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Abstract

There has been steep growth in wearable devices over the past 5 years and the ability to

seamlessly integrate these devices into textiles is an exciting next step. One crucial compo-

nent of achieving e-textiles is the ability of a textile to be electrically conductive for signal

and power transfer. Commercially available conductive fabric typically involves metal

plating, which degrades with bending and stretching. Recent alternative coatings such

as polymers and carbon nanotubes have issues with low lifetimes and poor conductivity,

respectively. These problems are addressed by coating fabrics and threads with networks

of solution-processed silver nanowires. These silver nanowire coatings are conductive and

mechanically flexible. Several deposition techniques were explored to coat fabrics includ-

ing dip coating, brush coating, and transfer printing. In the latter, nanowires are printed

on commercially available transfer paper coated using the Mayer rod coating technique

and transferred onto different fabrics (cotton, polyester-cotton and viscose-linen). Trans-

fer printing uses the least amount of silver nanowires compared to other coating techniques

and is therefore lowest in cost. Sheet resistances in the range of 10 - 80 Ω/� with a ma-

terials cost estimate of $ 16 - 4/m2 respectively were achieved using the transfer printing

technique. The transfer printing technique offers advantages including ease of application

and patterning, it works for various natural and synthetic fabrics without the need for

pre-treatment and it can be done at a separate time from textile fabrication. The silver

nanowire coating compared to typical metal inks provide high mechanical flexibility, trans-

parency and used less metal which results in a thinner, lighter-weight film. These silver

nanowire printed fabrics are used to show three applications - an LED integrated fabric for

apparel and fashion, electromagnetic interference shielding and Joule heating for thermal

management. Overall, this research demonstrates an industrially compatible, printable

coating process that can impart conductivity to a wide range of fabrics.
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This research also designs and fabricates stretchable conductive threads. Polyester-

rubber threads in a stretched-state were dip-coated with silver nanowires. After several

stretching cycles, the silver nanowire coating creates a buckling pattern that helps preserve

the resistance of the thread with subsequent stretching.
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Chapter 1

Introduction

1.1 Electronic textiles

Electronic textiles, or e-textiles, have electrical components or devices embedded into the

fabric itself. The devices can include sensors, displays, and batteries. In turn, e-textiles

have a wide range of applications ranging from health monitoring, sports and fitness track-

ing, energy storage, electromagnetic shielding, thermal management, military and construc-

tion, automotive, home technology, food packaging, and fashion. For the health monitoring

area, for example, e-textiles can measure human physiological parameters like temperature,

heart rate and blood pressure.

Market research shows that the smart textiles market, of which e-textiles is one major

sector of, is growing fast. For example, studies have shown that the growth rate of the

European smart textile market will grow over 500% between 2012 and 2020 [1]. And the

American market, which occupies a large share of the smart textile market as well, is
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projected be worth 1.5 billion dollars by 2020 [1].

1.2 Conductive fabric and thread

A conductive textile (fabric, thread or yarn) forms an important element in the realization

of e-textiles. A conductive textile can serve multiple purposes - it can act as an interconnect

between components to transfer signals or power, and it can also be used in applications on

its own, like for electromagnetic interference shielding. Fabrics can be rendered conductive

after their manufacture. Metal traces (silver, gold, copper, titanium, nickel) can be printed

directly on the fabric surface, or metallic films can be deposited onto fabric using specialized

techniques like vacuum deposition and sputtering.

1.2.1 Commercially available conductive textiles

Several companies around the world produce and supply conductive textiles. Even big re-

tail chains like Michaels and Walmart in North America sell conductive threads and yarns.

Commercially available solutions can be characterized into the four major categories of

materials they are prepared with, namely: carbon fiber, conductive polymers, silver and

other metals (copper, gold, tin, nickel, platinum and stainless steel). The respective com-

panies that supply each of the conductive textiles are outlined in Table 1.1

1.2.2 Conductive thread

Regular thread can be made conductive by metallic plating, polymer or metal coatings, or

by braiding a metallic wire around the thread during the thread processing. These threads
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Table 1.1: Commercial conductive textiles suppliers

Materials type Companies
Carbon fiber Staticworx, K&K advanced textiles solutions,

Kavon filter products, Marktek Inc.
Conductive polymers Eeonyx Corporation, Polymer Science Inc., Textronics

Silver Marktek Inc., SWIFT textile metalizing LLC, Solvay,LessEMF
Other Metals Larid Technologies, Chromerics, Marian Inc.,

Kavon filter products, SWIFT textile metalizing LLC,
Marktek Inc., UFP technologies, LessEMF

are then typically woven together with non-conductive threads.

Solid metal thread

Solid metal threads can be woven into fabrics directly. Or, the metallic wire can be wrapped

around a non-conductive thread to provide conductivity. A third option is to have metal

as the core and a non-conductive thread (eg. cotton, polyester, nylon) is spun around it.

This process is called core-spinning. Lastly, one can braid the solid conductive wire made

with non-conductive threads. Because of the properties of the metal wire, all these options

can result in thread that is stiff, brittle and heavy.

Metal coated thread

Regular non-conductive threads can also be made conductive by coating metal onto the

thread surface. Various types of thread can be coated including cotton, polyester and ny-

lon. The different metals threads can be coated with include copper, silver, tin and nickel.

These metals can either be used in their macromolecular, microparticle or nanoparticle

forms. Depending on the type of coating, ink, and method used, the metallic coatings

have variation in uniformity, density and post processing characteristics like bending and
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stretching. The four most widely used methods to coat threads include- dip coating [2],

sputtering [3], electro-less plating [4] and vacuum deposition.

Sputtering is the process where the metal particles are ejected when bombarded with

a high-energy source and are deposited onto the thread. This process is able to achieve

high uniformity of the metal film on the thread but is a fairly slow process. Electro-less

plating deposits metals on the fabric using a combination of complex chemical reactions

without the use of electricity. The process is able to provide uniform coatings around

threads, but the fabrication process is fairly expensive. Vacuum deposition involves evapo-

ration of metals using heat in a vacuum chamber. This requires specialized equipment not

available in a typical textile manufacturing facility. The dip coating technique is when a

thread is coated with a metal by immersion in a metal based solution. This process yields

high conductivity of the thread but results in a non-uniform coating throughout the surface.

For all methods, the deposited metallic films are polycrystalline in nature and not as

conductive as solid metal wires. Furthermore, the film thickness is around 1 µm. Metal

films of this thickness tend to crack upon repeated bending and thus these threads degrade.

These metal films are also not stretchable.

Regarding chemical vapour deposition (CVD), the substrate temperature needs to be

high (between 300 - 1200 ◦C) to initiate a reaction between the precursors needed to form

a metal coating on the substrate. Typical fabrics like polyester, however, can only sus-

tain temperatures up to 130 ◦C and thus metallic coatings cannot be formed on fabrics

using CVD. CVD has, however, been used to coat fabrics with non-metallic but conduc-

tive coatings such as poly(3-alkylthiophene) nanoparticles [5] and the conductive polymer
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polypryrrole [6]. Apart from these polymeric films not being as conductive as metallic

films, CVD requires vacuum and specialized equipment, which is not typically available in

standard textile plants.

Other coatings

Research is being done to design more bendable and stretchable conductive threads. These

coatings are also easier to deposit using techniques like dip coating and drop casting. Ma-

terials being studied include conductive polymers like PEDOT-PSS [7], polyaniline and

polypyrrole, carbon based materials like carbon nanotubes [8] [9] and graphene [10] [11]

and nanomaterials including metallic nanoparticles [12] [13] and metallic nanowires [14]

[15].

Polymeric coatings are flexible but have low conductivity, and suffer the problems of

instability in the air due to absorption of moisture and oxygen [16] [17].

Metallic nanoparticle inks have been researched for several years for making continuous

conductive films on different kinds of threads. Metallic nanoparticles can be printed and

transferred onto fabrics using screen printing [18], brush coating [19] and spray coating

[20]. Silver nanoparticles (AgNPs) are deposited on wool fibers using ultrasound [21], on

silk threads to achieve antibacterials and colored conductive fibers [22] [23], impregnated

cellulose fibers with AgNPs [24] and cotton fibers coated with gold and TiO2 nanoparti-

cle film to achieve self cleaning properties [25]. Despite the several advantages that the

nanoparticles offer including ease of coating, high conductivity and plasmonic colors im-

parted to textiles, they pose certain problems. The report by Kim et al. [26] details
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the few mechanisms how cracks can initiate, specifically for nanoparticle thin films. The

stresses introduced in the thin film can be due to mismatched thermal coefficients of sub-

strate and the metallic nanoparticle and due to the thermal energy during the annealing

process. These stresses overall lead to micro-cracks being formed and delamination of the

nanoparticle film. The work by Kim et al. [27] describes the use of silver nanowires along

with silver nanoparticles to reduce the cracking of the silver nanoparticle thin film under

mechanical stress.

Films of carbon nanotube (CNT) networks are alternatives to form conductive coatings

on threads due to the low cost and high conductivity of individual CNTs. CNTs have

been assembled to make yarns up to 30 cm in length by Fan et al.[28] which show high

conductivity, strength and temperature resistance. CNT coated yarns have been produced

using a chemical vapor deposition process by You et al. [29]. Despite the advantages, there

are two major problem associated with CNT-based conductive threads. First, during the

synthesis of CNTs, a mix of both metal and semiconductor tubes are produced, and the

semiconductor tubes are not as conductive as the metallic tubes. Secondly, the junction

resistance of CNTs is extremely high, despite the high conductivity along the length of the

tube. This puts a limit on the conductivity that a CNT network can have [8] [9].

Stretchable conductive threads

For certain e-textile applications involving clothing, sporting apparel, strain sensors, etc.,

elastic stretchability is desired. There are multiple avenues by which a thread can be made

conductive and also have/retain stretchability. One way could be by coating a stretch-

able thread with a conductive stretchable polymer. Another way could be wrapping a

conductive thread around a stretchable polymeric element (epoxy or silicone). Stretchable
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conductive fibers have been produced using chemical vapor deposited graphene by Hu et

al. [30]. Work done by Zhou et al. [31] shows how to make a conductive stretchable

cotton thread by coating CNT-cotton thread onto a silicone fiber to generate a conduc-

tive thread. Some commercially available solutions for stretchable conductive threads are

supplied by Bekaert Fibre technologies, Dupont, Eeonyx Corporation, Textronics, Statex

Shieldex (Germany), Baumlin and Ernst (Switzerland) and 3M. The existing conductive

thread options have resistances in kΩs/cm range and also show a massive increase in re-

sistance with few stretch cycles (a more elaborate description is in Chapter 4)

1.2.3 Conductive fabric

Conductive thread needs to be woven into fabric, either during textile processing or during

post processing steps. Not only is this require extra steps, it can be difficult since conduc-

tive threads can be stiff or brittle, making them difficult to weave.

An alternative to weaving conductive threads into a fabric is to treat the fabric as a

whole with a conductive material. Commercially available conductive fabrics have used

various combinations of metals (silver, stainless steel, copper, nickel, cobalt, zinc and car-

bon) with fabrics (cotton, polyester, nylon and bamboo). These fabrics have conductivity

in the range of 0.03 - 2 Ω/�. These fabrics also provide EMI shielding from 6 - 80 dB [32].

These commercial textiles can be fabricated using textile metallization processes. Textile

metallization is defined as depositing metallic particles on the surface of textiles using

specialized techniques. These techniques primarily involve vacuum deposition, ion plating,

electroplating and electro-less plating. Ion plating is a process that deposits the metal

coating on the fabric by bombardment of ionized metal particles [33]. Electroplating is a
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chemical process that coats the surface of the fabric using electric current [33]. The fabric

is attached to the cathode and the metal to be deposited is the anode. The other methods

are explained in Section 1.2.2. Each of these processes requires an elaborate fabrication

setup, expensive machinery, adhesion problems, and the overall coatings are thick, brittle

and non-uniform. Printing metallic inks on fabrics is another process used to coat fabrics.

These inks are generally made of silver micro particles or nanoparticles. They are printed

most commonly with using screen-printing, but other methods such as inkjet printing [34]

can also be used. Most of these metallic inks have high viscosity and therefore, the coating

is thick. The coating is thus stiff and non-breathable. Furthermore, the colour of the fabric

becomes the colour of the inks, typically either black, grey, or copper colour which limits

textile design.

Due to the drawbacks realized in the existing techniques available, new processes and

inks need to be realized to coat fabrics to achieve conductivity.

1.3 Silver nanowire networks and existing work

1.3.1 Nanowires

A nanowire is a 1-dimensional cylindrical nanostructure which has a diameter less than 100

nm and a length up to 200 µm . Nanowires can be made from a wide variety of materials

including metals, semiconductors and insulators and can by synthesized by a variety of

top-down and bottom-up methods. One attractive property of nanowires is that simple

and cost-effective methods exist to synthesize crystalline materials without the need for a

single-crystalline lattice-matched substrate. Furthermore, these crystalline nanowires can
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then be easily transferred, using solution deposition processes, onto a variety of substrates

such as plastics and fabrics, and the nanowires are mechanically flexible unlike many thin-

films and bulk materials.

1.3.2 Nanowire networks

A nanowire film is when nanowires are deposited as relatively flat layer on a solid substrate.

A nanowire film is shown in Figure 1.1.

Figure 1.1: Nanowire film on the surface of a plastic substrate

The nanowires in the films are usually randomly oriented in the plane of the film. If the

nanowires are semiconducting or metallic and the density of the nanowires is high enough,

a network (also known as the percolation network) is able to conduct electricity from one

end to the other of the film due to the junctions formed between overlapping nanowires.
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If the nanowires are metallic, these junctions can be fused using heat via annealing. This

greatly lowers the resistance, and is an advantage of using metallic nanowires over carbon

nanotubes, which cannot be sintered. Because of the high aspect ratio of nanowires com-

pared to nanoparticles, this conductive network can be achieved without fully covering the

surface. There are many advantages of this being a mesh-like film rather than a continuous

film:

1. The spaces between the nanowires can be larger than the wavelength of light and thus

these films can be transparent [35].

2. They can relieve strain more easily than a continuous film, resulting in them being

mechanically flexible [35].

3. They can use less material than a continuous film, which makes the film lighter in weight

and potentially cheaper in material costs.

4. As will be shown in this thesis (Chapter 2), the spaces between the nanowires allow for

the technique of transfer printing to be used, a technique which cannot be used to print

continuous metal films.

Silver nanowire advantages and applications

Silver is the choice of metal used for nanowires for the purpose of the research due its

exceptional conductivity, it is relatively stable in air (especially compared to copper and

aluminum) and it has low toxicity [36]. Silver nanowire films can be conductive as well as

transparent. Silver nanowire films are used as the transparent electrode [35] in commercial

touch-screens like LGs 23" touch panel because they are lower in cost than the conven-

tional materials typically used as transparent electrodes (conductive oxides such as indium

tin oxide) as well have the potential of being mechanically flexible. The fact that silver

nanowires are being used in commercial devices demonstrates that they are a commercially
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viable technology.

Several techniques can be used to synthesize silver nanowires, but the most popular and

convenient method is the polyol-synthesis process. The polyol process involves reduction

of silver nitrate in solution using ethylene glycol in the presence of poly(vinyl pyrrolidone)

(PVP). The nanowires grow along the [111] direction from seed nanoparticles (usually

platinum), since the PVP passivates the {100} planes of the silver resulting in uniaxial

growth. Each nanowire cross-section is pentagonal in shape, with 5 {100} facetted sidewalls

[37].

1.3.3 Existing literature on silver nanowire coated textiles

There exist a few preliminary research studies that coat fabrics with silver nanowires using

techniques like dip coating and brush coating. The research by Cui et al.[38] dip-coats

cotton fabrics with silver nanowires for applications in heating of fabrics. The work done

by Khalilabad et al. [39] shows the applications of silver nanowire coated-cotton for self

cleaning and conductive textiles. Another paper by Cui et al.[40] shows the use of con-

ductive AgNW- CNT networks for water filtration. Lastly, Madaria et al. [41] used spray

coating to deposit AgNWs on fabric to achieve conductivity.

There are several similarities in the studies mentioned above. Firstly, all the fabrics that

are tested are natural and hydrophilic fabrics, like cotton. Silver nanowires are hydrophilic

due to the presence of the PVP polymer on them. Therefore, it is easier to coat natural

fabrics with the nanowires compared to synthetic fabrics. Coating synthetic fabrics like

polyester with dyes or nanomaterials is known to be problematic, due to pre-treatment
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required for the textile before any deposition can happen [42] [43] [44] [45]. However,

developing these processes for polyester is important since it is the most widely used textile

in the world. Secondly, all the experiments are done using a high concentration of nanowires

to make the natural fabrics conductive. The final conductive fabric is thus unable to retain

its original color. Thirdly, the deposition methods used resulted in non-uniform density

of nanowires on the fabric. Fourthly, as will be shown in this thesis, the large number of

nanowires used is not cost-effective. Lastly, the solvents used in the existing techniques

consist of organic, flammable liquids like ethanol and isopropyl alcohol (IPA), which are

incompatible with the textile industry practices as they are a flammability hazard.

1.3.4 Units for resistance

For conductive fabrics and threads the most standard units to express resistance are Ω/�

and Ω/cm, respectively. Linear resistance is defined as

RL = R/L (1.1)

In case of a coating on a thread and a solid wire, the linear resistance of the thread

is obtained by dividing the measured resistance acoss the two ends of the sample by the

length between the two ends of the sample. For the thread, if the unit of seimens (S) is

used, one would need to know the thickness of the coating present on the thread. Also

using Ω/cm rather than S allows one to be better compare threads made using a conductive

surface coating to those where the entire thread is conductive. And, using Ω/cm allows

comparing threads of different diameters and lengths to one another.
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For conductive fabrics, sheet resistance is defined as:

Rs = R ∗ (W/L) (1.2)

where R is the resistivity of the sample, Rs is the sheet resistance and W and L are the

width and length of the conductive layer, respectively.

Sheet resistivity is defined as

R = Rs ∗ t (1.3)

The final units for sheet resistivity are Ω-cm.

For fabrics, sheet resistance rather than resistivity is used so that conductive coatings

that are only on the top surface of the fabric can be compared to conductive treatments

that extend throughout the thickness of a fabric. Furthermore, in this work nanowire

networks do not form a continuous film and its thickness it difficult to define.

1.4 Organization of thesis

My research proposes adsorbing silver nanowires into fabrics like a color dye thereby making

the fabric conductive. Not only natural but synthetic fabrics such as polyester are coated.

Techniques and materials that are industrially compatible are chosen, and cost-effectiveness

is considered as an important parameter. Chapter 2 describes how conductive fabric is
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produced using several different deposition methods before the transfer-printing technique

is settled on and optimized. It also details several characterization tests that are done to

optimize the transfer printing technique and eventually the conductive fabric. Chapter 3

details the applications where these conductive textiles can be used. Chapter 4 discusses

the methods used to fabricate a stretchable conductive thread using silver nanowire ink.

Finally, Chapter 5 summarizes and provides prospectives on the work, as well as lists

potential future work.
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Chapter 2

Nanowire coating techniques onto

fabrics

2.1 Motivation for silver nanowire conductive coat-

ings

Fabrics can be made conductive using several different processes as outlined and described

in Chapter 1. Considering the drawbacks of the various techniques in use, new processes

need to be developed to build conductive fabrics. Not only the process, but the ink used

to coat the fabrics needs to be refined as well to make the final product more flexible and

stretchable. Metal plating and even printing a conductive ink (microparticle or nanopar-

ticle based inks mostly) are common techniques but they can lead to high degradation

rates after multiple bending cycles. The inks used to coat the fabric are typically silver,

aluminum or copper. Silver is chosen for the work here because it is the most conductive

of all metals, has good stability in air (particularly compared to copper) and is non-toxic.
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Nanowires (NWs) are chosen over nanoparticles because their large aspect ratio allows a

conductive film to obtained with a mesh that doesnt fully cover the surface. This allows

for less metal to be used, and the open mesh is much more flexible and bendable than a

continuous film [46]. Furthermore, because the open spaces between AgNWs can be larger

than the wavelength of visible light, it is possible for the films to be transparent, [46]

allowing one to seamlessly impart conductivity into a fabric. Lastly, and as will become

more clear by the end of this chapter, the open spaces between the NW network allows for

a standard transfer printing process to work. This is because the adhesive can permeate

between the NWs and trap the nanowire film on top of the fabric. A continuous film of

nanoparticle ink, on the other hand, cannot be transfer printed since the adhesive cannot

make contact with the fabric.

This chapter details the techniques that are used to coat silver nanowires (AgNWs)

on fabric, the different critical parameters needed to optimize each process, cost estimates

for each process as well as the advantages and disadvantages associated with each process.

The chapter ultimately discusses the merits of transfer printing AgNW films onto fabrics.

The motivation that drives the design of this new process is so that metallic NWs can be

seamlessly integrated into the fabric like color dyes that have been used for several decades,

and impart conductivity while still being flexible, bendable, washable and not mask the

color or pattern of the fabric.

2.2 Experiments

Several techniques are experimented with to coat the fabrics with AgNWs. The four tech-

niques used to coat fabrics in this work are:
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1. Drop casting

2. Dip coating

3. Brush coating

4. Transfer printing

The primary objective of trying each technique is to reduce the resistance of the con-

ductive sample using the least amount of AgNWs and therefore the least material cost.

We only focused on techniques that are industrially compatible (i.e. use equipment and

processes available in a typical textile manufacturing facility). For each of the coating

methods, several parameters need to be optimized to obtain repeatable results. These

conditions include annealing temperature and time, number of coats of AgNWs per sam-

ple, concentration of AgNWs, and the type of fabric to be used. Some parameters are

added depending on the technique used for coating and will be discussed in the subsequent

sections.

2.3 Drop casting

Drop casting works on the principle of the dispersion of the liquid along the surface of

the substrate by shear forces. Drop casting samples are prepared by pipetting AgNW

solution onto 100% polyester fabric supplied by MW Canada (Cambridge, Ontario). Drop

casting is not discussed in detail here because the technique failed right away to produce

any results on fabrics, due to heavy leaking of solvent through the fabric gaps, thereby

leaving a thick layer of AgNWs in the one spot where they are pipetted onto the sample.

This also resulted in the use of a very high amount of AgNWs to coat the entire fabric,

thereby increasing both weight and cost of the final product.
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2.4 Dip coating

Dip coating is a process that involves dipping the substrate into a solution to coat it with

the desired dye or material. The dip coating process is shown in Figure 2.1. This is one

of the easiest processes to perform in terms of coating the fabric with AgNWs. As such,

dip coating was the method used in all the research papers in the literature where AgNWs

were used to make a fabric or thread conductive [38] [39] [47] [48].

Figure 2.1: Dip coating fabrics with nanowires

2.4.1 Methods

A non-woven 100% polyester fabric, supplied by the company MW Canada, is coated with

AgNW solution. The AgNWs were obtained from ACS Materials (Medford, Massachusetts,

USA). The NWs have 40 nm diameters and 20 - 30 µm lengths and 50 nm diameters and

100 - 200 µm lengths and are dispersed in water. 3 x 3 cm pieces of fabric are coated

with 1, 2 or 3 coats and then annealed in an oven at 130 ◦C for 1 hour in vacuum. The

annealing step is required to sinter the overlapping NW junctions and greatly lowers the

resistance of the NW network. The temperature of 130 ◦C is selected for two reasons. First,
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the temperature corresponds to the temperature tolerance of the polyester fabric, beyond

which the fabric starts degrading. Secondly, this temperature is a standard for heating and

drying processes in the textile industry, which makes the whole technique more industri-

ally suitable. The reason why the solvent for AgNWs is chosen to be water is because the

textile industry avoids using flammable solvents for their processes to avoid fire hazards.

As such, using water based inks or dyes is preferred over organic solvent based solutions.

The parameters optimized to achieve the best coating possible included AgNW dimen-

sions, concentration of AgNWs, annealing temperature and time. The different condition

combinations that are tried are shown in Table 2.1.

Table 2.1: Dip coating experimental parameters

AgNW AgNW AgNW Annealing Annealing
diameter (nm) length (µm) concentration (mg/mL) temperature (◦C) time (mins)

40 30 20 100 45
40 30 10 110 60
40 30 4 120 60
40 30 3.33 130 75
40 30 2.5 130 75
50 200 0.5 130 60
50 200 2.5 130 60
50 200 5 130 60
50 200 10 130 60

In initial experiments, the AgNWs did not adhere well to the polyester fabric and a

conductive network could not be obtained. This is because the polyester fabric is hy-

drophobic and the AgNWs, due to the PVP polymer coating, are hydrophilic. Because of

this difference, the AgNWs do not adhere well to the synthetic, polyester fabric. Thus, a
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few surface modification techniques are tried to increase the wettability and hydrophilicity

of the polyester fabric. The chemical dip-based modifications included dipping in sodium

hydroxide (NaOH), acetic acid (AA), and F-127 surfactant with and without cellulose.

The next few sections explain the different modification techniques, why some worked and

why others did not.

Sodium hydroxide surface modification

Sodium hydroxide modification is a standard and commonly used technique in industry to

scour fabrics and to improve the hydrophilicity of polyester fabric. The NaOH treatment

has a threefold advantage for the fabric samples. First, it helps clean off the impurities

that are present on the fabric surface. Second, it helps increase adhesion of AgNWs to

the fabric by making the polyester more hydrophilic. Lastly, NaOH helps with the liquid

retention capacity of the fabric. NaOH helps hydrolyze the surface of polyester by forming

hydrophilic bonds on the polyester chains. This is done by introducing polar groups on the

surface of polyester thereby increasing the bonding of the polyester with water molecules

[49]. The polyester fabric is dipped in varying concentrations of NaOH for 6 mins. The

NaOH dipping is tried both at room temperature and at a temperature of 75 ◦C. The wet

NaOH modified fabric is then coated with AgNWs without removing the excess NaOH

solution. The different concentrations of NaOH used are 6.25 mM, 50 mM and 500 mM.

Although the SEM images (Figure 2.2) show a very small difference in the density

of NWs that stick to the threads, the overall resistance numbers in Table 2.2 show that

the modification with heated NaOH gives better resistance numbers compared to room

temperature NaOH modification. Also, during the scouring of polyester fabrics when the

synthetic dyes are applied, heated NaOH is used in industry as well to improve the adhe-
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sion of dyes to the fabric [49].

Figure 2.2: SEM images of AgNW adhesion A. Room temperature NaOH modification B.
Heated NaOH modification

For NaOH treatment of threads for concentrations of 6.25 mM, 50 mM and 500 mM,

some damage is observed for the threads as the concentration of NaOH increases. This

can be observed in the Figure 2.3. For the 50 mM sample in Figure 2.3B can be seen that

the surface of some polyester filaments have a pitted surface and no nanowires sticking to

it. As for the 500 mM sample in Figure 2.3C , the NaOH has completely broken some of

the polyester filaments into pieces.
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Figure 2.3: Damage to polyester threads with increasing concentrations of NaOH A. 6.25
mM B. 50 mM C. 500 mM

Therefore, since the 6.25 mM concentration still caused adequate adhesion between the

polyester and the AgNWs, and 6.25 mM is a common NaOH concentration used in the

textile industry, it was this concentration that was ultimately chosen in this work.

Acetic acid surface modification

The polyester fabric is dipped in varying concentrations of acetic acid for 30 mins and then

the wet fabric is coated with AgNWs. The different concentrations of acetic acid used are

5 mM, 50 mM and 500 mM. The adhesion obtained with acetic acid surface modification

was not as strong as was obtainable with NaOH and thus acetic acid was not chosen as

the preferred medication method. For acetic acid, a similar trend is observed, as seen in

the SEM images in Figure 2.4, where with increasing concentration of acetic acid, thread

damage was observed. Also, NaOH is an industry standard for scouring fabrics and is

therefore a regular chemical used in the textile industry.
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Figure 2.4: Damage to polyester threads with increasing concentrations of Acetic acid A.
6.25 mM B. 50 mM C. 500 mM

Pluronic F-127 surface modification

Pluronic F-127 is a known biological dispersant. It is a non-ionic surfactant polyol with a

molecular weight of 12500 dalton. It has been discovered to also be an effective dispersant

of AgNWs and helps them bind to Polyethylene terephthalate (PET) [50], which is a

polyester-based plastic. It was found here that F-127 helped with reducing NW aggregates

present in the AgNW solution. F-127 is used with and without cellulose to experiment with

improving the adhesion of AgNWs to the hydrophobic polyester fabric. The cellulose is used

to thicken up the solution, and since cellulose is hydrophilic, it may help with the adhesion

of AgNWs onto the hydrophobic fabric. When F-127 is used for surface modification with

or without cellulose, it was observed that it did not help with the adhesion of AgNWs

to fabric as no NWs stuck to the fabric. Therefore, F-127 was not used for final surface

modifications in this work.

2.4.2 Results and discussion

The 3 x 3cm samples of fabric were dipped in the AgNW solution in water for 1 min.

Then the samples are retrieved from the AgNW vial and left in air to dry for 15 mins.
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The modification time chosen when using heated NaOH has been previously experimented

with and confirmed in the work by Yahya et al. [51]. During the industrial textile dyeing

process, when acetic acid is used, the fabrics are heated in acetic acid. Both 30 mins and

60 mins time are tried, with 30 mins used to reduce the time for modification. The SEM

images for the 30 mins dip shows silver nanowires sticking to the fabric and good resistance

numbers, which is why the number is used. Compared to 60 mins of modification dipping

time, 30 mins modification sample resistance numbers are similar. Therefore, less time

modification is used.

Depending on the surface modification technique used for the polyester cotton fabric,

the resistance of the AgNW coated fabric had variation. As seen in Table 2.2, the best

results for conductivity are obtained for heated NaOH modification of the fabrics. The dip

coating numbers are obtained for one coat in a 5 mg/mL solution of AgNWs.

Table 2.2: Dip coating sample resistance with different fabric modifications when coated
with AgNWs

Modification Sample NW Concentration Dipping time in Resistance
type number (mg/mL) modification (mins) (Ω/�)

No modification 1 5 0 2.7
No modification 2 5 0 6.07

NaOH 1 5 6 2.2
NaOH 2 5 6 2.5

Heated NaOH 1 5 6 1.14
Heated NaOH 2 5 6 0.78

Acetic acid 1 5 30 3.45
Acetic acid 2 5 30 6.58
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Figure 2.5: Dependence of the fabric resistance on the NW concentration in the dipping
solution

As can be seen in the SEM images in Figure 2.5, as the concentration of AgNWs in-

creases, the amount of AgNWs adsorbed onto the fabrics increases. A higher density of

NWs means that there are more metallic pathways available for conduction, leading to a

lower resistance, as is confirmed by the resistance numbers in the plot.. To investigate the

quality of the coating, SEM image was obtained on the fabric before and after coating.

The polyester fabric, without any coating, is shown in Figure 2.6. There are wide open

spaces between threads. When the polyester fabric is dip coated with AgNWs, as is imaged

in Figure 2.7, the NWs not only stick to the threads of the fabric, but also aggregate in

the gaps present between the threads. The NWs in the spaces between threads was also

observed in all other papers where AgNWs were used to modify fabric [38] [48].
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Figure 2.6: SEM image of as-received non-woven polyester fabric

Figure 2.7: SEM image of non-woven polyester fabric dip-coated with AgNWs

There is poor uniformity of the AgNWs on the polyester fabric. For example, we can

see in Figure 2.7 that some threads are coated with a higher density of NWs than others,

and some spaces between threads have a denser network of NWs than others. Even with

this non-uniformity, low sheet resistances such as those shown in Figure 2.5 are still ob-

tained. This is because of the high density of NWs.

As mentioned above, the dip coating technique results in NWs not only coating the
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individual threads, which in total have a very high surface area, they also coat the spaces

between the threads. And the NWs are absorbed throughout the entire thickness of the

fabric, which is 0.12 mm in this case. Thus, because the NWs are spread out over a large

area and volume, a very high NW concentration in the fabric is needed to obtain a per-

colative network. When concentrations less than 0.5 mg/mL were used, the fabric was not

conductive. The papers in the literature which dip-coat fabrics with AgNWs to obtain

conductivity also use a very high NW [38] [39] [48]. The major problem with this is cost.

Ag is an expensive metal, and AgNWs are even more expensive than bulk Ag, costing

$32/g in materials alone [52]. This drawback is not mentioned in the literature, but the

cost is too high to be used commercially. Fabric samples were weighed before and after NW

coating to estimate the mass of NWs that was added during coating. The added mass was

multiplied by $32/g and the results are shown in Table 2.3. It can be seen that the costs

are exceptionally high. Although dip-coating is simple and results in high conductivity,

the high cost of the NWs that need to be used makes this an unsuitable method to obtain

conductive fabrics.

Table 2.3: Dip coating sample cost for AgNW coatings with different resistances

Concentration of Weight of Resistance Cost ($/m2)
AgNWs (mg/mL) NWs in sample (mg/m2) (Ω/�)

1 17.8 28.5 689
2 30.3 2 1200
5 36.4 1.2 1316
10 41.8 0.7 1617

Lifetime tests of the dip-coated fabrics were done. Two samples were dip-coated with

AgNWs with a 5 mg/mL concentration. Their initial sheet resistance was 1.2 Ω/�. One
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sample was left in air for 18 months, while the other was kept in vacuum during that same

time. After this time, the resistance of the sample left in air rose to 10.4 Ω/�, and the

one kept in vacuum remained at a resistance of 1.2 Ω/�. Furthermore, Figure 2.8 shows

the appearance of the two samples and the sample left in air is darker. The resistance

and colour change is likely due to the oxidation of silver in the air. The dark grey of the

coating is similar to what is seen when silver corrodes in air [53]. These tests indicate that

AgNW dip-coated conductive fabrics need to be protected from the environment if they

are to perform well over long periods. A passivation layer is likely required.

Figure 2.8: Dip coated samples with resistance starting at 1 Ω/�. Sample A was preserved
in vacuum and sample B was left in air for 18 months

2.5 Brush coating

Brush coating is a process similar to painting with a brush on a canvas. The process is

shown in Figure 2.10. Brush coating is expected to be more of a surface-only coating

compared to dip coating, which as discussed in the section above coats through the depth

of the fabric. A rod coating method, such as Mayer rod coating, is a solution deposition
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technique, which typically results in a uniform thickness of solution being deposited. It

cannot be used for fabrics, however, because the solution seeps through the spaces in the

fabric where the solution is initially deposited and the rod therefore cannot draw the solu-

tion across the surface. Thus, a brush-coating process was tried.

Figure 2.9: Brush coating silver nanowires on fabric

2.5.1 Methods

The AgNWs used are 40 nm in diameter and 10 µm in length, are dispersed in water, and

are purchased from ACS materials (Medford, Massachusetts, USA). A simple paintbrush

is used to coat the fabrics with AgNWs. Since the NWs are in water, direct application

of the solution to the fabric caused the solution to seep through the fabric, due to the

gaps present between the interwoven threads of the polyester fabric obtained from MW

Canada (same as the one used in the dip coating technique). For this reason, a thicker

solution needs to be used for coating purposes. Carboxymethyl cellulose (CMC) is used
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as the thickener for the AgNW solution with a 1% by weight concentration. The different

AgNW concentrations used for coating are 5, 2 and 1 mg/mL. Coatings are deposited after

fabric pre-treatment with heated NaOH, CMC, pre-heating of the fabric, and without any

pre-modification techniques. It is found that the best resistance numbers were obtained

for heated NaOH pre-treatment (80 ◦C, 6 mins) before the coating process. 2 brush coats

are done to coat the area of the fabric. On average, about 500 µL of solution is used with

every single brush coat, and the size of the fabric samples are 4 cm x 4 cm. Once the

coating is completed, the fabric is annealed at 120 ◦C for 60 mins in vacuum.

2.5.2 Results and Discussion

Figure 2.10 shows the resistance of AgNW films brush-coated on polyester fabric with dif-

ferent NW concentrations. The resistance numbers obtained are higher for brush coating

compared to dip coated samples. SEM analysis was done to determine why.
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Figure 2.10: Sheet resistance of polyester coated with AgNWs using the brush coating
technique, for two different NW solution concentrations

As seen in the SEM image in Figure 2.11, at 5 mg/mL AgNW solution concentra-

tions, the brush coating results in a very non-uniform deposition of NWs. The surface of

some threads are coated more than others. As for the spaces between threads, some are

filled with NW clumps while others are not. This technique still causes seeping of AgNWs

through the fabric resulting in them being distributed throughout the thread layers. Thus,

the nanowires dont connect into a percolative network well. Due to the non-uniformity of

the coating, and the resistance is quite high for each of these samples.

31



Figure 2.11: SEM image of non-woven polyester fabric coated with AgNWs using brush
coating

The mass of AgNWs used per area was not measured, as the SEM images and resistance

results make it clear that brush coating is not a good technique for depositing AgNW

coatings. The NWs are deposited very non-uniformly and thus a high number of NWs are

required for percolation. Therefore, like dip-coating, the cost of NWs to make a conductive

fabric is prohibitively high. To be able to use less NWs, they should instead only be

deposited on the top surface of the fabric and thus transfer printing was investigated.

2.6 Transfer printing

2.6.1 Introduction to transfer printing

Transfer printing is a technique used to transfer designs printed on transfer paper or plastic

onto another substrate by application of heat and pressure. Transfer printing is a common

process in use since the 1750’s. Some of the first transfer prints were done on ceramics. One

of the first patents that describes the process of transfer printing dyes on polyester fabric
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was filed in 1966 [54]. The patent by Mizutani et al. (1972) [55] outlines the process of

colored heat transfer printing on polyester fabric. Transfer printing is a common technique

used in the textile industry. The fabrics printed using this technique range from natural

fabrics like cotton and silk to synthetic fabrics and blends like polyester, rayon and nylon.

Transfer printing has been used to transfer AgNW networks onto polyethylene tereph-

thalate (PET) [56]. However, there have been no studies done that use transfer printing

for transferring NW films onto fabric. It was tested here not only because it is a simple and

industrially compatible technique, but it results in NWs being deposited on the surface of

the fabric only, rather than spread out throughout the textile like with dip-coating and

brush-coating methods. Depositing nanowires on the surface only allows for a percolative

network to be obtained with much less NWs, and therefore is much more cost effective.

2.6.2 Transfer paper basics

Transfer paper is an essential element in the transfer printing process.

Figure 2.12: Schematic of light transfer paper

Transfer paper, as shown in Figure 2.12, consists of printing paper coated with a poly-

mer film. In the experiments here, the polymer film is ethylene vinyl acetate (EVA). The

EVA on the transfer paper acts as an adhesive, which helps with two steps of the printing
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process. One, it holds the AgNW ink pattern in place on the paper before transfer. Two,

when the pattern is transferred onto the fabric using heat and pressure, it also adheres

to the fabric thereby acting as a binder between the ink and the fabric. When heat and

pressure are applied to the transfer paper during the transfer process, the EVA is released

from the paper backing and transfers onto the fabric. The pressure application helps with

pressing the ink pattern into the polymer substrate, which then is released onto the fabric

when heat is applied. The heat helps with the release mechanism of the EVA polymer

from the transfer paper to the fabric.

The above describes what is called light transfer paper, which is predominantly what is

used in this project and is the more typical transfer paper. When the NWs are transferred,

they end up in direct contact with the fabric with the polymer coating on the top. There

exists another type of transfer paper called dark transfer paper. This transfer paper has a

different architecture compared to light transfer paper. The dark transfer paper is shown

in Figure 2.13.

Figure 2.13: Schematic of dark transfer paper

As shown in Figure 2.13, the dark transfer paper consists of four layers. The bottom
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layer is the paper. On top of the paper is a release layer polymer, which basically attaches

the layer third from the bottom (aka the peelable layer) to the paper. The top layer of

this transfer paper consists of multiple crosslinking polymers that can enable a variety of

features- opacity and printing inkjet or laserjet inks.

The top paper, on which the AgNW ink is printed. It consists of a polymeric binder

(could be acrylic or polyurethane in this case) and a crosslinking agent (could be epoxy,

carbodiimide or oxazoline polymer - the actual composition is unknown from the vendor

and is proprietary), which helps the NWs to stick to the dark transfer paper [57]. The

orange layer, which is the peelable layer, consists of an adhesive backing. This layer melts

to penetrate into the fabric, thereby attaching the NW film to the fabric when heat and

pressure is applied.

After the NWs are deposited on the surface of the crosslinking polymer, the polymer

is peeled away from the backing paper (by hand in this work) and the backside of the

polymer film is then stuck onto the fabric (again, by hand in this work). The result is that

the NWs are not in direct contact with the fabric, but rather polymer exists between the

NWs and the fabric. The NWs remain on the top surface. This allows for easier electrical

access to the NWs, which is useful in some applications.

Throughout this chapter, when not specified it is light transfer paper being used.
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2.6.3 Experimental methods

Transfer printing technique is a multi-step printing process (Figure 2.14).

Figure 2.14: Transfer printing films of silver nanowires onto the surface of fabrics

Several parameters were optimized to determine the best conditions for transferring

AgNWs onto fabric. These parameters include type of transfer paper, numbers of coats

of NWs, annealing temperature, heat press pressure, transfer temperature and peel off

speeds of the backing paper. The Table 2.4 below shows the different parameters that are

experimented with to optimize the process.

The different parameters for the process and how they are optimized are explained in
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Table 2.4: Parameters for transfer printing

Transfer paper Number Annealing Heat press Heat press Post deposition
of coats temperature pressure temperature techniques

Light transfer 2-4 90-150 ◦C Low, Medium 163-213 ◦C Roller Pressing
paper (inkjet or and High DC current

laser jet)

detail in the subsequent sections.

Deposition of NW films on transfer paper

First, the AgNWs are coated on transfer paper using a Mayer rod. The AgNWs are ob-

tained from ACS Materials (Medford, Massachusetts, USA). The AgNWs used to coat

the transfer paper have a diameter of 40 nm and lengths of 200 µm and are dispersed in

ethanol. The different concentrations of AgNWs which were coated on the transfer paper

were 2.5, 5, 7.5, 10, 15 and 20 mg/mL.

The Mayer rod assists in controlling the thickness of the deposited AgNW film and

therefore results in good uniformity of NWs across the area of the transfer paper. The

Mayer rod used is RDS 20, which gives a 50.8 µm wet film thickness. The AgNW coating

varied anywhere from 1 to 5 coats per sample depending on the concentration of the NWs

and thickness desired to obtain resistance under 100 Ω/�. The transfer paper is com-

mercially obtained from Joto Paper Ltd. (Coquitlam, British Columbia, Canada), Stahls

Canada (Concord, Ontario, Canada) and Transfer Paper Canada (Mississauga, Ontario

Canada). Several different transfer papers are used to figure out which would work best

for transfer printing of AgNWs on fabrics. The list of the different transfer papers used
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and the companies they are supplied by are listed in Table 2.5.

Table 2.5: Transfer paper experiments

Name Company Type Roughness
CL120 Joto Ltd. Laserjet Low
CL135 Joto Ltd. Laserjet Medium
CL140 Joto Ltd. Laserjet Medium

Inkjet light Joto Ltd. Inkjet High
Inkjet dark Joto Ltd. Inkjet High

Inktra Stahls Laserjet High
Jet Pro Soft stretch Transfer paper Canada Inkjet High

As stated before, Mayer rod coating is used to coat the transfer paper with AgNWs.

Figure 2.15 shows how Mayer rod coating works.

Figure 2.15: The Mayer rod coating technique

200 µL per 8 cm width of AgNW solution in ethanol is pipetted in a line at one end

of the transfer paper (dimensions of the transfer paper are 8 cm x 8 cm). The Mayer rod
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is then used to coat the transfer paper with the solution by dragging down the liquid ink

along the length of the transfer paper. The use of 200 µL of AgNWs and one drag-down

with the mayer rod is counted as 1 coat. Samples with 4 coats, which gave the highest

uniformity for AgNW coatings in terms of resistance numbers and had a total of 800 µL

volume of AgNW solution.

AgNW solution was also mixed with cellulose to try to potentially increase the adhesion

of AgNWs to the transfer paper and to improve the transfer onto the fabric. It was found

that the cellulose did not help with the transfer, but rather increased the resistance of

the NW coating on the transfer paper. Therefore, cellulose was no longer used for further

experimental purposes.

For optimizing the annealing temperature of AgNW on the transfer paper, the different

temperatures experimented with depended on the heat tolerance of the transfer paper. If

the temperature is too high, the transfer paper deforms in the form of tiny bumps on the

surface of the paper. This causes the NW film to be disturbed out-of-plane, reducing the

number and quality of NW overlapping junctions and therefore an increased resistance of

the sample. If the temperature is too low, the NW junctions do not fuse as well, thereby

causing high resistance as well. The different temperatures tested were 90 ◦C, 100 ◦C, 120

◦C and 150 ◦C. The best annealing temperature is found to be at 120 ◦C. The transfer

paper is then annealed at 120 ◦C for 60 mins in a vacuum oven which helps sinter and thus

lower the resistance between overlapping nanowires.

AgNWs due not completely fuse at 120 ◦C. For AgNW networks on glass, for exam-

ple, the optimal temperature to fuse the NWs and obtain the lowest resistance is 200 ◦C
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[58]. Since an annealing temperature above 120 ◦C could not be used due to the toler-

ance of the transfer paper, three additional processes implemented either before or after

the anneal are experimented with to lower the junction resistances. The three methods

are polyvinylpyrrolidone (PVP) removal using chemical treatment, roller pressing of the

transfer paper and passing DC current through the annealed AgNW sample.

PVP removal

PVP remains on the surface of the AgNWs after their polyol synthesis [37]. However, PVP

is not conductive and introduces resistance between overlapping NWs. This PVP can be

removed with a high temperature anneal, but because annealing temperatures are limited

due to the thermal budget of the transfer paper, PVP must be removed chemically. In this

work, after the nanowires are deposited on the transfer paper, they are washed with water

and ethanol before thermal annealing, which is a technique known to remove PVP [59].

Roller pressing

Roller pressing is employed to mechanically press the NWs into the transfer paper, which

both reduces the surface roughness of the sample and ideally presses the overlapping NW

junctions into one another. This would reduce the resistance of the sample. The hot rolling

press (MSK-HRP-01, MTI Corporation, Richmond, USA) is shown in Figure 2.16.
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Figure 2.16: Hot rolling press

The roller pressing was done at room temperature. The sample is rolled twice, both

times along the length of the sample. The rollers are initially separated by 70 mm. The

pressing distance is reduced progressively from 70 mm to 5 mm to figure out the ideal

pressing distance. The resistance was tested after every press to see how the resistance

of the sample changed. It is good to note that the roller pressing technique is roll-to-roll

compatible, and so it would fit well into an industrial process.

DC current application for NW welding

DC current is passed through the NW network after annealing of the AgNW coating on

transfer paper. The current creates Joule heating, particularly at the high resistance NW

junctions, and can help lower the resistance. Currents of 0.1 -1 A are tried for a sample
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size of 4 cm x 4 cm.

Transfer process

Once the NWs on transfer paper are annealed in the oven to fuse the NWs, it is placed

design down on the fabric of choice and pressed using a heat press. Prior to this, the fabric

is cleaned by submersion in a solution of liquid cloth washing detergent and water for 15

mins. The solution is stirred with a stir bar while heated with a hot plate at a temperature

of 40 ◦C. Copper tape is attached to either end of the fabric prior to the transfer of the

AgNW network so that the NWs could be electrically accessed after transfer. Since the

EVA polymer coats the top of the AgNWs, the copper tape cannot be placed after NW

transfer. The AgNW film is then transferred onto the fabric with a heat press purchased

from FlexHeat (Brampton, Ontario, Canada), which is an 11" by 15" digital heat press.

The sample is then retrieved from the heat press and the paper is peeled off by hand,

leaving the AgNW film stuck to the fabric. The polymer coating is not removed from the

sample as it provides sample protection from air and NWs from falling off the fabric. The

final fabric sample looks like Figure 2.17.

Figure 2.17: Schematic of the transfer printed fabric sample
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The major parameters that needed to be optimized for the heat press included- heat

press temperature and pressure, transfer time, type of transfer paper used and peel off

time. The temperatures tested during the heat press step are 163 ◦C, 177 ◦C, 190 ◦C, 204

◦C and 218 ◦C. For transfer time, times of 20, 30, 45, 60, 75, and 90 s were tried. For

pressure, low, medium and high pressure settings of the heat press were tried. Peel off time

is defined as the time between retrieving the sample from the heat press after the pressing

and starting the peel off of transfer paper from the fabric. Peel off times between 10 s- 60

s were tried.

Several different fabric samples were tested to optimize the transfer printing technique.

All the fabric samples were purchased from Fabricland. The list is shown in Table 2.6.

Table 2.6: Fabric contents

Name Composition
Regular cotton 100% cotton

Interfacing cotton 100% cotton
Cotton silk blend 70% cotton and 30%silk

Viscose linen blend 70% cotton and 30% silk
Viscose linen blend 70 % viscose and 30% linen

Regular rayon 100%rayon
Polyester cotton blend 65% polyester and 35% cotton

Interfacing polyester rayon blend 90% polyester and 10% rayon
Interfacing polyester rayon blend 60% polyester and 40% rayon

Regular polyester 100% polyester

Parameters for the different transfer papers listed in Table 2.5 that are compared,

beyond measuring the resistance of the sample once AgNW coating is applied, are:

1. Roughness of the polymer (EVA) on the paper

2. Polymer packing style on the paper
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3. NW density that gets deposited on the paper

4. Heat tolerance of the paper

Characterization

Scanning electron microscopy (SEM) is used to image the AgNW films on various sub-

strates, the bare transfer papers, and the bare fabrics. SEM analysis gives information

about the density and distribution of the AgNW film across the transfer paper and also

an understanding of the fabric structure. It is also used to understand the transfer paper

characteristics like roughness and polymer distribution on the paper.

The sheet resistance of the samples is measured using a multimeter applied across the

two copper tapes. The sheet resistance is calculated in Ω/� by measuring the resistance

and the knowing the sample dimensions (width and length). The formula for calculating

the sheet resistance is:

Sheet resistance = R ∗ (W/L) (2.1)

The characterization tests used to quantify the results of the transfer printed AgNW

fabric are listed in the Table 2.7, along with the purpose and equipment used to perform

the testing.
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Table 2.7: Characterization tests for transfer printed fabrics

Test Purpose Equipment used
Electrical To measure the sample resistance Multimeter

Characterization
Mechanical test To measure the change in Multimeter,

the sample resistance with extended A 120 mm radius rod
and multiple bending and folding for bending consistency

cycles, separately
Lifetime testing To measure the change Multimeter

in sample resistance over time
(30 days)

Washing tests To measure the change in Multimeter, Laundry
resistance with variable washing detergent, Hot plate and

techniques Stir bar
Cost calculation To compute the costs associated with SEM, ImageJ

transfer printing of AgNWs on fabric

Cost Calculations

For cost calculations, the transfer paper is coated with AgNWs and without the annealing

step, analyzed under the SEM. Image J software is then used which counts the black and

white pixels of the image to quantify the surface coverage of the AgNWs. The surface cov-

erage is then converted into the volume of the NWs by knowing the cross-sectional shape

and size of the NWs, which then can be converted into mass per m2 by using the density

of silver. This mass in g/m2 is then multiplied with the cost of growing NWs at $ 32/g to

get the cost of NWs in $/m2 [52].

The cost could only be estimated for lower densities of NWs coated on the transfer

paper since at higher densities there is too much NW overlapping. Three data points
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at 2.5, 5 and 7.5 mg/mL concentration of AgNWs were used to generate an equation to

estimate costs at higher NW concentrations.

2.6.4 Results and Discussion

NW films on transfer paper

Figure 2.18 is an SEM image of a NW network on transfer paper. The NW density is quite

uniform, except for localized areas seen in the left of the figure. These regions are because

the transfer paper is not flat, and out-of-plane bumps in the EVA are not well coated with

NWs. Once the AgNW network is transferred on the fabric, it cannot be imaged with a

SEM because of the ethylene vinyl acetate present on top of the AgNW network.

Figure 2.18: NW network on transfer paper (before transfer onto fabric)

PVP removal helps lower the resistance of the transfer paper samples. As can be seen

in Figure 2.19, compared to samples which did not undergo a water/ethanol wash for PVP

removal with samples which did, a big shift is noticed between the resistance numbers after

annealing.
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Figure 2.19: Resistance comparison for transfer paper with and without PVP removal
treatment

After annealing the coating on the transfer paper, the transfer paper is pressed under

the roller at room temperature. The same sample was pressed sequentially with decreas-

ing distances between the rollers. The dependence of resistance with the distance between

rollers is illustrated in Figure 2.20, with a starting resistance of 14 Ω/�. The ideal pressing

distance is found to be 30 mm, as this is the distance, which resulted in the lowest sample

resistance. It is also good to note that pressing the NWs into the polymer coating of the

transfer paper makes the coating less prone to a big resistance shift when transferred onto

the fabric.
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Figure 2.20: Resistance of a silver nanowire coating on transfer paper (initially at 14 Ω/�)
after being rolled at sequentially smaller distances between the rollers.

For NW welding, using a DC current method is not useful when working with low

resistance numbers, especially when using constant current. For example, for a 5 mg/mL

(4 coats) sample, the resistance on the transfer paper initially is at 5 Ω/�. Figure 2.21

shows that with change in the current supplied, anywhere in the range of 100 - 500 mA,

there is no decrease in resistance observed. And at 700 mA, the resistance jumps to 45

Ω/� likely due to the high current causing breakdown.
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Figure 2.21: Change in resistance of transfer paper coated AgNW sample with constant
DC current supply ranging from 100 mA- 700 mA.

Another method is tried to decrease the junction resistance by passing DC current or

voltage in pulses periodically [60]. Here, a 3 mg/mL, 4 coat, AgNW sample is prepared on

transfer paper and subjected to periodic voltage pulses of 1 min, where there is a 1 min

cool down period after every 1 min of voltage application. As seen in Figure 2.22, there is

a decrease in resistance observed for the sample from 1150 Ω/� to 940 Ω/�.
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Figure 2.22: Change in resistance of transfer paper coated AgNW with pulsating DC
voltage at 29 V.

Because the DC power supply either does not change the resistance or only decreases

it slightly, this process was not employed for lowering AgNW coating resistance.

PVP removal using ethanol/water treatment before the anneal and roller pressing of

the sample after annealing are all used in conjunction to reduce the junction resistances
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for the AgNW coated transfer paper.

Transfer printing optimization

Figure 2.23 shows the resistance of the NW film on various transfer papers. These numbers

are obtained from the transfer paper, before the transfer is done on fabric. The annealing

temperature varies depending on the transfer paper used, and each transfer paper has a

different heat tolerance. CL140 shows the least resistance but it did not transfer well to

fabrics. CL120, which has the second lowest resistance, transferred well onto all fabrics

tried. Of all papers, CL120 has the least amount of heat tolerance at 90 ◦C, but SEM

imaging showed that it has fairly low roughness. Also, for CL 120, if the anneal is started

at 90 ◦C and gradually the temperature is increased to 120 ◦C over the 60 mins annealing

period, the transfer paper does not burn. This allows for AgNW films to be annealed at

a higher temperature and results in low resistance numbers overall. Therefore, CL120 was

chosen as the final transfer paper.
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Figure 2.23: Resistance of nanowire coatings on different transfer papers

During the heat pressing step, for temperatures lower than 190 ◦C no resistance num-

bers are measured after transfer. This happens because the release of the polymer from

the backing paper is not complete, leaving some NWs stuck to the transfer paper. For

temperatures above 190 ◦C, the NWs and adhesive transfer well on the fabric, but the

resistance of the sample is high. This may happen due to burning of the polymer present

on the transfer paper, which in turn reduces the adhesion of the polymer to the fabric and

also might cause disruption of the NW film due to polymer deformation. The final transfer

temperature used for all subsequent transfers is 190 ◦C. The paper transferred well and

this pressing temperature resulted in the lowest sample resistances.

Regarding pressing time, at 20 s, the polymer is not entirely detached from the transfer

paper, which causes poor transfer. For times 60 s and above, the polymer burns but the
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transfer is complete. A burning smell is the evident when the heat press is used for this

length of time. The deformation of the polymer causes the NW network to disrupt thereby

increasing the resistance. Both 30 and 45 s worked well, but the resistance numbers ob-

served were best for 30 s transfers.

In terms of pressure used to press the transfer paper onto the fabric, medium pressure

(as defined by the pressing machine) is required. At high pressure, the transfer paper

shows tears and rips, resulting in no resistance being observed upon transfer. At low pres-

sure, the polymer along with the NW network is not completely transferred onto the fabric.

Regarding peeling time, if the peel off of the backing paper occurs right away, when

the sample is still hot from the transfer, the transfer is incomplete on the fabric and some

areas of the NW network do not transfer. If the peel off time is over 60 s, when the transfer

is cold, the peel off does not happen since the backing paper sticks too well to the EVA.

The ideal peel off time, with a slow peel off speed, is about 30-50 s.

The resistance for the sample is measured at three times during the transfer process -

once on the transfer paper, next when the transfer is sticking to the fabric before the peel

off and lastly when the peel off is done and the entire pattern is transferred onto the fabric.

Figure 2.24 shows the change in resistance of NW films on transfer paper vs. before and

after peeling off the transfer paper.
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Figure 2.24: Resistance of the silver nanowire films during the different stages of the
transfer printing process.

As can be seen in Figure 2.24, the resistance of the NW film on the transfer paper

is comparable to the resistance of the NWs on the fabric before peel-off. However, the

resistance increases at least 2 - 3 times after the backing paper is removed. The removal of

the paper likely causes some of the NW network to distort out of plane due to the pulling

force. This breaks some junctions and increases the sample resistance. Altering the peel-off

speed could not prevent this jump in resistance.

The number of coats of AgNW films on the transfer paper is an important parameter

to be considered. If the NW coating is too thick (at or above 20 mg/mL concentration

of AgNWs with 4 coats), I found that transfer onto the fabric is not possible. This is
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because there needs to be sufficient space between NWs for the polymer adhesive to pass

through so that there is direct contact between the polymer and the fabric. The SEM

images in Figure 2.25 show a lower density NW film on transfer paper before and after

annealing. The image on the right implies that during the anneal, the polymer was able

to ooze through the NW network such that some polymer exists on the surface of the NW

film. This allows the polymer to stick well to the fabric. If the network is too dense (at

or above 20 mg/mL concentration of AgNWs with 4 coats), the polymer is unable to rise

through the NW mesh. Since there are no chemical adhesive linkages formed between the

fabric and the NW film, a complete transfer is prevented.

Figure 2.25: SEM images of nanowire coated transfer paper: A. Before annealing B. After
annealing

Along with a labmate, Jonathan Atkinson, we screen printed a silver nanoparticle ink

on transfer paper and it did not transfer to fabrics at all. This is because, unlike a sparse

NW network, the ink forms a continuous film that fully covers the transfer paper surface

and the EVA does not contact the fabric. Therefore, NW films provide a unique way to

transfer print metal inks onto fabrics, since transfer printing does not work with typical
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metal inks.

Once the system is optimized for transfer printing, the NW networks are printed on

different fabrics. The three fabrics chosen for NW printing are polyester-cotton, 100% in-

terfacing cotton and a viscose-linen blend fabric. Figure 2.26 shows images of the different

fabrics when coated with AgNWs using the same parameters. Interfacing cotton shows

the highest resistance among the three samples of fabrics used. The peel off after transfer

printing is uneven and blotchy in certain sections.

Figure 2.26: AgNW coating on different fabrics

Figure 2.27 shows a magnified section of the uneven, blotchy transfer onto the interfac-

ing cotton fabric. These white areas on the transfer, where the NWs do not stick to the
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fabric, is where the transfer was not possible. Because not as many NWs transferred to

the interfacing cotton compared to the polyester and viscose, there are not as many NWs

available for conductive and this likely explains the increased resistance.

Figure 2.27: Zoomed in AgNW coating on interfacing cotton

As seen in Figure 2.28, the thickness of the threads for each of the fabrics is different

and so are the gaps between the interwoven threads. Comparing the different fabrics, the

large spaces present between the thread of the interfacing cotton, could be causing the

transferred polymer to not have as much surface area to attach to, thereby leading to a

poor transfer on the fabric.

Figure 2.28: Optical microscopy images of fabrics A. Viscose linen B. Polyester cotton C.
Interfacing cotton.
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The optimal transfer printing process found in this work is summarized in Table 2.8.

Table 2.8: Final optimized parameters for transfer printing

Parameter Number
Transfer paper CL 120

Annealing temperature 120 ◦C
Number of coats 4

Heat press temperature 190 ◦C
Heat press pressure Medium

Heat press time 30 s
Peel off time 40 s
Fabric used Polyester-cotton

Electrical characterization and cost

Figure 2.29 establishes the correlation between the amount of AgNWs used with respect

to the resistance of the sample, as well as the material cost of the NWs used. As expected,

the resistance increases as the density of AgNWs decreases.
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Figure 2.29: Resistance comparison for different densities of AgNW coatings along with
material cost estimates.

As it can be seen in Figure 2.29, the cost of printing AgNWs using transfer printing

is fairly low. Compared to dip coating, where the cost of coating the fabric to achieve a

resistance of 30 Ω/� is at $ 700/m2, using transfer printing, it costs $ 16/m2. And because

less AgNWs are used the coating is also lower weight.

Mechanical testing - bending and folding tests

Figure 2.30 shows the results of the bending test. The fabric is held around a rod with a

60 mm radius for 60 s, then unfolded. Immediately after unfolding the resistance is fairly

high, but after 60 s the resistance stabilizes and the measurement is taken. After 20 cycles

of bending, there is a 7% change in resistance of the sample.
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As seen in Figure 2.17, the AgNW film is in direct contact with the fabric once trans-

ferred and covered on top with the EVA polymer. When the fabric coated with silver

nanowires is imaged under a SEM, the only layer visible is of the EVA and not the silver

nanowire film. SEM of the NWs on fabric is not possible due to the EVA coating on

top of the NW film and thus SEM could not be used to investigate the fabric samples in

Figure 2.26, 2.31 and 2.36.

Figure 2.30: Bending test with AgNW transfer printed fabric. The inset figure shows the
bent nanowire coated fabric sample around a rod with a 60 mm radius.

For the folding tests, the conductive fabric is folded in half and held in place for 60 s.
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After this, the fabric is restored to the flat state and the resistance is measured. As seen

in Figure 2.31, the change in resistance after 10 folding cycles is 10%.

Figure 2.31: Folding test with AgNW transfer printed fabric

For the square folding test, the fabric was bent once in x-direction and then in y-

direction and held for 60 s each. The change in resistance is shown in Figure 2.32. The

increase in resistance is higher compared to the basic bending and folding tests, due to the

fact that some NW networks might be broken due to multiple bends at the same time,
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causing the resistance to increase 53% after 10 folding cycles.

Figure 2.32: Folding square tests with AgNW transfer printed fabric

Transparency comparison tests

To quantify the transparency of the AgNW films on fabric, a spectrophotometer is used.

The three different techniques used to measure the transparency of the film are:

1. Measure the transmittance through the fabric with and without AgNW coating
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using a spectrophotometer. Since the fabric is actually opaque, the measurement is not

feasible.

2. Measure the transmittance of the transfer backing paper coated with and without Ag-

NWs using a spectrophotometer. The transfer paper is also opaque, which does not allow

for the spectrophotometer to quantify the transparency of the sample. The polymer film

is the only element of the transfer paper that actually transfers onto the fabric along with

the AgNW film. And since no measurements can be made on fabric or transfer paper, one

is unable to quantify the transparency of the AgNW film.

3. The AgNW coating is applied on PET using the Mayer rod coating technique. For

PET itself, the transparency is 89.3 % at a wavelength of 550 nm. When a 10 Ω/� AgNW

coating is applied to the PET, the transparency decreases to 23.3%. This means that the

transparency of the coating was 44% which is quite low.

Visual observations were done on the nanowire coated fabric. Figures 2.33 and 2.34

show a NW film transfer printed on color-printed cotton samples. The resistance of the

coatings were 100 Ω/�. The images show that the transfer printed films do not drastically

change the colour of the textiles, and the pattern of the textile can still be seen. Com-

mercially available conductive fabrics, as shown in Figure 2.35, are either copper, silver

or black since the coating is not transparent. The NW film transfer printed on the fabric

however is quite transparent. By my knowledge, this is the first conductive coating for

fabrics that is transparent. If the process parameters of the NW deposition, transfer paper

and the transfer printing process are further optimized, it may be possible to increase the

transparency of the NW coating and thus seamlessly impart conductivity to a fabric.
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Figure 2.33: NW coating on cotton patterned fabric The left image shows the fabric without
the NW coating and the right image shows the fabric after NW coating

Figure 2.34: NW coating on cotton patterned fabric The left image shows the fabric without
the NW coating and the right image shows the fabric after NW coating
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Figure 2.35: Silver coated fabric

Lifetime testing

Lifetime tests are performed with transfer printed samples of AgNWs on interfacing cotton,

polyester-cotton and viscose linen fabric. The samples are prepared and left out in air for

30 days and the resistance is measured every 3 days. The samples were coated with 10

mg/mL AgNWs in ethanol solution. As seen in Figure 2.36, the resistance of the each of

the fabrics coated with AgNWs increases by 21%, 43% and 120% in the first 6 days for

polyester cotton, interfacing cotton and viscose linen respectively. For viscose linen fabric,

an interesting jump in resistance is observed between day 6 - 15, but then it stabilizes to

the same number as the resistance on the 6th day. This resistance on day 15 might just

be outlier. For both polyester-cotton and cotton, after the 6th day, the resistance does not

increase anymore and is constant for the rest of the month.
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Figure 2.36: Resistance change of AgNW printed fabrics over 30 days for cotton, polyester-
cotton and viscose linen fabrics when left in air

One hypothesis which explains the increase in resistance initially is due to the corrosion

of AgNW film while being exposed to air. AgNWs are known to corrode in air, specifi-

cally due to sulfur containing gases, and this corrosion is accelerated with moisture [53].

Although EVA degrades in oxygen and water, depending on if it is cured or uncured, it is

fairly stable [61]. Since the EVA is annealed with the AgNW film on the transfer paper,
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it is cured and should not degrade super fast. Moon et al. [62] have shown that the sheet

resistance of AgNWs coated on a PET substrate when exposed to air for 30 days change

in resistance from 25 ohms/square to 70 ohms/square. This is a 180 % jump in resistance

over 30 days. Compared to these results, AgNWs on a variety of fabrics show an increase

in resistance from 20% to 120% over 30 days, which is lower than AgNWs on PET tested

by Moon et al. This supports the fact that the presence of EVA through the NW network,

both below and above it, might be helping with reducing corrosion. Although the NW

coated fabric does not undergo corrosion very fast, passivation solutions may be required

for longterm usage.

Washing tests

Washing tests are performed using samples coated with AgNWs with concentrations of 10

mg/mL and 20 mg/mL. The three different kinds of washing tests performed are:

1. Sample is immersed in distilled water for 15 mins.

2. Sample is immersed in detergent and distilled water at room temperature for 15 mins

followed by washing with distilled water.

3. Sample is immersed in detergent and distilled water at 40 ◦C for 15 mins with a mag-

netic stir bar rotating at a speed of 30 rpm.

For all of the above experiments, no resistance was observed after the experiment was

completed. The AgNW network is embedded into the EVA polymer of the light transfer

paper and EVA is well known to degrade and release acetic acid when exposed to water

[63] [64]. In the literature, AgNW coated threads by Atwa et al. [51] were washed with

minimal resistance effects. Therefore, perhaps the catastrophic resistance changes seen

here have something to do with the AgNW network being embedded in the EVA polymer.
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EVA is well known to degrade and release acetic acid when exposed to water and this

could somehow have a negative effect of the NW network. More experiments and analysis

need to be done to determine the reason why washing severely degrades conductivity. It is

clear that the NW film needs to be encapsulated on both sides of the fabric to make slow

down the degradation. Some materials that are used for encapsulation of metals on fabric

include silicone and epoxy.

Dark transfer paper results

For a 10 mg/mL AgNW coating, with 4 coats of AgNWs on both dark and light transfer

paper, the resistance numbers are similar and close to 10 Ω/�. But when both the transfer

papers are transferred onto the fabric, the dark transfer paper retains the resistance. The

resistance for the AgNW film, when transferred from the light transfer paper onto the

fabric, increases to 80 Ω/�. Although the dark transfer paper is able to provide lower

resistances and works for all fabric types, the NWs may be less protected from mechanical

rubbing and degradation in air. Also, the transparency of the NW film achieved is lower

compared to light transfer paper as can be seen in Figure 2.37. The transparency for dark

transfer paper is lower because of the presence of an opaque cross-linked polymer and an

opacifying material [57].
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Figure 2.37: Transparency comparison between light and dark transfer paper. The first
panel is a regular printed cotton cloth. The second panel is a printed cotton cloth coated
with AgNW network using light transfer paper. The third panel is a printed cotton cloth
coated with AgNW network using dark transfer paper.

Dark transfer paper allows the nanowire conductive coating to be directly accessed to

make a conductive pathway and connections such as copper tapes fare not needed (shown

in section 3.3). Although dark transfer paper does not encounter the problem of peeling

stress as the light transfer paper, it cannot be transparent, due to the opaque backing

present on the dark transfer paper.

2.6.5 Conclusion

Results described in this chapter prove that the existing techniques used to coat NWs onto

fabrics have several drawbacks and there is a need for a better technique in order to reduce

costs for making conductive fabrics. The dip coating technique, which is the only technique

shown in previous works to coat AgNW on fabrics, has shown low resistance for samples

due to the high amount of silver used. Dip coating and brush coating are easy techniques

used to coat fabrics with AgNWs, but have issues of high cost due to the high amount

of silver used, non-uniformity of the coating and the requirement for surface modification
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of fabric for NW adhesion. Transfer printing shows promise in terms of printing metallic

NW inks onto fabrics. Apart from being cost effective and an industrially compatible

technique, it offers the unique advantage to produce fairly transparent conductive coatings

on the fabrics. It was shown to work for both natural and synthetic fabrics without the

need for surface modification. It can be applied to textiles after they are manufactured

(i.e. printing does not have to be done at the time of textile manufacturing such as would

be the case for dip-coating or using conductive threads). The nanowire coating is quite

mechanically flexible, and can have minimal resistance change (26% for polyester-cotton)

after being left in air for 30 days. With a series of applications explained in Chapter 3,

along with several other future options, the transfer printing of AgNW films onto fabrics

proves to be a promising technique with the potential to be used for printing other metallic

NWs and carbon nanotube as well.
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Chapter 3

Applications of transfer printing

In Chapter 2, transfer printing was shown as a credible technique to produce conductive

AgNW coatings on fabrics. The applications that these nanowire film coatings are tested

for in this chapter include patterning on fabrics, constructing LED circuits for apparel

fashion, electromagnetic interference (EMI) shielding and the ability of the conductive

fabrics to generate heat when a voltage is applied.

3.1 Patterning on fabrics

Patterning a conductive coating as tracks or pads is required for many device applications.

Furthermore, to a compared coating the entire fabric surface, it uses less metal and is

therefore less cumbersome, and allows the majority of the textile to retain its softness

and breathability. A few methods exist to define conductive patterns on fabrics. Defining

patterns using brush coating does not result in sharp patterns. In screen printing a mask

is required, which is an extra cost, and the rheology of the ink is limited to a certain range

71



otherwise the ink bleeds underneath the mask edges. Another method to make conductive

tracks is to weave in conductive threads at particular locations, but this is time consuming

and is preferred to be done at the time of textile manufacture. With transfer printing,

patterning is easy, with sharp edges and boundaries obtainable. Coating shapes of desired

resistance and transparency can be designed using transfer printing. The methods section

below elaborates how the patterning is done and some of the designs generated in the lab.

3.1.1 Methods and results

Once the nanowires are coated and annealed on the transfer paper, the nanowires on trans-

fer paper are put through the Silhouette. The Silhouette machine is a cutter, which is able

to receive instructions to cut specific design created in the Silhouette software and cut the

shapes accordingly. The smallest feature that can be cut with the Silhouette cutter is 0.5

mm. Once the design is cut, it is transferred onto the fabric using the heat press. As can

be seen in Figure 3.1, various designs have been patterned on polyester-cotton fabric. The

edges of the patterned nanowire films are observed to be clean and sharp.
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Figure 3.1: Designs of conductive silver nanowire ink patterned onto polyester-cotton fabric
using transfer printing

3.2 LED integrated fabric

To demonstrate an application where the printed and patterned nanowire fabric can be

used, a demo was composed using LEDs with an adhesive backing and printed AgNW

networks. The nanowires are printed and patterned on the fabric. For the light transfer

paper, the nanowire film is coated on the light transfer paper, annealed at 120 ◦C for 60

mins, and then the nanowire film is put down on the fabric, where the NWs are in direct

contact with the fabric. The copper tape is put down on the fabric first, which comes in

contact with the silver nanowire film when transferred, thereby making contact with the

conductive film and completing the connection for the light transfer paper (Figure 2.12
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and the transfer process subheading under section 2.6.3 explains how the silver nanowires

make contact with the copper tape and complete the connection).

The fabric and transfer paper are then subjected to the heat press (heat press temper-

ature of 190 ◦C for 30 s) and once the sample cools down, the transfer paper backing is

peeled off from the fabric. Since the light transfer paper does not have nanowires exposed

at the surface for the connection of electronics, copper tape is used to connect the ends of

the network and electronic components. Figure 3.2 shows two simple LED circuits com-

pleted using light transfer paper, with and without a patterned circuit.
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Figure 3.2: Simple LED circuit printed onto polyester-cotton fabric using light transfer
paper. A: Silver nanowires are patterned and printed onto the fabric. B: Silver nanowires
printed on fabric without patterning

A demo piece built is shown in Figure 3.3. A bracelet is first printed onto polyester-

cotton fabric using a color laser printer. A second polyester-cotton fabric piece, the back-

end, is made by patterning the AgNWs on fabric using dark transfer paper and stick-able

LEDs. The NW film is peeled off from the transfer paper backing and attached to the

fabric using the heat press at 375 ◦C and a 30 s press for dark transfer paper. Using a dark

transfer process instead can avoid using copper tape since the conductive nanowire film

is exposed on the top surface of the fabric. Therefore, the LEDs can directly contact the
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nanowire film. A 3V coin battery was used to power the LEDs. The bracelet-patterned

fabric sample was placed on top of the LED circuit so that the NW pattern is hidden while

the light from the LEDs could still be seen.

Figure 3.3: Design with LED. A: Patterning of nanowire-coating interconnects on polyester
cotton with LEDs. B: Circuit completed with a coin battery. A second fabric sample is
laid over the LED circuit to hide the patterned interconnects with both light (C) and dark
(D) room lighting conditions.

This demonstrations shows that AgNW inks can be screen printed into arbitrary shapes

with sharp edges without the use of a mask. It can also be done post-textile-manufacture.

Such patterns could even be printed at home with the use of a hand iron.

3.3 Electromagnetic interference shielding

An electromagnetic (EM) wave has 2 components - an electric field and a magnetic field,

which are perpendicular to each other. Electromagnetic interference (EMI) refers to the

pollution caused by unwanted radiation generated by electronic and telecommunication
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devices. EMI shielding is the phenomenon of protecting humans and electronics from

this pollution by using materials that can block EM waves. EMI shielding finds applica-

tions in various industries like automotive, aerospace, defense and household goods. These

EMI shielding materials need to be conductive, thereby possessing mobile charges. These

charges then interact with the EM wave and help dissipate the energy. Several mate-

rials like graphene [65] [66], carbon nanotubes [67] [68] and metallic nanowires [69] [70]

are used combination with polymers (via blending or coating with the substrate material)

to produce EMI shielding materials. AgNWs are of high interest because of their high

conductivity and high aspect ratio for applications in EMI shielding. A high aspect ra-

tio (aspect ratio= length/width of sample) [71] is critical for achieving a high shielding

effectiveness (SE) because they lead to longer conducting pathways in a random network,

thereby increasing the conductivity of the sample. A high conductivity is necessary to

disperse electrons throughout the sample to achieve a high SE.

Previously, AgNW blended with a variety of polymers have shown exceptionally good

EMI shielding, even when compared with other nanomaterials like carbon nanotubes.

Work done by Sundararaj et al. shows EMI shielding of AgNWs and MWCNT com-

posites with polyestyrene (PS) [70]. The AgNW/PS composite shows about 30 dB of

shielding at X-band frequencies with a nanofiller loading volume of 2.5% compared to the

MWCNT/PS which only show about 20 dB of shielding at the same loading volume. For

AgNW/polyimide composite foams, the work done by Wang et al. shows 772 dB/g.cm3 of

shielding at 800 - 1500 MHz [72]. Another work by Wang et al.[73], shows shielding effects

of 20 dB for the frequency of 3 - 17 GHz for PVA/AgNW and epoxy/AgNW conductive

films. This work also compares silver nanoparticle efficiency with AgNW networks and

proves that the shielding effect of the nanoparticles is much lower. All these works show
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that AgNWs have the capability to block EM waves. For the transfer printed AgNW sam-

ples on fabric, experiments are done to analyze their potential of blocking EM waves and

to compare the change in shielding with the concentration of the AgNW film coated.

Preliminary experiments were performed using waveguides corresponding to certain AC

frequencies. The basic setup of a waveguide experiment is shown in Figure 3.4. The setup

consists of 4 main features- a vector network analyzer (VNA) for supplying the current

to generate waves at a certain frequency, waveguides to convert electricity into waves of

required frequency, right angle coaxial adapters to connect waveguides to the VNA and a

computer to record the data.
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Figure 3.4: Setup using a WR340 waveguide and a vector network analyzer for quantifica-
tion of EM shielding using silver nanowire coated fabric

The waveguides were connected to the vector network analyzer. The waveguide used

has a frequency range of 12.4-18 GHz. The two ports of the vector network analyzer act as

input-output response ends. The input is in the form of current, which is converted into

AC frequency waves using the waveguide. Depending on the length and width dimensions

of the waveguide, the waveguide has a certain frequency range it can generate. The setup

is used to measure the amount of EMI shielding in terms of the power loss. The loss is

measured in the unit of decibels (dB). Equation 3.1, is used to quantify the loss in power.

Shielding Effectiveness = 10log(Pin/Pout) (3.1)
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where Pin = Incident power and Pout = Transmitted power

AgNW transfer printed polyester-cotton fabrics with AgNW densities of 20 mg/mL(4

coat sample), 15 mg/mL (4 coat sample) and 10 mg/mL (4 coat sample) are measured.

These samples had resistances of 3 Ω/�, 30 Ω/� and 90 Ω/�, respectively. The control

sample was polyester-cotton fabric without a coating.

Figure 3.5 shows the power loss exhibited by the non-conductive fabric and the AgNW

coated samples with different AgNW densities.

Figure 3.5: Two port experiment with 12.4-18 GHz waveguide for measuring loss of trans-
mission for silver nanowire coated fabrics with different density of nanowires
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With the fabric only sample, it is observed that the RF loss is at 0 dB and overlaps

with the calibration curve. This shows that the polyester-cotton fabric by itself does not

block any radio frequency (RF) waves. With the 20 mg/mL fabric, there is a loss of 30

dB, for 15 mg/mL, the loss is 20 dB and for the 10 mg/mL fabric the loss is 10 dB. These

results show that AgNW printed fabrics are capable of blocking EM waves. And with the

transfer printed fabrics, depending on how much blocking is required for the application,

one can design a fabric with the required conductivity.

3.4 Joule heating

Joule heating is the process where electricity is converted into heat through a resistive

element. Joule heating is used in several applications in the real world, which require

fabric-based heating processes, including uses in the apparel industry (heated garments

and gloves), automotive (car seats), household use (heated floors and walls) and the medi-

cal industry (electrotherapy treatment and heated blankets). Work done by Khaligh et al.

[74] and Atwa et al. [51] shows that AgNW coated PET and threads, respectively, show

Joule heating. Here, the transfer printed AgNW fabrics are tested for their Joule heating

capability and to quantify and relate the AgNW resistances and Joule heating effects.

The AgNW coated fabrics are tested for the change in temperature of the fabric using

a range of voltages between 1 V and 10 V. The samples tested for Joule heating were

polyester-cotton and cotton coated fabrics with variable AgNW concentrations. The sam-

ples are square with lengths and widths of 4 cm each. The concentrations of the AgNWs

used were 5, 10 and 20 mg/mL. The setup for the Joule heating experiments is shown

in Figure 3.6. A thermocouple is attached to the fabric sample on the top of the coated
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fabric to record the temperature change, which is tracked by a multimeter connected with

the computer. A DC power supply with constant voltage is also attached to the fabric

sample to supply the required voltage. For most samples, the voltages are applied for 6

mins and then the voltage is turned off and the temperature decrease is monitored for

another 4 mins. In some cases, because the sample fails under the voltage applied, the

times differs for how long the voltage is applied and depends solely on when the sample

fails. The change in current of the sample is monitored using a multimeter, also connected

to a computer for data collection. The three types of experiments done to quantify Joule

heating in samples were:

1. Monitor Joule heating on polyester-cotton transfer printed fabric with variable nanowire

concentration using a constant supply voltage.

2. Monitor Joule heating on polyester-cotton transfer printed fabric with variable supply

voltage with constant nanowire density.

3. Monitor Joule heating on polyester-cotton and cotton fabric samples with constant

supply voltage and nanowire density.
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Figure 3.6: Setup for characterizing the Joule heating properties of AgNW fabrics

As seen in Figure 3.7, as the concentration of AgNWs increases, the obtained temper-

ature increases. Since the resistance of higher density NW samples is lower, there is more

current flowing through the sample for a given voltage. Since the power dissipated is P =

IV, these samples create more Joule heating.
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Figure 3.7: Change in temperature for different concentrations of nanowire coatings at a
constant voltage of 5 V

Overall, with keeping the voltage at 5 V, it is seen that the temperature can rise as

high as 75 ◦C and 55 ◦C for 20 mg/mL and 10 mg/mL AgNW coated fabrics, respectively,

in under 6 mins. This is a fairly substantial increase and depending on the application the

temperature can be tailored using different concentrations of AgNW coatings on fabrics.

A dip in temperature is seen when the supply voltage is turned off and the AgNW fabric

starts cooling off. It is worth noting that the fabric cools down and returns to room tem-
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perature in under 6 mins generally.

As Figure 3.8, where a 10 mg/mL AgNW coated sample is used, shows, with an increase

in voltage, the temperature also increases. For AgNW printed fabrics that undergo 1 V and

3 V current, no substantial change in temperature (a rise by 1 ◦C) is observed. This low

change in temperature could potentially be attributed to the fact that the AgNW network

does not encounter enough current to exhibit a substantial increase in temperature. But

for 5 V and 6 V, 37% (with highest temperature at 30 ◦C) and 45% (with highest tempera-

ture at 33 ◦C) increase in temperature is observed for the samples. At higher voltages, the

temperature change is quite substantial, and shows that amount of temperature change

can be controlled both through concentration of AgNWs used and the voltage applied to

achieve Joule heating.
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Figure 3.8: Change in Joule heating for various voltages applied across a 10 mg/mL con-
centration silver nanowire film on polyester cotton.

When a 5V DC voltage is applied to 10, 15 and 20 mg/mL samples, currents of 50, 222

and 480 mA are observed. For voltages over 6V, a breakdown is observed for the samples.

The term breakdown refers to the drop in current from the maximum value when a certain

voltage is applied to 0 in a matter of few minutes. The Joule heating that occurs evidently

leads to a temperature that causes the NWs to melt. Even though the temperature of the

coating as a whole is quite low, the temperature of the NWs themselves is much higher

[74]. This melting causes a disruption of the AgNW coating on the fabric, thereby reducing

the current carrying paths. This increases the current load of the remaining paths, which
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in turn increases Joule heating there and leads to their failure as well, until there are no

continuous pathways left.

3.5 Conclusion

The option to design and pattern nanowire films onto fabrics opens up endless possibilities.

One of the future applications of this method is transfer-printing NW-ink antennas on

fabrics using transfer printing. Since with future optimization the AgNW ink may be able

to be transparent, this opens up the possibility for seamless device integration. Coleman

et al. [75], showed that AgNW inks can be inkjet printed onto PET. Combining this with

the process developed and studied in this research, one may be able to print conductive

AgNW patterns at home and transfer them onto the clothing and other textiles. AgNW

coated fabrics show that there is a direct correlation between shielding effectiveness and

conductivity of the AgNW networks. More importantly, one can correlate and achieve

different EMI shielding, as per the demand of the applications with the density of AgNWs

used. These fabrics can effectively absorb EM waves while being bendable and flexible.

The AgNW coated fabrics also show a change in temperature when a current is passed

through them. This work only shows a few applications of transfer printed AgNW and can

be extended to enable devices like antennas and pressure sensors for future work.

87



Chapter 4

Stretchable conductive thread

4.1 Introduction

So far in this thesis, there has been a lot of discussion on the use of conductive fabric

for enabling electronic textiles. But as mentioned in Chapter 1, conductive threads are

also an option to make fabrics conductive. One method to make a conductive thread is

to coat their surface with a conductive material such as a conductive polymer, metallic

nanoparticles, or carbon nanotubes. The work done by Atwa et al. [76] shows the use

of silver nanowires (AgNWs) to coat the surface of cotton, polyester and nylon threads

to make them conductive. The AgNW coating has several advantages over other coatings

materials used to achieve conductive threads. These include its lighter weight and high me-

chanical flexibility (i.e. high resilience to change in resistance over multiple bending cycles).

In addition to being bendable, washable and conductive, conductive threads should

also ideally have some amount of elastic stretchability. The stretchability of the thread is
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important for several applications in e-textiles including strain sensors, clothing, sporting

apparel, health monitoring, fencing garments and stretchable batteries. However, there

are only a few options of conductive thread that exist in the market. These threads are

either made of stainless steel, silver (using plating) or carbon black. One example of a

carbon black-based stretchable thread available on the market has an initial resistance of

150 Ω/cm, which firstly, is a very high starting resistance, and secondly, the resistance

increases by over 100% in a single stretch [77]. Most of the stretchable conductive threads

are made by wrapping a non-stretchable conductive wire around a stretchable thread to

make a multifilament conductive thread. These have limited stretchability, high weight

and high resistance [77].

In this chapter, a dip coating technique for coating AgNWs on threads, as used in the

work done by Atwa et al. [76], is used and the ability to make the conductive thread

stretchable is investigated. This chapter outlines the coating strategy for the threads, the

different experiments designed to make a successful conductive thread and the hypothesis

why AgNW threads retain conductivity over several stretch cycles. Portions of this work

were published in the Journal of Materials Chemistry C in 2015 [76].

4.2 Experimental methods

To monitor the how and why the resistance of the AgNW-coated thread changes with

stretching cycles, two different coating strategies are employed. The first is to coat a

stretchable thread with AgNWs in an un-stretched state and then perform stretching cy-

cles for measuring the change in resistance. The second option is to coat the threads in

a stretched state, and then test the change in resistance with stretch-relapse cycles. The
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thread materials used for the experiment were nylon (monofilament) and polyester rubber

(28% polyester and 72% rubber). The threads, are coated with AgNWs in both stretched

and un-stretched states. Several parameters are optimized to achieve the ideal coating

conditions. These parameters include annealing temperature and time, concentration of

AgNWs used, number of coats per thread and the strain applied to the threads. The

AgNWs are obtained from Blue Nano Inc. and have 35 nm diameters and 10 µm lengths.

The AgNWs came dispersed in ethanol.

To hold the threads in a stretched state, for both measurement and coating purposes,

some specialized equipment needs to be designed, specifically for thread stretch and relapse

cycles. In this case, a vice is used (Figure 4.1).The vice is modified by adding metallic

grooved patches of metal to either end of the vice side plates. These grooves are about 1

inch deep to hold the threads in position while being stretched. Open semi-circular cylin-

drical holders were also designed to hold the AgNW solution during the coating process.

This allowed for the thread to be fully immersed in the Ag NW solution. This is necessary

so that the NWs could coat the full circumference of the thread, rather than just one side

(which is what would occur if drop casting was used). The holder was made of stainless

steel to avoid any damage by the solvents and by the annealing temperature. Since in one

implementation, the threads are coated in the stretched state and need to be annealed in

this stretched state, a heat gun was necessary since it wasnt practical to put the whole

vice in an oven.
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Figure 4.1: Vice setup for coating the threads in a stretched state as well as for stretch-
relapse cycle experiments A. Displays the full experimental setup. B. Detailed structure
of the vice modification for coating threads

The thread is first cleaned using sonication in a combination of 2 mins in each of of

ethanol and water. After cleaning, surface modification is done on the thread to improve

the adhesion of AgNWs to the threads. The thread is then mounted on the vice, where it is

coated with AgNWs by immersing the thread in a AgNW solution (where the solution was

held in the specially designed holder described above). The thread is finally annealed in air

at 100 ◦C for 60 mins using the heat gun. The temperature for 100 ◦C was chosen, despite it

being lower than the ideal sintering temperature for AgNW networks, because the threads

have a heat tolerance, beyond which melting of the thread happens. For the polyester-
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rubber and nylon threads, the heat tolerance is at 100 ◦C. For measuring the resistance

of the thread, copper tape is attached to the ends of the thread and using a multimeter,

the resistance of the thread is measured during 10 stretch-relapse cycles. The different

AgNW concentrations used for coating are 5, 7.5 and 10 mg/mL. For the second coating

technique, the thread is coated in a stretched state of 50% excess stretching compared to

its original length.

4.2.1 Thread pre-treatment

Without any surface modification, AgNWs do not stick to the polyester-rubber threads.

Heated sodium hydroxide (NaOH) is used to chemically treat the surface of the polyester-

rubber thread. The NaOH treatment has a three fold advantage for the threads. First,

it helps clean off the impurities that are present on the thread surface. Second, it helps

increase adhesion of AgNWs to the thread. Lastly, NaOH helps with the liquid reten-

tion capacity of the thread. Polyester is an oleophilic material whereas AgNWs are hy-

drophilic. NaOH helps hydrolyze the surface of polyester by forming hydrophilic bonds on

the polyester chains. This is done by introducing polar groups on the surface of polyester

thereby increasing the bonding of the polyester with water molecules [49]. Pre-treatment

of textiles with heated NaOH is a standard treatment used in textile industry for scouring

of fabrics. Scouring is the process of removing impurities that might be associated with

the thread during the processing. For the experiments done here, NaOH is heated to 55 ◦

C and the polyester-rubber thread is submersed in the solution for 6 minutes. After this,

the excess NaOH molecules sticking to the thread are not washed off and the thread is

directly coated with AgNWs.
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The monofilament nylon thread also shows poor adhesion towards AgNWs without any

surface modification. Nylon is a synthetic fiber made out of polymeric chains that are

hydrophobic. For nylon, a resorcinol modification is used to make the surface of the thread

more hydrophilic. The modification entails dipping the thread in a solution composed of

91 wt% ethyl acetate and 9 wt% resorcinol for 1 min. The threads are then dried and

coated with AgNWs [76]. The resorcinol modification helps create polar hydroxyl groups

on the nylon thread, thereby helping with adhesion of AgNWs to the thread.

4.3 Results and discussion

The monofilament structure of the nylon thread eases the coating process as there is only

a single fiber to coat, unlike multifilament threads. The nylon thread is coated in an un-

stretched state with AgNWs. For a nylon thread coated with this method, an enormous

jump in resistance is observed within the first stretch cycle. This happens mainly due to

the fact that the AgNWs do not stick very well to the nylon thread. Even after modifica-

tion with resorcinol, the AgNWs are unable to adhere well to the thread. This causes the

AgNW film present on the thread to lift off during stretch cycles and undergo breakdown

right away. And since the adhesion is not good for the nylon thread, even coating the

thread in a stretched state does not yield good results. Therefore no more experiments are

done with nylon thread.

A SEM image of the polyester thread is shown in Figure 4.2. The multi-filaments mak-

ing up the thread can be seen.
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Figure 4.2: SEM image of as-received polyester-rubber thread

The polyester-rubber thread is first coated in an un-stretched state, annealed, then sub-

sequently stretched. After 10 stretch-relapse cycles, the resistance of the thread increased

from 9 Ω/cm to 27 Ω/cm, a 175% increase (Figure 4.3). Set 1 corresponds to stretching

the thread from its initial length to a strain of 50%. Set 2 shows the relapse from the max-

imum length to the original length. For subsequent sets, odd numbered sets are stretching

and even numbered sets are relapsing. The increase in resistance after each cycle can be

attributed to the fact that contact is lost between some AgNW junctions as the thread is

stretched. These once fused junctions cannot reform a low resistance junction when the

thread is relapsed to its original length. Thus, less NWs in the coating are involved in

conduction and the resistance of the coating increases.
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Figure 4.3: Change in resistance of polyester-rubber thread over 4 stretch-relapse cycles
when coated with AgNWs in an unstretched state

Because of the poor results when coating the thread in the unstretched state, the sec-

ond coating strategy is used for coating the polyester-rubber thread, where the threads are

coated when strained 50%. The coated threads were then returned to the threads original

length, and stretched and relapsed 20 times. Each stretch-relapse cycle took the thread to

150% of its original length (50% strain) and then relapsed back to the original length.
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Figure 4.4: Change in resistance of the thread over 10 stretch-relapse cycles. Inset: SEM
image demonstrating buckling in the nanowire coating

It is observed that the resistance of the thread initially goes up when stretched then

back down when the thread relaxes. This may be attributed to the increased overlapping

AgNW of junctions when the length of the thread decreases. The resistance increases from

one cycle to the next for the first 6 cycles. Once the 7th cycle is reached, the thread

resistance remains relatively constant with subsequent relapse/re-stretch cycles. The inset

of Figure 4.4 is an SEM image of one filament of the thread after being stretched 10 times

and returned to its original length. A buckling of the nanowire coating can be seen. A

flattening out and return to this wavy coating provides a mechanism for stable resistance
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with changing strain. A similar buckling strategy has been implemented for stretchable

conductive planar thin-films [78].

4.4 Conclusion

Stretchability of a conductive thread is an important problem, both on an industrial scale

and research level, considering the myriad of applications it can enable for smart textiles.

Threads coated with AgNWs in a stretched state show promise to be able to make stretch-

able conductive threads, which can retain conductivity of the sample over repeated stretch

cycles.
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Chapter 5

Conclusion

5.1 Summary and conclusions

This thesis studies the process to coat silver nanowires on fabrics using various coating

technologies to achieve conductivity. The work is the first to demonstrate the use of trans-

fer printing to achieve conductive patterns, since standard metal inks cannot be transfer

printed. Transfer printing of nanowires is shown to use less metal for a given conductivity,

and therefore is significantly lower in cost, than other techniques previously used to apply

nanowires to fabrics. This makes the use of metal nanowire coatings much more viable

for commercial applications. Transfer printed nanowire coatings was demonstrated on a

variety of fabrics, including cotton and polyester, and the coating was shown to be stable

with bending and folding.

Overall, transfer printing is a superior technique to print nanowires on fabrics compared

to other existing, traditional techniques in the market or research environment. Some of
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the advantages of transfer printing include:

1. Ease of application of AgNWs onto fabric.

2. Ease of patterning of AgNWs on the fabric.

3. Allows printing of metallic NWs on various types of natural, synthetic or blended fab-

rics, whereas dip-coating, brush-coating and drop-casting work well only on natural fabrics

[51].

4. Post-textile processing (i.e. does not have to be applied during the textile manufactur-

ing stage).

5. No pre-treatment required for fabric to be coated.

6. No expensive equipment is required like for vacuum deposition or sputtering. If the

design can be printed using a printer at home, one could essentially use a hand iron to

transfer the metallic pattern onto the fabric.

7. Lastly, it is the most cost effective technique compared to dip coating and brush coating

techniques, with the least amount of nanowires being used to coat the fabric to achieve a

certain resistance. This is able to produce a low weight, low cost and mechanically flexible

coating on the fabric.

As for the use of silver nanowire inks compared to typical nanoparticle and micro-

particle metallic inks, the many advantages include:

1. The nanowire fabric provides higher mechanical flexibility compared to nanoparticle

inks when printed onto the fabric. Since the nanoparticle inks printed with techniques like

screen printing have a high coating thickness, they tend to be stiffer. [79]

2. Although not proven in this thesis, the final product is should be comparatively more

stretchable compared to nanoparticle inks, since stretchable and conductive nanowire-

plastic composites have been demonstrated by others. [79]
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3. Achieving high transparency of the coatings which is not possible with nanoparticle or

microparticle inks [35]. With optimization, the nanowire coating could be made even more

transparent than what was demonstrated in this work.

4. Comparatively, less amount of metal is used when compared to nanoparticle inks [71]

resulting in a lower weight and adding less thickness to the textile.

5. One is able to engineer the conductivity of the textile over a wider range than is possible

with nanoparticles. For nanoparticles, the resistances of the conduction fabrics are typi-

cally 2 Ω/� or less [80] [34] [81], since at lower densities a continuous film is not formed.

However, with nanowires one can achieve a percolation network at a quite a low density

and thus lower conductivity coatings are achievable that use a low amount of metal.

6. Although not proven in this work, the open spaces between the NWs may allow the

coating to be breathable, unlike continuous metal inks.

The work on stretchable conductive thread that is discussed in this thesis shows that

the thread is able to retain its conductivity after several stretch cycles due to the buckling

effect of the AgNW coating. A challenge in industry right now is to produce a conductive

fabric or thread that offers high stretchability along with retaining conductivity. Nanowire

networks on threads may be an alternative to currently existing options.

5.2 Future work

The transfer printing technique developed can undergo more optimization and enable sev-

eral more features. Some of the future work in terms of optimizing the technique would

involve designing a transparent nanowire coating on fabric while maintaining the conduc-

tivity of the sample. One way to maintain the conductivity of the coating while making
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it more transparent could involve making an in-lab adhesive layer on the peel-able paper

part of the transfer paper, in order to reduce the surface roughness. This would help in

producing a flatter AgNW film, with lower resistance of the AgNW film and eventually the

use of a lower density of AgNWs, leading to a more transparent film. If an in-lab made

polymer can also be annealed at a higher temperature, that would reduce the resistance

of the AgNW films since the NWs fuse better at higher temperatures. The future work

also involves understanding in-depth the mechanism that causes the increase in resistance

when the peel-off of the transfer paper happens. Understanding this phenomenon should

also lead to solutions for how to reduce the resistance jump caused by that step.

Another future study would involve encapsulation of these nanowire coatings with epoxy

or silicone to improve their lifetimes and increase their washability. Another aspect would

be studying and optimizing the printing of nanowires films on stretchable fabrics so that

there is minimal resistance change over many stretching cycles.

Some of the applications that these AgNW coated textiles should be analyzed for,

beyond what was tested for in this thesis, could include building wearable antennas for

clothing that are transparent and flexible, testing their antimicrobial properties and testing

their ability to reflect infrared (IR) radiation. For wearable antennas, a lot of research has

been done using micro particle and nanoparticle inks to make antennas on fabrics [82], but

it has not been done using AgNW coatings, which can provide many benefits as outlined

above. Regarding anti-microbial properties, the anti-microbial properties of silver are well

known. Silver nanoparticles exist in commercial products such as socks as an anti-microbial

treatment, and using silver nanowires instead again would have the benefits listed above.

Lastly, the IR reflection of AgNW dip-coated textiles has been shown to reflect body heat
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and thus be useful for thermal management in clothing [38]. The IR properties of transfer

printed nanowire coatings should be tested since these coatings, unlike the dip-coated

fabrics, could both use less nanowires and be much more transparent for their seamless

integration into e-textiles.
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