
Second-Generation Stack Computer
Architecture

Charles Eric LaForest

A thesis
presented to the Independent Studies Program

of the University of Waterloo
in fulfilment of the

thesis requirements for the degree
Bachelor of Independent Studies (BIS)

Independent Studies
University of Waterloo

Canada
April 2007

ii

Declaration

I hereby declare that I am the sole author of this research paper.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

Signature: [:.,,,u..c ;(~

I further authorize the University of Waterloo to reproduce this research paper by photocopy
ing or other means, in total or in part, at the request of other institutions or individuals for the
pUipose of scholarly research.

SignatUI·e: 6 ~ >{!.
The work in this research paper is based on research carried out in the Independent Studies
Program at the University of Waterloo, Canada. No part of this thesis has been submitted else
where for any other degree or qualification and is all my own work unless referenced to the
contrary in the text.

Copyright© 2007 by Charles Eric La Forest.
The copyright of this thesis rests with the author. Quotations and infonnation derived from it
must be acknowledged.

Ill

Second-Generation Stack Computer Architecture

Charles Eric LaForest

Submitted for the degree of Bachelor of Independent Studies
April 2007

Abstract

It is commonly held in current computer architecture literature that stack-based computers were
entirely superseded by the combination of pipelined, integrated microprocessors and improved
compilers. While correct, the literature omits a second, new generation of stack computers
that emerged at the same time. In this thesis, I develop historical, qualitative, and quantitative
distinctions between the first and second generations of stack computers. I present a rebuttal
of the main arguments against stack computers and show that they are not applicable to those
of the second generation. I also present an example of a small, modern stack computer and
compare it to the MIPS architecture. The results show that second-generation stack computers
have much better performance for deeply nested or recursivecode, but are correspondingly
worse for iterative code. The results also show that even though the stack computer’s zero-
operand instruction format only moderately increases the code density, it significantly reduces
instruction memory bandwidth.

iv

Acknowledgements

Firstly, thanks go to my family, immediate and extended, whohave always given me the leeway
and support I needed, who always believed in me.

Sometime in 2000, Ralph Siemsen and Andrew E. Mileski introduced me to the Forth
programming language, which changed my view of programming. Soon after, I discovered the
microprocessors of Chen-Hanson Ting, Jeff Fox, and CharlesH. (Chuck) Moore, which did
the same for my view of computer hardware. Aaron Holtzman suggested I play with FPGA
simulations of these computers, and graciously bore all my grumblings about broken Verilog
compilers. At the same time, I had stimulating email discussions with Myron Plichota and
Jecel Mattos de Assumpcao Jr. which led to some of the new ideas in this thesis.

It was Sheryl Cronk who eventually gave me the arguments and reasons to return to Uni-
versity. Many friends bought my old junk and helped me move. For this kick-start and support,
I am forever grateful.

Once at Waterloo, Professor Chrysanne DiMarco became my Adviser. Her thorough knowl-
edge of the English language and of the customs of academia improved me greatly. Thus, I
must atone by myself for any linguistic errors in this thesis. Professors Giuseppe Tenti and
Barry Ferguson unrusted and expanded my mathematical skills. Professor Manoj Sachdev and
his PhD students, Shahab Ardalan and Bhaskar Chatterjee, took much time both inside and
outside of class to discuss the details of VLSI circuitry with me. Professors Mark Aagaard
helped me gain a broader perspective on computer architecture and led me to the class of Pro-
fessor Paul Dasiewicz who taught me more about the subject. PhD candidate Brad Lushman
took time to help me with my exploration of programming languages. I also thank Professor
Anne Innis Dagg of Independent Studies, whose course on independent research rounded me
out well.

Outside of class, the denizens of the Computer Science Club provided both enthusiastic
discussions and gave me a chance to make my work heard. Mike Jeays provided me with a
useful and rare primary source for the KDF9, his favourite computer. Professor Steven M.
Nowick of Columbia University helped me understand his MINIMALIST synthesis tool.

The wheels of Independent Studies were kept turning by Professors Bill Abbott and Richard
Holmes and especially by Susan Gow, who provided endless enthusiasm, countless good ex-
amples, and sage advice.

The writing of this thesis was supervised by Dr. Andrew Morton here at Waterloo, and by
Professor J. Gregory Steffan of the University of Toronto. Iam very grateful for their feedback
and guidance.

And finally, thanks to Joy, my fiancée. You brighten my life. You make me happy.
The years ahead with you glow with promise and adventure.

v

”But the speed was power, and the speed was joy, and the speed was pure beauty.”

– Richard Bach,Johnathan Livingston Seagull

“If my calculations are correct, when this baby hits eighty-eight miles per hour,
you’re gonna see some serious shit.”

– Emmet “Doc” Brown, inBack To The Future

vi

Contents

1 Introduction 1
1.1 Research Goals . 2
1.2 Thesis Outline .3

1.2.1 Part I: Historical Review .. 3
1.2.2 Part II: Qualitative Arguments 3
1.2.3 Part III: Quantitative Arguments 3

I Historical Review 5

2 History of the First Generation of Stack Computers 7
2.1 Lukasiewicz and the First Generation 7

2.1.1 Poland: Jan Lukasiewicz (1878-1956) 7
2.1.2 Germany: Konrad Zuse (1910 - 1995) 8
2.1.3 Germany: Friedrich Ludwig Bauer (1924-) 8
2.1.4 Australia: Charles Leonard Hamblin (1922-1985) 9
2.1.5 USA: Robert Stanley Barton .10

2.2 The First Generation of Stack Computers 11
2.2.1 Zuse Z4 . 11
2.2.2 English Electric Co. KDF9 .12
2.2.3 Burroughs B5000 and later models 14
2.2.4 International Computers Ltd. ICL2900 series 16
2.2.5 Hewlett-Packard HP3000 .17

2.3 Shortcomings and Disappearance of the First Generation. 18
2.3.1 Explicit High-Level Language Support 18
2.3.2 The Rise of RISC . 18
2.3.3 Excessive Memory Traffic . 19
2.3.4 The Need for Index Registers .20

3 History of the Second Generation of Stack Computers 21
3.1 Charles H. Moore and the Second Generation 21

3.1.1 Charles Havice (Chuck) Moore II 21
3.1.1.1 The Forth Programming Language Basis of Second-Generation

Stack Computers . 21
3.1.2 Philip J. Koopman, Jr. 22

vii

3.2 The Second Generation of Stack Computers 23
3.2.1 NOVIX NC4016 . 23
3.2.2 Harris RTX-2000 . 23
3.2.3 Sh-BOOM (Patriot Scientific IGNITE I) 23
3.2.4 MuP21 . 25
3.2.5 F21 . 26
3.2.6 c18 . 26

3.3 Recent Research .26
3.4 Strengths and Weaknesses of the Second Generation 28

3.4.1 The Need for Index Registers .28
3.4.2 Stack Manipulation Overhead .. 28
3.4.3 Poor Support of ALGOL-like Languages 29
3.4.4 Reduced Instruction Memory Bandwidth and System Complexity . . . 29
3.4.5 Fast Subroutine Linkage and Interrupt Response 29

II Qualitative Arguments 31

4 Distinguishing the First and Second Generations 33
4.1 Location of Stacks: In-Memory vs. In-Processor 34
4.2 Use of Stacks: Procedure Nesting vs. Expression Evaluation 35
4.3 Operations with Stacks: High-Level Language Support vs. Primitive Operations 36

5 Objections Cited by Hennessy & Patterson 37
5.1 The Enormous Influence of Hennessy & Patterson on Computer Architecture . 37
5.2 The Disappearance of Stack Computers (of the First Generation) 38
5.3 Expression Evaluation on a Stack 39
5.4 The Use of the Stack for Holding Variables 40
5.5 Distorted Historical Arguments 40

III Quantitative Arguments 45

6 A Stack-Based Counterpart to DLX: Gullwing 47
6.1 Block Diagram . 47

6.1.1 Memory Subsystem . 48
6.1.1.1 Single Memory Bus . 48
6.1.1.2 Differentiating Loads, Stores, and Fetches 48

6.1.2 Computation Subsystem . 48
6.1.3 Control Subsystem . 48

6.2 Instruction Set .. 49
6.2.1 Instruction Packing .49
6.2.2 Flow Control . 49
6.2.3 Load, Store, and Literal Fetch .. . 50
6.2.4 Arithmetic and Logic . 50

viii

6.2.4.1 Synthesizing More Complex Operations51
6.2.5 Stack Manipulation . 52
6.2.6 No-Op and Undefined . 52
6.2.7 Instruction Format and Execution Example 53

6.3 State Machine and Register Transfer Description 54
6.3.1 Improvement: Instruction Fetch Overlap 56

7 Comparisons With DLX/MIPS 59
7.1 Gullwing Benchmarks .59

7.1.1 Flight Language Kernel (Bare) .. . 59
7.1.2 Flight Language Extensions (Ext.) 60
7.1.3 Virtual Machine (VM) . 60

7.2 Comparison of Executed Benchmark Code 61
7.2.1 Dynamic Instruction Mix .61
7.2.2 Cycles Per Instruction .64
7.2.3 Memory Accesses Per Cycle . 65
7.2.4 Instructions per Memory Word .. 67

7.2.4.1 Basic Blocks and Instruction Fetch Overhead 68
7.3 Behaviour of Iteration, Recursion, and Subroutine Calls 68

7.3.1 Measured Properties . 68
7.3.2 Demonstrators . 69
7.3.3 Iterative Triangular Numbers 70
7.3.4 Recursive Triangular Numbers .. . 72
7.3.5 Tail-recursive Triangular Numbers 74
7.3.6 Subroutine Calls . 76

7.4 Pipelining . 79
7.4.1 Transforming the DLX Pipeline to Gullwing 79
7.4.2 Altering the ISR to Deal with the Additional Latency 81
7.4.3 The Effect of Pipelining on Calls, Jumps, and the CPI 83

7.5 Summary and Performance Comparison 84

8 Improving Code Density 85
8.1 Improving High-Level Code Density by Adding an Instruction Stack 86

8.1.1 Side-Effects on Return Stack Manipulation 87
8.2 Implementation .88
8.3 Side-Effect on Code Size, Silicon Area, and Subroutine Overhead 88

8.3.1 The Instruction Stack as an Instruction Cache 89

9 Conclusions, Contributions, and Further Work 91
9.1 Contributions .93
9.2 Further Work . 93

9.2.1 Reducing the DLX/MIPS Subroutine Call Overhead by Adding Stacks 94
9.2.2 Reducing Gullwing’s Instruction Count with CompoundStack Opera-

tions . 96

ix

9.2.3 Reducing Gullwing’s CPI by Executing Multiple Instructions using
Generalized Instruction Folding . 97

A Gullwing Benchmarks Source 99
A.1 Flight Language Kernel .. . 99

A.1.1 Internal Variables and Memory Map 99
A.1.1.1 Counted Strings . 100

A.1.2 Utility Functions . 101
A.1.3 String Functions . 101
A.1.4 Input Functions . 102
A.1.5 Name Lookup . 103
A.1.6 Function Definition Functions .. . 104
A.1.7 Compilation Functions .106
A.1.8 Inline Compilation . 108
A.1.9 Main Loop . 108
A.1.10 Decimal to Binary Conversion .. . 109

A.2 Flight Language Extensions 109
A.2.1 Making the Flight Language More Tractable 110
A.2.2 Interactively Usable Opcodes .. . 112
A.2.3 Basic Compiling Functions .. 112
A.2.4 Terminal Control Characters .. . 113
A.2.5 Conditionals and Comparisons .. . 113
A.2.6 Code Memory Allocation . 115
A.2.7 String Copying and Printing .. 115
A.2.8 De-Allocating Functions .. 116
A.2.9 Unsigned Multiplication and Division 117
A.2.10 Binary to Decimal Conversion .. . 118
A.2.11 Simple Fibonacci Examples .. 119
A.2.12 Static Variables .120
A.2.13 Accumulator Generator .. 121
A.2.14 Fibonacci Generator .121
A.2.15 Caesar Cipher Generator .. 122
A.2.16 Higher-Order Function (Map) .. . 124

A.3 Virtual Machine .125
A.3.1 VM . 125
A.3.2 Metacompiler . 131
A.3.3 Self-hosted Kernel . 135
A.3.4 Flight Language Extensions .. 140

B Static and Dynamic Gullwing Code Analyses 141
B.1 Static Analyses .141

B.1.1 Memory Usage . 141
B.1.2 Range of Literals . 142
B.1.3 Range of Addresses . 142
B.1.4 Instructions per Instruction Word 143

x

B.1.5 Instruction Density .143
B.1.6 Compiled Instruction Counts .. . 144

B.2 Dynamic Analyses . 145
B.2.1 Overall Execution . 145
B.2.2 Executed Instruction Counts .. . 145
B.2.3 Average CPI . 147
B.2.4 Instruction Types . 147
B.2.5 Basic Block Length . 148
B.2.6 Data Stack Depth . 149
B.2.7 Return Stack Depth . 150

Bibliography 151

xi

xii

List of Tables

5.1 Comparison of Citations of Computer Architecture Texts(as of Fall 2004) . . . 38

6.1 Gullwing Flow Control Instructions 50
6.2 Gullwing Load and Store Instructions 50
6.3 Gullwing ALU Instructions 51
6.4 Gullwing Stack Manipulation Instructions 52
6.5 Gullwing No-Op and Undefined Instruction 52

7.1 Compilers Dynamic Instruction Mix 63
7.2 Interpreters Dynamic Instruction Mix 64
7.3 DLX CPI with Load and Branch Penalties 65
7.4 Gullwing CPI by Instruction Type 65
7.5 Gullwing Memory Accesses Per Cycle (Total) 66
7.6 DLX/MIPS Memory Accesses Per Cycle Caused by Loads and Stores 67
7.7 Triangular Iterative Code Comparison 71
7.8 Iterative Dynamic Instruction Mix 71
7.9 Triangular Recursive Code Comparison 73
7.10 Recursive Dynamic Instruction Mix 73
7.11 Triangular Tail-Recursive Code Comparison 75
7.12 Tail-Recursive Dynamic Instruction Mix 75
7.13 Add2 Code Comparison .76
7.14 Add2 Dynamic Instruction Mix 76
7.15 Add3 Dynamic Instruction Mix 77
7.16 Add3 Code Comparison .77
7.17 Add4 Dynamic Instruction Mix 78
7.18 Add4 Code Comparison .78

9.1 Synthesized Stack Operations on MIPS with Stacks 95
9.2 Recursive MIPS32 Instruction Distribution With and Without Stacks 95
9.3 Triangular Recursive MIPS32 Code Comparison With and Without Stacks . . . 95

B.1 Compiled Flight Code Memory Usage 141
B.2 Range of Literals by Absolute Value 142
B.3 Range of Addresses by Absolute Value 142
B.4 Instructions per Instruction Word 143
B.5 Instruction Density .. . 143

xiii

B.6 Compiled Instruction Counts 144
B.7 Overall Execution .. 145
B.8 Executed Instruction Counts 146
B.9 Average CPI . 147
B.10 Instruction Types .. . 147
B.11 Basic Block Length .. 148
B.12 Data Stack Depth .149
B.13 Return Stack Depth .. 150

xiv

List of Figures

2.1 Evaluation of Polish Notation expression/ + 5 5 2 8
2.2 Fig. 1 from Bauer and Samelson German Patent #1094019 9
2.3 Programming model for the Zuse Z4 11
2.4 KDF9 Q-Store Layout . 12
2.5 KDF9 Block Diagram . 13
2.6 B6900 Top-of-Stack and Stack Bounds Registers 15
2.7 B7700 Stack Buffer and Stack Memory Area 15
2.8 Comparison of B6700 and ICL 2900 stack mechanisms 16
2.9 HP3000 Stack Registers .. 17

3.1 NC4016 and RTX-2000 Block Diagrams 24
3.2 IGNITE I Block Diagram .25

4.1 First-Generation Stack Computer Block Diagram 34
4.2 General-Purpose Register Computer Block Diagram 34
4.3 Second-Generation Stack Computer Block Diagram 35

6.1 Gullwing Block-Level Datapath 47
6.2 Gullwing Instruction Shift Register Block Diagram 47
6.3 Gullwing Instruction Format 53

7.1 DLX Pipeline Block Diagram .. 79
7.2 Gullwing Pipeline Block Diagram 80
7.3 Gullwing Pipeline Operation 81
7.4 Gullwing Load/Stores Pipeline Diagram 81
7.5 Gullwing ISR Modified for Pipeline 82
7.6 Gullwing Instruction Fetch (with Overlap) Pipeline Diagram 82
7.7 Gullwing Instruction Fetch (without Overlap) PipelineDiagram 83
7.8 Gullwing Taken Jumps or Calls Pipeline Diagram 83

8.1 Gullwing High-Level Code with Unavailable Slots 85
8.2 Instruction Stack During Call and Return 86
8.3 Gullwing High-Level Code with Available Slots 86
8.4 Instruction Stack During >R and R> 87

9.1 MIPS Register File with Stacks 94

xv

A.1 Flight Language Kernel Memory Map 100
A.2 Counted String Format .. 100

xvi

List of Algorithms

1 Gullwing Synthesis of Subtraction and Bitwise OR 51
2 Gullwing Synthesis of Multiplication (4x4) 51
3 Gullwing Flow Control Instructions 54
4 Gullwing No-Op and Undefined Instructions 54
5 Gullwing ALU Instructions .. 55
6 Gullwing Load and Store Instructions 55
7 Gullwing Stack Instructions .. . 55
8 Gullwing ALU Instructions with Instruction Fetch Overlap. 57
9 Gullwing Stack Instructions with Instruction Fetch Overlap 57
10 Gullwing No-Op and Undefined Instructions with Instruction Fetch Overlap . . 57
11 Triangular Iterative C Source 71
12 Triangular Iterative MIPS32 Assembly 71
13 Triangular Iterative Gullwing Assembly 71
14 Triangular Recursive C Source 72
15 Triangular Recursive MIPS32 Assembly 73
16 Triangular Recursive Gullwing Assembly 73
17 Triangular Tail-Recursive C Source 74
18 Triangular Tail-Recursive MIPS32 Assembly 75
19 Triangular Tail-Recursive Gullwing Assembly 75
20 Add2 C Source . 76
21 Add2 MIPS32 Assembly . 76
22 Add2 Gullwing Assembly . 76
23 Add3 C Source . 77
24 Add3 MIPS32 Assembly . 77
25 Add3 Gullwing Assembly . 77
26 Add4 C Source . 78
27 Add4 MIPS32 Assembly . 78
28 Add4 Gullwing Assembly . 78
29 Alterations to Gullwing to Support an Instruction Stack 88
30 Triangular Recursive MIPS32 Assembly with Stacks Added 95
31 Gullwing Compound Stack Operations 96
32 Example Gullwing Instruction Sequence Using Generalized Folding 97

xvii

xviii

Chapter 1

Introduction

I first learnt about stack computers in 2000 while working at acomputer manufacturer where
co-workers introduced me to the Forth programming language, a stack-based programming
environment. Soon after, while looking for a suitable processor for a homebrew computer
system, I came across a mention of the MuP21 [MT95] in the Usenet Embedded Processor
and Microcontroller Primer and FAQ1:

The MuP21 was designed by Chuck Moore, the inventor of Forth.With the
MuP21, Forth can compile into machine code and still be Forth, because the ma-
chine code IS Forth. The MuP21 freaks out at 100 MIPS while consuming only 50
milliwatts. Not only that, the chip includes a video generator, has only about 7000
transistors (that’s right, 7000 and not 7,000,000), and costs about $20.

The assembler on this chip is a sort of dialect of Forth, as theCPU is modeled
after the Forth virtual machine. MuP21 is a MINIMAL Forth engine. [. . .] The
CPU programs the video generator and then just manipulates the video buffer. It
is composite video out, so it only needs one pin. MuP21 is onlya 40 pin chip.

I’d never heard of anything like it. It was smaller and faster, and its machine code was a
structured language! I was hooked. Understanding this typeof hardware and software be-
came a hobby that ultimately led me to pursue a University degree on the topic. However, I
couldn’t simply take a Computer Engineering degree since this kind of computer is virtually
non-existent in the mainstream literature and totally absent from the curriculum. Therefore, I
had to create one under the aegis of the Independent Studies (IS) program.

The IS program is a self-directed course of study guided and vetted by a Faculty Adviser
and composed of a combination of Independent Study Units andregular courses. After two
years of study (typically), a student petitions to enter Thesis Phase and if approved, spends a
year developing a thesis on a selected topic. A successfullycompleted thesis grants the degree
of Bachelor of Independent Studies (BIS). Overall, IS bearsmore resemblance to graduate
studies than undergraduate ones.

The structure of this thesis reflects the directions I have taken throughout the IS program.
I began with broad historical explorations of stack architecture and programming languages,
complemented by regular engineering courses on digital systems, computer architecture, and

1Copyright (c) 1997 by Russ Hersch, all rights reserved. http://www.faqs.org/faqs/microcontroller-faq/primer/

1

integrated circuits. These efforts eventually concentrated on defining, simulating, program-
ming, and partially implementing a particular stack computer design. In this thesis, I leave
aside the issues of programming language design and VLSI implementation to focus on the
architecture of the computer itself.

1.1 Research Goals

A stack computer performs its operations not upon a randomlyaccessible set of registers, but
upon a simpler, linear list of such. This list is conveniently viewed as a pushdown stack with
the visible registers at the top. Since virtually all arithmetic and logical operations are either
unary or binary, at a minimum the top two elements of a stack need to be accessible. The
operations implicitly access these locations for operandsand return values. The stack can be
used for evaluating expressions in the manner of Reverse Polish Notation and also for storing
a chain of activation records (stack frames) of nested subroutines.

The main problem in reasoning about stack computers is that those usually mentioned in the
computer architecture literature, the first generation, have been superseded. They were popular
due to their efficient use of hardware, their natural application towards algebraic computation,
and the ease with which they could be programmed. Although sophisticated, they were eventu-
ally flatly outperformed by the new VLSI microprocessors that came out of the Berkeley RISC
[PS81] and Stanford MIPS [HJP+82] projects. The first generation of stack computers can be
defined by its support for High-Level Language, mainly ALGOL. This required in-memory
stacks primarily used to allocate storage for nested procedures, and encouraged a large instruc-
tion set which attempted to match the semantics of ALGOL closely. The goal was to make
programming easier in the absence of good compilers.

The second generation of stack computers arose just as the first faded away. These comput-
ers had simple hardware, high code density, fast subroutinelinkage and interrupt response, but
garnered little attention since they were aimed at embeddedsystems instead of general-purpose
computing. This separated the second generation from the mainstream of processor design and
caused it to become confused with the first generation, further discouraging work. The second
generation of stack computers can be defined by its support for the Forth programming lan-
guage. It defines two stacks, Data and Return, which are separate from main memory and not
randomly addressable. The Data Stack is used to evaluate expressions and pass values between
procedures in a functional manner. The Return Stack holds the return addresses of subroutines
and can also act as temporary storage. The small instructionset is mostly composed of Forth
primitives, which are simple stack manipulations, loads and stores, and basic arithmetic and
logical functions similar to those found in conventional register-based computers.

The purpose of this thesis is to argue for a distinction of stack computers into first and
second generations. I do this by recapitulating the evolution of stack computers, revisiting
old arguments against them, and comparing the design of a model second-generation stack
computer to a modern computer architecture. Given this refreshed view, I hope to fill the
gap in the literature about stack computers and uncover someinteresting avenues in computer
architecture.

2

1.2 Thesis Outline

This thesis is divided into three major parts: a Historical Review, Qualitative Arguments, and
Quantitative Arguments. The first and third may be read independently. However, the second
part depends on the background provided by the first and is supported by data from the third.

1.2.1 Part I: Historical Review

Current computer literature only briefly touches upon stackarchitecture, always from the first
generation, and usually as an introductory contrast to register-based computers. Chapter 2
provides a more detailed summary of the history of the peopleand machines that make up
the first generation of stack computers, starting with theirconceptual origins and ending with
the main reasons for their downfall. It uncovers two different fundamental approaches to the
design of stack computers: support for the ALGOL programming language, and composition of
functions. This difference turns out to be the main criterion for distinguishing first-generation
stack computers from second-generation ones.

Chapter 3 contains an overview of the second generation of stack computers. It focuses
on the latest wave of such machines which originated with thework of Charles H. Moore and
were extensively studied by Philip J. Koopman. It gathers together the scattered publications
on the subject and also much information that was never formally published.

1.2.2 Part II: Qualitative Arguments

Before any comparison can be made between second-generation stack computers and current
register-based computers, the confusion about stack computers in the mainstream literature
must first be addressed. Chapter 4 proposes a set of three criteria to divide stack computers
into a first and a second generation. They concern the location of the stacks, their purpose, and
the operations done upon them. Stacks in a second-generation computer resemble registers
used for calculations and parameter-passing, while the stacks of a first-generation machine are
effectively call stacks holding procedure activation records.

With these criteria and the historical data in mind, Chapter5 addresses the arguments
against stack architectures cited by Hennessy & Patterson.These arguments are found to rely
on outdated assumptions about compiler and hardware technology, and have also been dis-
torted through secondhand citations. The original arguments are cited, and found to be much
less critical of stack architectures than suggested by Hennessy & Patterson.

1.2.3 Part III: Quantitative Arguments

Given that past arguments have been found lacking, the comparison between second-generation
stack computers and current register-based computers needs to be revisited. Chapter 6 de-
scribes in detail the design of a small, modern stack computer architecture, named ’Gullwing’,
along with a simple optimization to its instruction fetch mechanism which makes practical the
use of a single memory bus for both instructions and data.

Chapter 7 compares Gullwing to the DLX and MIPS processors used as demonstrators
by Hennessy & Patterson. The processors are compared with aggregate benchmarks and with

3

low-level analyses of how they execute iterative, recursive, tail-recursive, and nested subroutine
code. The issue of pipelining Gullwing is explored as a transformation of the DLX pipeline.
Gullwing is found to have a definite advantage at subroutine calls and memory bandwidth, but
is unfortunately architecturally equivalent to a DLX processor without load or branch delay
slots, with the same penalty to performance.

Chapter 8 addresses Gullwing’s inefficient usage of memory for holding compiled code by
adding a third stack to temporarily hold instructions during subroutine calls. This new archi-
tectural feature will increase the density of code to the maximum possible value and accelerate
returns from subroutines.

Finally, Section 9.2 outlines the addition of stacks to a MIPS processor, without altering the
pipeline or instruction set, in order to give it the efficientsubroutine call mechanism of a stack
computer. This section also introduces the addition of two forms of parallelism to Gullwing:
one which reduces its instruction count with compound stackoperations, and the other which
reduces its CPI by overlapping the execution of instructions.

Appendix A provides the source to the Flight language kerneland the software used to
benchmark Gullwing. Appendix B contains the tabulated raw data from the analyses of the
dynamic and static properties of Gullwing machine code.

4

Part I

Historical Review

5

Chapter 2

History of the First Generation of Stack
Computers

I present here the first generation of stack computers in the context of the pioneers of the field
and of the machines that followed their insights. I discuss the organization and design goals of
these computers, their shortcomings, and ultimately theirreplacement by RISC designs.

2.1 Lukasiewicz and the First Generation

The idea of using stacks for computation seems to have occurred independently, in slightly
different forms, to several people worldwide within an interval of about a decade. It is difficult
to tell if they were aware of each other’s work at the time. Nonetheless, there seems to be a
chronological order to the discoveries.

2.1.1 Poland: Jan Lukasiewicz (1878-1956)

In 1929, while a professor at Warsaw University, Lukasiewicz wroteElements of Mathematical
Logic [Luk29]. In it he introduced a parenthesis-free notation for arithmetic and logic which
eventually became known as Polish Notation or Prefix Notation. Its main feature is that it
makes the order of operations explicit, contrary to the usual algebraic notation (correspondingly
called Infix Notation) which depends on a knowledge of operator precedence and the use of
parentheses to override it where necessary.

For example, the expression(5 + 5)/2 requires the use of parentheses to specify that the
result should be5 and not7.5 due to the higher precedence of the division operator. The equiv-
alent Prefix expression/ + 5 5 2 is unambiguous and can be evaluated left-to-right by leaving
the application of an operator pending until enough operands are available. The alternative in-
terpretation of the infix expression would be written in prefix notation as+ / 5 2 5 or + 5 / 5 2.
Figure 2.1 shows how the expression is evaluated one symbol at a time. It is easy to see how the
operators and operands could each reside in separate stacksuntil they are respectively executed
or consumed.

7

/
/ +

/ + 5
/ + 5 5
/ 10
/ 10 2

5

Figure 2.1: Evaluation of Polish Notation expression/ + 5 5 2

2.1.2 Germany: Konrad Zuse (1910 - 1995)

The case of Konrad Zuse is unusual. He did his work privately,outside of academia or industry,
and it was destroyed multiple times during the World War II air raids on Berlin. He also did not
base his work on Lukasiewicz, but appeared to have come to theuse of a stack out of simple
engineering need. He constructed a series of computers of increasing capability, arriving at
the stack-based Z4 in 1945, predating all other stack computers by at least 15 years [BFPB97,
10.3]. Unfortunately, except for the various machines produced up to 1969 by the Zuse KG
company, there are no architectural descendants of the Z4 inGermany or abroad.

2.1.3 Germany: Friedrich Ludwig Bauer (1924-)

The earliest known mechanical realization of Lukasiewicz’s idea was Bauer’s STANISLAUS
relay calculator [Bau60], first conceived in 1950/1951. It emerged out of the desire to mechan-
ically test the well-formedness of formulae. The publication of this achievement was delayed
by the need for secrecy while patents for the evaluation method were filed in Germany, the
United States, France, the United Kingdom, and Sweden [BSc][BSd][BSa][BSb]. Figure 2.2
shows Fig. 1 from the original German patent, clearly showing an ’OperationsKeller’ (Opera-
tions Cellar) and a ’ZahlKeller’ (Number Cellar) used to evaluate Polish Notation expressions.
The method is also discussed in a paper published after the patents were filed in 1957/1958
[SB60].

This ’cellar principle’, now referred to as the stack principle, made its way into a proposal
for an International Algebraic Language [Car58, BBRS58] asthe natural method for the block
structure of storage allocation for subroutines [Bau90]. This language evolved into ALGOL
60 [BBG+60]. Its use of a dynamic stack to support subroutine nestingand recursion has since
become the dominant organizing principle of programming languages. It is important to note
that the support of this structure is one of the hallmarks of first-generation stack computers
(Figure 4.1).

In a recent talk [Bau02, BD02], Bauer mentioned some other appearances of the stack
principle:

Hardware cellars, stacks, and pushdown stores have been discussed elsewhere,
possibly as early as 1947 by Alan Turing, certainly in 1949 byHarry D. Huskey

8

in connection with the ZEPHYR (SWAC) computer and in 1956 by Willem L.
van der Poel in connection with the design of the MINIMA computer; in all cases
presumably for the treatment of return jumps in subroutines. [. . .]

Figure 2.2: Fig. 1 from Bauer and Samelson German Patent #1094019

2.1.4 Australia: Charles Leonard Hamblin (1922-1985)

Facing the tedium of the programming systems of the time, Hamblin independently discovered
the importance of Lukasiewicz’s work for expressing formulae but took it into a slightly differ-
ent direction. Also, because of the secrecy during the pre-filing period of Bauer and Samelson’s
patents, he could not have known of their work.

The key change Hamblin made was reversing the order of the notation, placing the operands
before the operator. This ’reverse Polish’ notation kept the operators in the same order as in the
original infix notation and removed the need for delaying theapplication of an operator since it
would arrive only after its operands. This made straightforward the translation of an expression

9

into a sequence of machine instructions. For example, the expression(5 + 5)/2 is expressed
unambiguously as5 5 + 2 /, while the alternative interpretations (assuming no parentheses)
would be written as5 2 / 5 + or 5 5 2 / +. Furthermore, only a single stack is required since the
operators are never waiting for their operands.

Hamblin expanded upon this insight in a pair of 1957 papers [Ham57a][Ham57b]1(reprinted
[Ham85]). In summary:

It is now possible to visualize the general shape a machine designed to use such
code might take. It would have a ’running accumulator’ and ’nesting register’ as
described, and a number-store arranged on something like the pattern indicated,
[. . .]

The running accumulator is a stack and is equivalent to Bauer’s Number Cellar. The nesting
register is of the same structure but holds the return addresses of subroutines. This separation
of evaluation and flow-control into two stacks, which are also separate from main memory, is
the main architectural feature of second-generation stackcomputers (Figure 4.3).

Some employees of the English Electric Co. were present whenHamblin delivered his first
paper [All85][Dun77]. They integrated his ideas into theirnext computer, the KDF9.

2.1.5 USA: Robert Stanley Barton

Just as the Bauer and Samelson patents were being granted, Barton also independently came
to the same conclusions about the application of Lukasiewicz’s work [Bul77]. In 1959, he
proposed the design of a stack-based computer to be programmed entirely in ALGOL [Bar61a]
(reprinted [Bar87]) [Bar61b][Bar61c]. The proposal took form as the Burroughs B5000, which
became the archetypal first-generation stack computer design.

Barton acknowledged the work of Bauer and Samelson, but seems to have not known about
Hamblin’s work at the time. This, and the focus on directly supporting ALGOL, might explain
the use of a single stack (per process) in the B5000.

1This is a slightly abridged form of the first paper.

10

2.2 The First Generation of Stack Computers

There were many more machines of this type than those I’ve enumerated here. I’ve mentioned
the ones that are directly linked to the people of the previous section or which have been notable
in industry. A much larger list can be found in Koopman’s book[Koo89, App.A].

2.2.1 Zuse Z4

The Z4 is too simple to fit into either the first or second generation of stack computers, not
being a stored-program machine, but it is the earliest one known and thus deserves mention.
Originally built in 1945, it was damaged during World War II,and later rebuilt in 1950. It
currently resides in the Deutches Museum in Munich, Germany.

Like many of Zuse’s computers, the Z4 was designed to performengineering calculations.
Its program was read from a punched plastic tape2, and it included a second tape reader as a
form of subroutine call. Its ingenious mechanical main memory held 64 32-bit floating-point
numbers which could be loaded into a stack of 2 elements, operated upon, and then stored back.
It supported a full complement of basic arithmetic operations, including square root and some
built-in constants such asπ. Its 8-bit instruction format was zero-operand, with one-operand
loads and stores for direct addressing of memory. No addresscalculations or access to the
stack pointer were possible. It supported conditional stop, skip, and call instructions. Figure
2.3 shows the programming model for the Z4. It is a simplified reproduction from Blaauw and
Brooks’ book [BFPB97, fig. 10-29].

Mem
Addr

Memory Data

Memory

Stack Level 1
Stack Level 0

ALU

Instr

Op

Punched Tape

Figure 2.3: Programming model for the Zuse Z4

2used movie film, in fact!

11

2.2.2 English Electric Co. KDF93

The design of the KDF9 (Figure 2.5) [Eng63, fig. 2] was inspired by Hamblin’s first paper on
stack-based computing [Ham57a] and thus uses a pair of stacks for its operation. The Nesting
Store was a 19-deep hardware stack, with the top two elementsvisible to the Arithmetic Unit,
upon which expressions were evaluated. The Sub-Routine Jump Nesting Store was similar,
but only 16-deep with only the top-most element visible. Neither of these stacks extended into
main memory. All storage locations were 48 bits wide.

A third set of 16 stores, named ’Q -Stores’ (Figure 2.4) [KDF61, pg. 9], were used for
random access storage, address modification, loop counting, and I/O operations. The first store,
Q0, was a read-only zero register. The remainder were eitherused as single 48-bit registers,
or triads of 16-bit registers, with direct or accumulative storage. The 16-bit sub-registers could
also be used respectively as modifier, increment, and counter. An access to main memory
could have its address augmented by the modifier. Afterwards, the modifier could then be
incremented by the increment and the counter decremented byone. With a jump instruction to
test the counter, this made for efficient loops and array processing. The counter of a Q-Store
could also hold the amount of positive or negative shift for shift instructions. Finally, a Q-Store
could hold a device number and the start and end addresses of an area in memory in preparation
for an automated I/O operation.

The English Electric Co. went through a series of acquisitions and mergers, eventually
forming International Computers Ltd. in 1968 [Lav80]. However, by then their focus seemed
to have changed to competing with Burroughs’ B5000 series and IBM’s System/360 [Dun77]
and so the dual-stack approach, and the KDF9, was dropped entirely.

The KDF9 is an oddity. Historically, it is a first-generationstack computer. However, based
on the distinguishing criteria for first and second-generation stack computers (Chapter 4), it
falls squarely into the second. Had it not been discontinued, the first and second generations
might have existed in parallel.

Figure 2.4: KDF9 Q-Store Layout

3The variations ’KDF.9’ and ’KDF-9’ are also used.

12

Figure 2.5: KDF9 Block Diagram

13

The Basic KDF 9 System

I INPUT/OUTPUT I
P.Ll>z:a P.Anm
'2!?3 'lL"E

EUEaS PU?ICHES

~ . ..

!!9.Gm:'l'IC ai- LDiB ansmB '!APE PRDi~El!S ,o,t.r?;i3!'2::2
ll'!IT5

• ~ • ~ ..

. •

.. OO!raW'L MAIN STORE ; , WI'l'

~' • • • • • • ..
' .. ~ •

I , •
UJ BS Q • ' , . .. r

: & • ••••••••••• SJ1lS

~ l!Ati AO AIRI'll!m?1C UBU

> ~s ?lS llilSTDrC- S'i'OB8

Q Q Sin>RZ

•• • .. lDDSZSS29 sncs S1JBDJl1,!J1E ,nJIG> JIES1l'IXC S'rollB

Fl.GUP'.E 2

2.2.3 Burroughs B5000 and later models

The B5000 spawned an entire series of stack computers, all aimed at the direct and efficient
execution of the ALGOL language. They were complex multiprocessing systems with tagged
memory and descriptors for primitive data types and automatic management of subroutine
parameters. I will concentrate here on the design and use of the single, in-memory stack that
governed the execution of a program. This feature is essentially unchanged across the entire
series.

Figure 2.6 shows the implementation of the stack in the B6900[Bur81, Sec.3]. The stack
memory area is delimited by the contents of the Bottom Of Stack (BOS) and Limit Of Stack
(LOS) registers. The current subroutine area is indicated by the F register which points to
a Mark Stack Control Word (MSCW). This word contains the context information necessary
to return to the subroutine’s caller. The topmost stack element in use is pointed to by the S
register.

The A and B registers are a working cache for the top of the stack and are connected to
the ALU. They are extended by the X and Y registers for double-precision calculations. Their
contents are loaded and unloaded as required by each operation in progress and so their entire
operation is transparent to the program. They are not part ofthe stack proper since they are
flushed whenever the top of the stack is altered by some operation, such as a subroutine call,
and so cannot be used to pass parameters.

The B7700 added a 32-entry circular stack buffer between main memory and the A and B
registers (Figure 2.7) [Bur73, Sec.2]. This is a genuine buffer that is transparent to the program,
and is only flushed if the processor registers (including theS, F, LOSR, and BOSR registers)
are altered with a SPRR (Set Processor Register) or a MVST (Move To Stack) operation, or
in the case of an atomic memory exchange with the top of the stack using RDLK (Read With
Lock).

Both computation and subroutine linkage were done on the same stack in a manner specif-
ically designed to support the structure of the ALGOL programming language. When a sub-
routine or nested block of code was to be entered, a MSCW was placed on the stack, followed
by the parameters to the subroutine, followed by a Return Control Word (RCW) which saved
the condition flags, amongst other things. The local variables and temporary values were then
allocated above all this. Only at this point could the Enter (ENTR) operator be executed to
enter the subroutine.

In 1986, the Burroughs Corporation merged with the Sperry Corporation into the Unisys
Corporation [Ros87]. The B5000 series of computers continues in the company’s ClearPath
line of mainframes.

14

Figure 2.6: B6900 Top-of-Stack and Stack Bounds Registers

Figure 2.7: B7700 Stack Buffer and Stack Memory Area

15

2.2.4 International Computers Ltd. ICL2900 series

The ICL2900 series, introduced in 1974, was fairly similar to the Burroughs computers save for
a lack of tagged memory and a different approach to the use of the stack. Its design is derived
from the Manchester MU5 [IC78]. The ICL computers were accumulator-based with a stack
that was explicitly referenced by the programmer. Figure 2.8 shows a comparison between the
stacks of the B6700 and the ICL2900 [Dor75a]. The top three stack elements were buffered in
registers [Dor75b, Chu75].

Figure 2.8: Comparison of B6700 and ICL 2900 stack mechanisms

16

2.2.5 Hewlett-Packard HP3000

The HP 3000 series was originally introduced in 1972. It is similar to the Burroughs computers,
but has been simplified to support real-time response [McK80, Sto80]. Figure 2.9 shows the
structure of its stack. The main difference lies in the use ofthe four-element circular stack
buffer. Unlike the B7700, the current top two elements of thestack buffer feed the ALU
directly and the S register points to the current head of the buffer instead of main memory.
Like the Burroughs computers, the buffer is managed automatically and flushed on subroutine
calls [Bla77]. In later models (Series 68), the stack bufferwas expanded to eight elements
[Hew84, pg.86]. This series of computers was being sold by Hewlett-Packard, under the name
’e3000’, up until November 2001.

Figure 2.9: HP3000 Stack Registers

17

2.3 Shortcomings and Disappearance of the First Genera-
tion

During their heyday of about 20 years, stack computers were quite possibly the most sophis-
ticated general-purpose computers available. But in retrospect, they had several glaring short-
comings which were endemic in machines of the time.

2.3.1 Explicit High-Level Language Support

The idea of directly supporting a high-level language in hardware seems downright baroque
today. In hindsight however, there were some constraints then that have since vanished:

• Compilers were primitive, and took up a lot of the available memory.

• The machines were slow, leading to long compilation times, only to end up with sub-
optimal code!

• Since code was written mostly by hand, and programs were getting larger and harder to
write (including compilers), supporting a high-level language helped the programmer.

These led to two major features: hardware support for the execution models of structured
languages such as ALGOL, and the integration of complex functions in the instruction set,
implemented as microcode, making it easier to program the computer directly.

These features became weaknesses over time. A computer designed to execute one lan-
guage well would perform poorly with another [Org73, ch.8].As compilers improved they
generated simpler subroutine linkages that did not match the full-featured built-in ones [HP02,
2.14]. The compilers also could not use the complex instructions provided. Finally, the mi-
crocode for these computers had itself grown to the point of unmanageability [Pat85] (reprinted
[Pat86, FL86]).

Eventually, compilers became able to effectively reduce high-level languages features into
series of simple operations, and the RISC computers that followed were designed in that light.

2.3.2 The Rise of RISC

The first generation of stack computers began to fade away in the early 1980’s with the ad-
vent of the Reduced Instruction Set Computer (RISC) designs. The combination of advances
in compilers, hardware speed, and integration forced a revision of the approaches used to im-
prove the performance and reduce the costs of the hardware and the software. The combined
end-results flatly outperformed the first generation of stack computers while also efficiently
supporting high-level languages.

18

• Ditzel and Patterson criticized the original arguments forHigh-Level Language Com-
puter Systems (HLLCS) [DP80] (reprinted [DP86, FL86], and [DP98b] with updated
comments [DP98a]), and conclude that “. . . almost any system can be a HLLCS through
the appropriate software. . . ”. They also wrote an overview of the arguments for reduced
instruction sets [PD80].

• Patterson later wrote an extremely broad article on the features and successes of the early
RISC experiments, including software measurements and compiler techniques [Pat85]
(reprinted [Pat86, FL86]), and advocates taking implementation as a factor in computer
architecture.

• At Berkeley, Patterson and Sequin headed the RISC I and RISC II projects as one ap-
proach to RISC designs [PS81] (reprinted [PS98a] with updated comments [PS98b]).
The fine details of their implementation were presented in the PhD thesis of one of their
students, Manolis Katevenis [Kat85].

• One of the premises of RISC design is that the hardware and thesoftware must be con-
sidered together. Hennessy and Jouppi measured the low-level features of software and
proposed some architectural guidelines to support them without the pitfalls of past high-
level language support. These included “. . .the use load/store architecture and the ab-
sence of condition codes. . . ”. [HJB+82]. These data guided the Stanford MIPS project
[HJP+82].

• The major technological change of the time was the emergenceof Very Large Scale In-
tegrated (VLSI) circuits which made possible the implementation of an entire processor
on a single chip. The various approaches to integrated architecture are discussed by
Hennessy [Hen84] (reprinted [Hen86, FL86]).

2.3.3 Excessive Memory Traffic

Without an optimizing compiler, a requirement for the explicit support of a structured, high-
level language was the use of an execution stack in main memory instead of registers in the
processor. This increased traffic to main memory, which was much slower, and further drove
the development of complex microcoded instructions to avoid accessing it.

For example, passing parameters to a subroutine required copying values from a location
in the caller’s stack frame to one in the callee’s frame, necessitating a memory read and a write
for each parameter. Local variables and temporary values were also on the stack since there
was no location in the processor to store them, further increasing memory traffic. In the case
of the Burroughs computers, the use of a single stack meant that subroutine parameters were
buried under the return address and other subroutine linkage information. This meant that they
could not be used directly for computation without explicitloads into the top of the stack.

In later stack computers, some registers were used to bufferthe top of the stack, but their
small number (four or less) limited their usefulness to holding intermediate results of algebraic
expressions. The subroutine linkage conventions requiredthe registers to be flushed whenever
a subroutine was called and so they could not be used to pass parameters. The Burroughs

19

B7700 was likely the only first-generation stack computer toaddress this problem by including
a genuine 32-entry buffer (Figure 2.7) for the top of the stack [Bur73, pg.3-36] .

2.3.4 The Need for Index Registers

Stack computers execute iterative code poorly compared to general-purpose register comput-
ers. Random-access registers can hold the loop indices and intermediate results for immediate
access. On the other hand, a stack computer must temporarilymove values off the top of the
stack to access any index or result that isn’t the most immediate. It is the source of enormous
overhead whether or not this generates memory traffic and special-purpose index registers have
to be used to reduce it. All first-generation stack computersincluded some form of index reg-
ister:

• The KDF9 was the first to do so by including the Q-Stores [Hal62] (Figure 2.4). They
were abundant (16) and could be also used as general-purposeregisters.

• The B5000 series encoded loop counts in special instructions, such as BEGIN LOOP
(BLP), END LOOP (ELP), and JUMP OUT LOOP CONDITIONAL (JLC), which re-
used some internal registers to hold addresses while in Character Mode4 [Bur63] [Bur67].

• The B7700 added a vector mode of operations in which the indexfor one loop and the
addresses and increments for up to three arrays were stored in separate internal registers
so as to free the stack for computations [Bur73, pg.3-112].

• One of the three top-of-stack registers of the ICL 2900 couldbe used as an index register
[Dor75a].

• The HP 3000 series had a single index register (X) to support loops [Hew84].

4Character Mode processed 6-bit Binary-Coded Decimal numbers, while Word Mode processed binary 48-bit
numbers.

20

Chapter 3

History of the Second Generation of Stack
Computers

In this chapter, I present the second generation of stack computers in the context of the pioneers
of the field and of the machines that followed their insights.At the same time that the first
generation of stack computers was fading away in the light ofRISC, the second generation
began to emerge and found a niche in embedded control systemsinstead of general-purpose
computing.

3.1 Charles H. Moore and the Second Generation

The latest wave of second-generation stack computers was almost entirely initiated by Charles
H. Moore and documented by Philip J. Koopman, Jr., with some additional unpublished mate-
rial made available online by Jeff Fox [Fox04].

3.1.1 Charles Havice (Chuck) Moore II

Chuck Moore studied physics at MIT (BS, 1960) and mathematics at Princeton. He became a
freelance programmer during the 1960s and the software toolkit he created for himself gradu-
ally evolved into the Forth programming language [ML70]1. Along with Elizabeth Rather and
Ned Conklin, he co-founded Forth Inc. in 1973 [RCM93] [RCM96]. In 1981, Moore began
to pursue hardware implementations of the Forth virtual machine. This work was the basis for
the second generation of stack computers and continues to this day.

3.1.1.1 The Forth Programming Language Basis of Second-Generation Stack Comput-
ers

Much as stack computers from the first generation were based on ALGOL, those from the
second generation are derived from the Forth programming language. Surprisingly, there seems
to be no historical connection at all between the design of Forth and the early work of Charles
Hamblin (Section 2.1.4) or the design of the KDF9 computer (Section 2.2.2). However, the

1Online as of March 2007 at http://www.ultratechnology.com/4th_1970.pdf and /4th_1970.html

21

Burroughs B5500 computer was the influence for the use of a stack for expression evaluation
[Moo91]. The best introduction to Forth and the methodologies it favours are a pair of books
by Leo Brodie [BI86] [Bro84].

A Forth system is divided into two interpreters. The outer interpreter receives source input
and looks up each word in a dictionary. If found, it calls the inner interpreter to process the
word’s definition. In the most basic case a word definition is aseries of addresses of other
words, themselves defined in the same manner, ending with primitives which are written in
machine code2. The inner interpreter is a small virtual machine which walks through these
definitions and executes the primitives it encounters. The inner interpreter keeps track of the
nesting of these definitions on a stack in memory, commonly referred to as the Return Stack.

The Forth primitives do their operations on another such stack, the Data Stack, where they
take their arguments and place their results. The primitives are thus simple function applica-
tions which can be composed by executing them in sequence. Higher-level words are functional
compositions of these primitives. These new words interactwith the stack and compose in the
same manner as the primitives.

A second-generation stack computer is basically a physicalrealization of the inner inter-
preter, the Forth primitives, and the stacks. The primitives become the instruction set which
operates on a hardware Data Stack. The inner interpreter reduces to simple call and return
instructions which use a Return Stack to store the return addresses of subroutines.

3.1.2 Philip J. Koopman, Jr.

From 1986 to about 1995, Philip J. Koopman, Jr. did the most well-know applied and theo-
retical research on stack computers while at WISC Technologies, Harris Semiconductor (now
Intersil), the United Technologies Research Centre, and Carnegie Mellon University (where
he is now part of the faculty). His book on stack computers is still the single best reference
on the subject [Koo89]. His paper on modern stack computer architecture [Koo90] contains
the essential insights and comparisons to the CISC (ComplexInstruction Set Computer) and
RISC (Reduced Instruction Set Computer) designs of the time. He also did the initial work on
efficiently compiling the C language to such machines [Koo94]. He touches upon the problem
of pipelining a stack computer in a set of slides [Koo91]. Finally, he co-authored some com-
parative performance studies [KKC92b] [KKC92a]. Althoughhe has left stack computers as a
research field, his academic work remains the most visible one known.

2This is known as ’indirect-threaded code’. There exists also direct-threaded, string-threaded, token-threaded,
and subroutine-threaded versions, each with different size/speed trade-offs. Second-generation stack computers
are subroutine-threaded systems.

22

3.2 The Second Generation of Stack Computers

I’m concentrating here on the computers primarily designedby Chuck Moore. There are many
more machines than the ones listed here (see Koopman’s book [Koo89, App.A]), but Moore’s
work was by far the most ground-breaking and influential. Much less was published about his
machines than those of the first generation. Therefore, the descriptions here are mostly based
on information found in Koopman’s book, reference manuals,and unpublished documentation.

3.2.1 NOVIX NC4016

Formed in 1983, NOVIX produced the first prototypes of the NC4016 (initially called the
NC4000) in 1985. The NC4016 was a 16-bit processor, designedby Chuck Moore, which ran
the Forth programming language natively. It was a remarkably small device implemented in
about 4000 gates, amounting to about 16000 transistors [Mur86] [Koo89, 4.4]. Figure 3.1a
shows a block diagram [Koo89, fig.4.6].

Since the NC4016 was a hardware realization of the Forth programming language, it sup-
ported an expression evaluation stack and a subroutine linkage stack both separate from main
memory and accessed via separate external buses. It also used an unencoded instruction for-
mat, similar to microcode, which allowed simultaneous control of the ALU, the stacks, and the
memory. A clever compiler could combine two to five primitiveForth operations into a single
instruction. In ideal conditions, the NC4016 could manipulate both stacks, fetch from main
memory, execute an ALU operation, and perform a subroutine return all in the same cycle.

The NC4016 led to the NC6016, which was licenced to Harris Semiconductors in 1987 and
renamed the RTX-2000 [RCM96]. NOVIX ceased operations by 1989.

3.2.2 Harris3 RTX-2000

The RTX-2000 is derived from the NC4016. The the main changesinclude the addition of
byte-swapped memory access, some counter/timers, an interrupt controller, and a hardware
16x16 multiplier. The stacks are now on-chip [Koo89, 4.5] and can be subdivided into smaller
stacks to support fast task switching. The RTX-2000 has mainly seen application in aerospace
systems. Versions of the processor manufactured in radiation-resistant (’rad-hard’) processes
[Int00] have flown (and are still flying) on several NASA missions [Fre98] [Fre01] [Ras03].
Figure 3.1b shows a block diagram [Koo89, fig.4.8].

3.2.3 Sh-BOOM (Patriot Scientific IGNITE I)

In 1988, Russell Fish proposed a new low-cost microprocessor targeted at embedded systems,
the Sh-BOOM, which Chuck Moore designed. It contained a 32-bit dual-stack microprocessor
which shared the single DRAM memory bus with a smaller dedicated processor for deter-
ministic transfers to peripherals and for dynamic memory refresh. The stacks, for expression
evaluation and subroutine linkage, were on-chip, about 16 cells deep each, and would spill/fill

3Now Intersil.

23

to/from memory as required. The implementation used about 9000 gates. Figure 3.2 shows a
block diagram of the main processor [Sha02, fig.1].

Contrary to the NC4016 or the RTX-2000 the Sh-BOOM did not usean unencoded instruc-
tion format, but packed four 8-bit, Forth-like instructions into each memory word. This formed
a simple instruction cache that allowed instructions to be executed while the next memory fetch
was in progress. This also allowed very small loops to execute from within the cache without
requiring an instruction fetch. Another interesting feature was the use of conditional SKIP
instructions which, if the condition was met, would skip over the remainder of the instructions
in the memory word. Conditional jumps and calls were implemented this way [GWS91].

The Sh-BOOM broke away from a pure stack architecture by including 16 general-purpose
registers (g0-g15), and by making most of the on-chip returnstack addressable as registers (r0,
r1, etc. . .). The general-purpose registers were used for temporary storage and for I/O opera-
tions, much like the KDF9. To support the stack frames of ALGOL-like languages, instead of
simply pushing values on the return stack, a number of empty locations could be allocated in
one step and then later filled from the general-purpose registers.

The Sh-BOOM design is currently being marketed by Patriot Scientific4 as the IGNITE I
[Sha02] (previously PSC1000 [Sha99]) processor core, targeted at embedded Java applications.
It is the most sophisticated second-generation stack computer currently available.

(a) NC4016 (b) RTX-2000

Figure 3.1: NC4016 and RTX-2000 Block Diagrams

4http://www.ptsc.com/

24

Figure 3.2: IGNITE I Block Diagram

3.2.4 MuP21

First published in 1995 [MT95], the MuP21 was the first of a family of chips dubbed Minimal
Instruction Set Computers (MISC). Like the Sh-BOOM, it useda packed instruction format
which held four 5-bit instructions in a 20-bit memory word. The internal stacks and ALU were
21-bits wide to support arithmetic carry. The data stack wasonly six cells deep, and the return
stack was a mere 4 cells deep. An address register (A) was added for temporary storage and
for memory accesses.

Like the Sh-Boom, the MuP21 also contained a small auxiliaryprocessor which had pri-
ority access to the memory bus. However, it was a video processor which executed its own
instruction set, also 5-bits wide, which was tailored for creating a 16-colour NTSC signal at an
output pin. A frame of video was described by a block of these instructions which could be
manipulated by the main processor.

Amazingly, the entire implementation used only 7000transistors in a 1.2u process, had a
typical speed of 80 MIPS, and dissipated only 50 mW. There arehints that the design was
fully asynchronous. The MuP21 was an influential design. Itssimplicity made it an ideal
choice for undergraduate and hobbyist projects, usually asFPGA implementations (for exam-
ple: [HH00]).

25

3.2.5 F21

Jeff Fox had formed UltraTechnology in 1990 in Berkeley, to develop a custom computer in
collaboration with Chuck Moore. The result was the F21 microprocessor [Fox98], which was
an extension of the MuP21. The instruction set added post-incrementing loads and stores from
the address register and the top of the return stack, and someextra arithmetic operations. The
stacks were expanded to about 17 cells each. Like the MuP21, the memory interface was
20-bits wide and values were stored internally as 21 bits.

Like the MuP21, the F21 contained a video coprocessor, and added similar coprocessors
for analog I/O and serial networks. Some common routines were included in on-chip ROM.

In a 0.8u process, the F21 was implemented in about 15,000 transistors, and had a typical
execution rate of 100 MIPS (peaking internally at 500 MIPS),depending on memory access
time. Ultratechnology ceased to exist in 2002 with nothing formally published about the design
and only some prototype chips made. The website for the company5 contains some fairly
detailed documentation. For a reconstruction of what the block-level design might have been
like, see Figure 6.1.

3.2.6 c18

Around 2001, Moore took the F21 design in a new direction and produced the c18 [Moo01b,
Moo01a]. Architecturally, it is virtually identical to theF21, but adds a second address register
for on-chip communication. Its width was also reduced to 18 bits to match the fast cache
memory chips available at the time. This leaves room to pack only 3 instructions per memory
word.

The coprocessors were eliminated and replaced by a watchdogtimer. There is no external
memory bus. External memory must be accessed via the parallel I/O pins, and programs must
be loaded into a few hundred words of on-chip RAM to be executed.

The c18 was simulated in a modern 1.8V 0.18u process. It had a predicted *sustained*
execution rate of 2400 MIPS, while dissipating about 20 mW. It was an aggressive, fully asyn-
chronous design.

The c18 was targeted at multiprocessing. A 5x5 array of c18’s, connected by horizontal
and vertical buses, would fit in 7mm^sq. This eventually became realized as the SEAforth-24
multiprocessor currently entering production at Intellasys6 (Intelligent Array Systems) .

3.3 Recent Research

Most of the research in the last decade has been outside of academia, and/or of little visibility
due to the mistaken lumping of these second-generation designs with the previous generation.
This section will overview the most salient academic, commercial, and amateur research on
the subject.

• Between 1994 and 2004, Christopher Bailey co-authored a number of papers on vari-
ous enhancements to stack computers for High-Level Language support, interrupt per-

5As of March 2007: http://www.ultratechnology.com/f21.html
6http://intellasys.net/

26

formance, and instruction-level parallelism [Bai94] [BS94] [Bai00, DBL00] [Bai04]
[SB04]. His 1996 PhD thesis presented an improvement to stack spill/fill algorithms
so as to further reduce memory traffic [Bai96].

• During his Master’s studies at the University of Alberta, Robert James Chapman ex-
plored the synthesis of stack computers using VHDL [Cha97] [Cha98] and wrote a pa-
per which decomposed the usual stack permutation operations into smaller primitives
[Cha95].

• Myron Plichota is a freelance consultant in Hamilton, Ontario who designed in 2001
the Steamer 16 processor7 as a VHDL design implemented on a Cypress CY37128P84-
125JC CPLD (Complex Programmable Logic Device). It is notable for fitting in very
little hardware, having only eight, 3-bit instructions, and a bare minimum 3-deep on-
chip stack. It runs Forth-like software with C-like stack frames in main memory. It is
remarkable in its speed/size trade-off while still achieving 20 MIPS. It has been used in
an industrial machine vision application.

• While at the Technical University of Munich, Bernd Paysan wrote his 1996 Diploma the-
sis on the 4stack processor8 [Pay96], a 4-way superscalar VLIW (Very Long Instruction
Word) design specified in Verilog. It is meant for embedded DSP (Digital Signal Pro-
cessing) applications, but has a supervisor mode and virtual memory for desktop use. He
also designed the much smaller b16 microprocessor9 [Pay02], a 12-bit version of which
is used internally at Mikron AG.

• Chung Kwong Yuen10 at the National University of Singapore has an unpublished paper
[Yue] on how to implement a reorder buffer to obtain superscalar execution in stack
computers11.

• Chen-Hanson Ting currently runs the eForth Academy12 in Taiwan, which provides de-
sign classes for embedded systems. He created the P series ofmicroprocessors13 derived
from the works of Chuck Moore. They are described in [Tin97a,Tin97b]1415.

• A number of students at the Chinese University of Hong Kong designed and imple-
mented two versions of a derivative of the MuP21 microprocessor : The MSL16 was
first implemented on an FPGA (Field-Programmable Gate Array) [LTL98] and later re-
implemented in silicon using asynchronous logic as the MSL16A [TCCLL99].

7The only documentation was at http://www.stringtuner.com/myron.plichota/steamer1.htm which is now de-
funct, but archived in the Internet Archive Wayback Machineat http://www.archive.org/web/web.php

8http://www.jwdt.com/~paysan/4stack.html
9http://www.jwdt.com/~paysan/b16.html

10http://www.comp.nus.edu.sg/~yuenck/
11One of two papers available at http://www.comp.nus.edu.sg/~yuenck/stack
12http://www.eforth.com.tw/
13http://www.eforth.com.tw/academy-n/Chips.htm
14Publication list: http://www.eforth.com.tw/academy-n/Bookstore/bookstore_4.htm
15Published by Offete Enterprises: http://www.ultratechnology.com/offete.html

27

3.4 Strengths and Weaknesses of the Second Generation

The second generation of stack computers still has some of the drawbacks of the first: a need
for index registers, stack manipulation overhead, and it additionally supports ALGOL-like lan-
guages poorly. However, the second generation also has somedistinct advantages: reduced
memory bandwidth and system complexity, and faster subroutine linkage and interrupt re-
sponse.

3.4.1 The Need for Index Registers

As in computers from the first generation (Section 2.3.4), the access of loop indices or interme-
diate results which are not immediately on top of the stack requires significant stack manipula-
tion overhead. All second-generation stack computers, except the very smallest, mitigate this
problem with index registers:

• The NC4016 buffered the topmost Return Stack element on-chip so it could be used as an
index register (I). A loop-on-index instruction would decrement I, and then conditionally
jump to the beginning of the loop. The RTX-2000 used the same mechanism.

• The Sh-Boom used a count (ct) and an index (x) register. The count register was used
by decrement-and-branch-on-non-zero instructions, and the index register was used for
direct, post-incrementing, and pre-decrementing memory accesses.

• The MuP21 used the A register to hold memory addresses which could then be moved to
the data stack, modified, and the returned to A for the next access. The alternative would
have needed a deeper stack and more stack manipulation opcodes.

• The F21 could do post-incrementing memory accesses from A register and from the top
of the Return Stack. They were primarily meant for fast memory-to-memory transfers.
The c18 has the same mechanism.

3.4.2 Stack Manipulation Overhead

Stack computers from the first generation suffered from excessive memory traffic (Section
2.3.3) since their stacks, except for a few working registers, were entirely in main memory.
However, this had the advantage of allowing random access tothe entire stack.

Computers from the second generation keep their stacks separate from main memory and
usually on-chip. This has the advantage of causing no memorytraffic, but typically limits
access to the topmost two to four elements since the stack is no longer addressable. This
limitation requires that the topmost elements be permuted to bring a value to the top of the
stack (Section 7.3.3).

The original overhead of memory traffic is thus transformed into the overhead of extra
operations to manipulate the stack. This problem can be mitigated by using more deeply-
accessible stacks or more complex stack manipulation operations. This random access comes
at the price of increased system complexity, culminating ina conventional multiparty register
file.

28

3.4.3 Poor Support of ALGOL-like Languages

Languages which are derived from ALGOL, such as C, use the stack as a means of allocating
space for, amongst others, the local variables of a procedure. This entails pushing entire struc-
tures onto the stack and then accessing them randomly, oftenthrough a pointer. Thus a local
variable must be present in main memory since the stack in a second-generation computer is
not addressable.

Solutions to this problem include more sophisticated compilers [Koo94] [ME97] [ME98],
the addition of some form of frame pointer register which cansupport indexed addressing, or
making the return stack addressable such as in the PSC1000/IGNITE I [Sha02] [Sha99].

3.4.4 Reduced Instruction Memory Bandwidth and System Complexity

The compact encoding of stack instructions stems from the implicit nature of their operands:
It is always the top of the stack. Thus, contrary to a registermachine, several such operations
can fit into a single memory word. This correspondingly reduces the frequency of instruction
fetches. The memory access cycles between instruction fetches can then be used for loads,
stores, and fetches, eliminating the need for separate instruction and data memory buses (Sec-
tion 7.2.4). This greatly reduces system complexity and allows for a higher internal operating
frequency than the memory would normally allows.

The case of unencoded instructions, as in the NC4016 and the RTX-2000, does not provide
the same memory bandwidth advantage, but while still operating on a single memory bus,
increases the performance through the multiple simultaneous operations that can be contained
in such an instruction word.

3.4.5 Fast Subroutine Linkage and Interrupt Response

A stack computer does not need to save the contents of registers upon entering a subroutine. Its
parameters are already on top of the data stack, which becomeits working values throughout
the computation, and ultimately remain as one or more returnvalues upon exiting the subrou-
tine. The call and return instructions automatically use the return stack for the return address.
Subroutine linkage thus requires no additional memory traffic and takes only a cycle or two
(Section 7.3.6).

An interrupt service routine (ISR) is effectively a hardware-invoked subroutine, and so
benefits from the fast linkage. The ISR can simply do its work on top of the stacks so long as
it leaves them unaltered upon exit.

29

30

Part II

Qualitative Arguments

31

Chapter 4

Distinguishing the First and Second
Generations

The existing computer architecture literature considers all stack computers to be of the same
kind1. This view seems correct when contrasted against modern register-based machines. How-
ever, it conflates the first and second generations of stack computers, which makes difficult a
clear discussion of their respective properties. Distinguishing the generations is important since
the second resembles current register-based designs much more than it does the first. Without
this distinction, an entire branch of computer architecture is missed solely due to a categorical
error.

The differences between the generations stem from the two historical approaches to stack
computation. The first generation is based on Bauer’s “stackprinciple” for subroutine storage
allocation (Section 2.1.3) and is exemplified by the Burroughs B5000 series (Section 2.2.3).
The second generation originates in Hamblin’s method for evaluating and composing expres-
sions (Section 2.1.4), first seen in the English Electric KDF9 (Section 2.2.2), and later inde-
pendently rediscovered as the Forth programming language (Section 3.1.1.1).

The only significant exception to this conflation I’ve found is a section in Feldman and
Retter’s text [FR93, pp.599-604] which lists some of the same “first generation stack machines”
as I do in Section 2.2, then proceeds to explain in a nutshell the origin and features of the second
generation of stack computers, although they do not refer tothem by that name.

In this chapter, I expand on Feldman and Retter’s statementsand propose a codification
based on some properties of the stacks: their location, purpose, and the operations done upon
them.

1Except for a passing mention in the preface of Koopman’s book[Koo89] and a short summary in Bailey’s
PhD Thesis [Bai96].

33

4.1 Location of Stacks: In-Memory vs. In-Processor

“[. . .] It is this explicit coupling of all ALU operations to ahardware stack which
sets these machines apart.”

[FR93, pg.600]

The first distinguishing feature is the location of the stacks.
First-generation stack computers (Figure 4.1) kept their stacks as randomly accessible data

structures in main memory, located by an automatically managed stack pointer register. Each
operation implicitly loaded and stored the required data for expression evaluation to an internal
stack of two to four registers. The number and size of the stacks in memory were variable
and usually each process had its own. Later machines used circular buffers between the reg-
isters and the memory to accelerate access to items recentlyput on the stack. Unfortunately,
first-generation stack computers were overtaken by register-based machines before this feature
became widespread.

General-purpose register computers (Figure 4.2) use the same kinds of stacks, also kept
in memory. However, the stack pointer is now an ordinary register, selected by convention,
and is manually controlled by software. Software manually loads and stores values from the
stack into an arbitrarily accessible register file. Register machines usually place a cache buffer
between the registers and memory.

Contrary to both first-generation and general-purpose register computers, second-generation
machines (Figure 4.3) keep their stacks in the processor. The stacks are not randomly accessi-
ble data structures and only make visible the top two to four elements. The stacks are separate
from main memory and only interact with it via load, store, and flow control instructions. The
number and size of the stacks are fixed, although they may spill to memory via a pointer, de-
pending on the size of the system, and thus behave as their owncaches. There are typically only
two stacks, shared by all processes, which can internally exchange data amongst themselves.

Return Address
Parameters of A

Return Value from A

Locals of A
Return Value from B

Parameters of B
Return Address

Locals of B

Memory

Stack Pointer

Stack

CPU

Figure 4.1: First-Generation Stack Computer
Block Diagram

Return Address
Parameters of A

Return Value from A

Locals of A
Return Value from B

Parameters of B
Return Address

Locals of B

CPU Memory
Registers

Figure 4.2: General-Purpose Register Com-
puter Block Diagram

34

4.2 Use of Stacks: Procedure Nesting vs. Expression Evalu-
ation

“[. . .] While recursion is easy to accomplish with a stack in memory, this is not
what we mean bystack machine. [. . .]”

“[. . .] Unlike most earlier stack machines, these Forth processors have two stacks,
one to hold temporary data and pass subroutine parameters, and the other to save
subroutine return addresses and loop counters. [. . .]”

[FR93, pg.600]

The second distinguishing feature is the use of the stacks.
First-generation stack computers (Figure 4.1) used stacksas structured temporary storage

for program procedures. Each procedure invocation would automatically cause the allocation
of an amount of space on the stack to contain (typically) the parameters of the procedure, its
return value, its local variables, and the return address ofits caller. This area is referred-to as
a procedure activation record. Values from the record were loaded and stored into the small
internal stack as needed for expression evaluation. The internal stack only held the intermediate
results of computations within a given procedure. All linkage between procedures was done
solely on the stack in memory.

General-purpose register computers (Figure 4.2) use the same kind of stacks, in the same
manner, except that the procedure activation records are manually managed by software and
procedure linkage can occur through the registers if the parameters, locals, and return values
fit within them.

Second-generation stack computers (Figure 4.3) use separate stacks to control procedure
nesting and to perform expression evaluation. The return addresses of procedure calls are
stored on a stack dedicated to that purpose (Return Stack). Storing them separately helps to
eliminate the division of the other stack (Data Stack) into procedure activation records. Thus,
a called procedure finds its parameters (P) on top of the Data Stack, manipulates them directly
as locals (L) during expression evaluation, and leaves on top either its return value (R) upon
exit or the parameters for calling another procedure. The Data Stack is used for an effectively
single, large, and complex expression evaluation whose parts are tracked by the contents of the
Return Stack.

Return Address
Return Address

CPU

Memory

L/P/R of B

L/P/R of A
L/P/R of A
L/P/R of A

L/P/R of B
L/P/R of B

Data Stack Return Stack

Figure 4.3: Second-Generation Stack Computer Block Diagram

35

4.3 Operations with Stacks: High-Level Language Support
vs. Primitive Operations

“First generation stack machines, such as the Burroughs B5000, B5500, B6700,
B7700, Hewlett-Packard HP3000, and ICL2900, were designedto execute lan-
guages like Algol-60 [Dor75b]. Most of these had a single stack which was used
for holding temporary data, passing subroutine parameters, and saving subroutine
addresses. [. . .]”

[FR93, pg.600]

The third distinguishing feature is the operations performed upon the stacks.
First-generation stack computers (Figure 4.1) had built-in hardware and microcode support

for high-level language (typically ALGOL) and operating system features. The procedure call
and return instructions would automatically allocate and deallocate activation records on the
stack. The arithmetic instructions would determine the data type of their operands from special
tags. Indirect reference words and data descriptors would allow for lexical scoping across ac-
tivation records and resolve call-by-name references. Multiple stacks could be maintained and
cross-referenced to enable multitasking and inter-process communication. Descriptors could
point to data on disk to support code and data paging-on-demand. The end result was powerful,
but extremely complex. These features are well-described in Organick’s book [Org73].

General-purpose register computers (Figure 4.2) have noneof these language-specific fea-
tures, although they were designed with the efficient support of ALGOL-like languages in
mind. A large register file supports fast, simple procedure linkage when possible, and can hold
multiple intermediate values during expression evaluation. The instruction set is simple but can
use any registers as source and target. High-level languageand system features are managed
in software by the compiler and the operating system.

Second-generation stack computers (Figure 4.3) have more in common with general-purpose
register machines than with first-generation stack computers. The call and return instructions
only save and restore the calling procedure’s return address, leaving more complex procedure
linkage to software. Arithmetic instructions operate solely on the top few elements of an inter-
nal stack and their operands must be loaded from and stored tomemory explicitly. Only simple
direct and indirect addressing modes are supported, although post-incrementing/decrementing
versions are common. Other than the implicit use of stacks for basic procedure linkage and
expression evaluation, all high-level language and operating system features are implemented
in software in the same manner as in register-based machines.

36

Chapter 5

Objections Cited by Hennessy & Patterson

Hennessy and Patterson’s magnum opus “Computer Architecture: A Quantitative Approach”
[PH90, HP96, HP02] has a tremendous influence on the field of computer architecture. I sup-
port this claim by comparing the number of citations it has received compared to other text-
books on computer architecture.

Most arguments against stack computer architecture are drawn from a few statements found
in this book. I present counterarguments which support the claim that the statements are valid
for the first generation of stack computers, but not the second.

5.1 The Enormous Influence of Hennessy & Patterson on
Computer Architecture

Some data collected in Fall 2004 provides a view of this excellent book’s status (Table 5.1)
based on the number of citations it has received compared with that of other books on computer
architecture. These books were all found in the University of Waterloo Davis Centre Library.
The number of citations was obtained from the ACM Digital Portal’s Guide To Computing
Literature1.

It’s easy to see that the influence of the first two editions of Hennessy & Patterson’s work
completely dwarfs that of the remainder of the sample. As of January 2006, the updated cumu-
lative number of citations provided by the ACM Guide are:

• First Edition [PH90]: 424

• Second Edition [HP96]: 454

• Third Edition [HP02]: 125

Additionally, the CiteSeer2 scientific literature library show a total of 1525 citationsfor all
editions combined, as of January 2006.

1http://portal.acm.org/
2http://citeseer.ist.psu.edu/

37

Incidentally, the main text on second-generation stack computers [Koo89] had, according
to the ACM Guide, seven citations in the Fall of 2004 and twelve as of January 2006. It is not
listed in CiteSeer.

Book Citations Book Citations

[PH90] 324 [FR93] 1
[HP96] 310 [MK97] 1
[HP02] 19 [HVZ95] 0
[PH98] 21 [Sta02] 0

[Hwa92] 50 [GL03] 0
[Kog90] 24 [Omo99] 0
[Omo94] 6 [Bur98] 0
[SSK97] 6 [Sto92] 0
[Sta93] 2 [Wil91] 0
[Wil01] 1 [Sta90] 0
[Hay97] 1 [Mur90] 0
[Wil96] 1 [Bla90] 0
[MP95] 1

Table 5.1: Comparison of Citations of Computer Architecture Texts (as of Fall 2004)

5.2 The Disappearance of Stack Computers (of the First Gen-
eration)

One of the views expressed by Hennessy & Patterson is that “stack based machines fell out of
favor in the late 1970s and, except for the Intel 80x86 floating-point architecture, essentially
disappeared.” [HP96, pg. 113][HP02, pg. 149]. This statement can only refer to the first gen-
eration of stack computers since the second generation did not really begin until 1985 (Section
3.2.1), “roughly concurrent with the emergence of RISC as a design philosophy” [FR93, pg.
600].

These new machines went unnoticed due to being in the niches of embedded real-time
control and aerospace applications (Section 3.2.2) instead of general-purpose computing. The
latter instances of the second generation were developed inthe 1990s, with little visibility in
academia (Section 3.3), since by then the term ’stack computer’ had become synonymous with
designs from the first generation.

38

5.3 Expression Evaluation on a Stack3

Hennessy & Patterson state:

Although most early machines used stack or accumulator-style architectures, vir-
tually every machine designed after 1980 uses a load-store register architecture.
The major reason for the emergence of general-purpose register (GPR) machines
are twofold. First, registers—like other forms of storage internal to the CPU—are
faster than memory. Second, registers are easier for a compiler to use and can be
used more effectively than other forms of internal storage.For example, on a reg-
ister machine the expression(A ⋆ B) − (C ⋆ D) − (E ⋆ F) may be evaluated by
doing the multiplications in any order, which may be more efficient because of the
location of the operands or because of pipelining concerns (see Chapter 3). But
on a stack machine the expression must be evaluated left to right, unless special
operations or swaps of stack positions are done. [HP96, pg. 71]

The third edition has a different final sentence:

Nevertheless, on a stack computer the hardware must evaluate the expression in
only one order, since operands are hidden on the stack, and itmay have to load an
operand multiple times. [HP02, pg. 93]

The first point, which implies that the stack is in memory, is no longer valid. Second-generation
stack computers keep their stacks internal to the CPU (Section 4.1). Furthermore, the access
to a stack is faster than to registers since no addressing is required. The inputs to the ALU are
hardwired to the top two elements of the stack. This is put to advantageous use when pipelining
(Section 7.4).

Secondly, the claim that compilers can use registers more effectively is true only because
much research has been done on register allocation in moderncompilers. Prior to the advent
of modern compiler techniques like graph colouring, registers were seen as difficult to use
and stacks were favoured. For example, this is the reason theSPARC architecture uses reg-
ister windows which effectively form a stack of activation records [PS98a, pg. 2]. There has
been promising work showing that it is possible to cache virtually all local variable memory
references onto the stack [Koo94]4[ME97]5[ME98]6. Also, it could be possible to evaluate
expressions in an out-of-order fashion on a stack computer (Section 3.3).

Lastly, the final point raised is true. Operands are hidden onthe stack and even with the
aforementioned compiler techniques this fact makes for poor performance on iterative code
due to the stack manipulations required (Section 7.3.3). However, a register-based computer
has the same kind of repeated memory accesses and register-to-register copying overhead when

3The arguments in this section suggest an interesting way of thinking qualitatively about stacks: that they
are the ’reciprocal’ (or the ’inverse’) of registers. For example, reading a register does not destroy its contents,
but writing does. Conversely, reading from a stack pops information from it, but writing to it simply pushes the
existing information down. Up to its maximum capacity, no information is lost. This is a tantalizing symmetry.

4http://www.ece.cmu.edu/~koopman/stack_compiler/index.html
5http://www.complang.tuwien.ac.at/papers/maierhofer%26ertl97.ps.gz
6http://www.complang.tuwien.ac.at/papers/maierhofer%26ertl98.ps.gz

39

entering or exiting a subroutine (Section 7.3.6). This overhead is virtually nil in stack comput-
ers . Finally, there are hints that a redesigned stack computer instruction set could combine
stack manipulations with arithmetic operations ’for free’, without adding any new datapath or
control lines (Sections 9.2.2 and 9.2.3).

5.4 The Use of the Stack for Holding Variables

Immediately after the previous quote they state:

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic is reduced, the program is sped up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than a memory location). [HP96, pg. 71][HP02, pg.
93]

As stated in the previous section, a stack can also be used to hold variables. Since second-
generation stack computers keep their stack in the CPU, the memory traffic is reduced (Section
7.2.3) and the program sped up in the same proportion. The code density is improved to an
even greater extent since a stack does not need to be named (Section 7.2.4). No addressing bits
are required since operations implicitly use the top of the stack. Overall, these features are no
different than in register-based computers.

5.5 Distorted Historical Arguments

Lastly, Hennessy & Patterson raise points from past research against the use of (first-generation)
stacks:

The authors of both the original IBM 360 paper [ABB64] and theoriginal PDP-
11 paper [BCM+70] argue against the stack organization. They cite three major
points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy op-
erations.

3. The stack has a bottom, and when placed in slower memory there is a perfor-
mance loss.

[HP96, pg. 113][HP02, pg. 149]

At first glance, these points are correct when referring to first-generation stack computers: an
abundance of fast registers which can be randomly and non-destructively accessed will increase
performance by reducing memory traffic and re-ordering operations. For second-generation
stack computers however, these points are moot:

1. On-chip stacks are really a linear collection of registers.

40

2. The limitations are partially a matter of compiler technology (Section 5.3) and on the
other hand, stacks avoid the subroutine call overhead of register-based computers (Sec-
tion 7.3.6).

3. This is a straw-man: All stacks have a bottom. Past experiments have shown that an
on-chip stack buffer that is 16 to 32 elements deep eliminates virtually all in-memory
stack accesses for both expression evaluation and subroutine nesting and that the number
of accesses to memory decreasesexponentiallyfor a linear increase in hardware stack
depth [Koo89, 6.4] [Bai96, 4.2.1] (Appendices B.2.6 and B.2.7).
Current Intel processors use exactly such a stack, 16 elements deep, to cache return
addresses on-chip [Int06, 2.1.2.1, 3.4.1.4], as does the Alpha AXP 21064 processor
[McL93]. Hennessy & Patterson themselves show data supporting this feature [HP96,
pg. 277] [HP02, pg. 214]. The SPARC architecture accomplishes a similar results with
its register windows.

The preceding quote is however an abridged version. The original statements by Bellet al.
were:

The System/360 designers also claim that a stack organized machine such as the
English Electric KDF 9 (Allmark and Lucking, 1962) or the Burroughs B5000
(Lonergan and King, 1961) has the following disadvantages:

1. Performance is derived from fast registers, not the way they are used.

2. Stack organization is too limiting, and requires many copy and swap opera-
tions.

3. The overall storage of general register and stack machines are the same, con-
sidering point #2.

4. The stack has a bottom, and when placed in slower memory there is a perfor-
mance loss.

5. Subroutine transparency is not easily realized with one stack.

6. Variable length data is awkward with a stack.

We generally concur with points 1, 2, and 4. Point 5 is an erroneous conclusion,
and point 6 is irrelevant (that is, general register machines have the same problem).
[BCM+70]

Hennessy & Patterson are simply repeating the points which are supported by the authors of
this quote. In retrospect, it is peculiar that the authors lump both the KDF9 and the B5000
together, despite being very different machines (see Sections 2.2.2, 2.2.3, and Chapter 4). The
arguments should not apply equally to both. It turns out thatthe quote is an extremely abridged
version of the original statements by the System/360 designers:

Serious consideration was given to a design based on a pushdown accumulator
or stack. This plan was abandoned in favor of several registers, each explicitly
addressed. Since the advantages of the pushdown organization are discussed in
the literature, it suffices here to enumerate the disadvantages which prompted the
decision to use an addressed-register organization:

41

1. The performance advantage of a pushdown stack organization is derived prin-
cipally from the presence of several fast registers, not from the way they are
used or specified.

2. The fraction of “surfacings” of data in the stack which are“profitable”, i.e.,
what was needed next, is about one-half in general use, because of the oc-
currence of repeated operands (both constants and common factors). The
suggests the use of operations such as TOP and SWAP, which respectively
copy submerged data to the active positions and assist in clearing submerged
data when the information is not longer required.

3. With TOP’s and SWAP’s counted, the substantial instruction density gained
by the widespread use of implicit addresses is about equalled by that of the
same instructions with explicit, but truncated, addresseswhich specify only
the fast registers.

4. In any practical implementation, the depth of the stack has a limit. The reg-
ister housekeeping eliminated by the pushdown organization reappears as
management of a finite-depth stack and as specification of locations of sub-
merged data for TOP’s and SWAP’s. Further, when part of a fullstack must
be dumped to make room for new data, it is thebottompart, not the active
part, which should be dumped.

5. Subroutine transparency, i.e., the ability to use a subroutine recursively, is one
of the apparent advantages of the stack. However, the disadvantage is that the
transparency does not materialize unless additional independent stacks are
introduced for addressing purposes.

6. Fitting variable-length fields into a fixed-width stack isawkward.

In the final analysis, the stack organisation would have beenabout break-even for
a system intended principally for scientific computing. Here the general-purpose
objective weighed heavily in favor of the more flexible addressed-register organi-
zation. [ABB64]

I’ll address these points individually:

1. As previously mentioned, on-chip stacks are really a linear collection of registers. Addi-
tionally, the unabridged statement supports the use of stacks when either fully on-chip,
as in second-generation stack computers (which the KDF9 was), or sufficiently buffered
as in the B7700 (Sections 2.2.3 and 2.3.3) which was not introduced until 1973.

2. While stack permutations are inevitable, how often they are required is a strong function
of how the code is arranged by the programmer or compiler. It also depends on whether
the code is primarily iterative, recursive, or composed of nested procedures (Section
7.3.1). The choice of stack instruction set affects the overhead significantly (Section
9.2.2).

3. The static code analyses for a basic second-generation stack computer (Appendix B.1.5)
support this statement, but also suggest that the instruction density can be increased much
further (Chapter 8). This is also dependent on the nature andarrangement of the code.

42

4. Experiments done since show that a stack needs to be only 16to 32 elements deep to
virtually eliminate stack overflow to main memory [Koo89, 6.4.1] [Bai96, 4.2]. What
memory traffic remains can be mitigated by the hardware stackmanagement algorithms
that have been discovered since [Koo89, 6.4.2] [Bai96, 6.2]. The abridged versions
of this statement omitted the trade-off between the register housekeeping required for
subroutine calls on register-based computers versus the stack housekeeping required for
iterative code on stack-based computers.

5. I suspect the authors were thinking of the KDF9 since first-generation stack comput-
ers exhibit subroutine transparency using a single stack. This is possible because the
activation record of an instance of a subroutine is stored inmain memory. For second-
generation stack computers like the KDF9, whose stack is notrandomly accessible, a
single stack is insufficient since at the very least the arguments being passed recursively
would be buried under the return address (Section 4.2). Thusat the minimum a second
stack is needed to hold return addresses.
The statement is correct for both generations when index registers are used (Sections
2.3.4 and 3.4.1) since unless they are also stacks themselves, nested subroutines which
use them would have to do housekeeping to preserve and accesstheir values, effectively
implementing in software the stack of a first-generation stack computer at a great perfor-
mance penalty. Finally, given integrated circuits, the cost of an extra stack is minimal.

6. Bell et al. are correct when saying that this point is irrelevant. The problem, if present,
is orthogonal to the internal organization of a fixed-width machine.

In summary, the arguments quoted by Hennessy & Patterson were oversimplified and referred
to old hardware and compiler technology. In fact, the original source of the arguments is far
less critical of stacks than the version Bellet al. present and most of the shortcomings have
been overcome since then.

43

44

Part III

Quantitative Arguments

45

Chapter 6

A Stack-Based Counterpart to DLX:
Gullwing

I present the Gullwing1 processor architecture as an unpipelined, stack-based analogue of Hen-
nesy and Patterson’s DLX [HP02]: a small design that is a simplified reflection of the current
state of the art. Gullwing is closely based on the available descriptions of the MuP21, F21, and
c18 processors (Chapter 3).

6.1 Block Diagram

Figure 6.1 shows the datapath components of the processor. The description is not entirely
abstract or free from implementation details. Some have been included for clarity and some
are simply too compelling to ignore. Unless noted otherwise, the registers and memory are
32 bits wide and contain integers. The depth of the stacks is arbitrary. See Section 5.5 for a
discussion of useful depths.

TOP +1 PC

A

MARALU

ISR

MEM adrdata

R

RS

DS

Figure 6.1: Gullwing Block-Level Datapath

5 5 5 5 5 5 2

5

32 MEM

5 5 5 5 5 5
5

INST

S0 S5S1 S4S2 S3

MSBLSB

x PC@

L

Figure 6.2: Gullwing Instruction Shift Regis-
ter Block Diagram

1The name ’Gullwing’ was inspired by Richard Bach’s book, "Johnathan Livingston Seagull", and also by the
DeLorean DMC-12 made famous in the "Back To The Future" movietrilogy by Robert Zemeckis and Bob Gale.

47

6.1.1 Memory Subsystem

At the top is the main memory (MEM), whose address port is continually driven by the Mem-
ory Address Register (MAR). The MAR is itself loaded by one ofthe Address Register (A),
the Program Counter (PC), or the Return Register (R). The contents of each of these can be
modified by a dedicated incrementer (+1). The MAR can also be loaded directly from memory
output in the case of jumps and calls, or from the incrementedversion of the PC in the case of
subroutine returns.

The PC holds the address of the next memory word to be read for fetching instructions or
literals. Upon a subroutine call, it is stored into R, which is itself saved onto the Return Stack
(RS). The reverse process occurs when a subroutine returns.

The A register is used under program control to hold the addresses of loads and stores, with
optional post-incrementing. The R register can be used in the same manner.

6.1.1.1 Single Memory Bus

In order to concentrate on the architecture of Gullwing, themain memory is abstracted away
to an idealized form. It has a single, bidirectional data busand a single, unidirectional address
bus2. One read or one write is possible per cycle. By default, the output of the memory is
always available for reading.

6.1.1.2 Differentiating Loads, Stores, and Fetches

If a read from memory simply reads the current memory output,it is termed a ’fetch’. There
is no write equivalent to a fetch. If an explicit address is used to read or write to memory, it is
termed a ’load’ or a ’store’, respectively. For example, in the next two sections it will be shown
that calls and jumps fetchtheir target address, but loadthe instructions from that location.

6.1.2 Computation Subsystem

At the far left, the Arithmetic and Logic Unit (ALU) always takes its inputs from the Top
Register (TOP) and the Data Stack (DS) and returns its outputto TOP, whose original contents
are optionally pushed onto the DS. The TOP register is the central point of gullwing. It is the
source and target for memory operations and can exchange data with the A and R registers.

6.1.3 Control Subsystem

Figure 6.2 shows the details of the Instruction Shift Register (ISR). The 32 bits of an instruction
word are loaded into six 5-bit registers (S0 to S5), each holding one instruction, with the two
most significant bits (MSB) left unused3. The instruction in the least significant (LSB) position
is output as the current one being executed (INST). When INSTfinishes executing, the contents

2This is not the instruction fetch bottleneck it seems to be. See Section 6.3.1 for why a second bus would
remain idle over 90% of the time.

3These two bits could be used as a seventh instruction taken from the set of instructions whose three MSB
are always zero, or as subroutine return and call flags as in the NC4016 and RTX-2000. They are left unused for
simplicity.

48

of the instruction registers are shifted over by one instruction and filled-in at the far end with a
Program Counter Fetch (PC@) instruction (see Section 6.2).After the last loaded instruction
is executed, the PC@ instruction fetches the next instruction group into the ISR.

If the instruction after INST is a PC@, then INST is the last one of this group. This is
signalled by the Last line (L) being high during the execution of INST. If the encoding of PC@
is conveniently chosen to be all zeroes, then L is simply the NOR of all the bits of S1. This
line is used to overlap the execution of INST and PC@ wheneverpossible (Section 6.3.1).

6.2 Instruction Set

The Gullwing instruction set is identical to that of the F21 (Section 3.2.5), with some minor
implementation simplifications which are beneficial to pipelining (Section 7.4):

• To fetch instructions, the F21 uses an internal memory access delay triggered by a lack
of memory-accessing instructions in its ISR. Gullwing instead uses a Program Counter
Fetch (PC@) instruction as the instruction fetching mechanism. It was the simplest
choice to implement and the most deterministic in behaviour. This also allows skipping
of unused instruction slots, which would otherwise have to be filled with no-ops.

• The F21 call and jump instructions use the remainder of the ISR to hold the low-order
bits of the target address. The number of these bits depends on where in the ISR the
instruction is placed. These bits would replace the corresponding ones in the PC, provid-
ing a limited branch distance relative to the current value of the PC. In Gullwing, the call
and jump instructions take their target address from a memory address which follows the
instruction, usually the very next one. This allows uniform, absolute addressing over the
entire memory range.

• Like the calls and jumps, literal fetches on the F21 also place their argument in the
remaining low-order bits. In Gullwing, the literal fetch instruction takes its literal value
from a memory address which follows the instruction, usually the very next one. This
makes for uniform and general storage of literals.

6.2.1 Instruction Packing

All instructions fit into 5-bit opcodes and have no operand fields or extended formats of any
kind. Thus, up to six instructions can be packed into each 32-bit memory word (Section 6.2.7).
This packing of instructions greatly reduces the number of instruction fetches for sequential
code (Section 7.2.4) and makes possible a much higher code density (Chapter 8).

6.2.2 Flow Control

These instructions (Table 6.1) control the flow of executionof a program. They all access mem-
ory and use full-word absolute addresses either explicitlyor implicitly. The jumps and calls
fetch their target address from the next word in memory, while the PC@ and RET instructions

49

respectively take theirs from the Program Counter (PC) and the Return Register (R). They all
execute in two cycles, except for PC@ which requires only one.

Mnemonic Name Operation

PC@ PC Fetch Fetch next group of instructions into ISR
JMP Jump Unconditional Jump
JMP0 Jump Zero Jump if top of data stack is zero. Pop stack.
JMP+ Jump Plus Jump if top of data stack is positive. Pop stack.
CALL Call Call subroutine
RET Return Return from subroutine

Table 6.1: Gullwing Flow Control Instructions

6.2.3 Load, Store, and Literal Fetch

Table 6.1 shows the instructions used to access main memory.All accesses are word-wide.
There are no half-word, byte or double-word formats. The Fetch Literal (LIT) instruction uses
the next word of memory to contain its value. The other instructions use addresses stored in
A and R to access main memory, and can post-increment them by one. The TOP register is
always the source of data for stores and the target of loads and fetches4. All of these instructions
execute in two cycles, except for LIT which requires only one.

Mnemonic Name Operation

LIT Fetch Literal Push in-line literal onto data stack
@A+ Load A Plus Push MEM[A++] onto data stack
@R+ Load R Plus Push MEM[R++] onto data stack
@A Load A Push MEM[A] onto data stack
!A+ Store A Plus Pop data stack into MEM[A++]
!R+ Store R Plus Pop data stack into MEM[R++]
!A Store A Pop data stack into MEM[A]

Table 6.2: Gullwing Load and Store Instructions

6.2.4 Arithmetic and Logic

The Gullwing ALU supports a small number of operations (Table 6.3). Other operations such
as subtraction and bitwise OR must be synthesized by small code sequences. Binary operations

4Except for PC@, which loads the ISR.

50

are destructive: they pop two values from the DS and push one result back. Unary operations
simply replace the contents of the top of the DS. All these instructions execute in a single cycle.

The +* operation is unusual in that it is conditional and non-destructive. It replaces the
contents of TOP with the sum of TOP and of the first element of DS, only if the original value
of TOP was odd (least significant bit is set). Combined with shift operations, it provides a
means of synthesizing a multiplication operation.

Mnemonic Name Operation

NOT Not Bitwise complement of top of data stack
AND And Bitwise AND of top two elements of data stack
XOR Xor Bitwise XOR of top two element of data stack

+ Plus Sum of top two elements of data stack
2* Two Star Logical shift left of top of data stack
2/ Two Slash Arithmetic shift right of top of data stack
+* Plus Star Multiply step

Table 6.3: Gullwing ALU Instructions

6.2.4.1 Synthesizing More Complex Operations

The ALU instructions included, given the small amount of available opcodes, are the most
frequent and useful: Addition is much more common than subtraction and XOR is frequently
used as an equality test. Other primitive instructions can be synthesized with short sequences
that fit inside a single memory word. Algorithm 1 shows how subtraction is implemented as a
two’s-complement operation followed by an addition, whilethe implementation of the bitwise
OR operatorA ∨ B is expressed asA ⊕ (B ∧ Ā).

Algorithm 1 Gullwing Synthesis of Subtrac-
tion and Bitwise OR

Subtraction:
NOT LIT 1 + +

Bitwise OR:
OVER NOT AND XOR

Algorithm 2 Gullwing Synthesis of Multipli-
cation (4x4)

>R 2* 2* 2* 2* R>
+* 2/ + * 2/ + * 2/ + * 2/
>R DROP R>

Algorithm 2 shows how the multiplication of two 4-bit numbers is implemented. The
topmost element of the Data Stack contains the multiplier, while the second contains the mul-
tiplicand.

The multiplicand is first shifted right four times to align itwith the empty space in front
of the multiplier. It is then added to that empty space if the least significant bit (LSB) of
the multiplier is set. The partial product and multiplier are shifted left by one, which both
prepares the LSB with the next bit of the multiplier and has the effect of effectively shifting
the multiplicand right by one relative to the partial product. The process is repeated four times,

51

shifting out the multiplier and leaving the completed 8-bitproduct on the top of the stack. The
multiplicand is then discarded.

This method produces one bit of product approximately everytwo cycles and is a compro-
mise between full hardware and software implementations. Its disadvantage is that it is limited
to single-word products, and thus to half-word factors. However, it can also be optimized when
the multiplier is much smaller than the multiplicand.

The multiplication of full-word factors, with a double-word product, could be accomplished
in the same way by shifting across two registers. For example, TOP could hold the multiplicand
and A the multiplier. By having +* test the LSB of A, and 2/ shifting from TOP into A, the
process would leave the lower half of the product in A and the upper half in TOP. Executing
A> would then place both halves on the Data Stack.

6.2.5 Stack Manipulation

Table 6.4 shows the instructions which manipulate the stacks and move data internally. They
execute in one cycle.

Mnemonic Name Operation

A> A From Push A onto data stack
>A To A Pop data stack into A

DUP Dup Duplicate top of data stack
DROP Drop Pop data stack
OVER Over Push copy of second element onto data stack

>R To R Pop data stack and push onto return stack
R> R From Pop return stack and push onto data stack

Table 6.4: Gullwing Stack Manipulation Instructions

6.2.6 No-Op and Undefined

Finally, one instruction is defined as no operation (Table 6.5). It does nothing but fill an in-
struction slot and use a machine cycle. The remaining four undefined instructions are mapped
to NOP also.

Mnemonic Name Operation

NOP Nop Do Nothing
UND[0-3] Undefined Do Nothing

Table 6.5: Gullwing No-Op and Undefined Instruction

52

6.2.7 Instruction Format and Execution Example

Instruction opcodes are 5-bit numbers. Six of these can be packed into a 32-bit memory word.
The last two bits are unused (see Section 6.1.3). Literals and addresses always occupy an entire
word. Each instruction position is termed a slot and the slots in a word constitute an instruction
group. After a group is fetched, the instructions in the slots are executed in turn until they are
exhausted. Figure 6.3 shows the memory layout of a random snippet of code tailored to show
the layout of the instructions. They are laid out in left-to-right order for convenience only.

In the initial state of this example, the group at address 1 has just been fetched, the instruc-
tion in Slot 0 (S0) is about to be executed, and the Program Counter (PC) has been incremented
to point to address 2. The first instruction (>R) executes without comment and shifts the con-
tents of the ISR to the left by one instruction, placing JMP0 as the current instruction.

In the case of the JMP0 conditional jump being not taken, the PC is incremented by one to
point to address 3, and the execution continues with DUP. When the LIT instruction is reached
it fetches the literal pointed-to by the PC (at address 3) andincrements the PC by one. The
addition instruction is then executed.

When the PC@ instruction is reached, it fetches a new group from the location pointed to
by the PC, which is currently address 4, and then increments the PC. Eventually the CALL
instruction is reached. It loads the instruction group fromthe target address in the memory
word pointed to by PC (at address 5), and loads the PC with the target address plus one. The
remaining slots are never executed and are filled by convention with PC@.

Had the JMP0 conditional jump been taken, it would have executed similarly to the CALL
instruction, loading the group at address 4 and leaving the PC pointing to address 5. The strictly
word-wide access to memory is why the R> in Slot 0 at address 4 could not be placed in Slot 5
at address 1. Jumping or calling to an address always begins executing at Slot 0.

>R JMP0

Number for LIT

Address for CALL
R>

1
2
3
4
5

Address for JMP0 (4)

XOR

+

CALL PC@ PC@ PC@

PC@LITDUP
S0 S2 S3 S4S1 S5

Figure 6.3: Gullwing Instruction Format

53

6.3 State Machine and Register Transfer Description

The operation of the unpipelined Gullwing processor is verysimple. There are no exceptions or
interrupts. Algorithms 3 through 4 show the state transitions and register transfers. The inputs
of its state machine consist of the opcode of the current instruction (INST), the current state
(S), and whether the contents of the TOP register is all zeroes (=0), has the most significant bit
clear (MSB0), or has the least significant bit set (LSB1). These three flags have been collapsed
into a single input column (TOP) for brevity. ’Don’t Care’ values are represented by X. The
outputs are the next state (N) and the various enable and select signals needed to steer the
datapath, which are represented symbolically.

All actions on a line occur concurrently. For example, the operation of PC@ can be under-
stood as: leave the state at zero, route the PC through the incrementer (+1) and store its output
into both PC and MAR, and load the ISR with the current output of MEM. All instructions end
with either loading or shifting the ISR (ISR< <), which changes INST to the next instruction
to execute (see Figure 6.2). Instructions that take two cycles use the state bit to select which
phase to execute.

Instructions which load instructions from memory, such as CALL and JMP, execute the
same sequence of steps as PC@ in their second phase. For brevity, these steps have been
replaced with the opcode.

Algorithm 3 Gullwing Flow Control Instructions
Inputs Outputs
----------- ---------
INST TOP S N Control
---- --- - - -------
PC@ X 0 0 PC→(+1) →PC,MAR, MEM→ISR
JMP X 0 1 MEM→PC,MAR
JMP X 1 0 PC@
JMP0 =0 0 1 DS→TOP, DS(POP), MEM→PC,MAR
JMP0 !=0 0 0 DS→TOP, DS(POP), PC →(+1) →PC,MAR, ISR< <
JMP0 X 1 0 PC@
JMP+ MSB0 0 1 DS→TOP, DS(POP), MEM→PC,MAR
JMP+ MSB1 0 0 DS→TOP, DS(POP), PC →(+1) →PC,MAR, ISR< <
JMP+ X 1 0 PC@
CALL X 0 1 PC→(+1) →R, R→RS, RS(PUSH), MEM→MAR,PC
CALL X 1 0 PC@
RET X 0 1 RS(POP), RS→R, R→PC,MAR
RET X 1 0 PC@

Algorithm 4 Gullwing No-Op and Undefined Instructions
Inputs Outputs Inputs Outputs
---------- --------- ---------- ---------
INST TOP S N Control INST TOP S N Control
---- --- - - ------- ---- --- - - -------
NOP X 0 0 ISR< < UND2 X 0 0 ISR< <
UND0 X 0 0 ISR< < UND3 X 0 0 ISR< <
UND1 X 0 0 ISR< <

54

Algorithm 5 Gullwing ALU Instructions
Inputs Outputs
----------- ---------
INST TOP S N Control
---- --- - - -------
COM X 0 0 TOP→ALU(NOT)→TOP, ISR< <
AND X 0 0 TOP,DS→ALU(AND)→TOP, DS(POP), ISR< <
XOR X 0 0 TOP,DS→ALU(XOR)→TOP, DS(POP), ISR< <
+ X 0 0 TOP,DS→ALU(+) →TOP, DS(POP), ISR< <
2* X 0 0 TOP→ALU(2 *) →TOP, ISR< <
2/ X 0 0 TOP→ALU(2/) →TOP, ISR< <
+* LSB0 0 0 ISR< <
+* LSB1 0 0 DS,TOP→ALU(+) →TOP, ISR< <

Algorithm 6 Gullwing Load and Store Instructions
Inputs Outputs
---------- ---------
INST TOP S N Control
---- --- - - -------
LIT X 0 0 MEM→TOP, TOP→DS, DS(PUSH), PC →(+1) →PC,MAR, ISR< <
@A+ X 0 1 A→MAR,(+1) →A
@A+ X 1 0 MEM→TOP, TOP→DS, DS(PUSH), PC →MAR, ISR< <
@R+ X 0 1 R→MAR,(+1) →R
@R+ X 1 0 MEM→TOP, TOP→DS, DS(PUSH), PC →MAR, ISR< <
@A X 0 1 A→MAR
@A X 1 0 MEM→TOP, TOP→DS, DS(PUSH), PC →MAR, ISR< <
!A+ X 0 1 A →MAR,(+1) →A
!A+ X 1 0 DS(POP), DS →TOP, TOP→MEM, PC→MAR, ISR< <
!R+ X 0 1 R→MAR,(+1) →R
!R+ X 1 0 DS(POP), DS →TOP, TOP→MEM, PC→MAR, ISR< <
!A X 0 1 A →MAR
!A X 1 0 DS(POP), DS →TOP, TOP→MEM, PC→MAR, ISR< <

Algorithm 7 Gullwing Stack Instructions
Inputs Outputs
---------- ---------
INST TOP S N Control
---- --- - - -------
DUP X 0 0 TOP→DS, DS(PUSH), ISR< <
DROP X 0 0 DS→TOP, DS(POP), ISR< <
OVER X 0 0 DS→TOP, TOP→DS, DS(PUSH), ISR< <
R> X 0 0 RS(POP), RS→R, R→TOP, TOP→DS, DS(PUSH), ISR< <
>R X 0 0 DS(POP), DS→TOP, TOP→R, R→RS, RS(PUSH), ISR< <
A> X 0 0 A→TOP, TOP→DS, DS(PUSH), ISR< <
>A X 0 0 TOP→A, DS→TOP, DS(POP), ISR< <

55

6.3.1 Improvement: Instruction Fetch Overlap

Using an instruction (PC@) to fetch the next group of instructions eliminates the need for
dedicated instruction-fetching hardware. The fact that itis also shifted into the ISR for free is
also very elegant. However, this means that at least one out of every seven instructions executed
will be a PC@, or about 14%5. This overhead could be reduced by overlapping fetching with
execution while the memory bus is free.

A priori, it is unclear how much benefit would come from overlapping the instruction fetch.
Koopman provides a table of the dynamic instruction execution frequencies of Forth primitives
averaged over a set of benchmarks [Koo89, 6.3]. These primitives map almost directly to the
Gullwing instruction set and the benchmarks from Section 7.1 are also written in a Forth-like
language. The data predicts that approximately half of the executed primitives are either flow
control or load/store instructions and thus access memory.Assuming that this probability is
evenly distributed, the fetching of instructions could be overlapped half the time, reducing the
overhead to about 7% for straight-line code.

Accomplishing this overlap depends on this fact: If the the last instruction before a PC@
does not access memory, then both instructions can be executed simultaneously without con-
flict. Figure 6.2 shows how the ISR makes this possible. If thenext instruction to be executed
is a PC@6, then the current instruction being executed is the last oneof this group. This is
signalled by raising the Last flag (L). If the current instruction does not access memory7, then
instead of shifting the ISR at the end of its execution, the instruction will fetch the next group
of instructions from memory in the same manner as PC@, as if ithad executed concurrently.

Implementing this optimization requires adding the L bit asan input to the state machine.
Flow control and load/store instructions ignore this bit since they always access memory. The
remaining instructions now have two versions, selected by L, which either shift or load the ISR.
Algorithms 8, 9, and 10 show the necessary changes.

Analysis of code executed with an overlapping instruction fetch (Appendix B.2.2) confirms
that the actual overhead of explicit PC@ instructions is reduced to 4.1 to 2.2% of the total
executed instructions . It also shows that 4.2 to 7.5% of instructions are executed concurrently
(’FOLDS’) with a PC@. This demonstrates a 50.6 to 77.3% reduction in instruction fetch
overhead.

5The actual overhead will be lower since other flow control instructions do their own instruction loading.
Without instruction fetch overlapping the actual overheadof instruction fetching is 8.3 to 9.7%.

6PC@ is conveniently encoded as all zeroes.
7Since the opcodes are divided about equally between memory and non-memory instructions, a single bit (the

MSB, for example) can be used to test if the instruction accesses memory. This should simplify the implementa-
tion of the state machine.

56

Algorithm 8 Gullwing ALU Instructions with Instruction Fetch Overlap
Inputs Outputs
------------- ---------
INST TOP L S N Control
---- --- - - - -------
COM X 0 0 0 TOP→ALU(NOT)→TOP, ISR< <
COM X 1 0 0 TOP→ALU(NOT)→TOP, PC@
AND X 0 0 0 TOP,DS→ALU(AND)→TOP, DS(POP), ISR< <
AND X 1 0 0 TOP,DS→ALU(AND)→TOP, DS(POP), PC@
XOR X 0 0 0 TOP,DS→ALU(XOR)→TOP, DS(POP), ISR< <
XOR X 1 0 0 TOP,DS→ALU(XOR)→TOP, DS(POP), PC@
+ X 0 0 0 TOP,DS→ALU(+) →TOP, DS(POP), ISR< <
+ X 1 0 0 TOP,DS→ALU(+) →TOP, DS(POP), PC@
2* X 0 0 0 TOP→ALU(2 *) →TOP, ISR< <
2* X 1 0 0 TOP→ALU(2 *) →TOP, PC@
2/ X 0 0 0 TOP→ALU(2/) →TOP, ISR< <
2/ X 1 0 0 TOP→ALU(2/) →TOP, PC@
+* LSB0 0 0 0 ISR< <
+* LSB0 1 0 0 PC@
+* LSB1 0 0 0 DS,TOP→ALU(+) →TOP, ISR< <
+* LSB1 1 0 0 DS,TOP→ALU(+) →TOP, PC@

Algorithm 9 Gullwing Stack Instructions with Instruction Fetch Overlap
Inputs Outputs
------------ ---------
INST TOP L S N Control
---- --- - - - -------
DUP X 0 0 0 TOP→DS, DS(PUSH), ISR< <
DUP X 1 0 0 TOP→DS, DS(PUSH), PC@
DROP X 0 0 0 DS→TOP, DS(POP), ISR< <
DROP X 1 0 0 DS→TOP, DS(POP), PC@
OVER X 0 0 0 DS→TOP, TOP→DS, DS(PUSH), ISR< <
OVER X 1 0 0 DS→TOP, TOP→DS, DS(PUSH), PC@
R> X 0 0 0 RS(POP), RS→R, R→TOP, TOP→DS, DS(PUSH), ISR< <
R> X 1 0 0 RS(POP), RS→R, R→TOP, TOP→DS, DS(PUSH), PC@
>R X 0 0 0 DS(POP), DS→TOP, TOP→R, R→RS, RS(PUSH), ISR< <
>R X 1 0 0 DS(POP), DS→TOP, TOP→R, R→RS, RS(PUSH), PC@
A> X 0 0 0 A→TOP, TOP→DS, DS(PUSH), ISR< <
A> X 1 0 0 A→TOP, TOP→DS, DS(PUSH), PC@
>A X 0 0 0 TOP→A, DS→TOP, DS(POP), ISR< <
>A X 1 0 0 TOP→A, DS→TOP, DS(POP), PC@

Algorithm 10 Gullwing No-Op and Undefined Instructions with InstructionFetch Overlap
Inputs Outputs Inputs Outputs
------------ --------- ------------ ---------
INST TOP L S N Control INST TOP L S N Control
---- --- - - - ------- ---- --- - - - -------
NOP X 0 0 0 ISR< < UND1 X 1 0 0 PC@
NOP X 1 0 0 PC@ UND2 X 0 0 0 ISR< <
UND0 X 0 0 0 ISR< < UND2 X 1 0 0 PC@
UND0 X 1 0 0 PC@ UND3 X 0 0 0 ISR< <
UND1 X 0 0 0 ISR< < UND3 X 1 0 0 PC@

57

58

Chapter 7

Comparisons With DLX/MIPS

As stated in Section 1.1, this thesis aims to divide the family of stack-based computers into first
and second generations. Part of this distinction consists of showing that the second generation
resembles the register-based machines which replaced the first.

This chapter supports this argument by comparing the Gullwing processor from Chapter 6
with the well-known MIPS and DLX processors used as demonstrators by Hennessy & Pat-
terson. This comparison is based on statistics derived fromthe organization and execution of
programs and further based on a comparison of the pipeline structure of each microprocessor.
The characteristics compared include: cycle time, cycle count, cycles per instruction, instruc-
tion count, dynamic instruction mix, memory accesses per cycle, code size, and code density.

7.1 Gullwing Benchmarks

Unfortunately, C compilers for second-generation stack computers are rare and, when avail-
able, are proprietary or experimental. Additionally, there are no existing operating systems or
peripherals for Gullwing. Thus, it is not possible at the time to compile the SPEC benchmarks
for this platform. The software used to test Gullwing performs mostly symbol table searches
and machine code compilation and interpretation. It could be loosely viewed as a tiny subset
of the GCC, Lisp, and Perl components of the SPECint benchmarks.

The software was originally written to explore a Forth-likeself-extensible language, named
’Flight’. It is composed of a language kernel used to compileextensions to itself, including
a metacompiler and a Gullwing virtual machine, which are then used to re-create the Flight
language kernel and all its extensions in a self-hosting manner. This process is described in the
following subsections. The source for all the benchmarks islisted in Appendix A.

7.1.1 Flight Language Kernel (Bare)

The Flight language kernel is a small (about 800 32-bit memory words) piece of machine code.
Its main loop reads in a name, searches for it in a linear dictionary and if found, calls the
function associated with that name. The kernel’s other built-in functions include management
of a linear input buffer, string comparison, creation of dictionary entries, conversion of decimal
numbers to binary, and compilation of the Gullwing opcodes.Source code fed to the kernel

59

is executed as it is received and can contain the name of any built-in or previously defined
function. The source to the kernel is listed in Appendix A.1.

7.1.2 Flight Language Extensions (Ext.)

The language defined by the Flight kernel is extremely spartan. The Flight extensions begin
by creating convenience functions to simplify the definition, lookup, and compilation of other
functions. These are used to create various functions for string copying, compilation, and
printing, multiplication and division of integers, binaryto decimal conversion, and a simple
’map’ function generator. These new function are used to construct small demonstrations of
Fibonacci numbers and Caesar ciphers. These demonstrations account for a negligible portion
of the total execution time and are used mainly as regressiontests for the underlying code.
The Flight language extensions exercise the functions of the Flight kernel and are composed
of 329 lines of code1 containing 1710 names2 and executing 5,018,756 instructions (4,462,579
without the demonstrations). The source is listed in Appendix A.2.

7.1.3 Virtual Machine (VM)

The virtual machine is built upon the Flight extensions3 (without demonstration code). It de-
fines a software emulation of all the Gullwing opcodes, some bounds-checking functions for a
given area of memory, and an instruction extraction and interpretation loop that reads Gullwing
machine code. Compiled code executes in the virtual machinewith an overhead of about 31
emulator instructions per actual emulated instruction. The end result is a fully contained emu-
lation of the Gullwing microprocessor. The compilation of the virtual machine itself requires
276 lines of code containing 769 names. This process exercises the functions of the kernel and
its extensions and executes 4,288,157 instructions. The source is listed in Appendix A.3.1.

Metacompiler The metacompiler manipulates the Flight kernel to retargetits operations to
the memory area used by the virtual machine. It saves and restores the internal state of the
kernel, such as the location of the dictionary and input buffer, and defines a new main loop
to replace the kernel’s default one. The new loop first searches the new dictionary in the
virtual machine memory and if there is no match, continues the search in the kernel’s original
dictionary. This allows the use of functions previously defined outside of the virtual machine
to bootstrap code inside it. The compilation of the metacompiler requires 106 lines of code
containing 491 names. This process exercises the functionsof the kernel and its extensions and
executes 4,069,393 instructions. The source is listed in Appendix A.3.2.

Self-Hosted Kernel The first thing compiled into the virtual machine is another instance of
the Flight kernel. While the original kernel was written in assembly language, this new kernel

1Only non-blank lines are counted.
2Each name is either a function name, or a string to be processed.
3Although the Virtual Machine software includes the compilation of the Extensions, the latter contributes to

only 2.2% of the total number of executed instructions.

60

is defined using the functions of the original kernel and all its extensions. The result is a higher-
level description of the Flight kernel, written in itself. The new kernel binary residing in the
virtual machine memory area is identical to the original4. The compilation of the self-hosted
kernel requires 246 lines of code containing 681 names. Thisprocess exercises the functions
of the kernel and its extensions via the indirection of the metacompiler and executes 6,511,976
instructions. The source is listed in Appendix A.3.3.

Flight Language Kernel Extensions Now that a Flight kernel resides in the virtual machine
memory, is it possible to start the virtual machine and execute this new kernel. The Flight
language extensions from Section 7.1.2 are fed to the new kernel, exercising the same code,
but through the emulation layer of the virtual machine. Thisexecutes 184,993,301 instructions,
taking about 90% of the total execution time of the VM test suite.

7.2 Comparison of Executed Benchmark Code

This section compares the properties of Gullwing and DLX/MIPS when executing integer code.
The DLX/MIPS data is derived from published SPECint92 [HP96, fig. 2.26] and SPECint2000
[HP02, fig. 2.32] results. The Gullwing data (Appendix B) is compiled from the execution of
software built upon the kernel of a low-level Forth-like language, named ’Flight’, tailored to
Gullwing (Appendix A). The properties compared are dynamicinstruction mix, cycles per
instruction (CPI), memory accesses per cycle, and instructions per memory word.

Note that while the DLX and MIPS processors include optimizations such as operand for-
warding, the Gullwing processor has none except for the instruction fetch overlapping de-
scribed in Section 6.3.1. Other optimizations have been left for future work (Section 9.2).

7.2.1 Dynamic Instruction Mix

Tables 7.1 and 7.2 compare the proportions of instructions executed during the benchmarks.
The Gullwing data is taken from the Extensions and Virtual Machine executed instruction
counts from Appendix B.2.2. Since the Extensions software deals mainly with code com-
pilation, it is compared to the GCC component of the SPECint92 and SPECint2000 suites.
The Virtual Machine software is compared to the other interpretive components: Lisp from
SPECint92 and Perl from SPECint2000.

The Gullwing instructions are grouped together and their statistics summed in order to
match the meaning of the equivalent DLX/MIPS instructions.For example, while MIPS has
one load instruction for all purposes, Gullwing has different ones (@A, @A+, @R+) depending
on the addressing mode and the load address register.

The statistics for the XOR and NOT instructions are combinedsince the SPECint92 data
groups them together even though the SPECint2000 data liststhem separately5. Statistics for

4Actually, there is a gap of one memory word between functionsdue to a quirk of the compilation process, but
the actual code is the same.

5From SPECint2000 data:
Table 7.1: 2.8% XOR, plus 0.3% other logical ops.
Table 7.2: 2.1% XOR, plus 0.4% other logical ops.

61

instructions which do not exist in a given machine are represented by a dash (’-’).
For both the compiler and interpreter test data, the dynamicinstruction mix of the Gullwing

processor differs from that of DLX and MIPS in some significant ways:

• The proportion of loads and stores is lower. I believe this originates from a lack of
complex data structures in the Gullwing software, and the need for DLX and MIPS to
use a stack in main memory to pass parameters to subroutines.

• There are many more immediate loads (fetches) since Gullwing cannot include small
literal operands within most instructions as DLX and MIPS do.

• The proportion of calls and returns is much greater. The stack-based architecture of
Gullwing results in extremely efficient procedure linkage,which makes the inlining of
code unnecessary in most cases.

• About a quarter of all the instructions executed are stack manipulation instructions. Some
are manipulations made explicit by the absence of operands in Gullwing instructions as
a consequence of the lack of random access to a stack. DLX and MIPS include implicit
move, copy, and delete operations within their instructions by using a three-operand
instruction format which gives random access to their registers. A large portion of these
stack manipulations are moves of addresses from the top of the Data Stack to the Address
Register, as performed by the >A instruction. Section 9.2.3discusses a mean to reduce
the overhead of these moves.

Additionally, the interpreter dynamic instruction mix (Table 7.2) has some further differences:

• The proportion of conditional jumps is lower on Gullwing. This is likely because of
the lack of conditionals in the main VM loop, which uses instead a table of function
addresses.

• The large incidence of shifts is due to the use of the shift-left (2/) instruction in the VM
to extract individual instructions out of a memory word.

62

Benchmark GCC (92) GCC (2000) Extensions

DLX/MIPS Instr. DLX MIPS Gullwing Gullwing Instr.

load 22.8% 25.1% 15.2% @A, @A+, @R+
store 14.3% 13.2% 0.4% !A, !A+, !R+
add 14.6% 19.0% 10.3% +
sub 0.5% 2.2% -
mul 0.1% 0.1% -
div 0.0% - -

compare 12.4% 6.1% -
load imm 6.8% 2.5% 16.8% LIT, PC@

cond branch 11.5% 12.1% 6.6% JMP0, JMP+
(incl. TAKEN jumps)

cond move - 0.6% -
jump 1.3% 0.7% 2.1% JMP
call 1.1% 0.6% 6.4% CALL

return, jmp ind 1.5% 0.6% 6.4% RET
shift 6.2% 1.1% 0.2% 2/, 2*
and 1.6% 4.6% 0% AND
or 4.2% 8.5% -

other (xor, not) 0.5% 2.5% 6.5% XOR, NOT
other (moves) - - 29.2% DUP, DROP, OVER,

>R, R>, >A, A>
other - - 0% NOP, +*

Table 7.1: Compilers Dynamic Instruction Mix

63

Benchmark Lisp(92) Perl (2000) VM

DLX/MIPS Instr. DLX MIPS Gullwing Gullwing Instr.

load 31.3% 28.7% 9.3% @A, @A+, @R+
store 16.7% 16.2% 4.6% !A, !A+, !R+
add 11.1% 16.7% 7.7% +
sub 0.0% 2.5% -
mul 0.0% 0.0% -
div 0.0% - -

compare 5.4% 3.8% -
load imm 2.4% 1.7% 18.0% LIT, PC@

cond branch 14.6% 10.9% 2.0% JMP0, JMP+
(incl. TAKEN jumps)

cond move - 1.9% -
jump 1.8% 1.7% 2.7% JMP
call 3.1% 1.1% 5.0% CALL

return, jmp ind 3.5% 1.1% 7.5% RET
shift 0.7% 0.5% 12.6%* 2/, 2*
and 2.1% 1.2% 3.4% AND
or 6.2% 8.7% -

other (xor, not) 0.1% 3.1% 3.9% XOR, NOT
other (moves) - - 23.3% DUP, DROP, OVER,

>R, R>, >A, A>
other - - 0% NOP, +*

Table 7.2: Interpreters Dynamic Instruction Mix

7.2.2 Cycles Per Instruction

The CPI of Gullwing can be readily determined from the ratio of the total number of cycles
to instructions in each test (Appendix B.2.1). Both tests exhibit a CPI of about 1.3 (Appendix
B.2.3).

Table 7.4 shows the contribution to the CPI from each instruction type, calculated from
product of the cycle count and of the frequency of each instruction type listed in Appendix
B.2.4. A more detailed breakdown can be derived from the instruction frequencies in Appendix
B.2.2.

There is sufficient published data in Hennesy & Patterson [HP96] from the SPECint92 suite
to estimate the CPI of the DLX processor for the GCC and Lisp components, beginning with a
base CPI of 1.00 and then adding the penalties from branch andload stalls. The load penalty
is calculated as the percentage of all the loads6 (as percentage of all instructions) which stall
[HP96, fig. 3.16]. The branch penalty is given directly [HP96, fig. 3.38]. The resulting CPI is
1.11 for the GCC component, and 1.15 for Lisp (Table 7.3).

6including immediate loads

64

The higher CPI of Gullwing does not compare favourably with that of DLX. However,
loads and taken jumps on Gullwing take two cycles, which is asif a load or branch stall always
occurred. Therefore, Gullwing is really architecturally equivalent to a DLX without load delay
slots and without delayed branches, which always stalls on loads and taken branches. For
example, if 100% of loads are assumed to stall on DLX, their load penalty increases to 29.6%
for GCC and 33.7% for Lisp, which raises the total CPI of DLX to1.34 and 1.41 respectively,
which is comparable to Gullwing.

Correspondingly, there are some possible optimizations toGullwing which would reduce
the CPI of loads and jumps and make Gullwing equivalent to a normal DLX (Section 9.2.3).

Test GCC Lisp

Total Loads 29.6% 33.7%
Load Stalls 23% 24%

Load Penalty 6.81% 8.10%

Branch Penalty 4% 7%

Total Penalty 10.8% 15.1%

Overall CPI 1.11 1.15

Table 7.3: DLX CPI with Load and Branch
Penalties

Test Extensions VM

Instr. Type Fraction of Total CPI

Conditionals 0.071 0.031
Subroutine 0.300 0.304

Fetches 0.168 0.180
Load/Store 0.312 0.276

ALU 0.169 0.277
Stack 0.292 0.233

Total 1.312 1.301

Table 7.4: Gullwing CPI by Instruction Type

7.2.3 Memory Accesses Per Cycle

The memory bandwidth usage of a processor can be expressed asthe average number of mem-
ory accesses per cycle. Assuming a memory access time equal to the cycle time of the proces-
sor, one memory access per cycle implies full usage of the available bandwidth to memory.

For the MIPS and DLX processors, determining the memory bandwidth usage is straight-
forward. An instruction is fetched and another completed every cycle, assuming no stalls.
Only load and store instructions explicitly access memory otherwise. Immediate operands are
within the instruction opcode and so are counted as part of the instruction fetches. Large num-
bers which require two loads are rare and ignored. Flow control instructions do not add to the
instruction fetches since they only steer the Instruction Fetch pipeline stage.

Table 7.6 takes data from the benchmarks of Section 7.2.1 andshows that loads and stores
make up on average 42.1% of the total number of executed instructions. Thus, they contribute
an additional average of 0.421 memory accesses per cycle. When added to the instruction
fetches, this totals to an average 1.421 memory accesses percycle for DLX/MIPS, divided
between separate instruction and data memories.

Measuring the memory usage of Gullwing is a little more complicated. There is no pipeline.
Several instructions are loaded in one memory access (see next section and Section 6.2.7). Flow
control instructions do their own fetching or loading of instructions. There are no immediate
operands. Different instructions take different numbers of cycles to execute and make different
numbers of memory accesses. However, there is only one memory for both instruction and

65

data fetches/loads and thus only one Memory Address Register (MAR) (Section 6.1.1). Thus,
a memory access is defined as an alteration of the MAR.

The average number of memory accesses per cycle for an instruction is calculated as so:

Avg. # of accesses/cycle = (# of accesses ÷ # of cycles) × avg. fraction of total cycles

The number of accesses is determined from the register transfer description (Section 6.3)
as is the number of cycles, which can alternately be seen in Appendix B.2.4. The percentage of
total cycles is listed under the C/C column in Appendix B.2.2. Table 7.5 condenses this data.

In summary, the Gullwing processor performs an average of 0.667 memory accesses per
cycle while using a single memory bus, compared to 1.421 for DLX/MIPS which uses two.

It would be ideal to reduce Gullwing’s memory bandwidth further, but part of the reason
it is already low is because of the extra instructions required to manipulate the stack (which
do not access memory). Reducing this instruction overhead will increase the proportion of
memory-accessing instructions and thus increase the average number of memory accesses per
cycle, towards a maximum of one (Section 9.2.3).

Either way, since loads and stores cannot (and have no need to) overlap instruction fetches
on Gullwing, the maximum number of memory accesses per cyclecannot exceed one. By
comparison, MIPS must have aminimumof one memory access per cycle. When MIPS must
manipulate its call stack, it must perform additional memory accesses in the form of data loads
and stores, increasing its memory bandwidth further7.

Test Extensions VM

Instruction Accesses Cycles Acc./Cyc. Fraction of Total Cycles

PC@ 1 1 1 0.031 0.017
FOLDS 1 1 1 0.032 0.058
CALL 2 2 1 0.098 0.076
JMP 2 2 1 0.033 0.042

JMP0, JMP+ 1 1 1 0.046 0.009
JMP0, JMP+ (TAKEN) 2 2 1 0.007 0.001

RET 2 2 1 0.098 0.115
LIT 1 1 1 0.097 0.122

@A, @A+, @R+ 2 2 1 0.233 0.142
!A, !A+, !R+ 2 2 1 0.006 0.070

all others 0 1 0 0.352 0.392

Total of (Acc./Cyc.) × Fraction 0.681 0.652

Average 0.667

Table 7.5: Gullwing Memory Accesses Per Cycle (Total)

7Implying, of course, a second memory bus.

66

Test Compiler Interpreter
CPU DLX MIPS DLX MIPS

Component GCC92 GCC00 Lisp Perl

Loads 22.8% 25.1% 31.3% 28.7%
Stores 14.3% 13.2% 16.7% 16.2%

Total 37.1% 38.3% 48.0% 44.9%

Average 37.7% 46.5%

Average 42.1%

Table 7.6: DLX/MIPS Memory Accesses Per Cycle Caused by Loads and Stores

7.2.4 Instructions per Memory Word

For DLX/MIPS, the density of code in memory is simple: there is exactly one instruction per
memory word. The opcode and its operands or literals are contrived to fit. For Gullwing,
opcodes have no explicit operands and literals are placed inthe next memory word (Section
6.2.7). This allows up to six instruction opcodes to fit in a single memory word. The actual
number is variable due to the word-addressed nature of jumps, calls, and returns.

However, if the total number of instructions is compared to the total number of instruction
slots (Appendix B.1.5), it is apparent that most of the available instruction slots are wasted.
Chapter 8 explains why and shows a method to make these wastedslots available.

Appendix B.1.4 shows that in most cases there is one, two, or six instructions per word that
contains instructions (instead of a literal). The ones and twos imply higher-level code where
the memory word contains a call or jump, while the sixes are low-level code without changes in
program flow. The result is an overall code density of about 1.2 instructions per memory word
(Appendix B.1.5). If the words containing literals and addresses are excluded, the average
memory word containing instructions contains between two and three instructions.

Despite the modest overall increase in code density, the higher density of words which
contain instructions reduces the number of memory accessesrequired to fetch instructions.
Until a group of instructions is exhausted, the memory bus isfree for loads and stores, and for
fetching addresses and literals and the next instruction word also.

Gullwing spends 0.441 memory accesses per cycles to fetch orload instructions8, compared
to 1.00 for MIPS. The fraction of all memory accesses used forfetching or loading instructions
on Gullwing is still approximately the same relative to MIPS(66.1% versus 70.4%, based on
Section 7.2.3). Therefore, the important benefit of packingmultiple instructions per memory
word is not so much a reduction in code size, as one in instruction fetch memory bandwidth.

8Calculated as the sum of the fraction of total memory accesses done by instructions which alter the Program
Counter (PC): PC@, FOLDS, CALL, RET, all JMPs, and LIT, averaged over both the Ext. and VM tests.

67

7.2.4.1 Basic Blocks and Instruction Fetch Overhead

This reduction in the number of instruction fetches manifests as a reduction of the number of
PC Fetch (PC@) instructions required to load the next sequential instruction word. If a basic
block of code spans several memory words, the last instruction in each word will be a PC@
which fetches the next group of instructions (Sections 6.2.7 and 6.3.1). The call and jump
instructions that terminate basic blocks do their own instruction loading.

Appendix B.2.5 shows that the average length of a basic block, measured in instructions,
fits well within the six instruction slots in each memory word. In fact, 71.1 to 80.9% of basic
blocks fit in a single memory word. This places a limit on how much overhead the PC@
instructions can cause.

This PC@ overhead drops as the memory word gets wider and moreinstructions can be
packed in one. At the limit, when all basic blocks fit into one memory word, no PC@ in-
structions will be executed and all loading of instructionswill come from calls and jumps. In
effect, each memory word behaves as a cache line. This effectis amplified by the mechanism
proposed in Chapter 8.

7.3 Behaviour of Iteration, Recursion, and Subroutine Calls

A clearer understanding of the differences between Gullwing and MIPS is obtained by com-
paring the behaviour of simple, demonstrative programs written for both processors. These
demonstrators are examples of universal small-scale features of code, regardless of the higher
language used: iteration, recursion, and subroutine calls. They are not meant as benchmarks of
overall performance, but as precise, singular tests made toexpose the low-level details of how
each processor executes code, unclouded by the complexities and biases of actual purpose-
ful software. A direct comparison can be made between both processors since the algorithms
and implementation styles are identical, contrary to the heterogeneous tests from the previous
section.

7.3.1 Measured Properties

The code examples given are simple enough that their properties do not depend on input data
and can thus be determined by inspection. The properties aremeasured for a single algo-
rithm step, which is one loop, recursive call, or sequence ofsubroutine calls. For looping and
tail-recursive code, only the code inside the loop is considered since the entry and exit code
contribute a fixed amount regardless of the number of iterations. For recursive and subroutine
code, the entire code is considered. The measured properties are:

Memory Words This is a measure of code size, assuming 32-bit memory words.Instructions
are displayed such that one line represents one word of memory.

Instructions This is the number of instructions executed. All other things being equal, a
difference in number suggests a difference in suitability to the given task.

68

Memory Accesses This is the count of the number of memory fetches, loads, and stores9. For
MIPS, this also include the fetching of instructions. Thereis no such distinction in Gullwing:
fetching instructions is a special case of data loads.

Cycles This is the count of the number of cycles required. The cycle time is assumed to
be the same for both processors. All MIPS instructions each count as one cycle, while the
Gullwing instructions count as one or two cycles10. The MIPS pipeline is assumed to be full at
the start and to never stall.

Memory Accesses Per Cycle This is a measure of the memory bandwidth required. A mea-
sure of one access per cycle implies a fully-utilized memorybus.

Cycles Per Instruction (CPI) The MIPS pipeline is assumed to never stall and thus to always
have a CPI of one. Since Gullwing instructions take one or twocycles, the CPI depends on the
code being executed.

Instructions Per Memory Word This is a measure of code density. For MIPS, this measure
is always one. For Gullwing, it is variable.

7.3.2 Demonstrators

The C source for the demonstrators was compiled to assembly language, at various optimiza-
tion levels, with a little-endian MIPS32 cross-compiling version of GCC 3.4.4. The simplest
resulting code was then hand-optimized, if possible, to eliminate the quirks of the compiler
and reproduce optimal hand-assembled code. From this, the equivalent stack-oriented code
was written with an effort towards keeping the algorithm unchanged.

The first demonstrator is the triangular numbers function. It is the additive analogue of the
factorial function: each triangular number is the sum of allthe preceding positive integers. It is
quite possibly the tiniest non-trivial example of looping code (since the number of repetitions
is part of the calculations). It is also interesting since itis expressible in several forms. The
iterative, recursive, and tail-recursive forms are analyzed11.

9In the MIPS pipeline, all instructions require one memory access to fetch the instruction, and another access
if the instruction is a load or a store. For Gullwing, there isno division between instruction and data memory.
The fetching or loading of instructions is done by the flow control instructions. Calls, returns, jumps, and taken
conditionals perform two memory accesses. Untaken conditionals and PC@ (PC Fetch) do only one. A PC@ is
implied at the end of a group of instructions that does not endin a flow control instruction. Literal fetches take
one cycle.

10For Gullwing, conditional jumps use a variable number of cycles. If taken, they behave like a jump, call, or
return, taking two cycles. If not taken, they merely advanceto the next instruction, taking one cycle. Fortunately,
in the programs shown, the conditional jump is used to test the loop exit condition or the recursion terminal case
and thus takes one cycle for all algorithm steps except the last one. It is thus considered a one-cycle instruction.
See Section 6.3 for details.

11There is a closed form of the triangular numbers algorithm which I’ve not investigated here because it requires
multiplication, which Gullwing does not have:Trin = 1

2
n(n + 1). Since it’s a straightforward expression, it

should evaluate in the same manner on stack-based and register-based computers, with perhaps a small stack
manipulation overhead on stack computers, depending on theexact instruction set.

69

The second demonstrator is a sequence of progressively morecomplex subroutine calls
implementing the sum of their parameters. While the function is trivial, it is implemented in a
manner that highlights parameter passing in nested subroutines.

7.3.3 Iterative Triangular Numbers

This is a straightforward iterative version. It add a decrementing loop counter to a sum.
Gullwing requires over twice as many instructions for iterative code since values must be

explicitly duplicated, moved about the two stacks, or loaded from memory. In contrast, MIPS
has random access to all registers and explicit source and destination operands which can also
be small literals. This implicitly combines duplication, manipulation, and literal fetches with
the actual arithmetic/logical operation. It naturally follows that many more of the simpler stack
operations will be required to accomplish the same effect. Sections 9.2.2 and 9.2.3 discuss
means of implementing more complex stack operations.

These extra instructions required by Gullwing are mostly stack manipulations, which add
cycles but do not access memory, and thus artificially reducethe memory bandwidth. Simi-
larly, the CPI is lower than in all the other demonstrators due to these additional single-cycle
instructions.

The size overhead of these instructions is entirely absorbed by the capacity to pack multiple
instructions per memory word, but any potential reduction in the number of memory accesses
is offset by the greater number of literals and addresses which must be fetched.

70

Algorithm 11 Triangular Iterative C Source
int triangular (int foo) {

int bar = 0;
while(foo != 0){

bar = bar + foo;
foo = foo - 1;

}
return bar;

}

Algorithm 12 Triangular Iterative MIPS32
Assembly

move $2,$0
$L7: beq $4,$0,$L8

addu $2,$2,$4
b $L7
addiu $4,$4,-1

$L8:
j $31
nop

Algorithm 13 Triangular Iterative Gullwing
Assembly

LIT >R
0

Loop: DUP JMP0 R> OVER + >R
End
LIT + JMP
-1
Loop

End: DROP R> RET

Main Loop MIPS Stack Stack/MIPS

Mem Words 4 5 1.25
Instructions 4 9 2.25

Mem Accesses (instr+data)(4+0) 5 1.25
Cycles 4 10 2.50

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.00 0.50 0.50
Cycles/Instruction 1.00 1.11 1.11
Instructions/Word 1.00 1.80 1.80

Table 7.7: Triangular Iterative Code Comparison

MIPS Gullwing
move 0 4 >R, R>, DUP, OVER

addu, addiu 2 2 +
load imm 0 1 LIT

beq 1 1 JMP0
b 1 1 JMP

Table 7.8: Iterative Dynamic Instruction Mix

71

7.3.4 Recursive Triangular Numbers

The recursive version stores the intermediate values on thestack across a series of recursive
calls, summing them once the terminal case is reached.

The stack-oriented instruction set of Gullwing eliminatesall the explicit call stack manipu-
lations and copying of arguments done by MIPS, approximately halving the number of memory
words required and also resulting in straightforward code12.

Gullwing has to perform very little extra stack manipulation and so does not have an ar-
tificially reduced memory bandwidth as in the iterative example. On the other hand, MIPS
must now manage a stack in memory, increasing its cycle and memory access counts to well
above those of Gullwing. The result is that Gullwing genuinely requires about half the mem-
ory bandwidth than MIPS. Section 9.2.1 discusses a method which could eliminate the stack
management overhead of MIPS.

Algorithm 14 Triangular Recursive C Source
int triangular (int foo) {

if (foo == 0) {
return 0;

} else {
return foo + triangular(foo-1);

}
}

12It is fair to say that the MIPS code shown, which has been cleaned-up from the actual compiler output, is
spaghetti-code. It’s not possible to optimize it further without altering the algorithm (recursing to a separate entry
point), and even then it would only save one instruction. Theconvoluted nature of efficient code created by a
compiler is not usually a human concern, but there’s no way I can call it a good thing.

72

Algorithm 15 Triangular Recursive MIPS32
Assembly

Tri: addiu $sp,$sp,-32
sw $31,28($sp)
sw $16,24($sp)
move $16,$4
beq $4,$0,$L1
move $2,$0
addiu $4,$4,-1
jal Tri
addu $2,$2,$16

$L1: lw $31,28($sp)
lw $16,24($sp)
j $31
addiu $sp,$sp,32

Algorithm 16 Triangular Recursive Gullwing
Assembly

Tri: DUP JMP0 DUP LIT + CALL
End
-1
Tri
+

End: RET

Entire Code MIPS Stack Stack/MIPS

Mem Words 13 6 0.46
Instructions 13 8 0.62

Mem Accesses (instr+data)(13+4) 7 0.41
Cycles 13 10 0.77

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.31 0.70 0.53
Cycles/Instruction 1.00 1.25 1.25
Instructions/Word 1.00 1.33 1.33

Table 7.9: Triangular Recursive Code Comparison

MIPS Gullwing
move 2 2 DUP

addu, addiu 4 2 +
load imm 0 1 LIT

sw 2 0 A!, etc...
lw 2 0 A@, etc...
beq 1 1 JMP0
jal 1 1 CALL
j 1 1 RET

Table 7.10: Recursive Dynamic Instruction Mix

73

7.3.5 Tail-recursive Triangular Numbers

Expressing the recursive algorithm in a tail-recursive form reuses the parameters across calls,
reducing the data stack depth to that of the iterative case, and provides the opportunity to
eliminate the tail call.

The advantage of this representation is that the tail call istrivially eliminated from the
Gullwing code by replacing theCALL instruction with aJMPand eliminating the following
RET instruction. This eliminates the accumulation of return addresses from the return stack.
Optimizing the MIPS code in the same manner yields the initial iterative code. The tail of the
Gullwing code is not counted since it executes only once.

Expressing the algorithm in a tail-recursive form brings itcloser to the iterative case and
so some of the stack manipulation overhead reappears in the Gullwing code. However, the
memory bandwidth remains lower than MIPS as in the recursivecase.

Algorithm 17 Triangular Tail-Recursive C Source
int triangular (int foo, int acc) {

if (foo == 0){
return acc;

} else {
acc += foo;
foo -= 1;
return triangular(foo,acc);

}
}

74

Algorithm 18 Triangular Tail-Recursive
MIPS32 Assembly

Tri: addiu $sp,$sp,-32
sw $31,24($sp)
beq $4,$0,$L1
addu $5,$5,$4
jal Tri
addiu $4,$4,-1

$L1:
lw $31,24($sp)
j $31
addiu $sp,$sp,32

Algorithm 19 Triangular Tail-Recursive Gull-
wing Assembly

Tri: OVER JMP0 OVER + >R
End
LIT + R> CALL
-1
Tri
RET

End: >R DROP R> RET

Main Body MIPS Stack Stack/MIPS

Mem Words 9 6 0.67
Instructions 9 10 1.11

Mem Accesses (instr+data)(9+2) 7 0.64
Cycles 9 12 1.33

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.22 0.58 0.48
Cycles/Instruction 1.00 1.20 1.20
Instructions/Word 1.00 1.67 1.67

Table 7.11: Triangular Tail-Recursive Code Comparison

MIPS Gullwing
move 0 4 DUP, OVER, >R, R>

addu, addiu 4 2 +
load imm 0 1 LIT

sw 1 0 A!, etc...
lw 1 0 A@, etc...
beq 1 1 JMP0
jal 1 1 CALL
j 1 1 RET

Table 7.12: Tail-Recursive Dynamic Instruction Mix

75

7.3.6 Subroutine Calls

Nested subroutine calls are really a form of expression evaluation (Section 4.2), which is a
process that naturally maps onto a stack. However, the efficiency of this mapping is quite
dependent on how the expression is arranged by the programmer or compiler. A fundamental
assumption here is that subroutines are library calls and thus cannot be inlined or have their
registers globally allocated by a smart compiler.

The MIPS subroutine call overhead, manifested as additional instructions and memory ac-
cesses to manage an in-memory stack and move parameters between registers, is quickly am-
plified as the nesting of subroutines increases. This overhead is so large that even the low
density and high CPI of sequence of calls in Gullwing code does not negate it. Section 9.2.1
discusses a method which could eliminate the stack management overhead of MIPS.

Add2 The stack code cycle overhead here comes from (the unoptimized)RETrequiring two
cycles to execute.

Algorithm 20 Add2 C Source
int add2 (int a, int b){

return a + b;
}

Algorithm 21 Add2 MIPS32 Assembly
add2: j $31

addu $2,$4,$5

Algorithm 22 Add2 Gullwing Assembly
add2: + RET

Entire Code MIPS Stack Stack/MIPS

Mem Words 2 1 0.50
Instructions 2 2 1.00

Mem Accesses (instr+data)(2+0) 2 1.00
Cycles 2 3 1.50

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.00 0.67 0.67
Cycles/Instruction 1.00 1.50 1.50
Instructions/Word 1.00 2.00 2.00

Table 7.13: Add2 Code Comparison

MIPS Gullwing
addu 1 1 +

j 1 1 RET

Table 7.14: Add2 Dynamic Instruction Mix

76

Add3 The stack code shows a great advantage, as previously seen inthe recursive triangular
number example, even for a single nested call with one additional parameter.

Algorithm 23 Add3 C Source
int add3 (int a, int b, int c){

return add2(add2(a,b),c);
}

Algorithm 24 Add3 MIPS32 Assembly

add3: addiu $sp,$sp,-32
sw $31,28($sp)
sw $16,24($sp)
move $16,$6
jal add2
move $4,$2
move $5,$16
jal add2
lw $31,28($sp)
lw $16,24($sp)
j $31
addiu $sp,$sp,32

Algorithm 25 Add3 Gullwing Assembly
add3: CALL

add2
CALL
add2
RET

MIPS Gullwing
move 3 0 DUP, etc...

addu, addiu 2 0 +
sw 2 0 A!, etc...
lw 2 0 A@, etc...
jal 2 2 CALL
j 1 1 RET

Table 7.15: Add3 Dynamic Instruction Mix

Entire Code MIPS Stack Stack/MIPS

Mem Words 12 5 0.42
Instructions 12 3 0.25

Mem Accesses (instr+data)(12+4) 6 0.38
Cycles 12 6 0.50

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.33 1.00 0.75
Cycles/Instruction 1.00 2.00 2.00
Instructions/Word 1.00 0.60 0.60

Table 7.16: Add3 Code Comparison

77

Add4 This more complex example requires some stack manipulation. Nonetheless, its per-
formance is still far better than the corresponding MIPS code.

Algorithm 26 Add4 C Source
int add4 (int a, int b, int c, int d){

return add2(add2(a,b),add2(c,d));
}

Algorithm 27 Add4 MIPS32 Assembly

add4: addiu $sp,$sp,-40
sw $31,36($sp)
sw $18,32($sp)
sw $17,28($sp)
sw $16,24($sp)
move $16,$6
move $17,$7
jal add2
move $18,$2
move $4,$16
move $5,$17
jal add2
move $4,$18
move $5,$2
jal add2
lw $31,36($sp)
lw $18,32($sp)
lw $17,28($sp)
lw $16,24($sp)
j $31
addiu $sp,$sp,40

Algorithm 28 Add4 Gullwing Assembly
add4: CALL

add2
>R CALL
add2
R> CALL
add2
RET

MIPS Gullwing
move 7 2 >R, R>
addiu 2 0 +
sw 4 0 A!, etc...
lw 4 0 A@, etc...
jal 3 3 CALL
j 1 1 RET

Table 7.17: Add4 Dynamic Instruction Mix

Entire Code MIPS Stack Stack/MIPS

Mem Words 21 7 0.33
Instructions 21 6 0.29

Mem Accesses (instr+data)(21+8) 8 0.28
Cycles 21 10 0.48

Derived Measures MIPS Stack Stack/MIPS

Accesses/Cycle 1.38 0.80 0.56
Cycles/Instruction 1.00 1.67 1.67
Instructions/Word 1.00 0.86 0.86

Table 7.18: Add4 Code Comparison

78

7.4 Pipelining

The unpipelined view of the Gullwing processor presented inChapter 6 shows a simple com-
puter with a number of components comparable to the DLX processor of Hennessy & Pat-
terson. However, the cycle time of Gullwing as shown must be greater than that of the DLX
simply because an instruction cycle includes the full path from the Instruction Shift Register
(ISR), through the (implicit) decoding logic, to the controlled units such as the ALU.

Pipelining Gullwing would overlap the decoding and executing of an instruction and reduce
the cycle time to that of the slowest stage, which is usually the adder in the ALU. I’ll show this
change in the same manner as Koopman [Koo90], as a transformation of the well-known DLX
pipeline, but in much more detail. The resulting Gullwing pipeline has a structure that implies
a comparable cycle time to the DLX pipeline.

7.4.1 Transforming the DLX Pipeline to Gullwing

For reference, Figure 7.1 [HP02, Fig. A-3] shows the basic shape of the DLX pipeline. Each
stage contains a particular subsystem: Instruction Memory(IM), Register File (Reg), Arith-
metic and Logic Unit (ALU), and Data Memory (DM). These stages are commonly referred
to as the Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and
Write-Back (WB) stages. Stages are separated by pipeline registers. The Register file is simul-
taneously read in theID stage and written in theWBstage.

IM Reg

A
LU DM Reg

IF ID EX MEM WB

Figure 7.1: DLX Pipeline Block Diagram

The pipelining of the Gullwing processor can be explained byexchanging the subsystems
in the DLX pipelining with those of Gullwing and following the implications.

The first change is that Gullwing has a single memory bus for instructions and data. This
removes the distinction between IM and DM. Since theIF stage fetches an instruction every
cycle, this implies a structural hazard for every data access. However, the zero-operand instruc-
tion format of Gullwing means that several instructions canbe packed as a group into a single
memory word (Section 6.2.7). This reduces the occurrence ofthe structural hazard to between
2 and 4 percent of executed instructions (PC@ count in Appendix B.2.2). Furthermore, the end
of a group of instructions is explicitly marked by the inclusion of a PC@ (PC Fetch) instruction
which fetches the next group of instructions in parallel with the current instruction if possible.
Combined, these two features accomplish the function of theIF stage and effectively divides
it betweenMEM, where the instructions are fetched, andID , where they are held and decoded.

79

The second change is the replacement of the register file witha stack, which has the dis-
advantage of forcing a RAW (Read-After-Write) dependency between all instructions. This
means that an instruction inID must wait for the previous instruction inEX to reachWBbefore
being able to continue. However, a stack has the advantage ofhaving its inputs and outputs
immediately available, without having to decode addresses13. This effectively makes them
into registers equivalent to theID/EX andEX/MEMpipeline registers connected to the ALU.
Thus the stack can be moved out ofID and placed intoEX without any speed penalty. This
eliminates theWBstage and simplifiesID .

The third change is the use of direct addressing. The DLX processor uses displacement
addressing to simulate a number of other addressing modes. This requires the ALU to compute
an address for each load or store instruction, forcingEX to precedeMEM. Direct addressing
removes this dependency and so both stages can now operate inparallel. SinceMEMalready
contains the incrementer for the Program Counter (brought over from IF in the first transfor-
mation), it can be re-used to implement post-incrementing direct addressing.

The end result of these changes results in the pipeline shownin Figure 7.2a, whereID
decodes the instructions from the ISR, andEX andMEMexecute the instructions. Figure 7.2b
shows how these stages map to the existing Gullwing functional blocks. Note that theEXand
MEMstages both contain adding circuitry and so place a lower limit on the cycle time that is
comparable to that of the DLXEXstage.

The operation of the pipeline is similar to that of the DLX (Figure 7.3). Since the pipeline
introduces one stage of latency to execution, the next groupof instructions is loaded into the
ISR while the last instruction in the current group (5) decodes. This process is detailed in the
next section. Instructions that require two cycles to execute, such as loads, occupy theID
stage for the duration of their execution (Figure 7.4). Loads and stores must take two cycles
since they currently cannot be overlapped, but on the other hand there is no load delay slot.
Overlapping loads and stores are discussed in Section 9.2.3.

ID

EX

MEM

MEM

(a) Pipeline

TOP +1 PC

A

MARALU

ISR

MEM adrdata

R

RS

DS

EX

MEM

ID

(b) Stage Details

Figure 7.2: Gullwing Pipeline Block Diagram

13Since a stack is only ever accessed sequentially, the addressing of the individual stack registers reduces to a
single-bit shift register, one bit per stack register, withno decoding required. A more aggressive design would
further reduce the entire stack to a word-wide shift register.

80

Cycle (Current Instruction Word)
Instruction 1 2 3 4 5 6 1

0 ID EX/MEM
1 ID EX/MEM
2 ID EX/MEM
3 ID EX/MEM
4 ID EX/MEM
5 (next word loaded while 4 executes and 5 decodes) ID EX/MEM

0 ID

Figure 7.3: Gullwing Pipeline Operation

Cycle Notes
Instruction 4 5 6 7

@A ID MEM @A stays in ID
@A ID EX/MEM

4 ID EX/MEM
5 ID

Figure 7.4: Gullwing Load/Stores Pipeline Diagram

7.4.2 Altering the ISR to Deal with the Additional Latency

The pipelining of Gullwing adds a latency of one stage to the execution of instructions. This
affects the use of the PC@ instruction to fetch the next groupof instructions when the current
one is exhausted (Section 6.1.3). After the last instruction in a group has finished, while the
current PC@ is in theEX stage, another PC@ would be inID and would enterEX just as
the ISR was reloaded by the first PC@. The spurious second PC@ would then load the ISR
again after only the first instruction from the new group had begun executing, skipping over
the remainder.

The solution to this side-effect of pipelining is to move ahead by one the insertion point of
the PC@ instruction so that it begins executing while the actual last instruction in the group
begins decoding and is executed just as the ISR is reloaded. Figure 7.5 shows the necessary
alterations to the original ISR (Figure 6.2). The PC@ instruction is inserted at the same time as
the rest of the ISR is loaded, in between the last and before-last instruction slots (S5 and S4).
The slots are now filled-in with NOPs instead of PC@s as the instructions are shifted out.

The multiplexer between S0 and S1 is required to handle the instruction fetch overlap op-
timization (Section 6.3.1). Once the penultimate instruction (originally in S4) reaches S0, the

81

inserted PC@ will be in S1 and enable the L signal, signallingthe last instruction. If the in-
struction in S0 does not access memory, then both it and the PC@ execute in parallel and S0
and S1 are then loaded from S214, which contains the actual last instruction (Figure 7.6). If
the instruction in S0 accesses memory, then the instructionfetch is not overlapped, and the
instructions are shifted as usual (Figure 7.7).

If not all the instruction slots are filled, then the compilermust make sure that a PC@ is
compiled before the last instruction and fill the remaining slots with NOPs. It must also make
sure the built-in PC@ is never executed after a previous PC@ in the same word. For example,
if the last instruction would end up in S4, then it must be moved to S5 and a NOP placed in S4.
Such instruction reorderings usually leads to a one-cycle penalty in execution.

5 5 5 5

32 MEM

5 5 5 5 5
5

5

25

55

5

5
5

S1 S4S2 S3 PC@ S5
x

NOPS0

INST
L

LSB MSB
PC@

(a) ISR for Pipeline

Figure 7.5: Gullwing ISR Modified for Pipeline

Cycle Notes
Instruction 4 5 6 1

3 ID EX/MEM
4 ID EX Doesn’t use MEM

PC@ (L is set) MEM Executed concurrently
5 ID EX/MEM Loaded from S2

0 ID

Figure 7.6: Gullwing Instruction Fetch (with Overlap) Pipeline Diagram

14S1 is overwritten by S2 so as to prevent two PC@ from being executed in sequence. The instruction in S2,
being the actual last instruction, can never be a PC@, else the situation described in the first paragraph occurs.

82

Cycle Notes
Instruction 4 5 6 7 1

3 ID EX/MEM
4 ID MEM Uses MEM

PC@ (L is set) ID MEM Executed sequentially
5 ID EX/MEM Loaded from S1

0 ID

Figure 7.7: Gullwing Instruction Fetch (without Overlap) Pipeline Diagram

7.4.3 The Effect of Pipelining on Calls, Jumps, and the CPI

Jumps behave on a pipelined Gullwing in the same manner as on the DLX. The jump target is
loaded one cycle after the jump instruction has finished executing, thus the following instruc-
tion is a branch delay slot which is always executed and must be appropriately filled by the
compiler (Figure 7.8).

Also, as in the DLX, a data hazard occurs if a conditional jumpdepends on the result of the
immediately preceding instruction. However, because the stack provides only a single point for
all results it makes this data hazard inevitable. As with thebranch delay slot, the compiler must
find a way to fill this data hazard slot with useful work. One example is to fill it with a DUP
instruction which would duplicate the top of the stack before the conditional jump consumes
it, thus saving its value.

In the worst case where they can only be filled with NOPs, the data hazard and branch
delay slots will add two cycles to conditional jumps, raising them to four cycles, and will add
one cycle to calls, unconditional jumps, and returns, raising them to three cycles. Factoring
this overhead into the CPI data from Table 7.4 increases the CPI contribution of Subroutine
instructions to 0.450 for Extensions and 0.453 for VM, of Conditionals to 0.142 and 0.062, for
a new total CPI of 1.533 and 1.481 respectively. This estimate does not take into account the
second-order effect of the lower instruction density caused by the NOP-filled slots, which will
increase the proportion of instruction fetches.

Cycle Notes
Instruction 3 4 5 6 1

2 ID EX/MEM Data Hazard Slot
JMP0 ID MEM JMP0 stays in ID
JMP0 ID MEM

4 ID EX/MEM Branch Delay Slot

0 ID Branch Target

Figure 7.8: Gullwing Taken Jumps or Calls Pipeline Diagram

83

7.5 Summary and Performance Comparison

In Section 7.2, the comparison of benchmark statistics revealed these facts about Gullwing,
relative to DLX/MIPS:

• A greater number of literal fetches, subroutine calls, and stack permutations are executed.

• An average CPI of 1.31, which is poor compared to the average of 1.14 for a DLX.
However, Gullwing is actually architecturally equivalentto a DLX without load delay
slots or delayed branches, whose average CPI is 1.38.

• An average number of memory accesses per cycle of 0.667, compared to 1.421 for
DLX/MIPS (Section 7.2.3).

• An average code density of only 1.2 instructions per memory word, out of a potential
maximum of three, because most of the instruction slots remain unused.

In Section 7.3, a detailed inspection and analysis of equivalent programs which express fun-
damental code features uncovered these differences between Gullwing and a generic MIPS-32
computer:

• The random-access registers and explicit operands of the MIPS design are a definite
advantage when multiple values must be maintained at once inan algorithm. Gullwing
must instead execute additional instructions to manipulate the stacks to get to the value
it needs.

• The MIPS processor must simulate a stack in software for subroutines calls and recur-
sive procedures. The extra instructions to implement this stack consume more memory
bandwidth and processors cycles than the equivalent Gullwing code.

• The Gullwing processor requires less memory bandwidth, often half that of MIPS, re-
gardless of the number of cycles required for an algorithm.

In Section 7.4, the pipelined form of Gullwing is derived through incremental transformation
of the DLX pipeline. The result is a 2-stage pipeline composed of an Instruction Decode stage
followed by parallel Execute and Memory stages. Each stage is structurally no more complex
than any stage from the DLX pipeline, which implies that the cycle time will be similar. The
Gullwing pipeline exhibits similar branch data hazard and delay slots as the DLX pipeline. In
the worst case, these delays should increase the average CPIfrom 1.31 to 1.51.

In summary, a pipelined Gullwing processor would have a similar cycle time relative to a
DLX processor. However, with the exception of subroutine calls, Gullwing usually requires
a greater number of cycles to execute the same algorithms. Italso suffers from a higher CPI
due to un-optimized load and branch delays. Therefore, to bring Gullwing up to the same
performance as DLX, the number of executed instructions and/or the average CPI must be
reduced (Sections 9.2.2 and 9.2.3).

84

Chapter 8

Improving Code Density

The density of Gullwing low-level code is very good. A 32-bitword holds six instruction slots.
However, instructions that require an in-line argument such as calls, jumps, and literal fetches,
also additionally use up one whole subsequent memory word1. Including one such instruction
in a group, while keeping all slots filled, raises the memory usage to two words and thus halves
the code density to three. Adding another such instruction drops the density to two, and so on
until all six instructions require an in-line argument, with a resulting minimum code density of
six-sevenths (∼0.86). As the number of slots in a memory word increases, the minimum code
density increases towards unity.

This situation is unfortunately a narrow best case. It is only applicable when all instruction
slots can be filled. This is true for literal fetches since they do not alter the program flow, and
for conditional jumps since they simply continue with the next instruction if the condition is
not met. Calls and unconditional jumps always load a new instruction group2. Memory is
word-addressed and groups always begin execution with the first slot, therefore jumping or
returning to the instructions in the slots after a call or jump is impossible and must instead go
to the next memory word after the argument. Sequences of calls thus end up wasting most of
the available slots (Figure 8.1), bringing the minimum codedensity down to one-half.

Sequences of calls are typical of high-level code, where a procedure is primarily composed
of calls to other procedures. Sequences of jumps are rare, never executed sequentially, and are
not considered further. The actual usage of the instructionslots is listed in Appendix B.1.5.
The low ratio of filled instruction slots suggests that thereis room for significant improvement
in code density.

CALL

CALL

CALL

Address of Subroutine 1

Address of Subroutine 2

Unreachable Slots

Address of Subroutine 3

Figure 8.1: Gullwing High-Level Code with Unavailable Slots

1Returns take their argument from the Return Stack and so require no extra memory.
2As do returns.

85

8.1 Improving High-Level Code Density by Adding an In-
struction Stack

The key to improving the density of high-level code is the observation that if the instructions
to be executed after a subroutine call are placed in the same memory word as the call, they
will be fetched along with the call and they should not need tobe fetched again when the
subroutine returns. The instructions simply need to be temporarily stored in the processor
while the subroutine executes. The number of words that needto be stored is identical to the
current nesting depth of the program. This suggests extending the Instruction Shift Register
(ISR) with a stack that operates in synchrony with the ReturnStack (RS). Figure 8.2 illustrates
the process. For clarity, only four slots are depicted and the Return Register (R) is omitted (see
Figure 6.1).

When a subroutine call is executed, the remaining instructions are pushed onto an Instruc-
tion Stack (IS) at the same time that the return address is pushed from the Program Counter
(PC) onto the RS. When the subroutine returns, the saved instructions are popped from the IS
and placed at the head of the ISR at the same time that the return address is popped from the RS
into the PC. The last slot in the ISR is filled with a Program Counter Fetch (PC@) instruction,
as during normal execution. The net effect is that the instructions following a call are now ex-
ecuted upon return from the subroutine. This makes it possible to increase the minimum code
density of high-level code back to six-sevenths (Figure 8.3).

CALL
ISR

IS

PC

RS

(a)

ISR

IS

PC

RS

PC@

RET

(b)

Figure 8.2: Instruction Stack During Call and Return

Address of Subroutine 2
Address of Subroutine 3

Address of Subroutine 1
CALL CALL CALL

Available Slots

Figure 8.3: Gullwing High-Level Code with Available Slots

86

8.1.1 Side-Effects on Return Stack Manipulation

A consequence of the Instruction Stack (IS) is that the return addresses on the Return Stack
(RS) must always be matched with the corresponding instructions stored on the IS. Any offset
between the Instruction and Return stacks would mean that from that point onwards all re-
turns to calling procedures would execute a few random instructions before fetching the next
(correct) groups of instructions!

The >R (“To R”) and R> (“R From”) instructions move data back and forth between the top
of the Data Stack (TOP) and the RS. Hence they could leave the RS with a different number
of elements than the IS. To compensate, >R pushes a group of PC@ instructions onto the IS,
and R> pops the IS, discarding the instructions. If >R is usedto push a return address onto
the RS, such as when the address of a function call is computedat runtime, then the next
subroutine return will execute the stored PC@ and forcibly fetch the first instruction group
of that procedure. If R> is used to discard a return address, possibly for some kinds of error
handling, the stored instructions for that procedure are also discarded. Figure 8.4 illustrates the
process.

It is still possible to cause incorrect execution with the unusual code sequence ’R> >R’
which would replace the stored instructions with a PC@. Thiswould skip a few instructions
upon return unless the instruction slots after the corresponding call we deliberately left unused
(and thus filled with PC@ anyway). However, the need to inspect or alter the address of the
calling procedure’s caller is rather unusual. Similarly, unless there exists a means of loading
or storing the contents of the IS under program control, the RS cannot be saved to memory for
the purpose of context switching, debugging, or exception handling.

ISR

IS RS

PC@

>R
TOP

(a)

ISR

IS RS

R>
TOP

x x x

(b)

Figure 8.4: Instruction Stack During >R and R>

87

8.2 Implementation

The implementation of the code density optimization is straightforward, consisting mainly of
adding control lines to push and pop the IS as required. Algorithm 29 shows the changes re-
quired. Added controls are in bold, while removed controls are struck through. The instruction
fetch overlap optimizations (Section 6.3.1) are not included as they are orthogonal.

Algorithm 29 Alterations to Gullwing to Support an Instruction Stack
Inputs Outputs
---------- ---------
INST TOP S N Control
---- --- - - -------
CALL X 0 1 PC→(+1) →R, R→RS, RS(PUSH), MEM→MAR,PC, ISR→IS, IS(PUSH)
CALL X 1 0 PC→(+1) →PC,MAR, MEM→ISR
RET X 0 0 RS(POP), RS→R, R→PC,MAR, IS(POP), IS→ISR

RET X 1 0 PC→(+1) →PC,MAR, MEM→ISR
>R X 0 0 DS(POP), DS→TOP, TOP→R, R→RS, RS(PUSH), PC@→IS, IS(PUSH), ISR< <
R> X 0 0 RS(POP), RS→R, R→TOP, TOP→DS, DS(PUSH), IS(POP), ISR< <

8.3 Side-Effect on Code Size, Silicon Area, and Subroutine
Overhead

Code Size By allowing sequences of calls to fill all instruction slots in a memory word,
the Instruction Stack (IS) mechanism significantly reducesthe size of high-level code. In the
example previously given, the code size is reduced by 33% (from six memory words down to
four). In the most extreme case where all six slots are filled with calls, the code size is reduced
by 42% (from twelve memory words down to seven). For a large enough number of slots per
memory word(N), the reduction tends towards a limit of 50% as the number of memory words
goes from2N down toN + 1.

As a further estimate of the reduction in code size, if the number of instructions in the
VM test (Appendix B.1.5) is assumed to be evenly packed into all six instruction slots in a
word, these instructions will then use only 610 words of memory instead of 1565 (Appendix
B.1.1). Adding to that the 1464 memory words which hold literals and addresses, which are
not affected by the new instruction packing, the new total size of the VM test would be 2074
memory words, which is a 31.5% reduction in size.

In reality, the size reduction is lessened by a second-ordereffect from calls and jumps:
since memory is word-addressed, the target code of a call or jump must begin at the first slot
of a memory word, which means that there will usually be a break in the sequence of used
instruction slots, wasting a few. This typically happens insmall code loops and at the end of
procedures (after the return instruction). This effect is also discussed in Section 6.2.7.

88

Silicon Area Adding a third stack increases the silicon area required by the processor. The
additional area consumed by the IS is similar to that of the Return Stack since it must be of the
same depth and slightly less wide.

The breakeven point between the additional area of the IS andthe saved area in main
memory, given a uniform word width, is when the reductionR in the original sizeS of a
program, due to the addition of the IS mechanism, is equal to the depthD of the IS stack:
S − S(1 − R) = D.

For example, ifR is taken to be the previously determined value of 31.5%, thenS needs to
be 3.17 times larger thanD for its size to be reduced by the same amount as the size of the IS.
Since a stack rarely needs to be more than 32 words deep (Section 5.5),S would only need to
be equal to 102 memory words to justify the additional area ofthe IS mechanism.

For larger programs, the reduction in code size would greatly outweigh the area of the IS.
The size of the main memory can thus be correspondingly reduced3. The lowered total silicon
area (processor and memory) would especially benefit embedded systems.

Subroutine Overhead The use of the IS eliminates the need to fetch the remaining instruc-
tion slots after a call instruction. Algorithm 29 shows thatthe load in the eliminated second
cycle of the return instruction is no longer required because the remaining instruction slots are
now loaded from the IS during the first cycle. This reduces theoverhead of calling and return-
ing from a subroutine to three cycles, down from four, and also reduces the associated memory
traffic by the same 25%.

8.3.1 The Instruction Stack as an Instruction Cache

Section 7.2.4.1 discusses how the packing of multiple instructions in a memory word makes
each memory word into a cache line of sorts. This caching effect reduces the number of sequen-
tial instruction fetches within a basic block, as performedby PC@ (“PC Fetch”) instructions,
leaving virtually all loading of instructions to calls and jumps.

With the addition of the Instruction Stack, multiple basic blocks, or at least fragments
thereof, can fit into a single memory word. This extends the caching effect across basic blocks
separated by calls. The basic block fragment following a call instruction had already been
previously loaded and kept on the IS while the subroutine wasexecuting.

3This assumes that the stacks and main memory are implementedusing the same memory technology.

89

90

Chapter 9

Conclusions, Contributions, and Further
Work

The first part of this thesis presented the historical origins of the first generation of stack com-
puters and found that these machines were derived from Bauer’s stack principle for the alloca-
tion of storage in nested subroutines, later used in the specification of ALGOL and now seen as
the call stack of C and other programming languages, and thatthe second generation of stack
computers was based on Hamblin’s independently discoveredstack principle geared at func-
tion composition instead of storage allocation. The English Electric KDF9, made commercially
available around 1963, was found to stand out as the first second-generation stack computer
and the only one until the NOVIX NC4016 in 1985. This gap, and the coincidence with the
appearance of RISC microprocessors, accounts for the obscurity of the second generation.

The second part of this thesis built upon the first by proposing a set of criteria to distinguish
first and second-generation stack computers. In summary, second generation stack computers
keep their stacks in the CPU instead of main memory, use the stacks for the evaluation and
composition of functions instead of procedure storage allocation, and use simple, RISC-like
instructions instead of complex microcoded operations. Chapter 5 then presented a rebuttal to
the influential arguments against stack architectures cited by Hennessy & Patterson and found
that they are not applicable to second-generation stack computers due to their different design
and to advances in hardware technology and compilers. The most telling finding is that some
modern processors, such as the Intel Pentium IV and the Digital Alpha AXP 21064, use a 16-
deep internal stack to cache return addresses in the same manner as second-generation stack
computers.

The third part of this thesis specified the design of a small second-generation stack ma-
chine, named ’Gullwing’. The first unusual feature found wasthat the packing of multiple
instructions per memory word, made possible by the zero-operand instruction format, reduced
the number of sequential instruction fetches to between 8.3% and 9.7% of the total number
of executed instructions despite achieving an average codedensity of only 1.2 instructions per
memory word. An additional simple optimization of the instruction fetch mechanism reduced
this fetching overhead by 50.6 to 77.3%, down to 4.1 to 2.2% ofthe total number of executed
instructions, effectively eliminating the need for a second memory bus dedicated to fetching
instructions.

Chapter 7 then compared Gullwing to the DLX and MIPS processors, via some aggregate

91

benchmarks and some low-level code comparisons. In Section7.2, it was observed that 23.3
to 29.2% of the executed instructions on Gullwing are stack manipulation instructions whose
actions are implicit in the three-operand instruction format of MIPS. Similarly, Gullwing must
perform 10 to 16% more immediate loads since there are no operands to hold small constants.

The average CPI of Gullwing was between 1.301 and 1.312: a penalty of 13.1 to 18.2% over
DLX. However, Gullwing is architecturally equivalent to a DLX processor without delayed
branches and loads. Without these optimizations the CPI of DLX would have been 1.34 to
1.41 instead: 2.1 to 8.4% worse than Gullwing.

It was also found that MIPS performed an average of 1.421 memory accesses per cycle,
while Gullwing required only 0.667: a 53% reduction in memory bandwidth. For instruction
fetching alone, Gullwing required 55.9% fewer memory accesses per cycle on average (0.441
vs. 1.00 for MIPS). These improvements were found to originate in the packing of multiple
instructions per memory word: 71.1 to 80.9% of code basic blocks fit within a single memory
word on Gullwing.

Section 7.3 showed that Gullwing is at a disadvantage when multiple intermediate results
are required. A comparison of iterative code demonstrated that Gullwing required 25% more
memory space, 125% more instructions, 25% more memory accesses, and 150% more cycles,
compared to MIPS, to execute the iterative algorithm due to the need to shuffle values on and
off the Data Stack.

On the other hand, Gullwing exhibits extremely efficient function calls. The same algo-
rithm, implemented recursively on Gullwing, required 54% less memory space, 38% fewer
instructions, 59% fewer memory accesses, and 23% fewer cycles than the equivalent recur-
sive MIPS code due to the elimination of the instructions required to simulate a stack in main
memory.

When looking at pure nested subroutines, as would be the casewith precompiled libraries,
Gullwing’s advantage at subroutine calls is amplified further: 58 to 67% less (code) memory
space, 71 to 75% fewer instructions, 62 to 72% fewer memory accesses, 50 to 52% fewer
cycles, and a 25 to 44% reduction in memory bandwidth, despite an average CPI between 1.67
and 2.00 and a code density between 0.60 and 0.86 instructions per word.

As originally specified, the Gullwing processor was not pipelined, and so its cycle time
would have exceeded that of the pipelined DLX processor. A pipelined form of Gullwing was
specified by transforming the stages of the DLX pipeline to Gullwing’s stack architecture. The
result is a two-stage pipeline with parallelEXandMEMstages, which has branch delay slots like
DLX, but no load delay slots and additional branch hazard slots due to the use of a stack instead
of registers. In the worst case where these slots could not beused productively, the average CPI
of Gullwing would increase by 12.9 to 17.8%, to a range of 1.481 to 1.533. Assuming that the
ALU is the critical path of a simple pipeline, then the two-stage pipelined form of Gullwing
should have a similar cycle time to the five-stage DLX pipeline.

Finally, Chapter 8 proposed the use of a third stack to temporarily hold instructions during
subroutine calls. This Instruction Stack would maximize the density of high-level code with
many branches and calls, reducing the overall code size by a little over 30% (up to a theoretical
limit of 50%), and would reduce the memory traffic and cycle count overhead of calling and
returning from a subroutine by 25%.

92

9.1 Contributions

This thesis makes the following contributions:

1. a historical review of first-generation stack computers which uncovers the origins of the
conceptual difference between first and second-generationmachines (Chapter2);

2. a historical review of second-generation stack computers which provides a summary of
many lesser-known and unpublished machines (Chapter 3);

3. a set of criteria to distinguish first and second-generation stack computers which expand
on those given by Feldman and Retter [FR93, pp.599-604] (Chapter 4);

4. a rebuttal of the arguments against stack computers citedby Hennessy and Patterson,
showing that they are applicable to the first generation of stack computers, but not the
second (Chapter 5);

5. a register-transfer level description of Gullwing, a simple, modern second-generation
stack computer, along with an optimization of its instruction fetching mechanism (Chap-
ter 6);

6. an initial comparison of the execution statistics of non-numerical code on both Gullwing
and MIPS (Section 7.2);

7. a detailed comparison of the behaviour of iteration, recursion, tail-recursion, and subrou-
tine calls on both Gullwing and MIPS (Section 7.3);

8. the design of the Gullwing pipeline as a transformation ofthe DLX pipeline (Section
7.4);

9. the proposal of an instruction stack to maximize the code density and accelerate the
subroutine returns of Gullwing (Chapter 8).

9.2 Further Work

Section 7.5 summarized some comparisons between DLX/MIPS and Gullwing. As Gullwing
currently stands, its overall performance is lacklustre when compared to a basic MIPS pro-
cessor. Although the cycle time should be similar, Gullwinglacks result forwarding between
functional units, which makes its pipelining incomplete and inflates its CPI, as evidenced by
the two-cycle loads, stores, branches, and calls. The instructions of Gullwing are also simpler
than those of MIPS and thus more are required to accomplish the same task, with the excep-
tion of subroutine calls, which Gullwing performs with fewer instruction, cycles, and memory
accesses than MIPS.

This section presents some future improvements to Gullwingwhich could bring its CPI
closer to the ideal of 1.00, as well as reduce the impact of itshigher instruction count. Addi-
tionally, the addition of a stack to the MIPS architecture isdiscussed, in order to grant MIPS the
efficient subroutine calls of Gullwing without otherwise altering the instruction set or pipeline.

93

9.2.1 Reducing the DLX/MIPS Subroutine Call Overhead by Adding Stacks

The MIPS architecture has very inefficient subroutine callscompared to Gullwing, stemming
from the need to save and restore registers to a stack in memory (Section 7.3.6). Conversely,
Gullwing has poor performance for iterative code because itlacks random-access registers. A
combination of both might yield the best of both worlds.

Figure 9.1 shows a conceptual modification to the MIPS register file which would create
the possibility of running stack-like code for efficient subroutine calls, while otherwise leaving
the instruction set, architecture, and pipeline unchanged. A Data Stack and a Return Stack are
added ’underneath’ some registers. The Return Stack goes under register $31 since it is where
the current return address is normally stored by thejal (Jump And Link) instruction. The
Data Stack could be placed under any other registers, but is placed here under registers $2 and
$1 for illustrative purposes. Two registers are used so thattwo operands can be taken from the
stack when needed. Register $0 is is of course a source of zeroes on reads and a sink on writes.

If the stacks are disabled, the register file behaves as usual, and existing code runs un-
changed. When the stacks are enabled, a read from a register connected to a stack ($31, $2,
and $1) pops the content of the stack into the register, making the read operation destructive,
and a write to a register pushes the previous contents of the register onto the stack. The excep-
tions to this behaviour are when both $2 and $1 are read together, only the contents of $2 are
overwritten by the stack, and if $1 is both read and written inthat same instruction, it is simply
overwritten as if it had been popped, then pushed.

Given this rough sketch of stack and register interaction, Table 9.1 shows how a number
of stack computer instructions can be synthesized by suitable MIPS instructions. Small inline
constants and branch target labels are denoted by ’$Ln’.

The stack manipulation instructions, such as DROP and OVER,should never be required.
A compiler would use other registers as usual for the storageof counters and common subex-
pressions, thus avoiding the stack manipulation overhead of iterative code seen in Section 7.3.3,
and avoiding the RAW (Read After Write) dependency of the stack. Conversely, the stack could
be used to hold local variables and arguments to subroutines, which would reduce or outright
eliminate the loads and stores required for nested subroutine calls on MIPS (Section 7.3.6).

Algorithm 30 shows the recursive example from Section 7.3.4implemented using stacks.
Tables 9.2 and 9.3 show that, relative to the original MIPS code, the loads and stores are
eliminated, the algorithm uses 38% fewer cycles, and memorybandwidth is reduced by 24%.

A similar register and stack mechanism was proposed by Richard L. Sites [Sit78], with the
primary intent of simplifying expression evaluation. He observed that a stack placed under one
of the registers allowed the evaluation of an expression using fewer actual registers. In current
systems, this could make possible smaller register files, orgive a compiler more room to do
register allocation.

$2...

DSRS

$31 $30 $1 $0

Figure 9.1: MIPS Register File with Stacks

94

Stack MIPS Stack MIPS

CALL jal $Ln NOT xor $1,$1,-1
RET j $31 AND and $1,$1,$2
JMP b $Ln + add $1,$1,$2
JMP0 beq $1,$0,$Ln DROP add $0,$0,$1
LIT addi $1,$0,$Ln SWAP add $1,$2,$0
@ lw $1,($30) PUSH add $1,$30,$0
! sw $1,($30) POP add $30,$1,$0

Table 9.1: Synthesized Stack Operations on MIPS with Stacks

Algorithm 30 Triangular Recursive MIPS32
Assembly with Stacks Added

Tri: add $30,$1,$0 // POP
beq $30,$0,$L1 // JMP0
add $1,$30,$0 // PUSH
addi $1,$0,-1 // LIT
jal Tri // CALL
add $1,$1,$2 // +
add $1,$1,$2 // +

$L1: j $31 // RET

Instructions Without With

move 2 0
addu, addiu 4 5

sw 2 0
lw 2 0
beq 1 1
jal 1 1
j 1 1

Table 9.2: Recursive MIPS32 Instruction Dis-
tribution With and Without Stacks

Entire Code Without With With/Without

Mem Words 13 8 0.62
Instructions 13 8 0.62

Mem Accesses (instr+data)(13+4) 8 0.62
Cycles 13 8 0.62

Derived Measures Without With With/Without

Accesses/Cycle 1.31 1.00 0.76
Cycles/Instruction 1.00 1.00 1.00
Instructions/Word 1.00 1.00 1.00

Table 9.3: Triangular Recursive MIPS32 Code Comparison With and Without Stacks

95

9.2.2 Reducing Gullwing’s Instruction Count with CompoundStack Op-
erations

There has been a hidden assumption throughout this thesis about which operations can be
performed on a stack while avoiding random access to the elements it contains. The commonly
given model of stack behaviour assumes that a dyadic operation pops two items from the stack
in sequence, stores them in some working registers, operates upon the items, and then pushes
the (usually single-item) result onto the stack.

This process is usually optimized to a single step by making the visible top of the stack into
a separate register, thus allowing two items to be read simultaneously and the result to be stored
into the register while the stack proper simply discards itstopmost element. This mechanism
is illustrated by the Data Stack in Figure 6.1.

However, the capacity to see thetwo topmost items creates the possibility of more complex
operationswithout adding cycles, data lines, or control lines, and thus without most of the
pitfalls of past, high-level instruction sets.

For example, addition on a stack destroys both its arguments, which brings about the use of
the OVER instruction to preserve the second element by pushing onto the stack a copy of the
second element which is is then added to the first. This is seenin the iterative and tail-recursive
code examples (Sections 7.3.3 and 7.3.5). Similarly, both arguments can be preserved by first
copying them both with two consecutive OVER instructions.

By simply not popping the stack proper when performing an addition, the ’OVER +’ se-
quence is accomplished in a single instruction. Similarly,by merging the addition operation
into the implementation of the OVER instruction, the sequence ’OVER OVER +’ reduces to
a single instruction. The Gullwing implementation of thesenew operations is shown by the
first two lines of Algorithm 31. Removed actions are struck out, while added ones are bolded.
Similarly, the last three lines show the implementation of anon-destructive JMP0 instruction,
replacing the common ’DUP JMP0’ sequence, where the stack issimply not manipulated.

To provide enough opcodes to support these compound operations, the width of the Gull-
wing opcodes would have to be increased to six bits. While this is still comparable to MIPS,
further study is needed to make sure that at least one compound operation would occur on
average per executed group of instructions, thus balancingout the reduction from six to five of
the number of instruction per group, and still saving one cycle compared to the execution of
the original instruction group.

Algorithm 31 Gullwing Compound Stack Operations
Inputs Outputs
----------------- ---------
INST TOP S N Control
----------- --- - - -------
OVER_+ X 0 0 TOP,DS→ALU(+) →TOP, DS(POP), ISR< <
OVER_OVER_+ X 0 0TOP,DS→ALU(+)→TOP, TOP→DS, DS(PUSH), ISR< <
DUP_JMP0 =0 0 1 DS→TOP, DS(POP), MEM→PC,MAR
DUP_JMP0 !=0 0 0 DS→TOP, DS(POP), PC→(+1) →PC,MAR, ISR< <
DUP_JMP0 X 1 0 PC@

96

9.2.3 Reducing Gullwing’s CPI by Executing Multiple Instructions using
Generalized Instruction Folding

Section 6.3.1 describes a change to the decoding of instructions which allows the overlapping
of the execution of the PC@ (’PC Fetch’) instruction with that of any instruction that does not
access memory, retiring both instructions at once. This mechanism could be generalized to a
greater number of pairs of instructions.

For example, the ’OVER +’ and ’DUP JMP0’ compound operationsdescribed in Section
9.2.2 could be implemented, without adding new opcodes, by decoding both the current and
the next instruction and then shifting them both out. This feature widens the instruction input
to the decoder and might present a time or area penalty since the instruction encoding is dense1.

Loads and stores can especially benefit from the decoding of two instructions at once.
Instead of holding steady for two cycles the instruction input to the decoder while the load or
store executes its two phases, the first phase can be executedwhen the instruction enters the
first part of the two-instruction window of the improved decoder, and the second phase when
the instruction enters the second part of the window. Algorithm 32 shows how the instruction
sequence ’DROP A@+ R@+ XOR RET’2 would be executed: The first line shows the first
phase of A@+ folded with the execution of DROP. The second line contains the overlapped
second phase of A@+ and first phase of R@+. The third line does not overlap the execution of
XOR with the second phase of @R+ since the load must complete before XOR can operate on
the loaded value. Finally, the fourth and fifth lines show howXOR and RET are overlapped.

The execution of this five-instruction code sequence now takes five cycles instead of eight.
Its CPI went from 1.60 to 1.00. The number of memory accesses per cycle increased from 0.75
to 1.00. The performance is now on par with that of non-branching code on MIPS.

The data dependency of the ’@R+ XOR’ sequence could be avoided by enabling the ALU
to use MEM as an input. Similarly, the ’LIT JMP0’ sequence could be overlapped if an ad-
ditional zero-detect circuit was connected to MEM, and ’>A @A’ would benefit from a direct
path between TOP and MAR. This forwarding of data, equivalent to the result forwarding of
the MIPS processor, does add multiplexers in the data path and thus the cycle time to cycle
count trade-off should be considered carefully.

Algorithm 32 Example Gullwing Instruction Sequence Using Generalized Folding
Inputs Outputs
-------------- ---------
S0 S1 TOP S N Control
---- --- --- - - -------
DROP @A+ X 0 0 DS→TOP, DS(POP), A →MAR,(+1) →A, ISR< <
@A+ @R+ X 0 0 MEM→TOP, TOP→DS, DS(PUSH), R →MAR,(+1) →R, ISR< <
@R+ XOR X 0 0 MEM→TOP, TOP→DS, DS(PUSH), PC →MAR, ISR< <
XOR RET X 0 0 TOP,DS→ALU(XOR)→TOP, DS(POP), \\ cont. next line

RS(POP), RS→R, R→PC,MAR, ISR< <
RET PC@ X 0 0 PC→(+1) →PC,MAR, MEM→ISR

1By comparison, MIPS R-type instructions use a total of twelve opcode bits, but do not encode212 unique
instructions. The encoding must thus be sparse and simple todecode.

2A simple hypothetical comparison routine based on COMPARE_STRING from Appendix A.1.3.

97

98

Appendix A

Gullwing Benchmarks Source

The appendix provides the source code for the benchmarks described in Section 7.1.

A.1 Flight Language Kernel

The Flight language kernel defines the basic functions needed to define, lookup, and execute
functions. These basic functions enable the system to extend itself without external software.
The kernel is written in Gullwing machine language, described here symbolically. The main
loop of the kernel is described in Section A.1.9. I have addedcomments, but they are not
present in the actual source code.

A.1.1 Internal Variables and Memory Map

These variables contain the state of the kernel. Each is a single memory word. They define the
boundaries of areas of memory illustrated in Figure A.1.

HERE Contains the address of the memory location that is the current target for compilation.

HERE_NEXT Contains the address of the next memory word where code is to be compiled.

SLOT Contains the bitmask which defines the current available instruction slot in the mem-
ory word pointed-to by HERE.

THERE Contains the address of the top of the function name dictionary. Also the pointer to
the bottom of the input buffer.

NAME_END Contains the address of the end of the function name dictionary. It is used to
detect the failure of a dictionary search.

99

INPUT Contains the address of the top of the input buffer, which is the beginning of the most
recently received string.

Free Memory

Input Buffer

Name Dictionary

Function Code

INPUT

THERE

NAME_END

HERE
HERE_NEXT

Start of Memory

Figure A.1: Flight Language Kernel Memory Map

A.1.1.1 Counted Strings

The storage and transmission format for strings is that of counted strings (Figure A.2). Contrary
to C-style strings, counted strings have no built-in delimiter. They are instead preceded by a
single memory word which contains the count of memory words used by the body of the string.
The contents of the body are arbitrary.

Once received and stored into memory, a counted string gets atail appended, which is not
taken as part of the count. This tail contains either its own address, thus guaranteeing that a
string comparison will always terminate1, or the address of the code with which the string is
associated, thus forming a name dictionary entry.

Count TailBody

Figure A.2: Counted String Format

1Comparing a string to itself is a corner case not dealt with here.

100

A.1.2 Utility Functions

These are small functions which synthesize operations not implemented by the Gullwing pro-
cessor. They are shown here as subroutines but are normally compiled in-line due to their
size.

MINUS Negates the number on the top of the Data Stack before adding it to the next number.

NOT LIT 1 PLUS PLUS RET

OR Performs the bit-wise logical OR of the top two numbers on theData Stack.

OVER NOT AND XOR RET

A.1.3 String Functions

These are the lowest level input buffer manipulation routines. The input buffer behaves like
a simple stack of counted strings. The top of stack pointer isINPUT, the bottom pointer is
THERE.

STRING_TAIL Returns the address of the tail of a string. Takes the head address of the
string. The tail contains an address used for referencing code or terminating string compar-
isons.

//get string length and skip it
>A A@+
//string tail address
A> + RET

PUSH_STRING Alters INPUT to allocate the space for a counted string. Setsthe tail of the
string to point to its own address. Takes the length of the string from the Data Stack.

// account for string count and address tail
DUP LIT 1 + NOT
// adjust INPUT
LIT [address of INPUT] >A A@ + DUP A!
// store string length count at [INPUT]
>A A!
LIT [address of INPUT] >A A@
CALL STRING_TAIL
DUP >A A! RET

101

POP_STRING Alters INPUT to discard the most recently SCAN’ed string.

LIT [address of INPUT] >A A@
CALL STRING_TAIL
// point to head of next string
LIT 1 +
LIT [address of INPUT] >A A! RET

For comparison, this alternate version keeps a copy of the address of INPUT on the stack. It
avoids a literal fetch and a function call, but is harder to follow. An optimizing compiler might
generate code like this.

LIT [address of INPUT] DUP >R
// get [INPUT]
>A A@ DUP
// get string length
>A A@
// add length+2 to [INPUT] to point to next string
+ LIT 2 +
// update INPUT
R> >A A! RET

COMPARE_STRINGS Takes the head address of two strings. Returns the addresses(in the
same order) of the first non-matching pair of symbols. Note that the practise of tailling each
string with the address of the tail guarantees that the comparison will terminate (at the tail).

>A >R
LOOP:
R@+ A@+ XOR
JMP0 LOOP
LIT -1 R> +
LIT -1 A> + RET

A.1.4 Input Functions

These functions read in counted strings from the outside world.

READ1 Presumed here is that READ1 always returns a memory word. Implementation
depends on interface to outside world. Here I assume a memoryport for illustration purposes.

// read in one memory word
LIT [address of input port] >A A@ RET

102

SCAN_STRING Reads a string into a pushed string entry.

// get string length and prep
LIT [address of INPUT] >A A@ >R R@+
SCAN_STRING_LOOP:
// READ1 uses A
CALL READ1 R!+
LIT -1 + DUP JMP0 DONE
JMP SCAN_STRING_LOOP
// storage address should be equal to (INPUT)+length+1 now
DONE:
// store address of end of string in itself for LOOK terminati on
DROP R> DUP >A A! RET

SCAN Reads in a string from the outside world. Input is a counted string, where the first
memory word contains the following number of memory words used by the string, regardless
of symbol encoding. Always reads in the string. There is no check.

The location after the string is kept free to hold its own address (which is [THERE]) as a
termination marker for LOOK, or an actual code address should it become a name entry.

To see if there is enough free space, the sender of the string can check in advance if the
result of "INPUT HERE -" is greater than the string length. The check depends on the fact that
HERE points to an address that begins at 0 and increments, while INPUT points to a location
that begins at THERE and decrements. THERE begins at the end of memory and decrements
towards zero. If they meet, then there is no more free memory.Thus if the start address is
lesser than the one HERE points at, there is no room for the string (or for anything else at all!).

CALL READ1
CALL PUSH_STRING
JMP SCAN_STRING

A.1.5 Name Lookup

LOOK Searches the name dictionary for the topmost string in the input buffer. Returns the
address of the code associated with the name or NAME_END if nomatch. No error checking
other than for the end of the dictionary.

// address of latest name entry string
LIT [address of THERE] >A A@ LIT 1 + DUP
LOOP:
// address of topmost SCANed string
LIT [address of INPUT] >A A@
CALL COMPARE_STRINGS
LIT [address of INPUT] >A A@
CALL STRING_TAIL
XOR JMP0 MATCH

103

// uses the DUPed name entry address
DROP
CALL STRING_TAIL
// point to start of next name entry
LIT 1 +
// are we at end of name dict?
DUP LIT [address of NAME_END] >A A@ XOR JMP0 NOMATCH
DUP JMP LOOP
MATCH:
// return code address for name entry
>A DROP A@ RET
NOMATCH:
// return address of end of dict
DROP LIT [address of NAME_END] >A A@ RET

A.1.6 Function Definition Functions

These functions create new name dictionary entries and setup the compilation of the code that
will be associated with the new name.

FIRST_SLOT Begin compiling at zeroth instruction slot.

LIT [address of SLOT] >A
LIT [mask for slot 0] A! RET

LAST_SLOT Setup at fifth instruction slot, so the next compilation willoccur at the zeroth
slot.

LIT [address of SLOT] >A
LIT [mask for slot 5] A! RET

NULL_SLOT Null instruction slot mask. Denotes that HERE is empty.

LIT [address of SLOT] >A
LIT [mask for null slot] A! RET

ALIGN Makes HERE point to the next free location, so we don’t point aname at the tail
end of the previous procedure or clobber literals. Make HERE_NEXT point to the following
location. Mark HERE as empty with NULL_SLOT.

LIT [address of HERE_NEXT] >A A@
// zero out location, and increment address
DUP >R LIT 0 R!+
// update HERE_NEXT
R> A!

104

// update HERE
LIT [address of HERE] >A A!
JMP NULL_SLOT

NEXT_SLOT Point to first slot if HERE is empty (NULL_SLOT), else point tonext free
slot at HERE, else ALIGN.

// get slot mask
LIT [address of SLOT] >A A@
LIT [null slot mask] OVER XOR JMP0 HEREEMPTY
LIT [fifth slot mask] OVER XOR JMP0 HEREFULL
// next 5-bit slot
2* 2* 2* 2* 2* A! RET
HEREFULL:
DROP CALL ALIGN JMP FIRST_SLOT
HEREEMPTY:
DROP JMP FIRST_SLOT

DEFN_AS Takes the ALIGNed address of a code entry (usually [HERE]) and the address of
a SCANed string (from INPUT) and converts it to a name entry. Updates THERE.

The name string must be the only one in the input buffer stack as it is converted in place,
so INPUT must be pointing to it and its tail must be at THERE. Because of this, INPUT does
not need to be changed.

// store address in [THERE]
LIT [address of THERE] >A A@ >A A!
// get string start address
LIT [address of INPUT] >A A@
// move to first free location before it
LIT -1 +
LIT [address of THERE] >A A! RET

NEW_WORD Returns an aligned address at which to compile code.

CALL ALIGN
// get [HERE]
LIT [address of HERE] >A A@ RET

DEFN Defines a name entry for the current code location.gate

CALL NEW_WORD
JMP DEFN_AS

105

A.1.7 Compilation Functions

These functions enable the kernel to compile the Gullwing opcodes. By convention, functions
that compile a Gullwing opcode or inline another function have parentheses around their name.

COMPILE_INIT Initialize HERE, HERE_NEXT, and SLOT for compilation.

LIT [address of HERE] >A
LIT [initial compilation address] A!+ A>
LIT [address of HERE_NEXT] >A A!
LIT [address of SLOT] >A
LIT [mask for slot 5] A!
LIT [address of HERE] >A A@ >A
// Zero out memory to compile to
LIT 0 A! RET

COMPILE_OPCODE Takes an opcode (in slot 0) and compiles it at the next empty HERE/SLOT
location. Assumes the current slot is full. Leaves SLOT pointing to next full slot.

This function fails for the PC@ instruction, since its opcode is all zeroes. It shouldn’t be
necessary to compile it explicitly, as that’s what ALIGN does when it zeroes the memory word.
Note the addition instead of logical OR at the end. We can do this since empty slots are filled
with PC@ opcodes (zeroes).

CALL NEXT_SLOT
// get slot mask and invert
>R LIT [address of SLOT] >A A@ ~
//place opcode on top
R>
// slot 0
OVER OVER AND JMP0 COMPILE
// shift opcode by one slot
2* 2* 2* 2* 2*
// slot 1
OVER OVER AND JMP0 COMPILE
2* 2* 2* 2* 2*
// slot 2
OVER OVER AND JMP0 COMPILE
2* 2* 2* 2* 2*
// slot 3
OVER OVER AND JMP0 COMPILE
2* 2* 2* 2* 2*
// slot 4
OVER OVER AND JMP0 COMPILE
2* 2* 2* 2* 2* gate
// then we * have * to be in slot 5

106

COMPILE:
LIT [address of HERE] >A A@
// compile opcode, drop mask, return
>A A@ + A! DROP RET

COMPILE_LITERAL Takes a procedure address or literal (for CALL, JMP, JMP0, orLIT)
and compiles it at HERE_NEXT. Increments HERE_NEXT.

LIT [address of HERE_NEXT] >A A@gate
// store address/literal and increment
>A A!+
// update HERE_NEXT
A> LIT [address of HERE_NEXT] >A A! RET

CMPC, (CALL) Takes the address of a procedure an compiles a call to it. Thenaligns to the
next free word since later slots in current word will never execute.

LIT [opcode for CALL]
CALL COMPILE_OPCODE
CALL COMPILE_LITERAL
JMP ALIGN

CMPJ, (JMP)

LIT [opcode for JMP]
CALL COMPILE_OPCODE
CALL COMPILE_LITERAL
JMP ALIGN

CMP0, (JMP0) If JMP0 is not taken, the next opcode in the same memory word runs instead,
unlike CALL and JMP.

LIT [opcode for JMP0]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

CMP+, (JMP+)

LIT [opcode for JMP+]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

NUMC, (LIT) Compiles a literal fetch instruction.

LIT [opcode for LIT]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

107

A.1.8 Inline Compilation

Copying a word slot-by-slot requires decompiling it instruction by instruction and recompiling
it at the new location. This requires reimplementing the compilation words ’in reverse’. This
is complicated and ugly. Simply ALIGNing and copying existing code is no better since the
words that will be worthwhile to inline are the shortest, andso many slots will get proportion-
ally wasted. The extreme case is when inlining machine instructions: you would end up with
one opcode per word! So that’s the key: we know in advance which words will need to be
inlined, and so we write a function which when run compiles the code in situ. It’s a macro!
The kernel contains a full set of inlining functions for the Gullwing opcodes.

(DUP), (DROP), (+), (A!+), etc...

LIT [opcode in slot 0]
JMP COMPILE_OPCODE

A.1.9 Main Loop

These functions constitute the main loop of the kernel.

EXECUTE Synthesizes a function call or jump using an address on the top of the Data Stack.
If called: Takes a procedure address and calls to it. If inlined or jumped-to: Takes a procedure
address and jumps to it.

// Place the function address on the Return Stack
// and execute a function return, ’returning’ to the
// pushed address.
>R RET

NXEC This is the user-interface loop. Reads in a string, looks up the function address, and
calls to it. In effect, the kernel does nothing but execute all commands given to it.

CALL SCAN
CALL LOOK
CALL POP_STRING
CALL EXECUTE
JMP NXEC

EXEC Reads in the address of a function and calls to it. It is an alternate main loop meant
to be used by communicating instances of the kernel since it is more efficient to pass function
addresses than names.

CALL READ1
CALL EXECUTE
JMP EXEC

108

A.1.10 Decimal to Binary Conversion

By design, the encoding of strings is irrelevant. However, numbers cannot avoid a predefined
decimal encoding. Ideally, this would be UNICODE, but I settled for decimal ASCII numerals
for now (0 -> 48,...9 -> 57), one per memory word. Wasteful, but simple.

TENSTAR, 10* Multiply an integer on the Data Stack by 10.

DUP 2* 2* 2* OVER + + RET

NUMI Takes the string address of an unsigned decimal number and returns the corresponding
integer on the stack. No error or overflow checking!

LIT [address of INPUT] >A A@
// read in length
>R R@+
LIT 0 >A
// if N == 0
DUP JMP0 DONE
LOOP:
// shift total by radix, get number, convert to int, add
A> CALL 10* R@+ LIT -48 + + >A
LIT -1 + DUP JMP0 DONE
JMP LOOP
DONE:
DROP R> DROP A>
JMP POP_STRING

A.2 Flight Language Extensions

The source to the Flight language extensions is a sequence ofcommands fed to the Flight
language kernel. It is important to keep in mind that the kernel does not parse its input. It
only looks up names and executes functions. Parsing is implemented by executing words
which consume some of the input stream before returning control to the kernel main loop.
Compilation is implemented by executing code whose action is to compile code.

There is no built-in syntax. The only purpose of white space is to separate names. Inden-
tation and other formatting is for clarity only. I have addedcomments after double slashes
’//’, but they are not present in the actual source. To conveymeaning, I use some naming
conventions throughout the code:

• Functions which compile code have their names between parentheses ’()’.

• The use of strings in the input buffer is denoted by a dollar sign ’$’.

• The use of integer values is denoted by a hash sign ’#’.

109

• Moving data, input, and output is denoted by angle brackets ’<’ and ’>’.

The Flight language evolves very quickly at the beginning. The first few functions are used
throughout the latter code and must be understood before proceeding further.

A.2.1 Making the Flight Language More Tractable

These utility functions make it easy to define functions, compile calls, read in numbers, and do
name look-ups. They are used throughout the rest of the code.

// Creates a function named “:”
// It scans in a string and creates a dictionary entry.
SCAN : DEFN
SCAN SCAN LOOK POP_STRING CMPCALL
SCAN DEFN LOOK POP_STRING CMPCALL CMPRET

// Reads in a name and leaves the address of the
// associated code on the stack.
: l
SCAN SCAN LOOK POP_STRING CMPCALL
SCAN LOOK LOOK POP_STRING CMPCALL
SCAN POP_STRING LOOK POP_STRING CMPCALL CMPRET

// Takes a string from the input buffer
// and compiles a call to its associated code
: $c
l LOOK CMPCALL
l POP_STRING CMPCALL
l CMPCALL CMPCALL CMPRET

// Reads in a function name
// and compiles a call to it
: c SCAN SCAN $c SCAN $c $c CMPRET

// Reads an unsigned decimal number and leaves
// its binary representation on the stack
: n c SCAN c NUMI CMPRET

// Creates a new dictionary entry for
// an existing function
: alias c l c SCAN c DEFN_AS CMPRET

// Alias the built-in function names
// to get away from C-style identifiers.
alias CMPJMP (JMP)

110

alias CMPJMPZERO (JMP0)
alias CMPJMPPLUS (JMP+)
alias CMPCALL (CALL)
alias CMPRET ;
alias NUMC #
alias NUMI $n
alias LOOK $l
alias POP_STRING $pop
alias DEFN $:
alias SCAN >$
alias WRITE1 #>
alias READ1 >#
alias TENSTAR 10 *
alias CMPLOADA (A@)
alias CMPSTOREA (A!)
alias CMPLOADAPLUS (A@+)
alias CMPSTOREAPLUS (A!+)
alias CMPLOADRPLUS (R@+)
alias CMPSTORERPLUS (R!+)
alias CMPXOR (XOR)
alias CMPAND (AND)
alias CMPNOT (NOT)
alias CMPTWOSTAR (2*)
alias CMPTWOSLASH (2/)
alias CMPPLUS (+)
alias CMPPLUSSTAR (+ *)
alias CMPDUP (DUP)
alias CMPDROP (DROP)
alias CMPOVER (OVER)
alias CMPTOR (>R)
alias CMPRFROM (R>)
alias CMPTOA (>A)
alias CMPAFROM (A>)
alias CMPNOP (NOP)

// Compile jumps and conditional jumps
: $j c $l c $pop c (JMP) ;
: j c >$ c $j ;

: $j0 c $l c $pop c (JMP0) ;
: j0 c >$ c $j0 ;

: $j+ c $l c $pop c (JMP+) ;
: j+ c >$ c $j+ ;

111

A.2.2 Interactively Usable Opcodes

These functions create interpreted versions of some opcodes to interactively manipulate mem-
ory and the Data Stack. Opcodes which manipulate the A register and the Return Stack cannot
be interpreted since the interpretation process alters their contents.

: @ (>A) (A@) ;
: ! (>A) (A!) ;
: XOR (XOR) ;
: AND (AND) ;
: NOT (NOT) ;
: OR (OVER) (NOT) (AND) (XOR) ;
: 2 * (2 *) ;
: 2/ (2/) ;
: + (+) ;
: + * (+ *) ;
: DUP (DUP) ;
: DROP (DROP) ;
: OVER (OVER) ;
: NOP (NOP) ;

A.2.3 Basic Compiling Functions

These are some compiling functions for common operations, mostly arithmetic.

// Compiles addition with a fetched constant
: #+ c # c (+) ;
// Compiles a decimal number literal fetch
: n# c n c # ;
// Compiles a function address literal fetch
: l# c l c # ;

// Compile loads and stores and bitwise OR
: (@) c (>A) c (A@) ;
: (!) c (>A) c (A!) ;
: (OR) c (OVER) c (NOT) c (AND) c (XOR) ;

// Negate, or compile its code
: negate (NOT) n# 1 (+) ;
: (negate) c (NOT) n# 1 c #+ ;

// Read in and negate a decimal
: -n c n (negate) ;
// Same, from the input buffer
: -$n c $n (negate) ;

112

// Same, and compile as literal
: -n# c -n c # ;

// Compiles code to read in a decimal
// and compile it as a constant addition
// Negate beforehand to make a subtraction
: (N-) c -n c #+ ;
: (N+) c n c #+ ;

// Synthesize subtraction
: - (negate) (+) ;
: (-) c (negate) c (+) ;

A.2.4 Terminal Control Characters

These output the basic terminal control characters (as counted strings of length 1).

: \a n# 7 n# 1 c #> j #>
: \b n# 8 n# 1 c #> j #>
: \t n# 9 n# 1 c #> j #>
: \n n# 10 n# 1 c #> j #>
: \v n# 11 n# 1 c #> j #>
: \f n# 12 n# 1 c #> j #>
: \r n# 13 n# 1 c #> j #>
: \s n# 32 n# 1 c #> j #>

A.2.5 Conditionals and Comparisons

These functions implement the usual if/then construct. Thetwo conditions are “if non-zero”
and “if negative”. Some usage examples follow.

// Compile a JMP0 to 0, and leave the address
// of the jump address on the stack
: if
n# 0 c (JMP0)
l# HERE_NEXT (@)
(N-) 1 ;

: if-
n# 0 c (JMP+)
l# HERE_NEXT (@)
(N-) 1 ;

113

// Backpatch the jump to target
// the next memory word
: else
(>R) c NEW_WORD (R>)
(>A) (A!) ;

: max
(OVER) (OVER) (-)
if-

(>R) (DROP) (R>) ;
else

(DROP) ;

: min
(OVER) (OVER) (-)
if-

(DROP) ;
else

(>R) (DROP) (R>) ;

: abs
(DUP) if- (negate) ; else ;

: <=
(-) (DUP)
if-

(DROP) -n# 1 ;
else

if
n# 0 ;

else
-n# 1 ;

: >=
(-) (DUP)
if-

(DROP) -n# 0 ;
else

if
n# 0 ;

else
-n# 1 ;

114

A.2.6 Code Memory Allocation

This function allocates a zeroed-out span of memory in the code area, usually for static storage
of data.

: allot
(DUP)
if

c ALIGN
(N-) 1
j allot

else
(DROP) ;

A.2.7 String Copying and Printing

These functions print strings and copy them between the input buffer and the code area.

// Copies a string between a source
// and a destination address
: $copy
(>R) (>A)
(A@) (A>) (+) (N+) 1
: $copy-loop (A>) (OVER) (XOR)
if (A@+) (R!+) j $copy-loop
else (DROP)
(R>) (DUP) (>A) (A!) ;

// Copy a string from the input buffer
// to the code area
: $>c
l# INPUT (@)
l# HERE (@)
(OVER) (@) (N+) 1 c allot
c $copy
c ALIGN
j POP_STRING

// Copy a string from the code area
// to input buffer
: c>$
(DUP) (@) c PUSH_STRING
l# INPUT (@)
c $copy ;

115

// Output a string, given its address
: cs>
(DUP) (@) (+) (N+) 1
(A>) (>R)
: cs>-loop (R>) (OVER) (OVER) (XOR)
if (>R) (R@+) c #> j cs>-loop
else (DROP) (DROP) ;

// Output a string from the input buffer
: $>
l# INPUT (@)
c cs>
j POP_STRING

// Print a string, given its name
// copy first to input buffer
: $print c l c c>$ j $>
// Same, without copying
: csprint c l j cs>

A.2.8 De-Allocating Functions

Executing ’forget foo’ will move back the HERE, HERE_NEXT, THERE, and INPUT pointers
to points just before the name and the code of the function ’foo’, in effect erasing it from the
language. This will also forget all functions that had been defined after ’foo’.

: match?
l# INPUT (@) c STRING_TAIL (XOR) ;

: end?
l NAME_END @ # (XOR) ;

: erase
(DUP) l# THERE (!)
(DUP) (N+) 1 l# INPUT (!)
(@) (DUP)
(N-) 1 l# HERE (!)
l# HERE_NEXT (!)
j ALIGN

116

: forget
c >$
l# THERE (@) (N+) 1 (DUP)
: forget-loop
l# INPUT (@)
c COMPARE_STRINGS
c match?
if (DROP) c STRING_TAIL (N+) 1 (DUP) c end?

if
(DUP) j forget-loop

else
(DROP) c POP_STRING ;

else
c erase (DROP) ;

A.2.9 Unsigned Multiplication and Division

These functions synthesize unsigned integer multiplication and division. The multiplication
function takes two 15-bit integers and returns the 30-bit product. The division function has a
simple error reporting mechanism if a division by zero is attempted. It will stop and send the
remaining input to the output so the location of the fault is made visible.

: 15x15
(>R)
(2 *) (2 *) (2 *) (2 *)
(2 *) (2 *) (2 *) (2 *)
(2 *) (2 *) (2 *) (2 *)
(2 *) (2 *) (2 *)
(R>)
(+ *) (2/) (+ *) (2/) (+ *) (2/) (+ *) (2/)
(+ *) (2/) (+ *) (2/) (+ *) (2/) (+ *) (2/)
(+ *) (2/) (+ *) (2/) (+ *) (2/) (+ *) (2/)
(+ *) (2/) (+ *) (2/) (+ *) (2/) (+ *)
(>R) (DROP) (R>) ;

: divby0msg >$ DIV_BY_0_ERROR $>c
: divby0 l# divby0msg c cs> ;
: errcontext c \s c >$ c $> j errcontext
: divby0check
(DUP) if ; else (DROP) (DROP) c divby0 j errcontext

117

: U/
c divby0check
n# 0 (>A)
: U/-loop
(OVER) (>R) (DUP) (R>) c <=
if

(DUP) (>R) (-) (R>)
(A>) (N+) 1 (>A)
j U/-loop

else
(DROP) (A>) ;

A.2.10 Binary to Decimal Conversion

: minus?
if- n# 1 ; else n# 0 ;

: numstrlen
c abs (DUP) (N-) 10
if- (DROP) n# 1 ; else (DUP) (N-) 100
if- (DROP) n# 2 ; else (DUP) (N-) 1000
if- (DROP) n# 3 ; else (DUP) (N-) 10000
if- (DROP) n# 4 ; else (DUP) (N-) 100000
if- (DROP) n# 5 ; else (DUP) (N-) 1000000
if- (DROP) n# 6 ; else (DUP) (N-) 10000000
if- (DROP) n# 7 ; else (DUP) (N-) 100000000
if- (DROP) n# 8 ; else (DUP) (N-) 1000000000
if- (DROP) n# 9 ; else (DROP) n# 10 ;

// Converts a signed integer to a string
// in the input buffer
: #>$
(DUP) c numstrlen (OVER) c minus? (+) c PUSH_STRING
(DUP) if- n# 45 l# INPUT (@) (N+) 1 (!) c abs else
(>R) l# INPUT (@) c STRING_TAIL (N-) 1 (R>)
: #>$-loop
n# 10 c U/ (>R) n# 48 (+) (OVER) (!) (N-) 1 (R>)
(DUP) if j #>$-loop else (DROP) (DROP) ;

// Convert and print a decimal number
: #$> c #>$ c $> ;

118

A.2.11 Simple Fibonacci Examples

// Given two Fibonacci numbers,
// compute the next pair
// eg: 1 1 -> 1 2 -> 2 3 ...
: 1fib
(OVER) (>R) (+) (R>) ;

// Given starting numbers and a count
// generate a string of Fibonacci numbers
// in the input buffer
// Terminates by comparing current position in
// the buffer with that of the string tail
: nfibx
c PUSH_STRING l# INPUT (@)
(DUP) (>R) c STRING_TAIL (R>) (N+) 1 (>A)
: nfib-loop
(>R) c 1fib (DUP) (A!+) (R>) (DUP) (A>) (XOR)
if j nfib-loop
else (DROP) (DROP) (DROP) ;

// As above, but terminates by decrementing
// the counter to zero
: nfibc
(DUP) c PUSH_STRING l# INPUT (@) (N+) 1 (>A)
: nfib-loop
(>R) c 1fib (DUP) (A!+) (R>) (N-) 1 (DUP)
if j nfib-loop
else (DROP) (DROP) (DROP) ;

: manyfibs
c 1fib c 1fib c 1fib j 1fib

// Calculates the mean of all numbers in a string
// Could be used after nfibx as an example of
// function composition through the input buffer
: nmean
n# 0
l# INPUT (@) (DUP) (>R) c STRING_TAIL (R>) (N+) 1 (>A)
: nmean-loop
(>R) (A@+) (+) (R>) (DUP) (A>) (XOR)
if j nmean-loop
else (DROP) l# INPUT (@) (@) c U/ c POP_STRING ;

119

A.2.12 Static Variables

This code creates the ability to store data in the code area atthe time a function in created.
It is equivalent to C language static variables. This is usedto implement named variables as
functions which return the address of the associated storage.

// Allocates one memory word and compiles code
// to place its address on the Data Stack
: create
n# 0 c # l# HERE_NEXT (@) (N-) 1 (>R)
n# 0 c (JMP) l# HERE (@) (N-) 1
l# HERE (@) (R>) (!) ;

// This ends the data allocation and begins
// the code that will use the address of the
// allocated area.
// Exact same code as else, so just alias it instead
alias else does

// Allocate a number of memory words, then
// compile code to return its address
: var c create (>R) (N-) 1 c allot (R>) c does ;

// Create a global variable named ’first’
// with a size of one memory location
: first n 1 var ;

// Store integer ’4’ in first
// then load and print it
n 4 first !
first @ #$> \t

// Compile code as data
// then call to it
: pass
n# 1 c #$> c \t
create

n# 2 c #$> c \n ;
does

n# 3 c #$> c \t
c EXECUTE ;

// Output: 1 3 2
pass

120

A.2.13 Accumulator Generator

This is a simple example of generating code with an initial argument that becomes static data.

// Compile an integer into the code area
: #>c l# HERE (@) (!) ;

// Compiles code that returns an accumulator
// function using a provided integer
// Returns the function’s address
: accgen
c NEW_WORD (>R)
c create (>R) c #>c (R>) c does
c (@) c (+) c (DUP) c (A!) c ;
(R>) ;

// Read in a name and associate it
// with an address on the stack.
: name-as c >$ c DEFN_AS ;

// Create two accumulators and test them.
// Output: 8 7 10 9 17 16 117 116
n 3 accgen name-as foo
n 2 accgen name-as bar
n 5 foo #$> \t
n 5 bar #$> \t
n 2 foo #$> \t
n 2 bar #$> \t
n 7 foo #$> \t
n 7 bar #$> \t
n 100 foo #$> \t
n 100 bar #$> \t \n

A.2.14 Fibonacci Generator

Slightly more elaborate examples of code generation with static data.

// Generate a Fibonacci function that stores
// its initial arguments in memory
: fibgen1
c :
c create (>R) c #>c (R>) c does
c create (>R) c #>c (R>) c does
c (OVER) c (@) c (OVER) c (@) c (+) c (>R)
c (OVER) c (@) c (OVER) c (!) c (DROP)
c (>A) c (R>) c (DUP) c (A!) c ; ;

121

// Factored out Fibonacci code
: memfib
(OVER) (@) (OVER) (@) (+) (>R)
(OVER) (@) (OVER) (!) (DROP)
(>A) (R>) (DUP) (A!) ;

// Takes 2 numbers in the Fibonacci sequence
// and returns a function that outputs the
// next number in the sequence when called.
// The two current sequence numbers are stored
// within the function body.
: fibgen2
c :
c create (>R) c #>c (R>) c does
c create (>R) c #>c (R>) c does
l# memfib c (CALL) c ; ;

n 0 n 1 fibgen2 fibonacci

// Output: 1 2 3 5 8 13 21 34
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t
fibonacci #$> \t \n

A.2.15 Caesar Cipher Generator

An initial example of a function being passed as a parameter.

// Add a given number to a memory location
: caesar
(>R) (>A) (R>) (A@) (+) (A!) ;

// Make one argument of caesar (the number)
// a built-in parameter
: caesargen
c :
c create (>R) c #>c (R>) c does
c (@) l# caesar c (CALL) c ; ;

122

n 3 caesargen encode
-n 3 caesargen decode

// Takes the address of a string
// and the name of a function.
// Maps the function to each
// element of the string.
: map1
(DUP) (>R) c STRING_TAIL (R>)
(N+) 1
c l (>R)
: map1-loop
(DUP) (R>) (DUP) (>R) c EXECUTE (N+) 1
(OVER) (OVER) (XOR)
if j map1-loop
else (DROP) (DROP) (R>) (DROP) ;

// Input: ABCD
// Output: ABCD DEFG ABCD
>$ ABCD
// Print the string
l INPUT @ DUP cs> \t
DUP map1 encode
// Print the ciphered version
DUP cs> \t
// Print the deciphered version
DUP map1 decode
$> \t \n

// Since the argument is a constant
// it can be compiled as a literal fetch instead
: caesargen
c :
c #
l# caesar c (JMP) ;

123

A.2.16 Higher-Order Function (Map)

This is an example of a mapped function generator.

// Takes an integer and the function name of
// a function that alters memory.
// Compiles code which applies the given
// function to each location in a string
// at the interval provided by the integer
: mapgen
c (DUP) c (>R) l# STRING_TAIL c (CALL) c (R>)
n 1 # c # c (+)
c NEW_WORD
c (DUP) c l c (CALL) (>R) c # (R>) c (+)
c (OVER) c (OVER) c (XOR)
c if (>R) c (JMP) (R>)
c else c (DROP) c (DROP) c ; ;

n 5 caesargen encode1
-n 5 caesargen decode1

// Apply encode1 to every other character in a string
: cipher n 2 mapgen encode1
// Apply decode1 to each character in a string
: decipher n 1 mapgen decode1

// Input: lmnopq
// Output:lmnopq qmsouq lhnjpl
>$ lmnopq
l INPUT @ DUP cs> \t
DUP cipher
DUP cs> \t
DUP decipher
$> \t \n

// Given a memory address, print the
// decimal expression of its contents
: print# (@) c #$> c \t ;
// Apply print# to each location in a string
: print$# n 1 mapgen print#

// Generate and print
// the first 8 Fibonacci numbers
// Output: 1 1 2 3 5 8 13 21
n 1 n 0 n 8 nfibx
l INPUT @ print$# POP_STRING

124

A.3 Virtual Machine

The virtual machine is an emulation of the Gullwing hardware. The opcodes are emulated
directly on the hardware if possible, and their memory accesses are bounds-checked.

A.3.1 VM

// Define an 8kB memory for the VM
: MEMSIZE n# 8192 ;
: MEM MEMSIZE var ;

: OPCODEWIDTH n# 5 ;
: OPCODEMASK n# 31 ;

: MEM_INPUT MEM MEMSIZE + -n 2 + # ;
: MEM_OUTPUT MEM MEMSIZE + -n 1 + # ;

: MEMHEAD MEM # ;
: MEMTAIL MEM_OUTPUT # ;

: (check_low)
MEMHEAD negate # c # c (+) ;

: (check_high)
c (negate) MEMTAIL # c # c (+) ;

: mem_in_range?
(DUP) (check_low) (OVER) (check_high) (OR) ;

: mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does j cs>

: report_mem_error
c mem_access_msg
c \s c #$> j \n

: access_check
c mem_in_range?
if-

c report_mem_error
j errcontext

else ;

125

: PCFETCHopcode n# 0 ;
: CALLopcode n# 1 ;
: RETopcode n# 2 ;
: JMPopcode n# 3 ;
: JMPZEROopcode n# 4 ;
: JMPPLUSopcode n# 5 ;
: LOADAopcode n# 6 ;
: STOREAopcode n# 7 ;
: LOADAPLUSopcode n# 8 ;
: STOREAPLUSopcode n# 9 ;
: LOADRPLUSopcode n# 10 ;
: STORERPLUSopcode n# 11 ;
: LITopcode n# 12 ;
: UND0opcode n# 13 ;
: UND1opcode n# 14 ;
: UND2opcode n# 15 ;
: XORopcode n# 16 ;
: ANDopcode n# 17 ;
: NOTopcode n# 18 ;
: TWOSTARopcode n# 19 ;
: TWOSLASHopcode n# 20 ;
: PLUSopcode n# 21 ;
: PLUSSTARopcode n# 22 ;
: DUPopcode n# 23 ;
: DROPopcode n# 24 ;
: OVERopcode n# 25 ;
: TORopcode n# 26 ;
: RFROMopcode n# 27 ;
: TOAopcode n# 28 ;
: AFROMopcode n# 29 ;
: NOPopcode n# 30 ;
: UND3opcode n# 31 ;

// Emulated A, PC and ISR
: AREG n 1 var ;
: PCREG n 1 var ;
: ISRREG n 1 var ;

: do_pcfetch
PCREG # (@)
c access_check (DUP)
(N+) 1 (A!)
(@) ISRREG # (!) ;

126

: do_call
// Move run_vm return address
(R>)
PCREG # (@)
(DUP) (N+) 1 (>R)
(@) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
// Restore run_vm return address
(>R) ;

: do_ret
(R>)
(R>) c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!)
(>R) ;

: do_jmp
PCREG # (@) (@)
c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # (!) ;

: do_jmpzero
if

PCREG # (@) (N+) 1 (A!) ;
else

j do_jmp

: do_jmpplus
if-

PCREG # (@) (N+) 1 (A!) ;
else

j do_jmp

: do_loada
AREG # (@)
(DUP) MEM_INPUT # (XOR)
if

c access_check (@) ;
else

(DROP) j >#

127

: do_storea
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if

c access_check (!) ;
else

(DROP) j #>

: do_loadaplus
AREG # (@)
(DUP) MEM_INPUT # (XOR)
if

c access_check
(>A) (A@+) (A>)
AREG # (!) ;

else
(N+) 1 AREG # (!) j >#

: do_storeaplus
AREG # (@)
(DUP) MEM_OUTPUT # (XOR)
if

c access_check
(>A) (A!+) (A>)
AREG # (!) ;

else
(N+) 1 AREG # (!) j #>

: do_loadrplus
(R>) (>A)
(R>)
(DUP) MEM_INPUT # (XOR)
if

c access_check
(>R) (R@+)
(A>) (>R) ;

else
(N+) 1 (>R)
(A>) (>R)
j >#

128

: do_storerplus
(R>) (>A)
(R>)
(DUP) MEM_OUTPUT # (XOR)
if

c access_check
(>R) (R!+)
(A>) (>R) ;

else
(N+) 1 (>R)
(A>) (>R)
j #>

: do_lit
PCREG # (@)
(DUP) (N+) 1 (A!)
(@) ;

: do_und n 31 COMPILE_OPCODE ;
: do_xor (XOR) ;
: do_and (AND) ;
: do_not (NOT) ;
: do_twostar (2 *) ;
: do_twoslash (2/) ;
: do_plus (+) ;
: do_plusstar (+ *) ;
: do_dup (DUP) ;
: do_drop (DROP) ;
: do_over (OVER) ;

: do_tor
(R>) (>A)
(>R)
(A>) (>R) ;

: do_rfrom
(R>) (>A)
(R>)
(A>) (>R) ;

: do_toa AREG # (!) ;
: do_afrom AREG # (@) ;
: do_nop (NOP) ;

129

: ,
c #>c c ALIGN ;

: &>
c l c , ;

// Indexed by the opcode
: instruction_call_table
create
&> do_pcfetch
&> do_call
&> do_ret
&> do_jmp
&> do_jmpzero
&> do_jmpplus
&> do_loada
&> do_storea
&> do_loadaplus
&> do_storeaplus
&> do_loadrplus
&> do_storerplus
&> do_lit
&> do_und
&> do_und
&> do_und
&> do_xor
&> do_and
&> do_not
&> do_twostar
&> do_twoslash
&> do_plus
&> do_plusstar
&> do_dup
&> do_drop
&> do_over
&> do_tor
&> do_rfrom
&> do_toa
&> do_afrom
&> do_nop
&> do_und
does ;

130

: (shift_isr)
c (2/) c (2/) c (2/) c (2/) c (2/) ;

: (extract_instruction)
OPCODEMASK # c # c (AND) ;

: do_next_instruction
ISRREG # (@)
(DUP) (shift_isr) (A!)
(extract_instruction)
instruction_call_table # (+) (@)
(>R) ;

// All input now gets processed by the software
// inside the VM instead of the original Flight language kern el
: run_vm
MEM # PCREG # (!)
n 0 # ISRREG # (!)
n 123456 # AREG # (!)
: vm_loop
c do_next_instruction
j vm_loop

// Output short message to show
// that compilation reached this point
>$ VM4-1 $> \n

A.3.2 Metacompiler

The metacompiler saves and restores the internal state of the language kernel. This allows
redirecting the operation of the kernel to a different memory area. In this case, it is used to
direct compilation and execution of code to the previously defined Virtual Machine memory
area.

// Virtual Machine state
: vm_here n 1 var ;
: vm_here_next n 1 var ;
: vm_there n 1 var ;
: vm_slot n 1 var ;
: vm_input n 1 var ;
: vm_name_end n 1 var ;

// Native Machine state
: nm_here n 1 var ;
: nm_here_next n 1 var ;

131

: nm_there n 1 var ;
: nm_slot n 1 var ;
: nm_input n 1 var ;
: nm_name_end n 1 var ;

: save_nm_here l# HERE (@) nm_here # (!) ;
: save_nm_here_next l# HERE_NEXT (@) nm_here_next # (!) ;
: save_nm_slot l# SLOT (@) nm_slot # (!) ;
: save_nm_input l# INPUT (@) nm_input # (!) ;
: save_nm_there l# THERE (@) nm_there # (!) ;
: save_nm_name_end l# NAME_END (@) nm_name_end # (!) ;

: save_vm_here l# HERE (@) vm_here # (!) ;
: save_vm_here_next l# HERE_NEXT (@) vm_here_next # (!) ;
: save_vm_slot l# SLOT (@) vm_slot # (!) ;
: save_vm_input l# INPUT (@) vm_input # (!) ;
: save_vm_there l# THERE (@) vm_there # (!) ;
: save_vm_name_end l# NAME_END (@) vm_name_end # (!) ;

: restore_nm_here nm_here # (@) l# HERE (!) ;
: restore_nm_here_next
nm_here_next # (@) l# HERE_NEXT (!) ;
: restore_nm_slot nm_slot # (@) l# SLOT (!) ;
: restore_nm_input nm_input # (@) l# INPUT (!) ;
: restore_nm_there nm_there # (@) l# THERE (!) ;
: restore_nm_name_end nm_name_end # (@) l# NAME_END (!) ;

: restore_vm_here vm_here # (@) l# HERE (!) ;
: restore_vm_here_next
vm_here_next # (@) l# HERE_NEXT (!) ;
: restore_vm_slot vm_slot # (@) l# SLOT (!) ;
: restore_vm_input vm_input # (@) l# INPUT (!) ;
: restore_vm_there vm_there # (@) l# THERE (!) ;
: restore_vm_name_end vm_name_end # (@) l# NAME_END (!) ;

: init_vm_here MEM # vm_here # (!) n# 0 (A@) (!) ;
: init_vm_here_next
MEM n 1 + # vm_here_next # (!) n# 0 (A@) (!) ;
: init_vm_slot n# 0 vm_slot # (!) ;
: init_vm_there MEM_INPUT n 1 - # vm_there # (!) ;
: init_vm_input MEM_INPUT # vm_input # (!) ;
: init_vm_name_end MEM_INPUT # vm_name_end # (!) ;

132

// Flight Language Kernel main loop while in VM.
// (Compare with NXEC)
// Lookup names in VM dictionary, and if not found,
// repeat in native machine dictionary.
: vm_nxec
c SCAN
c LOOK
(DUP) l# NAME_END (@) (XOR)
// If found in VM memory
if

c POP_STRING
c EXECUTE
j vm_nxec

else
// Else find in native machine memory
// but execute with kernel pointed at VM memory

(DROP)
c save_vm_there
c save_vm_name_end
c restore_nm_there
c restore_nm_name_end
c LOOK
c save_nm_there
c save_nm_name_end
c restore_vm_there
c restore_vm_name_end
c POP_STRING
c EXECUTE
j vm_nxec

: init_name_dict
create >$ zeroword $>c
does c c>$ n# 0 c DEFN_AS ;

// Drop current caller address
: (unwind) c (R>) c (DROP) ;

// Begin execution inside VM
: VM(
c init_vm_here
c init_vm_here_next
c init_vm_slot
c init_vm_there
c init_vm_input
c init_vm_name_end

133

c save_nm_here
c save_nm_here_next
c save_nm_slot
c save_nm_there
c save_nm_input
c save_nm_name_end
c restore_vm_here
c restore_vm_here_next
c restore_vm_slot
c restore_vm_there
c restore_vm_input
c restore_vm_name_end
c init_name_dict
// Change the main loop
(unwind)
j vm_nxec

// End execution inside VM
:)VM
c save_vm_here
c save_vm_here_next
c save_vm_slot
c save_vm_there
c save_vm_input
c save_vm_name_end
c restore_nm_here
c restore_nm_here_next
c restore_nm_slot
c restore_nm_there
c restore_nm_input
c restore_nm_name_end
// Change the main loop
(unwind)
j NXEC

// Print this to signal we got this far
>$ METACOMP1 $> \n

134

A.3.3 Self-hosted Kernel

This is a reimplementation of the Flight language kernel, written in the language it defines,
using all the extensions previously compiled. It compiles to the same original machine code
in which the kernel was originally implemented (Section A.1), but it is compiled in the Virtual
Machine memory area instead.

VM(

n 0 (JMP) MEM n 1 + >$ START_WORD DEFN_AS

: HERE
: HERE_NEXT
: THERE
: SLOT
: INPUT
: NAME_END

: MINUS (NOT) n# 1 (+) (+) ;
: OR (OVER) (NOT) (AND) (XOR) ;

: READ1 MEM_INPUT # (@) ;
: WRITE1 MEM_OUTPUT # (!) ;
: STRING_TAIL (>A) (A@+) (A>) (+) ;

: PUSH_STRING
(DUP) n# 1 (+) (NOT)
l# INPUT (@) (+) (DUP) (A!)
(!)
l# INPUT (@)
c STRING_TAIL
(DUP) (!) ;

: POP_STRING
l# INPUT (@)
c STRING_TAIL
n# 1 (+)
l# INPUT (!) ;

: COMPARE_STRINGS
(>A) (>R)
: CS_LOOP
(R@+) (A@+) (XOR)
j0 CS_LOOP
-n# 1 (R>) (+)
-n# 1 (A>) (+) ;

135

: SCAN_STRING
l# INPUT (@) (>R) (R@+)
: SS_LOOP
c READ1 (R!+)
-n# 1 (+) (DUP)
if

j SS_LOOP
else

(DROP) (R>) (DUP) (!) ;

: SCAN
c READ1
c PUSH_STRING
j SCAN_STRING

: FIRST_SLOT
l# SLOT (>A)
n# 31 (A!) ;

: LAST_SLOT
l# SLOT (>A)
n# 1040187392 (A!) ;

: NULL_SLOT
l# SLOT (>A)
n# 0 (A!) ;

: ALIGN
l# HERE_NEXT (@)
(DUP) (>R) n# 0 (R!+)
(R>) (A!)
l# HERE (!)
j NULL_SLOT

: NEXT_SLOT
l# SLOT (@)
n# 0 (OVER) (XOR)
if

n# 1040187392 (OVER) (XOR)
if

(2 *) (2 *) (2 *) (2 *) (2 *) (A!) ;
else

(DROP) c ALIGN j FIRST_SLOT
else

(DROP) j FIRST_SLOT

136

: DEFN_AS
l# THERE (@) (!)
l# INPUT (@)
-n# 1 (+)
l# THERE (!) ;

: NEW_WORD
c ALIGN
l# HERE (@) ;

: DEFN
c NEW_WORD
j DEFN_AS

: LOOK
l# THERE (@) n# 1 (+) (DUP)
: LOOK_LOOP
l# INPUT (@)
c COMPARE_STRINGS
l# INPUT (@)
c STRING_TAIL (XOR)
if

(DROP) c STRING_TAIL
n# 1 (+)
(DUP) l# NAME_END (@) (XOR)
if

(DUP) j LOOK_LOOP
else

(DROP) l# NAME_END (@) ;
else

(>A) (DROP) (A@) ;

: COMPILE_OPCODE
c NEXT_SLOT
(>R) l# SLOT (@) (NOT)
(R>) (OVER) (OVER) (AND) if
(2 *) (2 *) (2 *) (2 *) (2 *)
(OVER) (OVER) (AND) if
(2 *) (2 *) (2 *) (2 *) (2 *)
(OVER) (OVER) (AND) if
(2 *) (2 *) (2 *) (2 *) (2 *)
(OVER) (OVER) (AND) if
(2 *) (2 *) (2 *) (2 *) (2 *)
(OVER) (OVER) (AND) if

137

(2 *) (2 *) (2 *) (2 *) (2 *)
else else else else else
l# HERE (@)
(@) (+) (A!) (DROP) ;

: COMPILE_LITERAL
l# HERE_NEXT (@)
(>A) (A!+)
(A>) l# HERE_NEXT (!) ;

: CMPCALL
CALLopcode # c COMPILE_OPCODE c COMPILE_LITERAL j ALIGN
: CMPJMP
JMPopcode # c COMPILE_OPCODE c COMPILE_LITERAL j ALIGN
: CMPJMPZERO
JMPZEROopcode # c COMPILE_OPCODE j COMPILE_LITERAL
: CMPJMPPLUS
JMPPLUSopcode # c COMPILE_OPCODE j COMPILE_LITERAL
: NUMC
LITopcode # c COMPILE_OPCODE j COMPILE_LITERAL
: CMPPCFETCH PCFETCHopcode # j COMPILE_OPCODE
: CMPRET RETopcode # j COMPILE_OPCODE
: CMPLOADAPLUS LOADAPLUSopcode # j COMPILE_OPCODE
: CMPLOADRPLUS LOADRPLUSopcode # j COMPILE_OPCODE
: CMPLOADA LOADAopcode # j COMPILE_OPCODE
: CMPSTOREAPLUS STOREAPLUSopcode # j COMPILE_OPCODE
: CMPSTORERPLUS STORERPLUSopcode # j COMPILE_OPCODE
: CMPSTOREA STOREAopcode # j COMPILE_OPCODE
: CMPNOT NOTopcode # j COMPILE_OPCODE
: CMPAND ANDopcode # j COMPILE_OPCODE
: CMPXOR XORopcode # j COMPILE_OPCODE
: CMPPLUS PLUSopcode # j COMPILE_OPCODE
: CMPTWOSTAR TWOSTARopcode # j COMPILE_OPCODE
: CMPTWOSLASH TWOSLASHopcode # j COMPILE_OPCODE
: CMPPLUSSTAR PLUSSTARopcode # j COMPILE_OPCODE
: CMPAFROM AFROMopcode # j COMPILE_OPCODE
: CMPTOA TOAopcode # j COMPILE_OPCODE
: CMPDUP DUPopcode # j COMPILE_OPCODE
: CMPDROP DROPopcode # j COMPILE_OPCODE
: CMPOVER OVERopcode # j COMPILE_OPCODE
: CMPTOR TORopcode # j COMPILE_OPCODE
: CMPRFROM RFROMopcode # j COMPILE_OPCODE
: CMPNOP NOPopcode # j COMPILE_OPCODE

: EXECUTE (>R) ;

138

: EXEC
c READ1
c EXECUTE
j EXEC

: NXEC
c SCAN
c LOOK
c POP_STRING
c EXECUTE
j NXEC

: TENSTAR
(DUP) (2 *) (2 *) (2 *) (OVER) (+) (+) ;

: NUMI
l# INPUT (@)
(>R) (R@+)
n# 0 (>A)
(DUP)
if

: NUMI_LOOP
(A>) c TENSTAR (R@+) -n# 48 (+) (+) (>A)
-n# 1 (+) (DUP)
if

j NUMI_LOOP
else

else
(DROP) (R>) (DROP) (A>)
j POP_STRING

l NXEC l START_WORD !

save_vm_here vm_here @ l HERE !
save_vm_here_next vm_here_next @ l HERE_NEXT !
save_vm_slot vm_slot @ l SLOT !
save_vm_input vm_input @ l INPUT !
save_vm_there vm_there @ l THERE !
save_vm_name_end vm_name_end @ l NAME_END !

)VM

>$ FIF1 $> \n

139

A.3.4 Flight Language Extensions

This is a repetition of the compilation of the Extensions from Section A.2, except that they are
processed by the new kernel within the Virtual Machine. Thisindirection greatly alters and
increases the nature of the code that is executed during the compilation of the extensions.

\n >$ FIFTEST1-VM-BEGIN $> \n

run_vm

// Extensions code goes here

\n >$ FIFTEST1-VM-DONE $> \n

140

Appendix B

Static and Dynamic Gullwing Code
Analyses

The following analyses are based on the software developed in Appendix A for the Gullwing
processor. The analyses are imperfect since it cannot always be known if a memory word
contains instructions or a literal. For example, this happens wherever the software contains
directly accessed memory locations. These memory locations are neither executed nor accessed
in-line like literal fetches. The analysis software considers these memory locations to contain
instructions by default, despite actually being literals.Fortunately, such cases are infrequent
and contribute very little noise to the data, showing up as rare, large literal values and UND
instructions.

B.1 Static Analyses

The static analyses are done on the binary code resident in memory after each test was compiled
and run. The symbol table associated with the executable code was removed prior to analysis.

B.1.1 Memory Usage

Table B.1 shows the total size of the code measured in (32-bit) memory words. This is divided
into words which contain either instructions or literal values. The literals are further divided as
addresses and as actual literal values.

32-bit Words Bare Ratio Ext. Ratio VM Ratio

Total 286 1.000 1185 1.000 3029 1.000
Instruction 123 0.430 593 0.500 1565 0.517

Literal 163 0.570 592 0.500 1464 0.483

Literal Types (words)
Literal 79 0.485 215 0.363 593 0.405

Address 84 0.515 377 0.637 871 0.595

Table B.1: Compiled Flight Code Memory Usage

141

B.1.2 Range of Literals

Table B.2 shows the distribution of the required number of bits required to represent the abso-
lute value of literals in immediate fetches. Most of these are small constants used in calcula-
tions.

Bits Bare Ratio Ext. Ratio VM Ratio

4 56 0.709 168 0.781 340 0.573
8 17 0.215 22 0.102 63 0.106
12 1 0.013 13 0.060 73 0.123
16 2 0.025 4 0.019 101 0.170
20 0 0.000 2 0.009 5 0.008
24 0 0.000 1 0.005 2 0.003
28 0 0.000 1 0.005 2 0.003
32 3 0.038 4 0.019 7 0.012

Table B.2: Range of Literals by Absolute Value

B.1.3 Range of Addresses

Table B.3 shows the distribution of the required number of bits required to represent the abso-
lute value of addresses used for calls and jumps. As the code size increases, the number of bits
required to represent an address increases proportionally.

Bits Bare Ratio Ext. Ratio VM Ratio

4 3 0.036 22 0.058 34 0.039
8 70 0.833 187 0.496 224 0.257
12 7 0.083 164 0.435 516 0.592
16 1 0.012 2 0.005 95 0.109
20 0 0.000 0 0.000 0 0.000
24 2 0.024 0 0.000 0 0.000
28 0 0.000 2 0.005 2 0.002
32 1 0.012 0 0.000 0 0.000

Table B.3: Range of Addresses by Absolute Value

142

B.1.4 Instructions per Instruction Word

Table B.4 shows the distribution of the number of instructions compiled into memory words.
The PC@ (PC Fetch) instruction is not counted since it is usedto fill the empty instruction slots.
A memory word which contains zero instructions is thus actually filled with PC@ instructions.

#/Word Bare Ratio Ext. Ratio VM Ratio

0 0 0.000 32 0.054 126 0.081
1 28 0.228 242 0.408 595 0.380
2 38 0.309 132 0.223 347 0.222
3 3 0.024 44 0.074 140 0.089
4 16 0.130 34 0.057 75 0.048
5 7 0.057 18 0.030 44 0.028
6 31 0.252 91 0.153 238 0.152

Table B.4: Instructions per Instruction Word

B.1.5 Instruction Density

Table B.5 shows the number of instructions per memory word. The averages are computed
against both all memory words and against only those which contain instructions. The max-
imum number of instructions per any memory word is a functionof the division between in-
struction and literal words seen in Table B.1.

Instr. per Mem. Word Bare Ext. VM

Avg. per Any Word 1.392 1.190 1.207
Max. per Any Word 2.580 3.003 3.100

Avg. per Instruction Word 3.236 2.380 2.337

Total # of Instr. 398 1410 3657
Total Instr. Slots 738 3558 9390

Slot Usage 0.539 0.396 0.389

Table B.5: Instruction Density

143

B.1.6 Compiled Instruction Counts

Table B.6 shows the number of times each possible instruction was found in memory. The
ratios are calculated relative to the total number of instructions (C/I) and to the total number of
instruction slots (C/S).

Instr. Bare C/I C/S Ext. C/I C/S VM C/I C/S

JMP0 14 0.035 0.019 33 0.023 0.009 75 0.021 0.008
JMP+ 0 0.000 0.000 19 0.013 0.005 40 0.011 0.004
CALL 30 0.075 0.041 244 0.173 0.069 566 0.155 0.060
RET 20 0.050 0.027 141 0.100 0.040 419 0.115 0.045
JMP 40 0.101 0.054 81 0.057 0.023 190 0.052 0.020
PC@ 340 0.854 0.461 2148 1.523 0.604 5733 1.568 0.611
LIT 79 0.198 0.107 215 0.152 0.060 593 0.162 0.063
@A 22 0.055 0.030 54 0.038 0.015 154 0.042 0.016

@A+ 4 0.010 0.005 4 0.003 0.001 17 0.005 0.002
!A 19 0.048 0.026 33 0.023 0.009 120 0.033 0.013

!A+ 2 0.005 0.003 5 0.004 0.001 53 0.014 0.006
@R+ 4 0.010 0.005 5 0.004 0.001 14 0.004 0.001
!R+ 2 0.005 0.003 4 0.003 0.001 17 0.005 0.002
XOR 5 0.013 0.007 19 0.013 0.005 47 0.013 0.005
AND 5 0.013 0.007 8 0.006 0.002 19 0.005 0.002
NOT 2 0.005 0.003 18 0.013 0.005 43 0.012 0.005
2* 33 0.083 0.045 49 0.035 0.014 104 0.028 0.011
2/ 0 0.000 0.000 17 0.012 0.005 39 0.011 0.004
+ 16 0.040 0.022 83 0.059 0.023 184 0.050 0.020
+* 0 0.000 0.000 18 0.013 0.005 41 0.011 0.004

DUP 12 0.030 0.016 59 0.042 0.017 136 0.037 0.014
DROP 9 0.023 0.012 56 0.040 0.016 123 0.034 0.013
OVER 13 0.033 0.018 41 0.029 0.012 87 0.024 0.009

>R 6 0.015 0.008 43 0.030 0.012 109 0.030 0.012
R> 5 0.013 0.007 41 0.029 0.012 101 0.028 0.011
>A 43 0.108 0.058 93 0.066 0.026 286 0.078 0.030
A> 8 0.020 0.011 14 0.010 0.004 39 0.011 0.004

NOP 1 0.003 0.001 2 0.001 0.001 8 0.002 0.001
UND0 1 0.003 0.001 0 0.000 0.000 2 0.001 0.000
UND1 0 0.000 0.000 2 0.001 0.001 6 0.002 0.001
UND2 0 0.000 0.000 1 0.001 0.000 8 0.002 0.001
UND3 3 0.008 0.004 8 0.006 0.002 17 0.005 0.002

Table B.6: Compiled Instruction Counts

144

B.2 Dynamic Analyses

The dynamic analyses are done on an execution trace log of each test in Appendix A. The
’Bare’ case present in the static analyses is not included since the Flight language kernel is
built into the simulator and does virtually nothing withoutexternal input.

B.2.1 Overall Execution

Table B.7 lists the total number of executed instructions and the number of cycles they required.
An average CPI (Cycles Per Instruction) of 1.3 is implied by these values.

Test Ext. VM

Instructions 5,018,751 204,325,372
Cycles 6,574,996 265,567,537

Table B.7: Overall Execution

B.2.2 Executed Instruction Counts

Table B.8 lists the number of times each instruction was executed and its ratios relative to the
total number of instructions (C/I) and cycles (C/C) executed. The conditional jumps are divided
into taken and not taken instances since they have differentcycle counts (2 and 1, respectively).

A fold is a case where the fetching of the next group of instructions (a PC@) is executed
concurrently with the last instruction from the current group, thus occurring ’for free’. The
implementation of this feature is detailed in Section 6.3.1. A PC@ (PC Fetch) instruction is
executed after the last instruction when this folding cannot be done. The sum of the folds and
PC@s is the total number of instruction fetches not originating from jumps, calls, or returns.

145

Instruction Ext. C/I C/C VM C/I C/C

JMP0 304,141 0.061 0.046 2,280,533 0.011 0.009
JMP+ 63 0.000 0.000 63 0.000 0.000

JMP0 TAKEN 23,307 0.005 0.007 83,610 0.000 0.001
JMP+ TAKEN 137 0.000 0.000 1,875,075 0.009 0.014

CALL 320,857 0.064 0.098 10,143,368 0.050 0.076
RET 321,997 0.064 0.098 15,306,286 0.075 0.115
JMP 107,803 0.021 0.033 5,617,365 0.027 0.042
PC@ 230,798 0.041 0.031 4,428,928 0.022 0.017

FOLDS 210,080 0.042 0.032 15,381,940 0.075 0.058
LIT 636,924 0.127 0.097 32,273,461 0.158 0.122
@A 321,272 0.064 0.098 16,753,698 0.082 0.126

@A+ 320,744 0.064 0.098 1,546,398 0.008 0.012
!A 12,909 0.003 0.004 9,326,086 0.046 0.070

!A+ 428 0.000 0.000 1272 0.000 0.000
@R+ 120,753 0.024 0.037 560,414 0.003 0.004
!R+ 6038 0.001 0.002 28,593 0.000 0.000
XOR 319,174 0.064 0.049 4,203,870 0.021 0.016
AND 2247 0.000 0.000 7,042,637 0.034 0.027
NOT 2249 0.001 0.000 3,758,267 0.018 0.014
2* 9914 0.002 0.002 32,069 0.000 0.000
2/ 0 0.000 0.000 25,802,660 0.126 0.097
+ 515,465 0.103 0.078 15,671,697 0.077 0.059
+* 0 0.000 0.000 0 0.000 0.000

DUP 212,572 0.042 0.032 10,923,102 0.053 0.041
DROP 103,643 0.021 0.016 511,936 0.003 0.002
OVER 6777 0.001 0.001 3,770,383 0.018 0.014

>R 104,923 0.021 0.016 7,110,502 0.035 0.027
R> 103,781 0.021 0.016 1,947,580 0.010 0.007
>A 633,291 0.126 0.096 21,482,640 0.105 0.081
A> 302,944 0.060 0.046 1,843,179 0.009 0.007

NOP 0 0.000 0.000 0 0.000 0.000
UND0 0 0.000 0.000 0 0.000 0.000
UND1 0 0.000 0.000 0 0.000 0.000
UND2 0 0.000 0.000 0 0.000 0.000
UND3 0 0.000 0.000 0 0.000 0.000

Table B.8: Executed Instruction Counts

146

B.2.3 Average CPI

Table B.9 shows the computed average CPI (Cycles Per Instruction) values based on the in-
struction counts from Table B.8. The ’Worst’ and ’Best’ values are for the hypothetical bound-
ary cases where all conditional jumps are taken or not, respectively.

Test Ext. VM

Best 1.305 1.290
Actual 1.310 1.300
Worst 1.371 1.311

Table B.9: Average CPI

B.2.4 Instruction Types

Table B.10 lists the executed instructions grouped by type.The ratios are relative to the total
number of instructions executed. The relative contribution to the CPI of each instruction type
can be readily inferred from the product of the cycles and thefrequencies.

Test Extensions Virtual Machine

Instr. Type Members Cycles Count Freq. Count Freq.

Conditionals JMP+, JMP0 1 304,204 0.061 2,280,596 0.011
Conditionals JMP+ TAKEN, 2 23,444 0.005 1,958,685 0.010

(Taken) JMP0 TAKEN
Subroutine CALL, RET, JMP 2 750,657 0.150 31,067,019 0.152

Fetches PC@, LIT 1 840,722 0.168 36,702,389 0.180
Load/Store @A, @A+, !A, 2 782,144 0.156 28,216,461 0.138

!A+, @R+, !R+
Arithmetic & XOR, AND, NOT, 1 849,649 0.169 56,510,900 0.277

Logic 2*, 2/, +, +*
Stack DUP, DROP, OVER, 1 1,467,931 0.292 47,589,322 0.233

Manipulation >R, R>, >A, A>
NOP/UND NOP, UND[0-3] 1 0 0.000 0 0.000

Table B.10: Instruction Types

147

B.2.5 Basic Block Length

Table B.11 lists the lengths, measured in instructions, of the basic blocks encountered during
execution. Calls, returns, and jumps (taken or not) terminate a basic block. A block length of
zero signifies two consecutive calls or jumps.

The odd peak at length 17 is the main loop of the VM,do_next_instruction , which
was deliberately inlined into a single basic block for performance reasons.

Instructions Ext. Ratio VM Ratio

0 24,613 0.023 17,143,651 0.486
1 300,464 0.279 2,372,695 0.067
2 394 0.000 661,029 0.019
3 230,485 0.214 2,118,717 0.060
4 208,813 0.194 940,229 0.027
5 103,499 0.096 741,651 0.021
6 3292 0.003 1,099,523 0.031
7 100,262 0.093 719,878 0.020
8 100,824 0.094 394,367 0.011
9 3108 0.003 647,462 0.018
10 - - 317,034 0.009
11 77 0.000 322,764 0.009
12 43 0.000 132,018 0.004
13 61 0.000 646,811 0.018
14 634 0.001 1,884,477 0.053
16 1728 0.002 3462 0.000
17 - - 5,160,532 0.146
20 8 0.000 - -

Total Blocks 1,078,305 35,306,300
Average 3.654 4.787

Table B.11: Basic Block Length

148

B.2.6 Data Stack Depth

Table B.12 shows the distribution of the number of items on the Data Stack over the entire
execution.

Depth Ext. Ratio VM Ratio

0 109,303 0.022 1,469,323 0.007
1 876,384 0.175 13,429,593 0.066
2 1,379,820 0.275 29,249,154 0.143
3 1,437,394 0.286 44,388,630 0.217
4 879,234 0.175 44,484,643 0.218
5 272,451 0.054 34,373,299 0.168
6 52,157 0.010 20,746,317 0.102
7 9314 0.002 9,725,059 0.048
8 2184 0.000 4,301,403 0.021
9 463 0.000 1,710,608 0.008
10 47 0.000 367,851 0.002
11 - - 65,179 0.000
12 - - 11,231 0.000
13 - - 2677 0.000
14 - - 405 0.000

Average 2.636 3.924

Table B.12: Data Stack Depth

149

B.2.7 Return Stack Depth

Table B.13 shows the distribution of the usage of the Return Stack over the entire execution.
The depth of the Return Stack is usually equal to the call depth of the program, plus some
transient, temporary storage.

Depth Ext. Ratio VM Ratio

0 5666 0.001 19,823 0.000
1 1,862,081 0.371 8,362,538 0.041
2 1,452,360 0.289 15,583,345 0.076
3 1,147,591 0.229 57,244,617 0.280
4 379,797 0.076 48,202,927 0.236
5 169,104 0.034 44,737,258 0.219
6 1978 0.000 17,140,510 0.084
7 174 0.000 10,796,692 0.053
8 - - 1,452,808 0.007
9 - - 778,445 0.004
10 - - 6079 0.000
11 - - 330 0.000

Average 2.110 4.037

Table B.13: Return Stack Depth

150

Bibliography

[ABB64] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks,Architectureof theIBM System
360, IBM Journal of Research and Development8 (1964), no. 2, 87–101.

[All85] Murray W Allen, CharlesHamblin (1922-1985), Aust. Comput. J.17 (1985),
no. 4, 194–195.

[Bai94] Chris Bailey,HLL enhancementfor stackbasedprocessors, EuroMicro Journal
of Microprocessing and Microprogramming40 (1994), 665–668.

[Bai96] , Optimisation Techniques for Stack-Based Processors, PhD thesis, Uni-
versity of Teesside, UK, July 1996, Amongst other things, analyzes the use of
stack buffers to reduce memory traffic.

[Bai00] , Achievingminimalanddeterministicinterruptexecutionin stack-based
processorarchitectures., inEUROMICRO [DBL00], pp. 1368–.

[Bai04] , A proposedmechanismfor super-pipelinedinstruction-issuefor ilp
stackmachines, DSD ’04: Proceedings of the Digital System Design, EUROMI-
CRO Systems on (DSD’04) (Washington, DC, USA), IEEE Computer Society,
2004, pp. 121–129.

[Bar61a] R. S. Barton,A new approachto the functional designof a digital computer,
AFIPS Conference Proceedings19 (1961), 393–396, presented at IRE-AIEE-
ACM Computer Conference, May 9-11, 1961.

[Bar61b] , Systemdescriptionfor an improvedinformationprocessingmachine,
Proceedings of the 1961 16th ACM national meeting (New York,NY, USA),
ACM Press, 1961, pp. 103.101–103.104.

[Bar61c] Robert S. Barton,Functionaldesignof computers, Commun. ACM4 (1961),
no. 9, 405.

[Bar87] R. S. Barton,A newapproachto thefunctionaldesignof adigital computer, IEEE
Annals of the History of Computing09 (1987), no. 1, 11–15.

[Bau60] Friedrich L. Bauer,The formula-controlledlogical computer"STANISLAUS",
Math. Tabl. Aids Comp14 (1960), 64–67.

151

[Bau90] F. L. Bauer,Thecellar principle of statetransitionandstorageallocation, IEEE
Ann. Hist. Comput.12 (1990), no. 1, 41–49.

[Bau02] Friedrich L. Bauer,From the Stack Principle to ALGOL, pp. 26–42, in Broy and
Denert [BD02], 2002, Points to possible earlier origins of stacks for computation.

[BBG+60] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A.van Wijngaar-
den, and M. Woodger,ReportonthealgorithmiclanguageALGOL 60, Commun.
ACM 3 (1960), no. 5, 299–314.

[BBRS58] F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K.Samelson,Proposalfor a
universallanguagefor the descriptionof computingprocesses, pp. 355–373, in
Carr [Car58], 1958.

[BCM+70] G. Bell, R. Cody, H. McFarland, B. DeLagi, J. O’Laughlin,R. Noonan, and
W. Wulf, A newarchitecturefor mini-computers:theDECPDP-11, Proc. AFIPS
SJCC (1970), 657–675.

[BD02] Manfred Broy and Ernst Denert (eds.),Software pioneers: contributions to
softwareengineering, Springer-Verlag New York, Inc., New York, NY,USA,
2002.

[BFPB97] Gerrit A. Blaauw and Jr. Frederick P. Brooks,Computerarchitecture:Concepts
and evolution, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[BI86] Leo B. Brodie and FORTH Inc.,StartingFORTH, second ed., Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

[Bla77] Russell P. Blake,Exploringastackarchitecture, Computer10 (1977), no. 5, 30–
39, QA76.5.I54, not in ACM Digital Library.

[Bla90] Mario De Blasi,Computerarchitecture, Addison-Wesley Longman Publishing
Co., Inc., 1990.

[Bro84] Leo B. Brodie, Thinking FORTH: a languageand philosophy for solving
problems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[BSa] Friedrich Ludwig Bauer and Klaus Samelson,Frenchpatent1.204.424:Machine
à calculerautomatiqueet procédépoursonexploitation, Filed March 28, 1958.
Delivered August 10, 1959. Published January 26, 1960.

[BSb] , Gb patent 892,098: Improvementsin and relating to computing
machines, Filed March 31, 1958. Published MArch 21, 1962.

[BSc] , Germanpatent1 094 019: Verfahrenzur automatischenVerarbeitung
von kodiertenDatenund Rechenmaschinezur AusübungdesVerfahrens, Filed
March 30, 1957. Granted December 1, 1960.

152

[BSd] , Us patent3,047,228:Automaticcomputingmachinesand methodof
operation, Filed March 28, 1958. Granted July 31, 1962.

[BS94] C. Bailey and R. Sotudeh,HLL enhancementfor stackbasedprocessors, Selected
papers of the short notes session on Euromicro ’94 (Amsterdam, The Netherlands,
The Netherlands), Elsevier Science Publishers B. V., 1994,pp. 685–688.

[Bul77] D. M. Bulman,Stackcomputers, Computer10 (1977), no. 5, 14–16.

[Bur63] Burroughs Corporation, Detroit, Michigan,Operationalcharacteristicsof the
processorsfor theBurroughsB5000, 1963, Pub. No. 5000-21005, Revision A.

[Bur67] Burroughs Corporation, Detroit, Michigan,Burroughs B5500 information
processingsystemsreferencemanual, May 1967, Pub. No. 1021326.

[Bur73] Burroughs Corporation, Detroit, Michigan,B7700 systemsreferencemanual,
1973, Form 1060233.

[Bur81] Burroughs Corporation, Detroit, Michigan,B6900systemreferencemanual, July
1981, Form 5100986.

[Bur98] Stephen D. Burd,Systemsarchitecture:Hardwareandsoftwarein information
systems, South-Western Publishing Company, 1998.

[Car58] J. W. Carr (ed.),Summerschool1958, University of Michigan, 1958.

[Cha95] Robert James Chapman,Stack quarks, Proc. Rochester Forth Con-
ference on Emerging Technology (Rochester, New York) (Lawrence
P. G. Forsley, ed.), University of Rochester, The Institutefor Applied
Forth Research, Inc., June 1995, Decomposes the typical stack per-
mutation operations into smaller primitives. Online as of Nov. 2006:
http://www.compusmart.ab.ca/rc/Papers/StackQuarksPaper.pdf.

[Cha97] , A writable computer, Proc. Rochester Forth Conference on Emerging
Technology (Rochester, New York) (Lawrence P. G. Forsley, ed.), University
of Rochester, The Institute for Applied Forth Research, Inc., June 1997, De-
scribes the VHDL design of a small stack computer. Online as of Nov. 2006:
http://www.compusmart.ab.ca/rc/Papers/writablecomputer.pdf.

[Cha98] Rob Chapman, A Stack Processor: Synthesis, web page, Jan-
uary 1998, Project Report for EE602. Online as of Nov. 2006:
http://www.compusmart.ab.ca/rc/Papers/spsynthesis.pdf.

[Chu75] Yaohan Chu,High-level languagecomputerarchitecture, Academic Press, Inc.,
Orlando, FL, USA, 1975.

[DBL00] 26th EUROMICRO 2000 conference,informatics: Inventing the future, 5-7
september2000,Maastricht,TheNetherlands, IEEE Computer Society, 2000.

153

[Dor75a] R. W. Doran,The InternationalComputersltd. ICL2900 computerarchitecture,
SIGARCH Comput. Archit. News4 (1975), no. 3, 24–47.

[Dor75b] Robert W. Doran,Architectureof stackmachines, pp. 63–108, in [Chu75], 1975.

[DP80] David R. Ditzel and David A. Patterson,Retrospectiveon high-level language
computerarchitecture, ISCA ’80: Proceedings of the 7th annual symposium on
Computer Architecture (New York, NY, USA), ACM Press, 1980,pp. 97–104.

[DP86] , Retrospectiveon high-levellanguagecomputerarchitecture, pp. 44–51,
in [FL86], 1986.

[DP98a] , Retrospective: a retrospectiveon high-level language computer
architecture, ISCA ’98: 25 years of the international symposia on Computer ar-
chitecture (selected papers) (New York, NY, USA), ACM Press, 1998, pp. 13–14.

[DP98b] , Retrospectiveon high-levellanguagecomputerarchitecture, ISCA ’98:
25 years of the international symposia on Computer architecture (selected papers)
(New York, NY, USA), ACM Press, 1998, pp. 166–173.

[Dun77] Fraser George Duncan,Stackmachinedevelopment:Australia,greatbritain,and
europe, Computer10 (1977), no. 5, 50–52.

[Eng63] English Electric-LEO Computers Ltd., Kidsgrove, Stoke-On-
Trent, Staffordshire, England, KDF9 programming manual, circa
1963, Online as of March 2006 at: http://www.jeays.ca/kdf9.html
and http://frink.ucg.ie/~bfoley/edhist/kdf9pm/kdf9pm.html and
http://acms.synonet.com/deuce/KDF9pm.pdf.

[FL86] Eduardo B. Fernandez and Tomas Lang,Software-oriented computer
architecture, IEEE Computer Society Press, Los Alamitos, CA, USA, 1986.

[Fox98] Jeff Fox, F21 CPU, web page, 1998, Online as of April 2007:
http://ultratechnology.com/f21.html.

[Fox04] , Forth Chips, web page, 2004, Online as of April 2007:
http://ultratechnology.com/chips.htm.

[FR93] James M. Feldman and Charles Retter,Computerarchitecture;a designer’stext
basedon agenericRISC, McGraw-Hill, Inc., 1993.

[Fre98] Paul Frenger,Forth in space,or, so NEAR yet so far out, SIGPLAN Not.33
(1998), no. 6, 24–26.

[Fre01] , Closeencountersof the Forth kind, SIGPLAN Not.36 (2001), no. 4,
21–24.

[GL03] William F. Gilreath and Phillip A. Laplante,Computer Architecture, Kluwer Aca-
demic Publishers, 2003.

154

[GWS91] II George William Shaw,Sh-BOOM: the soundof the RISC marketchanging,
Proceedings of the second and third annual workshops on Forth, ACM Press,
1991, p. 125.

[Hal62] A. C. D. Haley,TheKDF.9computersystem, Proceedings of the AFIPS Fall Joint
Computer Conference, vol. 21, 1962, pp. 108–120.

[Ham57a] Charles L. Hamblin,An addresslesscoding schemebasedon mathematical
notation, Proceedings of the First Australian Conference on Computing and Data
Processing (Salisbury, South Australia: Weapons ResearchEstablishment), Jun
1957.

[Ham57b] , Computerlanguages, The Australian Journal of Science20(1957), 135–
139.

[Ham85] , Computerlanguages, Aust. Comput. J.17 (1985), no. 4, 195–198,
Reprint of 1957 paper in volume 20 of The Australian Journal of Science.

[Hay97] John P. Hayes,Computerarchitectureandorganization, McGraw-Hill, Inc., 1997.

[Hen84] John L. Hennessy,VLSI processorarchitecture, IEEE Transaction on Computers
C-33 (1984), no. 12, 1221–1246.

[Hen86] , VLSI processorarchitecture, pp. 90–115, in [FL86], 1986.

[Hew84] Hewlett-Packard, Cupertino, California,HP 3000 computersystemsgeneral
informationmanual, October 1984, Pub. No. 5953-7983.

[HH00] Richard E. Haskell and Darrin M. Hanna,Implementing a Forth engine
microcontrolleron aXilinx FPGA, Looking Forward – The IEEE Computer So-
ciety’s Student Newsletter (A Supplement to Computer)8 (2000), no. 1, Online
as of Nov. 2006: http://www.cse.secs.oakland.edu/hanna/research/IEEE2.pdf and
http://www.cse.secs.oakland.edu/haskell/VHDL/IEEEStudent.PDF.

[HJB+82] John Hennessy, Norman Jouppi, Forest Baskett, Thomas Gross, and John Gill,
Hardware/softwaretradeoffsfor increasedperformance, ASPLOS-I: Proceedings
of the first international symposium on Architectural support for programming
languages and operating systems (New York, NY, USA), ACM Press, 1982,
pp. 2–11.

[HJP+82] John Hennessy, Norman Jouppi, Steven Przybylski, Christopher Rowen, Thomas
Gross, Forest Baskett, and John Gill,MIPS: A microprocessorarchitecture, MI-
CRO 15: Proceedings of the 15th annual workshop on Microprogramming (Pis-
cataway, NJ, USA), IEEE Press, 1982, pp. 17–22.

[HP96] John L. Hennessy and David A. Patterson,Computerarchitecture:A quantitative
approach, 2nd ed., Morgan Kaufmann Publishers Inc., 1996, The dominant text-
book on current computer architecture, which I’ve found to be erroneous with
regards to current stack architecture.

155

[HP02] , Computerarchitecture: A quantitativeapproach, Morgan Kaufmann
Publishers Inc., 2002.

[HVZ95] V. Carl Hamacher, Zvonko G. Vranesic, and Safwat G. Zaky, Computer
organization, McGraw-Hill Higher Education, 1995.

[Hwa92] Kai Hwang, Advanced computer architecture: Parallelism, scalability,
programmability, McGraw-Hill Higher Education, 1992.

[IC78] R. N. Ibbett and P. C. Capon,The developmentof the MU5 computersystem,
Commun. ACM21 (1978), no. 1, 13–24.

[Int00] Intersil,Datasheetfor HS-RTX2010RH, March 2000, File Number 3961.3.

[Int06] Intel Corporation, Dever, CO,Intel R© 64 and IA-32 architecturesoptimization
referencemanual, November 2006, Order Number: 248966-014.

[Kat85] Manolis G. H. Katevenis,Reducedinstructionset computerarchitecturesfor
VLSI, Massachusetts Institute of Technology, Cambridge, MA, USA, 1985, One
of the PhD theses from the Berkeley RISC project. Goes into the deep technical
details and reasonnings behind RISC.

[KDF61] KDF9: Very high speeddataprocessingsystemfor commerce,industry,science,
English Electric, Kidsgrove, Stoke-On-Trent, Staffordshire, England, 1961, Sales
brochure for the KDF9.

[KKC92a] William F. Keown, Philip Koopman, and Aaron Collins, Performanceof the
Harris RTX 2000 stack architectureversusthe Sun 4 SPARC and the Sun 3
M68020architectures, SIGARCH Comput. Archit. News20(1992), no. 3, 45–52.

[KKC92b] , Real-timeperformanceof theHarrisRTX 2000stackarchitectureversus
theSun4 SPARCandtheSun3 M68020architectureswith aproposedreal-time
performancebenchmark, SIGMETRICS Perform. Eval. Rev.19 (1992), no. 4,
40–48.

[Kog90] Peter M. Kogge,The architectureof symbolic computers, McGraw-Hill, Inc.,
1990.

[Koo89] Philip J. Koopman,Stackcomputers:thenewwave, Halsted Press, 1989, A com-
pendium of stack computer architectures. Has useful experimental data.

[Koo90] , Modernstackcomputerarchitecture, System Design and Network Ar-
chitecture Conference (1990), 153–164.

[Koo91] , Someideasfor stack computerdesign, Rochester Forth Conference
(1991), 58.

[Koo94] , A preliminaryexplorationof optimizedstackcodegeneration, Journal
of Forth Applications and Research6 (1994), no. 3, 241–251.

156

[Lav80] Simon Hugh Lavington,Earlybritishcomputers:Thestoryof vintagecomputers
and the peoplewho built them, Butterworth-Heinemann, Newton, MA, USA,
1980.

[LTL98] P. H. W. Leong, P. K. Tsang, and T. K. Lee,A FPGAbasedforth microprocessor,
FCCM ’98: Proceedings of the IEEE Symposium on FPGAs for Custom Com-
puting Machines (Washington, DC, USA), IEEE Computer Society, 1998, p. 254.

[Luk29] Jan Lukasiewicz,Elementsof mathematicallogic, Warsaw, 1929, [English trans-
lation of 1958 edition: Macmillan, 1963].

[McK80] William M. McKeeman,Stackcomputers, pp. 319–362, in [Sto80], 1980.

[McL93] Edward McLellan,TheAlpha AXP architectureand21064processor, IEEE Mi-
cro 13 (1993), no. 3, 36–47.

[ME97] Martin Maierhofer and M. Anton Ertl,Optimizing stack code, Forth-Tagung
1997, 1997.

[ME98] , Local stackallocation, Compiler Construction 1998, Springer LNCS
1383, 1998, pp. 189–203.

[MK97] M. Morris Mano and Charles R. Kime,Logic andcomputerdesignfundamentals,
Prentice-Hall, Inc., 1997.

[ML70] Charles H. Moore and Geoffrey C. Leach,FORTH – a languagefor interactive
computing, Mohasco Industries, Inc., Amsterdam, NY, 1970,Internal publica-
tion.

[Moo91] Charles H. Moore,Forth - the early years, Unpublished notes that became
the papers by Rather, Colburn, and Moore [RCM93] [RCM96]. Accesible at
http://www.colorforth.com/HOPL.html as of Nov. 2006., 1991.

[Moo01a] , 25x emulator, Proceedings of the 17th EuroForth Conference(Schloss
Dagstuhl, Saarland, Germany), University of Teesside, November 2001, ISBN: 0
907550 97 6.

[Moo01b] , c18 colorForth compiler, Proceedings of the 17th EuroForthConference
(Schloss Dagstuhl, Saarland, Germany), University of Teesside, November 2001,
One of the few published papers by Chuck Moore. Describes thec18 instruction
set in detail.

[MP95] Silvia M. Muller and Wolfgang J. Paul,The complexity of simple computer
architectures, Springer-Verlag New York, Inc., 1995.

[MT95] Charles H. Moore and C. H. Ting,MuP21– aMISC processor, Forth Dimensions
(1995), 41, http://www.ultratechnology.com/mup21.html.

[Mur86] Robert W. Murphy,Underthehoodof asuperchip:theNOVIX Forthengine, J.
FORTH Appl. Res.3 (1986), no. 2, 185–188.

157

[Mur90] William D. Murray,Computeranddigital systemarchitecture, Prentice-Hall, Inc.,
1990.

[Omo94] Amos R. Omondi,Computerarithmeticsystems:algorithms,architectureand
implementation, Prentice Hall International (UK) Ltd., 1994.

[Omo99] , Themicroarchitectureof pipelinedandsuperscalarcomputers, Kluwer
Academic Publishers, 1999.

[Org73] Elliott Irving Organick,Computersystemorganization:TheB5700/B6700 series
(ACM monographseries), Academic Press, Inc., Orlando, FL, USA, 1973.

[Pat85] David A. Patterson,Reducedinstruction set computers, Commun. ACM28
(1985), no. 1, 8–21.

[Pat86] , Reducedinstructionsetcomputers, pp. 76–89, in [FL86], 1986.

[Pay96] Bernd Paysan,Implementationof the 4stackprocessorusingVerilog, Diploma
thesis, Technische Universitat Munchen, Institut fur Informatik, August 1996,
http://www.jwdt.com/~paysan/4stack.html.

[Pay02] Berndt Paysan,b16–AForthprocessorin anFPGA, Forth-Tagung 2002 (2002),
http://www.b16-cpu.de/.

[PD80] David A. Patterson and David R. Ditzel,Thecasefor thereducedinstructionset
computer, SIGARCH Comput. Archit. News8 (1980), no. 6, 25–33.

[PH90] David A. Patterson and John L. Hennessy,Computerarchitecture:aquantitative
approach, Morgan Kaufmann Publishers Inc., 1990.

[PH98] , Computerorganizationanddesign:thehardware/softwareinterface, 2nd
ed., Morgan Kaufmann Publishers Inc., 1998.

[PS81] David A. Patterson and Carlo H. Sequin,RISC I: A reducedinstructionsetVLSI
computer, ISCA ’81: Proceedings of the 8th annual symposiumon Computer
Architecture (Los Alamitos, CA, USA), IEEE Computer Society Press, 1981,
pp. 443–457.

[PS98a] David A. Patterson and Carlo H. Séquin,Retrospective:RISC I: areduced
instructionsetcomputer, ISCA ’98: 25 years of the international symposia on
Computer architecture (selected papers) (New York, NY, USA), ACM Press,
1998, pp. 24–26.

[PS98b] David A. Patterson and Carlo H. Sequin,RISC I: a reducedinstructionsetVLSI
computer, ISCA ’98: 25 years of the international symposia on Computer archi-
tecture (selected papers) (New York, NY, USA), ACM Press, 1998, pp. 216–230.

158

[Ras03] James Rash, Space-related applications of forth, webpage:
http://forth.gsfc.nasa.gov/, April 2003, Presents space-related applications
of Forth microprocessors and the Forth programming language at NASA.
Accessed on Nov. 2006.

[RCM93] Elizabeth D. Rather, Donald R. Colburn, and CharlesH. Moore,Theevolutionof
Forth, The second ACM SIGPLAN conference on History of programming lan-
guages (Cambridge, Massachusetts, United States), ACM Press, 1993, pp. 177–
199.

[RCM96] , The evolutionof Forth, History of programming languages—II (New
York, NY, USA), ACM Press, 1996, pp. 625–670.

[Ros87] Robert F. Rosin,Prologue:TheBurroughsB5000, Annals of the History of Com-
puting9 (1987), no. 1, 6–7.

[SB60] K. Samelson and F. L. Bauer,Sequentialformula translation, Commun. ACM3
(1960), no. 2, 76–83.

[SB04] Huibin Shi and Chris Bailey,Investigatingavailableinstructionlevel parallelism
for stackbasedmachinearchitectures, DSD ’04: Proceedings of the Digital Sys-
tem Design, EUROMICRO Systems on (DSD’04) (Washington, DC,USA), IEEE
Computer Society, 2004, pp. 112–120.

[Sha99] George William Shaw,PSC1000microprocessorreferencemanual, Patriot Sci-
entific Corporation, San Diego, CA, March 1999, Ref. No. 99-0370001.

[Sha02] , IGNITE intellectualpropertyreferencemanual, Patriot Scientific Cor-
poration, San Diego, CA, March 2002, Revision 1.0.

[Sit78] Richard L. Sites,A combinedregister-stackarchitecture, SIGARCH Comput.
Archit. News6 (1978), no. 8, 19–19.

[SSK97] Dezso Sima, D. Sima, and Peter Kacsuk,Advancedcomputerarchitectures,
Addison-Wesley Longman Publishing Co., Inc., 1997.

[Sta90] William Stallings,Computerorganizationandarchitecture, 2nd ed., Prentice Hall
PTR, 1990.

[Sta93] , Computerorganizationand architecture: principles of structureand
function, 3rd ed., Macmillan Publishing Co., Inc., 1993.

[Sta02] , Computerorganizationand architecture, Prentice Hall Professional
Technical Reference, 2002.

[Sto80] Harold S. Stone,Introductionto computerarchitecture, Science Research Asso-
ciates, 1980.

[Sto92] , High-performancecomputerarchitecture, Addison-Wesley Longman
Publishing Co., Inc., 1992.

159

[TCCLL99] P.K. Tsang, K.H. C.C. Cheung, T.K. Lee Leung, and P.H.W. Leong,
MSL16A: an asynchronous Forth microprocessor, TENCON 99. Proceedings of
the IEEE Region 10 Conference, vol. 2, September 1999, pp. 1079–1082.

[Tin97a] C H Ting,The P seriesof microprocessors, More On Forth Engines22 (1997),
1–17.

[Tin97b] , P16 microprocessordesign in VHDL, More On Forth Engines22
(1997), 44–51.

[Wil91] Barry Wilkinson, Computerarchitecture: Design and performance, 1st ed.,
Prentice-Hall, Inc., 1991.

[Wil96] , Computerarchitecture:Designandperformance, 2nd ed., Prentice-Hall,
Inc., 1996.

[Wil01] Rob Williams, Computersystemsarchitecturewith CDROM, Addison-Wesley
Longman Publishing Co., Inc., 2001.

[Yue] C K Yuen, Superscalarexecution of stack programsusing reorder buffer,
http://www.comp.nus.edu.sg/~yuenck/stack.

160

	LAFOREST Eric BIS 2007 Signed Declaration
	LAFOREST_Eric BIS 2007 Thesis

