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Abstract 

In this thesis, a full characterization of the sum-rate capacity for degraded interference networks with 

any number of transmitters, any number of receivers, and any possible distribution of messages 

among transmitters and receivers is established. It is proved that a successive decoding scheme is 

sum-rate optimal for these networks. Moreover, it is shown that the transmission of only a certain 

subset of messages is sufficient to achieve the sum-rate capacity for such networks. Algorithms are 

presented to determine this subset of messages explicitly. The sum-rate expression for the degraded 

networks is then used to derive a unified outer bound on the sum-rate capacity of arbitrary (non-

degraded) interference networks. Several variations of degraded networks are identified for which the 

derived outer bound is sum-rate optimal. Specifically, noisy interference regimes are derived for 

certain classes of multi-user/multi-message large interference networks. Also, network scenarios are 

identified where the incorporation of both successive decoding and treating interference as noise 

achieves their sum-rate capacity.  

Next, by taking insight from the results for degraded networks, an extension to the standard cut-set 

bound for general communication networks is presented which is referred to as nested cut-set bound. 

This bound is derived by applying a series of cuts in a nested configuration to the network first and 

then bounding the information rate that flows through the cuts. The key idea for bounding step is 

indeed to impose a degraded arrangement among the receivers corresponding to the cuts. Therefore, 

the bound is in fact a generalization of the outer bound for interference networks: here cooperative 

relaying nodes are introduced into the problem as well but the proof style for the derivation of the 

outer bound remains the same. The nested cut-set bound, which uniformly holds for all general 

communication networks of arbitrary large sizes where any subset of nodes may cooperatively 

communicate to any other subset of them, is indeed tighter than the cut-set bound for networks with 

more than one receiver. Moreover, it includes the generalized cut-set bound for deterministic 

networks reported by Shomorony and Avestimehr which was originally a special case of the outer 

bound established for the interference networks by the author (2012). 

Finally, capacity bounds for the two-user interference channel with cooperative receivers via 

conferencing links of finite capacities are investigated. The capacity results known for this 

communication scenario are limited to a very few special cases of the one-sided channel. One of the 

major challenges in analyzing such cooperative networks is how to establish efficient capacity outer 



 

 iv 

bounds for them. In this thesis, by applying new techniques, novel capacity outer bounds are 

presented for the interference channels with conferencing users. Using the outer bounds, several new 

capacity results are proved for interesting channels with unidirectional cooperation in strong and 

mixed interference regimes. A fact is that the conferencing link (between receivers) may be utilized to 

provide one receiver with information about its corresponding signal or its non-corresponding signal 

(interference signal). As an interesting consequence, it is demonstrated that both strategies can be 

helpful to achieve the capacity of the channel. Lastly, for the case of Gaussian interference channel 

with conferencing receivers, it is argued that our outer bound is strictly tighter than the previous one 

derived by Wang and Tse. 
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Chapter 1 

Introduction 

Fundamental capacity limits have been widely explored for various scenarios of multi-user 

communication networks; however, our understanding regarding the nature of information flow in 

large multi-message networks is still very limited [1]. A full characterization of the capacity region 

for even most of simple network topologies, such as the two-user classical Interference Channel (IC), 

is unknown. 

A major category of communication networks in which each node is either a transmitter or a receiver 

(without any interactive/relay node) is called single-hop networks. These networks are also referred to 

as interference networks [1] because the essential feature which uniformly appears in all of them is 

the interference element. The interference networks are useful models for a broad range of practical 

communication scenarios, specifically for wireless networks. A detailed review of the existing 

literature that deals with capacity bounds for interference networks is given in [1]. Moreover, 

interesting similarities in the derivation of capacity bounds for the basic building blocks of the 

interference networks, including the Broadcast Channel (BC), the classical IC, and the Cognitive 

Radio Channel (CRC), are discussed in [1, 2] where some new capacity results are proved for the IC 

and CRC as well. 

In this thesis, in Chapter 2, we study the behavior of information flow in degraded interference 

networks. Two types of degradedness are commonly recognized: the physical and the stochastical 

degradedness. The physically degraded interference networks are those for which the receivers can be 

arranged in a successive order from stronger to weaker such that the signal with respect to each 

receiver is statistically independent of the input signals conditioned on the signal of a stronger 

receiver. The stochastically degraded networks are those for which there exists an equivalent 

physically degraded network, where the equivalency of two networks implies that the marginal 

distributions of the transition probability function for both networks are identical. For interference 

networks, since the two equivalent networks have the same capacity region, it is not required to make 

a distinction between the two types of degradedness; hence, we generally refer to both of them as 

degraded networks.  

As a main theorem of this thesis, we provide a full characterization for the sum-rate capacity of 

degraded interference networks with any arbitrary topologies, i.e., with any number of transmitters, 
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any number of receivers, and any distribution of messages among transmitters and receivers. First, we 

establish an outer bound for the sum-rate capacity of the networks. This is indeed derived by subtle 

techniques for calculation of mutual information functions towards establishing a single-letter bound 

using the degradedness relations among the outputs. We then provide an interesting coding scheme to 

achieve this outer bound which yields the exact sum-rate capacity for the degraded networks. We 

show that for all degraded networks, a successive decoding scheme is sum-rate optimal. In this 

decoding strategy, each receiver decodes its messages as well as all the messages corresponding to 

the receivers weaker than itself in a successive order from weaker receivers to the stronger ones till its 

own messages. Moreover, we show that to achieve the sum-rate capacity for degraded networks, only 

a carefully picked subset of messages is required to be considered for the transmission scheme. To 

this end, we present an order to expand the messages of a given arbitrary network over certain 

directed graphs which we call them as plan of messages. The plan of messages clearly depicts both 

the multiple access and broadcast natures included in a given interference network. These graphical 

tools indeed play a central role in describing the behavior of information flow in large multi-message 

networks as discussed in details in [3, 4]. Using the plan of messages, we explicitly determine those 

messages which are required to be considered for the transmission scheme to achieve the sum-rate 

capacity for degraded networks. Also, we provide examples to clarify our results. 

In Chapter 3, we next make use of the sum-rate capacity result for the degraded networks to establish 

a unified outer bound on the sum-rate capacity of general non-degraded interference networks. The 

idea is to enhance a non-degraded network with artificial outputs to obtain a degraded network whose 

capacity region includes that of the original network as a subset. Therefore, the sum-rate capacity of 

the artificial degraded network would be an outer bound on the sum-rate capacity of the original non-

degraded network as well. By using of the derived outer bound, we obtain the sum-rate capacity for 

several variations of degraded networks. Specifically, we introduce new network scenarios such as 

Generalized Z-Interference Networks and Many-to-One Interference Networks and identify noisy 

interference regimes for them. In this regime, treating interference as noise is sum-rate optimal. Also, 

for the first time, we identify network topologies where the incorporation of both successive decoding 

and treating interference as noise schemes achieves their sum-rate capacity. 

To shed light on the importance of our capacity results for general degraded networks, we need to 

emphasis that even for the very special case of multi-user interference channel, the sum-rate capacity 

of the discrete degraded channel was already unknown (though for the Gaussian case, it is derived in 
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[5] by a rather complicated approach). In fact, available capacity results for interference networks 

with more than two users, in particular the multi-user IC, are very limited [1]. The majority of 

research on these networks has been devoted to study the degrees of freedom region by interference 

alignment techniques [6, 7]. In general, our results provide a deep understanding regarding the nature 

of information flow in general single-hop communication networks, specifically, those with degraded 

structures. These results are also very important from the viewpoint of practical applications because 

they do not depend on the network topology and one can apply them to a broad range of practical 

communication systems. Such general results are indeed rare in network information theory [1, 8].  

As a second major contribution of this thesis, by taking insight from the results for degraded 

networks, in Chapter 5, we present an extension to the standard cut-set bound [8] for general 

communication networks which we refer to as nested cut-set bound. This bound is derived by 

applying a series of cuts in a nested configuration to the network first and then bounding the 

information rate that flows through the cuts. The key idea for bounding step is indeed to impose a 

degraded arrangement among the receivers corresponding to the cuts. This idea enables us to employ 

the proof technique of the outer bound for degraded networks to establish a general outer bound on 

the capacity region of all communication networks. Therefore, the bound is in fact a generalization of 

our outer bound for interference networks: here cooperative relaying nodes are introduced into the 

problem as well but the proof style for the derivation of the outer bound remains the same. The nested 

cut-set bound, which uniformly holds for all general communication networks of arbitrary large sizes 

where any subset of nodes may cooperatively communicate to any other subset of them, is indeed 

tighter than the cut-set bound for networks with more than one receiver. Moreover, it includes the 

generalized cut-set bound for deterministic networks reported by Shomorony & Avestimehr [9] which 

was originally a special case of the outer bound established for the interference networks by the first 

author [10, 11]. We finally illustrate the efficiency of the nested cut-set bound by some examples 

including the well-known interference-relay channel. 

Finally, in Chapter 6, we study capacity bounds for the two-user IC with cooperative receivers. The 

feasibility of cooperation among different users that allows them to exchange information is an 

important feature of many practical wireless systems. User cooperation has been shown to be a 

crucial way of improving performance of communication networks [12]. Specifically, it is an 

effective way to mitigate the interference in networks [13].  
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One of significant ways to set up cooperation among transmitters/receivers in a communication 

network is the use of conferencing links of finite capacities. In particular, modern cellular systems 

typically rely on some high capacity direct links between base-stations. Such configurations fall under 

the umbrella of channels with conferencing transmitters and/or conferencing receivers. Cooperation 

via conferencing links was first studied by Willems [14] for a Multiple Access Channel (MAC). 

Willems characterized the capacity region of the two-user MAC with conferencing transmitters. In 

the past decade, various communication scenarios with conferencing transmitters/receivers have been 

studied in network information theory [15-26]. In this thesis, we consider the two-user IC with 

conferencing receivers. This means, two clients, forming a two-user IC, send data to their respective 

base-stations, and the two base-stations are connected through links of given capacities. This scenario 

has been previously considered in several papers. Specifically, the capacity region of the Gaussian IC 

with conferencing receivers was established in [20] to within a constant gap. Other works in this 

regard include [21-26]. Despite considerable work on the cooperative interference channels with 

conferencing links, up to our knowledge, the available capacity results are limited to a very few 

special cases of the one-sided IC with unidirectional conferencing between receivers [25, 26]. In fact, 

the capacity of the two-user fully-connected IC with conferencing users was not previously known 

even for any of the special cases where the capacity is known for the IC without cooperation, for 

example, the strong interference channel [27]. 

Indeed, a major challenge to analyze cooperative networks in general and the IC with conferencing 

users in specific is how to establish efficient capacity outer bounds. In literature, generally there exist 

three types of outer bounds for cooperative interference networks: cut-set bounds, Sato type outer 

bounds [28, 29], and genie-aided outer bounds [19, 20]. The cut-set bounds and Sato type outer 

bounds are usually insufficient to derive capacity results or even to establish capacity to within a 

constant gap (for Gaussian channels). The outer bounds derived by genie-aided techniques, similar to 

[19, 20], are useful to establish constant-gap results for Gaussian channels; however, they are still 

insufficient to derive exact capacity results. In this thesis, we present a novel outer bound for the two-

user IC with conferencing receivers. The derivation of our outer bound is indeed involved in subtle 

applications of the Csiszar-Korner identity [30] for manipulating multi-letter mutual information 

functions to establish consistent and well-formed single-letter constraints on the communication rates. 

In fact, we derive our bound by extending the constraints of the outer bound established in [2] for the 

IC without cooperation (which was shown to be useful to derive several capacity results) to the 

conferencing settings as well as presenting constraints with new structures. Using our outer bound, 
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we prove several new capacity results for the two-user (fully-connected) IC with conferencing users 

for both discrete and Gaussian cases. In particular, we derive four capacity results for interesting 

channels with unidirectional cooperation in mixed and strong interference regimes. It is a fact that a 

conferencing link (between receivers) may be utilized to provide one receiver with information about 

its corresponding signal or its non-corresponding signal (interference). As a remarkable consequence, 

we demonstrate that both strategies can be helpful to achieve capacity for the IC with conferencing 

receivers.  

Lastly, for the case of Gaussian IC, we show that the derived outer bound can be made tighter by 

introducing additional constraints which are derived by applying genie-aided techniques as well. As a 

result, we obtain a new outer bound for the Gaussian IC with conferencing receivers, which can be 

mathematically shown that is strictly tighter than the previous one obtained by Wang and Tse [20]. 

The results are illustrated by simulations. 
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Chapter 2 

Preliminaries and Definitions  

Throughout this thesis, we use the following notations: Random Variables (RVs) are denoted by 

upper case letters (e.g. 𝑋) and lower case letters are used to show their realization (e.g. 𝑥). The range 

set of 𝑋 is represented by 𝒳. The Probability Distribution Function (PDF) of 𝑋 is denoted by 𝑃𝑋(𝑥), 

and the conditional PDF of 𝑋 given 𝑌 is denoted by 𝑃𝑋|𝑌(𝑥|𝑦); also, when representing PDFs, the 

arguments are sometimes omitted for brevity. The probability of the event 𝐴 is expressed by 𝑃𝑟(𝐴). 

The notations 𝔼[. ], |. |, ‖. ‖ stand for the expectation operator, absolute value, and cardinality, 

respectively. The set of nonnegative real numbers is denoted by ℝ+. The notation [1: 𝐾], where 𝐾 is a 

positive integer, represents the set {1,… , 𝐾}. The function 𝜓(𝑥) is defined as: 𝜓(𝑥) ≡
1

2
log(1 + 𝑥), 

for 𝑥 ∈ ℝ+. 

Definition: Let 𝐴 = {𝐴1, … , 𝐴𝐾} be an arbitrary indexed set with 𝐾 elements, where 𝐾 ∈ ℕ. Let 𝛺 be 

an arbitrary subset of 𝐴, i.e., 𝛺 ⊆ 𝐴. The identification of the set 𝛺, denoted by 𝑖𝑑𝛺, is defined as 

follows: 

𝑖𝑑𝛺 ≜ {𝑙 ∈ [1: 𝐾] ∶  𝐴𝑙 ∈ 𝛺} 

(1) 

2.1 General Communication Networks 

A general discrete memoryless communication network with 𝑁 communicating nodes denoted by 

{𝒳1, … ,𝒳𝑁, 𝒴1, … , 𝒴𝑁, ℙ𝑌1…𝑌𝑁|𝑋1…𝑋𝑁} is a network which is organized by 𝑁 input-output 

(transmitter-receiver) alphabet pairs {𝒳𝑖, 𝒴𝑖}𝑖=1
𝑛  and a transition probability function 

ℙ𝑌1…𝑌𝑁|𝑋1…𝑋𝑁(𝑦1, … , 𝑦𝑁|𝑥1, … , 𝑥𝑁) that describes the relation between the inputs and outputs of the 

network. Thus, each input-output alphabet pair is corresponding to a specific communicating node as 

shown in Fig. 1.  

Encoding and decoding scheme: For the general communication network of Fig. 1, a length-𝑛 code 

ℭ𝑛(𝑅1, … , 𝑅𝐾) is defined as follows: Let ℳ𝑙 = [1: 2
𝑛𝑅𝑙] for 𝑙 = 1,… , 𝐾. Consider the independent 

random variables 𝑀1, … ,𝑀𝐾 with the range sets ℳ1, … ,ℳ𝐾, respectively. The messages 𝑀1, … ,𝑀𝐾 

are intended to be communicated over the network. Let 𝔐 ≜ {ℳ1, … ,ℳ𝐾} and 𝕄 ≜ {𝑀1, … ,𝑀𝐾}. 

Also, let ℳ𝑋1 , … ,ℳ𝑋𝑁  and ℳ𝑌1 , … ,ℳ𝑌𝑁  be nonempty arbitrary subsets of 𝔐 such that: 
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                                                                            𝒳𝑖: 𝒴𝑖           …                  

                                                                                                              

 

 

             𝒳1: 𝒴1                                                                                                              𝒳𝑁:𝒴𝑁 

                                                                                                                                    

 

 

                                                                                                 … 

𝒳𝑗: 𝒴𝑗 

Figure 1.  General Communication Netwrok. 

⋃ ℳ𝑋𝑖

𝑖∈[1:𝑁]

= ⋃ ℳ𝑌𝑖

𝑖∈[1:𝑁]

= 𝔐, ℳ𝑋𝑖⋂ℳ𝑌𝑖 = ∅, 𝑖 = 1,… ,𝑁 

(2) 

Define: 

{
𝕄𝑋𝑖 ≜ {𝑀𝑙 ∶  𝑙 ∈ 𝑖𝑑ℳ𝑋𝑖

} , 𝑖 ∈ [1:𝑁]

𝕄𝑌𝑖 ≜ {𝑀𝑙 ∶  𝑙 ∈ 𝑖𝑑ℳ𝑌𝑖
} , 𝑖 ∈ [1: 𝑁]

 

 (3) 

The 𝑖𝑡ℎ node, 𝑖 ∈ [1:𝑁], is designed to encode the messages 𝕄𝑋𝑖 and transmit them over the network 

as well as to decode the messages 𝕄𝑌𝑖. To this end, the 𝑖𝑡ℎ node is associated with a set of encoding 

functions {𝔈𝑖,𝑡}𝑡=1
𝑛

 and a decoder function 𝔇𝑖, which operate as follows: 

𝔈𝑖,𝑡:ℳ𝑋𝑖 × 𝒴𝑖
𝑡−1 → 𝒳𝑖   ⟹     𝑋𝑖,𝑡 = 𝔈𝑖,𝑡(𝕄𝑋𝑖 , 𝑌𝑖

𝑡−1) 

𝔇𝑖:ℳ𝑋𝑖 × 𝑌𝑖
𝑛 →ℳ𝑌𝑗    ⟹       �̂�𝑌𝑖 = 𝔇𝑖(𝕄𝑋𝑖 , 𝑌𝑖

𝑛)  

(4) 

 

 

 

ℙ𝑌1…𝑌𝑁|𝑋1…𝑋𝑁(𝑦1, … , 𝑦𝑁|𝑥1, … , 𝑥𝑁) 
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The rate of the code is the 𝐾-tuple (𝑅1, … , 𝑅𝐾). Also, the average probability of decoding, denoted by 

𝑃𝑒
ℭ𝑛, is given below: 

𝑃𝑒
ℭ𝑛 ≜ 𝑃𝑟( ⋃ {𝔇𝑖(𝕄𝑋𝑖 , 𝑌𝑖

𝑛) ≠ 𝕄𝑌𝑖}

𝑖∈[1:𝑁]

) 

We need to indicate that the above scenario indeed represents a general communication network in 

which any subset of nodes may cooperatively send a message to any other subset of them. It is 

assumed that the network is memoryless, i.e., 

𝑃(𝑥1
𝑛, … , 𝑥𝑁

𝑛 , 𝑦1
𝑛, … , 𝑦𝑁

𝑛|𝑚1, … ,𝑚𝐾) 

=∏∏𝑃(𝑥𝑖,𝑡|𝑚1, … ,𝑚𝐾 , 𝑦𝑖
𝑡−1)

𝑁

𝑖=1

ℙ𝑌1…𝑌𝑁|𝑋1…𝑋𝑁(𝑦1,𝑡 , … , 𝑦𝑁,𝑡|𝑥1,𝑡, … , 𝑥𝑁,𝑡)

𝑛

𝑡=1

 

(5) 

A general Gaussian communication network with real-valued input and output signals is also 

formulated as follows: 

[
𝑌1
⋮
𝑌𝑁

] = [

𝑎11 ⋯ 𝑎1𝑁
⋮ ⋱ ⋮
𝑎𝑁1 ⋯ 𝑎𝑁𝑁

] [
𝑋1
⋮
𝑋𝑁

] + [
𝑍1
⋮
𝑍𝑁

] 

(6) 

where the parameters {𝑎𝑖𝑗}𝑖,𝑗=1,...,𝑁 are (fixed) real-valued numbers, the RVs {𝑋𝑖}𝑖=1,…,𝑁 and 

{𝑌𝑖}𝑖=1,…,𝑁 are input and output symbols, respectively, and the terms {𝑍𝑖}𝑖=1,…,𝑁 are zero-mean unit-

variance Gaussian noises. The 𝑖𝑡ℎ encoder is subject to an average power constraint as: 𝔼[𝑋𝑖
2] ≤ 𝑃𝑖, 

where 𝑃𝑖 ∈ ℝ+, 𝑖 = 1,… ,𝑁. 

Definition: A 𝐾-tuple rate (𝑅1, … , 𝑅𝐾) ∈ ℝ+
𝐾 is said to be achievable for the general communication 

network in Fig. 1 if for every 𝜖 > 0 and for all sufficiently large 𝑛, there exists a length-𝑛 code 

ℭ𝑛(𝑅1, … , 𝑅𝐾) such that 𝑃𝑒
ℭ𝑛 < 𝜖.  

Definition: The capacity region of the general communication network in Fig. 1, denoted by 𝒞𝐺𝐼𝑁, is 

the closure of the set of all achievable 𝐾-tuple (𝑅1, … , 𝑅𝐾). 
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2.2 General Interference Networks 

A part of the results of this thesis is specifically regarded to general single-hop communication 

networks in which every node is either a transmitter or a receiver and there is no relaying or active 

node. We generally refer to these networks as interference networks as the key feature of all of them 

is the interference element. Figure 2 depicts a general interference network composed of 𝐾1 

transmitters and 𝐾2 receivers. 

 

 

            𝕄𝑋1                                𝑋1                                                        𝑌1                                �̂�𝑌1 

            𝕄𝑋2                                𝑋2                                                        𝑌2                                �̂�𝑌2 

 

 

          𝕄𝑋𝐾1
                               𝑋𝐾1                                                      𝑌𝐾2                               �̂�𝑌𝐾2

 

 

Figure 2.  General Interference Netwrok. 

The general interference network of Fig. 2 can be derived as a special case of the general 

communication network (given in Fig. 1) by setting 𝑁 = 𝐾1 + 𝐾2, 𝑌1 ≡ 𝑌2 ≡ ⋯ ≡ 𝑌𝐾1 = ∅,

𝑋𝐾1+1 ≡ 𝑋𝐾1+2 ≡ ⋯ ≡ 𝑋𝐾1+𝐾2 ≡ ∅, and then renaming the output signals 𝑌𝐾1+1, 𝑌𝐾1+2, … , 𝑌𝐾1+𝐾2 by 

𝑌1, 𝑌2, … , 𝑌𝐾2, respectively1. The network transition probability function 

ℙ𝑌1…𝑌𝐾2|𝑋1…𝑋𝐾1
(𝑦1, … , 𝑦𝐾2|𝑥1, … , 𝑥𝐾1) describes the relation between the inputs and the outputs. 

In particular, some of the results of the thesis are for interference networks with outputs that are 

statistically unrelated to some input signals. Clearly, for any interference network, connected and 

unconnected transmitters with respect to a given receiver are defined based on the marginal 

distributions of the network transition function as follows. 

                                                      
1 Renaming the outputs 𝑌𝐾1+1, 𝑌𝐾1+2, … , 𝑌𝐾1+𝐾2  by 𝑌1, 𝑌2, … , 𝑌𝐾2, respectively, is for notation convenience only.  

 

ℙ𝑌1…𝑌𝐾2|𝑋1…𝑋𝐾1
 

𝕄 

⇓ 

⋃𝕄𝑋𝑖

𝐾1

𝑖=1

=⋃𝕄𝑌𝑗

𝐾2

𝑗=1

 

ENC-1 

ENC-2 

ENC-𝐾1 

DEC-1 

DEC-2 

DEC-𝐾2 
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Definition: Consider the general interference network in Fig. 1 with the marginal PDFs 

ℙ𝑌1|𝑋1…𝑋𝐾1
, … , ℙ𝑌𝐾2|𝑋1…𝑋𝐾1

. For the 𝑗𝑡ℎ receiver, 𝑗 = 1,… , 𝐾2, assume that ℙ𝑌𝑗|𝑋1…𝑋𝐾1
 is as follows: 

ℙ𝑌𝑗|𝑋1…𝑋𝐾1
≡ ℙ

𝑌𝑗|𝕏𝑐→𝑌𝑗
 

(7) 

where 𝕏𝑐→𝑌𝑗 is a specific subset of {𝑋1, … , 𝑋𝐾1}. In other words, the following Markov chain holds: 

𝕏𝑐↛𝑌𝑗 → 𝕏𝑐→𝑌𝑗 → 𝑌𝑗 

(8) 

where  𝕏𝑐↛𝑌𝑗 ≜ {𝑋1, … , 𝑋𝐾1} − 𝕏𝑐→𝑌𝑗. In this case, the connected transmitters of the receiver 𝑌𝑗 are 

𝕏𝑐→𝑌𝑗 and its unconnected transmitters are 𝕏𝑐↛𝑌𝑗 , 𝑗 = 1,… , 𝐾2. 

2.3 Two-User Interference Channels with Conferencing Receivers 

The two-user IC (as a special case of the general interference network shown in Fig. 2) is a 

communication scenario where two transmitters send independent messages to their corresponding 

users via a common media. The channel is given by the input signals 𝑋1 ∈ 𝒳1 and 𝑋2 ∈ 𝒳2, the 

outputs 𝑌1 ∈ 𝒴1 and 𝑌2 ∈ 𝒴2, and the transition probability function ℙ(𝑦1, 𝑦2|𝑥1, 𝑥2). The Gaussian 

channel is given in the following standard form: 

𝑌1 = 𝑎11𝑋1 + 𝑎12𝑋2 + 𝑍1 

𝑌2 = 𝑎21𝑋1 + 𝑎22𝑋2 + 𝑍2 

(9) 

where 𝑍1 and 𝑍2 are zero-mean unit-variance Gaussian RVs and 𝔼[𝑋𝑖
2] ≤ 𝑃𝑖 , 𝑖 = 1,2. For the two-

user Gaussian IC (9), the following notations are common in literature.  

SNR1 ∶= |𝑎11|
2𝑃1, SNR2 ∶= |𝑎22|

2𝑃2, INR1 ∶= |𝑎12|
2𝑃2, INR2 ∶= |𝑎21|

2𝑃1 

(10) 

where SNR stands for singal to noise ratio and INR stands for interference to noise ratio.  

Conferencing Decoders: The two-user IC with conferencing decoders is depicted in Fig. 3. For this 

channel, a length-𝑛 code with 𝐿𝑑 conferencing rounds, denoted by ℂ𝑛(𝐿𝑑 , 𝑅1, 𝑅2, 𝐷12, 𝐷21), is 

described as follows. 
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                      𝑀1                            𝑋1                                                  𝑌1                       �̂�1 

                                                                                                                   𝐷12      𝐷21 

                      𝑀2                            𝑋2                                                  𝑌2                       �̂�2 

 

Figure 3.  Two-User Interference Channel with Conferencing Decoders. 

The message 𝑀𝑖, which is uniformly distributed over the set ℳ𝑖 = [1: 2
𝑛𝑅𝑖], is transmitted by the 𝑖𝑡ℎ 

transmitter and decoded by the 𝑖𝑡ℎ receiver, 𝑖 = 1,2. The code includes two encoder functions as: 

𝛻𝑖:ℳ𝑖 → 𝒳𝑖
𝑛, 𝑋𝑛 = 𝛻𝑖(𝑀𝑖), 𝑖 ∈ {1,2} 

Each transmitter encodes its message by the respective encoding function and sends the generated 

codeword over the channel. The receiver 𝑌𝑖 receives a sequence 𝑌𝑖
𝑛 ∈ 𝒴𝑖

𝑛. Before decoding process, 

the decoders hold a conference. The code consists of two sets of conferencing functions {𝜗12,𝑙}𝑙=1
𝐿𝑑

 

and {𝜗21,𝑙}𝑙=1
𝐿𝑑

 with the corresponding output alphabets {𝒱12,𝑙}𝑙=1
𝐿𝑑

 and {𝒱21,𝑙}𝑙=1
𝐿𝑑

, respectively, which 

are described below. 

𝜗12,𝑙 ∶  𝒴1
𝑛 × 𝒱21,1 ×…×𝒱21,𝑙−1 → 𝒱12,𝑙 ,   

𝑉12,𝑙 = 𝜗12,𝑙(𝑌1
𝑛, 𝑉21

𝑙−1), 

𝜗21,𝑙 ∶  𝒴2
𝑛 × 𝒱12,1 ×…×𝒱12,𝑙−1 → 𝒱21,𝑙 ,   

𝑉21,𝑙 = 𝜗21,𝑙(𝑌2
𝑛, 𝑉12

𝑙−1) 

The conference is said to be (𝐷12, 𝐷21)-permisible if 

∑log‖𝒱12,𝑙‖

𝐿𝑑

𝑙=1

≤ 𝑛𝐷12, ∑ log‖𝒱21,𝑙‖

𝐿𝑑

𝑙=1

≤ 𝑛𝐷21 

(11) 

The receivers exchange information by holding a (𝐷12, 𝐷21)-permisible conference. After the 

conference, the first receiver knows the sequence 𝑉21
𝐿𝑑 = (𝑉21,1, 𝑉21,2, … , 𝑉21,𝐿𝑑)  and the second 

 

 

ℙ(𝑦1, 𝑦2|𝑥1, 𝑥2) 

DEC-1 

 

ENC-1 

ENC-2 DEC-2 
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receiver knows the sequence 𝑉12
𝐿𝑑 = (𝑉12,1, … , 𝑉12,𝐿𝑑). The code also includes two decoder functions 

as follows: 

∆1:  𝒴1
𝑛 × 𝒱21

𝐿𝑑 →ℳ1, �̂�1 = ∆1(𝑌1
𝑛 × 𝑉21

𝐿𝑑) 

∆2:  𝒴2
𝑛 × 𝒱12

𝐿𝑑 →ℳ2, �̂�2 = ∆2(𝑌2
𝑛 × 𝑉12

𝐿𝑑) 

Thus, each decoder decodes its message by the respective decoder function.  

Lastly, the capacity region for the two-user IC with conferencing decoders is defined similar to that of 

general communication networks. 
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Chapter 3 

Degraded Interference Networks: Explicit Sum-Rate Capacity2 

In this chapter, we derive a fundamental result regarding the nature of information flow in arbitrary 

degraded interference networks. Clearly, we establish the sum-rate capacity for any degraded 

interference network with arbitrary number of transmitters, arbitrary number of receivers, and 

arbitrary distribution of messages among the transmitters and the receivers for both discrete and 

Gaussian networks. In other words, the only constraint which we impose on the underlying network is 

the degradedness. Let us first present a mathematical definition of degraded networks. 

Definition: Degraded Interference Networks 

The 𝐾1-transmitter/𝐾2-receiver interference network shown in Fig. 2 is said to be physically 

degraded if there exists a permutation 𝜆(. ) of the element of the set [1: 𝐾2] with: 

ℙ𝑌1…𝑌𝐾2|𝑋1…𝑋𝐾1
(𝑦1, … , 𝑦𝐾2|𝑥1, … , 𝑥𝐾1) 

= ℙ𝑌𝜆(1)|𝑋1…𝑋𝐾1
(𝑦𝜆(1)|𝑥1, … , 𝑥𝐾1)ℙ𝑌𝜆(2)|𝑌𝜆(1)(𝑦𝜆(2)|𝑦𝜆(1))…ℙ𝑌𝜆(𝐾2)|𝑌𝜆(𝐾2−1)

(𝑦𝜆(𝐾2)|𝑦𝜆(𝐾2−1)) 

(12) 

Equivalently, 𝑋1, … , 𝑋𝐾1 → 𝑌𝜆(1) → ⋯ → 𝑌𝜆(𝐾2−1) → 𝑌𝜆(𝐾2) forms a Markov chain. In this thesis, 

without loss of generality, we consider the case of 𝜆(𝑗) ≡ 𝑗, for 𝑗 ∈ [1:𝐾2]. 

A strictly larger class of interference networks, which behave essentially similar to the physically 

degraded ones, is the stochastically degraded networks as given below. 

Definition: The 𝐾1-transmitter/𝐾2-receiver interference network shown in Fig. 2 is said to be 

stochastically degraded if there exists a permutation 𝜆(. ) of the element of the set [1: 𝐾2] and some 

transition probability functions ℙ̃𝑌𝜆(2)|𝑌𝜆(1)(𝑦𝜆(2)|𝑦𝜆(1)), … , ℙ̃𝑌𝜆(𝐾2)|𝑌𝜆(𝐾2−1)
(𝑦𝜆(𝐾2)|𝑦𝜆(𝐾2−1)) such 

that: 

ℙ𝑌𝑗|𝑋1…𝑋𝐾1
(𝑦𝑗|𝑥1, … , 𝑥𝐾1) = 

                                                      
2 The content of this chapter was partially presented in IEEE ISIT 2014 [11]. 
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∑ ℙ𝑌𝜆(1)|𝑋1…𝑋𝐾1
(𝑦𝜆(1)|𝑥1, … , 𝑥𝐾1)ℙ̃𝑌𝜆(2)|𝑌𝜆(1)(𝑦𝜆(2)|𝑦𝜆(1)) × …

𝑦𝜆(1),…,𝑦𝜆(𝑗−1)

× ℙ̃𝑌𝜆(𝑗)|𝑌𝜆(𝑗−1)(𝑦𝜆(𝑗)|𝑦𝜆(𝑗−1)) , 𝑗 = 2,… , 𝐾2 

(13) 

It is known that the capacity region of all interference networks depends only on the marginal 

distributions of the network transition probability function. Therefore, no distinction is required to be 

made between stochastically and physically degradedness, and hereafter, we refer to both as the 

degraded interference networks. 

The degraded Gaussian interference networks are also characterized in the following lemma. 

Lemma 3.1: The general Gaussian interference network is stochastically degraded provided that the 

network gain matrix [𝑎𝑗𝑖]𝐾2×𝐾1
 is of rank one. 

To see a proof of the above lemma, the reader may refer to [10].   

Now we are at the point to present our main theorem for degraded interference networks.  

Theorem 3.1: Consider the 𝐾1-Transmitter/𝐾2-Receiver degraded interference network in (12) with 

the message sets 𝕄,𝕄𝑋𝑖 , 𝑖 = 1,… , 𝐾1, and 𝕄𝑌𝑗 , 𝑗 = 1,… , 𝐾2. The sum-rate capacity, denoted by 

𝒞𝑠𝑢𝑚
𝑑𝑒𝑔

, is given as follows: 

𝒞𝑠𝑢𝑚
𝑑𝑒𝑔

= 𝑚𝑎𝑥
𝒫𝑠𝑢𝑚
𝑑𝑒𝑔

(𝐼 (𝕄𝑌1; 𝑌1|𝕄𝑌2 , … ,𝕄𝑌𝐾2−1
,𝕄𝑌𝐾2

, 𝑄) + ⋯+ 𝐼 (𝕄𝑌𝐾2−1
; 𝑌𝐾2−1|𝕄𝑌𝐾2

, 𝑄)

+ 𝐼 (𝕄𝑌𝐾2
; 𝑌𝐾2|𝑄)) 

(14) 

where 𝒫𝑠𝑢𝑚
𝑑𝑒𝑔

 denotes the set of all joint PDFs 𝑃𝑄𝑀1…𝑀𝐾𝑋1…𝑋𝐾1
(𝑞,𝑚1, … ,𝑚2, 𝑥1, … , 𝑥𝐾1) satisfying: 

𝑃𝑄𝑀1…𝑀𝐾𝑋1…𝑋𝐾1
= 𝑃𝑄𝑃𝑀1 …𝑃𝑀𝐾𝑃𝑋1|𝕄𝑋1

,𝑄…𝑃𝑋𝐾1|𝕄𝑋𝐾1
,𝑄

 

(15) 

Also, the PDFs 𝑃𝑀𝑙
, 𝑙 = 1,… , 𝐾, are uniformly distributed, and 𝑃𝑋𝑖|𝕄𝑋𝑖

𝑄 ∈ {0,1} for 𝑖 = 1,… , 𝐾1, i.e., 

𝑋𝑖 is a deterministic function of (𝕄𝑋𝑖 , 𝑄). 
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Before presenting the proof of Theorem 3.1, first note that the sum-rate capacity expression (14) is 

characterized by the following parameters: 

1. The RVs representing the receivers signals, i.e., 𝑌𝑗 , 𝑗 = 1,… , 𝐾2. 

2. The auxiliary RVs representing the messages 𝕄 ≜ {𝑀1, … ,𝑀𝐾}. 

3. The parameter 𝑄 which is the time-sharing RV. 

In general, the auxiliaries 𝑀1, … ,𝑀𝐾 are essential for representing the sum-rate capacity of degraded 

networks, however, for many networks, the sum-rate capacity expression (14) can be considerably 

simplified. We will later discuss this issue in details.   

Proof of Theorem 3.1) The achievability of (14) in fact can be derived based on a simple coding 

scheme. The essence of this coding scheme, which is a successive decoding algorithm, indeed can be 

perceived by the structure of the expression (14). Clearly, consider the following random coding of 

length 𝑛.  

For encoding, all of the messages are encoded separately using independent codewords. Typically, 

any message 𝑀𝑘 ∈ 𝕄 is encoded using a codeword 𝑀𝑘
𝑛 generated i.i.d. based on 𝑃𝑀𝑘

(𝑚𝑘). Also, a 

time-sharing codeword 𝑄𝑛 is generated independently based on 𝑃𝑄(𝑞) and is revealed to all parties. 

Then, each transmitter 𝑋𝑖 ∈ {𝑋1, … , 𝑋𝐾1} generates its codeword 𝑋𝑖
𝑛 as 𝑋𝑖

𝑛 = 𝑓𝑖({(𝑀𝑘)
𝑛 ∶ 𝑀𝑘 ∈

𝕄𝑋𝑖}, 𝑄
𝑛), where 𝑓𝑖(. ) is an arbitrary deterministic function, and transmits it. At the receivers, the 

respective codewords are decoded successively. At the weakest receiver 𝑌𝐾2, the codewords {(𝑀𝑘)
𝑛 ∶

𝑀𝑘 ∈ 𝕄𝑌𝐾2
} are successively decoded (in any arbitrary order). The partial sum-rate due to this step 

is: 

𝐼 (𝕄𝑌𝐾2
; 𝑌𝐾2|𝑄) 

At the receiver 𝑌𝐾2−1, the codewords {(𝑀𝑘)
𝑛 ∶ 𝑀𝑘 ∈ 𝕄𝑌𝐾2

} are successively decoded first similar to 

the receiver 𝑌𝐾2; this step does not introduce any new rate cost because 𝑌𝐾2 is a degraded version of 

𝑌𝐾2−1. Then, the codewords {(𝑀𝑘)
𝑛 ∶ 𝑀𝑘 ∈ 𝕄𝑌𝐾2−1

−𝕄𝑌𝐾2
} are decoded again successively. The 

partial sum-rate due to this step would be the following: 

𝐼 (𝕄𝑌𝐾2−1
; 𝑌𝐾2−1|𝕄𝑌𝐾2

, 𝑄) 
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This process is followed at the other receivers step by step from the weaker receivers towards the 

stronger ones. One can easily check that by this scheme the sum-rate (14) is achieved. 

Next we present the converse proof. The derivation of the bound (14) indeed requires subtle 

calculations as given in the following. Also, we need to emphasis that, in Chapter 4, we make use of a 

similar proof style to derive the nested cut-set bound for general communication networks. Consider a 

code of length 𝑛 with the communication rates 𝑅1, … , 𝑅𝐾 for the messages 𝑀1, … ,𝑀𝐾, respectively. 

Assume that the code has vanishing average error probability. Define the sets ℒ𝑗, 𝑗 = 1,… , 𝐾2, as 

follows: 

ℒ𝑗 ≜ 𝕄𝑌𝑗 − (𝕄𝑌𝑗+1⋃…⋃𝕄𝑌𝐾2
) , 𝑗 = 1,… , 𝐾2 

(16) 

where 𝕄𝑌𝐾2+1
≜ ∅. Let recall that in the following analysis, for a given subset of messages 𝛺, the 

notation 𝑖𝑑𝛺 denotes the identification of the set 𝛺, as defined in (1). Now using Fano’s inequality, 

we can write: 

∑ 𝑅𝑙
𝑙∈𝑖𝑑ℒ𝐾2

≤
1

𝑛
𝐼(ℒ𝐾2 ; 𝑌𝐾2

𝑛 ) + 𝜖𝐾2,𝑛 

                  =
1

𝑛
∑𝐼(ℒ𝐾2; 𝑌𝐾2,𝑡|𝑌𝐾2

𝑡−1)

𝑛

𝑡=1

+ 𝜖𝐾2,𝑛 

                  ≤
1

𝑛
∑𝐼(ℒ𝐾2 , 𝑌𝐾2

𝑡−1; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+ 𝜖𝐾2,𝑛 

                 =
(𝑎) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+ 𝜖𝐾2,𝑛 

(17) 

where 𝜖𝐾2,𝑛 → 0 as 𝑛 → ∞, and equality (a) holds because ℒ𝐾2 = 𝕄𝑌𝐾2
. Also, we have: 

∑ 𝑅𝑙
𝑙∈𝑖𝑑ℒ𝐾2−1

≤
1

𝑛
𝐼(ℒ𝐾2−1; 𝑌𝐾2−1

𝑛 ) + 𝜖𝐾2−1,𝑛 

                     ≤
1

𝑛
𝐼 (ℒ𝐾2−1; 𝑌𝐾2−1

𝑛 , 𝑌𝐾2
𝑛 ,𝕄𝑌𝐾2

) + 𝜖𝐾2−1,𝑛 



 

 17 

                     =
(𝑎) 1

𝑛
𝐼 (ℒ𝐾2−1; 𝑌𝐾2−1

𝑛 , 𝑌𝐾2
𝑛 |𝕄𝑌𝐾2

) + 𝜖𝐾2−1,𝑛 

                     =
1

𝑛
∑𝐼 (ℒ𝐾2−1; 𝑌𝐾2−1,𝑡, 𝑌𝐾2,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1)

𝑛

𝑡=1

+ 𝜖𝐾2−1,𝑛 

                     =
(𝑏) 1

𝑛
∑𝐼 (ℒ𝐾2−1; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1)

𝑛

𝑡=1

+ 𝜖𝐾2−1,𝑛 

                    ≤
1

𝑛
∑𝐼 (ℒ𝐾2−1, 𝑌𝐾2−1

𝑡−1 ; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
, 𝑌𝐾2

𝑡−1)

𝑛

𝑡=1

+ 𝜖𝐾2−1,𝑛 

                    =
(𝑐) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 ; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

+ 𝜖𝐾2−1,𝑛 

(18) 

where 𝜖𝐾2−1,𝑛 → 0 as 𝑛 → ∞;  equality (a) holds because the elements in the set ℒ𝐾2−1 are 

independent of those in 𝕄𝑌𝐾2
, equality (b) is due to degradedness property of the channel and 

equality (c) holds because (𝕄𝑌𝐾2−1
− ℒ𝐾2−1) ⊆ 𝕄𝑌𝐾2

. Similarly, one can derive: 

∑ 𝑅𝑙
𝑙∈𝑖𝑑ℒ𝑗

≤
1

𝑛
∑𝐼 (𝕄𝑌𝑗 , 𝑌𝑗

𝑡−1; 𝑌𝑗,𝑡|𝕄𝑌𝑗+1 , … ,𝕄𝑌𝐾2
, 𝑌𝑗+1

𝑡−1, … , 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

+ 𝜖𝑗,𝑛, 𝑗 = 1,… , 𝐾2 

(19) 

where 𝜖𝑗,𝑛 → 0 as 𝑛 → ∞. Define: 

𝛴𝑗 ≜
1

𝑛
∑𝐼 (𝕄𝑌𝑗 , 𝑌𝑗

𝑡−1; 𝑌𝑗,𝑡|𝕄𝑌𝑗+1 , … ,𝕄𝑌𝐾2
, 𝑌𝑗+1

𝑡−1, … , 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 

(20) 

Now we have: 

𝛴𝐾2 + 𝛴𝐾2−1 =
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 ; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 

                        =
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝑌𝐾2

𝑡−1; 𝑌𝐾2,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 ; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 



 

 18 

                        ≤
(𝑎) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝑌𝐾2

𝑡−1; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 ; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2

, 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 

                        =
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

(21) 

where inequality (a) is due to the degradedness property of the channel. Moreover, 

𝛴𝐾2 + 𝛴𝐾2−1 + 𝛴𝐾2−2 

       ≤
(𝑎) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

, 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                    +
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

, 𝑌𝐾2−2
𝑡−1 ; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
, 𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 

       =
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                  +
1

𝑛
∑𝐼 (𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                  +
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

, 𝑌𝐾2−2
𝑡−1 ; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
, 𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1

 

       ≤
(𝑏) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                  +
1

𝑛
∑𝐼 (𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                  +
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

, 𝑌𝐾2−2
𝑡−1 ; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
, 𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1)

𝑛

𝑡=1
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       =
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                                                   +
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

, 𝑌𝐾2−2
𝑡−1 , 𝑌𝐾2−1

𝑡−1 , 𝑌𝐾2
𝑡−1; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

(22) 

where inequality (a) is obtained from (20) and (21), and (b) is due to the degradedness property of the 

channel. By continuing the steps (21) and (22), one can derive:  

𝛴𝐾2 + 𝛴𝐾2−1 + 𝛴𝐾2−2 +⋯+ 𝛴1 

                        ≤
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1
,𝕄𝑌𝐾2

)

𝑛

𝑡=1

+⋯+ 

                             +
1

𝑛
∑𝐼 (𝕄𝑌2; 𝑌2,𝑡|𝕄𝑌3 , … ,𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌1 , 𝑌1

𝑡−1, … , 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1; 𝑌1,𝑡|𝕄𝑌2 , … ,𝕄𝑌𝐾2−1
,𝕄𝑌𝐾2

)

𝑛

𝑡=1

 

                        =
(𝑎) 1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−2

; 𝑌𝐾2−2,𝑡|𝕄𝑌𝐾2−1
,𝕄𝑌𝐾2

)

𝑛

𝑡=1

+⋯+ 

                             +
1

𝑛
∑𝐼 (𝕄𝑌2; 𝑌2,𝑡|𝕄𝑌3 , … ,𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

                             +
1

𝑛
∑𝐼 (𝕄𝑌1; 𝑌1,𝑡|𝕄𝑌2 , … ,𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

 

(23) 

where equality (a) holds because: 
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1

𝑛
∑𝐼 (𝑌1

𝑡−1, … , 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1; 𝑌1,𝑡|𝕄𝑌1 ,𝕄𝑌2 , … ,𝕄𝑌𝐾2−1
,𝕄𝑌𝐾2

)

𝑛

𝑡=1

 

=
1

𝑛
∑𝐼(𝑌1

𝑡−1, … , 𝑌𝐾2−1
𝑡−1 , 𝑌𝐾2

𝑡−1; 𝑌1,𝑡|𝕄)

𝑛

𝑡=1

= 0 

(24) 

Thus, using (23), we can obtain: 

𝒞𝑠𝑢𝑚
𝑑𝑒𝑔

=∑( ∑ 𝑅𝑙
𝑙∈𝑖𝑑ℒ𝑗

)

𝐾2

𝑗=1

≤∑𝛴𝑗

𝐾2

𝑗=1

+∑𝜖𝑗,𝑛

𝐾2

𝑗=1

 

           ≤
1

𝑛
∑𝐼 (𝕄𝑌1; 𝑌1,𝑡|𝕄𝑌2 , … ,𝕄𝑌𝐾2−1

,𝕄𝑌𝐾2
)

𝑛

𝑡=1

+⋯+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2−1

; 𝑌𝐾2−1,𝑡|𝕄𝑌𝐾2
)

𝑛

𝑡=1

+
1

𝑛
∑𝐼 (𝕄𝑌𝐾2

; 𝑌𝐾2,𝑡)

𝑛

𝑡=1

+∑𝜖𝑗,𝑛

𝐾2

𝑗=1

 

(25) 

Finally, by applying a standard time-sharing argument and also by letting 𝑛 tends to infinity, we 

derive the outer bound (14). The proof is thus complete. ■ 

Theorem 3.1 establishes the sum-rate capacity for all degraded interference networks with arbitrary 

number of transmitters, arbitrary number of receivers, and arbitrary distribution of messages among 

transmitters and receivers. However, the characterization of the sum-rate capacity for degraded 

interference networks as given in Theorem 3.1 requires representing all messages by auxiliary 

random variables. In fact, many of these auxiliaries may be redundant. Clearly, to achieve the sum-

rate capacity for degraded interference networks, it is always sufficient to consider only a certain 

subset of messages for the transmission scheme. In what follows, we present an algorithm to 

determine this subset of messages exactly. This algorithm indeed yields a considerably simpler 

characterization of the sum-rate capacity as well. To present the algorithm, we need to discuss a plan 

of messages as given in the following. 

Plan of Messages: Consider an arbitrary interference network with the message sets 𝕄,𝕄𝑋𝑖 , 𝑖 =

1,… , 𝐾1, and 𝕄𝑌𝑗 , 𝑗 = 1,… , 𝐾2 as shown in Fig. 2. Each subset of transmitters sends at most one 

message to each subset of receivers. There exist 𝐾1 transmitters and 𝐾2 receivers. Therefore, we can 

label each message by a nonempty subset of {1, … , 𝐾1} to determine which transmitters transmit the 
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message and also a nonempty subset of {1,… , 𝐾2} to determine to which subset of receivers the 

message is sent. We represent each message of 𝕄 as 𝑀∆
∇, where ∆ ⊆ {1,… , 𝐾1} and ∇ ⊆ {1,… , 𝐾2}. 

For example, 𝑀{1,2,3}
{2,4}

 indicates a message which is sent by Transmitters 1, 2 and 3 to Receivers 2 and 

4. Now, for each ∆ ⊆ {1,… , 𝐾1} define: 

𝕄𝛥 ≜ {𝑀𝛥
𝐿 ∈ 𝕄 ∶ 𝐿 ⊆ {1,… , 𝐾2}} 

(26) 

Using this representation, we can arrange the messages into a graph-like illustration as shown in Fig. 

4. The sets 𝕄𝛥 are positioned on 𝐾1 columns as follows: 𝕄𝛥 is positioned in the column 𝑖 if and only 

if ‖𝛥‖ = 𝑖, 𝑖 = 1,… , 𝐾1. Then, considering column 𝐾1 towards column 1, a set 𝕄𝛥1 is connected to 

𝕄𝛥2 by a directed edge if and only if 𝛥2 ⊆ 𝛥1 and there is no nonempty 𝕄𝛥3 so that 𝛥2 ⊆ 𝛥3 ⊆ 𝛥1, 

i.e., there is no directed path connecting 𝕄𝛥1 to 𝕄𝛥2. Figure 4 shows the plan of messages for a 

general interference network.  

 

 

                                        𝕄{1,2,…,𝐾1−1}                                                          𝕄{1}                    TX 1 

                                        𝕄{1,2,…,𝐾1−2 ,𝐾1}                                                     𝕄{2}                    TX 2       

                                ⋮                       ⋮                  𝕄𝛥                                     ⋮                            ⋮ 

 

        𝕄{1,2,…,𝐾1}             𝕄{1,2,…,𝑖,𝑖+1,… ,𝐾1}                              ⋮                    𝕄{𝑖}                      TX 𝑖 

                                ⋮                       ⋮                                                            ⋮                            ⋮ 

 

                                        𝕄{1,3,…,𝐾1}                                                             𝕄{𝐾1−1}                TX  𝐾1 − 1 

                                        𝕄{2,…,𝐾1}                                                                𝕄{𝐾1}                    TX  𝐾1 

 

Column 𝐾1            Column 𝐾1 − 1                          …                          Column 1 

Figure 4.  Plan of Messages for an arbitrary interference network. 

{
𝑀𝛥
𝐿 ∈ 𝕄 ∶

𝐿 ⊆ {1,… , 𝐾2}
} 
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The plan of messages indeed represents both the broadcast and multiple access features of 

interference networks simultaneously. Let ∆ be an arbitrary nonempty subset of {1, … , 𝐾1}. According 

to our representation, the messages 𝕄𝛥 given in (26) are broadcasted by the transmitters 𝑋𝑖 , 𝑖 ∈ 𝛥 

(meanwhile, no transmitter other than those in {𝑋𝑖, 𝑖 ∈ 𝛥} has access to these messages). By another 

view, if the network has just one receiver, it reduces to a multiple access channel and therefore each 

set 𝕄𝛥 , ∆ ⊆ {1,… , 𝐾1}, includes at most one message. In this case, the plan of messages indeed 

represents the superposition coding scheme which achieves the capacity region of the channel: any 

message at the beginning of an edge would be a cloud center and the message at the end of that edge 

would be its satellite. A more detailed discussion in this regard can be found in [10]. The plan of 

messages is indeed a very useful tool to describe and also to design achievability schemes for the 

interference networks as well (see [3, 5]).  

Now using the plan of messages, we explicitly determine which messages are sufficient to be 

considered for the transmission scheme to achieve the sum-rate capacity of degraded networks. In 

what follows, we illustrate the procedure for this goal and describe the philosophy behind its steps, 

however, we do not provide a mathematical proof of it for brevity. A complete mathematical proof 

can be found in [10].  

First let consider a multi-receiver broadcast channel where a transmitter sends some messages to 

some receivers. If the channel is degraded, it is not difficult to show that to achieve the sum-rate 

capacity it is sufficient to transmit only a carefully picked message and ignore the others. Inspired by 

this fact, one can prove that to achieve the maximum sum-rate in any degraded interference network, 

for every ∆, it is optimal to transmit only one of the messages in 𝕄∆ and ignore the others. This 

message is chosen as follows. Let 𝕄∆ = {𝑀∆
∇1 , … ,𝑀∆

∇‖𝕄∆‖}, where ∇𝑙  ⊆ {1,… , 𝐾2}, 𝑙 = 1,… , 𝐾2. For 

any 𝕄∆ with ‖𝕄∆‖ ≥ 1, define: 

𝛩∆ ≜ min {max∇ ∶  ∇  ⊆  {1,… , 𝐾2},𝑀∆
∇ ∈ 𝕄∆} = min {max∇1 , … ,max∇‖𝕄∆‖} 

(27) 

Let also 𝜗∆ ∈ {1,… , ‖𝕄∆‖} be such that max∇𝜗∆ = 𝛩∆. If there exist multiple choices for 𝜗∆, one is 

selected arbitrarily. Now, to achieve the sum-rate capacity of degraded interference networks, it is 

sufficient to transmit only the message 𝑀∆
∇𝜗∆  out of the set 𝕄∆ and withdraw the others from 

transmitting. By another point of view, one can show that a solution to the maximization (14) is to 
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nullify all the random variables 𝕄∆ − {𝑀∆
∇𝜗∆} for each ∆ ⊆ {1,… , 𝐾1}. Therefore, let define the sets 

�̃�, �̃�𝑋𝑖 , 𝑖 = 1,… , 𝐾1, and �̃�𝑌𝑗 , 𝑗 = 1,… , 𝐾2, as follows: 

{
 
 
 

 
 
 �̃� ≜ 𝕄− ⋃ (𝕄∆ − {𝑀∆

∇𝜗∆})

∆  ⊆{1,…,𝐾1} 

�̃�𝑋𝑖 ≜ 𝕄𝑋𝑖 − ⋃ (𝕄∆ − {𝑀∆
∇𝜗∆})

∆  ⊆{1,…,𝐾1} 

�̃�𝑌𝑗 ≜ 𝕄𝑌𝑗 − ⋃ (𝕄∆ − {𝑀∆
∇𝜗∆})

∆  ⊆{1,…,𝐾1}

 

 (28) 

The sum-rate capacity of a degraded interference network with the message sets 𝕄, 𝕄𝑋𝑖 , 𝑖 = 1,…𝐾1, 

𝕄𝑌𝑗 , 𝑗 = 1,… , 𝐾2, is the same as that of the network with the message sets �̃�, �̃�𝑋𝑖 , 𝑖 = 1,…𝐾1, 

�̃�𝑌𝑗 , 𝑗 = 1,… , 𝐾2. Therefore, from now on, we consider the network with the new message sets given 

by (28). To achieve the sum-rate capacity of the degraded network, still some of the messages �̃� are 

redundant and can be canceled. First, note that if we consider the plan of messages for �̃�, each 

vertices of the corresponding graph represents at most one message (by the definition (28)). For such 

a plan of messages, we refer to the message at the beginning of any edge as a cloud center and the 

message at the end of it as the satellite. For a while, let us consider a multiple access channel. As 

mentioned before, for this channel the plan of messages represents the superposition coding which 

achieves the capacity region. A fact is that to achieve the sum-rate capacity of a multiple access 

channel with any arbitrary distribution of messages among transmitters, it is required to transmit only 

a certain subset of messages. These messages are indeed those which are not satellite for any other 

message. A proof of this result can be found in [10]. For example, for a two-user multiple access 

channel with a common message between transmitters, the sum-rate capacity is achieved by 

transmitting only the common message at its maximum rate and ignoring the private messages. Let 

now return to the interference network with the message set �̃� as given in (28). Inspired by what 

stated for the multiple access channel, one can prove that to achieve the sum-rate capacity of the 

degraded interference network, the optimal strategy is as follows: among the messages corresponding 

to each receiver, those which are a satellite for the messages that should be decoded at either that 

receiver or some stronger receivers are canceled and only the remaining messages are considered for 

transmitting. Clearly, define: 
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�̃�
𝑌𝑗
↦ ≜ �̃�𝑌𝑗 − (�̃�𝑌𝑗+1⋃…⋃�̃�𝑌𝐾2

) , 𝑗 = 1,… , 𝐾2 

(29) 

Note that �̃�
𝑌𝑗
↤ , 𝑗 = 1,… , 𝐾2, constitute a partition for the set �̃�, i.e., 

�̃� = ⋃ �̃�
𝑌𝑗
↦

𝑗∈[1:𝐾2]

, �̃�
𝑌𝑗1

↦ ⋂�̃�
𝑌𝑗2

↦ = ∅, 𝑗1, 𝑗2 ∈ [1: 𝐾2], 𝑗1 ≠ 𝑗2 

(30) 

Also, for 𝑗 = 1,… , 𝐾2, define: 

𝕄𝑌𝑗
∗ ≜ {𝑀∆

∇  ∈ �̃�
𝑌𝑗
↦ ∶ There is no 𝑀𝛤

𝐿 ∈ �̃� − (�̃�
𝑌𝑗+1
↦ ⋃…⋃�̃�

𝑌𝐾2

↦ )  with ∆ ⊊ 𝛤} 

                    𝕄𝑌𝑗
× ≜ �̃�

𝑌𝑗
↦ −𝕄𝑌𝑗

∗  

(31) 

According to the definition (31), the messages 𝕄𝑌𝑗
∗  are those of �̃�

𝑌𝑗
↦  which are not satellite for any 

message in �̃� − (�̃�
𝑌𝑗+1
↦ ⋃…⋃�̃�

𝑌𝐾2

↦ ), while 𝕄𝑌𝑗
×  are those of �̃�

𝑌𝑗
↦  which are a satellite for at least 

one message in �̃� − (�̃�
𝑌𝑗+1
↦ ⋃…⋃�̃�

𝑌𝐾2

↦ ). In fact, given a certain message of �̃�
𝑌𝑗
↦  to determine 

whether it belongs to 𝕄𝑌𝑗
∗  or to 𝕄𝑌𝑗

× , it is required to explore among all the messages in �̃� −

(�̃�
𝑌𝑗+1
↦ ⋃…⋃�̃�

𝑌𝐾2

↦ ). If there is no cloud center for the message (equivalently, the message is not a 

satellite for any other message in �̃� − (�̃�
𝑌𝑗+1
↦ ⋃…⋃�̃�

𝑌𝐾2

↦ )), it belongs to 𝕄𝑌𝑗
∗ ; otherwise, it belongs 

to 𝕄𝑌𝑗
× . By using the plan of messages, the sets 𝕄𝑌𝑗

∗  and 𝕄𝑌𝑗
×  can be readily determined by inspection 

as will be illustrated by examples later. To achieve the maximum sum-rate in the degraded 

interference networks, it is optimal to transmit only the messages 𝕄𝑌𝑗
∗  out of the set �̃�

𝑌𝑗
↦  and ignore 

the others, i.e., 𝕄𝑌𝑗
× , for all 𝑗 ∈ [1: 𝐾2]. In other words, if a message of �̃�

𝑌𝑗
↦  has a cloud center which 

should be decoded at the receiver 𝑌𝑗 or a stronger receiver, the auxiliary random variable 

corresponding to that message can be nullified in the sum-capacity expression (14). Therefore, let 

define: 
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{

𝕄∗ ≜ ⋃ 𝕄𝑌𝑗
∗

𝑗∈[1:𝐾2]

                                                             

𝕄𝑋𝑖
∗ ≜ �̃�𝑋𝑖 − (𝕄𝑌1

×⋃…⋃𝕄𝑌𝐾2
× ) , 𝑖 = 1,… , 𝐾1

 

(32) 

where 𝕄𝑌𝑗
∗ ,𝕄𝑌𝑗

× , 𝑗 = 1,… , 𝐾2, are given by (31), and �̃�𝑋𝑖 , 𝑖 = 1,… , 𝐾1 is given by (28). The sum-rate 

capacity of a degraded interference network with the message sets 𝕄, 𝕄𝑋𝑖 , 𝑖 = 1,…𝐾1, 𝕄𝑌𝑗 , 𝑗 =

1,… , 𝐾2, is the same as that of the network with the message sets 𝕄∗, 𝕄𝑋𝑖
∗ , 𝑖 = 1,…𝐾1, 𝕄𝑌𝑗

∗ , 𝑗 =

1,… , 𝐾2. 

We summarize the result of the above algorithm in the following theorem. 

Theorem 3.2: Consider the 𝐾1-Transmitter/𝐾2-Receiver degraded interference network given in (12) 

with the message sets 𝕄,𝕄𝑋𝑖 , 𝑖 = 1,… , 𝐾1, and 𝕄𝑌𝑗 , 𝑗 = 1,… , 𝐾2. The sum-rate capacity is given by: 

𝒞𝑠𝑢𝑚
𝑑𝑒𝑔

= 𝑚𝑎𝑥
𝒫
∗

𝑠𝑢𝑚
𝑑𝑒𝑔

(𝐼 (𝕄𝑌1
∗ ; 𝑌1|𝕄𝑌2

∗ , … ,𝕄𝑌𝐾2−1
∗ ,𝕄𝑌𝐾2

∗ , 𝑄) + ⋯+ 𝐼 (𝕄𝑌𝐾2−1
∗ ; 𝑌𝐾2−1|𝕄𝑌𝐾2

∗ , 𝑄)

+ 𝐼 (𝕄𝑌𝐾2
∗ ; 𝑌𝐾2|𝑄)) 

(33) 

where 𝒫
∗

𝑠𝑢𝑚
𝑑𝑒𝑔

 denotes the set of all joint PDFs as follows: 

𝑃𝑄 × ∏ 𝑃𝑀∆
𝛻

𝑀∆
𝛻∈𝕄∗

× ∏ 𝑃𝑋𝑖|𝕄𝑋𝑖
∗ 𝑄

𝑖∈[1:𝐾1]

 

(34) 

also, the PDFs 𝑃𝑀∆
𝛻 , 𝑀∆

𝛻 ∈ 𝕄∗ are uniformly distributed, and 𝑃𝑋𝑖|𝕄𝑋𝑖
∗ 𝑄 ∈ {0,1} for 𝑖 = 1,… , 𝐾1, i.e., 

𝑋𝑖 is a deterministic function of (𝕄𝑋𝑖
∗ , 𝑄). The messages 𝕄∗ are given in (32). 

Remarks: 

1. The sum-rate capacity result (33) holds also for the Gaussian degraded interference networks. 

For these networks, one can easily solve the corresponding optimization. In fact, one can prove 

that the Gaussian input distributions are always optimal as will be illustrated by some examples 
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later. Nevertheless, providing a closed-form expression for the general case is not desirable due 

to the high formulation and computational complexities. 

2. Recall the coding scheme given in Theorem 3.1 to achieve the sum-rate capacity of degraded 

networks. In that scheme, all messages are encoded separately using independent codewords. A 

fact is that based on the algorithm described above for determining the messages which are 

effective in computation of the sum-rate capacity for degraded networks, one can derive an 

alternative achievability scheme using the superposition coding. Briefly, considering the plan of 

messages for 𝕄∗ as given in Theorem 3.2, the messages are encoded at the transmitters by 

superposition coding so that the message at the beginning of any edge is encoded by a cloud 

center codeword and the message at the end of it by a satellite codeword that is superimposed 

on the cloud center. For decoding, we can still use the successive decoding scheme. One can 

easily show that such a coding scheme does successfully work and yields the sum-rate (33).  

A significant point regarding the algorithm formulated in Theorem 3.2 is that it provides us a deep 

insight regarding the nature of information flow in degraded networks because it explicitly determines 

which messages are really required to be transmitted to achieve the sum-rate capacity for these 

networks. In general, by using this algorithm, many of the messages (in fact auxiliary random 

variables) are removed from the initial sum capacity expression given in Theorem 3.1. Therefore, the 

maximization problem which is contained in the characterization of the sum-rate capacity is 

considerably resolved. Moreover, the simplicity of our characterization in Theorem 3.2 is crucial 

when we consider the Gaussian networks because the complexity in the explicit characterization of 

the sum-rate capacity for these networks grows very rapidly with the number of messages. This 

simplicity is also very helpful when considering the outer bound which will be derived later in 

Chapter 4 for the sum-rate capacity of general interference networks.  

In the rest of this chapter, we provide several examples to illustrate the results of Theorem 3.1 and 

3.2. Note that for all of the following examples, we assume that the network is degraded in the sense 

of (12). 

Example 3.1: Consider a 4-transmitter/3-receiver interference network with the following message 

set: 

𝕄 = {

𝑀{1,2,4}
{3} ,𝑀{1,2,4}

{1,3} ,𝑀{1,2,4}
{2,3} ,𝑀{1,2}

{2,3},𝑀{1,2}
{1,3}, 𝑀{3,4}

{1,2},𝑀{3,4}
{1,3},𝑀{3,4}

{2,3},
 

𝑀{1}
{1,3},𝑀{1}

{2,3},𝑀{2}
{3},𝑀{2}

{1,3},𝑀{3}
{2},𝑀{3}

{2,3},𝑀{4}
{1}, 𝑀{4}

{2},𝑀{4}
{1,2}

} 

(35) 
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The network is depicted in Fig. 5. Note that according to the definition (26), the message set 𝕄 in 

(35) is partitioned into the following subsets: 

 

 

 

 𝕄{1,2,4},𝕄{1,2},𝕄{1}                         𝑋1                                                       𝑌1                           �̂�𝑌1    

 

 𝕄{1,2,4},𝕄{1,2},𝕄{2}                         𝑋2                                                                                          

                                                                                                                      𝑌2                           �̂�𝑌2                                       

              𝕄{3,4},𝕄{3}                          𝑋3                                                                                           

                                                                                                                                                                       

𝕄{1,2,4},𝕄{3,4},𝕄{4}                          𝑋4                                                       𝑌3                          �̂�𝑌3 

 

 

Figure 5.  A 4-transmitter/3-receiver interference network with messages in (35). 

{
 
 

 
 𝕄{1,2,4} = {𝑀{1,2,4}

{3} ,𝑀{1,2,4}
{1,3} ,𝑀{1,2,4}

{2,3}
}                                                                                                                 

 

𝕄{1,2} = {𝑀{1,2}
{2,3},𝑀{1,2}

{1,3}
} ,𝕄{3,4} = {𝑀{3,4}

{1,2},𝑀{3,4}
{1,3},𝑀{3,4}

{2,3}
}                                                                           

 

𝕄{1} = {𝑀{1}
{1,3},𝑀{1}

{2,3}
} ,𝕄{2} = {𝑀{2}

{3},𝑀{2}
{1,3}

} ,𝕄{3} = {𝑀{3}
{3},𝑀{3}

{2,3}
} ,𝕄{4} = {𝑀{4}

{1},𝑀{4}
{2},𝑀{4}

{1,2}
}

 

(36) 

As we see these subsets all have more than one element. Nevertheless, in order to achieve the sum-

rate capacity it is optimal to transmit only one (carefully picked) message from each set. Using the 

definitions (27) and (28), we choose the desired messages as follows: 

�̃� = {𝑀{1,2,4}
{3} ,𝑀{1,2}

{2,3},𝑀{3,4}
{1,2},𝑀{1}

{1,3},𝑀{2}
{3},𝑀{3}

{3},𝑀{4}
{1}
} 

(37) 

Therefore, according to (28), we have: 

 

 

 

ℙ𝑌1𝑌2𝑌3|𝑋1𝑋2𝑋3𝑋4 

 

 

 

DEC-1 ENC-1 

ENC-2 

DEC-2 

 
ENC-3 

DEC-3 

 

ENC-4 
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{
 
 

 
 �̃�𝑌1 = {𝑀{3,4}

{1,2},𝑀{1}
{1,3},𝑀{4}

{1}
}                        

 

�̃�𝑌2 = {𝑀{1,2}
{2,3},𝑀{3,4}

{1,2}
}                                   
 

�̃�𝑌3 = {𝑀{1,2,4}
{3}

,𝑀{1,2}
{2,3}

,𝑀{1}
{1,3}

,𝑀{2}
{3}
,𝑀{3}

{3}
}

 

(38) 

The plan of messages corresponding to the set �̃� given in (37) is depicted in Fig. 6. 

 

 

                                                                                    𝑀{1,2}
{2,3}

                            

                                                                                                                          𝑀{1}
{1,3}

             TX 1 

                                             𝑀{1,2,4}
{3}

                                                                 𝑀{2}
{3}

                TX2   

No message                                                                                                       𝑀{3}
{3}

               TX3                                                                                                                                       

                                                                                                                          𝑀{4}
{1}

                TX4 

                                                                                     𝑀{3,4}
{1,2}

 

 

Column 4                        Column 3                   Column 2                    Column 1 

Figure 6.  The plan of messages corresponding to the messages (37) for Example 3.1. To achieve the sum-rate capacity of 

the degraded network, it is only required to transmit the messages denoted by a green star and ignore the others. 

Also, based on (29), we have:  

{
 
 

 
 �̃�𝑌1

↦ = {𝑀{4}
{1}
}                                                  

 

�̃�
𝑌2
↦ = {𝑀{3,4}

{1,2}
}                                                

 

�̃�
𝑌3
↦ = {𝑀{1,2,4}

{3} ,𝑀{1,2}
{2,3},𝑀{1}

{1,3},𝑀{2}
{3},𝑀{3}

{3}
}

 

(39) 
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Now we can determine the sets �̃�𝑌1
∗ , �̃�𝑌2

∗ , and �̃�𝑌3
∗  as follows (see definitions (31, 32)). Considering 

the plan of messages in Fig. 6,  

1. The message 𝑀{1,2,4}
{3}

 is a cloud center for the messages 𝑀{1,2}
{2,3}

,𝑀{1}
{1,3}

,𝑀{2}
{3}

. Also, the message 

𝑀{3,4}
{1,2}

 is a cloud center for 𝑀{3}
{3}

. Therefore, from the set �̃�
𝑌3
↦  only the message 𝑀{1,2,4}

{3}
 belongs 

to �̃�𝑌3
∗ . Thus, �̃�𝑌3

∗ = {𝑀{1,2,4}
{3}

}. 

2. There is no cloud center for the message 𝑀{3,4}
{1,2}

 in �̃� − (�̃�
𝑌3
↦) = {𝑀{3,4}

{1,2}
,𝑀{4}

{1}
}. Thus, �̃�𝑌2

∗ =

{𝑀{3,4}
{1,2}

}.  

3. The message 𝑀{4}
{1}

 is a satellite for both 𝑀{1,2,4}
{3}

 and 𝑀{3,4}
{1,2}

, but not for a message in �̃� −

(�̃�
𝑌2
↦⋃�̃�

𝑌3
↦ ) = {𝑀{4}

{1}
}. Thus, �̃�𝑌1

∗ = {𝑀{4}
{1}
}. 

In Fig. 6, we have marked the messages belonging to 𝕄∗ = �̃�𝑌3
∗ ⋃�̃�𝑌2

∗ ⋃�̃�𝑌1
∗  by a green star and those 

in 𝕄× = 𝕄𝑌1
× ⋃𝕄𝑌2

×⋃𝕄𝑌3
×  by a red multiplication sign. Based on Theorem 3.2, only those messages 

which are denoted by green star are effective in computation of the sum-rate capacity. Therefore, the 

sum-rate capacity of the degraded network is given by: 

𝒞𝑠𝑢𝑚
𝐸𝑋 3.1 = max

𝒫
∗

𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼 (𝑀{4}
{1}; 𝑌1|𝑀{3,4}

{1,2},𝑀{1,2,4}
{3} , 𝑄) + 𝐼 (𝑀{3,4}

{1,2}; 𝑌2|𝑀{1,2,4}
{3} , 𝑄) + 𝐼 (𝑀{1,2,4}

{3} ; 𝑌3|𝑄)) 

(40) 

where 𝒫
∗

𝑠𝑢𝑚
𝐸𝑋 3.1 denotes the set of all joint PDFs as: 

𝑃𝑄 × 𝑃𝑀{1,2,4}
{3} × 𝑃

𝑀{3,4}
{1,2} × 𝑃

𝑀{4}
{1} × 𝑃

𝑋1|𝑀{1,2,4}
{3}

,𝑄
× 𝑃

𝑋2|𝑀{1,2,4}
{3}

,𝑄
× 𝑃

𝑋3|𝑀{3,4}
{1,2}

,𝑄
× 𝑃

𝑋4|𝑀{4}
{1}
,𝑀{1,2,4}

{3}
,𝑀{3,4}

{1,2}
𝑄

 

(41) 

For brevity of notations, let denote the auxiliaries 𝑀{3,4}
{1,2}

 and 𝑀{1,2,4}
{3}

 by 𝑈 and 𝑉, respectively. Since 

𝑋4 is a deterministic function of 𝑀{4}
{1}, 𝑀{1,2,4}

{3} , and 𝑀{3,4}
{1,2}

, the sum capacity expression (40) can be 

indeed re-expressed as: 

𝒞𝑠𝑢𝑚
𝐸𝑋 3.1 = max

𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4; 𝑌1|𝑈, 𝑉, 𝑄) + 𝐼(𝑈; 𝑌2|𝑉, 𝑄) + 𝐼(𝑉; 𝑌3|𝑄)) 

(42) 
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where 𝒫𝑠𝑢𝑚
𝐸𝑋 3.1 denotes the set of all joint PDFs given below: 

𝑃𝑄𝑃𝑈|𝑄𝑃𝑉|𝑄𝑃𝑋1|𝑉𝑄𝑃𝑋2|𝑉𝑄𝑃𝑋3|𝑈𝑄𝑃𝑋4|𝑈𝑉𝑄, 𝑃𝑋1|𝑉𝑄 , 𝑃𝑋2|𝑉𝑄 , 𝑃𝑋3|𝑈𝑄 ∈ {0,1} 

(43) 

The expression (42) can be further simplified as follows: 

 𝒞𝑠𝑢𝑚
𝐸𝑋 3.1 = max

𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4; 𝑌1|𝑈, 𝑉, 𝑄) + 𝐼(𝑈; 𝑌2|𝑉, 𝑄) + 𝐼(𝑉; 𝑌3|𝑄)) 

               =
(𝑎)

max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑋3, 𝑈; 𝑌2|𝑋1, 𝑋2, 𝑉, 𝑄) + 𝐼(𝑋1, 𝑋2, 𝑉; 𝑌3|𝑄))  

               = max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(
𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑋3, 𝑈; 𝑌2|𝑋1, 𝑋2, 𝑉, 𝑄)

+𝐼(𝑉; 𝑌3|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)
) 

               ≤
(𝑏)

max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(
𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑋3, 𝑈; 𝑌2|𝑋1, 𝑋2, 𝑉, 𝑄)

+𝐼(𝑉; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)
) 

               = max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑋3, 𝑈, 𝑉; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄))           

               = max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(
𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑈, 𝑉; 𝑌2|𝑋1, 𝑋2, 𝑋3, 𝑄)

+𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)
)     

               ≤
(𝑐)

max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(
𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑈, 𝑉, 𝑄) + 𝐼(𝑈, 𝑉; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄)

+𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)
) 

               = max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4, 𝑈, 𝑉; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)) 

               = max
𝒫𝑠𝑢𝑚
𝐸𝑋 3.1

(𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)) 

(44) 

where equality (a) holds because 𝑋1 and 𝑋2 are given by deterministic functions of (𝑉, 𝑄), and 𝑋3 is 

given by a deterministic function of (𝑈, 𝑄); also the inequalities (b) and (c) are due to the 

degradedness of the network. Note that according to (43), conditioning on 𝑄, the pair (𝑋1, 𝑋2) is 

independent of 𝑋3. On the other hand, it is clear that by setting 𝑈 ≡ 𝑋3 and 𝑉 ≡ (𝑋1, 𝑋2) in (42), the 

expression at the right side of the last equality in (44) is derived. Thus, the sum-rate capacity is given 

by: 

𝒞𝑠𝑢𝑚
𝐸𝑋 3.1 = 

max
𝑃𝑄𝑃𝑋1𝑋2|𝑄𝑃𝑋3|𝑄𝑃𝑋4|𝑋1𝑋2𝑋3𝑄 

(𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)) 

(45) 
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Now let us consider the Gaussian version of Example 3.1. The degraded network is formulated as 

follows: 

{
 
 

 
 
𝑌1 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑍1                   

 

𝑌2 =
𝑎1
𝑏2
𝑋1 +

𝑎2
𝑏2
𝑋2 +

𝑎3
𝑏2
𝑋3 +

𝑎4
𝑏2
𝑋4 + 𝑍2                 

 

𝑌3 =
𝑎1
𝑏2𝑏3

𝑋1 +
𝑎2
𝑏2𝑏3

𝑋2 +
𝑎3
𝑏2𝑏3

𝑋3 +
𝑎4
𝑏2𝑏3

𝑋4 + 𝑍3

, 𝑏2, 𝑏3 ≥ 1 

(46) 

where 𝑍1, 𝑍2, 𝑍3 are Gaussian noises with zero mean and unit variance, and the input signals are 

subject to power constraints 𝔼[𝑋𝑖
2] ≤ 𝑃𝑖, 𝑖 = 1,2,3,4. The channel (46) is in fact equivalent to the 

following: 

                                                                

{
 
 

 
 
�̃�1 = 𝑌1                                 

�̃�2 =
1

𝑏2
�̃�1 +√1 −

1

𝑏2
2  �̃�2

�̃�3 =
1

𝑏3
�̃�2 +√1 −

1

𝑏3
2  �̃�3

 

(47) 

where �̃�2, �̃�3 are independent Gaussian RVs (also independent of 𝑍1) with zero mean and unit 

variance. We now present an explicit characterization for the sum-rate capacity of the Gaussian 

network in (46).  

Proposition 3.1) Consider the multi-message interference network in Fig. 5. The sum-rate capacity of 

the Gaussian network in (46) is given in the following: 

𝒞𝑠𝑢𝑚
𝐸𝑋.1~𝐺 = 

max
𝛼,𝛽∈[0,1]

𝛼2+𝛽2≤1

(

 
 
 
 
 
 
 

𝜓(𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4) + 𝜓

(

 
 

1

𝑏2
2 (|𝑎3| + |𝑎4|𝛽√

𝑃4

𝑃3
)
2

𝑃3

𝑎4
2

𝑏2
2 (1 − (𝛼

2 + 𝛽2))𝑃4 + 1

)

 
 

+𝜓

(

 
 

1

𝑏2
2𝑏3

2 (𝑎1
2𝑃1 + 𝑎2

2𝑃2 + 𝑎4
2𝛼2𝑃4 + 2|𝑎1𝑎2|√𝑃1𝑃2 + 2|𝑎1𝑎4|𝛼√𝑃1𝑃4 + 2|𝑎2𝑎4|𝛼√𝑃2𝑃4)

1

𝑏2
2𝑏3

2 ((|𝑎3| + |𝑎4|𝛽√
𝑃4

𝑃3
)
2

𝑃3 + 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4) + 1

)

 
 

)

 
 
 
 
 
 
 

 

(48) 
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Proof of Proposition 3.1) Let 𝑋1, 𝑋3 and 𝑍 be independent Gaussian RVs with zero means and 

variances 𝑃1, 𝑃3, and 1, respectively. Moreover, define 𝑋2 and 𝑋4 as follows: 

 

{
 
 

 
 𝑋2 ≜ sign(𝑎1𝑎2)√

𝑃2

𝑃1
𝑋1                                                                                           

𝑋4 ≜ sign(𝑎1𝑎4)𝛼√
𝑃4

𝑃1
𝑋1 + sign(𝑎3𝑎4)𝛽√

𝑃4

𝑃3
𝑋3 +√(1 − (𝛼

2 + 𝛽2))𝑃4𝑍

 

(49) 

where 𝛼, 𝛽 ∈ [0,1] are arbitrary real numbers with 𝛼2 + 𝛽2 ≤ 1; also, for a real number 𝑥, sign(𝑥) is 

equal to 1 if 𝑥 is nonnegative and -1 otherwise. Then, by setting 𝑋1, 𝑋2, 𝑋3, and 𝑋4 as given by (49) 

and 𝑄 ≡ ∅ in (45), we derive the achievability of (48). The proof of the optimality of Gaussian input 

distributions is given in the Appendix A. ■ 

Remark: The method of our proof presented in Appendix A for the optimality of Gaussian 

distributions to achieve the sum-rate capacity of the Gaussian network of Example 3.1 can be adapted 

to other scenarios. Nonetheless, as the network is degraded, by manipulating the mutual information 

functions in (33), one may present other arguments for the optimality of Gaussian inputs. 

Example 3.2: K-User Classical Interference Channel 

Consider the 𝐾-User classical IC as shown in Fig. 7. In this network, each transmitter sends a 

message to its respective receiver and there is no cooperation among transmitters. 

 

 

                    𝑀1                            𝑋1                                                      𝑌1                            �̂�1    

 

                 𝑀2                             𝑋2                                                      𝑌2                            �̂�2 

 

  

                 𝑀𝐾                            𝑋𝐾                                                      𝑌𝐾                           �̂�𝐾 

 

Figure 7.  The 𝐾-user classical interferecne channel. 

 

 

 

ℙ(𝑦1, … , 𝑦𝐾|𝑥1, … , 𝑥𝐾) 

 

DEC-1 ENC-1 

DEC-2 

 

ENC-2 

DEC-K 

 

ENC-K 
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The sum-rate capacity of the degraded network is directly derived from Theorem 3.1, which is given 

as follows: 

𝒞𝑠𝑢𝑚
𝐼𝐶𝑑𝑒𝑔 = max

𝒫𝑠𝑢𝑚
𝐼𝐶𝑑𝑒𝑔

(𝐼(𝑀1; 𝑌1|𝑀2, … ,𝑀𝐾−1,𝑀𝐾 , 𝑄) + ⋯+ 𝐼(𝑀𝐾−1; 𝑌𝐾−1|𝑀𝐾 , 𝑄) + 𝐼(𝑀𝐾; 𝑌𝐾|𝑄)) 

(50) 

where 𝒫𝑠𝑢𝑚
𝐼𝐶𝑑𝑒𝑔

 is the set of all joint PDFs given by: 

𝑃𝑄∏𝑃𝑀𝑙
𝑃𝑋𝑙|𝑀𝑙,𝑄

𝐾

𝑙=1

 

(51) 

Also, 𝑃𝑋𝑙|𝑀𝑙,𝑄 ∈ {0,1}, 𝑙 = 1,… , 𝐾; in other words, 𝑋𝑙 is a deterministic function of (𝑀𝑙 , 𝑄). In fact, 

one can readily re-derive the sum-rate capacity as follows: 

𝒞𝑠𝑢𝑚
𝐼𝐶𝑑𝑒𝑔 = max

𝑃𝑄∏ 𝑃𝑋𝑙|𝑄
𝐾
𝑙=1

(𝐼(𝑋1; 𝑌1|𝑋2, … , 𝑋𝐾−1, 𝑋𝐾 , 𝑄) + ⋯+ 𝐼(𝑋𝐾−1; 𝑌𝐾−1|𝑋𝐾 , 𝑄) + 𝐼(𝑋𝐾; 𝑌𝐾|𝑄)) 

(52) 

It is remarkable that this is the first sum-rate capacity result for the 𝐾-user classical IC which is 

derived for both discrete and Gaussian networks. The sum-rate capacity of the degraded Gaussian IC 

was derived in [5] using a rather complicated approach (based on genie-aided techniques). It is not 

difficult to show that for the Gaussian network, the optimal solution to the optimization (52) is 

attained by Gaussian distributions. 

Example 3.3: As we see from the expressions (45) and (52) for the scenarios of Examples 3.1 and 

3.2, to describe the sum-rate capacity there is no need to make use of auxiliary random variables. One 

may think that the same consequence holds for other networks. In fact, this is the case for many 

network scenarios but not for the general case. Here, we provide an example where it is essential to 

use auxiliary random variables. Specifically, consider the 2-transmitter/2-receiver interference 

network shown in Fig. 8. In this network, two transmitters cooperatively send a message to the second 

receiver, and also each transmitter sends separately a message to the first receiver. Using (32), one 

can readily show that for this network 𝕄∗ = 𝕄. The plan of messages for this scenario is depicted in 

Fig. 9.  
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                     𝑀1                          𝑋1                                                  𝑌1                        �̂�1, �̂�2 

            𝑀0 

                     𝑀2                          𝑋2                                                  𝑌2                        �̂�0 

 

Figure 8.  A 2-transmitter/2-receiver interference network. 

 

 

                                                                                                𝑀1               𝑋1  

 

                                                          𝑀0            

 

                                                   𝑀2               𝑋2                     

 

                                                  Column 2                   Column 1 

Figure 9.  The plan of messages for the interference network of Fig. 8. 

Based on Theorem 3.1 and 3.2, the sum-rate capacity of the degraded channel is given by: 

𝒞𝑠𝑢𝑚
𝐸𝑋 3.3 = max

𝒫𝑠𝑢𝑚
𝐸𝑋 3.3

 (𝐼(𝑀1,𝑀2; 𝑌1|𝑀0, 𝑄) + 𝐼(𝑀0; 𝑌2|𝑄)) 

(53) 

where 𝒫𝑠𝑢𝑚
𝐸𝑋 3.3 denotes the set of all joint PDFs of the form below: 

𝑃𝑄𝑃𝑀0𝑃𝑀1𝑃𝑀2𝑃𝑋1|𝑀0𝑀1𝑄𝑃𝑋2|𝑀0𝑀2𝑄 

(54) 

One can easily show that the sum-rate capacity can be re-written as follows: 

 

ℙ(𝑦1, 𝑦2|𝑥1, 𝑥2) 

DEC-1 

 

ENC-1 

ENC-2 DEC-2 
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𝒞𝑠𝑢𝑚
𝐸𝑋 3.3 = max

𝑃𝑄𝑃𝑊|𝑄𝑃𝑋1|𝑊𝑄𝑃𝑋2|𝑊𝑄

 (𝐼(𝑋1, 𝑋2; 𝑌1|𝑊, 𝑄) + 𝐼(𝑊;𝑌2|𝑄)) 

              = max
𝑃𝑊𝑃𝑋1|𝑊𝑃𝑋2|𝑊

 (𝐼(𝑋1, 𝑋2; 𝑌1|𝑊) + 𝐼(𝑊;𝑌2)) 

(55) 

In general, none of the choices 𝑊 ≡ 𝑋1, 𝑊 ≡ 𝑋2 or 𝑊 ≡ ∅ is optimal for the right side of (55). 

Therefore, it is unavoidable to use the auxiliary random variable 𝑊 to describe the sum-rate capacity. 

Let us now consider the Gaussian channel which is formulated as follows: 

{
𝑌1 = 𝑋1 + 𝑎𝑋2 + 𝑍1
𝑌2 = 𝑏𝑋1 + 𝑋2 + 𝑍2

 

(56) 

where 𝑍1 and 𝑍2 are independent Gaussian random variables with zero means and unit variances. The 

channel is degraded (𝑌2 is a degraded version of 𝑌1) provided that 𝑎𝑏 = 1 as well as |𝑎| ≥ 1. In this 

case, the channel is equivalent to the following: 

{
𝑌1 = 𝑋1 + 𝑎𝑋2 + 𝑍1      

�̃�2 = 𝑏𝑌1 +√1 − 𝑏
2 �̃�2

 

(57) 

where �̃�2 is Gaussian RV with zero mean and unit variance and independent of 𝑍1. In the next 

proposition, we derive the sum-rate capacity for this network. 

Proposition 3.2) The sum-rate capacity of the Gaussian interference network (56) shown in Fig. 8 

with  𝑎𝑏 = 1 and |𝑎| ≥ 1 is given below: 

𝒞𝑠𝑢𝑚
𝐸𝑋 3.3 ~𝐺 = max

−1≤𝛼,𝛽≤1
 (

𝜓((1 − 𝛼2)𝑃1 + 𝑎
2(1 − 𝛽2)𝑃2)

+𝜓(
𝑏2𝛼2𝑃1 + 𝛽

2𝑃2 + 2𝑏𝛼𝛽√𝑃1𝑃2
𝑏2(1 − 𝛼2)𝑃1 + (1 − 𝛽

2)𝑃2 + 1
)
) 

(58) 

Proof of Proposition 3.2) Let 𝑊, �̃�1, �̃�2 be independent Gaussian RVs with zero mean and unit 

variances. Define: 

{
𝑋1 ≜ 𝛼√𝑃1𝑊+√(1 − 𝛼2)𝑃1�̃�1

𝑋2 ≜ 𝛽√𝑃2𝑊+√(1 − 𝛽2)𝑃2�̃�2
, −1 ≤ 𝛼, 𝛽 ≤ 1 

(59) 
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By setting 𝑊,𝑋1 and 𝑋2 in (55), we obtain the achievability. The converse proof is given in Appendix 

B. ■ 

 

 

Figure 10.  The sum-rate capcaity of the Gaussian degraded interference network (56) of Fig. 8 in terms of 𝑃, where 𝑃 =

𝑃1 = 200𝑃2, and 𝑎 = 1 𝑏⁄ = 15. 

In Fig. 10, we have numerically evaluated the sum-rate capacity for the Gaussian degraded 

interference network (56) of Fig. 8 in terms of 𝑃, where 𝑃 = 𝑃1 = 200𝑃2. Also, we have depicted the 

expression in the right side of (58) for 𝛼 = 1 as well as for 𝛽 = 1. As we see, both choices are sub-

optimal. Therefore, both 𝑊 ≡ 𝑋1 and 𝑊 ≡ 𝑋2 in (55) are suboptimal, verifying that the use of 

auxiliary random variable is unavoidable to describe the sum-rate capacity. 
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Chapter 4 

General Interference Networks: Unified Outer Bounds  

One of the origins of the difficulty in the analysis of the interference networks, specifically networks 

with more than two receivers, is the lack of non-trivial capacity outer bounds with a satisfactory 

performance. In this chapter, we directly make use of the general expression derived in Theorem 3.2 

for the sum-rate capacity of degraded networks to establish a unified outer bound on the sum-rate 

capacity of the general non-degraded interference networks in Fig. 2. We then present several classes 

of non-degraded networks for which the derived outer bound is sum-rate optimal.  

A main result of this chapter is given in the following theorem. 

Theorem 4.1: Consider the 𝐾1-Transmitter/𝐾2-Receiver interference network in Fig. 2 with the 

message sets 𝕄,𝕄𝑋𝑖 , 𝑖 = 1,… , 𝐾1, and 𝕄𝑌𝑗 , 𝑗 = 1,… , 𝐾2. The sum-rate capacity is outer-bounded 

by: 

𝒞𝑠𝑢𝑚
𝐺𝐼𝑁 ≤ max

𝒫
∗

𝑠𝑢𝑚
𝐺𝐼𝑁

(𝐼 (𝕄𝑌1
∗ ; �̿�1|𝕄𝑌2

∗ , … ,𝕄𝑌𝐾2−1
∗ ,𝕄𝑌𝐾2

∗ , 𝑄) + ⋯+ 𝐼 (𝕄𝑌𝐾2−1
∗ ; �̿�𝐾2−1|𝕄𝑌𝐾2

∗ , 𝑄)

+ 𝐼 (𝕄𝑌𝐾2
∗ ; �̿�𝐾2|𝑄)) 

(60) 

where �̿�1, �̿�2, … , �̿�𝐾2 are given below: 

�̿�𝑗 ≜ (𝑌𝑗, 𝑌𝑗+1, … , 𝑌𝐾2), 𝑗 = 1,… , 𝐾2 

(61) 

also, 𝒫
∗

𝑠𝑢𝑚
𝐺𝐼𝑁 denotes the set of all joint PDFs as: 

𝑃𝑄 × ∏ 𝑃𝑀∆
𝛻

𝑀∆
𝛻∈𝕄∗

× ∏ 𝑃𝑋𝑖|𝕄𝑋𝑖
∗ 𝑄

𝑖∈[1:𝐾1]

 

(62) 

Moreover, the PDFs 𝑃𝑀∆
𝛻 , 𝑀∆

𝛻 ∈ 𝕄∗ are uniformly distributed, and 𝑃
𝑋𝑖|𝕄𝑋𝑖

∗ 𝑄
∈ {0,1} for 𝑖 =

1,… , 𝐾1, i.e., 𝑋𝑖 is a deterministic function of (𝕄𝑋𝑖
∗ , 𝑄). The messages 𝕄∗ are given in (31) and (32); 

in other words, the messages are determined based on the procedure we developed to achieve the 

sum-rate capacity of the degraded networks in Chapter 3. 
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Proof of Theorem 4.1) The proof is easily understood from the structure of the outer bound as well as 

the sum-rate capacity of the degraded networks given in Theorem 3.2. Consider an artificial network 

with receivers �̿�1, �̿�2, … , �̿�𝐾2 as given in (61). It is clear that the capacity region of this artificial 

network contains that of the original network as a subset. Moreover, the artificial network is degraded 

in the sense of (12). Therefore, according to Theorem 3.2, its sum-rate capacity is given by (60). The 

proof is thus complete. ■ 

Remark: Let 𝜆(. ) be an arbitrary permutation of the elements of the set {1,… , 𝐾2}. By exchanging 

the indices 1,… , 𝐾2 with 𝜆(1), … , 𝜆(𝐾2) in (60), respectively, we indeed derive other outer bounds on 

the sum-rate capacity. Although, it is very important to note that the messages 𝕄∗ and the 

corresponding subsets 𝕄𝑋𝑖
∗ , 𝑖 = 1,… , 𝐾1, and 𝕄𝑌𝑗

∗ , 𝑗 = 1,… , 𝐾2, may vary by the permutation 𝜆(. ); 

for each permutation 𝜆(. ), the messages 𝕄∗ should be discriminated from the set 𝕄 based on the 

order of the degradedness of the corresponding artificial network. 

Let us provide an example. Consider the network of Example 3.1 shown in Fig. 5 but without the 

condition of being degraded. Based on Theorem 4.1, the following constitutes an outer bound on the 

sum-rate capacity: 

𝒞𝑠𝑢𝑚
𝐼𝑁→Fig.  5

≤ 

max
𝑃𝑄𝑃𝑋1𝑋2|𝑄𝑃𝑋3|𝑄𝑃𝑋4|𝑋1𝑋2𝑋3𝑄 

(𝐼(𝑋4; 𝑌1, 𝑌2, 𝑌3|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐼(𝑋3; 𝑌2, 𝑌3|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄)) 

(63) 

It is clear that the outer bound (63) is tighter than the standard cut-set outer bound. In fact, five other 

bounds similar to (63) can be established on the sum-rate capacity. 

In the following subchapter, we show that the outer bound (60) is indeed sum-rate optimal for many 

different interference networks. 

4.1 Multiple-Access-Interference Networks (MAIN) 

As indicated by Example 3.3, to describe the bound (60) for the general interference network, the use 

of auxiliary random variables is unavoidable. Nevertheless, in what follows, we will present classes 

of networks for which one can derive a representation of the outer bound (60) without any auxiliary 

random variable. 
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Consider network scenarios where some groups of transmitters interested in transmitting information 

to their respective receiver while causing interference to the other receivers. Clearly, consider an 

interference network with 𝐾1 = ∑ 𝜇𝑙
𝐾2
𝑙=1  transmitters and 𝐾2 receivers, where 𝜇1, … , 𝜇𝐾2 are arbitrary 

natural numbers. The transmitters are partitioned into 𝐾2 sets labeled 𝕏1, … , 𝕏𝐾2 such that those in 

𝕏𝑗 = {𝑋𝑗,1, … , 𝑋𝑗,𝜇𝑗} send the messages 𝕄𝑌𝑗 to the receiver 𝑌𝑗, 𝑗 = 1,… , 𝐾2, but they have no message 

for the other receivers; in other words, the message sets 𝕄𝑌1 , … ,𝕄𝑌𝐾2
 are pairwise disjoint. Also, the 

distribution of messages 𝕄𝑌𝑗 among the transmitters 𝕏𝑗 = {𝑋𝑗,1, … , 𝑋𝑗,𝜇𝑗} is arbitrary. The network 

model has been shown in Fig. 11. 

 

 

 

       𝕄𝑌1        𝕏1 = {𝑋1,1, … , 𝑋1,𝜇1}                                                                       𝑌1                        �̂�𝑌1        

 

 

       𝕄𝑌2        𝕏2 = {𝑋2,1, … , 𝑋2,𝜇2}                                                                      𝑌2                         �̂�𝑌2                                                                          

 

 

 

𝕄𝑌𝐾2
     𝕏𝐾2 = {𝑋𝐾2,1, … , 𝑋𝐾2,𝜇𝐾2}                                                                     𝑌𝑌𝐾2                     �̂�𝑌𝐾2

 

 

 

Figure 11.  The general Multiple-Access-Interference Networks (MAIN). For 𝑗 = 1,… , 𝐾2, 𝕏𝑗  denotes a set of arbitrary 

transmitters which send (in an arbitrary order) the messages 𝕄𝑌𝑗  to the receiver 𝑌𝑗 . 

These scenarios do not contain broadcasting messages to multiple receivers because each transmitter 

sends information only to a single receiver. In fact, such networks are composed of several interfering 
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multiple access channels; hence, we call them as Multiple-Access-Interference Networks (MAIN). In 

the following proposition, we prove that for the MAINs, the outer bound (60) can be simply 

represented by using only the input and output signals. 

Proposition 4.1) Consider the general MAIN shown in Fig. 11. For this network the sum-rate outer 

bound in (60) is simplified as follows: 

𝒞𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 ≤ max

𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁

(𝐼(𝕏1; �̿�1|𝕏2, … , 𝕏𝐾2−1, 𝕏𝐾2 , 𝑄) + ⋯+ 𝐼(𝕏𝐾2−1; �̿�𝐾2−1|𝕏𝐾2 , 𝑄) + 𝐼(𝕏𝐾2; �̿�𝐾2|𝑄)) 

(64) 

where �̿�1, �̿�2, … , �̿�𝐾2 are given in (61), and 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 denotes the set of all joint PDFs which are induced 

on the input signals 𝑄,𝕏1, 𝕏2, … , 𝕏𝐾2−1, 𝕏𝐾2, by the following PDFs: 

𝑃𝑄 × ∏ 𝑃𝑀∆
𝛻

𝑀∆
𝛻∈𝕄∗

× ∏ 𝑃𝑋𝑖|𝕄𝑋𝑖
∗ 𝑄

𝑖∈[1:∑ 𝜇𝑙
𝐾2
𝑙=1 ]

 

(65) 

The messages 𝕄∗ are a subset of 𝕄 which are determined using the algorithm we presented in 

Chapter 3. In fact, considering the plan of messages, 𝕄∗ consists of those elements of 𝕄 which are 

not a satellite for any other message. Moreover, if the network transition probability function implies 

the following Markov chains: 

𝕏𝑗 → 𝑌𝑗 , 𝕏𝑗+1, … , 𝕏𝐾2 → 𝑌𝑗+1, 𝑌𝑗+2, … , 𝑌𝐾2 , 𝑗 = 1,… , 𝐾2 − 1 

(66) 

then, the outer bound is further simplified as: 

𝒞𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 ≤ max

𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁

(𝐼(𝕏1; 𝑌1|𝕏2, … , 𝕏𝐾2−1, 𝕏𝐾2 , 𝑄) + ⋯+ 𝐼(𝕏𝐾2−1; 𝑌𝐾2−1|𝕏𝐾2 , 𝑄) + 𝐼(𝕏𝐾2; 𝑌𝐾2|𝑄)) 

(67) 

Proof of Proposition 4.1) Consider the outer bound (60). For the MAIN scenario in Fig. 11, since the 

message sets 𝕄𝑌1 , … ,𝕄𝑌𝐾2
 are pairwise disjoint and also each of these sets are sent only to a single 

receiver, the messages 𝕄∗ are those elements of 𝕄 which are not a satellite for any other message 
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(considering the plan of messages). Moreover, we have the following joint PDF for the inputs and 

outputs: 

𝑃𝑄 ∏ 𝑃𝑀∆
𝛻

𝑀∆
𝛻∈𝕄∗

∏𝑃𝕏𝑗|𝕄𝑌𝑗
∗ 𝑄

𝐾2

𝑗=1

ℙ𝑌1…𝑌𝐾2|𝕏1…𝕏𝐾2
 

(68) 

where 𝑃𝕏𝑗|𝕄𝑌𝑗
∗ 𝑄 ∈ {0,1}. One can readily check that the distribution in (68) implies the following 

Markov relations: 

𝕄𝑌𝑗
∗ → 𝕏𝑗, 𝑄 → 𝑌1, … , 𝑌𝐾2 , 𝑗 = 1,… , 𝐾2 

(69) 

Therefore, for the argument of the maximization in (60), we have: 

𝐼 (𝕄𝑌1
∗ ; �̿�1|𝕄𝑌2

∗ , … ,𝕄𝑌𝐾2−1
∗ ,𝕄𝑌𝐾2

∗ , 𝑄) + ⋯+ 𝐼 (𝕄𝑌𝐾2−1
∗ ; �̿�𝐾2−1|𝕄𝑌𝐾2

∗ , 𝑄) + 𝐼 (𝕄𝑌𝐾2
∗ ; �̿�𝐾2|𝑄) 

       =
(𝑎)
(
𝐼 (𝕏1,𝕄𝑌1

∗ ; �̿�1|𝕄𝑌2
∗ , … ,𝕄𝑌𝐾2

∗ , 𝕏2, … , 𝕏𝐾2 , 𝑄) + 𝐼 (𝕏2,𝕄𝑌2
∗ ; �̿�2|𝕄𝑌3

∗ , … ,𝕄𝑌𝐾2
∗ , 𝕏3, … , 𝕏𝐾2 , 𝑄)

+⋯+ 𝐼 (𝕏𝐾2−1,𝕄𝑌𝐾2−1
∗ ; �̿�𝐾2−1|𝕄𝑌𝐾2

∗ , 𝕏𝐾2 , 𝑄) + 𝐼 (𝕏𝐾2 ,𝕄𝑌𝐾2
∗ ; �̿�𝐾2|𝑄)

) 

       =
(𝑏)
𝐼(𝕏1; �̿�1|𝕏2, … , 𝕏𝐾2−1, 𝕏𝐾2 , 𝑄) + ⋯+ 𝐼(𝕏𝐾2−1; �̿�𝐾2−1|𝕏𝐾2 , 𝑄) + 𝐼(𝕏𝐾2; �̿�𝐾2|𝑄) 

(70) 

where equality (a) holds because the inputs 𝕏𝑗 are given by deterministic functions of (𝕄𝑌𝑗
∗ , 𝑄), and 

the equality (b) is due to (68)-(69). Also, one can readily check that if the Markov relations (66) hold, 

then each mutual information function in (64) is reduced to the corresponding one in (67). ■ 

Remarks:  

1. Note that no auxiliary random variable is given in the outer bound (64) for the MAIN of Fig. 

11. Nevertheless, the joint PDF that is imposed on the input signals should be carefully 

determined based on the arrangement of the messages 𝕄∗ among the transmitters. The plan 

of messages is very helpful for this propose.  

2. It is clear that for the MAINs which satisfy the degraded condition (12), the sum-rate capacity 

is given by (67).  
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We now intend to provide several classes of networks, other than the degraded ones, for which the 

outer bound of Theorem 4.1 is sum-rate optimal. Specifically, we will introduce two new interference 

networks coined as “Generalized Z-Interference Networks” and “Many-to-One Interference 

Networks”. We identify noisy interference regimes for these networks. Also, for the first time, 

interesting networks are introduced for which a combination of successive decoding and treating 

interference as noise is sum-rate optimal. The results are given in the following subchapters. 

4.1.1 Generalized Z-Interference Networks 

Consider a special case of the MAINs in Fig. 11 for which the transition probability function of the 

network is factorized as follows: 

ℙ𝑌1…𝑌𝐾2|𝕏1…𝕏𝐾2
= ℙ𝑌1|𝕏1ℙ𝑌2|𝕏1𝕏2ℙ𝑌3|𝕏1𝕏2𝕏3 …ℙ𝑌𝐾2|𝕏1𝕏2𝕏3…𝕏𝐾2

 

(71) 

The network model is shown in Fig. 12. In this figure, each receiver has been linked to its connected 

transmitters (see Chapter 2.2) by a dashed line. 

 

       𝕄𝑌1        𝕏1 = {𝑋1,1, … , 𝑋1,𝜇1}                                                                        𝑌1                        �̂�𝑌1        

 

 

       𝕄𝑌2        𝕏2 = {𝑋2,1, … , 𝑋2,𝜇2}                                                                       𝑌2                         �̂�𝑌2                                                                          

 

 

 

𝕄𝑌𝐾2
     𝕏𝐾2 = {𝑋𝐾2,1, … , 𝑋𝐾2,𝜇𝐾2}                                                                     𝑌𝑌𝐾2                     �̂�𝑌𝐾2

 

 

Figure 12.  The Generalized Z-Interference Network. For 𝑗 = 1,… , 𝐾2, 𝕏𝑗  denotes a set of arbitrary transmitters which send 

(in an arbitrary order) the messages 𝕄𝑌𝑗  to the receiver 𝑌𝑗 . 
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DEC-2 

 

DEC-𝐾2 
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Note that such networks can be considered as a natural generalization of the Z-interference channel, 

i.e., the one-sided IC; hence, the name of “Generalized Z-Interference Network”. Now we derive a 

sum-rate capacity result for these networks. Let the transition probability function of the network 

satisfies the following degradedness condition as well: 

ℙ𝑌1…𝑌𝐾2|𝕏1…𝕏𝐾2
= ℙ𝑌1|𝕏1ℙ𝑌2|𝑌1𝕏2ℙ𝑌3|𝑌2𝕏3 …ℙ𝑌𝐾2|𝑌𝐾2−1𝕏𝐾2

 

(72) 

Note that the degradedness condition in (72) does not imply (12), and the networks in (71)-(72) in 

general differ from those in (12). In the next theorem, we will prove that for the generalized Z-

interference networks given by (72), treating interference as noise achieves the sum-rate capacity. 

Theorem 4.2) Consider the generalized Z-interference network in (71) with the degraded condition 

(72). The sum-rate capacity of the network is given by the following: 

max
𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁

(𝐼(𝕏1; 𝑌1|𝑄) + 𝐼(𝕏2; 𝑌2|𝑄) +⋯+ 𝐼(𝕏𝐾2−1; 𝑌𝐾2−1|𝑄) + 𝐼(𝕏𝐾2; 𝑌𝐾2|𝑄)) 

(73) 

where 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 is given as in Proposition 4.1. 

Proof of Theorem 4.2) The achievability is derived using a simple treating interference as noise 

strategy: The messages 𝕄−𝕄∗ are withdrawn from the transmission scheme where 𝕄∗ are those 

elements of 𝕄 which are not a satellite for any other message (considering the plan of messages). The 

messages 𝕄∗ are encoded separately using independent codewords. The receiver 𝑌𝑗, 𝑗 = 1,… , 𝐾2, 

jointly decodes its respective messages 𝕄𝑌𝑗
∗  and treats all the other signals as noise; therefore, the 

following rate is achievable: 

max  
{PDFs in (65)}

(𝐼(𝕄𝑌1
∗ ; 𝑌1|𝑄) + ⋯+ 𝐼 (𝕄𝑌𝐾2−1

∗ ; 𝑌𝐾2−1|𝑄) + 𝐼 (𝕄𝑌𝐾2
∗ ; 𝑌𝐾2|𝑄)) 

(74) 

Similar to the procedure in (70), one can simply show that (74) is equivalent to (73). For the converse 

part, note that the degradedness condition in (72) implies the Markov relations (66). Therefore, (67) 

constitutes an outer bound on the sum-rate capacity of the network. Furthermore, for the generalized 
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Z-interference network (71) shown in Fig. 12, the expression (67) is readily reduced to (73). The 

proof is thus complete. ■ 

Remark: The result of Theorem 4.2 indeed holds for all generalized Z-interference networks (71) 

where the marginal distributions of their transition probability function are given similar to the 

networks (72). 

4.1.2 Many-to-One Interference Networks 

We now discuss a special case of the generalized Z-interference networks in (71). Specifically, 

consider the case where the transition probability function is factorized as follows: 

ℙ𝑌1…𝑌𝐾2|𝕏1…𝕏𝐾2
= ℙ𝑌1|𝕏1ℙ𝑌2|𝕏2ℙ𝑌3|𝕏3 …ℙ𝑌𝐾2−1|𝕏𝐾2−1

ℙ𝑌𝐾2|𝕏1𝕏2𝕏3…𝕏𝐾2
 

(75) 

In other words, only one receiver experiences interference. Fig. 13 depicts the network model where 

each receiver has been linked to its connected transmitters by a dashed line. 

 

       𝕄𝑌1        𝕏1 = {𝑋1,1, … , 𝑋1,𝜇1}                                                                        𝑌1                        �̂�𝑌1        

 

 

       𝕄𝑌2        𝕏2 = {𝑋2,1, … , 𝑋2,𝜇2}                                                                       𝑌2                         �̂�𝑌2                                                                          

 

 

 

𝕄𝑌𝐾2
     𝕏𝐾2 = {𝑋𝐾2,1, … , 𝑋𝐾2,𝜇𝐾2}                                                                     𝑌𝑌𝐾2                     �̂�𝑌𝐾2

 

 

Figure 13.  The Many-to-One Interference Network. For 𝑖 = 1,… , 𝐾2, 𝕏𝑖 denotes a set of arbitrary transmitters which send 

(in an arbitrary order) the messages 𝕄𝑌𝑗  to the receiver 𝑌𝑗 . 
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Note that the arrangement of messages among transmitters and receivers are similar to the generalized 

Z-interference networks in Fig. 12. These networks are a natural generalization of the so-called 

Many-to-One Interference Channel [31, 32] to the multi-message case. Hence, they are coined as the 

“Many-to-One Interference Networks”. In these networks many groups of transmitters send 

information to their respective receivers (each group is concerned to one receiver) via a common 

media such that all receivers, except one, receive interference-free signals. In other words, only one of 

the receivers experiences interference, i.e., its received signal contains information regarding both 

desired and non-desired messages. For the Gaussian Many-to-One classical IC, a noisy interference 

regime was identified in [33] using the outer bounds derived based on the genie-aided techniques. 

Here, we identify such a regime for the many-to-one interference networks in Fig. 13, for both 

discrete and Gaussian networks. Specifically, consider a network with the following constraint: 

ℙ𝑌1…𝑌𝐾2|𝕏1…𝕏𝐾2
= ℙ𝑌1|𝕏1ℙ𝑌2|𝕏2ℙ𝑌3|𝕏3 …ℙ𝑌𝐾2−1|𝕏𝐾2−1

ℙ𝑌𝐾2|𝑌1…𝑌𝐾2−1𝕏𝐾2
 

(76) 

For the networks in (76), conditioned on 𝕏𝐾2, the output 𝑌𝐾2 is a noisy (degraded) version of 

𝑌1, … , 𝑌𝐾2−1. In the next theorem, we prove that for such networks, treating interference as noise is 

sum-rate optimal. 

Theorem 4.3) Consider the many-to-one interference network in Fig. 13. If the transition probability 

function satisfies the degradedness condition in (76), then the sum-rate capacity is given below: 

𝒞𝑠𝑢𝑚
𝑀𝑡𝑂−𝐼𝑁𝑑𝑒𝑔 = max

 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁

(𝐼(𝕏1; 𝑌1|𝑄) + 𝐼(𝕏2; 𝑌2|𝑄) + ⋯+ 𝐼(𝕏𝐾2−1; 𝑌𝐾2−1|𝑄) + 𝐼(𝕏𝐾2; 𝑌𝐾2|𝑄)) 

(77) 

where 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 is given as in Proposition 4.1. 

Proof of Theorem 4.3) To achieve the bound (77), similar to the scenario of Theorem 4.2, each 

receiver decodes its own messages and treats all the other signals as noise. For the converse part, note 

that the degradedness condition (76) implies the Markov relations given in (66). Therefore, (67) 

constitutes an outer bound on the sum-rate capacity of the network. The proof is completed by the 

fact that for the many-to-one interference network (75) shown in Fig. 13, the expression (67) is 

reduced to (77). ■ 
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Remark:  It should be remarked that the degradedness condition (76) is in general different from (72), 

and the result of Theorem 4.3 cannot be deduced from Theorem 4.2. In fact, for all generalized Z-

interference networks (71), where their transition probability function implies the Markov chains 

(66), treating interference as noise is sum-rate optimal. 

Let us consider the special case of many-to-one classical IC which is derived from the network in Fig. 

13 by setting 𝐾1 = 𝐾2 = 𝐾, i.e., there exists only one transmitter with respect to each receiver. The 

Gaussian channel is formulated as follows: 

{
𝑌𝑖 = 𝑋𝑖 + 𝑍𝑖 , 𝑖 = 1,… , 𝐾 − 1      
𝑌𝐾 = 𝑎1𝑋1 + 𝑎2𝑋2 +⋯+ 𝑎𝐾𝑋𝐾 + 𝑍𝐾

 

(78) 

where 𝑍1, … , 𝑍𝐾 are independent Gaussian noise with zero means and unit variances. Also, the input 

signals are subject to power constraints: 𝔼[𝑋𝑖
2] ≤ 𝑃𝑖, 𝑖 = 1,… , 𝐾. In [33], the authors showed that if 

the channel gains satisfy: 

 ∑ 𝑎𝑖
2𝐾−1

𝑖=1 ≤ 1 

(79) 

then, treating interference as noise is sum-rate optimal. One can show that the channel with (79) is 

(stochastically) degraded in the sense of (76). Thus, its sum-rate capacity is also derived from 

Theorem 4.3. 

4.1.3 Incorporation of Successive Decoding and Treating Interference as Noise 

In Chapter 3, we proved that for all degraded interference networks (12), the successive decoding 

scheme is sum-rate optimal. Also, in previous subchapters, we introduced classes of interference 

networks for which treating interference as noise at the receivers achieves the sum-rate capacity. Now 

we intend to present interesting scenarios for which a combination of these two schemes is optimal. 

We identify classes of interference networks which are composed of two different sets of receivers so 

that to achieve their sum-rate capacity, the receivers of one set apply the successive decoding strategy 

while the receivers of the other set treat interference as noise and decode only their own messages. 

Consider a class of MAINs shown in Fig. 11 with 𝐾2 = 𝜂1 + 𝜂2, where 𝜂1 and 𝜂2 are two arbitrary 

natural numbers. Let the transition probability function of the network satisfies the following 

factorization: 
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ℙ𝑌1…𝑌𝜂1𝑌𝜂1+1…𝑌𝜂1+𝜂2|𝕏1…𝕏𝜂1𝕏𝜂1+1…𝕏𝜂1+𝜂2
= 

                       ℙ𝑌1|𝕏1ℙ𝑌2|𝕏2 …ℙ𝑌𝜂1−1|𝕏𝜂1−1
ℙ𝑌𝜂1|𝑌1…𝑌𝜂1−1𝕏𝜂1

 

                                       × ℙ𝑌𝜂1+1|𝑌𝜂1𝕏𝜂1+1…𝕏𝜂1+𝜂2
ℙ𝑌𝜂1+2|𝑌𝜂1+1

…ℙ𝑌𝜂1+𝜂2−1|𝑌𝜂1+𝜂2−2
ℙ𝑌𝜂1+𝜂2|𝑌𝜂1+𝜂2−1

 

(80) 

Note that the networks in (80) is neither degraded in the sense of (12) nor satisfies the Z-networks’ 

factorization (71). Therefore, they belong to none of the scenarios considered before. In fact, such 

networks can be considered as a combination of the degraded networks in (12) and the many-to-one 

networks in (76). In the next theorem, we establish the sum-rate capacity for these networks where we 

show that treating interference as noise at the receivers 𝑌1, … , 𝑌𝜂1 and the successive decoding scheme 

at the receivers 𝑌𝜂1+1, … , 𝑌𝜂1+𝜂2 is optimal. 

Theorem 4.4) For the MAIN shown in Fig. 11 with 𝐾2 = 𝜂1 + 𝜂2 if the transition probability function 

of the network satisfies the degradedness condition in (80), the sum-rate capacity is given by: 

max
 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁

(

𝐼(𝕏1; 𝑌1|𝑄) + 𝐼(𝕏2; 𝑌2|𝑄) +⋯+ 𝐼(𝕏𝜂1−1; 𝑌𝜂1−1|𝑄) + 𝐼(𝕏𝜂1; 𝑌𝜂1|𝑄)

+𝐼(𝕏𝜂1+1; 𝑌𝜂1+1|𝕏𝜂1+2, … , 𝕏𝜂1+𝜂2−1, 𝕏𝜂1+𝜂2 , 𝑄) + ⋯

+𝐼(𝕏𝜂1+𝜂2−1; 𝑌𝜂1+𝜂2−1|𝕏𝜂1+𝜂2 , 𝑄) + 𝐼(𝕏𝜂1+𝜂2; 𝑌𝜂1+𝜂2|𝑄)

) 

(81) 

where 𝒫
∗

𝑠𝑢𝑚
𝑀𝐴𝐼𝑁 is given as in Proposition 4.1. 

Proof of Theorem 4.4) The achievability is derived using a combination of treating interference as 

noise and successive decoding strategy: The messages 𝕄−𝕄∗ are not sent, where 𝕄∗ are those 

elements of 𝕄 which are not a satellite for any other message (considering the plan of messages). The 

messages 𝕄∗ are encoded separately using independent codewords. The receiver 𝑌𝑗, 𝑗 = 1,… , 𝜂1, 

jointly decodes its respective messages 𝕄𝑌𝑗
∗  and treats all the other signals as noise. The decoding 

scheme at the receivers 𝑌𝜂1+1, … , 𝑌𝜂1+𝜂2 is the successive decoding scheme presented for the 

degraded networks given in (12). The receiver 𝑌𝜂1+𝜂2 successively decodes its respective messages 

𝕄𝑌𝜂1+𝜂2
∗ . The partial sum-rate due to this step is 

𝐼 (𝕄𝑌𝜂1+𝜂2
∗ ; 𝑌𝜂1+𝜂2|𝑄) 
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At the receiver 𝑌𝜂1+𝜂2−1, first the messages 𝕄𝑌𝜂1+𝜂2
∗  are successively decoded similar to the receiver 

𝑌𝜂1+𝜂2; this step does not introduce any new rate cost because 𝑌𝜂1+𝜂2 is a degraded version of 

𝑌𝜂1+𝜂2−1. Then, it successively decodes its respective messages 𝕄𝑌𝜂1+𝜂2−1
∗  using the received 

sequence as well as the previously decoded codewords. For this step, successful decoding with the 

following partial sum-rate is achievable: 

𝐼 (𝕄𝑌𝜂1+𝜂2−1
∗ ; 𝑌𝜂1+𝜂2−1|𝕄𝑌𝜂1+𝜂2

∗ , 𝑄) 

This successive decoding strategy is repeated at other receivers step by step from the weaker receivers 

towards the stronger ones up to the receiver 𝑌𝜂1+1. This receiver also first decodes the messages 

𝕄𝑌𝜂1+𝜂2
∗ ,𝕄𝑌𝜂1+𝜂2−1

∗ , … ,𝕄𝑌𝜂1+2
∗  successively and then decodes its own messages 𝕄𝑌𝜂1+1

∗ . The rate cost 

due to this step is 

𝐼 (𝕄𝑌𝜂1+1
∗ ; 𝑌𝜂1+1|𝕄𝑌𝜂1+2

∗ , … ,𝕄𝑌𝜂1+𝜂2−1
∗ ,𝕄𝑌𝜂1+𝜂2

∗ , 𝑄) 

Therefore, by this scheme the following sum-rate is achieved: 

max  
{PDFs in (65)}

(

 
 
𝐼(𝕄𝑌1

∗ ; 𝑌1|𝑄) + 𝐼(𝕄𝑌2
∗ ; 𝑌2|𝑄) + ⋯+ 𝐼 (𝕄𝑌𝜂1−1

∗ ; 𝑌𝜂1−1|𝑄) + 𝐼 (𝕄𝑌𝜂1
∗ ; 𝑌𝜂1|𝑄)

𝐼 (𝕄𝑌𝜂1+1
∗ ; 𝑌𝜂1+1|𝕄𝑌𝜂1+2

∗ , … ,𝕄𝑌𝜂1+𝜂2−1
∗ ,𝕄𝑌𝜂1+𝜂2

∗ , 𝑄) + ⋯

+𝐼 (𝕄𝑌𝜂1+𝜂2−1
∗ ; 𝑌𝜂1+𝜂2−1|𝕄𝑌𝜂1+𝜂2

∗ , 𝑄) + 𝐼 (𝕄𝑌𝜂1+𝜂2
∗ ; 𝑌𝜂1+𝜂2|𝑄) )

 
 

 

(82) 

Similar to the procedure in (70), one can show that (82) is equivalent to (81). For the converse part, 

note that the degradedness condition in (80) implies the Markov relations (66). Therefore, (67) 

constitutes an outer bound on the sum-rate capacity. Moreover, given the factorization (80), the 

expression in (67) is reduced to (81). The proof is thus complete. ■ 

In fact, many other scenarios could be identified for which the outer bound in (60) is sum-rate 

optimal. Essentially, this outer bound is optimal for the degraded networks in (12) for which the 

successive decoding strategy achieves the sum-rate capacity. The degradedness condition in (12) 

implies that a weaker receiver, given a stronger receiver, is statistically independent of all the input 

signals. Nonetheless, for certain networks with receivers statistically independent of some of the 

transmitters, such as those introduced in this subchapter, it is always possible to somewhat relax the 
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crucial degradedness constraint (12) and derive situations where the outer bound (60) is still sum-rate 

optimal. 
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Chapter 5 

Nested Cut-Set Bound 

Let us reconsider the outer bound established in Theorem 4.1 on the sum-rate capacity of general 

interference networks. This bound is indeed derived by enhancing a general non-degraded network 

with artificial outputs to obtain a degraded network whose capacity region includes that of the origin 

network as a subset. The degraded structure (61) imposed on the network is in fact the fundamental 

key which enables us to establish the single-letter outer bound (60). It should be noted that although 

the outer bound (60) is given based on auxiliary random variables, one can easily re-derive another 

bound (possibly weaker) which is only expressed based on the input signals. The approach to this end 

is similar to what we derived in (44) (please notice how auxiliaries are removed in (44) step by step). 

The resultant outer bound would be similar to (64) given for the MAINs. Another fact is that although 

the outer bound (60) is established on the sum-rate capacity of the interference networks, one can 

derive similar bounds on partial sum-rate capacities as well. As a result, we can obtain a unified outer 

bound on the capacity region of all single-hop communication networks which is generally tighter 

that the standard cut-set bound. This bound is indeed given in an early draft of a part of this research 

due to 2012 [10]. In 2014, Shomorony and Avestimehr reported a general outer bound on the capacity 

region of deterministic interference networks [9]. One can verify that their outer bound is in fact a 

special case of the general outer bound established by the author in [10].  

In this Chapter, we intend to go beyond interference networks and establish a general outer bound on 

the capacity region of all communication networks. Clearly, by taking insight from our results for 

degraded interference networks, we present an extension to the standard cut-set for general 

communication networks of arbitrary large sizes, which we refer to as nested cut-set bound. The 

derivation is in spirit identical to that of degraded interference networks. Given a general 

communication network topology, we apply a series of cuts to the network to partition its nodes into 

distinct subsets. Next, we collect the outputs in each subset and treat them totally as the output signal 

corresponding to that subset. Finally, we impose a degraded structure similar to (61) on the output 

signals of the subsets and then employ the proof technique developed for degraded interference 

networks to derive a single-letter outer bound. The details are given as follows. 
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ℙ𝑌1…𝑌𝑁|𝑋1…𝑋𝑁(𝑦1, … , 𝑦𝑁|𝑥1, … , 𝑥𝑁) 

 

                            Information flow 

 

                                                                                                                    

                                                                                                                 

                                                                                                                                                                        

                  𝑋1: 𝑌1                                                                                                                              𝑋𝑁: 𝑌𝑁  

                

      

                                                    𝕏0: 𝕐0         𝕏1: 𝕐1              𝕏2: 𝕐2                𝕏3: 𝕐3 

                                                                 

                                                                                                

                                                                                                                                

 

                                 𝑐0                         𝑐1                           𝑐2                     𝑐3                                                   

Figure 14.  A series of three cuts applied to the general communication netwrok. 

Consider the general communication network as described in Chapter 2.1. Given any integer 𝑟, a 

series of 𝑟 cuts denoted by 〈𝑐0, 𝑐1, … , 𝑐𝑟〉 is a partitioning of the nodes of the general communication 

network into 𝑟 + 1 distinct subsets so that 𝑖𝑡ℎ subset is denoted by 𝑐𝑖, 𝑖 ∈ [0, 𝑟]. Figure 14 represents 

a series of three cuts. 

For 𝑖 = 0,1,… , 𝑟, let define: 

𝕏𝑖 ≜ {𝑋𝑘 ∶  𝑋𝑘 ∈ 𝑐𝑖}, 𝕐𝑖 ≜ {𝑌𝑘 ∶  𝑌𝑘 ∈ 𝑐𝑖} 

𝕄𝕏𝑖 ≜ ⋃ 𝕄𝑋𝑘

𝑋𝑘∈𝕏𝑖

, 𝕄𝕐𝑖 ≜ ⋃ 𝕄𝑌𝑘

𝑌𝑘∈𝕐𝑖

 

 (83) 

Therefore, 𝕏𝑖 and 𝕐𝑖 are respectively the collection of input and output signals of the nodes in 𝑐𝑖, and 

𝕄𝕏𝑖 and 𝕄𝕐𝑖 are respectively the set of messages which are transmitted and received by the nodes in 

𝑐𝑖. Let also denote: 
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𝕄𝑖
〈𝑐0,𝑐1,…,𝑐𝑟〉 ≜ 𝕄𝕐𝑖 −𝕄𝕏𝑖 −⋃ 𝕄𝕐𝑘

𝑘>𝑖
−⋃ 𝕄𝕏𝑘

𝑘>𝑖
, 𝑖 = 0,1,… , 𝑟 

(84) 

The information rate which flows through the series of cuts 〈𝑐0, 𝑐1, … , 𝑐𝑟〉 is defined as follows: 

𝑹〈𝑐0,𝑐1,…,𝑐𝑟〉 ≜ ∑ ∑ 𝑅𝑖
𝑖  ∶

𝑀𝑖∈𝕄𝑘
〈𝑐0,𝑐1,…,𝑐𝑟〉

𝑘∈[1,𝑟]

 

(85) 

Now we are at the point to state our main result of this chapter as given in the following theorem. 

Theorem 5.1) Consider a general communication network with 𝑁 nodes as depicted in Fig. 1. 

Assume that the network is cut by a series of 𝑟 cuts denoted by 〈𝑐0, 𝑐1, … , 𝑐𝑟〉. The information rate 

flowing through the cuts is bounded as follows: 

𝑹〈𝑐0,𝑐1,…,𝑐𝑟〉 ≤ 𝐼(𝕏0; 𝕐1, 𝕐2, … , 𝕐𝑟|𝕏1, 𝕏2, … , 𝕏𝑟) + 𝐼(𝕏1; 𝕐2, … , 𝕐𝑟|𝕏2, … , 𝕏𝑟) +⋯ 

                                                                               +𝐼(𝕏𝑟−2; 𝕐𝑟−1, 𝕐𝑟|𝕏𝑟−1, 𝕏𝑟) + 𝐼(𝕏𝑟−1; 𝕐𝑟|𝕏𝑟) 

(86) 

For some joint distributions 𝑃𝑋1𝑋2…𝑋𝑁(𝑥1, 𝑥2, … , 𝑥𝑁). 

Proof of Theorem 5.1: As mentioned before, the proof is essentially similar to what we derived for 

degraded networks in Chapter 3. As it is clear from the bound (86), the key is the following degraded 

structure which we impose on the network using the series of cuts. 

𝕏0, 𝕏1, 𝕏2, … , 𝕏𝑟 → 𝕐1, 𝕐2, … , 𝕐𝑟 → 𝕐2, … , 𝕐𝑟 → ⋯ → 𝕐𝑟−1, 𝕐𝑟 → 𝕐𝑟 

(87) 

Let describe the proof in details. Consider a length-𝑛 code ℭ𝑛(𝑅1, … , 𝑅𝐾) with vanishing average 

error probability for the network. Using Fano’s inequality, we have: 

∑ 𝑅𝑖

𝑖  ∶  𝑀𝑖∈𝕄𝑟
〈𝑐0,𝑐1,…,𝑐𝑟〉

≤
1

𝑛
𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟
𝑛,𝕄𝕏𝑟) + 𝜖𝑟,𝑛 

                                    =
1

𝑛
𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟
𝑛|𝕄𝕏𝑟) + 𝜖𝑟,𝑛 
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                                    =
1

𝑛
∑𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟,𝑡|𝕐𝑟
𝑡−1,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

                                    =
(𝑎) 1

𝑛
∑𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟,𝑡|𝕏𝑟,𝑡 , 𝕐𝑟
𝑡−1,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

                                    ≤
1

𝑛
∑𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉,𝕄𝕏𝑟 , 𝕐𝑟
𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

                                    ≤
1

𝑛
∑𝐼 (𝕄𝑟

〈𝑐0,𝑐1,…,𝑐𝑟〉,𝕄𝕏𝑟 , 𝕐𝑟
𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

                                    =
(𝑏) 1

𝑛
∑𝐼(𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

                                    ≤
(𝑐) 1

𝑛
∑𝐼(𝕏𝑟−1,𝑡,𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+ 𝜖𝑟,𝑛 

(88) 

where 𝜖𝑟,𝑛 → 0 as 𝑛 → ∞, equality (a) holds because 𝕏𝑟,𝑡 is a deterministic function of (𝕐𝑟
𝑡−1,𝕄𝕏𝑟), 

equality (b) holds because 𝕄𝑟
〈𝑐0,𝑐1,…,𝑐𝑟〉⋃𝕄𝕏𝑟

𝑛 = 𝕄𝕐𝑟
𝑛 ⋃𝕄𝕏𝑟

𝑛 , and inequality (c) holds because adding 

information increases mutual information. Also, we have: 

∑ 𝑅𝑖

𝑖  ∶  𝑀𝑖∈𝕄𝑟−1
〈𝑐0,𝑐1,…,𝑐𝑟〉

≤
1

𝑛
𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟−1
𝑛 ,𝕄𝕏𝑟−1) + 𝜖𝑟−1,𝑛 

                     ≤
1

𝑛
𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟−1
𝑛 , 𝕐𝑟

𝑛,𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟) + 𝜖𝑟−1,𝑛 

                     =
1

𝑛
𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟−1
𝑛 , 𝕐𝑟

𝑛|𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟) + 𝜖𝑟−1,𝑛 

                     =
1

𝑛
∑𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕐𝑟−1
𝑡−1 , 𝕐𝑟

𝑡−1,𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟−1,𝑛 

                     =
(𝑑) 1

𝑛
∑𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡 , 𝕐𝑟−1
𝑡−1 , 𝕐𝑟

𝑡−1,𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟−1,𝑛 

                     ≤
1

𝑛
∑𝐼 (𝕄𝑟−1

〈𝑐0,𝑐1,…,𝑐𝑟〉,𝕄𝕏𝑟−1 , 𝕐𝑟−1
𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡, 𝕐𝑟

𝑡−1,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟−1,𝑛 



 

 54 

                     =
(𝑒) 1

𝑛
∑𝐼(𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 , 𝕐𝑟−1

𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡 , 𝕐𝑟
𝑡−1,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟−1,𝑛 

                     ≤
(𝑓) 1

𝑛
∑𝐼(𝕏𝑟−2,𝑡,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 , 𝕐𝑟−1

𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡, 𝕐𝑟
𝑡−1,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

+ 𝜖𝑟−1,𝑛 

(89) 

where 𝜖𝑟−1,𝑛 → 0 as 𝑛 → ∞, equality (d) holds because 𝕏𝑟−1,𝑡 and 𝕏𝑟,𝑡 are deterministic functions of 

(𝕐𝑟−1
𝑡−1 ,𝕄𝕏𝑟−1) and (𝕐𝑟

𝑡−1,𝕄𝕏𝑟), respectively, equality (e) holds because 

𝕄𝑟−1
〈𝑐0,𝑐1,…,𝑐𝑟〉⋃𝕄𝕏𝑟−1⋃𝕄𝕐𝑟⋃𝕄𝕏𝑟 = 𝕄𝕐𝑟−1⋃𝕄𝕏𝑟−1⋃𝕄𝕐𝑟⋃𝕄𝕏𝑟, and inequality (f) holds because 

adding information increase mutual information. By the same approach, for 𝑘 = 1,… , 𝑟, one can 

derive: 

∑ 𝑅𝑖

𝑖  ∶  𝑀𝑖∈𝕄𝑘
〈𝑐0,𝑐1,…,𝑐𝑟〉

≤ 𝛴𝑘 + 𝜖𝑘,𝑛 

 (90) 

where 𝜖𝑘,𝑛 → 0 as 𝑛 → ∞, and 𝛴𝑘 is defined as follows: 

𝛴𝑘 ≜ 

1

𝑛
∑𝐼(𝕏𝑘−1,𝑡,𝕄𝕐𝑘 ,𝕄𝕏𝑘 , 𝕐𝑘

𝑡−1; 𝕐𝑘,𝑡, … , 𝕐𝑟,𝑡|𝕏𝑘,𝑡, … , 𝕏𝑟,𝑡, 𝕐𝑘+1
𝑡−1 , … , 𝕐𝑟

𝑡−1,𝕄𝕐𝑘+1 ,𝕄𝕏𝑘+1 , … ,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

 

(91) 

Then, we have: 

𝛴𝑟 + 𝛴𝑟−1 =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡,𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 , 𝕐𝑟−1

𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡 , 𝕐𝑟
𝑡−1,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

 

                    =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1; 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1
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                             +
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 , 𝕐𝑟−1

𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡 , 𝕐𝑟
𝑡−1,𝕄𝕐𝑟 ,𝕄𝕏𝑟)

𝑛

𝑡=1

 

                    =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟−1

𝑡−1 , 𝕐𝑟
𝑡−1; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

(92) 

Also, we can derive: 

𝛴𝑟 + 𝛴𝑟−1 + 𝛴𝑟−2 

       =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                 +
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1, 𝕐𝑟−1
𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡 , 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                 + 
1

𝑛
∑𝐼 (𝕏𝑟−3,𝑡,𝕄𝕐𝑟−2 ,𝕄𝕏𝑟−2 , 𝕐𝑟−2

𝑡−1 ; 𝕐𝑟−2,𝑡, 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|
𝕏𝑟−2,𝑡, 𝕏𝑟−1,𝑡 , 𝕏𝑟,𝑡 , 𝕐𝑟−1

𝑡−1 , 𝕐𝑟
𝑡−1,

𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟

)

𝑛

𝑡=1

 

       =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                 +
1

𝑛
∑𝐼(𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟

𝑡−1, 𝕐𝑟−1
𝑡−1 ; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−2,𝑡, 𝕏𝑟−1,𝑡 , 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                 + 
1

𝑛
∑𝐼 (𝕏𝑟−3,𝑡,𝕄𝕐𝑟−2 ,𝕄𝕏𝑟−2 , 𝕐𝑟−2

𝑡−1 ; 𝕐𝑟−2,𝑡, 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|
𝕏𝑟−2,𝑡, 𝕏𝑟−1,𝑡 , 𝕏𝑟,𝑡 , 𝕐𝑟−1

𝑡−1 , 𝕐𝑟
𝑡−1,

𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 ,𝕄𝕐𝑟 ,𝕄𝕏𝑟

)

𝑛

𝑡=1

 

       =
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                 + 
1

𝑛
∑𝐼 (

𝕏𝑟−3,𝑡,𝕄𝕐𝑟−2 ,𝕄𝕏𝑟−2 ,𝕄𝕐𝑟−1 ,𝕄𝕏𝑟−1 ,

𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝕐𝑟−2
𝑡−1 , 𝕐𝑟−1

𝑡−1 , 𝕐𝑟
𝑡−1   ; 𝕐𝑟−2,𝑡, 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−2,𝑡, 𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

(93) 

By continuing the steps (92) and (93), we can obtain: 
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𝛴𝑟 + 𝛴𝑟−1 + 𝛴𝑟−2 +⋯+ 𝛴1 

          ≤
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

+⋯

+
1

𝑛
∑𝐼(𝕏1,𝑡; 𝕐2,𝑡, … , 𝕐𝑟,𝑡|𝕏2,𝑡, … , 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

                             +
1

𝑛
∑𝐼 (

𝕏0,𝑡,𝕄𝕐1 ,𝕄𝕏1 ,𝕄𝕐2 ,𝕄𝕏2 , … ,

𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝑌1
𝑡−1, … , 𝑌𝑟−1

𝑡−1, 𝑌𝑟
𝑡−1  ; 𝕐1,𝑡, … , 𝕐𝑟,𝑡|𝕏1,𝑡, … , 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

          =
(𝑔) 1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

+⋯

+
1

𝑛
∑𝐼(𝕏0,𝑡; 𝕐1,𝑡, … , 𝕐𝑟,𝑡|𝕏1,𝑡, … , 𝕏𝑟,𝑡)

𝑛

𝑡=1

 

(94) 

where equality (g) holds because due to the memoryless characteristic of the network we have: 

1

𝑛
∑𝐼(𝕄𝕐1 ,𝕄𝕏1 ,𝕄𝕐2 ,𝕄𝕏2 , … ,𝕄𝕐𝑟 ,𝕄𝕏𝑟 , 𝑌1

𝑡−1, … , 𝑌𝑟−1
𝑡−1, 𝑌𝑟

𝑡−1; 𝕐1,𝑡, … , 𝕐𝑟,𝑡|𝕏0,𝑡, 𝕏1,𝑡, … , 𝕏𝑟,𝑡)

𝑛

𝑡=1

= 0 

(95) 

Thus, using (94), we conclude: 

𝑹〈𝑐0,𝑐1,…,𝑐𝑟〉 = ∑ ∑ 𝑅𝑖
𝑖  ∶

𝑀𝑖∈𝕄𝑘
〈𝑐0,𝑐1,…,𝑐𝑟〉

𝑘∈[1,𝑟]

≤∑𝛴𝑘 + 𝜖𝑘,𝑛

𝑟

𝑘=1

 

                     ≤
1

𝑛
∑𝐼(𝕏0,𝑡; 𝕐1,𝑡, … , 𝕐𝑟,𝑡|𝕏1,𝑡, … , 𝕏𝑟,𝑡)

𝑛

𝑡=1

+⋯+
1

𝑛
∑𝐼(𝕏𝑟−2,𝑡; 𝕐𝑟−1,𝑡, 𝕐𝑟,𝑡|𝕏𝑟−1,𝑡, 𝕏𝑟,𝑡)

𝑛

𝑡=1

+
1

𝑛
∑𝐼(𝕏𝑟−1,𝑡; 𝕐𝑟,𝑡|𝕏𝑟,𝑡)

𝑛

𝑡=1

+∑𝜖𝑘,𝑛

𝑟

𝑘=1

 

(96) 

The proof is now complete. ■ 
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Remarks: 

1. It is clear that the nested cut-set bound (86) coincides with the standard cut-set bound if we 

consider just one cut. For any network with more than one receiver, the nested cut-set bound 

would be strictly tighter than the cut-set bound.  

2. By comparing the proofs of Theorems 3.1 and 5.1, we see that the derivations for the nested 

cut-set bound (86) are exactly similar to those of the sum-rate capacity for general degraded 

interference networks. However, for degraded networks, we keep the messages in final 

expression because they are needed to represent the sum-rate capacity. Instead for the nested 

cut-set bound, we derive the final expression based on the input signals which yields a simple 

computation of the bound.  

3. Though the bound in (86) is given for all joint distributions on the input signals, for many 

networks where some inputs are statistically independent of each other, e.g., the interference 

channels, one can consider a more limited set of distributions. In this case, albeit one needs to 

a time-sharing parameter for characterizing the bound. Thus, the outer bound (64) is indeed 

the nested cut-set bound for MAINs. This shows that, unlike the standard cut-set bound, the 

nested cut-set bound is indeed optimal or sum-rate optimal for many large communication 

networks. 

4. The nested cut-set bound holds also for the general Gaussian communication networks (6). 

Using the principle of “Gaussian maximizes the entropy”, one can simply show that Gaussian 

inputs are always optimal for the bound. Therefore, it can be easily evaluated for any 

Gaussian network.  

We conclude this chapter by providing an example on the nest cut-set bound. Consider a two-user 

interference channel with a relay as shown in Fig. 15 on the top of next page. In this network, two 

transmitters send independent messages to their corresponding receivers while being assisted by a 

relay. This scenario is called the interference-relay channel. For the interference-relay channel, the 

standard cut-set bound is given as follows: 

                                      𝑅1 ≤ min{𝐼(𝑋1, 𝑋𝑟; 𝑌1|𝑋2, 𝑄), 𝐼(𝑋1; 𝑌1, 𝑌𝑟|𝑋𝑟, 𝑋2, 𝑄)} 

                                      𝑅2 ≤ min{𝐼(𝑋2, 𝑋𝑟; 𝑌2|𝑋1, 𝑄), 𝐼(𝑋2; 𝑌2, 𝑌𝑟|𝑋𝑟, 𝑋1, 𝑄)} 

𝑅1 + 𝑅2 ≤ min{𝐼(𝑋1, 𝑋2, 𝑋𝑟; 𝑌1, 𝑌2|𝑄), 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2, 𝑌𝑟|𝑋𝑟, 𝑄)} 

(97) 

for some joint PDFs 𝑃𝑄𝑃𝑋1𝑄𝑃𝑋2|𝑄𝑃𝑋𝑟|𝑋1𝑋2𝑄. 
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                        𝑀1                        𝑋1                                                  𝑌1                        �̂�1 

             

                        𝑀2                        𝑋2                                                  𝑌2                        �̂�2 

 

Figure 15.  The interference-relay channel. 

The nested cut-set bound includes the following constraints as well: 

                                   𝑅1 + 𝑅2 ≤ 𝐼(𝑋1, 𝑋𝑟; 𝑌1, 𝑌2|𝑋2, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑄) 

                                   𝑅1 + 𝑅2 ≤ 𝐼(𝑋2, 𝑋𝑟; 𝑌1, 𝑌2|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

                                   𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1, 𝑌2, 𝑌𝑟|𝑋2, 𝑋𝑟, 𝑄) + 𝐼(𝑋2, 𝑋𝑟; 𝑌2|𝑄) 

                                   𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌1, 𝑌2, 𝑌𝑟|𝑋1, 𝑋𝑟, 𝑄) + 𝐼(𝑋1, 𝑋𝑟; 𝑌1|𝑄) 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1, 𝑌2, 𝑌𝑟|𝑋2, 𝑋𝑟, 𝑄) + 𝐼(𝑋2; 𝑌2, 𝑌𝑟|𝑋𝑟, 𝑄) 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌1, 𝑌2, 𝑌𝑟|𝑋1, 𝑋𝑟, 𝑄) + 𝐼(𝑋1; 𝑌1, 𝑌𝑟|𝑋𝑟, 𝑄) 

(98) 

The above constraints are indeed derived by applying two cuts to the network. It is clear that the 

nested cut-set bound is significantly tighter. The same conclusion can be derived for many other 

networks. 
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Chapter 6 

Two-User Interference Channels with Conferencing Receivers 

This chapter is divided into two parts. We present our results for the general two-user IC with 

cooperative users in Chapter 6.1. Then in Chapter 6.2, we specifically consider the Gaussian channel 

given in (9). 

6.1 General Interference Channel with Conferencing Receivers 

First of all, we present a novel outer bound for the general two-user IC with conferencing decoders.  

Define ℜ𝑜
𝐼𝐶→𝐶𝐷 as the union of all rate pairs (𝑅1, 𝑅2) ∈ ℝ+

2  such that 

                                           𝑅1 ≤ min {𝐼(𝑈, 𝑋1; 𝑌1|𝑄) + 𝐷21, 𝐼(𝑋1; 𝑌1|𝑋2, 𝑄) + 𝐷21} 

                                           𝑅1 ≤ 𝐼(𝑋1; 𝑌1|𝑌2, 𝑋2, 𝑉, 𝑄) + 𝐼(𝑋1; 𝑌2|𝑋2, 𝑄) 

                                           𝑅1 ≤ 𝐼(𝑋1; 𝑌2|𝑌1, 𝑋2, 𝑉, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑋2, 𝑄) 

                                           𝑅2 ≤ min{𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12, 𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) + 𝐷12} 

                                           𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌1|𝑋1, 𝑄) 

                                           𝑅2 ≤ 𝐼(𝑋2; 𝑌1|𝑌2, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 + 𝐷21 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝑄) + 𝐷12 + 𝐷21 

                                  𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑌2, 𝑋2, 𝑉, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                                  𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) + 𝐷21 

                                  𝑅1 + 𝑅2 ≤ 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2|𝑄) 

 (99) 

for some joint PDFs 𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄𝑃𝑈𝑉|𝑋1𝑋2𝑄. The following theorem holds. 

Theorem 6.1. The set ℜ𝑜
𝐼𝐶→𝐶𝐷 constitutes an outer bound on the capacity region of the two-user IC 

with decoders connected by the conferencing links of capacities 𝐷12 and 𝐷21, as shown in Fig. 3. 

Proof of Theorem 6.1: The proof is given in Appendix C. ■ 

Next, using the outer bound (99), we prove four capacity results for the IC with unidirectional 

conferencing between receivers. We highlight that a conferencing link (between receivers) may be 

utilized to provide one receiver with information about its corresponding signal or its non-
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corresponding signal (interference). Our following theorems reveal that both strategies can be helpful 

to achieve the capacity of the channel. 

Theorem 6.2. For the two-user IC with unidirectional conferencing between decoders, where 𝐷21 =

0, if  

𝐼(𝑋1; 𝑌1|𝑋2) ≤ 𝐼(𝑋1; 𝑌2|𝑋2)   for all 𝑃𝑋1𝑃𝑋2 

𝑋2 → 𝑌1, 𝑋1 → 𝑌2  (Markov chain) 

(100) 

then, the outer bound (99) is optimal. The capacity region is given by the union of all (𝑅1, 𝑅2) ∈ ℝ+
2  

such that: 

                                              𝑅1 ≤ 𝐼(𝑋1; 𝑌1|𝑋2, 𝑄), 

                                              𝑅2 ≤ 𝑚𝑖𝑛{𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) + 𝐷12, 𝐼(𝑋2; 𝑌1|𝑋1, 𝑄)} 

𝑅1 + 𝑅2 ≤ 𝑚𝑖𝑛{𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12, 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄)} 

(101) 

for some joint PDFs 𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄.  

Proof of Theorem 6.2: Let first prove the achievability of (101). Without loss of generality, assume 

that the time-sharing variable is null 𝑄 ≅ ∅. We present a coding scheme in which both messages are 

decoded at both receivers. Consider the independent random variables 𝑀1 and 𝑀2 uniformly 

distributed over the sets [1: 2𝑛𝑅1] and [1: 2𝑛𝑅2], respectively. Partition the set [1: 2𝑛𝑅2] into 2𝑛𝑅12 

cells each containing 2𝑛(𝑅2−𝑅12) elements, where 𝑅12 = min{𝑅2, 𝐷12}. Now label the cells by 𝑐 ∈

[1: 2𝑛𝑅12] and the elements inside each cell by 𝜅 ∈ [1: 2𝑛(𝑅2−𝑅12)]. Accordingly, we have 𝑐(𝑀2) = 𝜃 

if 𝑀2 is inside the cell 𝜃, and 𝜅(𝑀2) = 𝛽 if 𝑀2 is the 𝛽𝑡ℎ element of the cell that it belongs to. 

Encoding at the transmitters is similar to a multiple access channel. For decoding, the first receiver 

decodes both messages 𝑀1 and 𝑀2, by exploring for codewords 𝑋1
𝑛 and 𝑋2

𝑛 which are jointly typical 

with its received sequence 𝑌1
𝑛. This receiver then sends the cell index of the estimated message of the 

second transmitter, i.e. 𝑐(�̂�2), to the receiver 𝑌2 by holding a (𝐷12, 0)-permissible conference. The 

second receiver applies a jointly typical decoder to decode the messages, with the caveat that the cell 

which 𝑀2 belongs to is now known. Clearly, given 𝑐(𝑀2), the second receiver detects the message 

𝑀1 and 𝜅(𝑀2) by exploring for codewords 𝑋1
𝑛 and 𝑋2

𝑛 which are jointly typical with its received 
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sequence 𝑌2
𝑛. One can easily show that under the conditions (100), this coding scheme yields the 

achievability of the rate region (101).  

Next, using the outer bound (99), we show that under the conditions (100), the achievable rate region 

(101) is in fact optimal. Based on (99) for 𝐷21 = 0 we have: 

          𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌1|𝑋1, 𝑄) 

                =
𝑎
𝐼(𝑋2; 𝑌1|𝑋1, 𝑄) 

          𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                        ≤
𝑏
𝐼(𝑋1; 𝑌2|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                        = 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 

          𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

                        =
𝑐
𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

where equalities (a) and (c) are due to the second condition of (100) (given 𝑋1, 𝑌2 is a degraded 

version of 𝑌1), and inequality (b) is due to the first condition of (100) (see [2, 34, 35]). Note that the 

other constraints of (101) are directly given by (99) when 𝐷21 = 0. The proof is thus complete. ■ 

Corollary 6.1. Consider the following Gaussian IC with unidirectional conferencing between 

decoders (𝐷21 = 0).  

𝑌1 = 𝑎11𝑋1 + 𝑎12𝑋2 + 𝑍1 

𝑌2 = 𝑎21𝑋1 + 𝑎22𝑌1 + 𝑍2 

(102) 

where 𝑍1 and 𝑍2 are independent unit-variance Gaussian noises. If  (𝑎11
2 − 𝑎21

2 ) ≤ 2𝑎11𝑎21𝑎22, then 

the capacity region is given by (101).  

Proof of Corollary 6.1: First note that the channel (102) satisfies the second condition of (100) by 

definition. Moreover, one can easily see that for this channel the first condition of (100) is equivalent 

to  (𝑎11
2 − 𝑎21

2 ) ≤ 2𝑎11𝑎21𝑎22. Therefore, we can apply the result of Theorem 6.2. ■ 

Based on Theorem 6.2, for the channel satisfying the conditions (100) the optimal scheme to achieve 

the capacity region is to decode both messages at both receivers and the optimal cooperation strategy 

is to provide one receiver with information about its corresponding signal via the conferencing link. 
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In fact, the conditions (100) could be interpreted as a strong interference regime for the IC with 

unidirectional cooperation between receivers. Note that if the channel satisfies (100), it will also 

satisfy the standard strong interference regime [27] as well. 

Theorem 6.3. For the two-user IC with unidirectional conferencing between decoders, where 𝐷21 =

0, if 

𝐼(𝑉; 𝑌2|𝑋2) ≤ 𝐼(𝑉; 𝑌1|𝑋2)     for all 𝑃𝑋1𝑃𝑋2𝑃𝑉|𝑋1𝑋2 

𝑋2 → 𝑌1, 𝑋1 → 𝑌2         (Markov chain) 

(103) 

then the outer bound (99) is sum-rate optimal and the sum-capacity is given by 

𝑚𝑖𝑛
𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄

{
𝐼(𝑋1; 𝑌1|𝑋2, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑄) + 𝐷12,

𝐼(𝑋1, 𝑋2; 𝑌1|𝑄)
} 

(104) 

Proof of Theorem 6.3: The coding scheme that achieves the sum-rate (104) is similar to that given in 

the proof of Theorem 6.2, except for the decoding of the second receiver. Here, the second receiver 

only decodes its own signal. Given 𝑐(𝑀2), the second receiver detects 𝜅(𝑀2) by exploring for 

codewords 𝑋2
𝑛 which are jointly typical with its received sequence 𝑌2

𝑛. One can see that the sum-rate 

(104) is achieved by this scheme. Now consider the outer bound (99) where 𝐷21 = 0. Under the 

conditions (103), we have: 

  𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                = 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉; 𝑌2|𝑋2, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑄) + 𝐷12 

                ≤
𝑎
𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉; 𝑌1|𝑋2, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑄) + 𝐷12 

                = 𝐼(𝑋1; 𝑌1|𝑋2, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑄) + 𝐷12 

(105) 

where inequality (a) is due to the first condition of (103). Moreover,  

  𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

                =
𝑏
𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

(106) 
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where equality (b) holds because of the second condition of (103), i.e., given 𝑋1, 𝑌2 is a degraded 

version of 𝑌1, and thereby the first mutual information on the left side of (b) is zero. Therefore, (104) 

is in fact the sum-rate capacity of the channel and the proof is thus complete. ■ 

Corollary 6.2) Consider the Gaussian IC given in (102) with unidirectional conferencing between 

decoders, where 𝐷21 = 0. If (𝑎11
2 − 𝑎21

2 ) ≥ 2𝑎11𝑎21𝑎22, then the sum-rate capacity is given by (104). 

Proof of Corollary 6.2: The Gaussian channel (102) satisfies the second condition of (103) by 

definition. Furthermore, for this channel the first condition of (103) is equivalent to (𝑎11
2 − 𝑎21

2 ) ≥

2𝑎11𝑎21𝑎22. Thus, we can apply the result of Theorem 6.3. ■ 

According to Theorem 6.3, for the channel given in (103) the optimal scheme to achieve the sum-rate 

capacity is to decode interference at the receiver which is the source of the conferencing link, and to 

treat interference as noise at the receiver which is the destination of the conferencing link. Moreover, 

the optimal cooperation strategy is to provide the receiver that treats interference as noise with 

information about its corresponding signal via the conferencing link. The regime (103) could be 

indeed interpreted as a mixed interference regime for the IC with unidirectional cooperation between 

receivers. In fact, it is a special case of the mixed interference regime identified in [2, Th. 6] for the 

IC with no cooperation.  

In the next theorem, we derive another mixed interference regime for the channel where, unlike 

Theorem 6.3, the optimal scheme to achieve the sum-capacity is to treat interference as noise at the 

receiver which is the source of the conferencing link and to decode interference at the one which is 

the destination of the conferencing link; also, the optimal cooperation strategy is to provide the 

receiver that decodes interference with information about its non-corresponding signal (interference) 

via the conferencing link. 

Theorem 6.4) For the two-user IC with unidirectional conferencing between receivers, where 𝐷21 =

0, if  

𝐼(𝑋1; 𝑌1|𝑋2) ≤ 𝐼(𝑋1; 𝑌2|𝑋2)   for all 𝑃𝑋1𝑃𝑋2 

𝑋2 → 𝑌2, 𝑋1 → 𝑌1  (Markov chain) 

(107) 

then, the outer bound (99) is sum-rate optimal and the sum-rate capacity is given by 
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min
𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄

{
𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄),

𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12
} 

(108) 

Proof of Theorem 6.4: The achievability of (108) is indeed derived by treating interference as noise at 

the first receiver and decoding interference at the second receiver. Moreover, the conferencing link is 

used to provide information about the interference for the second receiver. Let assume 𝑄 ≡ ∅. 

Consider two independent messages 𝑀1 and 𝑀2, uniformly distributed over the sets [1: 2𝑛𝑅1] and 

[1: 2𝑛𝑅2], respectively. Partition the set [1: 2𝑛𝑅1] into 2𝑛𝑅12 cells each containing 2𝑛(𝑅1−𝑅12) 

elements, where 𝑅12 = min{𝑅1, 𝐷12}. Now label the cells by 𝑐 ∈ [1: 2𝑛𝑅12] and the elements inside 

each cell by 𝜅 ∈ [1: 2𝑛(𝑅1−𝑅12)]. Accordingly, we have 𝑐(𝑀1) = 𝛼 if 𝑀1 is inside the cell 𝛼, and 

𝜅(𝑀1) = 𝛽 if 𝑀1 is 𝛽𝑡ℎ element of the cell that it belongs to. 

Encoding at the transmitters is similar to a multiple access channel. For decoding, the first receiver 

simply decodes its own message by exploring for codewords 𝑋1
𝑛 which are jointly typical with its 

received sequence 𝑌1
𝑛. This receiver then sends the cell index of the estimated message, i.e. 𝑐(�̂�1), to 

the second receiver by holding a (𝐷12, 0)-permissible conference. The second receiver applies a 

jointly typical decoder to decode both messages with the caveat that the cell index which 𝑀1 belongs 

to is known. Clearly, given 𝑐(𝑀1), the second receiver detects 𝜅(𝑀1) and 𝑀2 by exploring for 

codewords 𝑋1
𝑛 and 𝑋2

𝑛 which are jointly typical with its received sequence 𝑌2
𝑛. One can easily show 

that this scheme yields the achievable sum-rate (108).  

Next using our outer bound (99) we prove that under the conditions (107), the sum-rate capacity of 

the channel is bounded by (108). Based on (99), when 𝐷21 = 0, we have: 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

              = 𝐼(𝑋2; 𝑌1, 𝑌2|𝑋1, 𝑈, 𝑄) − 𝐼(𝑋2; 𝑌1|𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌1|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

              = 𝐼(𝑋2; 𝑌1, 𝑌2|𝑋1, 𝑈, 𝑄) + 𝐼(𝑈; 𝑌1|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

              = 𝐼(𝑋2; 𝑌2|𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌1|𝑌2, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑈; 𝑌1|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

              =
𝑎
𝐼(𝑋2; 𝑌2|𝑋1, 𝑈, 𝑄) + 𝐼(𝑈; 𝑌1|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

              ≤
𝑏
𝐼(𝑋2; 𝑌2|𝑋1, 𝑈, 𝑄) + 𝐼(𝑈; 𝑌2|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 

              = 𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) + 𝐼(𝑋1; 𝑌1|𝑄) 
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where equality (a) holds because by the Markov chain given in (107), the second mutual information 

on the left side of (a) is zero; similarly, inequality (b) holds because the Markov chain in (107) 

implies that 𝐼(𝑈; 𝑌1|𝑋1, 𝑄) ≤ 𝐼(𝑈; 𝑌2|𝑋1, 𝑄). Moreover, we have: 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

              ≤
𝑐
𝐼(𝑋1; 𝑌2|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 = 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 

where inequality (c) is due to the first condition of (107), (see [2, 34]). The proof is thus complete. ■ 

Corollary 6.3. Consider the following Gaussian IC with unidirectional conferencing between 

decoders (𝐷21 = 0). 

𝑌1 = 𝑎11𝑋1 + 𝑎12𝑌2 + 𝑍1 

𝑌2 = 𝑎21𝑋1 + 𝑎22𝑋2 + 𝑍2 
(109) 

where 𝑍1 and 𝑍2 are independent unit-variance Gaussian noises. If (𝑎21
2 − 𝑎11

2 ) ≥ 2𝑎11𝑎21𝑎12, then 

the sum-rate capacity is given by (108).  

Proof of Corollary 6.3: The Gaussian channel (109) satisfies the second condition of (107) by 

definition. Moreover, for this channel the first condition of (107) is equivalent to (𝑎21
2 − 𝑎11

2 ) ≥

2𝑎11𝑎21𝑎12. Thereby, we can apply the result of Theorem 6.4. ■ 

It should be remarked that although for the IC with conferencing receivers the mixed interference 

regimes (103) and (107) are different, for the channel with no cooperation both of them fall into the 

mixed interference regime identified in [2, Th.6]3.  

Finally, we characterize the capacity region of the one-sided IC with a unidirectional conferencing 

link from the non-interfered receiver to the interfered one in the strong interference regime. The result 

is given in the last theorem of this subchapter. 

Theorem 6.5. Consider the two-user one-sided IC where ℙ(𝑦1, 𝑦2|𝑥1, 𝑥2) = ℙ(𝑦1|𝑥1)ℙ(𝑦2|𝑥1, 𝑥2). 

For the channel with unidirectional conferencing between receivers, where 𝑌1 is connected to 𝑌2 by a 

conferencing link of capacity 𝐷12, if 

𝐼(𝑋1; 𝑌1|𝑋2) ≤ 𝐼(𝑋1; 𝑌2|𝑋2)   for all 𝑃𝑋1𝑃𝑋2 

(110) 

                                                      
3 Note that to see the regime (107) is a special case of the mixed interference regime identified in [2, Th.6], one need to 

exchange the indices 1 and 2 in (107) first. 
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then the outer bound (99) is optimal and the capacity region is given by the union of all rate pairs 

(𝑅1, 𝑅2) ∈ ℝ+
2  such that 

                                                                𝑅1 ≤ 𝐼(𝑋1; 𝑌1|𝑄), 

                                                                𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) 

𝑅1 + 𝑅2 ≤ 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 
(111) 

for some joint PDFs 𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄.  

Proof of Theorem 6.5: The achievability proof is similar to the one presented in Theorem 6.4. The 

first receiver simply decodes its own message (as it does not perceive interference at all) while the 

second receiver jointly decodes both messages. The conferencing link is utilized to provide 

information about the interference (non-desired signal) for the second receiver. For the one-sided 

channel, this scheme achieves the rate region (111). Then we prove the converse part. Based on (99), 

when 𝐷21 = 0, we have: 

        𝑅1 ≤ 𝐼(𝑋1; 𝑌1|𝑋2, 𝑄) = 𝐼(𝑋1; 𝑌1|𝑄) 

        𝑅2 ≤ 𝐼(𝑋2; 𝑌1|𝑌2, 𝑋1, 𝑈, 𝑄) + 𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) 

             =
𝑎
𝐼(𝑋2; 𝑌2|𝑋1, 𝑄) 

        𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                      ≤
𝑏
𝐼(𝑋1; 𝑌2|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝑄) + 𝐷12 

                      = 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12  

where (a) holds because for the one-sided IC, the first mutual information on the left side of (a) is 

zero; the inequality (b) is due to the condition (110). Thus, the proof is complete. ■ 

Corollary 6.4. Consider the Gaussian one-sided IC which is given by 𝑎12 = 0 in (9). If |𝑎21| ≥ |𝑎11|, 

then the capacity region of the channel with a unidirectional conferencing link from the non-

interfered receiver to the interfered one is given by (111). This recovers a result of [25, Th.1].  

Let us summarize. For the scenarios considered in Theorems 6.2 and 6.3, the conferencing link is 

optimally utilized to provide a receiver with information about its corresponding signal, while for 

those considered in Theorems 6.4 and 6.5, it is optimally utilized to provide a receiver with 

information about its non-corresponding signal (interference signal). This demonstrates that, 
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depending on the statistics of the channel, any of these strategies can be helpful to achieve the 

capacity region. In general, one may consider a combination of them as well. Clearly, one may design 

achievability schemes where the conferencing link is utilized to provide a receiver with information 

about its corresponding signal and its non-corresponding signal (interference) simultaneously. Indeed, 

it would be an interesting problem for future study to analyze the performance of such complex 

schemes. 

6.2 General Interference Channel with Conferencing Receivers 

The general outer bound (99) indeed holds for the Gaussian IC (9) with conferencing receivers as 

well (the input power constraints should also be considered when evaluating the bound). In this 

subchapter, we show that for the Gaussian channel, one can make the outer bound (99) tighter by 

establishing additional constraints on the information rates using genie-aided techniques. As a result, 

we obtain an outer bound which is strictly tighter than previous ones for all channel parameters.  

Consider the two-user Gaussian IC in (9) with decoders connected by conferencing links of capacities 

𝐷12 and 𝐷21. Define genie signals 𝐺1, 𝐺2, �̃�1, and �̃�2 as follows: 

𝐺1 ≜ 𝑎21𝑋1 + 𝑍2 

𝐺2 ≜ 𝑎12𝑋2 + 𝑍1 

�̃�1 ≜ 𝑎21𝑋1 + �̃�2 

�̃�2 ≜ 𝑎12𝑋2 + �̃�1 
(112) 

where �̃�1 and �̃�2 are unit-variance Gaussian noises independent of other variables. Let ℜ𝑜,〈𝑈𝑉〉
𝐺𝐼𝐶→𝐶𝐷 

denote the set of all rate pairs (𝑅1, 𝑅2) ∈ ℝ+
2  which satisfy the constraints (99) as well as the 

following: 

                       𝑅1 + 𝑅2 ≤ 𝐼(𝑋1, 𝑋2; 𝑌1|𝐺1, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌2|𝐺2, 𝑄) + 𝐷12 + 𝐷21 

                     2𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝐺2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) + 𝐷12 + 2𝐷21 

                     𝑅1 + 2𝑅2 ≤ 𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝐺1, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 2𝐷12 + 𝐷21 

                     2𝑅1 + 𝑅2 ≤ 𝐼(𝑋1; 𝑌1, 𝑌2|𝑉, 𝑋2, 𝑄) + 𝐼(𝑉, 𝑋2; 𝑌2|𝐺2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) + 𝐷12 + 𝐷21 

                     𝑅1 + 2𝑅2 ≤ 𝐼(𝑋2; 𝑌1, 𝑌2|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝐺1, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 + 𝐷21  

                     2𝑅1 + 𝑅2 ≤ 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2|�̃�2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) + 𝐷21 

                     𝑅1 + 2𝑅2 ≤ 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2|�̃�1, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌2|𝑄) + 𝐷12 

(113) 
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for some joint PDFs 𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄𝑃𝑈𝑉|𝑋1𝑋2𝑄. The following theorem holds. 

Theorem 6.6) The set ℜ𝑜,〈𝑈𝑉〉
𝐺𝐼𝐶→𝐶𝐷 constitutes an outer bound on the capacity region of the two-user 

Gaussian IC (9) with conferencing decoders. 

Proof of Theorem 6.6) The proof is given in Appendix D. ■ 

We next present an explicit characterization of the outer bound given in Theorem 6.6. For this 

purpose, we indeed apply several novel techniques to optimize the bound over its auxiliary random 

variables. The result is given in the following theorem. 

Theorem 6.7) Let ℜ𝑜
𝐺𝐼𝐶→𝐶𝐷 denote the set of all rate pairs (𝑅1, 𝑅2) ∈ ℝ+

2  which satisfy the constraints 

(114) given below for some 𝛼, 𝛽 ∈ [0,1]. The set ℜ𝑜
𝐺𝐼𝐶→𝐶𝐷 constitutes an outer bound on the capacity 

region of the Gaussian IC (9) with decoders connected by the conferencing links of capacities 𝐷12 

and 𝐷21, as shown in Fig. 3. 

𝑅1 ≤ min {𝜓 (
SNR1+(1−𝛼)INR1

𝛼 INR1+1
) + 𝐷21, 𝜓(SNR1) + 𝐷21}                

(1-114) 

 𝑅1 ≤ min {𝜓 (
𝛽 SNR1

𝛽 INR2+1
) + 𝜓(INR2), 𝜓 (

𝛽 INR2

𝛽 SNR1+1
) + 𝜓(SNR1)} 

                                                                                                                                                       (2-114) 

 𝑅2 ≤ min {𝜓 (
(1−𝛽)INR2+SNR2

𝛽 INR2+1
) + 𝐷12, 𝜓(SNR2) + 𝐷12}               

(3-114) 

 𝑅2 ≤ min {𝜓 (
𝛼 SNR2

𝛼 INR1+1
) + 𝜓(INR1), 𝜓 (

𝛼 INR1

𝛼 SNR2+1
) + 𝜓(SNR2)} 

(4-114) 

                      𝑅1 + 𝑅2 ≤ (𝜓(𝛽 SNR1) + 𝜓 (
(1−𝛽)INR2+SNR2

𝛽 INR2+1
)) 𝟙(|𝑎21| < |𝑎11|) 

                                          +𝜓(INR2 + SNR2)𝟙(|𝑎21| ≥ |𝑎11|) + 𝐷12 + 𝐷21 

 (5-114) 

                      𝑅1 + 𝑅2 ≤ (𝜓(𝛼 SNR2) + 𝜓 (
SNR1+(1−𝛼)INR1

𝛼 INR1+1
)) 𝟙(|𝑎12| < |𝑎22|) 

                                           +𝜓(SNR1 + INR1)𝟙(|𝑎12| ≥ |𝑎22|) + 𝐷12 + 𝐷21 

(6-114) 

 𝑅1 + 𝑅2 ≤ 𝜓(
𝛽 SNR1

𝛽 INR2+1
) + 𝜓(INR2 + SNR2) + 𝐷12                                           

(7-114) 
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                      𝑅1 + 𝑅2 ≤ 𝜓(
𝛼 SNR2

𝛼 INR1+1
) + 𝜓(SNR1 + INR1) + 𝐷21                                   

                                                                                                                                                       (8-114) 

                      𝑅1 + 𝑅2 ≤ 𝜓(SNR1 + INR1 + INR2 + SNR2 + |𝑎11𝑎22 − 𝑎12𝑎21|
2𝑃1𝑃2)                  

                                                                                                                                                       (9-114) 

                      𝑅1 + 𝑅2 ≤ 𝜓(INR1 +
SNR1

INR2+1
) + 𝜓 (INR2 +

SNR2

INR1+1
) + 𝐷12 +𝐷21               

                                                                                                                                 (10-114) 

                    2𝑅1 + 𝑅2 ≤ (𝜓(𝛽 SNR1) − 𝜓(𝛽 INR2))𝟙(|𝑎21| < |𝑎11|) + 𝜓 (INR2 +
SNR2

INR1+1
)     

+𝜓(SNR1 + INR1) + 𝐷12 + 2𝐷21 

(11-114) 

                    𝑅1 + 2𝑅2 ≤ (𝜓(𝛼 SNR2) − 𝜓(𝛼 INR1))𝟙(|𝑎12| < |𝑎22|) + 𝜓 (INR1 +
SNR1

INR2+1
)    

+𝜓(INR2 + SNR2) + 2𝐷12 + 𝐷21 

(12-114) 

                    2𝑅1 + 𝑅2 ≤ 𝜓(𝛽 (SNR1 + INR2)) + 𝜓 (
(1−𝛽)INR2

1+𝛽 INR2
+

SNR2
(INR1+1)(1+𝛽 INR2)

) 

+𝜓(SNR1 + INR1) + 𝐷12 + 𝐷21 

(13-114) 

                    𝑅1 + 2𝑅2 ≤ 𝜓(𝛼(INR1 + SNR2)) + 𝜓 (
(1−𝛼)INR1

1+𝛼 INR1
+

SNR1
(INR2+1)(1+𝛼 INR1)

) 

+𝜓(INR2 + SNR2) + 𝐷12 + 𝐷21 

(14-114) 

                    2𝑅1 + 𝑅2 ≤ 𝜓(SNR1 +
INR1

1+INR1
+ INR2 +

SNR2

1+INR2
+
|𝑎11𝑎22−𝑎12𝑎21|

2𝑃1𝑃2

1+INR1
)   

+𝜓(SNR1 + INR1) + 𝐷21            

(15-114) 

                    𝑅1 + 2𝑅2 ≤ 𝜓(
SNR1

1+INR2
+ INR1 +

INR2

1+INR2
+ SNR2 +

|𝑎11𝑎22−𝑎12𝑎21|
2𝑃1𝑃2

1+INR2
)   

+𝜓(INR2 + SNR2) + 𝐷12            

(16-114) 

(114) 

Proof of Theorem 6.7) We need to optimize the outer bound established in Theorem 6.6 over the 

auxiliary random variables 𝑈 and 𝑉, which is indeed a complicated problem. To solve it, we apply 

novel techniques including several subtle applications of the entropy power inequality. Let present 



 

 70 

our approach. First note that some of the mutual information functions given in (99) and (113) can be 

re-written as follows: 

𝐼(𝑋2; 𝑌2|𝑌1, 𝑋1, 𝑈, 𝑄) = 𝐼(𝑋2; 𝑌1, 𝑌2|𝑈, 𝑋1, 𝑄) − 𝐼(𝑋2; 𝑌1|𝑈, 𝑋1, 𝑄) 

𝐼(𝑋2; 𝑌1|𝑌2, 𝑋1, 𝑈, 𝑄) = 𝐼(𝑋2; 𝑌1, 𝑌2|𝑈, 𝑋1, 𝑄) − 𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) 

𝐼(𝑋1; 𝑌1|𝑌2, 𝑋2, 𝑉, 𝑄) = 𝐼(𝑋1; 𝑌1, 𝑌2|𝑉, 𝑋2, 𝑄) − 𝐼(𝑋1; 𝑌2|𝑉, 𝑋2, 𝑄) 

𝐼(𝑋1; 𝑌2|𝑌1, 𝑋2, 𝑉, 𝑄) = 𝐼(𝑋1; 𝑌1, 𝑌2|𝑉, 𝑋2, 𝑄) − 𝐼(𝑋1; 𝑌1|𝑉, 𝑋2, 𝑄) 

 (115) 

In general, it is difficult to directly treat expressions such as 𝐼(𝑋1; 𝑌1, 𝑌2|𝑉, 𝑋2, 𝑄) or 

𝐼(𝑋2; 𝑌1, 𝑌2|𝑈, 𝑋1, 𝑄). To make the problem tractable, we apply the following technique. Let define 

two new outputs �̂�1 and �̂�2 as follows: 

�̂�1 ≜
𝑎12𝑌1 + 𝑎22𝑌2
|𝑎12|

2 + |𝑎22|
2
=
𝑎11𝑎12 + 𝑎21𝑎22
|𝑎12|

2 + |𝑎22|
2
𝑋1 + 𝑋2 + �̂�1 

�̂�2 ≜
𝑎11𝑌1 + 𝑎21𝑌2
|𝑎11|

2 + |𝑎21|
2
= 𝑋1 +

𝑎11𝑎12 + 𝑎21𝑎22
|𝑎11|

2 + |𝑎21|
2
𝑋2 + �̂�2 

(116) 

where �̂�1 and �̂�2 are given as: 

�̂�1 ≜
𝑎12𝑍1 + 𝑎22𝑍2
|𝑎12|

2 + |𝑎22|
2
 

�̂�2 ≜
𝑎11𝑍1 + 𝑎21𝑍2
|𝑎11|

2 + |𝑎21|
2
 

(117) 

It is clear that the mapping from (𝑌1, 𝑌2) to (�̂�1, 𝑌2) and also to (𝑌1, �̂�2) is one-to-one. Now we have: 

𝑌1 = 𝑎11�̂�2 +
𝑎21(𝑎12𝑎21 − 𝑎11𝑎22)

|𝑎11|
2 + |𝑎21|

2
𝑋2 + �̿�1 

𝑌2 = 𝑎22�̂�1 +
𝑎12(𝑎12𝑎21 − 𝑎11𝑎22)

|𝑎12|
2 + |𝑎22|

2
𝑋1 + �̿�2 

(118) 

where 
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�̿�1 ≜
𝑎21(𝑎21𝑍1 − 𝑎11𝑍2)

|𝑎11|
2 + |𝑎21|

2
 

�̿�2 ≜
𝑎12(𝑎12𝑍2 − 𝑎22𝑍1)

|𝑎12|
2 + |𝑎22|

2
 

(119) 

One can easily check that �̿�1 is independent of �̂�1 and also �̿�2 is independent of �̂�2. Therefore, the 

following equalities hold: 

𝐼(𝑋2; 𝑌1, 𝑌2|𝑈, 𝑋1, 𝑄) = 𝐼(𝑋2; �̂�1, 𝑌2|𝑈, 𝑋1, 𝑄) = 𝐼(𝑋2; �̂�1|𝑈, 𝑋1, 𝑄) 

𝐼(𝑋1; 𝑌1, 𝑌2|𝑉, 𝑋2, 𝑄) = 𝐼(𝑋1; 𝑌1, �̂�2|𝑉, 𝑋2, 𝑄) = 𝐼(𝑋1; �̂�2|𝑉, 𝑋2, 𝑄) 

(120) 

for any arbitrary input distributions. Next fix a distribution 𝑃𝑄𝑃𝑋1|𝑄𝑃𝑋2|𝑄𝑃𝑈𝑉|𝑋1𝑋2𝑄 with 𝔼[𝑋𝑖
2] ≤

𝑃𝑖, 𝑖 = 1,2. In what follows, we present the optimization for the auxiliary random variable 𝑈. The 

optimization over 𝑉 is derived symmetrically, and therefore we do not present the details to avoid 

repetition.  

Let divide the problem into two different cases. First consider the channel with weak interference at 

the first receiver where 

|𝑎12| < |𝑎22| 

(121) 

It is clear that: 

1

2
log 2𝜋𝑒 = 𝐻(𝑌2|𝑈, 𝑋1, 𝑋2, 𝑄) ≤ 𝐻(𝑌2|𝑈, 𝑋1, 𝑄) = 𝐻(𝑎22𝑋2 + 𝑍2|𝑈, 𝑋1, 𝑄) 

                    ≤ 𝐻(𝑎22𝑋2 + 𝑍2|𝑄) ≤
1

2
log 2𝜋𝑒(|𝑎22|

2𝑃2 + 1) 

(122) 

Comparing the two sides of (122), one can deduce that there is 𝛼 ∈ [0,1] such that: 

𝐻(𝑌2|𝑈, 𝑋1, 𝑄) = 𝐻(𝑎22𝑋2 + 𝑍2|𝑈, 𝑋1, 𝑄) 

                            =
1

2
log 2𝜋𝑒(|𝑎22|

2𝛼𝑃2 + 1) 

(123) 
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Then by considering (123) and also (115) and (120), one can easily verify that the optimization is 

equivalent to maximize 𝐻(�̂�1|𝑈, 𝑋1, 𝑄) and minimize 𝐻(𝑌1|𝑈, 𝑋1, 𝑄), simultaneously. For this 

purpose, we apply the entropy power inequality. This inequality implies that for any arbitrary random 

variables 𝑋, 𝑍, and 𝑊, where 𝑋 and 𝑍 are independent conditioned on 𝑊, the following holds: 

exp(2𝐻(𝑋 + 𝑍|𝑊)) ≥ exp(2𝐻(𝑋|𝑊)) + exp(2𝐻(𝑍|𝑊)) 

(124) 

Therefore, assuming that 𝐻(𝑍|𝑊) is fixed, given 𝐻(𝑋 + 𝑍|𝑊), one can derive an upper bound on 

𝐻(𝑋|𝑊), and given 𝐻(𝑋|𝑊), one can derive a lower bound on 𝐻(𝑋 + 𝑍|𝑊). This fact is the essence 

of our arguments in what follows.  

Let �̂�1
∗ be a Gaussian random variable, independent of all other variables, with zero mean and a 

variance equal to 
|𝑎12|

2

|𝑎12|
2+|𝑎22|

2. One can write: 

𝐻(�̂�1|𝑈, 𝑋1, 𝑄) 

          = 𝐻 (
𝑎12𝑌1+𝑎22𝑌2

|𝑎12|
2+|𝑎22|

2 |𝑈, 𝑋1, 𝑄) 

          = 𝐻(𝑋2 + �̂�1|𝑈, 𝑋1, 𝑄) 

          = 𝐻(𝑎22𝑋2 + 𝑎22�̂�1|𝑈, 𝑋1, 𝑄) −
1

2
log|𝑎22|

2 

          ≤
𝑎 1

2
log (exp (2𝐻(𝑎22𝑋2 + 𝑎22�̂�1 + �̂�1

∗|𝑈, 𝑋1, 𝑄)) − exp (2𝐻(�̂�1
∗|𝑈, 𝑋1, 𝑄))) −

1

2
log|𝑎22|

2 

          =
𝑏 1

2
log (exp(2𝐻(𝑎22𝑋2 + 𝑍2|𝑈, 𝑋1, 𝑄)) − exp (2𝐻(�̂�1

∗))) −
1

2
log|𝑎22|

2 

          =
𝑐 1

2
log (exp(log 2𝜋𝑒(|𝑎22|

2𝛼𝑃2 + 1)) − exp(log 2𝜋𝑒 (
|𝑎12|

2

|𝑎12|
2 + |𝑎22|

2))) −
1

2
log|𝑎22|

2 

          =
1

2
log (2𝜋𝑒 (𝛼𝑃2 +

1

|𝑎12|
2 + |𝑎22|

2
)) 

(125) 

where (a) is due to the entropy power inequality, (b) holds because 𝑎22�̂�1 + �̂�1
∗ is a Gaussian random 

variable with zero mean and unit variance (the same as 𝑍2), and (c) is given by (123). Next let 𝑍2
∗ be a 
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Gaussian random variable, independent of all other variables, with zero mean and a variance equal to 

|𝑎22|
2

|𝑎12|
2 − 1. We have: 

𝐻(𝑌1|𝑈, 𝑋1, 𝑄) = 𝐻(𝑎12𝑋2 + 𝑍1|𝑈, 𝑋1, 𝑄) 

                            = 𝐻 (𝑎22𝑋2 +
𝑎22

𝑎12
𝑍1|𝑈, 𝑋1, 𝑄) −

1

2
log

|𝑎22|
2

|𝑎12|
2
 

                            =
𝑎
𝐻(𝑎22𝑋2 + 𝑍2 + 𝑍2

∗|𝑈, 𝑋1, 𝑄) −
1

2
log

|𝑎22|
2

|𝑎12|
2
 

                            ≥
𝑏 1

2
log(exp(2𝐻(𝑎22𝑋2 + 𝑍2|𝑈, 𝑋1, 𝑄)) + exp(2𝐻(𝑍2

∗|𝑈, 𝑋1, 𝑄))) −
1

2
log

|𝑎22|
2

|𝑎12|
2
 

                            =
𝑐 1

2
log(

exp(log 2𝜋𝑒(|𝑎22|
2𝛼𝑃2 + 1))

+ exp(log 2𝜋𝑒 (
|𝑎22|

2

|𝑎12|
2
− 1))

)−
1

2
log

|𝑎22|
2

|𝑎12|
2
 

                            =
1

2
log(2𝜋𝑒(|𝑎12|

2𝛼𝑃2 + 1)) 

(126) 

where (a) holds because 𝑍2 + 𝑍2
∗ is a Gaussian random variable with zero mean and a variance equal 

to 
|𝑎22|

2

|𝑎12|
2, i.e., the same as 

𝑎22

𝑎12
𝑍1, (b) is due to the entropy power inequality, and (c) is given by (123). 

Thus, we applied the entropy power inequality twice: once to establish an upper bound on 

𝐻(�̂�1|𝑈, 𝑋1, 𝑄) as in (125) and once to establish a lower bound on 𝐻(𝑌1|𝑈, 𝑋1, 𝑄) as in (126). It is 

important to note that one may also apply the principle of “Gaussian maximizes differential entropy” 

to obtain an upper bound on 𝐻(�̂�1|𝑈, 𝑋1, 𝑄), however, the upper bound derived by that approach does 

not necessarily relate to 𝛼 (which is specifically determined by (123)) and thereby we cannot 

establish a bound consistent to other entropy functions including the auxiliary random variable 𝑈.  

Let again review the derivations in (126). One can easily see that all of the relations given in (126) 

hold only for the channel with weak interference at the first receiver where |𝑎12| < |𝑎22|. Next, we 

consider the Gaussian IC with strong interference at the first receiver where 

|𝑎12| ≥ |𝑎22| 

(127) 
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For this case, the derivations in (126) are no longer valid. The fact is that when |𝑎12| ≥ |𝑎22|, by 

fixing 𝐻(𝑌2|𝑈, 𝑋1, 𝑄) as in (123), we cannot establish a lower bound on 𝐻(𝑌1|𝑈, 𝑋1, 𝑄) using the 

entropy power inequality because given 𝑋1, the output 𝑌1 is no longer a stochastically degraded 

version of 𝑌2. Therefore, we need to change our strategy for the optimization. For this purpose, first 

note that the strong interference condition (127) implies the following inequality: 

𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) ≤ 𝐼(𝑋2; 𝑌1|𝑈, 𝑋1, 𝑄)    for all PDFs     𝑃𝑄𝑈𝑋1𝑋2 

(128) 

Considering (128), we can derive: 

𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝑄) 

                              ≤ 𝐼(𝑋2; 𝑌1|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝑄) = 𝐼(𝑋1, 𝑋2; 𝑌1|𝑄) 

(129) 

𝐼(𝑋2; 𝑌2|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝐺1, 𝑄) 

                              ≤ 𝐼(𝑋2; 𝑌1|𝑈, 𝑋1, 𝑄) + 𝐼(𝑈, 𝑋1; 𝑌1|𝐺1, 𝑄) = 𝐼(𝑋1, 𝑋2; 𝑌1|𝐺1, 𝑄) 

(130) 

Then, we evaluate 𝐻(�̂�1|𝑈, 𝑋1, 𝑄). We can write: 

1

2
log (2𝜋𝑒 (

1

|𝑎12|
2 + |𝑎22|

2
)) = 𝐻(�̂�1|𝑈, 𝑋1, 𝑋2, 𝑄) 

                                                         ≤ 𝐻(�̂�1|𝑈, 𝑋1, 𝑄) 

                                                         = 𝐻 (
𝑎12𝑌1+𝑎22𝑌2

|𝑎12|
2+|𝑎22|

2 |𝑈, 𝑋1, 𝑄) 

                                                         = 𝐻(𝑋2 + �̂�1|𝑈, 𝑋1, 𝑄) 

                                                         ≤ 𝐻(𝑋2 + �̂�1|𝑄) ≤
1

2
log (2𝜋𝑒 (𝑃2 +

1

|𝑎12|
2 + |𝑎22|

2
)) 

(131) 

Comparing the two sides of (131), we can argue that there is 𝛼 ∈ [0,1] such that: 

𝐻(�̂�1|𝑈, 𝑋1, 𝑄) =
1

2
log (2𝜋𝑒 (𝛼𝑃2 +

1

|𝑎12|
2 + |𝑎22|

2
)) 

(132) 



 

 75 

Now by substituting (129-130) in (99) and (113), and considering (115) and (120), one can readily 

verify that the optimization is reduced to minimize 𝐻(𝑌1|𝑈, 𝑋1, 𝑄) and 𝐻(𝑌2|𝑈, 𝑋1, 𝑄), 

simultaneously. Moreover, given 𝑋1, both 𝑌1 and 𝑌2 are stochastically degraded versions of �̂�1. 

Therefore, considering (132), one can successfully apply the entropy power inequality to establish 

lower bounds on 𝐻(𝑌1|𝑈, 𝑋1, 𝑄) and 𝐻(𝑌2|𝑈, 𝑋1, 𝑄). Clearly, let �̂�1
𝛻 and  �̂�1

∆ be two Gaussian random 

variables, independent of all other variables, with zero mean and variances 
|𝑎22|

2

|𝑎12|
2(|𝑎12|

2+|𝑎22|
2)

 and we 

have 
|𝑎12|

2

|𝑎22|
2(|𝑎12|

2+|𝑎22|
2)

, respectively. We have: 

𝐻(𝑌1|𝑈, 𝑋1, 𝑄) 

           = 𝐻(𝑎12𝑋2 + 𝑍1|𝑈, 𝑋1, 𝑄) 

           = 𝐻 (𝑋2 +
1

𝑎12
𝑍1|𝑈, 𝑋1, 𝑄) −

1

2
log

1

|𝑎12|
2
 

           =
𝑎
𝐻(𝑋2 + �̂�1 + �̂�1

𝛻|𝑈, 𝑋1, 𝑄) −
1

2
log

1

|𝑎12|
2
 

           ≥
𝑏 1

2
log (exp (2𝐻(𝑋2 + �̂�1|𝑈, 𝑋1, 𝑄)) + exp (2𝐻(�̂�1

𝛻|𝑈, 𝑋1, 𝑄))) −
1

2
log

1

|𝑎12|
2
 

           =
𝑐 1

2
log

(

 
 

exp (log 2𝜋𝑒 (𝛼𝑃2 +
1

|𝑎12|
2 + |𝑎22|

2
))

+exp (log2𝜋𝑒 (
|𝑎22|

2

|𝑎12|
2(|𝑎12|

2 + |𝑎22|
2)
))
)

 
 
−
1

2
log

1

|𝑎12|
2
 

           =
1

2
log(2𝜋𝑒(|𝑎12|

2𝛼𝑃2 + 1)) 

(133) 

where (a) holds because �̂�1 + �̂�1
𝛻 is a Gaussian variable with zero mean and variance 

1

|𝑎12|
2, i.e., the 

same as 
1

𝑎12
𝑍1, (b) is due to the entropy power inequality, and (c) is given by (132). Similarly, we can 

derive: 

𝐻(𝑌2|𝑈, 𝑋1, 𝑄) 

          = 𝐻(𝑎22𝑋2 + 𝑍2|𝑈, 𝑋1, 𝑄) 
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          = 𝐻 (𝑋2 +
1

𝑎22
𝑍2|𝑈, 𝑋1, 𝑄) −

1

2
log

1

|𝑎22|
2
 

          =
𝑎
𝐻(𝑋2 + �̂�1 + �̂�1

∆|𝑈, 𝑋1, 𝑄) −
1

2
log

1

|𝑎22|
2
 

          ≥
𝑏 1

2
log (exp (2𝐻(𝑋2 + �̂�1|𝑈, 𝑋1, 𝑄)) + exp (2𝐻(�̂�1

∆|𝑈, 𝑋1, 𝑄))) −
1

2
log

1

|𝑎22|
2
 

          =
𝑐 1

2
log

(

 
 

exp (log 2𝜋𝑒 (𝛼𝑃2 +
1

|𝑎12|
2 + |𝑎22|

2
))

+exp (log2𝜋𝑒 (
|𝑎12|

2

|𝑎22|
2(|𝑎12|

2 + |𝑎22|
2)
))
)

 
 
−
1

2
log

1

|𝑎22|
2
 

          =
1

2
log(2𝜋𝑒(|𝑎22|

2𝛼𝑃2 + 1)) 

(134) 

where (a) holds because �̂�1 + �̂�1
∆ is a Gaussian variable with zero mean and variance 

1

|𝑎22|
2, i.e., the 

same as 
1

𝑎22
𝑍2, (b) is due to the entropy power inequality, and (c) is given by (132). Therefore, 

𝐻(𝑌1|𝑈, 𝑋1, 𝑄) and 𝐻(𝑌2|𝑈, 𝑋1, 𝑄) are minimized by the right side of (133) and (134), respectively. 

The proof is thus complete. ■ 

As indicated earlier, an outer bound was also established by Wang and Tse in [20] for the Gaussian 

IC with conferencing decoders. Indeed, by a straightforward comparison via simple algebraic 

computations, one can verify that each of the constraints given in (114) is tighter than a corresponding 

one of [20, Page 2920]. Thus, for all channel parameters, the outer bound ℜ𝑜
𝐺𝐼𝐶→𝐶𝐷 given by (114) is 

strictly tighter than that of [20, Lemma 5.1]. 

We conclude this chapter by providing some numerical results. In Fig. 16, 17, and 18, we compare 

our new outer bound for the Gaussian IC with conferencing decoders and that of [20] in the weak, 

strong, and mixed interference regimes, respectively.  
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Figure 16.  Comparison of the new outer bound for the Gaussian IC (9) with conferencing decoders and that of [20] in the 

weak interference regime (𝑃1 = 𝑃2 = 1, 𝐷12 = 𝐷21 = .5, 𝑎11 = 𝑎22 = 100, 𝑎12 = 𝑎21 = 60). 

 

 

 

Figure 17.  Comparison of the new outer bound for the Gaussian IC (9) with conferencing decoders and that of [20] in the 

strong interference regime (𝑃1 = 𝑃2 = 1, 𝐷12 = 𝐷21 = .5, 𝑎11 = 𝑎22 = 60, 𝑎12 = 𝑎21 = 100). 
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Figure 18.   Comparison of the new outer bound for the Gaussian IC (9) with conferencing decoders and that of [20] in the 

mixed interference regime (𝑃1 = 𝑃2 = 1, 𝐷12 = 𝐷21 = .5, 𝑎11 = 𝑎21 = 60, 𝑎12 = 𝑎22 = 100). 

As shown in these figures, for all cases our new outer bound is strictly tighter. 
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Conclusion 

In this thesis, we established a full characterization of the sum-rate capacity for degraded interference 

networks with any number of transmitters, any number of receivers, and any possible distribution of 

messages among transmitters and receivers. We proved that the sum-rate capacity of these networks 

can be achieved by a successive decoding scheme. Moreover, using graphical algorithms, we clearly 

identified those messages which should be considered in the transmission scheme to achieve the sum-

rate capacity. Next, we derived a unified outer bound on the sum-rate capacity of general non-

degraded interference networks. To this end, our idea was to enhance the non-degraded network with 

artificial outputs to obtain a degraded network whose capacity region includes that of the original 

network as a subset. Thus, the sum-rate capacity expression of the artificial degraded network would 

be an outer bound on the sum-rate capacity of the original network as well. We proved that the 

derived outer bound is sum-rate optimal for several variations of degraded networks. In particular, we 

obtained sum-rate capacities for interesting scenarios such as generalized Z-interference networks and 

many-to-one interference networks. Also, for the first time, we identified networks for which the 

incorporation of both successive decoding and treating interference as noise achieves their sum-rate 

capacity.  

Next, by taking insight from the results for degraded networks, we presented an extension to the 

standard cut-set bound for general communication networks which we refer to as nested cut-set 

bound. To derive this bound, we apply a series of cuts in a nested configuration to the network first 

and then bound the information rate that flows through the cuts. The key idea for bounding step is to 

impose a degraded arrangement among the receivers corresponding to the cuts. Therefore, the bound 

is in fact a generalization of the outer bound for interference networks: here cooperative relaying 

nodes are introduced into the problem as well but the proof style for the derivation of the outer bound 

remains the same. The nested cut-set bound, which uniformly holds for all general communication 

networks of arbitrary large sizes where any subset of nodes may cooperatively communicate to any 

other subset of them, is indeed tighter than the cut-set bound for networks with more than one 

receiver. 

Finally, we investigated capacity bounds for the two-user interference channel with cooperative 

receivers via conferencing links of finite capacities. By applying new techniques, we presented novel 

capacity outer bounds for this channel. Using the outer bounds, we proved several new capacity 

results for interesting channels with unidirectional cooperation in strong and mixed interference 

regimes. A fact is that a conferencing link (between receivers) may be utilized to provide one receiver 
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with information about its corresponding signal or its non-corresponding signal (interference). An 

interesting conclusion of our work was to show that both of these strategies can be helpful to achieve 

the capacity of the channel. Lastly, for the case of Gaussian IC with conferencing receivers, we 

argued that our outer bound is strictly tighter than the previous one derived by Wang and Tse. 
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Appendix A 

Converse Proof of Proposition 3.1 

We show that the Gaussian distributions are optimal for the sum-rate capacity expression given in 

(45). There are several ways to prove this result. Here, we make use of the entropy power inequality. 

Consider the argument of the maximization (45). Fix a joint PDF 𝑃𝑄𝑃𝑋1𝑋2|𝑄𝑃𝑋3|𝑄𝑃𝑋4|𝑋1𝑋2𝑋3𝑄. We 

have: 

𝐼(𝑋4; 𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐼(𝑋3; 𝑌2|𝑋1, 𝑋2, 𝑄) + 𝐼(𝑋1, 𝑋2; 𝑌3|𝑄) 

        = 𝐻(𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑄) − 𝐻(𝑌2|𝑋1, 𝑋2, 𝑋3, 𝑄) + 𝐻(𝑌2|𝑋1, 𝑋2, 𝑄) − 𝐻(𝑌3|𝑋1, 𝑋2, 𝑄) 

            +𝐻(𝑌3|𝑄) − 𝐻(𝑌1|𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑄) 

        = 𝐻(𝑎4𝑋4 + 𝑍1|𝑋1, 𝑋2, 𝑋3, 𝑄) − 𝐻 (
1

𝑏2
(𝑎4𝑋4 + 𝑍1) + √1 −

1

𝑏2
2  �̃�2|𝑋1, 𝑋2, 𝑋3, 𝑄) 

+𝐻 (
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2|𝑋1, 𝑋2, 𝑄) − 𝐻 (

1

𝑏3
(
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2) + √1 −

1

𝑏3
2  �̃�3|𝑋1, 𝑋2, 𝑄) 

            +𝐻 (
𝑎1

𝑏2𝑏3
𝑋1 +

𝑎2

𝑏2𝑏3
𝑋2 +

𝑎3

𝑏2𝑏3
𝑋3 +

𝑎4

𝑏2𝑏3
𝑋4 + 𝑍3|𝑄) − 𝐻(𝑍1) 

(A~1) 

Next let 𝑋1
𝐺 , 𝑋2

𝐺 , 𝑋3
𝐺 , 𝑋4

𝐺  be jointly Gaussian RVs with a covariance matrix identical to that of 

𝑋1, 𝑋2, 𝑋3, 𝑋4. Thus, we can decompose 𝑋4
𝐺  as follows: 

𝑋4
𝐺 = 𝛼√

𝑃4
𝑃1
𝑋1
𝐺 + 𝛽√

𝑃4
𝑃3
𝑋3
𝐺 +√(1 − (𝛼2 + 𝛽2))𝑃4𝑍 

(A~2) 

where 𝛼, 𝛽 belong to the interval [−1,1] with 𝛼2 + 𝛽2 ≤ 1, and 𝑍 is a Gaussian RV independent of 

𝑋1
𝐺 , 𝑋2

𝐺 , 𝑋3
𝐺  with zero mean and unit variance. Consider the expressions on the right hand side of 

(A~1). For the first term, we have: 

1

2
log(2𝜋𝑒) ≤ 𝐻(𝑍1) ≤ 𝐻(𝑎4𝑋4 + 𝑍1|𝑋1, 𝑋2, 𝑋3, 𝑄) ≤ 𝐻(𝑎4𝑋4 + 𝑍1|𝑋1, 𝑋3) 

                                   ≤ 𝐻(𝑎4𝑋4
𝐺 + 𝑍1|𝑋1

𝐺 , 𝑋3
𝐺) =

1

2
log (2𝜋𝑒(𝑎4

2(1 − (𝛼2 + 𝛽2))𝑃4 + 1)) 

(A~3) 
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Comparing the two sides of (A~3), we deduce that there exists a 𝜆1 ∈ [0,1] such that: 

𝐻(𝑎4𝑋4 + 𝑍1|𝑋1, 𝑋2, 𝑋3, 𝑄) =
1

2
log (2𝜋𝑒(𝜆1𝑎4

2(1 − (𝛼2 + 𝛽2))𝑃4 + 1)) 

(A~4) 

Then consider the second term in (A~1). We can write: 

 𝐻 (
1

𝑏2
(𝑎4𝑋4 + 𝑍1) + √1 −

1

𝑏2
2  �̃�2|𝑋1, 𝑋2, 𝑋3, 𝑄) 

                               ≥
(𝑎)

1

2
log(2

2𝐻(
1

𝑏2
(𝑎4𝑋4 + 𝑍1)|𝑋1, 𝑋2, 𝑋3, 𝑄)

+ 2
2𝐻(√1 −

1

𝑏2
2  �̃�2|𝑋1, 𝑋2, 𝑋3, 𝑄)

) 

                               =
(𝑏) 1

2
log (2𝜋𝑒

1

𝑏2
2 (𝜆1𝑎4

2(1 − (𝛼2 + 𝛽2))𝑃4 + 1) + 2𝜋𝑒 (1 −
1

𝑏2
2)) 

                               =
1

2
log (2𝜋𝑒 (𝜆1

𝑎4
2

𝑏2
2 (1 − (𝛼

2 + 𝛽2))𝑃4 + 1)) 

(A~5) 

where (a) is due to the entropy power inequality and (b) is due to (A~4). Thereby, from (A~4) and 

(A~5) we obtain: 

 𝐻(𝑎4𝑋4 + 𝑍1|𝑋1, 𝑋2, 𝑋3, 𝑄) − 𝐻 (
1

𝑏2
(𝑎4𝑋4 + 𝑍1) + √1 −

1

𝑏2
2  �̃�2|𝑋1, 𝑋2, 𝑋3, 𝑄) 

                          ≤
1

2
log(

𝜆1𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4 + 1

𝜆1
𝑎4
2

𝑏2
2 (1 − (𝛼

2 + 𝛽2))𝑃4 + 1
) ≤

(𝑎) 1

2
log(

𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4 + 1

𝑎4
2

𝑏2
2 (1 − (𝛼

2 + 𝛽2))𝑃4 + 1
) 

(A~6) 

where inequality (a) holds because the expression on its left hand side is monotonically increasing in 

terms of 𝜆1 (for the case where 𝑏2 ≥ 1).  

Next we evaluate the third and the forth terms in (A~1). We have: 

1

2
log(2𝜋𝑒) ≤ 𝐻(𝑍2) ≤ 𝐻 (

𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2|𝑋1, 𝑋2, 𝑄) 

                   ≤ 𝐻 (
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2|𝑋1) ≤ 𝐻 (

𝑎3

𝑏2
𝑋3
𝐺 +

𝑎4

𝑏2
𝑋4
𝐺 + 𝑍2|𝑋1

𝐺) 
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                   ≤
1

2
log (2𝜋𝑒 (

1

𝑏2
2 (|𝑎3| + |𝑎4𝛽|√

𝑃4

𝑃3
)
2

+
𝑎4
2

𝑏2
2 (1 − (𝛼

2 + 𝛽2))𝑃4 + 1)) 

(A~7) 

Comparing the two sides of (A~7), we deduce that there exists a 𝜆2 ∈ [0,1] such that: 

 𝐻 (
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2|𝑋1, 𝑋2, 𝑄) 

=
1

2
log

(

 
 
2𝜋𝑒(𝜆2

1

𝑏2
2((|𝑎3| + |𝑎4𝛽|√

𝑃4
𝑃3
)

2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4)+ 1)

)

 
 

 

(A~8) 

Considering (A~8) and using the entropy power inequality, one can derive: 

  𝐻 (
1

𝑏3
(
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2) + √1 −

1

𝑏3
2  �̃�3|𝑋1, 𝑋2, 𝑄) 

≥
1

2
log

(

 
 
2𝜋𝑒(𝜆2

1

𝑏2
2𝑏3

2((|𝑎3| + |𝑎4𝛽|√
𝑃4
𝑃3
)

2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4)+ 1)

)

 
 

 

(A~9) 

Now from (A~8) and (A~9), we obtain: 

 𝐻 (
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2|𝑋1, 𝑋2, 𝑄) − 𝐻 (

1

𝑏3
(
𝑎3

𝑏2
𝑋3 +

𝑎4

𝑏2
𝑋4 + 𝑍2) + √1 −

1

𝑏3
2  �̃�3|𝑋1, 𝑋2, 𝑄) 

                                ≤
1

2
log

(

 
 
𝜆2

1

𝑏2
2 ((|𝑎3| + |𝑎4𝛽|√

𝑃4

𝑃3
)
2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4) + 1

𝜆2
1

𝑏2
2𝑏3

2 ((|𝑎3| + |𝑎4𝛽|√
𝑃4

𝑃3
)
2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4) + 1

)

 
 

 

                                ≤
(𝑎) 1

2
log

(

 
 

1

𝑏2
2 ((|𝑎3| + |𝑎4𝛽|√

𝑃4

𝑃3
)
2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4) + 1

1

𝑏2
2𝑏3

2 ((|𝑎3| + |𝑎4𝛽|√
𝑃4

𝑃3
)
2

+ 𝑎4
2(1 − (𝛼2 + 𝛽2))𝑃4)+ 1

)

 
 

 

(A~10) 



 

 87 

where inequality (a) holds because the expression on its left hand side is monotonically increasing in 

terms of 𝜆2 (for the case where 𝑏2, 𝑏3 ≥ 1). Finally, consider the fifth term of (A~1). We have: 

 𝐻 (
𝑎1

𝑏2𝑏3
𝑋1 +

𝑎2

𝑏2𝑏3
𝑋2 +

𝑎3

𝑏2𝑏3
𝑋3 +

𝑎4

𝑏2𝑏3
𝑋4 + 𝑍3|𝑄) 

                   ≤ 𝐻 (
𝑎1

𝑏2𝑏3
𝑋1
𝐺 +

𝑎2

𝑏2𝑏3
𝑋2
𝐺 +

𝑎3

𝑏2𝑏3
𝑋3
𝐺 +

𝑎4

𝑏2𝑏3
𝑋4
𝐺 + 𝑍3) 

                   ≤
1

2
log

(

 
 
2𝜋𝑒(

1

𝑏2
2𝑏3

2(

𝑎1
2𝑃1 + 𝑎2

2𝑃2 + 𝑎3
2𝑃3 + 𝑎4

2𝑃4
+2|𝑎1𝑎2𝔼[𝑋1

𝐺𝑋2
𝐺]| + 2|𝑎1𝑎4𝔼[𝑋1

𝐺𝑋4
𝐺]|

+2|𝑎2𝑎4𝔼[𝑋2
𝐺𝑋4

𝐺]| + 2|𝑎3𝑎4𝔼[𝑋3
𝐺𝑋4

𝐺]|

) + 1)

)

 
 

 

                   =
(𝑎) 1

2
log

(

  
 
2𝜋𝑒

(

 
 1

𝑏2
2𝑏3

2

(

 
 

𝑎1
2𝑃1 + 𝑎2

2𝑃2 + 𝑎3
2𝑃3 + 𝑎4

2𝑃4

+2|𝑎1𝑎2𝔼[𝑋1
𝐺𝑋2

𝐺]| + 2|𝑎1𝑎4𝛼|√𝑃1𝑃4 +

2|𝑎2𝑎4𝛼𝔼[𝑋1
𝐺𝑋2

𝐺]|√
𝑃4

𝑃1
+ 2|𝑎3𝑎4𝛽|√𝑃3𝑃4

)

 
 
+ 1

)

 
 

)

  
 

 

                   ≤
(𝑏)

1

2
log

(

 
 
2𝜋𝑒(

1

𝑏2
2𝑏3

2(

𝑎1
2𝑃1 + 𝑎2

2𝑃2 + 𝑎3
2𝑃3 + 𝑎4

2𝑃4

+2|𝑎1𝑎2|√𝑃1𝑃2 + 2|𝑎1𝑎4𝛼|√𝑃1𝑃4 +

2|𝑎2𝑎4𝛼|√𝑃2𝑃4 + 2|𝑎3𝑎4𝛽|√𝑃3𝑃4

)+ 1)

)

 
 

 

(A~11) 

where equality (a) is due to (A~2) and inequality (b) holds because 𝔼[𝑋1
𝐺𝑋2

𝐺] ≤ √𝑃1𝑃2. By 

substituting (A~6), (A~10), and (A~11) in (A~1), we derive the desired result. ■ 
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Appendix B 

Converse Proof of Proposition 3.2 

We prove that the Gaussian inputs are optimal for (55). Consider the argument of the maximization 

(55); we can write: 

𝐼(𝑋1, 𝑋2; 𝑌1|𝑊) + 𝐼(𝑊;𝑌2) 

= 𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) − 𝐻(𝑏(𝑋1 + 𝑎𝑋2 + 𝑍1) + √1 − 𝑏
2 �̃�2|𝑊) + 𝐻(𝑏𝑋1 + 𝑋2 + 𝑍2) − 𝐻(𝑍1) 

(A~12) 

Define 𝛼 and 𝛽 as follows: 

𝛼 ≜ sign(𝑏) √
𝔼[(𝔼[𝑋1|𝑊])

2]

𝔼[𝑋1
2]

, 𝛽 ≜  √
𝔼[(𝔼[𝑋2|𝑊])

2]

𝔼[𝑋2
2]

 

(A~13) 

where sign(𝑏) is equal to 1 if 𝑏 > 0, and is equal to −1 if 𝑏 < 0. Note that we have: 

𝔼[𝑋𝑖
2] − 𝔼[(𝔼[𝑋𝑖|𝑊])

2] = 𝔼[𝔼[𝑋𝑖
2|𝑊] − (𝔼[𝑋𝑖|𝑊])

2] = 𝔼[𝔼2[𝑋𝑖|𝑊]] ≥ 0,   𝑖 = 1,2 

(A~14) 

where 𝔼2[𝑋𝑖|𝑊] is derived from Definition II.2 of [1]. Therefore, 𝛼2 and 𝛽2 both belong to the 

interval [0,1]. Then consider the expressions on the right side of (A~12). We have: 

𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) ≥ 𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑋1, 𝑋2,𝑊) =
1

2
log(2𝜋𝑒) 

(A~15) 

Also, using the “Gaussian maximizes entropy” principle, we can derive: 

𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) ≤ 𝔼 [
1

2
log(2𝜋𝑒(𝔼2[𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊]))] 

                                     =
(𝑎)
𝔼 [

1

2
log(2𝜋𝑒(𝔼2[𝑋1|𝑊] + 𝔼

2[𝑎𝑋2|𝑊] + 1))] 

                                     ≤
(𝑏)

1

2
log (2𝜋𝑒(𝔼[𝔼2[𝑋1|𝑊]] + 𝑎

2𝔼[𝔼2[𝑋2|𝑊]] + 1)) 
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                                     =
1

2
log (2𝜋𝑒 (

𝔼[𝔼[𝑋1
2|𝑊] − (𝔼[𝑋1|𝑊])

2]

+𝑎2𝔼[𝔼[𝑋2
2|𝑊] − (𝔼[𝑋2|𝑊])

2] + 1
)) 

                                     =
(𝑐) 1

2
log (2𝜋𝑒((1 − 𝛼2)𝑃1 + 𝑎

2(1 − 𝛽2)𝑃2 + 1)) 

(A~16) 

where (a) is derived by Lemma II.1 of [1], (b) is due to Jensen inequality, and (c) is derived by 

(A~13). Based on (A~15) and (A~16), we deduce that there exist 𝜇𝛼 and 𝜇𝛽 with: 

𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) =
1

2
log (2𝜋𝑒 ((1 − 𝜇𝛼)𝑃1 + 𝑎

2(1 − 𝜇𝛽)𝑃2 + 1)), 

  𝛼2 ≤ 𝜇𝛼 ≤ 1, 𝛽2 ≤ 𝜇𝛽 ≤ 1 

(A~17) 

Now for the second expression of (A~12), using the entropy power inequality, we have: 

𝐻(𝑏(𝑋1 + 𝑎𝑋2 + 𝑍1) + √1 − 𝑏
2 �̃�2|𝑊)

≥
1

2
log (2

2𝐻(𝑏(𝑋1 + 𝑎𝑋2 + 𝑍1)|𝑊)
+ 2

2𝐻(√1 − 𝑏2 �̃�2|𝑊)
) 

                                                                   =
1

2
log (2𝜋𝑒 (𝑏2 ((1 − 𝜇𝛼)𝑃1 + 𝑎

2(1 − 𝜇𝛽)𝑃2) + 1)) 

(A~18) 

By combining (A~17) and (A~18), we obtain: 

𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) − 𝐻(𝑏(𝑋1 + 𝑎𝑋2 + 𝑍1) + √1 − 𝑏
2 �̃�2|𝑊) 

                                          ≤
1

2
log(

(1 − 𝜇𝛼)𝑃1 + 𝑎
2(1 − 𝜇𝛽)𝑃2 + 1

𝑏2 ((1 − 𝜇𝛼)𝑃1 + 𝑎
2(1 − 𝜇𝛽)𝑃2) + 1

) 

(A~19) 

Then, consider the following deterministic function: 

𝑓(𝜇𝛼 , 𝜇𝛽) ≜
(1 − 𝜇𝛼)𝑃1 + 𝑎

2(1 − 𝜇𝛽)𝑃2 + 1

𝑏2 ((1 − 𝜇𝛼)𝑃1 + 𝑎
2(1 − 𝜇𝛽)𝑃2) + 1

 

(A~20) 
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It is easy to show that for the case of 𝑎𝑏 = 1, |𝑎| ≥ 1, the function 𝑓(𝜇𝛼 , 𝜇𝛽) is monotonically 

decreasing in terms of both 𝜇𝛼 and 𝜇𝛽. Thereby, since 𝛼2 ≤ 𝜇𝛼 and 𝛽2 ≤ 𝜇𝛽, we derive: 

𝐻(𝑋1 + 𝑎𝑋2 + 𝑍1|𝑊) − 𝐻(𝑏(𝑋1 + 𝑎𝑋2 + 𝑍1) + √1 − 𝑏
2 �̃�2|𝑊) 

                                          ≤
1

2
log (

(1 − 𝛼2)𝑃1 + 𝑎
2(1 − 𝛽2)𝑃2 + 1

𝑏2((1 − 𝛼2)𝑃1 + 𝑎
2(1 − 𝛽2)𝑃2) + 1

) 

(A~21) 

Finally, for the third expression on the right side of (A~12), we have: 

𝐻(𝑏𝑋1 + 𝑋2 + 𝑍2) ≤
1

2
log(2𝜋𝑒(𝑏2𝑃1 + 𝑃2 + 2𝑏𝔼[𝑋1𝑋2] + 1)) 

                               ≤
(𝑎)

1

2
log (2𝜋𝑒(𝑏2𝑃1 + 𝑃2 + 2|𝑏|√𝔼[(𝔼[𝑋1|𝑊])

2]√𝔼[(𝔼[𝑋1|𝑊])
2] + 1)) 

                               =
(𝑏) 1

2
log (2𝜋𝑒(𝑏2𝑃1 + 𝑃2 + 2𝑏𝛼𝛽√𝑃1𝑃2 + 1)) 

(A~22) 

where inequality (a) is due to Lemma II.1 of [1] and equality (b) is due to (A~13). Now by 

substituting (A~21) and (A~22) in (A~12), we obtain the desired result. ■ 



 91 

Appendix C 

Proof of Theorem 6.1 

Consider a length-𝑛 code with vanishing average probability of error. Define new auxiliary random 

variables: 

                                              𝑈𝑡 ≜ (𝑀1, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 ) 

𝑉𝑡 ≜ (𝑀2, 𝑌1
𝑡−1, 𝑌2,𝑡+1

𝑛 ),     for    𝑡 = 1,… , 𝑛 

(A~23) 

Let first derive some bounds on 𝑅1. By Fano’s inequality, 

𝑛𝑅1 ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝑛𝜖𝑛
1 

        = 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀1; 𝑉21

𝐿𝑑|𝑌1
𝑛) + 𝑛𝜖𝑛

1 

        ≤
𝑎
𝐼(𝑀1; 𝑌1

𝑛|𝑀2) + 𝐻(𝑉21
𝐿𝑑) + 𝑛𝜖𝑛

1 

        ≤
𝑏
𝐼(𝑀1; 𝑌1

𝑛|𝑀2) + 𝑛𝐷21 + 𝑛𝜖𝑛
1 

        ≤ ∑ 𝐼(𝑋1,𝑡; 𝑌1,𝑡|𝑋2,𝑡)
𝑛
𝑡=1 + 𝑛𝐷21 + 𝑛𝜖𝑛

1 

(A~24) 

where inequality (a) holds because conditioning does not reduce the entropy, and inequality (b) is due 

to (11). Moreover, 

𝑛𝑅1 ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝑛𝜖𝑛
1 

        = 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀1; 𝑉21

𝐿𝑑|𝑌1
𝑛) + 𝑛𝜖𝑛

1 

        ≤ ∑ 𝐼(𝑀1; 𝑌1,𝑡|𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1 +𝐻(𝑉21
𝐿𝑑) + 𝑛𝜖𝑛

1 

        ≤
𝑎
∑ 𝐼(𝑀1, 𝑌1,𝑡+1

𝑛 , 𝑌2
𝑡−1, 𝑋1,𝑡; 𝑌1,𝑡)

𝑛
𝑡=1 +𝐻(𝑉21

𝐿𝑑) + 𝑛𝜖𝑛
1 

        ≤ ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 + 𝑛𝐷21 + 𝑛𝜖𝑛

1 

(A~25) 

where inequality (a) holds because conditioning does not reduce the entropy. Next we derive some 

bounds on 𝑅2. By Fano’s inequality we have: 
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𝑛𝑅2 ≤ 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛𝜖𝑛
2 

        ≤ 𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛, 𝑉12
𝐿𝑑) + 𝑛𝜖𝑛

2 

        =
𝑎
𝐼(𝑀2; 𝑌1

𝑛, 𝑌2
𝑛) + 𝑛𝜖𝑛

2 

        ≤ 𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛|𝑀1) + 𝑛𝜖𝑛
2 

(A~26) 

where (a) holds because 𝑉12
𝐿𝑑 is given by a deterministic function of (𝑌1

𝑛, 𝑌2
𝑛). Now consider the 

mutual information function on the right side of the last inequality of (A~26). We can write: 

𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛|𝑀1) = 𝐼(𝑀2; 𝑌2
𝑛|𝑀1) + 𝐼(𝑀2; 𝑌1

𝑛|𝑌2
𝑛, 𝑀1)                      

                              =
𝑎
∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑋1,𝑡,𝑀1)
𝑛
𝑡=1  

                                                         +∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡 , 𝑋1,𝑡,𝑀1, 𝑌2
𝑡−1, 𝑌2,𝑡+1

𝑛 , 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1                         

                              = ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑋1,𝑡,𝑀1)
𝑛
𝑡=1  

                                                         +∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡 , 𝑋1,𝑡, 𝑈𝑡 , 𝑌2,𝑡+1
𝑛 )𝑛

𝑡=1   

                              ≤
𝑏
∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑋1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡, 𝑋1,𝑡 , 𝑈𝑡)

𝑛
𝑡=1  

(A~27) 

where (a) holds because 𝑋𝑖,𝑡 is given by a deterministic function of 𝑀𝑖; the inequality (b) holds 

because conditioning does not reduce the entropy and also given the inputs 𝑋1,𝑡, 𝑋2,𝑡, the outputs 

𝑌1,𝑡, 𝑌2,𝑡 are independent of other variables. Similarly, we can derive: 

𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛|𝑀1) = 𝐼(𝑀2; 𝑌1
𝑛|𝑀1) + 𝐼(𝑀2; 𝑌2

𝑛|𝑌1
𝑛, 𝑀1) 

                              ≤ ∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑋1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑌1,𝑡, 𝑋1,𝑡, 𝑈𝑡)

𝑛
𝑡=1  

(A~28) 

Now by substituting (A~27) and (A~28) in (A~26), we obtain: 
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𝑛𝑅2 ≤ min

{
 
 

 
 ∑𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑋1,𝑡) + 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡 , 𝑋1,𝑡, 𝑈𝑡)

𝑛

𝑡=1

,

 

∑𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑋1,𝑡) + 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑌1,𝑡, 𝑋1,𝑡, 𝑈𝑡)

𝑛

𝑡=1 }
 
 

 
 

 

(A~29) 

Finally, we establish constraints on the sum-rate. Based on Fano’s inequality, one can write: 

𝑛(𝑅1 + 𝑅2) ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤ 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛) + 𝐼(𝑀1; 𝑉21
𝐿𝑑|𝑌1

𝑛) + 𝐼(𝑀2; 𝑉12
𝐿𝑑|𝑌2

𝑛) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤ 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1) + 𝐻(𝑉21
𝐿𝑑) + 𝐻(𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤ 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

(A~30) 

The sum of the two mutual information functions on the right side of (A~30) can be bounded as 

follows: 

𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1) 

                 = ∑ 𝐼(𝑀1; 𝑌1,𝑡|𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1 + ∑ 𝐼(𝑀2; 𝑌2,𝑡|𝑀1, 𝑌2
𝑡−1)𝑛

𝑡=1  

                 ≤ ∑ 𝐼(𝑌2
𝑡−1,𝑀1; 𝑌1,𝑡|𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1 − ∑ 𝐼(𝑌2

𝑡−1; 𝑌1,𝑡|𝑀1, 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1  

                                                          +∑ 𝐼(𝑌1,𝑡+1
𝑛 ,𝑀2; 𝑌2,𝑡|𝑀1, 𝑌2

𝑡−1)𝑛
𝑡=1  

                 = ∑ 𝐼(𝑌2
𝑡−1,𝑀1; 𝑌1,𝑡|𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1 − ∑ 𝐼(𝑌2

𝑡−1; 𝑌1,𝑡|𝑀1, 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1  

                                                          +∑ 𝐼(𝑌1,𝑡+1
𝑛 ; 𝑌2,𝑡|𝑀1, 𝑌2

𝑡−1)𝑛
𝑡=1  

                                                          +∑ 𝐼(𝑀2; 𝑌2,𝑡|𝑀1, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1  

                 =
𝑎
∑ 𝐼(𝑌2

𝑡−1,𝑀1; 𝑌1,𝑡|𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1 + ∑ 𝐼(𝑀2; 𝑌2,𝑡|𝑀1, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1  

                  ≤
𝑏
∑ 𝐼(𝑌2

𝑡−1, 𝑌1,𝑡+1
𝑛 ,𝑀1; 𝑌1,𝑡)

𝑛
𝑡=1 + ∑ 𝐼(𝑀2; 𝑌2,𝑡|𝑀1, 𝑌2

𝑡−1, 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1  

                  = ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡)

𝑛
𝑡=1  

(A~31) 
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where (a) holds because due to the Csiszar-Korner identity the second and the third mutual 

information functions on the left side of (a) are equal; (b) holds because conditioning does not reduce 

the entropy. Then by substituting (A~31) in (A~30), we derive: 

 𝑛(𝑅1 + 𝑅2) ≤ ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 +∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡)

𝑛
𝑡=1 + 𝑛(𝐷12 +𝐷21) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

(A~32) 

Also, we have: 

𝑛(𝑅1 + 𝑅2) ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤ 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌1

𝑛, 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝐼(𝑀1; 𝑉21
𝐿𝑑|𝑌1

𝑛) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤
𝑎
𝐼(𝑀1; 𝑌1

𝑛) + 𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛) + 𝐻(𝑉21
𝐿𝑑) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

                    ≤ 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌1

𝑛, 𝑌2
𝑛|𝑀1) + 𝑛𝐷21 + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

                    = 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛|𝑀1) + 𝐼(𝑀2; 𝑌1
𝑛|𝑌2

𝑛,𝑀1) + 𝑛𝐷21 + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    ≤
𝑏
∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡)

𝑛
𝑡=1  

                                +∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡 , 𝑋1,𝑡, 𝑈𝑡)
𝑛
𝑡=1 + 𝑛𝐷21 + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

                    = ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡) + 𝐼(𝑋2,𝑡; 𝑌1,𝑡, 𝑌2,𝑡|𝑋1,𝑡, 𝑈𝑡)
𝑛
𝑡=1 + 𝑛𝐷21 + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

                    = ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 +∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑈𝑡 , 𝑋1,𝑡)

𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑌1,𝑡 , 𝑋1,𝑡, 𝑈𝑡)

𝑛
𝑡=1  

                                                                                                       +𝑛𝐷21 + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    = ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑌1,𝑡, 𝑋1,𝑡, 𝑈𝑡)

𝑛
𝑡=1 + 𝑛𝐷21 + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

(A~33) 

where the inequality (a) holds because 𝑉12
𝐿𝑑 is given by a deterministic function of (𝑌1

𝑛, 𝑌2
𝑛) and also 

conditioning does not reduce the entropy; the inequality (b) is derived by following the same lines as 

in (A~31) and (A~27). Lastly, we can derive: 

𝑛(𝑅1 + 𝑅2) ≤ 𝐼(𝑀1,𝑀2; 𝑌1
𝑛, 𝑌2

𝑛, 𝑉21
𝐿𝑑 , 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

                    =
𝑎
𝐼(𝑀1,𝑀2; 𝑌1

𝑛, 𝑌2
𝑛) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

                    ≤ ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌1,𝑡, 𝑌2,𝑡)
𝑛
𝑡=1 + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

(A~34) 
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where (a) holds because 𝑉21
𝐿𝑑 and 𝑉12

𝐿𝑑 are given by deterministic functions of (𝑌1
𝑛 , 𝑌2

𝑛). By collecting 

(A~24), (A~25), (A~26), (A~29), (A~32), (A~33), (A~34) and applying a standard time-sharing 

argument, we derive desired constraints of (99) including those given by the auxiliary random 

variable 𝑈. The remaining constraints of (99) can be indeed derived symmetrically. The proof is thus 

complete. ■ 
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Appendix D 

Proof of Theorem 6.6 

Consider a length-𝑛 code with vanishing average error probability for the Gaussian IC (9) with 

conferencing decoders. Consider also the auxiliary random variables defined in (A~23). We need to 

derive the constraints in (113). Define the genie signals 𝐺1,𝑡, 𝐺2,𝑡, �̃�1,𝑡, and �̃�2,𝑡 as follows: 

{
 
 

 
 
𝐺1,𝑡 ≜ 𝑎21,𝑡𝑋1,𝑡 + 𝑍2,𝑡
𝐺2,𝑡 ≜ 𝑎12,𝑡𝑋2,𝑡 + 𝑍1,𝑡

�̃�1,𝑡 ≜ 𝑎21,𝑡𝑋1,𝑡 + �̃�2,𝑡

�̃�2,𝑡 ≜ 𝑎12,𝑡𝑋2,𝑡 + �̃�1,𝑡

                   𝑡 = 1,… , 𝑛 

 (A~35) 

where {�̃�1,𝑡}𝑡=1
𝑛

 and {�̃�2,𝑡}𝑡=1
𝑛

 are zero-mean unit-variance Gaussian random processes which are 

independent of all other random variables.  Based on Fano’s inequality we have: 

𝑛(𝑅1 + 𝑅2) 

        ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        ≤ 𝐼(𝑀1; 𝑌1
𝑛, 𝐺1

𝑛, 𝑉21
𝐿𝑑) + 𝐼(𝑀2; 𝑌2

𝑛, 𝐺2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        = 𝐼(𝑀1; 𝑌1
𝑛, 𝐺1

𝑛) + 𝐼(𝑀2; 𝑌2
𝑛, 𝐺2

𝑛) + 𝐼(𝑀1; 𝑉21
𝐿𝑑|𝑌1

𝑛, 𝐺1
𝑛) + 𝐼(𝑀2; 𝑉12

𝐿𝑑|𝑌2
𝑛, 𝐺2

𝑛) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        ≤ 𝐼(𝑋1
𝑛; 𝑌1

𝑛, 𝐺1
𝑛) + 𝐼(𝑋2

𝑛; 𝑌2
𝑛, 𝐺2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        = 𝐼(𝑋1
𝑛; 𝐺1

𝑛) + 𝐼(𝑋2
𝑛; 𝐺2

𝑛) + 𝐼(𝑋1
𝑛; 𝑌1

𝑛|𝐺1
𝑛) + 𝐼(𝑋2

𝑛; 𝑌2
𝑛|𝐺2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        =
𝑎
𝐻(𝐺1

𝑛) − 𝐻(𝐺1
𝑛|𝑋1

𝑛) + 𝐻(𝑌1
𝑛|𝐺1

𝑛) − 𝐻(𝑌1
𝑛|𝑋1

𝑛) + 𝐻(𝐺2
𝑛) − 𝐻(𝐺2

𝑛|𝑋2
𝑛) + 𝐻(𝑌2

𝑛|𝐺2
𝑛) 

                         −𝐻(𝑌2
𝑛|𝑋2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        = 𝐻(𝐺1
𝑛) − 𝐻(𝑍2

𝑛) + 𝐻(𝑌1
𝑛|𝐺1

𝑛) − 𝐻(𝐺2
𝑛) + 𝐻(𝐺2

𝑛) − 𝐻(𝑍1
𝑛) + 𝐻(𝑌2

𝑛|𝐺2
𝑛) 

                         −𝐻(𝐺1
𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

        =
𝑏
𝐻(𝑌1

𝑛|𝐺1
𝑛) − 𝐻(𝑌1

𝑛|𝑋1
𝑛, 𝑋2

𝑛) + 𝐻(𝑌2
𝑛|𝐺2

𝑛) − 𝐻(𝑌2
𝑛|𝑋1

𝑛, 𝑋2
𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

        = 𝐻(𝑌1
𝑛|𝐺1

𝑛) − 𝐻(𝑌1
𝑛|𝑋1

𝑛, 𝑋2
𝑛, 𝐺1

𝑛) + 𝐻(𝑌2
𝑛|𝐺2

𝑛) − 𝐻(𝑌2
𝑛|𝑋1

𝑛, 𝑋2
𝑛, 𝐺2

𝑛) 

                                                                 +𝑛(𝐷12 +𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 

        = 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌1
𝑛|𝐺1

𝑛) + 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌2
𝑛|𝐺2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 𝜖𝑛

2) 
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        ≤ ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌2,𝑡|𝐺2,𝑡)

𝑛
𝑡=1 + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 𝜖𝑛
2) 

(A~36) 

where equality (a) holds because 𝐺𝑖
𝑛 → 𝑋𝑖

𝑛 → 𝑌𝑖
𝑛, 𝑖 = 1,2 forms a Markov chain, and equality (b) 

holds because 𝐻(𝑌𝑖
𝑛|𝑋1

𝑛, 𝑋2
𝑛) = 𝐻(𝑍𝑖

𝑛), 𝑖 = 1,2. We next derive constraints on the linear combination 

of the rates 𝑅1 + 2𝑅2. We can write: 

𝑛(𝑅1 + 2𝑅2) ≤ 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      = 𝐼(𝑀2; 𝑌2
𝑛) + 𝐼(𝑀2; 𝑉12

𝐿𝑑|𝑌2
𝑛) + 𝐼(𝑀1; 𝑌1

𝑛) 

                                           +𝐼(𝑀1; 𝑉21
𝐿𝑑|𝑌1

𝑛) + 𝐼(𝑀2; 𝑌2
𝑛) + 𝐼(𝑀2; 𝑉12

𝐿𝑑|𝑌2
𝑛) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

                      ≤ 𝐼(𝑀2; 𝑌2
𝑛, 𝑀1) + 𝐼(𝑀1; 𝑌1

𝑛, 𝐺1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛) 

                                           +𝑛(2𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      = 𝐼(𝑀2; 𝑌2
𝑛|𝑀1) + 𝐼(𝑀1; 𝑌1

𝑛|𝐺1
𝑛) + 𝐼(𝑋1

𝑛; 𝐺1
𝑛) + 𝐼(𝑋2

𝑛; 𝑌2
𝑛) 

                                           +𝑛(2𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

(A~37) 

Then, for the first two mutual information functions on the right side of the last equality in (A~37) we 

have: 

𝐼(𝑀2; 𝑌2
𝑛|𝑀1) + 𝐼(𝑀1; 𝑌1

𝑛|𝐺1
𝑛) 

        = 𝐻(𝑌2
𝑛|𝑀1) − 𝐻(𝑌1

𝑛|𝑀1) − 𝐻(𝑌2
𝑛|𝑀1,𝑀2) + 𝐻(𝑌1

𝑛|𝐺1
𝑛) 

        =
𝑎
∑ 𝐻(𝑌2,𝑡|𝑀1, 𝑌2

𝑡−1, 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1 − ∑ 𝐻(𝑌1,𝑡|𝑀1, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1 −𝐻(𝑌2

𝑛|𝑀1, 𝑀2) + 𝐻(𝑌1
𝑛|𝐺1

𝑛)                                

        ≤
𝑏
∑ 𝐻(𝑌2,𝑡|𝑀1, 𝑌2

𝑡−1, 𝑌1,𝑡+1
𝑛 )𝑛

𝑡=1 − ∑ 𝐻(𝑌1,𝑡|𝑀1, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1  

                               −∑ 𝐻(𝑌2,𝑡|𝑀1,𝑀2, 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 )𝑛
𝑡=1 + ∑ 𝐻(𝑌1,𝑡|𝐺1,𝑡)

𝑛
𝑡=1  

        =
𝑐
∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

(A~38) 

where (a) is derived by [35, Lemma 2]; (b) holds because 𝑌2
𝑡−1, 𝑌1,𝑡+1

𝑛 → 𝑀1,𝑀2 → 𝑌2,𝑡 forms a 

Markov chain and conditioning does not reduce the entropy; (c) holds because 𝑋𝑖,𝑡 is given by a 
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deterministic function of 𝑀𝑖 and 𝐺1,𝑡 → 𝑈𝑡 , 𝑋1,𝑡 → 𝑌1,𝑡 forms a Markov chain. Now by substituting 

(A~38) in (A~37), we obtain: 

 𝑛(𝑅1 + 2𝑅2) 

     ≤ ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

                                  +𝐼(𝑋1
𝑛; 𝐺1

𝑛) + 𝐼(𝑋2
𝑛; 𝑌2

𝑛) + 𝑛(2𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

     = ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

                                  +𝐻(𝐺1
𝑛) − 𝐻(𝑍2

𝑛) + 𝐻(𝑌2
𝑛) − 𝐻(𝐺1

𝑛) + 𝑛(2𝐷12 +𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

     = ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

                                  +𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌2
𝑛) + 𝑛(2𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

     ≤ ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

                                  +∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌2,𝑡)
𝑛
𝑡=1 + 𝑛(2𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

(A~39) 

We can also derive: 

𝑛(𝑅1 + 2𝑅2) 

          ≤ 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝐼(𝑀1; 𝑌1
𝑛, 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

          ≤ 𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛) + 𝐼(𝑀1; 𝑌1
𝑛) + 𝐼(𝑀1; 𝑉21

𝐿𝑑|𝑌1
𝑛) + 𝐼(𝑀2; 𝑌2

𝑛) + 𝐼(𝑀2; 𝑉12
𝐿𝑑|𝑌2

𝑛) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

          ≤ 𝐼(𝑀2; 𝑌1
𝑛, 𝑌2

𝑛,𝑀1) + 𝐼(𝑀1; 𝑌1
𝑛, 𝐺1

𝑛) + 𝐼(𝑀2; 𝑌2
𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

          = 𝐼(𝑀2; 𝑌1
𝑛|𝑌2

𝑛,𝑀1) + 𝐼(𝑀2; 𝑌2
𝑛|𝑀1) + 𝐼(𝑀1; 𝑌1

𝑛|𝐺1
𝑛) 

                            +𝐼(𝑋1
𝑛; 𝐺1

𝑛) + 𝐼(𝑋2
𝑛; 𝑌2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

          ≤
𝑎
∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡, 𝑋1,𝑡,𝑀1, 𝑌2

𝑡−1, 𝑌1,𝑡+1
𝑛 , 𝑌2,𝑡+1

𝑛 )𝑛
𝑡=1  

                           +∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  

                           +𝐼(𝑋1
𝑛; 𝐺1

𝑛) + 𝐼(𝑋2
𝑛; 𝑌2

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

         = ∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡, 𝑋1,𝑡, 𝑈𝑡 , 𝑌2,𝑡+1
𝑛 )𝑛

𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)
𝑛
𝑡=1  
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                   +𝐻(𝐺1
𝑛) − 𝐻(𝑍2

𝑛) + 𝐻(𝑌2
𝑛) − 𝐻(𝐺1

𝑛) + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

          ≤
𝑏
∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡|𝑌2,𝑡, 𝑋1,𝑡, 𝑈𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋2,𝑡; 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡) + 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)

𝑛
𝑡=1  

                   +∑ 𝐼(𝑋1,𝑡 , 𝑋2,𝑡; 𝑌2,𝑡)
𝑛
𝑡=1 + 𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

          = ∑ 𝐼(𝑋2,𝑡; 𝑌1,𝑡, 𝑌2,𝑡|𝑈𝑡 , 𝑋1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑈𝑡 , 𝑋1,𝑡; 𝑌1,𝑡|𝐺1,𝑡)

𝑛
𝑡=1 +∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌2,𝑡)

𝑛
𝑡=1  

                   +𝑛(𝐷12 + 𝐷21) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

(A~40) 

where (a) is due to (A~38), and (b) holds because conditioning does not reduce the entropy. Lastly, 

we can write: 

𝑛(𝑅1 + 2𝑅2) ≤ 𝐼(𝑀1,𝑀2; 𝑌1
𝑛, 𝑌2

𝑛, 𝑉12
𝐿𝑑 , 𝑉21

𝐿𝑑) + 𝐼(𝑀2; 𝑌2
𝑛, 𝑉12

𝐿𝑑) + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      = 𝐼(𝑀1,𝑀2; 𝑌1
𝑛, 𝑌2

𝑛) + 𝐼(𝑀2; 𝑌2
𝑛) + 𝐼(𝑀2; 𝑉12

𝐿𝑑|𝑌2
𝑛) + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

                      ≤ 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌1
𝑛, 𝑌2

𝑛, �̃�1
𝑛) + 𝐼(𝑋2

𝑛; 𝑌2
𝑛) + 𝑛𝐷12 + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

                      = 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌1
𝑛, 𝑌2

𝑛|�̃�1
𝑛) + 𝐼(𝑋1

𝑛, 𝑋2
𝑛; �̃�1

𝑛) + 𝐼(𝑋2
𝑛; 𝑌2

𝑛) + 𝑛𝐷12 + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      = 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌1
𝑛, 𝑌2

𝑛|�̃�1
𝑛) + 𝐻(�̃�1

𝑛) − 𝐻(�̃�2
𝑛) 

                                                              +𝐻(𝑌2
𝑛 ) − 𝐻(𝐺1

𝑛) + 𝑛𝐷12 + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      = 𝐼(𝑋1
𝑛, 𝑋2

𝑛; 𝑌1
𝑛, 𝑌2

𝑛|�̃�1
𝑛) + 𝐼(𝑋1

𝑛, 𝑋2
𝑛; 𝑌2

𝑛) + 𝑛𝐷12 + 𝑛(𝜖𝑛
1 + 2𝜖𝑛

2) 

                      ≤ ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌1,𝑡, 𝑌2,𝑡|�̃�1,𝑡)
𝑛
𝑡=1 + ∑ 𝐼(𝑋1,𝑡, 𝑋2,𝑡; 𝑌2,𝑡)

𝑛
𝑡=1 + 𝑛𝐷12 + 𝑛(𝜖𝑛

1 + 2𝜖𝑛
2) 

 (A~41) 

Finally, by applying a standard time-sharing argument to (A~36), (A~39), (A~40), and (A~41), we 

derive 1𝑠𝑡 , 3𝑟𝑑 , 5𝑡ℎ, and 7𝑡ℎ constraint of (113), respectively. The remaining constraints of (113) 

could be symmetrically derived (similar to (A~39), (A~40), and (A~41)). The proof is thus complete. 

■ 
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