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Abstract

Helping software development teams find and repair vulnerabilities before they are re-
leased and exploited can prevent costs due to loss of data, availability, and reputation.
However, while general defect prediction models exist to help developers find bugs, vul-
nerability prediction models currently do not achieve high enough prediction performance
to be used in industry [43]. Prediction of vulnerabilities in commits and files has been
explored by previous work, and while commit-level prediction, at a finer granularity, may
offer more useful results, there exists no clear comparison in predictive performance to
justify this assumption.

To inform further research in vulnerability prediction, we compare commit and file-
level prediction, across 7 projects, using 6 classifiers, for 8 different training dates. We
evaluate the performance of each prediction model using ‘online prediction’ for ensuring
an evaluation in line with practical usage of the prediction model. We evaluate each model
using four different metrics, which we interpret as representing two different practical usage
scenarios. We also perform an analysis of the data and techniques for evaluating prediction
models. We find that despite achieving a low absolute prediction performance, file-level
prediction generally tends to outperform commit-level prediction, but in a few outstanding
cases, commit-level performs better.
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Chapter 1

Introduction

High-profile disclosures of software vulnerabilities continue to make headlines with in-
creasing frequency. Software vulnerabilities (permission errors, buffer overflows, or SQL
injections, for example) are bugs that a malicious attacker may “exploit to cause loss or
harm” [52]. The public disclosure of a vulnerability can take a financial toll on a company’s
stock prices [74], and the cost of developing and deploying a patch can be expensive [63].
Additionally, vulnerabilities expose users to attacks that may reveal or disrupt sensitive
data or services, and these attacks can also have a significant financial impact—it has been
estimated that they cost the global economy more than $400 billion annually[5]. Because of
the significant impact and cost of vulnerabilities, research on new tools to help developers
identify and repair vulnerabilities is crucial.

Vulnerability prediction techniques, based on related work in defect prediction, have
been developed to predict elements of software (files, binaries, changes, or commits) that
are likely to contain vulnerabilities. They do so by leveraging ‘features’, or attributes
that characterise the elements they are predicting on. Features such as code complexity,
developer activity metrics, or source code keyword metrics are used for this purpose. These
prediction models can be applied at varying levels of granularity, including binary [79],
component [48], file [68], commit [50] and change [31, 73]. At each level of granularity, the
classification performance and utility (or cost effectiveness) of vulnerability prediction may
vary. These variations may be due to differences in element size, semantics and distribution
of element attributes (‘features’), and frequency of vulnerable elements.

Vulnerability prediction techniques proposed at different levels of granularity have ob-
tained various degrees of success, and some recent studies have been investigating which
level of granularity is the most promising to work with [54, 43]. In particular, Morrison

1



et al. [43] examine vulnerability prediction at binary level and file level. They suggest
that vulnerabilities predicted at file level provide information that is more useful to de-
velopers than those predicted at binary level, but find that when compared, file-level has
worse (i.e., lower) prediction performance results. Posnett et al. [54], examine defect pre-
diction in general and compare package-level prediction with file-level prediction. In line
with Morrison et al.’s results, they find that prediction at file level provides comparable or
worse performance than at package level, measured in terms of traditionally used metrics
measuring classification performance. However, they also evaluate classification using ‘cost
effectiveness’ metrics, and find that file-level prediction is significantly more cost effective
than prediction at a higher level of granularity. Based on these results, one might conclude
that the finer granularity of file-level prediction is more useful, but harder to do, than the
coarser grained package and binary-level prediction.

While the file-level prediction models discussed above predict which files are vulnerable
in a given version of a project, commit-level prediction[50] predicts which commits, made
over a project’s history, are vulnerable. File-level prediction models are often trained
using past versions of the project, where each file is labelled as “vulnerable” (containing
a vulnerability), or “clean” (no vulnerability yet found) [68]. On the other hand, commit-
level models are trained using past commits labelled as “vulnerable” (commits introducing
a vulnerability), or “clean”.

One might expect based on the studies [43], and [54], discussed above, that commit-
level prediction, at a finer granularity, would be more useful for developers, but have
worse prediction results. However, a recent study, VCCFinder [50], proposed a method to
predict vulnerabilities at commit level that obtained a comparable performance to previous
vulnerability prediction at file level [68]. However, they achieve this performance on a
different dataset, and using a different machine learning algorithm. A direct comparison
between commit- and file-level vulnerability prediction, to the best of our knowledge, has
yet to be performed.

As discussed by Morrison et al., while general defect prediction has achieved high
enough performance that it is currently being employed in industry by software devel-
opment companies like Microsoft, vulnerability prediction has yet to achieve acceptable
performance for practical use in industry [43]. For this reason, our work seeks to provide
insight to further inform the development of vulnerability prediction towards the develop-
ment of practical industry tools. In order to find out which level of granularity it would
benefit us most to develop further with improved vulnerability-specific attributes and pre-
diction techniques, a direct comparison of the two prediction granularities is required.
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Is commit-level vulnerability prediction better than file-level vulnerability prediction?
Commits and files have different semantics and attribute sets that may benefit one over the
other, and which make direct comparison of the two prediction granularities nontrivial. For
example, in mature projects, commits generally contain fewer lines of code than files, while
there exist many more commits over the project’s history than there are files in a given
version. In addition, while files, packages, and projects (“binary level”), share a hierarchical
relationship (e.g., projects, packages contain a set of files), and analogous features can be
calculated through aggregation, the same is not true for commits and files. This means
that there are some differences in the semantics and distribution of ‘features’, or attributes,
used at file level versus those used at commit level. Because of these differences, a set of
features that may work well for one granularity level (file or commit) may not map directly
to the other. For example, features of the commit message, or the commit time, may
contribute to prediction performance for commit-level prediction [31, 50, 73], but these
have no direct analogy at file level. On the other hand, cyclomatic complexity may be less
meaningful at commit level, as a commit contains additions and deletions to lines in a file,
and does not intuitively have a program path.

Our research seeks to develop as fair a comparison as possible, built on the same
projects over the same time periods, and using a variety of features and their analogies at
both commit and file level, in order to directly compare the two prediction granularities.
By doing so, we hope to inform further research in vulnerability prediction by providing
insight into which level of granularity performs better, and how each level of granularity is
impacted by current techniques used for evaluating prediction performance.

1.1 Developing a Practical Technique

In the end, this research is motivated to facilitate the development of techniques that
can be used practically in industry in order to aid software development teams find and
fix vulnerabilities before they are released and can be exploited. To that end, we design
both our experiment and our evaluation to reflect, as much as possible, the effectiveness
of prediction for such practical, real-world use. We choose an experiment design based on
the Online Prediction [73] technique, which simulates the practical use of a classifier for
real-world prediction on a software project. We argue that Online Prediction is a more
rigorous process of evaluation, due to the challenges it poses through the introduction of
undiscovered vulnerabilities, as discussed in Section 2.4. For our evaluation, we explore a
variety of different classifier performance metrics to compare two different usage scenarios,
similar to the evaluation performed by [54].
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When evaluating prediction models, traditional techniques, such as k-fold cross valida-
tion can result in evaluations with artificially high accuracy and precision when compared
with performance of models used in production [73]. As such, Online Prediction was devel-
oped in order to accurately evaluate prediction performance in a real-world setting. When
training a prediction model, instances (files or commits) from before a “training date” are
collected to be used as a training set. However, if vulnerabilities that have been discovered
after the training date are used to label training instances for an evaluation, the resulting
performance of the classifier will be at an advantage from this use of “future data” (this
also occurs in k-fold cross validation). This means that a production classifier built to
detect vulnerabilities in recent project versions or commits may not perform as well as in
an evaluation.

Previous work [68, 50, 43] then evaluates the results of the prediction based on criteria
derived from the confusion matrix of the classification results, which present the classi-
fication errors, False Positives (FPs) and False Negatives (FNs), as well as the correctly
classified True Positives (TPs), and True Negatives (TNs) (as described further in Sec-
tion 2.7). Posnett et al. argue that evaluating defect prediction based on ‘cost effectiveness’
metrics, that is, the number of vulnerabilities discovered versus the number of lines of code
inspected to find those vulnerabilities, is a more rigorous and higher standard with which
to measure performance. They also argue that it is more accurately represents the practical
utility of the classifier. In our evaluation, we propose two usage scenarios represented by
different metrics and capturing different possible uses of the classifier. The ‘classification
performance’ usage scenario, measured by traditional classification performance metrics
F1 score and AUROC (discussed in Section 2.7), evaluates the quality of prediction if all
vulnerable instances as predicted by the classifier are able to be examined. On the other
hand, the ‘cost effectiveness’ usage scenario, measured by AUCEC and TPR10k (again
discussed in detail in Section 2.7), evaluates how many vulnerable instances are discovered
by examining instances in order of likelihood, and at a cost equivalent to the instance size.
We use these two usage scenarios to describe how the evaluation metrics we use can be
interpreted. The comparison of usage scenarios is discussed in more detail in Section 3.3.

1.2 Contributions

In this project, we compare the performance of vulnerability prediction at file level and
commit level using an analogous set of features for each level of granularity. Our evaluation
uses the online prediction method in order to present results that represent actual practical
usage of a classifier. We perform the comparison on 7 projects, for 6 classifiers, and for
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8 training dates, and present both ‘classifier performance’ and ‘cost effectiveness’ results.
We also present an in-depth analysis of the data used in our evaluation and the process
used to extract it, in order to gain insight on the techniques we used, (techniques based
on those used in previous work), the data we collected, and its impact on our evaluation
of vulnerability prediction performance. We find that for both ‘classifier performance’
and ‘cost effectiveness’, file-level prediction usually outperforms commit-level prediction.
We also find that for some projects and classifiers, particularly the PHP project and J48
classifier, median AUROC and AUCEC scores are higher at commit level than file level.
Finally, we note that for some ROC and CEC curves, one level of granularity may perform
better below certain low thresholds (5% false postive rate for ROC curve or under 20% LOC
for CEC curve), while overall the other level of granularity shows a higher prerformance.

This project makes the following contributions:

• A comparison of the effectiveness of commit-level and file-level vulnerability predic-
tion using analogous features for each. We perform our comparison on 7 different
projects, with vulnerability labelling data collected using an automated technique,
using independently tuned project-specific heuristics to match vulnerabilities with
fixing commits. We use four different metrics describing two different usage scenar-
ios to evaluate the performance of our classifiers

• We find that file-level prediction generally outperforms commit-level under all met-
rics. However, we also find that for certain projects, in particular the PHP project,
commit-level sometimes outperforms file-level under AUROC and AUCEC metrics.

• We produce a dataset including features/attributes of files and commits from the
history of each of the 7 projects, labelled with vulnerability data from the National
Vulnerability Database using variable training dates. It can be easily extended to in-
clude other projects, features/attributes, and training dates. It can also be extended
to compare commit- and file-level general defect prediction on the same projects.

The remainder of the work is organized as follows: Section 2 describes important back-
ground information on vulnerability prediction. Section 3 describes our experimental de-
sign, and the research question we set out to explore. Section 4 details the specifics of our
experimental setup, including which projects, classifiers, and training dates we used, and
the data preprocessing we used for classification. Section 5 describes and discusses our
findings, while Section 6 presents an analysis of the data used for prediction, as well as the
effectiveness of the techniques used to collect the data. Sections 7 describes threats to the
validity of our research. Section 8 discusses related work, and finally Section 9 discusses
take away points, possible future work, and our conclusions.
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Chapter 2

Vulnerability Prediction

Machine learning classification algorithms can be used to classify components (binaries,
files, commits or changes) as likely or unlikely to contain a bug or vulnerability [31, 73, 68,
79]. Developers can then focus their limited resources on testing the subset of components
classified as vulnerable or buggy.

Recall that classification algorithms are given a set of labelled instances as a ‘training
set’, and build, or ‘learn’ a classification model based on the features in the data. For
example, the J48 classifier constructs a tree of attributes that best divides instances into
subsets containing either vulnerable or clean instances. Given an unlabelled instance, the
classifier examines the tree of attributes, and follows each branch based on the values of
that instance, assigning it a label upon reaching a leaf node. That is, the built classifica-
tion model takes as input unlabelled testing instances, and assigns them a probability of
containing a vulnerability, based on the learned patterns. In our evaluation, we consider
instances with a probability above a certain threshold as ‘vulnerable’ (as predicted by the
classifier), and measure predictive performance by comparing the predicted results to the
actual labels for each test instance.

The evaluation of vulnerability prediction models follows the methods outlined in the
following subsections. First, the data is divided into two parts: the training set, used
to build the classifier, and the testing set, used for evaluation. Then, components are
labeled as vulnerable or clean (not containing a known vulnerability). Finally, we extract
‘features’ (or attributes) for each instance, such as complexity metrics or commit metadata.
The model is then evaluated using a set of metrics that highlight certain attributes of its
performance (e.g. F1 score, AUROC or cost effectiveness, discussed in Section 2.7).
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2.1 Generating a Training Set

To build a vulnerability prediction model, we need to generate a training set of instances.
The training instances represent software elements such as binaries, files, or commits. Each
instance consists of a set of features and a label. Features represent characteristics of soft-
ware elements extracted from various software metrics such as code complexity, code churn,
developer activity, and keywords in source code [31, 73, 68, 79]. These software metrics
can be readily collected from version control systems such as git. By linking a software
element in a version control system with a reported vulnerability, we can label instances as
vulnerable or clean. The National Vulnerability Database (NVD) maintains the identified
vulnerabilities from widely used software products [49] and provides reference information
to security issue reports and vulnerability-fixing commits of the products affected by the
vulnerabilities. Thus, by the version control system and the NVD, we can label the training
instances.

2.2 Training a Prediction Model

With the training set, we can build a prediction model by using various machine learning
algorithms such as Naive Bayes or Random Forest. The model built by these algorithms
can classify the software elements as vulnerable or clean [31, 73, 68, 79]. Before training
a model, we may apply data preprocessing approaches used in machine learning such as
feature selection and sampling to build a better prediction model [39, 10].

2.3 Predicting Vulnerabilities

When the prediction model is ready, we feed unlabelled instances into the model. Then,
the model classifies these unlabelled instances as vulnerable or not. With the vulnerability
prediction results, developers can effectively allocate their limited resources on reviewing
and testing the subset of elements classified as vulnerable.

2.4 Online Prediction

Recall that in order to evaluate a classifier, we need a training set to build the classification
model, and a testing set to evaluate it on. In order to simulate real-world use of a classifier,
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we choose a training set of data taken from before a given ‘training date’, and evaluate
on a testing set of data taken from after that date. In our evaluation, we aim to simulate
‘online prediction’ [73], meaning that we do not use vulnerabilities that have been reported
after the ‘training date’ to label instances in our training data.

Using ‘future data’, or information learned after the training date, can falsely improve
results [73]. For example, consider the evaluation of a classifier built using a classifier
training date of January 2013. While relying on vulnerabilities discovered after January
2013 to label our data would be ‘correct’, it gives the classifier information it would not
have known if it were truly trained on the data available in January 2013. In a sense, these
undiscovered bugs lead to ‘undiscovered vulnerable instances’ in the training set, which can
affect the classification performance of the classifier [73]. Undiscovered vulnerable instances
are possible in any project at any point in time, but the amount of undiscovered vulnerable
instances in a given period decreases as labelling information is used from further in the
future, as can be seen in Figure 6.1, discussed in Section 6.3.

Lowering the number of positive instances is of particular concern in the context of
vulnerability prediction, given the already low positive rate found in most data. For
example, Shin and Williams[68] found that 21% of files in the Firefox 2.0 contained general
bugs while only 3% of those files were vulnerable. For additional comparison, Tan et al. [73]
find that 6 common open source projects have a general defect buggy rate of 15-37%, while
our work on vulnerabilities, as well as that of Morrison et al. [43] have vulnerability rates
of less than 10%. Table 4.1 (Discussed in detail in Section 4) shows the vulnerability rates
shown in our data at commit and file levels. Given such a low rate of positive instances
(i.e., vulnerable files), it is challenging to learn and evaluate accurate models [73, 28, 68].

In the testing set however, we rely on all available data in order to minimize the number
of undiscovered vulnerable instances. Traditional techniques for the evaluation of classifiers,
such as ten-fold cross validation, involve the use of future data. For this reason, they do
not evaluate classifiers in a manner that is comparable to the real-world application of a
classifier for vulnerability prediction.

2.5 Labelling instances

To identify commits and files that contain vulnerabilities, we rely on vulnerabilities listed
in the National Vulnerability Database (NVD) [49]. The NVD maintains a database of
publicly disclosed vulnerabilities for a number of software products. It also maintains in-
formation about the vulnerability, including a brief description, vulnerability type, severity
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identifier, and links to external resources such as bug reports, commits, or security advi-
sories.

To link the NVD information to vulnerable components in the software, we identify
vulnerability fixing commits. Because the NVD is not always consistent in reporting vul-
nerabilities and fixing commits, we use three different methods to link vulnerabilities to
fixing commits. For example, we look for mentions of the vulnerability identifiers used
by NVD in commit messages, and identify commits with these messages as fixing these
vulnerabilities. Further details of our labelling technique, as well as the effectiveness of our
identification, is discussed in detail in Section 6.1.

Figure 2.1 depicts how commits and files are identified as vulnerable from vulnerability
fixing commits. Figure 2.1 shows two ‘vulnerability fixing commits’ discovered at different
points in time, and depicts how they are used, or left unused for labelling vulnerable
instances in training sets at file and commit level. The upper timeline represents commits
made over time. The lower timeline shows a series of versions, the files of which are used
as the training set (V1 to V9), and testing set (VTest) for file-level prediction at the given
‘training date’. Figure 2.1 shows how files in these versions are identified as containing a
vulnerability, as we are about to describe further.

Cfix1 is a vulnerability fixing commit, identified as linked to a vulnerability in NVD
as described above (and in further detail in Section 6.1). The lines changed by the Cfix1

are considered to be the vulnerability. Cblamed1 is then identified as a ‘blamed commit’, by
finding the most recent commit (before Cfix1) to modify a line fixed by the fixing commit
Cfix1 . We use the version control system (specifically, ‘git blame’ [2] or an equivalent) to
identify Cblamed1 from the modified line in Cfix1 . Following the techniques used in previous
work [31, 50, 71, 47], we consider Cblamed1 as a ‘vulnerability introducing commit’, or simply
a ‘vulnerable commit’. Because Cfix1 was made before the ‘training date’, meaning the
vulnerability is known at time of prediction, we label Cblamed1 as vulnerable in the training
set at commit level. At file level for the same ‘training date’, the file containing the line
modified in Cblamed1 is labelled as vulnerable in Versions V1 and V2, and used in the training
set. A file is considered to be vulnerable until it is fixed by the ‘vulnerability fixing commit’,
and only after it is modified by the ‘vulnerability introducing commit’.

On the other hand, the vulnerability fixing commit Cfix2 is made after the ‘training
date’, meaning that at the time of prediction, the vulnerability may not have been discov-
ered, and a researcher performing prediction at that time would have no knowledge of the
vulnerability without access to ‘future data’. For this reason, Cfix2 is not used to label
blamed commit Cblamed2 as vulnerable in the training set at commit level for the given
‘training date’. The file modified by Cblamed2 in version V9 is also left unlabelled (by this
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Figure 2.1: Labelling vulnerable (‘buggy’) instances. Cfix1 is a vulnerability fixing commit.
A line fixed by Cfix1 was last modified by vulnerable commit Cblamed1 , which is considered
vulnerable in the training set at commit level. At file level, the file containing the line in
modified in Cblamed1 is labelled as vulnerable in Versions V1 and V2. The vulnerability fixing
commit Cfix2 is made after the ‘training date’, and so is not used to label blamed commit
Cblamed2 or the file modified by Cblamed2 in version V9 as vulnerable in the commit-/file-level
training sets. However, it is used to label the file modified by Cblamed2 in the testing set at
file level, version VTest.

vulnerability) in the file-level training set for the given ‘training date’. However, Cfix2 is
used to label the file modified by Cblamed2 in the testing set at file level, version VTest.

Following this technique, we label known vulnerable instances in a projects history for
a model’s training set (based on a given ‘training date’), and label all possible vulnera-
ble instances in the testing set. We then use these labellings to build and evaluate our
prediction models.
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2.6 Feature extraction

Classification algorithms take as input a set of labelled instances, where each instance is
described using a vector of features, or attributes of the given commit or file. We choose a
set of features over a broad range of categories similar to the ones used in previous work
[50, 54, 43, 63] for both commit and file levels.

1. Complexity Metrics (i.e. cyclomatic complexity, nesting, lines of code) are a set of
features we use for prediction. The intuition behind this kind of features is that
complex entities are more likely to be vulnerable. These metrics have been widely
used in previous work [63, 43, 42].

2. Code Churn Metrics, such as the number of changes or number of lines added or
deleted, have been shown to be some of the most relevant features [56, 44] for pre-
diction, and have been extensively used in previous work, both at commit and file
level [63, 43, 50].

3. Developer Activity metrics contain features related to the authors of each commit
and file (e.g. author contribution). For example, it is possible that authors with
a small contribution to the projects to be more prone to adding vulnerabilities, as
they are not familiar with the project. These features have been used in previous
work [63, 31, 73, 50].

4. Keyword features consist in counting how many times specific keywords appear in
the commit or file. We use the list of keywords provided in previous work [50].

Some features need to be adapted to be used at different levels of granularity. For
example, the commit-level features ‘additions’ and ‘deletions’ listed in Table 3.1 are anal-
ogous at file-level to the features ‘sum additions’ and ‘sum deletions’. We describe these
differences and how we mitigate this threat in Section 3.1.

2.7 Evaluation Measures

To evaluate the performance of the classification models in various aspects, we use four
measures, or evaluation metris. In terms of practical use of vulnerability prediction models,
we can consider two usage scenarios, i.e., a prediction performance scenario, and a cost
effectiveness scenario. In the prediction performance scenario, the goal of prediction models
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is to precisely predict as many vulnerabilities as possible. The cost effectiveness scenario
aims at minimizing cost for software quality activities such as code review and testing
while maximizing high detection rate of vulnerabilities by the quality activities. Thus,
vulnerability prediction models often cannot be evaluated by a single measure for both
scenarios.

For the prediction performance scenario, we use F1 score [43] since it is computed by
precision and recall together. However, F1 score is known as unstable since it varies depend-
ing on probability threshold [56]. For this reason, we use AUROC (Area Under receiver
operating characteristic Curve), that is independent from the probability threshold [54].

In terms of cost effectiveness, we use the area under the cost effectiveness curve (AUCEC),
which plots the recall against the percentage of lines of code ‘inspected’ [56, 42]. Since
AUCEC represents how early vulnerabilities can be detected by inspecting the entire LOC,
it does not fairly estimate inspection cost between two projects with different LOC. For
this reason, we also use TPR10k (Percentage of vulnerable instances in 10K Lines of Code),
similar to the cost effectiveness measure used by Jiang et al. [31].

The F1 score is calculated as the harmonic mean of the precision and recall of a clas-
sifier. Precision measures the number of true positives (tp - correctly predicted buggy
instances) out of all predicted buggy instances (true and false positives), and indicates
how likely a predicted buggy instance is likely to be an actual buggy instance. Recall
measures the number of true positives out of all actual buggy instances (true positives and
false negatives), and indicates what portion of the buggy instances were identified by the
classifier. F1 can be calculated directly from confusion matrix values as 2tp

2tp+fp+fn
, where

fp is the number of false positives (instances incorrectly predicted as buggy), and fn is
the number of false negatives (instances incorrectly predicted as clean).

AUROC is computed as the area under the receiver operating characteristic curve
(ROC curve), which plots the true positive rate (recall) against the false positive rate,
and visualizes the tradeoff between true positives and false positives as the threshold for
prediction is varied. A randomly guessing classifier would have an AUROC of 0.5, while a
perfect classifier would have an AUROC of 1.

Similarly, AUCEC is the area under the cost effectiveness curve, which plots the recall
against the percentage of lines of code ‘inspected’. This metric indicates how useful the
model is when developers have limited time and resources and can only analyse a specific
percentage of the elements flagged as vulnerable by the prediction model. Menzies et
al. [42] suggest the use of AUCEC over AUROC as a metric to optimize in the context of
defect prediction, in order to locate more vulnerabilities within a smaller amount of code.
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The TPR10k metric is similar to the NofB20 metric used in [31], however, because the
number of lines of code can vary between the test sets for commit and file level, we use
an absolute number (10KLOC), rather than a percentage (20%) in order to facilitate a
fair comparison. Based on a developer review rate of 200 LOC/hr (as recommended by
Kemerer et al. [33]), 10kLOC would take 50 man hours, or between 1-2 weeks of inspection
time.

In this section, we have outlined several key background concepts for vulnerability
prediction, including how a prediction model is built using data from a training set, and
then evaluated on a testing set. We first discussed how prediction can be designed to
emulate a real-world use case by collecting training and testing set data following online
prediction methods. We then discussed how the instances in the data are labelled as
vulnerable or not vulnerable using information from NVD and the project’s version control
history. We outlined the categories of features that are used to represent instances in our
data to the classification algorithms. Finally, we discussed several common metrics that
are used in the evaluation of the performance of a classification algorithm and detail how
they each capture varying aspects of a classifier’s performance.
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Chapter 3

Study Design

In order to compare the predictive performance and cost effectiveness of vulnerability
prediction at file and commit levels, we build classifiers for both levels of granularity on
the same set of projects, using an analogous set of features. We then evaluate the quality
of each classifier using the metrics discussed in Section 2.

It is nontrivial to fairly compare file- and commit-level prediction since commits and
files do not share a hierarchical relationship. In previous work [54, 43] comparing defect
or vulnerability prediction at different levels of granularity that are hierarchically related,
such as file and binary levels, a comparison can be made by selecting the set of files that
makes up the binary. No such hierarchy or similar subset relationship exists between file
and commit levels. Indeed, many of the features extracted, and the entities predicted on
are semantically different at file and commit levels. In this section, we describe the major
differences between file- and commit-level vulnerability prediction and how we proceed
to design a fair comparison between commit and file levels. We start by describing the
set of features used to describe each instance for prediction, then describe in detail our
technique for selecting training and testing sets for the construction and evaluation of our
predictive models. Finally, we discuss the research question which we set out to answer in
our experiments.

3.1 Features

Features at file and commit levels are different because files and commits are very different
entities. While a file can be considered as a chunk of code that exist in a specific snapshot
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of the software, a commit represent changes made to a software. Some type of features
are more easily derived for a file (e.g. complexity metrics) while other types of features
are extracted from commit related information (e.g. churn features). In this section, we
describe the differences between features we used at file level and commit level. Table 3.1
lists the features for commit and file levels respectively. The features are aligned by row
such that features in the same row are roughly analogous at commit and file level. Note
that in some cases, one commit-level feature may correspond to multiple file-level features.

3.1.1 Code Churn features

The first set of features listed in Table 3.1 represent code churn metrics at file level, or
are representative of commit size at commit level. ’Additions’, and ’deletions’ count the
number of added or deleted lines in a commit. To adapt such features at file level, we
aggregate such information. For example, we sum the code churn features of all commits
that modified the file in the past. Because of the assumption that higher churn (i.e., larger
commits) are more likely to be vulnerable, for each file, we also keep the maximum of each
attribute associated to past commits.

3.1.2 Developer Activity features

In addition to the above described features, we collect metrics that measure developer
activity, similar to those used by previous work [31, 73, 50, 63]. These include the number
of past changes, or distinct past authors to a file, the day of week or hour of day the commit
was authored, and the percentage of total commits the author has made to the project.
Because a file was likely modified at different times, we aggregate the timing features (day
of the week, hour of the day, day of the months). For past change and past authors of the
file, we sum the number of changes and past authors at the time of the version the file was
extracted.

3.1.3 Complexity Metrics

Complexity metrics were collected using the Understand tool [3], which supports the col-
lection of various metrics of source code files and projects, and has been used in previous
studies for defect and vulnerability prediction, such as Shin et al. [63]. Most of these
metrics are easy to obtain at file level for specific version of a project (e.g. max nesting,
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Table 3.1: List of features extracted.
Feature type Commit level File level
Metadata - File Age
Churn/Size Files Changed -
Churn/Size

Additions
Sum Additions

Churn/Size Max Additions
Churn/Size

Deletions
Sum Deletions

Churn/Size Max Deletions
Churn/Size

Hunk Count
Sum Hunk Count

Churn/Size Max Hunk Count
Understand (File Size) New File LOC LOC
Understand New File Function Declarations Function Declarations
Understand New File Declarative Lines Declarative Lines
Understand New File Preprocessor Lines Preprocessor Lines
Understand New File Essential Complexity (sum) Essential Complexity (sum)
Understand New File Cyclomatic Complexity (sum) Cyclomatic Complexity (sum)
Understand New File Max Nesting Max Nesting
Understand New File Comment/Code Ratio Comment/Code Ratio
Developer Activity Sum Past Changes Past Changes
Developer Activity Sum Past Authors Past Authors
Developer Activity Authored Day of Week Mode DOW
Developer Activity Authored Day of Month Mode DOM
Developer Activity Authored Hour of Day Mode Hour
Developer Activity Author Contribution % Sum Author Contribution %
Keywords Keywords Keywords

cyclomatic complexity), but cannot be used to measure the complexity of a commit be-
cause they require at least a full function to be computed. Because we need to work on
complete files, we consider the complexity of the commit as being the complexity of the
file after the commit was applied.

We do not collect dependency metrics (for example, FanIn, the number of calls in the
project to functions in a file) for scalability reasons. Indeed, it would require applying
the tool to the entire project for each commit to measure the number of calls. For the
8 projects under study, it would be equivalent to running Understand more than 600,000
times on complete projects.
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3.1.4 Keywords

Finally, we collect counts for a set of keywords at both commit and file level. We use the
same set of keywords as used in previous work [50], a list of 68 common C/C++ keywords
and common standard library functions. At file level, we count how many times each
keyword appears in the file. At commit level, we count how many time each keyword
appears in the patch (lines added, lines deleted and context lines) and do not consider the
commit message. We did not consider keywords in the commit messages because the same
keyword might have a different meaning in the code and the commit message. For example,
the keywords ‘for’ in the source code (patch or file) indicates that the code contains a loop.
The semantic of this keyword in the patch message is different because these messages are
written in plain English. The full list of extracted keywords can be found in Appendix E.

3.2 Training and Test Sets

In order to perform a fair comparison between granularity levels, we go to length to ensure
we use an analogous set of data for training our file- and commit-level models. Figure 3.1
depicts this process, as described in detail in the following section.

In order to perform an evaluation of the performance classifier, instances are divided into
a ‘training’ and ‘testing’ sets at each level, as depicted in Figure 3.1. Recall that a testing
set of data separate from the data the classifier has been trained on is used to evaluate
the classifier, to demonstrate the model’s generalizability to other data, and to ensure that
overfitting has not occurred. As mentioned earlier, because we aim to perform ‘online
prediction’ in order to simulate real, practical use of vulnerability prediction, traditional
classifier evaluation techniques such as ten-fold cross validation are not applicable to our
evaluation.

Instead, we split our dataset into training and testing sets based on dates, dedicating
a set of past versions (and their files) or commits as a training set, and predict on a later
version or set of commits designated as the testing set. In Figure 3.1, we see that we align
corresponding file-level and commit-level predictions based on a common ‘training date’.

At commit level, similar to [73, 50], we train our classifier on a set of commits from
before the training date (the ‘Training set’, as labelled in Figure 3.1, then test on the
commits after the training date (the ‘Test set’ as labelled in Figure 3.1). At commit
level, following previous work [31, 73], we also exclude a period of early commits from
the training set, as early project commits and young projects may have distributions of
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Figure 3.1: Training and testing sets for file- and commit-level prediction. The upper
timeline depicts the set of commits selected for the training and testing set and used to
build and evaluate the commit-level prediction models for the given ‘training date’. The
lower timeline depicts a set of versions chosen for the training set (VTr1 to VTr9), and
the version used as the test version (VTest) relative to the ‘training date’. Note that in
both cases, we leave an identical ‘training-testing gap before the training date, in order to
facilitate a fair comparison.

vulnerabilities and features much different than current commit patterns, and negatively
impact prediction performance. Similar to previous work [73], we exclude the first 3 years
of a project’s commits for projects older than 6 years, and the first 6 months of commits for
projects less than 6 years old. We also exclude the commits made less than 8 months before
the testing set from the training set, as these commits are likely to have a greater number
of undiscovered vulnerable instances. This period is labelled as the ‘Training-Testing Gap’
in Figure 3.1, and the same gap is used at both commit level and file level. Finally, for
the testing set, we exclude 6 months of commit data prior to our last known vulnerability
(we have data up until the end of 2015), in order to exclude testing data that has a higher
level of undiscovered vulnerable instances.
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At file level, we use a similar technique to the next release validation used by Shin et
al.[63], which uses several previous releases as a training set, in order to predict on an
‘upcoming’ release. Some key differences are that we use project ’snapshots’ as opposed
to releases, and that we do not use ‘future vulnerabilities’ (vulnerabilities discovered after
the training date) in the labelling of our training versions, as discussed in Section 2.5 and
Figure 2.1. We take 9 project snapshots (VTr1 to VTr9 in Figure 3.1), with the final project
snapshot falling at the start of the ‘Training-Testing Gap’, in order to correspond with
data collected at commit level. For our testing set, we use a snapshot of the project at the
‘training date’, which corresponds to time of the start of the commit-level Test set, as can
be seen in Figure 3.1.

The ‘Training-Testing Gap’ in Figure 3.1 is used in order to omit data that has a greater
number of undiscovered vulnerable instances. For instances close in time to the training
date, fewer vulnerabilities have been discovered as of the training date, because it takes
time to discover a vulnerability after it has been introduced. In particular, close to the
training date, no ‘real’ vulnerabilities have yet been discovered, so all vulnerabilities in
that period are undiscovered vulnerable instances. This issue is further demonstrated in
Section 6.3.

In summary, training and test sets for both commit and file-level prediction are aligned.
Having matching training and test sets for both file and commit level is important to ensure
that (1) we use equivalent data to train both commit and file level models and (2) our
evaluation of these models is done on the same time period.

Finally, while the technique of withholding data for a ‘Test Set’ is used to evaluate the
generalizability of a given predictive model, we also want to test the generalizability of
the classifier or prediction algorithm’s performance to other data. In order to do this, we
repeat our experiments across 8 different ‘training dates’, keeping file- and commit-level
data aligned for each repetition of our experiment. Note that at each date, we build a new
prediction model using that date’s training set, and evaluate it on that date’s testing set
(at both commit and file level). Since the goal of our study is to systematically compare
commit- and file-level vulnerability prediction, we conduct our experiments under various
settings. Using different training dates affects the size of training and test sets, feature
values, and labels of training sets. If prediction results under various situations show
similar trend, it would be more helpful to generalize the conclusion of our experiments.
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3.3 Research Question

Using the above described fair comparison, we set out to answer the following research
question, with the goal of informing the development of vulnerability prediction towards
practical use:

• How do commit-level and file-level ‘online’ vulnerability prediction compare in terms
of ‘predictive performance’ (F1 and AUROC) and ‘cost effectiveness’ (AUCEC and
TPR10k)?

Recall that the aforementioned metrics are described in detail in Section 2.7. We
divide the metrics into two usage scenarios, a ‘predictive performance’ or ‘classification
performance’ scenario, and a ‘cost effectiveness’ scenario. The ‘predictive performance’
metrics measure the quality of prediction given that all predicted positive instances are
inspected for vulnerabilities. These metrics may be useful in a security review setting,
where all predicted instances are of interest, and resources exist to examine them further.

The ‘cost effectiveness’ metrics allow us to compare classification performance based
on the number of vulnerabilities found after looking at a given amount of code. In partic-
ular, TPR10k was chosen as an evaluation metric in order to make a comparison that is
independent of the total number of lines of code, which may vary between file and commit
level. These ‘cost effectiveness’ metrics may be useful in a managerial context, when a
limited or set amount of review resources are available to inspect code for vulnerabilities,
and only the top n predicted lines of code can be examined. Taken together, these metrics
provide different insights on the effectiveness of the vulnerability prediction techniques we
are evaluating.

In this section, we have discussed in detail the design of our approach for comparing
commit-level and file-level vulnerability prediction, highlighting how we design for a fair
comparison between the two levels of granularity. We first detailed the set of features
used to describe each instance for prediction, and how we choose an analogous set of
features at each level of granularity. We then described in detail our technique for selecting
analogous training and testing sets at commit and file levels. Finally, we have discussed the
research question that we set out to answer in our experiments: how do commit- and file-
level vulnerability prediction compare under several different metrics, and different usage
scenarios?
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Chapter 4

Experimental Setup

We train and evaluate classifiers for 7 different open-source C/C++ projects. For each
of those projects, we evaluate on up to 8 different train-test splits (limited in some cases
by project age and vulnerability report availability). In the following sections we discuss
in detail the experimental setup, parameters, and data we used for our evaluation. We
first describe the different projects on which we performed our evaluation, and provide
some information on their size and buggy rate. We then detail the classification algo-
rithms used in our evaluation, as well as the tuned parameters for each. We discuss the
data preprocessing steps we applied to our training data in order to improve classification
performance. Finally, we discuss the implementation of the tool used to collect data and
perform our evaluation, as well as the runtime of several key steps in data collection and
classifier training.

4.1 Projects under study

The 7 projects we examine in this study are listed in table 4.1. Columns 2 and 3 indicate
the number of files and lines of code as of Jan 1, 2013 in each project. Columns 5 and 6
indicate the number of commits to the project between Jan 1, 2013 and Jul 1, 2015, and
the LOC in those commits. Columns 4 and 7 indicate the buggy (vulnerable instance)
rate of the project at file and commit level in the aforementioned version and commit
period, labelled using data up until the end of 2015. Projects were selected from the set
of open-source, C/C++ projects known to contain vulnerabilities in the NVD. eters

21



Table 4.1: Projects under study.
Project File LOC File Count File Vuln. Rate Commit LOC Commit Count Commit Vuln. Rate
FFmpeg 467,990 1,958 7.2% 1,273,963 31,394 0.5%
Apache httpd 70,013 274 5.5% 888,852 6,659 3.2%
Kerberos 269,782 1,502 2.2% 171,795 1,493 1.5%
OpenSSL 136,782 662 6.4% 3,585,079 5,789 3.8%
PHP 213,188 647 4.3% 6,020,445 18,729 2.0%
Wireshark 783,287 1,098 5.2% 4,977,254 16,879 2.3%
Xen 326,410 1,550 7.1% 704,390 6,315 3.0%

Table 4.2: Classifiers under study.
Classifier Tuned parameters
Naive Bayes None
Logistic Regression Ridge parameter
Multilayer Perceptron Learning rate, momentum, number of layers/nodes per layer
ADTree Number of boosting iterations
J48 Decision Tree Pruning confidence
Random Forest Number of attributes to randomly investigate

4.2 Classification algorithms and tuning

We evaluate and compare the performance of several commonly used machine learning
algorithms on each of our 7 projects. We rely mainly of the implementations of these
algorithms as provided by Weka [24], an open-source java implementation of many common
machine learning algorithms and related tools. Weka classifier implementations have been
used in previous defect prediction work [31]. In order to tune the parameters of each
classifier, we randomly select one project and use Weka’s MultiSearch tool, which extends
the grid search technique to more than 2 parameters. MultiSearch takes a list of parameters
to be tuned and a set of possible values for those parameters (e.g., for numerical values: min,
max, step), and evaluates the classifier for each possible combination of those parameters,
selecting the set of values that provided the best performance in terms of F1 score. The
list of algorithms used, as well as the parameters tuned, are listed in Table 4.2. We tune a
separate set of parameters for both file and commit levels because we want the classifiers to
perform optimally in both cases. Compared to previous work [50], we do not show results
for Support Vector Machine (SVM) because, for all projects, all metrics, and both levels
of granularity, this classifier performed poorly in our experimental setting.
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4.3 Preprocessing steps

Before training our classifiers, we apply a number of preprocessing steps to the training
data in order to improve classification performance. Vulnerability prediction suffers to a
significant degree from imbalanced data, as can be seen in Table 4.1, where positive instance
rates are at 7.2%, and lower at file level, and 3.8% or lower at commit level. In addition,
imbalanced data in the training set is made worse when building and evaluating a model
using online prediction [73]. Because of this, we use a combination of undersampling of the
negative (majority) class, and SMOTE (synthetic minority oversampling) on the positive
class, as performed in [10]. In this way, the training data is resampled to contain an
artificially higher number of positive instances. We tune the extent undersampling for
file and commit levels individually by taking the highest F1 score on a randomly selected
project, averaged over all classifiers using their default parameters. Parameters for each of
the classifiers were tuned after choosing the optimal sampling parameters.

Finally, before training each of the classifiers, we perform attribute selection on the
training data, using forward feature selection in order to select a subset of features that
provides a high information gain on the instances in the training data. We perform at-
tribute selection separately for commit and file levels, giving us a separate set of optimized
attributes at each level. This subset of features is then used to train and evaluate the
classifiers.

4.4 Implementation and Runtime

In order to implement our evaluation, we developed a series of scripts, built primarily in
python, to collect feature and vulnerability fixing data, produce feature vectors and la-
belling for given training dates, and preprocess, train, test, and evaluate the classification
models. In this section, we discuss the implementation details and high-level functionality
of the tool we built to perform and evaluate vulnerability prediction at commit and file
levels. We first collect data on commits, files, and vulnerabilities from the project source
repositories and NVD for calculating feature vectors and labellings. We then generate train-
ing and testing sets, calculating feature vectors and correct labellings for a set of training
date parameters. Finally, we train and test our classification models, also preprocessing
data and calculating evaluation metrics in these steps.

Our scripts first collect data from NVD and project source repositories for labelling
instances and calculating features. NVD provides the contents of its database in a series
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of XML documents, which we parse in order to obtain vulnerability information. We then
traverse each of our projects’ commit histories using the projects’ version control system,
identifying fixing commits, finding vulnerability introducing commits (as described in Sec-
tion 2.5), and recording data for the calculation of features. The relevant data is stored
in an SQLite database for more convenient access for calculating training and testing sets.
The data includes the commit identifiers, commit date, files changed, vulnerability fix-
ing information, meta information used in calculating features, and blame information for
identifying vulnerability introducing commits and vulnerable files. We separately gener-
ate complexity metrics using the Understand C++ tool [3], which are incorporated when
calculating feature vectors for our training and testing sets.

Once the data has been collected and stored to our SQLite database, we then generate
training and testing sets. In order to do this, we query the database for a given a training
date and granularity level to calculate the feature vectors and labels for the training and
testing sets. As necessary, we aggregate commit-related metrics to their matching file-level
metrics, and vice versa when calculating the feature vectors. When aggregating commit-
level features for a file, we examine the set of commits that have previously modified
that file. When aggregating file-level features to a commit, we examine the set of files
modified by that commit as of the date the commit was made. We also have scripts for
automatically generating configuration parameters (start and end for training and testing
sets) for a given training date. We also incorporate features calculated separately using
the Understand C++ tool here.

Finally we use a series of scripts, written in bash and python, in order to train and test
our classification models, using classification algorithms implemented in Weka [24]. We
first perform preprocessing on the training data (as described above in Section 4.3). We
then train each of our classifiers using each of our classification algorithms, and test the
models by using them to predict on the data in the testing sets Finally, we calculate the
performance metrics based on the predicted results.

We ran our experiments on a 3.3GHz E5-1660 shared server with 12 logical cores, 6
physical cores, and 32GB memory. Complexity metrics from Understand C++ were run on
a 2.93GHz Quad Core Intel i7 machine with and 12GB memory, dedicated for Understand
C++ for the duration of the data collection process. The runtime for the entire process for
all projects was on the order of weeks. The majority of that runtime cost was the collection
of complexity features using Understand C++. We break down the total runtime cost into
the costs for collecting data, generating training and testing sets, and training and testing
each below. For each stage, we first report the total runtime cost, then break down the
runtime costs of the steps that make up each stage.
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Collecting data took on the order of weeks. Again, the majority of this cost was caused
by the collection of complexity metrics with Understand C++, which took on the order of
days to weeks for each project. We note that we calculate metrics for changed files after
each commit in a project’s history in order to generate complexity metrics with Understand
C++. To the best of our knowledge, Understand C++ does not support the incremental
analysis of changes below the level of a file. We ran multiple projects in parallel, with
the longest project taking an estimated 2 weeks to complete. Collecting other features
for each commit from the project repositories took approximately 4 hours for all projects,
based on timing information recorded in log files. Identifying vulnerability fixing commits,
including parsing NVD data and dumped history of commit log messages, and identifying
vulnerability introducing commits took under an hour for all projects. Outputting the
commit log messages and commit data from the project’s version control system for further
parsing took on the order of a day for the largest projects.

Generating training and testing sets for each project-prediction-date combination took
under a day. Calculating feature vectors from previously collected data for all 8 training
dates and 7 projects took approximately 8 hours for commit-level features, and approxi-
mately 2 hours for file-level features. Calculating labels from previously collected data for
all 8 training dates and 7 projects took just under 2 hours each for commit and file levels.

Training and testing each of the 6 classifiers for 8 training dates and 7 projects took
on the order of days. Training each individual classification model took on the order of
minutes for most classifiers, except for the Multilayer Perceptron models, which took on
the order of hours to train. Testing and evaluating each classifier takes on the order of
minutes to test. Again, the whole process of our evaluation, from collecting data to training
and testing took on the order of weeks.

In this section, we have discussed our experimental setup, projects, parameters, im-
plementation and runtime. We have described the projects and classification algorithms
used, and the preprocessing steps applied in our evaluation. Finally, we have discussed the
implementation and runtime of the tool used to perform the evaluation.
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Chapter 5

Findings

In this project, we seek to compare vulnerability prediction at commit level with predic-
tion at file level under different usage scenarios. We set out to compare commit-level and
file-level prediction under two usage scenarios, ‘prediction performance’, and ‘cost effec-
tiveness’. In order to do so, we have performed online vulnerability prediction across 7
different projects, using 6 different classifiers, and using 8 different training dates (for a
total of 336 runs per level). Here we present a comparison of the series of runs using each
project and classifier. We find that generally file-level prediction outperforms commit-level
prediction for most projects, especially as measured by F1, and TPR10k metrics. There
are some notable exceptions, however. In particular, commit-level prediction often outper-
forms file-level prediction in AUROC and AUCEC metrics for the PHP project. Finally,
we show the ROC and CEC curves for specific prediction runs, and demonstrate that below
certain thresholds, commit level can occasionally outperform file level in both the ROC
(‘prediction performance’) curve, and the CEC (‘cost effectiveness’) curve.

5.1 Comparison of prediction performance and cost

effectiveness

Figure 5.1 shows the box plots for each classification performance metric, comparing com-
mit level and file level across each of the 7 projects, for the Naive Bayes classifier. We select
the Naive Bayes Classifier to show here, as it achieves the highest average F1 score for all
projects in the Jan 2013 test date at file level, but similar plots of other classifiers can be
seen in Appendix A. The y-axes of the box plots measure the scores for each metric. The

26



plot is split up into 7 sections, depicting the performance within each project, and each
project has four pairs of box plots, each comparing commit-level and file-level performance
for the same metric. The four metrics presented on the plot are F1 score, AUROC, AUCEC,
and TPR10k, in that order. For all measures, a higher score indicates better performance.
Each box represents the 8 runs for each test date at that repo/classifier setup. On each
box plot, the minimum and maximum results (excluding outliers) are represented by the
extremities of the tails. Outlier results are represented by a dot. The top and bottom lines
in a box of each plot show performance results at first and third quartiles respectively,
while the solid line in the box represents the median. Similar box plots for each of the
other 6 classifiers can be found in Appendix A.

In each of the projects, comparing the median performance of each metric at commit
level and file level, we find that, except in certain cases discussed below (for example the
AUROC score for the PHP project in Figure 5.1, file-level prediction outperforms commit-
level prediction. As such, we report the following finding:

File-level prediction tends to outperform commit-level prediction in both ‘predictive per-
formance’ and ‘cost effectiveness’ metrics, across most projects and classifiers.

Our results indicate that despite being a finer granularity, commit-level prediction is not
more cost effective than file-level prediction for most projects and classifiers. Cf. Posnett
et al. [54], who find that when comparing the hierarchically-related granularity levels of
file and package level, the finer-grained file-level vulnerability classification can be shown
to be more cost effective. However, commit- and file-level prediction are not hierarchically
related in the same way; as discussed in Section 3, there are differences in the meanings
and distributions of corresponding prediction features.

However, we also find that for F1 and TPR10k, consistently have median scores that
are quite low. For no classifier/project pair does the median F1 score reach above 0.5,
similarly most median TPR10k scores are around 0.1 or lower. These results correspond
with Morrison et al.’s [43] discussion that the current state of the art in vulnerability
prediction is not effective enough that it is widely used in industry. However, based on
our results, for most projects, focusing on the development of features and techniques for
file-level prediction would be more promising.
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Figure 5.1: Naive Bayes performances by project, level, and metric.

5.2 Cases with higher commit-level performance

As discussed above, while file-level prediction tends to outperform commit-level prediction
for most projects/classifiers and metrics. However, in this section, we highlight cases where
commit-level prediction outperforms file-level prediction. Again, we compare median values
in the box plots in Figure 5.1 and Appendix A. Most notably, the PHP project consistently
has stronger median AUROC scores at commit level across 5 of the 6 classifiers, and has
stronger median AUCEC scores at commit level for 4 of the 6 classifiers, Random Forest,
J48, and ADTree. PHP also has a higher F1 score at commit level for the J48 classifier.
Additionally, Apache httpd and OpenSSL achieve higher median AUCEC scores at commit
level with 2 classifiers (Multilayer Perceptron and Logistic Regression), while Xen has
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a higher median AUROC score with 3 classifiers (ADTree, Multilayer Perceptron, and
Logistic Regression).

Note also the J48 classifier, which at file level had the lowest average F1 score across all
projects for the Jan 2013 test date, while at commit level had the second highest average
F1 score across projects for the same date. This classifier also had the highest number
of projects which had higher scores at commit level based on the AUCEC, AUROC or
F1 metrics. As mentioned briefly above, the J48 classifier had higher median commit-
level scores for the following project/metric combinations: PHP and Apache httpd for the
AUCEC metric; PHP, Apache httpd, OpenSSL, Kerberos, and Wireshark for the AUROC
metric, and PHP for the F1 score.

Based on these cases, in which commit-level prediction sometimes outperforms file-level
prediction under certain metrics and for certain projects, we report the following findings:

For certain projects, particularly PHP, and for certain classifiers, particularly J48,
AUROC and AUCEC performance at commit level may be comparable to, or better
than, performance at file level.

In these cases, for these projects, and using these classifiers, it may be beneficial to
perform vulnerability prediction at commit level rather than file level, depending on the
usage scenario, and more specifically, metric, that the user is interested in optimizing.

5.3 AUROC vs. AUCEC

Figures 5.2 and 5.3 show the ROC and CEC curves at commit and file levels for the
Naive Bayes classifier using the Jan 2013 test date, and for the PHP and FFmpeg projects
respectively. There are 4 curves in total on each plot, two curves plotting the ROC and
CEC curves at commit level, and two curves plotting the same at file level. For all curves,
the y-axis value represents the true positive rate, or recall. The recall is measured as the
number of true positive predictions over the total number of vulnerable instances. For
ROC curves, represented on these plots by solid lines, the x-axis of the plot indicates the
false positive rate (number of false positives over total number of non-vulnerable instances).
The dotted black line represents the ROC curve of a classifier which randomly predicts
instances as buggy or clean. On the other hand, for the CEC curves, represented on
these plots by dashed lines, the x-axis represents the total percentage of lines of code of
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all instances predicted as vulnerable. For both of these values, the curve is calculated as
the prediction threshold is brought from 1 (accepting instances only with 100% predicted
certainty) to 0 (accepting all instances). At each threshold level, the x and y-axis values are
calculated and plotted based on the predicted probability of being vulnerable as assigned
by the classifier.

Note that in some curves, sections of the curve appear perfectly linear. In these cases,
all of the instances (or lines of code) in the linear section of the curve were predicted with
the same probability. The x-value at the end of the linear section has increased by the
cumulative x-value of those instances, while the y-value has increased by the cumulative y-
value. Recall that AUROC measures the area under the Receiver Operating Characteristic
curve, which plots the true positive rate (recall) against the false positive rate, while CEC
plots recall against the percentage lines of code inspected.

For the PHP project, with the Naive Bayes classifier, using the Jan 2013 test date (the
run which Figure 5.2 plots the results for), we note that file-level AUROC has a score 0.09
higher than commit-level prediction, while AUCEC has a score 0.39 higher at commit level.
For FFmpeg, for the same classifier and test date, AUROC has a score 0.07 higher at file
level while AUCEC has a score 0.16 higher, also at file level. The curves for the remaining
5 projects for the Naive Bayes classifier for the Jan 2013 training date can be found in
Appendix B

To understand why the results of PHP contradict those of other projects, we investigate
the characteristics of PHP. We found that the training set used for PHP at commit level
is 1.7 times larger than for other projects (Table 4.1). This is due to the large number of
commits in the long history of PHP. It is possible that this large number of commits in
the training set significantly helps commit-level prediction. However, further studies need
to be done to confirm this observation.

In the two curves in Figures 5.2 and 5.3, we note that below a certain small threshold,
the ROC or CEC curve shows a higher performance for one level of granularity, but overall
has a higher AUC for the other. In particular, for the PHP CEC curves, below a %LOC
of just under 20%, file-level cost effectiveness outperforms commit-level, while overall,
AUCEC is higher for commit level. On the other hand, for the FFmpeg ROC curves,
below a false positive rate of less than 5%, commit-level ROC outperforms file-level ROC,
while overall, AUROC for file level is better. In light of this, we report the following
finding:
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For certain projects and classifiers, the ROC or CEC curves may show a higher per-
formance for one level of prediction below a given threshold, but overall have a higher
AUC for another.
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Figure 5.2: ROC and CE curves, commit and file level, for PHP, Naive Bayes classifier,
and Jan 2013 test date.
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Figure 5.3: ROC and CE curves, commit and file level, for FFmpeg, Naive Bayes classifier,
and Jan 2013 test date.
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Chapter 6

Prediction Data Analysis

In this section, we discuss the data used for vulnerability prediction in order to allow for
further insight into our methods and findings. First, we discuss in detail our technique for
identifying vulnerability fixing commits, by matching fixing commits with the vulnerabil-
ities they were written to fix, as recorded in the National Vulnerability Database (NVD).
Next, we present the distribution of Common Weakness Enumeration (CWE) types within
our data, which describe the kinds of vulnerabilities available for use in our evaluation. We
also present data on the distribution of vulnerability fixing times in our data. Finally, we
present a pairwise scatterplot showing the distribution of instances in two-item subsets of
the feature space, allowing us to visualize the discriminative power of pairs of features.

6.1 Finding vulnerability fixing commits

Table 6.1 details the number of vulnerabilities for each project, the number of vulnerability
fixing commits identified using each of the three techniques, as well as the number of
matched NVD vulnerabilities, using data from NVD up until the end of 2015. Column 2
shows the number of vulnerabilities identified as affecting the project by NVD. Columns
3-5 specify the number of vulnerabilities matched with one or more fixing commits using
the following three techniques, respectively:

(a) Some of the vulnerability fixing commits can be matched by identifying commit SHA
identifiers in NVD external reference URLs. For each project, a set of project-specific
regular expressions was used to identify NVD references to the project repository’s
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Table 6.1: Labelling Vulnerable Instances.
Project NVD Vulns Method (a) Method (b) Method (c) Total Vuln Fix Commits Total Matched Vulns
FFmpeg 165 157 338 118 556 163
Apache httpd 176 0 197 20 213 63
Kerberos 96 8 192 18 196 73
OpenSSL 84 7 375 21 397 95
PHP 355 18 135 69 212 61
Wireshark 261 0 1 484 485 150
Xen 89 3 456 0 456 112

web interface (if present), and extract the SHA identifier of the commit referenced.
Previous work [50] uses this technique, as well as the next to identify vulnerable
commits in their data.

(b) Vulnerability fixing commits can also be identified by searching references to the CVE
identifiers (Common Vulnerabilities and Exposures, the identifiers used by NVD to
uniquely identify a vulnerability) in commit messages.

(c) Finally, we identify vulnerability fixing commits by matching bug IDs referenced in
an NVD external reference URL to a bug ID mentioned in a commit message, similar
to the techniques used in previous work [31, 47, 43, 63]. We again use project-specific
regular expressions to identify bug IDs from NVD references to a project’s bug report-
ing system. We then use project-specific regular expressions, built based on manual
examination of a project’s contributor documentation and past commit messages, to
identify references to bug IDs in the commit messages. We identify references to bug
IDs that indicate that the given commit was written to fix the referenced bug. We
then consider that commit to be a fixing commit for that vulnerability.

Finally, column 6 shows the total number of vulnerability fixing commits identified
using the three combined methods (note that some methods may identify the same com-
mit), and column 7 shows the total number of vulnerabilities used for those matches. The
remaining vulnerabilities we were not able to match with a fixing commit using our au-
tomated technique. Note that in some cases, the number of matched vulnerabilities in
column 7 may exceed the number of vulnerabilities listed as affecting the project in col-
umn 2. This is caused by the fact that we collect data from commit messages after the
end of 2015, so the vulnerabilities identified in these commits are not in the NVD data we
include.

Note that for this process, merge commits matched with vulnerabilities are ignored.
Note also that in each case, multiple bugs or commits may be identified for each vulnera-
bility.
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We find that different matching methods tend to work better for different projects.
For example, looking at Table 6.1, we find that Method (a) is able to identify a signifi-
cant number of commits as vulnerability fixing commits for FFmpeg only, while methods
(b) and (c) are able to identify the majority of vulnerability fixing commits for the Xen
and Wireshark projects, respectively. Because our labelling heuristics rely on commit log
message and bug reporting conventions followed by developers, or on the availability and
completeness of external resource links provided by NVD, effectively identifying vulnera-
bilities requires different techniques for different projects. In this case, NVD is relatively
consistent in linking to patch information for FFmpeg. FFmpeg and Xen developers are
extremely consistent at referencing CVE identifiers in NVD when committing fixes for
these vulnerabilities. On the other hand, for Wireshark, consistency from both developers
and NVD allows us to identify the majority of the vulnerability fixing commits available
for our study. Wireshark developers are consistent at reporting the bug id in fixing commit
messages, and NVD is relatively consistent at including a link to the bug report with its
vulnerability entry. To the best of our knowledge, we are the only project that has devel-
oped project-specific heuristics and used multiple matching techniques for matching NVD
vulnerabilities to their fixing commits.

Improvement in consistency in providing links to patches or bug reports in NVD, or
in consistency in reporting CVE identifiers in commit message logs by developers would
reduce the need for manually tuned per-project heuristics, and facilitate a more accurate
evaluation and development of vulnerability prediction methods such as ours. However,
note that the ability to link a vulnerability to its bug report and patch can reveal sensitive
information to would-be attackers if it is done so prior to a patch being released. Develop-
ment of improved labelling techniques in order to facilitate the development of vulnerability
prediction methods is discussed as a possible direction for future work in Section 9.1.

Finally, we recognize that our technique, despite using a combination of methods in
order to automatically identify fixing commits, is likely to produce both false positives
(label fixing commits that do not fix vulnerabilities), and false negatives (miss commits
that do fix vulnerabilities). In the process of manually developing heuristics to identify
bug id numbers and CVE vulnerabilities, care was taken to reduce the number of false
positives (i.e. looking for ’bug’, ’issue’ strings before id numbers based on project-specific
conventions). In addition, undiscovered vulnerabilities are not able to be matched. How-
ever, our method combines multiple vulnerability matching techniques used by existing
work in vulnerability prediction [47, 63, 50, 71].
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6.2 Types of vulnerabilities found in projects

Table 6.2 presents a list of the types and number of vulnerabilities present in our data.
CWE labels are used by NVD to specify the type of a given vulnerability (e.g., buffer
overflow, SQL injection). The first column specifies the CWE id, and the type description
as specified by NVD [49]. The second column specifies the number of distinct vulnerabilities
of that type in each project, and the third column specifies the number of vulnerability
fixing commits matched with that type of vulnerability. Note that due to the qualitative
and subjective nature of CWE type labelling, as well as the hierarchical nature of the
CWE taxonomy, CWE types may overlap, meaning vulnerabilities may fall into multiple
categories. For example, CWE-18 (Source Code), CWE-19 (Data Handling), CWE-20
(Input Validation), and CWE-94 (Code Injection) have a hierarchical relationship, with
CWE-94 being the most specific classification in that set. NVD lists at most 1 CWE type
per vulnerability.

Appendix C breaks down the CWE type distribution by project. We have selected a
variety of projects with a variety of different applications in order to get a sense of the
effectiveness of prediction of general vulnerabilities, rather than vulnerabilities of any one
specific type. Shar et al. [61] achieve a quite high predictive performance by developing
features specific to particular vulnerability types (SQL injections and cross site scripting
attacks). Directions for future work on the development of vulnerability-specific features
and vulnerability-specific prediction is discussed in Section 9.1.

While we focus on open-source C/C++ projects, our technique is not restricted to such
projects, and should be generalizable to any project and type of vulnerability available
in NVD. However, certain vulnerabilities may be less common in projects in different
languages (e.g., buffer overflow vulnerabilities may be less common in Java projects), as
discussed in 7

6.3 Vulnerability time to fix

Figure 6.1 shows the distribution of the time to fix for the vulnerabilities encountered in
our data. The histogram shows the probability density of the time to fix a vulnerability in
years. The estimated probability density function is represented by the dashed line, while
the cumulative density estimate is represented by the solid line. We measure the time to fix
as the time from the date of the vulnerability introducing commit (any commit blamed by
the changes in a vulnerability fixing commit, as described in section2.5) to the vulnerability
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Table 6.2: Vulnerability CWE types
CWE type Vuln. count Fix commit count

No Type Listed 206 638
CWE-16: Configuration 7 24
CWE-17: Code 17 57
CWE-18: Source Code 2 18
CWE-19: Data Handling 8 32
CWE-20: Input Validation 234 766
CWE-22: Path Traversal 3 3
CWE-59: Link Following 2 3
CWE-79: Cross-Site Scripting (XSS) 4 13
CWE-94: Code Injection 10 36
CWE-119: Buffer Errors 242 821
CWE-134: Format String Vulnerability 3 7
CWE-189: Numeric Errors 125 350
CWE-200: Information Leak / Disclosure 31 80
CWE-254: Security Features 3 19
CWE-255: Credentials Management 2 3
CWE-284: Improper Access Control 1 4
CWE-287: Authentication Issues 7 6
CWE-310: Cryptographic Issues 34 140
CWE-352: Cross-Site Request Forgery (CSRF) 1 3
CWE-362: Race Conditions 12 44
CWE-399: Resource Management Errors 140 426

fixing commit (as identified by our technique described above in Section 6.1). Following the
techniques of previous work [31, 50, 71], we consider commits blamed by a fixing commit
(that were made before the fixing commit) as vulnerable, so we may have multiple fixing
times for a given vulnerability fixing commit. We can consider the vulnerability time to
fix a lower bound on the vulnerability time to discovery, since vulnerabilities must first
be discovered before they are fixed, however recall that we require a vulnerability fixing
commit in order to label vulnerabilities using our technique. Note that it is not until
the 10 year mark that about 90% of the vulnerabilities in our dataset are likely to have
been fixed. However several of our projects do not have a significant number of discovered
vulnerabilities listed in NVD until 2013, meaning that if we attempted to perform online
prediction before 2013, the project’s training set would have little to no positive instances,
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making prediction impossible. Our choice of training dates attempts to account for the
availability of vulnerabilities for the training set (making prediction possible), while also
including later fixed vulnerabilities in the testing set. A further breakdown of vulnerability
times to fix by project can be found in Appendix D.

Figure 6.1: Vulnerability times to fix in years, showing both density and cumulative density
estimation.

6.4 Sample feature distributions

Figures 6.2 and 6.3 show the paired distribution of a handful of selected attributes at
commit and file level. The attributes shown are analogous attributes that were chosen in
the attribute selection preprocessing step at commit and file level, respectively. Each of the
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plots in the upper right and lower left corners of the grid is a scatterplot of two attributes
(or an attribute and the ‘vulnerable’ label), showing the distribution of both vulnerable
and non-vulnerable instances in those attributes. Note that the same 4 attributes are listed
along the x and y axes of the plot, allowing a pairwise comparison of the distributions. The
‘label’ attribute is the vulnerability label used as the predicted variable for the classifier,
that is, it indicates whether the instance contains or does not contain a known vulnerability.
The label of each instance is also represented on each of the scatterplots as either a red
triangle for ‘vulnerable’ instances, or a blue ‘x’ for instances not known to contain a
vulnerability. The diagonal row of histograms show the distribution of values for the
attribute represented by that row and column of plots.

For example, consider the top row of plots in the commit-level paired plots, showing
the hunk count attribute relative to other attributes. The first plot shows a histogram
depicting the distribution of instances over values of hunk count. Each subsequent plot
is a scatterplot of instances, with the y-axis indicating the value of hunk count, and the
x-axis indicating the value of the other paired attribute for that instance. The final plot
in this row shows a row of vulnerable instances, and a row of unlabelled instances as they
are distributed in the values of the hunk count attribute.

For the commit-level plot, the attributes included are: hunk count, the number of
‘hunks’ output by the diff of the commit under default diff parameters [1]; past changes,
the number of changes to the project made prior to the given commit; and the au-

thor contributions percent, the percentage of commits made to the project by the
author of that commit, calculated as of the ‘training date’. Note that the outlying points
at an author contribution percent of 30% are likely all commits made by the same author.
Finally, the rightmost row and bottom column depict the distributions of the vulnerability
label. For the file-level plot, the attributes included are: sum hunk count, the sum of the
number of ‘hunks’ over all past commits made to the file; age, the age of the file, mea-
sured in seconds; and the author contributions percent, the cumulative percentage of
commits made to the project by the set of authors who modified that file, calculated as of
the ‘training date’. Again, the rightmost row and bottom column depict the distributions
of the vulnerability label.

The plots allow the visualization of the discriminative power of these select attributes
and attribute pairs. Note that for these attributes, there is no distribution that appears to
be particularly discriminative for vulnerable files or commits, perhaps pointing to the need
for better, more security-specific features. The development of security-specific attributes
for the improvement of vulnerability prediction is left as future work.
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In this section, we have discussed the data colleced in the process of our evaluation.
We first discussed in detail our technique for identifying vulnerability fixing commits,
by matching fixing commits vulnerabilities in NVD. We then presented the distribution
of different types of vulnerabilities within our data. We also presented information on
the distribution of vulnerability fixing times in our data. Finally, we presented pairwise
scatterplots showing the distribution of instances in two-item subsets of our feature space,
for the visualization the discriminative power of pairs of features.
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Figure 6.2: Paired plots showing the paired distribution of clean and vulnerable commits. A
label value of 1 indicates an instance with a vulnerability. This is plotted along the bottom
row and rightmost column of plots, and is represented in each scatterplot as a red triangle.
The diagonal row of histograms show the distribution of values of a single attribute, the
attribute represented by that row and column of plots. This plot was generated using the
Jan 2013 test set for FFmpeg at commit level.
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Figure 6.3: Paired plots showing the paired distribution of clean and vulnerable commits. A
label value of 1 indicates an instance with a vulnerability. This is plotted along the bottom
row and rightmost column of plots, and is represented in each scatterplot as a red triangle.
The diagonal row of histograms show the distribution of values of a single attribute, the
attribute represented by that row and column of plots. This plot was generated using the
Jan 2013 test set for FFmpeg at file level.
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Chapter 7

Threats to Validity

Following the work of Perry et al. [51], as referenced by Posnett et al. [54], we examine the
construct, internal and external validity of our work.

Construct validity examines how accurate our methods measure the questions and hy-
potheses we set out to measure. One issue that could impact our construct validity is
our choice of performance measures that represent only a single data point. Specifically,
F1 score and TPR10k measure single data points, i.e. F1 measures performance using a
single threshold, and TPR10k finds the percentage of vulnerabilities for a single number
of LOC examined. However, we rely on multiple metrics, including AUROC and AUCEC
to evaluate the performance of the classifier, which do not rely on single threshold values.
Additionally, TPR10k allows us to compare the cost effectiveness of vulnerability predic-
tion at different levels independent of the total LOC in the test set, which differs at commit
and file level.

Internal validity ensures that changes to the dependent variables are indeed the cause
of changes seen in independent variables. To this end, we go to lengths to ensure that our
experimental design ‘fairly’ compares commit-level prediction with file-level prediction, as
described in Section 3. It can be noted that due to limitations based on cost of imple-
mentation and collection, certain features used in previous work for commit- and file-level
prediction were not used in our evaluation. However, in order to mitigate the effect of the
use of certain features (or the omission of others) on prediction results, we collect a wide
variety of types of features, and attempt to collect analogous features at both commit and
file level. Additionally, perform attribute selection on our set of features, which selects
a subset of features in order to optimize the information gain provided by that subset
of features. Therefore the features we use for building and evaluating our classifiers is a
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feature selected subset of our more complete list of features, tuned to provide optimized
information gain for the given level of prediction. Additionally, inaccuracies in our la-
belling of vulnerability fixing commits (as discussed in Section 6.1), and identification of
vulnerable commits (as discussed in Section 2.5), may impact the evaluated performance of
our classifiers. However, we use a labelling and blaming technique comparable to previous
works in vulnerability prediction [47, 31, 71].

External validity examines the extent to which the results are generalizable. We perform
our evaluation on 7 different projects, 6 different classifiers, for 8 different training dates.
Our projects come from a variety of applications, from a virtual machine hypervisor, to
a network analysis tool, to a scripting language. However, all the projects in our study
are open source projects and projects written primarily in C/C++. While our evaluation
technique is theoretically applicable to closed source projects and projects written in other
languages, provided there exists a reliable method for linking fixing commits to known
vulnerabilities, the distribution in the number and types of vulnerabilities may change
such that the generalizability of our study is impacted.
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Chapter 8

Related Work

8.1 Defect and Vulnerability Prediction

In the last couple of decades, researchers have used machine learning (ML) techniques to
predict defects in software [34, 25, 38, 42, 31, 73]. While defect prediction is now accepted
and used in the industry, many challenges make vulnerability prediction less applicable
to industry. [43]. ML techniques have shown promising results to automatically predict
software vulnerability bugs [4, 63, 68, 59, 27, 60, 77], In this section, we discuss related
work, highlighting vulnerability or defect prediction that was evaluated at binary level, file
level, or commit and change level. We also discuss works that similarly make comparisons
between different levels of granularity, though these are generally performed between levels
that are hierarchically related, unlike file and commit levels.

8.2 Vulnerabilty Prediction in binaries

Various metrics, e.g., code churn and code complexity, have been used to train ML models
[63, 11, 75] to predict vulnerabilities in source code and binaries. Nagappan et al. [45]
study the validity of the relative code churn measures as early indicators of system defect
density, and their results conclude that relative values of code churn are better predictors
than using absolute values. A study by Zimmermann et al. [79] used various metrics like
code churn, code complexities, dependencies, code coverage and organizational measures
to predict software vulnerabilities in Windows Vista binaries.
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8.3 File-Level Prediction

Many defect prediction models have been proposed at file level [70, 42, 16]. Those studies
can generally achieve very good results on different benchmarks. Similarly, file-level vulner-
ability prediction has been thoroughly studied [4, 68, 59, 60, 77]. Shin et al. [63] compare
code churn, complexity, and developer activity metrics for vulnerability prediction. They
find that all three kinds of metrics have discriminative power for vulnerability prediction,
and achieve a high recall, but low precision, using a classifier built using a combination of
all metrics. Hovsepyan et al. [27] rely on the textual analysis of the source code and treat
every word (also called a monogram in text processing) in that source file as a feature.
Their results yield high accuracy (average of 0.87), precision (average of 0.85) and recall
(average of 0.88). However, they label vulnerabilities using warnings detected by a tool,
and as a result have a much higher vulnerability rate. It is not clear whether their results
generalize to other types of vulnerabilities not detected by the tool. For these works, results
are generally less accurate than for general defect prediction level. Despite the wide range
of features available, several studies show that commit-related features (i.e. code churn,
number of past authors) are useful indicators for finding defects or vulnerabilities at file
level [63, 44, 28, 45].

8.4 Commit-Level Prediction

Empirical studies have shown that buggy commits share some common features [6, 8, 34].
For example, Bavota et al. demonstrate that commits involving hierarchy modification are
more likely to be buggy than others [6]. Kim et al. also found that particular keywords
and the number of changes in the commits are also significant predictors [34]. Despite
commit-related features being widely used for both general defect and vulnerability pre-
diction, commit or change-level prediction have not yet been extensively studied. For
general defect prediction, existing studies [34, 62, 31] show that predicting bugs at the
commit and change levels is possible. CommitGuru, a tool predicting risks associated to
specific commits has also been introduced recently [58]. However, the performances of this
tool have not yet been thoroughly analyzed. For vulnerability prediction, despite some
empirical studies analysing the characteristics of particular vulnerabilities [22] or vulnera-
ble changes [8, 37], the only work evaluating vulnerability prediction at the commit level is
VCCFinder [50], who report precision and recall values comparable to that of some works
in file-level vulnerability prediction [63]. Different from these studies, our work focuses
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on identifying the challenges and parameters impacting vulnerability prediction at commit
level. In addition, we compare commit and file-level vulnerability prediction.

8.5 Impact of Prediction Granularity on Results and

Performance

Additional previous work evaluates the impact of granularity on both general defect and
vulnerability prediction. Morrison et al. focus on file and binary levels of granularity for
vulnerability prediction [43]. They obtained better results when predicting at binary level
than for file level. Posnett et al. study the differences between file, package and module
levels for general defect prediction. [54] They also found that binary-level prediction was
better than predicting on de-aggregated elements, when measured using AUROC. However,
they discovered that predicting at a finer granularity level is better when considering cost-
effectiveness metrics. While doing a comparison between prediction at different levels of
granularity, these two studies differ from our study in several ways. First, commit level
is a more fine-grained level of granularity than file level. None of these studies considers
the possibility of doing prediction at commit level, and we do not know whether the
conclusions obtained in previous studies still hold for comparison between commit and file
levels. Second, we focus our investigation not only on the results, but on the different
features and labelling possible in commit and file level. Previous studies do not consider
these parameters in their analysis.
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Chapter 9

Conclusion

In this study, we have performed a comparison of commit- and file-level prediction across
7 projects, 6 classifiers, and 8 training dates, with the intent of informing the development
of practical, real-world use of vulnerability prediction. We find that in most cases, vulner-
ability prediction at file level outperforms prediction at commit level. However, for some
projects and classifiers, commit-level prediction may in fact be comparable with, or outper-
form, file-level prediction. We compare each of our projects using several different metrics,
representing two different possible usage scenarios for vulnerability prediction, and we find
that under both scenarios, file level outperforms commit-level prediction. This is despite
the fact that commit-level prediction is a finer granularity level of prediction, and previ-
ous work [54, 43] finds that despite being more accurate at coarser levels of granularity,
prediction is often more cost effective at finer levels of granularity.

We also provide an analysis of our automated technique for building datasets of com-
mits and files containing known vulnerabilities, and extracting features, for use in online
prediction. We discuss a threats to our internal validity that arise from limitations in
our automated labelling process and from the availability of known vulnerabilities. These
threats affect our technique, as they do the previous work on which our technique is based,
and we provide insight in to the extent to which these threats may affect our evaluation.
In addition, our choice of projects and dates is further limited by the availability of data in
the National Vulnerability Database, which for several projects, have the majority of the
vulnerabilities listed for the project in the database only in the past 3-4 years. We pro-
pose that further understanding of these threats, and evaluation that focuses on practical,
real-world use will lead to further development of vulnerability prediction tools.
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We also achieve vulnerability prediction performance scores comparable with past
work— that is, low [43, 63, 50]. Our F1 scores at file level achieve a max score of 0.65, but
an average of 0.24, while our F1 scores at commit level achieve a max score of 0.30, and
an average of 0.10. We propose, like previous work [43], that security-specific metrics may
help to further improve vulnerability prediction. In our analysis, we examine the types of
vulnerabilities (as identified by NVD) that are found in our data, and propose that further
insights into security-specific metrics may be found by focusing on vulnerabilities by their
type.

9.1 Future Work

There are a number of directions for future work, based on insights and experiences en-
countered in the course of this work.

First, while we learn that file-level prediction performs better than commit-level pre-
diction for both ‘classifier performance’ and ‘cost effectiveness’ metrics, we note that the
performance of vulnerability prediction itself is quite poor. In order to improve vulnerabil-
ity prediction, we propose the development of security-specific features, specific to vulner-
abilities as a subset of general defects. For example, Shar et al. [61] uses features specific to
particular types of vulnerabilities in order to achieve high classifier performance. However,
additional security-specific features have yet to be developed that improve prediction of
vulnerabilities generally.

Similarly, building an ensemble of classifiers that focus on specific vulnerability types
may allow us to improve general prediction performance while still taking advantage of
vulnerability type information provided by databases like NVD. However, the challenge
here is finding enough instances of a given vulnerability type to build an effective classifier.
Because there is already a very low positive rate for vulnerabilities generally, splitting our
set of vulnerabilities into smaller groups based on type decreases the positive rate and
negatively impacts the quality of the classification model.

Another possible direction for future work is to improve the linking of vulnerabilities to
vulnerability fixing commits. As seen is Table 6.1, a number of vulnerabilities listed in NVD
were not able to be matched to their fixing commits, impacting the internal validity of our
study. Finding ways to further improve upon our technique for identifying vulnerability
fixing commits would facilitate an improved evaluation of existing vulnerability prediction
techniques, as well as allow higher quality vulnerability prediction models to be built.
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Other directions for future work relate to possibilities for improving the cost effective-
ness of commit-level prediction. Based on the results reported in [54], one might expect
commit-level results, the lower granularity of the two prediction levels, to be more cost
effective, however this is not the case. One option for improving cost effectiveness would
be to ignore large commits during prediction, as done by Perl et al. [50], which means that
unusually large commits are ignored, even though they may contain a vulnerability. In our
study, based on manual inspection, we find that outliers in commit size do exist (commits
generated by automated processes, e.g., the refactoring of a variable name), and impact
the cost effectiveness of commit-level prediction, however we do not set a threshold, as
we believe this would unfairly bias commit-level results without implementing a similar
threshold for file-level prediction. Recall that in our evaluation, as in previous work [50],
merge commits are ignored.

An alternative to ignoring large commits would be to look at change-level prediction,
given that changes provide an even smaller granularity than commit level, and will be no
larger than the largest file. We look at commit-level vulnerability prediction in order to
compare with previous work [50].

Finally, while we perform our comparison on vulnerability prediction in order to discover
which prediction level is more promising to pursue given poor state-of-the-art performance
results, performing a comparison of commit and file-level prediction with general defect
prediction is a possible direction for future work. Since our process and tool already
identifies fixing commits based on bug ids, this comparison is easily performed on the same
dataset using existing data and methods, with minor modification to labelling methods.

In conclusion, our project set out to compare file-level and commit-level vulnerability
prediction with an evaluation that measured practical, real-world utility. While the ab-
solute results of the prediction models we build are not promising for practical use, the
insights gained by our evaluation and comparison may be useful in informing further work
in vulnerability prediction. Several directions for future work exist based on the insights
gained from this study, from the improvement of vulnerability prediction, to extending the
evaluation to general defect prediction.
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Appendix A

Classifier Performances by Project,
Level and Metric
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Figure A.1: J48 performances by project, level, and metric.
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Figure A.2: ADTree performances by project, level, and metric.
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Figure A.3: Multilayer Perceptron performances by project, level, and metric.
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Figure A.4: Logistic regression performances by project, level, and metric.
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Figure A.5: Random Forest performances by project, level, and metric.
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Appendix B

ROC and CE curve comparisons for
Naive Bayes classifier, Jan 2013
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Figure B.1: ROC and CE curves, commit and file level, for httpd, Naive Bayes classifier,
and Jan 2013 test date.
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Figure B.2: ROC and CE curves, commit and file level, for Kerberos, Naive Bayes classifier,
and Jan 2013 test date.
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Figure B.3: ROC and CE curves, commit and file level, for OpenSSL, Naive Bayes classifier,
and Jan 2013 test date.
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Figure B.4: ROC and CE curves, commit and file level, for Wireshark, Naive Bayes clas-
sifier, and Jan 2013 test date.

72



Figure B.5: ROC and CE curves, commit and file level, for Xen, Naive Bayes classifier,
and Jan 2013 test date.
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Appendix C

Vulnerability CWE types by project
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Table C.1: Vulnerability CWE types by project
Project CWE type Vuln. count Fix commit count

krb5 No Type Listed 35 91
krb5 CWE-16: Configuration 1 4
krb5 CWE-18: Source Code 2 18
krb5 CWE-20: Input Validation 29 78
krb5 CWE-94: Code Injection 2 5
krb5 CWE-119: Buffer Errors 28 63
krb5 CWE-189: Numeric Errors 17 41
krb5 CWE-200: Information Leak / Disclosure 3 10
krb5 CWE-255: Credentials Management 1 2
krb5 CWE-284: Improper Access Control 1 4
krb5 CWE-287: Authentication Issues 2 2
krb5 CWE-310: Cryptographic Issues 3 7
krb5 CWE-362: Race Conditions 1 1
krb5 CWE-399: Resource Management Errors 22 47

php-src No Type Listed 36 115
php-src CWE-17: Code 2 6
php-src CWE-19: Data Handling 3 11
php-src CWE-20: Input Validation 33 107
php-src CWE-22: Path Traversal 3 3
php-src CWE-59: Link Following 1 2
php-src CWE-94: Code Injection 2 9
php-src CWE-119: Buffer Errors 38 129
php-src CWE-134: Format String Vulnerability 1 3
php-src CWE-189: Numeric Errors 22 56
php-src CWE-200: Information Leak / Disclosure 6 12
php-src CWE-287: Authentication Issues 2 1
php-src CWE-310: Cryptographic Issues 6 22
php-src CWE-362: Race Conditions 2 6
php-src CWE-399: Resource Management Errors 12 26
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Table C.2: Vulnerability CWE types by project - continued
Project CWE type Vuln. count Fix commit count

wireshark No Type Listed 38 105
wireshark CWE-17: Code 1 5
wireshark CWE-19: Data Handling 3 11
wireshark CWE-20: Input Validation 88 315
wireshark CWE-94: Code Injection 3 11
wireshark CWE-119: Buffer Errors 57 183
wireshark CWE-134: Format String Vulnerability 1 3
wireshark CWE-189: Numeric Errors 42 152
wireshark CWE-200: Information Leak / Disclosure 6 4
wireshark CWE-255: Credentials Management 1 1
wireshark CWE-287: Authentication Issues 2 1
wireshark CWE-310: Cryptographic Issues 1 2
wireshark CWE-362: Race Conditions 1 1
wireshark CWE-399: Resource Management Errors 39 136

httpd No Type Listed 19 49
httpd CWE-16: Configuration 1 7
httpd CWE-17: Code 1 5
httpd CWE-20: Input Validation 15 49
httpd CWE-79: Cross-Site Scripting (XSS) 4 13
httpd CWE-94: Code Injection 1 3
httpd CWE-119: Buffer Errors 8 19
httpd CWE-189: Numeric Errors 8 19
httpd CWE-200: Information Leak / Disclosure 4 7
httpd CWE-310: Cryptographic Issues 3 11
httpd CWE-352: Cross-Site Request Forgery (CSRF) 1 3
httpd CWE-362: Race Conditions 1 4
httpd CWE-399: Resource Management Errors 17 43

FFmpeg No Type Listed 47 152
FFmpeg CWE-16: Configuration 1 2
FFmpeg CWE-17: Code 4 4
FFmpeg CWE-20: Input Validation 36 110
FFmpeg CWE-94: Code Injection 2 8
FFmpeg CWE-119: Buffer Errors 84 306
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Table C.3: Vulnerability CWE types by project - continued (2)
Project CWE type Vuln. count Fix commit count

FFmpeg CWE-134: Format String Vulnerability 1 1
FFmpeg CWE-189: Numeric Errors 32 66
FFmpeg CWE-310: Cryptographic Issues 2 4
FFmpeg CWE-362: Race Conditions 2 4
FFmpeg CWE-399: Resource Management Errors 15 42

xen No Type Listed 11 38
xen CWE-16: Configuration 4 11
xen CWE-17: Code 6 25
xen CWE-19: Data Handling 2 10
xen CWE-20: Input Validation 20 67
xen CWE-59: Link Following 1 1
xen CWE-119: Buffer Errors 11 66
xen CWE-189: Numeric Errors 1 3
xen CWE-200: Information Leak / Disclosure 8 34
xen CWE-254: Security Features 2 9
xen CWE-310: Cryptographic Issues 1 4
xen CWE-362: Race Conditions 1 5
xen CWE-399: Resource Management Errors 15 65

openssl No Type Listed 20 88
openssl CWE-17: Code 3 12
openssl CWE-20: Input Validation 13 40
openssl CWE-119: Buffer Errors 16 55
openssl CWE-189: Numeric Errors 3 13
openssl CWE-200: Information Leak / Disclosure 4 13
openssl CWE-254: Security Features 1 10
openssl CWE-287: Authentication Issues 1 2
openssl CWE-310: Cryptographic Issues 18 90
openssl CWE-362: Race Conditions 4 23
openssl CWE-399: Resource Management Errors 20 67

77



Appendix D

Vulnerability time to fix histogram
by project

78



Figure D.1: Vulnerability times to fix in years for Apache httpd, showing both density and
cumulative density estimation.

79



Figure D.2: Vulnerability times to fix in years for Kerberos, showing both density and
cumulative density estimation.
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Figure D.3: Vulnerability times to fix in years for OpenSSL, showing both density and
cumulative density estimation.
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Figure D.4: Vulnerability times to fix in years for Wireshark, showing both density and
cumulative density estimation.
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Figure D.5: Vulnerability times to fix in years for Xen, showing both density and cumulative
density estimation.
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Appendix E

Keywords used as features
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Table E.1: Keyword Features
auto
break
case
char
const

continue
default

do
double

else
enum
extern
float
for

goto
if

int
long

register
return
short
signed
sizeof
static
struct
switch
typedef
union

unsigned
void

volatile
while
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Table E.2: Keyword Features - continued
asm

dynamic cast
namespace

reinterpret cast
try

bool
explicit

new
static cast

typeid
catch
false

operator
template
typename

class
friend
private

this
using

const cast
inline
public
throw
virtual
delete

mutable
protected

true
wchar t
malloc
calloc
realloc

free
alloca
alloc
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