@1
Q2 Qs
‘ Cy ‘ /Q1/Q2 ‘ ‘ C3 | /@Q1/Q3 ‘

@
G| /Q1/Q3/Q2 |

Figure 3.5: Query contexts of Figure 3.4.

Figure 3.5 shows the contexts corresponding to the progfafigare 3.3. The root context
represents is an empty sentinel node. Each of the descemold@s of the root corresponds to a
context of open queries that was observed during the ti@pémiod. Each node has an associated
identifier Cy, C1, . . . C4 in Figure 3.3) as well as the list of open queries represgrttia context.
An edge labelled?, between node¢’, andC, corresponds to an KEN(Q,) request that was
observed in context’,..

Figure 3.6 shows how the Pattern Detector builds the cortegtby monitoring requests.
Thet reer oot variable points to the root of the tree being created, andr ct xt repre-
sents the current context of the request stream so far. Wheeglient application submits re-
guest PEN(Q par ns) , the Call Monitor calls MONITOR-OPEN(Q, par nrs) . This proce-

3.2 PATTERN DETECTOR 23

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

structure CONTEXT > Represent a condition within a request stream
par ent =NIL > The context this query is opened in
path=[] > The list of open queries
| astinput =[] > The most recent values of input parameters
| ast out put =[] > The most recent values of fetched columns
scope=10 > Possible sources of input values (Section 3.2.2)
correlations=(> Setof Correlation objects that have always held (Sectigr2}.
count s=NiL > Information to estimate selectivities (Section 3.2.3)
children=(> A map of child contexts indexed by query
alt="N > Alternative to use at run-time (Section 3.3)
action=0 > List of actions to perform at run-time (Section 3.4)
end
treeroot <« new CONTEXT > The root of the context tree
currctxt « treeroot > The current context

procedure MONITOR-OPEN(Q parns)
child « find(currctxt.children, Q)
if child = NiL then
child « new CONTEXT(currctxt, [currctxt.path, @)
add(currctxt.opens, Q child)

INIT-CORRELATIONY child, parms) > (Section 3.2.2)

I NI T- CouNTs(child) > (Section 3.2.3)
else

VERIFY-CORRELATIONY child, parms) > (Section 3.2.2)

UPDATE- COUNTS(child) > (Section 3.2.3)

child.lastinput <« parns
currctxt «— child
end

procedure MONITOR-FETCH(row)

currctxt. | astoutput «— row

currctxt.counts. nunrows « currctxt.counts. nunmrows + 1
end

procedure MONITOR-CLOSE()
currctxt « currctxt. parent
end

Figure 3.6: Pattern Detector methods to build context tree.

24 NESTED REQUEST PATTERNS

dure searches for the que@in the children of the current context (line 105). If it do#dmd

it, then this is the first time the query has been observederttimtext. MONITOR-OPEN creates

a new context and adds it to the children of the current contethe child has previously been
seen, MONITOR-OPEN sets itsl ast i nput field to the current parameters and updates book-
keeping information.

When the client application submits e&FCH request, the Call Monitor calls procedure
MONITOR-FETCH(r ow) . This procedure updates thast r owfield of the current context. Fi-
nally, when the client application submits &FcH request, the Call Monitor calls procedure
MoNITOR-CLOSE, which moves the current context to the parent.

The structure of the context tree identifies the nestinggmteim a request stream. However,
Scalpel requires additional information if it is to be alberéwrite these patterns. Queries are of-
ten parameterized, and Scalpel must predict the actuatvahat will be submitted for future re-
guests if they are to be prefetched. Thett CORRELATIONS and VERIFY-CORRELATIONS pro-
cedures are used to track possible correlations between fipameters and other known quan-
tities.

Tracking Parameter Correlations

When functionF () is called on line 56 of Figure 3.3, it calls,() (line 57), leading to nested
gueries. We would like to rewrite this pattern (for exampbéng a join) in order to eliminate the
nesting. Sincé)- is parameterized, Scalpel needs to predict not only@hatill be executed, but
also the values of the input parameters that will be supp(tierwise, Scalpel will not be able
to derive an appropriate join query with which to repl@ge This prediction problem is similar
to that faced by hardware speculative execution [72, 181th ¥peculative execution (discussed
further in Chapter 9), processor instructions can be spéeealy executed based on predictions
of values that registers are likely to hold.

To accomplish this prediction, Scalpel tries to identifiteel queries whose input parameter
values areorrelatedto values that are available to Scalpel before the quenjimgted. Specif-
ically, Scalpel considers input parameters that have tiiesalue as an input or output parame-
ters of the queries in the current context. In the samplerarogf Figure 3.3, the input parame-
ter (x) of Q2 matches the second result colunsi2] of); when it is called from line 57.

In principle, we can observe this correlation by inspecting source code of the applica-
tion. For a human, it is relatively easy to recognize thealation in this simple example; further,
the tools of program analysis also offer a hope to find suctetations automatically. Data flow
analysis can identify cases where one variable is guardntekave the same value as another.
However, there are practical and theoretical limitatiorith\& source-level analysis. Implement-
ing a source-level analysis for complex object-orientesteys is relatively difficult [21], and

3.2 PATTERN DETECTOR 25

such an analysis would necessarily be conservative. Evibrewiery careful data analysis imple-
mentation, decidability results tell us that there existgpams with a correlation that holds in all
possible executions of a program yet cannot be detectethdfuo this theoretical objection, sys-
tems can contain correlations that hold only in particutetallations (including install-time pa-

rameters and user behaviour). A source-level analysisdiikly not be able to detect these cor-
relations.

For these reasons, we do not use a source-level analysis oli¢ht program to find correla-
tions. Instead, we infer the presence of correlations bgmiasions of the values in the request
stream presented during the training period. For examplesider the request trace of Figure 3.4.
In each call @EN(Qs, y), the value ofy matches the value of the second column of the row re-
turned by the most recenefFCcH((1). By monitoring input and output parameter values, Scalpel
learns to predict correlations between the input parametiethe inner query and the input and
output parameters. In contrast to a source-level analgsapel finds all correlations that will al-
ways hold in all future executions (as we will see, it also meke some incorrect predictions).
However, Scalpel does not detect correlations that aresthdtrof functional dependencies. For
example, we could have an input parametehat is always supplied the value + 1 wherew
is a prior output parameter. A source-level analysis migid §uch a correlation (with the lim-
itations discussed previously). We could combine tracetaletection with source-level analy-
sis; however, we have not observed such functional coivekin the systems we examined, so
we expect the benefits of combination to be relatively slight

Scalpel uses an object of typeDRELATION to represent the fact that a parameter has al-
ways been equal to a particulaorrelation source We write a correlation for parameteras
I = (i|T, ¢, p) to indicate that parametéis being predicted, wherE represents a particular type
of correlation and: andp identify the particular source.

At present, we consider three types ocDRRELATION objects (each identified by a single-
charactercorrelation typé:

Input Parameter (1) The value of an input parameter to an outere@ request.

Output Parameter (O)The value of a column in the most recently fetched row of aricssimg
context.

Constant (C)A constant value that is the same every time the query is abenhe given con-
text.

Figure 3.4 shows the possible correlations for each inprgtrpater of an ®EN request that
are generated after the request is processed by Scalpadx&mple, on line 3 we show the set
{(11C, 1), (1|1, C1, 1), (1|0, C4,2)}. The meaning of this is that Scalpel currently guesses that

26 NESTED REQUEST PATTERNS

the formal parameter at index 1 of quepy in contextC; is always equal to all of the following
values:

e The constant value X1|C, 1))
e The first input parameter @p; ((1|1,Cq,1))

e The second columaol. s2 from the most recently fetched row & ((1]0, C4,2))

On line 19, Scalpel has reduced its gues$(idO, C1, 2)} because the actual value obn line
19 does not match the other two correlation sources.

The Pattern Detector maintaingparameter contexin the context tree data structure so that
Scalpel can identify these parameter correlations. Fdr €aNTEXT objectC', Scalpel records
the most recent input parameters observed ith #e&t | nput field and the most recently fetched
row in thel ast out put field. Together, thé ast i nput andl ast out put fields form a pa-
rameter context.

We can find the the parameter context at each point in the segtieam of Figure 3.4 by
considering the last fetched result (column 4) and the ippsameters (column 3) for each cur-
sor that is currently open. AGRRSOURCE0bject is used to identify each value in the parameter
context by specifying the context from which the values amawth, at ype of | or O to indi-
cate input or output parameters respectively, apdiaanet er field that gives the index of the
parameter of interest.

The Pattern Detector observes the values of input parasmité®PEN requests. Figure 3.7
shows the code used to track correlation values. When a neiext@” is first created, theNiT-
ScoPE procedure initializes thecope field of C. This scope contains the set of all possible
CORRSOURCE Objects to which Scalpel considers the input parametetsajuld be correlated.
At present, Scalpel initializes the scope(®to include the scope of its parent contéxin com-
bination with the the parameter context®f This definition overloads the correlation detection
(scope) with the structural detection (nesting). In pihei these do not need to be the same.

After initializing the scope of the new contexiyiir-CORRELATIONS builds the initial set of
CORRELATION for each input parametérbased on the GRRSOURCE objects inscope that
have the same current value as the input paramgiare 154). In addition to elements of the
scope field, INIT-CORRELATIONS also adds a constantdRRELATION object of type “C” ini-
tialized with the current value of the parameter. This camsCORRELATION will detect if a pa-
rameter is always supplied with the same constant valugntitie context.

The INIT-CORRELATIONS procedure initialized theor r el at i ons field of a context to re-

flect the set of all correlations that held on the firste® call. The VERIFY-CORRELATIONS pro-
cedure is called on subsequerr gl calls to find correlation values that no longer hold. For each

3.2 PATTERN DETECTOR 27

stored WRRELATION objectc, VERIFY-CORRELATIONS compares the current value of the in-
put parametepar ns[c. i npar anm to the current value of the source predicteddoyf the
supplied value of the input parameter does not match themiuvalue of the ORRELATION ob-
ject,c is removed from theorr el ati ons set.

The parameter correlations in Figure 3.4 are the manifestabf actual parameter correla-
tions in the application code of Figure 3.3. In general, @ations observed by Scalpel during
training may be the result of actual variable correlatianshie application. However, they may
also be mere coincidence. If we use a sufficiently long trgirperiod, most such coincidences
should be discovered and eliminated from considerationvever, there is no guarantee that cor-
relations inferred by the pattern detector will actuallyichat run-time. This may cause Scalpel
to generate semantic prefetches that are not useful. Stalpeb can recognize such prefetches
at run-time, this may impact the system’s performance bwtlithot cause Scalpel to return in-
correct query results to the application.

Thecorrel ati ons set for a context records correlations for all input pararse{identi-
fied by thei npar amvalue). When we are interested in the correlations irCsttat apply to a
particular input parametér we use the ORRFORPARM(C,i) function.

DeFINITION 3.1 (CORRFORPARM(C,1))
If C'is a set of correlations for requestand: identifies a parameter af, then we define OR-
RFORPARM(C,i) as follows:

CORRFORPARM(C, i) = {c € C'| c.inparam = i} (3.2)

Function @WRRFORPARM(C,i) identifies the subset of correlations withihthat apply to para-
meter; of a.

We say that a query) is fully predictedin context C if we have a non-empty corre-
lation set for each input parameter 6%, the Q-child of C. That is, for each parametéy
CORRFORPARM(Cy.correlations, i) # (). At the conclusion of the training phase, the Pattern
Detector passes a set of candidate context/query pairg tedtiern Optimizer. A context/query
pair (C, Q) is a rewrite candidate if) is fully predicted in contextC'. Thus, the pattern detec-
tor reports(C,) as a candidate if Scalpel can predict the future values afipillt parameters
to Q based on correlations that have always held during thengperiod when() is opened in
contextC'. The FuLLY-PREDICTED(C) procedure reportsRUE for all contexts that are fully pre-
dicted.

3.2.2.1| Overhead of Correlation Detection

In the worst case, every input parameter may be correlateddio input parameter or output col-
umn of every outer query. If we have a nesting depttDofvith C' output columns and input

28

NESTED REQUEST PATTERNS

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

structure CORRSOURCE
type=? > The type of correlation: | for input, O for output, or C for cziant
cont ext =NiL > The source context or iN
paraneter =0 > The parameter number for | and O types
end
structure CORRELATION
i nparam="? > The input parameter that is being predicted
type=? > The type of correlation: | for input, O for output, or C for cziant
cont ext =NiL > The source context or iN
par aneter =0 > The parameter number for | and O types
val ue=NIL > The constant value for C types
end

> Initialize the scope of a new context to include the paramsaigall enclosing contexts
procedure INIT-ScorPH C)
P < C. parent
scope «— [P.scope]
fori «— 1 to P.lastinput.length do
scope <« [scope, new CORRSOURCH “l”", P, i)]
fori «— 1 to P.lastoutput.length do
scope <« [scope, new CORRSOURCH “C’, P, i)]
C. scope « scope
end

procedure INIT-CORRELATIONY C, par ns)
I NI T- ScoPEe(C)
scope < C. scope

fori = 1, parns.length do
for s € C. scope where CURR-VALUE(S) = parns[i] do
n < new CORRELATION(i, S.type, s.context, s.paraneter)
corrs « corrs Un
corrs « corrs U new CORRELATION(i, “C’, parns[i])
C.correlations « corrs
end

procedure VERIFY-CORRELATIONS C, par ms)
corrs «— C.correl ations

valid «— { ¢ € corrs | CURR-VALUE(c) = parns[c.inparam] }
C.correlations « validcorrs
end

Figure 3.7: Tracking query parameter correlations

3.2 PATTERN DETECTOR 29

parameters per query, this give§C' + P) possible correlation sources; each of the input para-
meters of the innermost query may be correlated to all ofeth@serall, we havé (D P) input
parameters in the entire nest, giviegD? P(C + P)) correlations we must consider.

The correlation detection algorithm we have presented ligpmial. A slightly more com-
plicated linear algorithm exists. However, we have fourat #tven the polynomial approach has
reasonable overhead for the actual systems we examinelg Jdbshows the open-time for a
qguery with varying numbers of outer queries opened (Deptiwying number of columns for
each query (Cols), and varying number of parameters fomtherimost query (Parms). The time
for the unmodified program is shown (Original) compared ®ttime during training (Training).
Testing was performed with a local client (configuration L@efined in Section 3.6).

Depth | Cols | Parms | Original (ms) | Training (ms)
1 10 1 2.64 3.15
10 10 1 2.62 3.31
10 10 10 2.88 3.34
40| 100 100 14.95 198,368.17|

Table 3.1: Training overhead.

The overhead of the correlation detection algorithm is aorable so long as the product
D(C + P) is not too high. For the configuration we tested, results \yer& so long as this prod-
uct did not exceed 1000. In the actual systems we examinedidvet find any cases where this
product exceeded 100. However, the poor scalability of tignmmial algorithm indicates that a
linear algorithm may be preferable in a practical impleragan.

Client Predicate Selectivity

If Scalpel’'s Pattern Detector produces a candidate cdgteety pair(C,Q), this means that
whenever() occurs within context', the input parameters @ can be predicted using val-
ues available irC. However, this does not imply th&) occurs every tim&' occurs. Predicates
within the client application may dictate th& occurs in some cases but not in others. For ex-
ample, in Figure 1.3, an application predicate on line 1@meines whether the correlated in-
ner query will occur inside the outer query. Similarly, goedes in Figure 3.3 on line 56 and 82
control whether nested queries are submitted. The satgatifrclient predicates is important to
Scalpel because it affects the costs of the various semamgfetching strategies that Scalpel’'s
optimizer will consider. During the training phase, Schlpstimates client predicate selectivi-
ties and then uses these estimates during cost-based zaitoni

30 NESTED REQUEST PATTERNS

Scalpel counts the number of rows fetched from the outerygared the number of times that
the inner query is opened. The ratisEP is computed as an estimate of the probability that the
inner query will be opened for each out row at run-time. Faregle, if 200 rows are fetched
from the outer query and the inner query is opened 120 timesyW use the estimate &-P =
0.6. At present, we do not consider the case where an inner gsiegeined more than one time
for a particular outer row (this is addressed in Chaptert@efore, we are assured that the ratio
is a reasonable probability estimates(iEP € [0, 1]).

There is a difference between the predicates of Figure d3-&ure 3.3. The predicates on
line 56 and 82 of Figure 3.3 depend on values returned fronotiter query. These predicates
may have different values for different rows@f and(Q3 respectively. In contrast, the predicate
currency # defaul tcurrency (line 10, Figure 1.3) depends only on an input parame-
ter to theget _openi nvoi ces function. This predicate will have the same result for allsc®
OPEN(Q2) corresponding to a single open@f. For some instances 6}, the inner query will
not be opened at all for any row. This situation could alsaiodadhe predicate on line 82 of Fig-
ure 3.3 return false for every row 6J; associated with one particular call §(). For example,
this can occur if a particular instance of the outer quemyrrest no rows.

Two of the execution strategies that we consider (descrilb&kction 3.3) cost less to exe-
cute if the inner query is not opened at all for a single instaof the outer query. We use a sec-
ond parameter &-PO to estimate the probability that the inner query will keauted for a par-
ticular instance of the outer query. We maintain a cainbunpr t opens for each contexc;
this counts the number of instances of the parent query fachwine inner query is opened at
least once. We compute the ratio ©f nunpr t opens to the number of instances of the par-
ent query and we use this ratio as the value f-P0. For example, if the outer query is opened
5 times and the inner query is submitted for only 2 of thestairees, Scalpel will use the esti-
mate EST-P0 = 0.4.

Figure 3.8 shows routines that are used to maintain coumtsiar to estimate the€g-P and
EsT-PO selectivities. Section 3.5.2 describes how Scalped thee E5ST-P and BT-P0 estimates
for each context/query pair in order to estimate the costabus execution strategies.

Summary of Pattern Detection

All of information gathered during the training period isncbined into the context tree data
structure. Figure 3.9 shows the context tree for the progrbRigure 3.3. As described in Sec-
tion 3.2.1, this model shows the structural nesting of gsefvia thechi | dr en field). Further,
Section 3.2.2 described how tlo®r r el at i ons field is maintained by the Pattern Detector
during the training period to predict the values that willdsed in future executions of the asso-
ciated queries. Finally, Section 3.2.3 described how the IE and BT-PO0 fields are maintained

3.2 PATTERN DETECTOR 31

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

structure COUNTS
| ast prtopen=1 > The last open # of parent for which this context opened
nunprt opens =1 > The number of opens of parent for which this context opened

nunr ows =0 > The number of rows fetched in this context
nunopens =1 > The number of times this context was entered
end

procedure | NI T- COUNTS(C)

P «— C. parent

C.counts « new CoOuNTS(P.counts. nunopens)
end

procedure UPDATE- COUNTS(C)
pcnt «— C. parent.counts
cnt «— C.counts
cnt.nunobpens <« cnt.nunopens + 1
if pcnt. nunopens # C. | astprtopen then
C. lastprtopen « pcnt.nunopens
cnt. nunprtopens « cnt.nunprtopens + 1
end

function EsT-P(C)

pcnt «— C. parent.counts

cnt «— C. counts

return cnt. nunopens / pcnt. nunt ows
end

function EsT-PO(C)

pcnt <« C. parent.counts

cnt «— C.counts

return cnt. nunprtopens / pcnt.nunopens
end

Figure 3.8: Monitoring counts to estimate selectivity afdbpredicates

32 NESTED REQUEST PATTERNS

Legend
Co IE:T—P ZIStT—PO Si:?el ations
Q1
Ci | N | /G

1|1 Qe

Q2 Q3
Ca | N /Q1/Q2 C3 | N /Q1/Q3/Qx
3/4 | 1/1 | (10,C1,2) 3/4 | 1/1 | (10,C1,2)

Q2

G [N | /Q1/Qs/Qo
1 3/4] 2/3 | (110,C5,2)

Figure 3.9: Context tree constructed from Figure 3.4. Nathesv an identifier for each context
(i d), execution alternativea(t), query pathgat h), estimates ET-P and B5T-P0, and the set
of correlations for each input parameteo¢ r el at i ons).

to estimate how often a nested query will be executed. Theisaades are used to choose an ap-
propriate execution strategy.

The context tree data structure represents the culminafiatl of the information gathered
by the Pattern Detector. The context tree provides the letlwben the Pattern Detector and Pat-
tern Optimizer, which selects the execution method thatheilused at run-time. The selected
method is shown in Figure 3.9 using thkt field; in this example, all nodes are annotated with
‘N’ to indicate a nested strategy. After optimization, thentext tree contains everything that is
needed by the Prefetcher to execute the appropriate at¢tian-time when a query is submitted.

Query Rewriter

Given a context tree, Scalpel’'s optimizer selects an ei@tustrategy for each of the nodes in
the tree. Figure 3.10(a) shows the request trace of Figdré&sB@bmitted by the program in Fig-
ure 3.3). The trace is shown in the concise trace notatiocribesl in Section 2.3. This trace in-
cludes 10 cursor opens, returning a total of 12 rows (and 3yempult sets). Each of the result

3.3 QUERY REWRITER 33

sets returned in this sample trace is small, and the costcbf reguest is dominated by the inter-
process communication cost. Further, the number of cugem®depends on the number of rows
returned by, and@». While the number of opens is small with this tiny data setpitld grow
significantly for larger examples. In order to provide begerformance, Scalpel considers alter-
nate execution strategies that submit fewee® requests to the database server.

There are three fundamental approaches to the executibesd hested queries: nested, par-
titioned, or unified execution:

Nested Executiomhe nested query can be executed in a nested fashion, asarigamlly exe-
cuted by the client program. Figure 3.10(a) is an exampleesfad execution.

Unified ExecutionThe second approach, calledifiedby Fernandez, Morishima and Suciu [67],
combines the inner and outer queries into a single queryr@ht of this combined query
encodes the rows of both the outer and inner queries. Fidui€¥c) and (d) are exam-
ple of unified execution: in this example, a single cursorger®ed over a result encoding
all values needed by the application.

Partitioned ExecutionPartitioned execution combines all of the executions ofitimer query
(within a particular outer query) into a single query. A réten version of the inner query
is submitted once to the server. The results of the rewrittear query are merged at the
client with the results for the outer query. This effectivekecutes the nested query like a
distributed join in which the inner table is moved to the ousble’s location and joined
there. Figure 3.10(e) and (f) are example of partitionedatken. A rewritten query is sub-
mitted to the server at most once for each time that the imaelgienclosing query is sub-
mitted. This contrasts with the nested execution stratetpgre the number of EEN re-
quests is proportional to the number of rows returned frosotiter query.

In the remainder of this section, we describe these exatatrategies in more detail.

Nested Execution

Figure 3.10(a) illustrates the nested execution strategihe application fragment of Figure 3.3.

Although fixed per-request costs are associated with eaobation of the inner query, the nested
execution strategy is appropriate when the selectivitpcél predicates guarding the inner query
is expected to be very low, i.e., when the inner query is afierexecuted at all. For example, this
will be true for theget _openi nvoi ces function in Figure 1.3 if the report currency is usu-
ally the same as the default currency.

34 NESTED REQUEST PATTERNS

A f Af V g 0A - — — — |a A
vg |Afw - T-E-T-1 ot
W — Bh X i 2 - — 0V - v
1 Cj Y k 2 - -1 — g g
Bh |Cj z I 2 - — 0 W — w
Cj D— - — |0B - — — — v 1
Y k 1 10T 1710 z B
Z | T 1101 T X C
C 1 T T 110 W h
i D — YT [1 Y i
Y - 0 R 1T 1 X
z 1 2 - — 0 Y — g Y
o T—T11- I z
1 TT 1 H B o k
D T T 11 K C |
1 0D - — — — e 1
[E n k |D
1 i i
o D]
1 I
(a) Nested (b) Hybrid (c) Outer Join (d) Outer Union (e) Hash f) Merge

Figure 3.10: Fetch traces for alternate executions of Eigu#. The following strategies are
shown: (a) nested execution, (b) a hybrid of nested exatatiw outer join, (c) outer join, (d)
outer union, (e) client hash join, and (f) client merge jdittributes in the combined queries that
were not returned in the original strategy are shaded (taeseedundant attributes). The con-
text tree for each of these traces is shown in Figure 3.11.

Query Rewrite Preliminaries

If the nested execution strategy is used, Scalpel does woiteghe application’s queries. How-
ever, the partitioned and unified strategies do requireyquewrites, and these rewrites share
common requirements, which are described in this sectiecti® 3.3.2.2 describes a SQL con-
struct (lateral derived tables) that is quite helpful insdeewrites. Section 3.3.2.3 discusses how
input parameter markers are rewritten.

3.3 QUERY REWRITER 35

Q2 Q2
Cy Cy |3
(a) Nested Plan (b) Outer Join / Nested Hybrid

Q2 Q2
Gy 3] Ci | U]
(c) Outer Join Plan (d) Outer Union Plan

Q2 Q2
Ci | H | Ci M
(e) Client Hash Join Plan (f) Client Merge Join Plan

Figure 3.11: Context trees corresponding to traces in Eigur0. Only the d andal t fields are
shown.

36 NESTED REQUEST PATTERNS

3.3.2.1| Algebraic Notation

The following notation is used to express rewrites and destmate their correctness. For a full de-
finition of the constructs used, see the definitions used bild3g145] and Galindo-Legaria [75].

Symbol Definition
r[A] Tuple formed by projecting tuple on attributesA
(r,s) Tuple formed by using values of tuptefollowed by s
AL [A](R) | Project relation? onto attributes4; preserve duplicates
7PIST[A](R) | Project relation? onto attributesA; eliminate duplicates
o[p](R) Select rows ofR that satisfy predicate
RAZ, E(%) | Apply operator with mapping = M
R A%, E(z) | Outer apply operator with mapping= M
RWYT Duplicate-preserving union of relatiodsandT
sch'R) Attributes of R
KEY[R] Akey of R
NuLLs(A) | Atuple formed withnuLL for each attribute i
ROWID(r) A unique identifier for tuple-, possibly using virtual attributes

Table 3.2: Algebraic notation for query rewrites.

The projection operators*-[A](R) and7P'ST[A](R) take a relational argumeiit and a tu-
ple A = (a1, aq,...,a,) of attributes. The elements can be simple attributes{ € sch R)).
We also permita; to be scalar functions of these attributes and constanesalihis exten-
sion allows us to better represent SQL queries, where theEEHLlist allows not only at-
tributes but scalar expressions. The results of projedirigpler on attributesA is given by
r[A] = (a1(r),a2(r),...,a,(r)). The expressiom”'' [A] R represents the projection of rela-
tion R on attributes4, and this is the result of performing the tuple-wise praggcbn each tuple
in relation R.

The apply operatoRR ,4; v E(7) takes a relational argumerit, a parameterized relational
expressionE(z) with parameter tuplec = (z1,Z9,...,Z,), and a list of attributes\/ =
(My, Mo, M,,). As with the projection operations, we allow the elements\bto refer to at-
tributes of R or scalar functions of those attributes. The result is fattmgevaluating expression
E for each rowr € R, using the substitution valugs= r[M]. Formally, we have the following:

RAZ E@) = [{r} x E@@=r[M])] (3.2)

reR

3.3 QUERY REWRITER 37

Here, E(z = s) represents the results of relational expresdibevaluated under the parameter
bindingz; = s;,i € 1,...,n.

The outer apply operatdR A;f’fw E(z) is defined similarly, except that it retains rows R
where the expressioB(z = r[M]) is empty. This construct is similar in effect to an outer join
and concatenatesuLL values to tuple in place of the attributes df .

RAS E(z) = RAY, E(x) Y v, {(r.NuLLS (sch(E)))} (3:3)
re€R | E(z=r[M])=0

As with outer joins, we note that the result of the outer ampigratork A%, E(z) includes
every tuple ofR at least one time (more often if there are multiple joininglés).

3.3.2.2| Lateral Derived Tables

Figure 3.12 illustrates one way to combine quély and Q> from the example application of
Figure 3.3. The query is expressed using a join in an unnesya] and is likely to execute ef-
ficiently. However, the algorithm for combining the two gigsrrequires a flattening of the nest-
ing relationship that is present in the client applicati®his is a non-trivial procedure that has
been studied extensively for the case when the nesting $eprevithin a single query.

SELECT S.s1, S.s2, T.t1
FROM S LEFT JONT ONT.t2 = S.s2
VWHERE S.s3=:w

Figure 3.12: Manually combined query joinidgy and()-

If we could combine the two queries into a single nested queeycould rely on rewrite op-
timizations implemented in theBMS optimizer to unnest the query and generate an efficient ac-
cess plan. For example, if we could write a query such as theroRigure 3.13, we could easily
express the application’s query nesting, allowingtilsas query optimizer to select the best ex-
ecution strategy. Unfortunately, the query in Figure 3<18at legal according to SQL/2003. The
reference tdP. s2 within query! is anouter referenceThe outer reference is not within the
scope ofP, and is therefore disallowed.

Shanmugasundaram et al. [166] used a clever approach torm@mberies, relying on the
fact that the scope clause of a table reference includes$ thiégoin conditions for joins contain-
ing the table reference. Their approach would result in therygin Figure 3.14. This approach
works adequately for queries consisting of select-prgot (SPJ), where the correlation value

38 NESTED REQUEST PATTERNS

SELECT P.s1, P.s2, 1.t1
FROM (SELECT s1, s2
FROM S
WHERE s3=:w) P,
(SELECT t1
FROM T
WHERE t2=P.s2) |

Figure 3.13: Combined query joinin@; and@- (not legal SQL/2003)

is used only in predicates in thAHERE clause of the inner query. However, this approach does
not work with cases where the correlations appear in morgtmatontexts such as @N con-
dition of an outer join in thé&-ROMclause or in an expression in tBELECT list. The approach
does not work at all for grouped, distinct, or unioned querkeven in the cases where this ap-
proach does work, the resulting queries will not be execatidently unless th@sms simpli-

fies the generate@N condition.

WTH P AS (SELECT s1, s2
FROM S
WHERE s3=:w) P,
I AS (SELECT t2, t1
FROM T) |
SELECT P.s1, P.s2, 1.t1
FROM P LEFT JONI ON (I.t2 = P.s2)

Figure 3.14: Combined query joinin@, and Q> using outer references in the ON condition
(Shanmugasundaram et al.’s Approach [166])

Fortunately, SQL/99 [13] introduced a new construct cadi¢ateral derived tablesand this
feature makes it easy to express nesting inARR®Mclause. Using the keyworldATERAL we
are able to write a query in the style of Figure 3.13 that iallegheLATERAL keyword signals
that the inner derived table contains outer references.

The syntax:

FROM <table reference |ist>,
LATERAL (<query expression>) <correl ation name>

has the following semantics. L&RL be the<t abl e ref erence |i st >. Let QE be the
<query expressi on>. The SQL withinQE can contain references to attributesST&l_; these

3.3 QUERY REWRITER 39

are calledouter referencesLet TRLR be the multiset of rows resulting fromRL. Let QE(r)
represent the multiset resulting from evaluati@ig with attributes ofr supplied as actual para-
meters to the corresponding outer references. The restiie6iROMclause above is the follow-
ing multiset:

{I(r,q) | € TRLR ¢ € QE(T) [} (3.4)

This definition is equivalent to the algebraic apply opearaf&®LR A;M QE(z) defined by
Galindo-Legaria [75] and outlined in Section 3.3.2.1. FegB.15 shows how the illegal query
of Figure 3.13 can be corrected using th&8TERAL keyword.

SELECT P.sl1, P.s2, 1.t1
FROM (SELECT s1, s2
FROM S
WHERE s3=:w) P,
LATERAL
(SELECT t1
FROM T
VWHERE t2=P.s2) |

Figure 3.15: Combined nested query joiniflg and()s usingLATERAL

The lateral derived table construct allows Scalpel to gateeaa single SQL query that directly
matches the application semantics that it infers from nooinigy the request stream. By using lat-
eral derived tables, Scalpel allows thems optimizer to select the best execution strategy. Unfor-
tunately, theLATERAL construct is not yet widely supported in commerciaivss. Of the three
commercial systems we considered in our experiments, @teraysupported theATERAL con-
struct directly while the other two supported the same séicguasing (distinct) vendor-specific
syntax.

The query in Figure 3.15 has a shortcoming: rows from theraytery will not be included
in the result unless there is at least one row from the inntdr miatching currency and transac-
tion date. If these rows must be included, an equivalent afider join must be used to preserve
the rows from the outer queries (the table references tlaege the lateral derived table in the
FROMclause). The SQL/2003 standard does not provide suppodirieetly expressing a lateral
derived table operating in an outer join with outer refeento the preserved side of the outer
join. It is possible to simulate this behaviour using theserg syntax by introducing an addi-
tional outer join, but the result does not directly exprémsdesired behaviour, and the additional
complexity may lead to more optimization costs or poor ekeowplans. Two of the three com-
mercialbBmss we considered do support usingTERAL-style derived tables in outer joins.

40 NESTED REQUEST PATTERNS

Although there is existing commercial support for expmegsnesting in the=ROM clause
which preserves rows in the face of an empty inner table egfe, the syntax is product-
dependent. We define an extension to SQL/20E:T OUTER LATERAL, which provides the
required outer join semantics:

FROM <t abl e reference |ist>,
LEFT QUTER LATERAL (
<query expression>
) <correlation nane>

The result of thd~ROMclause above is the following multiset:

{{(r,Q)|r e TRLR g € QE(r) [} [H{| (r,NULLS(QE)) |r e TRLR QE(r) =0 |} (3.5)

Again, this definition is equivalent to the algebraic outepls operatorTRLR A;f’]jj QE(2)
defined by Galindo-Legaria [75] and outlined in Section 28. The corresponding RIGHT
OUTER LATERAL and FULL OUTER LATERAL are not meaningful bacse the right side
of the construct can not be evaluated without a row from tfteside to provide outer bindings.

We translate this syntax to vendor specific language dml@stecessary. For systems that
do not support a vendor-specific outer join varianL&TERAL derived tables, we can translate
aLEFT OUTER LATERAL construct to standards compliant SQL.

We may be curious as to whether thATERAL construct is really needed, or whether it is
merely a syntactic convenience that simplifies the revgitiBalindo-Legaria [75, 76] answered
this question by showing that any query containing A ERAL construct can be rewritten into
an equivalent query with nbATERAL constructs. This shows thatATERAL merely provides
a syntactic convenience, and does not extend the class aksgubat can be posed. In prin-
ciple, this result shows that the approach used by Shanmodasam et al. [166] could be ex-
tended to handle arbitrary queries. In practice, the rewgrilefined by Galindo-Legaria [75] gen-
erates queries that are much less amenable to optimiz&mmemporary query optimizers are
not, in general, able to recover the original nested quamnfthe flattened variant. For this rea-
son, theLATERAL construct is more than syntactic sugar in practice: it adl@&ealpel to pro-
vide a query to th@sMs optimizer in a form that allows cost-based rewrite decisidbcalpel
uses the. ATERAL construct to directly encode the nesting detected in thécagpion code, leav-
ing all rewrite optimizations to theBms query optimizer.

3.3.2.3| Choosing The Best Correlation Value

The combined query in Figure 3.15 replaced the paramet#rquery Q3 with the outer refer-
enceP. s2. This replacement was based on the predicted parametaiat@ns found by the

3.3 QUERY REWRITER 41

Pattern Detector and shown in Figure 3.4. In the case thatdhe el at i ons set contains only
a single entry for a parametérthere is only one choice for replacement. In other casas; ho
ever, multiple sources are predicted as possible parametezlations. During the training pe-
riod, each of these sources always had the same value asttia parameter value supplied
when opening the associated query. For example, on line thwl parameter: of query Q3

is believed to be always equal {4, w, cl.s2} (expressed with theorrel ati ons set
{(11C, 1), (11, C1, 1), (1[0, C1, 2)}).

During training, all of the candidate correlation sourcad the same value each time the as-
sociated query was opened, so there is no reason to beliagvarty of them will provide better
predictive ability at run time. That leaves us free to choasg of these sources. Our choice of
predictor has an impact on the cost of combined queries. vomse an output attribute of the
outer query, the combined query will have an outer refereatternatively, if we select a GRr-
RELATION of a constant literal or input parameter, then the value a@labvie when we open the
combined query and does not require an outer reference irothbined query.

In order to minimize the cost of combined queries, we selecC@RRELATION object in the
following priority order:

1. Constants (type ‘C")
2. Input parameters (type ‘I')
3. Output attributes (type ‘O’), ordered from highest anaedown).

The CHOOSECORRELATIONS procedure is shown in Figure 3.16. This procedure is used to
select the appropriateRRELATION for each input parameter of conteXt After making its se-
lections of parameters,HOOSECORRELATIONS modifies the query associated with the context
by replacing parameter markers. For correlations of typestzmt, the marker is replaced with the
literal constant value. For input parameters, the markezptaced with an updated marker that
will select the value from the appropriate input parametearoopened cursor. For output para-
meters, the @B0OOSECORRELATIONS replaces the original parameter marker with an outer ref-
erence to an attribute of the derived table representingrindicted source query.

Unified Execution

Under the unified execution strategy, Scalpel used tiEERAL construct to combine the inner

and outer queries into a single query which returns all oftives that would have been returned
by the individual outer and inner queries. When the Pretatolbserves the application opening
the outer query (in the correct context), it submits instéedcombined query. The Scalpel sys-
tem then uses the cursor opened over the combined quenpncto the application’s requests
to fetch rows from the original inner and outer queries thataxcombined.

42 NESTED REQUEST PATTERNS

198 procedure CHOOSECORRELATIONY C)

199 correlations «— C.correl ations

200 sql <« C. query

201 fori < 1 to correlations.length do

202 corrs « CORRFORPARM(correl ations,i)

203 cs «— CHOOSE- BEST(corrs) > Select the best source by priority
204 sql < RePLACE- PARAMETER(i, cs) > Replace the parameter marker text
205 C. query « sql

206 end

Figure 3.16: The B00OSECORRELATIONS procedure.

Many unified strategies are possible. Scalpel’s optimizerently considers two representa-
tive unified strategies, one that combines the outer and muneries using an outer join and an-
other which combines them using an outer union. The optirm{described in Section 3.5) sets
theal t field of nodes in the context tree to ‘J’ to select the outen gtrategy and ‘U’ to se-
lect the outer union strategy. We describe these two stest@gxt.

3.3.3.1| The Outer Join Strategy

Scalpel forms a combined join query using a lateral derieddietexpression. The procedure for
combining the texts of the outer and inner queries is shownrei3.17. Given the texts of the
outer and inner queries, this procedure will produce a ddrtable expression similar to the one
shown in Figure 3.15, except thaEFT OUTER LATERAL is used in place df ATERAL to en-
sure that all rows of the original outer query are includedhia result. In addition, the combi-
nation procedure adds @RDER BY clause that matches ti@RDER BY clause of the original
outer query, if that query has one. Thus, Scalpel would@RIOER BY S. s1 to the combined
query shown in Figure 3.15 since the original outer qu@ry(from the F;() function in Fig-
ure 3.3) was so ordered.

The GoMmBINE-JOIN function operates on a single no@ein the context tree at a time. First,
it identifiesj oi n_chi | dr en, the child contexts of” that are annotated with alternative ‘J’.
Second, it calls B00SECORRELATIONS to select what value will be used to predict the in-
put parameter values that will be submitted in the futurecdie¢hat Section 3.2.2 described how
the Pattern Detector finds a set cbRRELATION objects for each input parameter. Each of these
CORRELATION objects represents a value that could be used to predictafibessof the input
parameter. The E0OSECORRELATIONS procedure chooses one of these predictions for each
input parameter, and rewrites the query text based on theehdext, @®MBINE-JOIN gener-
ates the combined query text by combining the outer and igueries using theEFT OUTER
LATERAL keyword and adding a@RDER BY clause if needed.

3.3 QUERY REWRITER 43

207 function CoMBINE-JOIN(C)

208 join_children «— [child € C.children | child.alt = ‘J"]
209 sgl = “SELECT P. *”

210 fori < 1 to join_children.length do

211 sqgl += ", "+ + 7

212 sql += “FROM ("+C. query+"“) P”

213 fori < 1 to join_children.length do

214 child «— join_children[i]

215 CHOOSECORRELATIONY child)

216 sql += “, LEFT OUTER LATERAL (”+child. query+*) |"+i”
217 if C. query.orderby # () then

218 sql += “ORDER BY "+C. query. or der by

219 return sql

220 end

Figure 3.17: Combine procedure for outer join.

The join strategy can significantly reduce per-query ovadhes compared to the nested ex-
ecution strategy. It also increases the scope of the semptimizer by exposing join operations
to it. For the example of Figure 3.3, Scalpel can comldewith its parents); and, separately,
with Q3. Figure 3.10(b) illustrates the execution trace that waekllt if these two combina-
tions were performed whil€)s; was executed in its original nested form (the associatetegbn
tree is shown in Figure 3.11(b)). As compared to Figure 3 8vhich all queries are nested, the
number of query invocations is reduced from ten to four, drelderver’s optimizer is explic-
itly made aware that the results @f; are being joined to the results @, ont 2=C1. s2 while
the results of)3 are also being joined to the results@$ ont 2=P. v2. These joins would oth-
erwise have been hidden in the application’s code. Figut8 S8hows the combined queries re-
turned by @mBINE-JOIN for this example.

At present, Scalpel considers the join strategy only whearntdetermine that the inner query
(or queries) will return at most one row. Scalpel’'s querylgrer implements a support routine,
AT-MOST-ONE(Q to identify queries that return at most one row. For examiplae t 2 at-
tribute is a candidate key for thEtable, Scalpel can conclude that the quérywill return at
most one row [145]. This function acts as an oracle that meistdorect when it returns true, but
is allowed to return false for queries that can only reture cow. These errors lead to missed
cases where a join strategy would have been possible, butltheot pose a correctness problem.

The at-most-one condition, together with the us€ BFT OUTER LATERAL, ensures that
the combined query will return exactly as many rows as thegimal outer query. Th&©RDER
BY clause ensures that these rows will be returned in the ondethich they would have been
returned by the original outer query. Thus, decoding thelred the combined join query is

44 NESTED REQUEST PATTERNS

SELECT P.*, 11+ SELECT P.», I1.%
FROM (SELECT s1, s2 FROM (SELECT v1, v2
FROM S FROM V
WHERE s3=:w) P, WHERE v3=:y) P,
LEFT OUTER LATERAL LEFT QUTER LATERAL
(SELECT t1 (SELECT t1
FROM T FROM T
WHERE t2=P.s2) I1 WHERE t2=P.v2) I1
CRDER BY P.s2
(a) Combination of); and@- (b) Combination of)3 andQ-

Figure 3.18: Outer join queries generated by (a)OMBINE-JOIN(C;) and (b)
CoMBINE-JOIN(C3) for the context tree in Figure 3.11(b).

straightforward. When the application performs erEH on the outer query, Scalpel consumes
the next row from the combined query’s cursor and extragtv#fues that correspond to the outer
query’s columns. When the application performssr€H on an inner query, Scalpel simply ex-
tracts the attributes required by that query from the cunmrew of the combined query. Scalpel
identifies the case where all attributes of the inner quesyNAWLL because there is no matching
inner row for the outer row, and returns an empty result sttigicase. This case is distinguished
from a case where all attributes happen to be NULL by requitiat at least one non-null at-
tribute of the inner query is included in the combined refolt example, a key column).

It is possible to use join-based strategies under lessatagrcircumstances than those con-
sidered by Scalpel. However, doing so may introduce sutigtaditional redundancy into the
the results of the combined query, which will increase itstcbigure 3.10(c) illustrates the re-
sult of executing all four queries from the example of FigBr& as a single combined outer join
guery. The shaded parts of the join query result indicateethmortions of the result that are re-
dundant. These redundant data are computed by the combimegljery, but they should not be
returned to the application when it performsTeH operations on its open cursors. Redundancy
generated by the unrelated inner queries can generatesaxceserhead due to the duplication
of attributes and rows. This redundancy is not present t@atgaxtent in this example since, al-
though@- in Cs is unrelated ta)s, Q- returns at most one row. In general, cont€ktand Cs
could both return many rows for a single row@f, and the combined result set would encode the
cross product of these two result sets. This led Shanmudasam et al. [166] to label this ap-
proach “redundant relations”, and they stopped consigdetiafter finding that the performance
was poor.

Not only does such redundancy add processing and data r@dodt also complicates the
decoding procedure, since it must now determine which gaftmm the result set are dupli-

3.3 QUERY REWRITER 45

cates. In general, it is also possible that Scalpel woule havetch backwards on the combined
guery’s cursor in order to provide the correct return vahreah application’s ETCH. This would
require either buffering or a scrollable cursor for the comedd query. Where supported, scrol-
lable cursors are often more expensive than forward-ontgaca. Furthermore, fetching back-
ward may reintroduce some of the the per-request laten¢yhbainified strategy is designed to
avoid, since fetching backward may require that rows beetehied from the server. By restrict-
ing the join strategy to situations in which the inner quesatisfy the A-MosTONE(Q) predi-
cate, Scalpel avoids all of this complexity and cost.

LEMMA 3.2 (QUTER JOIN STRATEGY IS SOUND)
The Outer Join strategy returns the correct multiset of nmike outer and inner queries.

PROOF Let(@; be the outer query, and,(z) be an inner query with parametershat returns
at most one row. Our correlation detection gives us a mappirthat gives the values af given
arowr € Q1. Then, we define a combined quepy- as follows:

Qc = Q1 A7y Q2(7) (3.6)

The combined query is submitted to the database serverhanouter query is answered using
the following projection:

Q) =" [sch@1)] (Qc) (3.7)

Since Q2 () returns at most one row)¢ has exactly the same number of rows@s corre-
sponding to tuples of); extended either with a single matching row fr@épa(z) or with NULL
values. ThereforeQ; = Q1 and the correct rows are returned for the inner query.

When an instance of the the inner que&py(x) is submitted while the outer query is posi-
tioned on a row- identified byrowID(r) = r;, Scalpel first checks that = r[M]; if not, the
original query is submitted unmodified. If the predictedretations match, then the inner query
is answered with the following:

Qy = ™ [schQ2)] < o[ROWID(Q1) = r1 A =NULL-SUPPLIED(Q?)] (Q¢)> (3.8)

The selection and projection operations used to define giggive the following:

Q5 = Qa(r[M]) (3.9)

Since we have checked that= r[M], therefore the returned resf, = Q2(x) and the inner
guery returns the desired multiset of rows.

The above argument shows the outer join strategy is soundifdng a single inner query;
the extension to two or more inner queries is straightfodwar d

46 NESTED REQUEST PATTERNS

3.3.3.2| The Outer Union Strategy

The outer union strategy is illustrated in Figure 3.10(cBclk query is represented by distinct
columns in the result of the combined query. Each row coargsp to a tuple that would have
been returned by one of the original queries, with NULL valgapplied for the columns corre-
sponding to the other queries.

221 function CoMmBINE-UNION(C)

222 union_children « [child € C.children | child.alt = ‘U]
223 parent _order_key «— [C. orderby, C keys]

224 nuntol s < COUNT-CoLUMNS(C, union_children)

225 sql = “SELECT "+[parent _order_key, “U. *"]

226 sql += “FROM ("+C. query+"“) P”

227

228 i nner _order « []

229 type «— O

230 of fset < COUNT-CoLUMNS(C)

231 sql += “, LATERAL (”

232 sql += “SELECT "+[type, “P.*", NuLL-LIST(nhuntols - offset)]
233 sql += “FROM (VALUES(1)) DT_OneRow’

234 fori <« 1 to union_children.length do

235 child <« union_children[i]

236 CHOOSECORRELATIONY child)

237 type «— type + 1

238 sqgl += “UNION ALL SELECT "+[type, NuLL-LIsT(of fset)]
239 of fset «— offset + COUNT-COLUMNS(child)

240 sqgl += [“I"+i +“.*”", NuLL-LIST(nuntols - offset)]

241 sqgl += “FROM (”"+chi |l d. query+") |"+i

242 i nner_order <« [inner_order, child. orderby]

243 sql +=*“) U type, "+ [“u"+i for i =1 to nunctols]+ “)”
244 sql += “ORDER BY "+[parent _order_key, “U. type”, i nner _order]
245 return sql

246 end

247

248 function NuLL-LIST(n) > Generate alist ofi NULL values

249 nulls « []

250 fori «— 1 to n do

251 nulls < [nulls, NuLL]

252 return nulls

253 end

Figure 3.19: Combine procedure for outer union.

3.3 QUERY REWRITER 47

SELECT P.s2 AS orderkeyl, P.sl1 AS orderkey2,

U. *
FROM (SELECT s1, s2
FROM S
VWHERE s3 = - w s2 sl type ul u2 u3
) P A1 0 A 1 -
LATERAL Al 1 - - f
(SELECT 0, P.=*, NULL B 2 0 B 2 -
FROM (VALUES(1)) DT_-OneRow B 2 1 — — h
UNI ON ALL C 3 0 C 3 —
SELECT 1, NULL, NULL, 11.=* C 3 1 — — |
FROM (SELECT t1 D4 0 D 4 —
FROM T
WHERE t2 = P.s2) I1
) UWtype, ul, u2, u3)
ORDER BY 1, 2, U.type
(a) Combined query (b) Sample output

Figure 3.20: Querie®s and(@)> combined using outer union.

The procedure for combining outer and inner queries usirtgrawnion is given in Figure
3.19. Figure 3.20 shows the result of applying the combanmggirocedure to querigd; and the
nested@s query of our running example. The first two columns of the comt query’s result
(or der key1 andor der key2) are the ordering column and key ©f; respectively. The third
column is atype field which is used to ensure that Scalpel can unambiguouslyndiete which
of the original queries a particular row of the outer uniosuteis associated with. In the example
from Figure 3.20, rows resulting from the original outer guare tagged with typ8, while those
from the inner query have tydk. In the more general case, Scalpel assigns a distinct tyjoe fie
value to each of the inner queries. TBBRDER BY clause is used to ensure that resulting rows
appear in the order in which they will be required the appiiica The rows are ordered first by
the ordering attributes of the outer queod (in this case, an alias far2), then by a candidate key
of the outer queryk1 here, an alias fog 1), then by the type field. This ordering prefix ensures
that all of the inner query tuples that correspond to a paeroouter tuple are grouped together in
the result. Any ordering attributes of the inner queriestaem appended so that rows within each
group are relatively ordered as specified by the orighRIDER BY clause. For someBMSsS, it
may be possible to eliminate the type field by relying on th¢ @aler ofNULL [166].

The first branch of the generatelll ON construct is responsible for generating the rows cor-
responding to the outer query. This is accomplished by Setpthe attributes of the outer de-

48 NESTED REQUEST PATTERNS

rived table as outer references fr@m_OneRow, a specially constructed table that returns a sin-
gle row. AVALUES clause is used to generate the required single rovp#arss that do not sup-
port theVALUES construct, a missingROM clause can be used instead. The effect of the first
branch of thdUNI ONiis to include a tuple in the union for each row of the outer gu€his en-
sures that there is exactly one encoded outer row for eachetomned from the outer query. For
this strategy, an outer join is not needed because dbth@neRow construct.

The par ent _or der ordering attributes must be taken from the outer query ddriable
(P), not the union) because the attributes of the union are supplied mithL values when en-
coding inner rows. Putting these ordering attributes instilect list of the combined query leads
to data redundancy: the ordering attributes of an outer rewdaplicated for all corresponding in-
ner rows. Worse, with our current formulation the orderitigilautes are duplicated in the rows
encoding an outer result row if they were already selecteattabutes. Some of theBMS sys-
tems we tested support an extension to SQL/2003 that alloesudt to be ordered by attributes
that are not in the select list. This approach avoids the iatandancy associated with return-
ing these duplicated values. Scalpel could exploit thisdeerspecific capability. Alternatively,
Scalpel could be extended to avoid duplicating orderingbaties in the encoded inner rows.
These changes would provide better performance, espewibkn the ordering attributes are a
significant contributor to the row size. At present, we hastimplemented these extensions.

Unlike the join strategy, the outer union strategy can bdiegypegardless of the number of
rows returned by the inner query. When the application peréoa FETCH on either the outer
guery or the inner query, Scalpel obtains the next row froenctimbined query’s cursor and ex-
tracts the values that correspond to the original quenfisnens. A change in the value of the type
field (for example, froml to 0) indicates that there are no more inner query tuples for tine ¢
rent row of the outer.

LEMMA 3.3 (OQUTER UNION STRATEGY IS SOUND)
The Outer Union strategy returns the correct multiset ofsrtasmhe outer and inner queries.

PROOF Let(@ be the outer query, an@, ... @, be then inner queries. Let UNLLS(j, k)
be defined as follows:

UNULLS(j, k) = (NULLS(sch(@;)), NULLS(SCh(Qj+1)), ... NULLS(schQ%))) (3.10)

The UNuLLS() construct allows us to represent supplyimgLL for all of the attributes of a
range of queries.

Let USCHEMA(i) be defined as follows:

USCHEMA(i) = (i, UNULLS(0,i — 1), sch(Q;), UNULLS (i + 1,n)) (3.12)

3.3 QUERY REWRITER 49

The USCHEMA() construct defines the schema of branaf the combined query. It contains a
type field with valuei, NULL values for all queries that precedkg in the encoded result set, the
attributes ofQ);, and, finally,NuLL values for all queries that follow®;.

The combined querg) is formed as follows:

Qc:QQA;’I<{(O,JU,UNULLS(l,n)} L—ﬂ A [USCHEMA (i) Qi(ac[Mi])> (3.12)
i=1,....,n

wherel = sch(Qy) is used to represent the identity mappind| = .
When the original outer quer, is submitted, Scalpel instead returns the following:

@) = Q)] (olype =012) (3.13)
Applying the projection and selection criteria simplifibsstto:
@ — @ ((an) (314)
= (3.15)
r€Qo

The result ofQ);, contains exactly one rowcorresponding to each rowin Q. Thus,Q; = Qo,
and Scalpel returns the correct multiset of rows for the rogery.

When the outer cursor is positioned on a rewidentified byr; [KEY[Qo]] = k1 and the
application submits an inner quety;(x), Scalpel first checks that the predicted correlations
x = r1[M;] hold; if not, the original query is submitted unmodified. ¢f Scalpel answers the in-
ner query with the following:

Q) = mA" [sch(@Q;)] (a[type: i AKEY[Qo] = kl](Qc)> (3.16)

Applying the selection predicates simplifies the exprassai®follows:

Q) = 7" [soh(@,)] ({n PAX, (wALL[USCHEMA@)J Q (x[MA))) (3.17)

If we apply the projections and expand the apply operatorphbtain the following simplified
form:

Qi = Qi (r1[M;]) (3.18)

Since we have already checked that [)/;], this givesQ);(z) = @7, and the correct mul-
tiset of rows is also returned for each inner qué€ry d

50 NESTED REQUEST PATTERNS

Partitioned Execution

Under the unified execution strategies the combined queissised when the application first
opens the originabuter query. In contrast, under a partitioned strategy, the t&wmi combined
query is issued when the application first opens the origimar query of a query/context pair.
There are many possible partitioned strategies, of whi@lp&ts optimizer currently considers
two: theclient hash joinstrategy and thelient merge joinstrategy. The optimizer (described in
Section 3.5) sets thal t field of nodes in the context tree to ‘H’ to select the cliensingoin
strategy and ‘M’ to select the client merge join strategy. d&scribe these two strategies next.

3.3.4.1| The Client Hash Join Strategy

Under this strategy, the inner query is combined with theiousing a lateral derived table like
the one shown in Figure 3.21. This gives a single statemantétrievesall of the desired rows
from the inner query for all possible outer rows. The firstdithat the inner query is executed by
the application, the combined query is submitted instedddserver. All result rows are fetched
and stored in a hash table at the client using the parameftehg inner query from the result
set PD. s2 in Figure 3.21) as the hash key. When the application openmtter query, Scalpel
searches the hash table using the inner query parametes\adithe lookup key to determine the
tuples that should be returned to the application. When titex @uery is closed, the hash table is
discarded.

SELECT PD. *, |.x*
FROM (SELECT DI STI NCT s2
FROM (SELECT sl1, s2
FROM S
WHERE s3=:w) P) PD

LATERAL
(SELECT t1
FROM T

VWHERE t2=PD.s2) |

Figure 3.21: Querie®; and()>; combined using client hash join.

Figure 3.22 shows the procedure for combining queries utideclient hash join strategy.
This is similar to the procedure that is used under the undigeér join strategy (Figure 3.17).
However, there are a few important differences. First, tgitioned approach rewrites a single
CONTEXT by combining it with its parent. Second, only the attribudéthe outer query that pro-
vide parameter values to the inner query are included inghkaltr for partitioned execution. In

3.3 QUERY REWRITER 51

Figure 3.21, onlys2 is needed, nas 1. Also, each distinct combination of inner query parame-
ter values need only be included once in the outer tableelktlare several rows with the same
s2 value, they will all generate the same inner rows. Figurd 3fbws how @I STI NCT key-
word can be used to achieve avoid duplicating inner rowsaliirLEFT OUTER LATERAL is

not needed, since any correlation values that result in gityeimner query can be left out of the
client hash table.

254 function CoMBINE-HASH(C)

255 P < C. parent

256 corrs <« CHOOSECORRELATIONS C

257 sql = “SELECT PD.*, |.*"

258 sql += “FROM (SELECT DI STI NCT "+corrs
259 sql +=* FROM ("+P. query+*) P)"
260 sql += “) PD, LATERAL ("+C. query+“) I|”
261 if C.orderby # () then

262 sql += “ORDER BY "+C. or der by

263 return sql

264 end

Figure 3.22: Combine procedure for client hash join.

Figure 3.10(e) illustrates the the situation in which therdl hash join strategy is used for
all four of the queries nested und€x,. While the nested strategy opens 10 cursors, the parti-
tioned client hash join strategy only opens 5 cursors. leantlore, the number of opened cursors
in the partitioned execution strategy does not depend onuh#er of rows returned from outer
gueries. However, this strategy does require sufficient amgrat the client to hold the hash ta-
ble, and the CPU of the client machine may make the hash |soklgwer than the original,
nested strategy.

In the example of Figure 3.10(e), Scalpel combines inneryg@l with outer queryQs.
The combined query is executed at most onceimEanceof the parent query)s. Scalpel does
not need to execute the combined query if the applicatioemepens)), under a particular in-
stance of@3. Thus, in the example, the combined query is executed twieeause the appli-
cation openg)s three times, but in one of those cases it never opens thedngstry (-, be-
causeR)s returns no rows. In general, it would be possible to comidlpavith bothits parent()s
and grand-paren; so that the combined query would have to be opened (at most) e in-
stance of);. Whether this strategy is preferable to combining only whinimmediate parent de-
pends on costs and query selectivities. Although it woultag®ly be possible to consider these
alternatives, at present Scalpel only considers the hasttganbination of a query with its im-
mediate parent from the context tree.

52 NESTED REQUEST PATTERNS

LEMMA 3.4 (CLIENT HASH JOIN STRATEGY IS SOUND)
The client hash join strategy returns the correct multisedpws for the outer and inner query.

PROOF Let(@; be an outer query anQ-(z) be an inner query with parametetsThe client
hash join strategy does not modify the outer query. Howétveomputes the results for all invo-
cations of the inner query with the following combined quéry:

Qc =(5 MIQ1)) ALy Q2(3) (3.19)

The combined query)« returns the results af),(z) evaluated with each distinct set of outer
bindings from@);.

When an instance of the inner quepy(x) is submitted while the outer cursor is positioned
on a rowr, Scalpel first checks that the predicted correlations r[M] hold; if not, the original
query is submitted unmaodified. If the predictions do hol@ntiScalpel answers the instance of
the inner query using the hash table that was filled from timebdoed queryQ ¢ as follows:

Qy = 7 [sch@Q2)] (olr[M] =2](Qc)) (3.20)
A [sCh(Qy)] (o[r[M] = m]((7T IM](Q1)) Af Qa(i)) > (3.21)
Since Scalpel has checked that= r[M] for the current outer row, we know that there is at

least one row in Q; such thatr = r[M]. Applying the distinct projectiom®s™[M/](Q;) and the
selection criteriar[r[M] = x] therefore gives the following simplification:

Qy = 7 [sch@a)] ({r} AZy Qa(1)) (3:22)
= Qa(r[M)) (3:23)
= Qo) (3.24)

The setQ), that Scalpel returns for an invocation @f(z) contains exactly the desired mul-
tiset of rows.
O

3.3.4.2| The Client Merge Join Strategy

The client hash join strategy amounts to a distributed haisheixecuted at the client. Similarly,
the client merge join strategy amounts to a distributed @ implemented at the client. For
this to work properly, Scalpel must ensure that the innerautdr tuples arrive at the client in the
proper order for merging.

The merge join approach consists of opening rewritten @assof both the outer query and
the inner query. The outer query is rewritten so that theltréss a known total ordering, and so

3.3 QUERY REWRITER 53

that it includes those attributes that we guess will be usecbaelation parameters to the inner
gueries (based on our training period). The inner querywsitien by combining it with the orig-
inal outer query so that it returns matching inner rowsdibiof the rows of the outer query. This
is similar to the rewriting that is done to the inner query entthe client hash join strategy. How-
ever, under the client merge join strategy, the rewritt@eimquery is ordered to match the known
ordering that we imposed on the outer query results, as welhg order requirements specified
in the original inner query.

265 function CoOMBINE-MERGH C)

266 P < C. parent

267 corrs <« CHOOSECORRELATIONS C

268 parent _order <« [P.orderby, P.keys]

269 sql = “SELECT "+parent _order+“, C. *”"

270 sql += “FROM (("+P.query+") P)"

271 sql += *“, LATERAL ("+C. query+") C

272 sql += “ORDER BY "+[parent _order, C. orderby]

273 > The parent query will be modified to be ordereddar ent _or der (Figure 3.25 line 294)
274 return sql

275 end

Figure 3.23: Combine Procedure for Client Merge Join

Figure 3.23 shows the procedure for producing the combinedriquery, and Figure 3.24
shows the query that would result from combining the innet amter queries from our running
example. In this case, the rewritten inner query is ordeyel.b d, which is the sort order of the
outer query. No additional ordering constraints are imgdsethe original inner query. In Sec-
tion 3.3.5, we show how the parent query is is modified to idelthe ordering attributes needed
to totally order the results (Figure 3.25 line 294).

The first time that the inner query is opened, Scalpel submstead the combined query. In
response to aErCH on the inner query, Scalpel first checks the values of thengoand key
attributes of the current row of the outer query. It then ades the cursor of the combined inner
query to the first row for which the corresponding attribudesiot exceed the current values from
the outer. If combined query’s sorting attributes matchséhof the current outer tuple, Scalpel
returns the values of the inner query attributes. If theyeeridhose of the current outer tuple, this
indicates the end of the application’s inner query’s resett Scalpel closes the combined inner
guery’s cursor when the outer query’s cursor is closed.

Figure 3.10(f) illustrates the the situation in which theiat merge join strategy is used for
all four of the queries nested undéx,. As was the case for the client hash join, Scalpel only
considers the merge join combination of a query with its irdiate parent from the context tree,
e.g.,()» is combined with)3 but not with@,. Thus, the resulting pattern of query instances is

54 NESTED REQUEST PATTERNS

SELECT P.s2 ol, P.sl1 ki1, |.+*
FROM (SELECT s1, s2
FROM S
WHERE s3=:w) P,
LATERAL
(SELECT t1
FROM T
WHERE t2=P.s2) |
ORDER BY o1, k1

Figure 3.24: Combined inner query for the client merge jbiategy.

almost the same as that of the client hash join strategypékaethe ordering of the result of the
combined inner queries. Unlike the hash join strategy, tleegm join strategy does not require
that the result set of the combined inner query be storedeatltbnt. However, the merge join
strategy does impose an additional sorting burden on tiveis&calpel’'s optimizer uses its cost
model to choose between these alternatives.

LEMMA 3.5 (QLIENT MERGEJOIN STRATEGY IS SOUND)
The client merge join strategy returns the correct muliidebws for both the outer and inner
gueries.

PROOF Let(Q) be an outer query angs an inner query that is executed using the client merge
join strategy.

The client merge join strategy modifies only the orderingcfmation of the outer query, by
appending additional attributes to ensure a total ordefihgrefore, the multiset of rows returned
for the outer query is correct.

A combined inner querg)¢ is formed to return all inner rows as follows:
QC = Ql A;]\/j Q2(7_3) (325)

When the outer cursor is positioned on rewdentified byr[KEY[Q1]] = k1 and an instance
of the inner query).(x) is submitted, Scalpel first checks that the predicted caticelsr[M] =
z hold. If so, then Scalpel answers the query with the follgui@sults from the combined query:

Q= w[sch@Q2)] (olKEY[QI) = ki) (Qc)) (3.26)

= M Ise@Q)] ((oKevRi] = kil (@1 A%y Q:(2))) (3.27)
(3.28)

3.3 QUERY REWRITER 55

We know that exactly one rowexists inQ); with r[KEY[Q1]] = k1. If we push the selection
criteria down, we can simplify to the following:

Qy = 7 [sch(@y)] ({r} A7)y Q2(7)) (3.29)
= 7lseh@Q2)] ({1} x Qa2 (r[M])) (3.30)
= Qo (r[M]) (3.31)
— Qulx) (3.32)

Therefore, Scalpel returns the desired multiset of rowsHerouter and inner queries of the
client merge join strategy. d

Rewriting a Context Tree

The preceding section described rewrite procedures tingtrgee a rewritten query for each of the
execution strategies we consider. The unified rewrite nistloombine a context with its unified
children while the partitioned rewrites combine a contekhvits parent. Each of these rewrite
procedures operates on an individua\OrEXT node at a time. In this section, we describe how
Scalpel rewrites an entire context tree by operating on on> at a time. First, Section 3.3.5.1
describes how Scalpel use€AON objects to represent steps the Prefetcher should follom+o i
plement the prefetch strategies. Next, Section 3.3.5.@ritbes how the RWRITE-TREE proce-
dure (Figure 3.25) rewrites an entire context tree. Fin&bction 3.3.6 provides a summary of
rewriting a context tree.

3.3.5.1| Representing Run-Time Behaviour With AcTioN Objects

In addition to the rewritten query text,ERVRITE-TREE generates information that is used at run-
time to direct the Prefetcher component how to respond toastg from the client application.
This information is recorded in &TION objects. Each ATION object contains amct t ype
field that indicates how the action should be applied. Furtthee ACTION object contains a
r esul t query field that contains the query text that defines the resultetetimed when the ac-
tion is used, and aubni t query that contains the rewritten combined query. For example,
for contextCs in Figure 3.11(c) we would have ancAION object of type $BMIT-HASH. The
resul t query field would be the text of querg),, and thesubmi t quer y field would be the
text of the combined query shown in Figure 3.21.

The ACTION objects encapsulate the operations that will be perfornmeldetalf of a single
execution strategy for a conte®t TheC. r esul t quer y field specifies the query text that de-
fines the result set returned by the AoN object. When the client submitsesul t query, the

56 NESTED REQUEST PATTERNS

Prefetcher uses internal bookkeeping in theTfoN to find if the desired result is already avail-
able. For example, for the client hash join strategy, thdelrker searches in a hash table of
prefetched results. When the prefetched results are nialblea thesubni t query is passed
on to thebBMS to retrieve the results for the current request and to prefatiditional results.
For example, in the client hash join case the combined geesybmitted and the results are used
to fill a hash table.

S C Action Type Description

‘J” P INTERPREFJOIN Pass combined query to next actioreiot i ons. Re-
turn only original attributes at the parent context.

‘)’ (C DECODEJOIN Read attributes from current parent row. If this row was
null-supplied, return an empty result set.

‘U P INTERPREFUNION Pass combined query to next actioreiot i ons. Re-
turn rows to parent that have type attribute of 0.

‘U’ C DECODEUNION Move forward in parent’s result set until a row with the
appropriate type field is found; return all such rows.

‘M’ P INTERPREFMERGE Pass ordered query to next actioraioit i ons. Return
only original attributes.

‘M’ C SUBMIT-MERGE Submit combined, ordered query b@mMs. Return all
rows from the combined result set that match the or-
dering attributes of the current parent row.

‘H C SuBMIT-HASH Submit the combined query to tlEBM™MS, and popu-
late a hash table with the results. Satisfyed requests
from the hash table.

‘N C SUBMIT-NEST Submit the query to theBms.

Table 3.3: Types of ATION objects. The first column is the execution strategy for witiehtype

is used, and the second columrCisf the action type applies to the context itselfBiif it applies

to the parent context. The third column gives #& t ype value, and the last column describes
how it is used.

The client hash join strategy generates armON object only for the child context that is
rewritten. In contrast, the client merge join needs to cleamgt only the query that is submitted
at the child context, but also the query for the parent. Thergaquery is altered to add order-
ing attributes that ensure a total ordering permitting nimgr@f result rows. For the client merge
join, an ACTION of type SUBMIT-MERGE is associated with the child, while arcAioN of type

3.3 QUERY REWRITER 57

INTERPREFMERGE is used for the parent context. The@viT-MERGE indicates that the com-
bined, ordered query should be submitted for the child, asdlt sets are interpreted by advanc-
ing on the combined, ordered result set. TREBRPREFM ERGE specifies that a variant of the
parent query should be submitted, rewritten to providea totlering. The result of this rewritten
query is interpreted by returning a result set to the cliemtaining only the original attributes.

The SuBMIT-HASH and SuBMIT-MERGE types of action submit a query directly to the
DBMS. In contrast, actions of typeNTERPREFMERGE are associated with the parent context,
which will also have an execution strategy of its own. Fomegke, in Figure 3.11 the contegls
will have an action of typeNTERPREFMERGE corresponding t@’y, and it will also have an ac-
tion of type SyBMIT-MERGE resulting from its own annotation with strategy ‘M’. Actisrare
maintained in an ordered lisict i ons for each context.

Theact i ons list may have multiple ATION objects with a type prefixed bwIrERPRETF
before the final ATION object. Each of theseNITERPREF actions has the effect of interpret-
ing the result set that answers the associaieslul t quer y from a result set that answers the
associategubmi t quer y. For example, a subset of the columns may be returnetE@PREF
MERGE, INTERPREFJOIN) or a subset of the rows and columnsiTERPREFUNION). The
Prefetcher never directly submits a query foNaERPRETF action. Instead, theubmi t query
is used when constructing the next action in the list. $hémi t query of the preceding A-
TION object always matches thieesul t quer y of this next object. At the end of the list is an
ACTION object with a type prefixed with @mIT- or DECODE (described in the sequel).

The partitioned strategies create asMIT- action for the associated context, leading to a
combined query being submitted for the child at run-timecdntrast, the unified strategies do
not submit any query at the child context, instead subngjttirsingle unified query at the parent
context. This is represented in the context tree by assogiBECODEJOIN or DECODEUNION
as the last element in tlect i ons list for the child objects and associatingTERPREFJOIN Or
INTERPREFUNION as a non-final element of the parerd’st i ons list. The REWRITE-TREE
procedure calls APEND-ACTION to add ACTION objects to theact i ons field of a context as
it processes the tree. ThePAEND-ACTION procedure also modifies the text of thaeer y field
of the context to reflect theubmi t quer y of the most recently added action. In this way, the
guer y field of the context is maintained with the currently neededry as the rewrite proceeds.

Table 3.3 summarizes thecAION types supported by Scalpel and outlines how they are used
at run-time. In the next section, we describe how tiWRITE-TREE procedure builds the &
TION objects for the entire context tree.

58 NESTED REQUEST PATTERNS

3.3.5.2| The REWRITE-TREE Procedure

Figure 3.25 shows the RVRITE-TREE procedure. Scalpel callsBvRITE-TREE for the root of
the context treet(r eer oot) to generate the combined queries for all nodes in the cotrisx
First, REWRITE-TREE(C) recursively rewrites all child nodes (line 291). Thisuesive rewrit-
ing will modify the quer y field of the child contexts, complete theict i ons lists, and pos-
sibly add ACTION objects to the lisC. act i ons. Next, if any child uses the client merge join
strategy, RWRITE-TREE adds an ATION object of type NTERPREFMERGEt0 C. act i ons.

Next, if there are any ‘J’-annotated childreneWRRITE-TREE calls COMBINE-JOIN(C) to
generate a combined quemgql that retrieves the original result set required®wgnd the at-
tributes needed for all ‘J’-annotated children. A call tePEND-ACTION(C, INTERPRET
JoIN, nsql) adds a new ATION objectA that will be used to pass on the combined query
nsqgl and interpret the results for the cont&xtFurther, theC. quer y field is updated to con-
tain the combined query tertsgl .

Similarly, if there are any ‘U’-annotated children@fthen REWRITE-TREE calls COMBINE-
UNION(©) . In this case, however, thé quer y field used in @MBINE-UNION(C) (line 226)
will be the modified query that was returned by &sINE-JOIN(C) (if there are ‘J’-annotated
children). In this way, the query combine procedures buildhe results of prior calls as the con-
text tree is modified in place.

After combining any unified children of, REWRITE-TREE modifiesC to reflect the strat-
egy C. al t that was selected for it. I€ is annotated with a unified strategy, theBVRRITE-
TREE adds an action of type EcoDEJOIN or DECODEUNION. No query will be submitted
for C at run-time; instead, the results will be interpreted frdra tombined results d's par-
ent context. If, on the contrarg is annotated with a partitioned strategy, theevRITE-TREE
calls ComBINE-HASH or COMBINE-MERGE to generate a combined quengql . These calls
combine the current. quer y with the parent query. If the unified rewrite procedures rfiedi
C. query, then the modified query is used when generating the comipaitioned query. This
combined query will be submitted to tiliBMs at run-time when no prefetched results are avail-
able, and this fact is recorded by adding anTAON object of type $BMIT-HASH or SUBMIT-
MERGE with the new combined query text. Finally, if the contéxts annotated with strategy
‘N’, then an ACTION object of type BMIT-NEST is added taC. act i ons. This action will
submit the current query stored @ query. This could be the original query text, or the re-
sult of a unified combined procedure.

Figure 3.21 shows a sample trace &RRITE-TREE when processing the context tree shown
in Figure 3.27(a), and Figure 3.27 shows the state of theegbiitee after steps in the sample
trace.

3.3 QUERY REWRITER 59

276 structure ACTION

277 acttype=" > The type of action to perform

278 resul tquery=NIiL > The query defining the result set

279 subni t query =NiL > The combined query that will be submitted instead
280 C. > Additional bookkeeping information is omitted

281 end

282

283 procedure APPENDACTION(C, type, submitquery)

284 A «— new AcTION(type, C query, submtquery)

285 C. query <« subnitquery > Change the current query
286 C. actions «— [C. actions, A > Append the new action
287 end

288

289 procedure REWRITE-TREE(C)

290 for child € C.children do

291 REWRITE-TREE(chi | d)

292 if 3 { child € C.children | child.alt = ‘M }

293 > If any child uses strategy ‘M’, submit a rewritten query tisatotally ordered
294 nsql <« ADD-KEYS-TO-ORDER-BY(C. query)

295 APPEND-ACTION(C, INTERPREFMERGE nsql)

296 if 3 { child € C.children | child.alt = “J"}

297 nsql <« CoMBINE-JOIN(C)

298 APPEND-ACTION(C, INTERPREFJOIN, nsql)

299 if 3 { child € C.children | child.alt = ‘U }

300 nsql <« CoMBINE-UNION(C)

301 APPEND-ACTION(C, INTERPREFUNION, nsql)

302 case C. al t

303 when *J’ then APPEND-ACTION(C, DEecobeJoiN, C. query)
304 when ‘U then APPEND-ACTION(C, DEcoDeUNION, C.query)
305 when ‘' H then

306 nsql <« COMBINE-HASH(C)

307 APPEND-ACTION(C, SuBMIT-HASH, nsqgl)

308 when ‘M then

309 nsql <« COMBINE-MERGH C)

310 APPEND-ACTION(C, SUBMIT-MERGE nsql)

311 when ‘N then APPEND-ACTION(C, SuBMIT-NEST, C. query)
312 end

Figure 3.25: Combine procedure to rewrite an entire coritext

60 NESTED REQUEST PATTERNS

1 ReWRITE-TREE(Ci)

2 REWRITE-TREE(C3)

3 APPEND-ACTION(C3, DECODEJOIN, Qs)
4 REWRITE-TREE(Cj3)

5 REWRITE-TREE(Cj)

6 APPENDACTION(C4, DECODEJOIN, Q3)
7 Q31 — COMBINE-JOIN(C3)

8 APPEND-ACTION((3, INTERPREFJOIN, Q31)
9 APPEND-ACTION(C3, DECODEUNION, Q31)
10 Q11 «— COMBINE-JOIN(C7)

11 APPEND-ACTION(4y, INTERPREFJOIN, Qip)
12 Q1. +— COMBINE-UNION(C;)

13 APPEND-ACTION((4, INTERPREFUNION, Q1.)
14 APPEND-ACTION(C;, SUBMIT-NEST, Qic)

Figure 3.26: Steps of RVRITE-TREE.

Summary of Query Rewriter

When Scalpel detects nested request patterns in a clieqigest stream, it can choose between
alternative execution strategies, some of which prefdiehrésults for future inner queries based
on predictions made using a context tree.

Unified execution strategies provide a modified query thatiisnitted at the root of a nested
pattern. The modified query combines the result set for thaagted root query, and also en-
codes the results of inner queries that are predicted to éeuted in the future. The outer join
unified strategy useslaEFT OUTER LATERAL derived table construct to join the results re-
guest for the parent query with the inner query results. Asdtrategy is only used when the in-
ner queries return at most one row, the combined query etxactly the same number of rows
as the original root query.

The outer union strategy is another unified strategy thatbooes the parent query with an
outer union of the inner queries, augmented with a typebatithat represents the query associ-
ated with each row. Again, tHeATERAL derived construct is used to combine the outer and in-
ner queries. In this case l&FT OUTER LATERAL is not needed as the outer union returns at
least one row for each row of the outer query.

In contrast to the unified execution strategies, the pantil execution strategies operate with
a single context. The client hash join strategy submits abtoed query that returns all of the
rows needed for the inner query associated with all rowsabtiter query. These rows are added
to a hash table, and individualF@N requests for the inner query are satisfied from the hash.table

3.3 QUERY REWRITER 61

o N[Q| S o N
/ \ ‘ | / : \
C: | 3] Qs Cs | U Qs Co | 3] Q Cs | U Qs
0 0 DECODE-JOIN 0
AR Ci | 3] Qe
| 0 | 0
(a) After step 1 (b) After step 3
C1 ‘ N ‘ (o C ‘ N ‘ O
‘CQ‘J‘@ Oa‘U‘Qa CQ‘J‘QQ DUUQSb
| DEcoDEJoIN | | 0 DECODEJOIN ECODELNION

INTERPRETFJOIN

AR Ci 3] Q
‘ DECODEJOIN ‘ DECODEJOIN
(c) After step 6 (d) After step 9
CalnN]ee |
Ch ‘ N ‘ Q1b SuBMIT-NEST
INTERPREFJOIN INTERPREFUNION
\ INTERPREFJOIN
AN
| 05 U] Qs / Lo U] Qs |
DCQ ‘) JQ2 DECODEUNION DCQ ‘) JQ2 DECODEUNION
ECODE-OIN INTERPREFJOIN ECODEOIN INTERPREFJOIN
AR Ci 3] Q
‘ DECODEJOIN ‘ DECODEJOIN
(e) After step 11 (f) After step 14

Figure 3.27: Context tree after executing steps of Figuzé.MNodes show the context, execution
strategy, current query, and list of actioi@s @ct i ons) ordered from bottom to top.

62 NESTED REQUEST PATTERNS

The client merge join strategy is similar to the client hash gtrategy, except that it uses or-
dering on the server instead of a hash table on the clientp@tent query is modified to guaran-
tee a total ordering, and a combined version of the innenygsesubmitted matching the parent’s
order. Individual ®@EN requests for the inner query are satisfied by fetching favearthe com-
bined result set. A comparison of the current value of ordgattributes from the parent row is
used to determine where the prefetched result set for ther ourery begins and ends within the
combined result.

Scalpel uses the RVRITE-TREE to prepare a context tree for execution. This procedure tra-
verses the tree in depth-first order. For each cor@artthe tree, it fills in the fieldC. acti ons
with a list of ACTION objects. These objects describe how the Prefetcher shespdind to ®EN,
FETCH, and Q. 0SE requests for the context. After rewriting the tree, the ert#t and associated
acti ons lists provide all of the information needed to execute tHected execution strate-
gies at run time. The results ofB/RITE-TREE are stored persistently in the context tree for use
at run-time, and the Prefetcher is responsible for perfognthhese specified actions.

Prefetcher

When the client application submitsP@N requests to the database server, Scalpel intercepts
these requests and tracks the current context. If the doatekquery matches an edge in the op-
timized tree, Scalpel executes an alternative query idsiad responds to the application’®EN
request by decoding the alternate result set. Figure 3@ @i simplified sketch of how the al-
ternate strategies are executed by the Prefetcher.

First, on line 319 Scalpel verifies that all correlation peédns made by the Pattern Detector
(Section 3.2.2) hold for this BEN request. If the correlations do not hold, Scalpel’s cotieta
prediction has failed, and the stored execution strategpatebe used.

If the predicted parameters match the actual values supplien the stored execution strat-
egy is executed. The activities required by eadtm®N objects in theact i ons list are per-
formed in order until the last action, which always returnesult set. For a child context as-
signed a unified strategy, the last action is prefixed wittDDE, meaning that the result set is
decoded from a combined query submitted by the contextsrpaFor contexts assigned a par-
titioned strategy, the last action in the list is prefixedhn8UBMIT-, meaning that a combined
query is submitted and used to prefetch the needed data.

Each list may have one or mor@TERPRETF actions before the final action (8MIT- or
DEcoODE). Any INTERPRET actions control how the result set is interpreted for thentl(for
example, by removing columns or skipping rows from othenbhes of a union strategy). Ta-
ble 3.3 summarizes the@rioN types supported by Scalpel and outlines how they are used at
run-time.

3.4 PREFETCHER 63

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

currctxt « treeroot > The current context
function RuUN-OPEN(Q parms)

C « find(currctxt.children, Q)

C. lastinput «— parms

currctxt «— C

if not CHECK-CORR-PREDICTIONS acti on, parns) then
> Correlation prediction failed: subm@to bems unmodified

for A € C. actions do
assert Q = A.resul tquery
case A acttype
when INTERPRETFJOIN then ...
when INTERPREFUNION then ...
when INTERPREFMERGE then . ..
when DECODEJOIN then
if NuLL-SuPPLIED(...) then > Return a cursor over an empty result set
else > Return an interpreted cursor on parent’s current row
when DECODEUNION then
> Move parent’s cursor forward until its type field matclfed ype.
if Not - Found then > Return a cursor over an empty result set
else > Return an interpreted cursor on the parent rows matching/ pe.
when SuBMIT-HASH then
if A. cachedresults = NiL then

> SubmitQto bBMS and load théA. cachedr esul t s hash table with the results

rs <« find(A. cachedresults, parns)
if rs = NiL then > Return a cursor over an empty result set
else return rs

when SUBMIT-MERGE then
if A.cursor = NiIL then

> SubmitQto bBMS and sefA. cur sor to the result set

> Move forward in combined cursor to first row matching paresy k
if Not - Found then > Return a cursor over an empty result set
else > Return an interpreted result over combined rows matchiagérent key

when SuBMIT-NEST then
> Submitt . conbi nedquer yoDBMS

Q «— A subnmitquery
> This pointis not reached; a result set is returned from withe above loop.
end

Figure 3.28: Sketch of execution of alternate strategies.

64 NESTED REQUEST PATTERNS

As RUN-OPEN processes th€. act i ons list, it considers the value @ act t ype field.
For types NTERPREFJOIN, INTERPREFUNION, and NTERPREFMERGE, no query is submit-
ted immediately (lines 325-327). Instead, theser®N objects change the way a result set is
interpreted, for example by restricting the attributesme¢d. The details for these types are omit-
ted.

Action objects of type BcoDEJOIN and DECODEUNION are associated with contexts that
have been assigned strategy ‘J’ or ‘U’. In this case, no gigesybmitted. Instead, the result set
for the OPENrequest is generated by interpreting the combined resutthaewas opened for the
parent context. It may be that the combined query contaimewaorresponding to the quey
In this case, an empty result set is returned. Otherwiseswdtreet is returned that generates its
rows based on the cursor in the parent context.

The partitioned strategies have a single action assocwitbdeach partitioned child (anno-
tated with SIBMIT-HASH or SUBMIT-MERGE). These actions submit a combined query the first
time that the partitioned child’s query is submitted for astance of the outer query.

The SuBMIT-HASH action loads a hash table with the results of its combinedygilibe hash
table is indexed by the parameter values that are prediotbd submitted on future opens of the
inner guery, and the entries in the hash table are buffedtreets. The hash table is loaded by
finding or adding the appropriate result set for each row efdbmbined query, then adding the
row to the buffered result set. ThayBMIT-HASH action satisfies ®eN requests using buffered
result sets from the hash table (if found) or an empty restl{isno match is found).

The SuBMIT-MERGE action submits a combined query that is ordered to match rther-o
ing specification and key of the parent query. Recall thaptrent query was modified to be to-
tally ordered (line 294). The@MmIT-MERGE action satisfies ®eN requests by moving forward
in the combined result set until either a row is found withesfkey attributes matching the par-
ent query’s current order/key or until a row is found beydmelse attributes. In the first case, the
action returns an interpreted result set that returns roara the combined results set with the
current order/key values; in the second case, an emptyt Lk returned.

Scalpel uses an @&rioN object of type $BMIT-NEST to indicate that the optimizer has se-
lected a nested execution strategy for a context. Everydim@rEN request is submitted for the
context, Scalpel sends arPeN request to th@sms for thesubni t quer y associated with the
action object. This is either the original query or a comtimgiery generated by unified chil-
dren of the context.

The RUN-OPEN function returns a result set at run-time. Further, Scalgelefetcher im-
plements RN-FETCH and RUN-CLOSE (not shown). The BN-FETCH function generates rows
based on the selected strategy, and also maintairsuthect xt . | ast out put field with the
most recently fetched row, allowing the predicted corietet to be verified. The BN-CLOSE

3.5 PATTERN OPTIMIZER 65

function updates theurr ct xt global variable to point to the parent context. FurthesNR
CLoskEereleases all prefetched results for the inner queries ci@stehildren of the close query.

Mistaken Predictions

All of the unified and partitioned rewriting strategies tisatalpel considers depend on the query
attribute correlations that it learns during its trainifgape. If these learned correlations hold dur-
ing the run-time phase, then Scalpel can use its rewritteniegito return the appropriate values

in response to the application'€FCcH requests as we have already described. However, Scalpel
must be prepared to cope with the possibility that its ptemtis will be wrong.

At run-time, whenever the application opens an inner querywhich Scalpel has deter-
mined to use a unified or partitioned execution strategylpgtfirst checks whether the expected
attribute correlations actually hold (line 319). That isc@mpares the inner query’s parameter
values with the values from the current rows of the outer yer queries) with which the in-
ner query is expected to be correlated. If they all matchy the correlation has held as expected
and Scalpel can proceed to answer the application’s subBEGETCH requests using its rewrit-
ten query. If any correlations do not hold, then Scalpel canse the rewritten query as planned.
Instead, Scalpel submits tleginal, unmaodified inner querio the server and uses the results of
that query to provide values to the application.

Since a single rewritten query normally takes the place afymiastances of the original in-
ner query, it may be the case that Scalpel isfadisthe rewritten inner query and one or more in-
stances of the original query to the server. For exampleeutie partitioned strategies, Scalpel
issues the rewritten, combined query the first time the agfitin attempts to open the original in-
ner query. If that first inner query instance is properly etated, Scalpel will issue its rewritten
guery. However, the next instance of the inner query may agirbperly correlated, and Scalpel
will be unable to use the already-opened rewritten quenngwar it as planned. In this case, it
must issue the original query to obtain a correct answeti®pplication.

These cases, when they occur, constitute failures of Ssafigenantic prefetching strategies.
Such failures cause Scalpel to do extra work, since it magwgajueries that are wholly or par-
tially unnecessary. However, since Scalpel is always foeéedue the application’s original, un-
modified query, they do not lead to incorrect answers.

Pattern Optimizer

Section 3.3 described five alternative strategies that eaentiployed to execute a nested query
pattern. After the training phase has built a context treatfiflying rewrite candidates, an opti-

66 NESTED REQUEST PATTERNS

mization step is used to determine which of these executiategies will be used for each con-
text in the tree.

Valid Execution Plans

Consider a nod€" that appears in the context tree (for example, n6den Figure 3.5). If the
FuLLY-PREDICTED procedure returns RUE for T, then the parameters of the quepyassoci-
ated withT' can be predicted based on the context of execution and weocaider executing)
using other strategies than the original (nested) strateggipel can execut@ using the nested
(‘N’"), outer join (‘J"), outer union (‘U’), client hash-jai (‘H’) or client merge-join (‘M’) ex-
ecution strategy. A plan is described by a context tree irchvigiach context is annotated with
‘N’, ‘J’, ‘U, ‘H’ or ‘M". For example, Figure 3.11 shows six fans for the context tree exam-
ple of Figure 3.3. These strategies correspond to the agadnfices shown in Figure 3.10.

With 5 possible annotations per node, there are up’tpossible execution strategies for a
tree withn contexts. Of thesg”™ strategies, some are not permitted. Section 3.3.3.1 testtine
at-most-one condition restriction for the outer join stpt We rely on the &M OSTONE(Q
support function to identify queries for which the join ségy is permitted. In addition, the root
node of the context tree and the immediate children of themode can only be annotated with
the nested strategy as these contexts have no parent qulemyhich to combine. A final compli-
cation results from the way that Scalpel rewrites the chalatexts annotated with the outer union
strategy (‘U"). The encoded results for these children adei@d by increasingype values.
The ordering matches the order that the original child gseniere submitted by the client appli-
cation. If the application were to submit the child querieai alternate order, Scalpel would not
be able to decode the prefetched results for all childrenthis reason, Scalpel does not con-
sider strategies where two contexts are annotated withf‘tthely were observed to be submitted
in conflicting orders during the training period.

The enumeration algorithm iterates through all of the pliuas are permitted by the above
rules and the optimizer selects the plan with the lowestnegéd cost.

Ranking Plans

We rank execution plans using estimates of the response(iims2conds) experienced by the
client application. Scalpel’s Cost Model is responsibledstimating cost parameters needed for
optimization. The implementation of the Cost Model is didmamat in Chapter 4. We describe our
ranking algorithm based on the following support routindsclr are defined in Chapter 4.

EsT-CosT(Q) Estimate the total cost for quety, including server, client, and communication
cost elements based on observed costs and server estimates.

3.5 PATTERN OPTIMIZER 67

EsT-Rows(Q)) Estimate the number of rows returned @y

EsTINTERPRET T, nunopens, nunr ows) Estimate the cost of processing the AoN ob-
jects inT. acti ons to interpret the results for contest. The estimate is based on
nunopens application calls to ®EN returning a total ohunrt ows rows. For example,
for the client hash join strategy, estimate the cost toragtr ows rows to a hash table and
look up a result setunopens times.

The Cost Model provides estimates of the cost of individegliests; in order to rank strate-
gies, we use the routinesE-CosTTREE (Figure 3.29) to estimate the cost of an entire context
tree based on the costs of the requests submitted by the tree.

352 function EST-COSTTREE(T, prtopens)

353 prtrows « EST-Rows(T.parent.query)

354 grows «— EsTRows(T.query)

355 nopens <« ESTP(T) X prtopens X prtrows

356 partopens «— ESTPQ(T) X prtopens

357 case T.alt

358 when ‘' N then cost <« nopens x EST-CosT(T.query)
359 when *J’" or ‘U then

360 > No query is submitted at this node

361 > The only cost is associated with interpreting the encodedli®(line 364)
362 when ‘H or ‘M then

363 cost «— partopens x ESTCosT(T.query)

364 cost «— cost + ESTINTERPREY T, nopens, partopens)
365 for child € T.children do

366 cost « cost + ESTCoSTTREE(child, nopens)

367 return cost

368 end

Figure 3.29: Estimating the cost of a plan.

Figure 3.29 gives an overview of how Scalpel estimates teeafa context tree with associ-
ated execution strategies. The ECOSTTREE function estimates the cost of a tree that has ex-
ecution strategies assigned to each node and a rewritten gererated by the RVRITE-TREE
procedure.

The EsT-CosTTREE function is called with a contexf” and prt opens, the estimated
number of times that the query associated the parent coisteqiened. The call €§-CosT
TREE(t reeroot, 1) is used to estimate the cost of one execution of the entirtegbtree.

If nodeT is annotated with a the nested strategy (‘N’), then the g@kagsociated witl" is
executed every time that a row is returned from the outenygaed the local predicates pass. We

68 NESTED REQUEST PATTERNS

usenopens to estimate this number, calculated by multiplyiagt r ows (the estimated num-
ber of rows returned from the parent context’'s querypby opens and EST-P (an estimate of
the probability of executing the inner query for each outav)r The cost estimate for an ‘N’
node isnopens multiplied by the expected cost of executifigquer y one time (returned by
EsT-CosT).

If node T is annotated with a unified strategy (‘U’ or ‘J’), thd@n quer y is not actually ex-
ecuted at run time. Instead, the rows for the node are dedoai®da combined result set submit-
ted by the parent context. The cost associated directly tivélcontextl” consists of the client’s
cost to interpret the combined result rows, and tla-ENTERPRET function provides an esti-
mate of these costs (line 364).

The partitioned strategies do not execute their rewrittgaryjevery time the application sub-
mits the inner query. Instead, they execute the rewrittearygat most once for every time that
the parent context’s query is opened. The variglde t opens is initialized with the estimate
(based on BET-PO(T")) of how often the rewritten query will be submitted. The cofkthe parti-
tioned strategies is estimated using the produgtanft opens and the estimated query cost. In
addition, the cost of interpreting the results of the coreliquery is included in the estimate for
these strategies (line 364).

So far, thecost variable has been initialized to an estimate for the cosectly associated
with nodeT". Children ofT" may also introduce costs by executing other queries. BeE ST
TREE function recurses to account for the cost of child requests.

Exhaustive Enumeration

Exhaustive enumeration provides one way to choose an esacplan. With this approach,
Scalpel exhaustively enumerate all plans for a context Feeeach enumerated plan that is valid
according the above rulese®/RITE-TREE is be used to assign rewritten queries to each node in
the tree. Finally, plans are ranked by estimating the coskéaute the tree one time, using cost
estimation methods provided by the Cost Model applied togheitten requests associated with
the rewritten context tree. The plan for the tree with thedsiwestimated cost is stored persis-
tently in the ‘Contexts+Rewrites’ store (Figure 2.1). Téiefored context and actions are used at
run-time to perform the actions selected by the optimizer.

Experiments

The costs associated with execution strategies dependumlaen of factors described in the ear-
lier sections. This section presents experiments thataysense of how these factors combine to
affect system performance. Table 3.4 shows the computedsinghe experiments, and Table 3.5

3.6 EXPERIMENTS 69

Computer | Processor 0o/s
A 1.8 GHz Pentium IV Windows XP
B 2 x 2.2GHz Pentium XEON| Windows 2003 Serve|
C 3GHz Pentium IV Windows XP
D 733MHz Pentium 11l Windows 2000

Table 3.4: Available computers.

Name | Client | Server | Communication Link Uy Overhead (ms)
LCL C C Local shared memory 0.3
LAN1 B C 1Gbps LAN 11
LANO.1 B C 100Mbps LAN 14
WiFi A C 11Mbps 802.11b WiFi 11.6
WAN A D 1Mbps Cable modem + WAN 468.9

Table 3.5: Tested configurations and the per-request caeilie

shows the configurations of these computers. We ran ountgsthree commerciabsms prod-
ucts. The license agreements prevent us from identifyiegthAs results for all three systems
were consistent (although with different constants) wenstesults for only one@sms product.

We tested a sample program with a single outer gdgryWe used a number of inner queries
Q1,Q2,...,Qr, with F' set to 2 unless otherwise noted. All inner queries are egddatr each
row of the outer query that passes any local predicates. Uitex query return2048/F rows
from a sequential scan with a range predicate (this setigsgconstant number of inner query
opens when varying fanout). Each inner query returnB rows for each invocation using an
index range scanH is set to 1 by default so that the outer join strategy can bepened). We
used an additional outer join in each query that allowed usty the server cost of the query
without affecting the number of rows returned.

All tests were run with JDK 1.5.0 and JDBC drivers providedhwpems vendors. The data-
base instance was fully cached to minimize the variancerireseosts. A prototype implementa-
tion of Scalpel was used for the experiments; combined gsevere automatically combined us-
ing theLATERAL keyword for one of th@sms systems, and vendor-specific equivalents for the
other two systems.

In our experiments, we vary the following factors:

70 NESTED REQUEST PATTERNS

Fanout () The number of inner queries executed for each outer row.
Selectivity £) A predicate selectivity independent of values in the oubers:
Selectivity 1) A predicate selectivity dependent on values in the outesrow
Inner Rows R) The number of rows returned from the inner queries.

Inner Columns {) The number of integer columns in each inner query.
Outer Cost (o) The cost of the outer query.

Inner Cost ;) The cost of the inner query.

All results show the average of a number of repetitions, with number of repetitions se-
lected so that the standard error of the meag X is less tharb% of the mean for each mea-
surement. The SQL statements were prepared once for edohdambination and prepare time
is not included in the reported measurements. We use sligiferent settings of the indepen-
dent variable for each of the strategies to reduce overlépeimesulting charts.

Effects of Client Predicate Selectivity

Scalpel uses two parameterssEP and BT1-PO0, to model the selectivity of client predicates, as
discussed in Section 3.2.3. In our experiments, we varydleetvities of two predicates (called
Py and P,) in the driver program. Predicaf®, is evaluated once per instance of the outer query.
If it is false, the inner query is not executed at all. The ciitey of Py corresponds to the es-
timate EST-P0. The second predicat®;, controls how many times the inner query is submit-
ted relative to the number of rows fetched from the outer yjuEne estimate ET-P is equal to
a combined predicate selectivity 8f = Py x P;. Figure 3.30 shows the run-time of the nested,
unified, and partitioned execution strategies with vangalgctivity of theP, andP; client pred-
icates.

In Figure 3.30(a), the selectivity a; is fixed at 1.0 and the selectivity df, is varied. In
Figure 3.30(b) 7, is fixed at 1 andP; is varied using the same valuesias With a selectivity of
P, = 0, the inner query is never submitted and the behaviour is/atgrit to the,) = 0 case: the
partitioned approaches are equivalent to nested (bothurgoonly the outer query). We avoid
this discontinuity by omitting the setting, = 0.

For the original nested execution strategy, execution tisnproportional to the product
P = Py x P;. The outer query is always executed one time, and the twa tuneries are exe-
cuted an average of)y|P times. Because the nested strategy depends on the prodbgtofi
Py, it has similar behaviour in both Figure 3.30(a) and (b). IBar values ofP, the nested strat-
egy is optimal. With smalP values, the inner queries are only rarely executed, andsturees

3.6

EXPERIMENTS

71

0.20 0.20 —
0.15 — 0.15 —
0.10 — 010 4 s HUH
YU Y UHU H‘UU S Hy Hy::: HuM HUM HUM UM U
: oM i MM
0.05 .\ ggiak My g 3 0.05 | /g g g d D
ERCR
0.00 -/ 0.00 -
[T T T T 1 [T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Varying selectivityPy (P, = 1) (b) Varying selectivityP, (Fy = 1)

Figure 3.30: Run times with varying predicate selectivityoonfiguration LCL.

are wasted fetching unneeded results. The run time of thedefategy grows rapidly with in-
creasingP, as the inner queries are executed for more and more outsr row

For the unified execution strategy, the execution time galgrindependent of the selectivi-
ties of Py and P;. Regardless of the results of these predicates, the unifiexy s executed and
all rows are fetched by the client. While most of the costshef tinified strategy are indepen-
dent of P, there is a slight linear dependence resulting from the abdecoding the attributes
for the inner queries. If an inner query is not opened, itdaltes are not decoded from the com-
bined result set, leading to slightly lower run-times.

The partitioned execution strategy fetches all possiblesrisom the rewritten inner query
when an inner query is first opened (tRgpredicate evaluated to true). This gives the partitioned
strategy a strong dependence on Hyeselectivity. TheP; selectivity also has a small effect: for
the client hash join strategy, it changes the number of Ipskperformed in the hash table; for the
client merge join strategy, it changes the number of rowsahainterpreted from the combined
result set. Figure 3.30(b) shows the relatively weak depeoel of the partitioned strategies on
the P, selectivity.

72 NESTED REQUEST PATTERNS

_ M M’
35 " . 'ﬂn“
3.0 1
M M
2.5 oM 4 _,,J'HU N
2.0 ™ ‘ 3 Hyy{f N
N NJ"
1.5 y N) i
Mo N . g B N M
1.0 » _”N,.;H. o USE e I‘_‘]‘H
05 4N W e J ! M’
H o HU
s g
0.0 —#Y 0 -
[T T T T 1 [T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Outer query cost factor (b) Inner query cost factor

Figure 3.31: Run times with varying query cost on configoratiiLCL with Py = 1, P, = 0.5.
Outer and inner cost factors are not directly comparable.

Query Costs

The execution costs of different optimization strategiegahds on the cost of the outer and inner
gueries that are combined. Figure 3.31 shows the executi@s tof nested, unified, and parti-
tioned strategies for our sample program. Predicate sétgavas fixed atPy = 1 andP; = 0.5.

The nested strategy increases linearly with the cost of tiher.oThe unified strategies also in-
creases linearly with the cost of the outer, and the slopearéase is the same as the nested strat-
egy for the cost of the outer query: both strategies exeti@®uter query once. In contrast, the
partitioned strategies execute the outer query once fdr efite child queries in addition to the
original, for a total of three executions. This gives thetiianed strategies a higher dependence
on the cost of the outer query. Figure 3.31(a) shows the ra for each the execution strate-
gies when varying the cost of the outer query.

When we consider instead the cost of the inner queries, wethiatdall of the prefetching
strategies behave in a similar way. The unified and parstiostrategies both compute the result
of these inner queries for all outer rows, while the nesteatesjy only evaluates the inner query
when theP; predicate passes (with selectivity 0.5 in this experimafienP; is less than 1, the
prefetching strategies are cheaper than nested when thiegoary cost is relatively low, but be-
come more expensive with increasing cost of the inner qiégure 3.31(b) shows the run time

3.6 EXPERIMENTS 73

6 6
u-
5 - 5 - g
v
4 - 4 - :
N u- N
3 N 3 : N
N : N
N SN
2 N L 2 NU
N U U N
1" L e 1 v g HM
e U H.M-_:..‘.HM M HMe HMees M
"y ;:'.LPM coHiMe HL‘JM Mo H-M
o~ 0 -
[T T T T 1 [T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
(a) FanoutF' = 2 (b) FanoutF' = 8

Figure 3.32: Run time (s) with varying number of columns ingdnqueries on configuration LCL
with Py = 1, P, = 1, R = 8. Note that the outer join (‘J’) strategy could not be compaas
more than one row is returned from the inner queries.

for each the execution strategies when varying the coseditb inner queries. With this config-
uration, the nested strategy submits 1024 inner queriee W@ prefetching strategies compute
the results for all 2048 predicted inner queries.

Number of Columns

If we vary the number of columns returned by the inner quethes cost of executing the nested
pattern increases. Figure 3.32 shows the run-time forréifiestrategies with varying number of
columns in the inner queries. Figure 3.32(a) uses a fanoht ef 2, while Figure 3.32(b) uses
F =28.

There are several effects contributing to the increasiegation cost with an increasing num-
ber of columns. First, the per-request overhead increasesuse more resources are needed to
initialize and describe communication buffers for moreuoohs. This increase has the most im-
pact on the nested strategy because it submits the largedtemwf requests. Second, the server
and client computation costs increase due to the higher auoflzolumns that are formatted and
interpreted for each row fetched. Third, the cost of sortafiens grows as the size of the materi-
alized rows grows. This factor affects the outer union arehtimerge join strategies as they both

74 NESTED REQUEST PATTERNS

add ordering attributes, possibly leading to a sort beirdgddo the execution plan used by the
DBMS. In our tests, the original queries already had sort opmratiso this factor did not have an

effect. Finally, the client cost for hash join increaseshesdize of the rows stored in the hash ta-
ble increase. More columns require more memory and moredpast copying the data into the

hash table.

The merge, hash, and nested strategies have similar bahaviih both fanout?” = 2 and
F = 8. In contrast, the union strategy has a higher slope with &igumation of 8 inner queries.
The union strategy encodes a combined result set into aesimgbned result usinguLL values
to represent attributes that are not appropriate for a giwen The total number ofiuLL values
returned grows with the product of the query fanduand the total number of columns in all the
gueries that are combined.

Execution Costs

Figure 3.33 shows the CPU costs and total time for each ofttagegies. Results are shown for a
configuration withPy = 1, P, = % and an inner cost fact@r’'; = 8. One row was returned from
each invocation of the two inner queries.

Client and server CPU costs were measured using O/S fusdiadDBMS-specific requests
respectively. The difference between elapsed executioe &nd the measured CPU costs is la-
belledlatency In cases where the elapsed time was less than the sum ofrilee sests, a nega-
tive latency is shown.

The server costs for the WAN case are higher for two reasbessdrver machine is slower,
and packet compression was used.

There are several interesting observations that we can fdoawFigure 3.33.

First, the original nested execution strategy is not sigaifily slower than the optimal strat-
egy (join) in the LCL configuration. It is reasonable for gyatdevelopers to select a nested strat-
egy for this case, especially considering the difficulty stiraating the selectivity of local predi-
cates and the complexity of manually combining queries.

Second, we observe that the join and merge strategiefaster in the LAN1 and LANO.1
configurations than in the LCL configuration. The LAN configtions allow for overlap between
server processing and client processing (the machine D inse@L is a uni-processor). The
nested strategy, on the other hand, takes more than 1.5 disnesg in the LAN1 configuration
and more than 2 times as long in the LANO.1 configuration whenpared to the LCL configu-
ration.

Third, the unified and partitioned execution strategiesicednot only latency but also the
client and server CPU costs. This cost savings results fesmeif messages that need to be for-

3.6 EXPERIMENTS 75

0.4 - 0.4+ 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1+ H H ﬂ ﬂ 0.1+ 0.1
0.0 H T 0.0 0.0 i
J H M U N J H M U N J H M U N
-0.1- -0.1- -0.1-
(a) Shared Memory (LCL) (b) 1Gbps (LAN1) (c) 100Mbps (LANO.1)
4.0 4.0 - 84
3.59 3.59
3.04 3.04
2.5+ 2.5+
- +Cli
504 504 B Latency (Elapsed - (Server+Client))
1.5 1.5
OClient CPU Time
1.0 1.0
0.5 0.5)
0ol == 5 N_ ! ‘ oo ‘ ‘ ‘ ‘ ‘ m Server CPU Time
J H M U N J H M U N
(d) 11Mbps (WiFi) (e) 5Mbps (WAN)

Figure 3.33: Run time (s) with varying network configurasamdP;, = % C1 = 8. Note that
the bar for ‘N’ is truncated in figure (e), with an actual hdigh55.4s.

matted, sent, and interpreted. Even in the LCL configuratidinstrategies but union use less
server CPU time than the nested strategy, despite theisgled?, = %

Finally, while the savings for the LAN configuration are lawdbsolute terms (about 125ms),
the savings are very significant for WiFi and WAN; for examplith a wireless configuration the
joined strategy saves nearly 1.5s of elapsed time, and tregsagrows to 100s with the WAN
setup.

The original nested execution strategy is close to optimakflocal connection. Even if a
LAN configuration is considered, absolute benefits are ntddean single execution of the outer
and inner query (hundreds of milliseconds) so system dpeesomight decide to use the simpler
nested implementation. However, the server costs are 5@ lvith the joined variant. Further,
if other deployments with higher network latency are useth@nfuture, the nested implementa-
tion will be unsatisfactory. Finally, the predicate seldtyt P, = % is quite low. If the value of
P, in particular configurations is higher, then the nestedesgsawill be far from optimal.

76 NESTED REQUEST PATTERNS

Scalpel Overhead

The Scalpel system monitors all database requests duaiimjnig. At run-time, all @ENrequests
are intercepted. If a query is not being re-written, theinagquery is submitted to theBms and
the result set is wrapped in a monitor object that can detberwvthe cursor is closed. This mon-
itoring is needed to maintain the current context for trigug rewrites.

We measured the overhead Scalpel adds to opening a quelyaWital configuration (LCL),
the overhead i27us per query, or7.0%. The overhead is the same for all network setups, and
drops t01.6% in the LAN configuration due to the higher base cost.

The overhead would be reduced if Scalpel were integratel thvé vendor-provided JDBC
driver (for example, eliminating the need to use wrappeectsjto track the current context).
However, the overhead seems acceptable as it is low in dbgeltms, and consists entirely of
client CPU time. Even with current overhead levels, sigaifiogains can be made without signif-
icantly impacting user interaction due to the benefits ofitew performed by the Scalpel system.

Summary of Nested Request Patterns

We have found that client applications submit request stsethat contain nested requests. This
nesting appears when an outer query is opened and an inngrigueeibmitted while the outer
query is still open. Typically, the inner query has inputgraeter values that are supplied with
values fetched from the database. In this way, we can vievwstedeequest pattern as a type of
distributed join implemented in the client code.

While input parameters to inner requests are typically drifam output columns of the en-
closing query, we have also found that, in some cases, tieegcaral to an input parameter of an
enclosing query. In some instances, the input parametéw#ya equal to a constant value. We
monitor correlations between input parameters and theee thipes of sources. At the end of a
training period, we predict future parameter values basedoorelations that have always held
so far.

From a performance standpoint, it would appear that a joicliant application code is not
a good idea. There are software engineering reasons thiat mike it difficult to avoid such a
join without destroying desirable properties such as eswagion. In other cases, we have found
that the nested execution strategy is, in fact, optimalgast in particular configurations). This
optimality can arise as a result of local predicates in tientlapplication that limit the number
of inner requests to a fraction of the rows returned by therogtiery. We use two parameters
to estimate the effects of local predicates™P0 estimates the probability that the inner query
will be executed at all for an instance of the outer querylevBsT-P estimates the proportion of
rows of the outer for which the inner query is submitted.

3.7 SUMMARY OF NESTED REQUEST PATTERNS 77

After a training period, Scalpel identifies a context treat ttrepresents the nested structure
we observed. An optimization step is used to select an execatrategy for each node in the
tree. There are three broad classes of strategy that wedeonsiested execution, unified exe-
cution, and partitioned execution. Nested execution spords to the original strategy, where
an inner request is submitted up to once per row of the odtarnbde is executed with a uni-
fied strategy, then at run-time a single request is submitiedtrieve the results for the parent
node and the unified child node. In contrast, with partittbegecution a separate cursor is sub-
mitted for the parent node and child node. However, unlikentbsted execution strategy, the par-
titioned execution strategy opens at most one inner cuesoinptance of the outer, instead of for
each row of the outer. Table 3.6 summarizes the strategitsviinconsider.

Strategy Symbol AddsORDER BY Probability
Nested Execution N No &r-P(O
Outer Union Strategy U Yes 1
Outer Join Strategy J No 1
Client Hash Join H No ET-PO(O
Client Merge Join M Yes ET-PO(O

Table 3.6: Summary of rewrite strategies. The first colunvegithe name of the strategy, and
the second gives the symbol used to represent it. The thidncoindicates whether the strategy
requires that we add &BRDER BY clause to the rewritten query, and the last column shows the
guantity that determines how often results are retrievedhfeer queries.

The unified and partitioned execution strategies that weiden encode the desired result set
as the result of a combined query. We decode this result getrieve the desired results. The
outer union strategy encodes a parent query and one or M@@eduieries using an outer union
rewrite, where each query is associated with a separata tmanch. AnORDER BY clause is
added to ensure that rows for inner queries come after tloeiassd outer query and in the re-
quired order. The outer union strategy computes the restiieanner queries for each outer row.
The outer union strategy can be used when the inner quetig® 1@ or more rows (empty re-
sult sets are detected by a missing union branch). The additvuLL values returned by the
outer union strategy contribute to a higher communicatiost,owvhich is partly why the outer
union strategy is out-performed by the outer join strategpemvit can be used.

The outer join strategy can only be used for inner queriesrétarn at most one row. Inner
gueries are combined with their parent using outer joingrélis no need to add ext@RDER
BY elements, and, as with the outer union strategy, the reka#ah inner query is computed for
each outer row.

78 NESTED REQUEST PATTERNS

In contrast to the unified strategies, the partitioned affias use a separate cursor for the par-
ent query and each child query; as such, they incur one estreepuest overhedd, per child.
However, the rewritten query for child is only submittedhietP, predicate is true. We have ob-
served some client applications where the inner query ieegubmitted for all rows of one in-
stance of the outer, or none. The partitioned strategigsaiyp outperform the unified strategies
in this case as the rewritten, combined query is only subrhitthen the first inner request is sub-
mitted, meaning that the results for inner rows are actusdiyded

In the client hash join strategy, a rewritten query is suteditvhen the inner query is first ob-
served. This rewritten query encodes the results of ther iguery evaluated for all rows of the
outer query. These multiple results are stored in a hash,talflich is used to satisfy future re-
guest. The client hash join requires sufficient client mgmorhold the combined results. Fur-
ther, the approach may not reduce latency if the client CRwidast enough to make fetching
results from the hash table faster than the per-requesiciat®,. An alternative that avoids these
concerns is the client merge join.

In the client merge join strateggRDER BY elements are added to the parent query when it
is submitted to ensure that the outer rows are totally ocdéfthen an inner query is submitted, a
rewritten request is submitted to retrieve the results efitimer query evaluate for all outer rows.
This rewritten request haSRDER BY elements that return the encoded result sets in the same
(total) order as the adjust parent query. In this way, innerigs are satisfied by fetching forward
in the combined result set, effectively performing a distted merge join on the client.

By using a training period, Scalpel identifies nested refgpaterns. Using cost-based opti-
mizations, the execution strategy estimated to be che&psstected. We have found that, even
where optimal, the original nested execution may perforny &adly when moving to another
configuration with different predicate selectivity or netk latency. The context-based prefetches
performed by Scalpel can significantly reduce the expogedds of these applications; in many
cases, the execution costs at the client and server areeslsoad due to the lower number of
messages.

Cost Model

In order to make effective cost-based rewrite decisioresPittern Optimizer needs estimates of
various cost parameters. The Cost Model is responsiblerfmriging these estimates. In gen-
eral, the cost for a query can be represented as a vectoronétltomponent for each resource
being used. For example, we could have components asgbeidte client cost, communica-
tion cost, and server cost. With the cost vector, we assaiabtal latency caused by a request.
This latency can be estimated using the sum of estimatedrsenmmunication, and client costs.
Clearly, other ranking functions can be used instead; farmate, we could choose to rank based
only on server execution costs, or we could attempt to craatere precise model of latency
by estimating the amount of overlap for server, network, eieht processing costs. In the cur-
rent implementation, we concentrate only on ranking byl tatancy, expressed in seconds. For
this reason, we do not show costs as vectors, but insteadtbleasealar latency.

Table 4.1 shows the quantities estimated by the Cost Mode¢ HEST-CoST(Q) and
EsTRows(@) functions are estimates for queries which have either bésereed during a
training period or are a combination of such queries formethb Query Rewriter. The valug,
is an estimate of per-request overhead. Tea&ENTERPRET(C, p, r) function estimates the cost
of interpreting the results of an encoded result set foreodrt.

Quantity Description

EsT™CosT(Q) Estimated cost fo€)
EsTRows(Q) = |Q| Estimated rows returned iy
Uy Overhead of a single request

ESTINTERPRET(C,p,r) Cost of interpreting results for contekt with p opens; rows

Table 4.1: Estimated quantities.

Scalpel’'s Cost Model uses a combination of calibrationeoled quantities, and support rou-
tines provided by the DBMS in order to provide the estimateable 4.1.

79

80 COST MODEL

Estimating Per-Request Overhead U,

When we submit a request to a database server, the totatyaitem result of several compo-
nents: formatting and transmitting the request via inteepss communication, finding the ap-
propriate execution plan for the request (either by optimgior finding a stored plan), initializ-
ing the execution data structures, and, finally, executiegstlected plan. All but the last of these
costs represents a fixed per-request overhead. This odehiralependent of the cost of execut-
ing the selected plan (although it may depend on factors asithe complexity of the query).

We can assess the impact of this per-request overhead usigariment inspired by Bern-
stein, Pal and Shutt [19]. We create a tabblecontaining 1024 rows of rows, each with an inte-
ger primary key and 100 integer columns. We fetch all 1024srfvam the table by submittingy
range queries, each of which retried€24 /N rows using a range predicate on the primary key.

[o] (o]
200 —
80 —
150 o
60 — o
100 — o 40 |
. o
50 — O 20 — 2
o _c‘)o
o e
g
0 - 0 -
T T T T T 1 T T T T T 1
0 200 400 600 800 1000 0 50 100 150 200 250
(@ T(N)=~0.217N + 18 (b) T(N)=0.329N + 12

Figure 4.1: Run times (ms) with varying number of requesthéoserver. Dashed lines show the
results of linear regression; however, a linear regredsioot well justified by these results.

Figure 4.1 shows the result of this experiment on the LCL goméition (described in Ta-
ble 3.5). In principle, the server performs the same amofiaseful work (fetching rows), while
the per-request overhead is performE&dimes. This would lead us to expect a linear relation-
ship between run-time an®f, where the slope of the relationshiplis and the intercept is the
server cost to fetch the desired rows. Figure 4.1(a) shosvsatbults ofV requests withV = 2¢
for i € [0,10]. Clearly the run timé&"(N) is proportional taV, but it does not appear to be a lin-

4.2 ESTIMATING THE COST OF INTERPRETING RESULTS 81

ear relationship: compare the points to the linear regrasshown with a dashed lines. There
is more changing in this experiment than just the numbernoési the per-request costs are in-
curred. Figure 4.1(b) removes the top two and bottom two gdatats providing a region that is
more closely approximated by a linear model (having a caefftaf determination?? = 0.995
compared td?? = 0.965 for Figure 4.1(a)), but the use of a linear model to estindatesing the
slope does not appear to be well justified.

We take the results shown in Figure 4.1 as confirmation themethre per-request overheads,
but the approach does not provide a good estimate of this lestéad, we time the cost of a
guery that we expect to have very low server execution cigtstime the execution of a query
that fetches a single row with a constant value:

SELECT T.x
FROM (VALUES (1)) T(X)

For this simple query, the server execution costs (apam fyer-request overhead) are negli-
gible. When Scalpel is configured for a particular instalatit uses a calibration step to estimate
Uy. Scalpel executes the above request a number of times anthasaverage execution time as
the estimate of/, for the configuration. Table 4.2 shows the calibrated vatueséch of the con-
figurations that we have tested (the configuration detadlgasen in Table 3.5).

Configuration Uy (ms)

LCL 0.27
LAN1 1.1
LANO.1 1.4
WiFi 11.6
WAN 468.9

Table 4.2: Tested configurations and the per-request caeilig

Estimating the Cost of Interpreting Results

When we prefetch, we submit a combined query that returnsyaoding of multiple result sets.
At run-time, we interpret this encoded result set to rethindesired result sets. This interpreta-
tion adds extra costs in the client process. We calibrasectbst by comparing the execution time
when interpreting the multiple result sets to the run timevéf just fetch the rows of the com-
bined query without interpretation.

82 COST MODEL

Type T Estimated Overhead (4S)
Nested Execution N 18yl + 0.0%
Outer Union Uu 324 + 11.08
Outer Join J 27p¢ 0.00r

|
ClientHashJoin H 2655 + 8.68
Client Merge Join M 227 + 4.63

Table 4.3: Estimated overhead EINTERPRET(C, p,) of interpreting combined result sets.

As with Uy, Scalpel uses a calibration step when it is configured forricpéar installation
to estimate the overhead of each execution strategy. Tabkhéws the estimated linear combi-
nation EST-INTERPRET(C, p, r) for each typel’ of interpretation that could be used 6t The
p parameter represents the number of encoded result sets,raptesents the number of rows.
The values in Table 4.3 are the result of a linear regressagedon 100 iterations of each type
with a combination of opens and fetches.

The results in Table 4.3 represent the overhead of inteéngre¢sult sets from an encoded re-
sult set, except for the first row. The Nested Execution tegepresent the overhead of keeping
track of query open and close requests when no prefetchipgrisrmed. As such, this is an es-
timate of the cost of the Call Monitor overhead.

Estimating the Cost of Queries

In addition to estimates dfy and EST-INTERPRET(C, p,), the Pattern Optimizer needs to esti-
mate the cost of queries, along with the number of rows thédyeturn. Estimates are needed not
only for queries that we have observed during the trainirrgpdebut also for composite queries
generated by the Query Rewriter.

For somebBMmsS products, we can define function®R&CosT(Q) and Rv-Rows(Q) that
give the server’s estimate of the cost and cardinality of @nguWVe could use these functions
to implement BT-CosT(®) and EST-Rows(Q) regardless of whether we have previously ob-
served(@. In principle, this approach has several appealing qealitUnfortunately, it also has
significant limitations. First, th@Bms query optimizer’'s cost estimates typically don’t include
communication latency (as these costs are incurred by daitte plans the optimizer consid-
ers). This latency is an important cost that Scalpel seeksitomize, and it is therefore impor-
tant to have a reasonable estimate of this latency in the saitgeas the cost estimate. Second,
the query optimizer typically does not have the values of kagables when generating a plan,

4.3 ESTIMATING THE COST OF QUERIES 83

and therefore can only give a generalized estimate for argnpeter values. In contrast, Scalpel
has observed actual parameter values from the applicétitre training period is representative
of run-time, these observed costs will be more accurate tt@server's estimates. Finally, the
estimates used by tlEBMS are intended only to rank plans in relative order. Thesenedés of-
ten do not translate well to linear approximations of coat ttan be combined with external cal-
ibrated values such as latency.

We have found that, where possible, it is better to estimatecbst of individual queries
by monitoring the execution costs and row counts. We lookslgw an approach suggested by
Zhu [209] and Rahal, Zhu and Larson [147]. During the trainperiod, the Cost Model ob-
serves for each submitted quepythe number of rows returned by y&-Rows(Q)) and the av-
erage running time (Ac-CosT(Q)). For a queryQ that has been observed during training, we
use the averages as our estimate (Equation 4.1 and Equ&jon 4

ESTCosT(Q) = AvG-CosT(Q) (4.1)
EsT-Rows(Q) = AvG-Rows(Q) (4.2)

In addition to estimates for queries observed during tnginiScalpel needs estimates for
gueries that are generated by the Query Rewriter. We haws nbserved these combined queries
being executed, so we cannot base estimates on past bahduigiaad, we use an analytical
model to estimate these cost attributes. This model estgriae parameters of a combined query
using estimates of the components of the query. FurtheiSifvaCosT function can be defined,
Scalpel incorporates predictions made by biea1s so that the Pattern Optimizer can detect op-
portunities where thesms chooses a strategy that performs better than the naiveagpr

The Query Rewriter combines queries using two basic cottstriateral derived tables and
outer unions. We represent these constructs using symb@dd@vs. QuenQ; ® Q; is the query
formed by using an outer quety; joined toQ; with a lateral derived table as described in Sec-
tion 3.3.2.2. If we are using instead a left outer lateralvdet table, we writeQ);®Q;. We use
the notation);wQ;WQ ;W . . . BQ,, to represents the outer union of querigs Q;, .. .Q,, as de-
scribed in Section 3.3.3.2.

Estimating the Cost of a Lateral Derived Table

Given a combinationf); ® @;, we would like to produce an estimatsECosT(Q; ® ;) and
also BST-Rows(Q; ® ;). Recall that, by the definition of the semantics of lateraiveel tables,
the combined result set contains each row)ptoncatenated with the result §f; evaluated un-
der the outer bindings supplied by that row. A straightfaxdvianplementation technique for this

84 COST MODEL

operator is based on nested-loops joins. We use J®EIQY;, Q;) and INL-Rows(Q;, Q;) to
estimate the attributes 6J; ® @); using the nested-loops model:

JNL-CosT(Q; ® Q;) = ESTCosT(Q;) + ESTFRows(Q;) x (EsT-CosT(Q;) — Up) (4.3)
JNL-Rows(Q; ® Q;) = ESTRows(Q;) x ESTRows(Q;) (4.4)

Equation 4.3 uses a nested-loops model to estimate thefc@gt ® ;) based on estimates
for the component querieQ; and @ ;. Note that we subtradt/, for the inner because it is not
submitted from the client application, and therefore weiassthat we savé,. The number of
rows in the result is the product of the outer and inner talbesstimate the parameters for a left
outer lateral derived table, we modify the above row coutitrege usingmax to account for the
outer join preserving all outer rows as shown in Equation W& use the same estimate for the
cost of an inner and outer lateral derived table (Equatid). Although there is a difference in
the communication costs for NULL-supplied values, we do awtently include estimates for
this difference.

INL-CosT(Q;%Q;) = JINL-CosT(Q; ® Q) (4.5)
INL-Rows(Q;®Q;) = max(INL-Rows(Q; ® Q;), ESFRows(Q;)) (4.6)

We assume that the nested loops cost estimate JNE¥();®Q);) provides an upper bound
on the execution time. The nested loops strategy is avail@bthe server, and we assume that
the DBMS query optimizer does not choose a more expensive strategyidigke. However, the
DBMS may in fact be able to use a more efficient join strategy. Wausan®Rv-CosTto find such
cases, but the earlier limitations we noted make it diffitmihcorporate the results oRS-CosT
directly. Instead, we define a functiorR&SAvINGS (Equation 4.7) that estimates the relative
savings the server predicts for executing two queries usibegtter strategy that the naive nested
loops join.

B SRV-COST(Q; ® Q)
SRV-SAVINGS(Q: @ Q;) = SRV-COST(Q;) + SRv-ROWS(Q);) i SRv-COST(Q;) (4.7)

The value &v-SAVINGS(Q; ® Q) is the ratio of the server’s estimated cost for joinig
and@); to the cost of performing a nested loops join when we use thesg cost estimates in-
stead of Scalpel’s predictions. The value 8VSSAVINGS(Q; ® Q) is close to 1 when the server
chooses a straightforward nested loops strategy (or otreansimilar cost). If the server discov-
ers a better strategy (for example, by finding a better jaiprthm or by exploiting shared subex-
pressions as suggested by Sellis [160]), the rafie-SAVINGS (Q); ® Q;) will be less than 1.

4.3 ESTIMATING THE COST OF QUERIES 85

Equation 4.7 gives the relative benefit estimated byoiBs query optimizer for combining
the outer and inner query into one request. This quantityvaily between 0 and 1, with 1 mean-
ing there is no benefit to the server and values close to O mg#mat there is substantial benefit.
If we maintained separate cost components in a vector, wévemply the &v-SAVINGS multi-
plier to the server cost component a§ =ECOST. As we represent cost as a scalar representing a
combination of server, communication, and client costs, litot possible to apply the reduction
only to the server components. Instead, we apply the remutti the entire estimated cost. We
use a configuration parametgrwith 0 < K < 1 to form a weighted average between Scalpel’'s
unmodified prediction (JNL-OGST(Q; ® @Q;)) and using the full effect of the estimated savings
(SRV-SAVINGS(Q;, Q;) x JNL-CosT(Q; ® Q;)). With a K value near 0, we pay little atten-
tion to the server’s predicted savings; near 1, we apply robgte effect of the savings. Equa-
tions 4.10 shows how we define the weighted average. One aatiph is the cost of/y. The
savings in server cost resulting from combinifpyg and @, into one query does not reduce the
per-request overhedd,. Therefore, we remove this quantity before forming the \wisd aver-
age.

J = JINL-CosT(Q; ® Q;) — Uy (4.8)
S = SRV-SAVINGS(Q; ® Q) (4.9)
ESTCosT(Q;®Q;) = KSJ+(1—-K)J+ Uy (4.10)

The estimate provided by<$-CosT(Q; ® Q;) is a blending of estimates from tlBmSs
guery optimizer and an estimate Scalpel makes assumingedriesps strategy. Th& parame-
ter controls how much credence is given to the server's estisn

Estimating the Cost of an Outer Union

The queryQ;wQ,WQ;W. .. WQ,, represents an outer union. The result will haveyspe col-
umn, and a distinct set of columns for each branch of the uibe number of columns in the
result of each query affects the overall cost due to thediiztion ofNULL values. Section 3.6.3
provided results exploring the effects of increasing theber of columns involved in an outer
union. The costs do increase with an increasing number afrmas, but this increase is relatively
insignificant when considering the other errors presertiércost estimation. Therefore, we elect
to ignore this parameter, and we estimate the co§;8fQ,;®Q;W . . . ¥Q,, to be the same as the
(inner) union@; W Q; ¥ Qr W ... W Q,,. We compute this pairwise as follows:

86 COST MODEL

EsT-CosT(Q; W Q;) = ESTCosT(Q;) + EST-CosT(Q;) — Uy (4.11)
EsT-Rows(Q; ¥ Q;) EsT-Rows(Q;) + EsT-Rows(Q);) (4.12)

As with lateral derived tables, we could consider using thtareates from theoBmS opti-
mizer to reduce this cost estimate in cases wherethes is able to do something clever, such as
exploiting common sub-expressions in the combined quéris approach would allow Scalpel
to favour combining queries when multi-query optimizaianake it favourable, but a naive im-
plementation does not. At present, we do not include thispdization as thedsms products we
tested do not appear to exploit such opportunities.

Summary of Cost Model

The Pattern Optimizer needs to rank alternative executiategjies based on estimates of their
cost. The Cost Model uses a combination of explicit calibratmeasurements of queries dur-
ing training, andbBMs-provided support routines to estimate the cost paramatsrded by the
Pattern Optimizer.

When estimating the cost of a query that was submitted bylidet @pplication, Scalpel uses
measurements of the run-time during the training periogarinciple, we could use server sup-
port routines, but we have found that such an approach ostite&es for quantities such com-
munication costs that are important to Scalpel but not itgmdito theDBmS.

We cannot use prior behaviour to estimate the cost attsboftéhe queries generated by the
Query Rewriter. Instead, we estimate the cost of these&gibyi considering the operations that
we used to generate them, namely lateral derived tableswtadumions. An upper bound for the
cost of a lateral derived table can be found using the taditi formula for nested loops joins
(augmented to account for the reductiorliig). This estimate will be too high in the case that the
DBMS is able to choose a better join strategy. We use a functior@osTif it is available to de-
fine Rv-SAVINGS, an estimate of the relative savings achieved by combirtieggueries that
were separate in the application into a single join. We use-SaVINGS to reduce our nested-
loops cost. This reduction applies to all elements of thé @aduding client, server, and commu-
nication cost; the reduction should only be applied to theesecomponent, but we do not have
access to this separate value, although we do avoid apglyengeduction td/y. We use a con-
figuration parameteK to control the weight we give to the estimates provided bytBgs.

The Query Rewriter also combines queries using outer unpemnadions. At present, Scalpel
ignores the cost of supplying redundaniLL values in outer unions. This cost is hon-zero, but
our experiments show that it is relatively insignificant qaared to both other cost attributes and

4.4 SUMMARY OF COST MODEL 87

the quite high errors associated with other estimates. Withchange, we estimate the cost of
outer unions as we would for (inner) unions. While it is pbksito define a 8v-SAVINGS ad-
justment for unions, we did not do so because we have foundhitb@Bms products we study
do not exploit opportunities in this case.

The Cost Model is used by Scalpel’'s Pattern Optimizer to kamlous strategies based on an
estimate of the total latency associated with each strat¥bile the estimates contain inaccuracy
due to sampling error and approximations, this approadwalthe Pattern Optimizer to select a
strategy that we can expect to perform well relative to thected strategies.

Batch Request Patterns

Chapter 3 described how Scalpel can detect and optimizedpatterns within requests submit-
ted by an application to the database server. While nestitignps offer substantial opportuni-
ties for improvement, they occur relatively infrequentiytihe database applications that we stud-
ied. In these applications, we found that there are sequesfagueries which allow us to predict
the most likely queries that will be submitted in the futuée call these sequences of queries
batchesBy identifying batches, Scalpel can prefetch future qsebefore they are submitted, re-
ducing the overhead associated with per-request overfiggsireduction in overhead results in
a reduced response time for users, and also can lead to Ime®uteon costs.

Figure 1.5 (page 4) shows functiomBcH-EXAMPLE, an example of a function that gener-
ates a batch of requests. After quépy is submitted, query), is submitted if a local predicate
is TRUE (line 25). If we could recognize this pattern and find t@atis submitted sufficiently of-
ten following @3, then we could prefetch the results 1@ when we recognize querys. When
Q3 is submitted, we would instead send a modified qugsy that generates the results required
for both queries.

If we prefetch the results fap, and the application subsequently submits it, we would save
the latency associated with one database requgsthis type of savings is less than we achieved
with the nesting rewrites, where we can save several or awedrlds of times the per-request la-
tency. However, these batch patterns occur frequentlyarclient applications we investigated.
Rewriting these batch patterns can also save a significamiiianof exposed latency, and can even
reduce server costs due to the smaller number of messagesdhaterpreted and formatted.

It may be the case that the local predicate evaluatestgEand(@; is submitted instead of
Q4; then, we have wasted the work of evaluating resultfpin the combined querg)s.,. We
need to predict the probability thal, will follow @3 and weigh this against the cost @f, to
decide whether it is worthwhile prefetching the results@orbecause the expected savings are
greater than the expected increase in cost due to wasteztqtriel.

In order to make decisions about what queries to prefetcmesd to predict the sequence of
gueries that can follow a given request, and also have anastiof both the cost of each request
and the likelihood that it will be executed. This informaties not enough, though, to prefetch
the results of future queries. As with nested request petteueries are parameterized; in gen-
eral, the actual values used for parameters can depend osthits of earlier queries. If we are to

89

90 BATCH REQUEST PATTERNS

prefetch@Q4 when@s is submitted, we need to be able to predict the actual valee igs the for-
mal parameters of the query. In this example,ghé p_i d column returned frond);5 is used as
the actual parameter value when openipg We do not know this quantity whe@s is opened,
so we cannot supply it as a parameter from the client when Wwmiuhe modified@3.4. In-
stead, we use a join to combine quépy and(@, into one request, where tlsdi p_i d attribute

of Q3 is used in place of the formal parameter(@f. In this example, we could use a combined
request such as the one shown in Figure 1.6.

Figure 5.1 shows the components of the Scalpel system thatsad to detect, optimize,
rewrite, and prefetch batch request patterns. Scalpel theesame system structure to detect
batch request patterns as was used for nested requeshpdftegure 3.1). For ease of exposi-
tion, we have presented nesting and batch patterns sdgaaiéthey are implemented in isola-
tion. In fact, the two approaches are combined in our prp®ias described in Chapter 6).

Monitor-Open Run-Open
Pattern Detector] . : Prefetcher
(Section 5.2) <«— Monitor-Fetch —— Call Monitor — Run-Fetch—>» (Section 5.5)
Monitor-Close Run-Close
A
A Suffix Trie A\ 4

oga g with Correlations Cost Model

and Selectivities (Chapter 4)

Finite State
Pattern Optimize Query Rewrite Model with
(Section 5.3) - > ~(section 5.4) Rewritten
inite State Model Queries and
With Prefetch Choices Actions

Figure 5.1: Scalpel components used for batch requestpattehaded components are described
in this chapter.

During the training phase (Figure 2.1), the Pattern Detemimponent (Section 5.2) identi-
fies batch request patterns. These patterns are encodediffixaree data structure, annotated
with probability estimates and predicted correlationsMeein query input parameters and pre-
viously observed values. The suffix trie structure corregigsao the context tree structure used
for nested request patterns. After the training period loaspteted, the Pattern Optimizer (Sec-
tion 5.3) uses the patterns detected by the Pattern Detamt@ponent to choose prefetches that
will be executed at run-time. The Pattern Optimizer remdhessignificant redundancy that is
present in the suffix trie data structure, producing a comfiaite state model that contains a

5.1 EXAMPLE OF BATCH PATTERN 91

set of states and edges corresponding to predicted regbeestsach edge in the model, the Pat-
tern Optimizer associates a list of anticipated future iggahat should be prefetched. The Query
Rewriter (Section 5.4) combines these lists of queries tidl lausingle query that prefetches the

result for the original query and all prefetched queriesesSehcombined queries are stored per-
sistently with the finite state model. At run-time, the Ptelier (Section 5.5) tracks the current

state within the model and executes the prefetches assdaiath edges in the tree (selected by
the Pattern Optimizer) using the combined queries gertketatehe Query Rewriter.

In addition to the sections shown in Figure 5.1, Section B/&ggan example program that
generates batches of queries; this example will be usedghout the chapter. Section 5.6 pro-
vides experimental results illustrating the strengths\eadknesses of the various strategies. Fi-
nally, Section 5.7 summarizes the results for batch requegstrns.

In summary, batch patterns are common in the client appitsithat we studied. We can re-
duce the latency exposed to users of the application anaeeskrver costs by recognizing op-
portunities where we can prefetch the results of queriesticipation of their execution. In or-
der to prefetch effectively, we need to be able to predidkalyisequence of requests that follow
the current request. We need to estimate the probabilityethzh request in the sequence will be
executed; combined with an estimate of the cost of the quaahtteze per-request latency, this al-
lows us to choose whether to prefetch a request. Finally, eeel no predict the source of para-
meter values for all prefetched queries. We use these atimelpredictions to generate a rewrit-
ten query that fetches not only the results for the immeljiaeguested query, but also the re-
sults for anticipated future queries.

Example of Batch Pattern

Figure 5.2 shows a subset of a database application thasissseries of small queries to a re-
lational database server. This particular example is aldieth artificially constructed applica-
tion designed to show particular features of our approadwe¥er, its features are a compos-
ite of some of those that we observed in a set of databasecappiis that we studied (described
in Chapter 8).

The GETCuUSTOMER function takes a partially-filled customer structuceiét _i nf 0) as in-
put, and retrieves additional customer information from database. It first issues quepy, to
retrieve the customer name and account number. If the apiplicdoes not already have ship-
ping information for the customer, it calls theeBDEFAULTSHIPTO function to obtain the cus-
tomer’s default shipping address. Finally, the applicatthecks the customer’s outstanding bal-
ance (.) and uses that information to determine the available tredi

In addition to the GTCUSTOMER function that retrieves information about customers, Fig-
ure 5.2 contains the &'VENDORORDER function that is used to generate a parts order for a ven-

92 BATCH REQUEST PATTERNS

369 function GETCUSTOMER cust _i nf 0)

370 fetch row r1 from a:

371 SELECT nane, accno

372 FROM cust oner ¢

373 WHERE c.id = :cust _info.id

374 cust _info.nane < rl. nane

375 if not cust _i nf o. shi pt othen

376 cust _i nfo.shipto « GETDEFAULTSHIPTO(cust _info)
377 fetch row r 3 from c:

378 SELECT SUM anount - pai d) AS bal ance

379 FROM ar a

380 WHERE a. accno = :rl.accno

381 cust _i nfo. bal ance < r3. bal ance

382 end

383

384 function GETDEFAULTSHIPTO(i nf 0)

385 fetch row r 2 from b:

386 SELECT addr

387 FROM shipto s

388 WHERE s.shipid = :info.id AND s.default="Y
389 return r 2. addr

390 end

391

392 function GETVENDORORDER(vendor _i nf 0)

393 fetch row r4 from d:

394 SELECT nane

395 FROM vendor v

396 WHERE v.id = :vendor _info.id

397 vendor i nfo. nanme < r4. nane

398 vendor _info. mailto < GETDEFAULTSHIPTO(vendor _info)
399 > Find parts supplied by the vendor that need re-stocking.
400 open c5 cursor for e:

401 SELECT partname, invlevel - onhand AS qty
402 FROM part p

403 WHERE p. vendor _id = :vendor_info.id AND p. onhand < p.invl evel
404 ORDER BY part nane

405 while r5 « fetch ¢5 do

406 ADDORDER(vendor _info, r5.partname, r5.qty)
407 close c5

408 end

Figure 5.2: Application generating a query batch.

5.1 EXAMPLE OF BATCH PATTERN

93

| Query | Input | Output Possible Correlations
1] O« (42) | (501) (1/C, 42)
21 Qa (101) | (‘Alice’, 501) (1)C, 101)
3| @ (101) | (‘1500 Robie St.) (1/C,101), (1]1,-1, 1)
41 Q. (501) | ($400.00) (1|C,501), (1]0,-2,2), (1|0,-3,2)
51 Qg (201) | (‘Mary”) (1|C,201)
6| Qb | (201) | (1400 Barrington St.’) | (1]|C,201), (1/1,-1,1)
71 Qe (201) | { (‘Bell’,3), (‘Tire’,6) } (1|C,201), (1|1,-1, 1), (1]1,-2,2)
8| Q. (121) | (‘Bob’, 537) (1)C, 121)
9 Q. (537) | ($0.00) (1|C,537), (1]0,-1,1)
10| Q« (43) | (31337) (1|C,43)
11| Qa (107) | (‘Cindy’, 523) (1|C, 107)
12 @ (207) | (‘1100 Sackville St.") (1/C,107), (1]1,-1,1)
13 Q. (523) | ($800.00) (1|C, 523), (1]0,-2,2)
141 Qy (189) | (‘Elbereth’) (1|C, 189)
15 Qq (255) | (‘Ned) (1|C, 255)
16 @ (255) | (‘1200 Weber St.") (1|C, 255), (1]1,-1,1)
17 Qe (255) | { (‘Pedal',7), (‘'Seat’,3)} | (1|C,255), (1|1,-1,1), (1]1,-2,1)
18| @, | (42) | (Xyzzy) (11C,42), (1|1,-17,1)

Figure 5.3: An example trace containing query batches. Eaghn the table represents a com-
plete query sequence includingpeN,FETCH, and Q.0SE. The Query column gives the name of
a query from Figure 5.2, Input gives the values of query patars, and Output gives the row re-
turned by the ETCH calls. QueryQ. returns multiple rows, shown as a set; other queries are
shown with a single tuple. The last column will be explaine®ection 5.2.2.3.

dor. Function GTVENDORORDER s passed a partially-filled vendor structuvefdor _i nf o)

as input, which it then fills in with additional informatioetthed from the database. First, it re-
trieves the vendor's name by submitting quépy; next, it calls GGTDEFAULTSHIPTO to find
the default mailing address for the vendor. Finallgi® ENDORORDER builds a list of parts sup-
plied by the vendor that need to be ordered because therevaee 6n hand than the desired in-
ventory level.

Figure 5.3 shows a sample trace generated by a program thtairt®the code in Figure 5.2,
as well as other code that we have not shown. Each row of tbe table in Figure 5.3 represents
a complete query subsequencer@®, FETCH, and G.OSE). This sample trace shows examples

94 BATCH REQUEST PATTERNS

of calls to GETCUSTOMER (positions 2-5, 8-9, 11-13) ande3VENDORORDER (positions 5-7,
15-17). In addition, other queries may be submitted frontipos of the batch application outside
of the code shown in Figure 5.2. Queri@g, @, and(,, are examples of this at trace positions
1,10,14, and 18.

Pattern Detector

In the sample program of Figure 5.2, quepy, is issued after), if the predicate on line 375
is true. If this predicate is true sufficiently often, themibuld be more efficient to prefetch the
results forQ;, whenq@), is submitted by the application. The Pattern Detector neosithe client
application during the training phase to build a model teatised by the Pattern Optimizer to
make prefetching decisions. Figure 5.4 shows the strudtullee Pattern Detector used for batch
request patterns.

Monitor-Open

[T m————— === Monitor-Fetch _—— Call Monitor
I Model of Client : Monitor-Close
1 (Section5.2.1)) /
heccccccacaa-]
Pattern Detector (Section 5.2)
Suffix Trie Path Compressed Suffix Trie
(Section 5.2.2) (Section 5.2.3)
a C abc
c bc
C
5.2.2.1n.children 5.2.3.1Children(n)
5.2.2.2n.count 5.2.3.2 Count - Cccurrences(n)
5.2.2.3n.correl ations 5.2.3.3 Correl ations(n)

, J

Pattern Optimize
(Section 5.3)

Figure 5.4: Overview of the Pattern Detector.

In order to make effective prefetching decisions, we nequtrédict the probability of future
requests based on the history of requests we have obsereibrs5.2.1 describes how we can
construct a model of a request stream that will allow us tonege the probability of future re-

5.2 PATTERN DETECTOR 95

quests. In particular, Section 5.2.1 describes the drdendel, which useg previous requests
to predict the next request.

As we will see, it is difficult to choose an appropridt@alue before training commences. In-
stead of choosing a particularvalue, Scalpel builds a trie-based data structure thatagmt
all order£ models that can be built for a trace. After the training isrptlee Pattern Optimizer
can use this data structure to select a locally gbadlue for different portions of the trie. Sec-
tion 5.2.2 describes this suffix trie data structure. Sedii®.2.1 describes how Scalpel builds the
structure, and Section 5.2.2.2 shows how Scalpel usesrtiwse to estimate the probability of
future requests. In addition to probabilities, the suffig structure is used to maintain informa-
tion about correlations that have always held during thiitrg period. This correlation detec-
tion is described in Section 5.2.2.3.

The suffix trie described in Section 5.2.2 requires quatisgtace and time. More efficient lin-
ear algorithms have been available for some time [80, 132,198L]. In particular, Ukkonen [180]
provides a novel approach that builds a space-efficienixsuiffion-line as requests are observed.
In Section 5.2.3, we show how this algorithm can be extendedur purposes. Section 5.2.3.1
shows how this compressed trie can be used to provide coontgdbability estimation. Sec-
tion 5.2.3.2 demonstrates how the compressed trie dat@wteucan be used maintain the corre-
lation information needed to make the rewrites needed fefieprhing without disturbing the line
space/time bound.

Finally, Section 5.2.4 summarizes the Pattern Detectordasdribes how it passes informa-
tion to the Pattern Optimizer (Section 5.3).

Models of Request Streams

We can consider the client application and its inputs to b®ehastic proceswith an unknown
structure. If we use the sequence trace notation descnib&edgtion 2.3, then each trace of re-
guests is a sequence of queries (ignoring for now the dethidren, FETCH, CLOSE used for
each query). Each query in this trace is associated wittmdom variableX;. We useX. as the

set of all possible queries, so; € 3. The stochastic process is characterized by the joint proba
bility mass functions shown in Equation 5.1.

p(rixe...xy) =Pr{Xy =21, Xo=29,..., X,y =2,} n=0,1,2,... (5.1)

Equation 5.1 defines an infinite set of joint probability mastctions, each associated with
n, the length of strings described by the function. The furcti(zqx . . . z,,) gives the probabil-
ity that a request trace generated by the client applicatiitoegin with the specific sequence of

96 BATCH REQUEST PATTERNS

requestsx, The joint probability mass functions are related by thesidhown in Equa-
tion 5.2 and Equation 5.3.

(5.2)

1
VoeX* plo) = Zp(aa) (5.3)
a€X

For prefetching, we are particularly interested in the gl probabilityp(a|z 2z . .. x,)
defined in Equation 5.4.

p(zixy. .. xH0)

p(r122 ... 20) (5.4)

plalzize ... xy) =
This conditional probability gives the probability thaethuerya will be submitted after observ-
ing the query sequence x, ... z,. This conditional probability is exactly the quantity thae
need to decide if it is worthwhile to prefetch requestfter observing the sequenger, . . . x,.

The probability distribution of the stochastic procesoaiged with the client application is
not available to Scalpel directly; instead, Scalpel buddraodelof the request source based on
observations of sequences of requests the applicatiorrajesaduring the training period. This
model approximates the conditional probability functi@séd on the training. In order to explain
how Scalpel models the client application, we begin withstrigted class of models, the class of
order models.

5.2.1.1| Order-k Models

A stochastic process can have a special structure wherergadbm variableX,, depends only
on thek preceding variables, and is conditionally independentlgfraceding random variables.
In this case, we say the stochastic process is deder-

DEFINITION 5.1 (ORDER-k STOCHASTIC PROCES9
A discrete stochastic process is said to be ofdérEquation 5.5 holds for alh = 1,2, ... and
forallz; € X

Pr{Xn—i—l = wn-{—l’Xn = Tp, Xn-1=Tp-1,...,X1 = 1’1}

(5.5)
= Pr{Xn—i—l - wn-{—l’Xn = Tn, Xn—l =Tn—-1,--- 7Xn—k+1 = xn—k—i—l}

For an orderk stochastic process, the probability that the next queky depends only on
the k previous requests. We can build a graph-based model of am-frstochastic process as
follows.

5.2 PATTERN DETECTOR 97

DEFINITION 5.2 (ORDER-k MODEL)

Let ¥ be the set of all possible queries extended wttan out-of-band value. Lef = X* be
a set of states, anilbe a transition function defined Yz xs ... zg,a) = z2...zra. That is,
d(z1z9. .. 2, a) is the state associated with the string formed by the conatite of the last
k — 1 queries of the previous state followed byLet s, = #* be the initial state and let(z;|s)
be a conditional probability mass function giving the estied probability of observing; when
in states € S. Then,M = (S, %, 4, so, p) is an orderk model of request sequences.

An order% states € S = X is a string ofk queries. We say that the model is in statafter
observing a trace = rs that begins with any string and ends withs. When processing a trace
from the beginning, there are — 1 queries observed before we enter a ‘real’ state. These are
handled by padding the trace on the left witlsopies of an out-of-band value

Figure 5.5 shows the ordéreontexts that we observe in the trace of Figure 5.Bdtween 0
and 5). Nodes in these graphs are labelled with strings ottelnrepresenting contexts that we
have observed in the trace. Edges are annotated with thg thaddeads to transitions between
the contexts, and with a count of how many times the tramsitias observed. It is important to
note that the nodes shown in Figure 5.5 gparsein the sense that not all of the states of the
ordert model are shown. Only those states that were actually obdeme shown, while the full
model contains* states.

Figure 5.5 suggests how we can defjife;|s), the estimated probability that query will
be submitted when the model is in statdf we maintain a count GUNT-OCCURRENCES0, t)
of how many times string occurred in trace, then we can estimaix;|s) as shown in Equa-
tion 5.6:

COUNT-OCCURRENCESs7;)

5.6
COUNT-OCCURRENCESS) (5.6)

p(ils) =

That is, we estimate the probability that querywill be submitted when the model is in state
based on the proportion of times in the training period thatolsserved:; submitted when the
model was in state.

The order-0 model has a single context,This model does not consider any previous re-
guests, and it estimates the probability that the next tquil be x; based on the relative fre-
guency ofz; in the training period. For example, quemywas observed 3 times in the trace of
length 18, givingp(ale) = % In contrast, query b’ was observed 4 times, givingble) = %
There may be specialized situations where an order-0 medalpful for prefetching. In gen-
eral, we need to consider longer contexts in order to make syecific predictions.

In the order-1 model, contekt’ is observed 4 times, followed 2 times by &' and 2 times
by‘ e’ . This givesp(c|b) = 0.5 andp(e|b) = 0.5. In contrast, the order-2 model has two distinct
contexts' ab’ and‘ db’ . Context' ab’ is observed 2 times and followed each time‘ln/ ,

98 BATCH REQUEST PATTERNS

a3 ph 4
C,

k=0

€ R

kl@/»é\ﬁi‘/@/

k=2 6/@/ ’ \.\ ’j
‘ma\ ju

~.<—~@<\

=5 ‘isaiisasaiw

Figure 5.5: Ordef: models for trace of Figure 5.3&abcdbeacxabcydbez. Edges are
labelled with the query subscript that causes the tramshiitween contexts (nodes) and with a
count of how many times that transition was observed in thepatrace.

5.2 PATTERN DETECTOR 99

and' db’ is also observed 2 times and followed each timé by . This givesj(c|ab) = 1.0 and
p(e]db) = 1.0. It appears that the order-2 model is better than the or@erdlorder-0, at least for
predicting the request that will follow,,. This raises the question of how we should choose an
appropriate context length

5.2.1.2| Choosing a Context Length

We might assume that larger contexts provide better pied&tWith a sufficiently long training
period, this is true (with the ‘sufficiently’ depending énbeing at leasO(|X|*)). However, the
largerk value means that individual contexts are observed lesaédraty in a trace of finite size.
This low frequency is most obvious for those contexts thdtrt occur at all in the training
period: the ordef: model can provide no estimate for the probability of futucdcms in these
missing contexts. For example, consider the sequeged’ . This sequence did not occur in the
training period, so an ordeérimodel cannot make a prediction for the next request. An e2der
model, on the other hand, provides a prediction that the reest will be' ¢’ ; in this case,
that prediction turns out to be correct due to the structfi@ erCusToMER For this instance,
an order2 model is preferable to a model of order 3 or higher. This grwbtan also occur when
predicting the probability of a query; that has never been observed when the model was in state
s, even ifs has been observed during training.

The difficulty of providing a probability estimate for a sition that has not previously oc-
curred has long been recognized as an issue of philosogridgiractical importance. Hume [96]
noted that there is no rational basis for using empiricakolaions of the past to make predic-
tions of future conditions that do not match what we have mek and Kant [100] expanded on
this topic in hisCritique of Pure Reasarin practice, we may need to assign a specific probabil-
ity to events that have not previously been observed (evaugtithere is no purely rational basis
for making such an assignment). This problem affects fialdh sis data compression and infor-
mation theory, where it is usually known as thero frequency problenBell, Cleary and Wit-
ten [16] provide a description of the problem as it applietheodata compression field and Wit-
ten and Bell [195] summarize solutions that have been apbitie data compression. In arith-
metic compression, a non-zero probability must be seldoteelvery possible symbol; solutions
to the zero-frequency problem in this field consist of chiegsi specific probability estimate for
each of the symbols that may occur next. In contrast to thepeession field, the specific proba-
bility values are not important to Scalpel. When we have ibgeoved a situation during our train-
ing period, Scalpel can merely select to not prefetch in¢hat, without deciding on any partic-
ular probability estimate for any unobserved contexts.

The problem of low frequencies is most obvious when we hav®bgerved a context at all
during a trace; however, even when we do observe a contextikiely that we observe it less fre-

100 BATCH REQUEST PATTERNS

qguently in a model with higher ordeér. For the contexts that we have observed, we are less con-
fident in the inferences provided by the context. For exapgaasider a trace ending ircdb’ .

In an order-2 context, we have observetb’ two times, and both times it was followed by’ .
This givesp(e|db) = 1. In an order-3 context, we have observexb’ only one time, again fol-
lowed by‘ e’ . This result also giveg(e|cdb) = 1. Both the order-2 and order-3 have the same
estimate for the probability of the next request beirgg , but we might have more confidence
in the order-2 prediction as it has been tested one more Tilme difference for this short sam-
ple trace is slight, but we can imagine much longer casesendneiorderk; model makes a pre-
diction based on 1000 observations while an ofdemodel has only one relevant observation
to form a prediction. In a very real sense, we have less cord@ the prediction made by the
orders; model. We can formalize this doubt using@nfidence intervdior the predicted proba-

bility p(z;]s).

DEFINITION 5.3 (CONFIDENCE INTERVAL FOR p(x;|s))
Letn be the count of times that statevas observed during training, atd be the count of how
many timesr; was observed when the trace was in stateet o be a pre-specified significance
level, and lets = 2,/ be thel00(1 — «/2)-th percentile of the standard normal distribution. Let
plxils) = X/n. Letin = n + k? andX = X + x?/2. Letp = X /. We estimate(x;|s) as
p(z;|s) and use the following confidence interval:
p(1—p)

n

CI = CONFIDENCEINTERVAL(X,N) =p £k (5.7)

The confidence interval'l is based on a proposal by Agresti and Coull [6]. The intervalat
centered abouyi (although it does containg. Instead, it is centered about a pgairthat is closer
to 0.5; the movement toward the center reduces with increasitepr example, with a 95% con-
fidence interval, we have = 1.96. For the order-3 prediction gf(e|cdb), this gives an interval
CI = [0.17,1.04]. The order-2 prediction is slightly better @7 = [0.29, 1.05] and our hypo-
thetical example with a longer trace giving 1000 observetig tightened t6'7 = [0.995, 1.001].
The definition of interval’ T may include values that are greater than 1 or less than 0. Grest-
Coull definition that we use above is conservative in thaivieg intervals that are wider than the
Wilson intervals [194] they approximate, but we prefer tthdinition due to its simplicity. Ap-
pendix A provides more background on this choice of interval

When making a decision about prefetching request, we must consider the confidence in-
terval, the payoff if we guess correctly, and the penaltygioessing wrong. This topic is explored
further in Section 5.3.

If k£ is too small, Scalpel may miss valuable special cases aangder correlations. On the
other hand, unnecessarily large values:afan lead to overly specific predictions. With longer

5.2 PATTERN DETECTOR 101

contexts, each specific context will only be observed infegqly. Therefore, much longer train-
ing periods are needed to avoid missing predictions or siedyg wide confidence intervals
Clearly there is some relationship between the number t#ssta the ‘true’ model of the appli-
cation and the choice df that will give the best predictions. However, the stocltagtbcess as-
sociated with the client application is is not available talpel, and it can therefore not be used
to select an appropriatevalue.

For these reasons, Scalpel defers choosing context lengtihthe end of its training period,
at which point it needs to make effective prefetching decisi During training, Scalpel builds a
trie-based data structure to capture all of the relevaotinition about the training trace ofre-
quests for all possible context lengths< k& < n. After training is complete, the Pattern Opti-
mizer uses the trie to select contexts that are sufficieatlg ko provide predictions of parameter
correlations and predicate selectivity, but as short asiplesin order to be generally applicable.
Scalpel may choose a different context length for each iddal prefetching rule. The result-
ing model is no longer an ordérmodel, as individual states may correspond to differenteedn
lengths. We use a more general finite-state model to représeresults of the optimization.

5.2.1.3| Finite State Models

The class of finite state models is an extension of the classdef+ models to a setting where
the states in the model do not need to be identified with anycpéar string of queries.

DEFINITION 5.4 (RNITE STATE MODEL)

A finite-state modelFSM) M of requests is a five-tupl®/ = (S, X, 6, so, p), whereS is a finite
set of statesy. is the set of all possible queries,: S x ¥ +— S is a transition function, aney

is an initial state. The functiop : S x ¥ — [0, 1] is an estimated conditional probability mass
function wherep(z;|s) estimates the probability of observing request X when the model is
in states € S.

Scalpel's Pattern Optimizer generates a finite state medti, edges in the model anno-
tated with prefetch actions that the Prefetcher shouldyapile Prefetcher also uses a finite state
model to track the current state at run-time and executedieeted prefetch activities.

5.2.1.4| Summary of Request Models

We consider a client application to be a stochastic prodstseach positiori in its request se-
guence, we have a random variabfe. We are particularly interested in predicting the proba-
bility that the next request will be a particular query; in order to assess whether it is worth-
while prefetchingz;. The stochastic process has an associated probabilitjbdigdn Pr{X; =

x1, X9 = x9,...,X,-1 = z;—1} that assigns a probability to every sequence of requeste If

102 BATCH REQUEST PATTERNS

knew this distribution, we could estimate the probabilliattthe next request is; based on the
conditional probability mass function(z;|z1x2 . .. z;—1).

The probability distributionPr is not known to Scalpel, so we build a model during a
training period. We use this model to estimate the condiigerobability mass function as
p(zi|r122 ... x;—1). Scalpel bases its model on a class called okderedels. These predict the
probability of the next query based only on the previdugueries.

There does not appear to be a good reason to select any [zarkicalue. Choosing & that
is too small risks missing important special cases, whilgd& values require long training pe-
riods in order to make useful predictions. Instead of selga singlek value, Scalpel maintains
information that constructs ordérmodels for allk values in parallel. At optimization time, an
appropriate context length is selected for each prefetchsida. This choice is guided by a con-
sideration of the expected benefits of the prefetch (if itagect), the costs (if it is mistaken),
and a confidence interval for the prediction that is consgtdign a way that controls the num-
ber of mistakes we expect Scalpel to make.

In order to construct all ordée-models in parallel, Scalpel builds a suffix-trie data sticet
This suffix trie encodes all of the statistical informatidrat Scalpel needs to build the order-
models.

Suffix Trie Detection

A suffix triefor a stringT" of lengthm is atrie data structure [73] that contains the setofvords
that are suffixes df".

DEFINITION 5.5 (SUFFIX TRIE)

A suffix trie 7 for stringT' of lengthm is a rooted, directed tree with exactlyleaves. Each edge

in the tree is labelled with a character fréfy and no two edges out of a node have the same
label. Every noder is identified by the string corresponding to the edge labelthe path from
the root ton. The string of each leak; is equal to the suffi<’[i..m] of stringT'.

Figure 5.6 provides an algorithm that builds a suffix trieadgttucture as queries are submit-
ted. If we use the sequence trace notation described indBez8, then each query is considered
to be a character in the sequericef requests contained in the trie.

When the client application submits arPEN(@), par nval s) request, the Call Monitor
component intercepts the call and passes the correspogdary () and input parameter value
list to MONITOR-OPEN. Similarly, when the application callsefFcH() to return a row from
the query result, the Call Monitor invokes diiTOR-FETCH, passing it a copy of the returned
row. Scalpel records the input parameters in thee@call and output parameters returned by
the FeTCH call in order to perform correlation detection (as we did whecognizing nested re-
guest patterns). This correlation detection is describhefeiction 5.2.2.3.

5.2 PATTERN DETECTOR 103

Figure 5.7 shows the suffix trie built after the each of thd fa queries of Figure 5.3 have
been submitted. Nodes in the trie represent the contextbidlva been observed within the trace,
and are labelled with unique identifiers. Edges are labellitd the subscripts of queries from
the trace. Each node represents the context consisting gigries labelled on the path from the
root to that node. Thus, node 1 represents the cohtextwhile node 2 represents the context
‘ab’ . The root node, labelled, represents the single context of length= 0. Each node has a
suffix link, which is shown with a dashed link in Figure 5.7 ffBulinks represent context gen-
eralization. For example, the suffix link for node 2, whicpnesents the contekiab’ , points to
node 3, which represents the more general contbkt Figure 5.8 shows the suffix trie built for
the entire trace of Figure 5.3. We have left the suffix linksafu-igure 5.8 to reduce clutter. Fig-
ure 5.8 contain§ characters; the purpose of these is described next in 8éefa?.1.

5.2.2.1| Implicit Suffix Tries

The algorithm in Figure 5.6 builds amplicit suffix trie The tree does not necessarily contain
a leaf for every suffix of the trace as required by DefinitioB. 3-or example, in Figure 5.7 (e)
we have observed a string of length 6, but there are only ®&mwvthe trie. The problem is that
there is a suffix, b’ , of the observed trace that is a prefix of another sufflagdb’). If we
wish to convert an implicit suffix trie into an explicit suffixie, we do so by adding anut-of-
band charactetto the end of the observed trace. This character (reprebasgin keeping with
convention) does not appear elsewhere in the trace so dsuais prefix problem.

The implicit suffix trie captures all of the information olpged during training. In princi-
ple, it would be possible to define all of our algorithms to kvaith this implicit structure. How-
ever, we require explicit suffix trees to implement patteetedtion efficiently (discussed further
in Section 5.2.3). For consistency, we use explicit suffestin the sequel. We add an out-of-band
character at the end of a trace to ensure this property.

5.2.2.2| Estimating the Probability of a Future Request

If noden is identified by a string of length, then we say that is of orderk. The orderk nodes
of the suffix trie correspond to the nodes in the orklenodels defined in Section 5.2.1.1. For
example, node 6 of Figure 5.7 corresponds to coritéxt while node 9 corresponds tdc’ .

In the orderk models shown in Figure 5.5, edges are annotated with the ewuofltimes
that the associated request was observed following thexioof the node. These counts can be
used to estimate the future probability of observing theiestjwhen in the context. We maintain
similar information in the suffix trie by updating@ount field on line 436. This count allows
Scalpel to estimate the probability of future requests.

104

BATCH REQUEST PATTERNS

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

structure NODE
count =0
parent =NiL
suf fi x=NiL

lastIn[i] =NiL > Last input param values
lastQut[j] =NiL > Last fetched row
correlations=0 > Set of possible correlations

end

> Record query Q, with input parameter values InVals, in suffexT
procedure MONITOR-OPEN(T, Q InVals)

> start with node of longest suffix in T

curr <« LONGESTSUFFIX(T)

| astnewchild «— NiL

while curr = NiL do

n «— FindChild(curr, Q) > get query Q child of curr
if n = NiL then
n «— NEwW-CHILD(T, curr, Q) > make new Q child of currin T

n. parent <« curr
n.correl ati ons < FIND-CORRELATIONY n, InVals)
newchild «— n
else
VERIFY-CORRELATIONY n, InVals)
newchild «— NiIL
if | astnewchild # NiL then | ast newchi | d. suffix « n
| astnewchild < newchild
n.lastln «— InVals
n.count <« n.count + 1
prev <« n
curr « curr.suffix
> The suffix of the last new node is the root
if | astnewchild # NiL then | ast newchil d. suffix < Get Root (T)
end

procedure MONITOR-FETCH(T, fetchVals) ©> Recordfetched valuesintrie T
curr <« LONGESTSUFFIX(T)
while curr # NiL do
curr.lastQut « fetchVals
curr « curr.suffix
end

Figure 5.6: Code to build a suffix trie.

105

5.2 PATTERN DETECTOR

-
>~ > -
AN
N

~---3
N ¥
~-6
(c)* xab’

(b)* xa’
7 -d 11 -1 a 2 b 4 ¢ 7 d 11 b 16
/ , L /// - /// ///
’ v P v v
! { c (8 d (12 b (17
l//a P s // //
s ¥ p K/ // //
A b6 _Cc 9 d 13 b 18
A E‘/ \// d Pid
N /A\ s -,
\ Td-10 d\ 14 b
% Ve

I

_7
C 7 -

[IREN ¥ ¥
\ d4-10 d (14 \ 19
// \ P
7 \ 7

\ ¥ ¥
N~15 b (20
(e)' xabcdb’

S~-27
() * xabcdbe’

Figure 5.7: Suffix trie after first 7 queries in trace. A diardoapresents the longest suffix within

the trie.

106 BATCH REQUEST PATTERNS

cydbez$
b
eacxabc)/dbez$
z
$

o

Figure 5.8: Sulffix trie for trace of Figure 5.3. Suffix linkseasmitted.

LEMMA 5.6 (CONTEXT FREQUENCY IS MEASURED BY THECOUNT FIELD)
Let w be a string associated with a node in the implicit trie foingtf” of lengthm. Thecount
field of the node associated withgives the count of the number of occurrences of worid 7.

PROOFE Lety be the prefix ofv anda the last character ab so thatw = ya. For each instance
of w in T, MONITOR-OPEN is invoked witha after processingvy for some stringy of length

l. The LONGESTSUFFIX function returns the node associated witly and the MONITOR-OPEN
procedure visits each suffix[1..l]y, «[2..l]y, ...a]l..l]y, eventually reaching nodg Either it
finds a pre-existing nodga = w and increments itsount field, or it creates a new node and

5.2 PATTERN DETECTOR 107

initializes count to 1. The only way to reach line 436 with nodeis after findingw as thea
child of y whenay was the result of bDNGESTSUFFIX for somec. Therefore, theount of w
is updated exactly once for every occurrencevdh T, which is the desired property. O

Lemma 5.6 tells us that theount field of nodew counts how many times is observed in
the tracel” observed during the training period. We can estimate thbatitity of observing a
request: after a sequence by considering the ratio of theount of wa andw.

5.2.2.3| Tracking Parameter Correlations

The suffix trie structure that we have described so far carsbd to predict the likelihood of fu-
ture requests. In addition to this probabilistic inforrmati we must be able to predict the actual
parameter values that would be used if the request were febimin addition to structural infor-
mation, Scalpel maintains information about parameteretations.

We use an approach similar to the one we used for nested tquatésrns (Section 3.2.2).
We record the values of input and output parameters in thexgtie data structure, and look
for correlations that have always held throughout the trac8ection 3.2.2, we considered three
possible predictors of future actual parameter values. ¥vsider these same three predictors
for batch query patterns; however, we consider previousiem¢hat have already been closed
instead of the currently open outer queries.

Constants‘C’) If a query parameter is always supplied with the same valewény instance of
a query within our training period, we may conclude that theameter is a “variable that
won't”.t

Input Parameters'(’) A query parametep; may always have the same value as a parameter
of some previously submitted query. For example, in Figue thevendor i nfo. i d
parameter of querg). on line 404 is always equal to tvendor _i nf o. i d parameter of
queryQq on line 396. At run-time, after observirngg, we can predict the value that will
be used for the parameter @f.

Output Parameters'Q’) An input parameter may instead be correlated to a valueneduoy a
previous query. For example, thd.. accno parameter of). (line 380) is always equal
to the second column of the precedifig (line 373). At run-time, we can use the results of
the previous query to predict the value used in a future r&que

Recall that for nested request patterns, we maintainedape field for each node in the
context tree. This scope listed a set of correlation soubjects that were possible predictors of

1 From Osborn’s Law: “Variables won't, constants aren’'tgribOsborn

108

BATCH REQUEST PATTERNS

449 structure CORRELATI ON

450 i nparam="? > The input parameter predicted by this object
451 type=? > The type of correlation: C-constant, I-input, or O-output
452 val ue=NiL > For type C, the constant value

453 prevcent =NiL > For type | or O, the distance to the source query
454 par am= NIL > For type | or O, the parameter number

455 end

456

457 > Find possible correlations for node n and input parameteleganVals

458 function FIND-CORRELATIONY n, InVals)

459 fori «— 1 to InVals.length do

460 prevcnt «— O

461 curr « n.parent

462 corrs « new CORRELATION(i, C, InVals[i])

463 while curr # NiL do

464 prevcnt « prevcent - 1

465 forj <« 1 to curr.lastln.length do

466 if Invals[i] = curr.lastlIn[j] then

467 corrs <« corrs U new CORRELATION(i, |, prevcnt, j)
468 forj <« 1 to curr.lastQut.length do

469 if Invals[i] = curr.lastCQut[j] then

470 corrs « corrs U new CORRELATION(i, O, prevcnt, j)
471 curr « curr. parent

472 return corrs

473 end

474 > Verify correlations for node n and input parameter valud&ls

475 procedure VERIFY-CORRELATIONS n, InVals)

476 for c € n.correlations do

477 if InvVal s|[c.inparam] # CURR-VALUE(c¢) then

478 n.correlations « n.outCorr[i] \ c

479 end

480 > Find the current value of a correlation source c relativeaden

481 function CURR-VALUE(n, ¢)

482 if c.type = C thenreturn c.val ue

483 else

484 for prevent < c.prevent to 0 do

485 n < n.parent

486 if c.type = | thenreturn n.lastln[c.param]

487 else return n.lastQut[c. param]

488 end

Figure 5.9: Code to monitor parameter correlations.

5.2 PATTERN DETECTOR 109

(1/c, 501)
(1|c, 101)
x (1c.42) | a [(1c.101) | b (10,-2,2) |-d— | (1]C,201)
(1L-1,1)
(1]0,-3,2)
ajc, 101) (1)c, 501)
(a) a (11C,101) b (11, 1) (10.-2,9) d (1]C, 201)
b [c10n) e [@lc,501) | d | (1]C,200)]
¢ [e d | ajc,20) |
d [(1c,201)
(1C, 101 {11, 501)
x [@lc42) a [qlc10n) | b 1‘1’_11> c | (022 | d [@lc,201 | b (1[C,200)
Ly (1/0,-3,2)
1/C, 101) (11, 501) :
) a b Ho22 | @ [(1c,20) | b [(1)C,20) |
b [0] ¢ [qje,s01) | d [(1200 | b [(1)C,201) |

| ajc,s0n) | d | c,20n) | b | (1 201) |

[¢]

[oX

[aic,20) | b [qjc,20) |

Figure 5.10: Suffix trie with possible correlations after‘(@abcd’ and (b)' xabcdb’ .

input parameter values. For batch request patterns, tipe $ooa node in the suffix trie contains
all of the input and output parameters of queries that aresiars of the node in the trie. In this
way, we allow a node in the trie to represent correlationsnipguery on a path from the node
to the root. For batch request patterns, we don'’t expliciigintain thescope field (in order to
allow a linear-space implementation, described in Sed&iarB).

The input parameter values for the most recent instance ajda's query are recorded
in the | ast | n field, and the values returned by the most recemtdH are recorded in the
| ast Qut field. Thecorrel ati ons field of a node records possible sources of values that
could be used to predict the value of each input parametés.fighd is maintained by thelRD-
CoORRELATIONS and VERIFY-CORRELATIONS procedures

Scalpel uses an object of typeDERELATION (line 449) to represent an observed correla-
tion between an input parameter (identified by index irpar am and a source of values that
may predict actual parameters at run-time. This strucwignilar to the structure of the same
name used for nested request patterns (Figure 3.7). In @@pive describe how the two types
of correlations are maintained in parallel; for now, we prasresults as if ORRELATION ob-
jects are used only for batch request patterns. For nesiedsepatterns, we recorded the source
of an input or output correlation in treont ext field using a reference to the appropriate con-

110 BATCH REQUEST PATTERNS

text that was the source of values. For batch request paiteminstead use an integer value in
thepr evcnt field. This alternate representation is needed to allow ficgfficient implementa-
tion of the suffix trie correlation detection (described gcson 5.2.3.2).

For objects of type ‘I’ and ‘O’, thepr evcnt field gives the distance to the preceding query
that contains the value of interest. For example, the imatelyi preceding query has event
of —1, while the query preceding that is recorded-& Thepar amfield of the GORRELATION
object records the parameter number that is predicted toebeaurce of future actual values. For
CORRELATION objects of type ‘C’, theval ue member records the associated constant value;
thepr event andpar amfields are unused.

The last column in Figure 5.3 shows theRRELATION objects that Scalpel finds for each re-
quest in the trace. For example, in position 3 reqdgshas input parameterfd01). The value
101 matches the first input parameter of the immediatelyqulieg query,Q.. Scalpel there-
fore finds that the first parameter @f, could be correlated to the constant value 101, recorded as
(1/C, 101). In this representation, the first number (1) is thigpar amindex of the input para-
meter being predicted, the ‘C’ indicates a correlation tom@stant, and 101 is the constant value.
Alternatively, Scalpel also finds the first parametet)gfcould also be correlated to to input pa-
rameter 1 of the immediately preceding query, and this ierdEd ag(1|1,-1, 1). The first num-
ber (1) again indicates thenpar amindex, the ‘I’ indicates this is an input parameter correla-
tion, the—1 indicates the source is the immediately preceding quedyttam last value indicates
it is the first input parameter of the preceding query we aerésted in.

The correlations between the input parameters of a requespi@viously observed values
depend on the context in which the request is submitted.drcdimtext tree structure used to de-
tect nested request patterns (Section 3.2.2), each note inee represented a context. When a
new node was created, we initialized ther r el at i ons field of the node with a set of corre-
lations that held at that time. Every subsequent time théegbmas matched during the training
period, we re-checked each of the correlations stored icding el at i ons set, removing any
that no longer held. For batch request patterns, each daatepresented by a node in the suffix
trie structure. Theor r el at i ons field of noden is initialized by AND-CORRELATIONS With
a set of @RRELATION objects, and this set is re-checked byRIFY-CORRELATIONS every time
the context associated with the node is subsequently adxbelrvthis way, theorr el ati ons
field of a node is maintained with the set of correlations tieate always held when observing
the query leading inta.

Figure 5.10 shows the set ofdRRELATION objects maintained for each node after process-
ing (@) ‘ xabcd’ and (b)‘ xabcdb’ . In Figure 5.10 (a), each request has only been seen
one time. As each node is addedpMITOR-OPEN calls HND-CORRELATIONS (line 428). The
correl ati ons set for each newly created node is based on the parametesvaluthe cur-
rent request and preceding request values. Because dfidcsor r el at i ons set is the same

5.2 PATTERN DETECTOR 111

for each of the nodes created in response to a single regxespt that shorter contexts elimi-
nate some of the correlations that are longer than the corffexexample, contextsxab’ and
“ab’ both have their set initialized t(1|C, 101), (1/1,-1,1) }, while the set for contextb’ is
initialized to{(1|C, 101) } because there is no preceding query in that context.

The correlation sef(1|C, 101)} stored for context b’ represents the fact that the first pa-
rameter ofQ), hasalwaysheen equal to the value 101 every time it has been observear so f
in the trace. This gives us a prediction that the paramettralwiays have this value in the fu-
ture. In this case, the prediction turns out to be false, aradp®l detects this after observing the
last request in xabcdb’ . The MONITOR-OPEN function finds that nodeb’ already exists in
the trie, and calls ¥RIFY-CORRELATIONS (line 431). The result of GRR-VALUE((1|C, 101))
does not match the current parameter value of 201, so thelation source is removed as a pos-
sible predictor.

5.2.2.4| Summary of Suffix Trie Detection

At the end of the training period, the suffix trie structurat@ins a node for every context (of any
length k) that was observed during the trace. The contexts contamuat field that is used to
estimate the likelihood of future requests, and they cardaior r el at i ons field that records
correlations that have always held between input parasiarea a known value every time that
the context was observed. Scalpel uses this informatiomlerisappropriate rewrite rules that
will be used at run-time

LEMMA 5.7 (SUFFIX TRIE BUILDS O(n?) NODES)
A suffix trie 7 for string T" of lengthn contains at most + n(n + 1)/2 nodes.

PrROOF When processing characterwe have the longest suffix &51..:] of lengthi. Every
iterationk (line 423) move<ur r to a suffix nodel’[k..i]. There can be at mostsuch suffixes
before we reach the root, so at mestodes are added when processing charaapéistring 7.
Summing (including the root node), we get:

n(n+1)

T <1 =1
||_+ZZ + =

i—1l..n

(5.8)

Further, this worst case bound is achievable. Considertting 1 as . . . a,,, where each charac-
ter is novel. The NDCHILD call (line 424) will never find an existing child, gsmodes are added
on each step. d

112 BATCH REQUEST PATTERNS

We can implement &TCHILD in amortizedO(1) time by either using an array of siZE|
or a dictionary such as a hash table (using the RAM model)dtfitian to theO(n?) time and
space needed to build the nodes of the suffix trie, the coioelaetection requires additional
space and time. In the worst case, every input parameteu#s gxevery previous input or output
parameter. This work increases the overall time boun@ (te*m?), wherem is the number of
parameters per query.

A Path Compressed Suffix Trie

For traces of significant size, the asymptotic complexityi@NITOR-OPEN is likely to be im-
practical. The asymptoti©(n?) bound can be achieved even with small alphabets« n. For
example, consider the stringb’, which gives the implicit suffix trie shown in Figure 5.11(a)

a b b b $ a bbb$
a b b b $ a bbb$
b
b b $ bbb$
a a
b $ b$
b $ b $
$ $ $ $
(a) Suffix trie (b) Path-compressed suffix trie

Figure 5.11: Atomic suffix trie and path-compressed suffexfor a’b’, j = 3

Figure 5.11(a) provides a suggestion for reducing the thadza of the trie. In Figure 5.11(a),
a number of nodes have only one child, and this was also tieigiure 5.8. We can combine these
branchless nodes, givingoath compressed suffix trés shown in Figure 5.11(b). Path compres-
sion is a general approach for reducing the size of a trieast fivst introduced by Morrison [136]
as thePatricia treedata structure, and this term is often used in the literatudescribe this type
of structure. In the case of suffix tries, the tesnifix treeis used to indicate a suffix trie which
is encoded with path compression. It would perhaps be bietterlowing Nilsson and Tikka-
nen [141] and use the term path compressed suffix trie. Timsiteverbally distinguishable from
suffix trie (according to an editor’'s note, Fredkin appdsensed “Trie” as a derivation of re-
TRIEval; this would lead to ‘tree’ and ‘trie’ being homonyjn&urther, ‘path compressed suffix

5.2 PATTERN DETECTOR 113

trie’ emphasizes both the underlying trie-based naturdefstructure and its compact encod-
ing. However, we accept current practice and refer to a strifixk when we mean a path com-
pressed suffix trie, and we pronounce trie as ‘try’ to avoitbakambiguity.

DEFINITION 5.8 (SUFFIX TREE)

A suffix tree7 for string T' of lengthm is a rooted, directed tree with exactly leavesL; la-
belled withi = 1...m. Every internal node (excluding the root) has at least twitdidn. Each
edge in the tree is labelled with a nonempty substrin@'adéind no two edges out of a node have
the same first character. Every nodés identified by the string corresponding to the edge la-
bels on the path from the root to Each leafZ; is identified by the suffix’[i..m] of stringT".

As with the suffix trie, we run into difficulty if a suffix of" is a prefix of another suffix of
T. We avoid this difficulty using the out-of-band charactgrand define ammplicit suffix tree
built from a prefixT'[1..:] to be a suffix tree that may not have the desired number ofde@de
(implicit) suffix tree 7; for a prefix T'[1..i] can be created from the (implicit) suffix treg by
combining all branch-free nodes into a single edge.

Path compression for a trie with leaves gives a structure with at ma@st + 1 nodes, which
is an asymptotic improvement over the original definitiore wuld build a suffix tree by first
building the associated suffix trie structure then mergiathg of branch-free nodes into a sin-
gle edge. This approach would not, however, improve our asytic bound. Instead, we imple-
ment anO(n) algorithm introduced by Ukkonen [180] (using a slightlyfdient presentation
that more closely matches our existingoMITOR-OPEN procedure). Figure 5.12 shows the im-
plementation of MNITOR-OPEN-COMP, which builds a suffix tree for a trace while monitor-
ing correlations that have always held in, allix{n) time and space. Figure 5.13 shows a trace
of the steps taken by BINITOR-OPEN-COMP when processingaaabbb’ .

In order to meet th&(n) requirements, we need to be careful about our represemtatio
implementation. First, although the definition of a suffikdrsuggests that edges are labelled by
strings, we cannot store distinct copies of these string(in) space: there ane(n + 1)/2 char-
acters in then suffixes of ann-character string. Instead, we use an object of typrPSR that
represents a substring ®fby storing the indeX i r st of its first character andast of the last
character (exclusive).

We use an object of type GLEPTR to refer tovirtual nodeswithin the suffix tree. These
virtual nodes are positions where the suffix trie has a brdiresh node. The NDEPTR object
consists of fields, anexplicit node(one that is actually present in the suffix tree) and a string
pat h represented by at®PTR object. This string specifies a path to follow from na&léo the
implicit node, which may either be an explicit node or a gositwithin an edge’. For example,
in Figure 5.13 step 2:1, we have aNEPTR of (0, a’) that refers to a virtual node. There are
multiple NODEPTR values that refer to the same node: Figure 5.13 step G0QHRTR values

114 BATCH REQUEST PATTERNS

489 structure STRPTR > Represent a substring ®f t r ace

490 first=0 > The index of first character

491 | ast =0 > The index of last character (not inclusive)
492 end

493 structure NODEPTR

494 s =NiL > TheNode starting the path

495 pat h=new STRPTR(0, 0) > The string on the path leading out ®f
496 end
497 structure TREE

498 trace=e > The string of queries so far

499 t racker =new CORRTRACKER [> S-sized sliding dictionary for correlation detection
500 correlations=[] > A list of sets of @®RRELATION objects

501 r oot =new NODE > The root of the tree

502 end

503 > Record query Q, with input parameter valldasval s, in suffix treeT

504 procedure MONITOR-OPEN-COMP(T, Q InVals)

505 > Start with node of longest suffix in T that has been observésbat twice
506 curr <« LONGESTSUFFIX2(T)

507 | astnewchild < NiL; end_point <« FALSE

508 > Add request Q to the trace

509 T.trace «— T.trace + Q

510 > Append the set of correlations that currently hold todist r el at i ons
511 corrs « FIND-CORRELATIONSComP(T, InVals)

512 T.correlations < T.correlations + corrs

513 while curr # NiL and not end_point do

514 n «— FindChild(T, curr, Q) > get query Q child of curr

515 if n = NiL then

516 n «— NEwW-CHILD(T, curr, Q) > make new Q child of currin T
517 newchild «— n.s

518 else

519 end_poi nt < VERIFY-CORRELATIONSCOMP(n, InVals)

520 newchild « NiL

521 if | astnewchild # NiL then | astnewnchild.s.suffix <« n.s

522 | astnewchild < newchild

523 curr <« GETSUFFIX(curr)

524 > The suffix of the last new node is the root

525 if l astnewchild # NiL and lastnewchild.s # T.root then
526 | astnewchi | d. suffix « T.root

527 end

Figure 5.12: Code to build suffix tree

5.2 PATTERN DETECTOR

115

Step| curr n((517) n(520) Tree
1:1 | (0,e) NiL (0,a) 0 a.. 1
2:1 | (0,¢) (0,a) NIL 0) aa... (1
31 | (0,a) (0,aa) NiL 0 aaa... |1
b.. 1
4:1 | (0,aa) NIL (2,b) 0 aa 2 ?
b.. 3
a 1
a __2
42 |(0,a) NL (4b) g a a4=""" b 3
b.. 5
ab.- 1
a __2
a 44—”’— b 3
43 | (0,¢) NiL (0,6) g=~-"" b. . 5
b.. 6
abb. .. (1
a __2
a ge-"7T bb... (3
51 | (0,¢) (0,b) NIL 0~<-"" bb. 5
bb. 7
abbb. .. (1
a __2
a _a~"" bbb. .. (3
6:1 | (0,b) (0,bb) NIL 0~<-"" bbb. 5
bbb. 7

Figure 5.13: Steps of building a suffix tree foaaabbb’ . The first column shows the current

stepi:j wherei is the number of the call to FINITOR-OPEN-COMP andj is the number of the

iteration within one call. The next column shows the valuthefcur r variable on line 514. The
next two columns show the value of thevariable after creating a new child (line 517) or finding
an existing one (line 520). The last column shows the straatiithe tree at line 522. Nodes are

labelled in order of creation, with used for the root node.

116 BATCH REQUEST PATTERNS

Step| curr n((517) n(520) Tree
abbb$ (1
a -2
a a<T bbb$ 3
ol bbb
7:1 | (0,bb) NIL (8,9) 0=<" &
b$ 7
bb 8
$ 9
abbb$ (1
a 2
N bbb$ 3
//
7 bbb$ 5
7:2 | (0,b NIL 10,$ <’
(0.v) (10.8) o o
b __8
- $ 9
b 10
$ 11
abbb$ (1
a 2
. PR bbb$ 3
7
4
7 bbb$ 5
d
//
s b$ 7
73 | (0, NL (10,8) o~ b_ =8
S——— k”’ $ 9
b =10
$ 11
$ 12

Figure 5.14: Steps to convert the implicit suffix tree intoeaplicit suffix tree. Columns have the
same meaning as in Figure 5.13. In the explicit suffix treetehs a distinct leaf node for each
suffix of the trace, and we can count the occurrences of arstring by the number of leaf nodes
in the sub-tree below the associated node.

5.2 PATTERN DETECTOR 117

of (0,'aa’), (4," @’), and(2,¢) all refer to the same explicit node. We say that @ad¥PTR
n = (s, z) is in canonical formif there are no explicit nodes on the path fraerfollowing z.

The insight Ukkonen used in his presentation is that we cato@xthe NODEPTR represen-
tation of edges to have all of the leaf nodes in the implicffisuree 7; automatically extended
as we add new characters. When creating a new leaf node giwétlain labels the node with a
STRPTR object with a ast value ofcc. The interpretation of this is that the string extends to the
right including all new characters processed so far. Whemadeea new character o t r ace,
we extend all of the edges to these leaf nodes with the nevectear

This trick takes care of adding virtual nodes at the end ofyebeanch-free edge to a leaf
node, and this is fundamental to the asymptotic improvernmeninning time. The original suf-
fix trie algorithm started updating atdNGESTSUFFIX and added new nodes by following suf-
fix links. For the first part of this update step, existing lrafles were extended to form new leaf
nodes, until eventually the suffix link traversal reachedhégrnal node. With theo trick used by
Ukkonen, all of the leaf nodes that are to be updated are ditiplupdated as soon as we add a
new character. Instead of starting the loop @NGESTSUFFIX, we instead will start at the first in-
ternal node that was encountered in the original travef$as internal node is the first node that
is not implicitly updated by theo trick, and it is the first place that a new explicit node might
need to be created.

We use IONGESTSUFFIX2 to identify this internal node that represents the new tgdaint.
In the suffix tree structure, the internal node could be ekpdir virtual. As we show in the fol-
lowing lemma, if we define bNGESTSUFFIX2(7;) to be the node in tre&; that is the longest
context that has been observed at least two times in the Tréice], then we identify the ap-
propriate update position that is the first location in thifisilink traversal where a new explicit
node might be created when generating suffix #fgg.

LEMMA 5.9 (LONGESTSUFFIX2 IDENTIFIES THE UPDATE POINT)
If = is an explicit node in implicit suffix tre&; . 1, thenz has been observed at least twice&Zjn

PROOF Sincex is explicit in Z;,; for T'[1..i + 1], it is branching. Therefore, there must be
y =xzaandz = xbfora # bin T[1..i + 1]. Hencez must occur at least twice [fi[1..7]. O

By Lemma 5.9, the bNGESTSUFFIX2 identifies the most specific position where we might
need to create an explicit node. TRiendChi | d function checks if there is alreadylabelled
edge fromcur r . If cur r is an explicit node, this is checked by looking in a dictignaf child
nodes. Alternatively, iEur r is a virtual node, theour r has aQchild n if Qmatches the next
request on the branch-free edge fromr r . If Qdoes match, then the childmay either be an-
other virtual node, or an explicit node.

If Fi ndChi | d returns NL, then a new child is created by a call t&N-CHILD (line 516).
We create a new leaf node child ofir r starting withQ. In the case thatur r is already an

118 BATCH REQUEST PATTERNS

explicit node, NEew-CHILD adds a new leaf node as a direct chilccoff r , and returngcurr, Q)

as the new (virtual) child node. In step 1:1 of Figure 5.13¢w@ teaf node is created as a child
of the root (node 0), and theewchi | d variable is set td0, a). Alternatively, if the NoDEPTR
curr is avirtual node, then we must first split the edge that r is on, creating a new internal
node. This is performed in each of the iterations 4:1, 4:2when requestb’ is observed. The
NEw-CHILD returns a NbDEPTR object in canonical form. The implementation oEN-CHILD

is relatively straightforward, and is omitted here.

When a new child node is created, thef f i x field is NIL. We never set this field for leaf
nodes (nor do we attempt to follow it). Tisauf f i x field of newly created internal nodes is set
on the next loop iteration (or after the loop has terminated)

In Figure 5.6 (line 438 ur r is moved to its suffix using theuf f i x field. In Figure 5.12
(line 523) the GTSUFFIX function is used instead. ¢fur r has the valués, ax), then GETSUF-
FIX(curr) returns(s, z) if s is the root node; otherwisés.suffix, ax).

5.2.3.1| Estimating the Probability of a Future Request

A final structural item we must account for is tbeunt fields. In the original MONITOR-OPEN
algorithm (Figure 5.6), we updated theunt field for each context on the suffix path from the
longest suffix to the root. That update gives the desiredutsaqy property that we need to pre-
dict future queries (Lemma 5.6). In the path compressedxdiffi, we cannot perform such up-
dates in linear time. Instead, we defer calculatingabent for a node until after we have fully
processed strin@’ and, further, added the out-of-band charater

LEMMA 5.10 (FREQUENCY IS MEASURED BY NUMBER OF LEAVE$

Letw = xy be a sub-string of” with canonical MDEPTR of (z, y) in the explicit suffix treeZ”
for T'$. Let ¢ be the child node of found by followingy (if v = ¢, thenc = z). The number of
occurrences ofy in T' is given by the number of leaf nodes in the sub-tree rootedde n

PROOE Letk;, ¢ =1...1 be the first character position i of each of thd occurrences of.
Let z be the string on the path frol, y) to c¢. Because the edge 2% ¢ is non-branching, we
know thatzy has always been followed byin 7. Further, by the properties of suffix trees, the
suffix T'[k;..m] is a leaf in7 with a label that starts withy. Since the label starts withy, zyz
must also be a prefix. Therefore, the 1&8k;..m] is in the sub-tree rooted at= xyz. Finally, if
any leaf is in the sub-tree rootedathe path to the leaf starts with = zy so it must be one of
the k; occurrences accounted for. Therefore, the number of leddésm the sub-tree rooted at
is exactly the number of occurrences of string O

5.2 PATTERN DETECTOR 119

dbeacxabcydez$
bc
a ydbez$
cxabcydbez$
dbeacxabcydbez$
c ydbez$
b
e acxabcydbez$
z$

acxabcydbez$

dbe 2%
dbeacxabcydbez$

c xabcydbez$

ydbez$

acxabcydbez$
© z$
dbeacxabcydbez$

xabc

ydbez$
ydbez$
z$

Figure 5.15: Suffix tree for trace of Figure 5.3. Suffix linke amitted to avoid clutter.

120 BATCH REQUEST PATTERNS

By using the approach of Ukkonen, we have shown an algoritfimnITOR-OPEN-COMP
that builds a suffix tree for strin@ in O(|7’|) time and space. Figure 5.15 shows the suffix trie
that is built for the trace of Figure 5.3. In addition to theustural changes that give linear com-
plexity, we have adapted our correlation detection to rumear space and time.

5.2.3.2| Tracking Correlations

In the original MONITOR-OPEN algorithm (Figure 5.6), the INKD-CORRELATIONS procedure
for a noden considers all of the parent nodesrofvhen finding initial correlations; this leads to
O(m?) time and space complexity im the length of the trace. Further, when request 1 is
observed, th& generalizations of the longest suffix are adjusted wiRW¥Y-CORRELATIONS
CompP. We cannot support these operations directly in linear ame space.

The problem of space complexity is inherent in our definittbthe correlations we are will-
ing to consider. In the suffix trie, we considered that eactmefparameters of requéstt+ 1 can
be correlated to any of the parameters of any ofttlpeevious requests. Instead of allowing cor-
relations of unbounded length, in the suffix tree represiemave restrict the sources we con-
sider to theS previous requests, whefeis a configuration parameter used to indicatedbepe
lengththat we consider. With this change, the size of¢le r el at i ons sets for each input pa-
rameter are constant with respect to the trace lengtithere is still a quadratic dependence on
r, the number of parameters per query: in the worst case, eacit parameter can be corre-
lated to all of the parameters of prior queries. This leadS(t8r2) space needed for correlation
sources for each of the nodes.

We use an object namdd acker (line 499) to maintain a dictionary over a sliding win-
dow of the S previous requests. This dictionary maps a value to a sgt gpe, prevcnt,
par an) triples that identify prior input and output parameter easequal to the given value.

While the introduction of the scope lengthmakes the number of correlation sources for
each node constant with respect to trace size, there isersathrce of quadratic space complex-
ity. In the original implementation of MNITOR-OPEN, we stored correlations for each of the
O(n?) contexts encountered during the trace. The path compressiiced the number of phys-
ical nodes in the tree t®(n), but it is not clear that path compression is helpful in rédgc
the recorded correlation sources. In fact, the very brdrempaths compressed in the suffix tree
may be exactly the sequences that we would like to prefetchvjged that we can predict the ac-
tual parameter values that will be used.

The algorithm of Ukkonen represents a suffix trie compacflgtoring edge labels as indexes
into the string of requests. Many edges use the same chafactideir label, which gives the
asymptotic space savings. We use a similar approach fangtoorrelation information. We store
a single sequenck. corr el at i ons for the suffix treel. Each element in the sequence is a set

5.2 PATTERN DETECTOR 121

of CORRELATION objects. For each stringthat appears in trac€, we define an index in this
sequence that holds theoBRELATION objects for strings; we call this position theorrelation
homefor string s.

DEFINITION 5.11 (CORRELATION HOME)

The correlation home for a stringin traceT is the index of the last character of the first occur-
rence ofs in T. For example, in the trace shown in Figure 5.16, the cofcgidiome for string
‘b’ and is 3, while the correlation home for stringb’ is 6.

More than one string may have the same correlation home.Xaon@e, in Figure 5.16 the
strings' b’ ,* ab’ ,and' xab’ all have the same correlation home (position 3). We woulel tik
store the @RRELATION objects for all of these strings in one set. However, eachedd strings
may have a distinct set of GRRELATION objects. If we store these distinct sets separately, we
haven't saved any space. Fortunately, we are able to exploik that relies on a subset relation-
ship between the stored sets.

LEMMA 5.12

Let s; and sy be two sub-strings of trac& where s; and s, have the same correlation
home position. Without loss of generality, lef be the shorter of these two strings. Then
CORRELATIONS(s1) € CORRELATIONS(s2), where @RRELATIONS(s) is the set of ©RRE
LATION objects that are associated with

PROOE Sinces; ands, have the same correlation home position, we know they badhaén
the same character position Tn This tells us that; must be a suffix ok, Therefore, every
time that we have observed string, we have necessarily observed its suffix Hence, there
cannot be a correlation that has always held after obseryibgt has not held at least once when
observingsz. Thus, there cannot be E0RRELATION objectc € CORRELATIONS(s1) wWherec ¢
CORRELATIONS(s2). This gives the stated subset relationship. O

The subset relationship described in Lemma 5.12 tells usvikacan store a single sét
at each correlation home position. If this setC' contains all of the ©RRELATION objects for
the longest string associated with positiom, then it necessarily contains all of thed@RELA-
TION objects for all strings; associated with positiom. It remains only to define the function
CORRELATIONS(T, s;) that identifies the subset 6f that applies to each string.

We accomplish this by augmenting the@RELATION object with ani nor der field. The
CORRELATIONS(T', s) function interprets the set of store®&RELATION objects, returning only
those whoseri nor der field is less than the lengtl|. When we wish to remove adRkRELA-
TION objectc from the set associated with a stringwe do so by increasing the ni nor der
value to|s|. In this way, we remove from the results of ©ORRELATIONS(T, s) without affect-
ing the stored set for any longer strings that have the samrelation home. Thenr nor der
trick allows us to represent the correlations for multighings in a single location.

122 BATCH REQUEST PATTERNS

Figure 5.16 shows the implicit suffix tree after processimg kabcd’ , (b)‘ xabcdb’ ,and
(c) ' xabcdbe’ (the first two correspond to Figure 5.10(a) and (b) respelsfiv The edges in
these trees are represented RBTR objects (indexes shown), and this allows sharing between
edges. For example, th&’ at position 2 is used in edgexabcd’ and’ abcd’ . Figure 5.16 (e)
shows the contents of thile cor r el at i ons list of sets after processirigcabcdbe’ . The el-
ements of these sets ar®@RRELATION objects extended with th& nor der field.

As each request in the trace is processed.cther el at i ons list is extended (line 512)
with the correlations found byIRD-CORRELATIONS-CoOMP. The elements in the set appended
at stepi correspond to the result ofifb-CORRELATIONS in Figure 5.6 (line 428) on the first
iteration withcur r equal to the longest suffix in the existing tree. This gemsrail correla-
tions that hold when considering the entire list of precgdijeries as the context. The corre-
sponding set of OGRRELATION objects apply in the most specific context, but they do notyapp
for some generalizations. For example, Figure 5.10 shohettthe correlatior{1]0,-2, 2) is in-
cluded in the set for charactec’ when it is observed in contektxabc’ and‘ abc’ , but not
when it is executed ihbc’ . In this last context, there is only one preceding query twser, so
we cannot include correlations to earlier requests. fineor der field of this correlation is ini-
tialized to 2. The ©RRELATIONS function therefore excludes this correlation when corrgide
context' bc’ becausébc| = 2.

The position 4 in thecorrel ati ons list represents the request’ , and in the path-
compressed suffix trie it is used for multiple edges. In Fegbirl6(a) it is used for the 4 longest
edges to represent information about reque&st when observed in the contextgab’ ,‘ ab’ ,
‘b’ , ande. The set of @RRELATION objects shown in paosition 4 is correct for the first con-
text xab’ , but it contains a superset of the desired elements when msdsy the generaliza-
tion contexts ab’ ,‘ b’ , ande. We encode this subset property with the associatator der
field. Themni nor der field gives the minimum context length for which the cornelathas al-
ways held. We use @i nor der value of 2 in the @ RRELATION object(1]0,-2, 2|2). The value
2 indicates that the correlation at position 4 has held etiarg we have observed request’
when the trace is in contefft[4 — 2..4 — 1] (that is, when the trace is in contéxab’).

When we create a newdRRELATION object for an input or output type correlation, we ini-
tialize them nor der field to the value opr evcnt . In addition to setting thei nor der for
new objects, we must also be able to removecREELATION object associated with a particu-
lar edge without affecting the more specific edges shariag#ime list position. For example, af-
ter processing the secohndd’ request, we recognize that the first parameter is not alwagyal e
to the constant01. We would like to remove the GRRELATION object(1|C, 101|0) from con-
text e, while retaining it for context a’ . We accomplish this removal operation by incrementing
them nor der field, giving (1/C, 101|1), which is shown in Figure 5.16. As we check correla-

5.2 PATTERN DETECTOR 123

[1..0c]: xabcdbe. ..

[1..00]: xabcd. .. [1..00]: xabcdb. .. [2..00]: abcdbe. ..
[2..00]: abcd. .. [2..00]: abcdb. .. 5.3 b [4..00]: cdbe. ..
3.3
[3..00]: bed. .. [3..00]: becdb. .. [7.00]: e...
[4..00]: cd [4..00]: cdb. .. [4..00]: cdbe. ..
[5..00]: d [5o0]:db. .. [5..00]:dbe. ..
[T.o0]: €. ..
(@) (b) (©
(d) X a b c d b e
(11C,42/0y (1]C,10[0) (1]C,101]1) (1]|C,501|0) (1]C,201]0) (1|C,201|0) (1|C,201|0)
(e) <1|I7'171‘1> <1|Oy'272|2> <1|L'171‘1> <1|L'171‘1>
(1|07'372|3> <1‘Ov_272|2>
® 1 2 3 4 5 6 7

Figure 5.16: Steps of tracking correlations for a suffix tfggures (a), (b), and (c) show the tree
structure after processirigcabed’ |, © xabcdb’ , and’ xabcdbe’ respectively. Edges are la-
belled with the SRPTR indexes and the associated sub-string. Figure (d) showtsrthee list
of characters processed in the trace, (e) showstre el ati ons list of sets of @RRELA-

TION objects that are stored in each position, and (f) gives timeenical index of each trace po-
sition.

tions with the \ERIFY-CORRELATIONS- COMP procedure, we increase th& nor der value to
effectively ‘remove’ a correlation that no longer holds ipaticular context.

The HND-CORRELATIONS-CoMP procedure (Figure 5.17) generates the set ORRELA-
TION objects that hold for an observed request. For each inpatpeteri, it adds a new ORRE
LATION object of type C (line 531) to represent the possibility thatrequest always has the same
value for the parameter. Next, it callsir r Sour ces to find all of the correlation sources within
the S-length window of previous requests that match the currgnitivalue. Th&€ur r Sour ces
method is implemented as a map from a value to a setcKEELATION objects. By using tech-
niques such as hashing, it can be implemented in amortizgtt) time—proportional to the
number of matching sources. Each tripleype, pr evcnt, par an) is used to generate a new
CORRELATION object. Thari nor der of the new object is initialized topr evcnt (recall that
pr evcnt is negative). The GRRELATION objects generated consist of all predictions that can
be made considering the current constant value of each pgyameter and a window &f prior

124 BATCH REQUEST PATTERNS

528 > Find possible correlations for node n and input parameteeganVals
529 procedure FIND-CORRELATIONSCoMP(T, InVals)
530 fori «— 1 to InVals.length do

531 corrs «— new CORRELATION(i, C, InVals[i], 0)

532 for (type, prevent, param) € CurrSources(T.tracker, InVals[i]) do
533 nc < new CORRELATION(i, type, prevcnt, param -prevcnt)

534 corrs « corrs U nc

535 ADDINPUT(T. tracker, I nVal s)

536 return corrs

537 end

538

539 > Record fetched tuple fetchVals in suffix trie T

540 procedure MONITOR-FETCH(T, fetchVals)

541 ADDOUTPUT(T. tracker, fet chVval s)

542 end

543

544 > Identify a ‘home’ location for reference pair= (s, =), used to store all correlations for
545 function CORR-HOME(T, n)

546 > home identifies the last character of the first occurrence et sz in T. trace
547 return home

548 end

549

550 > Return the set of correlations that have always held at node

551 function CORRELATIONY T, n)

552 honecorrs « T.correl ati ons[CoORR-HOME(T, n)]

553 corrs < { ¢ € honecorrs | STRINGORDER(n) > c.ninorder }
554 return corrs

555 end

556

557 > Verify correlations for node n and input parameter valud&ls

558 function VERIFY-CORRELATIONS-COMP(T, n, InVals)

559 changed « FALSE

560 corrs « CORRELATIONY T, n)

561 for c € corrs do

562 if InVal s[c.inparam] # CURR-VALUE(c) then
563 c. m norder = STRINGORDER(N) +1

564 changed <« TRUE

565 return not changed

566 end

Figure 5.17: Code to monitor parameter correlations irglirgpace/time.

5.2 PATTERN DETECTOR 125

requests. This set is assigned totheor r el ati ons field.

Finally, the AND-CORRELATIONS-COMP procedure adds the currehhVal s to the dic-
tionary with a call to ADINPUT (line 535). These will be considered as possible correiatio
sources for future requests. Likewise, after a successtitihf MONITOR-FETCH calls ADDOUT-
PUT (line 541) to add the most recent fetched values to the diatip The AoDINPUT and ADD-
OuTPUT methods remove values associated with a request morestivathe past. In this way,
the size of the dictionary does not exce@dS) requests o0 (Sr) values. Overall, the amor-
tized time complexity does not exceéqSr).

The result of IND-CORRELATIONS-COMP is a set of @RRELATION objects representing
the equality relationships that hold for the currer#e® request. For request the MONITOR-
OPEN-COMP adds this set at positiahin list T. cor r el at i ons (line 512). Each node (vir-
tual or explicit) that is created at stéorresponds to a strirfifj[:..k| that has not appeared earlier
in the trace. Therefore, the correlation home for each nevdgited node is k. The set of ©R-
RELATION objects is the same for all newly created nodes, exceptlpggsghere thepr event
of a CORRELATION exceeds the length of the string associated withVe represent the length
of this string with SRINGORDER(n), and use thei nor der field of the GORRELATION to ex-
clude the correlation from the set for nodes with a conteat itoo short.

The FEND-CORRELATIONS-CoMP works with MONITOR-OPEN-COMP to find the initial set
of correlations for each newly created nadévirtual or explicit). The other facet of correlation
detection is the process of removing correlations that ngdo hold. This is implemented in the
VERIFY-CORRELATIONS-COMP procedure.

First, we need a way to associate a node in the suffix treeefestkplicit or virtual) with
its correlation home position. Recall that each nedean be expressed in canonical form as
n = (s,x) wheres is an explicit node ana: is a string (possibly empty) leading out ef
The correlation home fon is the last position of the first occurrence of strinigin the trace.
We use function ©RR-HOME(T', n) to find this position. We can implemento®&R-HOME ef-
ficiently in O(1) time by using the S8RPTR representation of: (we omit the details). The
CORRELATIONS(n) returns the set of GRRELATION objects for node: based on its correla-
tion home position (given by GRR-HOME(n)).

Consider a MDEPTR n with value (s, za) found byFi ndChi | d (line 514). We have ob-
servedsza before, and a previous call todNITOR-OPEN-COMP has initialized the correlations
for noden as GRRELATIONS(n). It may be that some of these correlations no longer hold. The
VERIFY-CORRELATIONS-COMP function considers the setdRRELATIONS(n) of CORRELA-
TION objects. For each @RRELATION objectc, we compare the current value ofo the asso-
ciated input value of the current query. If the values do natain, this represents a case where
a correlation that previously held in contexino longer holds, hence a guessed true correlation

126 BATCH REQUEST PATTERNS

has been shown to be false. In this case, we increasertheorder field to be|sx| + 1. This in-
crease effectively removedrom the set of possible correlations associated with

If any of the GORRELATION objects is removed from a set of possible correlations neas:
ing them nor der field, then we sethanged to TRUE. If we reach a point in the iteration of
MONITOR-OPEN-COMP whereFi ndChi | d returns an existing child and no correlation sets
change values (line 519), then we can halt the iteration. gufiix of cur r will also have aQ)
child, so the original algorithm by Ukkonen [180] termindias soon as child is found. If we
find that all of the guessed correlation sources for an exjsthildn still hold, then there will be
no changes in generalization nodes, which contain a subfiet guesses fa.

We have modified the original algorithm [180] to continue qassing generalizations of
cur r until no further changes are made bgRiFY-CORRELATIONS-CoMP. We should be sus-
picious that this modification has affected our asymptatimplexity. Fortunately, we can see that
the additional cost of the extra iterations cannot exa@¢ah.Sr?) for a trace of lengthn with
scope lengtht’ and maximum parametersper request. We continue iterating beyond the origi-
nal algorithm every time that we remove at least or@REELATION from noden. Since we ini-
tially createn with at mostSr? of these objects, we will introduce at mas{m.Sr?) extra work.

5.2.3.3| Summary of Suffix Tree Detection

Together, the above alterations allow us to build a suffie (o path compressed sulffix trie) for a
lengthm trace of requests with at mosparameters i) (m.Sr?) time and space. We convert the
implicit suffix tree into an explicit suffix tree by appendifig(without affecting our asymptotic
bound). The frequency of each context within the tree carsbessed by counting the number of
leaf nodes in the sub-tree rooted at the appropriate nodesdeh edger — na, we maintain

a set of MRRELATION objects that represent correlations that have always hie&hwequest
was submitted while the trace was in contexT his set is accessed WithOBRELATIONS(T', na).
Thus, the path compressed suffix trie (or suffix tree) can bd tssatisfy all of the requirements
of the atomic suffix trie, all in time and space that is lineattie number of requests.

Summary of Pattern Detector

In order to make semantic prefetching choices, we must gréaé probability of future requests
and the parameter values that will be used if they are sudxhite have decided to limit our
choices to finite state models, which predict future behavirased on a finite set of states.

A particular subset of finite state models is the orkl@nodel, which makes these predictions
by defining contexts of thé preceding requests and using these to condition probapiédic-
tions and predictions of parameter correlations. This@gqgn runs into difficulty when selecting
an appropriate value d@f. There is no a-priori information that we can use to give igtstround

5.3 PATTERN OPTIMIZER 127

on k. Choosing a low value of will miss special cases that have unique probability oresorr
lation behaviour, while a high value @&freduces the generalization performed during training.
We introduced confidence intervals of the probability eates given by the ordér-model in or-
der to help with selecting an appropridtealue.

The suffix trie data structure provides a mechanism thatietémultaneously maintain order-
k models for allk = 1...n for a trace of lengtlm + 1. After we have observed a trace, we can
make a post-hoc decision of the béstalue. Because we have the model forkallalues, we can
select a variable-order order model that uses diffekevdlues at different positions in the tree,
depending on the estimated query costs and correlatioftgesu

The suffix trie structure gives us all that we need to makectife cost-based semantic
prefetching decisions. Unfortunately, the asymptotic plaxity is O(m?) for a trace of length
m. Itis possible to use the structure in practical implemigona, for example by choosing an up-
per limit for k, say 100. Fortunately, we can avoid these ad-hoc limits ahibee better perfor-
mance by using a path-compressed suffix trie, which we cdd uiinear space and time.

In a path-compressed suffix trie, branch-free paths are mssed into string-labelled edges.
Strings are represented by pointers into the single sthagrepresents all requests observed so
far. We define a configuration paramegethat limits the scope length of possible sources of cor-
relation values that we consider. A dictionary structunesed to map an input parameter value
to the set of @ RRELATION objects that represent parameters within sc8pkat matchv, and
we extend the suffix tree algorithm to initialize and mainttie set of correlations that have al-
ways held for a reques} in contextc.

The suffix trie or suffix tree provides all the information tlvee need to make prefetching
decisions, and we describe that process in Section 5.3t gftémization, the Query Rewriter
is used to generate an alternate query that will fetch thdtsesf the submitted query and also
prefetch the results specified by the optimizer.

Pattern Optimizer

Section 5.2 described how Scalpel builds a trie-based datetsre during the training period.
The suffix trie summarizes frequency information and catfehs that were observed during the
training period, and the Pattern Optimizer uses this in&drom to make prefetching decisions.
Figure 5.18 gives an overview of the implementation of thiédPa Optimizer.

The Pattern Optimizer uses a cost-based decision procesgitte what queries to prefetch.
Section 5.3.1 shows how we determine if a query is likely taldemitted sufficiently often to be
worth prefetching. The Pattern Detector supplies a funcBoUNT-OCCURRENCESn) that re-
ports how many times a nodewas observed during the training period. The Pattern Op&mi
uses this frequency information to derive estimates (wathfidence intervals) of the probability

128 BATCH REQUEST PATTERNS

Pattern Detector
(Section 5.2)

Cost Model
(Chapter 4)

_ a OR0C /
Children(n) c Est-Cost(a)
Count-Occurrences(n Est-Cost(a;b)

Correlations(n)

\ ¢

Cost-Based

o) Optimization
Suffix Trie + List (Section 5.3.1)
of Queries to
Prefetch

A EDADD
O

Building a Finite
State Model
(Section 5.3.2)

a /\
/ﬁé\ Removing
b Redundancy

(Section 5.3.3)
Redundancy-Remov&d
FSM with Query Lists

Pattern
Optimizer
(Section 5.3)

FSM + Query Lists

\ Query Rewriter

(Section 5.4)

Figure 5.18: Overview of the Pattern Optimizer.

5.3 PATTERN OPTIMIZER 129

of future requests. The Pattern Optimizer combines thesieapility estimates with a cost esti-
mate function ET-CosT provided by the Cost Model in order to decide what queriegéfepch
when a demand fetch is sent to thems. Scalpel is not able to prefetch a query if it cannot pre-
dict what values will be used for its parameters. The suffeciitilt by the Pattern Detector pro-
vides a @WRRELATIONS function that gives the predict correlation values (if afor)each para-
meter. The selected queries are stored as a list for eachimttue suffix trie.

The suffix trie does not directly provide all of the detailseded at run-time. For example,
it is not clear what the Prefetcher should do when a requestdn that has never been seen at
a particular node in the suffix trie. Section 5.3.2 describes the Pattern Optimizer uses the
suffix trie to build a finite state model. This finite state mia@¢ains the lists of queries that were
selected for each node in the suffix trie.

The finite model generated directly from the suffix trie ciméasignificant redundancy. Sec-
tion 5.3.3 shows how this finite state model can be simplifigdenoving this redundancy, gen-
erating a redundancy-removed finite state machine anwodth lists of queries to prefetch.

Finally, Section 5.3.4 summarizes the operation of theeRaDptimizer. After the Pattern
Optimizer has built its simplified FSM, the Query Rewritengmonent (Section 5.4) modifies the
FSM by generating combined queries that implement the teelgmefetches.

Cost Based Optimization

najasayq
a4
naias
as
a2 naia2as
n ay nax
as naiasae
as
naias
az
najyazay

Figure 5.19: Example for choosing prefetches.

Figure 5.19 shows a fragment of a suffix trie that we might fiitekahe training period. Node
n represents a context associated with string nyn. . . . ng of requests, and the edge fromto
na represents the fact that we have observed quémthe past when the trace was in context
In an atomic suffix trien is a physical node; in a path compressed suffix trie; (s, z) may be
a physical nodex(= ¢) or virtual node.

We are interested in using cost estimates to decide whaiegugcalpel should prefetch when
the application submits request after submitting the query sequenaeWe could choose to

130 BATCH REQUEST PATTERNS

submita; to the server unmodified. Alternatively, we could elect tefptch a request we antici-
pate might be submitted in the future; for examplg, In this case, we would submit a modified
query to the server that would fetch the resultapaind the predicted results fag. If the appli-
cation then submitted, with parameter values that match our predictions, Scalpeldwse the
results of the combined query to answgrand would have saved the overhead of having to is-
Suea, to the server as a separate query. Clearly, the costs oftihesdternatives will depend on
the execution costs of the various queries involved, andhetikelihood that, will actually oc-
cur following request:; in contextn. We represent this likelihood with the conditional proba-
bility mass functionp(az|na,), which gives the conditional probability that query will occur
next, given that we have previously observed the sequeacef requests.

We can use the €-CosT function (defined in Chapter 4) to estimate the total exeoutiost
associated witlu; andas when they are executed unoptimized. This expected cosvés diy
Equation 5.9:

EsT-CosT(a1) + p(az|na;) x EST-COST(as) (5.9)

If Scalpel does prefetch,, the total cost will be the cost of executing the larger carabiquery
which prefetches results far, in addition toa;. In Section 5.4, we will describe how we form
this combined queries using strategies similar to the aut@m and outer join strategies we used
for nested patterns of requests. The combined query is mgaleed using an outer join strategy
if a1 returns at most one row; otherwise, an outer union appraaaked. For now, we will de-
note the cost of this combined query bg ECOST(a1; a2), ignoring the details of which of these
approaches is used.

With these estimates of costs, we defirReEPETCHBENEFIT(n, a1, a2) as an estimate the
savings achieved by prefetching quesywhen queryu, is submitted after sequenee

PREFETCHBENEFIT(n,a1,a2) = ESTCOST(a1) + p(az|na;) x EST-COST(asg)

(5.10)
— EsT™CosT(a;;as)

With the estimate of prefetching benefit given in Equatiat05it is worthwhile to prefetch
as Whenay is submitted in context if the following holds:

EST-COsST(a;;a2) — EST-COST(a;)
EsT-CosT(as)

p(az|nay) > = Puin(n,a1,a2) (5.11)
The valueP,,in(n, a1, az) gives the minimum probability for which it is worthwhile tagfetch
queryas Whena, is submitted in context. If we think the probability of observings, is greater
than Ppin (7, a1, az), then we expect that it would be cheaper to prefetch

The value ofP,;, is defined by the expected benefit when prefetched resultssafal and
the cost when the results @ are not useful. In fact, we can provide a lower boundyn, by

5.3 PATTERN OPTIMIZER 131

considering the cost af;, relative to the per-request overhdédgl Recall that the ET-CosTfunc-
tion (Chapter 4) provides Scalpel’'s estimate of the lateasspciated with a request; the estimate
is derived using observations of costs during the trainiagoal and a cost model based on ei-
ther a nested loops join or union. Further, the estimatensbooed with &v-SAVINGS, an esti-
mate of the benefit the server can achieve if requests areittetinogether instead of as separate
queries. The outer join strategy is used only if the outergueturns at most one rowd; | < 1),
otherwise the outer union strategy is used. Therefore, weboand the cost of the combined
guery as follows:

EST-COST(a1;a2) < EST-COST(a1) + EST-COST(az) — Uy (5.12)

Unless the database server is able to exploit sharing tautxd¢ite combined query more effi-
ciently than the two separate queries, the bound in Equétitihis tight. Equation 5.12 provides
an upper bound foP,i,:

Uo

Poin<1l— ————
= EsT-CoST(as)

= Pmin(] (513)
The two sides of Equation 5.13 are equal unless the servblag@exploit sharing (correspond-
ing to RV-SAVINGS < 1). If p(ag|nai) > Puino, it is worth prefetching; otherwise, it might
still be worth prefetching if 8v-SAVINGS < 1, in which casePi, < Puino-

In order to assess whether it is worthwhile prefetching arnguee need an estimate of
p(az|nay) to compare taP,,i,. Equation 5.6 showed how we can compgite;|s), an estimate
of the probability of request; after the strings of requests. The definition ¢f(z;|s) in Equa-
tion 5.6 is based on @NT-OCCURRENCES0, t), @ count of how many times substriagpccurs
in stringt. The COUNT-OCCURRENCESfunction can easily be defined for a suffix trie data struc-
ture based on theount field (as shown by Lemma 5.6). TheoDONT-OCCURRENCESfunction
can also be defined for a path-compressed suffix trie basdtkearutnber of leaves below the as-
sociated node (shown in Lemma 5.10).

As discussed in Section 5.2.1.1, the point estinjdte |s) does not tell the whole story in
that it does not reflect how confident we are in the estimateation 5.7 provides us with a con-
fidence intervalC’I = [pg, p1] that expresses the amount of confidence we place in the éstima
p(xils).

We use the confidence interval to provide a prefetching aeciss follows. If the low-point
of the confidence intervapf) is greater tharP,,;,,, then we will prefetch as the estimated value
p(az|nay) is significantly greater thaf,,;, (at thea level of confidence). If the high-point of the
confidence intervaly) is less thanP,,;,,, we will not prefetch as the estimafgas|na;) is sig-
nificantly lower thanP,,;, (at thea level). In the remainder of the casds,;, is inside the confi-
dence interval fop(az|na;). In this case, we do not have enough information to decidelveine

132 BATCH REQUEST PATTERNS

to prefetch or not. No matter how long the training perio@réwill be some contexts where we
have not made enough observations to make a definite dexisios is a consequence of grow-
ing the context length on each request. In these cases, weahantext: that is too specific to
provide a definite choice; however, there may be a shorteegbn’ that has been observed suf-
ficiently often to be definite. We can use the suffix links in séix trie data structure to explore
information about more general contexts that are suffixes of

5.3.1.1| Feasible Prefetches

Before Scalpel decides whether it is beneficial to prefetadrya, after observing:; in context
n, it must first decide whether such a prefetcligasible It is feasible to prefetcla, if we can
make a prediction of the actual values that would be useddftin parameter af;, if it were sub-
mitted. The Pattern Detector (Section 5.2) described hownamtain sets of correlations that
have always held. In the atomic suffix trie data structures¢hare stored in@or r el ati ons
field of the node associated wittu;ao. In the compressed suffix trie, the set is encoded in the
list elementT. correl ati ons[i] wherei is the correlation home for stringa;a2, and the
encoded set is interpreted based onrth@or der field of the CORRELATION objects and the
length |nai|. The CORRELATIONS(z) function was defined to find the set ofoRRELATION
objects for the node identified with string (Figure 5.17). We extend @RRELATIONS(x) to
(atomic) suffix tries by returning theor r el at i ons field of the associated node..

The CORRELATIONS(nai) set contains correlations that apply to all of the pararsetér
querya;. We use the function GRRFORPARM(C, 7) to find the subset of correlations in g6t
that apply to parametér following the same approach we used for nested requegrpsitDef-
inition 3.1, page 27). Armed with these two functions, we dafine what it means for a request
to be feasible as follows.

DEFINITION 5.13 (FEASIBLE PREFETCH)
Requesta, is afeasible prefetchwhen querya; is submitted in context: if there is a pre-
dicted correlation for each of theparameters ofi,. Let C = CORRELATIONS(najaz). Then
FEASIBLE(nay, ag) is defined as follows:

FEASIBLE(naj,as) <= CORRFORPARM(C,i) #0 Vi€ [1,7] (5.14)

5.3.1.2| Choosing the Best Feasible Prefetch

There may be more than one feasible, beneficial prefetch &agnven context. Thus, Scalpel
must decide which, if any, of these prefetches to make. Whienyw:; is submitted, Scalpel can
choose to prefetch ‘wide’ by prefetching several possiblesequent queries in the hope that one
will actually be requested after;. For example, Scalpel could prefetch the results for lagth

5.3 PATTERN OPTIMIZER 133

andas in Figure 5.19. Alternatively, Scalpel could prefetch ‘geby prefetching a chain of can-
didates, each of which is predicted to follow it's predeocesBor example, Scalpel could prefetch
bothas anday. Finally, we could also consider some combination of thege For example, we
could prefetch queryis, a3, andag. At present, the Scalpel prototype considers only prefetch
ing ‘deep’; that is, chains of queries, each of which is predi to be the best prefetch candidate.

567 > Choose queries to prefetch whepsubmitted after
568 procedure CHOOSEPREFETCH n, aj)

569 T — € > The list of queries to prefetch

570 while |z| < M do

571 > Choose the best feasible prefetch candidate

572 best « BESTPREFETCH 7, ai, %)

573 if best = NiL then break

574 r < x + best > Append to list of queries to prefetch

575 > Annotate the nodea; with the queries to prefetch when is submitted after sequenae
576 SET-PREFETCH nai, T)
577 end

Figure 5.20: Choosing a list of queries to prefetch.

Figure 5.20 shows thed®HosEPREFETCHprocedure that is used to choose the list of queries
that should be prefetched whenis submitted after the query sequenceéProcedure BOOSE
PREFETCHuUses a loop to find a chain of prefetch queries, which aredtmreuse at run-time.
We use a configuration parametef to limit the maximum number of queries that Scalpel will
prefetch.

At each step of the loop, BDOSEPREFETCH uses the BST-PREFETCH function (Fig-
ure 5.21) to find the best feasible candidate that should &ketghed after the query sequence
nayx has been observed. TheeBr-PREFETCH function considers each quebythat was ob-
served followingna;x during the training period. Thel@LDREN (na;x) function is used to find
these queries, abstracting the details of atomic or patlpoessed suffix trie. For each chilgl
BESTPREFETCHuUses the BouLD-PREFETCHfunction to decide whethéris both feasible and
beneficial.

Once a best prefetch candiddiest is found, the loop proceeds by assuming thast
is executed next. In this way, a chain of prefetch querieselected, conditionally assum-
ing that each selected query is actually used. We must alssider the conditional probabil-
ity that the entire chain is followed. HHULD-PREFETCH accomplishes this by usingy =
COUNT-OCCURRENCESna,) (the count of the originating contexta;) as the denominator
when forming the estimatg and its confidence interval (line 598). The numerator uses th
full context lengthX = CoUNT-OCCURRENCES§na;zb). This choice of denominator accounts

134 BATCH REQUEST PATTERNS

578 > Find the best requebtto prefetch ifa follows sequenceaa;x
579 function BESFPREFETCH n, ai, «)

580 best _b <« NiL > Best prefetch candidate

581 best _benefit «— 0O > Expected benefit for prefetchitest _b
582 for b € CHILDREN(naiz) do

583 benefit <« SHOULD-PREFETCH n, a1, x, b)

584 if benefit > best benefit then

585 best b «— b

586 best benefit « benefit

587 return best b

588 end

589

500 > Return the expected benefit of prefetchingwhena; is submitted after sequenee
591 function SHOULD-PREFETCH n, ai, x, b))

592 > We should not attempt to prefetétunless it is feasible afteta;x

593 if not FEASIBLE(najz,b) then

594 > Itis not feasible to prefetch; use benefit of-oo

595 return —oo

506 N <« COUNT-OCCURRENCE$Na1)

597 X « COUNT-OCCURRENCE§najzbh)

598 Cl <« CONFIDENCEINTERVAL(X, N) > Equation 5.7
599 pmin «— Pyin(n,a1x,b) > Equation 5.11
600 if Cl. high < pmn then

601 > Prefetching is significantly worse (at thelevel)

602 return —oo

603 elseif G .low > pmin then

604 > Prefetching is significantly better (at thelevel)

605 savi ngs <« PREFETCHBENEFIT(n,ajx,b) > Equation 5.10
606 return savi ngs

607 else

608 > Not enough information to decide; consider generalization

609 if GETSUFFIX(n) # NiL then

610 return SHOULD-PREFETCH GETSUFFIX(n), a1, =, b))

611 else

612 return —oo

613 end

Figure 5.21: Choosing the best prefetch query.

5.3 PATTERN OPTIMIZER 135

for the conditional probability that all links along the ahmana;z are followed. If SHOULD-
PrRerFeTCH finds that there is insufficient evidence to form a firm decisabout prefetching, it
returns the result for the generalization given byTSUFFIX (n) (if it exists). When a context is
reached where there are no feasible prefetch candidatesréhbeneficial, the loop in @ OSE
PREFETCHterminates.

The HooSEPREFETCH procedure identifies a list of queries to prefetch for eacheed
n % na, in the tree. This prefetch list represents additional @setihat should be prefetched
when we observe a queny being submitted at run-time after observing the string afrpsn.
The SET-PREFETCH function is used to associate this list with node,. The Query Rewriter
uses these lists to generate combined queries that fetaleshlts fora; and all queries in the
prefetch list. First, however, we define how the Pattern @gtr uses the suffix trie data struc-
ture to build a finite state model.

Building a Finite-State Model

After selecting queries to prefetch, the result of pattetection consists of a suffix trie (possibly
path compressed), where each node is annotated with a ligieoies to prefetch. This structure
can be used as a form of finite state model during run-timehigrhodel, the nodes of the trie
form the states and edges are used to provide the trangitiatidn.

While the suffix trie does give a kind of finite state model, antition function defined us-
ing only the edges observed during a finite training periathoabe considered to be complete.
We will certainly encounter novel requests in some confEtis will occur due to the low num-
ber of observations for long contexts, particularly thossogiated with leaf nodes. When we en-
counter a novel request in a context, there is no edge torfoilde have no prefetching decisions
available, and no next state to move to.

We could implement a heuristic that adds an implicit traosito the root when we encounter
a novel request in a context. This approach is sound, buhdra&s the fact that, while the cur-
rent request is novel in the specific context of the tree, iy inave been observed in a more
general context that considers fewer of the preceding gsi@s a conditioning context. Instead,
we exploit the suffix links. When we encounter a querthat is novel at node,, we consider
GETSUFFIX (n) (if it exists). If there is a query that was not observed at all during training, we
will not have an edge for it anywhere in the trie. Therefore,wge a transition to the root of the
trie. Our transition function . is defined for suffix triél” as follows:

za a € CHILDREN(x) (Ch)
6r(z,a) =< 6-(y,a) —Ci Ay = GETSUFFIX(z) Ay # NIL (Cy) (5.15)
S0 —Cy A =Co (C3)

136 BATCH REQUEST PATTERNS

In the first case,), there is an edge — za recorded in the trie, and. uses a transition
based on that edge. In the second c&3g,(querya is novel at noder; we use the transition
defined by GTSUFFIX(x). In the final case(s), the querya has not been seen at all during the
training phase. In this case, we use a transitiosy{dhe root node of the trie. Th& definition

in Equation 5.15 allows us to define a finite state mddelfor suffix trie as follows.

DEFINITION 5.14 (ANITE STATE MODEL FORSUFFIX TRIE T)

Let 3 be the set of all possible requests. ISet= {z € ¥* | = € NODES(7)} be a set of states
corresponding to the nodes ofand lets, = € € S, be an initial state corresponding to the root
node ofr. Letd, be defined as in Equation 5.15, andjét|z) be a conditional probability mass
function given by the counts af. With these settings, thel, = (S;, X, d, so, p) is thefinite
state model for suffix trie.

With 4. defined as shown in Equation 5.15, all of the transitions mddes € S \ s(are
caused by the same query. We use functic&m-BNCOMING(q) to identify this query. At run-
time, we enter state when we observe a call toREN(a) for querya = GET-INCOMING(q).

Definition 5.14 gives a model that can be used at run time. &l @aint in the trace, the cur-
rent statey of model M is the longest element afthat matches the current sequence of requests.
When processing request M, moves to a new state by following = 4, (¢, a). This new state
¢’ has a list of queries that should be prefetched when quésysubmitted to th@sms. While
the definition of M. is sound,M.- may be substantially larger than an equivalent model due-to r
dundancy introduced while building the suffix trie. In thexngection, we describe how this re-
dundancy arises and how we can remove it.

Removing Redundancy

The finite state maching/; that is build directly from a trie contains significant redancy re-
sulting from having multiple context lengths that predit same future behavior. To understand
this issue, consider the following contexts from Figureés§dage 119): b’ ,* ab’ ,and' xab’ .
This is a sequence of successively less general contexts ofavhich ends with b’ . Suppose
that, using the procedures described in Section 5.3.1&p&dcas decided not to prefetch from
context' b’ , but to prefetch query). in context' ab’ . This may happen because Scalpel ob-
serves that the conditional probability ‘of’ after the sequenceab’ is higher than the condi-
tional probability of ¢’ after' b’ alone. This is an example of Scalpel avoiding prefetching de
cisions based on contexts that are too short.

As we consider successively more specific contexts, suchxab’ , there are several pos-
sibilities. The procedures from Section 5.3.1.2 may alsoddethat it is worthwhile to prefetch
Q. in context’ xab’ . Such a prefetching decision is redundant, because whetfeysystem

5.3 PATTERN OPTIMIZER 137

is in context’ xab’ , it is also in the more general contéxab’ for which the same prefetch-
ing decision has been made. Second, Scalpel may have foandahtext' xab’ was not ob-
served enough times to make a definite prefetching deciiicthat case, BOOSEPREFETCH
selects to prefetcld). in keeping with the generalized contéxab’ ; again, the prefetch is re-
dundant. The final possibility is that prefetchihg’ is definitely rejected for xab’ in favour
of either prefetching a more beneficial query or not prefieghat all. In this case,xab’ repre-
sents a special case‘ofib’ , and the prefetching recommendationt &ab’ is not redundant.

614 > Determine whether contertis redundant

615 function IS-REDUNDANT(n)

616 if GETSUFFIX(n) = NiL then

617 > The root node has no suffix, and it is not redundant.

618 return FALSE

619 if GET-PREFETCH n) # GET-PREFETCH GETSUFFIX(n)) then
620 return FALSE

621 else

622 for child € CHILDREN(N) do

623 if =1S-REDUNDANT(child) thenreturn FALSE
624 end

Figure 5.22: Marking redundant nodes.

Scalpel uses thestREDUNDANT (n) function shown in Figure 5.22 to determine whether or
not a given context node is redundant. Node is redundant if it has the same prefetch set as
its suffix, and, further, all of its child nodes are redunddrttis definition of redundancy lets us
define a finite state maching for suffix trie 7 that avoids redundant nodes.

DEFINITION 5.15 (REDUNDANCY-REMOVED FINITE STATE MODEL FOR TRIE 7)
Let X be the set of all possible possible requests. die a set of states corresponding to the
non-redundant nodes of defined as follows:

S ={x €X¥X*|ze7A-Is-REDUNDANT(z)} (5.16)

Let sy = € € S be an initial state corresponding to the root node.dfet 6 be a modified defini-
tion of transition function modified from the definition &fin Definition 5.14 as follows:

xa a € CHILDREN(z) A =IS-REDUNDANT(za) (Cy)
d(x,a) =< 6(y,a) —Ci Ay = GETSUFFIX(x) Ay # NIL (Cy) (5.17)
50 —C1 AN =Co (C3)

Then we say that/ = (S, X, §, so, p) is the redundancy-removed finite state model for suffix
trie 7, wherep is a conditional probability mass function derived fram

138 BATCH REQUEST PATTERNS

The redundancy-reduced finite state machifidhas the same behaviour &, although it
has fewer nodes. In particular, mod#l. contains states corresponding to the leaf nodes of trie
T, even though these are never useful.

Summary of the Pattern Optimizer

After a training period that observes a traC®f requests, the Pattern Detector generates a suffix
trie 7 that encodes a summary of the information gathered duriegréite. The correlations that
were found to always hold during the training period are usdthd what prefetches afeasible

in that we can predict actual values that would be used if thdipted request were submitted by
the application. Further, frequency information in the t8 used to generate confidence intervals
(at a pre-configured level) for the probability of executing a requestvhen in a context based

on the ratio of @ UNT-OCCURRENCESna) to COUNT-OCCURRENCESn).

These confidence intervals are used to determine whethembithwhile to prefetch a re-
guesta. By comparing the estimated cost®fo the per-request overhed, the confidence in-
terval is used to find if prefetching is a) definitely beneficial; b) definitelyot beneficial; or, c)
indeterminate. The last case occurs in a trie built even fegrg long training period, as it is a
consequence of the low frequency components associatbdheitlongest contexts in the trie.
When it is indeterminate whether it is prudent to prefeidh contextn, we use suffix links in
the trie to use the prefetching decision in a generalizadion where we have enough observa-
tions to make a definite decision.

The Pattern Optimizer finds a prefetch list for every contesxhe suffix trie, whether it is an
explicit node or a virtual node. Therefore, the Pattern @jaier use<) (n?) space im the num-
ber of requests observed during the training period. Fyréee currently stated the algorithm
could take up ta@(n?) running time due to the traversal of suffix links; however,(am?) im-
plementation can be achieved with a little care to re-useigue results. The redundancy in the
atomic suffix trie suggests that a linear algorithm can beldged. However, such an approach
would also need a way to control the size of the finite statehinacgenerated by the Pattern Op-
timizer. At present, the Pattern Optimizer could selectaip) (n?) states with distinct prefetch-
ing choices. Implementing a linear complexity Pattern @jzeér is an important topic for future
study. At present, we have found that the current optinopatime is not excessive for the sys-
tems we have tested.

After using GHooseEPREFETCH to identify a list of queries to prefetch for the contexts in
the suffix trie, the Pattern Optimizer generates a redundesrooved finite state modéll for
the trie based on. Each noder in this trie is annotated with a list of queries that should be
prefetched when the machine transitions into the node. TlreryQRewriter (Section 5.4) com-

5.4 QUERY REWRITER 139

bines this list of queries with the query on the edge entetimgorder to fetch the originally re-
guest results and all prefetched results.

Query Rewriter

The result of the Pattern Optimizer is a finite state madelEach state: in the model repre-
sents a context that the model might be in at run-time, antl state has an associated list of
queries that should be prefetched. The Query Rewriter ngistcombined queries that can be
used to execute these prefetches, and it also builds a WstofoN objects that describe how the
Prefetcher should execute the prefetches. Figure 5.23sshowverview of the input the Query
Rewriter takes from the Pattern Optimizer and the outputitlsaves persistently for use at run-
time.

i m Redundancy-
Pattern Optimize R b
(Sectionp5,3) a a Removed FSM
¢ Cb with Query Lists
c b

Query Rewriter
(Section 5.4)

[Batch-Join, a
Batch-Union]

FSM with Action Lists .. & ¢ 2 Batch-Join] Persistent Stor
and Rewritten Queries ! El§ b
c b

Figure 5.23: Overview of the Query Rewriter

Every staten except the initial state, has the same label on any edges entering the
state, and we represent this wittEGINCOMING(n). Further, the Pattern Optimizer has asso-
ciated a list of queries to prefetch with each stateve represent this with Br-PREFETCH(n).
Finally, each state: has an associated set of correlations that are predictedido given by
CORRELATIONS(n).

140 BATCH REQUEST PATTERNS

The Query Rewriter uses this information to generate (fchestaten) a combined query

Q' that encodes the results foe®INCOMING(n) and also for the list GT-PREFETCH(n) of
gueries that are to be prefetched. The combined query isusiilg rewrite rules and the corre-
lation predictions stored in @RRELATIONS(n). Further, the Query Rewriter addscAION ob-
jects as annotations to each state in the model. TheseoN objects are similar to those used
for nested request patterns (Section 3.3.5). Thesai@N objects are used at run-time to inform
Scalpel of how each request should be answered. Finallyeairid of the training period, the fi-
nite state model with its ATION annotations is stored persistently for use at run-time.

Alternative Prefetch Strategies

There are several mechanisms that we could consider fatphifig the results of future queries.
We evaluated the following approaches:

Batch requestsSeveralbBms products allow a request KEN(Q) to consist of aatch request

suchag) = ¢1;¢o; ... ; q. The OPEN(Q) request returns a list of cursors, and the database-
access API (such as JDBC) provides a mechanism to move sedjyahrough the list of
cursors.

Stored procedureAs well as batches of queries, sever#MsS products supporstored proce-
dures These allow procedural code to be executed byothes. As with batch requests,
multiple cursors can be returned. While a batch requestésifipd in an ®@EeN call, a
stored procedure is created persistently in the databasensc

Join As with the nested patterns of Chapter 3, we can combine@giasing an outer join.

Union A join approach uses separate columns for each of the ofigiraies. If the original re-
sult sets are union-compatible then we can use a UNION tetotefthe desired results.
Even if the results are not union-compatible, we could useratcuct similar to the outer-
union used for nested request patterns described in S&:8dh 2.

We evaluated the above approaches to prefetching by usaigaggroach to fetch a list of
queriesTQ(7) for: = 1...k. Each queryTQ i) fetches the single row from tablewith pri-
mary key equal ta as follows:

SELECT x FROM T WHERE pk = :i

In addition to the above 4 prefetch approaches, we considesequential strategy that exe-
cutes thek queries one at a time without prefetching. The sequentiategfy corresponds to an
unoptimized sequence. We also include an IN-list queryédkptoits the special structure of our
query list to fetch all of thé rows with a single scan oF driven by an IN-list as follows:

5.4 QUERY REWRITER 141

Figure 5.24: Run-time (ms) to executesequential queries using a sequential (S), batch request
(B), stored procedure (P), join (J), or in-list (I) strate@ach point is the average of 1000 itera-
tions. Note: the union (U) strategy is not shown as it is vémyilar to the join approach (J). All
results are for configuration LCL.

SELECT x FROM T WHERE pk IN (1,2,...,:K)

The IN-list query is only possible because of the way we gateasur test querieBQ(¢) , and we
do not consider generating these types of prefetches. Wedmthe IN-list query only because it
essentially provides a lower bound to the cost of gettingkowsult rows.

Figure 5.25 shows the code we used to perform timings, Figi24 shows the measured re-
sults for the alternatives and Table 5.1 summarizes thdtsesfua linear regression for each al-
ternative. All results were measured on configuration LCas(tibed in Section 3.6).

The batch request (B) and stored procedure (P) approacineisak the per-request com-
munication overhead. Further, their ability to use procabloode would make it convenient to
generate a prefetch request that uses parameters fromr @grtiries as input parameters to later
gueries. Unfortunately, these approaches do not elimihateosts associated with crossing the
procedural/relational implementation boundary. The tiores for these approaches improve on
the sequential times (and the improvement increases if weerw configurations with higher
communication latency). However, the run-times are noy etose to the lower bound we mea-
sured with the IN-list query.

142 BATCH REQUEST PATTERNS

625 function TQ(i) return “SELECT x FROM T WHERE pk="+i end
626 function BATCHQUERY(k)

627 sql «— “BEGAN"”

628 fori <1 to k dosqgl « sql + TQi) + “; ”

629 sgl <« sqgl + “ END

630 return sql

631 end

632

633 > Open a cursor ovedand fetch all of the rows (timing code not shown)
634 function FALL(Q

635 open c cursorfor Q ; dor <« fetch cuntil r = NiL; close ¢
636 end

637 function TI MESEQUENTI AL(k)

638 fori <1 to k do FAIl(TQi))

639 end

640 function Ti MEBATCHREQUEST(K)

641 FAl| (Bat chQuery(k))

642 end

643 function T1 MESTOREDPROCEDURE(k)

644 execute (“CREATE PROCEDURE P() AS "+ BatchQuery(k))
645 FAI'l (“CALL P()")

646 execute (“DROP PROCEDURE P")

647 end

648 function Ti1 MEJOI N(K)

649 sql « “SELECT = FROM ("+ TQi) +“) DT1”

650 fori <2 to k dosgl « sql + “, ("+ TQi) +*) DI"+i
651 FALI (sql)

652 end

653 function Ti1 MEUNI ON(k)

654 sgql «— TQ1)

655 fori <2 to k dosgl « sql + “UNION ALL "+ TQi)
656 FALI (sql)

657 end

658 function Ti1 MEI N(k)

659 sql «“SELECT x FROM T WHERE pk IN (1~

660 fori <2 to k dosgql « sql + “, "+ i

661 sql <« sqgl +) "

662 FALI (sql)

663 end

Figure 5.25: Code to evaluate alternative prefetching @pgres.

5.4 QUERY REWRITER 143

Prefetch Approach Time (us) Sample

Sequential (S) 139.8+3430 TQ1); TQ 2);...;TQ k)
Batch Request (B) 296.4+1024BEA N TQ(1); TQ2); ... END
Stored Procedure (P) 150.4+ 3B.9CALL P()
Join (J) 113.7+ 12R SELECT * FROM TQ1), TQ 2), ...
Union (U) 119.2+ 11.F TQ1) UNION ALL TQ 2)
IN-List (1) 167.4+ a4 N(SELECT » FROMT
WHERE pk IN(1, 2, ..., k)

Table 5.1: Run-timeg(s) to executé: queries using different prefetch strategies. The lastronolu
gives a sample of the calls during the test.

In contrast, the join (J) and union (U) approaches encod# #ile requests as a single query.
In this way, all but one instance of the per-request costglarenated, including both the com-
munication costs and the costs of crossing the relatiorralear his reduction is substantial, and
these approaches are relatively close to the lower bounddea by the IN-list query. The addi-
tional cost for the join and union is caused by the cost ofo@gg an index scan on a quantifier.
The IN-list query initializes the search strategy for a trtgble, while the other two must initial-
ize k quantifiers. Further, conceivablyp@Mms could implement rewrite optimizations that trans-
form the query generated by the join or union approach intorian fthat is as fast as the IN-list
query. This would give a ®/-SAVINGS < 1, representing the fact that the server finds a more ef-
ficient strategy for the combined query than for the sum ofitldévidual requests. Thesms
products we tested did not benefit from such a transformahionat least it is possible with such
a combination. It seems less likely that such a transfoonatiould be used for the batch (B) or
stored procedure (P) approaches.

The batch request (B) and stored procedure (P) approackes & convenient targets of
rewrites because the procedural capabilities of theseoappes allows simple handling of the
correlations between earlier parameter values and lapett marameters. However, these meth-
ods are not supported by alBms products. Further, these methods do not (directly) allow fo
rewrite optimizations that can reduce the total runningetim the IN-list lower bound. Finally,
the savings provided by these methods is not very close tatiideved by the union and join
methods. For these reasons, we consider only the union angrigfetch strategies. With these
strategies, we must implement rewrites that supply valaethk input parameters of prefetched
queries.

144 BATCH REQUEST PATTERNS

Rewriting with Join and Union

When considering join-based rewrites for nested patte3astion 3.3.2.2) we introduced the lat-
eral derived table construct (and the outer-join variaerdbf) for prefetching nested queries
using joins. We can also use this construct when generatief@tph queries for sequences of
gueries. Figure 5.26 shows the result of combining guggyand @y, of Figure 5.2 using a lat-
eral derived table.

SELECT DTO. nanme, DT1. addr
FROM (SELECT name
FROM vendor v WHERE v.id = :vendor.info.id) DTO
LEFT OUTER LATERAL
(SELECT addr
FROM shipto s
WHERE s.shipid = :vendor_.info.id) DT1

Figure 5.26:Q41,: queries)q and@y, combined using a lateral derived table.

The lateral derived table construct implements a form af.jfia query may return more than
one row, then the join introduces data redundancy. To awié Wwe use a union-based rewriting
similar to the outer union strategy we used for nested gsi¢8ection 3.3.3.2). Quely. of Fig-
ure 5.2 can return more than one row, so we use a union-baseiteréor it. Figure 5.27 shows
the union-based query we use to combine quepiges?;,, andQ..

QueryQane (Figure 5.27) uses a union with two branches. The first braas$ociated with
type —1, returns the values of all at-most-one-row queries in tleégpch list (in this case&)y and
Q). As in the outer-union strategy used for nested patterasjse a/ALUES clause to generate
a derived tabldOT_OneRowthat returns a single row.

The second branch of the union represents qg@krwhich is at positior2 in the prefetch list.
Therefore, it has &y pe value of2. This branch contains a derived tall€2 based on querg)..
The branch can return 0 or more rows. Figure 5.28 shows tht fshe combined querg) g,
when invoked with asrendor _i nf 0. i d value of 201 (corresponding to line 4 of Figure 5.3).

Representing Run-Time Behaviour With AcTION Objects

Scalpel uses ATION objects for batch request patterns in a way that is similath&r use

for nested request patterns (Section 3.3.5.1). For eathistshe finite state model, the Query

Rewriter associates a list ofX 10N objects. Figure 5.29 shows how Scalpel generates these list
The ACTION objects have aact t ype field that represents what action should be performed

at run-time. There are only two types of action used for baéztuest patterns: & CcH-JOIN,

5.4 QUERY REWRITER 145

SELECT DT-UNI ON. *
FROM (SELECT nane
FROM vendor v WHERE v.id = :vendor_.info.id) DTO
LEFT OUTER LATERAL
(SELECT addr
FROM shipto s
WHERE s.shipid = :vendor.info.id) DT1,
LATERAL
(SELECT -1, DTO.nane, DT1.addr, NULL, NULL
FROM (VALUES(1)) DT_-OneRow
UNI ON ALL
SELECT 2, NULL, NULL, DT2.=*
FROM (SELECT partnane, invlevel - onhand AS qty
FROM part p
WHERE p.vendor_.id = :vendor_.info.id
AND p. onhand < p.invlevel) DT2
) DT_UNION(type, cl, c2, c3, c4)
ORDER BY DT_UNI ON. type, DT_UNION. c3

Figure 5.27Qape: queriesQq, Qy,, and@. combined using union and lateral derived tables.

type cl c2 c3 c4
-1 ‘Mary’ ‘1400 Barrington St NULL NULL
2 NULL NULL ‘Bell 3
2 NULL NULL ‘Tire’ 6

Figure 5.28: Result of) 4, for vendor _i nf 0. i d=201 (line 4 of Figure 5.3)

which is used to decode the result set for a query that reatiim®st one row, andA CH-UNION,
used to decode the results of queries that might return nizne oéne row. The GNERATE
PREFETCHACTIONS function (Figure 5.29) is called for each statén the finite-state model. It
generates an @TION object for the query: that is used to enter state(line 685). This ACTION
object will be used to respond to the originabEN request, and this is accomplished by modify-
ing the associatedubmi t quer y to be a combined query that returns results for all queries. T
begin with, thesubmi t quer y associated with this action is initialized withit will be changed
later after calling GNERATE-PREFETCHQUERY (line 694).

In addition to the ATION object for querya, GENERATE-PREFETCHACTIONS builds an
ACTION object for each query in the prefetch list associated with nodeThesubmi t query

146 BATCH REQUEST PATTERNS

664 structure ACTION

665 acttype=" > The type of action to perform

666 resul t query=NiL > The query defining the result set

667 subm t query=NiL > The combined query that will be submitted instead
668 - > Additional bookkeeping information is omitted
669 end

670

671 > Add a new ACTION object to stater

672 procedure APPEND-ACTION(n, resultquery, subnitquery)

673 if AT-MOSTONE(resul tquery) then acttype « BATCH-JOIN
674 else acttype <« BATCH-UNION

675 A «— new AcCTION(acttype, resultquery, submtquery)

676 n.actions « [n.actions, A] > Append the new action
677 end
678

679 > Generate a list of ATION objects for state:

680 function GENERATE-PREFETCHACTIONS(n)

681 a <« GET-INCOMING(n)

682 prefetch <« GET-PREFETCHnN)

683

684 > Add an action for the query observed in current @ENcall
685 APPENDACTION(n, a, a)

686 fori «— 1...prefetch.length do

687 > Get correlations predicted to hold for prefetch quiery

688 corrs <« CORRELATIONY n, i)

689 q <« prefetch[i]

690 submi t query <« REPLACE-PARAMETERS((, corrs)
691 APPEND-ACTION(n, q, subm tquery)

692

693 > Generate the combined query, and assign it to the actiom for
694 n.actions. subm t query <« GENERATE-PREFETCHQUERY(7)
695 end

Figure 5.29: Building ATION objects.

5.4 QUERY REWRITER 147

of these ACTION objects is initialized with a version af that has been modified to replace all
parameter references with an appropriate value sourced masehe correlations predicted to
hold for the parameter. The modifiedibri t quer y is generated by RPLACE-PARAMETERS
(line 690). This procedure (not shown) chooses a correlaturce for each input parametesf
each query; using the set of ORRELATION objects given by ORRELATIONS(n, 7). For a GR-
RELATION objectc in CORRELATIONS(n, i), we have the following possibilities:

ConstantIf c.type = ‘C’, then c represents a constant. We replace parantetdth the literal
value.

Input If c.type =‘I’, then c represents the fact that parametbas always been equal to the input
parameter of a preceding query openreagrevcnt requests earlier. If + c.prevent < 0,
then the value of the input parameter is available when theNQy) request is submit-
ted; we replace parametemwith a parameter filled with the value of the earlier input pa-
rameter. Otherwise, the input parameter is from a query énpttefetch listpr ef et ch.
The value of this input parameter is not available when tireE®@a) request is submit-
ted, hence we cannot use it directly. However, any such ipptameter is in turn corre-
lated to a source thag available (the elements of the prefetch list are feasitdesheecked
by the Pattern Optimizer). This correlation implies theranother correlation source avail-
able for parameterthat we can use.

Output If c.type = ‘O’, then ¢ represents the fact that parametdras always been equal to
the output parameter of a preceding query opengtevcnt requests earlier. As with in-
put correlations, we may havie+ c.prevent < 0, which means the the value of the
prior output parameter has been fetched before theN(:) request is submitted; in this
case, we replace parametewith a parameter filled with the value of the earlier out-
put parameter. Alternatively, for the output case we mayehie input parameter of
prefetched querpr ef et ch[i] being correlated to the output columiof a prior request
prefetch[j].Inthat case, we replace the parameter with the t&& +j+' . ¢’ +p.
This replacement text is an outer reference to a derived tajpresenting the prior query.

If there are multiple elements for a single parameter @REELATIONS(n, i), we can choose
any of the @RRELATION objects (except for the restriction on type ‘I’ objects nbehove);
all of the CORRELATION objects had the same current value on every execution ofdhe ¢
text. We choose a GRRELATION from the set according to the following ordering. First, any
constant (type ‘C’). These appear as constant literalsarcdmbined query, requiring no addi-
tional work at run-time. Next, we consider any input or odtpource (type ‘I’ or ‘O’) that has a
prevcnt that draws a value available wherPEN(a) is submitted. These will be treated as in-
put parameters to the query, and Scalpel will supply thetipprameter with a value that it has

148 BATCH REQUEST PATTERNS

previously observed. Finally, we use any output sourcee(tg) that is an output parameter of
querypr ef et ch[j] for some0 < j < i. In this case, the replacement text is an outer refer-
ence to a previous prefetch query’s derived table, andsheffé¢ctively a join condition.

The GENERATE-PREFETCHACTIONS procedure generates a list oEAION objects for each
staten. It then calls the GNERATE-PREFETCHQUERY function (line 694) to generate the com-
bined query that will be used at run time. This combined gigeagsigned to theubm t query
field of the first ACTION object in the list for state:. Figure 5.30 shows the ENERATE-
PREFETCHQUERY procedure that builds these combined queries. The proeegimerates a
combined query that encodes the results of allghéni t quer y values associated with the
ACTION objects for staten.

Summary of Query Rewriter

After training, Scalpel identifies a list of queries that glibbe prefetched when we see an
OPEN(Q) request in a particular context. We considered four aggves to prefetching based on
batch requests, stored procedures, joins, and unions. W€ that the procedural approaches are
useful for reducing communication latency, but they do metgrm as well as the approaches that
use a single query, reducing the costs associated withilcgo®e procedural/relational bound-
ary. As a consequence, we considered only the union and gaedoapproaches.

The GENERATE-PREFETCHACTIONS procedure is called for each stateand builds a list
of ACTION objects. Each ATION object is initialized with a esul t quer y set to the original
query text angsubni t quer y initialized with a rewritten version of the query text thaptaces
parameters with appropriate references based on predioteelations. Thect t ype field of
each ACTION object indicates how the query for the action is encodedeérctimbined result set,
with BATCH-JOIN used for join-encoded queries that return at most one ravBamcH-UNION
used for union-encoded queries that may return multiplesrow

After generating the list of ATION objects for statei, GENERATE-PREFETCHACTIONS
calls GENERATE-PREFETCHQUERY to produce a combined query that encodes the results for
all of the ACTION subni t quer y fields. The GNERATE-PREFETCHQUERY procedure com-
bines the queries together using joins (left outer lateesived tables) for queries that return at
most one row and outer unions for queries that may return thareone row. The procedure re-
turns the combined query text. The details of the run-timee@dure are described next in Sec-
tion 5.5.

5.5 PREFETCHER

149

696 > Generate a combined query that encodestii@i t quer y results for all ACTION objects
697 function GENERATE-PREFETCHQUERY(7)

698 actions « n.actions

699 any_uni on <« FALSE

700 sel ect _onerow « []

701 from« NIL

702

703 > Generate derived tables for the join-based queries

704 fori «— 0...actions.length do

705 if actions[i].acttype = BATCH-JOIN then

706 if from= NiL then from « “FROM (”

707 else from«— from+ “ LEFT LATERAL (”

708 from« from+ actions[i].submtquery + “) DI"+ i

709 sel ect _onerow « sel ect_onerow + (“DT"+ i + “. "

710 else

711 any_uni on <« TRUE

712

713 if not any_uni on then

714 > There are no union-based actions; generate the join based qu

715 sql « “SELECT " + sel ect _onerow

716 sql « sgl + from

717 else

718 > Generate a union-based query, with a branch of type -1 fgpthebased actions
719 if from= NiL then from « “FROM (”

720 else from+« from+ “ LEFT LATERAL (”

721 from«— from+ “ SELECT -1, "+ select_onerow + AddNul I s(...)
722 fori «— 0...actions.length do

723 if actions[i].acttype # BATCH-UNION then continue

724 from«— from+ ° UNION ALL ’

725 from« from+ ‘SELECT '+i+ AS type ' + AddNulls(...)
726 from«— from+ ‘, DI"+i+ .+ + AddNulls(...)

727 from«— from+ ‘FROM (' +actions[i].subnitquery+) DT +i
728 from«— from') DT_UNION(type,cl,c2,...)’

729 sql « ‘SELECT DT_UNI ON.* ' +from+* ORDER BY DT_UNI ON.type’
730 fori <« 0...actions.length do

731 if actions[i].acttype = BATCH-UNION then

732 sql <« sql +Adj ust OrderBy(actions[i].subnitquery, J)
733 return sql

734 end

Figure 5.30: Generating a batch prefetch query.

150 BATCH REQUEST PATTERNS

Run-Open
Run-Fetch
Call Monitor Run-Close\ Prefetcher
(Section 5.5)
[Batch-Join, a
Batch-Union]

c c a Batch-Join]
FSM with Action Lists b
and Rewritten Querie

Query Rewriter
(Section 5.4)

C
=< Persistent Stor

Figure 5.31: Overview of the role of the Prefetcher.

Prefetcher

Figure 5.31 gives an overview of how the Prefetcher integratith the rest of Scalpel’'s batch
request processing. After a training period has been cdatpl¢he Pattern Optimizer has con-
structed a finite-state mod&f = (S, X, , so, p). Further, the Query Rewriter has annotated each
staten in this model with a listn. act i ons that describe how queries should be processed
at run-time. The first element of this list hasabm t quer y value that gives the query text
that should be submitted to tilMs when request ©EN(a) is submitted. The Query Rewriter
stores this model persistently, and the Prefetcher loagstbdel when the application first uses
Scalpel. The Call Monitor component monitors calls the mpgibn makes to ®eN, FETCH, and
CLosE. For each of these, the Call Monitor calls the appropriateiRmethod implemented by
the Prefetcher.

Scalpel maintains run-time stat®,that allows it to respond to application requests. The run-
time state includes the request modélthat was generated by the Pattern Optimizer and Query
Rewriter. In additionR. qcur r records the current model state maintained by trackingastgu
in the current sequence. FidRit r acker is a VALUE TRACKER object that maintains parame-
ter values from the previousrequests, wher#§ is the configured scope length parameter. Finally,
R maintains information about results that have already peefetchedpf Cr sr is a cursor over
the combined, rewritten querpf Act i ons is the list of ACTION objects that were associated

5.5 PREFETCHER 151

735 structure R
736 M=r equest nodel > The request model built after training

737 gcurr = M.sg > The current state

738 pf Crsr =NIL > A cursor over the rewritten query

739 pf Row= NiL > The first row ofpf Cr sr containing all join-encoded results

740 pfActions=[] D> List of ACTION currently in use

741 pf Of fset =0 > Current offset irpf Act i ons

742 tracker =new VALUETRACKER >> Maintain parameter values féf preceding requests
743 end

744 > Process an €EN(a, | nVal s) request usingr

745 function RUN-OPEN(R, a, InVals)

746 ADDINPUT(R tracker, InVals) > AddInVal stotracker

747 > The next state is given by following theedge fronR. qcur r

748 nextstate «— R MJ(R gcurr, a)

749

750 > Try to find an ACTION object in the list of already prefetched results matching
751 action <« NiL

752 fori «— R pfOfset...R pfActions.length do

753 if g = R pfActions[i].resultquery then

754 action «— R pfActions[i]

755 R pfOffset «— i+1

756 if action # NIL A CHECK-CORR-PREDICTIONY action, InVals) then
757 > If a was prefetched with correctly predicted parameters, usketoh
758 crsr « USE-PREFETCH R, a, action)

759 else if nextstate. actions # ()

760 > Submit combined query that encodeand all prefetched queries
761 R pfActions « nextstate.actions

762 action «— R pfActions[O0]

763 RpfOffset «— 1

764 crsr «SuBMIT-PREFETCH R, a, action, InVals)

765 else

766 > Submit the original query to theBms unmodified

767 CLEAR-PREFETCH R)

768 crsr «SuBmIT-UNMODIFIED(R, a, action, InVals)

769 R qcurr < nextstate
770 return crsr
771 end

Figure 5.32: Pseudo-code for Scalpel batch request Phefetc

152 BATCH REQUEST PATTERNS

with the most recent fetch sent to thems, andpf O f set is the index withirpf Act i ons in-
dicating the ACTION object that is expected to match the nexte®™ request.

Figure 5.32 shows how Scalpel uge® maintain the current statgur r , submit combined
gueries to thedBMS, and decode prefetched results. TheNROPEN procedure is called by the
Call Monitor component of Scalpel when the client applicatsubmits @EN(a, | nVal s) .
First, RUN-OPEN adds the input parametersVal s to the VALUETRACKER object stored in
R tracker (line 746). The MLUETRACKER is used to verify that predicted correlations actu-
ally hold and that prefetched results match what is reqdestext, RUN-OPEN usesR. M § to
find the next state that the model will move into after quer§ine 748). Thenext st at e ob-
ject holds bookkeeping information that may be used to exeihis request.

Next, RUN-OPEN looks in the listR. pf Act i ons to see if there is an ATION object in the
list that matches query. Even if such an ATION object is found, the parameter values used to
prefetch the associated results might not match the actlaés supplied in the call €EN(a,

I nVal s). This would represent a failure of the training period iatth correlation that always
held during training is not true at some point during the tinme, but we give correct results in
this case by detecting the difference and avoiding the useppropriate prefetched values. The
CHECK-CORR-PREDICTIONS function (not shown) compares actual parameter valugal s

to the predicted correlation sources identified in th&rfON object.

If an appropriate ATION object is found for and the predicted parameter values match the
actual valuesi(nVal s), then the needed results have already been prefetchedcheydre en-
coded inR. pf Cr sr. The Use-PREFETCH function (line 758) returns a result set ferthat is
implemented by decoding the resultsphCr sr using the rules described in the associated A
TION object. Function Ye-PREFETCHIs shown in Figure 5.33.

If no AcTION object inR. pf Act i ons matches the current requestthen no prefetched
results are available. FunctionuR-OPEN will submit a demand fetch to theswms. If the
next st at e object has a non-empty list of&ION objects, the 8BMIT-PREFETCH function
is called (line 764) to submit a combined query and decodeegbalts fora. Function /BMIT-
PREFETCH s shown in Figure 5.33. If, on the other hand no prefetchoastihave been speci-
fied innext st at e, the SuBMIT-UNMODIFIED function is called (line 768) to submit request
to thepBMs without modification.

After a cursor is obtained, either by decoding prefetchadlte, submitting and decoding a
combined request, or submittimgo thepems unmodified, RIN-OPEN changes the current state
tonext st at e (line 769).

Figure 5.33 outlines how Scalpel implements thes8I1T-PREFETCH and UsE-PREFETCH
functions. The 8BMIT-PREFETCHfunction opens a curs®. pf Cr sr over the rewritten, com-
bined query. Then, it fetches the first row from this curstorisg the result irR. pf Row. This
will either be the only row (if all prefetched queries arenast-one-row), or it will be the first

5.5 PREFETCHER 153

772 function SuBMIT-PREFETCH R, a, action, InVals)
773 > Submit the rewritten query
774 open R. pf Crsr cursor for acti on. subm t query:

775 R pf Row « fetch R pf Crsr > Fetch values for join-encoded queries
776 if R pf Row = NIL

777 > Querya returned no rows: we cannot use prefetch; return an empspciora

778 CLEAR-PREFETCH)

779 return EMPTYCURSOR)

780 else

781 return USE-PREFETCH R, a, action, InVals)

782 end

783

784 function USE-PREFETCH R, a, action)
785 if action.acttype = BATCH-JOIN then

786 > If the results fora were null-supplied, return an empty cursor

787 if NuLL-SuppLIED(R pfRow, action) thenreturn EMPTYCURSOR)
788 else return JOINCURSOR R. pf Row, action)

789 else

790 > Decode an outer-union encoded result set

791 return UNIONCURSOR R. pf Crsr, action)

792 end

Figure 5.33: Pseudo-code for prefetching.

branch ofDT_UNI ON with type field of —1. It may be the case that the queryeturns no rows
for the given input values. In this case (line 778), the pgodfed results of the remaining queries
are not available: they are eliminated by the join with emptin this case, 8BMIT-PREFETCH
returns an empty cursor far and clears the prefetched data structures by a callupAg-
PREFETCH (not shown). Otherwise, if the first fetch was successfulg @I T-PREFETCH calls
UsE-PREFETCHto interpret the results far using the associated@¥ 10N object.

Function Use-PREFETCH is called when we have a requestwith the appropriate result
set encoded by a previous demand fetcBEAPREFETCH decodes this result according to the
rules in the ACTION object. For aract t ype of BATCH-JOIN, the result is encoded in the field
R. pf Row. Either zero or one row is encoded fey and this is determined using theuN. -
SuppLIED function, which uses non-nullable fields identified in theTAON object to determine
if the result was generated by the left outer lateral constfand hence: is empty). If so, an
empty result set is returned; otherwise, a single-row tesilis returned based on the appropri-
ate attributes oR. pf Row.

Alternatively, if a has an ATION object of type BTCH-UNION, then the results fot are
encoded as a branch of an outer uniorRimpf Cr sr. The Use-PREFETCH function returns a

154 BATCH REQUEST PATTERNS

UNIONCURSORObject that returns the rows & pf Cr sr that match the ype field specified
in the ACTION object.

When the client application submits & FcH(cr sr) request, Scalpel’'s Call Monitor com-
ponent calls RN-FETCH (not shown). If the cursor is a result of a prefetched resili{sither
JoINCuURsOR or UNIONCURSOR) the appropriate row is decoded from the prefetched results
Otherwise, the fetch is submitted unmodified. In any caserdiv returned is added to theal/-
UETRACKER using the pDOuUTPUT function. This allows th&. t r acker to be used to verify
that prefetched queries guessed input parameters cgrrectl

Summary of Prefetcher

At run-time, structurdR is used to maintain state that permits prefetching. Thie $teludesi/,
the finite state model generated during the training pefid: model consists of a set of states
and transitions between them, and the transitions arer@lyoannotated with alct i on ob-
ject that provides a prefetch that Scalpel should perforrammthe associated request is submit-
ted when in the originating state. When a prefetch requesibsitted, the first row of the com-
bined result is used to satisfy prefetched at-most-oneeugries, and the remaining queries are
satisfied by interpreting the branches of the union.

When a requedis submitted, it is compared to the list of prefetched resutitil a match
is found or the end of list is reached. If it is not found, a dach&etch will be sent to theswms,
along with any configured prefetch requestQIi6 found in the listR. pf Q, then the results for
the query are available. The results are either interprieted R. pf Row (if Qis at-most-one-
row) or interpreted as the rows of the combined result witly pe field matching the query off-
setinR. pf Q

Experiments

We performed a variety of experiments that were designedswer two general questions. First,
how effective is semantic prefetching at reducing the etkeauime of query batches when they
occur? Second, how significant is the training overheadistiatroduced by the Scalpel system?
The first question is addressed in Section 5.6.1. The sescmdbiressed in Section 5.6.2.

Effectiveness of Semantic Prefetching

To study the effectiveness of Scalpel’'s prefetching, wesimar a scenario in which Scalpel, dur-
ing its training phase, has identified a rewrite rule thatljmts that a querg), will be followed by

a batch of querie®1,Q-,. . .,Q1,. Each query is a simple single-row selection from a tdhland
each predicted query; is correlated with);_1, its immediately predecessor in the query batch.

5.6 EXPERIMENTS 155

We wrote a simple driver program, shown in Figure 5.34, tcegat® a run-time query stream
for Scalpel. The program generates the initial quély, followed by a prefix of the remainder
of the batch, and then repeats thistimes. The length of the prefix is controlled by a selectivity
parametet®. WhenP = 1, each run-time batch is exactly as predicated in Scalpaisite rule.
When P < 1, some of the queries predicted in Scalpel’s rewrite rulerategenerated at run-
time. The selectivity parameter simulates the effect ofljpates in application code which may
cause conditional execution of queries in a batch.

793 > Nis the number of batches to generate.

794 > L is the batch length.

795 > P controls predicate selectivity.

796 procedure GenQueryBatches(N, L, P)
797 foriteration «— 1 to N do

798 generate query Qg
799 fori «— 1 to PL do
800 generate query @
801 end

Figure 5.34: Code for Generating Query Stream

For each experiment, we choose valuesXgrL, and P and we execute the resulting query
stream twice, once without Scalpel and once with it. In thenfer case, which we callnopti-
mized each query is passed directly to the database server foutixe. In the latteioptimized
case, queries are passed through Scalpel, which appliesitide rule to prefetch the results of
each query batch.

We studied five different system configurations with varyimgwork latency. These config-
urations are described in Table 3.5. These configurationd atotal of four different client and
server computers, the properties of which are describedlieT3.4

The driver program is implemented in Java using JDBC. Allitlssare reported using Java 2
Standard Edition, version 1.5.0. A prototype version ofl@&lavas used for the experiments. We
experimented with three different commercial databastesys behind Scalpel. License restric-
tions prevent us from identifying them. In each case, thiet@lused by the queries was popu-
lated with 4096 rows and was fully cached. The results fothinee database systems were con-
sistent, although with different constants, so we havegntesl the results for only one system.
We useN = 1024 for all configurations except WAN, where only 256 iteratiomsre used due
to the very high latencies involved.

156 BATCH REQUEST PATTERNS

Batch Length

The benefit of prefetching depends on the number of queradstl successfully prefetched and
on the latency of the communication. In this experiment, wediP = 1, varied the batch length
L, and measured execution time on each of the five network agafigns. Since? = 1, this
experiment represents the ideal case in which Scalpel lvaseadely predicted the occurrence of
a query batch that does not involve any application preegcat

25 U 300 — u
20 1 250
15 — u 200 - U
u "
- o 150 7
07 Y Lo o
) O 100 .
u e Y
el
5 — ,
-0 |
Y o 50
é O U OOOOOOO
U g o
I B B B E— — s e e R —
0 5 10 15 20 25 30 o 5 10 15 20 25 30
(a) LAN1 (b) WiFi

Figure 5.35: Mean time (ms) per iteration for unoptimized 8dd optimized (O) strategies with
varying batch lengtiL, P = 1.

Figure 5.35 shows the results for two of the five system cordiipnns. As the number of
successful prefetches increases, the relative benefddses. One of the database systems that
we considered returned an error for a batch length of 45 dubea@omplexity of the gener-
ated prefetch query (which contains a join between 46 diiens. Prefetching provides savings
even in the low-latency LCL configuration, although muchhgiggains are available as the inter-
connect latency grows (Section 3.6 summarizes the configaraCL and the other configura-
tions we use). Table 5.2 summarizes the results of a lingmession for each of the five config-
urations. The slope of the prefetch strategy remains velgtconstant in the different configura-
tions, while the original strategy incurs the per-requestrbead for each additional query.

5.6 EXPERIMENTS 157

Setup Unoptimized Optimized

LCL 0.37+ 0.43{ 0.26+0.3Z
LAN1 0.75+ 0.7€¢f 0.50+0.33
LANO.1 1.06+ 1.08 1.28+0.33]
WiFi 10.35+ 9.1¢{ 9.11+0.39

WAN 653.27 +456.58 485.03+0.21

Table 5.2: Mean time (ms) per iteration vs batch lendth (

5.6.1.2| Useful Prefetches

For the next experiment, we fixeld = 16 and varied the selectivity in the range< P < 1.
WhenP is small, only a small portion of the query batch prefetchg&balpel is actually used by
the application. Such overly aggressive prefetching camiofor several reasons. First, Scalpel
may be unaware that some of the batch queries are condijticnathere may be prediction er-
ror. Alternatively, Scalpel may be aware that part of theba¢ conditional and yet decide, on a
cost basis, that prefetching is still worthwhile.

Figure 5.36 shows the results of our measurements for foufigroations. All points are the
average of 1024 iterations. As expected, the unoptimizedesfy has a strong dependence on the
proportionP of queries that are actually submitted, while the optimigedtegy has only a weak
dependence o®. The prefetching strategy has a weak dependencE because the costs as-
sociated with tracking the context as queries are openeegtitey if prefetched results are valid,
and interpreting the prefetched results are small, butzeso-

In general, ad® increases, there is a threshold above which the optimizedefohing) strat-
egy becomes worthwhile. A comparison of the configurationgigure 5.36 shows that this
threshold depends on system parameters: in particulapérmts on network latency. In the low-
latency LCL configuration, prefetching does not begin to gfyintil P > 0.75. In the higher la-
tency LANO.1 configuration, prefetching pays off onee> 0.4. Even more aggressive prefetch-
ing is called for in higher latency configurations such as Miitl WAN. These data demonstrate
one of the advantages of Scalpel’s run-time optimizaticatagyy, since the amount of network la-
tency may not be known at development time, or may vary amosigmces of the application
program.

Table 5.3 summarizes the results of a linear regressionhfrekperiment of Figure 5.36
with all configurations except WAN. For that configuratiome tvariations caused by sampling er-
ror exceed the effect of increasiti¢) and the slope derived from such an analysis is misleading.

158 BATCH REQUEST PATTERNS

20 20 —
u
15 15
RS
u
10 10 v
- u .
U Q-0 00000 00
5 o fs) o -0 08 B O---0 5 - 9]
g Y v
LY u
o -V 0 -
[I I I I] [I I I I]
00 02 04 06 08 10 00 02 04 06 08 10
(a) LCL (b) LANO.1
80 7 159
y
60 — :
1.0 —
y
40 — ’
v 05 o o o
20 - °© o © o ©
000000000
K
0 - 0.0 -
[I I I I] [I I I I]
00 02 04 06 08 1.0 00 02 04 06 08 10

(c) WiFi (d) WAN

Figure 5.36: Mean time per iteration for unoptimized (U) aptimized (O) strategies with =
16 and varyingP. All times in milliseconds except (d) in seconds.

5.6 EXPERIMENTS 159

However, we can see in Figure 5.36(d) that it is clearly maeber than the slope in the unopti-
mized case.

Setup Unoptimized Optimized
LCL 0.42+ 6.98| 5.02+0.1P
LAN1 0.75+ 12.1®| 5.26+0.29
LANO.1 1.07+ 17.1®| 6.43+0.2@
WiFi 9.28+ 147.2®| 15.00+0.16°
WAN 354.1 +8227.9P| omitted

Table 5.3: Mean time (ms) per iteration vs proportion of ukpfefetches P)

5.6.1.3| Breakdown of Costs

Prefetching can act to reduce latency, but it also affe@ptbcessing costs at both the client and
the server. Prefetching can increase server costs by degeveasted work in cases when all of
the prefetched results are not used by the applicationp8icallso introduces additional costs at
the client for monitoring and rewriting the query requestain. On the other hand, Scalpel can
reduce processing overhead at both the client and the deywerducing the number of KEN
requests that are submitted.

Figure 5.37 shows a breakdown of total query execution tifoeshe casel. = 16 and
P = 0.75. In the LCL configuration, total elapsed time is reduced prifg by a reduction in
client CPU costs (1.8ms to 0.6ms). Latency is relativelyffieeted, but server processing costs
are increased (from 3.7ms to 4.5ms). This additional semwstis related to the work needed for
the 4 queries that are not fetched in the original strateqgy,itis also related to the higher cost
of executing the combined query compared to the originglsitable queries.

In the other network configurations, the situation with semosts is reversed: the optimized
strategies are slightly cheaper than the original. Thetmaail costs that affect the LCL config-
uration are offset by the savings in interpreting and fotmgtmessages. The unoptimized strat-
egy uses 104 communication packets with 3.4KB, while thaxapéd strategy uses only 8 pack-
ets with 1.4KB. This reduction was not as significant in tHekit shared memory link used in
the LCL configuration, but in the TCP/IP configurations it mdnan offsets the additional costs
associated with the 4 wasted prefetched results. Thesessalso enjoy client-side savings simi-
lar to those of the LCL setup, and also exhibit a more markgaanement in latency.

160 BATCH REQUEST PATTERNS

14 4 14 - 14 4 140 - 7

12 - 12 12 120~ 6| |

10 - 10 - 10 - 100 51

8 - 8 1 8 - 80 | 4

6. 6 6. 60 4 3] |:|Latency
4 4 1 4 1 40 A 2 I Client
21 27 21 201 11 |:|Server
0 0 0 ofﬂﬂ 0

u o u o u o u o u o
LCL LAN1 LANO.1 WiFi WAN

Figure 5.37: Breakdown of execution costs for unoptimizgdl &nd optimized (O) strategies,
with P = 0.75 andL = 16. Times in ms except WAN in s.

Scalpel Training Overhead

We assessed the overhead of Scalpel’s training algorithing uke dbunload case study (de-
scribed in more detail in Section 8.2). Figure 5.38(a) shtveselapsed time for the unopti-
mized system (Scalpel not attached) and Scalpel in traimade for 9 databases (labelled A-I)
in the LAN1 configuration, withu showing the average of all 9 executions. On average, train-
ing increases run-time by.5 seconds, or 35%. Figure 5.38(b) shows the difference inutxec
time between the unoptimized and training configuratiomscient CPU, server CPU, and la-
tency. In most of the tests, increases in client CPU costuatted for most of the increase (on
average, 0.28s). However, server costs also increaserth@avef 0.13s) as did the request la-
tency (0.09s). The increase in client costs is expectedalietadditional bookkeeping and opti-
mization steps performed by Scalpel during the trainingopeiScalpel also issues additional re-
quests to th®BMS to retrieve catalog information (in order to determine ifusery will return at
most one row). These additional requests are responsibf@foof the increase of server and la-
tency components. It is interesting to note that in two insts (C and I), the server costs were
lower during the training period. This is due to variancehia server costs and not any action of
Scalpel to reduce server costs during training.

5.7 SUMMARY OF BATCH REQUEST PATTERNS 161

O Unoptimized @ Training OClient A W ServerA OLatencyA
35 1.0
3.0 0.8-
254 Ml
0.6
2.0 ~ _
- - _ 0.4
15- a g
0.2 1
1.0
05 0.0+
OO T T T T T T T T T '02 T T T T T T T T T
ABCDEFGHIy ABCDEFGHIyp
(a) Elapsed time (s) (b) Increase by component (s)

Figure 5.38: Training overhead aibunload case study.

Summary of Batch Request Patterns

Application programs that we have examined do not geneegfigeist streams that are uniformly
random. Instead, some sequences of requests are morettikebthers. By identifying common
sequences, we can choose to prefetch requests that ayetdiket submitted, reducing the costs
associated with per-request overhead.

The Pattern Detector monitors a client application duririgaaing period, building a trie-
based data structure. This trie maintains frequency indtion that can be used to predict the
likelihood of future requests. The trie also maintains sétorrelations that have held each time
that a request is observed in a context.

The Pattern Optimizer uses the trie generated during t@ito select a list of queries to
prefetch. It uses the Query Rewriter to generate a combinedydghat returns the results for the
submitted query and any prefetched queries. The combined dgi generated using lateral de-
rived tables and unions. The trie generated during trainiag contain significant redundancy
as a result of including every context encountered duriagpitig in the trie. The Pattern Opti-
mizer generated/, a redundancy-removed finite state model for tréidbat selects states based
on the shortest contexts that provide distinct prefetchicgtso The model/ is annotated with

162 BATCH REQUEST PATTERNS

Act i on objects that contain the combined query, list of prefetaipgeries, and predicted corre-
lation source for each input parameter of each prefetchmpabss.

At run-time, Scalpel uses mod#f to track the current state and submit prefetches. AsIO
requests are intercepted by the Call Monitor, the Prefetgbes thé transition function defined
by M to move to the next state. If prefetched results are availabk Prefetcher checks that the
actual parameter values match the predicted values. Ihegrefetched results are decoded and
per-request overhead is eliminated. If a prefetched résuot available, a demand fetch must
be submitted. In this case, tihet i on object is consulted for a combined query that should be
submitted instead of the current request.

Section 5.6 provided experimental results that demomrstrtie effectiveness of rewriting
batch request patterns. Figure 5.24 shows the high ovedwsatiated with sequentially execut-
ing requests: over 97% of each of these requests is due teg@eest overhead. Prefetching can
save some, but not all of this overhead. While prefetchingsiful in many cases, we must be
careful to consider the probability that requests will bberaiited, as shown in Section 5.6.

By using a training period, Scalpel identifies opportusitighere prefetching is beneficial.
Exploiting these opportunities significantly reduces thets associated with per-request over-
head.

@ Combining Nested and Batch Request Patterns

Chapter 3 described how Scalpel identifies nested pattéragj@ests during a training period. In
these nested patterns, inner queries have parameterseafaedicted to be equal to parameters
of outer queries (or perhaps a constant). The inner quer&esxecuted up to once per row of
their parent query, although local predicates can prevest Based on observations during the
training period, the Pattern Optimizer uses the Cost Mansétect an execution strategy for each
pattern of nested queries. The Query Rewriter generatebinethqueries that are issued instead
of the original to retrieve encoded results sets that ardigted to be needed.

Similarly, Chapter 5 described how Scalpel builds a trisdohdata structure during a train-
ing period to predict batches of requests that occur wheefixmf requests can be used to pre-
dict a likely future sequence (with each request in the secpieepresenting anrgN, FETCH*,
CLosE sequence). The predicted future queries are also predictealve actual parameter val-
ues that are predicted to be equal to input or output paraseteéhe preceding queries (or pos-
sibly a constant). The future requests are not submittey ¢éivee the prefix is observed; instead,
Scalpel estimates this probability based on the relatieguency observed during a training pe-
riod. After the training period is complete, the Patterni@jer uses the Cost Model to select a
list of queries to prefetch for each prefix of requests. Bn#he Pattern Optimizer generates a
redundancy-removed finite state model that contains a ssatds with associated queries gen-
erated by the Query Rewriter. These alternate queriessauedsnstead of the original to retrieve
encoded results sets that are predicted to be needed ingh&uhge.

The optimizations performed by Chapter 3 and Chapter 5 amplamentary, but were devel-
oped independently. In this chapter, we give a sketch of hewan simultaneously detect nested
and sequential patterns of execution. Treating these tpestpf pattern in a combined way al-
lows us to extend the set of prefetching opportunities tretan exploit.

Example Combining Nesting and Batches

Figure 6.1 provides an example of a program that generatésnssted request patterns and
batches of predictable sequences of requests. This exdraplbeen artificially constructed to
demonstrate particular features of the combined apprdéaghre 6.2 shows the context tree that
is created by Scalpel after observing traces generatdd, by

163

164 COMBINING NESTED AND BATCH REQUEST PATTERNS

802 function Fy(pl)
803 open c1 cursor for g:

804 SELECT g1, g2 FROM G WHERE g3=: pl1
805 while r1 « fetch ¢l do

806 if r1.g1 # Othen

807 fetch row r 2 from h:

808 SELECT hl FROM H WHERE h2=: pl
809 fetch row r 3 from i :

810 SELECT i1 FROMi WHERE i 2=:r2.hl
811 fetch row r 4 from j :

812 SELECT j1 FROMJ WHERE j2=:r3.i1 AND j3=:rl1.g2
813 else

814 fetchrow r5 from i :

815 SELECT i1 FROMi WHERE i2=:r1.91

816 close cl1

817 fetch row r 6 from k:

818 SELECT k1 FROM K WHERE k2=: pl
819 end

Figure 6.1: An example containing nesting and batches.

Qe Qu
ale] [al/ed
@n Qs Q;
(G | /Qu/@u] [Cs | /Qu/s Cy | /Qg/Q

Figure 6.2: Context tree for Figure 6.1.

By itself, the nest-based optimizer might consider préifieig ()., but it is unable to prefetch
Qi or Q;. The queryQ; is used in two distinct ways. The first (line 810) uses an irgarame-
ter that depends on the preceding quéxy. The nesting prefetcher cannot generate a rewritten
guery that provides the desired result. The second ugg {ifne 815) is an example that could
be handled by the nesting prefetcher. However, the contegtdoes not provide a way to dis-
tinguish this case from the previous case. The correlafionthis second use are not monitored
separately, leading the nesting prefetcher to miss thesledion in this second case to the out-

6.2 COMBINING CONTEXT/SUFFIX TREES 165

put parameter 1. g1.

The context tree of Figure 6.2 identifies one opportunity nefgitch a nested pattern. If we
consider sequences of patterns, we can find more oppoesinigure 6.3 shows two suffix tries
that we would find after observing the sequence of requegard-6.3(a) shows the trie consid-
ering only queries that are immediate children of the roaitext /, while Figure 6.3(b) shows
the trie for the queries that are immediate children of cdnte),.

i j $
h
g k $ | j $
k $
¥ j
$
(a) Context/ (b) Context/Qq

Figure 6.3: Suffix trie for Figure 6.1; (a) shows the resuthatroot contexf, (b) shows the result
in context/Q,.

The suffix trie data structure allows us to identify addiibprefetch opportunities. It iden-
tifies that queryQy always follows(),, with parameters that can be predicted once we observe
Q.. Further, the suffix trie is able to distinguish the two diéfiet uses of);. When@)y, is sub-
mitted, it is always followed by); then@);. However, it is not able to prefetafj; because it de-
pends on a parametar]. g2) that is drawn from an outer query, a source not considerdtidoy
batch prefetcher that we described.

The nesting and batch prefetchers are complementary, andma&chieve more savings if we
combine the Pattern Detector for the two types of patterhe.cbmbined Pattern Detector could
provide improved structural patterns (distinguishingtthe uses of);), and also could find more
feasible prefetch candidates by considering a broadeif geissible correlation sources.

Combining Context/Suffix Trees

For nested patterns, we represented contexts in the tresezgiance of queries separated/by
Context/Q./Qn is used to represent quey, opened while), is currently open. For batch pat-
terns, we used sequences of characters to represent atcoviiexe we show only the charac-
ter subscript of each query. In that notation, contejtrepresents querg; being submitted af-
ter @, then@;. We can combine these two notations as follows. For everyyqide that is cur-
rently open, the context contains a substritig We use sequences of characters to represent re-
quests preceding each of the open queries. With this cortnfnnahe context/kg/hi means we

166 COMBINING NESTED AND BATCH REQUEST PATTERNS

have processed a sequence such as the one shown in Figuket4hat at step 6, the context
would be/kg/h/ asQy, is still open.

¢k — OPEN(Qx)
FETCH(ck)
CLOSE(ck)
¢g < OPEN(Qy)
cp, — OPEN(Qy)
FETCH(cyp,)
CLOSE(cr)
¢i — OPEN(Qs)
FETCH(c;)
CLOSE(c;)

© 0O N O OB~ WN P

[N
o

Figure 6.4: Example trace generating contgxg/hi.

The trace in Figure 6.4 is consistent with the contéy/hi. We can also consider gener-
alizations that use fewer preceding queries to define theexbn\ith this approach, the trace
of Figure 6.4 is associated with the following contextskg/hi, /kg/i, /g/hi, /g/i}. These are
generalizations of the form given by the suffix tries we usedhtch request patterns. The differ-
ence is that the generalization is occurring at two levaks:dutermost level, and the level nested
inside an open query.

We can combine nesting and batch detection by using a geadiah of the context tree data
structure. We build multiple suffix tries, each associatéth & nesting level. The original context
tree moved to a single child node when a query was opened.tiiftiproposal, we would move
to a set of children, with a different child associated witicte of the nodes on the update path of
the suffix trie from the longest suffix to the root.

We would maintain a set of active contexts. These are cantbat match the current request
sequence. They may be nodes in the same suffix trie, for eegfmpti and/g/i, or they may be
nodes from separate tries rooted at different parent nsdeb,as'kg/h and/g/h. When we ob-
serve a request BEN(Q,), we would push the current s€f of active contexts onto a stack and
form a new seCs. The new seCy = {wa/ | w € C;} is formed by appending the charac-
tersa/ to each element in setC;. When we observe the associateddG () request, we would
pop the set of active contexts, returningp. Then, we would follow the approach of Figure 5.6
to generate all following nodes based on a walk along thetion

Figure 6.5 shows the set of active contexts after processsagjuence of requests that might
be generated by the code in Figure 6.1.

6.3 CURRENT IMPLEMENTATION 167

N Request Active Contexts After Request
1 ¢y — OPENQg) {/9/}
2 ¢, < OPEN(Qn) {/g/h/}
3 CLOSE(c) {/a/h, g/}
4 c; — OPEN(Q:) {/g/hi/,/g/i/}
5 CLOSE(¢;) {/g/ni, /g/i,/g/}
6 c¢; — OPEN(Q;) {/9/hij/,/9/ti/./9/i/}
7 CLOSE(c;) {/9/hij. /a/ij,/9/3: 9/}
8 CLOSE(c,) {/9,/}
9 ¢ — OPENQx) {/gk/./k/}
10 CLOSE(cy) {/gk, [k, /}
11 ¢y < OPEN(Qg) {/gkg/./kg/./9/}
12 ¢; — OPEN(Q:) {/gkg/i/,/kg/i/,/9/i/}
13 CLOSE(¢;) {/gkg/i, /gkg/, /kag/i, /kg/,/9/i, 9/}
14 CQLOSE(cy) {/gkg,/kg./9./}

Figure 6.5: Example trace generating contéxg/ h.

In addition to the structure of the combined context tre@sstrie, we must consider how to
detect correlations in this combined scheme. In the nesiipgoach, we maintained a scope for
each context. This scope provided the set of correlatiorcesithat we considered might predict
parameters of the nested queries. The batch detection ulietiomary over a sliding window of
S previous requests. In the combined scheme, we could impieadictionary that maintains
the values ofS previous requests at each level of nesting.

Current Implementation

The sketch in Section 6.2 described one way that we couldrate detection of nested and batch
request patterns. The integration is quite tight, allondogelation detection to work across nest-
ing and sequence boundaries. Further, the informationtaiaéd during the training period per-

mits rewrites that simultaneously combine nests and batdHewever, the time and space re-
quirements of the sketched approach are rather alarmingaytbe possible that we can achieve
much of the benefit of the complete integration in a reas@ngpace limit if we can exploit the

significant redundancy present in the suffix tries. We lehigeds an area of future consideration.

168 COMBINING NESTED AND BATCH REQUEST PATTERNS

At present, we have implemented a relatively modest appré@adntegrating nesting and
batch request pattern detection. Each of these is impledesgparately, with its own correla-
tion detection. The batch Pattern Detector operates onlguanies opened at the top level of
nesting. The Pattern Detector, Pattern Optimizer, QuewyriR, and Prefetcher operate in par-
allel for ach type of pattern. If the nested request optititza choose an alternate strategy for a
guery, that query is not considered by the batch requeshet.

The results that we presented in Chapter 3 used only thedhessjaest components; likewise,
results in Chapter 5 used only batch request componentsreBldis that we present for case
studies in Chapter 8 use the combined approach described her

Even this loose integration of nesting and batch detectimadasonably effective. The request
patterns used fodbunload are moderately (Section 8.2), but it does not appear it wbalte-
fit much further from a more comprehensive integration otingsand batch optimization. The
SQL-Ledger system has an even simpler structure withiregsad requests, with at most two dis-
tinct queries opened inside an outer query. The full powéntefyrating batch and nesting detec-
tion would not help with predicting what queries will be exad next. However, the SQL-Ledger
case study does contain correlations between an inner anelna preceding query. At present,
Scalpel’s loose integration does not detect this coratnd it is unable to prefetch the associ-
ated query.

Summary of Combining Nested and Batch Request Patterns

There are application request patterns where a patterotdetaan make more effective decisions
if it considers both nested and batch patterns. The combimaan provide better structural pre-
dictions, for example by distinguishing special cases msimering both preceding queries and
nesting. Further, this approach extends the set of possilotelations that we can consider. We
can consider a parameter of requéstto be correlated to to requests that prece@gdhat the
same nesting level, to any enclosing request, and to angsequeceding enclosing requests.

At present, our prototype implementation uses a loose riateg of the optimizations for
nested request patterns and batch request patterns. Whawdltypes of optimizations con-
flict, the actions selected by the nested request optimizeuse in preference. Our experience
with case studies suggests that the loose integrationvashimost of the benefit that a full inte-
gration would give for the practical systems we examinede&ms that shared correlation pre-
diction would be the biggest improvement for these systems.

Prefetch Consistency

The Scalpel system prefetches results before the clieficapipn submits the associated request.
This can lead to a data consistency problem, where prefétdag do not contain updates that
would have been observed if the data were not prefetchedeTdre two possibilities for these
updates: either they are performed by the current tramsatiescribed in Section 7.1), or they
are performed by another transaction (Section 7.2).

Updates by the Same Transaction

When a transaction performs an update, it expects the sesthat update to be reflected in
the results of future queries. If Scalpel has prefetcheddbalts of anticipated requests, these
prefetched results will not reflect the modifications.

In principle, it is possible that Scalpel could alter the afgdstatement sent to the server so
that it returns enough information to modify Scalpel’s ptehed results to properly reflect the
changes. Alternatively, enough information could be metdrto identify prefetched results that
are now stale, and Scalpel could merely send demand fetoh#seke stale results instead. The
altered update statement could perform a join between ttigted rows and the combined queries
already prefetched by Scalpel. The updated row set is fteohthy the update statement and any
modifications performed by triggers executed in responsectaipdate.

This approach expends significant effort in implementatomplexity and more expensive
updates in order to precisely determine which prefetchsdli®are still valid. Another approach
could be based on a static analysis of the prefetch querggshysScalpel and update statements
submitted by the same transaction. In some cases, the spdatiaot possibly affect prefetched
results. For example, an update could apply to tables neteefed by the prefetch queries. If,
further, no triggers fired by the update could affect thesalts, then the update statement is not
a significant updateo the prefetched queries. If we statically analyze an wpdttement and
find it could not possibly affect our prefetched results, weld retain them; otherwise, we could
discard them and answer future queries that would have ladisfiesd by prefetched results with
results from a demand fetch. In this case, the work of prefietcthe discarded results is wasted,
but no consistency problems are introduced.

At present, Scalpel implements a simple policy wherebysuages thaanyupdate by a trans-
action is significant to prefetched results. Scalpel mositdl EXECUTE requests during training

169

170 PREFETCH CONSISTENCY

and at run-time. During training, Scalpel recognizes whengdate could invalidate prefetched
data, and it chooses to avoid the prefetch in that case (asahemight be wasted). If an update
is encountered at run time that was not anticipated basdukdrdining period, the prefetched re-
sults are not used to answer furthep&N requests. While this represents wasted work, it does
not affect consistency.

This simple policy of our current prototype is safe, if ptysisub-optimal, for ®ENrequests
submitted after an update from the same transaction. Howthare is another possible source
of data inconsistency. If there is a cursor already open prefetched results, we should be con-
cerned that the rows fetched from the prefetch cursor magls¢mantics that were given with-
out prefetching.

SQL/99 [13] definesursor sensitivityas follows. If a change to SQL-data would have caused
different results to be returned by a cursor had the cursemn bpened after the change, then the
change is said to besignificantto the cursor. If the effects of a change are observed by aGurs
the change is said to bevisible changeSQL/99 defines the following sensitivity values.

SENSITIVEIf a cursor is declared as SENSITIVE, then all significantrgjes are visible.
INSENSITIVEIf a cursor is declared as INSENSITIVE, then no significardrajes are visible.

ASENSITIVEIf a cursor is declared as ASENSITIVE, then the visibilitysignificant changes
is implementation dependent.

The default sensitivity is ASENSITIVE, which allows implemtations to provide the most effi-
cient sensitivity.

In principle, Scalpel could use SENSITIVE cursors for itefpiched results. With the ex-
ception of the client hash join strategy, this would ensheg significant changes are visible, and
that cursors that are open and decoding prefetched data wivel SENSITIVE semantics. How-
ever, typical implementations of SENSITIVE cursors ardfinent, requiring a demand fetch to
the server for each row. For now, Scalpel uses only ASENSES®nsitivity. If a cursor is opened
with either SENSITIVE or INSENSITIVE sensitivity, Scalpglbmits it to the server for process-
ing (INSENSITIVE cursors could be supported by using INSENSE for Scalpel’s prefetch
cursors, but that could require an INSENSITIVE cursor overlarger combined query results,
something which we avoid in the current prototype).

In summary, Scalpel guarantees prefetch consistency ®sfhect to monitored updates done
by the same transaction. Prefetched results are not usddtfioe OPEN requests after anXe
ECUTE as it might possibly have been significant to the prefetclesdilts. Scalpel only uses
prefetching for ASENSITIVE cursor types, which allows itdeliver results matching the re-
guested semantic using prefetched data.

7.2 UPDATES BY OTHER TRANSACTIONS 171

Updates by Other Transactions

Section 7.1 discussed prefetch consistency only with etgpanodifications by the same trans-
action; in addition, we must consider the updates that maydomrmed concurrently by other
transactions. While Scalpel can detect changes from thétoned connection, it cannot observe
changes made by other connections connected to the sBI®

If prefetched results are not used across transaction laoigsd then prefetch consistency is
provided by the ACID properties of theBms (at least in theory). If prefetched results are used
across transaction boundaries, the ACID properties do olot NVe could consider approaches
similar to those that we considered in Section 7.1; for eXampe could send additional requests
at the beginning of a new transaction to determine whichgpebed results are (possibly) invalid,
then either update them or invalidate them. For example outdlause WITH HOLD cursors [13]
for Scalpel’s prefetched results, which would allow us ttdhtbe cursor open across transaction
boundaries (for a single connection). Alternatively, wealddfollow an approach similar to that
proposed by Guo et al. [87], allowing the client applicatiorspecify whether it is willing to use
stale data prefetched from previous transactions.

At present, Scalpel does not use prefetched results acarssattion boundaries. We have
found applications that would benefit from this type of ptelfiing (for example the SQL-Ledger
system, described in Section 8.3). The prefetching is uséian a high-level user operation is
accomplished by more than one sub-transactions. Howéeehanefit in these cases results from
batch request patterns, not from nested request patteemeelHwe would save at most one in-
stance of the per-request overhdagl It is possible a nested request pattern could be imple-
mented across transaction boundaries (using a WITH HOLDifspetion for the outer cursor).
However, we have not found instances of this in the systemmvestigated. Therefore, it ap-
pears we do not lose much in practice by restricting ourselegrefetching within transaction
boundaries.

Weak Isolation

The ACID properties obBMSs suggest that we need only prove consistency for a serialiexe
tion of individual transactions, as we have shown in Sectidn However, full ACID properties

are not always guaranteed in practice. In some cases, elpatications request a weak isola-
tion level that does not provide serializable semanticayGit al. [84] defined a number of de-
grees of consistency that are less than serializable. Bgriag consistency, applications can im-
prove concurrent performance; presumably, semanticssagecontrolled by additional applica-
tion logic. The SQL standard [13] defined four levels of isiola, with the intention that these
would provide an implementation-independent definitiordedrees of consistency, without re-
ferring to a particular implementation, such as lockingre®son et al. [18] pointed out that the

172 PREFETCH CONSISTENCY

definitions used in the SQL standard [13] are ambiguoushéurthey fail to capture essential el-
ements of the original isolation definitions used by Graylel84]. Berenson et al. proposed a
variant of the standard SQL definitions, but noted that tladteenate definitions were essentially
a disguised form of locking. Adya, Liskov and O’Neil [4, 5]guided a more generalized defini-
tion of isolation levels that can be used for optimistic paatls as well as for locking.

The anomalies related to relaxed concurrency are typieaihcerbated by prefetching. Not
only can the original anomalies occur (such as dirty reaols;repeatable reads, and phantoms),
but also new temporal anomalies can occur. A read reqyesity observe the effects of an up-
date from another transaction, while a later requedhat is satisfied from prefetched data may
not observe the request. This situation only occurs whenreadd fetch is sent to thesms af-
ter Scalpel has prefetched some results but before all oprisfetched results have been con-
sumed. One way to avoid introducing new temporal anomal@mddvbe to detect this situation.
When any demand fetch is sent to thems, Scalpel could discard any prefetched results.

While this approach has the theoretical benefit of avoidimmpducing new temporal anom-
alies, it does so at the expense of limiting prefetch opmities and wasting work. It seems likely
that application developers that select relaxed isoldéwels for efficiency would not prefer this
approach. Instead, a better approach would be to allowcgtjgh developers to control the re-
cency of the data they receive. One approach is proposed beGal. [87], whereby application
developers explicitly encode currency and consistencyireaents.

Another approach is that of the snapshot isolation leveth\&fhapshot isolation, defined by
Berenson et al., each transaction reads data that was cmtm# of the transaction start (addi-
tionally, the transactions own updates are reflected) pgtalorks very well in this environment,
as shown in Section 7.1. Scalpel does not introduce any neydeal anomalies in this situa-
tion, and the anomalies permitted by snapshot isolatiomatrenodified by Scalpel.

At present, Scalpel makes no attempt to avoid introducingteenporal anomalies at relaxed
isolation levels. If a transaction executes with seridliedasolation, Scalpel produces consistent
and current data (with the cautions described in Sectioruged for reflecting the transaction’s
own updates). If the weaker snapshot isolation is usedp8lodbes not introduce new anomalies.
Otherwise, Scalpel introduces temporal anomalies that@rpresent in the original system, and
which are not described by the original isolation level sidd by the transaction. An applica-
tion developer must be cautious when using Scalpel in this@mment; it may be that the intro-
duced anomalies are acceptable in the quest for best ppgsitibrmance, but it may be the case
that these must either be controlled through applicatigiclor use of serializable isolation. Fi-
nally, we note that the issues related to prefetching ddiarde¢hey are used are similar to the
concerns of caching systems such as the MTCache describ@ddgt al. [87]. In fact, prefetch-
ing and caching form very good complements; developmentacéhing semantics are useful in
describing the effects of prefetching, and prefetchinghmnsed by a cache to choose a victim to

7.2 UPDATES BY OTHER TRANSACTIONS 173

evict. It is an interesting topic for future study to consitdew prefetching and caching can be in-
tegrated in a way that provides efficient results (avoidheydangers of replication described by
Gray et al. [83]), while providing semantics that match thpleation developer’s needs.

Case Studies

We applied Scalpel to real-world systems to evaluate iecéffeness and how its features inter-
act with practical concerns. In Section 1.3, we describest afsclient applications that we have
investigated to assess the possible benefits of Scalpel. Aaatly inspected these systems, and
found opportunities for optimizations based on nestedastpatterns and also batch request pat-
terns. We found batch opportunities in all of the systems aresidered. While we did not find
nested request patterns in all of these systems, it did ajypeaveral of the systems we consid-
ered.

In this chapter, we present detailed results for two of trystems as case studies of using
Scalpel in practical systems. Section 8.1 describes ar tbst we found in both case studies—
the problem of how transaction boundaries are handled gluraining and at run-time. Sec-
tion 8.2 describes our investigation of tibunload program. This program contains significant
nesting that is optimized effectively using Scalpel's mgstewrites. Batch request patterns also
offer an improvement, although their role is limited in maronfigurations by the overwhelm-
ing number of requests associated with the nested patt®eation 8.3 describes our work with
the SQL-Ledger system. SQL-Ledger is a web-based doultg-@ccounting system. The SQL-
Ledger system also provides several opportunities fomoping nested request patterns.

Transaction Boundaries

One issue that we faced in both case studies is how Scalpaldstieal with transaction bound-
aries. Thedbunload program uses a single transaction to generate the textd@ate a schema.
When we are training Scalpel, we would like to use a long tthegis typical of the usage pat-
terns that we expect at run-time. In order to build a suffityelong and representative trace with
dbunload, we need a way to uses several transactions in a singlengaperiod. We accom-
plish this with Scalpel by using special out-of-band querié/hen a transaction ends, we en-
sure that all open queries are closed. At present, Scaljsl ot suppot\' TH HOLD cursors,
which can be held open across transaction boundaries.ebeddp uses an out-of-band charac-
ter in the suffix trie (or path compressed suffix trie) datacitire, then moves the current update
point of the trie to the root. This out-of-band characteowa multiple sequences to be combined
into one suffix trie. Gusfield [88] provides more details oa #pproach.

175

176 CASE STUDIES

The out-of-band queries allow Scalpel to build a single gufie that summarizes multi-
ple traces, and this allowdbunload to be executed in several different configurations in order
to provide a realistic training period. A related concerithiat Scalpel might try to prefetch re-
sults in one transaction then use them in another. As disdussChapter 7, such an approach
leads to serialization anomalies. In particular, we fourat the SQL-Ledger system tends to use
relatively short transactions. A single user activity ntig/ad to more than one transaction be-
ing issued, and Scalpel's batch request optimization coeddce latency by prefetching across
session boundaries. At present, we do not permit such phefet The out-of-band queries in the
suffix trie are used to prevent rewrites that cross tranmattoundaries.

Case 1: dbunload

The first case we considered is tibunload program.dbunload is provided withAdaptive
Server Anywhere (ASA), a full-featuredbems produced by iAnywhere Solutions, a Sybase
company. Thalbunload program generates a text-based ‘unload’ of a databasapkufor re-
creating both the schema and instance data. When unloadiag the majority of the time is
spent unloading the instance data: this involves fetchimgdata from thebsms, formatting it

as text, and outputting it. In this usage pattern, the costigfutting the database schema is usu-
ally a negligible portion of the elapsed time. Télleunload utility is also used extensively to un-
load only the schema for a database. For example, custoarersse this approach to maintain re-
vision control of the database schema. A variation on thidemmutputs the schema for only one
table or a small set of tables. Scalpel cannot improve thi@peance of the (coarse-grained) op-
erations used to unload instance data, so we focused on aadoading operations.

Characterization of the Program

Thedbunload program works with database instances generated by seliféeabnt versions of
ASA, including variations on different upgrade paths that mayetbeen applied to upgrade older
database versions. These different versions have vargatgres, and some common features are
implemented differently in different versions. For exampivo database versions store column
constraints in slightly different formats. Thidounload program issues version detection queries
to determine the version level of the database instance tmloaded. The results of the version
detection are stored in global configuration variables.

Thedbunload program is over 11 years old, and is implemented in C codeqiédries are
submitted using a cursor abstraction layer implementedSQE This abstraction layer provides
a simple @PEN,FETCH,CLOSE style interface. The €eN interface takes as parameters a unigue
cursor name and a SQL string. Any query input parametersrareded in the SQL text using
string substitution. All fields returned from the cursoreiriaice are returned as text strings.

8.2 CASE1:DBUNLOAD 177

The query for each cursor is constructed dynamically ustriggsformatting commands.
Query parameters are included in the query text using ssulggptitution. Further to parame-
ter substitution, queries are constructed based on dynemniiguration parameters that depend
on the results of the version detection queries and invaecgiarameters aflbunload. An ap-
propriate variant of each query is generated by textualhgstuting appropriate variants into the
qguery to be submitted. For example dibunload is used for a database instance without sup-
port for named constraints, the valneLL is textually substituted in place of the field name that
stores the constraint name. In order to handle some compilesioning issues, global parame-
ters are used in some locations to generate subselects ditidrzal joins in order to retrieve nec-
essary information. In general, textual substitution isdu® generate arbitrary query constructs.

In addition to substitution based on global configuratiorap#eters, some queries are sub-
mitted by a function that is called in multiple contexts, le@equiring a different query variant.
For example, the code to unload a constraint for a columite tédreign key, primary key, or de-
clared unique constraint is shared in tBet Const r ai nt s() function. This function is called
from four separate call sites withitbunload, and each call site generates a different variant of
the query.

The code ofibunload is arranged into functions and modules following good C ogdityle.
There are 46 functions that open cursors, with 35 opening omé, 7 opening 2, 1 opening 3,
and 2 functions opening 5 cursors. In total, there are 6&mdifft cursor open call sites within
dbunload. The presence of predicates within these functions meatghhse cursors are not
opened every time there is an opportunity to do so.

Functions that open cursors use a loop over the results i than one row can be returned.
The body of these loops generates the text needed to reedhteatssociated schema object. In
some cases, the schema object has sub-structure nestéd itvifor example, a table schema
object generates the text for its and in these catfmsnload typically calls other functions that
open cursors and output the text representation of thedebjects.

8.2.1.1| A Java Version of dbunload

The Scalpel prototype that we have implemented is writtedawva with a JDBC interface. In
order to assess the benefits of using our proposed optioizative implemented a Java ver-
sion of thedbunload tool by transliterating the source from C/ESQL to Java/JDBIa: primary
changes of the source code were the following:

1. Use Java string concatenatior) for string literals instead of C's style (adjacent strings
2. Use Java string comparisons insteag of cnp, etc.

3. Use exception handling instead of C-style return codeldhg.

178 CASE STUDIES

4. Replace uses of C preprocessor by either a) manuallyisubsine variant of a macro or
b) use Javdi nal static bool ean fields.

5. Rename cursor names that were ambiguous.

6. Replace uses of the ESQL cursor interface with calls tova darsor abstraction layer
based on JDBC.

The Java implementation afbunload is about 4400 lines of code, and it submits the same
gueries as the original C version. Due to the different inm@atation, performance results can-
not be directly applied to improvements that could be madbeadC version, but they should be
considered indicative of what is possible.

Figures 8.1 and 8.1 show simplified pseudo-code for the tah fequests issued by tdbun-
load tool. In this simplified pseudo-code, we use the notafonane[, par ns. . .) to repre-
sent a query namethne being opened with an optional list of parameters. In cassdtie query
returns a single row or simple list of strings, we use it riotally as a function call (for exam-
ple, on line 820). In other cases, the query may return mene dime row and thdbunload pro-
gram processes the results using a loop. We show thi¥ aane[, parns...) {...} (for
example, line 858).

The main-line for the program 3o- Unl oad (line 888). First, it callsGet - DB- Ver si on
(line 822) to determine characteristics of the databagarioe being considered. This version in-
formation reflects whether the database contains varioiadogatables and columns that were
added over the years in different versionsA8A. The results are stored in global variables
(V1 ...V27). Next, the main-line calltoad- Excl ude- Tabl es (line 851) to load a list of
system-defined schema objects that should not be outpdbliyload. The names and types of
these excluded schema objects are stored in a tBRIEL(UDEDOBJ ECT) that was added in a ver-
sion of ASA. TheLoad- Excl ude- Tabl es procedure first issues a query to see if this data-
base instance has tEXCLUDEDOBJECT table; if so, it issues a second query to see if there are
any rows in the table. If both of these conditions are truentthe procedure loads in-memory ar-
rays of objects to be excluded using two distinct quer@&EXCLUDE and C_EXCLUDEB) para-
meterized with the type of object to be stored in the appaterarray.

In combinationGet - DB- Ver si onandLoad- Excl ude- Tabl es submit up to 34 ®EN
requests using 8 distinct queries. The presence of locdigates means that not all of these
gueries are always executed. However, the predicatesatgaiufalse only for older versions of
databases. If we consider a customer that does a regulanaahdoad of a (current) database in-
stance, then all of these queries will be executed in segu@mtler. If Scalpel could predict this
case, it could avoid the costs associated with fine-grainedss.

After initializing the version global variables and loagimrrays of schema objects, the
Do- Unl oad mainline issues queries to retrieve the name of@B® owner for the database (a

8.2

CASE 1: DBUNLOAD

179

820 procedure Tabl e- Exi sts(own, tbl) return C_TABLEEXI STS, own,tbl) end
821 procedure Col - Exi sts(tbl,col) return C_COLEXI STS,thbl,col) end

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

procedure Get - DB- Ver si on()
Vi
V2
V3
V4
V5
V6
\Z4
V8
V9

LI I I O R

Col - Exi sts(" SYS

Tabl e- Exi st s(" SYS", " SYSGROUP")

Col - Exi sts("SYSCOLUWN', "scale")

Col - Exi sts("SYSCOLUWN', "colum_type")

Col - Exi st s("SYSTABLEPERM', "referenceauth")
Tabl e- Exi sts("SYS", "SYSINFO')

Tabl e- Exi sts(" SYS", "SYSATTRI BUTE")

Tabl e- Exi sts(" SYS", "SYSPROCEDURE")

Tabl e- Exi sts("SYS', "SYSSYNC')

| NDEX", "hash_limit")

V10 <« Tabl e- Exi sts("SYS", "SYSREMOTETYPE")
V11 < Tabl e- Exi sts("SYS", "SYSREMOTEOPTI ONTYPE")
V12 <« Tabl e-Exists("dbo", "ml _property")

if V10 then V13 <« PubEx
V14
V15
V16
V17
V18
V19
V20

Q C_GETDBPROPE

TabCheck(encry

rrrrra

ists()

Col - Exi st s("SYSCOLUMN', "check")

RTY, "NamedConstraints")

Tabl e- Exi sts("SYS", "SYSUSERTYPE")

pted pwd)

Col - Exi sts("SYSCOLPERM', "privilege_type")
Col - Exi st s(" SYSARTI CLE", "query")
Tabl e- Exi st s(" SYS", "SYSJAVACLASS")

if V20 then V21 «— Q C_JAVAEXI STS)
rs_systabgroup", "rs_lastcommit")
if V19 then V23 «—Q C_GETDBPROPERTY, "FileVersion")

V22 <« Tabl e-Exists("

V24
V25
V26
V27
end

TTT

Tabl e- Exi sts("SYS", "SYSCAPABILITY")
Tabl e- Exi sts("SYS", "SYSEVENT")

Tabl e- Exi sts("SYS", "SYSWEBSERVI CE")
Col - Exi st s(" SYSTABLE", "source")

procedure Load- Excl ude- Tabl es()

if C_USEEXCOBJTBLA)
Q C_EXCLUDE,’ P)
Q C_EXCLUDEB,' U,
Q C_EXCLUDE,’' T)
end
procedure Do- Users()
Q CDBSPACES) {...};
end

and Q C_USEEXCOBJTBLB) then
Q C_EXCLUDE,'V)

"E) ; Q C_EXCLUDE,'E)

Q C_USERS,V10,V1) {...}

procedure Do-Logins() Q C SYSLOAN) {...} end

procedure Do- Servers()
Q C.SERVERS) {...} ;
end

Q C.CAPABILITIES) {...};

Q CEXTLOGNS) {...}

Figure 8.1: Pseudo-code fdbunload top-level requestscontinued)

180 CASE STUDIES

864 procedure Do- User-Cl asses() Q C C USERCLASSES) {...} end

865 procedure Do- User-Tabl es() Q C _TABLES, V10,Vv24,V9,V6) {...} end
866 procedure Do- User-Views() Q CVIEWS V1, V27) {...} end

867 procedure Do- Events() Q C_EVENTS, V27) {...} end

868 procedure Do- Services() Q CSERVICES) {...} end

869 procedure Do- Unl oad- Publ i cati ons()

870 if V8 then QU C_PUBLICATIONSA) {...} else QC C PUBLICATIONSB) {...}
871 end

872 procedure Do- Mobilink() Q C MOBILINK) {...} end

873 procedure Do- Unl oad- Renot e- Opti ons()

874 Q C_REMOTE_OPTIONS) {...}

875 end

876 procedure Do- Renot e()

877 Q C REMOTEMSGT) {...}; Q CREMOTEPUB) {...}

878 Q C REMOTESUBUI D) {...} ; Do-Unl oad-Publications();

879 Q C REMOTEE) {...}

880 if V11 then Do- Unl oad- Renot e- Opti ons()

881 end

882 procedure Do- DBSync()

883 | dt «— Col - Exi st s(" SYSSYNC', "l ast _downl oad_ti me")
884 Q C REMOTEF, 1dt) {...}

885 end

886 procedure Do-Options() QQ C.C OPTIONS) {...} end

887

888 procedure Do- Unl oad()

889 Get - DB- Ver si on()

890 Load- Excl ude- Tabl es()

891 G dbo- name «— Q C_DBO NAMEL)

892 if not G dba-name <« Q C_DBO NAME2) then G dba-name <« Q C_DBO _NAME3)
893 G charset <« Q C_GETDBPROPERTY, "charset")

894 if G dbinfo < Q C_CGETDBINFO) then

895 Do- Users() ; Do-Logins()

896 if V24 then Do- Servers()

897 if V21 and not G renpve-java then Do- User Cl asses()
898 Do- User - Tabl es()

899 if G unl oad-schema then Do- User- Vi ews()

900 if V25 and G unl oad-schenma then Do- Events()

901 if V26 and G unl oad-schenma then Do- Servi ces()

902 if V12 then Do- Mobi Li nk()

903 if V10 and G unl oad-schema then

904 if not G dbsync-db then Do- Renot e()
905 if V8 then Do- DBSync()

906 if G unl oad-schema then Do- Opti ons()
907 end

Figure 8.2: Pseudo-code fdbunload top-level requests.

8.2 CASE1:DBUNLOAD 181

system-defined user that owns system-created schemas)lgadta canonical version of the ac-
tive DBA user id. These retrieved values are stored in a global qlife®etrieving the user ids
takes either 2 or 3 €eN requests. NextDo- Unl oad retrieves options used to create the data-
base instance using ti@&DBI NFOquery. This call fails if theSYSI NFOtable is not present (it
was not created in very early versionsABA that are no longer supported).

At this point,dbunload has issued up to 398EN requests using 13 distinct queries to gather
configuration information that will be used to control whatgoutput. NextDo- Unl oad calls
13 procedureso- User s to Do- Opt i ons) to output statements to re-create schema objects.
Predicates based on global configuration val@satd version information retrieved by earlier
queries V1. . . V27) control which of these routines are actually invoked. \idithach output
routine, one or more queries are opened and their resulasz{zrocessed in a loop. For exam-
ple, Do- User s opens two cursors and processes their rows. Within the bbdgah loop, text
is output to generate the appropriate statements. Fuatiéitional (nested) queries may be sub-
mitted to gather more information about related objectesEhnested queries are discussed in
Section 8.2.1.2.

In total, dbunload issues up to 61 top-level KEN requests with 35 distinct queries. The se-
guence of requests is predictable, although predicatdsnndbunload prevent some possible
gueries from being submitted, either because they are pobppate for the version of the data-
base instance (predicates depending on results of eaglision-detection queries) or because of
input parameters the prevent the associated schema objmutbeing unloaded. The sequence
of top-level queries is fixed, and the actual parameter galised to open queries can be predicted
based on the position in the sequence and the results afre@djuests. Scalpel can rewrite these
gueries using predictions based on observed traces. Whilearewriting is beneficial, it has a
fixed benefit regardless of the size of the database instaging bnloaded. The number of se-
guential requests that can be prefetched does not depehé onitnber of rows of any of the ta-
bles, but this is not the case when we look at the nested regtines are opened within the body
of the processing loops.

Nested Queries

The code in Figures 8.1 and 8.2 omitted nested queries thatilamitted from within the process-
ing loop of an outer query. Figure 8.3 shows the context tfegested requests discovered by
Scalpel. Five of the main output routinesdbunload open nested queries to generate text for
nested objects. These nested queries are typically exeonte for each row of the outer query,
although local predicates may prevent them from being drecun some cases. If Scalpel can
predict nested queries that will be executed, it can savardbauCPEN requests that varies with
the size of the outer result sets. For large schemas, thesafyprediction will have a much greater

182 CASE STUDIES

— GROUPS
— TYPES
— USERS TRI GGERSA SAVEDSOURCE_ 1
— PROCEDURES PROCPERMS
— MESSAGES LONGDEFN_1
— CONSTRAI NTS_2
— | NDEXES ————— LONGDEFNC
FKEYCOLUWN
— FKEYS —[
TRI GGERSB
— COLUMNSA ——— CONSTRAI NTS 1
— LONGDEFNC

— TABLES
— TABLEPERMSB

— | STABLEEMPTY

— COLUVWNSB

— CONSTRAI NTS_3

— TABLEPERMSA —— COLPERM.1
— TABLEEXI STS

— TABLEPERVSB

— LONGDEFN_2

— VI EVS |
— TABLEPERVSA
— SAVEDSOURCE_2
— LONGEDFN_3

— EVENTS SCHEDULES

— SAVEDSOURCE_3
— PUBLI CATI ONSA —— PUBLI CATI ON———— ARTI CLE

— PUBLI CATI ONSB —— PUBLI CATI ON———— ARTI CLE

Figure 8.3:dbunload context tree identified by Scalpel. Child-less top-leveiteats are omitted.

8.2 CASE1:DBUNLOAD 183

908 function DO-USERY)
909 if V10 then

910 renot eaut hfi el d < * UP. r enot edbaut h’

911 else

912 renoteauthfield «— **N’

913 if V1 then

914 remarksfield < ', UP.remarks’

915 usergroupfield «— *, UP.user_group’

916 else

917 remarksfield <« *’

918 usergroupfield < *’

919 open C_USERS cursor for USERS:

920 SELECT user _id, user_nanme, password, resourceauth, dbaauth,
921 schedul eaut h, $renoteauthfield $remarksfield $usergroupfield
922 FROM SYS. SYSUSERPERM UP

923 ORDER BY user _id

924 while r1 <« fetch C_USERS do

925 if not SPECIAL-USER(r 1. user_nane) then

926 > Write statements to create the user

927 Do- User- PERMS(rl.user_id, rl.user_nane, ...)

928 if V7 then

929 if not G excl ude- procedur es then

930 Do- PROCEDURES(rl.user_id, rl.user_nanme, ...)
931 if not G excl ude-triggers then

932 Do- TRI GGERS(rl.user_id, rl.user_nane, ...)
933 if V16 then

934 Do- USER- MESSAGES(rl.user_id, rl.user_nane, ...)
935 Do- User- TYPES(rl.user_id, rl.user_nane, ...)
936 close C_USERS

937 end

938 function Do-USeErR-PERMS(user_id, user_name, ...)

939 > Write statements to grant authorities to user (RESOURCH [#c.)
940 if V1 then

941 open C_GROUPS cursor for GROUPS:

942 SELECT group_id. user_nane

943 FROM SYS. SYSUSERPERM G D, SYS. SYSGROUP G, SYS. SYSUSERPERM U
944 WHERE G D.user_id = G group_id

945 AND U. user_id = G group_nenber

946 AND G group_nenber = $user_id AND ...

947 while r2 <« fetch C_GROUPS do

948 > Write statements to grant membership in the current group.

949 close C_GROUPS

950 end

Figure 8.4: Pseudo-code fdbunload to output database users. Identifiers starting Witepre-
sent text substitution within a query.

184 CASE STUDIES

impact than the batch prediction. For example, Doppelhamanal. [57] described an SAP R/3
installation with 10,055 tables. Such a setup would takguifstant length of time to unload, es-
pecially in a high-latency configuration.

Figure 8.4 shows an abstraction of a portion of e User s procedure. This procedure
outputs SQL statements to re-create all of the users in dastaalong with the procedures, trig-
gers, messages, and user-defined data types defined by each us

The code supports a number of customizations, shown in &igu4r as f statements using
global variables: both version variablégl(..V27) and global parameter&) are used. For ex-
ample, theG. excl ude- pr ocedur es predicate (line 929) controls whether procedures will
be output at all, based on user-configuration options. Tigdipate is similar in effect to th&,
predicate used in Section 3.6 because it does not dependums feom an outer query. The check
on line 925 is used to see if a user is a ‘special’ userid cogayeASA (these do not need to be
re-created). In contrast to tli& excl ude- pr ocedur es predicate, this predicate depends on
outer row values and it is therefore similar to tRepredicate used in Section 3.6.

TheDo- User s procedure represents only a small portion of the oveltalinload program.
Figure 8.3 shows the queries dbunload that are involved in a nesting relationship (an addi-
tional 32 queries are opened at the top level and they areismaged).

Thedbunload program can be run in either a complete mode where everyihiogtput, or
a very selective mode where specific types of objects areiéad|or specific named objects are
included or excluded selectively.

Evaluating Scalpel Using dbunload

In order to evaluate the effectiveness of Scalpel, we perédra series of measurementsibtin-
load when using Scalpel on a variety of network configurations.ud&d 31 customer databases
to evaluatadbunload performance. Figure 8.5 shows the run-time with and witl8m#tipel's op-
timizations for these 31 databases on a variety of netwankiguarations. These databases are la-
belled with A,B,...,Zy, 3,0 A, 1 in order of increasing cost on the LCL configuration. In these
tests, all of Scalpel’s optimizations were permitted fosted request patterns, and we show the
time to unload the entire schema. The results show that 8lqaipvides significant savings, even
in low latency configurations such as LCL (local shared metor

Batch Prefetching with dbunload

The results in Figure 8.5 show the improvement Scalpel gesavhen optimizing only nested re-
guest patterns. We also considered the benefits providgdptiatch prefetching. We raibun-
load in selective mode, outputting the schema for a single tabtader to establish how much

8.2 CASE1:DBUNLOAD 185

13 | Mﬂﬁﬂmﬂﬂhﬂmﬂﬂ HHHHHHHHHHHHHHH-- “““““““ 7;0

ABCDEFGHIJKLMNOPQRSTUVWXYZapBpO6rip pro0BpaZYXWVUTSRQPONMLKIIHGFEDCBA

(a) Local Shared Memory (Original Strategy) (b) Local Shared Memory (Optimized)

40 40
30+ 30
20 r20
10 r 10
0 = s e e e e e e e ()

ABCDEFGHIJKLMNOPQRSTUVWXYZQBO}»M WA0PaZYXWVUTSRQPONMLKJIIHGFEDCBA

(c) 1Gbps TCP!/IP (Original Strategy) (d) 1Gbps TCP/IP (Optimized)

50 50

40 r 40
30+ r 30
20 r20
10 A ﬂﬂ!ﬁa 10
0 L e e e .m0

ABCDEFGHIJKLMNOPQRSTUVWXYZHBO;H ur0PpaZYXWVUTSRQPONMLKIIHGFEDCBA

(e) 100Mbps TCP/IP (Original Strategy) (f) 100Mbps TCP/IP (Optimized)
250 250
2001 + 200
150 150
100 + 100
50 50
o”'_'ﬂuuuu EBEEEEEEBQEEEF\D ““““““““ 0
ABCDEFGHIJKLMNOPQRSTUVWXVZ&[&OXN uir0PBaZYXWVUTSRQPONMLKIIHGFEDCBA
(9) 11Mbps WiFi TCP/IP (Original Strategy) (h) 11Mbps WiFi TCP/IP (Optimized)

Legend: D Client CPU (s) I Server CPU (s) D Latency (s)

Figure 8.5: Running time (s) abunload on different network configurations. Original times are
shown on the left in increasing order by cost, and times wéthted request pattern optimizations
are shown on the right in the opposite order.

186 CASE STUDIES

of an improvement is possible for the portions of the appibeathat Scalpel’'s batch optimiza-
tions might apply to.

U O A A%

OPEN calls 39 14| 25 64%
Elapsed (ms) 997 336| 661 66%
Clientcost(ms) | 109 78| 31 29%
Servercost (ms)] 47 63| -16 -33%
Packets toBms | 190 69| 121 63%
Packets to client| 202 73| 129 64%

Table 8.1: Benefits of batch pattern optimization ddmunload. Columns show unoptimized re-
sults (), optimized results @), absolute differenceX = U — O), and relative difference
(A%=A/U).

At the end of the training period, Scalpel stored infornrafior 15 distinct queries and 46 con-
texts with prefetch size ranging from 0 to 19, averdge Of these, 18 had no prefetch queries as-
sociated. Of the 28 contexts with associated prefetchesvirage number of prefetched queries
was8.1. For a typical execution abunload, we observed 43 queries and built an atomic suf-
fix trie with 818 nodes; the path compressed suffix trie com@ionly 50 nodes.

Table 8.1 shows the benefits of using the optimizations we Hagcribed witldbunload run
in selective mode on a WiFi configuration. The table showsuth@ptimized results (U) for the
system run without Scalpel attached, the optimized re¢Qljsthe differenceA = U — O and
the percent differencA% = A/U.

Scalpel's optimizations are able to eliminate 25 of thee® requests that are sent to the
DBMS, which includes eliminating the per-request overhead éoheof these. As a consequence,
total elapsed time was reduced &/%, and the client processing cost was also reduce2bby.
Interestingly, the server processing costs increaseeiprtfetching case. As all of the prefetches
in this test were useful, this extra cost must be related toniging and executing the complex
combined query.

Summary of dbunload

The results fodbunload are promising. When using all prefetching algorithms, Selgbrovides
significant savings, even in low-latency configurations. &le, the run-time for databage

8.3 CASE2: SQL-LEDGER CASE STUDY 187

is reduced from 45s to 25s in the LCL configuration, and frorm #017s in the LANO.1 config-
uration. Scalpel acts to extend the set of systems for wdtlitinload provides excellent results.
Without Scalpel’s optimizations) runs in 220s on a WiFi configuration; the optimizations al-
low it to run in 24s, which is faster than the 46s fom the LCL configuration.

While dbunload provides many opportunities for optimizing nested reqpesterns, it also
contains sequences of requests that can be predicted usatiges batch optimizer. When run
in selective mode to unload the schema for a single tabldp&8darovides an improvement of
661ms, or 66% in running time. This absolute improvementés@nt when running in the full
mode, but it is overshadowed in relative terms by the nestqdeast patterns.

Case 2: SQL-Ledger Case Study

We investigated SQL-Ledger as a second case study. SQLekéxlg web-based double-entry
accounting system written in Perl. The system is configurigld &¥bBMS storing persistent ac-
counting entries, a web server that executes Perl scripisglement business logic, and a web
browser that presents the user interface.

Figure 8.6 gives an overview of the structure of the SQL-lexdgystem. A web browser
presents a user interface, and a web server executes timedmisbgic using the common gate-
way interface (CGl). The SQL-Ledger business logic comrmateis with ebBMS using the Perl
DBl library and a vendor-specific DBD module. We use V' as agaholder in Figure 8.6 to rep-
resent a specifioBMS implementation.

Web Apache 2.0 SQL-Ledger
Browser| | rp | Web Server ", 2.2.0 <>
DB Pr;)\:(;col
DBD.V |e— — 5| DBMS
V
v
Machine B | | Machine B | | Machine D

Figure 8.6: SQL-Ledger system structure. ‘V’ is used as eglalder for a specifioBMms vendor
implementation.

In general, the web browser, business logic, aBths can be placed on separate machines.
We simulated a web user and the business logic on machinedBysed a commerciaBms

188 CASE STUDIES

Rows| Rows
table (SF1) | (SF10)| Description
cust omer 10 100 | Customer name, address, and shipping in-
formation
parts 10 100 | Part name, price, inventory, and description
makenodel 30 300 | Name of a specific make and model of a part
part sgroup 2 20 [Name of logical group of parts
cust omert ax 20 200 | Types of tax charged for each customer
part st ax 20 200 | Types of tax charged for each part
ar 100| 10000| Invoices
i nvoi ce 1486 | 145020(Invoice line items
acc_trans 4558 | 445060| Ledger entries for line items, tax, and total

Table 8.2: Initial table sizes for scale factors SF1 and SF10

on machine D communicating using a 100Mbps LAN (configurati&NO.1). The LANO.1 and
other configurations are described in Section 3.6.

The web browser presents a menu of links to activities thaeacan perform, such as adding
a transaction. Each of these activities may require meltipbps. For example, when adding an
invoice, a separate step is used for each invoice line. Far sp, the user presses an Update
button that submits a partially completed form to the webeseiThe business logic scripts parse
the partially completed form, issue database requestgrieve additional information, and for-
mat a new form to be returned to the user. The last step of aagfieity consists of using a Post
button to apply the requested changes to the database.server

Some of the business logic scripts that are executed durirsgaactivity issue nested data-
base requests that might benefit from our proposed optiiizat

We populated the database with synthetic data and simulb&edctivities of a user work-
ing with the system. We focused only on the accounts-rebksvactivities. Table 8.2 shows the
tables that we populated with synthetic data and how mang e/ used when generating the
data. We used two scale factors, SF1 and SF10, to simulasystem being used with different
configurations. Scale factor SF1 represents SQL-Ledgeghsied in a small company, while
SF10 represents the needs of a medium sized company. Foinvagte in the initial popula-
tion, we generated an average of 14.5 line items selected asiniform distribution of10, 20).
The line item records are stored in tablevoi ce, and each line item requires 3 records in ta-
bleacc_t r ans due to the double-entry accounting requirements. In SF&Qse 100 times the

8.3 CASE2: SQL-LEDGER CASE STUDY 189

initial invoices of SF1 to represent a company that not oy hO times the customers but also
has been in business for 10 times as long.

We simulated a user performing accounts receivable deswtith this synthetic data using
a remote browser emulator (RBE) implemented in Perl. TatBesBows the activities that we
simulated based on the description in the SQL-Ledger mda@@l. For each activity, we show
the proportion of simulated sessions that perform the iagctMe also show the steps that may
be performed by our emulated user during the activity andhtleage number of times the step
is performed during a simulated activity (Freq). For eadpstve show the number of database
requests submitted for SF1 and SF10 in both the originapsatd with Scalpel’s optimizations.

At SF1, the response times are quite reasonable. All indalidtep times are sub-second ex-
cept for two report activities (Tax Collected and A/R AginBpth of these reports execute in un-
der 2 seconds. When moving to SF10, many operations remé@ auick; however, some op-
erations get significantly slower when moving to the higheales factor. This slow-down may
be due to nested queries of the type optimized by Scalpalifigao the higher rate of requests
shown in Table 8.3). We used the Scalpel prototype to askedsenefits of our proposed opti-
mizations in this system.

Configuring the System for Measurement

When we configured the SQL-Ledger system for analysis, wednsime interesting details about
the system and how it reacted with Scalpel’'s optimizatidriss section describes our measure-
ment setup and items that we discovered.

8.3.1.1| Perl to JDBC Bridge

The SQL-Ledger system is implemented in Perl using DBI, hut@calpel prototype is imple-
mented in Java supporting JDBC. In order to use our protowiie this case study, we used a
DBI-JDBC bridge (DBD::JDBC 0.64). Database requests framPerl business logic are sent
via TCP/IP to a Java server process that executes appepbB@C calls. This is an atypical con-
figuration for SQL Ledger, and it introduces additional et The elapsed time for simulated
user sessions was up to 12 times slower for the measurediastivhen compared to a direct
DBI connection. This latency is higher for user activitiekhamany small requests of the type
optimized by Scalpel. In order to provide a fair comparisen,stored a trace of JDBC requests
made by the Java server and replayed this trace eitherlgite¢he vendor’'s JDBC driver or us-
ing the Scalpel prototype.

We used the following sequence of measurements:

1. Populate the SQL-Ledger database at SF1 or SF10.

190 CASE STUDIES

Database Requests

Original Optimized
Activity Freq| SF1 SF10] SF1 SF10
A. Add Sales Invoice (35% of sessions 206.6 1429.9 102.9 118.5
0. Navigate to start screen 1 19.0 19.0] 19.0 19.0
1. Choose Customer, Invoice #, and Order #.| 1 7.1 8.0 7.1 8.0
2. Choose account, currency, and exchange fatel 1.0 1.0 1.0 1.0
3. Add one line item 10 | 138.0 1351.4 34.3 40.0
4. Select a part from a list. 7.5 0.0 0.0 0.0 0.0
5. Print a packing list. 1/3 0.4 04| 04 0.4
6. Print invoice. 1/3 0.3 0.4 03 0.4
7. Post new invoice. 1 40.8 49.7] 40.8 49.7
B. Add Cash Receipt (35% of sessions 31.3 46.4] 28.0 28.7
0. Navigate to start screen. 1 4.0 4.0 4.0 4.0
1. Choose customer. 1 11.8 26.2| 8.5 8.5
2. Choose currency and exchange rate 1/2 0.5 0.5 0.5 0.5
3. Apply money to outstanding invoices. 1 1.0 1.0 1.0 1.0
4. Post the new receipt 1 14.0 1471 14.0 147
C. Transaction History (10% of sessions 58.3 85.0f 49.3 715
0. Navigate to start screen. 1 2.0 2.0 2.0 2.0
1. Submit search criteria. 1 1.0 1.0 1.0 1.0
2. Navigate to a random invoice. 3 55.3 82.0 46.3 68.5
D. Tax Collected (10% of sessions 3.2 3.1 3.2 3.1
0. Navigate to start screen. 1 2.0 2.0 2.0 2.0
1. Submit search criteria. 1 1.2 11 1.2 11
E. A/R Aging (10% of sessions 9.2 63.4] 4.0 4.0
0. Navigate to start screen. 1 2.0 2.0 2.0 2.0
1. Submit search criteria. 1 7.2 61.4(2.0 2.0

Table 8.3: Simulated user activities.

8.3 CASE2: SQL-LEDGER CASE STUDY 191

2. Make a backup copy of the database.

3. Record a trace of JDBC operations performed while sinmgad00 user activities in the
proportions and step frequency given in Table 8.3.

4. Restore the database from backup

5. Replay the stored trace using the vendor's JDBC drivetioDally configure Scalpel to
intercept requests for training or run-time optimization.

Steps (4) and (5) above can be repeated to test a variety fifemtions.

Replaying a stored trace provides flexibility in measuriiféecent configurations. However,
it requires that the results returned match the order theg ween when recording the trace. If
the order does not match, then the parameter values usedheotrace file will not match what
the client application would have submitted. We avoid tlisiplication by considering only the
client hash join (H) and outer join (J) strategies for reingtnested request patterns. These two
strategies do not affect the order of rows from outer quesethey can be used with replayed
workloads.

Primary Keys

Scalpel relies on finding a candidate key for queries to bemipdéd. Some of the SQL-Ledger
tables did not have an explicit key defined. We defined prinkass for thear , cust oner,

def aul t s, exchanger at e, andnmakenodel tables based on attributes that appeared to be
a candidate key. Key creation is an important step to pratvidanost opportunities for effective
rewrites.

Parameters as Literals

The SQL-Ledger system generates most of its queries witinpeter values embedded as literals
within the query text, although a few queries do contain pester markers in the query text with
actual parameter values passed explicitly to the open seguée configured Scalpel to scan all
gueries that do not contain parameter markers. Any conléiratis within the query are replaced
with parameter markers to generate a query template wittragpactual parameter values. This
extra scanning adds to the overhead of Scalpel as all s@ahgtieries must be scanned before
determining whether the query requires special action.

When detecting the possible source for a parameter, wededeahe algorithm of Figure 3.7
to also consider parameters that have the same value for execution. These parameters re-
sult from Scalpel’s inability to distinguish between siogion parameters in a dynamically gen-
erated query and constant literals that are the same foy awercation.

192 CASE STUDIES

Query Variants

The SQL-Ledger system generates queries dynamically lmasagbut from the user. For exam-
ple, theWHERE clause of a query may be built to include predicates for dmysearch fields sup-
plied by a user. Further, tHeRDER BY clause may be built to match user-specified sorting re-
guirements. In some cases, additional joins and subselpassions are included based on con-
figuration parameters or user input.

The number of distinct queries generated dynamically cafaipky high. For example, the
retrieve. t emfunction called during the Add Sales Invoice activity gextes a query based
on 4 boolean conditionals, leading to up to 16 variants bpnegented at run time.

These query variants appear to Scalpel as distinct quéasiants do not pose a problem for
correctness, but they require a longer training period deoto learn patterns for all of the dis-
tinct variants that can be submitted. If Scalpel could retgthat variants result from the same
dynamically generated query, this training time could bduced and also the storage require-
ments for the context forest could be reduced.

Complex Combined Queries

The optimizations we have described generate more complexes from simpler original
gueries. This additional complexity raises the possipilitat theDBMS query optimizer will
choose a plan that is worse than the original strategy whdeiging cost estimates to the con-
trary. We found this to be the case for the A/R Aging activitythis activity, a report is gener-
ated with one line for each customer with outstanding amoawing. An outer query is used to
iterate over these customers, and an inner query is subnfiiiteeach row. This inner query con-
tains a 4 branclNI ON; each branch contains a join and a subselect. Scalpel usebdht hash
join (H) strategy to optimize this nested query.

We found that the optimized strategy took over 12s on the Skatflbase while the original
(nested) strategy took only a little over 8s. The problem thias theDBMS was selecting a sub-
optimal plan that was worse than the original nested styafElge SQL-Ledger system does not
explicitly create database statistics for the tables isusdter creating statistics for all pertinent
tables, we found that the optimized strategy executed itl@ éiver 2s.

This problem raises two interesting points. First, therofation decisions made by Scalpel
rely on estimates from thesms. If these estimates are in error, then poor optimizatioricg®o
will result in longer execution times. To some extent, suitlasions can be improved by com-
bining information that Scalpel obtains during the tragnperiod with thebBms estimates. Sec-
ond, the complex queries generated by Scalpel’s rewritgsmoabe handled well with existing
DBMS technology. This appears to be especially true when usmATERAL keyword or vari-
ants thereof. This problem could be avoided by using a ptesiuecific interface to represent the

8.3 CASE2: SQL-LEDGER CASE STUDY 193

combined queries instead of expressing the rewritten gneB@L. Such an interface could sim-
ply combine query plans for the outer and inner query usingsiet loops join in th®BMms.
This approach would eliminate the communication costsciatsm with the nested strategy in
the client, but it would not permit any improvements beyoachmunication costs. The approach
of directly specifying the execution plan follows a suggasiof Chaudhuri and Weikum [37]: it
reduces the uncertainty in execution costs at the expensgssing out on possible opportuni-
ties to choose a better strategy.

Nested Query Patterns

After configuring the system as described, we used Scalpeilfing mode on a SF1 database to
identify nested request patterns that present opporegridr optimization. We configured Scalpel
to consider only nested request patterns, ignoring for m@optimizations that can be achieved
by recognizing batch request patterns.

/@1 /Qa
11N 11N
/Q1/Q2 /Q1/Q3 /Q4/Qs5
11w 11w 11w
A-Add Sales Invoice B-Add Cash Receipt
path
/Qs EST-P | EsTPO | alt
1N Legend
/Qs/Qs
11N
C-Transaction History D-A/R Aging

Figure 8.7: Nested request patterns found in SQL-Ledgete Mt /Qg/Q5 is not a feasible
child of /Qg because Scalpel did not predict the source of all correlat@dues.

Figure 8.7 shows the non-trivial context sub-trees detebiethe Pattern Detector. Due to
query variants, the full context tree is actually somewhadédr. There were three variants@f
discovered, and two variants @fy. These resulted in additional sub-trees; we have collapsed
these for a simpler presentation.

194 CASE STUDIES

Figure 8.7 also shows the measured predicate selectivityrenexecution strategy selected
by Scalpel. Only\Q5 can be used in a join strategy as the other queries couldretare than one
row.

Note that query@s; appears in two contexts. Quely)s is submitted by the function
get _exchanger at e (described in Figure 1.3). Thget _exchanger at e function is called
from both get _openi nvoi ces in the Cash Receipt activity (giving context)s/Qs) and
by the functioncr eat e_| i nks in the Transaction History activity (giving contextQs/Qs.

In the Cash Receipt activity, Scalpel discovers the cdimlabetween thecurrency and
transact i on_dat e parameters and attributes @f;, the outer query. In the Transaction His-
tory activity, Scalpel discovers that the ansact i on_dat e is correlated to an attributes €.
However, thecur r ency attribute does not match any attribute(@f. Because of this/Qs/Qs

is not a feasible prefetch candidate.

Although the value ofturr ency cannot be predicted by looking at attributes of contain-
ing queries, the value could be predicted in two ways. Ringt,value ofcur r ency is constant
within a particular execution afs. Scalpel could recognize that the parameter is loop invtria
Partitioned strategies could exploit a loop-invariantitadte correlation because they have the pa-
rameter values for the first submission of the inner querynathe rewritten combined query is
submitted. Unified strategies could not use this corraelatiource. Second, theur r ency at-
tribute could be predicted by considering queries that setigily precede)s. At present, the
correlation detection of nested request patterns and badglest patterns is not integrated (as de-
scribed in Chapter 6). This combination offers promise ieeding the set of possible candi-
dates that can be detected.

Performance Results

Table 8.4 summarizes the performance results for a SF1 ah@l &ktabase when executing a
stored trace of 500 user activities using the optimizatieslected for the nested query patterns
shown in Figure 8.7. The tests were performed using configmr& ANO.1 (Section 3.6). For the
tests with nested request patterns, we used a single SEXfdrdaoth training and timing, and we
used a separate SF10 trace for timing with the model builtdigihg on the SF1 trace.

For SF1, the savings of latency are relatively modest. Hewesignificant savings are
achieved in the number of queries submitted (a reductioreafly half). This saving in queries
has a corresponding decrease in the associated netwosk cost

The training mode did not introduce a significant amount te@ray, although it did increase
client processing costs due to the requirements of findistjne patterns and identifying para-
meter correlations. The network and server costs are Bligigher during training due to the
need to retrieve catalog information from thems.

8.3 CASE2: SQL-LEDGER CASE STUDY

195

Remaining
300 300
40 40 D Time (s)
250 250
200 200 30 30 Nested Query
Time (s)
150 150 20 20
100 100 Outer Query
10 10 Time (s)
50 50
0 0 0 0 :
Update Ti
01234567 01234567 0123 4 01234 Ipf"e'me
A-Add Invoice A-Add Invoice B-Cash Receip B-Cash Receip
(Original) (Optimized) (Original) (Optimized) Legend
1504 1504
80 80 1200 1200
60 60
1004 100+ 800 800
40 40
50 - 50 - 400 400
20 20
0 0 0 0 0 +— 0 - E
0o 1 2 01 2 0 1 0 1 01 01
C-Transaction History ~ C-Transaction History D-Tax Collected ~ D-Tax Collected E-A/R Aging E-A/R Aging
(Original) (Optimized) (Original) (Optimized) (Original) (Optimized)
(a) Scale Factor SF1
Remaining
3000 3000+
400 400 D Time (ms)
300 300
2000 2000+ Nested Query
Time (ms)
1 200 200
1000 1000+ Outer Query
100 100 Time (ms)
0 0 0 0 Update Time
01234567 01234567 01234 012 3 4 (ms)
A-Add Invoice A-Add Invoice B-Cash Receip B-Cash Receip
(Original) (Optimized) (Original) (Optimized) Legend
1500+ 1500+ 500 500+
| 8000 8000
400 - 4001
1 10004 1
1000 300 3004 6000 6000
00 2004 2004 4000 4000
5007 100 100 2000 2000
0+ 0+ 0 - 0 0
0 012 0 1 01 0 1 01
012 . .
T C-Transaction History D-Tax Collected D-Tax Collected E-A/R Aging E-A/R Aging
C-Transaction History (Optimized) (Original) (Optimized) (Original) (Optimized)
(Original)

(b) Scale Factor SF10

Figure 8.8: SQL-Ledger elapsed database time (ms) fomaiigind optimized requests. Each bar
represents a different step (Table 8.3).

196 CASE STUDIES

SF1 SF10
Original Optimized Training Original Optimized
Total time (S) 171.5 97.5 172.4 1,439.2 629.8
Server CPU (s) 29.3 23.9 38.6 578.8 283.7
Client CPU (s) 48.6 51.9 60.1 373.9 319.6
Queries Submitted 39,909 20,572 39,909 285,913 24,982
Top-Level 16,130 161,30 16,139 18,791 18,791
Nested 23,779 4,442 23,779 267,122 6,191
Update Requests 5,263 5,263 5,264 6,818 6,818
Network Packets 163,223 86,969 179,18[11,200,287 160,583
Client— Server| 83,195 44,900 91,388 610,739 93,466
Server— Client 80,028 42,069 87,798 589,548 67,117
Network Bytes (MB) 57.2 40.7 61.9 457.6 199.8
Client — Server 22.2 15.9 23.5 137.2 22.1
Server— Client 35.1 24.8 38.4 320.5 177.7

Table 8.4: Costs of 500 user activities. Optimized timesuithe only nested request optimiza-
tions. Scalpel was trained and timed on a single SF1 tracktimed only on a SF10 trace using
the same model built from the SF1 training period.

When we consider the SF10 database, the optimizations hanecla more dramatic effect.
The elapsed time is reduced by over 800s. Further, thisgaunlatency is associated with sig-
nificant reductions in server and client processing costagawith lower communication costs.

Figure 8.8 shows the elapsed time for each of the steps pestbby our simulated user. The
contributions of updates, top-level queries, and nestediegiare shown separately. The remain-
ing time consists of Scalpel costs to decode the combinedt (gsr example, looking up values
in a hash table) as well as overhead in our trace replay poces

All simulated activities except D-Tax Collected contaimsonested requests. However, only
two activities benefit to a great extent from our rewritesAdd Invoice and E-A/R Aging. These
two activities improve significantly in the SF1 database drainatically in the SF10 database.

Preliminary Result for Batch Request Patterns

Thebems (B) we used with SQL-Ledger does not suppertLL values in the SELECT list as
we currently generate them for outer union rewrites. Thermtivo DBMS products that we tested

8.3 CASE2: SQL-LEDGER CASE STUDY 197

were not such strict disciplinarians, but they are not sujgpidby the SQL-Ledger systemBmS

B does support our optimizations if an appropriate CAST &du® provide a data type for each
NULL value. As we have not extended Scalpel to track column dp&stywe present preliminary
results showing only the outer-join based rewrite. As thigrite is only available for at-most-one
gueries, this restricts the class of prefetches Scalpealiders.

Optimized
Unoptimized (Join Only) (Union+Join)

Queries submitted tobBMS 38,525 37,233 n/a
Peak # nodes n/a 23,525 23,525
FSM states n/a 27 38
States with any prefetch n/a 7 28
Queries prefetched 0 1,416 n/a

Useful 0 1,292 n/a

Wasted 0 124 n/a
Total latency 80.3 69.0 n/a

Table 8.5: Preliminary results for batch request optinniret in SQL-Ledger.

Table 8.5 shows preliminary results when using Scalpekstbeequest optimizations in the
LANL1 configuration. The last column shows results includbah outer union and outer join
rewrites; only training results are shown as the outer ustoategies cannot be executed. The
middle two columns give results with no optimizations andhwinly the outer join optimiza-

tions, respectively.

The second row shows the peak number of nodes in the suffi@mi@tomic suffix trie was
used; however, it does not show ¢n?) model size that is possible (this could be ugxa 0°)
for this many requests). The modest growth is due the maglgrahort transactions used by
SQL-Ledger. Each transaction is a separate trace, tedingth an out-of-band character ($) in
the trie. For this reason, the atomic suffix trie behavesorasly in this setting.

After removing redundancy, we find a smaller FSM, with 27estathen using outer join only
(J) and 40 states with outer join and outer union (UJ). Ofehesly 7 (J) and 28 (UJ) states have
an associated list of queries to prefetch: the remainddreo$tates are used to track context.

Table 8.6 shows the distribution of batch length for therofation with only outer join (J)
and with both outer union and outer join (UJ). The J strategyniy able to prefetch 2 requests
at a time before encountering a query that might return nfae bne row. The outer union ap-

198 CASE STUDIES

Batch Length Join Only Union+Join

20 11
1 0 0
2 7 15
3 0 4
4 0 8

Table 8.6: Distribution of batch prefetch lengths.

proach does not have this restriction, and when we include itell, we find prefetch lengths up
to 4 queries.

At run-time, the join-only approach prefetched results¥@16 queries. Of these prefetches,
1,292 were ultimately used, and the other 124 were wasted.eBverall, the prefetching using
only outer joins saved about 14% of the latency associatddthis test. If we consider also outer
union rewrites, it is likely we would save even more of thigetety. Further, the savings would
also increase in higher latency configurations, such as,WWAN, or even LANO.1.

Summary of Case Studies

In summary, our examination @bunload and the SQL-Ledger system demonstrates that op-
portunities for our proposed optimizations do appear matedr often in at least some systems.
While opportunities for nested request rewrites are radftirare, they can have substantial ben-
efit when they are optimized. There are significantly moreoojmities for our batch-based
rewrites, and these also reduce overall latency.

Scalpel can identify these optimization opportunitiesigs training period that does not ex-
cessively degrade system performance, and it is able toradiwally rewrite submitted requests
to take advantage of the selected optimizations. Someoraatust be used when applying the
Scalpel system in order to get the most benefit. For examptheiSQL-Ledger study we needed
to add primary keys and ensure that database statisticsoneated before the full benefit of the
optimizations was achieved.

9] Related Work

In this chapter, we position our work within the field of reldtresearch. There has been a signifi-
cant amount of work on prefetching techniques for many diffié problem domains. Section 9.1

provides an overview of related work in this area, with galr reference to approaches simi-
lar to those we propose. In particular, prefetching teamigbased on a probabilistic model of
past requests are closest to the results we have preseatdidn®.2 discusses the theoretical ba-
sis for this type of prediction.

Once we have predicted a likely sequence of future requestsyould like to process the
sequence efficiently. We have described how Scalpel gersecambined queries. For nested re-
guest patterns, the combined query encodes the result of thi we have detected in the clients
request stream; for batch request patterns, the combirergt gncodes the results for a predicted
sequence of queries. Section 9.4 discusses other workdedlatefficiently processing a known
seguence of queries.

Prefetching

The idea of prefetching has been applied in many differentecas in the field of computing.
Prefetching has long been supported for device I/O in opgralystems [66, 152]. Smith [172]
provided an early bibliography of work related to prefetghand caching. Somewhat more re-
cently, prefetching has been used for prefetching data fraim memory into a processor cache.
Smith [174] provided an early survey of this field, and Vamdet and Lilja [182] provide a sur-
vey of recent results. An interesting use of prefetchinghesitlea othoarding where files are
copied to a mobile device in anticipation of their being resedhile disconnected from the high-
speed network. Several approaches to hoarding have bepasp based on predictive tech-
niques related to those we use [120, 121,176, 177, 208].

The problems associated with fine-grained access are walrknand there are a number
of practical solutions that can improve performance by dingj fine-grained access. In fact, the
problems of latency are becoming relatively more importastPatterson [143] notes, prefetch-
ing is one way to address the pervasive problem that impremésrin latency lag significantly
behind improvements in bandwidth. It appears that this gdikeély to widen over time due to
fundamental physical limitations in our system impleméates.

199

200 RELATED WORK

A prefetching mechanism muistentify future requests that are likely to be submitted. In Sec-
tion 9.1.1, we describe related work on prefetching thas tise physical layout of data to iden-
tify the data to be prefetched. As we describe, this apprésasimple to implement and exploits
the large and growing disparity between random and seqleattess. However, it does not help
if the client access pattern does not match the physicautagection 9.1.1 also describes vari-
ous approaches that are used to re-order a clients accestteorbatch the physical layout.

When a client’s reference pattern is not sequential andderimg is not feasible, a prefetch-
ing system may choose to use observations of the clientdque reference behaviour to predict
future reference patterns. Section 9.1.2 describes deladek that monitors the sequence of se-
lected data items to predict likely future items. This tygeoediction scheme does not exploit
efficient sequential access, so itis not as useful for priiey blocks from a disk. Instead, the ap-
proach is particularly useful when the granularity of thedicted item is large (for example, en-
tire files) or when the data stored can be efficiently acceissethdom order (for example, when
fetching data from another workstations memory)

When using patterns of fetched data items, a prefetchingbapp needs space that is propor-
tional to the number of data items. Further, this approaas admt offer suggestions when novel
sequences of data items are reference. Section 9.1.3lkesggimantic prefetchingVith seman-
tic prefetching, the server understands something abeutidita that is stored. For example, it
might know that a fetched object contains references ta athiects. The server can use this un-
derstanding to make prefetching decisions that usénteasioninstead of theextension|n this
way, models may be smaller, and prefetching decisions candue when novel daitéemsare
referenced, provided that the data types are known.

Finally, Section 9.1.4 summarizes related prefetching@gghes that have been previously
considered.

Prefetching Based on Physical Layout

Computer systems have long supported sequential praigtébi 1/0, particularly from stream
oriented devices. Feiertag and Organick [66] describe/eslipport in the MULTICS system,
while Ritchie and Thompson [152] describe how the the Unstay was designed (influenced
by MULTICS) to default to sequential access. This defautfusmtial access was used on the
premise that many files would be processed sequentiallyn Wit access pattern, it is a very
good idea for the operating system and I/O components tefofeflata sequentially beyond the
last value requested by the client. If the client is follogvia sequential access pattern, then the
prefetched data will be used, reducing exposed latencynTds appealing aspect of sequential
prefetching is its simplicity and low cost. It is simple fdretserver to implement, and it does not
require complicated analysis or bookkeeping. Furthem ifpplication is scanning an entire file,

9.1 PREFETCHING 201

it is very likely to do so in sequential order, so the prefetghis likely to produce many hits. Fi-
nally, the most compelling advantage of sequential prafetcis that it does not cost very much
to read a few more pages sequentially ahead, so the cosis#fisag the prefetch request is low.
Gray [82] suggests that current trends indicate that sdig@i@ccess will soon be 500 times faster
than random access. Even if we have a low hit rate for predetcata, the increase in cost due to
prefetching will not be substantial, and the savings candnsiderable.

Smith [173] investigated using sequential prefetchingripriove the performance of database
applications using an IMS database. He found that seqligméetching was very effective in
some cases, although it was important to detect sequentiassas opposed to random scans.
This detection was used to choose a variable number of blactetch. Smith [175] also used
sequential prefetching when proposing a disk cache; hawavéhat case, Smith used only a
single block of read-ahead.

The actual reference behaviour of database systems hasxsseimed by several researchers
[36, 55,94, 99, 101, 187, 207]. Many database workloads diibiixsequential access to data
pages. For example Hsu, Smith and Young [94] found that th&/DRenchmark and several
real-world workloads exhibit access that is significanilyed by sequential prefetching. How-
ever, clearly not all workloads are sequential. Kearns.dgf.8P] found that almost any reference
behaviour may be found in the workload of a database systemever, they found that refer-
ence behaviour can be predicted and exploited.

Kotz and Ellis [109, 110] considered prefetching techngwéthin a single file when the con-
sumer is a multi-processor system executing. For exampe;ltent could be executing a scien-
tific or database workload. They considered 4 strategies) kased on recognizing when a por-
tion of the reference behaviour is sequential. In this wiagirtproposed system can exploit se-
guential prefetching when it is useful, and avoiding thetedsvork in regions of the reference
trace that do not exhibit sufficient locality of referencentake sequential prefetching worth-
while.

While sequential prefetching is beneficial when the clismeiading sequentially (for exam-
ple, processing an entire data set), there are also cases atlgent demonstrates significant spa-
tial locality without using a sequential pattern. Pref@ighcan be achieved in this case by fetch-
ing data a page at a time, returning more data than requestedafregion spatially near the re-
guested item. This approach shares the simplicity and lwstlmenefits of sequential prefetching,
although it also only helpful if the client application do@shibit locality within the prefetched
page size.

The page servemarchitecture ofoobBMSs is an example of this type heuristic to prefetch
objects into a client's cache. When an application accemseasbject that is not resident on the
client, a demand fetch is sent to the server for the appr@ppage. The returned page contains
the requested object along with the other objects groupatbgeAgain, the incremental cost to

202 RELATED WORK

the server for fetching and transmitting the entire pageeat of only one object is minimal (it

may even be cheaper to send the entire page rather than mgalyout interpreting the contents
and copying out the single object). Here, the hope is thaafipdication will be able to use some
of the other objects from the page, saving further demarthéstto the server.

Liskov et al. [129] extended the idea of page servers to fatchrbitrary sized set of objects
in the neighborhood of the requested object intheRr project. Run-time monitoring was used
to decide the size of the neighborhood that would be preéetcBy using a variable-sized win-
dow, THOR was able to achieve the benefits of large, multi-page seigligméefetch, and also to
reduce to no prefetching in situations where the hit ratetaa$ow to benefit the application.

Page servers are effective if the client application hascaess pattern that exhibits local-
ity within a page: in that case, other objects in the page @ lkely to be used. Further, in
many cases it is more efficient to ship entire pages thanihti objects. However, the applica-
tion reference pattern may be such that only one or a smalbeuwf the objects on a page are
needed. In this case, significant resources are wastedgaiiyOzsu and Unrau [184, 185] pro-
pose a hybrid architecture, where pages or objects candieefkfrom the server. This approach
achieves the benefits of a page server when the access pattkes that effective, and avoids the
downside of a page server when the clients access pattesmdbenatch the page layout.

Shao et al. [169] presented Clotho, which can be viewed aasita the hybrid architecture
of Voruganti, Ozsu and Unrau [184]. Clotho is a system that allows the lapbdlata on disk
to differ from the organization in memory. This flexibilitflaws different levels in the memory
hierarchy to provide efficient prefetching.

The approach of prefetching based on physical layout islsitgpimplement, and the cost
to the server for implementing the prefetching is low sinoefgtched data items are ‘nearby’ to
demand-fetched items. However, this approaches only peodood hit rates if the access pat-
tern mirrors the physical layout of the data. An applicatinay exhibit logical locality of refer-
ence that does not correspond to a physical local expleitaph prefetching system. In a file sys-
tem, this can occur if a file that is accessed in logically setjal order becomes physically frag-
mented. In other cases, an algorithm may visit pages in aar dindt is logically relevant, such as
following disk pointers, but not physically sequential.sach cases, we may be able to re-order
the data so that the physical layout is useful for prefetghite access patterns submitted by the
client.

Akyurek and Salem [8, 9] suggested that we can convertitgaafllogical reference patterns
into physical locality by rearranging disk blocks for effini access. Akyirek and Salem used
various first-order statistics to select an appropriateguteent of disk blocks.

Yin and Flanagan [202] use a similar approach to re-ordep#dges needed to start up a pro-
gram. When a program loads, it may read in a number of prograhtanfiguration files. These
files are typically read in an order defined by the programrobfibw, which typically does not

9.1 PREFETCHING 203

match the physical layout of files on disk. Yin and Flanagasppsed five algorithms to choose
a re-ordering of disk blocks based on observed request segsle

Rearranging data items is also possible for page serweBMs products. This tuning is dif-
ficult to achieve in general, and it is impossible for casesreltwo applications with different ac-
cess patterns access the same data. There is no single lgotiamgement in this case. The prob-
lem is similar to selection of clustered indexes. There arparfect solutions, but on-line reorga-
nization can help to dynamically adjust the physical layoiulata in order to improve prefetch
performance. If the hit rate for prefetched data is low, @ysperformance is likely to be worse
than a system without prefetching. Even though the incréahenst to the server is not high, use-
less prefetches still waste network bandwidth and polluectients cache.

It is not possible to organize one copy of data to match disticcess patterns. However, the
abstraction provide bpBms products provides another possibility. We can have maltiapies
of all or part of a data set, and these can be organized inrgiffevays. A materialized view
is one example of such an arrangement, and we can view imigx-etrieval as another such
approach.

Gerlhof and Kemper [78] discussed practical details of anpnting prefetching in a page-
basedoobBms. They used a cost model that measured the expected speeeltip ayprefetch-
ing strategy, and considered the cost of any administratieehead and additional bandwidth
required for prefetching. They found that performance cansbbstantially improved using
prefetching, but the effectiveness is very dependent oadheracy of the prediction of future re-
guests, either through user hints or a predictor modulerdardo improve the effectiveness, they
implementedorefetch support relation79]. These are relations stored in the server that contain
the precomputed set of pages that are needed for a giventiopendth a particular set of para-
meter values.

In summary, prefetching based on physical layout is an alsvimprovement. If data are fre-
guently accessed sequentially, it is a good idea to fetala eeta items before they are requested.
With this approach, the data store can use a simple heutistitndicates what items to prefetch.
The implementation is simple, and there is no need for caramd and memory intensive book-
keeping procedures. The most important benefit, howevérgitow cost of fetching additional
data items that are physically near the requested itemhirgtsuch nearby items can often be
done without head movement of a disk, while a seek would beinexd if the items were demand
fetched. This cost difference is an important reason forpiyeularity of sequential prefetch-
ing. Access patterns that are not physically sequentiabfaea converted into sequential patterns
through rearrangement of the data or the fetch order sohfsatdst difference can be exploited.

204 RELATED WORK

Prefetching Based on Request Patterns

In order to avoid the problems associated with prefetchigeld on physical layout, Palmer and
Zdonik [142] proposed Fido, a cache that learns to fetch. Hile system is based on training
an estimating propheto recognize patterns of object references in order to prddiure refer-
ences. The patterns were recognized using nearest-neighbsociative memory. The approach
of Palmer and Zdonik trained the associative memory offlmaeccess traces, and used the asso-
ciative memory to predict future requests based on accéssmawhich approximately match a
pattern in the training trace.

Grimsrud, Archibald and Nelson [86] proposed using orderddictors to prefetch from a
disk. A large table (called the adaptive table) containspdetfor each cluster on the disk. The
tuple gives a prediction of the next cluster to be accesdedgawith a weight that is used to
express the confidence the system has in the predictioneTi®a cluster predictions can be
used for prefetching; in conjunction, a disk rearrangenadgorithm could re-order the disk to
give efficient sequential access matching the logical ooflaccess.

Krishnan and Vitter [116, 117, 183] used an approach likedh®almer and Zdonik [142] in
order to predict future object references based on obseefetences. Their work was based on
a Lempel-Ziv compression algorithm, which was used to dgtetterns in a reference trace that
matched a pattern observed during training. Krishnan aiténfiL17] showed that this Lempel-
Ziv compression technique provides the theoretically bgpected performance under arbitrar-
ily complex workloads. In practice, the Lempel-Ziv techuighas some limitations; Curewitz,
Krishnan and Vitter [48] explored practical issues relatedsing compression for prefetching,
proposing a PPM-style compression algorithm as a practiedhod for prediction.

Griffioen and Appleton [85] build a probability graph whehethodes are files and arcs rep-
resent a file being accessed after the previous one. Thisipitity graph generates first-order
predictions based on files accesses. This allows theirmystgrefetch a file that is predicted to
be used in the near future based.

Lei and Duchamp [126] used a similar approach to Griffioen Apgleton [85]. They
monitored the files used by each program to buildaaoess treg¢hat encapsulates the pro-
grams file reference behaviour. Several access trees aeel $tw each program. When the cur-
rent access tree matches a previous tree (above a pre-asshdit), the stored tree is used to
prefetch all of the files that are anticipated to be neededh®mprogram (up to a pre-set limit,
PREFETCH.CAPACI TY with default 15). The approach of Lei and Duchamp is intémgsin
that they are able to better exploit recency effects to gigeerbenefit to more recent access trees.
Probabilistic approaches such as the compression-basdittors tend to treat all reference pat-
terns equally, without an inherent mechanism to age statieimo

9.1 PREFETCHING 205

Acharya, Franklin and Zdonik [3] used a simple prefetchimegiistic to perform prefetch-
ing from a broadcast disk. Their approach was based on theatst probability of a page be-
ing accessed in the future and an estimate of the time thavetapse before the page is again
available Their probability estimates were based on zederaestimates, namely the relative fre-
guency of access for pages in the cache.

A number of other researchers have followed the approachucdv@tz, Krishnan and Vit-
ter [48] in using a PPM-style predictor. Bartels et al. [I#ipiemented a PPM-style predictor in
a Unix kernel to prefetch from a network of memory servergitdéa et al. [14] found that the
choice of the ordefn of the PPM model is important. They showed the unintuitiveutie(dis-
cussed in Section 5.2.1.2) that a longer context order maye mwarse predictions.

Madhyastha and Reed [130, 131] used neural networks andlarhidarkov model (HMM)
to predict future client behaviour. The class of hidden Marknodels is strictly stronger than ei-
ther the ordelk or even variable order Markov models that we employ (althoaglers mod-
els can approximate hidden Markov models arbitrarily wethvincreasingk). There is a con-
cern that the models generated by Madhyastha and Reed mayggite rapidly; while they
noted at most a linear growth in practice, they also emplgyeding techniques to prevent ex-
cessive model growth. Madhyastha and Reed state that bypéctile is accessed with only one
type of pattern; in this case, they train a HMM with one statedisk block. Alternatively, if mul-
tiple access patterns are used for a single file, Madhyasith&eed suggest building a compos-
ite HMM that combines the results of separate HMMs built fogr distinct access patterns.

White and Skadron [192] used a prefetching approach basadayget cache technique used
for indirect branch prediction in processor implementagid-or each open file for a process, the
operating system maintains a fixed-size structure. Thig&tre maintains the addresses of the
lastn fetches submitted by the application, using this value tess the target cache. This can
be seen to be an approximation of an ordeMarkov model, but the implementation is designed
to work well with a small amount of memory and time needed ahesiep.

Deshpande [56] also found that (as discussed in Sectioh.B)2t is difficult to choose a spe-
cific k. Instead, they simultaneously build separate ofderadels for each possible Then, they
prune this global model using a support threshdldf a state has not been observed at laast
times, itis pruned. Further, they use confidence intereatietect states that do not provide a sig-
nificant difference in predicted probability; these statesalso pruned. The confidence intervals
are built based on a configured confidence levahd the Wald approximation (Appendix A).

Drapeau, Roncancio and Guerrero [58] proposed using daiagriechniques to find associ-
ation rules for prefetching in WWW meta-searchers. An ofé&lprocess identifies frequent item
sets to build a prediction model using earlier requestseadipt future requests.

Predicting future object references based on patternsjetbleferences can give very pre-
cise answers as to which objects should be prefetched iterpas correctly matched. However,

206 RELATED WORK

all approaches that predict future object references baisg@ast patterns of object references in-
troduce a number of practical problems. First, the storagairement is proportional to the num-

ber of objects referenced. If we limit the amount of storagalable, then we reduce the effec-

tiveness of the prediction. If we maintain this pattern rmation on the client machine, then the
time and space problems may not be acceptable. Secondnpatesed on object references do
not generalize to semantically similar patterns that deevaer different objects.

Wang et al. [186] explored how idle workstations can be ueadake prefetching based on a
PPM-style compressor effective. The idle workstationsaffl the work of maintaining the PPM
model, allowing a higher order model to be used.

Kroeger and Long [118, 119] also used a PPM model to prediarduaccesses. However,
the prediction is done at the level of files, not data blockshis way, the size of the model is
significantly smaller. For example, their approach coultbgmize that certain files are accessed
after a specifidvekef i | e is opened by programmake.

Yeh, Long and Brandt [201] also considered file-based prifieg. They considered the ben-
efit of augmenting an order-1 model with the program and unsgrdaused a file to be opened. In
this way, they were able to achieve a 20% improvement ovenangmented order-1 model. Fur-
ther, they considered prefetching more than one file at a(ieferred to as ‘deep’ prefetching in
Section 5.3.1.2). In their configuration, they found thafetching 2 files was most effective.

The prediction quality of predictors based on training isaaern. Amer et al. [10] suggest re-
ducing the number of prefetches in order to increase the pupftuseful prefetches. Brandt [23]
proposed a way to use a prediction based on a combination Iiphawpredictors. Brandt in-
cluded a null predictor so that prefetches would not be thé#uthey are not useful.

Kraiss and Weikum [114] used a continuous-time Markov-@maodel to assess which doc-
uments to prefetch from a large off-line media library. Tieynd that the precision afforded by
a Markov-Chain model was significantly better than simplestforder statistics. However, they
found that the models grew to a few megabytes, with predistiaking on the order of millisec-
onds. Therefore, they cautioned about using such an agpuieectly for prefetching disk or
memory pages.

In summary, existing work on prefetching based on requesénms considers patterns that
have occurred in the individual items fetched. A requestehagenerated based on these indi-
vidual items and used to make prefetching decisions. Shesetprefetching approaches build a
model on the individual data items previously fetched, thegd storage proportional to the num-
ber of distinct objects in order to provide comprehensivedfmtions (although skew in the fre-
guency of object access may reduce this space substantidiyexample, consider a disk-based
linked list where each page has a link to the next page. Ifliratdraverses this list, the predic-
tor needs storage proportional to the number of nodes irr tod@ake the best possible predic-

9.1 PREFETCHING 207

tions. If new nodes are inserted, the prefetching will faitilthe model is updated with the new
relationships.

Semantic Prefetching

The prefetching approaches based on on physical layouteanebst patterns does not consider
the semantic meaning of the objects which the applicatiaegsiesting. In fact, these objects

contain a great deal of meta-information which could be usegredict future requests. In the

disk-based linked-list example we described in the previsection, the server can predict the
next node to be accessed if it understands the semantics dfth items. Further, this prediction

does not rely on an expensive training period and large ntbdebecomes easily obsolete.

Section 9.1.3.1 describes approaches based on statis@naflpbject attributes and relation-
ships. These approaches use heuristics that provide ghriefgthints without necessarily consid-
ering past application history. Section 9.1.3.3 descritmg application hints have been used to
implement prefetching. These approaches rely on derivpmiication-specific hints that guide
prefetching and caching decisions. Section 9.1.3.2 dessrproposed hardware-based value
predictors that are used for speculative execution in eiglimulti-threaded processors. Sec-
tion 9.1.3.4 outlines approaches based on models of reqabaviour, where the model is built
using the pattern of object types accessed instead of tterpaif individual objects.

9.1.3.1| Static Analysis of Attributes

Ammar [11] considered prefetching in a teletext system. §jfstem presented a hierarchical tree
of pages to users. Ammar proposed that the client termindtiaecode the links in a page, esti-
mate the probability of each link being taken, and use thegedfetch pages before the user re-
guested them. In this setup, the client terminal was not @ahpeefetch future pages until a prior
demand fetch had completed. The proposal of Ammar [11] ipatied prefetching approaches
that have been proposed and implemented for the world-wiele (VWW). Davison [50] pro-
vides a summary of prediction approaches used for web regagerns.

Keller, Graefe and Maier [103] implemented assembly operator which loaded the at-
tributes of demand-fetched objects in a breadth-first sefashion. While this approach might
be more expensive to implement than the approach based q@hyks&al layout, Keller, Graefe
and Maier described new execution techniques used to rébdea®mst of assembling the objects.
In order to prevent massive blowup due to breadth-first fe@xpansion, thassembly opera-
tor relied on developers specifying predicates usings that encode which objects should be
assembled.

208 RELATED WORK

Day [51] suggests using objects as the unit of transfer fltogrserver to the client. In Day’s
approach, a breadth-first traversal of object attributesésl to find a prefetch gro@igimited by
a constant number of objects. He also considered alteensitigtegies based on clustering (a sim-
ulation of paging approaches), depth-first search, andcapioin hints. Further, Day’s approach
prefers to send objects already in the server cache ang liktlin the client cache. LateTHOR
was changed [129] to use a sub-segment prefetching apptioaichends a group of objects lo-
cated on the same disk segment as the requested objectpphisah allows the client to spec-
ify the size of the prefetch group. This approach was choseause the object-graph approach
[51] generated small prefetch groups, particularly nearetiges of the object graph.

Kossmann, Haas and Ursu [108] observed that a common stgeceks for client applica-
tions is the ‘fetch then manipulate’ pattern. Applicatidatch objects using a declarative query,
then manipulate their attributes and methods. A naiveemphtation would require a demand
fetch for objects returned by the query. Instead, the astpooposed allowing the query to re-
turn attributes that were not requested by the applicafibie.benefit of returning extra attributes
is that they can eliminate demand fetches. However, thisoagh may cost more to execute, for
example if the results are sorted then there is additiona @wabe included in the sort. The au-
thors propose that this cost and benefit should be includedgithe join enumeration in order
to find the most effective cache loading plan. The approaghested could provide one level of
prefetch, but did not consider fetching further objectstoitautes.

The idea of prefetching state reachable from a demandéddtobject is more likely to find
relevant items to prefetch than an approach based solelyhgsigal organization. However,
this comes at the price of increasing the cost of prefetgtsimge the objects referenced in the
breadth-first search are likely not ‘close’ to the requestieigct. Further, the approaches in this
section did not consider how likely it is that various atiitidss would be used or relationships fol-
lowed. This could lead to a significant amount of wasted pecbfag.

9.1.3.2| Value Prediction for Speculative Execution

Several modern processors are able to speculatively exg@ttuction in anticipation of their be-
ing needed. For example, instructions may be fetched aratldedn anticipation of a particular
branch being taken. In some cases, this speculative emadatnot directly possible because val-
ues produced by the executing program are not yet availableexample, a load instruction may
refer to a memory location that is not yet computed. To ineeghe amount of instruction-level

2 Day suggestpre-sendingvould be a better term, since the server determines the aatnt. How-
ever, he uses the more traditiopaéfetchingerm.

9.1 PREFETCHING 209

parallelism (ILP), a number of researchers [72, 181] havestigated techniques that use hard-
ware predictors that give a predicted value for each needanitiy. For example, a quantity may

be predicted to be equal to the last value that was obsenysl pfediction can provide good ac-

curacy when there is locality of reference. In some casesndeded quantity is predicted to

be the previous value combined a fixed delta. This prediaigplies when an application uses
strided access to data. The value prediction used for haedsygeculative execution is necessar-
ily simple because the prediction is performed in hardwaraflarge number of quantities.

9.1.3.3| Application Hints

One way to achieve accurate prefetching is to use hints flantlient application. These hints
may be either a guess of future pages that might be accessating tospeculative prefetch-
ing) or an accurate list of pages that will be used (leadinghtormed prefetching Patterson
et al. [144] described the TIP system, an implementatiomfafrmed prefetching and caching
that uses hints from client applications to decide how tdgbch and cache. The TIP system use
a cost-based model to dynamically allocate buffers betvieercompeting needs of caching and
prefetching.

The approach of manually inserted hints may make for effeqirefetching decisions, but
it does require a substantial burden from the system dessdoowry [137] proposed using
compiler modifications to automatically insert prefetchthi Using the SUIF research compiler,
Mowry was able to achieve improvements of up to a factor of autpmatically inserting prefetch
instructions.

Cao et al. [29] noted that, even with informed prefetchiihg, decision of what prefetches to
form is non-trivial. They allow applications to provide fetching and caching hints, then em-
ploy an integrated caching and prefetching strategy whielt show to be near optimal.

Chang and Gibson [35] used idle cycles when a workstatioraitng for an I/O to complete
in order to speculatively execute past an I/O stall. TheyliBis speculative execution to predict
future reference behaviour. By providing these predicitanthe TIP system [144], they achieved
speculative prefetching.

Specific algorithms can also be tuned to provide hints ofreuteferences. Chen, Gibbons
and Mowry [39] showed how prefetch instruction can be irskitb speed index scanning rou-
tines. Chen et al. [40] extended this by giving a fractal d&yaut that improves the latency from
disk to memory and from memory to processor cache, while @hah [38] described how to im-
prove hash join algorithms by prefetching data from main mgninto a processor cache. This
reduces the significant amount of time that the CPU spendacinecstalls.

A recurring theme in database and operating systems réshascbeen the idea of design-
ing algorithms and data structures that exploit sequeatiaéss. One of the strengths of the re-

210 RELATED WORK

lational model proposed by Codd [45] is that it permits arcedfit access method to be selected
based on the current query, rather than based on a single @orasage pattern. Chamberlin

et al. [34] described how System R used a cost-based modelettt &n access method for each
relation, exploiting sequential access where costs warkéore generally, Graefe [81] provides

an overview of several algorithms in the database field ttetiasigned to maximize sequential

access to disks. In part, these algorithms are faster duetmherently cheaper sequential ac-
cess; in part, this speedup is due to the benefit they achienedffective prefetching.

9.1.3.4| Type Reference Patterns

As noted above, models based on sequences of object refsr@ociot generalize to semantically
identical patterns over different objects. The heurisppraaches described in Section 9.1.3.1
consider the data items being fetched, and use this to demadtics predicting future requests.
This approach, however, does not adapt to applicationfipeequest patterns that don’t match
the selected heuristic. The prefetch hints described itic®e6.1.3.3 allow this type of adapta-
tion, but at the cost of application complexity. Anothenaian is based on a model of client ref-
erence behaviour when considering the object types betohdd instead of considering individ-
ual object identifiers. This approach learns patterns airtiemsion level rather than the exten-
sion level. Typically, such models are smaller and more ggizable than corresponding models
based on object identifiers.

Knafla[106, 107] considered the probability of an applimathavigating each of its relation-
ships to other objects using a Markov-Chain model. Thigsste&l model gives estimates of the
probability of accessing subsequent pages. If the prdbabflaccessing a page is high enough,
it is prefetched to the client.

Bernstein, Pal and Shutt [19] suggested thatcibretextin which an object was fetched is an
important factor to consider when deciding which relateects should be prefetched. For ex-
ample, consider a query that returns a list of objegtsio, ..., a. If we next see a request to
fetch thex attribute of objectz;, we may reasonably assume that we will soon fetchuatlae-
tribute foras and the rest of the; in the list. This is much more likely than if; anday were
fetched in different contexts, for example from differenedes. The solution proposed by Bern-
stein, Pal and Shutt attempts to discover operations tiatdlhbe applied to multiple objects, and
uses this as the basis for prefetching.

Han, Moon and Whang [89, 90] note that the approach of BeémsRal and Shutt [19]
may perform poorly if an application uses a depth-first reakescheme. In that case, objects
prefetched near the top of the access tree may be evictedeltefoersal returns to use them.
Han, Moon and Whang propose PrefetchGuide, an extensidre toontext-based prefetching of
Bernstein, Pal and Shutt. The PrefetchGuide data struatsoeconsiders patterns in the types of

9.1 PREFETCHING 211

objects referenced, tracking collections of objects regdrby queries and by attribute references.
In this way, it is able to detect iterative and recursive gratt. The iterative patterns are similar
to the nested request patterns that we optimize (Chaptdih®)PrefetchGuide structure is built

every time that a top-level query is used, and discarded werquery is closed. PrefetchGuide

prefetches individual objects as it observes the clienliegtipn submitting prefetches.

Bowman and Salem [22] described a semantic prefetchingpapbrbased on a recognition
of nested request patterns of the type we describe in Chaptes described in Chapter 3, this
approach recognizes nested patterns that are equivalentliigiributed join. In contrast to the
work of Han, Moon and Whang, this approach replaces all ofdtahes for a nested pattern with
a single join query, exploiting the relational processiogvpr of the servebBmS.

Yao and An [198-200] propose a system called SQL-Relay, wbansider sequences of
gueries in an OLTP or OLAP environment. They replace altditeonstants to form a query tem-
plate, and represent a client application by a proballistodel they callser access patterns
This model contains states and edges annotated with querieprobabilities. States are identi-
fied with query templates, thereby forming an order-1 madeither, the user access graph pre-
dicts values that will be used for parameters; these maydwdiqied to be a constant, input para-
meters of previous requests, or result attributes of ptsviequests. Yao and An [198, 199] show
how user access patterns can be used to guide prefetchiag.cbhsidered three types of query
rewrites for prefetching: sequential, which prefetcheshenw is submitted; union, which gen-
erates a union query W v to prefetchv whenw is submitted; and, probe-remainder, which sub-
mits a modifiedu’ that retrieves results far and some of the results needed for the predicted
guery. For the probe-remainder approach, and additioralainder’ query’ is required to re-
trieve the rest of the results for Both the union and probe-remainder approaches are ontlyy use
when queries: andv fetch from the same relations. Further, a quetihat depends on result at-
tributes ofu cannot be prefetched until the results foare returned (recall that Scalpel accom-
plishes this with a join-based rewriting, as described ictia 5.4.2). Yao, An and Huang [200]
also show how to use data mining techniques includirgram modeling and sequence align-
ment to identify database user sessions boundaries.

Bilgin et al. [20] also considered prefetching the resuftamticipated future requests. Bil-
gin et al. described a procedure that, if provided with a pbilistic model of a client’s data ac-
cess graph, chooses a set of read-ahead queries that neirimizxpected running time of the
application. A dynamic programming algorithm is used t@skthe optimal strategy. The work
Bilgin et al. [20] present so far considers only the optirti@aproblem, relying on external mod-
ules to generate the combined queries and decode the riesnitthe prefetched queries. In their
work, they also considered prefetching ‘deep’ as Scalpesdo

212 RELATED WORK

Summary of Prefetching

Prefetching mechanisms are widely used today to limit thenkzy associated with demand

fetches. There are several approaches to predicting theefteéquirements of applications, rang-
ing from simple patterns (such as sequential fetching) teersomplicated approaches that mon-
itor application behaviour to train a predictive oracleteihatively, heuristics have been used to
generate statistical models of application behaviour diepto predict future behaviour.

The existing prefetching mechanisms can work effectivelydarticular workloads. How-
ever, they do not exploit an important observation: we maglde to encode fetches using a re-
lational operation such as join. If so, then we can expla# thalization to predict the future ac-
cess pattern of the application, or evemrite the requests using relational equivalences to use a
more efficient join-based strategy.

Theoretical Underpinnings of Model-Based Prediction

Prefetching is based on a prediction of future items thatikeéy to be needed. This prediction
is often based on heuristics (such as sequential prefgichiat it has also been implemented
based on probabilistic models of the client based on expegiel his modeling is an example of
machine learning, characterized by Laird and Saul [122jssete sequence prediction.

Shannon [168] provided seminal results on probabilistizrabterizations of sequences. His
work was revolutionary to the broad field of information thef5, 33, 49, 60, 61, 63, 69, 97, 122,
123,127,128, 133,134, 148-151, 159, 188-190, 193, 210-Zh# field is concerned with the
theoretical modeling of sequences of symbols. As suchoitiges a theoretical underpinning for
predictions based on a prior sequence, such as that usedlpeSor batch request patterns.

Data compression has been used as the basis for severatipirgfeschemes. The reason for
this is due to the fact that a good data compressor will forro@gpredictor of future symbols.
Research on practical compression schemes thereforalpsoan excellent basis for prefetching
algorithms that are able to operate efficiently in space and and produce good predictions.
This approach leverages the large body of excellent work odainbased compression [17, 25—
28,41-43,46,71,135,138-140, 150, 178, 188, 189, 1931985204, 214].

In particular, the PPM algorithm introduced by Cleary andt®i [43] is the closest to our
work. Moffat [135] provided a careful implementation of PRjWing an efficient implementa-
tion that produced quite good compression. The PPM alguoritilies on a bounded length suf-
fix trie, choosing to use prediction contexts that are longugh to match special cases while
avoiding the zero-frequency problem. Cleary, Teahan arteW[41, 42] extended the PPM al-
gorithm to PPM*, which stores unbounded length contextssd@n [124] showed how the algo-
rithm of Ukkonen [180] can be extended so that a sliding wimad text is used. Bunton [28]

9.3 SUFFIX TRIES 213

showed how path compressed suffix tries can be extended tdgaimacounts used for probabil-
ity estimation: unfortunately, this introduced a worstee@$n?) time component.

The models designed for information theory and data corsfmesare concerned with pro-
viding precise estimates of the probability distributidrntlee next symbol given a preceding se-
guence. The precision of this estimate is measured by gntamga even small errors lead to inef-
ficiencies in the compression or coding results. In cont@stlpel does not need a precise prob-
ability estimate; instead, it merely needs to know if prefigig a future query is significantly
cheaper (at thex level). Further, data compression techniques for the fremuency problem
form an important area of research, for example resultingeweral variants of the PPM algo-
rithm that implement different definitions @&scape probabilitieso handle novel characters in
a state. This issue does not affect Scalpel to the same eadehican choose merely to avoid
prefetching in such a situation.

The field of language inference also deals with forming medélstrings [1, 2,7, 12, 31, 32,
53,59,62,74,91, 92, 95, 125, 138-140, 146, 153-157, 181 208-206]. In general, the idea of
language inference is to build a model of a language from afsetamples. We are particularly
interested in the recognition of stochastic grammars, wvgice predictions of likely future sym-
bols. This recognition is commonly accomplished by buiidarepresentation of the sequence
provided during training, then using state merging to camalstates where the behaviour is suf-
ficiently ‘similar’.

Carrasco and Oncina [30-32] described an algorithm call RGEA (and variants thereof)
based on a building a prefix tree structure from a trainingieege, then using state merging
based on similarity measures. A configuration parametdg used to control how different two
nodes must be to avoid merging. In the worst case, the abgoritins inO(n?) time.

Young-Lai and Tompa [203, 206] observed that the ALERGIAodlhpm has particular dif-
ficulty with nodes that have been observed few times. Thegdcthtat the merging criteria used
in ALERGIA is not well founded, and added another configamatparameteg to control the
type-Il error during merging.

Our confidence-level approach is related to the setting afid 3 above. When Scalpel finds
there is not sufficient information to make a prefetchingisien, however, it is able to consider
a more generalized context or (safely) decide to make nefotihg decision. The consequence
of type-Il errors are therefore lessened in Scalpel’'s envirent.

Suffix Tries

The suffix trie data structure is a trie [73] built for all oftlsuffixes of a string. The sulffix trie for
a string contains significant redundancy. Path compressiamgeneral approach for reducing the
size of a trie. It was first introduced by Morrison [136] as Badricia treedata structure, and this

214 RELATED WORK

term is often used in the literature to describe path conspaeries in general. Path compression
can be used for suffix tries, and the resulting structure lieada suffix tree (although we feel
that path compressed suffix trie is a more reasonable nanigpdrhaps surprising that a suffix
tree can be built for a string in linear time; McCreight [122{ributes this discovery to Weiner,
and McCreight improves on the algorithm presented by Webs®iing about 25% in space. The
algorithms of Weiner and McCreight are very important inggivefficient construction algorithm
for an important structure that is pervasively useful in skring processing field Gusfield [88].
However, these algorithms were considered to be overly tomand they were not widely used.
Many typical uses of suffix tries consisted of using atomiffistrees, or asymptotically more
expensive construction algorithms.

Ukkonen [180] presented a novel implementation of a lindgoriathm to build a suffix tree
that is significantly simpler than the two previous appr@aciThe key observation used by Ukko-
nen is the use afpen edgesWe refer to this as theo trick in Section 5.2.3. This trick is funda-
mental to the simplification provided by Ukkonen. In facte@érich and Kurtz [80] conjecture
that if Weiner had seen this trick, he would have implemetiiedsimpler algorithm in 1973.

Bunton [28], demonstrated how path compressed suffix taase used to predict the prob-
ability of future characters in the PPM* algorithm, and deoR{b4] presented similar results. In
both cases, the maintenance of count fields on-line duringtoaction of the suffix tree leads to a
worst-case)(n?) time complexity. We avoid this problem in our approach byrgsend-of-trace
markers ($). In this way, the number of leaves below a nodeiges the needed count.

Processing Sequences of Queries

If we know a sequence of queries that are to likely to be subdiitwe can consider a variety
of ways to efficiently produce the needed results. For batghest patterns, Scalpel generates a
rewritten query using outer join and outer union construsection 9.4.1 describes related work
that can produce efficient results for this type of sequemlcequests.

Scalpel also considers nested patterns of requests. WiadpeSdetects what it believes to
be a distributed join implemented in the client applicatibigenerates a combined query using
outer joins, outer unions, client merge join, and clienthja strategies. Other researchers have
considered the problem of how to efficiently process a sezpiehqueries that involves nesting.

Batch Request Patterns

Sellis [160] presented early results that considered opitigp a known sequence of queries to-
gether, instead of one query at a time. In this way, the ogmis able to choose locally sub-
optimal access plans that, through sharing, give a glologitimal plan. Sellis and Ghosh [161]

9.4 PROCESSING SEQUENCES OF QUERIES 215

showed that this optimization problem is, in general, NRdhblowever, they suggested heuris-
tics that in general give results that significantly imprare the naive approach. The idea of
multi-query optimization has been hampered to an exterdussrin current systems, tbems
does not have a good idea of future requests that will be éx@ctihe query sequence detec-
tion of Scalpel therefore provides a nice complement to irquiery optimization.

In some cases, multi-query optimization can be used beaHube special structure of re-
guests generated by the client. Kraft et al. [111-113] fotlnad some OLAP tools intentionally
generate a sequence of queries to answer a single usertrdquest, this sequence is designed
to limit the complexity of individual requests to avoid olgading theDBMS optimizer. Kraft
et al. suggest coarse grained optimization, which usesstieuewrites to optimize this (known)
sequence of queries.

Nested Request Patterns

A number of researchers have studied how to effectively weequeries that contain various

forms of nesting [52, 64, 65, 77, 98, 104, 105, 162]. The apgnes developed in that work are ef-
fective at choosing efficient evaluation plans for the datezl combined queries that we gener-
ate. However, the technigues are not directly applicabtbagroblem we consider because the
nesting appears in the application, not the queries.

Florescu et al. [70,197] translate web-pages defined in &amdive language including
queries. In this approach, the authors are able to detesbilree of binding parameters when a
nested query is invoked. A single nested query may be useaie than one context; for some
contexts, simplifications can be used to improve the pedmee of the nested query. A nested
guery can be simplified if the analysis can detect that a tiupka the outer query will appear in
the results of the inner query. The authors term this rewiry simplification under precondi-
tions For example, a nested query may include:al join that retrieves attributes already avail-
able from a prior query. In this case, we can eliminate the, josing a single-table query to re-
trieve the new values. If there are multiple contexts of akea for the inner query, we may
be able to perform the optimization in only some of these extst Further, the authors propose
modifying queries in order to reuse their results in futuoeries. They identify @onservative
approach which does no extra work but does include additattrébutes not present in the origi-
nal query, and aoptimisticapproach which additionally performs outer joins whichdeasults
needed by subsequent operations. The primary focus of triswas to avoid re-evaluating com-
mon expressions in order to improve the performance of g¢ingrdynamic web content. The
issues of fine-grained access is not specifically addressed.

Shanmugasundaram et al. [166] and Fernandez, Morishich&aciu [67] studied efficient
mechanisms to generate nested XML results from relatioatd dources, and this was studied

216 RELATED WORK

further by Krishnamurthy [115] This work is similar to our vkoon combining nested queries,
although it differs in that the structure of the nesting is\wn from the XML query (we infer this

structure during a training period). Further, the combinesllt set is used to encode an XML
result, while we decode the combined result set to gendnatertginal nested relational results.

Shanmugasundaram et al. [163—167] considered efficierd Weyanslate XML queries into
gueries over a relational data model. In addition to stomedgrure and correlated CLOB ap-
proaches (which do not appear to apply well to our problehgy ttonsidered outer union and
outer join strategies. They called the outer join strategdundant relationslue to the process-
ing and data redundancy introduced when unrelated childrertombined with an outer query,
and they did not consider it further after initial resultsifial it to perform poorly.

Fernandez, Tan and Suciu [68] introduced SilkRoute, aegyshat maps relational data to
XML views. Initially, SilkRoute used a scheme similar to @lient merge join. Individual queries
were ordered and merged at the client. Fernandez, Morashimd Suciu [67] extended this ap-
proach to also consider the outer union approach suggegt8ttdnmugasundaram et al. [165].
They also rehabilitated the outer join approach, using imtine inner query returns at most one
row (therefore not introducing redundancy). They proposgtimization based on a view-tree
structure to decided on which strategy would be used for padion of the nested sequence. Our
work extends theiew tree reductiorof Fernandez, Morishima and Suciu, a heuristic that com-
bines all at-most-one-row queries with their outer queipgigoins. In our work, we choose the
gueries to join together on the basis of a cost model thatuextsdor the effects of local predi-
cates that can appear in client application.

The combined queries generated by Shanmugasundaramred &emandez, Morishima and
Suciu [67] moved correlated predicates from inner quenefé ON-condition of an outer join
(an example is shown if Figure 3.14). In contrast, we Us&BERAL derived table construct. The
LATERAL derived table is more general, allowing the inner query tagsrelations in any loca-
tion.

Other researchers have considered how query results catched before the query is actu-
ally requested. Sapia [158] proposes the PROMISE systenchwises a model of user behav-
iour to predict future OLAP queries that might be submitteckediction is made based on a pre-
diction profile that abstracts details of queries to detéaghdr level patterns. The prediction pro-
file can either be defined by domain experts, or possibly froraralysis of query logs (although
this process is not described). The predictions are usdd to eaching decisions and to prefetch
data into a cache.

The research on non-first-normal-foraV {£2) query languages in general [98] and XML in
particular is pertinent when we consider retrieving theoeled, nested result set that is used by
our approach. Instead of encoding the nested result in ar onion or outer join, the result

9.4 PROCESSING SEQUENCES OF QUERIES 217

could be directly expressed in a nested relational langudgeever, this research does not di-
rectly help our particular problem due to the presence dfllpeedicates. If these predicates are
highly selective, then it is better to submit nested quetias a single decorrelated query.

Conclusions and Future Work

Latency is increasingly becoming a significant factor inatiaise applications. Communication
latency lags significantly behind advances in individualgess components, increasing the rel-
ative importance of latency. Further, adaptation of exgstilatabase applications to new high-
latency environments such as wireless access and WANstieadsher absolute latency.

Latency is increasingly becoming an important factor faadase applications, and this prob-
lem is exacerbated by fine grained access. We have studiethbenwf applications, and we
present results for two of these in Chapter 8. All of the agglons we studied had some se-
guences of related queries, which we call batch requesrpattFor typical configurations, many
of these queries are quite cheap with respect to the peesetptencyly, even for low-latency
local shared memory configurations. In addition to the demtebatch request patterns that we
observed, we also found that there are examples of nestadstepatterns in existing database
applications. These nested patterns do not occur as frigueut they can account for signifi-
cant latency due to the number of inner requests that areigadm

While it is possible in some cases to rewrite applicationsumadly to avoid generating these
fine-grained access patterns, such rewrites are compulitgta number of factors. One of these
is the fact that a nested approach is in fact optimal for sconéigurations of the application pro-
gram (for example, see Figure 3.30). In the cases where giithal configurations are expected
to occur in the majority of client deployments, it is prudémthoose the nested implementation,
which is in any case easier to implement. Further, good soéivengineering practices may ar-
gue against the removal of nesting, as such removal migtttte¢he destruction of important
properties such as code encapsulation.

Instead of manual tuning, we have presented a system, $oatpeh automatically detects
fine-grained nesting and batch request patterns. Scalpslaideployment-time training period
that monitors a request stream to automatically detectigiedade patterns of queries. Further,
Scalpel maintains correlation information that is needsgrédict the values that will be used for
future requests.

After the training period, a cost-based optimizer is usethtmose a prefetch strategy. Scalpel
leverages the query processing capabilities obibes to generate a prefetch request that fetches
results for an original query and also for a list of predichatire queries. The relational process-
ing power is able to prefetch the results for requests thpee on the results of previous re-

219

220 CONCLUSIONS AND FUTURE WORK

guests, a capability that is not available to prefetchingtesys that do not consider request se-
mantics.

Contributions

We have presented techniques for recognizing nested tepaterns. Even without prefetch-
ing, this recognition may prove useful to application depelrs, enabling them to identify ar-
eas for improving their application. Nested request pastare recognized not only by the nested
structure of requests, but also by correlations betweant ipgrameters of the inner query and at-
tributes of the outer query.

We have developed four approaches to efficiently combinadisted request patterns that we
detect, based on the following: outer joins, outer uniofienthash joins, and client merge joins.
Our combined queries are implemented usingltAd ERAL construct (and its obvious exten-
sion LEFT OQUTER LATERAL). In this way, the combined queries we generate closely imatc
the nesting structure that was implicitly present in therdliapplication. In contrast with other ap-
proaches that are based on clever tricks such as movindatederedicates into the ON condi-
tion of an outer join, our approach is general in that it sufspcorrelation anywhere within the in-
ner query. While our approach does generate complex nestgteg, this complexity merely ex-
poses the original complexity that was previously hiddeth&application code. In some cases,
theDBMS may be able to select a more efficient execution strategyhferéquest.

We showed how suffix tries can be used to find batch requesrpattTechniques such as
suffix tries have been used for prefetching in the past, bugxtend these with the ability to track
correlations between input parameters and attributeseafipling requests.

We extended our suffix trie detection to path compressedgri#fs. In this way, we provided
a linear time algorithm that maintains a set of probabdigtiedictions of future requests, com-
bined with a set of predicates that have always been truesipdbt. This algorithm is useful for
efficiently detecting batch request patterns. It may alswg@useful in other situations where we
wish to efficiently learn a set of predicates that have alvimen true given a variable-length con-
ditioning context.

We presented two techniques that can be used to prefetcleshéisr of anticipated future
gueries, based on outer joins and outer unions respectiMegse techniques generate combined
gueries that are efficiently executed by thems and easily decoded to provide the original re-
sult sets.

Finally, we have presented experimental and case studgrsécthat the proposed techniques
are practical and useful for existing database application

10.2 FUTURE STUDY 221

Future Study

The work that we have presented has identified a number of gretdeserve further study.

Our original study of applications also identified data stuwe request patterns. In this pat-
tern, an ‘outer’ query is opened and its results are storeshiapplication data structure such as
a linked list; then, the ‘outer’ query is closed and an ‘irirequest is submitted for the rows in
the data structure. The order of execution of the inner gdeeg not necessarily match the origi-
nal order the rows were fetched in. These patterns are somgeatha combination of nesting and
batch request patterns. It remains an open question whibidee patterns can be efficiently de-
tected. When found, they can be executed using techniqoeksio those used for nested re-
quest patterns.

Another topic for future reflection is our choice of using apléit training period. In some
respects, it would be better to have a dynamic implememtatiat continually adapts to chang-
ing configuration parameters. We chose to explicitly sdpdtee training period for simplicity of
presentation, but we might consider combining the trairding run-time phase. In such a com-
bined situation, we would be much more concerned abouinigaizosts. In particular, suffix tries
used for batch pattern detection would need to be implerdesffeciently in a smaller amount of
memory.

The idea of integrating Scalpel into a system that provideaastic caching is appealing.
Scalpel could be used not only for prefetching anticipatsgliests, but also for providing sug-
gestions to a cache manager of the expected utility of eachedaitem. Such an integration
would also provide a stronger basis for the issues of datsistemcy that are faced by Scalpel. At
present, Scalpel provides results that are correct andstensprovided that a full ACIBMS is
used (or at least snapshot isolation). However, this ctaraiy is achieved at the expense of fore-
going prefetching opportunities where it is not provablfes&or example, Scalpel does not cur-
rently prefetch across transaction boundaries, althowghawve identified applications where that
would be useful.

Finally, one topic that should be studied more thoroughlthinfuture is how a database ap-
plication should be divided between a client process medSs. The relational model provides
only slight guidance with this: the limitations of SQL posertain limits on what can be exe-
cuted in the server process. There is nothing, howeveritighivhat operations are performed
in the client application. As we have seen, current cliemiaptions implement the equivalent
of distributed joins and unions of results. It is clear thatliant application can implement all
of the relational operations, merely usingpams as a table store. We can consider automated
tools that detect specific logical operations that the apptin performs, such as our recogni-
tion of nested and batch request patterns. Alternativedycould consider ‘cutting up’ an appli-
cation so that portions with fine-grained access to the datadin theDBMS are executed in

222 CONCLUSIONS AND FUTURE WORK

the server process, while the remained execute in the giecess. In fact, this concept of cut-
ting up an application was the source of the name of our sysSealpel.

Confidence Intervals

It is perhaps surprising to non-statisticians that theeziive study on the topic of forming a con-
fidence interval for a binomial parameter The approach described in most introductory text-
books is based on the asymptotic normality given by the aklntnit theorem. LetX be the num-
ber of times a test is true out eftrials. Thenp = X/n is an estimate of. The intervalC'Ig de-
fined in Equation A.1is a00(1 —)% confidence interval fop, wherez, is the(1 — ¢)th quan-
tile of the standard normal distribution.

Cls = p £ zas\/B(1 —) (A1)

This definition of a confidence interval is one of the oldest;gxample, Agresti and Coull [6]
attribute its use to Laplace in 1812. The inter¢alg is called thewald confidence intervdbr
p because it is based on inverting the Wald hypothesis test.fdhe intervalC'Ig is the set of
valuesp, having P value exceeding significance lewvelin testing the null hypothesif : p =
po against the alternate hypothesis : p # po using the following test statistic:

- (A2)
(B(1 —p)/n

The pointspy in the interval are those for which we cannot reject the nyfidihesis (at thex

level of significance).

The confidence interval'Ig is simple to compute and easy to motivate, which is why itas tr
ditionally used in introductory texts. However, as notedBrgwn, Cai and DasGupta [24], the
standard interval tends to generate an interval that peswidverage probability rather lower than
the nominal significance level; this is partly due to the agpnation of the central limit theo-
rem being somewhat weak with law but it is also a result of the discrete nature of the measured
guantities. Better introductory books do provide some gui@ that the Wald interval should only
be used in some circumstances. For example, some suggestsimg it if » > 30, others also
caution thatip andn(1 — p) should not be close to zero. In fact, Brown, Cai and DasGath [
show that none of these cautions adequately captures titecaoverage properties of the stan-
dard interval. Even with large andp relatively far from the end-points, the standard confidence
interval can give results that fall seriously short of thetedi significance level.

223

224 CONFIDENCE INTERVALS

When guidelines for using the standard interval are not embianced textbooks refer the
reader to an interval defined by Clopper and Pearson [44$. iterval is typically referred to as
the ‘exact’ interval, and it has often been considered the standard of confidence intervals for
binomial parameters. The Clopper-Pearson interval hgscemis that are solutions to the follow-

ing:

— (n k n—k _ &
];(<k>po(1 —PO) = 5 (A.3)
X
> (Z)p’o“(l —po)"* = % (A4)
k=0

(except that the lower bound is 0 wh&nh= 0 and the upper bound is 1 wheéh = n). This inter-
val is formed by inverting the equal-tailed binomial hypegfs test offy. The Clopper-Pearson
interval is guaranteed to have coverageableastl — «, which is why it is often considered to
be better than the standard interval.

This assertion that the Clopper-Pearson interval is bétean the standard is based on the
assumption that it is better to be conservative, having gmial definition that never falls below
the nominal coverage of the parameterHowever, this ‘exact’ interval achieves this guarantee
by consistently generating intervals that are wider thazesgary, giving a coverage larger than
the nominal level. If the definition of a gold standard is thatlways give at least the nominal
coverage, we could as easily choose the unit intdfval.

This complaint has led to recent calls for using a confidenterval that generally provide
coverage close to the nominal significance level. Agresti@aull [6] suggest using an interval
that they believe was first proposed by Wilson [194]. Thigiival is based on the score test for
parametep instead of the Wald test; the score test uses the log likeditad the null hypothesis
level of the parameter rather than the maximum likelihood estimatesed by the Wald tests.

X +22/2 zyn 22
Cly = + H(l—p+ — A5
[P(L—=p+ (A.5)

The Wilson interval is shown in Equation A.5, where wedet 2, ,. It corrects two prob-
lems with the standard interval. First, the standard irtieis/centered about the ‘wrong’ point,
We can see that the Wilson interval is centered about thewalg weighted average:

n 1 22
H - A.6
p<n+z2>+2<n—|—z2> (A.6)

The mid-point falls betwee and 1/2, with the movement toward /2 diminishing asn in-
creases. This choice is a better mid-point for the confidémeeval due to the skewed nature of

225

the binomial distribution. The second problem that the @literval corrects is that the stan-
dard interval is in fact too wide in general. The low coveraggeaused by the wrong center. For
these reasons, the Wilson interval appears certainly sugerthe standard Wald interval. It can
be considered an improvement on the Clopper-Pearson ahiémwe are willing to accept some

cases where coverage falls below the nominal level.

The Wilson interval does have shortcomings of its own. Fitss relatively complex to mo-
tivate and present. More importantly, there is a small reffior) where the coverage of the Wil-
son interval drops seriously below the nominal level. A soluto both of these problems is pro-
vided by Agresti and Coull [6]. Agresti and Coull make thddualing suggestion. Let = n + 22
andX = X + 22/2. Letp = X /n. Equation A.7 shows the confidence interval suggested by
Agresti and Coull.

p(1 —p)

Clac=p+=z (A.7)
In the case that we are choosing a 95% confidence interval,z,, = 1.96 ~ 2. This gives
X = X +2andn = n + 4, leading Agresti and Coull to call it the “add two successed a
two failures” approach. The Agresti-Coull interval has thmiliar form of the standard Wald in-
terval, making it simpler to present. Further, it improvestbe Wilson interval in that it avoids
the region of seriously low coverage experienced by thedfilaterval. However, this improve-
ment comes at the cost of being slightly conservative, witarivals that are slightly wider than
the Wilson interval. We choose to use the Agresti-Coullrivaedue to its simplicity and the im-
provements in regions g@fnear 0 and 1.

In summary, the Clopper-Pearson confidence interval hdgitmaally been considered to be
the gold standard (usually called the ‘exact’ interval) daese it always provides intervals with
coverage that isit leastthe nominal level, and usually more. This interval has narbgadi-
tionally popular because of the difficulty of computing tleusions to the endpoint equations.
Instead, the Wald interval is typically suggested by diaisext books (with varying levels of
guidance as to when it is appropriate). The Wald intervabiseld on a hypothesis test that uses
the normal approximation with the sample standard deviafitnis approximation has disturbing
tendencies to produce erratic intervals that can fall alegiy below the nominal coverage level,
even with reasonably large andp relatively far from 0 and 1. The problem is that the Wald in-
terval is centered about the ‘wrong’ point, namely the maximlikelihood estimate = X /n.
The Wilson interval corrects this centering problem by ggime score hypothesis test instead of
the Wald test. The Wilson interval is superior in all wayshe Wald interval, and it is superior
to the Clopper Pearson test if we believe it is better to beigdly close to the nominal cover-
age while occasionally falling below this nominal level. \W&e the Agresti-Coull interval, which
is centered about the same point as the Wilson interval,dingwa width that is generally slightly

226 CONFIDENCE INTERVALS

wider. This definition avoids small regions near 0 and 1 thaise the Wilson interval to fall be-
low the nominal level. Further, this definition allows forienple presentation and motivation.

Bibliography

[1] Naoki Abe and Manfred K. Warmuth. On the computationahgdexity of approximating
distributions by probabilistic automata. Rroceedings of the third annual workshop on
Computational learning theorypages 52—66. Morgan Kaufmann Publishers Inc., 1990.

[2] Naoki Abe and Manfred K. Warmuth. On the computationahgdexity of approximating
distributions by probabilistic automatdachine Learning9(2-3):205—-260, 1992.

[3] Swarup Acharya, Michael J. Franklin, and Stanley B. ZdoRrefetching from broadcast
disks. InICDE '96: Proceedings of the Twelfth International Confere on Data Engi-
neering pages 276-285. IEEE Computer Society, 1996.

[4] Atul Adya. Weak Consistency: a Generalized Theory and Optimisticdmphtations for
Distributed TransactionsPhD thesis, Massachusetts Institute of Technology, MA8&9.

[5] Atul Adya, Barbara Liskov, and Patrick O'Neil. Generad isolation level definitions. In
Proceedings of the IEEE International Conference on DatgiB®ering March 2000.

[6] Alan Agresti and Brent A. Coull. Approximate is betteathexact for interval estimation
of binomial proportionsThe American Statisticiarb2(2):119-126, May 1998.

[7] Ahonen Ahonen.Generating Grammars for Structured Documents Using Gratiuala
Inference MethodsPhD thesis, University of Helsinki, Finland, 1996.

[8] Sedat Akyiirek and Kenneth Salem. Adaptive block reayeanent. ACM Transaction on
Computing System&3(2):89-121, 1995.

[9] Sedat Akylirek and Kenneth Salem. Adaptive block reayeanent under UnixSoftware—
Practice and Experien¢®7(1):1-23, 1997.

[10] Ahmed Amer, Darrell D.E. Long, Jehan-Francois Paaisd Randal C. Burns. File ac-
cess prediction with adjustable accuracyPhoceedings of the 2002 International Perfor-
mance, Computing and Communication Conference (IPCEEE, 2002.

[11] Mostafa H. Ammar. Response time in a teletext systenirdinidual user’s perspective.
IEEE Transactions on CommunicatioridOM-35(11), November 1987.

227

228 BIBLIOGRAPHY

[12] Dana Angluin and Miklés Csiirés. Learning Markov otsawith variable memory length
from noisy output. IrProceedings of the tenth annual conference on Computdtieaan-
ing theory pages 298-308. ACM Press, 1997.

[13] ANSI. Information Systems Database Language S&dptember 1999. ISO/IEC 9075-
1:1999.

[14] Gretta E. Bartels, Anna R. Karlin, Darrell Andersonffisy S. Chase, Henry Levy, and
Geoffrey Voelker. Potentials and limitations of fault-bddMarkov prefetching for virtual
memory pages. ISIGMETRICS '99: Proceedings of the 1999 ACM SIGMETRIC%-inte
national conference on Measurement and modeling of compystemspages 206—207.
ACM Press, 1999.

[15] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On praditusing variable order Markov
models.Journal of Artificial Intelligence ResearcB2:385—-421, 2004.

[16] Timothy C. Bell, John G. Cleary, and lan H. Wittedext CompressiaonPrentice Hall,
1990.

[17] Timothy C. Bell, lan H. Witten, and John G. Cleary. Madel for text compressionACM
Computing Survey1(4), December 1989.

[18] Hal Berenson, Philip A. Bernstein, Jim N. Gray, Jim Melt Patrick O’Neil, and Eliza-
beth J. O'Neil. A critique of ANSI SQL isolation levels. Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Datages 1-10. ACM Press,
May 1995.

[19] Philip A. Bernstein, Shankar Pal, and David Shutt. @atrbased prefetch for implement-
ing objects on relations. In Malcolm P. Atkinson, Maria El@rska, Patrick Valduriez,
Stanley B. Zdonik, and Michael L. Brodie, editoksl.DB’'99, Proceedings of 25th Inter-
national Conference on Very Large Data Bases, Septemb&; 1999, Edinburgh, Scot-
land, UK, pages 327-338. Morgan Kaufmann, 1999.

[20] A. Soydan Bilgin, Rada Y. Chirkova, Timo J. Salo, and Nhdar P. Singh. Deriving ef-
ficient SQL sequences via read-aheads. Data Warehousing and Knowledge Discov-
ery: 6th International Conference, DaWatolume 3181/2004, pages 299-308. Springer-
Verlag, September 2004.

[21] Ilvan T. Bowman. Architecture recovery for object-aried systems. Master’s thesis, Uni-
versity of Waterloo, 1999.

BIBLIOGRAPHY 229

[22] Ivan T. Bowman and Kenneth Salem. Optimization of qusiigams using semantic
prefetching. InProc. ACM SIGMOD International Conference on Managemeridatt
(SIGMOD’04) pages 179-190, 2004.

[23] Karl S. Brandt. Using multiple experts to perform fileediction. Master’s thesis, Univer-
sity of California Santa Cruz, June 2004.

[24] Lawrence D. Brown, T. Tony Cai, and Anirban DasGuptaeifwal estimation for a bino-
mial proportion. Statistical Sciengel6(2):101-133, 2001.

[25] Suzanne Bunton. A characterization of the dynamic Martompression FSM with finite
conditioning contexts. lData Compression Conference (DCC '98)arch 1994.

[26] Suzanne BuntonOn-Line Stochastic Processes in Data Compressi®hD thesis, Uni-
versity of Washington, 1996.

[27] Suzanne Bunton. An executable taxonomy of on-line mindalgorithms. Technical Re-
port UW-CSE-97-02-05, University of Washington, 1997.

[28] Suzanne Bunton. Semantically motivated improvemét®PM variants.The Computer
Journal 40(2/3), 1997.

[29] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Ady of integrated prefetching
and caching strategies. BIGMETRICS '95/PERFORMANCE '95: Proceedings of the
1995 ACM SIGMETRICS joint international conference on Meament and modeling of
computer systempages 188-197. ACM Press, 1995.

[30] Rafael C. Carrasco. Incremental construction and taaance of minimal finite-state au-
tomata.Computational Linguistic28(2):207-216, 2002.

[31] Rafael C. Carrasco and Jose Oncina. Learning stochasfillar grammars by means of a
state merging method. International Conference on Grammar Inferendé894.

[32] Rafael C. Carrasco and Jose Oncina. Learning detestitimegular grammars from sto-
chastic samples in polynomial tim&RAIRO (Theoretical Informatics and Applications)
33(1):1-20, 1999.

[33] Nicolo Cesa-Bianchi and Gabor Lugosi. On sequentiatlftion of individual sequences
relative to a set of experts. BOLT’ 98: Proceedings of the eleventh annual conference
on Computational learning theorpages 1-11. ACM Press, 1998.

230 BIBLIOGRAPHY

[34] Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasg Jim N. Gray, W. Frank
King lll, Bruce G. Lindsay, Raymond A. Lorie, James W. Mehhomas G. Price, Gi-
anfranco R. Putzolu, Patricia G. Selinger, Mario Schk&ni@onald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost. A history andlegation of system R.
CACM, 24(10):632-646, 1981.

[35] Fay Chang and Garth A. Gibson. Automatic 1/O hint getierathrough speculative exe-
cution. InThird Symposium on Operating Systems Design and Impletimmtgebruary
1999.

[36] Surajit Chaudhuri, Prasanna Ganesan, and Vivek Ngyas&rimitives for workload sum-
marization and implications for SQL. Proceedings of the 29th VLDB Conferen2603.

[37] Surajit Chaudhuri and Gerhard Weikum. Rethinking Hate system architecture: To-
wards a self-tuning RISC-style database systenProteedings of the 26th International
Conf. on Very Large Databasgsages 1-10, Cairo, Egypt, September 2000.

[38] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibboasd Todd C. Mowry. Improving
hash join performance through prefetchingPhoceedings of the IEEE International Con-
ference on Data Engineerind/larch 2004.

[39] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. lmoping index performance
through prefetching. IfProceedings of the 2001 ACM SIGMOD International Confeeenc
on Management of DatdMay 2001.

[40] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gafglentin. Fractal prefetch-
ing B+-trees: Optimizing both cache and disk performanaeSIGMOD '02: Proceed-
ings of the 2002 ACM SIGMOD international conference on Mgemaent of datapages
157-168. ACM Press, 2002.

[41] John G. Cleary and W. J. Teahan. Unbounded length ctnfex PPM. The Computer
Journal 40(2/3), 1997.

[42] John G. Cleary, W. J. Teahan, and lan H. Witten. Unbodrdagth contexts for PPM. In
Data Compression Conferengeages 52—61, 1995.

[43] John G. Cleary and lan H. Witten. Data compression usitgptive coding and partial
string matchinglEEE Transactions on CommunicatigridOM-32(4), April 1984.

[44] C.J. Clopper and E.S. Pearson. The use of confidenceumididimits illustrated in the
case of the binomialBiometrikg 26(4):404—413, December 1934.

BIBLIOGRAPHY 231

[45] E.F. Codd. A relational model of data for large sharethdenks.Communications of the
ACM, 13(6):377-387, 1970.

[46] Gordon V. Cormack and R. Nigel Horspool. Data comprassising dynamic Markov
modelling. Computer Journal30(6):541-550, 1987.

[47] Thomas H. Cormen, Charles E. Leiserson, and Ronald vedRi Introduction to Algo-
rithms MIT Press, 1990.

[48] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scottéfit Practical prefetching via data
compression. In Peter Buneman and Sushil Jajodia, edRarseedings of the 1993 ACM
SIGMOD International Conference on Management of Data,hiviagon, D.C., May 26-
28, 1993 pages 257-266. ACM Press, 1993.

[49] A.S. Davis. Markov chains as random input automafBhe American Mathematical
Monthly, 68:264—-267, March 1961.

[50] Brian D. Davison. Learning web request patterns. In AulBvassilis and M. Levene,
editors,Web Dynamics: Adapting to Change in Content, Size, Top@aogyUse pages
435-460. Springer, 2004.

[51] Mark Stuart Day.Client Cache Management in a Distributed Object Databa2leD the-
sis, MIT, 1995.

[52] Umeshwar Dayal. Of nests and trees: A unified approagitrdoessing queries that con-
tain nested subqueries, aggregates, and quantifiers. én MetStocker, William Kent,
and Peter Hammersley, editoké.DB’87, Proceedings of 13th International Conference
on Very Large Data Bases, September 1-4, 1987, BrightorlaBdgpages 197-208. Mor-
gan Kaufmann, 1987.

[53] Colin de la Higuera and Franck Thollard. Identificationthe limit with probability one
of stochastic deterministic finite automata. IGI-2000 : 5th International Colloquium
on Grammatical Inferenge.isbon, September 2000.

[54] Steven de Rooij. Methods of statistical data compmssiMaster’s thesis, University of
Amsterdam / Institute for Logic, Language, and Computat®eptember 2003.

[55] Peter J. Denning. The working set model for program bieha In SOSP '67: Proceed-
ings of the first ACM symposium on Operating System Prirgipkges 15.1-15.12. ACM
Press, 1967.

[56] Amol Deshpande. Selective Markov models for predigtineb-page accessesACM
Trans. Inter. Tech4(2):163-184, 2004.

232 BIBLIOGRAPHY

[57] Jochen Doppelhammer, Thomas Hoppler, Alfons Kempat, [@onald Kossmann. Data-
base performance in the real world: TPC-D and SAP/R-3rbt. ACM SIGMOD Con-
ference pages 123-134, 1997.

[58] Stephane Drapeau, Claudia Roncancio, and Edgardé&e@iierrero. Generating associ-
ation rules for prefetching. IHCDCS Workshop of Knowledge Discovery and Data Min-
ing in the World-Wide Welpages F15-F22, 2000.

[59] Pierre Dupont, L. Miclet, and E. Vidal. What is the sdaspace of the regular inference?
In Proceedings of the Second International Colloquium on Gratical Inference and Ap-
plications pages 25-37. Springer-Verlag, 1994.

[60] Yariv Ephraim and Neri Merhav. Hidden Markov process&EE Transactions on Infor-
mation Theory48(6):1518-1569, June 2002.

[61] Eleazar Eskin.Sparse Sequence Modeling with Applications to ComputatiBiology
and Intrusion DetectionPhD thesis, Columbia University, 2002.

[62] Yann Esposito, Aurelien Lemay, Francois Denis, andrBiBupont. Learning probabilis-
tic residual finite state automata. In Pieter W. Adriaansyiiley Fernau, and Menno van
Zaanen, editorsGrammatical Inference: Algorithms and Applications, 6tielrnational
Colloquium: ICGI 2002, Amsterdam, The Netherlands, Semer23-25, 2002, Proceed-
ings volume 2484 of_ecture Notes in Computer Scien&pringer, 2002.

[63] Meir Feder, Neri Merhav, and Michael Gutman. Univerpegdiction of individual se-
guenceslEEE Transactions on Information The@i38:1258-1270, July 1992.

[64] Leonidas Fegaras. Query unnesting in object-oried@dbases. In Laura M. Haas and
Ashutosh Tiwary, editorsSIGMOD 1998, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 2-4, 1998, Seattle,iNgtsh, USA pages 49-60.
ACM Press, 1998.

[65] Leonidas Fegaras and David Maier. Optimizing objedrips using an effective calculus.
ACM Transactions on Database Syste@t(4):457-516, 2000.

[66] R.J. Feiertag and E. I. Organick. The multics inputpaitsystem. '8OSP '71: Proceed-
ings of the third ACM symposium on Operating systems piliegipages 35-41. ACM
Press, 1971.

[67] Mary F. Fernandez, Atsuyuki Morishima, and Dan Suckifficient evaluation of XML
middle-ware queries. IRroc. ACM SIGMOD Conferengc2001.

BIBLIOGRAPHY 233

[68] Mary F. Fernandez, Wang-Chiew Tan, and Dan Suciu. RRilke: trading between rela-
tions and XML.Computer Networks33(1-6):723-745, 2000.

[69] Lorenzo Finesso.Consistent Estimation of the Order for Markov and Hidden kbar
Chains PhD thesis, University of Maryland, 1991.

[70] Daniela Florescu, Alon Y. Levy, Dan Suciu, and Khaledj¥ab. Optimization of run-time
management of data intensive web-sites. In Malcolm P. Atkin Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Bradiglitors,VLDB’99, Proceed-
ings of 25th International Conference on Very Large DataddasSeptember 7-10, 1999,
Edinburgh, Scotland, UKpages 627—-638. Morgan Kaufmann, 1999.

[71] Pasi Franti and Timo Hatakka. Context model automatdeixt compressionThe Com-
puter Journa) 41(7):474-485, 1998.

[72] Gabbay Freddy and Avi Mendelson. Using value predictmincrease the power of specu-
lative execution hardward\CM Transactions on Computer Systef{3):234-270, 1998.

[73] Edward Fredkin. Trie memongCommunications of the ACN3(9):490-499, 1968.

[74] Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubthfflobert E. Schapire, and Linda
Sellie. Efficient learning of typical finite automata frorndoom walks. InProceedings of
the twenty-fifth annual ACM symposium on Theory of compugiages 315-324. ACM
Press, 1993.

[75] César Galindo-Legaria. Parameterized queries astingeequivalencies. Technical Re-
port MSR-TR-2000-31, Microsoft Corporation, April 2000.

[76] César Galindo-Legaria and Milind Joshi. Orthogongiimization of subqueries and ag-
gregation. INSIGMOD '01: Proceedings of the 2001 ACM SIGMOD internatioranfer-
ence on Management of dat@ages 571-581, New York, NY, USA, 2001. ACM Press.

[77] Richard A. Ganski and Harry K. T. Wong. Optimization afsted SQL queries revisited.
In Proceedings of ACM SIGMQ[1987.

[78] Carsten Andreas Gerlhof and Alfons Kemper. A multieded architecture for prefetch-
ing in object bases. In Matthias Jarke, Janis A. Bubenkadd Keith G. Jeffery, editors,
Advances in Database Technology - EDBT'94. 4th Internali@@onference on Extend-
ing Database Technology, Cambridge, United Kingdom, Ma&t81, 1994, Proceedings
volume 779 ofLecture Notes in Computer Scienpages 351-364. Springer, 1994.

234

[79]

[80]

[81]

[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

BIBLIOGRAPHY

Carsten Andreas Gerlhof and Alfons Kemper. Prefetgipst relations in object bases.
In Malcolm P. Atkinson, David Maier, and Véronigue Benzakeditors Persistent Object
Systems, Proceedings of the Sixth International Worksimopeosistent Object Systems,
Tarascon, Provence, France, 5-9 September 199drkshops in Computing, pages 115—
126. Springer and British Computer Society, 1994.

Robert Giegerich and Stefan Kurtz. From Ukkonen to M@t and Weiner: A unifying
view of linear-time suffix tree constructiomlgorithmica 19(3):331-353, 1997.

Goetz Graefe. Query evaluation techniques in largalistes ACM Computing Surveys
25(2), June 1993.

Jim N. Gray. Interview: A conversation with Jim GraQueue 1(4):8-17, 2003.

Jim N. Gray, Pat Helland, Patrick O’Neil, and Dennis IsasThe dangers of replication
and a solution. In H. V. Jagadish and Inderpal Singh Mumiditpes, Proceedings of the
1996 ACM SIGMOD International Conference on ManagementaifDpages 173—-182.
ACM Press, June 1996.

Jim N. Gray, Raymond A. Lorie, Gianfranco R. Putzoluddrving L. Traiger. Granu-
larity of locks and degrees of consistency in a shared dasz lgages 175-193. Morgan
Kaufmann Publishers Inc., 1998. Reprinted from Modelindpata Base Management
Systems. Amsterdam: Elsevier North-Holland, 1976.

James Griffioen and Randy Appleton. Reducing file systaency using a predictive
approach. InProceedings of the USENIX 1994 Technical Conferepeges 197-208.
USENIX Association, January 1994.

Knut Stener Grimsrud, James K. Archibald, and Brent Elshn. Multiple prefetch adap-
tive disk caching.IEEE Transactions on Knowledge and Data Engineerin.):88—103,
1993.

Hongfei Guo, Pelke Larson, Raghu Ramakrishnan, and Jonathan Goldsteitaxéte
currency and consistency: How to say “good enough” in SQLSIBMOD '04: Proceed-
ings of the 2004 ACM SIGMOD international conference on Mgmaent of datapages
815-826. ACM Press, 2004.

Dan Gusfield.Algorithms on Strings, Trees, and Sequences: Computenc&cand Com-
putational Biology Cambridge University Press, 1997.

Wook-Shin Han, Yang-Sae Moon, and Kyu-Young Whang fé&chGuide: capturing nav-
igational access patterns for prefetching in client/seolgect-oriented/object-relational
DBMSs. Information Sciences52(1):47-61, 2003.

BIBLIOGRAPHY 235

[90] Wook-Shin Han, Yang-Sae Moon, Kyu-Young Whang, an¥dbl Song. Prefetching
based on type-level access pattern in object-relationdB8& InProceedings of the 17th
International Conference on Data Engineering, April 2-®02, Heidelberg, Germany
IEEE Computer Society, 2001.

[91] Philip Hingston. Inference of regular languages usimgdel simplicity. InProceedings
of the 24th Australasian conference on Computer sciepages 69—-76. IEEE Computer
Society, 2001.

[92] Philip Hingston. Using finite state automata for sequeemining. InProceedings of
the twenty-fifth Australasian conference on Computer sejgmages 105-110. Australian
Computer Society, Inc., 2002.

[93] John E. Hopcroft and Jeffrey D. Ullmamtroduction to Automata Theory, Languages and
Computation Addison-Wesley, 1979.

[94] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young. Hé@rence behavior of pro-
duction database workloads and the TPC benchmarks—ans@nalythe logical level.
ACM Transactions on Database Syste26(1):96-143, 2001.

[95] Jianying Hu, William Turin, and Michael K. Brown. Langge modeling with stochastic
automata. 1996 International Conference on Speech and Language Bsowp October
1996.

[96] David Hume.An Enquiry Concerning Human Understandirty48.

[97] Phillipe Jacquet, Wojciech Szpankowski, and lzydoosfol. A universal predictor based
on pattern matching EEE Transactions on Information Theg#8(6), June 2002.

[98] G. Jaeschke and Hans-Jorg Schek. Remarks on the algEbon first normal form rela-
tions. InProceedings of the ACM Symposium on Principles of Databgse®s, March
29-31, 1982, Los Angeles, Californipages 124-138. ACM, 1982.

[99] Wei Jin, Xiabai Sun, and Jeffrey S. Chase. FastSlimta®h-safe trace reduction for I/O
system simulationACM Transactions on Modeling and Computer Simulatii(2):125—
160, 2001.

[100] Immanuel KantThe Critique of Pure Reasor781.

[101] John P. Kearns and Samuel DeFazio. Diversity in datalaference behavior. BIG-
METRICS '89: Proceedings of the 1989 ACM SIGMETRICS inte&wnal conference on
Measurement and modeling of computer systgrages 11-19. ACM Press, 1989.

236

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

BIBLIOGRAPHY

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Réddd, Robert E. Schapire, and
Linda Sellie. On the learnability of discrete distributsonin Proceedings of the twenty-
sixth annual ACM symposium on Theory of computpages 273—-282. ACM Press, 1994.

Tom Keller, Goetz Graefe, and David Maier. Efficiensasbly of complex objects. In
James Clifford and Roger King, editoiBroceedings of the 1991 ACM SIGMOD Inter-
national Conference on Management of Data, Denver, Coloraday 29-31, 1991pages
148-157. ACM Press, 1991.

Werner Kiessling. On semantic reefs and efficient essing of correlation queries with
aggregates. In A. Pirotte and Y. Vassiliou, editdPspceedings of the Eleventh Interna-
tional Conference on Very Large Databaspages 241-249, Stockholm, Sweden, August
1985.

Won Kim. On optimizing an SQL-like nested queACM Transactions on Database Sys-
tems 9(3), 1982.

Nils Knafla. Analysing object relationships to predpage access for prefetching. In
Ronald Morrison, Mick J. Jordan, and Malcolm P. Atkinsonit@d, Advances in Persis-
tent Object Systems, Proceedings of the 8th Internatiormak$top on Persistent Object
Systems (POS8) and Proceedings of the 3rd Internationak$tiop on Persistence and
Java (PJW3), Tiburon, California, 1998ages 160-170. Morgan-Kaufmann, 1998.

Nils Knafla.Prefetching Techniques for Client/Server, Object-OgenDatabase Systems
PhD thesis, Division of Informatics, University of Edinigtr; 1999.

Donald Kossmann, Laura M. Haas, and loana Ursu. Lgadinache with query results.
In Malcolm P. Atkinson, Maria E. Orlowska, Patrick ValdurjeStanley B. Zdonik, and
Michael L. Brodie, editorsVLDB’'99, Proceedings of 25th International Conference on
Very Large Data Bases, September 7-10, 1999, EdinburghlaBdp UK, pages 351-362.
Morgan Kaufmann, 1999.

David F. Kotz. Prefetching and Caching Techniques in File Systems for M IMDti-
processors PhD thesis, Duke University, 1991.

David F. Kotz and Carla Schlatter Ellis. Practicalfptehing techniques for multiproces-
sor file systemsDistributed and Parallel Database4(1):33-51, 1993.

Tobias Kraft. Rewrite-Strategienif generierte Anfragesequenzen im Online Analytical
Processing Diploma thesis, Universitat Stuttgart, 2002.

BIBLIOGRAPHY 237

[112] Tobias Kraft and Holger Schwarz. Chicago: A test aral@tion environment for coarse-
grained optimization. IfProceedings of the 30th VLDB Conferenpages 1345-1348,
August 2004.

[113] Tobias Kraft, Holger Schwarz, Ralf Rantzau, and BardhMitschang. Coarse-grained
optimization—techniques for rewriting SQL statement seges. In Johann Christoph
Freytag, Peter C. Lockemann, Serge Abiteboul, Michael tey¢ ®atricia G. Selinger, and
Andreas Heuer, editor®roceedings of 29th International Conference on Very L&yg&a
Bases (VLDB 2003Morgan Kaufmann, September 2003.

[114] Achim Kraiss and Gerhard Weikum. Integrated docunecewhing and prefetching in stor-
age hierarchies based on markov-chain predictigth$B Journa) 7(3):141-162, 1998.

[115] Rajasekar KrishnamurthyXML-to-SQL Query Translation PhD thesis, University of
Wisconsin—Madison, 2004.

[116] P. Krishnan.Online Prediction Algorithms for Databases and Operatingt8ms PhD
thesis, Brown University, 1995.

[117] P. Krishnan and Jeffrey Scott Vitter. Optimal preutintfor prefetching in the worst case.
SIAM Journal on Computing27(6):1617-1636, 1998. An extended abstract appears in
Proceedings of the 5th Annual ACM-SIAM Symposium on Disédgforithms Arlington,
Vriginia, January 1994, pagees 392-401.

[118] Thomas M. Kroeger. Predicting file system actions frefierence patterns. Master's the-
sis, University of California Santa Cruz, December 1996.

[119] Thomas M. Kroeger and Darrell D.E. Long. Design andlampentation of predictive file
prefetching algorithm-usenix01. IRroceedings of the 2001 USENIX Annual Technical
ConferenceJune 2001.

[120] Geoffrey Houston Kuenningseer—Predictive File Hoarding for Disconnected Mobile Op-
erations PhD thesis, University of California, Los Angeles, 1997.

[121] Geoffrey Houston Kuenning, Wilkie Ma, Peter Reihardaserald J. Popek. Simplifying
automated hoarding methods. MSWIM '02: Proceedings of the 5th ACM international
workshop on Modeling analysis and simulation of wireless mrobile systempages 15—
21. ACM Press, 2002.

[122] Philip Laird and Ronald Saul. Discrete sequence ptigti and its applicationdMachine
Learning 15(1):43-68, 1994.

238 BIBLIOGRAPHY

[123] Glen G. Langdon, Jr. A note on the Ziv-Lempel model fompressing individual se-
guenceslEEE Transactions on Information Theghyf-29, March 1983.

[124] N. Jesper Larsson. Extended application of suffixsttealata compression. In J. A. Storer
and M. Cohn, editorsRroceedingsData Compression Conferenmages 190-199, Snow-
bird, UT, 1996. IEEE Computer Society Press.

[125] Eric Lehman. Approximation Algorithms for Grammar-Based Data Compmss PhD
thesis, Massachusetts Institute of Technology, Februa®dg 2

[126] Hui Lei and Dan Duchamp. An analytical approach to filefptching. INUSENIX Con-
ference Proceedingdanuary 1997.

[127] Abraham Lempel and Jacob Ziv. On the complexity of érdequenceslEEE Transac-
tions on Information TheoryT-22(11):75-81, 1976.

[128] Ronny Lempel and Shlomo Moran. Optimizing result ptefiing in web search engines
with segmented indiceACM Trans. Inter. Tech4(1):31-59, 2004.

[129] Barbara Liskov, Atul Adya, Miguel Castro, and Quintdondervan. Safe and efficient
sharing of persistent objects in Thor. In H. V. Jagadish ambkipal Singh Mumick, edi-
tors,Proceedings of the 1996 ACM SIGMOD International Confeeemt Management of
Data, Montreal, Quebec, Canada, June 4-6, 198ges 318-329. ACM Press, 1996.

[130] Tara M. MadhyasthaAutomatic Classification of Input/Output Access PattefPisD the-
sis, University of lllinois at Urbana-Champaign, 1997.

[131] Tara M. Madhyastha and Daniel A. Reed. Input/outpeeas pattern classification using
hidden Markov models. WOPADS '97: Proceedings of the fifth workshop on I/O in par-
allel and distributed systempages 57—67. ACM Press, 1997.

[132] Edward M. McCreight. A space-economical suffix treastouction algorithmJournal of
the ACM (JACM)23(2):262—-272, 1975.

[133] Neri Merhav and Meir Feder. Universal sequentialig@ay and decision from individual
data sequences. Proceedings of the fifth annual workshop on Computatioreinieg
theory, pages 413-427. ACM Press, 1992.

[134] Neri Merhav and Meir Feder. Universal predictiofEEE Transactions on Information
Theory 44(6):2124-2147, October 1998.

[135] Alistair Moffat. Implementing the PPM data compressschemelEEE Transactions on
Communication38(11):1917-1921, November 1990.

BIBLIOGRAPHY 239

[136] Donald R. Morrison. PATRICIA—practical algorithm tetrieve information coded in al-
phanumericJournal of the ACM (JACM)15(4):514-534, 1968.

[137] Todd C. Mowry.Tolerating Latency Through Software-Controlled Data Btefiing PhD
thesis, Stanford University, March 1994.

[138] Craig G. Nevill-Manning. Inferring Sequential Structure PhD thesis, University of
Waikato, 1996.

[139] Craig G. Nevill-Manning and lan H. Witten. Compressiand explanation using hierar-
chical grammarsThe Computer Journal0(2/3), 1997.

[140] Craig G. Nevill-Manning and lan H. Witten. Inferringdical and grammatical structure
from sequences. IBompression and Complexity of Sequenpages 265274, June 1997.

[141] Stefan Nilsson and Matti Tikkanen. Implementing a aynic compressed trie. [Bnd
Workshop on Algorithm Engineering (WAE '98p98.

[142] Mark Palmer and Stanley B. Zdonik. Fido: A cache thairhs to fetch. In Guy M.
Lohman, Amilcar Sernadas, and Rafael Camps, editdith, International Conference on
Very Large Data Bases, September 3-6, 1991, Barcelona,|@eda Spain, Proceedings
pages 255-264. Morgan Kaufmann, 1991.

[143] David A. Patterson. Latency lags bandwid@ommunications of the ACM7(10):71-75,
2004.

[144] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, DBBtedolsky, and Jim Zelenka. In-
formed prefetching and caching. 80OSP '95: Proceedings of the fifteenth ACM sympo-
sium on Operating systems principlggges 79-95. ACM Press, 1995.

[145] Glenn Norman PaulleyExploiting Functional Dependence in Query Optimizati¢dthD
thesis, University of Waterloo, 2000.

[146] Leonard Pitt and Manfred K. Warmuth. The minimum cstest DFA problem cannot
be approximated within any polynomial. Proceedings of the twenty-first annual ACM
symposium on Theory of computipges 421-432. ACM Press, 1989.

[147] Amira Rahal, Qiang Zhu, and PAke Larson. Evolutionary techniques for updating query
cost models in a dynamic multidatabase environm&he VLDB Journal13(2):162-176,
2004.

[148] Jorma Rissanen. A universal data compression sys$iEBE Transactions on Information
Theory IT-29(5), September 1983.

240 BIBLIOGRAPHY

[149] Jorma Rissanen. Universal coding, information, migxh, and estimationlEEE Trans-
actions on Information TheoryT-30(4):629-636, July 1984.

[150] Jorma Rissanen. Complexity of strings in the class afkdv sourceslEEE Transactions
on Information Theory32(4):526-532, 1986.

[151] Jorma Rissanen and Glen G. Langdon, Jr. Universal hmgdend coding|EEE Transac-
tions on Information TheoryT-27(1), January 1981.

[152] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharsystem.Communications
of the ACM 17(7):365-375, 1974.

[153] Ronald L. Rivest and Robert E. Schapire. Inferencenifdiautomata using homing se-
guences. IProceedings of the twenty-first annual ACM symposium onryheaomput-
ing, pages 411-420. ACM Press, 1989.

[154] Dana RonAutomata Learning and its ApplicationBhD thesis, Hebrew University, 1995.

[155] Dana Ron, Yoram Singer, and Naftali Tishby. Learnimghabilistic automata with vari-
able memory length. IRroceedings of the seventh annual conference on Compuhtio
learning theory pages 35-46. ACM Press, 1994.

[156] Dana Ron, Yoram Singer, and Naftali Tishby. On therahility and usage of acyclic
probabilistic finite automata. IRroceedings of the eighth annual conference on Compu-
tational learning theorypages 31-40. ACM Press, 1995.

[157] Dana Ron, Yoram Singer, and Naftali Tishby. The poweronesia: Learning probabilis-
tic automata with variable memory lengthlachine Learning25(2-3), 1996.

[158] Carsten Sapia. PROMISE: Predicting query behaviougrable predictive caching for
OLAP systems. IrProceedings of the Second International Conference on B\dee-
housing and Knowledge Discovery (DAWAK 20@®8ptember 2000.

[159] Stefan Schrodl and Stefan Edelkamp. Inferring flowcaifitrol in program synthesis by
example. Technical Report 121, Univerity of Freiburg, 1999

[160] Timos K. Sellis. Multiple-query optimizationfODS 13(1):23-52, 1988.

[161] Timos K. Sellis and Subrata Ghosh. On the multiplergumptimization problem.|[EEE
Transactions on Knowledge and Dta Engineerig¢R), 1990.

[162] Praveen Seshadri, Hamid Pirahesh, and T. Y. C. Leurgnpglex query decorrelation. In
Proceedings of the 12th International Conference on Datgiigering pages 450-459,
Washington - Brussels - Tokyo, February 1996. IEEE Comfoiteiety.

BIBLIOGRAPHY 241

[163] Jayavel ShanmugasundaraBridging Relational Technology and XMPhD thesis, Uni-
versity of Wisconsin—Madison, 2001.

[164] Jayavel Shanmugasundaram. Querying XML views oficelal data. InProceedings of
the 27th VLDB Conferenc@001.

[165] Jayavel Shanmugasundaram, Eugene J. Shekita, RismwonN&ichael J. Carey, Bruce G.
Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficieptiblishing relational data as
XML documents. In Amr El Abbadi, Michael L. Brodie, Sharmaa&havarthy, Umesh-
war Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Youngaitn editorsyLDB 2000,
Proceedings of 26th International Conference on Very Lddg¢a Bases, September 10-
14, 2000, Cairo, Egyppages 65-76. Morgan Kaufmann, 2000.

[166] Jayavel Shanmugasundaram, Eugene J. Shekita, RiswwonN&ichael J. Carey, Bruce G.
Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficigptiblishing relational data as
XML documents.VLDB Journa) 10(2-3):133-154, 2001.

[167] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zh@&amg He, David J. DeWitt, and
Jeffrey F. Naughton. Relational databases for querying XlMtuments: Limitations and
opportunities. In Malcolm P. Atkinson, Maria E. Orlowskagtkck Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editor¥LDB’99, Proceedings of 25th International Con-
ference on Very Large Data Bases, September 7-10, 199%&dim Scotland, UKpages
302-314. Morgan Kaufmann, 1999.

[168] Claude E. Shannon. A mathematical theory of commtiaicaThe Bell System Technical
Journal 27:379-423,623—-656, 1948.

[169] Minglong Shao, Jiri Schindler, Steven W. Schlosseragtassia Ailamaki, and Gregory R.
Ganger. Clotho: Decoupling memory page layout from stoganization. IrProceed-
ings of the 30th International Conference on Very Large DBaaes August 2004.

[170] Dieter SimaderSQL Ledger Accounting: User Guide and Reference Manual dosidh
2.2 DWS Systems Inc., March 2004.

[171] Yoram Singer. Adaptive mixtures of probabilistic risalucers. Neural Computation
9(9):1711-1733, 1997.

[172] Alan Jay Smith. Bibliography on paging and relateddepSIGOPS Operating Systems
Review 12(4):39-56, 1978.

[173] Alan Jay Smith. Sequentiality and prefetching in Bate systemACM Transactions on
Database System3(3):223—-247, 1978.

242 BIBLIOGRAPHY

[174] Alan Jay Smith. Cache memorieSCM Computing Survey44(3):473-530, 1982.

[175] Alan Jay Smith. Disk cache—miss ratio analysis andgdesonsiderationsACM Trans.
Comput. Syst3(3):161-203, 1985.

[176] Carl Downing Tait.A File System for Mobile Computind®?hD thesis, Columbia Univer-
sity, 1993.

[177] Carl Downing Tait, Hui Lei, Swarup Acharya, and Henrhabg. Intelligent file hoard-
ing for mobile computers. liMobiCom '95: Proceedings of the 1st annual international
conference on Mobile computing and networkipgges 119-125. ACM Press, 1995.

[178] W. J. TeahanModelling English TextPhD thesis, University of Waikato, May 1998.

[179] Franck Thollard, Pierre Dupont, and Colin de la HigudProbabilistic DFA inference us-
ing Kullback-Leibler divergence and minimality. Proceedings of the Seventeenth Inter-
national Conference on Machine Learnjmuages 975-982. Morgan Kauffman, 2000.

[180] Ukkonen. On-line construction of suffix treeslgorithmica 14:249-260, 1995.

[181] Theo Ungerer, Borut Robi¢, and Juﬁjlc. A survey of processors with explicit multi-
threading.ACM Computing Survey85(1):29-63, 2003.

[182] Steven P. Vanderwiel and David J. Lilja. Data prefetisbchanisms.ACM Computing
Surveys32(2):174-199, June 2000.

[183] Jeffrey Scott Vitter. Optimal prefetching via datangaression. Journal of the ACM
43(5):771-793, September 1996.

[184] Kaladhar Voruganti, M. TameDzsu, and Ronald C. Unrau. An adaptive hybrid server
architecture for client caching ODBMSs. In Malcolm P. Atkim, Maria E. Orlowska,
Patrick Valduriez, Stanley B. Zdonik, and Michael L. Bradeglitors,Proc. Int'| Conf. on
VLDB, pages 150-161, Edinburgh, Scotland, UK, 7-10 Septemi#9. Morgan Kauf-
mann.

[185] Kaladhar Voruganti, M. Tamédzsu, and Ronald C. Unrau. An adaptive data-shipping ar-
chitecture for client caching data management systeBistributed and Parallel Data-
bases15(2):137-177, 2004.

[186] Jasmine Y.Q. Wang, Joon Suan Ong, Yvonne Coady, antadlcl. Feeley. Using idle
workstations to implement predictive prefetchingHRDC '00: Proceedings of the Ninth
IEEE International Symposium on High Performance Disti#alComputing (HPDC'0Q)

BIBLIOGRAPHY 243

page 87. IEEE Computer Society, 2000. See also UniversByivsh Columbia Technical
Report TR-00-06.

[187] Mengzhi Wang, Anastassia Ailamaki, and Christos &twos. Capturing the spatio-
temporal behavior of real traffic datRerformance Evaluatigm9:147-163, 2002.

[188] Marcelo J. Weinberger, Abraham Lempel, and Jacob Eigequential algorithm for the
universal coding of finite memory source$EEE Transactions on Information Theogry
38(3):1002-1014, May 1992.

[189] Marcelo J. Weinberger and Gadiel Seroussi. Sequgmédiction and ranking in universal
context modeling and data compression. Technical Repokt$111 (R.1), HP Com-
puter System Laboratory, January 1997.

[190] P.J. Weinberger. A universal finite memory sourdBEE Transactions on Information
Theory 41(3):653-664, 1995.

[191] P. Weiner. Linear pattern matching algorithms.Plmceedings of the 14th IEEE Annual
Symposium on Switching and Automata Thepages 1-11, 1973.

[192] Brian S. White and Kevin Skadron. Path-based targediption for file system prefetch-
ings. Technical Report CS-2000-06, Department of Compsténce, University of Vir-
ginia, February 2000.

[193] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. Tdentext tree weighting method: Ba-
sic propertieslEEE Transactions on Information Theo#/1(3):653—664, 1995.

[194] Edwin B. Wilson. Probable inference, the law of sustas, and statistical inferencéour-
nal of the American Statistical Associatijd@?(158):209-212, 1927.

[195] lan H. Witten and Timothy C. Bell. The zero-frequencepliiem: estimating the probabil-
ities of novel events in adaptive text compressititEE Transactions on Information The-
ory, 37(4):1085-1094, July 1991.

[196] Aaron D. Wyner and Jacob Ziv. Some asymptotic propsrtf the entropy of a station-
ary ergodic data source with applications to data compmes$EEE Transactions on In-
formation TheoryIT-35(6), November 1989.

[197] Khaled Yagoub, Daniela Florescu, Valérie Issarmyd &Patrick Valduriez. Caching
strategies for data-intensive web sites. In Amr El Abbadichdel L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schirgand Kyu-Young Whang,
editors,VLDB 2000, Proceedings of 26th International Conferencé/ery Large Data
Bases, September 10-14, 2000, Cairo, Egyptes 188-199. Morgan Kaufmann, 2000.

244 BIBLIOGRAPHY

[198] Qingsong Yao and Aijun An. Using user access patteonssémantic query caching.
In 14th International Conference on Database and Expert stpplicationsPrague,
Czech Republic, September 2003.

[199] Qingsong Yao and Aijun An. Characterizing databass’si@ccess patterns. Ibth In-
ternational on Database and Expert Systems ApplicatiddEXA 2004) pages 528-538,
2004.

[200] Qingsong Yao, Aijun An, and Xiangi Huang. Finding anthlyzing database user ses-
sions. InThe 10th International Conference on Database Systemsdeamced Applica-
tions (DASFAA 2005)April 2005.

[201] Tsozen Yeh, Darrell D.E. Long, and Scott A. Brandt. rbasing predictive accuracy
by prefetching multiple program and user specific files.Pmceedings of the 16th An-
nual International Symposium on High Performance Compguiipstems and Applications
(HPCS'02) 2002.

[202] Nianlong Yin and J. Kelly Flanagan. Reducing applimatioad time by rearranging disk
data. Master’s thesis, Brigham Young University, 1998.

[203] Matthew Young-Lai. Application of a stochastic grammmal inference method to text
structure. Master’s thesis, University of Waterloo, 19%#e also Technical Report CS-
96-36.

[204] Matthew Young-Lai. Adding state merging to the DMCalabmpression algorithnin-
formation Processing Letterg0(5):223-228, June 1999.

[205] Matthew Young-Lai.Text Structure Recognition using a Region AlgelithD thesis, Uni-
versity of Waterloo, 2001.

[206] Matthew Young-Lai and Frank Wm Tompa. Stochastic graatical inference of text data-
base structureMachine Learning40(2):111-137, 2000.

[207] Philip S. Yu, Ming-Syan Chen, Hans-Ulrich Heiss, ankSo Lee. On workload charac-
terization of relational database environmenrtEE Transactions on Software Engineer-
ing, 18(4), April 1992.

[208] Jinsuo Zhang, Abdelsalam (Sumi) Helal, and Joachimidar. UbiData: Ubiquitous mo-
bile file service. INSAC '03: Proceedings of the 2003 ACM symposium on Applied com
puting pages 893-900. ACM Press, 2003.

[209] Qiang Zhu.Estimating Local Cost Parameters for Global Query Optirtiain a Multi-
database SystenfPhD thesis, University of Waterloo, 1995.

BIBLIOGRAPHY 245

[210] Jacob zZiv. Coding of sources with unknown statistiRart I: Probability of encoding error.
IEEE Transactions on Information Theoy-18(13):384-389, 1972.

[211] Jacob Ziv. Coding of sources with unknown statistiRat 11: Distortion relative to a fi-
delity criterion. IEEE Transactions on Information Theoiy-18(13):389-394, 1972.

[212] Jacob Ziv. An efficient universal prediction algoritifor unknown sources with limited
training data.lEEE Transactions on Information Theo#d8(6), June 2002.

[213] Jacob Ziv and Abraham Lempel. A universal algorithmdequential data compression.
IEEE Transactions on Information Theqiyf-23(3):337-343, 1977.

[214] Jacob Ziv and Abraham Lempel. Compression of indi@ldsequence via variable-rate
coding. IEEE Transactions on Information Theq34(5):530-536, September 1978.

Author Index

A Carey, Michael J. 37, 38, 40, 44, 215, 216
Abe, NaoKi ...t 21arrasco, Rafael C.o 213
Acharya, Swarup ..., 199, 20€astro, Miguel 202, 207
Adya, Atul 171, 202, 20TTesa-Bianchi, Nicolo 212
Agresti, Alan 100, 223-22&hamberlin, DonaldD.ccoo... 209
Ahonen, Ahoneno 218hang, Fayc.oiiii 209
Ailamaki, Anastassia 201, 202, 208hang, Henry ... 199
Akyirrek, Sedat 20Zhase, Jeffrey S. ... 201, 205
Amer,Ahmed 20€haudhuri, Surajito 192, 201
Ammar, MostafaH. 20TChen, Ming-Syan ..., 201
AnCAIJUN L 211Chen, Shimin i 209
Anderson, Darrell 20%hirkova, Rada VY. 211
Angluin,Danaciiii i 21%leary,John G. 99, 212
ANSI .. 38,170, 17Llopper, C.J. ..ot e 223
Apostol, lzydor 21ZC0ady, YVONNE ...ttt 206
Appleton, Randy i, 20€0dd, E.F. ... 209
Archibald, James K. 20€ormack, Gordon'V. 212
Astrahan, Morton M. i 20%Cormen, ThomasH.cciiiiiiin.. 11

Coull,BrentA. ... 100, 223-225

B CSUrDS, MIKIOS ..o, 12
Barr, Rimon 37, 38, 40, 44, 215, 216urewitz, Kenneth M. 204, 205
Bartels, GrettaE. ...t 205
Begleiter, RONcoooueeeiiiiiiiin. 212 D
Bell, Timothy C. 99, 21DasGupta, Anirban ... 223
Berenson, Halcooiviiiiiiinn.. 171,17RaVis, AS. ... 212
Bernstein, PhilipA. 80, 171, 172, 21@avison, BrianD. 207
Bilgin, A. Soydan 211Day, Mark Stuart ...t 207
Blasgen, Mike W.covviiiiiiiannnn. 20®ayal, Umeshwar ...l 215
Bowman, IVan T. ..ot 24, 21de laHiguera, Colin 213
Brandt, KarlS.ccooeiiiiiiiii 206le Rooij, Steven ... 214
Brandt, SCOtEA. ..ot 20®eFazio, Samuel ... 201
Brown, Lawrence D.vvr e 22®enis, FranCoisSo.iiiiiiiiiiiiiaaas 213
Brown, Michael K.coueieiiia., 213Denning, PeterJ.l 201
Bunton, SUZaNNec.covvevnennnnn. 212, 21Reshpande, Amol ... 205
Burns, Randal C. ..ot 208eWitt, David J. 216

Doppelhammer, Jochen 181

C Drapeau, Stephanecoiinin... 205
Cai, T.TONY ..ottt 22Puchamp,Dan ...t 204
Cao, Pei ..o 20Bupont, Pierre ... 213

247

248 AUTHOR INDEX

E H
Edelkamp, Stefan L 218aas, Laura M. 208
El-Yaniv,Ran 21MHammer, Joachim 199
Ellis, CarlaSchlatter ..., 120Han, Wook-Shin, 210, 211
Ephraim, Yarvcooiiiiiieiiiann... 21Hatakka, TIMO ...t 212
Eskin, Eleazarcooiuiiiiiiiinannni. 21ble,Gang ... 216
ESPOSIto, Yann ... 21Bleiss, Hans-Ulrich ..., 201
Helal, Abdelsalam (Sumi) 199
F Helland, Patcc i, 172
Faloutsos, Christos ..., Zd-lhngston, PRIl 213
Feder, Meir ...t 215|opcroft, JONE. ..o 14
Feeley, Michael J.t zogoppler, Thomgs """"""""""""""""" 181
. orspool, R.Nigel 212
Fegaras,Leonidas, 2)
. %su WindsorW. ... 201
Feiertag, R.J. ... 199, 20
U, dIanying ..o 213
Felten, Edward W. %uang, o 211
Fernandez, Mary F. ... 33,215, 2]1-€fume David ... e 99
Finesso, Lorenzo ...
Flanagan, J.Kellyo it 202 I
Florescu, Danielaccooviiiinin.. 21/5sarny, Valerieoooiiiii 152
Franklin, Michael J. 204
Franti, Pasiuuueei i 212 J
Fredkin, Edward 102, 112, 213acquet, Phillipel 212
Freund, YOaVoeouueo e 213aeschke, G. 215, 216
Jin,Wei Lo 201
G Joshi,Milind i 40
Gabbay Freddyl 24,208 K
Galindo-Legaria, César 34, 39, Aﬁ?ant, immanuel - 99
Ganesan, Prasanna ... g-irlin, AnnaR. ... 205, 209
Ganger, Gregory R. ... 20%earns, JohnP. 201
Ganski, Richard A. i, 21?(earns, Michael 201, 213
Gerlhof, Carsten Andreasccoou... z%eller, Tom . 207
GhOSh' Subr.aFa """"""""""""""""" 2lemper, AIfONS ... 181, 203
gfgbonsépht'::'pAB' """""""""""""""" é%‘;ziessling, WEIMEE et 215
ibson, Garth A. ;
Glegerc, Robr ... o g L e
INUNG, BKA ... nafla, Nils ... 210
Goldstein, Jonathan 171, 14&ssmann, Donaldooooveeee, 181, 208
Graefe, Goetzcooviiiiiii 207, 2000tz, David F. ..o 201
Gray, JImN. 171,172, 200, 20Rraft, TODIASovvvee e e e e i eeieeeai 215
Griffioen, James ... 20/raiss, AChIMc.o'o 206
Grimsrud, Knut Steneroo 20frishnamurthy, Rajasekar 215
Guerrero, Edgard Benitez 208rishnan, P. ... 204, 205
Guo,Hongfei ... 171, 17Kroeger, Thomas M.coviiiiiinnnnnnnn. 206
Gusfield,Dan ..., 175, 21Ruenning, Geoffrey Houston 199

Gutman, Michaelc i 21Kurtz, Stefan 95, 214

AUTHOR INDEX 249

L Nelson, BrentE.c.ooviuiiiiiiiianann... 204
Laird, Philip 21Nevill-Manning, CraigG. 212, 213
Langdon, Jr,GlenG. 21Rllsson, Stefan 112
Larson, Peke 83,171,172
Larsson, N. Jesperc.oeuiiiiiiiiniiinann. 212 0
Lee, SUKNO .. .oivii e 209'Neil, Elizabeth J. 171,172
Lehman, EFC ...ovvveeeee e 21®'Neil, Patricko 171,172
Lel, HUi ..ot 199, 2040NCiNA, JOSE ... 213
Leiserson, CharleS E.oouuueeeuieen.. 1@NG, JOON SUAN ..o 206
Lemay, Aurelieno, 21;§__Drganick, E. L 199, 200
Lempel, Abrahamccoiiiiaiin... 21®zsu, M. Tamer ... 202
Lempel, Ronny ... 212
Leung, T.Y.C. ..o 215 P
LeVY, AN Y. et oq1sPal, Shankar ... 80, 210
LeVY, HENMY .o oo e godPalmer, Mark ... 203, 204
Li KA« 209Péris, Jehan-Frangois 06. 2
Lilja, DaVId J. e lggDatterson, David A.o 1, 199
Lindsay, Bruce G. 37, 38, 40, 44, 209, 215, 21BAUErsoN, R-HUGO ... 209
Liskov, Barbaraccooueuunn.. 171, 202, 207aulley, Glenn Norman 34,43, 259
Long, Darrell D.E.oovvveeeaiiieean. . 2067€arsoN, E.S. . 223
Lorie, RAYMONA A. .+ voveeeseeeeeaen 171, oodirahesh, Hamid 37, 38, 40, 44, 215, 216
LUQOS], GADOT ..ot 21Fitt Leonard ... 213

Popek,GeraldJ. 199

M Price, ThOMas G. ...t 209
Ma, Wilkie 199Putzolu, GianfrancoR., 171, 209
Madhyastha, TaraM. 205
Maier, Davidooiiiiii 207, 215 R
Mansour, Yishayooeeeeeeeeeeennann... 20Rahal, Amira ... 83
Mason, Davideeiiiiiiee i, 25&Ramakrishnan, Raghu 171,172
McCreight, Edward M. g5, 21Rantzau, Ralfl 215
Mehl, JAMeS W. ..ot e 208eed, Daniel A. ... 205
Melton, JiM ..o 171, 17Reiher,Peter 199
Mendelson, AViou oo 24, 20&keinwald, Berthold 37, 38, 40, 44, 215, 216
Merhav, Nerovoueee e 21RISSANEN, JOMMA . ..ottt i 212
MICIEE, L. oo e 213Ritchie, DennisM. 199, 200
Mitschang, Bernhard 21Rivest,Ronald L.cciiiinn... 11, 213
Moffat, AStairoveeree e, 212R0bIiC, Borut e 24, 208
MOoON, Yang-Saecoeuneiniineanns 210,21Ron,Dana 201, 213
Yang-Sae MOoONoovve i 2180oncancio, Claudiaccooiiiian... 205
Moran, Shlomo ..o, 21Rubinfeld, Ronittccoiiii.. 201, 213
Morishima, Atsuyuki 33, 215, 216
Morrison, DonaldR. 112,213 S
MOWHY, TOAd C. oo vve oo opgoalem, Kenneth ... 202, 211

Salo, TIMOJ. ... 211

N Sapia, Carstenc.oiiiiiiiii 216

Narasayya, Vivek 20Basha, Denniscoiiiii e 172

Naughton, Jeffrey F., 216aul,Ronald 212

250 AUTHOR INDEX

Schapire, RobertE. 201, 213liman, Jeffrey D. ... 14
Schek,Hans-Jorg 215, 216ngerer, Theo ..., 24, 208
Schindler, Jiri ... 20Unrau, Ronald C. i 202
Schkolnick, Mario L. 2000rsu, 10aNna ... 208
Schlosser, StevenW. ... 202
Schrodl, Stefan 221 \
Schwarz, Holgerouiiiiiiiiieaen... 21Nalduriez, Patrick L. 215
Selinger, Patricia G.coeiiieiiaaein... 208alentin, Gary ... 209
Sellie,Lindacoiiiiiiia. 201, 21¥anderwiel, StevenP. ... 199
Sellis, TIMOS K. ... 84,21MidalE. ... 213
Seroussi, Gadielouuuii 21vitter, Jeffrey Scott 204, 205
Seshadri, Praveencooeuiiieeenn... 2Mpelker, Geoffrey ... 205
Shanmugasundaram, Jayavel ... 37, 38, 40, 44, 215, Xpguganti, Kaladhar 202
Shannon, Claude E.cooon. 212
Shao,Minglong ... 202 W
Shekita, Eugene J. 37, 38, 40, 44, 215, 2Y§pde, Bradford W. ... 209
SHEArKOV, YoM, e 212Vang, Jasmine Y.Q. ... 206
SAULL, DAVIG .+ 80, 218vang, Mengzhi ... 201
Silc, JURT oo 24, gpdVarmuth, Manfred K. ...t 213
Simader, DIEterueie i 1gYveikum, Gerhard ... 192, 206
SINGEN, YOTAM st o1¥Veinberger, P.J. ... 212
Singh, MUNINAar P. ... 21 YVveinberger, Marcelo J. ... 212
SKadron, KeVINovne e p08Veiner, P ... 95,214
Slutz, Donald R. ... ovoee e 20§yu-YoungWhang ... 210
SMith, AlAN JAY .. e oo 199, 20YVhang, Kyu-Young ... 210, 211
H-YEOI SONGo 21g/Vhite, Brian'S. ... 205
Stodolsky, Dani€l 2OgViIIems, FM.. 212
SUCiU, Dan ... 33’ 215’ 21Wi|50n, EdwinB. 100, 224
Sun, Xiabai ... 20vitten, lanH. .. 99, 212, 213
Szpankowski, Wojciechc.cooviin... 21vong, Harry K. T 215

Wyner, AaronD. 212

T

Tait, CarlDowningcoveiiiiinaannn.. 199 Y
Tan, Wang-Chiewccoviiuieeinnnii.. 21&agoub, Khaled 215
Teahan, W. J. ... 21%80, QINGSONG .+« 211
Thollard, Franckcooeiieeiiiiniin. 21%€eh, TS0zZen ... 206
Thompson, KENcooviiiiiienann... 199, 20¥in, Nianlong i 202
Tikkanen, Mattiooveeeeee e, 112%ona, Golan ... 212
Tishby, Naftaliccooviiiniiiiieinan... 213Y0st, Robert A. ... 209
Tialkens, T.J. ...t 21Xoung, Honesty C. ..., 201
Tompa, Frank Wmcooiiiii... 21¥oung-Lai, Matthew 212,213
Tra_igerl |rving L 171, 209YU, Phi"p S 201
Tufte, Kristin 216
TURN, WIRAM oo 213 Z

Zdonik, StanleyB. 203, 204

U Zelenka, JIM ..o 209

Ukkonen 95, 113, 126, 212, 212hang, Chun 216

AUTHOR INDEX

Zhang, JinSUOottt 198ondervan, Quinton
Zhu, QIangoiiii e 83
Ziv,Jacob ... 212

Index

Italicized page numbers indicate the location of definiion

SYMBOLS CAST ettt 197
AN 36,37,40, 480G .. 187
AX 36, 37, 39, 49, 52, 54, 58HECK-CORR-PREDICTIONS 63, 151, 152
T 36, 45, 49, 52, 54, BEHILDREN ..\ evveee e, 133-135, 137
e 36, 52CHOOSECORRELATIONS 41-43, 46, 51, 53
o 36, 45,49, 52, 5€EHOOSEPREFETCH ..o vvv vt 133, 135, 137, 138
CLEAR-PREFETCH .\ttt iiiiiee e iiieeeen 151, 153
A client hash join . 34, 50-53, 56, 60, 67, 71, 78, 170, 191,
ACCESS IIBE ..ttt i i e 204 192. 214. 220
ACID o 171, 22Ljient merge join .. 34, 50, 52-54, 56, 58, 62, 71, 73, 78,
ACTION 18, 55-59, 62, 64, 67, 139, 140, 144-154 214, 216, 220
Adaptive Server Anywhere 176, 178, 181, 186LOB ___ 216
ADD-KEYS-TO-ORDER-BYcooeinn 59 cLose 14, 15, 17, 21, 62, 93, 95, 150, 163, 166, 167, 176
ADDINPUT ... 124,125, 15045150 grained optimization 215
ADDOUTPUT ..ottt cii e 124, 125, 15400,\/”3”\15HASH 51, 58, 59
ALERGIA 213COMBINE-JOIN 42-44, 58-60
alphabet 16, 11 OMBINE-MERGE . -\ 53, 58, 59
ﬁngNDACT'ON """" eAd e S """ 5;—60;1 146COMB|NE-UN|0N 46, 58-60
""""""""" seeAdaptive Server Anywhere common gateway interface187
ASENSITIVE ... i 170 .
bl ; 20c7oncatenat|on 15
aASSEMDIY OPETAION e concise trace notation, 14,32
AT-MOSTONE ...t 43, 45, 66, 146 . .
confidenceintervalccoiiiiiiiini.. 100
AVG-COST .ttt e 83
CONFIDENCEINTERVAL . ..vvii et 100, 134
AVG-ROWS .. o 83
[©70] N1 =T 14
B CONTEXT ittt it i e i i i 23, 26, 50, 55
DALCh FEQUESE - . -+ v e e e 1epntexttree ..o 17, 30, 60, 67, 77, 90
BATCH-EXAMPLE .« oo oo oo 4,7, 8900nteXtS ... 22
BATCH-JOIN ...\vieeienin. 144, 146, 148, 149, 155°0RRHOME ..o 124,125
BATCH-UNION o vnoeooe . 145, 146, 148, 149, 153correlated 4.2
batches ... 8GORRELATION . 25-28, 41, 42, 109, 110, 114, 121-123,
BESTPREFETCH ...t iie i eii e 133,134 125-127, 132, 147
correlationhome, 121
C correlation SOUrCeovviiiii i 25
Call Monitor .11, 17, 18, 22, 24, 82, 102, 150, 152, 154;orrelation Type
162 e 41, 107, 110, 147
canonical formo i 117 B 41, 107, 110, 147

254 INDEX

O 41, 107, 110, 147, 148inite state model for suffix trie 136
correlationtype 28inite-statemodel 101, 150
CORRELATIONS 121, 122, 124-126, 129, 132, 139, 140ully predictedo, 27

146, 147 FULLY-PREDICTED ...ttt vi i 27, 66
CORRFORPARM ... 27,42,132
CORRSOURCE ..t ittt e 26, 28 G
CostModel 66-68, 79, 83, 86, 87, 129, 163ENERATE-PREFETCHACTIONS 145, 146, 148
COUNT-COLUMNS . o oo o, 46 GENERATE-PREFETCH—QUERY 145, 146, 148, 149
COUNT-OCCURRENCES. .. 97, 127, 131, 133, 134, 138GET-EXCHANGE-RATEt 3
CURR-VALUE . ..voieiaeaannn.. 28,108, 111, 124GET-INCOMINGvvniviinnnn, 136, 139, 140, 146
CUrSOr SENSIIVILY oo, 017 GET-OPEN-INVOICES ovviiiiii e 3,6
GET-PREFETCH...ovviiiiieann 137, 139, 140, 146
D GETCHILD ottt ettt 112
DBl 187, 189GETCUSTOMER ..ttt teeiiee i 91, 94, 99
DBI-JDBCbridgecccvviiiiii i 189GETDEFAULTSHIPTO o ovvoeee i, 91, 93
DECODE ittt et 57, 62GETSUFFIX © oo 114, 118, 134-137
DECODEJOIN vt iie i 5661, 63, 6AGETVENDORORDERvvvveinnneannnnnn 91, 93,94
DECODEUNIONovviiii.... 56-61, 63, 64
DISCONNECT « .+ v« et et e 14 H
Hoo seeNest Alternative ‘H’
E hidden Markov modelccoveeeeinnnn... 205
EMPTYCURSOR .. oii it i ci e I53HMM oo seehidden Markov model
ENITOPY .o\ v e 21B0ardingi e 199
escape probabilities oL 321
EST-COST ...t 66-68, 79, 82-86, 129-131 I
EST-COSTTREE ..\ttt 67, 68iAnywhere Solutions oL 176
EST-INTERPRET ...t ii i iii e ae 67,68,79,82ILP ... 209
ESTP ...t 30-32, 67, 68, 70, 76, 77, 19Bplicit suffixtree il 113
ESTPOcovvvvnn 30-32, 67, 68, 70, 76, 77, 19Bplicit suffix trieL. 103
ESTFROWS ... 67, 79, 82—-84, 8énformed prefetching 209
estimating prophet i 20MNIT-CORRELATIONS . ..o ovv v 23, 26, 28
EXECUTE «.oiiii i 14,169, 17ANIT-SCOPE . ..t ot ettt 26, 28
explicitnode 11INSENSITIVE ..o 170
explicit suffixtrie 103instruction-level parallelism o
EXIENSION ..ottt 200, 2LDMENSION ...ttt 200, 210
INTERPRET «\ttiieiiiinnnnns 57, 62
F INTERPREFJOIN ©..ovveeneanennnnn. 56-61, 63, 64
FALSE ...t 89, 114, 124, 137, 149NTERPREFMERGE « v ovvveeeeeennn.. 56-59, 63, 64
FEASIBLE .ottt e e 132, 134| NTERPREFUNION ... 56, 57, 59-61, 63, 64
feasible prefetch 132S-REDUNDANT oo oo 137
FETCH ..9, 14, 15, 17, 21, 24, 25, 44, 45, 48, 53, 62, G%OIation 90,171,172, 221
93, 95, 102, 109, 150, 154, 163, 166, 176
T o T 204 J
FIND-CORRELATIONS 104, 108-110, 120, 122 ... ettt seeNest Alternative 'J’
FIND-CORRELATIONS-COMP 114, 122125 JAVA ..ttt e 189
FINDCHILD 'ttt i 111IDBC . 189
finite statemodel 90, 13INL-COST ..ttt it 84, 85

INDEX 255

JNL-ROWS .. BANULL-LIST oo 46
JOINCURSOR .ttt iiiie i 153, 154NULL-SUPPLIED ..ttt tiiie e iiieeeanns 45, 63, 153
NULLS() «vvneeeiie e 36, 37, 40, 48
K
KEY() o 36, 49, 54, 55 O
OLAP ... 211, 215, 216
L OLTP e 211
LAN ..o 74-76, 1880peN5, 14, 15, 17, 21, 22, 25, 26, 30, 33, 56, 60, 62, 64,
LANO.1 69, 74, 81, 157-159, 187, 188, 194, 198 67, 76, 93, 95, 102, 125, 136, 140, 145-148,
LANL 69, 74, 81, 156, 157, 159, 160 150-152, 159, 162, 163, 166, 167, 170, 176,
LATERAL 38-42, 60, 69, 216, 220 178, 181, 186
lateral derived table 4140peN €dgESttt 214
lateral derived tables, 8. 3out-of-band characterccoiuiit. 103
LCL ..o 69, 74, 75, 81, 141, 156-158uter referenceoueuieierianannnnnn. 37
LEFT OUTER LATERAL 40, 42, 43, 51, 60, 2200uter UNioNcoouirieriiaiiann., 34,42, 46
LONGESTSUFFIX .\vvveeeiinnnnnn. 104, 106, 107, 117
LONGESTSUFFIX2 . veeeeeeee e 114, 117 P
path compressed suffix trie 112,113
M PatriCIatre.ovv e 112, 213
Mo seeNest Alternative ‘M’ Pattern Detector 11, 17-19, 22, 23, 26, 27, 29, 30,
Mo 133 32,41, 42, 62, 90, 94, 95, 126, 127, 129, 132,
Markov-Chainccoiiiiiiiiinnn. 206, 210 138, 161, 165, 168, 193
MOEl ... 9fattern Optimizer 11, 18, 27, 32, 65, 79, 82,
MONITOR-CLOSE ...t vvee e iiie e 17,23, 24 83, 86, 87, 90, 91, 94, 95, 101, 127-129, 135,
MONITOR-FETCH 17, 23, 24, 102, 104, 124, 125 138, 139, 147, 150, 161, 163, 168
MONITOR-OPEN .. 17, 22-24,102, 104, 106, 110-113Perlcovrreiii i 3,7,187, 189
118, 120 PPM 204, 212
MONITOR-OPEN-COMP 113-115, 120, 125, 126PPM* ... ittt 212,214
MTCache ... 17PREFETCHBENEFIT .ot 130, 134
MULTICS .. i 200Prefetcher . 18, 32, 41, 55-57, 62, 64, 91, 101, 129, 139,
multiset 39, 40, 45, 48, 52, 54, 55 150, 151, 154, 162, 168
PrefetchGuide 210, 211
N prefix ... 15
N seeNest Alternative ‘N’ PROMISEo oo 216
Nest Alternative
Ho 50, 56, 59, 66, 67, 193 Q
Jo 42, 43, 56, 58, 59, 64, 66-68, 7®uery
Mo 50, 56, 57, 59, 66, 67 Qb v et 60, 61
‘N 23, 32, 56, 58, 59, 66-68, 75, 193 Qe vttt 60, 61
U 42, 46, 56, 58, 59, 64, 66-68 @1 .3-5, 18, 20-22, 24-26, 30, 32, 33, 35, 37-39,
NEW-CHILDoviiieeeiannn... 104, 114, 117, 118 42-44, 47, 50, 51, 53, 61
NiL ... 13,23, 28,59, 63,104, 108, 114-118, 133-135, @ ...3-5, 8, 18-22, 24, 30, 32, 33, 35, 37-39, 43,
137, 142, 146, 149, 151, 153 44, 47, 50, 51, 53, 55, 60, 61
NODEPTR ... 113, 114, 117,118, 125 QB4+ et 5, 89, 90
NODES & . vttt et et e e e 136 Q3 e v e 60, 61

NULL ..15, 36, 37, 45-49, 74, 77, 85, 86, 145, 177, 196, Qs . 4,5, 18-22, 25, 26, 30, 32, 35, 40, 41, 43, 44,
197 47,51, 53, 61, 89, 90

256 INDEX

Qo 4, 5,89, 90BRV-COST .\ tttiiiiiiiiennns 82-84, 86
(5 v et 4,89SRV-ROWS . ..ot 82,84
Qa o 91, 93,94, 107, 11(BRV-SAVINGS . ..ovvieiiieeeeennnns 84-87, 131, 143
Qb oo 93, 94, 99, 110, 111, 144, 145t0ChastiC PrOCESS vvirte i iiiee s 95
Qc v 91, 93, 107, 136, 13Btored proceduresccouiiiiireniinininn. 140
QA v 93, 107, 144, 14BTRINGORDER .. titii i ie i iie e eieeenn 124, 125
Qe vvvie 93, 107,144, 14TRPTR 113, 114, 117, 122, 123, 125
QQoPt vt v et 4—BSUBMIT= ettt et e 57, 62
O 93, 94SUBMIT-HASHiiiiiiiiiienn 55-59, 63, 64
Qy oo 93, 94SUBMIT-MERGE viveeieeennn 56-59, 63, 64
O 93, 94SUBMIT-NEST ... 56, 58-61, 63, 64
Query Rewriter 11, 18, 32, 60, 79, 8BUBMIT-PREFETCHt iie i 151-153
83, 86, 91, 127, 129, 135, 138-140, 144, 14&UBMIT-UNMODIFIEDvvvirennnanennn. 151, 152
150, 161, 163, 168 SURFIX .+t 15
SUffiXtree ... 112, 113
R SUIIXHTI® e eeee oo 90, 102
randomvariable BUIE . 209
redundancy-removed finite state model l@%/stem R . 210
redundancy-removed finite state model for trdte.161
redundantrelations i 216 T
REPLACE-PARAMETERSuies 146, 147 temporal anomaliescovuuiieeninnnn, 172
REWRITE-TREE 55,57-60, 62,67, 68THORcooiiiiiiii i, 202, 208
ROWID() « @i 36, 45TIP .. 209
RUN- L 15Grie ..o 102
RUN-CLOSE ... 18,64, 65TRUEovvveeeeea 27, 66, 89, 124, 126, 149
RUN-FETCH ... 18,64, 154typefieldveeiei e 47
RUN-OPENccvviiiintt 18, 63, 64, 151, 152
U
S U seeNest Alternative ‘U’
SAPRIB oo I8YNIONCURSOR .+ v e, 153, 154
SCh) o 36,37, 45,48, 49,52, 54, SPnix L 200
scope length ... 120,126, 127, IRONULLS ..o 48, 49
SELECT o 19QYSCHEMA o 48, 49
semantic prefetching 200SE-PREFETCH . .o oo 151-153
SENSITIVE ..o 17Q;ser access PAMEINS ..\ttt 211
SEQUENCE ... 13ser Defined Functions (UDFS) 207
sequence trace notation 14, 95, 102
seriglizable 171217 Vv
SET-PREFETCHooiiiiiii 133, 135VALUETRACKER ...voeivieeeannnnn. 150-152, 154
SHOULD-PREFETCH.............ooiiiinat. 133-135VERIFY-CORRELATIONS 23, 26-28, 104, 108-111
significantupdate ... 169 ERIFY-CORRELATIONS-COMP114, 120, 123-126
SilkRouteoiiii 21 irtual NOAESo e 113
snapshotisolation 172, 22fsible Changeoooeeeiieeiiiiiee... 170
speculative prefetching 209
SQL-Ledger 3,4, 6-8, 18, 168, 171, 175, 176, 187-189, W
191-193, 195-198 Wald confidence interval 223

SQL-Relaycovviii 21WAN 2,5,69, 74,75, 81, 155, 157-160, 198, 219

INDEX 257

weak isolation ... 171 X

WIiFi o 69, 75, 81, 156-159, 1OKMLt 215, 216
WITHHOLD ... 171

W TH HOLDCUISOIS ...cviei e e iie e 171,175

world-wide web 207 Z

Colophon

This document was prepared with theégX 2. document preparation system, based gX Ver-
sion 3.141592 in the MiKgX 2.4 distribution. lllustrations were created WRNETAPOST, the
PSTricks package v0.2l, Visio 10.0, the statistics packade9.0, Excel 9.0 and thaot graph
layout program from AT&T Bell Laboratories.

The typographic style of this document is based ontthesi s. cl s file originally devel-
oped by Glenn Paulley and modified slightly for this documé&ave Mason and Glenn Paulley
implemented the ode. st y used to format code samples.

Sample code was composed in XML and translatedTgX 2 or the Lua programming lan-
guage (for testing) using XSL. The document dependencies managed witlmak e, with the
awk scripting language used for additional help.

The bibliography for this document was prepared usirg[BX in combination with a cita-
tion database system developed by the author using Lua aras&ydaptive Server Anywhere
9.0.2. This system automatically generates the Authordndé# references cited in this paper
were stored in electronic form and read on-line. The ACMtdidibrary and the University of
Waterloo library electronic journal collections thereltypaed several trees to be saved.

The text for this document was composed using Watcom vi 14ifiguthe ‘crufty’ colour
scheme.

259

