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Abstract

Control systems have always been a vital part of the novel technological advancements
of human being in any industry, especially transportation. With the introduction of the
idea of autonomous driving, classical control systems are not effective anymore and the
need for intelligent control systems is inevitable. Advanced Driver Assistance Systems
(ADASs), which are systems proposed to help drivers improve the process of driving, and
Intelligent Transportation Systems (ITS), which are proposed to provide information that
promotes more coordinated and more ecological driving, require novel intelligent controllers
that are adaptive to driving conditions. Therefore, the development of different strategic
vehicle control systems by employing state-of-the-art intelligent control methods has been
an active field of research in recent years.

The highly variant nature of transportation implies that an effective intelligent con-
trol technique must be able to handle a large multi-input multi-output (MIMO) system
with nonlinear complex dynamics. It must also store and analyse a large amount of data
and information about the vehicle, its environment and traffic conditions in the process
of decision-making. Nonlinear Model Predictive Control (NMPC), as a unique optimal
model-based approach to intelligent control systems design, is a promising candidate that
comprises all of these characteristics. The ability to solve constrained multi-objective opti-
mization problems with a predictive approach has made this technique powerful. However,
NMPC controller developers face real-time implementation challenges as this method suf-
fers from huge computational loads. Hence, fast Real-Time Optimization (RTO) methods
are proposed to overcome this drawback. Optimization methods based on Generalized
Minimum Residual (GMRES) method are examples of these RTO algorithms that have
shown great potential for real-time applications such as vehicle control.

This thesis investigates the potential of employing GMRES-based RTO algorithms to
design intelligent vehicle control systems, in particular intelligent cruise controllers. Plug-
in Hybrid Electric vehicles (PHEVs) are introducing themselves as the future solutions for
green and ecological transportation, the thesis also introduces an intelligent cruise con-
troller for the Toyota Prius 2013 PHEV. To this end, an automatic multi-solver NMPC
code generator based on GMRES-based RTO algorithms is developed in MATLAB. The
user-friendly environment of this code generation tool allows the user to easily gener-
ate NMPC controller codes for further model-in-the-loop (MIL) and hardware-in-the-loop
(HIL) simulations. Simulations are performed for two different driving scenarios: driv-
ing on hilly roads and a car-following scenario. In the case of driving on hilly roads, a
comparative study is conducted between different real-time optimizers and it is concluded
that the Newton/GMRES algorithm is faster than the Continuation/GMRES algorithm.
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A novel adaptive prediction horizon length approach is also developed to enhance the per-
formance of the NMPC controller. Simulation results demonstrate a minimum of 3.4%
energy consumption improvement as compared to a PID controller performance as well as
improvement of reference speed tracking when using an adaptive prediction horizon length.
In case of the car-following scenario, the effect of several tuning parameters and adaptive
gains on the performance of the proposed NMPC controller is studied. Then the ecological
adaptive cruise controller was tested on urban and highway driving cycles, and resulted in
3.4% and 1.2%, respectively, improvement in the cost of the trip. Finally, the proposed
NMPC controllers for both intelligent cruise control systems are tested on an HIL platform
for rapid control prototyping. The HIL results on a dSPACE prototype Electronic Control
Unit (ECU) indicate that the real-time optimizers and the proposed NMPC controllers
are fast enough to be implementable on an actual ECU for a certain range of prediction
horizon sizes.
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Chapter 1

Introduction

Ever since the invention of machines, searching for and employing effective control tech-
niques has been an inevitable part of technology. Today, it is the key to the creation
of fully automated machines. Transportation, the inseparable need of men, is one of the
essential areas where control plays a vital role in achieving great technological advance-
ments in terms of safety, efficiency and comfort. The growing automotive industry is today
intertwined in everyone’s life and directly affecting it. The increase in the number of vehi-
cles and demands for travelling at higher speeds has made concerns about safety greater
than ever. Moreover, rising efficiency expectations demand more fuel-efficient vehicles than
conventional gasoline-powered ones. Engine emissions that contribute to air pollution are
another concern about such vehicles. All of these demands require more-advanced intelli-
gent control techniques to be integrated into future vehicles to enhance different aspects
of transportation including safety, efficiency, drivability and comfort.

American Corporate Average Fuel Economy (CAFE) as well as other standards require
automakers to drastically reduce the emission level of their vehicles and increase their
efficiency. The common Internal Combustion Engine (ICE) vehicles have an efficiency of
at most 30%, which has brought most of the major automakers to the conclusion that
they must develop electric-powered vehicles with energy efficiencies of as high as 70%. An
Electric Vehicle (EV) utilizes one or more electric motor for propulsion instead of an ICE
and consumes electric power from the grid. This solution, in addition to achieving higher
energy-efficiency levels, reduces the need for fossil-based energy sources as the electric
energy can be generated from renewable sources. However, EVs have not captured a proper
market share because of their low operational range. Therefore, Hybrid Electric Vehicles
(HEVs) and recently Plug-in Hybrid Electric vehicles (PHEVs) have attracted the attention
of the automotive companies. The advantages of driving fully electric (zero emissions)
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alongside the capability of going longer ranges with low emission levels have made such
vehicles promising sustainable solutions towards environmentally-friendlier transportation.

1.1 Motivation and Challenges

Recently, Intelligent Transportation Systems (ITS) have been proposed to provide trans-
portation information to users and vehicles by employing several communication and infor-
mation technologies for safer, more-coordinated and, in general, ”smarter” driving. How-
ever, all such helpful information about modes of transportation and traffic is useless
without a powerful, robust and fast decision maker on-board to analyse it. Such an intel-
ligent strategic module can be achieved through the use of state-of-the-art control design
techniques and theories. Therefore, only with the existence of a fast strategic high level
controller that receives all the information, analyses it and generates intelligent control
actions in real-time, can we move towards the goal of autonomous vehicles.

Intelligent control is a term mostly used when a control method is utilized to emulate
the essential characteristics of human intelligence, including adaptation, anticipation and
learning, in the process of generating control actions [1]. The term has been used in many
areas, including neural network control, fuzzy control, genetic algorithms and machine
learning [2]. In vehicle control, intelligent control is used in the sense that the controlled
vehicle is aware of and adaptive to its environment [3]. Optimality has always been an ideal
goal in engineering, and prediction is a basic principle that helps track optimal behaviour.
Model Predictive Control (MPC) is an exceptional control method that aims to optimize
current actions by taking future events into account. MPC has the ability to anticipate
the future states of a system based on a dynamical model of it and generate an optimal
input action sequence for a finite prediction horizon [4].

MPC technique is a superior method in optimal and intelligent control of future vehicles,
as compared to easily-implementable rule-based controllers. This superiority rises from its
capability of integrating current and future information about traffic and environments
into the process of optimal decision-making. Nevertheless, accuracy is a vital factor in
the stability and reliability of MPC controllers. A non-accurate prediction of the system
caused by a non-accurate model of the system can lead to catastrophic consequences.
Therefore, scientists and engineers are investigating the employment of more-accurate and
nonlinear system models inside MPC controllers. Nonlinear MPC (NMPC) is the term
used for such controllers [5, 6]. Unfortunately, NMPC controllers are very challenging
to implement on fast systems such as automotive systems due to computational speed
restrictions. Thus, considering the volume of data and computational load involved in
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the process of optimization inside an NMPC controller, searching for a fast and efficient
optimizer is essential to overcoming the implementation challenges of NMPC. This study
investigates the potential of GMRES-based optimization methods, as fast optimizers for
use inside NMPC controllers for automotive applications. The multi-objective nature of
the optimization problems of interest, i.e. intelligent cruise control systems, has encouraged
the author to investigate the potential of applying MPC controllers in real-time.

The principles of a typical MPC framework are based on the optimization of a sequence
of control actions in a finite-time prediction horizon. MPC uses a control-oriented model
of the system for this purpose. To this end, a state feedback loop provides the MPC with
a feedback signal of the states at each sampling time, and the optimizer written at the
heart of the controller code solves a constrained optimization problem, repeatedly. Only
the first optimal control action is then applied to the system. This control loop repeats
over and over [7].

Despite the many advantages of the MPC technique, it suffers from extensive compu-
tational load, which has made it popular primarily among scholars dealing with chemical
processes because of these processes relatively slower dynamics. With the introduction of
faster processors and more efficient computation algorithms, MPC has found its way into
other applications with faster dynamics. Automotive systems are not excluded from this
trend and, recently, there have been increasing studies on MPC-based control systems for
automotive applications. For practical implementation of MPC, different methods have
been proposed, among them explicit MPC (eMPC) and Real-Time Optimization (RTO)
methods. This thesis targets the RTO algorithms for synthesizing MPC controllers for
nonlinear cruise control systems.

1.2 Problem Statement and Proposed Approach

One of the essential tools required for the design of real-time MPC controllers for nonlinear
systems is an automatic NMPC code generator. A tool that, once the optimal control prob-
lem is defined, can automatically generate the controller and optimizer code for the user,
thus saving significant amounts of time and effort for coding and debugging. In this thesis,
a MATLAB-based automatic code-generation tool for intelligent NMPC controllers with
GMRES-based real-time optimizers is developed with the purpose of designing intelligent
cruise control systems for vehicles and presenting a comparison between the performance
of different real-time optimizers. The code generator is user-friendly and the generated
MATLAB code can be easily programmed onto hardware using the MATLAB C-code gen-
eration tool. The effect of applying adaptive prediction horizon length on the performance
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of the NMPC controllers is investigated as well. To this end, a set of the following actions
must be considered:

1.2.1 Automatic Code Generation of Real-Time NMPC

An essential tool required for synthesizing real-time MPC controllers for nonlinear systems
is an automatic code generation tool. Real-Time Optimization (RTO) methods for NMPC
combine offline and online calculations and impose the preprocessing of an optimal control
problem to transform it into a set of iterative online computations. Therefore, synthesizing,
calibrating and enhancing an efficient real-time NMPC controller is practically impossible
without the existence of an automatic code generator that generates numerous codes in
a short time. Thus, the development of a valid automatic code generator for real-time
NMPC is a vital task for this research. The developed code generator must possess certain
characteristics as follows:

� Generates real-time NMPC code for several different optimal control problems re-
gardless of its specifications, such as the number of states, inputs, objectives, etc.

� Generates an implementable controller code separate from the simulation code for
further controller evaluations in Model-in-the-Loop (MIL) simulations.

� Handles various constant and time-varying user-defined parameters

� Has good compatibility with the MATLAB and Simulink modelling and simulation
environments

� Allows users to generate an embeddable C code for practical testing of the controller,
such as in Hardware-in-the-Loop (HIL) tests

� Has a user-friendly interface for problem definition

1.2.2 Control-oriented Modelling

Since the MPC technique requires a sufficiently accurate model of the dynamics of the
controlled system, for each multi-objective optimal control problem, a control-oriented
model of the system must be developed. This task must be done considering the dynamics
of the problem of interest and the specifications of the controlled vehicle. It is important
to note that a control-oriented model is real-time applicable as long as is simple and fast
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enough. In this work, simple longitudinal vehicle dynamics equations are employed for
development of the control-oriented models.

1.2.3 Control Design

With a control-oriented model of the system and a code generator, we can move forward to
design an NMPC controller. A suitable objective function with different cost terms repre-
senting different optimization objectives must be defined. Also, any equality or inequality
constraint on the inputs or states must be taken into account. Last but not least, several
weighting and tuning factors must be defined for the purpose of calibration in the later
stages of the design. In order to make the controller adaptive to different circumstances
and increase the robustness of the design, some of the weighting factors are made adaptive
in this work.

1.2.4 Control Scheme Evaluation

In the last phase of the work, the generated NMPC controllers need to be evaluated. In this
thesis, this task is performed through two sets of simulations. At first, the performance
of the NMPC controllers are evaluated in an MIL simulation. In this phase, different
optimization methods and real-time solvers are compared in terms of accuracy and speed.
Also investigated are the effects of different factors on the performance of the controllers.
Secondly, the controller codes are embedded on an HIL device to check the implementability
of the developed NMPC controllers in a more practical test. For both of these simulations,
a high-fidelity model of the intended PHEV is used as the controlled plant.

1.3 Thesis Organization

This thesis is organized in 5 chapters. Chapter 2 gives a brief on the background and
a literature review on the topics covered in the rest of the thesis. Chapter 3 provides a
discussion on the theory of optimal control and the real-time optimization methods and
algorithms. The rest of the third chapter is dedicated to the description and instruc-
tions of the developed automatic code generation tool. Additionally, the code generator
performance is validated with the results of another known code generator.

Chapter 4 consists of two parts and each part describes details of development of an
intelligent cruise control system for a specific optimal control problem. The first part is
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specified to an Ecological Cruise Controller (ECC) for a PHEV driving on hilly roads.
In this part, a comparison between different optimizers are also presented. In the second
part, an Ecological Adaptive Cruise Controller (EcoACC) is designed for a PHEV in a car-
following scenario. Two different sets of simulations are performed in this chapter: MIL
simulations for controller performance evaluations and calibration; and HIL simulations for
investigating real-time implementability of these systems. Finally, conclusions and future
work are presented in Chapter 5.
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Chapter 2

Literature Review and Background

2.1 Model Predictive Control: Theory and Methods

MPC is a closed-loop implementation of constrained optimal control. Figure 2.1 illustrates
the block diagram of a system with an MPC controller. Basically, an MPC controller in-
cludes a simple yet efficient internal dynamic model of the system, called control-oriented
model. It receives a history of past states and control actions through the feedback loop
and aims to minimize a cost function over a finite prediction horizon. Moreover, ability
to control Multi-Input Multi-Output (MIMO) systems, ability to handle equality and in-
equality constraints and ability to integrate the future information into the calculation of
the control sequence, make MPC a powerful tool in controlling complex systems.

As shown in Figure 2.2, an MPC controller, at each sampling time, calculates the values
of the manipulated variables (typically control sequence) at the next Nc timesteps in a way
that the error between the predicted outputs and the reference trajectory is minimized for
the next Np timesteps, where Nc and Np are the lengths of Control Horizon and Prediction
Horizon, respectively. Then, the first calculated control input is implemented and the
prediction horizon moves one sampling time forward and then this control process repeats.
Therefore, MPC is also usually referred to as Receding Horizon Control [8].

Obviously, the accuracy and speed of an MPC controller greatly depends on the control-
oriented model built within its structure. The more accurately the control-oriented model
represents the dynamics of the controlled system, the more accurate are the MPC pre-
dictions and hence its performance is improved. However, accurate control-oriented mod-
els add complexity, nonlinearity and eventually more computational load to the problem
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Figure 2.1: Block diagram representation of a Model Predictive Controller

which, in practice, makes the implementation of the MPC controller more challenging,
specially in controlling fast processes.

Nonlinear MPC (NMPC) is a modification of MPC that uses a nonlinear control-
oriented model at its heart for prediction [8, 5]. Sensitivity of the stability and performance
of the NMPC highly depends on the accuracy of the prediction and therefore this matter
encouraged scientists to develop several methods of NMPC. However, as mentioned earlier,
huge computational load of NMPC in each sampling time makes it greatly challenging to
implement in fast applications. With recent improvements in computational hardware,
engineers are hopeful that NMPC technique can be employed in faster applications [9, 10],
specially, automotive control [11, 12, 13]. For a recent solution, in order to overcome the
implementation challenges of NMPC researchers proposed explicit MPC (eMPC) as an
alternative to online approaches [14]. In an explicit approach, the nonlinear optimization
problem is solved offline to eliminate the need for an online optimization solver. Thus, the
controller can be generated as a piecewise affine function [15, 16]. In this method, though,
the optimal solution is outputed as a look-up table of linear gains that must be stored and
engineers must face data storage challenges rather than computational ones to meet the
limitations of the automotive electronic control unit (ECU) [17].
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Figure 2.2: Principle of a Model Predictive Control
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2.2 Automatic Code Generation for NMPC

Fast online optimization methods are another solution towards making MPC implementable
in practice [18]. In such techniques, combination of offline calculations and fast online
solvers are used instead of classical iterative optimizers to search for and find the op-
timal point. To exploit online optimization methods for NMPC controller, automatic
code-generation tools are required. AutoGenU [19], based on Continuation/Generalized
Minimal Residuals (C/GMRES) method, and ACADO [20], based on Real-Time Itera-
tion (RTI), are the two existing automatic NMPC code generators. GMRES method is a
Krylov subspace method for solving nonsymmetric systems which has a significant advan-
tage in computation time [21]. Therefore, GMRES-based optimization methods have been
introduced as potentially promising methods for use in NMPC [22].

As described in the the following chapter, generally, an NMPC controller is a closed-
loop feedback control for nonlinear systems that solves a finite-horizon nonlinear optimal
control problem over a finit predicition window in real-time at each sampling time. Such
a problem can be solved through the Euler-Lagrange equations [23]. Since these nonlinear
equations cannot be solved analytically, numerical methods have been proposed for solving
them [24, 25]. In recent years, many works have studied the numerical methods for Real-
Time Optimization (RTO) of NMPC controllers [26, 27, 28].

For real-time implementation of these methods, different automatic code generation
software tools have been developed in order to avoid significant repetitive effort of coding
and programming for various problems. AutoGenU [29], developed by Cybernet in collabo-
ration with Ohtsuka, is an NMPC code generation tool that utilizes symbolic computation
language, Mathematica, in Maple environment to generate a C code. This software tool
works based on C/GMRES RTO algorithm proposed by Ohtsuka in [28]. In this program,
once the user defines the optimal problem and related settings, AutoGenU can process the
settings and generate the C code for simulation. The toolkit for automatic control and
dynamic optimization (ACADO) is another software that can be used to generate Gauss-
Newton real-time iteration algorithm codes for NMPC controllers [30]. ACADO is based
on C++ and has a user-friendly MATLAB interface.

2.3 Hybrid Powertrain: Architecture and Control

Newly commercialized hybrid vehicles including HEVs and PHEVs have a unique power-
train architecture. In this section, a brief introduction is given on some variety of struc-
ture of HEVs. Generally, there are three different common known architectures of HEVs,
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Figure 2.3: Series hybrid architecture

namely series, parallel and power-split. Each of these architectures have advantages and
disadvantages while the power-split architecture claims to gather the best aspects of the
other two.

In series configuration, as shown in Fig. 2.3, the electric motor directly drives the wheels
whereas the engine is disconnected from the final drive and runs a generator to recharge
the battery upon depletion. This way, since the engine is separated from the wheels, it
can be operated in the high efficiency working points and therefore minimize emissions
and fuel consumption. Moreover, during braking, portion of the kinetic energy usually
dissipated through heat can be restored to the battery through the means of Regenerative
Braking System (RBS). Having multiple stages of energy conversion, this architecture’s
most concerning drawback is its relatively low energy efficiency.

Despite series architecture, in parallel HEVs, a mechanical coupling connects the two
sources of propulsion, the engine and the motor. As the engine is connected to the final
transmission in this type of HEVs, currently, in commercialized cars the motor only assists
the engine and is not the main source of motive power. Although utilizing an electric motor
during propulsion and RBS during braking has increased the efficiency of parallel hybrid
systems as compared to other non-hybrid vehicles, the coupled engine does not allow the
controllers to freely operate it mostly inside its sweet spot.

The power-split architecture is believed to capture the advantages of the other two
architectures described above. As shown in Fig. 2.5, the engine, the generator and the
electric motor are all connected to each other with a planetary gear set, called the power-
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Figure 2.4: Parallel hybrid architecture

split device. The power-split device divides the engine power along two paths: one directly
goes to the wheels and the other runs the generator to recharge the battery. Decoupling
the engine from the motor in this configuration has led to an additional freedom in control
which gives superiority to this architecture.

PHEVs combine two sources of power: battery and gasoline, which adds a complexity
to the powertrain and requires optimization of decision-making process. Development of
optimal supervisory controllers for improvement of PHEV’s efficiency and taking the best
advantage out of its integrated structure [31] has defined various research topics in the
field of control and energy management [32, 33, 34]. For example, several different con-
trol techniques (rule-based, stochastic, model-based, etc.) have been conducted to design
an optimal Energy Management System (EMS) for a HEV/PHEV [35, 36, 37]. In an-
other work, Dynamic Programming (DP) has been employed to optimally manage battery
charge-depletion in a PHEV using trip information [38]. Also, a recent study has targeted
optimization of the battery management system of such vehicles using online model-based
approaches [10]. While all of these brilliant control strategies demonstrate promising im-
provements in simulations, their developers are faced up against implementation challenges
and limitations. Today’s vehicle hardware limitations and very high speed of events in driv-
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Figure 2.5: Power-split hybrid architecture

ing causes severe implementation challenges for intelligent controllers with huge loads of
computation. This study addresses these challenges in the way of developing fast and
efficient model-based controllers for automotive applications.

2.4 Intelligent Cruise Control Systems

With the introduction of ITS and integrating it with intelligent control for ecological driv-
ing, namely eco-driving, designing ecological vehicle controllers that drive the vehicle in
its ecological state has always been in the center of attention [39, 40, 41]. Applying ITS
and optimal control to improve efficiency is not bounded only to vehicle control as, for
instance, in [42], traffic flow information collected from ITS has been used to optimally
control time duration of the green phase of traffic signals. Additionally, Ecological Cruise
Controllers (ECCs) and Ecological Adaptive Cruise Controllers (EcoACCs), as examples
of application of intelligent control systems in eco-driving, have been an active area of
research in recent years. For example, the authors in [43] utilize traffic signal and road
slope information to design a predictive ecological strategic controller for an HEV. In a
similar study, upcoming traffic signal information is used to develop an Adaptive Cruise
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Control (ACC) to minimize fuel consumption by reducing idling time at stop lights [40].

There has been much literature on development of ECC and EcoACC systems for differ-
ent types of vehicles with the MPC technique [44, 45, 46]. Ability of the MPC controllers to
include future traffic information in optimization of control actions has encouraged many
scholars to pursue the development of EcoACC systems using this technique. An analysis
of the Advanced Driving Assistant Systems (ADAS) and simulation comparisons between
EcoACC and ACC systems are presented in [47] which show higher fuel efficiency for an
EcoACC system. A C/GMRES RTO approach has been conducted to design an MPC
controller for improved fuel economy in [48]. Kamal et al. simulated their MPC system
in a comparative study using traffic simulator to demonstrate a significant improvement
in overall fuel consumption of an ICE vehicle driving an urban drive cycle. In another
study by Kamal et al., it has been shown that using C/GMRES based MPC controller to
make one single host vehicle smart and cooperative with its human-driven preceding and
following vehicles through the means of Cooperative Adaptive Cruise Control (CACC) will
result in a significant improvement of the traffic flow in the following traffic [49].

2.5 Summary

The latter technologies and advancements become more vital in EVs, HEVs and PHEVs as
fuel-dependency and range anxiety are two important concerns on the way of development
and commercialization of such vehicles, see [50, 51, 52]. In the case of HEVs and PHEVs,
complexity and integration of different sources of power requires state-of-the-art optimal
control strategies in order to optimize driving and distribute power optimally between the
existing sources. Although the amount of research work done in this area is not abundant
like ICE vehicles, some studies have investigated application of MPC for nonlinear systems
for optimal and smart control of HEVs and PHEVs [44, 16, 53]. In a recent study, an
EcoACC system is developed based on NMPC technique for a PHEV with a trip planing
module [44]. The presented simulation results for two different driving scenarios; car-
following and driving over a hill, demonstrated up to 19% energy cost improvement. The
rarity of reports on the application of real-time implementable NMPC-based EcoACC
systems for PHEVs in the literature has driven the author to investigate the applicability
of GMRES-based RTO algorithms to the design of EcoACC systems for these vehicles.
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Chapter 3

Automatic Code Generation Tool

This chapter is dedicated to the developed Automatic Multi-solver NMPC Code Generator,
named AuMuSoN. AuMuSoN is a mathematical program in MATLAB that collects all
the necessary information about the optimal control problem, such as dynamics of the
system, objective function, constraints, etc., plus the solver options set by the user and
then automatically generates an NMPC controller for both Model-In-the-Loop (MIL) and
Hardware-In-the-Loop (HIL) purposes.

3.1 Optimal Control Theory

According to Optimal Control theory, an optimization problem of the form shown in (3.1),
can be transformed into a root finding problem of a set of nonlinear equations through
the means of applying necessary conditions for optimality, see [28]. Consider the following
objective function in terms of states vector, x(t), and inputs vector, u(t),

J = Φ(x(t+ T ),p(t+ T )) +

∫ t+T

t

 L(x(τ, t),u(τ, t),p(τ, t))dτ. (3.1)

subjected to
ẋ(τ, t) = f(x(τ, t),u(τ, t),p(t+ τ))

g(x(τ, t),u(τ, t),p(t+ τ)) = 0.

Where T is the prediction window, t is time, φ(.) is the terminal cost at the end of the
prediction horizon,  L(.) is the trajectory cost, f(.) denotes dynamics of the system and g(.)
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refers to the equality constraints. Since it is clear that in a dynamic problem states, inputs
and time-varying parameters are functions of time, hereafter, t is excluded in notation for
simplicity. Let us define τ as the prediction time domain and discretise the problem over
the prediction horizon into N timesteps. With ∆τ as the stepping time, the objective
function and the system dynamics (control-oriented model) can be rewritten as

J = Φ(xN ,pN) +
N−1∑
i=0

 L(xi,ui)∆τ. (3.2)

subjected to
xi+1 = xi + f(xi,ui,pi)∆τ

g(xi,ui,pi) = 0.

Defining the Hamiltonian, H, as

H(x,u, λ, ν,p) =  L(x,u,p) + λ′f(x,u,p) + ν ′g(x,u,p) (3.3)

where λ and ν denote co-states and Lagrange multipliers, respectively, results in a Two-
Point-Boundary-Value-Problem (TPBVP), as the necessary conditions for optimality, shown
in (3.4) are applied.

State eq. : xi+1 = xi + f(xi,ui,p)∆τ

Costate eq. : λi = λi+1 +H ′x(xi,xi, λi+1, νi,p)∆τ

Hu(xi,ui, λi+1, νi,p) = 0

g(xi,ui,p) = 0

(3.4)

The finite-horizon optimal control problem defined in (3.1) does not include any in-
equality constraints. However, handling inequality constraints is one of the challenging
tasks in implementing MPC for nonlinear systems. In practice, an optimal control prob-
lem for nonlienar systems usually includes one or more inequality constraints on states or
inputs, as follows:

h(x(t),u(t),p(t), t) ≤ 0 (3.5)

In the problem solved in [28], a dummy input or auxiliary variable method is employed
to handle such constraints. The proposed constraint handling method helps us transform
inequality constraints into equality constraint by defining a set of auxiliary variables or
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dummy inputs [54]. If h(x,u,p, t) ∈ Rm, then m new equality constraints can be defined
as

hj(x(t),u(t),p(t), t)− µj(t)2 = 0 for j = 1, ...,m (3.6)

where [µj] ∈ Rm is a vector of dummy inputs. In using this method, the trajectory cost
function must be modified by adding a small dummy penalty term to it in order to avoid
singularity at any µj = 0:

 ̃L =  L(x(τ, t),u(τ, t),p(τ, t)) + r′µ(τ, t)) (3.7)

where r ∈ Rm is the penalty factor with small elements. Other inequality handling meth-
ods, as well as auxiliary variable method, have been implemented and compared in [13].
According to Huang et. al. and also the author’s simulation tests, the auxiliary variable
method, proposed by Ohtsuka, turns out to be very sensitive to the weighting factors that
makes the tuning and calibration task very effortful. In a more robust approach towards
handling inequality constraints, Exterior Penalty method can be used. In this method, a
penalty cost is added to the cost function for any violated constraint, meaning that, the
cost function is modified into the following:

J = Φ(x(t+ T ),p(t+ T )) +

∫ t+T

t

{ L(x(τ, t),u(τ, t),p(τ, t))

+
m∑
j=1

ψj(x(τ, t),u(τ, t),p(τ, t)}dτ
(3.8)

where

ψj(x,u,p) =

{
0, hj(x,u,p) ≤ 0

rjhj(x, u)2, hj(x,u,p) > 0
(3.9)

where rj is the weighting factor and must be tuned. In this work, we use the Exterior
Penalty method for handling inequality constraints.

In order to solve Euler-Lagrange equations or (3.4), let us calculate the states of the
system inside the prediction window, recursively, forward in time using State equation in
(3.4), starting from x0(t) = x(t) and then similarly, co-states of the system backward in
time using Costate equation in (3.4), starting from λN = Φ′x(xN ,pN). This will result in
(xi)

N
i=0 and (λi)

N
i=0 sequences formed in terms of (ui)

N−1
i=0 and (νi)

N−1
i=0 sequences which in

fact together form a vector of unknowns as follows

U(t) = [u′0(t), ν
′
0(t),u

′
1(t), ν

′
1(t), ...,u

′
N−1(t), ν

′
N−1(t)] (3.10)
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The latter vector which includes the sequence of optimal control actions, (ui)
N−1
i=0 , can

be found through solving the rest of the equations of the necessary optimality conditions
introduced in (3.4), here regarded as one equation

F (U,x, t) =



Hu(x0,u0, λ1, ν0,p)
g(x0,u0,p)

...
Hu(xi,ui, λi+1, νi,p)

g(xi,ui,p)
...

Hu(xN−1,uN−1, λN , νN−1,p)
g(xN−1,uN−1,p)


= 0 (3.11)

Solution to the last equation is the key to the optimal answer of the problem at each
sampling time. Performance of the NMPC is significantly depended on the accuracy and
speed of the process of solving this nonlinear equation. Newton’s method might be used
to solve this equation [55]:

FU(Uk(t),xk(t), t)δU(t) = −F (Uk(t),xk(t), t) (3.12)

Uk+1 = Uk(t) + δU(t) (3.13)

However, as the problem gets larger, calculation of the Jacobian becomes computation-
ally more expensive. Moreover, the linear algebraic equation (3.12) requires a fast linear
solver. Newton-iterative methods are potentially fast promising solvers that can be used to
solve nonlinear equations in real-time. The question is how much the progress in Newton’s
iteration is affected when the exact solution to the linear equation for the Newton’s step
is replaced with an approximate solution. The answer is that an approximate solution is
accepted as long as the relative residual is small. This useful statement helps us employ
iterative methods such as GMRES to solve the linear equation. It is common to refer to
the iterations on solving the linear equation for Newton’s step as inner iterations and to
the Newton’s iterations as outer iterations [55].

3.2 Newton/GMRES Method for Solving Nonlinear

Equation F(U,x,t)

As stated in the previous section, for each Newton’s iteration we must solve linear equation
(3.12). If the linear iterative method used to solve (3.12) is the GMRES method, then each
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inner iteration requires at least one evaluation of the product of the Jacobian FU and a
vector. To avoid such expensive computation, the action of FU on a vector is approximated
by a forward difference approximation as below:

Fx(x)w ≈ DhF (x : w) =
F (x + hw)− F (x)

h
(3.14)

Where x ∈ Rn and w ∈ Rn are vectors of length n and h is some small positive
value. In fact, (3.14) approximates the product of the Jacobian Fx and the vector w. Such
an approach is called Forward-Difference GMRES algorithm or fdgmres. We use fdgmres
algorithm from [55], presented below, to solve for Newton’s step. Note that for the initial
iterate zero vector is used as the initial guess.

Result: δU = fdgmres(δU,U,x,p, F, kmax, η, ρ)
δU = 0, r = −F (U,x, t), v1 = r/‖r‖, β = ρ, k = 0;
while ρ > η‖F (U,x, t)‖ and k < kmax do

k = k + 1;
vk + 1 = DhF (U,x, t : vk, 0, 0);
for j=1,...k do

hj,k = vTk+1vj;
vk+1 = vk+1 − hj,kvj;

end
hk+1, k = ‖vk+1‖;
vk+1 = vk+1/‖vk+1‖;
e1 = (1, 0, ..., 0)T ∈ Rk+1;

Hk = [hij] ∈ R(k+1)×k (if i > j + 1 then hij = 0);
Minimize ‖βe1 −Hky

k‖ to find yk ∈ Rk;
ρ = ‖βe1 −Hky

k‖;
Vk = [vi] ∈ RmN×k;

end
δU = Vky

k;
Algorithm 1: fdgmres algorithm for finding Newton’s step δU
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3.3 Continuation/GMRES Method for Solving Non-

linear Equation F(U,x,t)

Another approach to solving a set of nonlinear equations is proposed by Ohtsuka in [28] by
combining Continuation method [56] and forward difference GMRES method [55]. Accord-
ing to [28], in Continuation method we trace the solution curve of a nonlinear equation by
integrating a differential equation in continuous time. Therefore, instead of solving (3.11),
U̇ is determined so that the following differential equation is valid:

Ḟ (U,x, t) = AsF (U,x, t) (3.15)

where As is a stable matrix. Differentiating the left side of (3.15) and rearranging, results
in the following linear equation in terms of U̇:

FU(U,x, t)U̇ = AsF (U,x, t)− Fx(U,x, t)ẋ− Ḟ (U,x, t) (3.16)

In order to solve the recent equation, one can employ the forward-difference approx-
imation in (3.14) to eliminate the calculation of the Jacobians and replace (3.16) with
(3.17):

DhF (U,x+hẋ, t+h : U̇, 0, 0) = AsF (U,x, t)−DhF (U,x, t : 0, ẋ, 1) = b(U,x, ẋ, t) (3.17)

Now, an fdgmres algorithm can be used to solve (3.17) for U̇. Also, by generalizing fdgmres
algorithm, Ohtsuka suggests that the solution for U̇ in previous sampling time can be used
as the initial guess for current timestep’s first inner iteration [28]. The modified FDGMRES

algorithm is presented below.
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Result: U̇ = FDGMRES(U, U̇,x, ẋ, F, kmax, η, ρ)
r = b(U,x, ẋ, t)−DhF (U,x + hẋ, t+ h : U̇, 0, 0), v1 = r/‖r‖, β = ρ, k = 0;
while ρ > η‖F (U,x, t)‖ and k < kmax do

k = k + 1;
vk + 1 = DhF (U,x + hẋ, t+ h : vk, 0, 0);
for j=1,...k do

hj,k = vTk+1vj;
vk+1 = vk+1 − hj,kvj;

end
hk+1, k = ‖vk+1‖;
vk+1 = vk+1/‖vk+1‖;
e1 = (1, 0, ..., 0)T ∈ Rk+1;

Hk = [hij] ∈ R(k+1)×k (if i > j + 1 then hij = 0);
Minimize ‖βe1 −Hky

k‖ to find yk ∈ Rk;
ρ = ‖βe1 −Hky

k‖;
Vk = [vi] ∈ RmN×k;

end

U̇ = U̇ + Vky
k;

Algorithm 2: FDGMRES algorithm for finding U̇ in C/GMRES method

As it can be induced from the FDGMRES algorithm, in C/GMRES method, the informa-
tion about ẋ must be provided to the solver in addition to a state feedback. To this end,
one can approximate ẋ at each sampling time as ẋ(t) ≈ (x(t+ ∆t)− x(t))/∆t.

3.4 Automatic Multi-Solver NMPC Code Generator

Basically, AuMuSoN consists of two separate set of calculations: offline and online; mean-
ing that the mathematical process of solving an optimal control problem, explained in
section 3.1, is categorized into two parts. The first part including forming the Hamilto-
nian and calculation of the derivatives are performed, symbolically offline, with the help
of MATLAB symbolic toolbox and the resulted functions and expressions are outputted
as MATLAB standard function codes. Then, these functions are repeatedly called during
the online calculations inside the controller’s function. This procedure helps significantly
reduce the online computational load by performing most of the calculations offline and
leaving nothing but a bunch of numerical evaluations for online computations.
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Figure 3.1: Principle of the Automatic Multi-solver NMPC Code Generator (AuMuSoN)
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AuMuSoN works in three consecutive phases as shown in Fig. 3.1. In the first phase, a
Graphical User Interface (GUI), illustrated in Fig. 3.2, receives the optimal control problem
definition from the user, interactively. In the different predefined fields of the GUI, the
user can enter the expressions for the control-oriented model, objective function, equality or
inequality constraints and terminal cost. Moreover, the user can define his/her own User-
Defined Parameters (UDP) to be used inside the expressions. Additionally, depending on
the control problem, the control-oriented model or the objective function might have one
or more Time-Varying Parameters (TVP) which the user can also define them in the GUI
and later provide the relevant signals in the simulations. For example, in order to solve
an optimal tracking problem, one can define a reference signal as a TVP in the problem
definition section and then provide the reference signal in the SIMULINK file.

The second phase of the code generation includes the symbolic mathematical operations
on the expressions, parameters and functions that the user has defined using the GUI. In
this phase, the Hamiltonian is formed and partial derivatives of it with respect to input and
state vectors are derived. Lastly, in the third phase, the generated symbolic expressions
and equations in the previous symbolic phase are rearranged and written in several different
files as MATLAB functions. All of these MATLAB functions contribute to forming the
nonlinear equation F(U,x,t) in real-time. Also, based on the solver options that the user
selects in the GUI, an NMPC main code is generated in a SIMULINK block that calls all
of the other generated functions as required during the simulations.

For simulation purposes, AuMuSoN also generates a SIMULINK file that the user can
employ for MIL simulations with small modifications. As shown in Fig. 3.3, the generated
SIMULINK block diagram includes a block of the generated NMPC controller and a block
of the controlled system. By default, the program uses the defined control-oriented model
as a model of the controlled plant, though the user can replace this block with his/her own
high-fidelity model. It is important to note that if the problem includes some time-varying
parameters, the user must provide a block that generates the values for the parameters as
a function of the time in the same order as defined previously in the GUI.

For handling inequality constraints, as described in Section 3.1, Exterior Penalty method
has been implemented in AuMuSoN. The ease of implementation and calibration as well
as robustness has encouraged the author to employ this method of constraint handling.

3.4.1 Graphical User Interface (GUI)

The GUI consists of three main input sections and two command buttons, see Fig. 3.2.
The ”Initialize” button resets the program and clears the values for the variables. The
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Figure 3.2: Graphical User Interface (GUI) of AuMuSoN program
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Figure 3.3: NMPC simulation model in Simulink and its interaction with the codes and
functions generated by AuMuSoN
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”Problem Definition” section contains input fields necessary to define an optimal control
problem. A list of definable problem parameters and expressions in this section is presented
in Table 3.1.

In the ”User Defined Parameters” (UDP) field, several parameters can be defined in
order to promote the process of problem definition and avoid entering the same values
repeatedly. To do so, one must type in the parameters and their values sequentially and
press ”Enter” after each parameter. For example, one must type in ”g=9.81”, press ”En-
ter”, clear the box, type in ”R=8.315” and then press ”Enter” again in order to define
these two parameters. Later, the user can use these parameters inside the rest of the input
fields with the same names. A ”Reset” button is placed next to this field for clearing all of
the UDPs. Another input field is designated to the definition of Time-Varying Parameters
(TVPs). To do so, the user simply just has to type in the name of the TVPs separated by
a Space and then press ”Enter”. Similar to the UDP part, a ”Reset” button clears all of
the defined TVPs.

The rest of the input fields of the ”Problem Definition” section are specified to the
fixation of main functions and equations related to the corresponding problem. The first
input field must be used to define the control-oriented model. Here, control-oriented model
must be in the form of a MATLAB vector representing the right side of the vector equation
ẋ = f(x(t), u(t), p(t), t). It is important to note that AuMuSoN notation requires the user
to type ”Xk(i)” and ”Uk(i)” for referring to the ith element of the states and inputs
vectors, respectively. Also, as AuMuSoN is a MATLAB-based program, the mathematical
notation of the defined expressions must be compatible to this software syntax. Equality
constraints and inequality constraints must be defined as MATLAB vectors representing
the left side of the equations g(x(t), u(t), p(t), t) = 0 and C(x(t), u(t), p(t), t) ≤ 0 in the
same manner, as well, in the following fields. The Trajectory and Terminal costs can
be defined in the next two input fields. According to the application, the problem may
exclude one or more of the predefined fields. In this case, the user may input ”[0]” for
the unnecessary fields. Lastly, if the problem contains one or more inequality constraints,
the exterior penalty method’s weighting factors must be defined in the last input field as
a vector.

The second main section of the AuMuSoN GUI is the ”Solver Settings” section which
consists of two sets of radio buttons and two input fields. In the ”Constraint Handling”
part, the user can switch ON or OFF this feature, regardless of the problem definition.
Secondly, in the ”Optimization Method” part, the user can switch between the two available
GMRES-based real-time optimizers: Newton/GMRES and C/GMRES. Last but not least,
in the ”Solver Parameters” part, the two main parameters necessary for fdgmres solver,
i.e. ”kmax” and ”η”, can be set.
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Table 3.1: Definable design and problem parameters in AuMuSoN

Design Parameter Field Caption Input Example

dimension of x(t) Number of States 2

dimension of u(t) Number of Inputs 1

dimension of g(x, u, p) Number of Equality
Constraints

0

dimension of C(x, u, p) Number of Inequality
Constraints

4

N Prediction Horizon
Length

10

∆τ Discretization
Timestep

0.1

UDP User-Defined Parame-
ters

g=9.81

p(t) Time-Varying Param-
eters

Theta Grade Acc

f(x(t), u(t)) Control-oriented
Model (Dynamics of
System)

[Xk(2);Uk(1)-K*Xk(2)^2]

g(x, u, p) Equality Constraints [Uk(1)^2+Uk(2)^2-10] or [0]
C(x, u, p) Inequality Constraints [Uk(1)-Umax;Xmin-Xk(1)] or [0]
 L(x, u, p) Trajectory Cost S*(Xk(1)-Xf)^2+R*Uk(1)^2

Φ(x, u, p) Terminal Cost P*(Xk(1)-20)^2

[βj] Exterior Penalty
Weighting Factors

[10;3;15;0.1]
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In addition to the two previous sections, the GUI has a Log screen that interactively dis-
plays to the user, the parameters and expressions that already have been defined. Finally,
after the problem definition is complete and the solver settings are done, the ”Generate”
button automatically generates a set of MATLAB .m files and a SIMULINK .mdl files
explained in the next section.

3.4.2 The Automatically Generated Files

The generated files by AuMuSoN include five .m files that are basically problem-dependent
MATLAB functions that together with three other fixed (problem-independent) functions
form a set of necessary functions to run the SIMULINK simulation file. The SIMULINK
.mdl file included in the package generally gives the idea of how the NMPC system works.
It has two main blocks: the NMPC controller and the plant. By default, the plant block
contains the control-oriented model of the system provided by the user in the GUI. This
block can be replaced with a high-fidelity model of the system in MIL simulations. The
NMPC controller block calls the 8 MATLAB files (5 generated + 3 fixed), explained later,
during the simulation.

Table 3.2 lists the MATLAB .m files used during the simulations. Among the problem-
independent functions, fdgmres.m is the main forward-difference GMRES solver function
receiving state feedback and TVPs at each sampling time and outputting Newton’s step.
FDGMRES.m works in the same manner, generating U̇, if the user is using C/GMRES al-
gorithm for his/her NMPC controller. These two main functions use their own specific
fixed functions for forward-difference approximation: dhf.m for fdgmres.m and DHF.m for
FDGMRES.m. Also, the minimization of ‖βe1−Hky

k‖ in both of the algorithms are performed
using k Givens Rotations [55] in kGivens.m function.

In addition to the fixed functions, 5 automatically generated functions contribute to
the process of the NMPC controller, among which, the most important one is the FxU.m.
FxU.m is the main function creating the basic nonlinear equation F (U, x, t) in (3.11) and
evaluating it at each sampling time using the rest of the problem-dependent functions. Two
other generated files are dHdu.m and dHdx.m, which correspond to the partial derivatives
of the Hamiltonian with respect to u(t) and x(t), respectively. The CxU.m file checks for
inequality constraint violations in each sampling time and returns the values violated from
the constraint boundaries. Lastly, the f.m file contains the dynamics of the system and
contributes to the prediction of the future states.
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Table 3.2: Definable design and problem parameters in AuMuSoN

File name Type Description

fdgmres.m Fixed runs fdgmres algorithm for a given
equation in Newton/GMRES method

FDGMRES.m Fixed runs FDGMRES algorithm for a given
equation in C/GMRES method

dhf.m Fixed applies forward-difference approxima-
tion for a given function and vector in
Newton/GMRES method

DHF.m Fixed applies forward-difference approxima-
tion for a given function and vector in
C/GMRES method

kGivens.m Fixed applies k sequential Givens rotations
for minimization

FxU.m Generated Contains the function F (U, x, t) and
evaluates it at each iteration

dHdu.m Generated Contains the function for Hu(x, u, t)
and evaluates it at each iteration

dHdx.m Generated Contains the function for Hx(x, u, t)
and evaluates it at each iteration

CxU.m Generated Contains the function for C(x, u, t) and
evaluates it at each iteration

f.m Generated Contains the function for f(x, u) and
evaluates it at each iteration
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Figure 3.4: Schematic illustration of the code validation problem

3.5 Code Generation Evaluation

Recently, a software package is developed and published by Cybernet that provides a sym-
bolic computation tool in Maple for generating NMPC controller code based on C/GMRES
algorithm. The so called ”AutoGenU for Maple” code generating system requires Maple
software and a C compiler to automatically generate a C code, run the simulation and
show the results in graphs. This package works based on Maple and because the gener-
ated controller code is in C, it requires a connector to generate a SIMULINK block for
the controller for use in MATLAB simulations. On the other hand, since the generated
C code is actually a code for running simulations, it is challenging for the user to modify
the code and extract the sole NMPC controller code from the whole simulation code. For
example, if a user tends to use a high-fidelity model of the plant in SIMULINK instead
of the control-oriented model for control evaluations and then perform HIL tests, he/she
must face two difficulties: one is extracting the controller code from the simulation code
and adding the high-fidelity model to the system, the other is importing the generated C
code into SIMULINK and then again generating a C code of the whole SIMULINK system
including the high-fidelity model for uploading onto the designated HIL setup.

Consequently, the developed automatic code generator, AuMuSoN, is all based on
MATLAB and every single phase of the code generation from defining the optimal control
problem to running the simulation are performed within MATLAB software. It is impor-
tant to note that in this program, replacing the control-oriented model with a high-fidelity
model of the system is as easy as deleting a block in SIMULINK file and inserting another
one. Also, for HIL testing, the user can use the MATLAB built-in C code generation tool
to generate an embeddable C code from any part of the SIMULINK file. Consequently
for a SIMULINK user, an empirical task involving numerous trials and modification in the
control design, such as calibration and tuning of the designed controller, can be done in a
shorter time and a more efficient way with the developed MATLAB program.

30



In order to check the validity of the developed code generator, an optimal control prob-
lem is solved using AuMuSoN and AutoGenU and the results are compared, accordingly.
The control problem is defined as the optimal cruise control of a vehicle travelling over
a hill. This cruise controller must take into account the road elevation ahead and then
minimize the following objective function in order to minimize the control input as well
as the error in the velocity. Equations (3.18) and (3.19) represent the definition of the
optimal control problem:

J =
1

2
ω1(v(T )− vref (T ))2

+

∫ T

0

{1

2
ω2(v(τ)− vref (τ))2 +

1

2
ω3u(τ)2}dτ.

(3.18)

Subjected to

[
ẋ(t)
v̇(t)

]
=

[
v(t)

u− 1
m
Fr

]
Fr =

1

2
ρAfCdv

2(t) +mg sin θ(x(t)) + µmg cos θ(x(t)).

(3.19)

Where θ is the road grade which is a TVP in this problem and is assumed to be fully
known inside the prediction horizon. ρ is the air density, Af is the vehicle’s frontal area,
Cd is the drag coefficient and µ represents rolling resistance coefficient. The input to the
control-oriented model is obtained by dividing the demanded wheel torque by (m.r) where
m and r are the vehicle’s mass and wheel radius, respectively. In the objective function
defined in (3.18), ωis are the different weighting factors related to different cost terms. vref ,
here assumed constant 15m/s, refers to the reference speed set by the driver.

The performance of the generated NMPC controller codes is tested on simple control-
oriented models of the vehicle as the main purpose of these simulations is to evaluate
the accuracy of the developed solver code. As illustrated in Fig. 3.5, the results of the
simulations for both AutoGenU and AuMuSoN code generators are identical. Results show
less than 0.01% difference between the responses of the two generated NMPC controllers.

Please note that in this example, the optimization problem is not subjected to any
inequality constraint.

31



Figure 3.5: Simulation results for validation of AuMuSoN NMPC controller against Auto-
GenU controller
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Chapter 4

Controller Design and Evaluation

The previously developed code generation tool enables us to solve several finite-horizon
optimal control problems and implement them as MPC controllers for nonlinear systems.
With that in mind, various optimization problems can be defined for improvement of
automotive systems. In this study, we are interested in application of NMPC controllers
in ecological cruise control of PHEVs.

4.1 High-fidelity Model

In this research, a high-fidelity model of Toyota Prius 2013 PHEV is used for both MIL and
HIL simulations. The principles of the powertrain of this PHEV is illustrated schematically
in Fig. 4.1. In the power-split hybrid structure of this PHEV, MG-1 and MG-2 are the
electric motors that can operate as generators as well. These two electrical components are
connected with an engine through two sets of planetary gears whose ring gears are coupled
to the final drive.

The high-fidelity model used in this research is developed in Autonomie software by
Argonne National Lab. The validity of this model is verified through various simulations
in [57]. The main components of the high-fidelity model include models of the engine,
MG-1, MG-2 and the battery pack. Figure 4.2 displays the Autonomie model in Simulink
environment.
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Figure 4.1: Schematic representation of the Toyota Prius 2013 powertrain structure

Figure 4.2: Autonomie high-fidelity model of the PHEV in Simulink
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4.2 Case 1: Driving on Hilly Roads

A cruise controller can be modified and made more ecological considering many different
driving conditions and aspects. One of these driving conditions that makes a potentially
resolvable optimal control problem is driving on roads with up/down slopes where cruising
over a hill with a constant speed is not the most ecological approach. In this case, one
may save energy and fuel by providing the road grade information to the controller and
benefiting from the gravitational force for accelerating. This idea is implemented with a
predictive approach based on C/GMRES solver in [45] for an ICE vehicle.

Amongst different types of the vehicles, PHEVs as promising options for future trans-
portation, make good candidates for eco-driving. Their complex drivetrain structure with
two sources of power, creates a multi-objective optimization problem that bolds the ef-
fect of the use of intelligent control. In the rest of this chapter, first an ECC is designed
for a PHEV, namely Toyota Prius 2013. Then, the familiar cruising over a hill problem
described in Section 3.5 is solved with the purpose of presenting a comparison between
different RTO methods, particularly C/GMRES and Netwon/GMRES. Finally, the de-
signed ECC is tested on an actual road profile in order to investigate the potential of
Dynamic Prediction Horizon Length (PDHL) on the improvement of the NMPC controller
performance.

The proposed control system is intended to regulate the cruising speed of a PHEV
on hilly roads such that it minimizes the energy cost. We make use of receding horizon
predictive control to collect the road elevation profile ahead of the vehicle and generate
an optimal velocity trajectory. Here, we are dealing with a trade-off between having a
lower fuel consumption and tracking the demanded cruising velocity by the driver which
defines an optimal control problem. A control-oriented model is developed and used at the
heart of the controller that collects future data and current states to generate the future
states. The GMRES-based optimizers have been utilized to solve the nonlinear root finding
problem in real-time. Also, Exterior Penalty method is employed for handling inequality
constraints. The codes for these simulations are generated by AuMuSoN.

4.2.1 Controller Design

Figure 4.3 shows the schematic demonstration of a vehicle approaching a hill. Considering
the vehicle longitudinal dynamics, one can obtain a simple yet effective mathematical
control-oriented model of the form as given in (3.19) repeated below:
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Figure 4.3: Schematic of a vehicle equipped with ECC cruising over a hill- Road profile
information is provided to the vehicle through V2I

[
ẋ(t)
v̇(t)

]
=

[
v(t)

u− 1
m
Fr

]
Fr =

1

2
ρAfCdv

2(t) +mg sin θ(x(t)) + µmg cos θ(x(t)).

(4.1)

Vehicle’s position and velocity are the states of the system and θ(x(t)), the road grade,
is assumed to be fully known as a function of vehicle’s position by means of road elevation
maps and GPS. ρ is the air density, Af is the vehicle’s frontal area, Cd is the drag coefficient
and µ represents rolling resistance coefficient. The input to the control-oriented model is
obtained by dividing the demanded wheel torque by (m.r) where m and r are the vehicle’s
mass and wheel radius, respectively. This control-oriented model is used at the heart of
the NMPC in order to minimize the objective function in (3.18) repeated below:

J =
1

2
ω1(v − vref )2

+

∫ T

0

{1

2
ω2(v(τ)− vref (τ))2 +

1

2
ω3u(τ)2}dτ.

(4.2)

Subjected to {
umin ≤ u(τ) ≤ umax

vmin ≤ v(τ) ≤ vmax
(4.3)

Where vref is the reference speed set by the driver on cruise control, which in this work
vref = 54km/h for all time. ω1,ω2 and ω3 are the weighting factors. The trajectory cost
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function consists of two terms. The first term corresponds to the tracking of the reference
velocity set by the driver and the second term contributes to minimizing the demanded
torque and hence reducing the energy cost. The inequality constraints shown in (4.3) are
applied to the problem by adding the following penalty functions to the performance index
for the jth inequality function:

ψj(x, u) =

{
0, hj(x, u) ≤ 0

βjCj(x, u)2, hj(x, u) > 0
(4.4)

4.2.2 Controller Evaluation with MIL Simulations

Figures 4.4 to 4.6 represent the performance of the control strategy on a road section with
a hill for two NMPC controllers with two different tunings and a PID controller. Figure
4.4 illustrates the velocity profile of the vehicle during cruising over a hill. For a better
demonstration of the ecological aspect of the proposed NMPC (with Newton/GMRES), its
performance is evaluated against a classic PID controller. One essential tuning parameter
in the designed NMPC is the (ω3/ω2) ratio denoted as α hereafter. It is observed in Fig.
4.4 that the predictive strategy attempts to minimize the propelling effort by increasing the
speed prior to reaching the uphill, letting the speed drop during uphill, and then regulating
the speed back to the reference value by taking advantage of the gravitational force during
downhill. Therefore, NMPC strategy decreases energy consumption, as shown in Fig. 4.6,
by smoothing the demanded torque, as shown in Fig. 4.5, along the whole track and
avoiding abrupt torque demands.

From the viewpoint of tuning, α, in fact determines the superiority of energy-saving
feature over reference-speed- tracking feature which can be made adaptive in a separate
study. As it is shown in the Fig. 4.7, increasing α results in greater deviation from the
reference speed while decreasing the energy consumption. This leaves us with a trade-
off. Figure 4.8 demonstrates the effect of increasing α on the vehicle speed trajectory and
energy consumption. In this paper, we set α = 0.1 hereafter as it gives the best energy-
saving performance within 2km/h deviation from the reference speed.

As one of the main objectives of the current work, we focus on the comparison of
different real-time optimization methods employed inside the NMPC, mainly C/GMRES
and Newton/GMRES. To this end, the NMPC problem is solved with Newton/GMRES,
C/GMRES, Fsolve and Interior-Point (IP) methods and the simulation results are com-
pared in Figures 4.9 to 4.11. Here, Fsolve refers to a method where MATLAB’s fsolve

command is used to solve the root finding problem in (3.11). It should be also noted that
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Figure 4.4: Velocity profile of the vehicles cruising over a hill by PID and NMPC controllers

Figure 4.5: Torque demand of the vehicles cruising over a hill by PID and NMPC controllers
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Figure 4.6: Energy consumption of the vehicles cruising over a hill by PID and NMPC
controllers
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Figure 4.7: Effect of the tuning factor, α, on the performance of the NMPC controller
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Figure 4.8: Effect of increasing α on the two performance factors; energy saving and
reference speed tracking
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Figure 4.9: Velocity profile of the vehicles cruising over a hill by NMPC controllers with
different solvers- C/GMRES, Newton/GMRES, Matlab Fsolve and Interior Point methods

for the interior-point method, MATLAB’s optimization toolbox is used. Simulations are
carried out with a maximum of 8 inner iterations in C/GMRES and Newton/GMRES, a
prediction horizon length of 15 timesteps and 1s step time inside the prediction horizon.
From an optimal performance perspective, it can be observed that the methods based on
necessary optimality conditions have similar results and outperform the IP method. How-
ever, a more precise investigation of these three methods reveals the fact that C/GMRES
method has a slightly different solution than the other two methods. This is mainly be-
cause of the fact that C/GMRES solves the root finding problem in continuous time and
hence takes the dynamics of the system into account through the use of the predictor term
(Fxẋ) in (3.16). This improves the performance of the C/GMRES method by 0.015 % as
compared to its rivals as demonstrated in Fig. 4.11. On the other hand, comparing the sim-
ulation computation times of Newton/GMRES (2.3ms) and C/GMRES (4.3ms) methods,
presents the Newton/GMRES method as a superior method from a computation perspec-
tive as it is almost twice faster. Therefore, it can be concluded that Newton/GMRES is
a better choice since the integration of Continuation method severely slackens the forward
difference GMRES method for an insignificant improvement. According to the recent
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Figure 4.10: Torque demand of the vehicles cruising over a hill by NMPC controllers with
different solvers- C/GMRES, Newton/GMRES, Matlab Fsolve and Interior Point methods

Figure 4.11: Energy consumption of the vehicles cruising over a hill by NMPC controllers
with different solvers- C/GMRES, Newton/GMRES, Matlab Fsolve and Interior Point
methods
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Figure 4.12: Block diagram representation of the Ecological Cruise Controller system with
access to road grade information

conclusion, the developed strategic control idea is extended to a real road trip scenario.
In this system, as shown in Fig. 4.12, the driver sets the destination in the beginning of
the trip and then the road elevation data is immediately downloaded from a server. Here
in this work, Google Earth elevation data is used for simulations. Then, according to the
signal received from an onboard GPS device, road grade information is passed on to the
NMPC controller. Figure 4.13 illustrates the road elevation data for a trip from Calgary
to Vancouver, in Canada. Here for simulation purposes, only a part of this road is selected
as demonstrated in Fig. 4.13.

Simulation results for the pre-described ECC system are presented in Fig. 4.14. As
expected from the previous simulation results on a single hill, as compared to a PID
controller, the NMPC controller reduces the energy consumption more than 3.5% at the
cost of approximately 10% deviation from the reference speed set by the driver. Moreover,
the demand torque profile is smoother with an NMPC controller which improves the ride
comfort as well. However, variation in the lengths of the hills forms the following question
that whether the performance of the NMPC controller is deeply dependent on the length
of the prediction horizon and if yes, how it is related to the length of the hills. To answer
this question, the system is simulated for several different prediction horizon lengths and
results are presented in the Figures 4.15 and 4.16. Clearly, increasing the prediction horizon
length has improved the reference speed tracking characteristic of the NMPC controller
and on the other hand has decreased the energy-saving feature of it.
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Figure 4.13: Road elevation profile for a trip from Calgary to Vancouver and the selected
section for simulations

The existing trade-off between a better reference speed tracking behaviour in shorter
prediction horizons and a better energy-saving behaviour in longer prediction horizons
establishes the idea of an NMPC controller with an adaptive prediction horizon length
(APHL). To this end, the control system shown in Fig. 4.12 is modified into a new system,
shown in Fig. 4.17 and a look-up table is added to it which gives the prediction horizon
length adaptive to the vehicles position read from the GPS. This look-up table is driven
from the road elevation map and the values of the prediction horizon length is proportional
to the derivative of the road grade as follows:

PH = N
κ

θ̇
(4.5)

Where PH is the prediction horizon length and κ is a proportional tuning factor.
Equation (4.5) adaptively regulates prediction horizon length based on the current variation
of the road grade. This means that if the road grade is approximately a constant value for
a relatively long portion of the trip, the prediction horizon expands in order to capture the
changes in the road grade in the farther distances.

Simulation results for an NMPC controller with an APHL module show that the adap-
tive strategy tends to handle the trade-off in an optimal way where the energy improve-
ment, the mean speed and the maximum speed values lie somewhere in between those
of the maximum and minimum prediction horizon lengths. However, there is a significant
improvement in the minimum speed of the vehicle that has been pushed up to the reference
speed value. This matter can be seen in Figures 4.18 and 4.19.

A controversial argument can state that according to the optimal control theory, an
infinite-horizon NMPC controller performs the best and most optimal behaviour whilst in
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Figure 4.14: Simulation results for a vehicle travelling a section of Calgary-Vancouver road
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Figure 4.15: Effect of Prediction Horizon (PH) length on reference speed tracking
behaviour-minimum, mean and maximum speed of the vehicle
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Figure 4.16: Effect of Prediction Horizon (PH) length on energy-saving behaviour

the presented simulation results this is not the case. In other words, there is a superfi-
cial contradiction in the simulation results, indicating the fact that increasing prediction
horizon length can worsen some aspects of the NMPC performance, with the common
expectation based on optimal control theory. To resolve this contradiction, an essential
application issue must be addressed that we can only expect improvement of the NMPC
controller behaviour by increasing the number predicted steps, not length of the steps. In
other words, although increasing the length of the stepping time inside the prediction win-
dow broadens its length, simultaneously decreases its resolution and precision with respect
to future data. For example, in a situation where the distance between two adjacent road
grade sign changes are smaller than the stepping distance inside the prediction horizon,
this leads to missing important data on a downhill or uphill. Therefore, in fact, the APHL
module tends to dynamically handle the resolution of the prediction horizon throughout
the trip. For instance, APHL decreases the prediction horizon resolution, thus increasing
its length, when the future information indicates no or very small changes in the road
grade value ahead. With this approach, the NMPC controller can capture data in a more
informative manner and therefore the optimal trajectory planning is enhanced.
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Figure 4.17: Block diagram representation of the Ecological Cruise Controller system with
prediction horizon length adaptive to road information
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Figure 4.18: Effect of Adaptive Prediction Horizon Length (APHL) on reference speed
tracking behaviour-minimum, mean and maximum speed of the vehicle
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Figure 4.19: Effect of Adaptive Prediction Horizon Length (APHL) on energy-saving be-
haviour
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4.3 Case 2: Car-following Scenario

Another cruise control problem that has received a lot of attention, is the car-following
problem. In a car-following scenario, as shown schematically in Fig. 4.20, the preceding
vehicle simply tracks a standard driving cycle and the host vehicle follows it with a safe
distance in behind. An ACC controller utilizes onboard radar and sensors to measure
the inter-vehicular distance and the speed and acceleration of the preceding vehicle and
accordingly adjusts the cruising speed of the vehicle, safely. Here, the control objective is
to maintain a safe distance with the preceding vehicle.

A more advanced ACC system, EcoACC, has been proposed for this problem in which
the traffic condition information is collected and used to drive ecologically. The term Eco-
driving is commonly used for such an optimal driving behaviour. Generally, in an EcoACC
there are two main control objectives; one is minimizing the fuel consumption and the
other is driving in a safe distance from the preceding vehicle at all time. Model-based
approaches such as sliding mode [58], optimal control [59] and MPC [60], alongside clas-
sic rule-based approaches [61] have been used to develop ACC systems. Ability to deal
with multi-input multi-output (MIMO) systems, handling inputs and states constraints
and real-time multi-objective optimization have made MPC technique a suitable approach
for automotive control applications as the vehicles hardware computational capacity in-
creases. For example, integrating traffic data into MPC has shown potential in enhancing
fuel economy as in [62]. Multi-input multi-output nature of the EcoACC problems along
with presence of several system constraints have motivated research into applications of
MPC to optimize fuel consumption, trip time, ride comfort and safety [63]. In the litera-
ture, numerous works have investigated application of MPC to EcoACC [40]. With recent
increasing interest in employment of NMPC in the development of EcoACC systems [48, 5],
in this work, we design and implement a Newton/GMRES-based algorithm to develop an
NMPC for an EcoACC system of a PHEV, namely Toyota Prius 2013.

As stated above, MPC-based EcoACC controllers for conventional ICE vehicles have
been vastly studied in the literature. However, complexity of the power-split PHEVs
architecture in addition to having two sources of energy and interaction with Energy Man-
agement System (EMS) defines a whole new control-oriented model completely different
from gasoline-powered vehicles. A novel control-oriented model of PHEV is developed for
use at the heart of the proposed EcoACC which receives information about the optimum
power distribution between ICE and Electric Motor from EMS. The main goal of the de-
signed EcoACC is to improve total energy costs while considering safety. It is important to
note that other important performance factors, such as emission levels and ride comfort,
are consequently improved as well due to minimization of trip cost and avoiding sharp
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Figure 4.20: Schematic representation of a car-following problem

accelerations and decelerations. Having the advantage of using trip information previews,
including road geometry and traffic flow, as well as using a nonlinear control-oriented model
strengthens the proposed EcoACC and enhances the prediction. The originality of NMPC
controller based on Sequential Quadratic Programming (SQP) algorithm is investigated in
[44]. Moreover, in the previous section it was formerly concluded that Newton/GMRES,
considering real-time implementation, is a faster solver than C/GMRES with approxi-
mately the same accuracy. Therefore, in this section, the potential of Newton/GMRES
algorithm, as a promising fast optimizer for real-time implementation is examined for this
EcoACC.

4.3.1 Controller Design

Any MPC controller requires a simple and computationally efficient model of the system
at its heart that can be used for prediction in real-time. This section describes the steps
required to develop a fast and sufficiently accurate control-oriented model for use inside
the structure of the proposed NMPC controller. As shown in Fig. 4.20 which schematically
illustrates the control problem, the proposed EcoACC is intended to adjust the optimal
velocity of the host vehicle such that it is driven safely within a desired inter-vehicular
distance, Ld, from the preceding vehicle and also the fuel consumption is minimized. In
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our formulation, δ denotes the error between inter-vehicular distance, L, and the desired
inter-vehicular distance. Let us take speed and distance of both vehicles as the states and
the wheel torque of the host vehicle as the input to the system. Therefore, using vehicle
longitudinal dynamics theory, the system can be modelled as follows:

ẋ =


ẋh(t)
v̇h(t)
ẋp(t)
v̇p(t)

 =


vh(t)

u(t)− 1
m
Fres(t)

vp(t)
ap(t)


Fres(t) =

1

2
ρAfCdv

2
h +mg sin θ(xh) + µmg cos θ(xh).

(4.6)

Where (vh , xh) and (vp , xp) represent the speed and position of the host vehicle
and preceding vehicle, respectively, u is the input, Fres is the resistance force, ap is the
acceleration of the preceding vehicle, m is vehicle mass, ρ is the air density, Cd is the drag
coefficient, Af is the host vehicle frontal area, µ denotes the rolling resistance, and θ is the
road grade. It should be noted that the input, u, is in fact the wheel torque Td divided by
(m.r) where r is the wheel radius. Plus, the inter-vehicular distance error is calculated as
follows:

δ = Ld − L = (L0 + hvh)− (xp − xh) (4.7)

Where L0, the desired distance at stop and h, the headway time, are used to adaptively
change Ld in order to constantly drive within a safe distance. It is assumed that the speed
and acceleration of the preceding vehicle are measured at each time or collected through
V2V. For the purpose of prediction, an acceleration behaviour must be anticipated inside
the horizon for the preceding driver. An investigation of several driving cycles reveals that
it is mostly probable that a vehicle is driven at low accelerations and constant speed, [44].
Thus, the anticipated acceleration is calculated as below which gradually decreases with
time:

ãp(τ) ≈ e−ξτap(t) (4.8)

Where âp is the predicted future acceleration, ap(t) is the measured acceleration of the
preceding vehicle at current time, τ represents the prediction time, and α is a constant
positive tuning parameter. Inside the prediction window, some quantities are calculated
using Equations (4.9) through (4.12) as part of the control-oriented model. The PHEV
(2013 Toyota Prius) has a power-split architecture with an energy management system
that operates the engine at its optimal working point. In this work, Adaptive Equivalent
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Consumption Minimization Strategy (A-ECMS) is employed to distribute power optimally
between the energy sources [64]. Thus the predicted engine power, P̂e, and the battery
power, P̂b, are obtained as fractions of the power demand, Pd, using:

P̃b(τ) = (Pb(t)/Pd(t))Pd(τ) (4.9)

P̃e(τ) = (Pe(t)/Pd(t))Pd(τ) (4.10)

where Pb(t) and Pe(t) are the power values, respectively, for battery and engine in the last
timestep. For calculating the trip cost, the fuel consumption is approximated in kilograms
per second by the following function:

ḟc = α0 + α1Pe + α2P
2
e + β1vh (4.11)

Where Pe is the engine power, and a0, a1, a2, and b1 are constant parameters. Therefore,
the cost of a trip is calculated and reported per distance travelled using:

� = Kf
ḟc
vh

+Ke
Pb

ηbηchvh
(4.12)

Where Kf and Ke are the unit cost of fuel and electrical energy, ḟc is the rate of fuel
consumption, Pb is the battery power, and ηb, ηch are the battery and charger efficiencies,
respectively.

A high-fidelity model of the Toyota Prius PHEV, developed in Autonomie, is employed
for controller evaluation. The parameters of the current control-oriented model are iden-
tified using Least Square method and also the validity of the model is tested against this
high-fidelity model by other members of the author’s research group, [44].

With a control-oriented model in hand, we define the objective function and constraints
and complete the design of the NMPC. Equation (4.13) gives the NMPC optimal control
problem formulation where ωi for i = [1, . . . , 4] are the weighting factors for the different
terms in the objective function:

minimize
u

J =

∫ T

0

[ω1 δ
2(x) + ω2 �(x, u) + . . .

ω3 (vh − vref )2 + ω4 (u− uref )2]dτ

(4.13)

Where vref is the reference speed to follow the preceding vehicle and uref is the input value
that keeps the vehicle at a constant speed. Also, T is the prediction horizon length. The
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objective function is subjected to the following system model described in the modelling
section, see (4.6),

ẋ = f(x, u) (4.14)

as well as the following constraints that are mainly noted as one inequality equation,
g(x, u) ≤ 0 in vector form:

vmin ≤ vh ≤ vmax (4.15)

umin ≤ u ≤ umax (4.16)

As shown in (4.13), the objective function includes four terms which respectively correspond
to minimizing the distance error, trip cost, reference speed tracking error and acceleration.
In order to make sure that the host vehicle is continuously kept within a safe distance from
the preceding vehicle ω1 is adaptively changed, as follows:

ω1 =


eγ1(δ−0.6δmax) 0.6 δmax ≤ δ

1 −0.6 δmax < δ < 0.6 δmax

eγ2(−δ−0.6δmax) δ ≤ −0.6 δmax

(4.17)

4.3.2 Controller Evaluation with MIL Simulations

To check the efficacy of the proposed GMRES-based NMPC controller, its performance is
simulated for a car-following scenario where the preceding vehicle tracks a standard driving
cycle. As stated earlier, the objective is to ultimately minimize the fuel consumption
while maintaining a safe distance from the preceding vehicle. Simulations are carried out
for two different driving cycles: three consecutive Urban Dynamometer Driving Schedule
(3xUDDS)and three consecutive Highway Fuel Economy Driving Schedule (3xHWFET).
The proposed predictive controller is a detailed strategy that includes several weighting
factors which make it more robust and adaptive to various driving conditions. Hence, it
is essential to analyse the effect of different design parameters on the behaviour of the
controller. To this end, several simulations are performed for various values of a parameter
while keeping the rest at their nominal values (ω1 = 10, ω2 = 1, ω3 = 1, ω4 = 10, T =
10, ξ = 0.3, γ = 1).

From a viewpoint of MPC technique, the length of the prediction horizon always plays
a vital role in the performance of the controller. In general, a larger prediction window
results in a more optimal control action as for an infinite prediction horizon the solution
converges to that of an offline optimization method, e.g. Dynamic Programming. How-
ever, widening the prediction window makes it challenging to predict the time-varying
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Figure 4.21: Effect of prediction horizon length on the speed prediction error for different
values of ξ
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Figure 4.22: Effect of ω1 on inter-vehicular distance error

parameters in future, due to arising uncertainties. For example, in this case, predicting
the driving behaviour of the preceding vehicle, namely its future speed, becomes more and
more difficult as the length of the prediction horizon increases. Figure 4.21 demonstrates
the error in speed prediction of the preceding vehicle for different horizon lengths meaning
that using (4.8) for this purpose encounters a significant rise in error for large prediction
horizons (T > 15s). Moreover, increasing the prediction horizon length enlarges the com-
putational load significantly that makes the problem impossible to solve in real-time, in
practice. Accordingly, this leaves us with a trade-off situation for selecting the prediction
horizon length with an optimum value.

Different terms of the objective function contribute individually to the performance of
the NMPC controller, however, a preliminary investigation showed that the influence of
ω1 and ω4 is more significant on the safety. Figures 4.22 and 4.23 illustrate the effect of
increasing these two design parameters on the distance error. In other words, although
increasing ω1 reduces the error in driving within a desired distance from the preceding
vehicle, the controller’s sensitivity to this factor is saturated beyond a certain value (ω1 ≈ 5)
and further increase in ω1 only makes the controller inresponsive to the other three terms.
Despite ω1, increasing ω4, which has a positive effect on the energy saving, increases the
distance error as shown in Fig. 4.23.
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Figure 4.23: Effect of ω4 on inter-vehicular distance error

Figure 4.24: Effect of γ on inter-vehicular distance error
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Figure 4.25: Simulation results for following a car driving 3xHWFET cycle
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Figure 4.26: Simulation results for following a car driving 3xUDDS cycle
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As stated earlier, ω1 plays an essential role in keeping the vehicle at a safe distance.
However, selecting a large value for ω1 can result in disregarding the main goal of this work,
i.e. driving ecologically. Therefore, adaptively changing this weighting factor using (4.17)
is a brilliant solution toward optimally handling this trade-off. The two design parameters
in (4.17), γ1 and γ2, are symmetrically selected, simply denoted as γ, hereafter. Figure
4.24 shows the impact of increasing γ on the reduction of the distance error, where similar
to ω1, its influence is significant in a certain range (0.1 < γ < 10) and then saturates in
higher values (γ > 10). In this case, the simulation results show that at very high values
of γ (γ > 100) the controller aggressively involves abrupt accelerations or decelerations.

For a better demonstration of the ecological behaviour of the proposed NMPC con-
troller, its performance is simulated on a high-fidelity model of the Toyota Prius PHEV
2013 and evaluated against a PID controller. Figures 4.25 and 4.26 illustrate the MIL
simulation results for 3xHWFET and 3xUDDS, respectively. These results indicate that
the proposed NMPC-based E-ACC system can outperform a classic PID controller by 1.2%
for driving at highway and a 3.4% for urban driving in terms of trip cost by slightly (less
than 0.5m) deviation from the desired inter-vehicular distance.

4.4 Hardware-in-the-loop Simulations

This section describes the necessity of performing hardware-in-the-loop (HIL) testing, spe-
cially in the development procedure of a control system. The designed intelligent cruise
controllers based on NMPC technique, in the previous chapter, are tested through HIL
testing and the results are presented, accordingly.

In the early stages of the design and development of vehicle control systems, physical
prototyping can be very expensive and time-consuming. In this case, one of the well-
recognized rapid prototyping methods, widely used these days by the automakers, is the
hardware-in-the-loop testing. In a situation where purely virtual simulations are not ade-
quate to capture great fidelity levels of performance evaluation (often because of inability to
model components whose dynamics are not fully understood), HIL techniques become very
advantageous by prototyping only some complex and essential components of the system.
This, not only enhances the fidelity of the performed tests, but also reduces the validation
time and cost as the HIL simulations often require much less hardware components than
the actual physical prototyping. Moreover, repeatability is an essential principle in a design
process and in the systems with highly variable conditions, physical prototyping can not be
an option. Whereas, through HIL simulations, a wide range of operating conditions can be
simulated over and over in a controlled lab environment. In addition to repeatability, HIL
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testing also reduces the risk of danger and the costs associated with destructive tests. For
example, HIL testing can simulate the severe environment conditions such as winter test
drives to avoid a high risk of collision. All of these will result in a more rapid pace in the
process of design, saving significant amount of time, effort and cost, as well as preparing a
solid calibration foundation for further control system development phases.

Electronic Control Units (ECUs) are a category of embedded systems that read in-
formation form various sensors and use actuators to control different systems in vehicles.
ECUs are now widely used to control various vehicle subsystems including engine, trans-
mission, brake and suspension systems. Some modern advanced vehicles include up to
80 ECUs [65]. With the rapid increase in the number of ECUs used in today’s vehicles,
development and validating them has become a crucial task in the automotive industry.
HIL testing is the most effective technique to develop and evaluate new advanced ECUs
in shortest time. Therefore, in this thesis, the author investigates the implementability of
the proposed intelligent cruise control systems on an ECU through HIL testing.

Typically an HIL platform for Rapid Control Prototyping (RCP)consists of three main
components: a user interface for setting up the simulation, programming the hardware
and reading and storing the outputted variables; a real-time simulator which is actually
a super fast processor for running the high-fidelity model in real-time; and a prototype
ECU for running the control law in real-time. These three components are shown in Fig.
4.27. Connections between these three components are made through a Controller Area
Network (CAN). CAN is widely used within automobiles to allow different microcontrollers
and ECUs to communicate without the need for a host computer. Special I/O ports of
the HIL components compatible with CAN interface allows an efficient system of sending
commands and receiving feedbacks. In this research, dSPACE HIL setup is utilized for sim-
ulations. dSPACE Inc. provides multiple products for design, development, RCP and HIL
testing of embedded control systems which is well-recognized by many praised automakers
such as Toyota, General Motors, Honda, Ford and BMW. High compatibility of dSPACE
integrated development environment with MATLAB/Simulink creates a straight-forward
tool chain for model-based development. Also, adding MATLAB-based AuMuSoN code
generator for nonlinear MPC controllers to this chain, completes the necessary components
for design, development, test and evaluation of real-time NMPC controllers for automotive
applications.

4.4.1 Hardware Description and Programming

As shown in Fig. 4.27, dSPACE prototyping system includes the prototype ECU (Mi-
croAutoBox II) and the real-time simulator (DS-1006 Processor). The specifications for
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Figure 4.27: Principle of HIL testing
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Table 4.1: dSPACE HIL specifications

Specification Real-time simulator Prototype ECU

Hardware DS-1006 Processor board MicroAutoBox II
Processor DS-1006 Quad-Core AMD, 2.8 GHz DS-1401 PowerPC 750GL 900 MHz
Memory 1GB local, 4x128 MB global 16 MB main, 16 MB nonvolatile
I/O DS-2202 DS-1511

these two components are presented in Table 4.1. The real-time simulator runs a high-
fidelity model of the vehicle and environment and communicates with the prototype ECU,
which calculates and sends command signals, through CAN bus.

Fortunately, dSPACE provides related MATLAB libraries to generate compatible and
embeddable C codes for its hardware. Any Simulink model can be compiled using Real
Time Workshop code generator with the corresponding complier of the target hardware.
For example, here we use rti1401.tlc and rti1006.tlc, repectively, to generate C codes for
MicroAutoBox II and DS-1006 Processor board. It is important to note that the real-
time simulator executes one part of the Simulink model (high-fidelity model) and the
prototype ECU runs another (NMPC controller). Therefore, the Simulink model used for
MIL simulations must be modified and divided into two separate *.mdl files. To do so,
one should use the dSPACE Real Time Interface blocks, for instance RTI CAN Controller
Setup Block, to configure the CAN terminals for the communication between these two
components. The communicating signals between the two Simulink models must have the
same CAN ID in both the high-fidelity model file and the controller file.

After preparing the two Simulink files and generating the corresponding C codes, system
description *.sdf files are generated. These files can be located in dSPACE ControlDesk,
which is a software that allows the user to use a computer as an interface to interact with
the hardware, to upload the codes, run the test and record the desired signals. Once the
codes are loaded onto the specific platforms, desired variables from both of the platforms,
i.e. the prototype ECU and the real-time simulator, can be selected from the variables
panel for recording. One of the most important variables that must be measured is the
turnaround time of the prototype ECU which determines whether the designed controller
can actually be implemented in real-time on an ECU or it is not fast enough to meet the
computational speed limits. Turnaround time is the time taken by the controller to generate
an input action upon receiving a feedback from the system. Thus, in the following sections
we perform HIL simulations for the proposed intelligent cruise controllers and report the
turnaround time on the prototype ECU.
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Figure 4.28: Comparison of prototype ECU turnaround time for different optimizers and
prediction horizon sizes

4.4.2 Case 1: Driving on Hilly Roads

HIL simulations for the ECC controller designed earlier in this chapter are performed
for a part of the Calgary-Vancouver road trip, whose road elevation profile is shown in
Fig. 4.13. The simulations are carried out for Newton/GMRES and C/GMRES RTO
algorithms with several different number of timesteps in the prediction horizon and the
results for the prototype ECU maximum turnaround time are presented in Fig. 4.28. In
this figure, the green area indicates the range of prototype ECU turnaround time for a
practically applicable control strategy. Compliant with the results previously observed in
the MIL simulations, the C/GMRES RTO algorithm is slower than the Newton/GMRES
optimization method. However, here, another important outcome is observable about the
computational speed of these two GMRES-based algorithms. The ratio of the C/GMRES
turnaround time to the Newton/GMRES turnaround time increases as the size of the
prediction horizon gets larger. In other words, the C/GMRES RTO algorithm is more
sensitive to the size of the prediction horizon than the Newton/GMRES method. Therefore,
it can be concluded that for the smaller problems with small prediction horizons, utilizing
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Table 4.2: Estimated turnaround times for Prius ECU based on measured prototype ECU
turnaround times for different prediction horizon sizes

PH size Prototype ECU turnaround time Estimated Prius ECU turnaround time

N=5 0.1 ms 0.7 ms
N=10 0.12 ms 0.85 ms
N=20 0.9 ms 6.6 ms
N=100 10 ms 70 ms

a C/GMRES optimizer can be a better choice since this method is slightly more accurate
than the Newton/GMRES method. However, the computational time for this method
rapidly increases with the size of the problem and the prediction horizon. So, in the case of
a problem with larger prediction horizon, the Newton/GMRES method is a better choice.

In our work, for the proposed ECC controller, prediction horizon sizes of up to 14 and
19 are practically applicable on an actual ECU, respectively, for C/GMRES and New-
ton/GMRES methods. For the ECC controllers with the prediction horizon size of 14
or less, a C/GMRES algorithm is implementable on the Toyota Prius ECU. Similarly for
Newton/GMRES method, ECC controllers with the prediction horizon size of 19 or less can
be implemented on the Toyota Prius ECU. It is important to note that, utilizing simpler
real-time optimization methods for the NMPC controller or even employment of a linear
MPC controller instead of a nonlinear MPC controller will increase the range of applicable
prediction horizon size. While increasing the size of the prediction horizon enhances the
task of prediction and increases the accuracy, simplifying the controller by linearising or
using less accurate optimizers will cripple the performance of the controller. This is a
trade-off that must be investigated for every designed controller.

4.4.3 Case 2: Car-following Scenario

A set of HIL simulations for determining the applicable prediction horizon size is preformed,
as well, for the EcoACC controller designed for a car-following scenario. These simulations
are performed for a controller based on the Newton/GMRES algorithm. The resulted
turnaround times are listed in Table 4.2 that show promising values for implementing
controllers with prediction horizons less than 20 timesteps.

The HIL testing results ,reported in this section for the two proposed intelligent cruise
controllers, show promising data in terms of computational speed and implementability of
real-time NMPC controllers for automotive applications.
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Chapter 5

Conclusion

This thesis has described the development of a mathematical program based on MATLAB
for the purpose of automatically generating MPC control codes for nonlinear systems,
in particular automotive systems. The code generation tool developed in this work is
mainly used for the design and development of intelligent cruise control systems for vehicles.
The automatic code generator, called AuMuSoN, has a user-friendly MATLAB interface
for defining different optimal control problems and generates controller codes based on
GMRES-based RTO algorithms for various MIL and HIL simulations and tests. The
automatically generated NMPC codes by AuMuSoN were tested and validated with NMPC
codes generated by other well-known C/GMRES-based code generation tool, AutoGenU.
The presented results indicated a good agreement between AutoGenU and AuMuSoN
controller performances.

Then, the code generator was used to develop two intelligent cruise controllers with
a main goal of minimizing the energy consumption for a PHEV, namely Toyota Prius.
The first proposed control strategy, called an ECC controller, was developed for a scenario
in which a vehicle travels a road with up/down slopes. In this scenario, a comparative
study was conducted in order to investigate the differences between the two GMRES-
based RTO algorithms: Newton/GMRES and Continuation/GMRES. Results indicated
that the Newton/GMRES algorithm is a faster optimizer than the C/GMRES method
with approximately the same performance. Hence, Newton/GMRES algorithm was chosen
for the rest of the control evaluations. Control strategy was tested on a real-life road
elevation profile and a 3.5% reduction in the energy consumption, compared to a PID
controller, was observed when the ECC controller regulates the speed of the vehicle by
approximately 10% deviation from the reference speed set by the driver. In addition to
that, the originality of the idea of using an adaptive prediction horizon length module to
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dynamically change the resolution of the prediction horizon was investigated to improve
the NMPC controller performance by capturing the environment data in a smarter manner.

The second intelligent cruise controller developed in this thesis studied a strategic
vehicle control system in a car-following scenario. The main objective of the designed
EcoACC controller was to reduce the cost of a trip while maintaining the host vehicle
within a safe distance of the preceding vehicle. After running numerous simulations in
order to study the effect of different adaptive weighting factors on the performance of the
controller, simulation results for urban and highway drive cycles demonstrated 3.4% and
1.2% respectively, as compared to a PID controller.

Lastly, a set of HIL tests was performed on a dSPACE MicroAutoBox II platform to
check the applicability of the designed intelligent cruise controllers. The HIL simulation
results indicated that the C/GMRES solver speed is more sensitive to the size of the
prediction horizon than the Newton/GMRES solver. Therefore, it was concluded that in
order for the ECC controller to be applicable on the Toyota Prius ECU, the maximum
size of the prediction horizon for a C/GMRES-based NMPC controller is 14 and for a
Newton/GMRES-based NMPC controller is 19.

5.1 Summary of Contributions

The major contributions of this research are summarized as follows:

1. Development of an automatic multi-solver NMPC code generation tool

� First GMRES-based NMPC controller code generation tool based on MATLAB

� Features a user-friendly graphical interface for defining optimal control problem

� Allows the user to choose the two GMRES-based solvers, C/GMRES and New-
ton/GMRES, for the use inside the controller

� Enables the user to apply several equality and inequality constraints to the
problem with Exterior Penalty Inequality Constraint Handling method

� Generates MATLAB codes and Simulink files for MIL simulations that can be
easily compiled to C codes for HIL simulations

2. Presentation of a comparison between Continuation/GMRES and Newton/GMRES
Real-Time Optimization (RTO) algorithms in case of accuracy and speed

69



3. Design and development of intelligent cruise control systems for a PHEV

� Development of an ECC controller that minimizes the energy consumption of
the PHEV with small deviations from the reference speed set by the driver in
trips on hilly roads

� The proposed ECC controller features an Adaptive Prediction Horizon Length
(APHL) module to enhance the NMPC controller performance

� Development of an EcoACC controller for a PHEV in car-following scenarios
that minimizes the trip cost and maintains the vehicle within a safe distance

� Calibration of the EcoACC controller and presenting the effects of different
adaptive gains on the performance of the controller

4. Presentation of the HIL testing of the proposed intelligent cruise controllers and
investigating the implementability of the GMRES-based RTO algorithms in real-
time

5.2 Future Work

The recommended future work to expand this research is as follows:

� Add other fast real-time optimizers to the developed code generation tool

� The proposed approach works based on a discrete time-step formulation. Alterna-
tively, a parametrized continuous function approach for calculating the optimal input
must be studied and the corresponding results must be compared.

� Investigate the effect of using multiple-shooting method in real-time optimization

� Clearly, the chosen drive cycle had an impact on the proposed NMPC controller.
Similarly, the effect of other different drive cycles, traffic and speed limits must be
investigated in future.

� Extensive research is needed in the area of robustness and stability analysis of the
proposed control strategies

� Extend the evaluation of the proposed intelligent cruise controllers in a more complex
traffic system using a traffic simulator

� Perform component-in-the-loop simulations on facilities with several dynamometers
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