
Autonomous Cooperating Web Crawlers

by

Gregory Louis McLearn

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2002

c©Gregory Louis McLearn 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A web crawler provides an automated way to discover web events – creation,

deletion, or updates of web pages. Competition among web crawlers results in

redundant crawling, wasted resources, and less-than-timely discovery of such events.

This thesis presents a cooperative sharing crawler algorithm and sharing protocol.

Without resorting to altruistic practices, competing (yet cooperative) web crawlers

can mutually share discovered web events with one another to maintain a more

accurate representation of the web than is currently achieved by traditional polling

crawlers.

The choice to share or merge is entirely up to an individual crawler: sharing

is the act of allowing a crawler M to access another crawler’s web-event data (call

this crawler S), and merging occurs when crawler M requests web-event data from

crawler S. Crawlers can choose to share with competing crawlers if it can help

reduce contention between peers for resources associated with the act of crawling.

Crawlers can choose to merge from competing peers if it helps them to maintain

a more accurate representation of the web at less cost than directly polling web

pages. Crawlers can control how often they choose to merge through the use of a

parameter ρ, which dictates the percentage of time spent either polling or merging

with a peer. Depending on certain conditions, pathological behaviour can arise if

polling or merging is the only form of data collection.

Simulations of communities of simple cooperating web crawlers successfully show

that a combination of polling and merging (0 < ρ < 1) can allow an individual

member of the cooperating community a higher degree of accuracy in their repre-

sentation of the web as compared to a traditional polling crawler. Furthermore, if

web crawlers are allowed to evaluate their own performance, they can dynamically

switch between periods of polling and merging to still perform better than tradi-

tional crawlers. The mutual performance gain increases as more crawlers are added

to the community.

iii

Acknowledgements

I would like to thank everyone who has given their assistance and support during

the completion of this thesis.

Special thanks must go to my supervisor Gordon V. Cormack. His insights

and criticisms proved to be invaluable, and his patience was infinite. Thanks for

everything, Gord.

I would also like to thank my readers, Charlie L.A. Clarke and William B.

Cowan for taking the time to read this work and for supplying helpful comments.

I must also thank Karin Hung – for she is truly an inspiring person and capable

of great things.

Thanks to the members of the Programming Languages Group, who provided

not only intellectual moments, but also many needed distractions.

This work has been made possible through generous funding by the National

Sciences and Engineering Research Council (NSERC) of Canada.

iv

Contents

1 Introduction 1

1.1 Problems with Web Crawlers Today 2

1.1.1 The Freshness Problem . 2

1.1.2 Bandwidth and Overlap Problems 3

2 Background Information 8

2.1 Introduction to Web Crawlers . 8

2.2 Taxonomy of Crawler Communication 11

2.2.1 Non-interactive . 13

2.2.2 Coordination . 13

2.2.3 Collaboration . 14

2.2.4 Self-interest . 14

2.3 Implementing Web-event Dissemination

Systems . 16

2.3.1 A General Event Notification Architecture 16

v

2.3.2 Information Delivery Methods 19

2.4 Distributing Web Events . 19

2.4.1 Changes to HTTP . 21

2.4.2 Crawler-centric Web-Event Dissemination 22

3 Protocol 24

3.1 Web-Events Describe the Ever-changing Web 25

3.2 Information Sharing and Merging 27

3.2.1 Share-control File . 27

3.2.2 Web-Event Data Files . 30

3.2.3 Share-repository . 32

3.3 Specific Protocol Issues . 33

3.3.1 Event Resolution Rules . 33

4 Theory 35

4.1 A Simple Sharing Crawler . 35

4.2 Freshness as a Metric . 37

4.3 Algorithm Analysis . 39

4.3.1 Preamble to the Analysis . 40

4.3.2 Intuition of Interaction . 41

4.3.3 Deriving an optimal number of crawlers 43

4.3.4 Number of Operations as Related to Freshness 44

vi

5 Simulation Software 45

5.1 Simulation Architecture . 45

5.2 Web Objects . 46

5.3 Web Crawlers . 47

5.4 The Simulated Web . 49

5.5 Simulation Variables . 49

5.6 Web Crawler Algorithms . 50

6 Experiments and Results 55

6.1 Experimental Setup . 55

6.2 Experiments and Analysis . 57

6.2.1 Establishing a Baseline . 57

6.2.2 The All-or-Nothing Approach 58

6.2.3 Exercising Varying Values of ρ 66

6.2.4 Mirrors and Parasites . 67

6.3 Dynamic Strategies . 74

6.3.1 Bang-bang Dynamic Systems 76

7 Conclusions and Future Work 80

7.1 Conclusions about Cooperative Behaviour 80

7.2 Application to the Real World . 82

7.2.1 Implementation Issues . 82

vii

7.2.2 Security Concerns . 83

7.3 Future Work . 84

7.3.1 More dynamic systems . 84

7.3.2 Real-world Study . 85

7.3.3 Ubiquitous Sources of Web-event Data 85

Bibliography 87

viii

List of Tables

1.1 Traffic associated with crawlers at two busy web servers at the Uni-

versity of Waterloo. 3

6.1 Percentage of time an average crawler in the bang-bang dynamic

strategy spends in ρ-low mode (ρ = 0.10) and ρ-high mode (ρ = 0.90). 79

ix

List of Figures

1.1 Overlap of five crawlers in the web. Some crawlers can crawl large

regions and others only crawl small regions. Some crawlers overlap

completely and have a complete duplication of effort such as the case

of crawler four (4) within crawler three (3). All areas not contained

within an ellipse is considered uncrawled data. 4

1.2 Simulation in which a number of crawlers compete for bandwidth as

a limited resource. 6

2.1 Communication interactions within systems of web crawlers. 12

2.2 Basic subscription-based event notification architecture 18

2.3 Two forms of data transfer. 20

2.4 A hybrid model combining the best of client-pull and server push. . 21

3.1 The NFA state machine of web-event generation for any web object’s

lifecycle. 26

3.2 A typical, step-by-step request-response scenario between two data-

sharing-protocol enabled web crawlers (M and S). 28

x

3.3 A sample /robots.shr file. This example illustrates the use of each

of the fields. 30

3.4 A sample web-event data file. 32

5.1 Simulation architecture. 47

5.2 Simulation communication and contention model between crawlers

and objects and crawlers and crawlers. 48

6.1 Crawlers running under current world conditions (oblivious to peers;

no crawler is sharing). 58

6.2 Two crawlers share and merge with one another with various values

of ρ. 60

6.3 64 crawlers share and merge with one another for various values of ρ. 61

6.4 256 crawlers share and merge with one another for various values of

ρ.. 63

6.5 Various crawler systems for increasing values of ρ over a set of N

non-contending web crawlers. 64

6.6 Various crawler systems for increasing values of ρ over a set of N

contending web crawlers. 65

6.7 System of 64 web crawlers. Each has an independent, randomly

assigned value of ρ. The equidistant distribution curve is overlaid as

a comparison. 68

6.8 Slopes of regression lines for systems of crawlers in which a random

ρ was assigned. The slope (m) is for a line y = mx + b which fits to

curves similar to figure 6.7. 69

xi

6.9 An example system of crawlers with a single global mirror. The

mirror is consistently better than any of the cooperating crawlers for

any ρ. 71

6.10 An example system of crawlers with a single parasite. The parasite

is consistently better than any of the cooperating crawlers for any ρ. 72

6.11 One global mirror operates within various-sized crawling systems. . 74

6.12 One parasite operates within various-sized crawling systems. 75

6.13 Simulations for various selected values of N , in which crawlers use

the bang-bang model to adjust ρ. This model is compared to the

baseline as well as the optimal freshness seen when using the fixed-ρ

strategy. 77

xii

List of Algorithms

2.1 Basic web crawler traversal algorithm. 9

4.1 A simple sharing/merging web crawler. 36

5.1 Crawler :: algorithm() . 51

5.2 Crawler :: poll() from line 5 of algorithm 5.1. 52

5.3 Crawler :: merge-from() from line 16 in algorithm 5.1. 53

xiii

Chapter 1

Introduction

This thesis examines mechanisms whereby a set of autonomous web crawlers can

share information to their mutual benefit. The Hyptertext Transfer Protocol (HTTP)

– the protocol that drives the web – does not have the ability to inform interested

parties of web-events – the creation, deletion, or updates of web objects (pages,

images, etc.). The most common method of addressing this problem is to use a

polling web crawler – a software program designed to traverse the web in search of

web events. Web crawlers consume a great deal of network bandwidth and do not

discover web-events in a timely manner; the most powerful web crawlers can take

weeks or months to discover a particular web-event[28].

There are a large number of crawlers currently active on the web. They com-

pete for bandwidth, but by and large, do not share their discoveries. This thesis

describes a general protocol to allow competing web crawlers to cooperatively share

knowledge of web events. The choice to share or merge is entirely up to an indi-

vidual crawler: sharing is the act of allowing one crawler (call it crawler M) to

access another crawler’s web-event data (call this crawler S). Merging occurs when

1

CHAPTER 1. INTRODUCTION 2

crawler M requests web-event data from crawler S. Crawlers can choose to share

with competing crawlers if it can help reduce contention between peers for resources

associated with the act of crawling. Crawlers can choose to merge from competing

peers if it helps them to maintain a more accurate representation of the web at less

cost than directly polling web objects. It is hypothesized that crawlers using com-

binations of polling and exchanges of web-event data can mutually achieve more

accurate representations of the web than a strictly-polling crawler.

1.1 Problems with Web Crawlers Today

Several major problems affect non-cooperative web crawlers on the web. The first

problem is that web crawlers do not maintain a high-degree of freshness. The second

is that multiple crawlers can redundantly crawl the same regions of the web. The

third is that with the proliferation of web crawlers comes increased contention for

shared network resources.

1.1.1 The Freshness Problem

Assume that at time ti there exists a set of web objects W such that the state of

all of W can be captured as a set Mi. At time tj (j ≥ i) some subset of W may

have changed due to internal or external forces (publishers, database queries, etc.).

Another snapshot of the web objects in W at time tj results in a representation

of the state of each object (Mj). A web-event describes changes that occur to any

specific object w ∈ W between time ti and tj or any new objects added between

ti and tj. The set of objects that have changed between ti and tj define the set of

web-events Si,j. The fraction of web objects that have not changed between ti and

CHAPTER 1. INTRODUCTION 3

Server avg % hits due to avg % bytes due to
web crawlers per day web crawlers per day

goedel 6.5% 13.2%
mef07 10.5% 5.5%

Table 1.1: Traffic associated with crawlers at two busy web servers at the University
of Waterloo.

tj represents the freshness of the set W for the interval tj − ti:

freshness =
|W | − |Si,j|

|W |

Crawlers that try to keep a fresh set of web pages must schedule revisitations

to existing pages during the course of crawling. If a web crawler requests a web

page that has not changed between ti and tj, then the web crawler has wasted their

resources, as well as the resources of the web server. This problem is magnified

when hundreds of independent, competing web crawlers visit a web server over a

period of time.

1.1.2 Bandwidth and Overlap Problems

Table 1.1 show the activity of web crawlers as they request information from

two busy web servers at the University of Waterloo: mef07.uwaterloo.ca1 and

goedel.uwaterloo.ca2. All activity was recorded over a three-month period from

May 17, 2002 to July 13, 2002. Web crawlers were identified as any IP attempting

1mef07.uwaterloo.ca is the main web server for the various math and computing science
departments and graduate students.

2goedel.uwaterloo.ca is the main web server for all undergraduate math and computing
science department information as well as undergraduate students.

CHAPTER 1. INTRODUCTION 4

Crawler 1

Crawler 2

Crawler 3

Crawler 4

Crawler 5

Figure 1.1: Overlap of five crawlers in the web. Some crawlers can crawl large
regions and others only crawl small regions. Some crawlers overlap completely and
have a complete duplication of effort such as the case of crawler four (4) within
crawler three (3). All areas not contained within an ellipse is considered uncrawled
data.

to download /robots.txt3. The table shows that even though web crawlers con-

stitute about 0.5% of the overall number of clients4, they account for a significant

portion of the clients causing data traffic to-and-from the web servers.

Competition among crawlers can lead to detrimental behaviour at a more fun-

3Any web crawler that aims to be a good net citizen should follow the Robots Exclusion
Standard [27]. A single request for the /robots.txt file within the three-month period should
have been observed, even in the face of a web crawling using a long-persisting /robots.txt file
cache. Spurious requests for /robots.txt from other sources may cause a slight skew in the
results. Note that any IPs within the University of Waterloo subnet were excluded; we are only
interested in web crawlers operating external to the University.

41446 unique IPs corresponding to web crawlers were identified versus the over 250000 unique
IPs corresponding to non-web crawlers.

CHAPTER 1. INTRODUCTION 5

damental level. Studies in 1997 indicate a small region (1.4%) of crawling overlap

common to major web crawlers at the time. Further analysis showed that pairwise

crawling overlap regions between four major search engines of the time ranged from

0.24% to 4.08%[3]. Of course, since this study, the results have very likely been

significantly altered.

Over the years, more and more crawlers have been released on the web. Many

web crawlers now make use of distributed or parallel technology in efforts to increase

a search engine’s web coverage. Web crawlers have had negative impacts on Internet

resources in the past[26], and so while brute-force crawling techniques may help a

crawler gain a small competitive edge, the impact on shared resources could be

more problematic.

Figure 1.2 represents a simulation which graphs the freshness for a varying

number of crawlers (N), all of which attempt to crawl a simulated web of one

million web objects. The cache freshness starts from 1.0 (perfect) and decreases

over time (the simulation assumes each crawler starts with a fresh snapshot of the

web). The simulation is based on the software described in Chapter 5. A multi-

processor contention model is used to simulate bandwidth being divided among

several web crawlers. This contention model is described in section 5.1.

Figure 1.2 illustrates how freshness degrades as more crawlers are added to the

system (as N increases) in the face of competition for shared resources (bandwidth).

Increasing the freshness for web crawlers should not depend on using more

crawlers; instead, crawlers should examine the fundamental way in which they

regard competing peers.

Chapter two will examine web crawlers and how they can communicate with

one another. Chapter three will develop the protocol used for crawlers to be able to

CHAPTER 1. INTRODUCTION 6

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 c
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

Days

Effect of increasing number of crawlers (N) on crawler cache freshness over time

N=1
N=2
N=4
N=8

N=16
N=32
N=64

N=128
N=256
N=512

N=1024

Figure 1.2: Simulation in which a number of crawlers compete for bandwidth as a
limited resource.

CHAPTER 1. INTRODUCTION 7

share information back and forth. A simple implementation of a crawler using the

protocol to augment polling is presented in chapter four along with a brief intuitive

analysis of how inter-crawler interaction can work. Chapter five describes a simula-

tion architecture used to provide reinforcement of the the analysis of the previous

chapter. Chapter six describes experiments using a small sample of sharing policies

in which self-interested sharing behaviour is show-cased. Finally, conclusions are

drawn and future research directions are discussed in chapter seven.

Chapter 2

Background Information

This chapter presents the literature from three related aspects. First, we examine

the evolution of the web crawler from inception to its current incarnation. Second,

we examine the communicating paradigms in which web crawlers can share web-

events with one another. Finally, we discuss various implementations as to how such

web-events could be disseminated efficiently and effectively among cooperating web

crawlers.

2.1 Introduction to Web Crawlers

Since its inception in the early 1990’s, the World-Wide Web has undergone explo-

sive, exponential growth. Consumers increasingly find themselves unable to browse

the ever-changing, distributed hyperlink structure of the web. Furthermore, they

are subjected to information overload – literally, information is too abundant. Cen-

tralized web search indexes have become the panacea of this problem, and web

crawlers are generally the enabling technology. With the availability of the tech-

8

CHAPTER 2. BACKGROUND INFORMATION 9

nology, web crawlers are also rapidly becoming more popular with individuals for

specific information-finding tasks.

A web crawler is an automatic web object retrieval system that exploits the

web’s dense link structure. It has two primary goals:

1. To seek out new web objects, and

2. To observe changes in previously-discovered web objects (web-event detec-

tion).

The basic web crawler algorithm has not changed since the World Wide Web Wan-

derer (the first reported web crawler) was designed in 1993[29]. Almost all crawlers

follow some variant of the basic web-traversal algorithm shown in algorithm 2.1.

(Web crawlers typically contain much more functionality than outlined in algo-

rithm 2.1, though such functionality merely serves to satisfy the primary goals).

Algorithm 2.1 Basic web crawler traversal algorithm.

Require: p0 is a valid web URL hyperlink
Require: Q is a queue of valid hyperlinks
Require: P is a set of web pages
Require: H is a set of hyperlinks
1: Q ← P0 {insert P0 into the queue Q}
2: while |Q| �= ∅ do
3: p ← Q {get head of queue Q}
4: retrieve web page p
5: P ← P ∪ p
6: extract URL hyperlinks contained in p into H
7: for all h ∈ H, h /∈ Q do
8: Q ← h
9: end for

10: end while

Crawlers must continue to deal with issues of scalability as the World-Wide Web

expands. How does one efficiently and effectively crawl the current set of almost

CHAPTER 2. BACKGROUND INFORMATION 10

2.5 billion publically indexable web pages1 if crawlers are limited by crawling speed

and difficulty in predicting web-events?

The speed at which a crawler can traverse the web is limited by a number of

factors, including the bandwidth of the crawler and the latency of the network.

Modern, heavily multi-threaded crawlers can currently crawl at rates up to 100

web pages per second.

Predicting when a web object is going to change helps to limit the amount of

useless polling[5] done by a crawler to determine if it has been updated since the

last visit (see primary goal #2). The fewer resources wasted by a crawler doing

useless polls, the more that can be delegated to the task of locating new information.

Unfortunately, even with numerous studies into how web pages change, prediction

is still a relatively difficult task[6, 7, 10, 12, 13, 16, 22].

In the end, crawlers are going to be relying upon communicating with others

– be it instances of themselves (in the parallel sense), or with crawlers outside of

their controlling domain (ie. a competing corporation). It is the lack of organization

between crawlers in the latter sense that this work is based. We are interested in

autonomously cooperative sharing web crawlers – crawlers that can make decisions

on their own, and communicate with others when the need arises. The next section

assesses the different communication paradigms within web crawler communities.

1The publically-indexable web consists of all web objects not hidden behind /robots.txt
protection[27], authentication mechanisms, forms, databases, etc. As of September 2002, the
Google search service (http://www.google.com) had indexed about 2.5 billion web documents,
390 million images, and 700 million Usenet messages. These numbers continue to climb. Of
course, these numbers represent a lower bound on the size of the entire web (indexed and non-
indexed).

CHAPTER 2. BACKGROUND INFORMATION 11

2.2 Taxonomy of Crawler Communication

Web crawlers have increasingly become more complex in their design and organi-

zation to address the need of crawling the web in a timely manner. Depending on

their organization, crawling systems may devote time and energy communicating

with one another to help coordinate their behaviour to reduce overlapping crawling

regions.

Ho[24] describes a taxonomy of web crawling communication patterns in the

context of information-gathering agents2:

• non-interactive

• purely coordinated

• coordinated with collaboration

• purely collaborative

• self-interested

Each communication paradigm can be illustrated by figure 2.1. Communication

can occur vertically from a central authority to web crawlers, horizontally among

peer web crawlers, in both directions, or not at all. (The choice of communication

vertically is independent of the choice to communicate horizontally.) Intermediate

brokers can exist as part of the hierarchy to aide in scalability and flexibility of

information dissemination. They work on behalf of the central authority, and in

turn control the actual crawlers. The Harvest system[4] uses a series of brokers

similar to those in figure 2.1 to provide an efficient and flexible caching solution.

2An agent is a process that performs a task on behalf of a user, usually in collaboration with
one or more other agents to perform a collective task and/or reach a mutual goal.

CHAPTER 2. BACKGROUND INFORMATION 12

Central
Authority

CrawlerCrawlerCrawler

Broker Broker

Figure 2.1: Communication interactions within systems of web crawlers.

CHAPTER 2. BACKGROUND INFORMATION 13

2.2.1 Non-interactive

Non-interactive web crawlers have limited functional scope and require no commu-

nication with other web crawlers. Many personal web crawlers (eg. web-site cloning

tools such as the offline browsing mode built into Microsoft Internet Explorer) and

the work discussed in the SPHINX project[30] fall into this category. Although they

affect the network to some degree, their independent nature implies they would not

benefit from adapting to a network of communicating web crawlers.

2.2.2 Coordination

Coordinated crawlers usually manifest themselves as an explicit hierarchy and use

vertical communication as shown in figure 2.1. Coordinated web crawlers usually

receive their crawling instructions from a central authority. In the simplest case, a

central authority hands out groups of URLs to each crawler drone under its control.

Each crawler performs one iteration of the basic crawler algorithm described in

algorithm 2.1 using this group of URLs. After crawling the initial set, the drone

will return the set of crawled web pages (P) and newly extracted hyperlinks (H)

to the central authority. The authority collects all extracted URLs to distribute to

the drones as directed by its policies. The central authority can ensure that web

crawlers working in this fashion can traverse efficiently, with little or no overlap

in web coverage. The Public Robot Server Manager (PRSM)[39] is an example of

a central authority presiding over a set of vertically-communicating web crawler

drones.

CHAPTER 2. BACKGROUND INFORMATION 14

2.2.3 Collaboration

Collaboration among crawlers is horizontal communication among peers at the same

level of authority. Such crawlers make decisions affecting future crawling based on

information received from peers. Collaborating crawlers working within a coordi-

nated system are exemplified by the multi-agent paradigms described in DIAMS[9]

and Amalthaea[31] which use networks of agents, all interested in achieving the

same mutual goal. Purely collaborating systems of web crawlers may exist as part

of a distributed system without a controlling entity. The X4 crawler described by

Chung[14] uses a set of web crawlers which collaborate in order to allow specific

crawlers to crawl particular topics.

2.2.4 Self-interest

A self-interested web crawler is an independently communicating web crawler that

has the ability to autonomously self-evaluate its own performance and act accord-

ingly (modify its level of communication with others) to try to improve. A self-

interested crawler is interested in performing at an optimal level: decisions that

it makes regarding its performance may be based solely on selfish reasoning. Of

course, decisions that affect how it communicates with other web crawlers could

affect how those web crawlers communicate with it. Hence, any selfish decisions

made by an autonomously self-interested crawler may have to take into account the

effects of its decisions on the entire system of crawlers.

Ho[24] uses a biological energy model inspired from artificial life theory. The

crawlers make crawl meta-data (similar to web-events) available to other remote

crawlers. It is up to the local crawler to make local (selfish) decisions to either

retrieve or ignore the information depending on the cost of retrieval. Ho’s crawlers

CHAPTER 2. BACKGROUND INFORMATION 15

monitor their health (their energy) using a combination of a potential function and

a cost function. The potential function determines how costly communication with

a remote crawler could be. The cost function determines how beneficial it is to

regularly (or semi-regularly) merge crawl data from the remote crawler. The local

crawler’s energy is updated based on, among other things, how much information

is gained or lost by communicating with other crawlers.

Coordination, collaboration and self-interested communication strategies can

all be viewed as cooperative types of communication among crawlers. However,

coordination and collaboration imply a sense of imposed architectural limits as

to how such cooperation can proceed. Self-interested cooperative communication

implies the decision-making process may not be fixed by architecture, and that

communication patterns could change at any time.

Game Theory and Autonomous Crawlers

The decision-making process performed by autonomous crawlers can be examined

from a game-theoretic perspective. The classic game-theory problem “The Pris-

oner’s Dilemma” can be applied to the decision-making process used by crawlers

capable of exchanging information3 by assuming that mutual cooperation can yield

the greatest benefit.

Nash equilibria are especially useful for dealing with cooperative crawlers that

mutually exchange information with one another[19]. Mutual cooperation can affect

the entire system of crawlers. If a set of strategies are being used to exchange

information, a Nash Equilibrium occurs when no single crawler can change their

3A version of the Prisoner’s Dilemma can be read at http://william-
king.www.drexel.edu/top/eco/game/dilemma.html

CHAPTER 2. BACKGROUND INFORMATION 16

cooperation strategy to increase their personal benefit if all other crawlers in the

system do not change their strategies. Multiple equilibria exist when multiple

combinations of strategies can result in such stalemates.

2.3 Implementing Web-event Dissemination

Systems

The various communication paradigms have several different methods in which they

could exchange web-events. Web-event detection and delivery implementations

basically break down into those that are based on notification and those that are

based on polling. Active notification and polling each have their advantages and

disadvantages. Notification systems can deliver every event to an interested party.

Unfortunately, high-frequency event data could overwhelm an the listener if too

many notifications are delivered. A polling solution can choose the rate at which

to poll the data. This runs the risk of missing events in the event that the poll rate

is less than the event rate, or can result in many useless requests if events occur

less frequently than the source is polled. Active notification systems do not waste

such resources.

2.3.1 A General Event Notification Architecture

Logically, an event notification system of any sort can be broken down into the

constituent parts illustrated in figure 2.2(a). The object is the source of all events,

which must be observed in order to be processed. If they are not observed, then

they are lost. The act of generating an event is free; it is the act of observing

and delivering the event which incur a cost[35]. In figure 2.2(b), the observer is

CHAPTER 2. BACKGROUND INFORMATION 17

clearly the primary sink, although both the broker and the client are also event

sinks. The broker is a component that may allow preprocessing of events before

they are delivered to the client such as aggregation (union of events), filtering

(intersection/difference) and temporal ordering.

Before an event can be delivered to the client, the broker must know of its

existence. The client subscribes to the broker as a recipient of events from the

broker’s source observer as shown in figure 2.2(a).

Once subscription succeeds, events pass from the source object to the client,

optionally passing through a series of processors as seen in figure 2.2(b). As stated

above, these processors can exist at the broker-side, or they can exist at the client-

side or both. The advantage to broker-side preprocessors is that the number of

events being delivered is throttled back. This is useful if the source generates more

events than a client can handle (although the broker must still be able to keep

up). However, implementing broker-side preprocessing can be expensive in terms

of processor time and management.

It should be noted that any of the components in figure 2.2 may be loosely-

coupled (shown) or tightly-coupled. A tightly-coupled system may combine any of

the source object, observer and broker into single entity. Additionally, the broker

component itself may be a complex system as used by Hinze and Faenses[23]. The

SIENA system[8] extends the generic architecture by allowing the intermediary bro-

ker to be part of a larger distributed mesh. This architecture is also apparent in

the proxy configurations discussed in[40].

CHAPTER 2. BACKGROUND INFORMATION 18

Object

ClientBroker

Observer

Event

Event

Subscribe

(a) Clients subscribe to recieve events from an object.

Broker

Event

Client

ObjectObserver

Event

Processor

Event Notification

(b) Events are propagated from the object to the client,
optionally being filtered.

Figure 2.2: Basic subscription-based event notification architecture

CHAPTER 2. BACKGROUND INFORMATION 19

2.3.2 Information Delivery Methods

As implied by the generic architecture, there are two distinct forms of communica-

tion. These are illustrated in figures 2.3(a) and 2.3(b).

The dominant model of communication on the web is client-pull. Server-push

applied to the web emerged in the mid 1990’s as a potential panacea to web in-

formation overload which was readily becoming a problem[37]. Server-push was to

be the active notification system missing on the web. Unfortunately, bandwidth

overload from transmitting large amounts of information to thousands of users as

well as managing user accounts on the server limited the scalability of push[21, 37].

Even so, other protocols on the Internet continue to make use of push architec-

tures such as Usenet[25]. In an attempt to curb the bandwidth issues, the ideas of

automatic periodic client-polling, and a hybrid (push/pull) model of information

delivery were adopted (figure 2.4). In the hybrid model, small information packets

are sent to the client from the server (eg. URL x has been updated). The client

then uses the traditional pull method to retrieve the much larger content-body.

2.4 Distributing Web Events

In order to determine the state of any object on the web, one must poll using

HTTP. Implementing a web crawler would be much easier if web objects notified

their changes to interested entities4. Over the years, a number of initiatives have at-

tempted to incorporate active notification into the context of web objects. Some or

4Unfortunately, this active web would suffer crippling scalability issues. Imagine if one million
web objects suddenly changed at the same time. This is not too difficult to imagine, considering
that there are at about 2.5 billion web pages. The network would suffer the same scalability issues
as the pure-push transmission model.

CHAPTER 2. BACKGROUND INFORMATION 20

Client

Server

Server

End User

Network Separation

Channel(s)

(a) Client-pull. The end-user requests information from information providers.

Server

Server

ClientEnd User

Network Separation

Channel(s)

(b) Server-push. The information provider sends information asynchronously to the
end-user.

Figure 2.3: Two forms of data transfer.

CHAPTER 2. BACKGROUND INFORMATION 21

Client

Server

Server

Network Separation

End User Channel(s)

Push

Pull

Legend

Figure 2.4: A hybrid model combining the best of client-pull and server push.

all of these are interesting ideas to incorporate into crawlers that share information

about the ever-changing web.

2.4.1 Changes to HTTP

Hypertext Transfer Protocol [2, 17], the protocol used to drive the web, has been

studied in an attempt to add notification features. Particularly of interest are the

efforts of the General Event Notification Architecture Base (GENA-Base)[15] and

the Event Notification Protocol[34]. In the former, any object with a valid URL

can be the source for an event. New HTTP extensions5 are proposed:

• Subscribe: a client wishes to be informed of events generated by the object

5A generalized framework for setting up HTTP extensions can be found in RFC2774 [33].

CHAPTER 2. BACKGROUND INFORMATION 22

at the URL.

• Unsubscribe: a client no longer wishes to receive events generated by a URL.

• Poll: a client wishes to check for outstanding events associated with a URL.

• Notify: a client or object at a particular URL wishes to inform another client

or object at another URL of an event.

The Event Notification Protocol proposal[34] uses XML coupled with new exten-

sions to HTTP to aide in event notification as applied to web-based distributed

authoring and versioning (WebDAV[18, 36]). Interested clients can subscribe to a

notification server to receive events about changes to objects at a particular URL.

2.4.2 Crawler-centric Web-Event Dissemination

Aliweb (Archie-like indexing of the web) was a web crawler developed in late 1993

to gather documents[26]. Aliweb did not automatically traverse the web. Instead,

it required web servers to register with it, and provide a text file containing meta-

information about each and every web document the server wanted to make public.

This text file would be periodically retrieved by Aliweb with a frequency set by the

web server administrator.

Brandman et al re-examines per-web server update indices[5]. Their work allows

for search engines to discover changes without retrieving full indices. Crawlers

receive web object meta-data (URL, last-modified-date, file size, file checksum,

etc.) which can be used to decide if their local copy is stale. This idea is carried

still further by Gupta and Campbell, by allowing the local web server to measure

the popularity of its own object repository[20]. Web crawlers can then use the

CHAPTER 2. BACKGROUND INFORMATION 23

popularity and frequency of change data measured at the web server to schedule

efficient crawls. Furthermore, the data is pushed to subscribed search engines rather

than remaining passive on the local web server.

Ho’s own protocol for web-event dissemination among a network of crawler peers

describes the role of web object meta-information as a succinct representation of a

web event[24].

Chapter 3

Protocol

Ambiguity in communications – indeed, in humans as well as in computer systems

– can lead to problems or utter failure. The Internet, and hence, the web, is

driven by protocols in order to achieve successful data transmission. It is not

enough to say that web crawlers will communicate web-event data with one another.

An algorithmic procedure is necessary to ensure that all crawlers interested in

cooperation know how to share and merge with peers.

The protocol used to allow web crawlers to communicate web-event data with

one another must be both simple and efficient. A protocol that uses non-standard

technology or that is difficult to implement will be rejected. It is desirable to reuse

and exploit existing frameworks and technologies to ensure easy incorporation into

existing systems. Web crawlers are already a deeply-rooted software paradigm

on the web: crawlers augmented to make use of the web-event data cooperation

protocol must remain backwards-compatible. The end-goal is to provide a protocol

that focuses primarily on effective and efficient web-event dissemination with the

least possible impact on current architectures.

24

CHAPTER 3. PROTOCOL 25

Traditionally, crawlers act as clients and have little or no server-based respon-

sibilities built into them. In order to be able to respond to peer requests for web

object meta-data, web crawlers must use web-server capabilities. All communica-

tion between web crawler peers uses existing HTTP standards and all information

transmitted to and from peers is in easily-parseable human-readable text.

3.1 Web-Events Describe the Ever-changing Web

Web-events are succinct representations of changes to a web object. The smallest

amount of information required to convey a web-event is the last-modified-date of

a specific URL. Previous knowledge of the last-modified-date of a URL enables a

client to determine if indeed a change has occurred1. Additional information, such

as the classification of a web-event as a create, update, or delete event can be

added to allow filtering by event type.

Storing web-events is far cheaper than storing the full text of a web object.

They can be encoded in about 200 bytes and compressed to about 25% of that size.

Web-events must follow the state transitions shown in figure 3.1. Exactly one

create web-event and one delete web-event are generated and observed. A

variable number of update events can be generated (Ug) and observed (Uob). The

difference between the set of generated web-events for a particular web object and

those events observed by a web crawler manifests itself as the number of missed

events (|Ug| − |Uob| ≥ 0).

Logically, when a web object is published to the web, a create web-event

1This assumes that the last-modified-date of a specific URL can be determined and that it
increases monotonically with each web event.

CHAPTER 3. PROTOCOL 26

CREATE
Event

UPDATE
Event

DELETE
Event

Figure 3.1: The NFA state machine of web-event generation for any web object’s
lifecycle.

occurs. When an already published object is modified in any way, then an update

event is generated. Finally, when the object is removed permanently from the web,

a delete web-event is generated. These events are captured in the state of the

object; though one must observe a state change to accurately detect an event. Such

changes could easily be missed by a polling web crawler if the event rate is greater

than the poll rate of the crawler. As a result, a crawler may develop inconsistencies

between the actual state of the web and its perceived state of the web.

Presented in the remainder of this chapter is the specification for a two-part

protocol: a web-event sharing crawler and a web-event merging crawler. Both parts

of the protocol hinges on the share-control file. This protocol does not dictate use

of the shared data; it is not even necessary for a crawler to share their own data.

Both the sharing and the merging specifications are independent operations, though

their specifications are intrinsically intertwined.

CHAPTER 3. PROTOCOL 27

3.2 Information Sharing and Merging

A pair of web crawlers adhering to the data-sharing-protocol is shown in figure 3.2

performing a typical request-response transaction. Figure 3.2(a) requires the merg-

ing crawler (M) to request the share-control file from the sharing crawler (S). The

share-control file contains information that identifies the web crawler, as well as

specific details required by crawler M to successfully merge web-event data from

crawler S. In figure 3.2(b), web crawler M identifies the share-repository : this

repository is a key aspect about crawler S describing where web-event data is

stored. Figure 3.2(c) has crawler M computing which web-event data files must

be obtained from crawler S and retrieving them (in this case, three files called

11882.dat, 11883.dat, and 11884.dat are requested). This computation is based

upon the current date, and the date of the previous merge with crawler S, if any.

All file transfers are based on HTTP GET operations. Figure 3.2(d) has web

crawler S’s web server transferring two of the three requested files (11883.dat and

11884.dat) to crawler M . Figure 3.2(e) shows web crawler M merging the contents

of these files to update it’s view of the web.

3.2.1 Share-control File

The share-control file is the enabling component of the protocol. This file is labeled

robots.shr and is accessible from the root of a web crawler’s web server (eg.

http://www.foo.com/robots.shr). The content of this file provides information

about the serving web crawler, as well as how the web crawler shares its information.

No meta-data information is stored in this file. This file is engineered to be easy

to parse: it uses the standard field:value syntax used by both HTTP[2] and the

Robots Exclusion Standard[27]. The available fields are described below.

CHAPTER 3. PROTOCOL 28

���
���
���
���

���
���
���
���

M S

/robots.shr

(a) Identify and get
/robots.shr.

���
���
���
���

���
���
���
���

M S

Repository

(b) Identify repository URL.

���
���
���

���
���
���

���
���
���

���
���
���

M S

11882.dat
11883.dat
11884.dat

HTTP GET

(c) Request required web-
events data.

���
���
���

���
���
���

���
���
���

���
���
���

M S

11883.dat
11884.dat

Response
HTTP

11884.dat
11883.dat

(d) Server responds with available data.

���
���
���
���

11883.dat
11884.dat

M
Merge

(e) Merge web-event data with local reposi-
tory.

Figure 3.2: A typical, step-by-step request-response scenario between two data-
sharing-protocol enabled web crawlers (M and S).

CHAPTER 3. PROTOCOL 29

contact The contact information for this crawler is optional. This should be an

email address of the human operator of this crawler. This field should

have the same value as used by the crawler for its HTTP FROM field-

header (as defined in section 10.8 of RFC 1945[2]).

crawler The identification string for this crawler is required. It is composed

of the host/IP for locating this crawler, the port on which the web

server serving the /robots.shr file listens and a crawler moniker. The

moniker is the same string as used by this crawler for its HTTP USER-

AGENT field-header value (as defined in section 10.15 of RFC 1945[2]).

repository The repository field is required. It is a URL path used to locate where

web-event data files are stored.

special A crawler can optionally advertise a set of URLs for which it is es-

pecially proficient at crawling. Local web servers are prime specialty

candidates, as well as any web servers attached on a high-speed, low-

latency network. Peers can choose not to crawl URLs that fall within

this crawler’s special set, and instead choose to merge their shared data.

There can be more than one special field in the /robots.shr file, and

their field values are cumulative.

version The required version string indicates that this crawler uses a specific

protocol version. All other peers must use the specific version if possible.

An example /robots.shr is shown in figure 3.3.

CHAPTER 3. PROTOCOL 30

version: 1.0

crawler: plg2.math.uwaterloo.ca:33433 WaterlooCrawler/1.0Beta/PLG

contact: glmclear@uwaterloo.ca

special: http://129.97.224.77/

special: http://plg2.math.uwaterloo.ca/

special: http://www.math.uwaterloo.ca/

repository: http://plg2.math.uwaterloo.ca/share-dir/

Figure 3.3: A sample /robots.shr file. This example illustrates the use of each of
the fields.

3.2.2 Web-Event Data Files

Each web-event data file consists of a series of records separated by blank lines.

All records consist of a series of lines laid out in easily-parseable field:value

pairs. A record represents meta-data about a specific URL, which presumably,

has been identified by a crawler as being affected by a web-event. The meta-data

records compose the actual data content transferred between crawlers S and M in

figure 3.2(d). No web object content is ever transferred between sharing/merging

crawlers; it is the responsibility of crawler M to later retrieve the content from the

server on which the web object identified by a web-event resides.

In an attempt to reduce the ratio of descriptive information to actual informa-

tion, the field names are purposely truncated or abbreviated.

cid The crawler identification is required. The format for the cid is the

same as the crawler field value defined in the /robots.shr file above.

It is used to identify the crawler that first identified this web-event.

size The size of the web object in bytes is required.

lmd The last-modified-date of the object is required. It is a sequence of digits

representing the number of seconds since Jan. 1/1970 GMT when the

CHAPTER 3. PROTOCOL 31

object was last updated.

lpd The last-polled-date of the object is required. It is a sequence of digits

representing the number of seconds since Jan. 1/1970 GMT when the

object was last polled by the crawler identified in the cid field (could

be itself or a peer).

stat The web-event status flag is required. The flag is one character denoting

the classification of the web-event corresponding to this record. The

valid values are C, U, D for create, update, and delete, respectively.

ttl The time-to-live is the number of seconds after the last-polled-date

(LPD) when this entry is no longer valid. This field is optional, and

may be used if the crawler associated with this entry is unsure whether

it will be visiting the web object again, or if it is relatively sure that no

changes will occur to the web object during that time. Merging crawlers

can use this value to effectively schedule revisitation of either the URL

or future merging operations to the crawler sharing this data.

url The specific URL associated with the recorded web-event meta-data.

This field is required.

An example web-event data file containing web-events is shown in figure 3.4. The

cid field is used to identify the web crawler that reported the original web event

data. This is useful if a merging web crawler wishes to use the field to identify which

peer crawlers would have the most up-to-date meta-information about a URL.

CHAPTER 3. PROTOCOL 32

url: http://plg.uwaterloo.ca/plg.html

size: 9824

lmd: 993226666

lpd: 1008242754

cid: plg2.math.uwaterloo.ca:33433 WaterlooCrawler/1.0Beta/PLG

stat: U

url: http://www.google.com/index.html

size: 2332

lmd: 1011415503

lpd: 1011415503

cid: 129.97.224.77:7777 SharingRobot/1.0

ttl: 1209600

stat: C

Figure 3.4: A sample web-event data file.

3.2.3 Share-repository

All web-event data files are stored in the share-repository. Merging web crawlers ex-

pect to be able to request a specific file from the sharing web crawler using standard

HTTP requests. Physically storing the web-event meta-data is implementation-

dependent, as long as the external interface is perceived as an accessible file.

All web-event data files are referenced using a specific naming convention to

which both crawlers M and S must adhere. The file name prefix is a sequence of

digits followed by the suffix .dat. The sequence of digits prefixing the file extension

is the number of days since Jan. 1/1970 GMT (call this day D). All web-event

records contained in this file must have been discovered (ie. have a last-polled-date

occurring) between 00 : 00 : 00.0 GMT and 23 : 59 : 59.9 GMT on day D. This

addressing method is similar to that proposed by Brandman, et al. [5].

Using figure 3.2 as a reference and the share-repository location information

stated in figure 3.3, the HTTP request header from crawler M to crawler S (located

CHAPTER 3. PROTOCOL 33

at http://plg2.math.uwaterloo.ca:33433 according to the URL in figure 3.3)

would look like:

GET /share-dir/11883.dat HTTP/1.0<CR><LF>

<CR><LF>

(Crawler M wants to get the web-event data from crawler S for the date of

July 15, 2002: 11883 days ∗ 86400 sec/day, is the number of seconds since Jan.

1/1970, which can be converted to a date.)

Crawler S would proceed to serve the requested file if it existed. Note that in,

figure 3.2(d), file 11882.dat did not get returned to crawler M from crawler S.

Assuming no errors, this could imply one of two thing: (1) crawler S did not have

any knowledge of web-events occurring on day 11882, or (2) file 11882.dat was

removed due to space considerations. Crawler M has no choice but to accept that

no data may be available for that day.

3.3 Specific Protocol Issues

3.3.1 Event Resolution Rules

When multiple, independent crawlers share data with one another, it is possible for

crawlers to have varying views of the web. Some may have high-quality snapshots of

a portion of the web, and others may have lower-quality approximations of a portion

of the web. Crawlers that overlap may have recorded different events depending on

a number of factors.

If a web crawler M merges web-event meta-data from crawler S and has no prior

record of the URL associated with the web-event meta-data, then crawler M simply

mirrors the web-event and modifies the cid field for this meta-data to crawler S.

CHAPTER 3. PROTOCOL 34

On the other hand, if crawler M has prior knowledge of the URL associated with

the web-event meta-data, then crawler M must resolve the events according to a

set of logical rules2.

When trying to determine recency, the last-modified-date of an event is used.

• In the normal course of sharing, all delete events occur after update events;

all update events occur after create events. This sequence must be adhered

to. Any deviation indicates an error, and the crawler should attempt to

investigate by scheduling a network poll of the URL directly.

• If a URL has two different create events according to crawler M and crawler

S, then the least recent event is assumed to be the most accurate creation

date. The least-recent create event can be discarded, and the most recent

create event is assumed to reflect an update. It should therefore be recorded

and reclassified as an update event.

• If a URL has two different update events between crawler M and crawler S,

then the most recent is recorded and all others can be discarded.

• If a URL has two different delete events between crawler M and crawler S,

then the least recent event is assume to be the most accurate deletion date.

• If a URL recorded in crawler M has an update event and crawler S has a

more recent create event, then S’s create event is assumed to be an invalid

detection of an update to the URL. The create event should be merged from

M , but reclassified as an update event.

2These rules are based on the assumption that all data shared by crawlers is genuine. See
section 7.2.2 for security concerns regarding misleading or incorrect meta-data.

Chapter 4

Theory

Current-day web crawlers can be easily modified to take advantage of cooperative

sharing behaviour. It is important to be able to quantitatively validate cooperative

sharing as compared to current-day behaviour. We use the concept of freshness,

previously introduced in the Introduction, to measure a crawler’s performance. The

chapter completes with a brief analysis of simple interaction between cooperating

web crawlers is done from an intuitive perspective.

4.1 A Simple Sharing Crawler

A simple web crawler capable of traversing the web as well as communicating shared

data to and from peers is shown in algorithm 4.1. This, in turn, is based on the

basic design of a web crawler (algorithm 2.1).

Our simple cooperating web crawler uses a value known as ρ to enable it to

switch between polling a web object and merging web-event data from peers. The

value ρ can take on any real value in [0 . . . 1]. In the extreme cases, when ρ = 0,

35

CHAPTER 4. THEORY 36

the crawler will only merge web-event data and when ρ = 1, the crawler will only

poll web objects. Any value 0 < ρ < 1 represents the ability to do both operations.

The condition in lines 2 and 3 of algorithm 4.1 implies that over time, ρ rep-

resents a percentage of time devoted to polling; conversely, 1 − ρ represents the

percentage of time devoted to merging.

In addition to ρ, a crawler can choose whether to make public any of its web-

event data by enabling the sharing variable (lines 7 and 14 of algorithm 4.1).

Algorithm 4.1 A simple sharing/merging web crawler.

Require: W is a set of web objects representing the entire web
Require: C is a set of all web crawlers on the web including this one
Require: Ec is a cache (a set) of web-events to be made public
Require: E ′ is a set of web-events independent of Ec

Require: Qw is a queue initialized as a random permutation of W
Require: Qc is a queue initialized as a random permutation of C
1: for ever do
2: P ← uniform-random-value
3: if P ≤ ρ then
4: w ← head(Qw) {w is a specific web object}
5: e ← visit(w) {get a web-event e about w}
6: reinsert(Qw, w) {w gets put back into rotation}
7: if sharing then
8: Ec ← Ec ∪ e {store the web-event to be merged by others}
9: end if

10: else
11: c ← head(Qc) {c is a specific web crawler other than this one}
12: E ′ ← visit(c) {E ′ is a set of events merged from c}
13: reinsert(Qc, c) {c gets put back into rotation}
14: if sharing then
15: Ec ← Ec ∪ E ′ {store the web-events to be merged by others}
16: end if
17: end if
18: end for

Given ρ and sharing, a crawler implementing a variant of algorithm 4.1 could

CHAPTER 4. THEORY 37

operate in any of six potential capacities:

1. Current-day behaviour: poll the web without regard for the behaviour of

peers (ρ = 1, sharing = false)

2. Altruistic behaviour: poll the web and share all information without ever

merging from peers (ρ = 1, sharing = true)

3. Parasitic behaviour: always merge from peers (never poll the web directly)

and never share with peers (ρ = 0, sharing = false)

4. Mirroring behaviour: always merge from peers (never poll the web directly)

but share everything (ρ = 0, sharing = true)

5. Non-sharing hybrid: poll the web sometimes and merge from peers sometimes,

but never share any information (0 < ρ < 1, sharing = false)

6. Sharing hybrid: poll the web sometimes and merge from peers sometimes,

sharing any information (0 < ρ < 1, sharing = true)

It is hypothesized that web crawlers that are cooperative (ie. if 0 < ρ < 1 or

sharing is enabled) can mutually benefit from sharing web-event data more so than

crawlers operating in a traditional current-day role. Such benefit can be quantified

by measuring a web crawler’s cache freshness.

4.2 Freshness as a Metric

Crawler freshness is the primary measure of the performance. As can be seen

from algorithm 4.1, a crawler maintains a cache (Ec) which is a set of web-event

CHAPTER 4. THEORY 38

data records for associated web objects that have either been polled directly by

the crawler or merged from a peer. An individual entry in the cache is denoted

as e. A transformation function (T) is used to convert a specific web object w

into the associated web-event data record e when polled by a crawler c at time

t: e ∈ Ec, e = Tt(w). Freshness of a single cache entry is a binary measure,

determining, if at time t, the cache entry e is synchronized (state-equivalent) with

its associated web object w [11]:

F (e; t) =

1

0

if e ≡ Tt(w)

else
(4.1)

State-equivalence between two web-event data records means the relationship

Ti(w) ≡ Tj(w) holds for times i < j. Note that the nature of web-events implies

that if Ti(w) ≡ Tk(w) for some time i < k < j such that a web-event occurs on

object w at time j, then Ti(w) �= Tj(w). This is because web objects only maintain

the current state; once a web-event occurs, any previous state information is lost.

Note that we ignore that the definition given by equation 4.1 assumes the ability

to perform instantaneous comparisons between a cached web-event data record and

the current state of the associated web object. Such instantaneous comparisons are

usually not possible when dealing with the web.

The definition of freshness for a specific crawler’s cache (Ec) at time t is an

average of the freshness for the individual web-event records stored in Ec at that

time:

F (Ec; t) =
1

|Ec|
∑
e∈Ec

F (e; t)

CHAPTER 4. THEORY 39

Of course, F (Ec; t) is only useful as a measure of the instantaneous freshness of

the cache Ec. We wish to observe the freshness of a crawler’s cache as it changes

over time. The freshness of Ec over time is intuitively a time-based average:

F (Ec; t) =
lim

t → ∞
1

t

∫ t

0
F (Ec; t) dt

4.3 Algorithm Analysis

Algorithm 4.1 can intuitively be reasoned to show that there exists a point whereby

a combination of polling and merging can yield more web-event data than simple

polling.

Presumably, a crawler can schedule when to merge with another crawler. How-

ever, if it merges too soon, not enough data will be amassed by the peer to make the

merging operation beneficial. If it waits too long, then the crawler runs the risk of

doing too much polling and rendering the peer’s potentially-shared web-event data

records redundant. The strategy used by a crawler to wait “just the right amount

of time” is a complex process. Values for ρ cannot be easily analyzed by mathemat-

ics. Several complexities in the potential interactions between peers quickly make a

more in-depth analysis intractable. Simulations developed in the next chapter are

used to support the intuitive evidence that combinations of polling and merging

can produce better freshness among mutual cooperative crawling systems than if

individual crawlers decided to crawl on their own.

CHAPTER 4. THEORY 40

4.3.1 Preamble to the Analysis

We will assume that the web (W) is sufficiently large such that it can be close to

infinite in size. Over time, web-events will occur randomly to web objects in the

web (W). The dynamics of the physical web have been studied and shown that

web-events can be modeled after a Poisson process[10, 11, 38]:

Prob(x events) =
(α(tj − ti))

x e−α(tj−ti)

x!

where α is the mean number of web-events that occur during a unit time, and

tj − ti is the time-interval being examined.

For the purposes of this analysis, we will assume that web-events occur with a

rate such that each poll will yield one web-event. This does not imply that web-

events are not missed – merely that at least one web-event will occur to a web

object w between subsequent polls to that web object by a specific web crawler.

It will also assume that web crawlers will not poll the same object at the same

time. Together these assumptions imply that only one crawler can ever have the

most-recent web-event for a specific web object.

Crawlers using algorithm 4.1 will select specific web objects from their crawling

set Qw, and specific peers from Qc in a uniform random fashion.

We will assume that sharing and merging take the same time as a single network

poll. This is a gross assumption, since, of course, transferring large amounts of data

over a network can incur more time than sending a single byte.

Finally, we will assume that a crawler has a vested interest in knowing about

the entire web.

CHAPTER 4. THEORY 41

4.3.2 Intuition of Interaction

If the number of crawlers in the system were, in fact, zero, then the web would

never get crawled and vital events would be lost. Of course, this means that at

least one crawler is required (C1 ∈ C). The single crawler must crawl the entire

web (Qw ≡ W). Since there are no peers with which to merge, C1 will implicitly

have a value of ρ = 1. This implies that crawler C1 will perform |W | network polls,

for a total number of |W | polling operations. At most one web-event per poll can

be gleaned, resulting in an information gain to network operation ratio of |W |
|W | = 1.

This crawler will not necessarily have the most up-to-date cache (Ec) because

polling the entire web is a slow process. Many web events may be missed.

When another cooperating crawler (C2) is added to C, each crawler can poll

between 1 and |W | web objects and then share (a single operation) between 1 and

|W | web-event records with their peer. The longer a crawler waits to merge, the

more web events can be transferred (until a point). The length of time between

merges is controlled by a crawler’s value of ρ. Mutually, the best case occurs when

each crawler crawls about |W |
2

objects and then performs a merge operation with

its peer. This results in a total of |W | + 2 operations over both crawlers for an

information gain to network operation ratio of |W |
|W |
2

+1
> 1 per crawler. This will not

happen if ρ is either 0 or 1 (since either extreme results in no information being

shared and results in |W | operations per crawler).

If we add yet another web crawler (C3) to the process, then each crawler is

capable of polling between 1 and |W | web objects and then sharing between 1 and

|W | web-events with another peer. Again, a crawler’s value of ρ dictates how long

to wait before merging with another crawler. If every crawler decides to do the same

amount of work (ie. each polls |W |
3

web objects), then a single crawler can merge

CHAPTER 4. THEORY 42

from both peers to receive 2|W |
3

web-event data records in only two operations. The

total number of operations over all 3 crawlers is 3
(|W |

3
+ 2

)
and the information

gain to network operation ratio of |W |
|W |
3

+2
> 1 per crawler.

Each crawler does the same amount of work, and gets three times the data for

it’s effort. If we attempt to generalize this, we may assume that an optimal crawling

distribution is for all crawlers in C to poll:

|Qw| =
|W |
|C| (4.2)

web objects before attempting merging operations which can yield the remaining

web-event data records.

Note that as membership in C increases, the size of an individual crawler’s Qw

decreases, until the point where there are |W | crawlers and each crawler Ci ∈ C

crawls only one object. At this point, each crawler is performing one poll operation

followed by |W |−1 merges of all other crawlers to get their single web-event record

(for a total operation count of |W |2 over all |C| = |W | crawlers). Per crawler, the

information gain to network operation ratio of |W |
|W | = 1, which is no better than the

case when |C| = 1.

Both |C| = 1 and |C| = |W | illustrate the limiting scenarios in equal-work

cooperative web-crawling behaviour. Since the behaviour for |C| = 2 exhibits an

information gain greater than either of the limiting scenarios, there must be an

optimal number of web crawlers.

CHAPTER 4. THEORY 43

4.3.3 Deriving an optimal number of crawlers

An individual crawler’s information gain compared to the number of operations

required to receive knowledge about all of W can be expressed as a function of the

size of the community of crawlers in equation 4.3.

f(|C|) =
|W |

|Qw| + |C| − 1
(4.3)

In other words, a single crawler in a community of |C| crawlers must poll |Qw|
web objects, and then merge from the remaining |C|−1 peers to get all |W | objects.

Discovering the local extrema of f(|C|) is as simple as solving for, and minimizing

f
′
(|C|) (making sure to substitute appropriately for |Qw|):

f
′
(|C|) =

−|W | ·
(
1 − |W |

|C|2
)

(|W |
|C| + |C| − 1

)2 (4.4)

The minimization of f
′
(|C|) yields |C| = ±

√
|W |; however, only the positive so-

lution makes sense. This represents the local/global minimum. For a web of size 109

in a non-contention environment, the least number of equal-work, cooperating web

crawlers needed to achieve optimal freshness is |C| ≈ 31623, each of which crawls

|C| different web objects. If there is no contention for communication resources,

then this means that for any size of crawler community in which |C| >
√
|W |, the

remaining crawlers (
√
|W |−|C|) should simply merge from all other crawlers rather

than poll. In this way, all crawlers will achieve a maximal freshness. Determining

which crawlers should poll and which should merge remains a problem.

CHAPTER 4. THEORY 44

4.3.4 Number of Operations as Related to Freshness

The above analysis deals with the number of operations that could occur when

cooperating crawlers interact. Operation-counting does not translate directly into

a measure of freshness. However, it is a good indicator, especially when one takes

into account the fact that merges are not, in fact, a free operation. A merging

operation can be considered cheaper than a network poll, because it is possible to

get more than one web-event data record per merge, as compared to being able to

get at most one record per network poll.

Chapter 5

Simulation Software

A web crawling simulator was developed to quickly collect data while being in full

control over crawling parameters. The web crawler can be configured to crawl a

virtual web using a variety of strategies. The simulator is able to omnisciently

measure various metrics of any web crawler and the virtual web at any point in

time. Our primary interest is in how the freshness of a crawler’s cache can change

over time, especially when interacting with peers to share or merge data. Our

secondary interest is in how crawlers can mutually affect the freshness of their own

cache and the cache of others as they compete for resources.

5.1 Simulation Architecture

The simulation uses a freely available simulator package known as YACSIM1. Yet

Another CSIM [C-Simulator] is an event- and process-oriented simulator imple-

1Available for download from http://www.crpc.rice.edu/softlib/rppt.html

45

CHAPTER 5. SIMULATION SOFTWARE 46

mented as a set of library calls for the C programming language. The GNU Scien-

tific Library2 provides the necessary random-number generator and random-number

distribution functions.

Three objects are represented within the simulation environment: web objects,

web crawlers, and the virtual web (network). The network is simply a passive,

observable entity, whereas web objects and web crawlers are active participants.

The crawler is the most sophisticated of all of the simulated objects and accounts

for nearly all of the work.

The architecture of the simulation is shown in figure 5.1. All of the simulated

objects have resources associated with them. Simulation resources use a multi-

processor-sharing contention model based on a uni-processor model supplied by

YACSIM: if there are k simulation objects requiring service from a multi-processor-

sharing resource that has s servicing slots, then each object will obtain an amount

of service proportional to s
k
. If s > k, then all k objects will receive full use of a

processor (ie. no contention).

5.2 Web Objects

A web object is a uniquely-identified entity within the simulated web. It possesses

the basic properties of file size (in bytes) and a last-modified-date.

Web objects can be polled and retrieved in the simulation, but both operations

have a cost associated with them. The cost is realized by the time to transfer the

data (which is directly related to the bandwidth associated with the requester and

the object).

2Available for download from http://www.gnu.org/software/gsl/gsl.html

CHAPTER 5. SIMULATION SOFTWARE 47

Web Objects
Cache of

Meta−data

Crawler’s Resources

Network’s Resources

Object’s Resources

peerset
visitset

Web Crawler

Web Object

World Wide Web

Figure 5.1: Simulation architecture.

All web objects evolve over time by periodically generating web-events via a

YACSIM event process. The standard lifecycle for any web object follows the simple

state-machine illustrated in figure 3.1.

All events are exponentially-distributed. Create web-events are generated by

instantiating new web objects at a rate λC . Update web-events are generated at a

rate λU . Web objects may delete themselves with a Poisson distribution probability

using an event rate of λD. If λC = λD, then the size of the virtual web remains

approximately constant over time.

5.3 Web Crawlers

Web crawlers have a number of important structures and algorithms associated

with them. Crawlers essentially consist of the following pieces:

• A queue of web objects to poll (visitset)

• A queue of web crawler peers to contact (peerset)

CHAPTER 5. SIMULATION SOFTWARE 48

Web Object

Object’s Resources

Crawler’s Resources

Web Crawler

Network’s Resources

(a) Crawlers communicate with
web objects via the shared net-
work resource.

Network’s Resources

Crawler’s Resources

Crawler’s Resources

Web Crawler

Web Crawler

(b) Crawlers communicate with
other peers via the shared net-
work resource as well.

Figure 5.2: Simulation communication and contention model between crawlers and
objects and crawlers and crawlers.

CHAPTER 5. SIMULATION SOFTWARE 49

• A cache to store web object meta-data polled by the crawler or obtained from

a peer

• ρ - a variable used to determine how often this crawler should poll and merge;

it is used in algorithm 4.1

Web objects that have been known to be deleted are removed from the visitset. The

decision to poll the network or merge records from another crawler is determined

by crawler’s value of ρ.

It should be noted that crawlers are assumed not to suffer access errors as a

result of communicating with either web objects or other web crawlers.

5.4 The Simulated Web

The web consists of nothing more than a set of web objects and web crawlers.

The notion of a web server, prevalent in the actual web, has been removed in this

simulation. As illustrated in figure 5.2, the network is a shared resource used by all

web crawlers and web objects. Directly influencing the cost of the network access

is the network bandwidth.

5.5 Simulation Variables

Each of the variables alluded to in the previous sections are described in more

detail. In each case, the set of legal values and/or selection method and criteria is

described.

CHAPTER 5. SIMULATION SOFTWARE 50

The bandwidth associated with the link from a web object to the network cloud

as shown in figure 5.2(a) is described using a uniformly chosen random variable

Bob. It can range from 5 KBps to 200 KBps. Note that it is possible for an object

to be unreachable by a crawler if the object’s bandwidth is set to 0.

The bandwidth associated with the link from a web crawler to the network cloud

as shown in figure 5.2(b) is described using a uniformly chosen random variable Bcr.

Bcr is chosen from 5 KBps to 200 KBps. A crawler can be considered unreachable

if its bandwidth is set to 0.

The network bandwidth is fixed at 1.5 Mbps.

5.6 Web Crawler Algorithms

Algorithm 5.1 follows quite closely to algorithm 4.1. Each network access to a

web object costs some time, which is clearly charged against the crawler regardless of

the outcome of the polling operation (updated or not). When one crawler attempts

to merge from a target crawler, both crawlers will incur the communications cost,

since they are both involved.

Line 7 of algorithm 5.1 shows the crawler’s cache being updated in the event a

poll yields a new web-event.

Lines 14 to 15 represent the local crawler attempting to determine the necessary

information from the remote crawler’s /robots.shr file. Only if this succeeds can

a merge occur.

Lines 17 to 19 show how a single merging operation could potentially yields

several web-events being added to the crawler’s cache.

CHAPTER 5. SIMULATION SOFTWARE 51

Algorithm 5.1 Crawler :: algorithm()

Require: visitset is a structure containing the set of all URLs that will be visited.
Require: peerset is a structure containing the set of all peers that will be con-

tacted.
1: loop
2: rr ← random()
3: if rr ≤ ρ then
4: URL ← visitset.pop() {get the head URL from the queue}
5: obj ← poll(URL)
6: if obj �= ∅ then
7: cache ← cache ∪ obj
8: end if
9: if obj.event.type �= DELETE then

10: visitset.push(URL)
11: end if
12: else
13: peer ← peerset.pop() {get the next crawler to merge from}
14: validate-peer(peer)
15: if peer-is-valid then
16: eventset ← merge-from(peer)
17: for x ∈ eventset do
18: cache ← cache ∪ x
19: end for
20: end if
21: end if
22: end loop

CHAPTER 5. SIMULATION SOFTWARE 52

Algorithm 5.2 Crawler :: poll() from line 5 of algorithm 5.1.

Require: URL is a URL for an object that may or may not exist on the physical
web.

1: obj ← get-network-state(URL)
2: cobj ← cache ∩ obj {Determine if we already have previous knowledge about

URL or not}
3: if cobj = ∅ then
4: if obj.event.type �= DELETE then
5: return obj {detected a create web-event to object}
6: end if
7: else
8: if obj.event.type �= DELETE then
9: if obj.last-modified-date > cobj.last-modified-date then

10: return obj {detected an update web-event to object}
11: end if
12: else
13: return obj {detected a delete web-event to object}
14: end if
15: end if

The polling algorithm described in algorithm 5.2 has three branches of interest.

If a web object has never been seen by a crawler before (line 3), then the crawler

assumes that the web object has just been created.

If the web object is already known to the polling crawler, then it can use the

difference in information retrieved from this poll and the previous record to deter-

mine if a change has occurred. Note that if the crawler detects that an object has

been deleted, then it will remove it from the polling queue3.

The merging process outlined in algorithm 5.3 shows the two-stage merging pro-

cess. In order for a crawler to merge data from a target crawler, it must first check

3The idea that something has been permanently deleted is somewhat of a controversy, since
traces of the content may be cached or preserved. The Internet Archive’s Wayback Machine
(http://www.archive.com) is an example of object preservation.

CHAPTER 5. SIMULATION SOFTWARE 53

Algorithm 5.3 Crawler :: merge-from() from line 16 in algorithm 5.1.

Require: peer is a cooperating web crawler sharing its web-event cache.
1: updates ← ∅ {initialize the return set to be empty}
2: if peer is sharing data then
3: lastvisit ← peervisitset ∩ peer {get last time we visited peer}
4: if lastvisit = ∅ then
5: lastvisit ← current-time
6: peervisitset ← peervisitset ∪ lastvisit {add new peer to our set}
7: end if
8: for x ∈ peer.cache s.t. x.last-modified-date ≥ lastvisit do
9: mycopy ← cache ∩ x

10: if mycopy �= ∅ then
11: if mycopy.last-modified-date �= x.last-modified-date then
12: updates ← updates ∪ x {found an updated object on the target}
13: end if
14: else
15: updates ← updates ∪ x {found a new object on the target}
16: end if
17: end for
18: end if
19: return updates

CHAPTER 5. SIMULATION SOFTWARE 54

to find out when it last visited the crawler. If the crawler has not updated their

sharing data file since the last visit, then there is no need to continue. Otherwise,

the local merging crawler will requests all available web-events from the remote

sharing crawler since the last time the remote crawler was contacted.

Chapter 6

Experiments and Results

The experiments described in this chapter show the effects of various policies that

can be adopted by cooperating web crawlers. Specifically, these experiments are

designed to illustrate the ways in which ρ can affect the freshness of an individual

crawler within a system of N − 1 peers. The results of these exploratory exper-

iments can be used to dictate the direction of more dynamic strategies in which

an individual crawler can monitor it’s performance and crawling environment and

adjust ρ accordingly. We examine changes in the size of the crawling space as well

as changes in the disposition of a crawler (parasitic, mirror, hybrid, etc. as outlined

in section 4.1).

6.1 Experimental Setup

All simulations were performed operated under a common set of conditions. The

size of the simulated web was set to an initial size of 1×106 objects, with a creation

55

CHAPTER 6. EXPERIMENTS AND RESULTS 56

growth rate mean of 3476 web objects per day1. Conversely, objects were deleted

from the simulated web with an identical mean, thus resulting in an approximately

static web. The simulation ran over a simulated 180-day (1.5552 × 107 seconds)

span.

The network bandwidth was set at 1.5 Mbps, and all crawlers operated with

an individual bandwidth of 100 Kbps. In the absence of contention, web crawlers

could crawl approximately one object per second. The contention model – the

processor-sharing model as described in section 5.1 – was dampened by using a

constant s > 1. This helps avoid resource contention crippling the performance of

a system of web crawlers.

Crawlers started with an entirely fresh cache for the portion of the web they

were set to crawl (ie. freshness for a crawler at time 0 was 1.0). Unless otherwise

dictated by a crawler’s policy, web objects were randomly ordered and selected for

crawling; peer crawlers were also randomly ordered and selected for merging.

All crawlers independently operate as a single-thread: no parallelism is ex-

pressed or implied by algorithm 4.1. Each poll performed by a crawler was a

simulated HTTP HEAD operation. In all cases, the web server associated with an

object was assumed to transmit the last-modified-date information for each web ob-

ject requested. A merging crawler was assumed to operate under the pretense that

it retrieved web-events beginning with the most recent. Furthermore, the sharing

crawler did not perform any filtering based on a peer’s merge-request, and so all

pertinent web-events were transmitted to the merging crawler. Note that a crawler

that was in the process of merging could not poll, but a crawler in the act of sharing

could continue to poll with a penalty applied to their personal network bandwidth.

1A constant growth rate of 0.3476% per day for the web is assumed from the growth data
described in a study by Cyveillance [32].

CHAPTER 6. EXPERIMENTS AND RESULTS 57

6.2 Experiments and Analysis

6.2.1 Establishing a Baseline

Under current world conditions, a set of web crawlers will crawl the entire web,

entirely ignoring peers. Using our simulation model, this corresponds to each

crawler attempting to crawl the entire web, having a ρ = 1.0, and not allowing

any peer to merge. The number of crawlers crawling the simulated web was varied

at 2N , 0 ≤ N ≤ 10. As the baseline simulation ran, the system of N crawlers

stabilized in their cache freshness value. That is, at the end of the simulation, the

crawler’s cache freshness is indicative of the value that the crawler is capable of

achieving. The equilibrium state achieved by all N crawlers in the system can be

averaged to show the average crawler cache freshness.

The simulation was run with network contention enabled and disabled allowing

for the two curves shown in figure 6.1. The only affecting factor should be contention

for network resources among crawlers. An increase of crawlers in the system should

elicit a decrease in the freshness of an average crawler’s cache.

Although the entire system of N crawlers starts with a cache freshness of 1.0 at

time 0, when the simulation ends, the equilibrium state for a system of N crawlers

in a non-contending environment ends with an average freshness of about 20% re-

gardless of the size of N . This freshness value arises from various parameters con-

trolling the speed of crawling and the frequency of web-events. Increasing the speed

of crawling or decreasing the frequency of web-events would result in an increased

average crawler cache freshness. Conversely, decreasing the speed of crawling or

increasing the frequency of web-events would result in a decreased average crawler

cache freshness.

CHAPTER 6. EXPERIMENTS AND RESULTS 58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = number of web crawlers) (log2 scale)

Web crawlers operating under modern, non-sharing conditions

No contention
Contention

Figure 6.1: Crawlers running under current world conditions (oblivious to peers;
no crawler is sharing).

With contention enabled, figure 6.1 shows that, as expected, when N is large

enough, resource contention among all crawlers in the system adversely affects the

average crawler cache freshness. The rate of decrease in this curve is based on the s
k

processor-sharing contention model employed by the simulator. Contention is not

immediately noticeable because s ≥ k when N is small.

6.2.2 The All-or-Nothing Approach

In order to enable sharing and merging, crawlers must enable their ability to share

data and use algorithm 4.1 with 0 < ρ < 1. If all N crawlers in the system use the

CHAPTER 6. EXPERIMENTS AND RESULTS 59

same fixed value of ρ, then the crawling system evolves in an interesting way.

Small values of N

Figure 6.2 shows a system of two (2) web crawlers using algorithm 4.1 such that

all web crawlers operate with the same value of ρ. A curve denoting the behaviour

of the system with and without contention is shown. Each curve represents the

average behaviour for all crawlers in the system. The optimal cache freshness is

indicated by a mark on each curve. It is at these marked points that a combination

of merging and polling yields the best freshness. It would be expected that values

of ρ close to 0 and 1 would show a decline in the freshness compared to values of

0 < ρ < 1. For N = 2, the optimum should occur for a value of ρ ≈ 1 since there is

only one other crawler from which to receive web-events. In order to make a merge

worthwhile, the crawler should wait until enough information has been amassed by

its peer.

The optimum freshness with two sharing crawlers shows a distinct improvement

in the average cache freshness: the highest point of each curve in figure 6.2 is above

the baseline average cache freshness of figure 6.1.

Two interesting aspects are present in this graph: the relative closeness between

the contention and non-contention curves, and the behaviour at the extreme ends of

the curves. The relative closeness between the two curves is apparent because the

processor-sharing contention model (s
k

for k jobs) uses a constant s > 1. Contention

will be practically non-existent for such a small value of N .

When ρ = 0, the freshness is approximately 0 as well. This is to be expected.

When all crawlers are trying to merge from one another and no polling is done, the

freshness will degrade completely. When ρ increases, a larger percentage of time

CHAPTER 6. EXPERIMENTS AND RESULTS 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Behaviour of 2 sharing web crawlers for varying ρ

No contention
Contention

Figure 6.2: Two crawlers share and merge with one another with various values of
ρ.

is spent polling – doing real work – and the freshness for each crawler begins to

increase. Sharing only becomes a useful operation for medium-high values of ρ. At

this point, sharing enables each crawler in the system to achieve a freshness better

than that achieved by the baseline in figure 6.1. The optimum point is achieved

close to ρ = 1.0 as expected. The sudden decline as ρ approaches 1.0 after the

optimal values in each curve means that the cache freshness in each respective

crawler simulation is actually hindered for values of ρ greater than the optimum.

This is expected: the amount of work to retrieve web objects by merging with other

crawlers is a bit less than the work required to retrieve them directly since multiple

data-records can be merged for the same cost as a single poll.

CHAPTER 6. EXPERIMENTS AND RESULTS 61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Behaviour of 64 sharing web crawlers for varying ρ

No contention
Contention

Figure 6.3: 64 crawlers share and merge with one another for various values of ρ.

CHAPTER 6. EXPERIMENTS AND RESULTS 62

Larger Values of N

If we increase the number of crawlers in the system without changing any other

parameter, then we can see how such an increase in N has a profound effect on

the average crawler cache freshness. Figure 6.3 shows a system of 64 web crawlers.

All use the same value of ρ for their entire running time. The maximum average

crawler cache freshness for the non-contention and contention models is indicated

in each. With such a large set of web crawlers, merging should show an increased

performance relative to the baseline performance of 0.2. However, contention for

resources will also be apparent.

The most obvious feature of figure 6.3 is the large performance gap between the

contention and non-contention simulations. The non-contention curve illustrates

the behaviour if resource contention were not a factor.

The optimum crawler cache freshness is shown at about ρ = 0.85 for the con-

tention curve. This value of ρ is less than the value of ρ for the optimum when

N = 2 in figure 6.2. However, the optimal cache freshness is about twice that when

N = 2, and three times greater than the baseline.

Figure 6.4 shows a system with N = 256. Like figure 6.3, we expect to see a

significant performance gap due to resource contention.

The performance gap shown in figure 6.4 is actually more pronounced than in

figure 6.3. Freshness in the non-contention curve is almost perfect because there are

so many crawlers in the system from which to gather information from. The curve

then falls sharply when all the crawlers are polling more than 90% of the time,

which causes resource contention to access the web objects. The non-contention

curve also sports a plateau between ρ = 0.3 and ρ = 0.9 which illustrates that it is

only slightly more advantageous to poll more than half the time when N is quite

CHAPTER 6. EXPERIMENTS AND RESULTS 63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Behaviour of 256 sharing web crawlers for varying ρ

No contention
Contention

Figure 6.4: 256 crawlers share and merge with one another for various values of ρ..

large.

Figures 6.2, 6.3, and 6.4 examine the role of varying ρ for a set of N crawlers.

Each of figures 6.5 and 6.6 shows the associated crawler cache freshness for ρ =

0.001, ρ = 0.30, ρ = 0.85 and ρ = 1.0. The value of ρ is fixed for the entire set of

crawlers over the duration of a simulation. The figures start at N = 2 because a

single crawler does not exhibit interesting features.

Figure 6.5 graphs the behaviour when there is no contention. Each simulation

shows that freshness tends to increase regardless of the number of crawlers in the

system. However, as N increases, smaller values of ρ cause the growth toward a

freshness of 1 to slow significantly.

CHAPTER 6. EXPERIMENTS AND RESULTS 64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256 512 1024

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = number of web crawlers) (log2 scale)

Performance of web crawler systems at specific values of ρ (no contention)

ρ = 0.001
ρ = 0.300
ρ = 0.850
ρ = 1.000

Figure 6.5: Various crawler systems for increasing values of ρ over a set of N
non-contending web crawlers.

Figure 6.6 graphs the behaviour when there is contention for resources. This

figure shows that the majority of systems observe much better freshness when

ρ = 0.85 then for any other value of ρ except for when N is very large. When N is

very large (N ≥ 28), our simulations show that a low value of ρ (indicating more

merging than polling) may achieve better freshness (as shown by the cross-over

point between the curves for ρ = 0.85 and ρ = 0.30).

Finally, figure 6.6 shows that ρ = 0.30 has a distinct plateau for 24 ≤ N ≤ 28.

This indicates that ρ = 0.30 offers similar potential over a wide range of values of

N .

CHAPTER 6. EXPERIMENTS AND RESULTS 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256 512 1024

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = number of web crawlers) (log2 scale)

Performance of web crawler systems at specific values of ρ (contention)

ρ = 0.001
ρ = 0.300
ρ = 0.850
ρ = 1.000

Figure 6.6: Various crawler systems for increasing values of ρ over a set of N
contending web crawlers.

CHAPTER 6. EXPERIMENTS AND RESULTS 66

6.2.3 Exercising Varying Values of ρ

If all crawlers within a cooperating crawling system are independently initialized

with a random value of ρ, then a number of interesting effects can be witnessed.

An example system consisting of 64 crawlers is shown in figure 6.7. The data was

obtained by running several simulation trials in which each of the N = 64 crawlers

was assigned a valid uniformly-generated random value for ρ. The mean uniform-

distribution is also displayed in figure 6.7 as an example of a “perfect” distribution

of values for ρ.

The law of averages states that all crawlers should assume a value of ρ such

that each successive pair of values is approximately equidistant from one another.

In fact, the perfect equidistant distribution crawling system is overlaid in figure 6.7

to show that this is occurring. Working with a system of N = 64 crawlers makes

some assumptions about the uniformity of the resulting data that will be discussed

below.

Figure 6.7 shows the interesting characteristic that in a 64-crawler system, the

freshness is at its best for crawlers that exhibit a ρ between 0 and 0.60, and it is at

its worst for a crawler that exhibits a ρ close to 1. However, as figure 6.3 shows,

if all crawlers in an N = 64 system take on a value of ρ close to 0, the average

freshness for a crawler is worse than that shown here. Overall, this graph aims to

illustrate the freshness that could be expected if a random value for ρ were assigned

to a crawler within a system of N = 64 crawlers, each of which is also assigned a

random value for ρ.

Curves can be generated for various N similar to that shown in figure 6.7. It

is the shape of the curve that is important to know such that we can discern the

size and breadth of the plateau section (if any) and how steep the curve increases

CHAPTER 6. EXPERIMENTS AND RESULTS 67

or decreases (figure 6.7 shows a steep decrease). We apply a least-squares line fit

to the data points for each of the curves generated for various N .

Figure 6.8 shows the result of applying a least-squares regression curve to each

of the crawling systems for N ≥ 1. The slope (m) of the regression line y =

mx + b is plotted. The magnitude of the slope indicates how the type of value

for ρ that should be selected in order to attempt to maximize the freshness of the

system. Slopes that are positive indicate that values closer to 1.0 should be selected,

whereas negative slopes indicate that values closer to 0 should be selected. Relative

differences between the magnitudes are indicative of how close to an extremum

(ρ = 0 or ρ = 1) from which to select: the higher the magnitude, the closer to the

extremum, the particular ρ should be.

One interesting feature of figure 6.8 is that when N = 512, the magnitude of

the slope is less than the magnitude for N = 256. Indeed, although not shown, it is

expected that as N → ∞, the magnitude would approach 0 to indicate that when

a system is too large, there is no bias toward more polling or more merging. Any

value of ρ would achieve the same level of freshness – which is to say, a freshness

of about zero.

This analysis fits with previous findings showing that for smaller values of N , a

value of ρ favoring polling should be selected – indeed, for N = 2 a value of ρ close

to 1 should be selected which is suggested by the magnitude and direction of the

slope in figure 6.8.

6.2.4 Mirrors and Parasites

If you recall from section 4.1, a crawler can operate in one of six modes. When a

crawler acts as a mirror, it uses a value of ρ = 0, but in turns shares everything

CHAPTER 6. EXPERIMENTS AND RESULTS 68

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Random ρ Assignments to 64 Cooperating Crawlers

random
perfect

Figure 6.7: System of 64 web crawlers. Each has an independent, randomly assigned
value of ρ. The equidistant distribution curve is overlaid as a comparison.

CHAPTER 6. EXPERIMENTS AND RESULTS 69

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

2 4 8 16 32 64 128 256 512

S
lo

pe
 o

f P
er

fo
rm

an
ce

 C
ur

ve

N (N = number of web crawlers) (log2 scale)

Regression line slopes as an indicator of selection of ρ

Figure 6.8: Slopes of regression lines for systems of crawlers in which a random ρ
was assigned. The slope (m) is for a line y = mx + b which fits to curves similar to
figure 6.7.

CHAPTER 6. EXPERIMENTS AND RESULTS 70

that it merges with any peer. It relies on others to do network polling. A parasite

is similar, but it does not share anything that it merges from others.

A system involving a total of N web crawlers was set up. Of those, N − 1

crawlers are regular cooperating web crawlers which use the same, fixed value of ρ.

The last crawler acts as a global mirror which merges from all of the N −1 crawlers

and makes all of the shared data available to any other peer.

Figure 6.9 shows the results of comparing a mixed crawler environment for which

N = 32 (ie. there are 31 cooperating crawlers and 1 mirror) and a completely

cooperating environment (measured at ρ = 0.85). Figure 6.10 shows the same

except with a single parasite instead of a mirror.

Both figures are extremely similar. Theoretically, the cooperating crawlers in-

fluenced by a parasite should be impacted more than those cooperating crawlers

influenced by a mirror. However, with only one non-cooperative crawler in each

experiment, this difference cannot be seen.

The other notable feature of each figure is that the crawler operating with a

value of ρ = 0 consistently maintains a cache freshness as good as, or better than

its cooperating peers. When all of the cooperating crawlers have a ρ � 1, the

non-cooperative crawler’s cache freshness is at its best. This illustrates one of the

properties of being a single non-cooperative crawler in a cooperative environment:

a non-cooperative crawler’s cache freshness can never be worse than the average

cooperating peer.

Incentive to Crawl

Neither a mirror or a parasite poll. Hence, the above crawling systems have the

equivalent polling power of a system of N = 31 crawlers (each with ρ > 0). As

CHAPTER 6. EXPERIMENTS AND RESULTS 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Behaviour of mirrors and cooperating crawlers (31 cooperating) (Contention)

Non-mirrors
Mirrors

Figure 6.9: An example system of crawlers with a single global mirror. The mirror
is consistently better than any of the cooperating crawlers for any ρ.

CHAPTER 6. EXPERIMENTS AND RESULTS 72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

ρ

Behaviour of parasites and cooperating crawlers (31 cooperating) (contention)

Non-parasites
Parasites

Figure 6.10: An example system of crawlers with a single parasite. The parasite is
consistently better than any of the cooperating crawlers for any ρ.

CHAPTER 6. EXPERIMENTS AND RESULTS 73

shown in figure 6.6, increasing N (which increases the collective polling power) can

increase freshness of the average crawler up to a point. Therefore, a non-cooperating

crawler could achieve a greater degree of freshness if it contributed to the collective

polling power.

Two simulations were set up such that N − 1 cooperating crawlers running

with a fixed ρ = 0.85 were influenced by a single non-cooperating crawler (mir-

ror and parasite, respectively). It is expected that the performance of a single

non-cooperating crawler is inferior as compared to a pure cooperating crawler en-

vironment for small values of N . Similarly, it is expected that the performance of

a single non-cooperating crawler is superior when N is large enough.

Figure 6.11 plots the results of the experiment in which a single mirror is used.

The freshness of the mirror is compared to the freshness achieved by an average

cooperating peer being influenced by the single mirror. Similarly, figure 6.12 plots

the results when a single parasite is used. Accompanying each of the results is the

curve shown in figure 6.6 to show how a completely cooperating environment of N

crawlers would perform.

Again, both figures are extremely similar. The cooperating crawlers influenced

by a parasite should be impacted more than those cooperating crawlers influenced

by a mirror. With only one non-cooperative crawler in each experiment, this dif-

ference cannot be seen.

The expected behaviour is observed in both figures by the existence of a cross-

over point between the performance curve of a purely-cooperative system and

a system containing a single non-cooperative crawler. For smaller N , the non-

cooperating crawler does not contribute to the collective polling power which im-

pacts negatively on the freshness of the entire system. For larger N , enough crawlers

CHAPTER 6. EXPERIMENTS AND RESULTS 74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = Total number of crawlers) (log2 scale)

Comparison of single mirror affecting cooperation vs. completely cooperating crawler systems

N cooperative crawlers
N-1 cooperative crawlers influenced by 1 mirror

Figure 6.11: One global mirror operates within various-sized crawling systems.

exist to supply polling power. The cross-over point illustrates an over-abundance

of cooperating crawlers.

6.3 Dynamic Strategies

Figure 6.7 hints that in the absence of any other knowledge about the crawling

system, it may be useful for a single crawler to implement a value of ρ = 0 in order

to receive the largest number of web-events. Unfortunately, if all crawlers decide

on this strategy, then the freshness for an average crawler is worse-off than if all

crawlers had all settled on a particular non-zero value for ρ.

CHAPTER 6. EXPERIMENTS AND RESULTS 75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512

C
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = total number of web crawlers) (log2 scale)

Comparison of single parasite affecting cooperation vs. completely cooperating crawler systems

N cooperative crawlers (ρ=0.85)
1 parasite influenced by N-1 cooperative crawlers (ρ=0.85)

Figure 6.12: One parasite operates within various-sized crawling systems.

CHAPTER 6. EXPERIMENTS AND RESULTS 76

6.3.1 Bang-bang Dynamic Systems

A bang-bang system is a simple method used in control systems to adjust parame-

ters dynamically in response to environmental conditions. We will allow crawlers to

dynamically change their value of ρ depending on how effective their current value

of ρ appears to be at maintaining their freshness. A crawler cannot measure their

own cache freshness directly; they can only measure the freshness of independent

web objects. To determine how effective it is doing, a crawler can use the following

heuristics to approximately measure it’s own performance:

• When a crawler polls, the number of times that it polls versus the number of

web-events received for polling indicates how effective polling is. This ratio

(call it pr) can never be greater than 1 because a crawler can only receive 0

or 1 web-events per poll.

• When a crawler merges, the number of times that it merges versus the number

of web-events received for merging indicates how effective merging is. This

ratio (call it mr) can be any number ≥ 0 since a merge can result in several

web-events being transmitted per merge attempt.

The value of ρ should be high if pr > mr and low if the converse condition occurred.

The value of ρ must never be 1.0 or 0.0 since this would effectively ensure that mr

and pr (respectively) could never change to challenge the other. Also note that if

it takes a long time to perform a merge operation, then the next merge operation

will result in a large number of web-events being ready. Transmitting all of these

web-events takes time and resources. By the time they have been received by the

merging crawler, more web-events could have been detected. This can result in a

vicious circle in which mr is high, but the overall freshness is still low.

CHAPTER 6. EXPERIMENTS AND RESULTS 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256 512

A
ve

ra
ge

 c
ra

w
le

r
ca

ch
e

fr
es

hn
es

s

N (N = number of web crawlers) (log2 scale)

Analysis of bang-bang dynamicism within cooperating crawler systems

Bang-bang solution
Max-possible optimum

Baseline

Figure 6.13: Simulations for various selected values of N , in which crawlers use the
bang-bang model to adjust ρ. This model is compared to the baseline as well as
the optimal freshness seen when using the fixed-ρ strategy.

In order to reduce the effects that past decisions made using this scheme have

on the present, a dampener factor is applied to pr and mr. We only look at the

previous 30% when making a decision about the present. No parameter studies were

performed to determine how changing the dampener factor affected the freshness.

Figure 6.13 shows a series of simulations run for selected values of N . Each

crawler in the system is using the bang-bang model for dynamically adjusting ρ.

In this case, low is ρ = 0.10 and high is ρ = 0.90. A binary change from one to the

other is performed: no other values of ρ is permissible.

CHAPTER 6. EXPERIMENTS AND RESULTS 78

Figure 6.13 shows the results of running a series of simulations for a specific

set of N crawlers using the bang-bang dynamic strategy. In this figure, two other

lines are present: the line labelled “max-possible optimum” represents the system

of crawlers in which ρ has been set to a fixed constant for all crawlers in the N -

crawler system (equivalent to the optimum observed in, for example, figure 6.3).

The plain line is the baseline from figure 6.1.

It is interesting to note that this dynamic strategy produces a crawler cache

freshness that is better than the baseline (figure 6.1) for all values of N . However,

the difference between the freshness produced using this scheme is quite less than

the maximum possible value achievable when ρ is fixed for small-to-mid values of

N . Only for large values of N is the dynamic system better than the maximum

possible freshness achievable when ρ is fixed. Note that this does not imply that a

fixed-ρ strategy is the optimal strategy.

Equally interesting is that the bars are at an approximately constant height.

This means that the bang-bang solution was successful in modifying ρ to account

for the size of N .

Table 6.1 shows the percentage of time that an average crawler in a system of

N crawlers spent in the low-ρ position (ρ = 0.10), and how much time it spent in

the high-ρ position (ρ = 0.90).

It is clear in table 6.1 that the system is adjusting the amount of time spent in

the high and low modes as a function of the number of crawlers in the system. These

results support the previous findings that when N is small, a high ρ should be used,

and when ρ is medium-large, a lower ρ should be employed. The interesting result

is when N is very large: we see that ρ-high has started to increase for N ≥ 256. It

is expected that when N → ∞ it is no longer an issue to determine which value

CHAPTER 6. EXPERIMENTS AND RESULTS 79

N ρ-low ρ-high

2 0.362 0.638
4 0.572 0.428
8 0.707 0.293
16 0.780 0.220
32 0.805 0.195
64 0.808 0.192
128 0.816 0.184
256 0.782 0.219
512 0.628 0.373

Table 6.1: Percentage of time an average crawler in the bang-bang dynamic strategy
spends in ρ-low mode (ρ = 0.10) and ρ-high mode (ρ = 0.90).

of ρ is more beneficial than another. Because of the sheer number of crawlers, any

value of ρ will result in the same freshness performance – namely that freshness

will approach zero. It is expected that if we continue to increase N , table 6.1 would

show ρ-low=ρ-high=0.5.

Chapter 7

Conclusions and Future Work

7.1 Conclusions about Cooperative Behaviour

With the size of the web increasing at a dizzying rate, web crawlers are being more

and more challenged to discover and maintain web objects, especially on behalf of

web search engines. Currently, web search engines relying on web crawlers to keep

their indices up-to-date are falling behind. Certain techniques can ensure that the

most popular material is kept up-to-date, but that is limiting.

This thesis presented a general protocol to allow competing web crawlers to

share information among peers to their mutual benefit. Crawlers can choose to

merge shared data from competing peers if it helps them to maintain a fresher

database at a lesser cost than directly polling web objects on the web. However,

merging can become as prohibitive if not carefully controlled. Hence, it is shown in

theory and simulation that web crawlers must strike a balance between polling and

merging to obtain a degree of freshness which can exceed current-day behaviour.

A number of simulations were devised to show the behaviour of combining

80

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 81

polling and merging within a system of crawlers. All crawlers were based on a

simple algorithm in which the key lay in the ability to switch between polling and

merging via a parameter ρ.

Simulations in which the value of ρ was fixed at a particular value for all crawlers

within a system show that an optimum can be reached which always results in an

average crawler cache freshness better than the baseline. The value of ρ that can be

used to obtain such performance changes as a function of N . When N is small, ρ

should favour more polling than merging; when N increases ρ can decrease toward

0. When N is too large – that is, when there is an overabundance of crawlers in

the system, any value of ρ seems to work just as well as any other.

Changing the behaviour of single cooperating web crawlers to function in non-

cooperative, merge-only modes serve to illustrate the property of incentive-to-crawl.

A non-cooperating web crawler could conceivably perform better if it was acting in

a mutually cooperative manner for small values of N . Larger values of N showed

that a non-cooperative crawler would gain no benefit from actively polling the web.

Finally, a simulation was built using crawlers that could dynamically change

their individual values of ρ. The results indicate that a very simple bang-bang

technique can produce better freshness results for a crawler using the strategy as

compared to the baseline model, though other non-dynamic strategies are superior.

However, the ability to change ρ means that no pre-defined value need exist, which

can reduce the complexity in attempting to search ρ based on the size of a com-

munity of crawlers. Furthermore, if the number of crawlers can change (which is

a realistic scenario), a specific value of ρ at some time ti may be unsuitable for a

community at time tj.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 82

7.2 Application to the Real World

7.2.1 Implementation Issues

The protocol outlined by Ho[24] uses a communication interface module that can

be plugged into a web crawler. Two flat files (webrobots.shr and webrobots.dat)

provide all of the information necessary to share information among crawlers (the

former is the list of web crawlers known to the local crawler, and the latter is the

data to be shared). A crawler supporting the protocol generates and maintains

these files. Visiting robots use HTTP natively to retrieve the contents of the files.

Unfortunately, a number of issues go unaddressed.

Computationally, flat files are expensive to manage when existing data needs to

be updated rather than appended. Ho recognizes this, and indicates that although

the webrobots.shr file will remain fairly small (since there are only a small number

of robots on the web), the webrobots.dat file will grow to an impractical size.

Two alternatives to using flat files are to use an indexed file scheme, or a more

sophisticated database engine.

Storing information to be shared in a database is the most flexible solution of

all, but is potentially the most computationally expensive solution. Downloading

needless data can be reduced to nil through the use of query languages and filtering

techniques.

Server Locating

Locating a web crawler that implements the cooperation protocol presents a circular

problem. How does one locate a web crawler on a distributed network that, in itself,

can not function without published hyperlinks contained within HTML web pages?

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

Essentially, the problem is reduced to an accepted means to publishing references

to web crawlers in some well-known form (URLs?) in well-known locations (specific

web servers? specific communication ports? specific web pages?).

One example of detecting web crawlers requires assistance by web servers. Web

crawlers can be detected by their activities on web servers. The action of down-

loading robots.txt usually indicates the presence of a web crawler. The IP and

name could be saved by the web server and stored in a file called robots.dat,

which could be scanned and merged by any crawling robot to build up a database

of potential cooperating crawlers.

7.2.2 Security Concerns

The act of updating the /robots.shr file or any shared web-event data file causes

a web-event to be generated for that specific file. This can easily generate an

infinite loop if two (or more) web crawlers are polling each other’s shared web-

event data files. To avoid such aberrant behaviour, it is desirable to either limit the

number of times each URL can generate an event in a given period or simply avoid

recording events pertaining to shared data files. Protection of the share-repository

via /robots.txt is the prudent thing to do.

The other concern is that up to this point, all data has been assumed to be

correct. Unfortunately, malicious web clients adhering to the protocol may prac-

tice cache poisoning. Cache poisoning can occur when malformed, misleading, or

incorrect web-event data is shared by crawler S and added to the collection of data

possessed by crawler M . Crawler M could, in turn, distribute this poisoned data to

other peers. Decisions to merge or crawl based on previously merged data (which

could be tainted) should be avoided. Trust-networks[1] could be used to provide

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 84

web crawler community feedback regarding the quality of data shared by specific

peers.

7.3 Future Work

Three major avenues for future expansion and exploration can be identified.

7.3.1 More dynamic systems

One of the more interesting, but unanswered questions raised by this work deals

with how web crawlers can dynamically alter their strategies to increase their own

personal cache freshness. As alluded to in earlier chapters, autonomous behaviour

does not necessarily imply non-cooperative behaviour. Indeed, this is shown in

some of the results of experiments in the previous chapter. Ho[24] showed that

self-interested web crawlers can mutually benefit from web-event data sharing; im-

plementing Ho’s biological fitness model is an avenue left to be explored.

Additional dynamic strategies could be examined with respect to how they

can exploit the relationships and trends discovered by the analysis presented in

Chapter 6. Some interesting examples include:

• A crawler could modify its own ρ depending on the number of crawlers per-

ceived in the system.

• A share/merge ratio system could be employed to enforce cooperation. Crawlers

violating the ratio system would be forced to poll (ie. they would have to ad-

just their ρ to favour polling), rather than be allowed to merge.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 85

• Similar to the bang-bang model, crawlers could adjust their ρ depending on

the number of important web-events detected. Although importance is a

qualitative judgment, one could assume that create web-events are slightly

more interesting and hence more important than update events. Delete

events would not be very interesting since no further events could come from

a deleted web object.

• Crawlers could advertise their value of ρ to peers. A crawler would use the set

of advertisements to adjust it’s own value of ρ in an attempt to optimize. Very

little work was done on the behaviour of crawling systems with varied values

of ρ. Figure 6.7 represents the behaviour when ρ is randomly-distributed

among all crawlers in the system.

7.3.2 Real-world Study

It would be useful to actually run a real-world study. A series of web crawlers

implementing the web-event data sharing algorithm 4.1 could validate the trends

seen in the simulations.

7.3.3 Ubiquitous Sources of Web-event Data

It would be interesting to use sources other than web crawlers to collect web-events.

Any web client could be a candidate: this includes web crawlers (by design), web

caches, proxies, and even web users.

A subset of web-users providing web-event data could provide magnitudes more

timely event-detection, since there are many more web users than web crawlers. It

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 86

should be noted that collection of data from users poses potential security hazards

and ethical treatments which are beyond the scope of this work.

Providing web-event dissemination services with other sources (web servers,

proxy servers, etc.) could be realized through development of an Apache1 web

server module. This could be used to provide the services described by Brand-

man et al [5]and Gupta et al [20].

1http://www.apache.org/

Bibliography

[1] Alfarez Abdul-Rahman and Stephen Hailes. A Distributed Trust Model.

In Proceedings of the 1997 New Security Paradigms Workshop, pages 48–60,

September 1997.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hy-

pertext Transfer Protocol - HTTP/1.0, May 1996. Available at

http://www.faqs.org/rfcs/rfc1945.html.

[3] Krishna Bharat and Andrei Broder. A Technique for Measuring the Relative

Size and Overlap of Public Web Search Engines. In Proceedings of the 7th In-

ternational World Wide Web Conference, pages 379–388, Brisbane, Australia,

April 1998.

[4] C. Mic Bowman, Peter Danzig, Darren Hardy, Udi Manber, Michael Schwartz,

and Duane Wessels. Harvest: A Scalable, Customizable Discovery and Access

System. Technical Report CU-CS-732-94, Department of Computer Science,

University of Colorado, Boulder, March 1995.

[5] O. Brandman, J. Cho, H. Garcia-Molina, and N. Shivakumar. Crawler-Friendly

Web Servers. In Workshop on Performance and Architecture of Web Servers

(PAWS), June 2000.

87

BIBLIOGRAPHY 88

[6] Brian E. Brewington and George Cybenko. How dynamic is the Web?

WWW9/Computer Networks, 33(1-6):257–276, 2000.

[7] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual

Web Search Engine. Computer Networks and ISDN Systems, 30(1-7):107–117,

1998.

[8] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design of

a Scalable Event Notification Service: Interface and Architecture. Technical

Report CU-CS-863-98, University of Colorado at Boulder, Colorado, USA,

September 1998. Available at http://www.cs.colorado.edu/∼carzanig/

papers/CU-CS-863-98.ps.gz.

[9] James R. Chen, Nathalie Mathe, and Shawn Wolfe. Collaborative Information

Agents on the World Wide Web. In ACM DL, pages 279–280, 1998.

[10] Junghoo Cho and Hector Garcia-Molina. Estimating Fre-

quency of Change. Technical Report ID-135, Standford Uni-

versity, Stanford, CA USA, November 2000. Available at

http://www-db.stanford.edu/pub/papers/cho-freq.ps.

[11] Junghoo Cho and Hector Garcia-Molina. Synchronizing a Database to Improve

Freshness. In Proceedings of 2000 ACM SIGMOD International Conference on

Management of Data, pages 117–128, Dallas, Texas, USA, May 2000.

[12] Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web and Im-

plications for an Incremental Crawler. In Proceedings of 26th International

Conference on Very Large Databases (VLDB), pages 200–209, September 2000.

[13] Junghoo Cho, Hector Garćıa-Molina, and Lawrence Page. Efficient Crawling

BIBLIOGRAPHY 89

Through URL Ordering. Computer Networks and ISDN Systems, 30(1-7):161–

172, 1998.

[14] Chaisen Chung. Topic-Oriented Collaborative Web Crawling. Master’s thesis,

University of Waterloo, Waterloo, Ontatio, Canada, 2002.

[15] J. Cohen and S. Aggarval. General Event Notification Architecture Base,

July 1998. Available at http://www.alternic.org/drafts/drafts-c-d/

draft-cohen-gena-p-base-01.txt.

[16] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C.

Mogul. Rate of Change and Other Metrics: A Live Study of the World Wide

Web. In USENIX Symposium on Internet Technologies and Systems, December

1997.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol - HTTP/1.1, June

1999. Available at http://www.faqs.org/rfcs/rfc2616.html.

[18] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. RFC 2518:

HTTP Extensions for Distributed Authoring - WEBDAV, February 1999.

Available at http://www.faqs.org/rfcs/rfc2518.html.

[19] Amy R. Greenwald and Jeffrey O. Kephart. Shopbots and Pricebots. In Agent

Mediated Electronic Commerce (IJCAI Workshop), pages 1–23, 1999.

[20] Vijay Gupta and Roy H. Campbell. Internet Search Engine Freshness by Web

Server Help. In Symposium on Applications and the Internet, pages 113–119,

2001.

BIBLIOGRAPHY 90

[21] Manfred Hauswirth and Mehdi Jazayeri. A Component and Communication

Model for Push Systems. In Proceedings of the Seventh European Engineer-

ing Conference held jointly with the Seventh ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 20–38, Toulouse, France, Septem-

ber 1999.

[22] Allan Heydon and Marc Najork. Mercator: A Scalable, Extensible Web

Crawler. World Wide Web, 2(4):219–229, 1999.

[23] Annika Hinze and Daniel Faensen. A Unified Model of Internet Scale Alerting

Services. In Proceedings of the International Computer Science Conference

(ICSC), pages 284–293, 1999.

[24] Kinson Ho. WatE
∧

er: An Effective and Efficient Web Notification Protocol.

Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 1999.

[25] Brian Kantor and Phil Lapsley. RFC 977: Network News Transfer Protocol,

February 1986. Available at http://www.faqs.org/rfcs/rfc977.html.

[26] M. Koster. Aliweb - Archie-Like Indexing in the Web. In Proceedings of the

First International World Wide Web Conference, pages 175–182, Amsterdam,

March 1994.

[27] Martijn Koster. Robots Exclusion Standard. Available at

http://www.robotstxt.org/.

[28] Steve Lawrence and C. Lee Giles. Accessibilty of Information on the Web.

Nature, 400:107–109, July 1999.

[29] Michael L. Mauldin. Lycos: Design choices in an Internet search service. IEEE

Expert, (January-February):8–11, 1997.

BIBLIOGRAPHY 91

[30] Robert Miller and Krishna Bharat. SPHINX: A Framework for Creating Per-

sonal, Site-Specific Web Crawlers. In Proceedings of the Seventh International

World Wide Web Conference, Brisbane, Australia, April 1998.

[31] A. Moukas. Amalthaea: Information Discovery and Filtering using a Multia-

gent Evolving Ecosystem. London, 1996.

[32] Brian H. Murray and Alvin Moore. Sizing the Internet. White paper, Cyveil-

lance, July 2000. Available at http://www.cyveillance.com/.

[33] R. Nielsen, P. Leach, and S. Lawrence. RFC 2774: An

HTTP Extension Framework, February 2000. Available at

http://www.faqs.org/rfcs/rfc2774.html.

[34] Surendra Reddy and Mark Fisher. Event Notification Proto-

col - ENP. WEBDAV Working Group Internet Draft, June

1998. Available at http://alternic.net/drafts/drafts-r-s/

draft-reddy-enp-protocol-00.html.

[35] David S. Rosenblum and Alexander L. Wolf. A Design Framework for Internet-

Scale Event Observation and Notification. In Proceedings of the Sixth Euro-

pean Software Engineering Conference/ACM SIGSOFT Fifth Symposium on

the Foundations of Software Engineering, pages 344–360, Zurich, Switzerland,

September 1997.

[36] J. Slein, F. Vitali, E. Whitehead, and D. Durand. RFC 2291: Requirements

for a Distributed Authoring and Versioning Protocol for the World Wide Web,

February 1998. Available at http://www.faqs.org/rfcs/rfc2291.html.

[37] Aarno Lehtola Tuula Käpylä, Isto Niemi. Towards an Accessible Web by

Applying PUSH Technology. In C. Stephanidis and A. Waern, editors, 4th

BIBLIOGRAPHY 92

ERCIM Workshop on ”User Interfaces for All”, Stockholm, Sweden, October

1998.

[38] J.L. Wolf, M.S. Squillante, P.S. Yu, J. Sethuraman, and L. Ozsen. Optimal

Crawling Strategies for Web Search Engines. In World-Wide Web 2002, Hon-

olulu, Hawaii, USA, May 2002.

[39] Hayato Yamana, Kent Tamura, Hiroyuki Kawano, Satoshi Kamei, Masanori

Harada, Hideki Nishimura, Isao Asai, Hiroyuki Kusumoto, Yoichi Shinoda,

and Yoichi Muraoka. Experiments of Collecting WWW Information Using

Distributed WWW Robots. In Proceedings of the 21st Annual International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, pages 379 – 380, Melbourne, Australia, August 1998.

[40] Haobo Yu, Deborah Estrin, and Ramesh Govindan. A Hierarchical Proxy

Architecture for Internet-scale Event Services. In IEEE Eighth International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-

prises (WETICE), Palo Alto, CA, June 1999. IEEE.

