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Abstract

Risk measures (or premium principles) and capital allocation principles play a

significant role in risk management. Regulators and companies in the financial

markets usually adopt an appropriate risk measure, for example, Value-at-Risk

(VaR) or Tail Value-at-Risk (TVaR), to determine the benchmarks. However,

these risk measures are determined from the loss functions with constant weights,

not random weight functions.

This thesis proposes new approaches to determine risk measures from two per-

spectives. Firstly, we will generalize the definition of the tail subadditivity for

distortion risk measures; we define the generalized GlueVaR (a linear combination

of VaR and TVaRs) to approach any coherent distortion risk measure. Secondly,

we will research the risk measures (or premium principles) and capital allocation

principles based on the loss functions with random weight functions.

The new reinsurance premium principles are derived similarly to the new risk mea-

sures. The two thresholds for the weight in the loss function can be employed by

reinsurance companies as benchmarks when pricing the reinsurance products. The

capital allocation principles derived based on the weighted loss functions are both

mathematically and economically reasonable. Many of the risk measures and al-

location principles, including the new risk measures, can be covered by this model.

The results of this thesis have not only unified many of the risk measures and

capital allocation principles, but also provided new and practical models.
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Chapter 1

Introduction

1.1 Premium Principles and Risk Measures

In Chapter 2, Chapter 3 and Chapter 4, we will propose two risk measures and a

new premium principle to price reinsurance contracts. One of the two risk mea-

sures is a risk measure satisfying the property of tail-subadditivity, and the other

is derived based on the weighted loss functions. In the literature, Young (2004)

concluded three methods to attain premium principles, the “ad hoc method”, the

“characterization method” and the “economic method”. If an actuary checks the

desirable properties for a new premium principle, it is called the “ad hoc method”.

Sometimes, they might firstly list the axioms for the potential premium princi-

ple and then derive the principle following these axioms by the “characterization

method”. Moreover, particular economic theory could be applied to determine

premium principles and it is defined as the “economic method”. In fact, most of

the premium principles are not derived by only one method, and we can combine

these three methods together to find new premium principles.

A risk measure H is a mapping from X to R = (−∞,+∞), where X is the

set of loss random variables, namely, for any X ∈ X , H(X) ∈ (−∞,+∞). If X is

the set of insured (covered) loss random variables faced by an insurer (a reinsurer),

1



a risk measure H : X → R is also called an insurance (a reinsurance) premium

principle. Some desired properties or axioms for the premium principles or risk

measures are as follows.

1. Risk loading: H[X] ≥ E[X] for all X ∈ X .

2. No unjustified risk loading: If a risk X ∈ X is equal to a constant c ≥ 0

(almost everywhere), then H[X]=c.

3. Maximal loss (no rip-off) : H[X] ≤ ess-supX for all X ∈ X .

4. Translation equivalence (translation invariance): H[X + a] = H[X] + a for

all X ∈ X and all a ≥ 0.

5. Scale equivalence (scale invariance, positive homogeneity): H[bX] = bH[X]

for all X ∈ X and all b ≥ 0.

6. Subadditivity: H[X + Y ] ≤ H[X] +H[Y ] for all X, Y ∈ X .

7. Monotonicity: If X ≤ Y a.s., then H[X] ≤ H[Y ].

8. Preserves first stochastic dominance (FSD) ordering: If SX(t) ≤ SY (t) for

all t ≥ 0, then H[X] ≤ H[Y ], where SX and SY are the survival functions of

X and Y , respectively.

9. Preserves stop-loss (SL) ordering: If E[(X−d)+] ≤ E[(Y −d)+] for all d ≥ 0,

then H[X] ≤ H[Y ].

10. Law invariance: H(X) = H(Y ) for all X, Y ∈ X such that X and Y have

the same probability law.

In Chapter 2, we generalize the concept (Belles et al., 2014a and 2014b) of tail sub-

additivity for distortion risk measures and give sufficient and necessary conditions

for a distortion risk measure to be tail subadditive. As applications of the derived

results, we rectify Theorem 6.1 (Belles et al., 2014a) and Theorem 5.1 (Yin and

Zhu, 2016) regarding the sufficient conditions for a distortion risk measure to be

2



tail subadditive. We also introduce the generalized tail subadditive GlueVaR risk

measures, which can be used to approach any coherent risk measure. To further

illustrate the applications of the tail subadditivity, we propose a tail distortion

principle for decision makers to determine the required solvency capitals or for in-

surers to calculate insurance premiums for a portfolio of risks. The tail distortion

principle depends both on extreme tail events and on the dependence of the risks

in a portfolio.

In Chapter 3, the weights in the model (Bellini et al., 2014) are generalized as

functions of loss random variables, and the corresponding risk measures are de-

fined as the weighted quantiles. Then, the quadratic and identity functions are

adopted as two special functions to quantify the positive and negative parts in

the objective function. Furthermore, the properties of the weighted quantiles are

proposed. In the quadratic case, we define the risk measure as the weighted ex-

pectile and investigate the properties when the weight functions are segmented by

a special risk measure. In fact, the expectiles and the weighted premium principle

can be treated as two special cases of the weighted expectile. Based on a specially

defined weight function, the weighted expectile can be a coherent risk measure.

In the identic case, the new risk measure is defined as weighted VaR. Moreover,

we compare the weighted VaR with the classical VaR, the median shortfall (Kuo,

2013), and the averaged VaR (Hera et al., 2012). In addition, numerical examples

are provided following the theories.

In Chapter 4, given ceded functions, two classes of new premium principles for

pricing reinsurance contracts are proposed by minimizing the objective function

with both the insurer’s and reinsurer’s risks considered. Quadratic and identity

functions are applied to quantify the risks, and two classes of reinsurance premium

principles are derived. In fact, the weight functions in the objective function can

be either constants or functions of the loss random variables. Also, the properties

of the new principles are studied in two cases. In the quadratic case, the min-

imum weight factor acceptable and the preferred threshold for the reinsurer are

3



suggested. Moreover, numerical examples with loss random variables following ex-

ponential and Pareto distributions are provided. In the identic case, the premium

principle can be lower than the premium based on the classical VaR (Heilmann,

1989) when the weight functions are both constants.

1.2 Capital Allocation Principles

If there are n business lines in a company, the capital allocation problem is usually

described as a decomposition of the given total capital based on individual risks

for n business lines. The total capital is assumed to be K. The individual losses

are X1, X2, . . ., Xn, and so the aggregated loss is S =
∑n

i=1 Xi. We use Ki to

denote the allocated capital for the ith business line for i = 1, 2, . . . , n.

Common Capital Allocations are the following:

(a) Haircut: for certain α ∈ (0, 1) and i = 1, 2, . . . , n,

Ki =
F−1
Xi

(α)∑n
i=1 F

−1
Xi

(α)
K,

where F−1
Xi

(α) is the VaR at confidence level α for Xi.

(b) Quantile: for i = 1, 2, . . . , n,

Ki =
F−1
Xi

(FSc(K))∑n
i=1 F

−1
Xi

(FSc(K))
K,

where Sc =
∑n

i=1 F
−1
Xi

(U) with U being a uniform random variable on (0, 1).

(c) Covariance: for i = 1, 2, . . . , n,

Ki =
Cov(Xi,

∑n
i=1Xi)

Var(
∑n

i=1Xi)
K.
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(d) Conditional-Tail-Expectation (CTE): for certain α ∈ (0, 1) and i = 1, 2, . . . , n,

Ki =
E[Xi|S > F−1

S (α)]

E[S|S > F−1
S (α)]

K,

where S =
∑n

i=1 Xi.

(e) Tail covariance premium adjusted (Wang, 2014):

Ki =
TVaRα(Xi|S) + aTCovα(Xi|S)√

TVα(S)

TVaRα(S) + a
√
TVα(S)

K

where a is a non-negative constant and TVα(X) = Var[X|X > VaRα(X)],

TVaRα(Xi) = E[X|X > VaRα(X)], TVaRα(Xi|S) = E[Xi|S > VaRα(S)],

and TCovα(Xi|S) = Cov[Xi, S|S > VaRα(S)].

In Furman and Zitikis (2008b), several axioms are introduced for the weighted

capital allocation principle. They consider the business units X1, X2, . . . , Xn in

a portfolio and want to allocate total initial capital K into the n business lines,

namely, the allocated capital should be K1, K2, . . . , Kn. We know that the aggre-

gated loss is S =
∑n

i=1Xi. In this problem, Ki = A(Xi, S) for i = 1, 2, . . . , n. For

I ⊆ N = {1, 2, . . . , n} and SI =
∑

i∈I Xi, the axioms are as following:

1. No undercut:
∑

i∈I A(Xi, S) ≤ A(SI , SI).

2. Consistent no-undercut: A(SI , S) ≤ A(SI , SI).

3. No negative loading: A(Xi, S) ≥ E[Xi].

4. No unjustified loading: A(Xi, S) = c, if Xi = c.

5. Full additivity:
∑

i∈N A(Xi, S) = A(S, S).

6. Consistency:
∑

i∈I A(Xi, S) = A(SI , S).

7. Sub-translation invariance: A(Xi+a, S+a) ≤ A(Xi, S)+a for any constant

a ≥ 0.
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8. Translation invariance: A(Xi + a, S + a) = A(Xi, S) + a for any constant

a ≥ 0.

9. Super-translation invariance: A(Xi+a, S+a) ≥ A(Xi, S)+a for any constant

a ≥ 0.

10. Sub-scale invariance: A(bXi,
∑

j 6=iXj + bXi) ≤ bA(Xi, S) for any constant

b ≥ 0.

11. Scale invariance: A(bXi,
∑

j 6=iXj+bXi) = bA(Xi, S) for any constant b ≥ 0.

12. Super-scale invariance: A(bXi,
∑

j 6=iXj + bXi) ≥ bA(Xi, S) for any constant

b ≥ 0.

In Chapter 5, we establish a general model for determining optimal capital allo-

cation principles based on the unified model (Dhaene et al., 2012 and Belles et

al., 2014b). The weighted loss functions with the capital deficit risk and capital

surplus risk are considered, and so the model is both mathematically and eco-

nomically reasonable. Following the generalized principles, the capital allocation

principles for the business driven and aggregate portfolio driven types are derived

with the quadratic and identity quantifying functions. In addition, the add on and

off capital allocation principles are proposed. Then, we investigate the properties

of these principles. In fact, the capital allocation principles in Dhaene et al. (2012)

and Belles et al. (2014b) are special cases of the generalized allocation principle

in our revised model.

In Chapter 6, we provide concluding remarks.

Throughout this paper, “increasing” means “non-decreasing” while “decreasing”

means “non-increasing”.
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Chapter 2

Tail Subadditivity of Distortion

Risk Measures with Applications

in Portfolio Risk Management

2.1 Introduction

Risk measures have been used extensively in insurance and finance as a tool of risk

management. One of the important functions of risk measures is to determine the

required regulatory capitals for investment and insurance portfolios and to price

insurance and reinsurance products. Mathematically, a risk measure is a mapping

ρ : X → R = (−∞,∞), where X is a set of loss random variables or risks defined

on a probability space (Ω,F ,P). When X is the set of the losses faced by a bank

or an insurer, a risk measure ρ can be used to determine the required regulatory

capitals for the bank or insurer. When X is the set of the insured risks faced by

an insurer, a risk measure can represent a premium calculation principle. In this

case, for an insured risk X ∈ X , ρ(X) is the premium assigned to the insured risk

X. In this chapter, we denote Lp = Lp(Ω,F ,P) for p ∈ [0,∞], which is the set of

all random variables, defined on the probability space (Ω,F ,P), with finite p-th

moment for 0 ≤ p ≤ ∞. In particular, L0 means the set of all random variables

7



while L∞ represents the set of all bounded random variables. In determining the

regulatory capitals, the VaR and the TVaR are two popular risk measures used

by regulators in finance and insurance. In insurance risk management, many pre-

mium principles, such as net premium principle, expected value principle, Dutch

principle, Wang’s principle, and many others, have been employed in insurance

pricing.

For any loss random variable X ∈ L0, the VaR of X at a given confidence level

α ∈ (0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ≤ x) ≥ α} = F−1
X (α),

which is the left continuous inverse of the distribution FX(x) = P (X ≤ x) =

1 − SX(x). When the regulatory capitals of a bank or an insurance company

are determined by VaRα, the solvency probability of the company is at least the

confidence level α. However, the risk measure of VaR does not satisfy the sub-

additivity1, which is one property desired by many regulators in determining the

capital reserves. For any loss random variable X ∈ L1, the TVaR of X at a given

confidence level α ∈ (0, 1) is defined as

TVaRα(X) =
1

1− α

∫ 1

α

VaRq(X) dq,

which has the following equivalent expression:

TVaRα(X) = VaRα(X) +
1

1− α

∫ ∞
VaRα(X)

SX(x)dx.

Both the VaR and TVaR are the special cases of distortion risk measures. A

distortion risk measure ρg : X → R, with a distortion function2 g, is defined as

ρg(X) =

∫ 0

−∞
[g(SX(x))− 1)]dx+

∫ +∞

0

g(SX(x))dx. (2.1)

1A risk measure ρ : X → R is siad to satisfy the subadditive property if ρ(X + Y ) ≤
ρ(X) + ρ(Y ) for all X,Y ∈ X .

2A function g : [0, 1]→ [0, 1] is said to be a distortion function if g is increasing in [0, 1] with
g(0) = 0 and g(1) = 1.
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Note that, for any random variable X,

E[X] =

∫ 0

−∞
[SX(x)− 1]dx+

∫ +∞

0

SX(x)dx. (2.2)

The idea behind a distortion risk measure is to distort the survival function of a

random variable using a distortion function such that the ‘distorted expectation’

can provide more flexible and reasonable measures for the risk. Mathematically,

a distortion risk measure ρg(X) is a Choquet integral
∫

Ω
Xdµ (=

∫
Xdµ) over the

sample space Ω with respect to the set function µ = g ◦P , which is defined on the

σ-algebra F as µ(A) = g(P (A)) for any A ∈ F . A brief review of Choquet integrals

and their properties is given in Section 2.2. Roughly speaking, a distortion risk

measure of a risk is ‘its expectation’ over a sample space under a distorted measure.

It is well known that TVaRα(X) is a distortion risk measure with the distortion

function

g
α,TVaR

(x) =
x

1− α
I{0≤x≤1−α} + I{1−α<x≤1} = min

{ x

1− α
, 1
}
,

where and throughout the chapter, IA is the indicator function of an event A or

a Bernoulli random variable, and it equals to 1 if A holds true and 0 otherwise.

In addition, VaRα(X) or the left continuous inverse F−1
X (α) is a distortion risk

measure with the following left continuous distortion function:

g
α,VaR

(x) = I{1−α<x≤1}.

Furthermore, the right continuous inverse F−1+
X (α) = sup{x ∈ R : FX(x) ≤ α} of

the distribution function FX(x) = P (X ≤ x) is a distortion risk measure with the

following right continuous distortion function:

g+
α,VaR

(x) = I{1−α≤x≤1}.
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In terms of Choquet integrals, a distortion risk measure ρg : X → R is said to be

subadditive in X if

∫
Ω

(X + Y ) dg ◦ P ≤
∫

Ω

Xdg ◦ P +

∫
Ω

Y dg ◦ P (2.3)

holds for any two random variables X, Y ∈ X . Any distortion risk measure includ-

ing VaR satisfies positive homogeneity, translation-invariance, and monotonicity.

For any risk X and a confidence level α ∈ (0, 1), it holds that TVaRα(X) ≥

VaRα(X). Moreover, TVaRα is the smallest subadditive distortion risk measure

(indeed the smallest coherent risk measure3) satisfying TVaRα(X) ≥ VaRα for all

X ∈ X under a given confidence level α. However, as pointed out by Belles et

al. (2014a), subadditivity or coherence might be an expensive (even unrealistic)

requirement on the derminations of premiums and regulatory capitals. Belles et

al. (2014a) introduced a subclass of distortion risk measures, called GlueVaR risk

measures, which satisfy the tail subadditive property, a weaker requirement than

subadditivity. In introducing the concept of tail subadditivity, they defined a tail

region of a random variable X at a confidence level α ∈ (0, 1) as

Qα,X = {ω ∈ Ω : X(ω) > F−1
X (α)} = {X > F−1

X (α)}. (2.4)

For any two random variables X, Y ∈ X , the common tail region for the two

random variables at a confidence level α ∈ (0, 1) is defined as

Qα,X,Y = Qα,X ∩Qα,Y ∩Qα,X+Y (2.5)

= {X > F−1
X (α), Y > F−1

Y (α), X + Y > F−1
X+Y (α)}.

Instead of calculating the expectations of risks under distorted measures over the

sample space Ω in (2.3), Belles et al. (2014a) calculated the expectations of risks

under distorted measures over the the common tail region. By their definition,

a distortion risk measure ρg is said to be tail-subadditive for a pair of random

3See Kusuoka (2001) for details.
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variables X, Y ∈ X at a confidence level α ∈ (0, 1) if

∫
Qα,X,Y

(X + Y )dg ◦ P ≤
∫
Qα,X,Y

Xdg ◦ P +

∫
Qα,X,Y

Y dg ◦ P (2.6)

holds, where the integrals are Choquet integrals over the the common tail region

Qα,X,Y . Theorem 6.1 of Belles et al. (2014a) shows that if the distortion function

of a GlueVaR is concave on [0, 1 − α), then the GlueVaR risk measure is tail-

subadditive for any pair of random variables X, Y ∈ X. We will point out in

Section 2.3, the condition that the distortion function of a GlueVaR is concave on

[0, 1 − α) in Theorem 6.1 of Belles et al. (2014a) should be that the distortion

function of a GlueVaR is concave on [0, 1 − α]. Interesting applications of the

GlueVaR risk measures in insurance, finance, and other fields have been discussed

in Belles et al. (2014a, 2014b).

In this chapter, we first give more general definitions of common tail regions and

the tail subadditivity.

Definition 2.1. We call a set ΩX ⊂ Ω a tail region of a random variable X

if ΩX ∈ F . Furthermore, we call a set ΩX,Y ⊂ Ω a common tail region of X

and Y if ΩX,Y ∈ F and ΩX,Y = ΩY,X . More general, we call ΩX1,...,Xn ⊂ Ω a

common tail region of a random vector (X1, ..., Xn) if ΩX1,...,Xn ∈ F and ΩX1,...,Xn =

ΩXπ(1),...,Xπ(n) for any permutation (π(1), ..., π(n)) of (1, ..., n).

There are different ways to define common tail regions for risks in a portfolio.

We will focus on the following common tail regions that are often concerned in

risk management. First, the tail regions of a risk X often arise in solvency risk

management are

Ωα,X = {ω ∈ Ω : X ≥ VaRα(X)} = {X ≥ VaRα(X)} (2.7)

and Ω−α,X = {X < VaRα(X)}. The former describes a right tail and the latter is a

left tail. Moreover, the right tail

Ωe
X = {ω ∈ Ω : X ≥ E(X)} = {X ≥ E[X]} (2.8)
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is an important tail region in pricing premiums. Indeed, VaRα(X) and E[X]

are respectively the important benchmarks in determining the required solvency

capital and in calculating insurance premiums. Correspondingly, the following two

common tail regions

Ωα,Sn = {Sn ≥ VaRα(Sn)} (2.9)

and

Ωe
Sn = {Sn ≥ E[Sn]} (2.10)

are often concerned in portfolio risk management, where Sn = X1 + · · · + Xn is

the aggregate risk of a portfolio consisting of risks X1, ..., Xn. Other interesting

common tail regions include

Ωα,X1,...,Xn = {X1 ≥ VaRα(X1)} ∪ · · · ∪ {Xn ≥ VaRα(Xn)} (2.11)

and

Ωe
X1,...,Xn

= {X1 ≥ E[X1]} ∪ · · · ∪ {Xn ≥ E[Xn]}. (2.12)

All the above tail regions and the common tail regions describe the extreme tail

events concerned by decision makers in portfolio risk management. Furthermore,

the common tail region of a risk portfolio (X1, ..., Xn) is defined as Ωα,X1+···+Xn =

Ωα,Sn , where Sn = X1 + · · ·+Xn is the aggregate risk of the portfolio.

In this chapter, we define tail subadditivity for distortion risk measures as follows.

Definition 2.2. Let ΩX,Y be a common tail region for X, Y ∈ X . For a distortion

function g, the distortion risk measure ρg : X → R is said to be tail subadditive

for a pair of random variables X, Y ∈ X if

∫
ΩX,Y

(X + Y ) dg ◦ P ≤
∫

ΩX,Y

Xdg ◦ P +

∫
ΩX,Y

Y dg ◦ P, (2.13)
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where the integrals are Choquet integrals over the common tail region ΩX,Y . In

general, a distortion risk measure ρg : X → R is said to be tail subadditive for

X1, ..., Xn ∈ X if

∫
ΩX1,...,Xn

n∑
i=1

Xi dg ◦ P ≤
n∑
i=1

∫
ΩX1,··· ,Xn

Xi dg ◦ P. (2.14)

In addition, the distortion risk measure ρg : X → R is said to be tail subadditive

in X if (2.13) holds for any pair of random variables X, Y ∈ X .

The rest of the chapter is organized as follows. In Section 2.2, we recall some

preliminaries about Choquet integrals and convex functions. In Section 2.3, we

study sufficient and necessary conditions for a distortion risk measure to be tail

subadditive. We rectify Theorem 6.1 of Belles et al. (2014a) and Theorem 5.1 of

Yin and Zhu (2016) about the sufficient conditions for a distortion risk measure to

be tail subadditive. We also discuss the generalized tail subadditive GlueVaR risk

measures, which generalizes the tail subadditive GlueVaR risk measures introduced

by Belles et al. (2014a). Moreover, the generalized tail subadditive GlueVaR

risk measures can be used to approach any coherent risk measures. To further

illustrate the applications of the tail subadditivity, in Section 2.4, we propose a

tail distortion principle for decision makers to determine the capital reserves or for

insurers to calculate insurance premiums for risks in a portfolio. The properties

of the proposed principle are discussed as well. In Section 2.5, we illustrate the

applications of the tail distortion principle by multivariate Pareto distributions.

2.2 Preliminaries about Choquet integrals and

convex functions

In this section, we review some concepts and results about Choquet integrals and

recall some results about convex functions, which will be used in this chapter.
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Let Ω be a basic set and 2Ω be the family of all subsets of Ω. Let S ⊂ 2Ω be a

σ-algebra, which is also called a set system of Ω. In addition, (Ω,S) is called a

measurable space.

Definition 2.3. A set function µ on a set system S is said to be monotone if

A ⊂ B implies µ(A) ≤ µ(B) for any A, B ∈ S, and it is said to be submodular if

A, B ∈ S such that A ∪B ∈ S, A ∩B ∈ S implies

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B). (2.15)

Definition 2.4. Let µ : S → R+ = [0,∞) a monotone set function with µ(Ω) <∞

and X : Ω → R be a measurable function on the measurable space (Ω,S). The

(asymmetric) Choquet integral of the function X with respect to the set function

µ is denoted by
∫

Ω
Xdµ or

∫
Xdµ, which is defined as

∫
Xdµ =

∫
Ω

Xdµ =

∫ 0

−∞
[Sµ,X(x)− µ(Ω)]dx+

∫ ∞
0

Sµ,X(x)dx, (2.16)

where Sµ,X(x) = µ({X > x}) denotes the survival function of X with respect to

µ. Moreover, for A ∈ S, the Choquet integral of the function X on the set A with

respect to the set function µ is denoted by
∫
A
Xdµ, which is defined as

∫
A

Xdµ =

∫ 0

−∞
[µ(A ∩ {X > x})− µ(A)]dx+

∫ ∞
0

µ(A ∩ {X > x})dx. (2.17)

Note that if we define a set function µA(B) = µ(A ∩ B) for B ∈ S, then (2.17)

can be rewritten as ∫
A

Xdµ =

∫
Ω

XdµA. (2.18)

Furthermore, if µ(A) = 0, then
∫
A
Xdµ = 0. Roughly speaking, the Choquet

integral of a risk over a set is the ’expectation’ of the risk under a distorted

measure. We recall the following properties of Choquet integrals from Denneberg

(1994).

Lemma 2.5. Let (Ω,S) be a measurable space. If µ : S → R+ is a monotone set

function and X, Y : Ω→ R are measurable functions, then
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(a)
∫
IA dµ = µ(A) for any A ∈ S.

(b)
∫

(aX + b)dµ = a
∫
Xdµ+ b µ(Ω) for any a ≥ 0 and b ∈ R.

(c)
∫

(X + Y )dµ =
∫
Xdµ+

∫
Y dµ if X and Y are comonotonic.

(d)
∫
Xdµ ≤

∫
Y dµ if X ≤ Y .

(e)
∫

(X+Y )dµ ≤
∫
Xdµ+

∫
Y dµ if µ is submodular and X, Y are µ-essentially

> −∞.

(f) A measurable function X is µ-essentially > −∞ if and only if limx→∞ µ((X >

x)) = 0.

Remark 2.6. In this chapter, we will focus on distortion risk measures. If X is a

random variable on the probability space (Ω,F ,P) and let µ = g ◦ P : F → [0, 1]

be a distorted measure with a distortion function g, then we have the following

assertions:

(i) The distorted measure g ◦ P is a monotone set function on F .

(ii) The random variable X is g ◦ P -essentially > −∞ if the distortion function

g is right continuous at 0, namely, g(0+) = g(0) = 0.

Throughout the chapter, f(a+) and f(a−) mean the right and left limits of a

function f at a, respectively. �

Furthermore, in the following lemma, we recall the known results about convex/-

concave functions from Niculescu and Persson (2006).

Lemma 2.7. (a) Let f : [a, b] → R be a function bounded from below on every

compact subinterval of [a, b]. Then f is concave if and only if f is a midpoint

concave, that is,

f
(x+ y

2

)
≥ f(x) + f(y)

2

for any x, y ∈ [a, b].
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(b) Let f : [a, b]→ R ba a concave function, then

f(a) + f(b)

2
− f

(a+ b

2

)
≤ f(c) + f(d)

2
− f

(c+ d

2

)

for all a ≤ c ≤ d ≤ b.

The following lemma reviews the properties (Dhaene et al., 2012; McNeil et al.,

2005) of the left and right continuous inverses of a distribution function, which

will be used in this chapter.

Lemma 2.8. Let X be a random variable with the distribution function FX(x) =

P (X ≤ x). Then, for any α ∈ (0, 1), it holds that

FX(F−1
X (α)−) = P (X < F−1

X (α)) < α ≤ P (X ≤ F−1
X (α)) = FX(F−1

X (α)). (2.19)

2.3 Tail subadditivity of distortion risk measures

In this section, we discuss tail subadditivity of distortion risk measures with ap-

plications.

Theorem 2.9. Let g be a distortion function satisfying g(0+) = g(0) = 0, α ∈

(0, 1) be a confidence level, and ΩX,Y be a common tail region of a pair of random

variables X and Y .

(a) For a pair of random variables X, Y ∈ Lp, if the distortion function g is

concave on [0, P (ΩX,Y )], then the distortion risk measure ρg : Lp → R is tail

subadditive for the pair of random variables X, Y .

(b) Assume that (Ω,F ,P) is atomless4. If the distortion risk measure ρg : Lp → R

is tail subadditive in Lp, then g is concave on [0, p], where p = max{P (ΩIA, IB) :

A,B ∈ F}.
4A probability space (Ω,F ,P) is atomless if for any A ∈ F with P (A) > 0, there exists B ∈ F

such that B ⊂ A and 0 < P (B) < P (A).
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Proof. (a) Define the set function (g ◦ P )ΩX,Y : F → R as

(g ◦ P )ΩX,Y (A) = (g ◦ P )(A ∩ ΩX,Y ) (2.20)

for A ∈ F . Obviously, (g ◦ P )ΩX,Y is a monotone set function on F since g is an

increasing function on [0, 1].

Assume that g is concave on [0, P (ΩX,Y )]. For any subsets A,B ∈ F , denote u =

P ((A∩B)∩ΩX,Y ), v = P ((A∪B)∩ΩX,Y ), a = P (A∩ΩX,Y ), and b = P (B∩ΩX,Y ).

Note that

u+ v = P ((A ∩B) ∩ ΩX,Y ) + P ((A ∪B) ∩ ΩX,Y )

= P (A ∩ ΩX,Y ) + P (B ∩ ΩX,Y ) = a+ b.

Furthermore, we have

0 ≤ P ((A ∩B) ∩ ΩX,Y ) ≤ P (A ∩ ΩX,Y ) ≤ P ((A ∪B) ∩ ΩX,Y ) ≤ P (ΩX,Y )

and

0 ≤ P ((A ∩B) ∩ ΩX,Y ) ≤ P (B ∩ ΩX,Y ) ≤ P ((A ∪B) ∩ ΩX,Y ) ≤ P (ΩX,Y ),

thus, 0 ≤ u ≤ a, b ≤ v ≤ P (ΩX,Y ) satisfying a+ b = u+ v. Hence, by Lemma 2.7

(b), we have g(a) + g(b) ≥ g(u) + g(v), which means that

g(P ((A ∪B) ∩ ΩX,Y )) + g(P ((A ∩B) ∩ ΩX,Y )) ≤ g(P (A ∩ ΩX,Y )) + g(P (B ∩ ΩX,Y )),

namely, (g ◦ P )ΩX,Y is a submodular set function on F .

For any random variable Z ∈ Lp, we have that (g ◦ P )ΩX,Y (Z > x) = g(P (ΩX,Y ∩

(Z > x))→ g(0) as x→∞ since P (ΩX,Y ∩ (Z > x))↘ P (∅) = 0 as x→∞ and

g(0+) = g(0) = 0. Hence, Z is (g ◦ P )ΩX,Y -essentially > −∞. Thus, by Lemma
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2.5 (e), we have that

∫
(X + Y )d(g ◦ P )ΩX,Y ≤

∫
Xd(g ◦ P )ΩX,Y +

∫
Y d(g ◦ P )ΩX,Y , (2.21)

which is equivalent to

∫
ΩX,Y

(X + Y )dg ◦ P ≤
∫

ΩX,Y

Xdg ◦ P +

∫
ΩX,Y

Y dg ◦ P. (2.22)

Hence, (2.13) holds and thus the distortion risk measure ρg is tail subadditive for

the pair of random variables X, Y ∈ Lp.

(b) If the distortion risk measure ρg is tail subadditive in Lp, then (2.13) holds

for any pair of random variables X, Y ∈ Lp. Thus, for any subsets A, B ⊂ F , by

(2.13), we have that

∫
ΩIA,IB

(IA + IB)dg ◦ P ≤
∫

ΩIA,IB

IA d g ◦ P +

∫
ΩIA,IB

IB dg ◦ P, (2.23)

which is equivalent to

∫
(IA + IB)d(g ◦ P )ΩIA, IB

≤
∫

IA d (g ◦ P )ΩIA, IB
+

∫
IB d(g ◦ P )ΩIA, IB

. (2.24)

By Denneberg (1994, page 69), we have that for any monotone set function µ :

F → R+ and any A,B ∈ F , it holds

∫
(IA + IB)dµ = µ(A ∪B) + µ(A ∩B),

which, together with (2.24) and Lemma 2.5(a), implies that

(g ◦ P )((A ∪B) ∩ ΩIA, IB) + (g ◦ P )((A ∩B) ∩ ΩIA, IB)

≤ (g ◦ P )(A ∩ ΩIA, IB) + (g ◦ P )(B ∩ ΩIA, IB), (2.25)

which means that (g ◦ P )ΩIA, IB
is a submodular set function on F . Thus, if

P (ΩIA, IB) = 0, then g is concave on [0, P (ΩIA, IB)]. If P (ΩIA, IB) > 0, then for any

0 ≤ u < v ≤ P (ΩIA, IB), there exists C, D ∈ F so that C ⊂ D ⊂ ΩIA, IB , P (C) = u,
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and P (D) = v since Lp is atomless. Denote by E = D \ C, thus P (E) = v − u.

Note that u−v
2

< u − v, thus, there exists F ⊂ E such that P (F ) = v−u
2

. Now,

define A′ = C ∪ F and B′ = D \ F , and thus P (A′) = P (B′) = u+v
2
, P (A′ ∩B′) =

P (C) = u, and P (A′ ∪ B′) = P (D) = v. Note that A′, B′ ⊂ ΩIA, IB and that

(g ◦ P )ΩIA, IB
is a submodular set function on F , hence, we have

g(P ((A′ ∪B′) ∩ ΩIA, IB)) + g(P ((A′ ∩B′) ∩ ΩIA, IB))

≤ g(P (A′ ∩ ΩIA, IB)) + g(P (B′ ∩ ΩIA, IB)),

which implies that

g
(u+ v

2

)
≥ g(u) + g(v)

2
.

Hence, the distortion function g is concave on [0, P (ΩIA, IB)] for any A,B ∈ F .

Thus, g is concave on [0, p].

Corollary 2.10. Let g be a distortion function satisfying g(0+) = g(0) = 0 and

α ∈ (0, 1) be a confidence level. Assume that the common tail region ΩX,Y is defined

as ΩX,Y = Qα,X,Y given by (2.5) or ΩX,Y = Qα,X+Y = {X + Y > F−1
X+Y (α)} for

X, Y ∈ Lp. Then, the following assertions hold.

(a) If g is concave on [0, 1− α], then the distortion risk measure ρg : Lp → R is

tail subadditive in Lp.

(b) If the distortion risk measure ρg : Lp → R is tail subadditive in Lp =

Lp(Ω,F ,P) and (Ω,F ,P) is atomless, then g is concave on [0, 1− α].

Proof. (a) For any α ∈ (0, 1), by Lemma 2.8, we have that

P (Qα,X,Y ) ≤ P (X + Y > F−1
X+Y (α)) = 1− FX+Y (F−1

X+Y (α)) ≤ 1− α

and

P (Qα,X+Y ) = P (X + Y > F−1
X+Y (α)) = 1− FX+Y (F−1

X+Y (α)) ≤ 1− α.
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Thus, if g is concave on [0, 1 − α], then g is concave on [0, P (ΩX,Y )]. Hence, by

Theorem 2.9, we have that ρg is tail subadditive for any X, Y ∈ Lp, which means

that ρg is tail subadditive in Lp.

(b) If (Ω,F ,P) is atomless, then there exists a set Aα ∈ F such that P (Aα) = α.

Let A = B = Ω \ Aα = Acα. Thus, if ΩX,Y is defined as Qα,X,Y for X, Y ∈ Lp, we

have

ΩIAcα , IAcα
= {ω ∈ Ω : IAcα(ω) > F−1

IAcα
(α), 2 IAcα(ω) > F−1

2 IAcα
(α)}

= {ω ∈ Ω : IAcα(ω) > F−1
IAcα

(α)}

since VaR satisfies positive homogeneity. On the other hand, if ΩX,Y is defined as

Qα,X+Y for X, Y ∈ Lp, we have

ΩIAcα , IAcα
= {ω ∈ Ω : 2 IAcα(ω) > F−1

2 IAcα
(α)} = {ω ∈ Ω : IAcα(ω) > F−1

IAcα
(α)}.

It is easy to see that F−1
IAcα

(α) = 0. Thus, P (ΩIAcα , IAcα
) = P (IAcα > 0) = P (IAcα =

1) = P (Acα) = 1−α, which implies p = max{P (ΩIA, IB) : A,B ∈ F} = 1−α since

P (ΩX,Y ) ≤ 1 − α for any X, Y ∈ Lp. Hence, if ρg is tail subadditive in Lp, then

by Theorem 2.9, we have that g is concave on [0, p] = [0, 1− α]. It completes the

proof.

Remark 2.11. We point out that if X = Y and X has a distribution FX(x), then

Qα,X = Qα,Y = {X > F−1
X (α)} and Qα,X,Y = {X > F−1

X (α), 2X > F−1
2X (α)} =

{X > F−1
X (α)}. Hence, in this case, Qα,X,Y = {X > F−1

X (α)} and P (Qα,X,Y ) =

P (X > F−1
X (α)) = 1 − F (F−1

X (α)) ≤ 1 − α. In particular, if FX(x) is continuous

at F−1
X (α), then F (F−1

X (α)) = α. Hence, it is obvious that the statement “because

P (Qα,X,Y ) < 1 − α” in the proof of Theorem 6.1 of Belles et al. (2014a) should

be modified to the statement “because P (Qα,X,Y ) ≤ 1 − α” and the conclusion

“concave in [0, 1−α)” in Theorem 6.1 of Belles et al. (2014a) should be corrected

to “concave in [0, 1− α]”. The same comments apply to Theorem 5.1 of Yin and

Zhu (2016). Corollary 2.10 not only gives the corrected version of Theorem 6.1 of

Belles et al. (2014a) and Theorem 5.1 of Yin and Zhu (2016) but also obtains the
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necessary condition for a distortion risk measure to be tail subadditive when the

common tail region is defined by Qα,X,Y and Qα,X+Y . �

Furthermore, using Theorem 2.9, we can recover the well-known result about the

subadditivity of distortion risk measures as follows.

Corollary 2.12. Let g be a distortion function satisfying g(0+) = g(0) = 0. The

following assertions hold.

(a) If g is concave on [0, 1], then the distortion risk measure ρg : Lp → R is

subadditive in Lp.

(b) If the distortion risk measure ρg : Lp → R is subadditive in Lp = Lp(Ω,F ,P)

and (Ω,F ,P) is atomless, then g is concave on [0, 1].

Proof. The results of (a) and (b) follow immediately from Theorem 2.9 by letting

ΩX,Y = Ω for any X, Y ∈ Lp.

Next, we generalize Belles et al. (2014a)’s GlueVaR risk measure and discuss the

properties of the generalized GlueVaR.

Definition 2.13. (Generalized GlueVaR) Define a distortion function gh1,...,hnα1,...,αn
as

gh1,...,hnα1,...,αn
(u) =



h1
1−α1

u, 0 ≤ u ≤ 1− α1,

h1 + h2−h1
α1−α2

[u− (1− α1)], 1− α1 < u ≤ 1− α2,

· · · , · · · ,

hk + hk+1−hk
αk−αk+1

[u− (1− αk)], 1− αk < u ≤ 1− αk+1,

· · · , · · · ,

hn−1 + hn−hn−1

αn−1−αn [u− (1− αn−1)], 1− αn−1 < u ≤ 1− αn,

1, 1− αn < u ≤ 1,

where

1 > α1 > α2 > · · · > αk > · · · > αn > 0
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and

0 ≤ h1 ≤ h2 ≤ · · · ≤ hk ≤ · · · ≤ hn ≤ 1.

The distortion risk measure under the distortion function gh1,...,hnα1,...,αn
is called a gen-

eralized GlueVaR (GGlueVaR), denoted by GGlueVaRh1,...,hn
α1,...,αn

.

Geometrically, the distortion function gh1,...,hnα1,...,αn
is a piecewise linear function over

the interval [0, 1]. However, we can show that a GGlueVaRh1,...,hn
α1,...,αn

risk measure

under this distortion function gh1,...,hnα1,...,αn
is a linear combination of n TVaRs and

one VaR. Furthermore, any coherent distortion risk measure can be approached

by a series of generalized tail subadditive GlueVaR risk measures. These results,

together with other properties of the generalized GlueVaR, are presented below.

Proposition 2.14. The generalized GlueVaR risk measure GGlueVaRh1,...,hn
α1,...,αn

(X)

of a risk X can be expressed as

GGlueVaRh1,...,hn
α1,...,αn

(X) =
n∑
i=1

ωi TVaRαi(X) + ωn+1 VaRαn(X), (2.26)

where

ω1 = h1 −
h2 − h1

α1 − α2

(1− α1), (2.27)

ωk =
(hk − hk−1

αk−1 − αk
− hk+1 − hk
αk − αk+1

)
(1− αk) (2.28)

for k = 2, . . . , n− 1,

ωn =
hn − hn−1

αn−1 − αn
(1− αn), (2.29)

and

ωn+1 = 1−
n∑
k=1

ωk = 1− hn. (2.30)

Moreover,

VaRαn(X) ≤ GGlueVaRh1,...,hn
α1,...,αn

(X) ≤ TVaRα1(X) (2.31)

if
1

1− α1

≥ h1

1− α1

≥ h2 − h1

α1 − α2

≥ h3 − h2

α2 − α3

≥ · · · ≥ hn − hn−1

αn−1 − αn
. (2.32)
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Proof. Let gαk,TVaR and gαn,VaR be the distortion function of TVaRαk(X) and

VaRαn(X), respectively, then

gαk,TVaR(u) =
u

1− αk
I{0≤u≤1−αk} + I{1−αk<u≤1}

=
u

1− αk

(
I{0≤u≤1−α1} +

k∑
i=2

I{1−αi−1<u≤1−αi}

)
+

n−1∑
i=k

I{1−αi<u≤1−αi+1} + I{1−αn<u≤1},

and VaRαn(X) = I{1−αn<u≤1}. Note that the GGlueVaR distortion function can

reexpressed as the following form:

gh1,...,hnα1,...,αn
(u)

=
h1

1− α1

u I{0≤u≤1−α1} +
n−1∑
k=1

(
hk +

hk+1 − hk
αk − αk+1

(u− (1− αk))
)
I{1−αk<u≤1−αk+1}

+I{1−αn<u≤1}.

Hence, to show (2.26), it suffices to prove for any 0 ≤ u ≤ 1, the following equation

holds:

h1

1− α1

u I{0≤u≤1−α1} +
n−1∑
k=1

(
hk +

hk+1 − hk
αk − αk+1

(u− (1− αk))
)
I{1−αk<u≤1−αk+1}

+I{1−αn<u≤1}

=
n∑
k=1

ωk gαk,TVaR(u) + ωn+1 gαn,VaR(u). (2.33)

In doing so, equating the coefficients for I{0≤u≤1−α1}, I{1−αk<u≤1−αk+1}, k = 1, 2, . . . , n−

1, and I{1−αn<u≤1} on both sides of (2.33), we see that ωk, k = 1, 2, ..., n, n+1 must

satisfy the following equations:

h1

1− α1

u =
ω1

1− α1

u+
ω2

1− α2

u+ . . .+
ωn

1− αn
u+ ωn+1, (2.34)

h1 +
h2 − h1

α1 − α2

(
u− (1− α1)

)
= ω1 +

ω2

1− α2

u+ . . .+
ωn

1− αn
u+ ωn+1, (2.35)

h2 +
h3 − h2

α2 − α3

[u− (1− α2)] = ω1 + ω2 +
ω3

1− α3

u+ . . .+
ωn

1− αn
u+ ωn+1, (2.36)
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· · ·

hk +
hk+1 − hk
αk − αk+1

[u− (1−αk)] =
k∑
i=1

ωi+
ωk+1

1− αk+1

u+ . . .+
ωn

1− αn
u+ωn+1, (2.37)

· · ·

hn−2+
hn−1 − hn−2

αn−2 − αn−1

[u−(1−αn−2)] =
n−2∑
i=1

ωi+
ωn−1

1− αn−1

u+
ωn

1− αn
u+ωn+1, (2.38)

hn−1 +
hn − hn−1

αn−1 − αn
[u− (1− αn−1)] =

n−1∑
i=1

ωi +
ωn

1− αn
u+ ωn+1, (2.39)

1 =
n+1∑
i=1

ωi. (2.40)

Hence, by subtracting (2.35) from (2.34) and subtracting (2.36) from (2.35) , we

get

ω1 = h1 −
h2 − h1

α1 − α2

(1− α1) and ω2 =
(h2 − h1

α1 − α2

− h3 − h2

α2 − α3

)
(1− α2).

Similarly, for k = 3, . . . , n− 1, we have

ωk =
(hk − hk−1

αk−1 − αk
− hk+1 − hk
αk − αk+1

)
(1− αk).

Moreover, subtracting (2.39) from (2.38), we obtain

hn−1 +
hn − hn−1

αn−1 − αn
(
u− (1− αn−1)

)
− 1 =

ωn
1− αn

u− ωn,

which implies that

ωn =
hn − hn−1

αn−1 − αn
(1− αn).

Hence, ωk, k = 1, 2, ..., n+1 have the expressions given in (2.27)-(2.29). Moreover,

it is easy to verify that

k∑
j=1

ωj = hk −
hk+1 − hk
αk − αk+1

(1− αk) (2.41)
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holds for k = 1, 2, . . . , n − 1. Thus,
∑n

j=1 ωj =
∑n−1

j=1 ωj + ωn = hn, and hence,

by (2.40), we obtain ωn+1 = 1−hn. Therefore, (2.26) holds when ωk, k = 1, ..., n+1,

are given by (2.27)-(2.30). In addition, (2.31) holds since gαn,VaR(u) ≤ gh1,...,hnα1,...,αn
(u) ≤

gα1,TVaR(u) for 0 ≤ u ≤ 1 if (2.32) holds.

Corollary 2.15. For a confidence level 0 < α < 1 and the risk measure GGlueVaRh1,...,hn
α1,...,αn

,

if αk and hk, k = 1, 2, . . . , n, satisfy

h1

1− α1

≥ h2 − h1

α1 − α2

≥ h3 − h2

α2 − α3

≥ · · · ≥ hn − hn−1

αn−1 − αn
, (2.42)

and the common tail region ΩX,Y is defined as Qαn,X,Y or Qαn,X+Y for any X, Y ∈

Lp, then the risk measure GGlueVaRh1,...,hn
α1,...,αn

is tail subadditive in Lp.

Proof. It is obvious that the distortion function gh1,...,hnα1,...,αn
of GGlueVaRh1,...,hn

α1,...,αn
is

concave on [0, 1−αn] if the gradients of the distortion function gh1,...,hnα1,...,αn
on [0, 1−αn]

is decreasing, namely, if (2.42) holds. Thus, the GGlueVaR risk measure is tail

subadditive by Corollary 2.10.

Proposition 2.16. Assume that a series of {(αn1 , ..., αnn), n = 1, 2, ...} satisfy

1 > αn1 > · · · > αnk > · · · > αnn > 0, limn→∞ α
n
1 = 1, limn→∞ α

n
n = 0, and

limn→∞max{αni − αni+1, i = 1, ..., n − 1} = 0. For any coherent distortion risk

measure ρg : L1 → R with a concave distortion function g, it holds that for any

X ∈ L1,

ρg(X) = lim
n→∞

( n∑
i=1

ωni TVaRαni
(X) + ωnn+1 VaRαnn(X)

)
, (2.43)

where

ωn1 = hn1 −
hn2 − hn1
αn1 − αn2

(1− αn1 ),

ωnk =
(hnk − hnk−1

αnk−1 − αnk
−
hnk+1 − hnk
αnk − αnk+1

)
(1− αnk) for k = 2, . . . , n− 1,

ωnn =
hnn − hnn−1

αnn−1 − αnn
(1− αnn),

ωnn+1 = 1−
n∑
k=1

ωnk = 1− hnn,
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and hnk = g(1− αnk) for any k = 1, ..., n; n = 1, 2, ....

Proof. Note that the distortion function g is concave on [0, 1] and thus g is also

continuous on [0, 1]. Hence, it is obvious that the function g can be approached

by a series of the distortion functions gn, where gn(u) = g
hn1 ,...,h

n
n

αn1 ,...,α
n
n
(u), n = 1, 2, ...,

are defined as in Definition 2.13, and the coefficients αnk , hnk , k = 1, ..., n, n =

1, 2, ..., satisfy the conditions of Proposition 2.16. Thus, for any u ∈ [0, 1], g(u) =

limn→∞ gn(u) = limn→∞ g
hn1 ,...,h

n
n

αn1 ,...,α
n
n
(u), which, together with the definitions of the

distortion risk measures and the dominated convergence theorem, implies that

ρg(X) = limn→∞ ρgn(X). Hence, by (2.26), we obtain (2.43).

Remark 2.17. In particular, we can take

αnk = 1− k

n+ 1

for any k = 1, ..., n.

Then

ρg(X) = lim
n→∞

( n∑
i=1

ωni TVaRαni
(X) + ωnn+1 VaRαnn(X)

)
,

where

ωn1 = 2hn1 − hn2 ,

ωnk = k(2hnk − hnk−1 − hnk+1), for k = 2, . . . , n− 1,

ωnn = n(hnn − hnn−1),

ωnn+1 = 1− hnn,

and hnk = g( k
n+1

) for any k = 1, ..., n; n = 1, 2, ....
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2.4 Applications of tail subadditivity in portfolio

risk management

To consider more applications of tail subadditivity, we fist give the following

lemma.

Lemma 2.18. Let g be a distortion function and let A ∈ F with g(P (A)) > 0. If

g(x) = θx for 0 < x ≤ P (A) and 0 < θ ≤ 1/P (A), then

∫
A

Xdg ◦ P = θP (A)E[X|A]. (2.44)

Proof. Let µ = g ◦ P . Thus, by the definition of the Choquet integral, we have∫
A

Xdg ◦ P =

∫
A

Xdµ

= µ(A)
[ ∫ 0

−∞

(µ(A ∩ (X > x))

µ(A)
− 1
)
dx+

∫ ∞
0

µ(A ∩ (X > x))

µ(A)
dx
]

= µ(A)
[ ∫ 0

−∞
(SX|A(x)− 1)dx+

∫ ∞
0

SX|A(x)dx
]
,

where µ(A) = g(P (A)) and

SX|A(x) =
µ(A ∩ {X > x})

µ(A)
=
g(P (A ∩ {X > x}))

g(P (A))

for x ∈ R. If g(x) = θx for 0 < x ≤ P (A) and 0 < θ ≤ 1/P (A), then

SX|A(x) =
P (A ∩ {X > x})

P (A)
= P (X > x|A).

Note that the survival function of X|A is P (X > x|A) = P (A∩{X>x})
P (A)

, hence,

E[X|A] =

∫ 0

−∞

(P (A ∩ {X > x})
P (A)

− 1
)
dx+

∫ ∞
0

P (A ∩ {X > x})
P (A)

dx.

Thus,
∫
A
Xdµ = E[X|A]µ(A) = θP (A)E[X|A].
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Using Theorem 2.9 and Lemma 2.18, we obtain the following proposition about

the tail subadditivity of distortion risk measures.

Proposition 2.19. Let (X1, ..., Xn) be a portfolio of risks and Sn = X1 + · · ·+Xn

be the aggregate risk of the portfolio. For a common tail region ΩX1,...,Xn with

pn = P (ΩX1,...,Xn) > 0, if the distortion function g is concave on [0, pn], then,

∫
ΩX1,...,Xn

Sn dg ◦ P ≤
n∑
i=1

∫
ΩX1,...,Xn

Xi dg ◦ P. (2.45)

Moreover, if the distortion function g(x) = θx for 0 < x ≤ pn and 0 < θ ≤ 1/pn,

then,

∫
ΩX1,...,Xn

Sn dg ◦ P =
n∑
i=1

∫
ΩX1,...,Xn

Xi dg ◦ P (2.46)

with

∫
ΩX1,...,Xn

Sn dg ◦ P = θ pn E[Sn |ΩX1,...,Xn ] (2.47)

and

∫
ΩX1,...,Xn

Xi dg ◦ P = θ pn E[Xi |ΩX1,...,Xn ] (2.48)

for i = 1, ..., n.

Proof. By Theorem 2.9, we have

∫
ΩX1,...,Xn

Sn dg ◦ P =

∫
ΩX1,...,Xn

(Sn−1 +Xn) dg ◦ P

≤
∫

ΩX1,...,Xn

Sn−1 dg ◦ P +

∫
ΩX1,...,Xn

Xn dg ◦ P

≤ · · · ≤
∫

ΩX1,...,Xn

X1 dg ◦ P + · · ·+
∫

ΩX1,...,Xn

Xn dg ◦ P.
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Moreover, by Lemma 2.18, we see that (2.47) and (2.48) hold. Thus,

∫
ΩX1,...,Xn

Sn dg ◦ P = θ pn E[Sn|ΩX1,...,Xn ] = θ pn

n∑
i=1

E[Xi|ΩX1,...,Xn ],

which, together with (2.48), implies that (2.46) holds.

Proposition 2.19 motivates us to develop a new approach for decision makers to

determine the capital reserves or for insurers to calculate insurance premiums of

risks in a portfolio. In doing so, consider a portfolio of insurance policies with n

policies, denote Xi by the risk of policy i for i = 1, 2, ..., n, the decision maker of

the portfolio has to determine premiums for different insured risks. For example,

if X1 is the risk of a policyholder, she/he may buy multiple insurances on X1, say

λX1 for λ > 0, then the decision maker needs to determine the premium of λX1.

Moreover, if both X1 and X2 are the risks of a policyholder, she/he may buy one

insurance on X1+X2 under an umbrella insurance policy. Thus, the decision maker

needs to determine the premium of X1 + X2. In general, for a portfolio of risks

(X1, ..., Xn), the decision maker needs to determine the premium of h(X1, ..., Xn),

where h : Rn → R is a function that is called an operation function in this chapter.

The similar situations arise for the regulator to determine the required capitals

for a company with several sub-companies. In this case, if a company has n sub-

companies, the loss/risk of sub-company i is Xi for i = 1, 2, ..., n. Assume that ρ

is the risk measure used by the regulator to determine the required capital of a

risk. The company may request the regulator to determine the regulatory capitals

on individual sub-companiesnies, say that ρ(Xi) is the regulatory capital for sub-

company i for i = 1, 2, ..., n, if
∑n

i=1 ρ(Xi) < ρ(Sn). Here ρ(Sn) is the regulatory

capital for the company when the company requests the regulator to determine

the regulatory capital on its aggregate losses. This is one of the major reasons

why subadditivity is an important property of risk measures. Now, we propose a

new approach for decision makers to determine required capitals or to calculate

premiums for risks in a portfolio.
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Definition 2.20. Consider a portfolio of risks (X1, ...., Xn), a common tail region

ΩX1,...,Xn with pn = P (ΩX1,...,Xn) > 0, and a distortion function g. For any opera-

tion function h : Rn → R, denote the risk measure (capital reserve/premium) of

risk h(X1, ..., Xn) by Hg(h(X1, ..., Xn)), which is defined by

Hg

(
h(X1, ..., Xn)

)
=

1

pn

∫
ΩX1,...,Xn

h(X1, ..., Xn) dg ◦ P. (2.49)

We call (2.49) the tail distortion principle for a portfolio of risks (X1, ...., Xn).

This tail distortion principle satisfies the following properties.

Proposition 2.21. For a portfolio of risks (X1, ...., Xn), a common tail region

ΩX1,...,Xn with pn = P (ΩX1,...,Xn) > 0, a distortion function g, the tail distortion

principle Hg defined by (2.49) satisfies the following properties.

(a) For any λ ≥ 0 and i = 1, ..., n, Hg(λXi) = λHg(Xi).

(b) For any c ∈ R and i = 1, ..., n, Hg(Xi + c) = Hg(Xi) + c.

(c) For a pair of Xi and Xj, i, j ∈ {1, ..., n}, if Xi and Xj are comonotonic,

then Hg(Xi +Xj) = Hg(Xi) +Hg(Xj).

(d) For a pair of Xi and Xj, i, j ∈ {1, ..., n}, if Xi ≤ Xj, then Hg(Xi) ≤ Hg(Xj).

(e) If the distortion function g is concave on [0, pn], then, for any i, j ∈ {1, ..., n},

it holds that Hg(Xi + Xj) ≤ Hg(Xi) + Hg(Xj). Moreover, Hg(
∑n

i=1 Xi) ≤∑n
i=1 Hg(Xi).

(f) If the distortion function g(x) = θx for 0 < x ≤ pn and 0 < θ ≤ 1/pn, then,

Hg(Sn) =
∑n

i=1Hg(Xi) with Hg(Xi) = θE[Xi |ΩX1,...,Xn ] for i = 1, ..., n.

Proof. The proofs of (a)-(d) follow from the definition of Hg, (2.17), and Lemma

2.5, while the proofs of (e) and (f) follows from Proposition 2.19.

We point out that the risk measure Hg defined (2.49) can be viewed as a ’condi-

tional expectation’ of a risk in the portfolio, conditioning on a common tail region

30



of the portfolio, with respect to the distorted measure g ◦ P . This type of con-

ditional expectations was discussed by Denneberg (1994b) and Young (1998). In

particular, Proportion 2.21 (a)-(c) can be also obtained by using Proposition 3.3

of Young (1998).

To apply the tail distortion principle, we consider the four common tail regions

defined in (2.9)-(2.12). First, for any α ∈ (0, 1) and any random variable X, by

Lemma 2.8, we have

P (Ωα,X) = P (X ≥ F−1
X (α)) ≥ 1− α. (2.50)

Hence,

P (Ωα,Sn) = P (Sn ≥ VaRα(Sn)) ≥ 1− α (2.51)

and

P (Ωα,X1,...,Xn) ≥ P (Xi ≥ VaRα(Xi)) ≥ 1− α (2.52)

for i = 1, ..., n.

Next, we show the following lemma.

Lemma 2.22. For any random variable X,

P (Ωe
X) = P (X ≥ E[X]) > 0. (2.53)

Proof. It can be reduced to proof that P (Y ≥ 0) > 0 if E[Y ] = 0, where Y is

denoted as Y = X − E[X]. If X is a degenerated random variable, P (Y ≥ 0) ≥

P (Y = 0) = 1 > 0. If X is not a degenerated random variable, we suppose

P (Y ≥ 0) = 0, then P (Y < 0) = 1. Then there exists y0 < 0 and δ > 0, such that

0 < P (Y ≤ y) < 1 for y ∈ (y0 − δ, y0). In addition,

E[Y ] =

∫ 0

−∞
(SY (y)− 1)dy +

∫ ∞
0

SY (y)dy.
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For y ≥ 0,

SY (y) = P (Y > y) ≤ P (Y ≥ 0) = 0.

For y < 0,

SY (y)− 1 = P (Y > y)− 1 = P (Y ≥ 0) + P (y < Y < 0)− 1

= P (Y < 0)− P (Y ≤ y)− 1 = −P (Y ≤ y)

Hence,

E[Y ] = −
∫ 0

−∞
P (Y ≤ y)dy ≤ −

∫ y0

y0−δ
P (Y ≤ y)dy < 0,

which contradicts with E[Y ] = 0. Thus, P (Y ≥ 0) > 0, namely, (2.53) holds.

We point out that if X has a continuous distribution with a symmetric density

function about its mean, then P (X ≥ E[X]) = 1/2. By (2.53), we have

P (Ωe
Sn) = P (Sn ≥ E[Sn]) > 0 (2.54)

and

P (Ωe
X1,...,Xn

) ≥ P (Xi ≥ E[Xi]) > 0 (2.55)

for i = 1, ..., n. Hence, all the four common tail regions Ωα,Sn , Ωα,X1,...,Xn , Ωe
Sn

,

and Ωe
X1,...,Xn

satisfy the conditions of Propositions 2.19 and 2.21 on a common

tail region. In addition,

Ω∗α,X1,...,Xn
= {X1 ≥ VaRα(X1), · · · , Xn ≥ VaRα(Xn)}, (2.56)

Ωe∗
X1,...,Xn

= {X1 ≥ E[X1], · · · , Xn ≥ E[Xn]}, (2.57)

are also interesting common tail regions. However,

P (Ω∗α,X1,...,Xn
) > 0

and

P (Ωe∗
X1,...,Xn

) > 0
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may not hold for some random vectors. All these common tail regions describe the

important extreme events concerned by decision makers in risk management. For

instance, if reserves are determined by VaR, then Ωα,Sn represents the event that

aggregate risks of the portfolio will exceed the reserve of the aggregate risk, while

Ωα,X1,...,Xn means that at least one sub-portfolio will be in the state of technical

insolvency. In addition, Ω∗α,X1,...,Xn
implies that all the sub-portfolios will be in the

state of technical insolvency.

Indeed, VaR is a key benchmark for the regulator to determine the required cap-

ital. In calculating insurance premiums, the expected risk E[X] is called the net

premium principle and it is an important benchmark for insurance pricing in the

sense that a premium on a risk is often required to be bigger than the expectation

of the risk, which is one desirable property called non-negative loading.

The CTE principle plays an important rule in determining the required capitals. In

the CTE principle, the reserve of the portfolio risks (X1, ..., Xn) is first determined

by E[Sn|Sn ≥ VaRα(Sn)] and then E[Xi|Sn ≥ VaRα(Sn)] is allocated to sub-

portfolio i for i = 1, ..., n. The CTE allocation principle has been extensively

studied by Cai and Li (2005), Chiragiev and Landsman (2007), Dhaene, et al.

(2008), Landsman and Valdez (2003), and many others. The CTE principle is

additive in the sense that

E[Sn|Sn ≥ VaRα(Sn)] =
n∑
i=1

E[Xi|Sn ≥ VaRα(Sn)]. (2.58)

This principle can be viewed as a special case of the tail distortion principle.

By using Proposition 2.19, we propose allocation principles based on common tail

regions. For a common tail region ΩX1,...,Xn with P (ΩX1,...,Xn) = pn > 0. The total

reserves of the portfolio risks (X1, ..., Xn) is first determined by θE[Sn|ΩX1,...,Xn ]

and then θE[Xi|ΩX1,...,Xn ] is allocated to sub-portfolio i for i = 1, ..., n, where

0 < θ ≤ 1/pn. The principle is called the conditional tail principle. The parameter

θ ∈ (0, 1/pn] can be viewed as an adjustment coefficient of the conditional tail

principle.
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When θ = 1/pn, we have a very conservative principle for the portfolio with

1

pn
E[Sn|ΩX1,...,Xn ] =

n∑
i=1

1

pn
E[Xi|ΩX1,...,Xn ]. (2.59)

When θ = 1, we obtain a more general CTE principle with

E[Sn|ΩX1,...,Xn ] =
n∑
i=1

E[Xi|ΩX1,...,Xn ]. (2.60)

When θ = pn, we have a more optimistic principle for the portfolio with

pn E[Sn|ΩX1,...,Xn ] = E[Sn I{ΩX1,...,Xn
}]

=
n∑
i=1

E[Xi I{ΩX1,...,Xn
}] =

n∑
i=1

pn E[Xi|ΩX1,...,Xn ]. (2.61)

Thus, by using the six common tail regions Ωα,Sn , Ωα,X1,...,Xn , Ωe
Sn

, Ωe
X1,...,Xn

,

Ω∗α,X1,...,Xn
, and Ωe∗

X1,...,Xn
, we obtain different allocation principles. The alloca-

tion principles conditioning on the tail of the aggregate risk:

θE[Sn|Sn ≥ VaRα(Sn)] =
n∑
i=1

θE[Xi|Sn ≥ VaRα(Sn)] (2.62)

and

θE[Sn|Sn ≥ E[Sn]] =
n∑
i=1

θE[Xi|Sn ≥ E[Sn]]. (2.63)

The allocation principles conditioning on that at least one tail of individual risks

will occur:

θE[Sn|X1 ≥ VaRα(X1) or · · · orXn ≥ VaRα(Xn)]

=
n∑
i=1

θE[Xi|X1 ≥ VaRα(X1) or · · · orXn ≥ VaRα(Xn)] (2.64)
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and

θE[Sn|X1 ≥ E[X1] or · · · orXn ≥ E[Xn]]

=
n∑
i=1

θE[Xi|X1 ≥ E[X1] or · · · orXn ≥ E[Xn]]. (2.65)

The allocation principles conditioning on that all the tails of individual risks will

occur:

θE[Sn|X1 ≥ VaRα(X1), . . . , Xn ≥ VaRα(Xn)]

=
n∑
i=1

θE[Xi|X1 ≥ VaR(X1), . . . , Xn ≥ VaR(Xn)] (2.66)

and

θE[Sn|X1 ≥ E[X1], . . . , Xn ≥ E[Xn]]

=
n∑
i=1

θE[Xi|X1 ≥ E[X1], . . . , Xn ≥ E[Xn]]. (2.67)

More importantly, when we uses the tail distortion principle Hg to determine the

capital reserves or premiums for a portfolio risks, the premiums/reserves Hg(Xi)

depends both on the extreme tail events and on the dependence of risks in the

portfolio.

Let (X1, ..., Xn) be risks in a portfolio. Assume that the joint distribution (X1, ..., Xn)

is a multivariate elliptical distribution (Xu and Mao, 2012) or a multivariate Pareto

type II distribution, calculate the right sides of (2.62)-(2.65) for θ = 1/pn, 1, and

pn, respectively, consider the influence of the correlation coefficients between Xi

and Xj on these values.

Proposition 2.23. Let g be a distortion function and

Ωor
X1,...,Xn

= {X1 ≥ t1 or · · · orXn ≥ tn}
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be a common tail region of a random vector (X1, ..., Xn) with

pn(t1, ..., tn) = P (X1 ≥ t1 or · · · orXn ≥ tn) > 0,

Then,

Hg(Xi) = ti ·
g(pn(t1, ..., tn))

pn(t1, ..., tn)
+

∫ ti

−∞

[g(SXi(xi)−Di(xi|t1, . . . , tn)
)

pn(t1, ..., tn)

−g(pn(t1, ..., tn))

pn(t1, ..., tn)

]
dxi +

1

pn(t1, ..., tn)

∫ ∞
ti

g
(
SXi(xi)

)
dxi (2.68)

for i = 1, ..., n, where SXi is the survival function of Xi and

Di(xi|t1, . . . , tn)

= P (X1 < t1, . . . , Xi < ti, . . . , Xn < tn)− P (X1 < t1, . . . , Xi ≤ xi, . . . , Xn < tn)

= P (X1 ≥ t1 or . . . or Xi > xi or . . . or Xn ≥ tn)− pn(t1, ..., tn). (2.69)

Proof. Note that

P ((Xi > xi) ∩ (X1 ≥ t1 or · · · orXn ≥ tn))

= P (Xi > xi)− P ((Xi > xi) ∩ (X1 < t1, · · · Xn < tn)). (2.70)

It is easy to see that if xi ≥ ti, then

P ((Xi > xi) ∩ (X1 < t1, . . . , xn < tn)) = 0,

and if xi < ti, then

P ((Xi > xi) ∩ (X1 < t1, . . . , Xn < tn))

= P (X1 < t1, . . . , xi < Xi < ti, . . . , Xn < tn)

= P (X1 < t1, . . . , Xi < ti, . . . , Xn < tn)− P (X1 < t1, . . . , Xi ≤ xi, . . . , Xn < tn)

= Di(xi|t1, . . . , tn).
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Thus,

P ((Xi > xi) ∩ (X1 ≥ t1 or · · · orXn ≥ tn)) =


SXi(xi)−Di(xi|t1, . . . , tn), xi < ti,

SXi(xi), xi ≥ ti.

Hence,

∫
ΩorX1,...,Xn

Xi dg ◦ P

=

∫ 0

−∞

[
g(P ((Xi > xi) ∩ (X1 ≥ t1 or · · · orXn ≥ tn)))− g(pn(t1, ..., tn))

]
dxi

+

∫ ∞
0

g(P ((Xi > xi) ∩ (X1 ≥ t1 or · · · orXn ≥ tn))dxi.

Thus, if ti ≥ 0, we obtain

∫
ΩorX1,...,Xn

Xi dg ◦ P

=

∫ 0

−∞

[
g
(
SXi(xi)−Di(xi|t1, . . . , tn)

)
− g(pn(t1, ..., tn))

]
dxi

+

∫ ti

0

g
(
SXi(xi)−Di(xi|t1, . . . , tn)

)
dxi +

∫ ∞
ti

g
(
SXi(xi)

)
dxi

= ti g(pn(t1, ..., tn)) +

∫ ti

−∞

[
g
(
SXi(xi)−Di(xi|t1, . . . , tn)

)
− g(pn(t1, ..., tn))

]
dxi

+

∫ ∞
ti

g
(
SXi(xi)

)
dxi. (2.71)

If ti < 0, we obtain

∫
ΩorX1,...,Xn

Xi dg ◦ P

=

∫ ti

−∞

[
g
(
SXi(xi)−Di(xi|t1, . . . , tn)

)
− g(pn(t1, ..., tn))

]
dxi

+

∫ 0

ti

[
g(SXi(xi))− g(pn(t1, ..., tn))

]
dxi +

∫ ∞
0

g(SXi(xi))dxi

= ti g(pn(t1, ..., tn)) +

∫ ti

−∞

[
g
(
SXi(xi)−Di(xi|t1, . . . , tn)

)
− g(pn(t1, ..., tn))

]
dxi

+

∫ ∞
ti

g
(
SXi(xi)

)
dxi, (2.72)
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which, together with (2.71) and

Hg(Xi) =
1

pn(t1, ..., tn)

∫
ΩorX1,...,Xn

Xi dg ◦ P,

means that (2.68) holds for any ti.

Remark 2.24. (i) By letting g(u) = u for u ∈ [0, 1], we have

E[Xi|X1 ≥ t1 or · · · orXn ≥ tn]

= ti +

∫ ti

−∞

[SXi(xi)−Di(xi|t1, . . . , tn)

pn(t1, ..., tn)
− 1
]
dxi

+
1

pn(t1, ..., tn)

∫ ∞
ti

SXi(xi)dxi.

(ii) If (X1, ..., Xn) is a non-negative random vector and ti ≥ 0, then

E[Xi|X1 ≥ t1 or · · · orXn ≥ tn]

=
E[Xi]

pn(t1, ..., tn)
− 1

pn(t1, ..., tn)

∫ ti

0

Di(xi|t1, . . . , tn)dxi.

(iii) If (X1, ..., Xn) has a continuous joint distribution F (x1, ..., xn) = P (X1 ≤

x1, ..., Xn ≤ xn), then

Di(xi|t1, ..., tn) = F (t1, . . . , ti, . . . , tn)− F (t1, . . . , xi, . . . , tn).

�

Proposition 2.25. Let g be a distortion function and Ω∗X1,...,Xn
= {X1 ≥ t1, ..., Xn ≥

tn} be a common tail region of a random vector (X1, ..., Xn) with

p∗n(t1, ..., tn) = P (Ω∗X1,...,Xn
) = P (X1 ≥ t1, . . . , Xn ≥ tn) > 0.

Then,

Hg(Xi) = ti ·
g(p∗n(t1, ..., tn))

p∗n(t1, ..., tn)
+

1

p∗n(t1, ..., tn)

∫ ∞
ti

g(Gi(xi|t1, ..., tn))dxi (2.73)
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for i = 1, ..., n, where

Gi(xi|t1, . . . , tn) = P (X1 ≥ t1, . . . , Xi > xi, . . . , Xn ≥ tn). (2.74)

Proof. Note that if xi < ti, then

P ((Xi > xi) ∩ (X1 ≥ t1, . . . , Xn ≥ tn)) = p∗n(t1, ..., tn),

and if xi ≥ ti, then

P ((Xi > xi) ∩ (X1 ≥ t1, . . . , Xn ≥ tn)) = P (X1 ≥ t1, . . . , Xi > xi, . . . , Xn ≥ tn)

= Gi(xi|t1, ..., tn).

Thus,

∫
Ω∗X1,...,Xn

Xi dg ◦ P =

∫ ∞
0

g(P ((Xi > xi) ∩ (X1 ≥ t1, . . . , Xn ≥ tn)))dxi

+

∫ 0

−∞

[
g(P ((Xi > xi) ∩ (X1 ≥ t1, . . . , Xn ≥ tn)))

−g(p∗n(t1, ..., tn))
]
dxi.

Thus, if ti ≥ 0, we obtain

∫
Ω∗X1,...,Xn

Xi dg ◦ P = ti g(p∗n(t1, ..., tn)) +

∫ ∞
ti

g(Gi(xi|t1, ..., tn))dxi. (2.75)

If ti < 0, we obtain

∫
Ω∗X1,...,Xn

Xi dg ◦ P

=

∫ 0

ti

[
g(Gi(xi|t1, ..., tn))− g(p∗n(t1, ..., tn))

]
dxi +

∫ ∞
0

g(Gi(xi|t1, ..., tn))dxi

= ti g(p∗n(t1, ..., tn)) +

∫ ∞
ti

g(Gi(xi|t1, ..., tn))dxi, (2.76)

which, together with (2.75) and Hg(Xi) = 1
pn(t1,...,tn)

∫
ΩorX1,...,Xn

Xi dg ◦ P, means

that (2.73) holds for any ti.
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Remark 2.26. (i) By letting g(u) = u for u ∈ [0, 1], we have

E[Xi|X1 ≥ t1, . . . , Xn ≥ tn] = ti +
1

p∗n(t1, ..., tn)

∫ ∞
ti

Gi(xi|t1, ..., tn)dxi.

(ii) If X1, ..., Xn are independent, then

E[Xi|X1 ≥ t1, . . . , Xn ≥ tn] = E[Xi|Xi ≥ ti].

(iii) If (X1, ..., Xn) has a continuous joint survival function S(x1, ..., xn) = P (X1 >

x1, ..., Xn > xn), then

Gi(xi|t1, ..., tn) = S(t1, . . . , xi, . . . , tn).

Note that S(x1, ..., xn) 6= 1− F (x1, ..., xn). �

2.5 Numerical Examples

In this section, we will consider the multivariate Pareto type II model, which is

also investigated in Chiragiev and Landsman (2007), with joint survival function

SX(x) = (1 +
n∑
i=1

xi − µi
σi

)−β, xi > µi, i = 1, 2, 3,

where n = 3, β > 1, µ1 = µ2 = µ3 = 0, σ1 > 0, σ2 > 0 and σ3 > 0. In this model,

the coefficient of Xi and Xj is corr(Xi, Xj) = 1/β for any i 6= j and 1 ≤ i, j ≤ n.

We will consider three parameter assumptions: when β = 1.5, σ1 = 0.32, σ2 = 0.94

and σ3 = 0.16; when β = 2.5, σ1 = 0.96, σ2 = 2.82 and σ3 = 0.48; when β = 4.5,

σ1 = 2.24, σ2 = 6.58 and σ3 = 1.12. The expectation of each capital line calculated

by E[Xi] = σi
β−1

are same following these three parameter assumptions. Note that
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X1 X2 X3

VaR0.95(Xi)(β = 1.5) 2.0378 5.9860 1.0189
VaR0.95(Xi)(β = 2.5) 2.2219 6.5268 1.1109
VaR0.95(Xi)(β = 4.5) 2.1188 6.2239 1.0594

TVaR0.95(Xi)(β = 1.5) 6.7534 19.8380 3.3767
TVaR0.95(Xi)(β = 2.5) 4.3432 12.7580 2.1201
TVaR0.95(Xi)(β = 4.5) 3.3641 9.8821 1.6821
E[Xi](β = 1.5, 2.5, 4.5) 0.64 1.88 0.32

Table 2.1: Values of VaR0.95(Xi) and E[Xi]

TVaR0.95(Xi) is calculated by

TVaR0.95(Xi) = VaR0.95(Xi) +

∫∞
VaR0.95(Xi)

(1 + x
σi

)−βdx

1− 0.95

= VaR0.95(Xi) +
σi

0.05(β − 1)
(1 +

VaR0.95(Xi)

σi
)−β+1

= VaR0.95(Xi) +
E[Xi]

0.05
(1 +

VaR0.95(Xi)

σi
)−β+1

The values of VaR0.95(Xi), TVaR0.95(Xi) and E[Xi] are shown in Table 2.1.

Note that for any ti ∈ R, i = 1, . . . , n,

Pr(X1 ≥ t1, . . . , Xn ≥ tn) ≤ Pr(Sn ≥
n∑
i=1

ti) ≤ Pr(X1 ≥ t1 or · · · orXn ≥ tn).

If ti = VaRα(Xi) and VaRα(Sn) ≤
∑n

i=1 VaRα(Xi), then

Pr(X1 ≥ VaRα(X1), . . . , Xn ≥ VaRα(Xn)) ≤ Pr(Sn ≥
n∑
i=1

VaRα(Xi)) ≤ Pr(Sn ≥ VaRα(Sn)).

Example 2.1. According to the formula for multivariate Pareto portfolios in Chi-

ragiev and Landsman (2007), we will provide the results of (2.62) with α = 0.95

when β = 1.5, 2.5, 4.5 in Table 2.2. Firstly, we can get the survival function for

the aggregate risk S:

F S(s) =
3∑
i=1

σ2
i (1 + s

σi
)−β∏3

j=1,j 6=i(σi − σj)

by adopting (2.2) and (4.2) in Chiragiev and Landsman (2007). Then, we have

VaR0.95(Sn) = 8.6005 when β = 1.5, VaR0.95(Sn) = 8.8005 when β = 2.5,
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β = 1.5 β = 2.5 β = 4.5
E[X1|Ω0.95,Sn ] 5.7746 3.0389 1.9178
E[X2|Ω0.95,Sn ] 19.3110 12.2184 9.4468
E[X3|Ω0.95,Sn ] 2.7541 1.3640 0.8138
E[Sn|Ω0.95,Sn ] 27.8396 16.6213 12.1784

Table 2.2: On the tail Ω0.95,Sn

β = 1.5 β = 2.5 β = 4.5
E[X1|Ωe

Sn
] 2.2496 1.3686 1.1019

E[X2|Ωe
Sn

] 7.2580 4.7418 4.0235
E[X3|Ωe

Sn
] 1.0828 0.6364 0.4977

E[Sn|Ωe
Sn

] 10.5905 6.7468 5.6232

Table 2.3: On the tail Ωe
Sn

VaR0.95(Sn) = 7.9888 when β = 4.5, and E[Sn] = 2.84 when β = 1.5, 2.5, 4.5.

For the allocation principle conditioned on the tail of aggregate risk with Ω0.95,Sn =

{Sn ≥ VaR0.95(Sn)},

pn = P (Ω0.95,Sn) = 0.05

when β = 1.5, 2.5, 4.5. The values of E[Xi|Ω], i = 1, 2, 3, and E[Sn|Ω], where Ω

represents the corresponding common tail region, are calculated based on the for-

mulas concluded in Theorem 2 and Theorem 3 of Chiragiev and Landsman (2007).

The results for (2.63) are illustrated in Table 2.3. For the allocation principle

conditioned on the tail of aggregate risk with Ωe
Sn

= {Sn ≥ E[Sn]}, pn = P (Ωe
Sn

) =

0.1958 when β = 1.5; pn = P (Ωe
Sn

) = 0.2887 when β = 2.5; and pn = P (Ωe
Sn

) =

0.6205 when β = 4.5.

Next, we will calculate the principles based on (2.68) and (2.73) in Examples 2.2

and 2.3.

Example 2.2. For the allocation principles conditioned on that at least one tail

of individual risks will occur by (2.64) with α = 0.95 and (2.65),
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β = 1.5 β = 2.5 β = 4.5
E[X1|Ω0.95,X1,X2,X3 ] 3.6836 2.3118 1.7402
E[X2|Ω0.95,X1,X2,X3 ] 10.8206 6.7910 5.1120
E[X3|Ω0.95,X1,X2,X3 ] 1.8418 1.1559 0.8701
E[Sn|Ω0.95,X1,X2,X3 ] 16.3460 10.2587 7.7223

Table 2.4: On the tail Ω0.95,X1,X2,X3

we will calculate them by (2.68) in Table 2.4. By (2.69), without loss of generality,

for i = 1, we get

D1(x1|t1, t2, t3)

= P (X1 > x1 or X2 ≥ t2 or X3 ≥ t3)− p3(t1, t2, t3)

= P (X1 > x1 or X2 ≥ t2 or X3 ≥ t3)− P (X1 ≥ t1 or X2 ≥ t2 or X3 ≥ t3)

= (1 +
x1

σ1

)−β − (1 +
t1
σ1

)−β − (1 +
x1

σ1

+
t2
σ2

)−β + (1 +
t1
σ1

+
t2
σ2

)−β − (1 +
x1

σ1

+
t3
σ3

)−β

+(1 +
t1
σ1

+
t3
σ3

)−β + (1 +
x1

σ1

+
t2
σ2

+
t3
σ3

)−β − (1 +
t1
σ1

+
t2
σ2

+
t3
σ3

)−β.

For the principle conditioned on the tail with at least one tail with Xi ≥ VaR0.95(Xi),

i = 1, 2, 3, when β = 1.5, pn = P (Ω0.95,X1,X2,X3) = 0.1022, where

Ω0.95,X1,X2,X3 = {X1 ≥ VaR0.95(X1) orX2 ≥ VaR0.95(X2)orX3 ≥ VaR0.95(X3)}.

When β = 2.5, pn = 0.1157; and when β = 4.5, pn = 0.1271.

For the allocation principles conditioned on that at least one tail of individual risks

will occur by (2.65), the results are in Table 2.5. For the principle conditioned

on the tail with at least one tail with Xi ≥ E(Xi), i = 1, 2, 3, when β = 1.5,

pn = P (Ωe
X1,X2,X3

) = 0.3630, where

Ωe
X1,X2,X3

= {X1 ≥ E[X1] orX2 ≥ E[X2]orX3 ≥ E[X3]}.

When β = 2.5, pn = 0.5400; and when β = 4.5, pn = 0.6374.

Example 2.3. For the allocation principles conditioned on that all the tails of

individual risks will occur by (2.66) with α = 0.95, we will calculate them by
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β = 1.5 β = 2.5 β = 4.5
E[X1|Ωe

X1,X2,X3
] 1.4738 1.0045 0.8690

E[X2|Ωe
X1,X2,X3

] 4.3294 2.9507 2.5527
E[X3|Ωe

X1,X2,X3
] 0.7369 0.5022 0.4345

E[Sn|Ωe
X1,X2,X3

] 6.5401 4.4574 3.8562

Table 2.5: On the tail Ωe
X1,X2,X3

β = 1.5 β = 2.5 β = 4.5
E[X1|Ω∗0.95,X1,X2,X3

] 14.8969 7.3268 4.5272
E[X2|Ω∗0.95,X1,X2,X3

] 43.7597 21.5225 13.2986
E[X3|Ω∗0.95,X1,X2,X3

] 7.4485 3.6634 2.2636
E[Sn|Ω∗0.95,X1,X2,X3

] 66.1051 32.5127 20.0894

Table 2.6: On the tail Ω∗0.95,X1,X2,X3

(2.73) in Table 2.6. By (2.74), for i = 1, we have

G1(x1|t1, t2, t3) = P (X1 > x1, X2 ≥ t1, X3 ≥ t3).

For the principle conditioned on that all the tails of individual risks will occur with

{Xi ≥ VaR0.95(Xi)}, i = 1, 2, 3, when β = 1.5, pn = P (Ω∗0.95,X1,X2,X3
) = 0.0111,

where

Ω∗0.95,X1,X2,X3
= {X1 ≥ VaR0.95(X1), X2 ≥ VaR0.95(X2), X3 ≥ VaR0.95(X3)}.

When β = 2.5, pn = 0.0056; and when β = 4.5, pn = 0.0024.

Table 2.7 illustrates the allocation principles conditioned on that all the tails of

individual risks will occur by (2.67). For the principle conditioned on that all the

tails of individual risks will occur with {Xi ≥ E(Xi)}, i = 1, 2, 3, when β = 1.5,

pn = P (Ωe∗
X1,X2,X3

) = 0.0540,

where

Ωe∗
X1,X2,X3

= {X1 ≥ E[X1], X2 ≥ E[X2], X3 ≥ E[X3]}.

When β = 2.5, pn = 0.0642; and when β = 4.5, pn = 0.0617.
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β = 1.5 β = 2.5 β = 4.5
E[X1|Ωe∗

X1,X2,X3
] 5.1196 2.5585 1.8283

E[X2|Ωe∗
X1,X2,X3

] 15.0388 7.5156 5.3707
E[X3|Ωe∗

X1,X2,X3
] 2.5598 1.2793 0.9142

E[Sn|Ωe∗
X1,X2,X3

] 22.7182 11.3534 8.1132

Table 2.7: On the tail Ωe∗
X1,X2,X3

According Tables 2.1-2.7, we have the following conclusions of the formulas derived

in this chapter.

(i) If the expected loss remains same for different β, the capital allocated to each

capital line decreases as β increases for the six different tail regions Ω0.95,Sn ,

Ωe
Sn

, Ω0.95,X1,X2,X3 , Ωe
X1,X2,X3

, Ω∗0.95,X1,X2,X3
and Ωe∗

X1,X2,X3
, as illustrated in

Tables 2.2-2.7. As β increases, the coefficient of Xi and Xj decreases, hence,

the corresponding loss of each capital line will decrease, and it is reasonable

to keep a lower reserve capital instead.

(ii) In the examples, if the multivariate distribution of the individual risks are

same, the capital allocated to the corresponding capital line based on the

three kinds of common tail regions defined by VaR0.95 is larger than the

capital based on the regions defined by the expectations by comparing Table

2.2 and Table 2.3, Table 2.4 and Table 2.5, or Table 2.6 and Table 2.7.

(iii) Moreover, as illustrated in Table 2.4 and Table 2.6, or Table 2.5 and Table

2.7, if the common tail regions are unions of the corresponding individual

tail regions, the amounts of capital are less than those with the common

tail regions as the intersections of the corresponding individual tail regions

for either VaR0.95 or expectation as the benchmarks of the same multivari-

ately distributed risks. Since the intersections of the tail regions are more

conservative than the unions, these results are reasonable.
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Chapter 3

Risk Measures Based on

Weighted Loss Functions

3.1 Introduction

In the literature, there are many axioms defined for risk measures. Artzner et

al. (1999) proposed the four axioms for a coherent risk measure. Additionally,

Kusuoka (2001) investigated the law invariant coherent risk measures. Moreover,

the convex risk measures were analyzed in Föllmer and Schied (2002), and they

argued that if a risk measure satisfies the axioms of monotonicity and translation

invariance, it belongs to the set of monetary risk measures. Jouini et al. (2006)

further talked about the constraints based on which the law invariant risk measures

can attain the Fatou property. Then, Pichler (2015) researched on the premiums

and reserves adjusted by distortions. In addition, Cai and Mao (2016) derived a

class of risk measures for the required regulatory capital from a regulator’s per-

spective. For convex analysis, the properties of convex functions are provided in

Niculescu and Persson (2006) and Rockafellar (2011).

Bellini et al. (2014) defined the generalized quantiles and categorized them as

risk measures. Moreover, Mao and Cai (2016) generalized their model based on
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the rank-dependent expected utility theory. Firstly, we will introduce the model

of Bellini et al. (2014). For a random variable X, the generalized quantiles of X

in their model is defined as:

cα(X) = arg min
c∈R

fα(c,X), (3.1)

where

fα(c,X) = E[αΦ1((X − c)+) + (1− α)Φ2((X − c)−)],

in which Φ1 and Φ2 are convex functions, and α ∈ (0, 1).

Obviously, the objective function in their model is a linear combination of the

expectations of (X − c)+ and (X − c)−. In this chapter, we will generalize the

weight factors in the objective function from constants to random factors. Namely,

the weight factor α for the positive part is modified to be g(X), and 1−α for the

negative part is set to be h(X). The objective function in our model is a weighted

combination of the expectations of the risks (X − c)+ and (X − c)−. Thus, the

objective loss function is generalized to be

fg,h(c,X) = E[g(X)Φ1((X − c)+)] + E[h(X)Φ2((X − c)−)], (3.2)

in which g(X), h(X) are non-negative functions of X, and the optimization prob-

lem is generalized to be

c∗g,h(X) = arg min
c∈R

fg,h(c,X), (3.3)

where the weight functions g and h may depend on X. In this case, we write gX(x)

and hX(x) instead, for example, gX(x) = γI{x≤E[X]} + βI{x>E[X]}. In this chapter,

we call c∗g,h(X), the minimizers of (3.3), the weighted quantiles of X.

This generalized model can be applied to different optimization situations. Firstly,

it can minimize the insurer’s potential risk. If X represents the loss covered by an

insurer and c is the insurance premium, then (X − c)+ describes the deficit risk

47



for the insurer. If the insurance premium is not enough to cover the insured loss,

insurance companies will incur a loss (X−c)+. We suppose that Φ1 is the function

used to quantify this kind of risk, and E[g(X)Φ1((X − c)+)] is the quantitative

deficit risk for insurance companies by employing the weight function g(x). In

addition, (X − c)− = (c − X)+ can be treated as the insurer’s risk or cost when

the premium is overpriced. Additional cost for insurance companies might be pro-

duced due to tax payments. Moreover, an overpriced insurance contract might not

be competitive. If the insured individuals feel that they have been overcharged

for the insurance contract, they might switch providers, or surrender from current

contracts. Hence, E[h(X)Φ2((X − c)−)] is the quantitative risk for the insurer on

the overcharged premium.

In fact, this model can be illustrated from the insurer’s perspective by consid-

ering the loss of the insured. Note that (X− c)− = (c−X)+ can be treated as the

overpaid risk of the insured. Some insurance customers may face a situation in

which the insurance premium is overcharged since their actual loss could be much

less than the amount of the paid premium. In this case, E[h(X)Φ2((X − c)−)]

is the quantitative risk for the insured due to the overcharged premium. Then

the optimization problem is to minimize both the insurer’s deficit risk and the

insured’s overcharged risk.

Moreover, the regulators can also employ this model to determine the appro-

priate amount of capital as solvency benchmarks. In this case, if c is the required

solvency capital or reserve, then (X − c)+ is the shortfall risk for a company and

(X − c)− = (c − x)+ is the over-required capital. In model (3.1), α plays a role

as the sensitive factor in the regulator’s decision to quantify these two kinds of

risks. If α > 1
2
, the regulator will be more conservative about the current financial

situation since they may anticipate that the potential shortfall risk grow due to

certain extreme events in the near future. If α < 1
2
, the regulator will be positive

about the financial situation and so companies can benefit from a more flexible

cash flow. Our model (3.3) will generalize the sensitive factor from constants to
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functions, which is more reasonable to model the variation of the risk.

Furthermore, if X in (3.2) is assumed to be the loss random variable of one busi-

ness line, and c is assumed to be the capital put in the corresponding business line

as in Dhaene et al. (2012), or Chapter 5 in this paper, fg,h(c,X) can be treated as

the loss risk measure, or loss function for the business line by choosing appropriate

functions for g, h, Φ1 and Φ2. Hence, this model can be applied to determine the

appropriate capital for a single business line.

Since (X − c)+ could be unlimited, it is reasonable to assume g(x) ≥ h(x) from

the insurer’s and the regulator’s perspective. However, from the insured or the

companies’ perspective, a relative lower weight on the unlimited loss might be

preferred, and so they would rather model the weight factors as g(x) ≤ h(x). The

minimizers will be reduced to the generalized quantiles in Bellini et al. (2014)

when g(x) = α and h(x) = 1 − α, where α ∈ (0, 1). In model (3.3), the weights

for the two parts of risks can depend on the loss X. For instance, we may modify

gX(x) with higher values for large X if the right-tail needs more consideration.

In addition, we will see that the weighted expectiles defined in this generalized

model (3.3) can cover the weighted premium principles defined in Heilmann (1989)

and Kamps (1998). Heilmann (1989) proposed the class of weighted premium prin-

ciples induced by the Esscher transform, which is defined as

H(X) =
E[Xh(X)]

E[h(X)]
,

where h(x) ≥ 0, 0 < E[h(X)] < +∞ and E[Xh(X)] < +∞ for a loss random

variable X ≥ 0. In fact, H(X) is the solution to the optimization problem:

H(X) = arg min
c∈R

E[(X − c)2h(X)] (3.4)

as in Kamps (1998). Furman and Zitikis (2008a) further investigated the properties

of the weighted premium principle, like ordering, invariance and explicit formulas
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for some specially distributed loss. When g(x) = h(x), and Φ1 = Φ2 = x2, the

objective function (3.2) is reduced to

fg,h(c,X) = E[h(X)((X − c)2
+ + (X − c)2

−)].

In this case, the optimization problem (3.3) is reduced to (3.4) since

(X − c)2
+ + (X − c)2

− = (X − c)2

always holds.

3.2 Preliminaries

The following lemma is similar to Lemma 2.1 of Mao and Cai (2016).

Lemma 3.1. Let g(c) = E[ξD((X − c)+)] and h(c) = E[ξD((X − c)−)], where ξ

is a non-negative random variable. D is a convex and increasing function defined

on R+. Assume g(c) < +∞ and h(c) < +∞ for any c ∈ R, then

g′+(c) = −E[ξD′−((X − c)+)I{X>c}],

g′−(c) = −E[ξD′+((X − c)+)I{X≥c}],

h′+(c) = E[ξD′+((X − c)−)I{X≤c}]

and

h′−(c) = E[ξD′−((X − c)−)I{X<c}],

which are all finite. If D is differentiable with D′(0) = 0, then

g′(c) = −E[ξD′((X − c)+)]

and

h′(c) = E[ξD′((X − c)−)].
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Proof. For any c, x ∈ R and δ 6= 0, denote

wδ(c, x) =
D((x− (c+ δ))+)−D((x− c)+)

δ
.

Note that D((x)+) is increasing in x ∈ R since both D(x) and (x)+ are increasing

in x ∈ R. Thus, for δ ∈ (−∞, 0) ∪ (0,∞), it holds that wδ(c, x) ≤ 0 for any

c, x ∈ R. Considering that both D(x) and (x)+ are convex, D((x)+) is also convex.

Recall that for a convex function u : R → R and any given y ∈ R, it holds that

(u(x)− u(y))/(x− y) is increasing in x ∈ R. Hence,

wδ(c, x) =
D((x− (c+ δ))+)−D((x− c)+)

δ
= (−1)×D((x− (c+ δ))+)−D((x− c)+)

x− (c+ δ)− (x− c)

is increasing in δ ∈ (−∞, 0) ∪ (0,∞). Thus, for δ > −1 and δ 6= 0,

w−1(c, x) ≤ wδ(c, x) ≤ 0 for all c, x ∈ R.

Noting that limδ→0+(x− (c+ δ))+ = (x− c)+, we have that

lim
δ→0+

D((x− (c+ δ))+)−D((x− c)+)

(x− (c+ δ))+ − (x− c)+

= D′−((x− c)+).

Also,

lim
δ→0+

(x− (c+ δ))+ − (x− c)+

δ
= lim

δ→0+

X − (c+ δ)− (X − c)
δ

I{X≥c+δ}

= −I{X>c}.

Thus,

lim
δ→0+

wδ(c, x) = lim
δ→0+

D((x− (c+ δ))+)−D((x− c)+)

δ

= lim
δ→0+

D((x− (c+ δ))+)−D((x− c)+)

(x− (c+ δ))+ − (x− c)+

× lim
δ→0+

(x− (c+ δ))+ − (x− c)+

δ

= −D′−((x− c)+)I{x>c}.
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Since E[ξw−1(c, x)] = E[ξD((x − c)+)] − E[ξD((x − (c − 1))+)] does exist and is

finite,

E[|ξwδ(c, x)|] ≤ −E[ξw−1(c, x)] <∞

for δ > −1 and δ 6= 0. Hence, by applying the dominated convergence theorem,

we conclude that g′+(c) exists and yields

g′+(c) = lim
δ→0+

g(c+ δ)− g(c)

δ

= lim
δ→0+

E[ξwδ(c, x)]

= E[ξ lim
δ→0+

wδ(c, x)]

= −E[ξD′−((x− c)+)I{x>c}],

which is finite. On the other hand,

lim
δ→0−

D((x− (c+ δ))+)−D((x− c)+)

(x− (c+ δ))+ − (x− c)+

= D′+((x− c)+)

and

lim
δ→0−

(x− (c+ δ))+ − (x− c)+

δ

= lim
δ→0−

X − (c+ δ)− (X − c)
δ

I{X≥c}

= −I{x≥c}.

Thus,

lim
δ→0−

wδ(c, x) = −D′+((x− c)+)I{x≥c}.

Similarly, g′−(c) exists, and

g′−(c) = lim
δ→0−

g(c+ δ)− g(c)

δ

= lim
δ→0−

E[ξwδ(c, x)]

= E[ξ lim
δ→0−

wδ(c, x)]

= −E[ξD′+((x− c)+)I{x≥c}],
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which is finite. For h(c), note that (x)− is convex, and thus D((x)−) is convex as

well. Hence, using the arguments similar to those for g(c), it is easy to verify that

h′+(c) = lim
δ→0+

f(c+ δ)− f(c)

δ

= E[ lim
δ→0+

ξ × D((x− (c+ δ))−)−D((x− c)−)

(x− (c+ δ))− − (x− c)−
× lim

δ→0+

(x− (c+ δ))− − (x− c)−
δ

]

= E[ξD′+((x− c)−)I{x≤c)}]

and

h′−(c) = lim
δ→0−

f(c+ δ)− f(c)

δ

= E[ξD′−((x− c)−)I{x<c}],

which are both finite. If D is differentiable with D′(0) = 0, then

g′+(c) = g′−(c) = −E[ξD′((x− c)+)I{x>c}] = −E[ξD′((x− c)+)]

since (x − c)+ = 0 for x ≤ c and D′(0) = 0. Similarly, we have h′+(c) = h′−(c) =

E[ξD′((x− c)−)].

We recall a well-known result (Rockafellar, 2011) about convex optimization prob-

lems without constraints in the following lemma.

Lemma 3.2. Let f(x) be a convex function on R. Then, c is a minimizer of

minx∈R f(x) if and only if 0 ∈ [f ′−(c), f ′+(c)], where f ′−(c) and f ′+(c) are the left

and right derivatives of f at c.

Define GX(x) = Pr(X < x) and G−1+
X (q) = sup{x ∈ R : GX(x) ≤ q}. Ac-

cording to Wichura (2001), GX(x) is increasing and left-continuous, and FX(x) =

Pr(X ≤ x) is increasing and right-continuous. Also, G−1+
X (q) is increasing and

right-continuous, and F−1
X (q) is increasing and left-continuous. Moreover,

G−1+(q) = lim
u↘q

F−1(u) = F−1(q+). (3.5)
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Since F−1(q) is increasing, we have F−1(q+) ≥ F−1(q), or G−1+(q) ≥ F−1(q).

Further,

GX(x) ≤ q ≤ FX(x) (3.6)

if and only if

G−1+(q) ≤ x ≤ F−1(q). (3.7)

Dhaene et al. (2012) referred the p-mixed inverse function F
−1(p)
X (q) of the distri-

bution function FX(x) = Pr(X ≤ x) for any random variable X and q ∈ (0, 1)

as

F
−1(p)
X (q) = pF−1

X (q) + (1− p)F−1+
X (q), (3.8)

where 0 ≤ p ≤ 1,

F−1
X (q) = inf{x ∈ R : FX(x) ≥ q}, (3.9)

F−1+
X (q) = sup{x ∈ R : FX(x) ≤ q}, (3.10)

with inf{∅} = +∞, sup{∅} = −∞. Then, for any random variable X and for all

x with 0 < FX(x) < 1, there exists px ∈ [0, 1] such that F
−1(px)
X (FX(x)) = x since

F−1
X (FX(x)) ≤ x ≤ F−1+

X (FX(x)) = F−1(FX(x)+)

and by the definition of F
−1(p)
X (q) according to (3.8).

Usually, the right-continuous reverse of the distribution function FX(x) is de-

fined as (3.10), or (3.11) for q ∈ (0, 1). Lemma 3.3 will prove that the definition

of right-continuous inverse G−1+
X,g,h for GX,g,h in Proposition 3.18 based on xB in

Lemma 3.3 is equivalent to xA by (3.10), or (3.11).

Lemma 3.3. Let X be a random variable, for 0 < q < 1,

xA = sup{x ∈ R : Pr(X ≤ x) ≤ q} (3.11)

and

xB = sup{x ∈ R : Pr(X < x) ≤ q}. (3.12)
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Then xA = xB.

Proof. Denote Aq = {x ∈ R : Pr(X ≤ x) ≤ q} and Bq = {x ∈ R : Pr(X <

x) ≤ q}. Clearly, Aq ⊆ Bq since Pr(X < x) ≤ Pr(X ≤ x). Thus, xA ≤ xB.

Since Pr(X < x) ↗ 1, xB < +∞. For xB, there exist xn ∈ Bq such that

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . and xn ↗ xB as n → ∞ and Pr(X < xn) ≤ q. Thus,

limn→∞ Pr(X < xn) = Pr(X < xB) since Pr(X < x) is left-continuous. Hence,

Pr(X < xB) ≤ q, or supBq is attainable. If F (xB) = F (x−B), then F (xB) ≤ q.

Thus, xB ∈ Aq, and so xB ≤ xA. Hence, xA = xB. If F (xB) > F (x−B), then we can

conclude that Aq = (−∞, xB). Indeed, for any x < xB, Pr(X < x) ≤ q. There

exist xn ∈ (x, xB) such that xn ↘ x and Pr(X < xn) ≤ q. Thus, limn→∞ Pr(X ≤

xn − 1
n
) ≤ q, which is equivalent to Pr(X ≤ x) ≤ q. Hence, x ∈ Aq. Note that

Pr(X < x) is left-continuous with Pr(X ≤ x) as the right limit of Pr(X < x) at

x.

Now G−1+
X (q) = sup{x ∈ R : GX(x) ≤ q} = sup{x ∈ R : FX(x) ≤ q} = F−1+

X (q),

so the above results with regard to G−1+
X can be substituted by F−1+

X .

3.3 Properties of Weighted Quantiles

In this chapter, we assume that Φ1,Φ2 : R+ → R+ are two non-degenerated, convex

and increasing functions. Now we consider the minimization problem (3.3) with

g ≥ 0, h ≥ 0, 0 < E[g(X)] < +∞ and 0 < E[h(X)] < +∞. The minimizer cg,h(X)

of minimization problem (3.3) is called a weighted quantile of X. Moreover, we

suppose both E[g(X)Φ1((X − x)+)] < +∞ and E[h(X)Φ2((X − x)−)] < +∞ for

all x ∈ R. Firstly, we will analyze the properties of the weighted quantiles in

Proposition 3.4 and 3.6.

Proposition 3.4. Let Φ1,Φ2 : R+ → R+ be two non-degenerated, convex and

increasing functions, and fg,h(c,X) be the objective function defined by (3.2). Let

c∗g,h = c∗g,h(X) be the weighted quantile of X. Then, the following results hold.

55



(a) The set of minimizers of the minimization problem (3.3) is a closed interval,

namely,

arg min
c∈R

fg,h(c,X) = [c∗−g,h, c
∗+
g,h].

(b) c∗g,h ∈ arg minc∈R fg,h(c,X) if and only if

E[g(X)Φ
′

1−((X − c∗g,h)+)I{X>c∗g,h}] ≤ E[h(X)Φ
′

2+((X − c∗g,h)−)I{X≤c∗g,h}],

E[g(X)Φ
′

1+((X − c∗g,h)+)I{X≥c∗g,h}] ≥ E[h(X)Φ
′

2−((X − c∗g,h)−)I{X<c∗g,h}],

where Φ
′
i− and Φ

′
i+ represent the corresponding left and right derivatives of

Φi, i = 1, 2.

(c) c∗+g,h = c∗−g,h if both Φ1 and Φ2 are strictly convex.

(d) If Φ1 and Φ2 are differentiable, Φ
′
1+(0) = Φ

′
2+(0) = 0, or X follows a con-

tinuous distribution, then the minimizers of the minimization problem (3.3)

are the solutions to the following equation:

E[g(X)Φ
′

1(X − c)+] = E[h(X)Φ
′

2(X − c)−]. (3.13)

Proof. (a) Firstly, we have fg,h(c,X) < +∞ since E[g(X)Φ1((X − c)+)] and

E[h(X)Φ2((X − c)−)] are finite. Obviously, fg,h(c,X) is non-negative and

convex. For non-degenerated functions Φ1(x) and Φ2(x), there exists x0 ∈ R

such that Φ
′
1+(x0) > 0, which illustrates that Φ1(x) ≥ Φ1(x0) + Φ

′
1+(x0)(x−

x0) for x > x0. Moreover, as c→ +∞, we have (x−c)+ → 0 and (x−c)− →

+∞. As c → −∞, we have (x − c)+ → +∞ and (x − c)− → 0. Then, by

the Monotone Convergence Theorem,

lim
c→+∞

fg,h(c,X) = lim
c→+∞

E[hX(X)Φ2(X − c)−] = +∞

and

lim
c→−∞

fg,h(c,X) = lim
c→−∞

E[gX(X)Φ1(X − c)+] = +∞
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since both Φ1 and Φ2 are increasing functions. Thus, fg,h(c,X) is finite,

non-negative and convex with

lim
c→−∞

fg,h(c,X) = lim
c→+∞

fg,h(c,X) = +∞.

Hence, the set of the minimizers should be a closed interval, denoted as

[c∗−g,h, c
∗+
g,h], where c∗−g,h is the lower bound and c∗+g,h is the upper bound.

(b) Note that fg,h(c,X) is a convex function. Hence, c∗g,h is the minimizer if and

only if

0 ∈
[∂−fg,h

∂c
,
∂+fg,h
∂c

]
.

By Lemma 3.1, we can get

∂+fg,h
∂c

(c,X) = −E[gX(X)Φ
′

1−((X − c)+)I{X>c}]

+ E[hX(X)Φ
′

2+((X − c)−)I{X≤c}]
(3.14)

and
∂−fg,h
∂c

(c,X) = −E[gX(X)Φ
′

1+((X − c)+)I{X≥c}]

+ E[hX(X)Φ
′

2−((X − c)−)I{X<c}].
(3.15)

Then, the inequalities in (b) can be arrived at.

(c) If both Φ1 and Φ2 are strictly convex, then

g(x)Φ1((x− c)+) + h(x)Φ2((x− c)−)

is strictly convex at c. Thus, fg,h(c,X) is strictly convex at c. Hence, the

minimizer is unique, i.e. c∗+g,h = c∗−g,h.
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(d) If Φ1 and Φ2 are differentiable with Φ
′
i+ = Φ

′
i−, i = 1, 2, then



E[g(X)Φ
′

1((X − c∗g,h)+)I{X>c∗g,h}]

≤ E[h(X)Φ
′

2((X − c∗g,h)−)I{X≤c∗g,h}],

E[g(X)Φ
′

1((X − c∗g,h)+)I{X≥c∗g,h}]

≥ E[h(X)Φ
′

2((X − c∗g,h)−)I{X<c∗g,h}].

If Φ
′
1+(0) = Φ

′
2+(0) = 0, or X follows a continuous distribution (P (X =

c∗g,h) = 0), then the minimizers are the solutions to

E[g(X)Φ
′

1(X − c)+] = E[h(X)Φ
′

2(X − c)−].

Remark 3.5. According to Proposition 3.4 (c), if both Φ1 and Φ2 are strictly convex,

then c∗−g,h = c∗+g,h, which means that the minimizer is unique. For example, when

Φ1(x) = Φ2(x) = x2, the minimizer is unique.

The following proposition will provide the properties of the weighted quantile as

risk measures when g and h depend on X.

Proposition 3.6. Let Φ1,Φ2 : R+ → R+ be two non-degenerated, convex and

increasing functions, and fg,h(c,X) be the objective function defined by (3.2). Let

c∗−g,h(X) and c∗+g,h(X) be the lower and upper weighted quantiles of X as denoted in

Proposition 3.4 (a). Then, the following properties hold.

(a) Translation invariance: [c∗−g,h(X+m), c∗+g,h(X+m)] = [c∗−g,h(X)+m, c∗+g,h(X)+

m] if gX+m(X +m) = gX(X) and hX+m(X +m) = hX(X) for any m ∈ R.

(b) Positive homogeneity: [c∗−g,h(λX), c∗+g,h(λX)] = [λc∗−g,h(X), λc∗+g,h(X)] if Φ1(x) =

Φ2(x) = xβ with β ≥ 1, gλX(λx) = η(λ)gX(x) and hλX(λx) = η(λ)hX(x) for

any λ ∈ R+, where η is any nonnegative functional.

(c) Constancy: c∗−g,h(m) = c∗+g,h(m) = m for any constant m ∈ R.
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Proof.

(a) If gX+m(X +m) = gX(X) and hX+m(X +m) = hX(X), then fg,h(c,X +m) =

fg,h(c−m,X). Thus, c∗−g,h(X +m) = c∗−g,h(X) +m and c∗+g,h(X +m) = c∗+g,h(X) +m.

(b) If Φ1(x) = Φ2(x) = xβ with β ≥ 1, β ≥ 1, gλX(λx) = η(λ)gX(x) and hλX(λx) =

η(λ)hX(x), then

fg,h(c, λX) = λβη(λ)fg,h(
c

λ
,X)

for λ ∈ R+.

(c) If X = m, fg,h attains its minimum 0 if and only if c∗−g,h = c∗+g,h = m, namely,

c∗g,h = m.

Remark 3.7. Let gX(x) = β1I{x>ρ(X)} + γ1I{x≤ρ(X)} and hX(x) = β2I{x>ρ(X)} +

γ2I{x≤ρ(X)}, where ρ is a distortion risk measure. Then, the weighed quantiles

satisfy the property of translation invariance since gX+m(X + m) = gX(X) and

hX+m(X+m) = hX(X) hold when ρ is a distortion risk measure. Also, the property

of positive homogeneity can be satisfied since gλX(λx) = gX(x) and hλX(λx) =

hX(x) in this case. Therefore, the weighted quantiles based on the weight functions

gX(x) and hX(x) defined by a distortion risk measures ρ will satisfy the first two

properties in Proposition 3.6.

We will investigate the property of monotonicity when g and h are not dependent

on X in Proposition 3.8.

Proposition 3.8. Let Φ1,Φ2 : R+ → R+ be two non-degenerated, convex, and

increasing functions, and fg,h(c,X) be the objective function defined by (3.2). Let

c∗−g,h(X), c∗+g,h(X) be the lower and upper weighted quantiles of X as denoted in

Proposition 3.4 (a). Then

(a) Monotonicity of X: if X ≤st Y , then c∗−g,h(X) ≥ c∗−g,h(Y ) and c∗+g,h(X) ≤

c∗+g,h(Y ) when g(x) is increasing and h(x) is decreasing.
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(b) Monotonicity of g and h: c∗−g,h(X) and c∗+g,h(X) are increasing in g and de-

creasing in h, namely, c∗−g1,h(X) ≤ c∗−g2,h(X) if g1(x) ≤ g2(x) and c∗−g,h1(X) ≥

c∗−g,h2(X) if h1(x) ≤ h2(x).

Proof.

(a) If g(x) is increasing and h(x) is decreasing, then

−g(x)Φ
′

1−((x− c)+)I{x>c} + h(x)Φ
′

2+((x− c)−)I{x≤c}

and

−g(x)Φ
′

1+((x− c)+)I{x≥c} + h(x)Φ
′

2−((x− c)−)I{x<c}

are decreasing functions of x. Hence, if X ≤st Y , then

∂+fg,h
∂c

(c,X) ≥ ∂+fg,h
∂c

(c, Y )

and
∂−fg,h
∂c

(c,X) ≥ ∂−fg,h
∂c

(c, Y )

by (3.14) and (3.15), respectively. Thus,

{c ∈ R :
∂+fg,h
∂c

(c, Y ) ≥ 0} ⊆ {c ∈ R :
∂+fg,h
∂c

(c,X) ≥ 0}

and

{c ∈ R :
∂−fg,h
∂c

(c,X) ≤ 0} ⊆ {c ∈ R :
∂−fg,h
∂c

(c, Y ) ≤ 0}

Also, we know that

c∗−g,h(X) = inf{c ∈ R :
∂+fg,h
∂c

(c,X) ≥ 0} (3.16)

and

c∗+g,h(X) = sup{c ∈ R :
∂−fg,h
∂c

(c,X) ≤ 0} (3.17)

by Rockafellar (2011). Thus, c∗−g,h(X) ≤ c∗−g,h(Y ) and c∗+g,h(X) ≤ c∗+g,h(Y ).
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(b) If g1(x) ≤ g2(x), then

∂+fg1,h
∂c

(c,X) ≥ ∂+fg2,h
∂c

(c,X)

and
∂−fg1,h
∂c

(c,X) ≥ ∂−fg2,h
∂c

(c,X).

Similar as (a), we can get

{c ∈ R :
∂+fg2,h
∂c

(c,X) ≥ 0} ⊆ {c ∈ R :
∂+fg1,h
∂c

(c,X) ≥ 0}

and

{c ∈ R :
∂−fg1,h
∂c

(c,X) ≤ 0} ⊆ {c ∈ R :
∂−fg2,h
∂c

(c,X) ≤ 0}.

By adopting (3.16) and (3.17) again, c∗+g1,h ≤ c∗+g2,h and c∗−g1,h ≤ c∗−g2,h. Similarly,

c∗+g,h2 ≥ c∗+g,h1 and c∗−g,h2 ≥ c∗−g,h1 if h1(x) ≤ h2(x).

In the rest of this chapter, we will consider the applications of the optimizers of

(3.3).

3.4 Weighted Expectiles

In this section, we attain the weighted expectiles as the minimizers when Φ1(x) =

Φ2(x) = x2.

Proposition 3.9. (Minimizers with Quadratic Functions) If Φ1(x) = Φ2(x) = x2,

the minimizer c∗g,h(X) of (3.3) is the unique solution to

E[hX(X)(X − c)] + E[(gX(X)− hX(X))(X − c)+] = 0, (3.18)

or

E[gX(X)(X − c)+] = E[hX(X)(X − c)−], (3.19)
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or

c =
E[XhX(X)] + E[(gX(X)− hX(X))(X − c)+]

E[hX(X)]
. (3.20)

Proof. This result directly follows Proposition 3.4 (c) and (d).

Remark 3.10. If gX(x) = hX(x), then the risk measure in Proposition 3.9 is reduced

to the weighted premium principle in Kamps (1989) by (3.20).

Remark 3.11. If g(x) = α and h(x) = 1 − α, where α ∈ (0, 1) is a constant, the

minimizer in Proposition 3.9 is reduced to be an expectile denoted by eα, introduced

by Newey and Powell (1987). As is known, eα is the unique solution to

αE[(X − c)+] = (1− α)E[(X − c)−].

In addition, eα is a coherent risk measure if α ≥ 1
2

and converges in weak Wasser-

stein distance, see Bellini et al. (2014). Obviously, the minimizer in Proposition

3.9 is a generalization of the expectile risk measure.

Definition 3.12. (Weighted Expectiles) For a random variable X, the unique

solution c∗g,h(X) to

E[gX(X)(X − c)+] = E[hX(X)(X − c)−],

where gX(x) ≥ hX(x) ≥ 0, is called the weighted expectile of X.

Proposition 3.13. (Properties of the Weighted Expectile) Let cX = c∗g,h(X) be

the weighted expectile of X.

(a) Risk Loading: If gX(x) ≥ hX(x), then cX ≥ E[XhX(X)]
E[hX(X)]

. If gX(x) ≥ hX(x)

and Cov(X, hX(X)) ≥ 0, then cX ≥ E[X].

(b) Maximal Loss: cX ≤ supX if Cov(X, hX(X)) ≤ 0.
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(c) Subadditivity: cX+Y ≤ cX + cY if g and h satisfy g ≥ h,

E[(gX+Y (X + Y )− hX+Y (X + Y ))(X − cX)+]

E[hX+Y (X + Y )]
≤ E[(gX(X)− hX(X))(X − cX)+]

E[hX(X)]
,

(3.21)
E[(gX+Y (X + Y )− hX+Y (X + Y ))(Y − cY )+]

E[hX+Y (X + Y )]
≤ E[(gY (Y )− hY (Y ))(Y − cY )+]

E[hY (Y )]
(3.22)

and

E[(X + Y )hX+Y (X + Y )]

E[hX+Y (X + Y )]
≤ E[XhX(X)]

E[hX(X)]
+

E[Y hY (Y )]

E[hY (Y )]
. (3.23)

Proof. (a) Since gX(x) ≥ hX(x) for any x ∈ R and (x− cX)+ ≥ 0, E[(gX(X)−

hX(X))(X − cX)+] ≥ 0, the conclusion is obvious. If Cov(X, hX(X)) ≥ 0,

E[XhX(X)]
E[hX(X)]

≥ E[X]. Hence, cX ≥ E[X].

(b) If supX = ∞, then cX ≤ ∞ holds. If supX = M < ∞, then X ≤ M

and E[X] ≤ M , and it must be cX ≤ M . Otherwise, assume cX > M ,

we have E[(gX(X) − hX(X))(X − cX)+ = 0. So cX = E[XhX(X)]
E[hX(X)]

. And if

Cov(X, hX(X)) ≤ 0, E[hX(X)X] ≤ E[hX(X)]E[X]. Hence, cX ≤ E[X] ≤

M , which contradicts the prior assumption. In all, cX ≤ sup X.

(c) According to (3.20), we have

cX =
E[XhX(X)]

E[hX(X)]
+

E[(gX(X)− hX(X))(X − cX)+]

E[hX(X)]
,

cY =
E[Y hY (Y )]

E[hY (Y )]
+

E[(gY (Y )− hY (Y ))(Y − cY )+]

E[hY (Y )]

and

cX+Y =
E[(gX+Y (X + Y )− hX+Y (X + Y ))(X + Y − cX+Y )+]

E[hX+Y (X + Y )]

+
E[(X + Y )hX+Y (X + Y )]

E[hX+Y (X + Y )]
.

Suppose cX+Y > cX + cY , then

(X + Y − cX+Y )+ ≤ (X + Y − cX − cY )+ ≤ (X − cX)+ + (Y − cY )+.
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Hence,

E[(gX+Y (X + Y )− hX+Y (X + Y ))(X + Y − cX+Y )+]

E[hX+Y (X + Y )]

≤ E[(gX+Y (X + Y )− hX+Y (X + Y ))(X − cX)+]

E[hX+Y (X + Y )]

+
E[(gX+Y (X + Y )− hX+Y (X + Y ))(Y − cY )+]

E[hX+Y (X + Y )]

≤ E[(gX(X)− hX(X))(X − cX)+]

E[hX(X)]
+

E[(gY (Y )− hY (Y ))(Y − cY )+]

E[hY (Y )]

by (3.21) and (3.22). Now we have

cX+Y =
E[(gX+Y (X + Y )− hX+Y (X + Y ))(X + Y − cX+Y )+]

E[hX+Y (X + Y )]

+
E[(X + Y )hX+Y (X + Y )]

E[hX+Y (X + Y )]

≤ E[XhX(X)]

E[hX(X)]
+

E[Y hY (Y )]

E[hY (Y )]
+

E[(gX(X)− hX(X))(X − cX)+]

E[hX(X)]

+
E[(gY (Y )− hY (Y ))(Y − cY )+]

E[hY (Y )]

= cX + cY ,

which contradicts the assumption cX+Y > cX + cY . Thus, cX+Y ≤ cX + cY .

In the following corollaries, we will consider the weight functions defined by gX(x) =

γI{x≤ρ(X)} + βI{x>ρ(X)}, where ρ is a risk measure. Note that ρ(X) represents a

benchmark, and it can be chosen as E[X], VaRα∗(X), where α∗ ∈ [0, 1], or other

appropriate risk measures. In fact, we prefer to choose the distortion risk mea-

sures and consequently, the weighted quantiles can attain good properties as risk

measures. Usually, we assume β ≥ γ to illustrate that a higher weight will be put

on the region where X is no less than the benchmark ρ(X).

Corollary 3.14. Let hX(x) = λ and gX(x) = γI{x≤E[X]} + βI{x>E[X]} with β ≥

γ ≥ λ > 0, x ∈ R. Assume E[X] ≥ 0 and E[Y ] ≥ 0. Then, cX+Y ≤ cX + cY . We

call such a weighted expectile cX a 3-parameter expectile denoted by eλ,β,γ(X).
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Proof. Obviously, gX(x) is increasing in x. Also, for any x ∈ R, gX+Y (x) ≤ gX(x)

and gX+Y (x) ≤ gY (x) since E[X + Y ] ≥ E[X], E[Y ]. Note that cX ≥ E[X],

cY ≥ E[Y ] by (3.20), hX(x) = λ, and gX(x) ≥ hX(x). Hence,

E[(gX+Y (X + Y )− hX+Y (X + Y ))(X + Y − cX+Y )+]

E[h(X + Y )]

≤ E[(gX+Y (X + Y )− hX+Y (X + Y ))(X − cX)+]

E[h(X + Y )]

+
E[(gX+Y (X + Y )− hX+Y (X + Y ))(Y − cY )+]

E[h(X + Y )]

=
1

λ
E[gX+Y (X + Y )(X − cX)+] +

1

λ
E[gX+Y (X + Y )(Y − cY )+]

− E[(X − cX)+ + (Y − cY )+].

Note that

gX(X + Y ) =

 γ, X + Y ≤ E[X],

β, X + Y > E[X].

and E[X] ≤ cX , E[Y ] ≤ cY . Also,

gX(X) =

 γ, X ≤ E[X],

β, X > E[X].

If X + Y > E[X] but X ≤ cX , then

gX+Y (X + Y )(X − cX)+ = 0 = gX(X)(X − cX)+;

If X + Y > E[X] but X > cX , then

gX+Y (X + Y )(X − cX)+ = β(X − cX) = gX(X)(X − cX)+.

Hence, if X + Y > E[X], it holds that gX(X + Y )(X − cX)+ = gX(X)(X − cX)+.

If X + Y ≤ E[X] but X ≤ cX , then

gX+Y (X + Y )(X − cX)+ = 0 = gX(X)(X − cX)+;
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If X + Y ≤ E[X] but X > cX , then

gX+Y (X + Y )(X − cX)+ = γ(X − c(X)) ≤ gX(X)(X − cX)+

since γ ≤ β. Thus,

gX+Y (X + Y )(X − cX)+ ≤ gX(X)(X − cX)+.

Similarly,

gX+Y (X + Y )(Y − cY )+ ≤ gY (Y )(Y − cY )+.

Thus, (3.21) and (3.22) can be satisfied. Also, it is trivial that (3.23) holds. Hence,

cX+Y ≤ cX + cY by Proposition 3.13 (c).

Corollary 3.15. Let eλ,β,γ(X) be the 3-parameter expectile defined in Corollary

3.14. Then, eλ,β,γ(X) ≤ eλ,β,γ(Y ) if X ≤ Y .

Proof. According to (3.20), cX ≥ E[X], cY ≥ E[Y ], and cX satisfies

eλ,β,γ(X) = E[X] +
E[(gX(X)− λ)(X − eλ,β,γ(X))+]

λ
, (3.24)

and cY satisfies

eλ,β,γ(Y ) = E[Y ] +
E[(gY (Y )− λ)(Y − eλ,β,γ(Y ))+]

λ
. (3.25)

Also, we have

(gX(X)− λ)(X − eλ,β,γ(X))+

= ((γ − λ)I{X≤E[X]} + (β − λ)I{X>E[X]})(X − eλ,β,γ(X))+

= (β − λ)(X − eλ,β,γ(X))+

≥ 0
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and

(gY (Y )− λ)(Y − eλ,β,γ(Y ))+

= ((γ − λ)I{Y≤E[Y ]} + (β − λ)I{Y >E[Y ]})(Y − eλ,β,γ(Y ))+

= (β − λ)(Y − eλ,β,γ(Y ))+

≥ 0

since eλ,β,γ(X) ≥ E[X] and eλ,β,γ(Y ) ≥ E[Y ]. Suppose eλ,β,γ(X) > eλ,β,γ(Y ) if X ≤

Y . Then, (X − eλ,β,γ(X))+ ≤ (Y − eλ,β,γ(Y ))+. Thus, the RHS of (3.24) is equal

or less than the RHS of (3.25), namely, eλ,β,γ(X) ≤ eλ,β,γ(Y ), which contradicts

with what we have supposed. Hence, eλ,β,γ(X) ≤ eλ,β,γ(Y ) if X ≤ Y .

The relationship between the weighted expectile in Corollary 3.14 and the classical

expectile is investigated in Corollary 3.16.

Corollary 3.16. Let eλ,β,γ(X) be the 3-parameter expectile defined in Corollary

3.14 and eα(X) be the classical expectile at confidence level α. Then, the following

results hold.

(a) eλ,β,γ(X) ≥ eα(X) for any β ≥ γ ≥ λ > 0 and β
λ
≥ α

1−α .

(b) eλ,β1,γ(X) ≤ eλ,β2,γ(X) for any β1 ≤ β2, βi ≥ γ ≥ λ > 0, i = 1, 2.

Furthermore, if γ = α and λ = 1 − α, where α ∈ [1
2
, 1), we call such a weighted

expectile cX a 2-parameter expectile denoted by eα,β. Then, the following results

hold.

(c) eα1,β(X) ≥ eα2,β(X) for any β ≥ α1 ≥ α2.

(d) eα,β(X) ≥ eα(X) for any β ≥ α, and eα,α(X) = eα(X).

(e) eα,β1(X) ≤ eα,β2(X) for any β1 ≤ β2, βi ≥ α, i = 1, 2.

Proof. (a) According to (3.20), eλ,β,γ(X) ≥ E[X] since gX(x) ≥ hX(x). Then,

eα,β,γ(X) satisfies

E[(βI{X>E[X]} + γI{x≤E[X]})(X − eλ,β,γ(X))+] = λE[(X − eλ,β,γ(X))−],
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which is equivalent to

β

λ
E[(X − eλ,β,γ(X))+] = E[(X − eλ,β,γ(X))−] (3.26)

since

E[βI{X>E[X]}(X − eλ,β,γ(X))+] = βE[(X − eλ,β,γ(X)) · I{X>E[X]} · I{X≥eλ,β,γ(X)}]

= βE[(X − eλ,β,γ(X)) · I{X≥eλ,β,γ(X)}]

= βE[(X − eλ,β,γ(X))+]

and

E[γI{x≤E[X]}(X−eλ,β,γ(X))+] = γE[(X−eλ,β,γ(X))·I{X≤E[X]}·I{X>eλ,β,γ(X)}] = 0.

And eα(X) satisfies

α

1− α
E[(X − eα(X))+] = E[(X − eα(X))−]. (3.27)

If we suppose eλ,β,γ(X) < eα(X), the RHS of (3.26) would be equal or less

than the RHS of (3.27) and the LHS of (3.26) would be no less than the RHS

of (3.27). The equivalence of both sides of (3.26) and (3.27) hold if and only

if E[(X − eλ,β,γ(X))+] = E[(X − eα(X))+] = 0 and E[(X − eλ,β,γ(X))−] =

E[(X − eα(X))−], which illustrates that eλ,β,γ(X) = eα(X) = E[X], and it

contradicts with eλ,β,γ(X) < eα(X). Hence, we can get either (i) RHS of

(3.26) ≤ RHS of (3.27) and LHS of (3.26) > RHS of (3.27), or (ii) RHS of

(3.26) < RHS of (3.27) and LHS of (3.26) ≥ RHS of (3.27), which is not

true obviously. Hence, eλ,β,γ(X) ≥ eα(X).

(b) Note that eλ,β1,γ(X) satisfies

β1E[(X − eλ,β1,γ(X))+] = λE[(X − eλ,β1,γ(X))−],
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β eα,β/E[X] eα,β/VaRα∗(X)
0.90 204.01 204.01
0.92 205.27 204.95
0.94 206.51 205.92
0.96 207.73 206.87
0.98 208.93 207.81

Table 3.1: X ∼ Exp(100) with α = 0.9

and eλ,β2,γ(X) satisfies

β2E[(X − eλ,β2,γ(X))+] = λE[(X − eλ,β2,γ(X))−].

Similar to the proof in (a), we get eλ,β1,γ(X) ≤ eλ,β2,γ(X) for β1 ≤ β2.

(c) By (a).

(d) By (c).

(e) By (b).

Remark 3.17. The weighed expectiles eλ,β,γ defined in Corollary 3.14 and eα,β de-

fined in Corollary 3.16 are coherent for X ∈ Lp+.

Example 3.1 and Example 3.2 illustrate the values of eα,β when ρ(X) = E[X] and

ρ(X) = VaRα(X). Note that eα,β/ρ(X) is denoted as the 2-parameter expectile

with risk measure ρ in Tables 3.1-3.6.

Example 3.1. For X ∼ Exp(100) with FX(x) = 1− e−x/100, x > 0. We consider

two cases: (i) gX(x) = βI{x>E[X]} + αI{x≤E[X]}, hX(x) = 1 − α. (ii) gX(x) =

βI{x>VaRα∗ (X)} + αI{x≤VaRα∗ (X)}, where α∗ = 0.95, hX(x) = 1− α. The results are

in second and third columns of Tables 3.1, 3.2 and 3.3 when α = 0.9, 0.8, 0.7.

Example 3.2. For X ∼ Pareto(3, 200) with density function f(x) = 3·2003

(x+200)4
,

x > 0. We consider two cases: (i) gX(x) = βI{x>E[X]}+αI{x≤E[X]}, hX(x) = 1−α.

(ii) gX(x) = βI{x>VaRα∗ (X)} + αI{x≤VaRα∗ (X)}, where α∗ = 0.95, hX(x) = 1 − α.

The results are in the second and third columns of Tables 3.4, 3.5 and 3.6 when

α = 0.9, 0.8, 0.7.
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β eα,β/E[X] eα,β/VaRα∗(X)
0.80 160.35 160.35
0.85 163.41 162.21
0.90 166.33 164.05
0.95 169.12 165.88

Table 3.2: X ∼ Exp(100) with α = 0.8

β eα,β/E[X] eα,β/VaRα∗(X)
0.70 134.68 134.68
0.75 137.81 136.31
0.80 140.78 137.93
0.85 143.61 139.53
0.90 146.31 141.13
0.95 148.89 142.71

Table 3.3: X ∼ Exp(100) with α = 0.7

β eα,β/E[X] eα,β/VaRα∗(X)
0.90 254.74 254.74
0.92 257.03 256.88
0.94 259.29 259.00
0.96 261.51 261.10
0.98 263.70 263.19

Table 3.4: X ∼ Pareto(3, 200) with α = 0.9

β eα,β/E[X] eα,β/VaRα∗(X)
0.80 182.16 182.16
0.85 186.86 185.93
0.90 191.39 189.65
0.95 195.77 193.35

Table 3.5: X ∼ Pareto(3, 200) with α = 0.8

β eα,β/E[X] eα,β/VaRα∗(X)
0.70 144.85 144.85
0.75 149.20 147.94
0.80 153.38 151.01
0.85 157.41 154.05
0.90 161.29 157.07
0.95 165.04 160.06

Table 3.6: X ∼ Pareto(3, 200) with α = 0.7
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According to Tables 3.1-3.6, we can arrive at the following conclusions, which

correspond with Corollary 3.16 (d)-(f). Note that eexpα,β/ρ(X) is denoted as the

2-parameter expectile when X ∼ Exp(100), and eparetoα,β /ρ(X) is denoted as the

2-parameter expectile when X ∼ Pareto(3, 200).

(i) Tables 3.1-3.3 and Tables 3.4-3.6 illustrate that the 2-parameter expectile

increases as α increases for any fixed β ≥ α, ρ and X. For example,

eexp0.8,0.9/E[X] = 166.33 ≤ 204.01 = eexp0.9,0.9/E[X]

and

epareto0.7,0.9/VaR0.95(X) = 157.07 ≤ 189.65 = epareto0.8,0.9/VaR0.95(X).

In addition, the first rows in Tables 3.1-3.6 are equal since eα,α(X) = eα(X)

whatever the risk measure ρ is. Also, in the same column, the values of

2-parameter expectiles in other rows are always larger than the values in the

first row since eα,β(X) ≥ eα(X) for any β ≥ α.

(ii) In each column of the Tables 3.1-3.6, we can see that the 2-parameter ex-

pectile increases as β increases for any fixed α ≤ β, ρ and X. For instance,

in the third column of Table 3.4,

epareto0.9,0.92/VaR0.95(X) = 256.88 ≤ 263.19 = epareto0.9,0.98/VaR0.95(X).

(iii) By comparing the values in the second column and the third column of Tables

3.1-3.6, we find that the 2-parameter expectiles with ρ(X) = VaR0.95(X) are

always less than those with ρ(X) = E[X] for any fixed α ≤ β and X since

VaR0.95(X) ≥ E[X] for X ∼ Exp(100) or X ∼ Pareto(3, 200). Note that

ρ(X) plays as a benchmark to determine the threshold of X with a larger

value. If the benchmark increases and other assumptions in the objective

function are fixed, the minimizer in our model might decrease.
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(iv) Moreover, eexpα,β/ρ(X) ≤ eparetoα,β /ρ(X) is true for any fixed α ≤ β when ρ(X) =

VaR0.95(X) or E[X] by checking the corresponding values for the 2-parameter

expectile. For example,

eexp0.9,0.96/E[X] = 207.73 ≤ 261.51 = epareto0.9,0.96/E[X]

and

eexp0.9,0.98/VaR0.95(X) = 207.81 ≤ 263.19 = epareto0.9,0.98/VaR0.95(X),

see Table 3.1 and Table 3.4. Conclusions are same when we compare the

values in Table 3.2 and Table 3.5, or Table 3.3 and Table 3.6.

3.5 Weighted VaRs

In this section, we consider the case when Φ1(x) = Φ2(x) = x, and investigate the

properties of the corresponding minimizers.

Proposition 3.18. (Minimizers with Identity Functions) Let Φ1(x) = Φ2(x) = x,

the minimizers c∗g,h(X) of (3.3) are expressed as

c∗g,h(X) = pH−1
X,g,h(αX,g,h) + (1− p)G−1+

X,g,h(αX,g,h), (3.28)

where

αX,g,h =
E[g(X)]

E[g(X) + h(X)]
,

H−1
X,g,h(α) = inf{x ∈ R : HX,g,h(x) ≥ α}

and

G−1+
X,g,h(α) = sup{x ∈ R : GX,g,h(x) ≤ α},

with

HX,g,h(x) =
E[(g(X) + h(X))I{X≤x}]

E[g(X) + h(X)]
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and

GX,g,h(x) =
E[(g(X) + h(X))I{X<x}]

E[g(X) + h(X)]
.

In particular,

c∗g,h(X) = H−1
X,g,h(αX,g,h)

if H−1
X,g,h(x) is continuous at αX,g,h.

Proof. Following Proposition 3.4 (b), we can get that c∗g,h = c∗g,h(X) are the solu-

tions to E[g(X)I{X>c∗g,h}] ≤ E[h(X)I{X≤c∗g,h}],

E[g(X)I{X≥c∗g,h}] ≥ E[h(X)I{X<c∗g,h}].
(3.29)

Note that (3.29) can be rewritten as

E[g(X) + h(X))I{X<c∗g,h}]
E[g(X) + h(X)]

≤ E[g(X)]

E[g(X) + h(X)]
≤

E[g(X) + h(X))I{X≤c∗g,h}]
E[g(X) + h(X)]

,

(3.30)

which is equivalent to

GX,g,h(c
∗
g,h) ≤

E[g(X)]

E[g(X) + h(X)]
≤ HX,g,h(c

∗
g,h). (3.31)

It is easy to verify that GX,g,h(x) is increasing and left-continuous, while HX,g,h(x)

is increasing and right-continuous. Moreover, GX,g,h(x) = limy→x− HX,g,h(y) and

GX,g,h(x) ≤ HX,g,h(x). In addition, HX,g,h(x) → 1 as x → ∞ and HX,g,h(x) → 0

as x→ −∞ under the assumption that E[g(X) + h(X)] <∞. Hence, HX,g,h(x) is

a distribution function. Let

H−1
X,g,h(α) = inf{x ∈ R : HX,g,h(x) ≥ α} (3.32)

be the left-continuous inverse of H. For α = 0 and α = 1, use convention inf ∅ =∞

and sup ∅ = −∞. For a distribution function F , we have F−1(0) = −∞ and

F−1+(1) =∞. Denote

G−1+
X,g,h(α) = sup{x ∈ R : GX,g,h(x) ≤ α} (3.33)
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By (3.5), we have

G−1+
X,g,h(α) = lim

u↘α
H−1
X,g,h(u) = H−1

X,g,h(α+).

Since H−1
X,g,h(α) is increasing, we have

H−1
X,g,h(α+) ≥ H−1

X,g,h(α).

or

G−1+
X,g,h(α) ≥ H−1

X,g,h(α).

Thus, (3.31) is equivalent to

H−1
X,g,h(

E[g(X)]

E[g(X) + h(X)]
) ≤ c∗g,h ≤ G−1+

X,g,h(
E[g(X)]

E[g(X) + h(X)]
) (3.34)

by the equivalence of (3.6) and (3.7). Hence, (3.28) holds.

We call the risk measures defined by (3.28) as the weighted VaRs. When g and h are

defined as in Remark 3.7, the weighted quantiles satisfy positive homogeneity and

translation invariance. We firstly provide the formulas to calculate the weighted

quantiles when Φ1(x) = Φ2(x) = x in Corollary 3.19 and 3.20. The corresponding

weighted VaR in Corollary 3.19 is defined as a multi-parameter VaR.

Corollary 3.19. Let Φ1(x) = Φ2(x) = x, c∗ = c∗β1,β2,γ1,γ2,ρ be the solutions to

(3.28) when

gX(x) = β1I{x>ρ(X)} + γ1I{x≤ρ(X)}

and

hX(x) = β2I{x>ρ(X)} + γ2I{x≤ρ(X)},

where ρ is a risk measure, β1, γ1, β2, γ2 ∈ R+. Let q∗1 = FX(ρ(X)) and q∗2 =

GX(ρ(X)) = FX(ρ(X)−), where GX(x) = Pr(X < x). Denote

αX,g,h =
E[g(X)]

E[g(X) + h(X)]
=
β1(1− q∗1) + γ1q

∗
1

d∗
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as defined in Proposition 3.18, where d∗ = E[g(X) + h(X)]. Then, the following

results hold:

(i) If αX,g,h <
(γ1+γ2)q∗2

d∗
, c∗ = F

−1(p)
X (

β1+(γ1−β1)q∗1
γ1+γ2

);

(ii) If αX,g,h =
(γ1+γ2)q∗2

d∗
, c∗ = pρ(X) + (1− p)F−1+

X (
β1+(γ1−β1)q∗1

γ1+γ2
);

(iii) If
(γ1+γ2)q∗2

d∗
< αX,g,h <

(γ1+γ2)q∗1
d∗

, c∗ = ρ(X);

(iv) If αX,g,h =
(γ1+γ2)q∗1

d∗
, c∗ = pF−1

X (
β1+(β2−γ2)q∗1

β1+β2
) + (1− p)ρ(X);

(v) If αX,g,h >
(γ1+γ2)q∗1

d∗
, c∗ = F

−1(p)
X (

β1+(β2−γ2)q∗1
β1+β2

);

where p ∈ [0, 1].

Proof. According to Proposition 3.18, we have

HX,g,h(x) =
E[((β1 + β2)I{X>ρ(X)} + (γ1 + γ2)I{X≤ρ(X)})I{X≤x}]

d∗

and

GX,g,h(x) =
E[((β1 + β2)I{X>ρ(X)} + (γ1 + γ2)I{X≤ρ(X)})I{X<x}]

d∗
.

For HX,g,h(x), if x ≥ ρ(X), then

HX,g,h(x) =
(β1 + β2)(FX(x)− q∗1) + (γ1 + γ2)q∗1

d∗
;

If x < ρ(X), then

HX,g,h(x) =
(γ1 + γ2)FX(x)

d∗
.

Note that HX,g,h(x) is increasing and right-continuous with

H = HX,g,h(ρ(X)) =
(γ1 + γ2)q∗1

d∗
(3.35)

and GX,g,h(x) is increasing and left-continuous with

G = GX,g,h(ρ(X)) =
(γ1 + γ2)q∗2

d∗
. (3.36)
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In addition,

HX,g,h(ρ(X)−) = GX,g,h(ρ(X)) = G

and

GX,g,h(ρ(X)+) = HX,g,h(ρ(X)) = H.

Thus, if αX,g,h ≥ H, let

HX,g,h(x) =
(β1 + β2)(FX(x)− q∗1) + (γ1 + γ2)q∗1

d∗
= αX,g,h,

then

H−1
X,g,h(αX,g,h) = F−1

X (
β1 + (β2 − γ2)q∗1

β1 + β2

);

If G ≤ αX,g,h < H, H−1
X,g,h(αX,g,h) = ρ(X);

If αX,g,h < G, let

HX,g,h(x) =
(γ1 + γ2)FX(x)

d∗
= αX,g,h,

then

H−1
X,g,h(αX,g,h) = F−1

X (
β1 + (γ1 − β1)q∗1

γ1 + γ2

).

For GX,g,h(x), if x > ρ(X), then

GX,g,h(x) =
(β1 + β2)(GX(x)− q∗1) + (γ1 + γ2)q∗1

d∗
;

If x ≤ ρ(X), then

GX,g,h(x) =
(γ1 + γ2)GX(x)

d∗
.

Similarly as H−1
X,g,h, if αX,g,h > H,

G−1+
X,g,h(αX,g,h) = F−1+

X (
β1 + (β2 − γ2)q∗1

β1 + β2

);

If G < αX,g,h ≤ H, G−1+
X,g,h(αX,g,h) = ρ(X);

If αX,g,h ≤ G,

G−1+
X,g,h(αX,g,h) = F−1+

X (
β1 + (γ1 − β1)q∗1

γ1 + γ2

).
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The corresponding weighted VaRs in Corollary 3.20 is defined as 4-parameter

VaRs.

Corollary 3.20. Under the same assumptions and notations as in Corollary 3.19.

Assume FX is continuous. Let q∗ = FX(ρ(X)). Then, the following results hold:

(i) If q∗ < β1
β1+γ2

, c∗ = F
−1(p)
X (β1+(β2−γ2)q∗

β1+β2
);

(ii) If q∗ = β1
β1+γ2

, c∗ = ρ(X);

(iii) If q∗ > β1
β1+γ2

, c∗ = F
−1(p)
X (β1+(γ1−β1)q∗

γ1+γ2
);

where p ∈ [0, 1]. Assume FX is continuous and strictly increasing. Then, the

following results hold:

(i) If q∗ ≤ β1
β1+γ2

, c∗ = F−1
X (β1+(β2−γ2)q∗

β1+β2
);

(ii) If q∗ > β1
β1+γ2

, c∗ = F−1
X (β1+(γ1−β1)q∗

γ1+γ2
).

Proof. If FX is continuous, q∗ = q∗1 = q∗2 = FX(ρ(X)), where q∗1 and q∗2 are as

defined in Corollary 3.19. In addition,

G = H =
(γ1 + γ2)q∗

d∗

by (3.35) and (3.36). Hence, the results in Corollary 3.19 are reduced to be

(i) If αX,g,h >
(γ1+γ2)q∗

d∗
, c∗ = F

−1(p)
X (β1+(β2−γ2)q∗

β1+β2
);

(ii) If αX,g,h = (γ1+γ2)q∗

d∗
, c∗ = ρ(X);

(iii) If αX,g,h <
(γ1+γ2)q∗

d∗
, c∗ = F

−1(p)
X (β1+(γ1−β1)q∗

γ1+γ2
);

where p ∈ [0, 1]. Moreover, we have

αX,g,h >
(γ1 + γ2)q∗

d∗
⇐⇒ q∗ <

β1

β1 + γ2

,
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αX,g,h =
(γ1 + γ2)q∗

d∗
⇐⇒ q∗ =

β1

β1 + γ2

and

αX,g,h <
(γ1 + γ2)q∗

d∗
⇐⇒ q∗ >

β1

β1 + γ2

.

If FX is continuous and strictly increasing, then F−1
X is also continuous and strictly

increasing. Also,

F−1
X (

β1 + (β2 − γ2)q∗

β1 + β2

) = F−1
X (

β1 + (γ1 − β1)q∗

γ1 + γ2

) = F−1
X (

β1

β1 + γ2

) = ρ(X)

if q∗ = β1
β1+γ2

.

Remark 3.21. In Corollary 3.20, for q∗ < β1
β1+γ2

, c∗ > F−1
X (q∗), and if β2 ≥ γ2, c∗

is increasing in q∗; if β2 < γ2, c∗ is decreasing in q∗. For q∗ > β1
β1+γ2

, c∗ < F−1
X (q∗),

and if γ1 ≥ β1, c∗ is increasing in q∗; if γ1 < β1, c∗ is decreasing in q∗. Hence, for

any q̂∗1 = Pr(X ≤ ρ1(X)) and q̂∗2 = Pr(X ≤ ρ2(X)), without loss of generality,

we suppose q̂∗1 ≥ q̂∗2. Denote c∗1 and c∗2 being the optimal risk measure determined

by ρ1 and ρ1 correspondingly. For q̂∗2 >
β1

β1+γ2
, if γ1 ≥ β1, F−1

X ( β1
β1+γ2

) > c∗1 ≥ c∗2; if

γ1 < β1, c∗1 ≤ c∗2 < F−1
X ( β1

β1+γ2
). For q̂∗1 <

β1
β1+γ2

, if β2 ≥ γ2, c∗1 ≥ c∗2 > F−1
X ( β1

β1+γ2
);

if β2 < γ2, F−1
X ( β1

β1+γ2
) < c∗1 ≤ c∗2. If q̂∗2 ≤

β1
β1+γ2

≤ q̂∗1, then c∗2 ≤ F−1
X ( β1

β1+γ2
) ≤ c∗1.

The following corollary illustrates the relationships between the weighted VaR and

the classical VaR, and the monotonicity of the weighted VaR.

Corollary 3.22. Let gX(x) = βI{x>ρ(X)} + αI{x≤ρ(X)} and hX(x) = 1 − α, where

β ≥ α and β ≥ 1 − α with α ∈ (0, 1). We call such a weighted VaR a 2-

parameter VaR denoted by VaRα,β(X) as the solution to (3.28). Assume FX is

strictly increasing and continuous. Then, the following results hold.

(a) VaRα,β(X) ≥ VaRα(X) for any β ≥ α and β ≥ 1 − α, and VaRα,α(X) =

VaRα(X).

(b) VaRα,β1(X) ≤ VaRα,β2(X) for any β1 ≤ β2, βi ≥ α, βi ≥ 1− α, i = 1, 2.
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(c) VaRα,β(X) ≤ VaRα,β(Y ) if ρ(X) = VaRα∗(X) and X ≤ Y , where α∗ ∈

(0, 1).

Proof. (a) Note that

VaRα,β(X) =

 F−1
X ( β

β+1−α), q∗ ≤ β
β+1−α ,

F−1
X (β(1− q∗) + αq∗), q∗ > β

β+1−α ,

where q∗ is defined as in Corollary 3.20. If q∗ ≤ β
β+1−α , β

β+1−α ≥
α

α+1−α = α

since f(x) = x
x+1−α is an increasing function of x. And when q∗ > β

β+1−α ,

β(1 − q∗) + αq∗ ≥ α(1 − q∗) + αq∗ = α. Hence, VaRα,β(X) ≥ VaRα(X) for

any β ≥ α and β ≥ 1− α.

(b) In fact, we firstly have β1
β1+1−α ≤

β2
β2+1−α . In addition,

VaRα,β1(X) =


F−1
X ( β1

β1+1−α), q∗ ≤ β1
β1+1−α ,

F−1
X (β1(1− q∗) + αq∗), β1

β1+1−α < q∗ ≤ β2
β2+1−α ,

F−1
X (β1(1− q∗) + αq∗), q∗ > β2

β2+1−α .

and

VaRα,β2(X) =


F−1
X ( β2

β2+1−α), q∗ ≤ β1
β1+1−α ,

F−1
X ( β2

β2+1−α), β1
β1+1−α < q∗ ≤ β2

β2+1−α ,

F−1
X (β2(1− q∗) + αq∗), q∗ > β2

β2+1−α .

by Corollary 3.20. If q∗ ≤ β1
β1+1−α , then β1

β1+1−α ≤
β2

β2+1−α since f(x) = x
x+1−α

is an increasing function of x. If β1
β1+1−α < q∗ ≤ β2

β2+1−α , then β1(1 − q∗) +

αq∗ = β1 + (α − β1)q∗ ≤ β1 + (α − β1) β1
β1+1−α = β1

β1+1−α ≤
β2

β2+1−α . If q∗ >

β2
β2+1−α , β1(1−q∗)+αq∗ ≤ β2(1−q∗)+αq∗. Thus, VaRα,β1(X) ≤ VaRα,β2(X).

(c) It is trivial, since q∗ = α∗, and VaRq∗(X) ≤ VaRq∗(Y ) if X ≤ Y .
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β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.90 0.90 230.26 230.26 152.35 299.57
0.92 0.9020 232.23 231.26
0.94 0.9038 234.18 232.28
0.96 0.9056 236.09 233.30
0.98 0.9074 237.95 234.34

Table 3.7: X ∼ Exp(100) with α = 0.9

β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.80 0.8000 160.94 160.94 120.40 230.26
0.85 0.8095 165.82 162.20
0.90 0.8182 170.47 163.48
0.95 0.8261 174.92 164.77

Table 3.8: X ∼ Exp(100) with α = 0.8

β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.7 0.7000 120.40 120.40 102.98 189.71
0.75 0.7143 125.28 121.23
0.80 0.7273 129.93 122.08
0.85 0.7391 134.37 122.93
0.90 0.7500 138.63 123.79
0.95 0.7600 142.71 124.65

Table 3.9: X ∼ Exp(100) with α = 0.7

We now employ Example 3.3 and Example 3.4 to illustrate the results in Corollary

3.22 for Exponential and Pareto distributed random variables with the same mean.

Note that VaRα,β/ρ(X) is denoted as the 2-parameter VaR with risk measure ρ.

Example 3.3. For X ∼ Exp(100) with FX(x) = 1− e−x/100, x > 0. We consider

two cases: (i) gX(x) = βI{x>E[X]} + αI{x≤E[X]}, hX(x) = 1 − α, and q∗ = 1 −

e−1 = 0.6321. (ii) gX(x) = βI{x>VaRα∗ (X)} + αI{x≤VaRα∗ (X)}, hX(x) = 1− α, where

α∗ = 0.95, and q∗ = α∗. The results are in the third and fourth columns of Tables

3.7, 3.8 and 3.9 when α = 0.9, 0.8, 0.7.

Example 3.4. For X ∼ Pareto(3, 200) with density function f(x) = 3·2003

(x+200)4
,

x > 0 and F−1
X (p) = 200((1 − p)−

1
3 − 1). We consider two cases: (i) gX(x) =

βI{x>E[X]} + αI{x≤E[X]}, hX(x) = 1 − α and q∗ = 1 − ( 200
100+200

)3 = 0.7037. (ii)

gX(x) = βI{x>VaRα∗ (X)} + αI{x≤VaRα∗ (X)}, hX(x) = 1 − α, where α∗ = 0.95 and
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β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.90 0.9000 230.89 230.89 173.12 342.8
0.92 0.9020 233.74 232.33
0.94 0.9038 236.56 233.80
0.96 0.9056 239.34 235.28
0.98 0.9074 242.08 236.79

Table 3.10: X ∼ Pareto(3, 200) with α = 0.9

β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.80 0.8000 142.00 142.00 119.01 230.88
0.85 0.8095 147.60 143.43
0.90 0.8182 153.03 144.89
0.95 0.8261 158.30 146.39

Table 3.11: X ∼ Pareto(3, 200) with α = 0.8

β β
β+1−α VaRα,β/E[X] VaRα,β/VaRα∗(X) c∗∗ MSα(X)

0.7 0.7000 98.76 98.76 93.77 176.41
0.75 0.7143 103.66 99.59
0.80 0.7273 108.40 100.44
0.85 0.7391 113.01 101.29
0.90 0.7500 117.48 102.16
0.95 0.7600 121.83 103.03

Table 3.12: X ∼ Pareto(3, 200) with α = 0.7

q∗ = α∗. The results are in the third and fourth columns of Tables 3.10, 3.11 and

3.12 when α = 0.9, 0.8, 0.7.

Now we will compare the risk measure determined by Corollary 3.20 with other

risk measures in literature.

Remark 3.23. Let c∗q = pF−1
X (q) + (1 − p)F−1+

X (q) and ρ(X) = F−1
X (q), where

q ∈ (0, 1), then q∗ = q. In Corollary 3.20, for any given p ∈ [0, 1], we can get

c∗ > c∗q if q < β1
β1+γ2

; c∗ < c∗q if q > β1
β1+γ2

; c∗ = c∗q if q = β1
β1+γ2

.

Remark 3.24. Theorem 1 in Heras et al. (2012) derived a class of risk measure

from the pairwise minimizer (c∗∗, τ ∗∗) = arg min(c,τ)∈R2 V (c, τ), where V (c, τ) =

τ + 1
1−q

∫∞
0

(|c − x| − τ)+f(x)dx. If FX(x) is continuous, c∗∗ = 1
2
[F−1
X (1+q

2
) +

F−1
X (1−q

2
)]. If q ≥ 1

3
, 1−q

2
≤ q ≤ 1+q

2
. Let q2 = FX(c∗∗). Since FX(x) is continuous,

F−1
X (q2) = 1

2
[F−1
X (1+q

2
) + F−1

X (1−q
2

)]. Let ρ1(X) = ρ2(X) = VaRq(X) = F−1
X (q).

Now q∗ = q and c∗ = F−1
X (q1), where q1 = β1+(β2−γ2)q∗

β1+β2
if q ≤ β1

β1+γ2
and q1 =
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β1+(γ1−β1)q∗

γ1+γ2
if q > β1

β1+γ2
. The relationship between c∗∗ and c∗ depends on the

values of the parameters in the model assumption.

Example 3.5. For X ∼ Exp(100), c∗∗ = 1
2
[F−1
X (1+α

2
)+F−1

X (1−α
2

)] = −50 ln(1−α2

4
).

For X ∼ Pareto(3, 200), c∗∗ = 1
2
[F−1
X (1+α

2
)+F−1

X (1−α
2

)] = 100((1−α
2

)−
1
3 +(1+α

2
)−

1
3−

2). We will calculate c∗∗ when α = 0.9, 0.8, 0.7 in the fifth column in Table 3.7-

3.12.

Remark 3.25. Kuo et al. (2013) proposed the median shortfall of a risk X as

MSq(X) = VaR 1+q
2

(X) at the confidence level q ∈ (0, 1). In Corollary 3.20 (i),

if ρ(X) = VaRq(X) and FX is continuous, then c∗ = F−1
X (β1(1−q)−γ2q

β1+β2
+ q). Let

β1+β2 = 2, where β1 > 1, and β1−1
γ2

= q
1−q . Then, β1(1−q)−γ2q

β1+β2
+q = β1(1−q)−γ2q

2
+q =

β1(1−q)−(1−q)(β1−1)
2

+ q = 1−q
2

+ q = 1+q
2

. Hence, MSq(X) is a special case of the

risk measure proposed in Corollary 3.20, which provides another interpretation of

MSq(X).

Example 3.6. For X ∼ Exp(100), MSα(X) = F−1
X (1+α

2
) = 100 ln(1−α

2
). For

X ∼ Pareto(3, 200), MSα(X) = 200((1−α
2

)−
1
3 − 1). We will calculate MSα(X)

when α = 0.9, 0.8, 0.7 in the sixth column in Table 3.7-3.12.

Remark 3.26. If β1 = γ1 = α and β2 = γ2 = 1−α, then g(x) = α and h(x) = 1−α

in Corollary 3.20. For (i) and (iii), β1(1−q)−γ2q
β1+β2

+ q = β1(1−q)+γ1q
γ1+γ2

= α. For (ii),

the condition β1(1 − q) = γ2q illustrates that q = α. Hence, we can conclude

c∗ = F
−1(p)
X (α) in this case.

According to Tables 3.7-3.12, we can obtain the following conclusions. Note

that VaRexp
α,β/ρ(X) is denoted as the 2-parameter VaR when X ∼ Exp(100) and

VaRpareto
α,β /ρ(X) is denoted as the 2-parameter VaR when X ∼ Pareto(3, 200).

(i) Tables 3.7-3.9 and Tables 3.10-3.12 illustrate that the 2-parameter VaR in-

creases as α increases for any fixed β ≥ α, ρ and X. For example,

VaRexp
0.8,0.9/E[X] = 170.47 ≤ 230.26 = VaRexp

0.9,0.9/E[X]
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and

VaRpareto
0.7,0.9/VaR0.95(X) = 102.16 ≤ 144.89 = VaRpareto

0.8,0.9/VaR0.95(X).

In addition, the first rows in Tables 3.7-3.12 are equal since VaRα,α(X) =

VaRα(X) whatever the risk measure ρ is. Also, in the same column, the

values of 2-parameter VaR in other rows are always larger than the values

in the first row since VaRα,β(X) ≥ VaRα(X) for any β ≥ α.

(ii) In each column of the Tables 3.7-3.12, we can see that the 2-parameter VaR

increases as β increases for any fixed α ≤ β, ρ and X. For instance, in the

third column of Table 3.10,

VaRpareto
0.9,0.92/VaR0.95(X) = 233.74 ≤ 242.08 = VaRpareto

0.9,0.98/VaR0.95(X).

(iii) By comparing the values in the second column and the third column of

Tables 3.7-3.12, we find that the 2-parameter VaRs with ρ(X) = VaR0.95(X)

are always less than those with ρ(X) = E[X] for any fixed α ≤ β and X due

to the same reason for the 2-parameter expectiles.

(iv) Also, VaRexp
α,β/ρ(X) ≤ VaRpareto

α,β /ρ(X) for any fixed β ≥ α when α = 0.9 and

ρ(X) = VaR0.95(X) or E[X]. However, when α = 0.8 or 0.7, VaRexp
α,β/ρ(X) ≥

VaRpareto
α,β /ρ(X) when ρ(X) = VaR0.95(X) or E[X]. In this case, this type of

monotonicity is different from the 2-parameter expectiles.

(v) In the fifth column of the tables, we find that c∗∗ is lower than the 2-

parameter VaR and MSα(X) with α = 0.7, 0.8, 0.9. Meanwhile, MSα(X)

is always higher than the 2-parameter VaR and c∗∗ with the same α =

0.7, 0.8, 0.9. Hence, we can conclude that the risk measure proposed in

Kuo et al. (2013) is more conservative, though it satisfies the property of

ellipticity. Moreover, the 2-parameter VaR lies between c∗∗ and MSα(X)

when α ≥ 0.7 in our examples.
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Chapter 4

New Premium Principles for

Pricing Reinsurance Contracts

4.1 Introduction

It is well known that an optimal reinsurance problem usually has four compo-

nents: the support set of the ceded functions, the insurance premium principle,

the reinsurance premium principle, and the objective function under certain risk

measures. In the literature, scholars usually investigate the optimization problem

by deriving optimal ceded loss functions when the reinsurance premium principles

are given. The contributions of Cai and Tan (2007), Cai et al. (2008), and Tan

et al. (2009) are notable since they firstly derived the optimal ceded functions

with the stop-loss or quota-share type under VaR and TVaR. In fact, the partial

hedging methods under VaR and TVaR in Cong et al. (2013, 2014) are developed

based on these ideas. Following their work, Chi and Tan (2011) simplified the

proof, and Cheung (2010) provided a geometric approach. Then, Chi and Weng

(2013) studied the problem with ceded functions subject to the Vajda condition.

Cai et al. (2013) further did research on the optimal reciprocal reinsurance under

the joint survival probability and the joint profitable probability. By analyzing the

optimal reinsurance problem considering the initial capital and default risk, two
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layer stop-loss ceded functions are established as the optimal reinsurance strate-

gies in Cai et al. (2014). Moreover, the optimal reinsurance problem based on

the expectiles is researched in Cai and Weng (2014). After that, Cai et al. (2015)

determined an optimal reinsurance design with two types of constraints under the

convex combination of the VaR risk measures.

Whereas most of the former results are based on the expected value premium

principle, Kaluszka (2001) studied the optimal reinsurance problem under the

mean-variance premium principle. Then, the VaR and CTE constrained reinsur-

ance premium principles are adopted by Zhou et al. (2011) to find the optimal

reinsurance with a combination of the quota-share and stop-loss ceded functions.

Building on their work, Chi and Tan (2013) considered the optimization prob-

lem under a general premium principle. A new method is presented by Cui et

al. (2013) to illustrate the optimal reinsurance strategy on a tradeoff between the

insurer’s risk under distortion risk measures and a general reinsurance premium

principle. Additionally, Zheng and Cui (2014), and Zheng et al. (2014) further

discussed the optimal reinsurance with premium constraint and expected reinsur-

ance premium under distortion risk measures. To date, the dependence structure

is considered by Cai and Wei (2012), and they analyzed the optimal reinsurance

problem with positively dependent risks.

In most studies on optimal reinsurance, as we have concluded, the reinsurance

premium principles are assumed to be given, and the problem is to find the opti-

mal ceded loss function under certain constraints. However, in practice, an insurer

may negotiate the type of the ceded loss functions with the reinsurers, and then

the reinsurers determine the premium of the contracts. Finally, the insurer will

decide which contract to purchase. Hence, we have to consider the following prob-

lem: given a general ceded function in the objective function, what should the

optimal reinsurance premium principle be?

Let X ≥ 0 be the initial total loss faced by the insurance company, I(X) be
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the ceded loss function, or the loss covered by the reinsurer, and c be the reinsur-

ance premium. I(X) can be stop-loss, quota-share or other version of functionals,

but it lies within the function set I below,

I = {I : 0 ≤ I(X) ≤ X, for any X ≥ 0}.

In this problem, the insurer’s loss is defined as X− I(X) + c and reinsurer’s loss is

defined as (I(X)− c)+. Let ϕ1, ϕ2 : [0,+∞)→ [0,+∞) be the functions adopted

to quantify the risks for the reinsurer and insurer, respectively.

For the insurance company, X is the initial total loss. By purchasing the rein-

surance contract with the reinsurance premium rate at c, I(X) is ceded to the

reinsurance company. Thus, the total loss for the insurer is X− I(X)+ c. The ex-

pectation of the total quantitative loss for the insurer is E[h(X)ϕ2(X − I(X) + c)]

by adopting the quantifying function ϕ2 and weight function h(x). Therefore,

E[h(X)ϕ2(X−I(X)+c)] is the risk measure of the insurer in this contract. More-

over, in this reinsurance contract, the reinsurer receives the reinsurance premium

c and covers loss I(X), and hence, the residual loss is (I(X) − c)+, which is a

decreasing function of c. Namely, (I(X) − c)+ decreases as c increases. Con-

sequently, the expectation of the total quantitative loss faced by the reinsurer

is E[g(X)ϕ1((I(X) − c)+)] by employing the quantifying function ϕ1 and weight

function g(x). Note that the weight functions g(x) and h(x) are non-negative

functions with 0 < E[g(X)] < ∞ and 0 < E[h(X)] < ∞ for random variable X.

Our goal is to find the optimal premium c such that the weighted risk measure

or weighted expected quantitative loss of both the insurer and reinsurer can be

minimized. Therefore, the objective function is

f1(c) = E[g(X)ϕ1((I(X)− c)+)] + E[h(X)ϕ2(X − I(X) + c)]. (4.1)
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The optimal reinsurance premium should be the minimizer for this objective func-

tion. Namely, this optimal reinsurance premium is

c∗X,I,g,h = arg min
c∈R

f1(c). (4.2)

Additionally, if the weight functions g(x) and h(x) are non-negative constants, the

objective function is reduced to

f2(c) = αE[ϕ1((I(X)− c)+)] + (1− α)E[ϕ2(X − I(X) + c)], (4.3)

where α = g
g+h
∈ (0, 1) is the weight on the reinsurer’s loss while 1 − α is the

weight on the insurer’s loss. Now c∗X,I,g,h can be rewritten as c∗X,I,α with confidence

level α. In this case, the optimal reinsurance premium is denoted as c∗α(I1(X))

for risk X with ceded function I1 and c∗α(I2(Y )) for risk Y with ceded function I2.

Then, the premium is denoted as c∗α(I1(X) + I2(Y )) for the combined ceded loss

I1(X) + I2(Y ) in Proposition 4.8 (a).

4.2 Preliminaries

Lemma 3.1 in Chapter 3 has provided a formula to determine the first derivative

of the function g(c) = E[D((X − c)+)], where D is a convex and nondecreasing

function defined on R+.

Lemma 4.1. Let g(c) = E[ξD((X − c)+)], where ξ is a non-negative random

variable. D is a convex and increasing function defined on R+. Assume g(c) < +∞

for any c ∈ R, then

g′+(c) = −E[ξD′−((X − c)+)I{X>c}],

g′−(c) = −E[ξD′+((X − c)+)I{X≥c}],

87



and both of them are finite. If D is differentiable with D′(0) = 0, then

g′(c) = −E[ξD′((X − c)+)].

Lemma 3.2 in Chapter 3 introduced a result about the well-known conclusion for

the minimizers of a convex program with no constraints according to Rockafellar

(2011).

Lemma 4.2. Let f(x) be a convex function on R. Then c is a minimizer of

minx∈R f(x) if and only if 0 ∈ [f ′−(c), f ′+(c)], where f ′−(c) and f ′+(c) are the left

and right derivatives of f at c.

4.3 Optimal Reinsurance Premiums and Their

Properties

In this chapter, we assume ϕ1, ϕ2: [0,+∞) → [0,+∞) are non-degenerated,

convex and increasing functions. In addition, the objective function defined in (4.1)

satisfies g ≥ 0, h ≥ 0, 0 < E[g(X)] < +∞, 0 < E[h(X)] < +∞, E[g(X)ϕ1((I(X)−

x)+)] <∞, and E[h(X)ϕ2(X − I(X) + x)] <∞ for any x ∈ R.

Theorem 4.3. Let ϕ1, ϕ2 : R+ → R+ be two non-degenerated, convex and increas-

ing functions, and f1(c) be the objective function defined by (4.1). The optimal

reinsurance premium principles c∗X,I,g,h do exist and are the solutions to

 E[h(X)ϕ
′

2+(X − I(X) + c)] ≥ E[g(X)ϕ
′

1−((I(X)− c)+)I{I(X)>c}],

E[g(X)ϕ
′

1+((I(X)− c)+)I{I(X)≥c}] ≥ E[h(X)ϕ
′

2−(X − I(X) + c)],
(4.4)

where ϕ
′
i− and ϕ

′
i+ represent the corresponding left and right derivatives of ϕi,

i = 1, 2. If ϕ1 and ϕ2 are strictly convex, the solution is unique. If ϕ1 and ϕ2 are

differentiable and ϕ′1(0) = ϕ′2(0) = 0, the optimal reinsurance premium principles
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c∗X,I,g,h are solutions to

E[h(X)ϕ
′

2(X − I(X) + c)] = E[g(X)ϕ
′

1((I(X)− c)+)]. (4.5)

Proof. Similar to Proposition 3.4 (a) in Chapter 3, we can get that f1(c) is finite,

non-negative, convex, and satisfies

lim
c→−∞

f1(c) = lim
c→+∞

f1(c) = +∞.

And the remaining results can be concluded by Lemma 4.1 and Lemma 4.2.

Remark 4.4. If g and h are non-negative constants, (4.4) is reduced to

 (1− α)E[ϕ
′

2+(X − I(X) + c)] ≥ αE[ϕ
′

1−((I(X)− c)+)I{I(X)>c}],

αE[ϕ
′

1+(I(X)− c)+I{I(X)≥c}] ≥ (1− α)E[ϕ
′

2−(X − I(X) + c)],
(4.6)

where α = g
g+h

. And (4.5) is reduced to

(1− α)E[ϕ
′

2(X − I(X) + c)] = αE[ϕ
′

1((I(X)− c)+)], (4.7)

where α = g
g+h

. Here, c∗X,I,g,h is rewritten as c∗X,I,α.

4.4 Reinsurance Premium Principles with Quadratic

Functions

4.4.1 Formula and Properties for Reinsurance Premium

Principles with Quadratic Functions

When the quantifying functions are quadratic functions, the formula to derive the

new reinsurance premium principle is provided in Proposition 4.5. Proposition

4.6 will study the properties when the weight functions are functions of X, and

Proposition 4.8 is for the case with constant weights.
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Proposition 4.5. (Reinsurance Premium Principles with Quadratic Functions)

If ϕ1(x) = ϕ2(x) = x2, the optimal reinsurance premium c∗X,I,g,h is the unique

solution to

E[h(X)]c = E[g(X)(I(X)− c)+]− E[h(X)(X − I(X))], (4.8)

or

c =
E[g(X)(I(X)− c)+]− E[h(X)(X − I(X))]

E[h(X)]
. (4.9)

If g and h are non-negative constants, (4.8) is reduced to

(1− α)c = αE[(I(X)− c)+]− (1− α)E[X − I(X)], (4.10)

where α = g
g+h

.

Proof. If ϕ1(x) = ϕ2(x) = x2, ϕ′1(0) = ϕ′2(0) = 0. Also, ϕ1 and ϕ2 are strictly

convex. Hence, the results follow Theorem 4.3.

Note that c∗X,I,g,h has three random components: X, the non-negative underlying

risk; I, the ceded loss function; and g and h, the weight functions, or the constant

weight α in (4.10). Firstly, we will introduce the properties of c∗X,I,g,h with respect

to X and I in Proposition 4.6 and Proposition 4.8.

Proposition 4.6. (Properties of the Reinsurance Premium Principles with Quadratic

Functions-1) Let c∗ = c∗X,I,g,h be the unique solution to (4.8).

(a) Monotonicity of I: c∗X,I1,g,h ≤ c∗X,I2,g,h if I1(X) ≤ I2(X).

(b) Translation invariance: c∗X,I+d,g,h = c∗X,I,g,h + d for any d ∈ R, where (I +

d)(X) = I(X) + d.

(c) Maximal loss: c∗X,I,g,h ≤ sup I(X).

(d) Monotonicity of g and h:

(i) For fixed h(x), c∗X,I,g1,h ≤ c∗X,I,g2,h if g1(x) ≤ g2(x);
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(ii) For fixed g(x), c∗X,I,g,h1 ≥ c∗X,I,g,h2 if h1(x) ≤ h2(x);

(iii) If the weight functions gi(x) and hi(x) satisfy gi(x) + hi(x) = 1 for

i = 1, 2, then c∗X,I,g1,h1 ≤ c∗X,I,g2,h2 if g1(x) ≤ g2(x).

Proof. (a) Firstly write c1 = c∗X,I1,g,h and c2 = c∗X,I2,g,h. If I1(X) ≤ I2(X),

assume c1 > c2, then I1(X)− c1 < I2(X)− c2. Thus,

(I1(X)− c1)+ ≤ (I2(X)− c2)+.

In addition, by Proposition 4.5, we have

E[h(X)]c1 = E[g(X)(I1(X)− c1)+]− E[h(X)(X − I1(X))]

and

E[h(X)]c2 = E[g(X)(I2(X)− c2)+]− E[h(X)(X − I2(X))].

Hence,

E[h(X)](c1 − c2) = E[g(X)((I1(X)− c1)+ − (I2(X)− c2)+)]

+ E[h(X)(I1(X)− I2(X))] ≤ 0.

Since both g and h are nonnegative functions, c1−c2 ≤ 0, thus contradicting

what has been assumed. Hence, c1 ≤ c2.

(b) For the ceded loss Id(X) = I(X) + d, denote the corresponding premium as

c∗d, which is the unique solution to

E[h(X)]cd = E[g(X)(Id(X)− cd)+]− E[h(X)(X − Id(X))],

which is equivalent to

E[h(X)](cd − d) = E[g(X)(I(X)− (cd − d))+]− E[h(X)(X − I(X))].
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Since c∗, the premium with the ceded function I, is the unique solution to

E[h(X)]c = E[g(X)(I(X)− c)+]− E[h(X)(X − I(X))],

c∗d − d must be equal to c∗. Hence, c∗d = c∗ + d for any d ∈ R.

(c) If sup I(X) = ∞, then c∗ ≤ sup I(X). And if sup I(X) = M < ∞, then

I(X) ≤M and E[I(X)] ≤M . Note that c ≤M must hold now. Otherwise,

assume c > M , then E[g(X)(I(X)− c)+] = 0. Thus, c∗ will satisfy

E[h(X)]c = E[h(X)(I(X)−X)]. (4.11)

Now, the LHS of (4.11) is strictly greater than ME[h(X)] since E[h(X)] > 0,

while E[h(X)(I(X)−X)] ≤ME[h(X)]−E[Xh(X)] ≤ME[h(X)] since h(x)

is non-negative and X ≥ 0, which yields a contradiction.

(d) (i) Denote c1 = c∗X,I,g1,h and c2 = c∗X,I,g2,h. By (4.9), ci, is the solution to

c =
E[gi(X)(I(X)− c)+]− E[h(X)(X − I(X))]

E[h(X)]
, (4.12)

i = 1, 2. Suppose c1 > c2, then

E[g1(X)(I(X)− c1)+] > E[g2(X)(I(X)− c2)+] (4.13)

by (4.12). Also, if g1(x) ≤ g2(x), then

E[g1(X)(I(X)− c1)+] ≤ E[g2(X)(I(X)− c2)+],

which contradicts (4.13). Thus, c1 > c2 if g1(x) ≤ g2(x).

(ii) Denote c1 = c∗X,I,g,h1 and c2 = c∗X,I,g,h2 . By (4.9), ci is solution to

c =
E[g(X)(I(X)− c)+]− E[hi(X)(X − I(X))]

E[hi(X)]
,
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i = 1, 2. Suppose c1 < c2, then

E[g(X)(I(X)− c1)+]− E[h1(X)(X − I(X))]

E[h1(X)]

<
E[g(X)(I(X)− c1)+]− E[h2(X)(X − I(X))]

E[h2(X)]
.

However,

E[g(X)(I(X)− c1)+]− E[h1(X)(X − I(X))]

E[h1(X)]

≥ E[g(X)(I(X)− c2)+]− E[h2(X)(X − I(X))]

E[h2(X)]

since (I(X)− c1)+ ≥ (I(X)− c2)+, X − I(X) ≥ 0, 0 ≤ h1(x) ≤ h2(x)

and 0 < E[h1(X)] ≤ E[h2(X)]. Therefore, c1 ≥ c2 if h1 ≤ h2.

(iii) If gi(x) + hi(x) = 1, i = 1, 2, then denote c1 = c∗X,I,g1,h1 and c2 =

c∗X,I,g2,h2 . By (4.9), ci is the solution to

c =
E[gi(X)(I(X)− c)+]− E[(1− gi(X))(X − I(X))]

E[1− gi(X)]
. (4.14)

Suppose c1 > c2, which is equivalent to

E[g1(X)(I(X)− c1)+]− E[(1− g1(X))(X − I(X))]

E[1− g1(X)]

>
E[g2(X)(I(X)− c2)+]− E[(1− g2(X))(X − I(X))]

E[1− g2(X)]

by (4.14). However,

E[g1(X)(I(X)− c)+]− E[(1− g1(X))(X − I(X))]

E[1− g1(X)]

≤ E[g2(X)(I(X)− c)+]− E[(1− g2(X))(X − I(X))]

E[1− g2(X)]

since (I(X)−c1)+ ≤ (I(X)−c2)+, 0 ≤ g1 ≤ g2 ≤ 1 and 0 < E[gi(X)] <

1, i = 1, 2. Hence, c1 ≤ c2 in this case.
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Remark 4.7. Note that Proposition 4.6 (d) illustrates that cX,I,g,h is a monotone

function of g and h. For the unique solution to (4.10), we can conclude that

c∗X,I,α1
≤ c∗X,I,α2

for any fixed X and I if α1 ≤ α2.

Proposition 4.8. (Properties of the Reinsurance Premium Principles with Quadratic

Functions-2) Let c∗α(I(X)) = c∗X,I,α be the unique solution to (4.10).

(a) Subadditivity: c∗α(I1(X) + I2(Y )) ≤ c∗α(I1(X)) + c∗α(I2(Y )).

(b) Risk Loading: c∗X,I,α ≥ 0 if α ≥ α1; And c∗X,I,α ≥ E[I(X)] if α ≥ α2, where

α1 = 1− E[I(X)]

E[X]
, (4.15)

and

α2 = 1− E[(I(X)− E[I(X)])+]

E[(I(X)− E[I(X)])+] + E[X]
. (4.16)

In addition, α2 ≥ α1 holds.

Proof. (a) Write cs as the optimal reinsurance premium for Is(X+Y ) = I1(X)+

I2(Y ) and the total loss X+Y , c1 and c2 as the optimal reinsurance premiums

for I1(X) and I2(Y ). Then

(1− α)cs = αE[(Is(X + Y )− cs)+]− (1− α)E[X + Y − Is(X + Y )],

(1− α)c1 = αE[(I1(X)− c1)+]− (1− α)E[X − I1(X)],

and

(1− α)c2 = αE[(I2(Y )− c2)+]− (1− α)E[Y − I2(Y )].

Thus,

(1− α)(cs − c1 − c2) = αE[(I1(X) + I2(Y )− cs)+]

− αE[(I1(X)− c1)+]− αE[(I2(Y )− c2)+].
(4.17)

If

cs > c1 + c2
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and

E[(I1(X) + I2(Y )− cs)+] ≤ E[(I1(X) + I2(Y )− c1 − c2)+]

≤ E[(I1(X)− c1)+] + E[(I2(Y )− c2)+],

the LHS of (4.17) is positive; however, the RHS of (4.17) is non-positive.

Hence, cs ≤ c1 + c2.

(b) If

α ≥ 1− E[I(X)]

E[X]
,

f ′2(0) < 0, and then c ≥ 0 since f ′2(c) = 0, and f2(c) is convex with f ′′2 (c) ≥ 0.

Similarly, if

α ≥ 1− E[(I(X)− E[I(X)])+]

E[(I(X)− E[I(X)])+] + E[X]
,

f ′2(E(I(X))) < 0, and so c ≥ E[I(X)]. Since E[I(X)] ≥ 0 and E[(I(X) −

E[I(X)])+] ≥ 0,

E[I(X)]

E[X]
≥ E[(I(X)− E[I(X)])+]

E[(I(X)− E[I(X)])+] + E[X]
.

Given that

E[I(X)] ≥ E[(I(X)− E[I(X)])+]

and

E[(I(X)− E[I(X)])+] + E[X] ≥ E[X],

then
E[I(X)]

E[X]
≥ E[(I(X)− E[I(X)])+]

E[(I(X)− E[I(X)])+] + E[X]
.

Hence, α2 ≥ α1.

Remark 4.9. In practice, the underlying loss random variables may follow differ-

ent distributions since the insurance companies insure various types of risks. For

example, the risks insured by the casualty insurance contracts might vary from

the risks insured by the life or health insurance contracts. As a result, the ceded
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functions adopted by the reinsurance companies are different for these various

risks. To describe the distinction, we denote two types of the underlying risks

as X and Y in Proposition 4.8 (a). And the corresponding ceded function are

defined as I1(x) and I2(x). For example, we can choose I1(x) = (x − d)+ and

I2(x) = kx, where d ∈ R+, k ∈ [0, 1]. Then, I1(X) + I2(Y ) is the combined

loss ceded to the reinsurer. Proposition 4.8 (a) illustrates that the premium will

be lower if the insurance companies buy one reinsurance contract for different

risks together by the pricing formula (4.10). Ceding I1(X) + I2(Y ) to the rein-

surer is a win-win situation for both the insurer and reinsurer. The insurer will

pay a lower reinsurance premium and so save on the main costs. Adopting the

premium based on the combined ceded loss allows the quantity of purchases for

this kind of reinsurance product to grow, and thus, the reinsurer can gain more

profits. Also, this combination is quite flexible since one can combine n different

losses together by choosing n corresponding ceded functions. Furthermore, if we

choose I1(X) = (X−d1)+, I2(Y ) = (Y −d2)+ and I3(X+Y ) = (X+Y −d3)+. If

d3 ≥ d1+d2, (X+Y−d3)+ ≤ (X+Y−d1−d2)+ ≤ (X−d1)++(Y−d2)+, which illus-

trates I3(X+Y ) ≤ I1(X)+I2(Y ), then c∗α(I3(X+Y )) ≤ c∗α(I1(X))+c(I2(Y )).

Remark 4.10. According to Proposition 4.8 (b), the premium is non-negative (if

α ≥ α1) and no-less than E[I(X)] (if α ≥ α2). Hence, α1 can be viewed as

the minimum weight factor acceptable for the reinsurer, and α2 is the preferred

threshold of the weight factor for the reinsurer. Cai et al. (2015) suggested that one

possible general method for optimal reinsurance designs is to maximize or minimize

objective functions under certain constraints based on another party’s goal. Thus,

these two thresholds for α are just the constraints based on the reinsurer’s various

objects, and the optimal reinsurance premium is attainable by (4.10).

4.4.2 Relationship with the Reinsurance Premium Princi-

ple Based on the Expectiles

For the non-negative random variable X, the relationship between the new rein-

surance premium with quadratic functions and the reinsurance premium based
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on the expectiles will be proposed in Proposition 4.11 and Corollary 4.12. The

expectile, denoted as eα(X), is defined as

eα(X) = arg min
c∈R

αE[(X − c)2
+] + (1− α)E[(X − c)2

−], (4.18)

where α ∈ (0, 1).

As is known, the expectile eα(X) is the unique solution to

eα(X) = E[X] +
2α− 1

1− α
E[(X − eα(X))+].

For the ceded loss I(X), the reinsurance premium based on the expectiles is de-

noted as eα(I(X)). The reinsurance premium based on the expectiles is always

non-negative and is no less than E[I(X)] if α ≥ 1
2
. Moreover, the premium equals

E[I(X)] if α = 1
2
.

Additionally, we can always arrive at the following proposition about the rela-

tionship between the reinsurance premium with quadratic functions and the rein-

surance premium based on the expectiles for X ≥ 0.

Proposition 4.11. Let ϕ1(x) = ϕ2(x) = x2 and c∗ = c∗X,I,β1,γ1,β2,γ2,q be the rein-

surance premium by (4.9) when

g(x) = β1I{I(x)>ρ(I(X))} + γ1I{I(x)≤ρ(I(X))}

and

h(x) = β2I{I(x)>ρ(I(X))} + γ2I{I(x)≤ρ(I(X)))},

where ρ is a risk measure. Let eα(I(X)) be the reinsurance premium based on the

expectiles. Then,

c∗ ≤ eα(I(X)) (4.19)

when β2 = γ2 = β and β1, γ1 ≤ α
1−αβ.
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Proof. By rewriting the equations, we can see that eα = eα(I(X)) is the solution

to

eα = E[I(X)]− E[(I(X)− eα)+] +
α

1− α
E[(I(X)− eα)+].

Note that c∗ is the solution to

c =
E[g(X)(I(X)− c)+]

β
− E[X] + E[I(X)]

when β2 = γ2 = β. Then, if β1, γ1 ≤ α
1−αβ, we have

c∗ ≤ α

1− α
E[(I(X)− c∗)+]− E[X] + E[I(X)].

If c∗ > eα(I(X)), then

α

1− α
E[(I(X)− c∗)+] ≤ α

1− α
E[(I(X)− eα(I(X)))+].

Also, we have I(X) − eα(I(X)) ≤ I(X) ≤ X for X ≥ 0. Hence, E[(I(X) −

eα(I(X)))+] ≤ E[X]. Thus, c∗ ≤ eα(I(X)), which contradicts c∗ > eα(I(X)) as

assumed. Therefore, c∗ ≤ eα(I(X)).

Corollary 4.12. Let c∗X,I,α be the reinsurance premium by (4.10) and eα(I(X))

be the reinsurance premium based on the expectiles. Then,

c∗X,I,α ≤ eα(I(X)). (4.20)

Proof. Let β1 = γ1 = α
1−αβ in Proposition 4.11.

Remark 4.13. Note that (4.20) means that the new reinsurance premium principle

with quadratic quantifying functions and constant weights is always lower than the

reinsurance premium based on the expectiles at the same confidence level α. The

reinsurance premium principle based on the expectiles according to (4.18) considers

only the potential risks from the reinsurance contract, namely, the ceded loss. In

(4.18), (I(X)− c)+ is the residual loss faced by the reinsurer, and (c− I(X))+ is

the overcharged loss for the insurer. Hence, the reinsurance premiums based on the

expectiles are optimizers to minimize the combination of these risks. However, in
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the new reinsurance premium formula, X−I(X)+c = (c−I(X))++X−(c−I(X))−

is the loss faced by the insurer as a combination of the overpaid loss (c− I(X))+

and X − (c − I(X))− = X − (I(X) − c)+ ≥ 0. In this case, more information is

included in the optimization problem (4.2). Hence, the minimizer based on the new

model might be lower than the reinsurance premium based on the expectiles. Here,

c∗X,I,α, the minimizer of (4.3), is suggested as a reasonable reinsurance premium

principle for two reasons. Firstly, (4.3) covers more risk from the insurer’s point of

view. Secondly, the new premium formula provides a more competitive price.

4.5 Reinsurance Premium Principles with Iden-

tity Functions

4.5.1 Formula and Properties for Reinsurance Premium

Principles with Identify Functions

In this section, we will talk about the class of reinsurance premium principles when

the quantifying functions are identity functions if g(x) ≥ h(x), see Proposition

4.14. Furthermore, we express a special class of the principles as the mixed inverses

of the distributions of I(X) at different confidence levels in Corollary 4.16.

Proposition 4.14. (Reinsurance Premium Principles with Identity Functions) If

ϕ1(x) = ϕ2(x) = x, the reinsurance premium c∗X,I,g,h are the solutions to

E[g(X)I{I(X)>c}] ≤ E[h(X)] ≤ E[g(X)I{I(X)≥c}]. (4.21)

If g(x) ≥ h(x), then (4.21) is equivalent to

c∗X,I,g,h = F
−1(p)
X,I,g (

E[g(X)]− E[h(X)]

E[g(X)]
), (4.22)

where

F
−1(p)
X,I,g (α) = pH−1

X,I,g(α) + (1− p)G−1+
X,I,g(α)
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with p ∈ [0, 1],

H−1
X,I,g(α) = inf{x ∈ R : HX,I,g ≥ α}

and

G−1+
X,I,g(α) = sup{x ∈ R : GX,I,g ≤ α},

where

HX,I,g(x) =
E[g(X)I{I(X)≤x}]

E[g(X)]

and

GX,I,g(x) =
E[g(X)I{I(X)<x}]

E[g(X)]
.

In addition,

c∗X,I,g,h = H−1
X,I,g(

E[g(X)]− E[h(X)]

E[g(X)]
),

if H−1
X,I,g(x) is continuous at E[g(X)]−E[h(X)]

E[g(X)]
.

Proof. The equation (4.4) in Theorem 4.3 can be rewritten as (4.21), which is

equivalent to

GX,I,g(c) ≤
E[g(X)]− E[h(X)]

E[g(X)]
≤ HX,I,g(c). (4.23)

It is easy to verify that GX,I,g(x) is increasing and left-continuous, while HX,I,g(x)

is increasing and right-continuous. Moreover, GX,I,g(x) = limy→x− HX,I,g(y) and

GX,I,g(x) ≤ HX,I,g(x) In addition, HX,I,g(x) → 1 as x → ∞ and HX,I,g(x) → 0

as x → −∞ under the assumption that E[g(X)] < ∞. Hence, HX,I,g(x) is a

distribution function. Let H−1
X,I,g(α) = inf{x ∈ R : HX,I,g(x) ≥ α} be the left-

continuous inverse of HX,I,g. For α = 0 and α = 1, use convention inf ∅ = ∞,

sup ∅ = −∞. For a distribution function F , we have F−1(0) = −∞ and F−1+(1) =

∞. Denote

G−1+
X,I,g(α) = sup{x ∈ R : GX,I,g(x) ≤ α}.

Similar to Exercise 8 on page 1− 12 in Wichura (2001), we have

G−1+
X,I,g(α) = lim

u↘α
H−1
X,I,g(u) = H−1

X,I,g(α+).
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Since H−1
X,I,g(α) is increasing, we have

H−1
X,I,g(α+) ≥ H−1

X,I,g(α).

or

G−1+
X,I,g(α) ≥ H−1

X,I,g(α).

The relationship between (5) and (18) in Wichura (2001) indicates that (4.21) is

equivalent to

H−1
X,I,g(

E[g(X)]− E[h(X)]

E[g(X)]
) ≤ c ≤ G−1+

X,I,g(
E[g(X)]− E[h(X)]

E[g(X)]
).

If g(x) ≥ h(x), then

0 ≤ E[g(X)]− E[h(X)]

E[g(X)]
≤ 1.

Let

F
−1(p)
X,I,g (

E[g(X)]− E[h(X)]

E[g(X)]
)

= pH−1
X,I,g(

E[g(X)]− E[h(X)]

E[g(X)]
) + (1− p)G−1+

X,I,g(
E[g(X)]− E[h(X)]

E[g(X)]
),

where p ∈ [0, 1]. Then we can conclude that (4.21) is reduced to (4.22).

Remark 4.15. Since (X − c)+ is unlimited, it is reasonable for the reinsurer to

assume g(x) ≥ h(x). Similarly, it is also reasonable to suppose that β1 ≥ β2 ≥ 0,

γ1 ≥ γ2 ≥ 0 in Corollary 4.16, Corollary 4.17, Corollary 4.18, and Corollary 4.20,

and that α ≥ 1
2

in Corollary 4.21 and Corollary 4.22.

Corollary 4.16. Let ϕ1(x) = ϕ2(x) = x and c∗ = c∗X,I,β1,γ1,β2,γ2,q be the reinsurance

premium principle by (4.22) when

g(x) = β1I{I(x)>ρ(I(X))} + γ1I{I(x)≤ρ(I(X))}

and

h(x) = β2I{I(x)>ρ(I(X))} + γ2I{I(x)≤ρ(I(X))},
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where ρ is a risk measure, β1 ≥ β2 ≥ 0, γ1 ≥ γ2 ≥ 0. Let

q∗1 = FI(X)(ρ(I(X)))

and

q∗2 = GI(X)(ρ(I(X))) = FI(X)(ρ(I(X))−),

where GI(X)(x) = Pr(I(X) < x). Denote

αX,I,g,h =
E[g(I(X))− h(I(X))]

E[g(I(X))]
=

(β1 − β2)(1− q∗1) + (γ1 − γ2)q∗1
d∗

as defined in Proposition 4.14, where d∗ = E[g(X)]. Then, the following results

hold:

(i) if αX,I,g,h <
γ1q∗2
d∗

, c∗ = F
−1(p)
I(X) (

(β1−β2)(1−q∗1)+(γ1−γ2)q∗1
γ1

);

(ii) if αX,I,g,h =
γ1q∗2
d∗

, c∗ = pρ(I(X)) + (1− p)F−1+
I(X)(

(β1−β2)(1−q∗1)+(γ1−γ2)q∗1
γ1

);

(iii) if
γ1q∗2
d∗

< αX,I,g,h <
γ1q∗1
d∗

, c∗ = ρ(I(X));

(iv) if αX,I,g,h =
γ1q∗1
d∗

, c∗ = pF−1
I(X)(

(β1−β2)(1−q∗1)+(β1−γ2)q∗1
β1

) + (1− p)ρ(I(X));

(v) if αX,I,g,h >
γ1q∗1
d∗

, c∗ = F
−1(p)
I(X) (

(β1−β2)(1−q∗1)+(β1−γ2)q∗1
β1

);

where F
−(p)
X (x) = pF−1

X (x) + (1− p)F−1+
X (x) with F−1

X (α) = inf{x ∈ R : Pr(X ≤

x) ≥ α}, F−1+
X (α) = sup{x ∈ R : Pr(X < x) ≤ α} and p ∈ [0, 1].

Proof. Now we have

HX,I,g,h(x) =
E[(β1I{I(X)>ρ(I(X))} + γ1I{I(X)≤ρ(I(X))})I{I(X)≤x}]

d∗

and

GX,I,g,h(x) =
E[(β1I{I(X)>ρ(I(X))} + γ1I{I(X)≤ρ(I(X))})I{I(X)<x}]

d∗
.

For HX,I,g,h(x), if x ≥ ρ(I(X)), then

HX,I,g,h(x) =
β1FI(X)(x) + (γ1 − β1)q

d∗
;

102



if x < ρ(I(X)), then

HX,I,g,h(x) =
γ1FI(X)(x)

d∗
.

Note that HX,I,g,h(x) is increasing and right-continuous with

H∗ = HX,I,g,h(ρ(I(X))) =
γ1q
∗
1

d∗
,

and GX,I,g,h(x) is increasing and left-continuous with

G∗ = GX,I,g,h(ρ(I(X))) =
γ1q
∗
2

d∗
.

Moreover,

HX,I,g,h(ρ(I(X))−) = GX,I,g,h(ρ(I(X))) = G∗

and

GX,I,g,h(ρ(I(X))+) = HX,I,g,h(ρ(I(X))) = H∗.

Therefore, if αX,I,g,h ≥ H∗, let

HX,I,g,h(x) =
β1FI(X)(x) + (γ1 − β1)q

d∗
= αX,I,g,h,

then

H−1
X,I,g,h(αX,I,g,h) = F−1

I(X)(
(β1 − β2)(1− q∗1) + (β1 − γ2)q∗1

β1

);

if G∗ ≤ αX,I,g,h < H∗, H−1
X,I,g,h(αX,I,g,h) = ρ(I(X));

if αX,I,g,h < G∗, let

HX,I,g,h(x) =
γ1FI(X)(x)

d∗
= αX,I,g,h,

then

H−1
X,I,g,h(αX,I,g,h) = F−1

I(X)(
(β1 − β2)(1− q∗1) + (γ1 − γ2)q∗1

γ1

).

For GX,I,g,h(x), if x > ρ(I(X)), then

GX,I,g,h(x) =
β1GI(X)(x) + (γ1 − β1)q

d∗
;
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if x ≤ ρ(I(X)), then

GX,I,g,h(x) =
γ1GI(X)(x)

d∗
.

Similarly, for H−1
X,I,g,h, if αX,I,g,h > H∗, then

G−1+
X,I,g,h(αX,I,g,h) = F−1+

I(X)(
(β1 − β2)(1− q∗1) + (β1 − γ2)q∗1

β1

);

if G∗ < αX,I,g,h ≤ H∗, G−1+
X,I,g,h(αX,I,g,h) = ρ(I(X));

if αX,I,g,h ≤ G∗, then

G−1+
X,I,g,h(αX,I,g,h) = F−1+

I(X)(
(β1 − β2)(1− q∗1) + (γ1 − γ2)q∗1

γ1

).

Corollary 4.17. Apply the same assumptions and notations as in Corollary 4.16.

Assume FI(X) is continuous. Let q∗ = FI(X)(ρ(I(X))). Then, the following results

hold.

(i) if q∗ < β1−β2
β1−β2+γ2

, c∗ = F
−1(p)
I(X) ( (β1−β2)(1−q∗)+(β1−γ2)q∗

β1
);

(ii) if q∗ = β1−β2
β1−β2+γ2

, c∗ = ρ(I(X));

(iii) if q∗ > β1−β2
β1−β2+γ2

, c∗ = F
−1(p)
I(X) ( (β1−β2)(1−q∗)+(γ1−γ2)q∗

γ1
);

where p ∈ [0, 1]. Assume FX is continuous and strictly increasing. Then, the

following results hold:

(iv) if q∗ ≤ β1−β2
β1−β2+γ2

, c∗ = F−1
I(X)(

(β1−β2)(1−q∗)+(β1−γ2)q∗

β1
);

(v) if q∗ > β1−β2
β1−β2+γ2

, c∗ = F−1
I(X)(

(β1−β2)(1−q∗)+(γ1−γ2)q∗

γ1
).

Proof. Similar to the proof of Corollary 3.19 in Chapter 3.

The premium principle with identity functions defined in Corollary 4.16 when

FI(X) is continuous will satisfy the properties in Corollary 4.18.
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Corollary 4.18. Let c∗ = c∗X,I,β1,γ1,β2,γ2,q∗, where q∗ = FI(X)(ρ(I(X))), be the

reinsurance premium in Corollary 4.17. Then, the following results hold.

(a) c∗ is decreasing in β2 and γ2.

(b) c∗X,mI,β1,γ1,β2,γ2,q∗mI(X)
= mc∗X,I,β1,γ1,β2,γ2,q∗I(X)

if ρ(mX) = mρ(X) for any m ∈

R+.

(c) c∗X,I1,β1,γ1,β2,γ2,q∗I1(X)
≤ c∗Y,I2,β1,γ1,β2,γ2,q∗I2(Y )

if I1(X) ≤ I2(Y ) and ρ(I(X)) =

VaRα∗(I(X)), where α∗ ∈ (0, 1).

(d) Monotonicity of q∗:

(i) if 0 ≤ q∗ < β1−β2
β1−β2+γ2

, then c∗ is increasing (decreasing) in q∗ when

β2 ≥ (≤)γ2;

(ii) if q∗ = β1−β2
β1−β2+γ2

, c∗ is increasing in q∗;

(iii) if β1−β2
β1−β2+γ2

< q∗ ≤ 1, then c∗ is increasing (decreasing) in q∗ when

β2 + γ1 ≥ (≤)β1 + γ2.

Proof. (a) F−1+
X (x) and F−1

X (x) are increasing in x.

(b) If ρ(mX) = mρ(X) for any m ∈ R+, then

q∗mI(X) = P (mI(X) ≤ ρ(mI(X))) = P (mI(X) ≤ mρ(I(X)))

= P (I(X) ≤ ρ(I(X))) = q∗I(X).

Also, F−1+
X (x) and F−1

X (x) satisfy the property of translation invariance with

respect to X.

(c) Firstly, q∗I1(X) = q∗I2(Y ) = α∗ if ρ(I(X)) = VaRα∗(I(X)). In addition,

F−1+
X (x) ≤ F−1+

Y (x) and F−1
X (x) ≤ F−1

Y (x) if X ≤ Y .

(d) The same as (a).
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Remark 4.19. Note that the property of subadditivity cannot be satisfied by c∗ de-

fined in Corollary 4.18 since both F−1+
X (x) and F−1

X (x) do not satisfy it. One

special case of Corollary 4.18 (d) is that c∗ is increasing in q∗ ∈ [0, 1] when

γ1 ≥ β1 ≥ β2 ≥ γ2.

4.5.2 Relationship between the Reinsurance Premium Prin-

ciples with Identity Functions and the Classical Rein-

surance Premium

According to Heilmann (1989), the optimal premium c are the minimizers of the

expectation of loss function defined by

L(X, c) = α(X − c)+ + (1− α)(X − c)−,

where α ∈ (0, 1). Here we denote the minimizers as F
−1(p)
X (α), where p ∈ [0, 1],

and we call Heilmann (1989)’s model the classical model and F
−1(p)
X (α) the clas-

sical premium. The classical reinsurance premium by Heilmann (1989)’s model is

denoted as

c∗α = F
−1(p)
I(X) (α) (4.24)

and c∗α = F−1
I(X)(α) if F−1

I(X) is continuous at α.

Corollary 4.20. Let c∗ = c∗X,I,β1,γ1,β2,γ2,q∗, where q∗ = FI(X)(ρ(I(X))), be the

reinsurance premium in Corollary 4.17 and cq∗ = F
−1(p)
I(X) (q∗). Then, the following

results hold:

(i) if q∗ < β1−β2
β1−β2+γ2

, then c∗ > cq∗;

(ii) if q∗ = β1−β2
β1−β2+γ2

, then c∗ = cq∗;

(iii) if q∗ > β1−β2
β1−β2+γ2

, then c∗ < cq∗;

for any given p ∈ [0, 1].
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Proof. (i) If q∗ < β1−β2
β1−β2+γ2

, then (β1−β2)(1−q∗)+(β1−γ2)q∗

β1
> q∗. Thus, c∗ > cq∗ since

both F−1(x) and F−1+(x) are non-decreasing in x.

(ii) It is trivial according to Corollary 4.17.

(iii) If q∗ > β1−β2
β1−β2+γ2

, then (β1−β2)(1−q∗)+(γ1−γ2)q∗

γ1
< q∗. Thus, c∗ < cq∗ since both

F−1(x) and F−1+(x) are increasing in x.

If β1 = γ1 and β2 = γ2 hold for g and h in Corollary 4.16, we can arrive at the

results for the identity functions in Corollary 4.21. Without loss of generality, we

assume g = α, h = 1− α, where α ≥ 1
2

since β1 ≥ β2.

Corollary 4.21. If ϕ1(x) = ϕ2(x) = x, g = α, h = 1 − α, where α ∈ [1
2
, 1], the

reinsurance premium by (4.22) is

c∗ = F
−1(p)
I(X) (2− 1

α
). (4.25)

Also, c∗ ≥ F−1
I(X)(2 −

1
α

) = VaR2− 1
α
(I(X)). Moreover, c∗ = VaR2− 1

α
(I(X)) if

F−1
I(X)(x) is continuous at 2− 1

α
.

Proof. Since β1 = γ1 = α and β2 = γ2 = 1 − α, (β1−β2)(1−q∗)+(β1−γ2)q∗

β1
in (i) of

Corollary 4.17 is reduced to 2 − 1
α

, as well as (β1−β2)(1−q∗)+(γ1−γ2)q∗

γ1
in (iii). In

addition, (β1 − β2)(1− q∗) = γ2q
∗ illustrates that q∗ = 2− 1

α
. Hence,

H−1
X,I,g,h(

(β1 − β2)(1− q∗) + (γ1 − γ2)q∗

β1(1− q∗) + γ1q∗
) = H−1

X,I,g,h(2−
1

α
) = F−1

I(X)(2−
1

α
)

and

G−1+
X,I,g,h(

(β1 − β2)(1− q∗) + (γ1 − γ2)q∗

β1(1− q∗) + γ1q∗
) = G−1+

X,I,g,h(2−
1

α
) = F−1+

I(X)(2−
1

α
).
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Corollary 4.22. Let c∗α be the classical reinsurance premium defined by (4.24)

and c∗ be the premium defined by (4.25). Then

c∗ ≤ c∗α

for any given p ∈ [0, 1] and α ∈ [1
2
, 1].

Proof. Since

α− (2− 1

α
) = α +

1

α
− 2 ≥ 2

√
α× 1

α
− 2 = 0

holds for any α ∈ (0, 1],

α ≥ 2− 1

α
.

In addition, 2− 1
α
∈ [0, 1] if and only if α ∈ [1

2
, 1]. Thus,

F
−1(p)
I(X) (α) ≥ F

−1(p)
I(X) (2− 1

α
)

for any given p ∈ [0, 1] since both F−1(x) and F−1+(x) are non-decreasing in x.

Remark 4.23. We should emphasize two points by comparing c∗α and c∗ inspired

by Corollary 4.22. One is that the new optimal premium is always competitive in

the reinsurance market since it is lower than the classical reinsurance premium

at the same confidence level. The other is that the new principal is derived based

on the total expected loss of the insurer and the reinsurer; however, the classical

one covers losses only for the reinsurer. Hence, this new reinsurance premium

principle proposed in Corollary 4.22 is more reasonable than the classical one.

4.6 Numerical Examples

In this section, we will apply the conclusions to the exponential and two-parameter

Pareto distributions with the same mean. In the following examples, the mean of

the underlying loss is 100. Note that there are two thresholds for the weight α

in the objective function for the new reinsurance premiums as in Proposition 4.8
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α c∗

0.4 0.7759
0.5 13.5958
0.6 28.8393
0.7 48.1203
0.8 75.1189
0.9 121.9283

Table 4.1: I(x) = (x− 50)+

(b). One is α1 = 1− E[I(X)]
E[X]

. If α ≥ α1, the premium is non-negative. The other

one is α2 = 1 − E[(I(X)−E[I(X)])+]
E[(I(X)−E[I(X)])+]+E[X]

. If α ≥ α2, the premium is no less than the

expectation of the ceded loss.

Example 4.1. If X ∼ Exp(θ), the optimal reinsurance premium c∗ with the

quadratic functions is the solution to

αθe−
c+d
θ − (1− α)(θ(1− e−

d
θ ) + c) = 0

for the stop-loss ceded function, I(x) = (x−d)+. Moreover, the optimal reinsurance

premium c∗ is the solution to

αkθe−
c
kθ − (1− α)((1− d)θ + c) = 0

for the quota-share ceded function I(x) = kx.

If X ∼ Exp(100), for I(x) = (x − d)+ with d = 50, according to Proposition

4.8 (b), the threshold for a non-negative premium is α1 = 0.3935. And for the

case where a premium is no less than E[I(X)] = 60.6531, the threshold for the

weight has to be no less than α2 = 0.7515. We calculated the reinsurance premium

c∗ for α = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 in Table 4.1.

Now we calculate the premiums for the quota-share type reinsurance contract un-

der the condition E[(X − d)+] = E[kX] to guarantee that the expectations of the

covered losses are equal for the two different types of ceded functions. In this way,
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α c∗

0.4 0.6545
0.5 11.1342
0.6 22.9605
0.7 37.2420
0.8 56.3955
0.9 88.1893

Table 4.2: I(x) = 0.606531x

we get k = 0.606531 by E[(X − 50)+] = E[kX] = 60.6531, and the thresholds are

α1 = 0.3935 and α2 = 0.8176, correspondingly. Table 4.2 calculates the premiums

for I(x) = 0.606531x under the same confidence levels as for the stop-loss type

ceded loss function.

We point out that Table 4.1 and Table 4.2 demonstrate that, for the same weight α,

the reinsurance premium for the stop-loss reinsurance is higher than the reinsur-

ance premium for the quota-share reinsurance. This is a reasonable result since the

stop-loss reinsurance will cover more loss than the quota-share reinsurance when

the underlying loss becomes larger.

Example 4.2. If X ∼ Pareto(τ, θ), the optimal reinsurance premium with the

quadratic functions c∗ is the solution to

α
θ

τ − 1
(

θ

θ + d+ c
)τ−1 − (1− α)

θ

τ − 1
(1− (

θ

θ + d
)τ−1 + c) = 0

for the stop-loss ceded function I(x) = (x− d)+; and is the solution to

αk
θ

τ − 1
(

θ

θ + c
k

)τ−1 − (1− α)((1− k)
θ

τ − 1
+ c) = 0

for the quota-share ceded function I(x) = kx.

Let X ∼ Pareto(3, 200) and I(x) = (x − d)+ with d = 50. Similarly, accord-

ing to Proposition 4.8 (b), the thresholds for a positive premium and a premium

no less than E[I(X)] = 64 are α1 = 0.3600 and α2 = 0.7114, respectively. Table
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α c∗

0.4 5.0075
0.5 19.1974
0.6 36.8958
0.7 60.6901
0.8 96.9323
0.9 169.0288

Table 4.3: I(x) = (x− 50)+

α c∗

0.4 4.0746
0.5 15.1618
0.6 28.3457
0.7 45.3859
0.8 70.4751
0.9 118.8603

Table 4.4: I(x) = 0.64x

4.3 provides the results under the assumption of step-wise increasing confidential

level as in the example for the Exponentially distributed random variables.

For I(x) = kx with k = 0.64, it holds that E[I(X)] = 64. Then the thresholds

are α1 = 0.36 and α2 = 0.7785. Table 4.4 provides the reinsurance premiums at

the corresponding confidence level α. The same comments can be applied to the

Pareto distributed loss random variables.

Remark 4.24. In fact, satisfying the second threshold α ≥ α2 requires a higher

weight on the reinsurer’s loss in (4.3), which implies that more of the reinsurer’s

loss should be considered. If we take α → 1, the objective function includes only

the reinsurer’s total loss and it is beneficial for the reinsurance company to min-

imize this objective function. However, the insurer might not accept the reinsur-

ance premium priced under this condition since it is high but covers less of their

loss. Hence, the modified objective function with a percentage of the initial risk

transferred from the insurer to the reinsurer is more reasonable. Considering the

insurer’s preferences, a relatively smaller quota of the insurer’s loss should also be

considered in the objective function.
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α eα
0.4 48.1631
0.5 60.6531
0.6 74.9810
0.7 92.6673
0.8 117.0813
0.9 159.3032

Table 4.5: I(x) = (x− 50)+

α eα
0.4 52.0872
0.5 60.6531
0.6 70.1869
0.7 81.6859
0.8 97.2600
0.9 123.7392

Table 4.6: I(x) = 0.606531x

α eα
0.4 49.0954
0.5 64.0000
0.6 82.1306
0.7 106.0665
0.8 142.0661
0.9 213.1674

Table 4.7: I(x) = (x− 50)+

Now we will give an example for the reinsurance premiums calculated based on

the expectile risk measure.

Example 4.3. The premiums for X ∼ Exp(100) with I(x) = (x − 50)+ and

I(x) = 0.606531x, and X ∼ Pareto(3, 200) with I(x) = (x−50)+ and I(x) = 0.64x

are calculated in Table 4.5-4.8. The results are consistent with those results in

Corollary 4.12. Moreover, the premiums based on the expectiles are always greater

than our new premium principle, if the confidence level is the same as the constant

weight α as in (4.3).

Next, the corresponding c∗α and c∗ in Corollary 4.22 will be calculated in Example

4.4 and Example 4.5.
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α eα
0.4 53.3751
0.5 64
0.6 76.5327
0.7 92.7027
0.8 116.5850
0.9 163.0365

Table 4.8: I(x) = 0.64x

α c∗α c∗

0.8 110.9438 88.6294
0.85 139.7120 123.4434
0.9 180.2585 169.7325
0.95 249.5732 244.5039

Table 4.9: I(x) = (x− 50)+

α c∗α c∗

0.8 97.6174 84.0830
0.85 115.0662 105.1988
0.9 139.6589 133.2746
0.95 181.7004 178.6257

Table 4.10: I(x) = 0.606531x

α c∗α c∗

0.8 91.9952 67.4802
0.85 126.4144 106.5456
0.9 180.8869 166.0306
0.95 292.8835 283.7871

Table 4.11: I(x) = (x− 50)+

Example 4.4. If X ∼ Exp(100), the values of c∗α and c∗ with α = 0.8, 0.85, 0.9, 0.95

for the stop-loss ceded function I(x) = (x− 50)+ are shown in Table 4.9. And the

corresponding premiums for I(x) = 0.606531x are illustrated in Table 4.10.

By comparing the examples with the same loss random variable and ceded func-

tion, we can see that, when α > α2, the optimal reinsurance premiums with

identity functions are always higher than the premiums with quadratic functions.

For instance, the premium with quadratic functions is 75.1189, and the premium

with identify functions is 88.6294, when X ∼ Exp(100), I(x) = (x − 50)+ and

α = 0.8 > α2 = 0.7515.
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α c∗α c∗

0.8 90.8769 75.1873
0.85 112.9052 100.1892
0.9 147.7676 138.2595
0.95 219.4454 213.6237

Table 4.12: I(x) = 0.64x

Example 4.5. If X ∼ Pareto(3, 200), c∗α and c∗ with α = 0.8, 0.85, 0.9, 0.95

are illustrated in Table 4.11 and Table 4.12. By comparing Table 4.3 and Table

4.11, we find that the values of c∗ are less than the values of c∗α for the stop-loss

type ceded function.
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Chapter 5

Capital Allocation Principles

Based on Weighted Loss

Functions

5.1 Literature Review

In Merton and Perold (1993), “risk capital” is defined as “the smallest amount that

can be invested to insure the value of the firm’s net assets against a loss in value

relative to the risk-free investment of those net assets.” Also, they proposed that

“as defined, risk capital differs from both the regulatory capital, which attempts to

measure risk capital according to a particular accounting standard, and from the

cash capital, which represents the up-front cash required to execute a transaction.

Cash capital is a component of working capital that includes financing of operating

expenses like salaries and rent.” Buch et al. (2011) argued that there are mainly

three trends of research on the risk capital allocation problems: Denault (2001),

Kalkbrener (2005), Tasche (2004), Buch and Dorfleitner (2008) contributed to

mathematical finance field; Dhaene et al. (2003), Furman and Zitikis (2008b),

Gatzert and Schmeiser (2008) investigated the benefits for insurance companies

by applying proper capital allocation principles; Merton and Perold (1993), and
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Stoughton and Zechner (2007) identified whether the principles are sensible from

an economic perspective.

Dhaene et al. (2012) unified the capital allocation principles as the optimizers

of an optimization problem. Proportional capital allocation principles, such as

quantile, covariance and CTE, can be classified into this optimization problem

under certain model assumptions. However, the haircut principle cannot be cov-

ered by the optimization problem since VaR does not satisfy sub-additivity. To

solve this problem, Belles et al. (2014b) assumed the weight functions in Dhaene

et al. (2012) to be integrable and concluded the generalized principles under the

GlueVaR risk measure as defined in Belles et al. (2014a). The haircut principle is

just a special case of the optimizers under GlueVaR, so it can be included in the

generalized capital allocation problem.

The standard deviation type principle by Buhlmann (1970) and the Tail Covari-

ance Premium Adjusted (TCPA) principle by Wang (2014) are based on the prop-

erty of additivity for covariance or tail covariance. Note that the principle in Wang

(2014) can be unified by the generalized model in Belles et al. (2014b) if we define

an appropriate weight function. In addition, Laeven and Goovaerts (2004) investi-

gated the dynamic capital allocation problems under the distortion risk measures

by adopting the stochastic model and updating the distortion functions.

Moreover, the formulas for some specially distributed loss random variables are

derived by the following researchers. Barges et al. (2009) calculated the capital

allocation principles for the multivariate distribution constructed by the expo-

nential marginals and the mixed exponential marginals with the Farlie-Gumbel-

Morgenstern (FGM) copulas under the TVaR risk measure. They arrived at the

close formula for the capital allocation principle and further suggest an approxima-

tion method. Additionally, the capital allocation principles derived in Cossette et

al. (2013) provide close formulas under TVaR and covariance for the multivariate

distribution constructed by the mixed erlang marginals with the FGM copulas.
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Note that the work by Barges et al. (2009) and Cossette et al. (2013) can be

applied to the case when the number of business lines is no less than two. How-

ever, Wang (2014) only calculated the TCPA principle for two business lines, and

the principle is determined for the multivariate distribution constructed by the

exponential marginals with the FGM copulas.

Cai and Wei (2014) defined new notions of dependence structure for the optimal

capital allocation problems. You and Li (2014) further studied the capital allo-

cation concerning mutually interdependent random risks, and they proved that

more capital should be allocated to the risk with a larger reversed hazard rate

when risks are coupled by an Archimedean copula for risk-averse insurers with

decreasing convex loss functions. In addition, they developed sufficient conditions

to exclude the worst capital allocations for random risks with Archimedean copu-

las. Inspired by the works of generalized quantiles in Bellini et al. (2014), we will

investigate the optimization problem considering both the positive and negative

parts of the potential loss for each business line.

5.1.1 Dhaene’s Unified Capital Allocation Model

On the probability space (Ω,F ,P), (X1, X2, . . . , Xn) is a random vector, and it

is treated as a portfolio of n individual losses. Moreover, the aggregate loss S is

defined by

S =
n∑
j=1

Xj. (5.1)

In addition, the initial aggregate capital K is fixed and given. As in most of the

capital allocation problems, the object is to allocate the risk capital K among n

business lines based on an optimization criteria, namely, to determine the values

of K1, . . . , Kn satisfying
n∑
j=1

Kj = K, (5.2)

the full allocation requirement.
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In Dhaene et al. (2012), the values of Kj, j = 1, . . . , n are assumed to be non-

negative real numbers, and the value of the initial aggregate capital K is positive.

The capital allocation principles are determined by the optimizers (K1, . . . , Kn)

for the unified optimization problem:

min
(K1,...,Kn)∈Rn

n∑
j=1

νjE[ξjD(
Xj −Kj

νj
)], s.t.

n∑
j=1

Kj = K,

where νj, j = 1, . . . , n, are non-negative real numbers such that
∑n

j=1 νj = 1, ξj,

j = 1, . . . , n, are non-negative random variables such that E[ξj] = 1, and D is a

non-negative function.

In this model, ξj can be a function of either Xj or S. If it is a function of Xj,

the allocation principle is called the business unit driven capital allocation; If it is

a function of S, the principle is called the aggregate portfolio driven capital allo-

cation. Furthermore, ξj, j = 1, . . . , n, are assumed to satisfy E[|ξj|] <∞ to cover

the haircut allocation principle defined by equation (3) in Belles et al. (2014b).

The optimal allocation principles with quadratic and identity quantifying func-

tions, i.e. D(x) = x2 and D(x) = x, are determined by Theorem 1 and Theorem 2

in Dhaene et al. (2012). In their paper, Theorem 1 is proved through a geometric

approach. Belles et al. (2014b) further arrived at a similar conclusion under the

generalized assumption.

5.2 Background for the Generalized Capital Al-

location Problem

In the models of Dhaene et al. (2012) and Belles et al. (2014b), they considered

the differences between Xj, the potential loss in the jth business line, and Kj, the

capital that will be allocated into the jth business line. In detail, they denoted
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the distance between Xj and Kj as |Xj−Kj|, and added appropriate weight func-

tions and parameters to model the total risk. Their models can cover most of the

capital allocation and premium principles by choosing different weight functions

and parameters, see Table 1 and Table 2 in Dhaene et al. (2012).

Mathematically, the positive part of a function f is defined by

f+ = max(f, 0),

and the negative part of f is defined by

f− = −min(f, 0).

Note that f+ and f− are both non-negative functions. The functions f and |f |

can be expressed as f = f+ − f− and |f | = f+ + f− in terms of f+ and f−. In

addition, f+ = |f |+f
2

and f− = |f |−f
2

. The capital allocation problem in Dhaene

et al. (2012) only considers the absolute value of the difference Xj − Kj, or the

distance between Xj and Kj. However, it might be more reasonable to deter-

mine new capital allocation principles based on the objective functions with both

(Xj −Kj)+ and (Xj −Kj)− included.

Economically, if we allocate Kj on the jth business line, then (Xj − Kj)+ il-

lustrates the possible loss over the attained capital. Therefore, the positive part

of Xj − Kj represents the actual risk faced by the jth business line. Here, we

defined it as the capital deficit risk for the jth business line. For each business

line, for example, the manager in one branch of a multinational enterprise would

like to reduce this kind of risk becasue the more capital was to be allocated in their

business, the less capital deficit risk they might face. Additionally, the probability

of going bankrupt (or business failure) for their branch could be reduced. Consid-

ering this preference for each business line, we build Capital Allocation Problem

I:

min
(K1,K2,··· ,Kn)∈Rn

n∑
j=1

νjE[ξjD1(
(Xj −Kj)+

νj
)] (5.3)

119



such that
∑n

j=1Kj = K.

The objective function in (5.3) represents the total capital deficit risk faced by

all business lines, and our goal can be to determine the capital allocation princi-

ples by minimizing the total deficit risk. In (5.3), D1 is the function adopted to

quantify the capital deficit risk for the jth business line. And νj, j = 1, . . . , n, are

non-negative constants to model the business volume or risk exposure for the jth

business line. In the term D1(
(Xj−Kj)+

νj
), νj can make the capital deficit risk faced

by the corresponding business line more comparable with other business lines by

normalizing these risks. Moreover, νj also represents the weight put on the term

E[ξjD1(
(Xj−Kj)+

νj
)], to illustrate the significance of each business line. Also, the

weight ξj can be functions of the aggregated loss S =
∑n

j Xj, or any reasonable

function of Xj, j = 1, 2, . . . , n. Based on Dhaene et al. (2012), if ξj is function

of Xj, it is called the business unit driven capital allocation; If it is a function

of S =
∑n

j Xj, it is then called the aggregate portfolio driven capital allocation.

Note that ξj might play the similar role as νj, however, it might vary with the loss

random variables Xj, j = 1, . . . , n.

Meanwhile, (Xj −Kj)− = (Kj −Xj)+ could illustrate the future capital received

by the jth business line over the possible loss, and we define it as the capital sur-

plus risk for the jth business line. Obviously, a larger (Kj −Xj)+ means that the

allocation on the jth business is over budgeted. It is known that money does have

an opportunity cost, therefore, the over budgeted amount in the jth business line

could be invested in other business lines with a higher profit rate. Considering

that it might be beneficial from the perspective of the whole company, a lower risk

of (Kj −Xj)+ is preferred as well.

Therefore, a trade-off of the benefits between each business line and the whole

company (or the whole country) should be considered when we allocate capital or

make capital budgeting. In this sense, we should minimize the total capital deficit

risk for business lines and the total capital surplus risk at the same time from a
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global perspective. Now, we have Capital Allocation Problem II:

min
(K1,K2,··· ,Kn)∈Rn

n∑
j=1

{νjE[ξjD1(
(Xj −Kj)+

νj
)] + ωjE[ψjD2(

(Xj −Kj)−
ωj

)]}, (5.4)

such that
∑n

j=1Kj = K. For the capital surplus risk, the weights ψj and parame-

ters ωj share the similar meaning as ξj and νj for the capital deficit risk. Moreover,

ξj and ψj satisfy E[|ξj|] < ∞ and E[|ψj|] < ∞ to include the VaR based capital

allocation. Additionally, D2 is the function quantifying the capital surplus risk. If

we let ξj, j = 1, . . . , n or D2 in the second part of the objective function in (5.4)

be equal to zero, this model can be reduced to the Capital Allocation Problem I.

5.3 Preliminaries

In Chapter 3, the formula is derived to determine the first derivatives of the two

types of functions in Lemma 3.1.

Lemma 5.1. Let g(c) = E[ξD((X − c)+)] and h(c) = E[ξD((X − c)−)], where ξ

is a non-negative random variable. D is a convex and increasing function defined

on R+. Assume g(c) < +∞ and h(c) < +∞ for any c ∈ R, then

g′+(c) = −E[ξD′−((X − c)+)I{X>c}],

g′−(c) = −E[ξD′+((X − c)+)I{X≥c}],

h′+(c) = E[ξD′+((X − c)−)I{X≤c}]

and

h′−(c) = E[ξD′−((X − c)−)I{X<c}],

which are all finite. If D is differentiable with D′(0) = 0, then

g′(c) = −E[ξD′((X − c)+)]
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and

h′(c) = E[ξD′((X − c)−)].

In Rockafellars (2011), the ordinary convex program (P) is defined as:

min
x∈C

f0(x)

subject to constraints:

fi(x) ≤ 0, i = 1, . . . , r,

fi(x) = 0, i = r + 1, . . . ,m,

where C is a non-empty convex subset in Rn, fi, i = 0, . . . , r are finite convex

functions on C, and fi, i = r + 1, . . . ,m are affine functions on C. In addition,

Theorem 28.3 provides a sufficient and necessary condition for the program (P).

The conditions (a)-(c) in Lemma 5.2 are called the Karush-Kuhn-Tucker (KKT)

conditions.

Lemma 5.2. (Theorem 28.3 Rockafellars (2011)) Let (P) be an ordinary convex

program. Let u∗ and x be random vectors in Rm and Rn, respectively. In order for

u∗ to be a Kuhn-Tucker vector for (P), it is necessary and sufficient that (u∗,x)

be a saddle-point of the Lagrangian L = f0(x) + λ1f1(x) + . . . ,+λmfm(x) of (P).

Moreover, this condition holds if and only if x and the components λi of u∗ satisfy

(a) λi ≥ 0, fi(x) ≤ 0 and λifi(x) = 0, i = 1, . . . , r,

(b) fi(x) = 0 for i = r + 1, . . . ,m,

(c) 0 ∈ [∂f0(x) + λ1∂f1(x) + . . . ,+λm∂fm(x)].

Here, the set of all sub-gradients of a function f at x is called the sub-differential

and is denoted as ∂f(x), which equals ∇f(x) when f(x) is differentiable. Gras-

mair (2015) concluded Theorem 10 for the optimization problems with non-empty,

closed and unbounded constraints.
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Lemma 5.3. Assume that S ⊆ Rn is non-empty and closed, and that f : S → R

satisfies lower semi-continuous and

lim
‖x‖→∞

f(x) =∞,

then the optimization problem minx∈S f(x) admits at least one global minimizer

x∗.

Also, Theorem 3.4.2 in Mokhtar et al. (1993) illustrates the relationship between

a local optimal solution and a global optimal solution for convex optimization

programs.

Lemma 5.4. Let S be a nonempty convex set in En, and let f : S → E1 be convex

on S. Consider the problem to minimize f(x) subject to x ∈ S. Assume that

x ∈ S is a local optimal solution to the problem.

1. Then, x is a global optimal solution.

2. If either x is a strict local minimum, or if π is strictly convex, then x is the

unique global optimal solution, and it is also a strong local minimum.

Lemma 5.5. If f ′+(x) ≤ (<)0 and f ′−(x) ≤ (<)0, then f(x) is (strictly) decreasing

in x.

5.4 Capital Allocation Problem II

Given the aggregate capital K, determine the allocation vector k = (K1, . . . , Kn)

from the optimization problem:

min
(K1,K2,··· ,Kn)∈Rn

n∑
j=1

{νjE[ξjD1(
(Xj −Kj)+

νj
)] + ωjE[ψjD2(

(Xj −Kj)−
ωj

)]}

such that
∑n

j=1 Kj = K, where νj, ωj are non-negative real numbers, ξj, ψj are

non-negative random variables such that 0 < E[|ξj|] < ∞, 0 < E[|ψj|] < ∞,

123



E[ξjD1(
(Xj−x)+

νj
)] < ∞, E[ψjD2(

(Xj−x)−
ωj

)] < ∞ for any x ∈ R, i = 1, . . . , n, and

D1, D2 : R+ → R+ are two non-degenerated, convex and increasing functions.

In the literature, as in the unified model of Dhaene et al. (2012), the initial

capital K is assumed to be positive, but it can definitely be negative, such as

when the company has a debt to be paid in the next year. In this case, the prob-

lem is generalized to allocate the debt into the business lines. Then, we calculate

the allocated capital for each business line based on the principles. If the allocated

capital is positive, that amount of capital will be allocated to the business line; if

the capital is negative, we will withdraw that amount of capital from that business

line. Thus, we assume K ∈ R instead.

In this chapter, we will consider some convex quantifying functions, for exam-

ple, the quadratic and identity functions. Since strong duality holds for convex

optimization problems, the KKT conditions are sufficient and necessary for the

existence of the solutions to the convex optimization problems. Moreover, it is

known that g(x) + f(x) is a convex function if both g(x) and f(x) are convex

functions, and h(x) = g(f(x)) is also a convex function if g(x) is a convex and

increasing function and f is convex. In model (5.4), (Xj −Kj)+ and (Xj −Kj)−

are convex functions of Kj. In addition, D1(
(Xj−Kj)+

νj
) and D2(

(Xj−Kj)−
ωj

) are con-

vex functions of Kj if both D1(x) and D2(x) are convex and increasing functions.

Hence, the objective function in model (5.4) is a convex function.

Hence, for Capital Allocation Problem II, since there are no constraints like

fi(x) ≤ 0, i = 1, . . . , r,

the KKT conditions in Lemma 5.2 can be reduced to

(b) fi(x) = 0 for i = r + 1, . . . ,m,

(c) 0 ∈ [∂f0(x) + λr+1∂fr+1(x) + . . . ,+λm∂fm(x)].
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When D1 and D2 are convex and increasing functions, the objective function is

a convex function with a closed convex support set
∑n

j=1 Kj = K , and so the

optimization problem (5.4) is a convex optimization problem. The local minimizers

determined by the reduced conditions (b) and (c) are also the global minimizers

by Lemma 5.4.

Theorem 5.6. Let D1, D2 : R+ → R+ be non-degenerated, convex and increas-

ing functions. For Capital Allocation Problem II, there exists at least one global

minimizer, and Kj, j = 1, 2, . . . , n, the global optimal allocated capital on the jth

business line, and λ, an auxiliary real-valued variable, are the solutions to

E[ψjD
′

2+(
(Xj −Kj)−

ωj
)I{Xj≤Kj}] ≥ E[ξjD

′

1−(
(Xj −Kj)+

νj
)I{Xj>Kj}]− λ, j = 1, 2, . . . , n,

E[ξjD
′

1+(
(Xj −Kj)+

νj
)I{Xj≥Kj}] ≥ E[ψjD

′

2−(
(Xj −Kj)−

ωj
)I{Xj<Kj}] + λ, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.

(5.5)

If D1 and D2 are differentiable with D′1(0) = D′2(0) = 0, then Kj, j = 1, 2, . . . , n

and λ, an auxiliary real-valued variable are the solutions to


E[ψjD

′

2(
(Xj −Kj)−

ωj
)] = E[ξjD

′

1(
(Xj −Kj)+

νj
)]− λ, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.
(5.6)

Proof. In model (5.4), the objective function is

π(k) =
n∑
j=1

{νjE[ξjD1(
(Xj −Kj)+

νj
)] + ωjE[ψjD2(

(Xj −Kj)−
ωj

)]}, (5.7)

and D1(x) and D2(x) are continuous on (0,∞) with

lim
x→+∞

D1(x) = lim
x→+∞

D2(x) = +∞
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since D1 and D2 are convex and increasing functions on (0,∞). In addition, π(k)

is continuous. Considering that D1 and D2 are also non-degenerated, we have

lim
‖k‖→+∞

π(k) = +∞.

Moreover, {k ∈ Rn|k :
∑n

j=1Kj = K}, the constraint of model (5.4), is a non-

empty, closed and unbounded set. Hence, π(k) can attain a global minimizer

within {k ∈ Rn|k :
∑n

j=1Kj = K} by Lemma 5.3. For the optimization problem

(5.4), the Lagrangian objective function is

L(k, λ) =
n∑
j=1

{νjE[ξjD1(
(Xj −Kj)+

νj
)]+ωjE[ψjD2(

(Xj −Kj)−
ωj

)]}+λ(
n∑
j=1

Kj−K),

and k = (K1, . . . , Kn) can be the optimizer if and only if
∑n

j=1 Kj = K and

0 ∈
[
∂−L
∂Kj

, ∂
+L
∂Kj

]
, for j = 1, . . . , n. Similar to Proposition 3.4 in Chapter 3, the

optimizers are the solutions to (5.5) by Lemma 5.1 and Lemma 5.2. In addition,

these optimizers are global optimizers according to Lemma 5.4.

Remark 5.7. As proposed, Capital Allocation Problem I is actually a special case

of Capital Allocation Problem II if the part of capital surplus risk in the objective

function of model (5.4) equals zero. Therefore, we can obtain similar results for

Capital Allocation Problem I by setting ψj = 0, j = 1, . . . , n, or D2(x) = 0.

In the following sections, the capital allocation principles are defined as the quadratic

capital allocation if D1(x) = D2(x) = x2 and the identic capital allocation if

D1(x) = D2(x) = x.

5.5 Quadratic Capital Allocations

Theorem 5.8. (Quadratic Capital Allocation) For Capital Allocation Problem II,

if D1(x) = D2(x) = x2, then Kj, j = 1, 2, . . . , n, the global optimal allocated

capital on the jth business line, and λ, an auxiliary real-valued variable, are the
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solutions to
E[
ξj
νj

(Xj −Kj)+] = E[
ψj
ωj

(Xj −Kj)−] +
λ

2
, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.
(5.8)

Or equivalently, Kj, j = 1, 2, . . . , n, the global optimal allocated capital on the jth

business line, are the solutions to


E[
ξi
νi

(Xi −Ki)+]− E[
ψi
ωi

(Xi −Ki)−] = E[
ξj
νj

(Xj −Kj)+]− E[
ψj
ωj

(Xj −Kj)−]

n∑
j=1

Kj = K.

(5.9)

for i 6= j and (i, j) ∈ {1, 2, . . . , n}2. Hence, the optimizers are equivalently the

solutions to these n− 1 equations with
∑n

j=1 Kj = K.

Proof. Note that D′1(0) = D′2(0) = 0 if D1(x) = D2(x) = x2. In addition, the

condition that D1, D2 : R+ → R+ are non-degenerated, convex and increasing

functions can be satisfied when D1(x) = D2(x) = x2. Then, the result is trivial

by Theorem 5.6.

Note that (5.8) can be rewritten as


hXj ,ξj ,ψj(Kj) =

λ

2
− E[ψjXj]

ωj
, j = 1, . . . , n

n∑
j=1

Kj = K,
(5.10)

where

hXj ,ξj ,ψj(x) = E[(
ξj
νj
− ψj
ωj

)(Xj − x)+]− E[ψj]

ωj
x

= E[(
ξj
νj
− ψj
ωj

)(Xj − x)−]− E[ξj]

νj
x+ E[(

ξj
νj
− ψj
ωj

)Xj]

(5.11)
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and hXj ,ξj ,ψj(x) is denoted as hj for simplicity. Firstly, hj is a continuous function

of x. By Lemma 5.1, the right-derivative of hj is

h′j+ = −E[(
ξj
νj
− ψj
ωj

)I{Xj>x}]−
E[ψj]

ωj

= −E[
ξj
νj
I{Xj>x}]− E[

ψj
ωj

I{Xj≤x}]

≤ 0,

and the left-derivative is

h′j− = −E[(
ξj
νj
− ψj
ωj

)I{Xj≥x}]−
E[ψj]

ωj

= −E[
ξj
νj
I{Xj≥x}]− E[

ψj
ωj

I{Xj<x}]

≤ 0.

Thus, hj is a continuous and decreasing function of x. If hj is not strictly de-

creasing, the solutions to (5.10) are not unique. Now we will provide one sufficient

condition for the existence of a unique solution.

Proposition 5.9. If E[ξj] > 0 and E[ψj] > 0, j = 1, . . . , n, then the capital

allocation in Theorem 5.8 is unique.

Proof. Let hj be defined by (5.10). Note that νj > 0 and ωj > 0. If E[ψj] > 0,

then hj → −∞ as x → ∞, and hj → ∞ as x → −∞. Also, if E[ξj] > 0 and

E[ψj] > 0, then h′j+ < 0 and h′j− < 0. In fact, for h′j+, if
ξj
νj
≤ ψj

ωj
, then

h′j+ = −E[
ξj
νj

] + E[(
ξj
νj
− ψj
ωj

)I{Xj≤x}] < 0;

else if
ξj
νj
>

ψj
ωj

, then

h′j+ = −E[(
ξj
νj
− ψj
ωj

)I{Xj>x}]− E[
ψj
ωj

] < 0.
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Hence, hj is a strictly decreasing function of x by Lemma 5.5. Thus, h−1
j (x) does

exist and is also a continuous and strictly decreasing function of x. Let

h−1
j (x) = inf{y ∈ R : hj(y) ≤ x}, x ∈ R

be the inverse of hj. The range of hj is R and the domain of h−1
j is the range of

hj. Thus, (5.10) is reduced to


Kj = h−1

Xj ,ξj ,ψj
(
λ

2
− E[ψjXj]

ωj
), j = 1, . . . , n

K =
n∑
j=1

Kj.
(5.12)

Based on (5.12), λ is determined by

n∑
j=1

h−1
Xj ,ξj ,ψj

(
λ

2
− E[ψjXj]

ωj
) = K. (5.13)

Considering that h−1
j (x), j = 1, . . . , n are all continuous and strictly decreasing

functions of x,
∑n

j=1 h
−1
Xj ,ξj ,ψj

(λ
2
− E[ψjXj ]

ωj
) is a continuous and strictly decreasing

function of λ. Thus, Equation (5.13) has a unique solution for λ. Hence, the

capital allocation principle can be determined by

Kj = h−1
Xj ,ξj ,ψj

(
λ

2
− E[ψjXj]

ωj
)

and is also unique.

Remark 5.10. If
ξj
νj

=
ψj
ωj

and D1(x) = D2(x) = x2, model (5.4) is reduced to be

min(K1,...,Kn)∈Rn

n∑
j=1

νjE[ξj(
Xj −Kj

νj
)2], s.t.

n∑
j=1

Kj = K.

The auxiliary variable λ in Theorem 5.8 is expressed as

λ =
2(
∑n

j=1
E[ξjXj ]

E[ξj ]
−K)∑n

j=1
1

E[
ξj
νj

]

.
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Hence,

Kj =
E[ξjXj]

E[ξj]
+

νj
E[ξj]

·
K −

∑n
i=1

E[ξiXi]
E[ξi]∑n

i=1
νi

E[ξi]

. (5.14)

Further, if
∑n

j=1 νj = 1 and E[ξj] = 1, the results in Theorem 5.8 can be reduced

as in Theorem 1 of Dhaene et al. (2012). Hence, the standard deviation principle,

CTE, distortion risk measure, exponential principle, and Esscher principle are

special cases of the business unit driven allocation principles by assuming

νj =
E[ξjXj]∑n
j=1 E[ξjXj]

.

Also, the aggregate portfolio driven allocation principles in Table 2 of Dhaene et

al. (2012) can be included in our revised model. In fact, the objective functions of

Capital Allocation Problem II and Dhaene’s Unified Capital Allocation Model are

equal since

E[
ξj
νj

(Xj −Kj)+(Xj −Kj)−] = 0

in the quadratic case.

According to Theorem 5.8, we can easily get the corresponding capital allocation

principles for the business unit driven and aggregate portfolio driven types by

letting ξj(·) = gj(·) = gj(Xj) or gj(S), ψj(·) = hj(·) = hj(Xj) or hj(S).

5.5.1 The Add On and Off Capital Allocation Principle

Note that (5.14) can be rewritten as

Kj =

νj
E[ξj ]∑n
i=1

νi
E[ξi]

K +

νj
E[ξj ]∑n
i=1

νi
E[ξi]

( n∑
i=1

(
νiE[ξjXj]

νjE[ξi]
− E[ξiXi]

E[ξi]
)
)
. (5.15)

We call the capital allocation principle defined by (5.15) the add on and off capital

allocation principle. Here,
νj

E[ξj ]
represents the weight function normalized business

volume (or risk exposure) for the jth business line. Both the initial aggregate

capital K and
∑n

i=1(
E[ξjXj ]

E[ξj ]
− E[ξiXi]

E[ξi]
) will be multiplied by the ratio of the jth

normalized volume to the total normalized volume, respectively. If E[ξj] and νj
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are equal for each j, then (5.15) can be reduced to

Kj =
K

n
+

∑n
i=1(

E[ξjXj ]

E[ξj ]
− E[ξiXi]

E[ξi]
)

n
. (5.16)

Furthermore, we can determine new capital allocation principles by setting differ-

ent functionals for ξj. For example, if ξj, j = 1, . . . , n are constants, then

Kj =
K

n
+

∑n
i=1(E[Xj]− E[Xi])

n
. (5.17)

Now the generalized model (5.4) can be reduced to the classical quadratic capital

allocation problem:

min
(K1,K2,··· ,Kn)∈Rn

n∑
j=1

E[(Xj −Kj)
2].

If we further assume that the expectations of Xj, j = 1, . . . , n are equal, then

Kj = K
n

for all j = 1, . . . , n. If the expectations are not equal, the allocated capi-

tal for the jth business line is the sum of K
n

and
∑n
i=1(E[Xj ]−E[Xi])

n
, the averaged sum

of E[Xj − E[Xi], i = 1, 2, . . . , n. Moreover, the result in (5.17) does not depend

on the distributions of Xj, j = 1, . . . , n but the expectations of them. Also, the

principle is not a proportional capital allocation principle as concluded in Dhaene

et al. (2012).

We call the allocation principle

Kj =
K

n
+

∑n
i=1(

E[ξjXj ]

E[ξj ]
− E[ξiXi]

E[ξi]
)

n
, j = 1, . . . , n

the averaged add on and off capital allocation principle. In this case,
νj

E[ξj ]
are equal

for each j, which means that the weight functions normalized business volume are

equal for each business line. In this principle, the amount of K
n

is the base capital

allocated into each business line. Then, if

∑n
i=1(

E[ξjXj ]

E[ξj ]
− E[ξiXi]

E[ξi]
)

n
≥ 0,
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this amount of capital will be added to the jth business line. But if the figure is

negative, ∑n
i=1(

E[ξjXj ]

E[ξj ]
− E[ξiXi]

E[ξi]
)

n
< 0,

the absolute value of that figure will be subtracted or withdrawn from the jth

business line.

In Dhaene et al. (2012), the proportional principles in Table 1 and Table 2 are

unified as

Kj = K
E[ξjXj]∑n
i=1 E[ξiXi]

,

j = 1, . . . , n. We will follow the proportional principles and introduce the various

types of the averaged add on and off capital allocation principles as below. The

add on and off capital allocation principle can be achieved by substituting 1
n

by
νj

E[ξj ]∑n
i=1

νi
E[ξi]

. For the business unit driven type,

(a) The standard deviation type is the case when ξj = 1 + aj
Xj−E[Xj ]

σXj
, where σXj

is the standard deviation of Xj and aj ≥ 0. Then,
E[ξjXj ]

E[ξj ]
= E[Xj] + ajσXj .

The allocated capital to the jth business line is

Kj =
K

n
+

∑n
i=1(E[Xj] + ajσXj − E[Xi]− aiσXi)

n
. (5.18)

(b) The CTE type is available if ξj = 1
1−pj I{Xj>F−1

Xj
(pj)}, where pj ∈ (0, 1). Now,

E[ξjXj ]

E[ξj ]
= CTEpj(Xj) = E[Xj|Xj > F−1

Xj
(pj)]. The allocated capital to the

jth business line is

Kj =
K

n
+

∑n
i=1(CTEpj(Xj)− CTEpi(Xi))

n
. (5.19)

(c) The distortion risk measure type is attained if ξj =
g
′
j(FXj (Xj))

E[g
′
j(FXj (Xj))]

, where FXj(·)

is the survival function of Xj, and gj is a distortion function defined as

gj : [0, 1] 7→ [0, 1] with g
′
j > 0 and g

′′
j < 0. Then,

E[ξjXj ]

E[ξj ]
= E[Xjg

′
j(FXj(Xj))],

which is the spectral risk measure with respect to g. The allocated capital
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to the jth business line is

Kj =
K

n
+

∑n
i=1(E[Xjg

′
j(FXj(Xj))]− E[Xig

′
i(FXi(Xi))])

n
. (5.20)

The CTE type is a special case of this principle.

(d) The exponential type is the principle by assuming ξj =
∫ 1

0
eγajXj

E[eγajXj ]
dγ, where

aj > 0. Thus,
E[ξjXj ]

E[ξj ]
= 1

aj
lnE[eajXj ]. The allocated capital to the jth

business line is

Kj =
K

n
+

∑n
i=1( 1

aj
lnE[eajXj ]− 1

ai
lnE[eaiXi ])

n
. (5.21)

(e) The Esscher transform type is derived when ξj = eajXj

E[eajXj ]
, where aj > 0. Note

that
E[ξjXj ]

E[ξj ]
is the Esscher transform of Xj. The allocated capital to the jth

business line is

Kj =
K

n
+

∑n
i=1(

E[Xje
ajXj ]

E[eajXj ]
− E[Xie

aiXi ]

E[eaiXi ]
)

n
. (5.22)

Compared with Table 1 in Dhaene et al. (2012), these allocation principles are not

proportional. For the aggregate portfolio driven type, we can attain the following

parallel results illustrated by Table 2 in Dhaene et al. (2012).

(a) The standard covarience type is the case when ξj = 1 + aj
S−E[S]
σS

, where σS

is the standard deviation of S and aj ≥ 0,
E[ξjXj ]

E[ξj ]
= E[Xj] + aj

Cov[Xj ,S]

σS
. The

allocated capital to the jth business line is

Kj =
K

n
+

∑n
i=1(E[Xj] + aj

Cov[Xj ,S]

σS
− E[Xi]− aiCov[Xi,S]

σS
)

n
. (5.23)

(b) The CTE type is available if ξj = 1
1−pj I{S>F−1

S (pj)}, where pj ∈ (0, 1),
E[ξjXj ]

E[ξj ]
=

E[Xj|S > F−1
S (pj)]. The allocated capital to the jth business line is

Kj =
K

n
+

∑n
i=1(E[Xj|S > F−1

S (pj)]− E[Xi|S > F−1
S (pi)])

n
. (5.24)
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(c) The distortion risk measure type is if ξj =
g
′
j(FS(S))

E[g
′
j(FS(S))]

, where F S(·) is the

survival function of S, gj : [0, 1] 7→ [0, 1], g
′
j > 0 and g

′′
j < 0. Then,

E[ξjXj ]

E[ξj ]
= E[Xjg

′
j(F S(S))]. The allocated capital to the jth business line is

Kj =
K

n
+

∑n
i=1(E[Xjg

′
j(F S(S))]− E[Xig

′
i(F S(S))])

n
. (5.25)

(d) The exponential type is the principle by assuming ξj =
∫ 1

0
eγajS

E[eγajS ]
dγ, where

aj > 0. Thus,
E[ξjXj ]

E[ξj ]
= E[Xj

∫ 1

0
eγajS

E[eγajS ]
dγ]. The allocated capital to the jth

business line is

Kj =
K

n
+

∑n
i=1(E[Xj

∫ 1

0
eγajS

E[eγajS ]
dγ]− E[Xi

∫ 1

0
eγaiS

E[eγaiS ]
dγ])

n
. (5.26)

(e) The Esscher transform type is derived when ξj = eajS

E[eajS ]
, where aj > 0, and

we get
E[ξjXj ]

E[ξj ]
=

E[Xje
ajS ]

E[eajS ]
. The allocated capital to the jth business line is

Kj =
K

n
+

∑n
i=1(

E[Xje
ajS ]

E[eajS ]
− E[Xie

aiS ]

E[eaiS ]
)

n
. (5.27)

5.5.2 Properties of the Averaged Add On and Off Capital

Allocation Principles

The averaged add on and off capital allocation principles have the following prop-

erties, but some of them cannot be satisfied by the general quadratic capital allo-

cation principle in Theorem 5.8 since even the principle defined by (5.16) cannot

satisfy them as a special case.

5.5.2.1 No Negative Loading, Riskless Allocation and No Unjustified

Loading

No negative loading is defined as Kj ≥ E[Xj], j = 1, 2, . . . , n, and the principle

defined by (5.16) can satisfy it under some conditions as provided in Proposition
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5.11. Our general allocation may satisfy this property under certain conditions

illustrated by the following proposition.

Proposition 5.11. Let Kj, j = 1, . . . , n be the capital allocation principle defined

by (5.16). Then, the following results hold:

(a) Kj ≥ E[Xj] if K ≥
∑n

j=1
E[ξjXj ]

E[ξj ]
and Cov(ξj, Xj) ≥ 0;

(b) Kj ≤ E[Xj] if K ≤
∑n

j=1
E[ξjXj ]

E[ξj ]
and Cov(ξj, Xj) ≤ 0;

(c) Kj =
E[ξjXj ]

E[ξj ]
if K =

∑n
j=1

E[ξjXj ]

E[ξj ]
.

Proof. It is trivial by (5.16).

The axioms of riskless allocation in Maume-Deschamps et al. (2015) and no un-

justified loading in Furman and Zitikis (2008b) are axioms considering the business

line without risk, namely, the corresponding risk random variable is assumed as

a constant c. Both of their papers argue that the allocated capital to the risk-

less business line should be c, and the capital allocation problem is revised to be

the problem of allocating K − c among other risky business lines. The allocation

principles in Maume-Deschamps et al. (2015) satisfy this property, however, our

general principles in Theorem 5.8 fail to satisfy it since, as a special case of our

proposed model, the principles derived by (5.16) do not satisfy it. In fact, Kj = c

when Xj = c holds only if K =
∑n

j=1
E[ξjXj ]

E[ξj ]
, see Proposition 5.11 (c). Obviously,

this property might highly depend on the value of the initial capital K.

In most of the models in the literature, the initial capital K is usually assumed

as fixed and exogenously given. For instance, the initial capital may be estimated

by some risk measures. Based on Proposition 5.11, we find that the initial capi-

tal plays a significant role in determining whether the underlying principle is an

effective one. Hence, determining the amount of K is still a potential problem for

future research, although we may apply risk measures to calculate it endogenously.
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5.5.2.2 Translation Invariance

Now we will check the axiom of translation invariance for the allocation by (5.16).

Let

(K∗1 , . . . , K
∗
n) = AX1+a1,...,Xn+an(K)

and

(K∗∗1 , . . . , K
∗∗
n ) = AX1,...,Xn(K −

n∑
j=1

aj),

where

AX1,...,Xn(K) = (K1, . . . , Kn)

is as defined in Maume-Deschamps et al. (2015). Moreover, we assume the weight

functions as ξj = gj(X1, . . . , Xn), j = 1, . . . , n in Proposition 5.12 and Proposition

5.15.

Proposition 5.12. The allocation by (5.16) satisfies the axiom of translation in-

variance if

E[gj(X1 + a1, . . . , Xn + an)Xj]

E[gj(X1 + a1, . . . , Xn + an)]
=

E[gj(X1, . . . , Xn)Xj]

E[gj(X1, . . . , Xn)]
(5.28)

holds for j = 1, . . . , n.

Proof. If (5.28) holds for j = 1, . . . , n, then

E[gj(X1 + a1, . . . , Xn + an)(Xj + aj)]

E[gj(X1 + a1, Xn + an)]
=

E[gj(X1, . . . , Xn)(Xj + aj)]

E[gj(X1, . . . , Xn)]

holds for j = 1, . . . , n. Thus,

K∗j = Kj + aj −
∑n

j=1 aj

n
.

In addition,

K∗∗j = Kj −
∑n

j=1 aj

n

holds for the capital allocation by (5.16). Hence, K∗j = K∗∗j +aj, j = 1, . . . , n.
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Remark 5.13. Note that gj(x1, . . . , xn) may depend on the random variables Xj,

j = 1, . . . , n, and we denote them as gX1,...,Xn
j (x1, . . . , xn). If we assume

gX1,...,Xn
j (x1, . . . , xn) = βjI{x1>ρ1(X1),...,xn>ρn(Xn)} + γjI{x1≤ρ1(X1),...,xn≤ρn(Xn)},

where ρj are distortion risk measures, βj, γj ∈ R+, j = 1, . . . , n, then

gX1+a1,...,Xn+a1
j (X1 + a1, . . . , Xn + an) = gX1,...,Xn

j (X1, . . . , Xn).

Obviously, the condition (5.28) in Proposition 5.12 can be satisfied.

5.5.2.3 Scale Invariance and Continuity

Furman and Zitikis (2008b) defined the axioms of scale invariance, sub-scale in-

variance, and super-scale invariance, which are only defined for the jth allocated

capital as A(Xj, S) = Kj. In addition, Maume-Deschamps et al. (2015) de-

fined the axioms of positive homogeneity and continuity and applied the notation

AX1,...,Xn(K) = (K1, . . . , Kn) to these two axioms.

Definition 5.14. For any b ∈ R+,

(a) scale invariance: A(bXj,
∑

i 6=j Xi + bXj) = bA(Xj, S);

(b) sub-scale invariance: A(bXj,
∑

i 6=j Xi + bXj) ≤ bA(Xj, S);

(c) super-scale invariance: A(bXj,
∑

i 6=j Xi + bXj) ≥ bA(Xj, S);

(d) positive homogeneity: AbX1,...,bXn(bK) = bAX1,...,Xn(K);

(e) continuity: limε→0AX1,...,(1+ε)Xj ,...,Xn(K) = AX1,...,Xn(K).

If we suppose (K∗1 , . . . , K
∗
j , . . . , K

∗
n) = AX1,...,bjXj ,...,Xn(K), where bj ∈ R+, and

(K∗∗1 , . . . , K
∗∗
j , . . . , K

∗∗
n ) = AbX1,...,bXj ,...,bXn(K),

where b ∈ R+.
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Proposition 5.15. Let Kj, j = 1, . . . , n be the capital allocation principle defined

by (5.16). Assume (5.28) holds for j = 1, . . . , n. Then,

(a) scale invariance holds if bj = 1 or K =
∑n

i=1,i 6=j
E[ξiXi]
E[ξi]

;

(b) sub-scale invariance holds if (bj − 1)(K −
∑n

i=1,i 6=j
E[ξiXi]
E[ξi]

) ≤ 0;

(c) super-scale invariance holds if (bj − 1)(K −
∑n

i=1,i 6=j
E[ξiXi]
E[ξi]

) ≥ 0;

(d) continuity holds.

Assume

E[gj(bX1, . . . , bXj, . . . , bXn)Xj]

E[gj(bX1, . . . , bXj, . . . , bXn)]
=

E[gj(X1, . . . , Xj, . . . , Xn)Xj]

E[gj(X1, . . . , Xj, . . . , Xn)]
(5.29)

holds for j = 1, . . . , n. Then,

(e) positive homogeneity holds.

Proof. Note that (a), (b), and (c) can be verified since K∗j and K∗i (i 6= j), j =

1, . . . , n have the following expressions.

K∗j = bj
E[gj(X1, . . . , bjXj, . . . , Xn)Xj]

E[gj(X1, . . . , bjXj, . . . , Xn)]
+

1

n
(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]

− bj
E[gj(X1, . . . , bjXj, . . . , Xn)Xj]

E[gj(X1, . . . , bjXj, . . . , Xn)]
)

= bj(
E[gj(X1, . . . , bjXj, . . . , Xn)Xj]

E[gj(X1, . . . , bjXj, . . . , Xn)]
+

1

n
(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]
−

E[gj(X1, . . . , bjXj, . . . , Xn)Xj]

E[gj(X1, . . . , bjXj, . . . , Xn)]
)) + (1− bj)

1

n
(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]
)

= bj(
E[gj(X1, . . . , Xj, . . . , Xn)Xj]

E[gj(X1, . . . , Xj, . . . , Xn)]
+

1

n
(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]

− bj
E[gj(X1, . . . , Xj, . . . , Xn)Xj]

E[gj(X1, . . . , Xj, . . . , Xn)]
)) + (1− bj)

1

n
(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]
)

= bjKj +
1

n
(1− bj)(K −

n∑
i=1,i 6=j

E[ξiXi]

E[ξi]
),
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where the third equation holds if (5.28) holds for j = 1, . . . , n. In addition,

K∗i =
E[ξiXi]

E[ξi]
+

1

n
(K −

n∑
l=1,l 6=i,l 6=j

E[ξlXl]

E[ξl]
− E[ξiXi]

E[ξi]

− bj
E[gj(X1, . . . , bjXj, . . . , Xn)Xj]

E[gj(X1, . . . , bjXj, . . . , Xn)]
)

=
E[ξiXi]

E[ξi]
+

1

n
(K −

n∑
l=1,l 6=i,l 6=j

E[ξlXl]

E[ξl]
− E[ξiXi]

E[ξi]

− bj
E[gj(X1, . . . , Xj, . . . , Xn)Xj]

E[gj(X1, . . . , Xj, . . . , Xn)]
)

= Ki +
1

n
(1− bj)

E[ξjXj]

E[ξj]
,

where the second equation holds if (5.28) holds again.

For (d), to prove

limε→0AX1,...,(1+ε)Xj ,...,Xn(K) = AX1,...,Xj ,...,Xn(K)

is equally to prove

limbj→1AX1,...,bjXj ,...,Xn(K) = AX1,...,Xj ,...,Xn(K),

which holds since

limbj→1K
∗
j = Kj

and

limbj→1K
∗
i = Ki

for i 6= j.

For (e), we have

K∗∗j = b
E[gj(bX1, . . . , bXj, . . . , bXn)Xj]

E[gj(bX1, . . . , bXj, . . . , bXn)]
+

1

n
(bK − b

n∑
i=1

E[gi(bX1, . . . , bXi, . . . , bXn)Xi]

E[gi(bX1, . . . , bXi, . . . , bXn)]
)

= b(
E[gj(bX1, . . . , bXj, . . . , bXn)Xj]

E[gj(bX1, . . . , bXj, . . . , bXn)]
+

1

n
(K −

n∑
i=1

E[gi(bX1, . . . , bXi, . . . , bXn)Xi]

E[gi(bX1, . . . , bXi, . . . , bXn)]
))

= bKj,
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if (5.29) holds for j = 1, . . . , n.

5.5.2.4 Consistency and Additivity

In Furman and Zitikis (2008b), the allocated capital to the jth line is defined as

A(Xj, S), and they defined SI =
∑

i∈I Xi, where I ⊆ N = {1, 2, . . . , n}. The

axiom of consistency is satisfied if

∑
i∈I

A(Xi, S) = A(SI , S)

holds. Maume-Deschamps et al. (2015) defined the sub-additivity for capital allo-

cation principles as ∑
i∈I

A(Xi, S) ≤ A(SI , S).

Now we will check this axiom for the allocation by (5.17) in this section by adopting

the definition in Furman and Zitikis (2008b).

Proposition 5.16. For the capital allocation by (5.17), the following results hold.

(a)
∑

i∈I A(Xi, S) ≥ A(SI , S) if K ≥
∑n

i=1 E[Xi].

(b)
∑

i∈I A(Xi, S) ≤ A(SI , S) if K ≤
∑n

i=1 E[Xi].

(c)
∑

i∈I A(Xi, S) > A(SI , S) if K >
∑n

i=1 E[Xi] and 1 < r < n.

(d)
∑

i∈I A(Xi, S) < A(SI , S) if K <
∑n

i=1 E[Xi] and 1 < r < n.

(e)
∑

i∈I A(Xi, S) = A(SI , S) if K =
∑n

i=1 E[Xi], or r = 1 or n.

Proof. Firstly, we denote card(SI) = r, and we have

A(SI , S) =
K

n− r + 1
+ E[SI ]−

∑n
i=1 E[Xi]

n− r + 1
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and ∑
i∈I

A(Xi, S) =
∑
i∈I

(K
n

+ E[Xi]−
∑n

i=1 E[Xi]

n

)
=
r

n
K + E[SI ]−

r

n

n∑
i=1

E[Xi].

Thus, ∑
i∈I

A(Xi, S)− A(SI , S) = (
r

n
− 1

n− r + 1
)(K −

n∑
i=1

E[Xi]).

Also, r
n
− 1

n−r+1
≥ 0 since 1 ≤ r ≤ n. Then the results can be concluded.

Remark 5.17. If the allocation by (5.15) or (5.16) satisfy these properties, they will

converge to the allocation derived by (5.17) since the properties only hold when the

loading factors ξi are constants. Meanwhile, we can conclude that the property for

the capital allocation depends on the value of the initial capital K and the total

expected loss
∑n

i=1 E[Xi]. By Proposition 5.16 (a),
∑n

i=1 E[Xi] can be treated as

a threshold of the initial capital for a subadditivitive allocation. For the allocation

principle by (5.17), we can find that the axioms of no negative loading and sub-

additivity will be satisfied at the same time if the initial capital is no less than this

threshold.

According to the Proposition 5.16, the axioms of super-additivity, strictly sub-

additivity and strictly super-additivity can be defined.

Definition 5.18. (Axioms for Additivity)

(a) Super-additivity:
∑

i∈I A(Xi, S) ≤ A(SI , S).

(b) Strictly sub-additivity:
∑

i∈I A(Xi, S) > A(SI , S).

(c) Strictly super-additivity:
∑

i∈I A(Xi, S) < A(SI , S).

The corresponding dynamic averaged add on and off capital allocation under dis-

tortion risk measures can be realized by adopting the updated distortion functions

proposed in Laeven and Goovaerts (2004).
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K = 1 K = 3
α1 α2 α3 K1 K2 K3 K1 K2 K3

0.05 0.05 1 0.0279 0.0279 0.9442 0.8230 0.8230 1.3540
0.05 0.5 1 -0.6554 0.7557 0.8997 0.6744 1.0901 1.2355
0.5 0.5 1 0.2615 0.2615 0.4770 0.9530 0.9530 1.0939
1 1 1 0.3333 0.3333 0.3333 1 1 1

0.05 1 1 -0.7829 0.8915 0.8915 0.6147 1.1927 1.1927
0.05 2 1 -0.8842 0.9993 0.8850 0.5475 1.3046 1.1478

2 2 1 0.3753 0.3753 0.2493 1.0395 1.0395 0.9210
0.05 10 1 -1.1996 1.3349 0.8647 0.2962 1.6891 1.0148
10 10 1 0.4041 0.4041 0.1918 1.1223 1.1223 0.7554

0.05 100 1 -1.5409 1.6979 0.8429 -0.0765 2.1396 0.9369
100 100 1 0.4168 0.4168 0.1663 1.1676 1.1676 0.6648

Table 5.1: Example 5.1-1

Now we will provide numerical examples for the quadratic capital allocation.

Example 5.1. If D1(x) = D2(x) = x2, νj = ωj = 1, ξj = 1−e−αjXj , ψj = e−αjXj ,

Xj ∼ Exp(βj), j = 1, . . . , n. The optimal capital allocations should be solutions to



( 1

βj
e−βjKj − 2βj

(αj + βj)2
e−(αj+βj)Kj

)
I{Kj≥0}

+
( 1

βj
− 2βj

(αj + βj)2
+Kj

βj − αj
αj + βj

)
I{Kj<0}

+
βj

(αj + βj)2
−Kj

βj
αj + βj

=
λ

2
, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.

(5.30)

Suppose β1 = β2 = β3 = 1. The results are in Table 5.1. Then, if we suppose

α1 = α2 = α3 = 1, we get Table 5.2.

5.6 Identic Capital Allocations

When D1(x) = D2(x) = x, we can obtain the capital allocation principles in

Theorem 5.19.
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K = 1 K = 3
β1 β2 β3 K1 K2 K3 K1 K2 K3

1 1 1 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000
1 5 10 1.0298 0.0922 -0.1220 1.7168 0.7028 0.5804
1 1 5 0.8345 0.8345 -0.6690 1.3120 1.3120 0.3760
1 1 10 0,9367 0.9367 -0.8734 1.3467 1.3467 0.3066
1 5 5 0.9868 0.0066 0.0066 1.6688 0.6656 0.6656
1 10 10 1.0423 -0.0212 -0.0212 1.7675 0.6163 0.6163
5 5 10 0.3652 0.3652 0.2697 1.0500 1.0500 0.9000
5 10 10 0.3989 0.3005 0.3005 1.1028 0.9486 0.9486

Table 5.2: Example 5.1-2

Theorem 5.19. (Identic Capital Allocation) For Capital Allocation Problem II

with E[|ξj|] <∞ and E[|ψj|] <∞, if D1(x) = D2(x) = x, then Kj, j = 1, 2, . . . , n,

the global optimal allocated capital on the jth business line, and λ, an auxiliary

real-valued variable, are the solutions to

E[ψjI{Xj≤Kj}] ≥ E[ξjI{Xj>Kj}]− λ, j = 1, 2, . . . , n,

E[ξjI{Xj≥Kj}] ≥ E[ψjI{Xj<Kj}] + λ, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.

(5.31)

This theorem can be easily proved by Theorem 5.6. The equation (5.31) in Theo-

rem 5.19 can be rewritten as
GXj ,ξj ,ψj(Kj) ≤

E[ξj]− λ
E[ξj + ψj]

≤ HXj ,ξj ,ψj(Kj), j = 1, 2, . . . , n,

n∑
j=1

Kj = K,
(5.32)

where

GXj ,ξj ,ψj(x) =
E[(ξj + ψj)I{Xj<x}]

E[ξj + ψj]

and

HXj ,ξj ,ψj(x) =
E[(ξj + ψj)I{Xj≤x}]

E[ξj + ψj]
.
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It is easy to verify thatGXj ,ξj ,ψj(x) is increasing and left-continuous, whileHXj ,ξj ,ψj(x)

is increasing and right-continuous. Moreover,

GXj ,ξj ,ψj(x) = lim
y→x−

HXj ,ξj ,ψj(y)

and

GXj ,ξj ,ψj(x) ≤ HXj ,ξj ,ψj(x).

In addition, HXj ,ξj ,ψj(x) → 1 as x → ∞ and HXj ,ξj ,ψj(x) → 0 as x → −∞ if

E[|ξj|] <∞ and E[|ψj|] <∞. Hence, HXj ,ξj ,ψj(x) is a distribution function. Let

H−1
Xj ,ξj ,ψj

(α) = inf{x ∈ R : HXj ,ξj ,ψj(x) ≥ α}, for 1 ≤ α ≤ 1

be the left-continuous inverse of HXj ,ξj ,ψj . For α = 0 and α = 1, using convention

inf ∅ = ∞, sup ∅ = −∞. For a distribution function F , we have F−1(0) = −∞

and F−1+(1) =∞. Denote

G−1+
Xj ,ξj ,ψj

(α) = sup{x ∈ R : GXj ,ξj ,ψj(x) ≤ α} for 1 ≤ α ≤ 1.

Similar to Exercise 8, page 1− 12 in Wichuta (2001), we have

G−1+
Xj ,ξj ,ψj

(α) = lim
u↘α

H−1
Xj ,ξj ,ψj

(u) = H−1
Xj ,ξj ,ψj

(α+).

Since H−1
Xj ,ξj ,ψj

is increasing, we have

H−1
Xj ,ξj ,ψj

(α+) ≥ H−1
Xj ,ξj ,ψj

(α)

or

G−1+
Xj ,ξj ,ψj

(α) ≥ H−1
Xj ,ξj ,ψj

(α).
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By the relation between (5) and (18) of Wichuta (2001), the conditions in (5.32)

are equivalent to


H−1
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

) ≤ Kj ≤ G−1+
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

), j = 1, 2, . . . , n,

n∑
j=1

Kj = K,
(5.33)

Note that for each j, it must hold that 0 ≤ E[ξj ]−λ
E[ξj+ψj ]

≤ 1. Thus,

− E[ψj] ≤ λ ≤ E[ξj], j = 1, . . . , n,

⇐⇒ max{−E[ψj]} ≤ λ ≤ min{E[ξj]},

⇐⇒ −min{E[ψj]} ≤ λ ≤ min{E[ξj]},

Let F
−1(pj)
Xj ,ξj ,ψj

(α) = pjH
−1
Xj ,ξj ,ψj

(α) + (1− pj)G−1+
Xj ,ξj ,ψj

(α), pj ∈ [0, 1]. Then, (5.33) is

reduced to 
Kj = F

−1(pj)
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

), j = 1, 2, . . . , n,

K =
n∑
j=1

Kj.
(5.34)

Hence, λ will be the solution to

n∑
j=1

F
−1(pj)
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

) = K.

In particular, if we take pj = p for j = 1, . . . , n, λ will be the solution to

n∑
j=1

F
−1(p)
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

) = K. (5.35)

Note that λ ≤ λ ≤ λ, where λ = −min{E[ψj]}, λ = min{E[ξj]}. Hence, if

K ∈ (K,K), where

K =
n∑
j=1

F
−1(p)
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

) = −∞
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since some E[ξj] = λ, and

K =
n∑
j=1

F
−1(p)
Xj ,ξj ,ψj

(
E[ξj]− λ
E[ξj + ψj]

) =∞

since some −E[ψj] = λ, then the solutions to (5.35) do exist.

Remark 5.20. If ξj = ψj for j = 1, . . . , n, the optimization problem is

minK1,K2,··· ,Kn

n∑
j=1

E[ξj|Xj −Kj|] s.t.

n∑
j=1

Kj = K,

and it is solved by Theorem 4 in Dhaene et al. (2012). In fact,
∑n

j=1 νj = 1

can be removed from the model in Dhaene et al. (2012) since the conclusion still

holds without this condition. Suppose E[ξj] = E[ψj] = β in Theorem 5.19, (5.35)

is reduced to
n∑
j=1

F
−1(p)
Xj ,ξj ,ψj

(
β − λ

2β
) = K.

Let Sc be the comonotonic sum with Sc =
∑n

j=1 F
−1
Xj ,ξj ,ψj

(U), then take K =

F
−1(p)
Sc (β−λ

2β
), where F

−1(p)
Sc is the p-mixed inverse of Sc. Then, FSc(K) = β−λ

2β
.

Thus, λ = β(1− 2FSc(K)). Therefore, p is the solution to

n∑
j=1

F
−1(p)
Xj ,ξj ,ψj

(FSc(K)) = K.

Hence, Kj = F
−1(p)
Xj ,ξj ,ψj

(FSc(K)), which generalizes Theorem 4 of Dhaene et al.

(2012).

Formulas for business unit driven and aggregate portfolio driven capital allocations

can be derived by letting ξj = gj(Xj), ψj = hj(Xj), or ξj = gj(S), ψj = hj(S).

Example 5.2. If D1(x) = D2(x) = x, νj = ωj = 1, ξj = 1− e−αjXj , ψj = e−αjXj ,

Xj ∼ Exp(βj), j = 1, . . . , n. The optimal capital allocations should be the solutions

to 
e−βjKjI{Kj≥0} + I{Kj<0} =

βj
αj + βj

+ λ, j = 1, 2, . . . , n,

n∑
j=1

Kj = K.
(5.36)
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K = 1 K = 3
r1 r2 r3 K1 K2 K3 K1 K2 K3

0.200 0.500 0.500 0.6316 0.1842 0.1842 1.6118 0.6941 0.6941
0.250 0.500 0.500 0.5793 0.2104 0.2104 1.5017 0.7492 0.7492
0.333 0.500 0.500 0.4944 0.2528 0.2528 1.3243 0.8378 0.8378
0.500 0.500 0.500 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000
0.890 0.500 0.500 0.0027 0.4987 0.4987 0.4097 1.2952 1.2952
0.894 0.500 0.500 -0.0018 0.5009 0.5009 0.4047 1.2926 1.2926
0.900 0.500 0.500 -0.0217 0.5108 0.5108 0.3973 1.3014 1.3014
1.000 0.500 0.500 -0.3863 0.6931 0.6931 0.2790 1.3605 1.3605

Table 5.3: Example 5.2-1

K = 1 K = 3
β1 β2 β3 K1 K2 K3 K1 K2 K3

1 1 1 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000
1 5 10 0.9167 0.0621 0.0212 2.7409 0.1843 0.0747
1 1 5 0.4942 0.4942 0.0117 1.4437 1.4437 0.1126
1 1 10 0.5261 0.5261 -0.0522 1.4775 1.4775 0.0451
1 5 5 0.8832 0.0584 0.0584 2.6383 0.1809 0.1809
1 10 10 0.9539 0.0230 0.0230 2.8477 0.0761 0.0761
5 5 10 0.4192 0.4192 0.1616 1.3717 1.3717 0.2566
5 10 10 0.5893 0.2054 0.2054 2.4840 0.2580 0.2580

Table 5.4: Example 5.2-2

Now we suppose β1 = β2 = β3 = 1 and rj =
βj

αj+βj
, j = 1, 2, 3, the capital

allocated in this example is shown in Table 5.3. Also, we can get Table 5.4 if

α1 = α2 = α3 = 1.
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Chapter 6

Conclusion

In Chapter 2, the property of tail subadditivity was generalized from for a pair of

random variables to a distortion risk measure. Moreover, by applying the suffi-

cient conditions for a tail subadditive distortion risk measure, we proved that any

coherent risk measure can be approached by the GlueVaR risk measures, which is

expressed as the linear combinations of VaR and TVaR. As is known, for many

popularly adopted distributions, VaR and TVaR have closed-form expressions.

Hence, the value of the benchmark for loss random variables under certain coher-

ent risk measures can be approached by the corresponding combinations of the

values of VaR and TVaR for the random variables. Also, this property can be

applied to portfolio risk management; in particular, the property of tail additivity

can be satisfied under certain conditions for a flexible common tail region as illus-

trated. Finally, the tail distortion principle defined in this paper is coherent and

easy to calculate in practice.

In Chapter 3, we proposed the new risk measure of weighted quantiles with the

weighted expectiles and weighted VaRs as two special cases. In addition, we proved

that the 3-parameter expectile, as a special case of the weighted expectile, is a co-

herent risk measure when ρ is the expectation risk measure. The 3-parameter

expectile not only generalizes the expectiles, but also can be more flexibly defined

since the weight for the region where the loss random variable is greater than
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the benchmark defined by ρ can be modified. With these properties, it is more

reasonable to apply this risk measure in industry. For instance, the regulators or

insurance companies would pay more attention to the larger loss and may put a

relatively higher weight on the region where the loss random variable is greater

than a chosen benchmark. Moreover, the multi-parameter VaRs derived with the

identity functions can be lower or higher than the classical VaR, which is deter-

mined by the relationship between the q∗ and the ratios derived in Corollary 3.19

and 3.20. But the 2-paramter VaR is greater than the risk measure introduced by

Heras et al. (2012) and less than the median shortfall under the assumptions in

our numerical examples. Finally, we can see that the numerical examples clearly

illustrate the properties that the corresponding risk measures satisfy.

In Chapter 4, we derived two classes of new reinsurance premium principles that

satisfy most of the axioms for risk measures. For example, the premium principles

with quadratic functions are monotonic functions of the ceded loss functions and

weight functions. Especially, if the weight factors are constants, the premium with

quadratic functions satisfies the property of subadditivity. Additionally, we sug-

gest that the reinsurer calculate benchmarks for reinsurance premiums based on

the two thresholds for the constant weights as defined in Proposition 4.8. Also, the

reinsurance premium based on the expectiles can be no less than the new premium

with quadratic functions under the condition in Proposition 4.11. Moreover, this

inequality for the two premium principles always holds when the weight factors

are constants. With the identity functions and specially defined weight functions,

the premium principle is a mixed inverse of a distribution function at a certain

confidence level in five cases. If we further assume that the distribution function of

the ceded loss is continuous and strictly increasing, the results are reduced to two

cases. Moreover, the premium can satisfy translation invariance and monotonic-

ity under the conditions in Corollary 4.18. In this case, when the weight factors

are constants, the premium is always less than the premium calculated based on

the classical risk measure by Heilmann (1989). Hence, we can conclude that the

two classes of reinsurance premium principles determined with constant weights
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are more reasonable and competitive since they are lower, satisfy most of the ax-

ioms for risk measures, and include more of the insurer’s risks in the pricing model.

In Chapter 5, capital allocation principles for the quadratic and identity quan-

tifying functions were derived. For the model assumption, we proposed only the

capital deficit risk and the capital surplus risk. However, other potential risks can

be included in this model by supposing various frameworks of the weight functions

ξj and ψj, j = 1, . . . , n. The theories from Enterprize Risk Management (ERM)

will guide us to integrate more risks in the model, such as financial, operational

and strategic risks, if necessary. These allocation principles are also applicable to

the multivariate distributions constructed by any marginal distribution and any

dependence structure, though most of the examples are provided as “i.i.d.”. It is

a general model, so many allocation principles can be generated.
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