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Abstract

In a CDMA or SCMA system, users can use a fixed signature for the whole transmission
interval. But there is the possibility for two users to have highly correlated signatures.
Hence, high interference exists in the system, and it will degrade the performance. On
the other hand, if the users use variable signatures for spreading each modulation symbol,
then the interference between the users will not be fixed for all the transmissions.In this
way, we are avoiding clustering error symbols resulted from the high interference. As we
show in this thesis, this prediction about better performance of variable spreading is not
always true. We have discussed several scenarios and shown the performance for both the
fixed and variable signature codes.
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Chapter 1

Introduction

1.1 Multiple access

In today’s communications, we are interested to share the resources with several users. We
can share time or frequency to have time division multiple access (TDMA) or frequency
division multiple access (FDMA). These two methods, waste resources when the number of
potential users is much larger than the number of simultaneous active users [6]. In another
approach, we can discriminate users by dedicating a specific code to each user, which we
call code division multiple access (CDMA). As the performance of the CDMA degrades
gradually by increasing the number of users, it is often claimed that CDMA is superior
to FDMA and TDMA. But it is shown in [7] that in an overloaded AWGN channel, their
performances are similar.

In CDMA, each user spreads their signal via the signature dedicated to them; hence,
in addition to multiple accessing, we can benefit from the properties of spread spectrum
communication as well.

If the signatures of all the users are orthogonal, then there is no interference, but as
the users are not synchronous, there is always some amount of interference in the system.
The magnitude of the interference between two users, increases as their signatures’ inner
product increases.

To have a better estimation of the transmitted data, we must employ interference can-
cellation. Indeed interference plays the role of an additional noise source, which degrades
the system’s performance and it must be resolved.
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1.2 Multiuser detection

Interference cancellation, plays a critical role in multiuser communication systems, and
there have been a tremendous work on improving its performance, both in theoretical and
practical aspects.

Multiuser detection schemes can be generally divided into two categories. Those, which
employ a linear mapping on the received signals after despreading are called linear detec-
tors. Decorrelating detector and MMSE detector fall in this category. The main drawback
for these detectors is the difficulty in matrix inversion process. Indeed, in their process,
we need to invert a very large matrix, which is not efficient. Combating this issue has led
to several papers on circumventing the matrix inversion. For example, Moshavi in [23] has
presented the polynomial expansion detectors, which approximate the inverse of a matrix
just by the polynomial combination of the matrix. An efficient method for polynomial
expansion detectors is presented in [15]. An iterative algorithm to calculate the inverse of
the matrix in linear detectors in frequency domain is proposed in [11]. Although the pro-
posed method in that paper, is equivalent to the desired linear multiuser detection for an
infinite number of iterations, however, it can be approximated in a finite number of itera-
tions which results the low complexity, low memory consumption and small detection delay.

Interference cancelers are another type of multiuser detection methods. The basic idea
of this type of detectors, is to reduce the interference effect of some users, and continue to
detect the remaining users in the lower interfered scenario. They can be divided into two
subcategories: parallel interference cancelers (PIC) and successive interference cancelers
(SIC). The PIC usually operates well in situations, where the users have relatively equal
power, where as the SIC is better suited for users with a range of powers [3]. Due to the
good performance and the simple implementation (there is no need for matrix inversion),
interference cancelers have been focused more in research works. The main drawback of
these detectors, is the sensitivity to the initial estimations. Indeed, if the estimations at the
initial iterations are weak, then the error will propagate through the remaining iterations
and worsen the performance. In another words, if an incorrect tentative decision is made,
then the interference from that user will be enhanced rather than canceled [10]. In [35],
a hybrid receiver is presented, which uses a linear detection at the first stage and several
PIC detectors for the remaining stages. It will make the first decision more reliable. In
[3] a hybrid method, combined of both SIC and PIC, is proposed. Although it is more
complex than a simple SIC or PIC, but it yields a better performance for each user. The
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performance of interference cancelers in presence of CSI1 error is discussed in [46].

1.3 Problem Discussion

We can use fixed spreading for each user during the whole transmission. It means, af-
ter dedicating the signatures to the users, each one uses their signature to spread all of
their modulation symbols. The positive point of this method is the simplicity in detecting
the signature of each user. Indeed, we can use the pre-detected signature of each user,
to despread the users’ signal, but it has a bad side-effect. In the case of high correla-
tion between the signatures of two transmitters, the interference is significant for all the
transmission time. An alternative to remedy this problem is using the variable signature
spreading. In that case, although there is the possibility of high correlated signatures be-
tween users, but it lasts just for a modulation symbol. In the next modulation symbol,
that we use another signature for users, the interference will change. So we have spread the
interference-corrupted symbols in the whole transmission interval and by using a channel
code, we can obtain a better performance. Does the variable spreading always outperform
the fixed spreading? We discuss about this question in this thesis.

1.4 SCMA systems

There is a scenario which users selects their resources among a lot of available resources. If
the number of chosen resources is so small regarding to the available resources, the system
has a sparsity which is beneficial in decoding. SCMA is a category of multiple accessing
which has such a sparsity. Should the users use a variable pattern for transmitting their
data or it is better to use a fixed pattern? We will see we have a similar problem as the
CDMA case.

1.5 Thesis outline

The thesis can be divided in two parts. First, we will cover the basic concepts needed to
understand the problem, and finally, the problem is discussed.

1channel state information
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In chapter 2, we present the important concept of code division multiple access. The
spreading and despreading have been introduced and some methods for generating signa-
ture are presented. Its capability to combat multipath fading phenomena is discussed, and
the rake receiver is introduced.

Chapter 3 deals with the concept of multiuser detection. Practically, there is interfer-
ence between users and we must mitigate it, as it degrades the performance. The detectors
are divided into two categories, linear and interference cancelers and each of them is dis-
cussed separately. Successive and parallel interference cancelers and their pros and cones
are discussed at the end of this chapter.

Chapter 4 deals with three methods that can be employed, to enhance the performance.
Although the detection methods discussed in chapter 3 mitigate the interference, however
the performance is improved more by these methods.

In chapter 5, the main problem for CDMA systems is discussed. We discuss the effect
of randomizing the signature during the transmission interval. We see in contrast to our
prediction, variable spreading outperforms the fixed spreading only in some cases.Indeed
there are occasions that fixed is better. The effect of spreading factor and the number of
users on the performance of the system is discussed.

In chapter 6, we have introduced the SCMA systems. Then we have compared the fixed
and variable SCMA in FER and maximum achievable rate aspects. The thesis finishes in
chapter 7 by some conclusions and suggestions for future works. The proofs for some
theorems are included in the appendices.

4



Chapter 2

Code Division Multiple Access

2.1 Multiple Access

The advent of multiple access goes back to 1873, when Thomas A. Edison transmitted two
telegraphic messages in one direction through a wire simultaneously[38]. Since that, there
was an increasing need to exploit the channel to transmit several signals from different
users. For example, in a cellular network, there are several users connecting to a base
station by transmitting radio waves in free space. As another example, several ground
stations communicating with a satellite.

The main problem of this aim, is to recognize the users’ signals. Indeed, as several
users are transmitting to a receiver, we receive the superposition of all the transmitted
signals and we must extract the signal transmitted by each user. There have been several
methods to resolve this issue:

• TDMA: Time division multiple access is a method that we use each time slot to
transmit the signal of a single user. Indeed, if there are k transmitters in the system,
the first time interval is dedicated to the user 1, the second one to the second user
. . ., the kth time interval to the kth user and then, we start from the first user again.
The non-ideal effects of the channel or the receiver could result the insertion of guard
time to avoid cochannel interference [38]. In the case of 3-user transmission, TDMA
procedure is depicted in figure 2.1. Blocks follow each other in time domain, the blue
blocks represent users’ signals and the gray blocks represent guard time intervals.

5



user 1 user 2 user 3 user 1 user 2 user 3

Figure 2.1: TDMA for 3-user system

The main drawback of this method is the common clock that must exist between the
users. As it is apparent from Figure 2.1, all the transmitters must be synchronous in
a way.

• FDMA: Frequency division multiple access is another method, which exploits the
frequency band to transmit data from different users. Indeed, instead of time splitting
in TDMA, we have frequency band splitting in this method. Different users are
allowed to transmit in different bands, so we can discriminate users by filtering the
received signal. in cellular networks, users within a cell have different bands, but as
interference between users is attenuated severely from a cell to a sufficient far cell,
the same band can be reused at far cells which inter-cell interference can be neglected
[36]. The same as TDMA, to avoid interference between users, we must have a guard
band between bands of users. Figure 2.2 depicts a 4-user FDMA system.

f

user 1 user 2 user 3 user 4

Figure 2.2: FDMA

• CDMA: In code division multiple access, the users are separated in code domain, so
they can share resource elements. By resource element we mean a time-frequency
slot which is shown in Figure 2.3. Apparently, in TDMA and FDMA, each resource
element is dedicated to only one user, but in CDMA, it can be used by several users
since they are separated in code domain. If different users use orthogonal codes for
transmission, we can discriminate each other perfectly. For example, if we are inter-
ested in kth user’s signal, then we can multiply the received signal by the complex
conjugate of the kth user’s code and integrate it over the code interval. As users’
codes are orthogonal, then we have the signal from the kth user at the output. How-
ever this is not the real case as it will be discussed in the section 2.2.

6
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Figure 2.3: resource element definition

• SDMA: Space division multiple access is a technique which signals are transmitted
from directed antennas. This method allows the frequency band reuse in different
areas[41]

There are some other methods for multiple accessing, such as random multiple access [38]
and polarization division[41] as well.

The words multiplex and multiple access are often used interchangeably, however, more
technically, multiple access is referred to the case that message sources are not collocated
and operate autonomously[38].

2.2 CDMA

2.2.1 inner product and orthogonality

As stated in section 2.1, one of the main problems of multiuser transmission is to reduce the
interference between different users, and by this, we mean signals on one channel should
not significantly increase the probability of error on another channel. For example, if the
signals used by users are mutually orthogonal, then the interference among users is totally

7



avoided as [6]: ∫ +∞

−∞
si(t)s

∗
j(t) = Eiδ(i− j) (2.1)

which si and sj are the transmitted signals by the users i and j respectively, “∗” sign
denotes complex conjugate operation, δ is the Dirac delta function and Ei is the signal’s
energy of the ith user. The left hand side of equation 2.1 is called inner product of si and
sj and is represented by 〈si, sj〉, so

〈si, sj〉 =

∫ +∞

−∞
si(t)s

∗
j(t). (2.2)

The inner product of two signals can be considered as a measurement of interference
among them. In the case that all the transmission signals have the same energy, the inner
product is maximized when the signals are the same and this is the worst possible case as
we cannot discriminate signals. As it is apparent from equation 2.1, the inner product of
orthogonal signals is zero and in this case there is no interference.

To clarify this, consider the system in Figure 2.4 which two users are transmitting
antipodal signals to the base station, and their signals are orthogonal to each other. By
antipodal we mean users transmit s1 and s2 for 1, −s1 and −s2 for 0, and in addition
〈s1, s2〉 = 0 which is the definition of orthogonality. At the receiver we have a superposition
of the transmitted signals and the additive noise which is considered to be added at the
front end of the receiver. Hence:

y = b1s1 + b2s2 + n (2.3)

which bi is −1 for 0 and 1 for 1. The receiver wants to know b1 and b2. Thus it multiplies
the received signal by si and the result is as follows:∫ ∞

−∞
y(t)s∗i (t) = biEi +

∫ ∞
−∞

n(t)s∗i (t)dt = biEi + n′(t) (2.4)

As it is apparent from 2.4, there is no interference between users. However, if the users’
signals are not orthogonal, there will be an interference term in 2.4.
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Transmitter 1

Transmitter 2

s1

s2

AWGN

Receiver
y

n

Figure 2.4: an uplink system with two users

2.2.2 spreading

Consider an uplink scenario which users want to transmit their data by a given modulation
scheme. The ideal is to extract users’ data with the lowest interference. So instead of
transmitting modulation symbol mi for the ith user, we multiply it by a vector si and
then we transmit the resulted vector misi. We do this as we can choose these vectors for
different users to be orthogonal. Hence we are able to discriminate users. In the analog
domain, this is equivalent to multiplying the modulation signal by a signature signal which
is comprised of several chips1. Figure 2.5 depicts the procedure.

The spreading ratio is the number of chips which the signature is comprised of and is
denoted by G. From Figure 2.5, it is clear that

Ts = G× Tc (2.5)

By the proposed explanation, and by the assumption of synchronous users, the output
of the spreader is:

x(t) =
K∑
k=1

mk(t)sk(t) 0 < t < Ts (2.6)

which

• K is the number of users

• mk(t) is kth user’s modulation symbol at the time t

• sk(t) is kth user’s spreading sequence at the time t

1Do not confuse with chirp which is a frequency varying sinusoidal signal
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Figure 2.5: spreading process

This method of multiple accessing is called code division multiple access, or in abridged
form, CDMA.1. In the case of AWGN channel, the received signal is:

y(t) = x(t) + n(t) =
K∑
k=1

mk(t)sk(t) + n(t) 0 < t < Ts (2.7)

which n(t) is the white Gaussian noise at the time t with variance No

2
per dimension. If

the users are not synchronous, then

x(t) =
K∑
k=1

mk(t− τk)sk(t− τk) 0 < t < Ts (2.8)

and τk is the delay of the kth user and is considered to be less than the modulation symbol’s
period, Ts. In this thesis, we will consider synchronous users. The transmission process

1It is called Direct Sequence CDMA (DS-CDMA) in some texts. DS-CDMA is used in spread spectrum
(SS) communication. There are three methods for implementing SS systems as direct sequence spread
spectrum(DSSS), frequency hopping spread spectrum(FHSS), time-hopped spread spectrum (THSS)[12].
Our considered system belongs to DSSS
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is shown in Figure 2.6. The energy of the spreading signatures is set to be 1, to have the
same amount of energy after despreading at the receiver side. so∫ Ts

0

|s(t)|2dt =

∫ GTc

0

|s(t)|2dt = 1 (2.9)

or in the vector notation we have
s.s∗ = 1 (2.10)

which dot represents inner product operation.

1stdata

2nddata

kthdata

Modulation

Modulation

Modulation

s1

s2

sK

y

AWGN

x1

x2

xK

x

m1

m2

mK

b1

b2

bK

Figure 2.6: spreading and transmission

2.2.3 Despreading

As discussed by the example in Figure 2.4, in the optimal case that the users’ signals are
mutually orthogonal, there is no interference; the same thing happens when the spreading
signatures of users are mutually orthogonal. By multiplying the received signal of the
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equation 2.7 by the complex conjugate of the ith user’s spreading signature, we have

ri =

∫ Ts

0

y(t)s∗i (t)dt =

∫ Ts

0

( K∑
k=1

mk(t)sk(t) + n(t)
)
s∗i (t)dt =

K∑
k=1

∫ Ts

0

mk(t)sk(t)s
∗
i (t)dt+

∫ Ts

0

n(t)s∗i (t)dt =

mi +
K∑
k=1
k 6=i

∫ Ts

0

mk(t)sk(t)s
∗
i (t)dt+

∫ Ts

0

n(t)s∗i (t)dt =

mi +
K∑
k=1
k 6=i

(
mk

∫ Ts

0

sk(t)s
∗
i (t)dt

)
+

∫ Ts

0

n(t)s∗i (t)dt =

mi +
K∑
k=1
k 6=i

(
mk〈sk, si〉

)
+ n′

(2.11)

and mk(t) came out from the integration since it is constant over a modulation symbol’s
duration. Figure 2.7 depicts the despreading operation.

s∗1

s∗2

s∗K

∫ Ts
0

(.)

∫ Ts
0

(.)

∫ Ts
0

(.)

r1

r2

rK

y

Figure 2.7: Despreading

In Equation 2.11, when the spreading signatures are orthogonal, 〈sk, si〉 = 0 for k 6= i
and ri depends only on the data transmitted from the ith user. In practice we have not
orthogonality of signatures and there is an interference, which degrades the performance
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of the system. There are several methods to mitigate the effect of interference and are
discussed thoroughly in chapter 3.

2.3 Signature sequences

Practically, the spreading factor and chip waveform are common among all the users,
however it is the assigning of the codes to the users that determines the quality of the
multiple access [38]. Indeed we are interested in signatures that will yield the lowest pos-
sible interference. An immediate but incorrect suggestion is to use orthogonal signatures.
Orthogonal signatures are perfect and have no interference, but this is true only in the
case that all the users are synchronous. If si and sj are orthogonal, it is not guaranteed
that their delayed versions are orthogonal again. So it cannot be a good solution for a
more practical scenario where the users are asynchronous. Another approach is to select
signatures, which result the cross-correlation between users to be minimized.

Consider we have K users, each with a signature of length G. The nth chip of the kth

user is sk(n). To include the effect of asynchronous transmission, we consider the signatures
are periodic with period G1. Then the periodic cross correlation, CCjk(τ), between the
sequences of the jth and the kth users is

CCjk(τ) =
G∑
n=1

sj(n+ τ)s∗k(n) (2.12)

and the maximum absolute value of the cross-correlations among all the user pairs and
delays is denoted as Cc. So

Cc = max
j 6=k

max
0≤τ<G

|CCjk(τ)|. (2.13)

In a similar way, the auto-correlation of jth user is

ACj(τ) =
G∑
n=1

sj(n+ τ)s∗j(n) (2.14)

and its maximum among all users and delays is Ca, hence

Ca = max
j

max
0≤τ<G

|ACj(τ)|. (2.15)

1or we can consider the cyclic shifts of the signatures
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If
Cmax = max(Cc, Ca) (2.16)

then a good approach is to try to minimize Cmax [31].

Theorem 2.3.1 Welch’s bound [44]: If there are J normalized complex vectors of length
G, then the maximum absolute value of their inner product is bounded by:

max
i 6=j
|〈si, sj〉|2 ≥

J −G
(J − 1)G

(2.17)

Proof: See appendix A �

Welch’s bound only considers the actual vectors’ inner product and does not include
their delayed versions. So to apply it in our scenario, we consider KG signatures which
are resulted by the original K signatures and all of their delayed versions(each signature
has G− 1 delayed version as we have assumed to be periodic with period G). So we have
KG signature vectors. If we let J = KG in 2.17, then

C2
max ≥

K − 1

KG− 1
. (2.18)

Clearly from 2.18, the lower bound decreases if we increase the spreading factor or decrease
the number of users. There have been several efforts to design pseudonoise(PN) sequences
to meet the Welch’s bound.

2.3.1 Pseudonoise sequences

In practice, a real random sequence needs arbitrary large storage at both the transmitter
and the receiver. So we are interested in a pseudorandom sequence which resembles a ran-
dom sequence relatively. To satisfy our desire of randomness, the pseudorandom sequence
must satisfy the following conditions [40, 12]

• Relative frequencies of 0 and 1 are 1
2

• For zeros and ones, half of all run lengths are of length 1, one quarter are of length
2, one eighth are of length 3 and so on
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• If the random sequence is shifted by any nonzero number of elements, the resulted
sequence must have an equal number of agreements and disagreements with the
original sequence

The key randomness property of a random sequence, such as a Bernoulli one, can be
successfully mimicked by a long deterministic periodic sequence, that can be generated by
a simple linear operation of binary parameters [40]. For example, they can be generated by
the linear feedback shift registers, as shown in Figure 2.8. In this example, we have 4 shift

Modulo–2 addition

SR1 SR2 SR3 SR4

output

Figure 2.8: PN sequence generator

registers. When we have t shift registers, then there are 2t states, so in this case we have
16 different states. We can have a trellis diagram that shows the transmission between
different states. A trellis is a diagram that depicts the state transition as a function of
time. For example if there are 4 different states, then the Figure 2.9 can be a trellis for
those states, that shows we have transferred from the state 0 to the state 2, then to the
state 1, after that to the state 3 and again to the state 0.

0

1

2

3

Figure 2.9: 4-states trellis

In a usual trellis (such as a convolutional code’s trellis), there can be several transitions
from a given state, indeed given the current state, the next state depends on the input.
However, the state transitions of the pseudonoise generator, depends only on the current
state as the input of the generator is fully determined by the current state. Thus, the

15



transitions must repeat from some point, otherwise we must have infinite states. So the
output of the generator is periodic. it is clear that the maximum period will be 2r − 1.
Sequences that achieve this maximum period length are called maximal-length [38]. The
output of the generator at Figure 2.8 is 000101 and has period 6, so it is not maximal-length.

There are several methods on designing a good pseudonoise sequence to meet Welch’s
bound. Kasami [17] and bent [27] sequences are two methods that meet Welch’s bound.
There is another type of signatures called Gold sequences, that they do not meet Welch’s
bound, but achieve another bound called Sidelnikov [31].

2.4 Rake receiver

Due to the obstacles, there can be several paths between a transmitter and a receiver.
One of the main features of CDMA systems, is their capability to remedy multipath chan-
nel’s effect. CDMA systems, can distinguish the received signals from different paths and
combine them in a way, to exploit multipath diversity. Indeed, in a multipath scenario
we have several replicas of the transmitted signal and if we know the channel properties
perfectly, we can use them to have a better estimation. The receiver that performs this
action is called rake receiver [20]. Consider there is only one user, transmitting towards a
receiver, but the signal will travel through different paths with different gains and delays.
Assume that the delays of paths are an integer multiple of the chip duration and there are
M different paths. Then the received signal is

y(t) =
M∑
i=1

αix(t− τi) + n(t) (2.19)

where αi and τi are the gain and the delay of the ith path respectively and are assumed
to be the same for all the chips of a modulation symbol. In addition, assume that the
maximum delay is less than a modulation symbol’s period. So we can claim the received
signal is something like Figure 2.10. Indeed at each time instant, we have the superposition
of all delayed and weighted versions of the transmitted signal x(t).

From equation 2.6 we know

x(t) = m(t)s(t) 0 < t < Ts (2.20)
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Figure 2.10: multipath transmission

so

y(t) =
M∑
i=1

αix(t− τi) + n(t)

=
M∑
i=1

αim(t− τi)s(t− τi) + n(t).

(2.21)

If we multiply both sides of equation 2.21 by s∗(t− τj) and then integrate over (τj, Ts+ τj),
we have

fj =

∫ Ts+τj

τj

y(t)s∗(t− τj)dt

=

∫ Ts+τj

τj

( M∑
i=1

αim(t− τi)s(t− τi) + n(t)
)
s∗(t− τj)dt

=
M∑
i=1

αi

∫ Ts+τj

τj

m(t− τi)s(t− τi)s∗(t− τj)dt+ n′j.

(2.22)
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As the modulation symbol is fixed over its interval then

fj =
M∑
i=1

mαi

∫ Ts+τj

τj

s(t− τi)s∗(t− τj)dt+ n′j

=
M∑
i=1

mαiAC(τj − τi) + n′j

= mβj + n′j

(2.23)

If the auto-correlation of the signature, AC(τ), is relatively small for τ 6= 0, then the main
term of the equation 2.23 summation is the jth path. Thus we have relatively distinguished
signals from different paths. We call fj, the jth finger, and the whole process as fingering.

Till now, we have M versions of the transmitted signal. We can combine them in a
manner to have a better estimation of the transmitted symbol. After weighting each finger
and combining, we have

f =
M∑
j=1

λjfj. (2.24)

There are several combining methods:

• Selection combining: In this method, we choose the finger with the maximum
SNR. If we assume for all fingers the noise terms are i.i.d. with zero mean and
variance σ2, then

f = mβi + n′i for a specific i (2.25)

and the output SNR for this method is

SNR =
|m|2|βmax|2

σ2
(2.26)

• Equal gain combining (EGC): As it is apparent from its name, in this method
we combine fingers with equal weights. So we have

f = λm
M∑
j=1

βj + λ
M∑
j=1

n′j (2.27)
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and the SNR is

SNR =
|λ|2|m|2

∣∣∣∑M
j=1 βj

∣∣∣2
|λ|2Mσ2

=
|m|2

∣∣∣∑M
j=1 βj

∣∣∣2
Mσ2

(2.28)

• Maximum ratio combining (MRC): In this method we choose those weights,
which result in maximization of equivalent SNR. By equation 2.24, the combined
signal is

f = m
M∑
j=1

λjβj +
M∑
j=1

λjn
′
j (2.29)

and the SNR is

SNR =
|m|2

∣∣∣∑M
j=1 λjβj

∣∣∣2
σ2
∑M

j=1 |λj|2
. (2.30)

By the Cauchy-Schwarz inequality∣∣∣ M∑
j=1

λjβj

∣∣∣2 ≤ ( M∑
j=1

|λj|2
)( M∑

j=1

|βj|2
)

(2.31)

and the equality holds when λj is a linear function of β∗j . Back to equation 2.30, we
have

SNR =
|m|2

∣∣∣∑M
j=1 λjβj

∣∣∣2
σ2
∑M

j=1 |λj|2

≤
|m|2

(∑M
j=1 |λj|2

)(∑M
j=1 |βj|2

)
σ2
∑M

j=1 |λj|2

≤
|m|2

(∑M
j=1 |βj|2

)
σ2

(2.32)

and the equality holds if and only if λj is a linear function of β∗j .

For coherent detection with independent branch fading, MRC is the optimal combining
method, but for non-coherent detection EGC is used commonly[20]. In above derivations
we have assumed that only one modulation symbol has been transmitted, however we
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transmit a series of modulation symbols and hence in that case we face to inter-symbol
interference, ISI (in this case we cannot extract m(t) from the integral of equation 2.22).
Beside ISI, we have interference of other users as well. In an attempt to handle both ISI
and interference, the generalized rake receiver (G-rake receiver) was proposed by Bottomly
et al. [43, 2]. In that method, the fingers placement and the combining method is different
than the conventional rake receiver discussed above. In [19] there are several methods for
reducing the complexity of the algorithm of G-rake receiver. The general structure of the
rake receiver has been depicted in Figure 2.11.

s∗(t− τ1)

s∗(t− τ2)

s∗(t− τM)

∫ Ts+τ!
τ1

(.)

∫ Ts+τ2
τ2

(.)

∫ Ts+τM
τM

(.)

Combiner

y(t)

f1

f2

fM

f

Figure 2.11: Rake receiver for just one user

2.5 Spreading applications

The initial applications of spreading were not in multiple accessing, but in military affairs1.
As it is evident in Figure 2.5, the spread signal has a larger bandwidth relative to the
original modulation signal, and for this reason we call this operation “spreading”, as the
bandwidth of the signal is spread.

in equations 2.9 and 2.10, we saw that the spreading signature has a unit energy, thus
the energy of a modulation symbol before and after spreading must be the same. But as
the bandwidth of the spread signal is larger than the bandwidth of the modulation signal,
to have the same integral, it’s power spectral density (PSD) must have a lower amplitude

1Unfortunately, many of the progresses in communication theory are the result of military demands
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relative to the modulation signal’s one. The larger the spreading ratio is, the larger the
bandwidth widening is and hence the lower the amplitude of the PSD will be. It has an
application in the case that we want the signal to be undetectable by unintended receivers.
If the spreading ratio is large enough, then the PSD level of the spread signal will be less
than the ambient noise’s PSD level. Thus only the receiver that has the transmitter’s
spreading signature is able to detect and recover the transmitted data [12]. You must
notice that it is totally different from encrypting the signal. In encryption, we change the
signal in a way that unintended receivers would not be able to extract the data from their
received signal(they detect the signal, but cannot extract information from it). However
by spreading the signal, we can make the signal to be undetectable. It is better visualized
by looking at Figure 2.12.
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Figure 2.12: a spread signal which is undetectable

There are several other applications for spreading. For example it can be used to
mitigate jamming [25] and by changing the structure of the spreading we can have a better
performance in presence of jammers as well[5]. It is also used in spread-spectrum radars,
to estimate the position and velocity of the objects [31].
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Chapter 3

Multiuser Detection

3.1 What is the problem?

The CDMA is so attractive for cellular and personal communications, and it is perhaps
for its potential capacity increasing, and some other factors such as anti-multipath fading
capabilities [28]. However, systems employing CDMA have shown user capacity limit in the
sense that there exists a maximum number of users, that can communicate simultaneously
in the channel. This limitation is due to the interference among users that exists beside
the channel noise [10]. The optimum detector for CDMA systems, is maximum likelihood
sequence estimator. However its complexity arises exponentially with the number of users
and therefore, it is impractical. Matched filtering has a low complexity; however, its
performance is optimum only in the case that there is no interference, and it is very
poor in the case of interfering users. So we must seek a sub-optimum detector with a
lower complexity than the maximum likelihood detector and a better performance than
the matched filtering [9]. As discussed in chapter 2, due to the time offset of users, it is
impossible to have orthogonal signatures, and hence we have interference which we call
multiple access interference(MAI). In equation 2.11, we saw the output of the despreader
is:

ri = mi +
K∑
k=1
k 6=i

(
mk〈sk, si〉

)
+ n′ (3.1)

If we write it in the vector-matrix notation, then

r = m + Ψ + n (3.2)
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which r, m, Ψ and n are the despreader’s output vector, the transmitted vector, the
interference vector and the noise vector respectively and all of them are of size K × 1.
From equation 3.1, we can write the interference vector as:

Ψ = P×m (3.3)

which P is the square matrix of signatures’ inner products of size K2 and

(pi,j) =

{
sj . s∗i i 6= j

0 otherwise
(3.4)

The decoder that makes a decision on the soft output of equation 3.2 is called conven-
tional detector. While the MAI caused by any user is generally small, as the number of
interferes or their power increases, the MAI becomes substantial [23]. Another issue is the
near-far problem. Such a situation arises, when the transmitters have different geographical
locations relative to the receiver. In this case the signal of the closer transmitter undergoes
less amplitude attenuation than the signals of the users that are further away[23, 13]. One
way to remedy this problem is to look at the MAI as another source of noise, and hence
consider the received signal as the output of the despreader in Figure 2.7. However, it
is not optimal as there are some information from other users in the interference term,
which can be used in detection. In addition, if we mitigate the MAI, its power does not
contribute to the noise term, and can improve the performance of the system. So there
have been several efforts to invent methods, to identify the interference term and reduce
its effect.

The joint detection, measures the distance of the received vector to all of the possible
vectors, and selects the most probable one. The problem is that its complexity is expo-
nential with the number of users. Hence several other methods have been investigated,
which can be categorized as linear multiuser detectors and interference cancellation-based
detectors [13]. These methods are discussed in sections 3.2.1 and 3.2.2 respectively.

3.2 Several types of detectors

As mentioned in section 3.1, there have been several efforts in recent years on the methods
for multiuser detection. However, most of the proposed methods can be placed into two
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categories: linear detectors and interference cancelers(IC).

In linear detectors, the output of the despreader in equation 3.2, is multiplied by a
matrix, L, to mitigate the MAI [23]. So the problem is to find the L, which mitigates
the interference relatively. There are several works that deal with this kind of detectors
in different scenarios such as [16, 18, 23]. We will discuss these detectors in section 3.2.1.
The general structure of a linear detector is depicted in Figure 3.1.

∫ Ts
0

(.)

∫ Ts
0

(.)

∫ Ts
0

(.)

Ly

s∗1

s∗2

s∗K

r1

r2

rK

r′1

r′2

r′K

Figure 3.1: linear detector

The linear detectors does not decide on the interference term, but it contains informa-
tion from other users’ transmitted signal. So if make a goof estimation on the interference,
then we can have a better estimation. In this method, after making the decision on the
interference term, we reduce its effect. There are several methods on interference decision
making and the whole process of interference cancellation. Some of these methods can
be found in [37, 28, 35, 29, 22] . There is a thorough discussion on these IC detectors in
section 3.2.2.
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3.2.1 Linear multiuser detectors

By equation 3.2:
r = m + Ψ + n

= m + (Pm) + n

= (IK + P)m + n

= Rm + n

(3.5)

which IK is the identity matrix of size K2. At the receiver side, we have r and we want
to find m which is the transmitted vector and is unknown at the receiver side. If there
was not any MAI, then R = IK and the problem decreases to a single user transmission
over an AWGN channel. However due to the interference, P is not the null matrix. Linear
multiuser detectors, applies a linear transformation on r, to mitigate the effect of P.

Decorrelating detector:

Consider the case that we have only 2 users, and each of them is transmitting 3 modulation
symbols. Figure 3.2 depicts the asynchronous signal transmission for this scenario.
We can do the same thing as we did previously, and to detect the 1st symbol of user 1,

1

2

3

4

5

6

user 1

user 2

Figure 3.2: asynchronous users are transmitting 3 modulation symbols

only use the interference caused by the 1st symbol of user 2 and so one. However, if we look
more precisely, we see that to decode the symbol 1 we need to know the symbol 2, and to
detect the symbol 2, we must detect the symbol 3 (as it has time overlap with the symbol
2), and to detect the symbol 3, we need to know the symbol 4 and so on. Hence, instead of
making decision on a single symbol, it seems to be better if we make a decision on a block
of symbols. As the length of the block increases, we have a more accurate decision on the
symbols. But how can we deal with a block? The scenario in Figure 3.2 is equivalent to
a system, which has 6 users, but only certain users have interference on a specific user.
Indeed in that case, the user 1 has only interference with the user 2 and the user 2 has
interference with the users 1 and 3. So we can use equation 3.5, but now, its interference
matrix, R, is
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R =


1 ρ2,1 0 0 0 0
ρ1,2 1 ρ3,2 0 0 0
0 ρ2,4 1 ρ4,3 0 0
0 0 ρ3,4 1 ρ5,4 0
0 0 0 ρ4,5 1 ρ6,5

0 0 0 0 ρ5,6 1

 (3.6)

which ρi,j is the inner product of the ith user’s signature with the jth user’s one, and is
equivalent to the interference of the user i on the user j. Now if R is nonsingular, then we
can multiply both sides of equation 3.5 by R−1 to have

R−1r = m + R−1n. (3.7)

Indeed, we have assumed L = R−1. As it is apparent from equation 3.7, the output de-
pends only on the transmitted vector, and there is no interference, but the power of the
noise has been changed. Indeed, the power of the noise in (3.7) is always greater than or
equal to the noise power in (3.5). In addition to the noise power enhancement, the output
noise is not white, and we must apply whitening filter to turn it back to a white noise.
The main disadvantage of this method, is the matrix inversion process. Indeed if we are
considering a block of size N , then the size of R is (KN)2 and for large blocks or for the
case that there are a lot of users, the inversion process is so time consuming1[23].

Minimum mean-squared error (MMSE) detector

As we saw, the decorrelating detector does not take into account the noise term, and deals
only with the interference term. So, it is trivial to expect a method that considers both
terms, interference and noise.

From its name, it is apparent that MMSE seeks a matrix L to minimize E
[
|m−Lr|2

]
which E[.] is the expectation operation. For example, in the case of BPSK signal trans-
mission, the expectation value is minimized when we choose L as

1In practice we try to avoid inverting matrices as long as it is possible, especially when the size of
the matrix is so large. The logarithm of the determinant of a random matrix with Bernoulli distributed

elements is about n log (n)
2 when n is large enough [24]. Hence, for example in the case of n = 1000, the

value of the determinant is of order of 101500.
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L =
[
R +

No

2
A−2

]−1

(3.8)

which A is the square diagonal matrix, and (ai,i) is the received amplitude of the BPSK
for ith user [23]. So, in the case that all the users are transmitting 1 or −1 over an AWGN
channel, we have [45]

L =
[
R +

No

2
IK

]−1

(3.9)

As it is clear from equation 3.8, MMSE method considers both the interference and the
noise terms and this is a superiority over the decorrelating detector. However, we still have
to deal with the matrix inversion, which is impractical. If we want to implement MMSE
(or decorrelating detector), we can solve the linear equation(

R +
No

2
A−2

)
m̂ = r (3.10)

by several efficient methods such as LU decomposition, forward elimination and back sub-
stitution [45]. In (3.8), if we let No = 0, then MMSE will reduce to the decorrelating
detector. So although due to the noise term, MMSE detector outperforms decorrelating
detector, but they show a similar behavior at the high SNRs.

3.2.2 Interference cancellation-based(IC) detectors

Interference cancellation detectors’ philosophy, is that after detecting one or some of the
users, we can cancel their effect from the received signal, to have a less interfered signal for
detecting other users. In another way, it will feedback the decision, made on a user or some
of the users, and makes a new decision based on that; so, they are sometimes referred as
decision-feedback detectors [23]. For making decision at different steps, we can use several
methods including decorrelating and MMSE decoders. There are several methods that are
placed in this category.

One of the main drawbacks of this category of detectors, is their sensitivity to the first
step decision. Indeed, if we make a bad decision at the first step, the error will propagate
through the steps, and will worsen the detection. So, we must know that no cancellation
is better than a bad cancellation [23]. Two main methods that are in this category are
successive interference cancellation (SIC) and parallel interference cancellation (PIC).
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Successive interference cancellation (SIC)

In this method, we detect the user among all the users that is more probable to be decoded
correctly. Then reduce its equivalent effect from the received signal, and keep going with
the same procedure for the remaining users. Another approach is to choose a user randomly
and then see if we can decode it correctly or not. If we can, then decode it and (after re-
spreading and impinging by the channel) reduce its effect, otherwise, decode another user
and again return to this user later. If we assume yi is the input signal of the ith stage, then
the diagram of SIC is as Figure 3.3. The flow chart of SIC can be found in [39].

−

stage (i− 1) Choose a user

Decode it

Its effect?

stage (i+ 1)

stage i

yi

yi+1

Figure 3.3: ith stage of SIC

Parallel interference cancellation (PIC)

In contrast to SIC that at each stage we decode only one user, in PIC we decode all the
users simultaneously. Then for all the users, we subtract the effect of others signals from
the received signal, and keep going to the next stage but with taking decision on the new
signals. So after each stage we have a set of K estimations for the K users’ data. It has

28



the same philosophy as Jacobi method for solving a system of linear equations. Given a
system of linear equations, in Jacobi method, we have an initial guess for all the unknowns,
and based on that guess, we continue to make new guesses for all the unknowns. If the
received signal at the antenna’s front end is y, and the signal for detecting the kth user
at the ith stage is yi,k, then the ith stage is as Figure 3.4 [46]. You must notice that we
have subtracted the other users’ effect from the original received signal, not from the signal
estimated at the previous stage. In addition, at the first stage y1,k = y for 1 ≤ k ≤ K.

−

−

−

−

y

yi,1

yi,2

yi,K

Decode user 1

Decode user 2

Decode user K

its effect?

its effect?

its effect?

yi+1,1

yi+1,2

yi+1,K

Figure 3.4: ith stage of PIC

As it was mentioned at the beginning of this section, we must have a good detection
at the first stage to prevent error propagation to the next stages. So, at the first stage,
we can take advantage of several detection methods, which some of them have been dis-
cussed so far. However, we must be careful about it. For example, we cannot use MMSE
detection for all the stages and we can implement it for the first stage only. This is true
since for the next stages, the effect of interference is not the same as the matrix Ψ, and it
has another format1. In addition, we can use soft decisions in middle stages. By this we
mean, instead of approximating users’ signals roughly, we can take the expected value of
the users’ transmitted signals given the received signals. For example, consider the case
that there is a point r, which we want to take decision on. If there are 2 possibilities for
transmitted signal (such as the case in BPSK), as m and m′, then, instead of estimating r
as one of m or m′ based on its distance to these points, we calculate the probabilities that
r is mapped to those points. Then use the expected value point as the approximation for r.

1Remember that we have canceled some interference in previous stages, and Ψ represents the interfer-
ence at the front end of antenna
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There are several papers, dealing with performance comparison of multiuser detection
methods. Each detector performs better than the other one in some specific scenarios.
PIC has this superiority that there is not users’ ordering and all the users benefit from
interference cancellation. But in SIC, for one of the users we cancel the interference of all
other users, and for another one we decide without any interference cancellation [23]; but it
needs less hardware than PIC (lower implementation complexity) [29]. In addition, PIC’s
delay can be smaller than SIC; in SIC we need at least K detection and estimation time
intervals, but as we do this in parallel in PIC, it can take fewer time slots [10]. The PIC
usually operates well in situations, where the users have relatively equal powers, whereas
the SIC is better suited for users with a range of powers (near-far effect) [3].

We can use from the benefits of SIC and PIC simultaneously. In [14], there is a system,
which the users are categorized as high rate and low rate. First, we decode one group
and use PIC for canceling intra-group interference. Then, its effect is canceled (as same as
SIC) for the second group and again we use PIC for the second group. [21] has proposed
a method to mitigate the error propagation through the stages. It has used multi-branch
multi-feedback detection with shadow area constraint1.

1By shadow area constraint we mean the border between decision regions is not a line but an area
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Chapter 4

Some methods to improve the
performance

In chapter 3, we discussed how to resolve the multiuser interference to improve the per-
formance of the system. In addition to those methods, we can do some other things to
improve the performance further more. These methods are not limited to the CDMA case,
and can be used for other scenarios as well. We will discuss these methods in large scale,
and for further details, the reader is directed to some references.

4.1 Space diversity

If the channel parameters can be estimated at the receiver, and if the path gains between
different antenna pairs behave independently, the use of multiple antennas will considerably
increase the achievable rates on the fading channels[34]. The main idea, is the same as two
ears are better than one. If we receive two replicas of a signal in a fading channel, then
if one of the antennas is under a deep fading, there is the possibility to retrieve the signal
via the other one. We can combine the output of the receivers by several methods as the
same as combining fingers of the rake receiver. For example, by MRC, we give a greater
weight to the antenna with a greater channel’s gain.

Example 4.1. There are 2 users, transmitting toward a base station using QPSK mod-
ulation, and no channel coding. The multiple access method is CDMA, and the signature
length is 8. The channels for the users are slow fading Rayleigh distributed, and have
only one tap. There are two different scenarios. First, there is one receive antenna at the
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base station, and in the second scenario there are two antennas with independent paths.
By independent, we mean paths h1, h2, h3 and h4 in Figure 4.1 are independent complex
Gaussian random variables with unit variances and zero means (which results their magni-
tude to be Rayleigh distributed). The receivers are combined by MRC method. The BER
and SER for the two scenarios are shown in Figure 4.2. 4

user 1

user 2

h1

h2

h3

h4

Receiver1

Receiver 2

MRC

Figure 4.1: Example 4.1 scenario: two receivers

Although the example 4.1 describes the uplink system, however we can have a similar
idea for the downlink system, but the problem is the space and the cost limitations. Indeed
we can have several antennas at the base stations, but in the downlink scenario, which users
are receiving the signal via a small device (such as a cell phone), we cannot have several
receiver antennas. This problem was resolved in the seminal paper of Alamouti [1], which
he showed we can have several transmitters instead of receivers and transmit by a simple
technique and have the same performance as the multi-receiver scenario1.

1Before Alamouti, Tarokh et al. proposed the same idea but they used trellis codes, shortly after their
seminal paper [33], Alamouti proposed his method which he used a simple block code in his scheme. For
further and deeper study, look at [42].
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Figure 4.2: SER and BER performance for example 4.1

4.2 Random phase rotation

In a slow fading channel, the rate of the channel changing is low relative to the application1.
So if we transmit several blocks of channel-encoded data over this channel, there is the
possibility that all the transmissions, experience deep fading. It will result a burst error at
the receiver side which can be beyond of the capability of the channel decoder to resolve.
In a fast fading channel, the rate of the channel changing is high, and the symbols which
experience deep fading, are distributed through the whole transmission. Hence the channel
decoder may have the ability to correct them, although the averages of deep faded symbols
are the same for both scenarios. The trade off, is the difficulty in training the channel’s
coefficients. In Figure 4.3 the significant better performance in fast fading channel is clear.
It is for 2 receive chains, QPSK modulation and a (127, 50, 13) BCH encoder.

1A channel can be regarded to be fast fading for a particular application, while is considered slow
fading for another application. So we can not say generally that a channel is fast fading or flat fading[36].
Through the thesis when we say a channel is fast/slow fading, we mean relative to the application we have
that case, but we do not mention that explicitly, unless it may result an ambiguity.
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Figure 4.3: fast and slow fading channels’ performance

Now consider the case that the channel is slow fading. Then, if we make it to show
itself as a fast fading channel, then we can benefit from its better performance. The idea
is to use several antennas and rotate their output randomly and then combine them. Due
to the randomness of the rotations, their combination shows a fast fading behavior. The
more the number of antennas is, the more resemblance to a fast fading Rayleigh channel
is. Although we are using several antennas, however its complexity is not the same as the
concept discussed in section 4.1. Indeed the main cost of decoding is due to the functions
performed in the base-band, but this operation is at RF. So we can have one receive chain,
which has more than one antenna. The scheme is shown in Figure 4.4.

ejφ1

ejφ2 RF 2 BB Decoder

Figure 4.4: Random Phase Rotation
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Note that we can get benefit from the section 4.1 in presence of random phase rotation
as well. Indeed we can have several receive chains, each of them containing several RF
antennas.

4.3 Symbols packing

By using a modulation with more than two symbols, we can transmit several bits in a single
symbol transmission. The idea of symbols packing, is assigning bits to these symbols in
a manner that yields different error probabilities for different bit positions. For example,
consider the 4-ASK modulation as shown in Figure 4.5. As we have 4 symbols, each
symbol represent 2 bits. Now what happens when we assign bits to symbols as in Figure
4.5? Clearly for the first bit, we have a minimum distance that results an error probability
for that position. But after decoding the first bit, we have to decide on the second bit,
given the first bit. So the minimum distance has been increased, and the error probability
for this bit position is less than that for the first one. The correct decision’s probability for
the first and the second bit positions in an AWGN channel is equal to (See appendix B)

Pr(cb1) = 0.5
(

(1− A) +G+ E + F
)

Pr(cb2) = 0.5
(

(1− A) + (1− E)
) (4.1)

which, its parameters are integrals of noise’s Gaussian density function over some specific
intervals shown in Figure 4.6. We have assumed the minimum distance between symbols
in Figure 4.5 is 2d. Note that (1− A) is common in both terms, but

G < C

→ (G+ E + F ) < (C + E + F )︸ ︷︷ ︸
=(1−A)

→ (G+ E + F ) < (1− A)

(4.2)

so we conclude
Pr(cb1) < Pr(cb2). (4.3)

The main property of this method, is treating even and odd bits fairer. Indeed, instead
of using a channel code for the whole input data stream, we can use two channel codes
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with different rates for the input data stream. Indeed, the channel code for odd output
bits, has a lower rate as its error probability is higher than the even bits. So we split the
input data stream in blocks of length k1 + k2 and encode the first k1 bits with a channel
code of rate r1, and the remaining k2 bits with a channel code of rate r2 such that

r1 =
k1

n
, r2 =

k2

n
(4.4)

note that both encoders maps the input blocks into outputs of the same length n. Then we
combine the two encoder’s output bit streams such that one of them (with lower encoder’s
rate) forms the odd bits and the other (higher rate) one, forms the even bits. Thus the
total rate is

ttotal =
k1 + k2

2n
(4.5)

The process is depicted in Figure 4.7.

00 10 01 11

A1 A2 A3 A4

Figure 4.5: A proposed labeling
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−5d −3d −d d 3d 5d

Figure 4.6: Integral intervals for equation 4.1
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k2 bits

n bits

n bits

Figure 4.7: data encoding for a symbols packed scenario
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Chapter 5

Variable and fixed signatures

5.1 Why variable?

In chapter 2, we saw that interference is a function of inner product of users’ signatures.
The greater the absolute value of the inner product is, the greater the interference will be.
Consider the scenario where all the users are transmitting data toward a receiver. After
choosing a signature of a given length randomly, they spread their modulation symbols via
that signature through all of the transmissions. In other words, users will not change the
signatures that they have chosen randomly. Since the selection is random, the signatures
generally will not be orthogonal to each other. The problem that arises in this scenario is
the possibility for two users to choose signatures which are highly correlated. In that case,
they have a significant interference, which is for the whole transmission and diminishes
the performance. This is also the problem when users spread their symbols by a specific
signature for a large number of consecutive modulation symbols. To remedy this issue, we
can use variable spreading code. This means each user chooses a different signature for
each modulation symbol. Then the inner product and hence the interference vary from
symbol to symbol, and there is no burst error due to the high multiuser interference. The
following example clarifies this problem.

Example 5.1. There are two users, transmitting toward a base station. Both of them
use BPSK modulation and a (127, 50, 13) BCH code, for which the error correction ability
of the codeis 13. Each user wants to transmit 1016 bits or equivalently 1016 modulation
symbols via an AWGN channel. Consider two different scenarios as follows:
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a) Both users transmit by fixed signature spreading code, for 100 consecutive symbols.
This means that if they select a signature, then they will spread 100 consecutive mod-
ulation symbols by that signature. Therefor, we have 11 different inner products. If at
least one of the inner products has a magnitude near unity, then the interference is high
and we have errors in 100 consecutive symbols or 100 bits. It is a burst error beyond
the capability of the channel code to correct.

b) Both users transmit by variable signature spreading code. In this case the interference
between users shows a stochastic behavior. In a symbol, due to the great inner product,
we have high interference and in another one, relatively low interference. So, if the ratio
of symbols that are in deep interference is the same as the previous part, then about
100 symbols are in error. However, the difference is that these erroneous symbols are
not clustered; they are distributed through the whole transmission interval, creating
the probability for the channel encoder to correct the erroneous bits.

4

It is clear that both scenarios have the same average symbol error rate. However
as discussed in the example, the distributions of erroneous symbols are different; and by
using a channel encoder, we can have a better performance in the variable scenario. In
another words, the average frame error rate is improved by using a variable signature;
as a distributed error is more tolerable than a burst error. In Figure 5.1, the symbol
error rate and the frame error rate of the example 5.1 are shown. We can see that the
average symbol error rate, as expected, is the same for both cases; however, as we are
using a BCH channel code, it can correct some of the errors, and will result performance
improvement in the variable signature case. As seen in Figure 5.1, this special case has
an error floor for fixed spreading. We have used the conventional detector for this example.

5.2 Simulation and results

First, consider we are transmitting through an AWGN channel, and the parameters of the
system are as Table 5.1. We assume the users are synchronous.
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Figure 5.1: FER and SER for example 5.1

Table 5.1: AWGN channel parameters

no. of users 3
spreading ratio 8 , 16
signature type normalized energy–complex

modulation 16-QAM
Average symbol’s power 1

no. of receive chains 2
combining method MRC

The interference of the users is related to the inner product of their signatures. Partic-
ularly, the interference of the jth user over the ith user in a conventional detection scheme
will be

σj,i = 〈sj, si〉dj (5.1)

We have assumed that the receive antennas have the same noise level with 2D power
spectral density No. Then, as the noises of the antennas are independent, and we are
combining the two antennas with MRC method (as the channels are AWGN, the coefficient
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for both antennas is 0.5 which is similar to EGC), the equivalent noise’s power spectral
density will be No

2
. Since, the users are independent, and we have 2 interferes for each

transmitter; so the average of interference power is

E[I2] = 2E[σ2] (5.2)

where E[σ2] is the variance of the inner product between two signatures. For different
spreading ratios, E[σ2] is represented in Table 5.2.

Table 5.2: interference variance for different spreading ratios

G E[σ2] Eb/No limit (dB)
4 0.2507 −3.0224
8 0.1259 −0.0312
16 0.0635 2.9414
32 0.0323 5.8819
64 0.0166 8.7680
128 0.0088 11.5268

So we see by doubling the spreading ratio, the average of interference power will be
halved. Then the SINR is equivalent to

SINR =
1

2E[σ2] + No

2

(5.3)

and when the noise level is so small, the equivalent Eb

No
is

Eb
No

= lim
No→0

1
4

2E[σ2] + No

2

=
1

8E[σ2]
(5.4)

Its value for different values of spreading ratio is shown in Table 5.2 as well. The uncoded
BER for spreading ratios of 8 and 16, and for the case where there is only one user
transmitting over an AWGN channel, is shown in Figure 5.2. As can be seen, we have
error floors at high SNRs, which is exactly equivalent to the BER value of single user at
Eb

No
specified in Table 5.2.
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Figure 5.2: uncoded BER for AWGN channel, single user and multiuser

So our designed system is correct. In addition, in a Rayleigh fading scenario, the
performance becomes worse. So we cannot have a good performance by using a typical
block code, like BCH. In Figure 5.3, the uncoded BER performance of fixed and variable
spreading for G = 8 is shown.
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Figure 5.3: Uncoded BER performance of fixed and variable spreading in fading channel

As it is apparent from this figure, the average uncoded BERs for both scenarios are
the same. However as variable spreading will distribute high interference errors among all
the symbols (in contrast to fixed spreading, where we have a cluster of symbols in deep
interference), we achieve performance improvement by using an error correction code. By
using a very low rate BCH (511, 10, 121) code, the frame error rate performance for the
spreading ratios of 8, 16, 32, 64 and 128 is as seen in Figures 5.4 to 5.8 respectively. As is
apparent from these figures, the variable signature scenario has a significant improvement
as it has a lower error floor than the fixed signature scenario. Figure 5.9, depicts the
uncoded BER performance of the system over a single tap Rayleigh fading channel. All
the cases in that figure, have two receive chains. In the fading channel case, the calculation
of the average interference power is not as easy as the AWGN channel. For example, in
this specific case, the interference term of users 2 and 3 over first user is as follows:

i1 = σ2,1
h2

h1

+ σ3,1
h3

h1

(5.5)
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Figure 5.7: FER performance of BCH code with rate of 10
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Figure 5.8: FER performance of BCH code with rate of 10
511

for G = 128
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Figure 5.9: Uncoded BER for Rayleigh fading channel and 2 receive chains
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Let’s consider the performance improvement by using a Turbo code. As implementing
this code is time consuming, we have assumed that the system will result an acceptable
frame error rate at 1.5 dB greater than the Shannon’s SNR, which is reasonable due to [4].
So, we have the following figures for outage probabilities. The graphs have been obtained
by comparing the SINR for each user right before the channel decoder’s input. If it is
greater than a threshold, we can decode it correctly and if it is less than that threshold,
we have an error. The only factor that makes difference in the decoder’s input SINR of
both the variable and the fixed scenarios, is the inner product of signatures. Indeed, in
fixed spreading, this SINR is a function of inner product of signatures and the channel
coefficients, but in variable spreading, as we are changing the signature from a modulation
symbol to another, it is not a function of inner products and just a function of channel
coefficients1. It is clear that, by increasing the spectral efficiency, the frame error rate of a
given system deteriorates, and hence at a given received SNR, the outage probability will
decrease. Figures 5.10 to 5.14 are for decoder’s input SINRs of 1.5, 2, 2.5, 3 and 3.5 dB
respectively.
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1Indeed in its equation we have the average of inner products
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5.3 Does variable spreading always outperform the

fixed spreading?

By looking at Figures 5.10 to 5.14, we could conclude that variable signature code scenario
always outperforms the fixed signature one; however, this is not true. Indeed, if we sketch
the outage figures for a larger range of probabilities, we have performances described in
Figures 5.15 to 5.17. As we see, there is the possibility for fixed spreading to be better in
low SNRs. Even with high rate channel codes, the fixed spreading can act better for the
whole range of SNR interval. But what is the reason for this behavior? Let’s look back
to the procedure of outage calculating. For a given received SNR, we see what will be
the SINR right before the channel decoder. The SINR is a random variable, that depends
on the channel coefficients and the inner product of users’ signatures and noise power.
In variable spreading the SINR is a function of average inner product of users, but in
fixed spreading, it is a function of instantaneous inner products. More specifically, the
summation of noise and interference for the fixed and variable spreading is

zvarj = zfixj = ij + nj =
∑
k 6=j

〈sk, sj〉dk
hk
hj

+ 〈n, sj〉
1

hj
(5.6)

where, 〈sk, sj〉 is a random variable for variable spreading in contrast to fixed spreading,
which is a fixed number, as each user selects their signature. So its power for a single path
slow fading channel is

E[Z2] =
1

|hj|2
×
(∑
k 6=j

E[σ2
k,j]|hk|2 +

No

2

)
(5.7)

for variable spreading and

E[Z2] =
1

|hj|2
×
(∑
k 6=j

σ2
k,j|hk|2 +

No

2

)
(5.8)

for fixed spreading. The channel coefficients come outside the expected value operation,
as we have assumed for each running, the channel coefficients are fixed through the all the
transmissions1. The SINR at the input of the channel decoder is

SINR =
1

E[Z2]
. (5.9)

1but you should notice the channel coefficients for different users are different, and they vary from one
MATLAB running to another
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The SINR at 5.9 denoted by Λ is a random variable. This is due to the randomness of the
channel and the inner product of the signatures.

Figure 5.18 illustrates the mean and the variance of fixed and variable spreading SINR
for different received SNRs. From equations 5.7 and 5.8, we expect their means to be equal
to each other. It can be seen in Figure 5.18; however, the variance of SINR for the fixed
spreading is considerably larger than the variable case.

We are interested that the SINR at the input of channel decoder be greater than a
threshold, denoted by η. In mathematical representation, we want to find Pr(Λ ≥ η).

Figure 5.19 is the probability density function of Λ, for received SNR= 31 dB. As it
is apparent, it behaves nearly as a Gaussian distributed random variable. Let µ and ξ2

represents the mean and the variance of Λ, hence

Pr(Λ ≥ η) = Pr
(Λ− µ

ξ
≥ η − µ

ξ

)
=

{
Q(η−µ

ξ
) η ≥ µ

1−Q(µ−η
ξ

) η < µ

(5.10)

For a chosen η, if it is less than the mean of SINR for a specific received SNR, then the
probability of the ability to decode the received signal is 1−Q(µ−η

ξ
), which becomes larger

as ξ decreases, hence in this case, the variable spreading is better than the fixed spreading.
But if the chosen η is larger than µ, then the probability of the decoding ability is Q(η−µ

ξ
),

which becomes larger as ξ increases; hence, in this case fixed spreading is better than
variable spreading.

We saw variable spreading does not outperform the fixed scenario in all circumstances,
and it depends on the threshold SNR of our channel code. If the number of users becomes
larger, then the mean of SINR decreases, and for a specific channel code, there is the
possibility that fixed spreading play a better role than variable spreading. It is shown
in Figure 5.26. In another hand, for a given number of users and hence a given µ, by
decreasing the channel code’s rate, we are decreasing its threshold SNR, and hence we can
see a better performance by employing variable spreading. Note that the PDF in Figure
5.19 is not Gaussian and we have assumed it to be Gaussian; hence, we see the outage
probability, in the case that fixed spreading is better, is not bounded by 0.5 (the maximum
of Q function), but we can say generally that the two outage probabilities will intersect at
the point, where the cumulative distribution functions(CDF) of Λfix and Λvar are equal.
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5.4 The effect of the number of users and the spread-

ing factor

Till now, we considered the case that there are 3 users in the system, and we changed the
spreading ratio. Now let us change the number of users and the spreading ratio simultane-
ously, and see different behaviors. Indeed, we are interested in seeing the performance of
the system in accordance with k

G
, which is the ratio of the number of users to the spreading

factor. For example, what happens if we increase the users and spreading factor simultane-
ously, such that their ratio remains the same. As it is apparent from Figures 5.20 to 5.23,
for a given k

G
, by increasing the number of users (or equivalently the spreading factor), the

outage probability will deteriorate. For the AWGN channel, the mathematical description
is easy. As we saw in Table 5.2, by increasing the spreading ratio by a factor of m, the
inner product’s mean square will be divided by m and the total interference power will be

It = (mk − 1)
σ2

m
= kσ2 − σ2

m
(5.11)
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and by increasing the spreading factor, the total interference will increase; thus, the per-
formance of the system will deteriorate.

It is clear, for a given number of users, by increasing the spreading factor, the perfor-
mance will improve; but the trade off is in losing the spectral efficiency. As we can see in
Figure 5.24, by increasing the spreading ratio for a given number of users, the performance
of fixed and variable signature spreading will merge into each other. It is reasonable, as
by increasing the spreading factor, the inner product of users’ signatures will be smaller
with higher probability. So there will be no benefit in using variable signature spreading
in the case that the spreading factor is large enough. For the case of k

G
= 3

64
, the outage

probability has been magnified in Figure 5.25.

Until now we considered two different cases: first, we fixed k
G

and increased the number
of users and the spreading factor with the same ratio, and we saw its effect. Then we fixed
the number of users and increased the spreading factor and saw its effect as well. Now what
if we fix the spreading factor and increase the number of users. The answer is evident, by
increasing the number of users for a given spreading factor, we are increasing interference
on each user, so the performance will deteriorate. Figure 5.26 shows the performance for
the case that G = 16. As we see in that figure, by increasing the number of users, there
is the possibility that fixed spreading outperforms variable spreading. In Figure 5.26, for
3 and 6 users, the variable is better, for 9 users they do not differ significantly and for 12
users, fixed spreading is better.
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Chapter 6

Fixed and variable SCMA

6.1 What is SCMA?

There is a type of spreading, which each user has N available resources to transmit each
modulation symbol, but they will use just K of those N resources, and the remaining re-
sources are set to be zero. In the case that K << N , we have low density spreading (LDS)
[8]. The main property of this scheme is in multiuser detection. There are several methods
with low complexity that can be accomplished for the case of sparsity of the signatures,
such as factor graphs. If we define the number of users to the number of available resources
as the loading factor and denote it by λ, then the LDS system has nearly a single user
performance for λ = 2 [30].

There is another approach in spreading, which we combine the modulation and the
spreading together and the bits are directly mapped to a multidimensional codeword. This
scheme, known as sparse code multiple access (SCMA) benefits from the shaping gain of
the code structure. In addition, due to the sparsity of the codes, it can have a low-complex
receiver as well [26].

Suppose there are J users in the system, each one chooses K resources from N available
resources in each transmission. Suppose each user has M codewords, and hence in each
mapping, they will map log2M bits into a sequence of M complex numbers. The procedure
is as follows [32].

• let b be a length log(M) bit stream
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• g(b) maps b into a complex string of length K

• V× g(b) inserts N −K zeros into the above string

There are J users, and each one transmits m packages of SCMA. Suppose we are using a
channel code of length Nc = mK and it can correct upto t errors in its block. The resource
which is in common with at least two users is considered to be in error. Let summarize
the parameters in a table.

Table 6.1: Parameters and their descriptions

parameter description
N total resources per SCMA package
K used resources per SCMA package per user
J number of users
m number of transmitted SCMA package per user
M cardinality of the range of the function g
Nc the channel code’s block length equal to mK
t the channel code can correct upto t errors in its block

Ψe number of collided resources in a SCMA package
Ψc number of correct resources in a SCMA package
Ω number of collided resources in m SCMA blocks

Now we want to compare the performance of the variable and the fixed SCMA from
FER and maximum achievable rate aspects.

6.2 variable SCMA

In this case we are changing the V matrix for each SCMA package. In another words, we
are changing the position of selected resources from package transmission to transmission.
Let us denote the number of collided and correct resources for a transmitted package for a
specific user by Ψe and Ψc respectively.

We want to find Pr(Ψe = l) = Pr(Ψc = K − l). which l = 0, 1, . . . K. For this aim,

consider the simple case of l = 0. Then Pr(Ψc = K) =
(N−K

K )
J−1

(N
K)

J−1 as the remaining users
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cannot choose those K resources which the first user has selected. Now let us calculate
Pr(Ψc = K−1). It means there is one resource in collision and the remaining resources are
received without any collision. Hence there are

(
K
1

)
choices for the collided resource. As the

remaining K − 1 resources are error free, then the other users must choose their resources

from the remaining N − (K − 1) resources and there are
(
N−K+1

K

)J−1
combinations. But

among the selections are those which yield no collision with that chosen erroneous resource.

Hence we must reduce them from the possible selections.
(
N−K
K

)J−1
different choices exits

for such a selection. So there are
(
N−K+1

K

)J−1 −
(
N−K
K

)J−1
correct selections and thus

Pr(Ψc = K − 1) =

(
K

1

)(N−K+1
K

)J−1 −
(
N−K
K

)J−1(
N
K

)J−1
(6.1)

What does the solution look like when there are K − 2 correct resources. In that case we
can choose which two resources are erroneous and thus we have

(
K
2

)
difference cases. After

selection of the erroneous resources, the remaining users must choose between N − (K−2)

resources which are totally
(
N−K+2

K

)J−1
different selections. But among them are those

which either one of the erroneous resources are error free and hence we must reduce their
effect. They are equal to

(
2
1

)(
N−K+1

K

)J−1
different choices. But we should notice that we

have reduced the case that there is no erroneous resource twice. Hence we should add it
up. So there are totally

(
2
0

)(
N−K+2

K

)J−1−
(

2
1

)(
N−K+1

K

)J−1
+
(

2
2

)(
N−K
K

)J−1
valid selection for

the remaining users and hence

Pr(Ψc = K − 2) =

(
K

2

)(2
0

)(
N−K+2

K

)J−1 −
(

2
1

)(
N−K+1

K

)J−1
+
(

2
2

)(
N−K
K

)J−1(
N
K

)J−1
. (6.2)

By the same procedure and using the inclusion-exclusion principle, we can say

Pr(Ψc = η) =

(
K

η

)K−η∑
i=0

(−1)i
(
K−η
i

)(
N−η−i
K

)J−1

(
N
K

)J−1
(6.3)

and if we let η = K − l then

Pr(Ψe = l) =

(
K

l

) l∑
i=0

(−1)i
(
l
i

)(
N−K+l−i

K

)J−1

(
N
K

)J−1
(6.4)
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Equation 6.4 is for the error in a single SCMA package, but users are transmitting
m consecutive packages which make the channel code’s block. What will be the error
distribution for the channel code’s block length? Let Xi denote the number of erroneous
resources in the ith SCMA block. Then we want to find the probability that

∑m
i=1Xi = ζ

subject to this condition that Xi ≤ K for i = 1, 2, . . . ,m. How many combinations do exit
that satisfy the above conditions? To answer this question let’s look at a simpler problem.

Suppose there are m different boxes and ζ same apples. How many combinations exist?
We can denote the m boxes with m− 1 vertical lines like | and the ζ apples by ζstars like
?. Then each combination of apples and boxes is equivalent to a specific combination of
those lines and stars. For example if there are three different boxes and five same apples,
then the combination which there is one apple in the first box, two apples in the second
and the third boxes can be represented as

?| ? ?| ? ?

and if there are two apples in the first box and three apples in the third one, this is
equivalent to

? ? || ? ??

So as there are
(
ζ+m−1

ζ

)
combinations for stars and lines, we conclude there are

(
ζ+m−1

ζ

)
different solution for

∑m
i=1Xi = ζ, subject to this condition that all the variables are

non-negative.

Let us return to our question. We want to find the number of solutions for
∑m

i=1 Xi = ζ
given that the variables are non-negative and less than or equal to K. Let χi = K −Xi,
then any solution to

∑m
i=1Xi = ζ by the mentioned conditions is equivalent to a solution to

the equation
∑m

i=1 χi = mK−ζ subject to the non-negative variables and vice versa. Hence

there are totally
(
m(K+1)−ζ−1

m−1

)
different combinations for the errors in the m consecutive

SCMA package witch their errors add up to ζ. If we denote the number of erroneous
resources in m consecutive SCMA blocks by Ω, by using equation 6.4, we have

Pr(Ω = ζ) =

∑
l1,l2,...,lm

l1+l2+...+lm=ζ

(
m∏
i=1

(
K

li

) lm∑
im=0

lm−1∑
im−1=0

. . .
l1∑

i1=0

(−1)i1+...+im
m∏
j=1

(
lj
ij

)(
N−K+lj−ij

K

)J−1

(
N
K

)m(J−1)

)
(6.5)

63



for ζ = 0, . . . ,mK and 0 elsewhere. Let us see the validity of 6.5 in some simple examples.

Example 6.1. If Ω = 0, it means there is no error in the block and hence for all the m
packages, the other J − 1 users have selected their K resources from the remaining N −K
resources. Hence the probability is

Pr(Ω = 0) =

(
N−K
K

)m(J−1)(
N
K

)m(J−1)
. (6.6)

Now look at the equation 6.5. There is only one combination for (l1, l2, . . . , lm) that results
l1 + l2 + . . . + lm = 0 and that is (l1, l2, . . . , lm) = (0, 0, . . . , 0). So

(
K
li

)
= 0 and for the

summations in the numerator of the equation 6.5, ij = 0. So we have

Pr(Ω = 0) =

m∏
j=0

(
lj
ij

)(
N−K+lj−ij

K

)J−1

(
N
K

)m(J−1)

=

(
N−K
K

)m(J−1)(
N
K

)m(J−1)
.

(6.7)

Note that 0! = 1. 4

Example 6.2. Consider the case that Ω = 1, so there is only one error in the whole block.
How many combinations do exist with just one error? We are transmitting m packages
and the error is in one of them. There are

(
m
1

)
choices for the collided package. In addition

just one resource is collided within that package. There are
(
K
1

)
choices for the erroneous

resource. Till now we have
(
m
1

)(
K
1

)
different combinations. For the packages other than the

selected collided one, the other users must choose their resources among N −K available

resources and hence
(
N−K
K

)(m−1)(J−1)
different combinations exist. For the collided package,

at least one user must use the selected resource, and there are
(
N−K+1

K

)J−1 −
(
N−K
K

)J−1

possible event. In the first term,
(
N−K+1

K

)J−1
, users are allowed to choose among N−K+1

resources which the added resource is the collided one. Then we have subtracted all the
choices which the other users do not choose that erroneous resource at all. So the total
number of possibilities is(

m

1

)(
K

1

)(
N −K
K

)(m−1)(J−1)((
N −K + 1

K

)J−1

−
(
N −K
K

)J−1)
. (6.8)
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Now let’s calculate the numerator of 6.5. There are m different solutions for l1 + l2 + . . .+
lm = 1 and they are of the form lr = 1 and lr′ = 0 which r′ are packages other than rth

package. Due to the symmetry we consider just l1 = 1 and then multiply the solution by
m. Then the numerator is

m

(
K

1

)((
N −K + 1

K

)J−1(
N −K
K

)(m−1)(J−1)

−
(
N −K
K

)m(J−1)
)

(6.9)

which is exactly equal to the term calculated directly. 4

6.3 fixed SCMA

If we use a fixed V for transmitting all the m SCMA packages, then the collisions for the
rest of the packages are the same as the first one. The probability distribution function
for the erroneous resources in the first block is the same as equation 6.4, so in this case we
have

Pr(Ω = ζ) =


(
K
r

) r∑
i=0

(−1)i(r
i)(

N−K+r−i
K )

J−1

(N
K)

J−1 ζ = rm, r = 0, . . . , K

0 otherwise

(6.10)

6.4 Comparison

As the distribution of the erroneous resources for the first block of fixed and variable SCMA
is the same, we can say the average of collided resources are the same for both scenarios.
But as the distributions of the errors are different, we expect there is a difference in the
performance when we use a channel code.

The channel decoder’s error probability is equivalent to the probability that there are
more than t collided resources in the m consecutive SCMA blocks. So generally we can say

Pr(error) = Pr(Ω ≥ t). (6.11)

It is difficult to calculate the error probability from 6.11 for the variable case. However if
we assume the length of the codewords is long enough, due to the law of large numbers, we
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can say with high probability we have mΨe erroneous resources in the whole block, which
Ψe denotes the expected value of resources in error in a single SCMA package. Indeed

lim
m→∞

Pr(|Ω
m
−Ψe| > ε) = 0 (6.12)

For fixed SCMA, the probability of error is

Pr(Ω ≥ t) =
mK∑
ζ=t+1

Pr(Ω = ζ)

=
mK∑

ζ=d t
m
e

Pr(Ω = ζ)

=
K∑

r=d t
m
e

(
K

r

) r∑
i=0

(−1)i
(
r
i

)(
N−K+r−i

K

)J−1

(
N
K

)J−1

(6.13)

This term is difficult for simplification as well. Let Pe denote the error probability for the
fixed SCMA, calculated in 6.13.

For enough large value of m, there are about mΨe erroneous resources with any desired
high probability. So if mΨe ≤ t, we can correct it by the channel decoder, otherwise we
have an error. So if mΨe ≤ t, we have no error for variable SCMA, but it is the case with
probability 1− Pe for the fixed case. Hence in this scenario, the variable one outperforms
the fixed SCMA. In contrast, when mΨe ≥ t, we have error with high probability for the
variable SCMA, but it is the case for the fixed SCMA with probability Pe. Indeed in this
scenario, the fixed SCMA outperforms the variable one.

Note that in equation 6.4,
(
N−K+l−i

K

)
≤
(
N
K

)
, and they are equal to each other only when

l = K and i = 0. So by increasing the number of users, we are increasing the probability
of l = K (all the resources are in error) and hence the Ψe increases (tends to K). It is
expectable as by increasing the number of users, we are increasing collision and hence we
expect the average number of collided resources to be increased. So for a given channel
code (fixed t), by increasing the number of users there is the possibility that mΨe ≥ t. In
that case we have error for variable SCMA with high probability (which goes toward 1 by
increasing m). But for fixed spreading we can correct it by the probability 1− Pe. So we
see the fixed spreading is better in this case.
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6.5 Simulation

Now let’s see some examples to verify the conclusions obtained in section 6.4. The CDF
and the PDF plots of both scenarios for m = 1000 are shown in Figures 6.1 and 6.2. As we
see, the variable SCMA has a smooth PDF(although it is discrete) and the fixed SCMA
has an step behavior. These steps are due to the ceiling function in 6.13. The amplitude
of the PDF of the variable SCMA is much lower than the fixed scenario’s one. It has been
depicted separately both in a linear and logarithmic y axis in Figures 6.3 and 6.4.

We saw for a fixed number of users, by decreasing the channel encoder’s rate (which is
equivalent to increasing the error correction ability), then it is more probable that variable
SCMA outperforms the fixed SCMA. This can be seen in Figures 6.5 to 6.7. Note that
in these figures, the variable SCMA behaves impulsively. This is due to this reason that
the number of erroneous resources in the variable SCMA in a sufficient large number of
consecutive SCMA packages is a fix number. So there is a specific rate, which we can
correct the whole block with high probability (ideally 1) for encoders of lower rates, and
we have error for encoders of higher rates. In addition as it is apparent in these figures, the
fixed SCMA behaves as several steps. This can be justified by equation 6.13. As you can
see, the lower limit of the summation has a ceiling function. Indeed the error probabilities
for all values of t which are between two consecutive multiples of m are the same. In this
example as the block length ismK = 3000 andm = 1000, we have three steps in each figure.

In figures 6.8 to 6.12, the effect of number of users is shown. As it is apparent, by
increasing the channel code’s correction ability, the variable SCMA can outperform the
fixed one. This is compatible with the conclusion in section 6.4.

Now let us focus more on the lower FERs as we want it to be as small as possible.
Tables 6.2 and 6.3 describe the FER for m = 1000 for different number of users, J , and
different error correction abilities, t. As it is apparent from the tables, fixed SCMA shows
a step-like behavior and it is not important for the fixed scenario that the error correction
ability is 1 or 999. In addition, the impulsive behavior of the variable spreading is clear as
well. As we see for a fixed number of users, before a threshold, the FER is nearly 1 and
after that it falls suddenly to 0. It is clear that by decreasing the number of transmitted
packages, m, the variable behavior becomes smoother.

As we see in Tables 6.2 and 6.3, for high rate codes that the error correction ability
of the code is low, the fixed SCMA is better, but for low rate channel codes, the variable
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outperforms the fixed scenario. It is compatible with the theoritical derivations discussed
so far. It is notable that these tables have been obtained by one million runnings, so each
0 entry1 of them is equivalent to a FER of less than 10−6.

Table 6.2: FER for fixed SCMA for m = 1000, K = 3 and N = 64

J = 2 J = 3 J = 4 J = 5
t = 100 0.1322 0.2476 0.3459 0.4325
t = 200 0.1322 0.2476 0.3459 0.4325
t = 300 0.1322 0.2476 0.3459 0.4325
t = 400 0.1322 0.2476 0.3459 0.4325
t = 500 0.1322 0.2476 0.3459 0.4325
t = 600 0.1322 0.2476 0.3459 0.4325
t = 700 0.1322 0.2476 0.3459 0.4325
t = 800 0.1322 0.2476 0.3459 0.4325
t = 900 0.1322 0.2476 0.3459 0.4325
t = 1000 0.0062 0.0231 0.0479 0.0792
t = 1100 0.0062 0.0231 0.0479 0.0792
t = 1200 0.0062 0.0231 0.0479 0.0792
t = 1300 0.0062 0.0231 0.0479 0.0792
t = 1400 0.0062 0.0231 0.0479 0.0792
t = 1500 0.0062 0.0231 0.0479 0.0792
t = 1600 0.0062 0.0231 0.0479 0.0792
t = 1700 0.0062 0.0231 0.0479 0.0792
t = 1800 0.0062 0.0231 0.0479 0.0792
t = 1900 0.0062 0.0231 0.0479 0.0792
t = 2000 0.0001 0.0007 0.0023 0.0053

1note that we said 0, not 0.0000
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Table 6.3: FER for variable SCMA for m = 1000, K = 3 and N = 64

J = 2 J = 3 J = 4 J = 5
t = 100 0.9997 1.0000 1.0000 1.0000
t = 200 0 1.0000 1.0000 1.0000
t = 300 0 0.0294 1.0000 1.00000
t = 400 0 0 0.4109 1.0000
t = 500 0 0 0 0.7810
t = 600 0 0 0 0.0000
t = 700 0 0 0 0
t = 800 0 0 0 0
t = 900 0 0 0 0
t = 1000 0 0 0 0
t = 1100 0 0 0 0
t = 1200 0 0 0 0
t = 1300 0 0 0 0
t = 1400 0 0 0 0
t = 1500 0 0 0 0
t = 1600 0 0 0 0
t = 1700 0 0 0 0
t = 1800 0 0 0 0
t = 1900 0 0 0 0
t = 2000 0 0 0 0
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Figure 6.1: CDF for N = 64, K = 3 and J = 15
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Figure 6.2: PDF for N = 64, K = 3 and J = 15
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Figure 6.3: magnified PDF for variable SCMA for N = 64, K = 3 and J = 15
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Figure 6.4: PDF for variable SCMA for N = 64, K = 3 and J = 15
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Figure 6.5: FER for N = 64, K = 3 and J = 10
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Figure 6.6: FER for N = 64, K = 3 and J = 30
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Figure 6.7: FER for N = 64, K = 3 and J = 50
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Figure 6.8: FER for N = 64, K = 3 and t = 500
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Figure 6.9: FER for N = 64, K = 3 and t = 1000
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Figure 6.10: FER for N = 64, K = 3 and t = 1500
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Figure 6.11: FER for N = 64, K = 3 and t = 2000
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Figure 6.12: FER for N = 64, K = 3 and t = 2500

6.6 Rate comparison

In this section we want to compare the maximum achievable rates in fixed and variable
scenarios.

6.6.1 Variable SCMA

By increasing the number of blocks in the variable SCMA scenario, we can find the achiev-
able rate for each user. Indeed we have assumed the number of users and the available
resources are fixed to specific J and N , and we want to see what is the best choice for K.
If there is no channel encoder, then in a single user scenario, we can send log{M

(
N
K

)
} bits

via a single SCMA package, in which M is the cardinality of the range of the function g.
It is true as in the variable case we can have a specific g for each matrix V and hence we
can achieve such a rate. It is maximum for dN

2
e. But as there are other users, transmitting

toward a base station, collision is unavoidable. Hence we must use a channel encoder. In
that case the effective rate is r log{M

(
N
K

)
} bits per SCMA package, which r is the channel
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code’s rate.

By using a channel code, we cannot say the maximum rate is for K = dN
2
e, as by

increasing K, the collision increases and hence the channel code’s rate decreases. So we
must find an optimum K.

In variable case, by increasing the number of SCMA packages, m, there are mΨe erro-
neous resources with high probability1. Let us denote the channel code’s error correction
ability for a code of length mK by tm. So to correct the errors, tm ≥ mΨe. We choose
the minimum tm as it will increase the channel code’s rate. So let tm = mΨe. As the RS
codes are MDS, for a specific code’s length and error correction ability, the maximum rate
is achieved by them. Hence

tm = Nc −Kc + 1 = mK −Kc + 1⇒ mΨe = mK −Kc + 1. (6.14)

By dividing both sides by the block length, we have

Ψe

K
= 1− r +

1

mK
, (6.15)

so

r =
m(K −Ψe) + 1

mK
(6.16)

and by taking the limit, when m is so large we have

r =
K −Ψe

K
. (6.17)

Till now we know the effective rate for a user is

R = r log

{
M

(
N

K

)}
=
K −Ψe

K
log

{
M

(
N

K

)}
. (6.18)

Let us find Ψe to find an equation explicitly as a function of K. By using 6.4, it is easily
seen that

Ψe

K
=

K∑
l=1

(
K − 1

l − 1

) l∑
i=0

(−1)i
(
l
i

)(
N−K+l−i

K

)J−1

(
N
K

)J−1
(6.19)

1which goes toward 1 by increasing m
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and hence the effective rate is

R =

{
1−

K∑
l=1

(
K − 1

l − 1

) l∑
i=0

(−1)i
(
l
i

)(
N−K+l−i

K

)J−1

(
N
K

)J−1

}
log

{
M

(
N

K

)}
. (6.20)

Now the problem turns into a combinatorial optimization which is difficult to solve gen-
erally. For N = 64, M = 16 and different number of users, the rates for different K are
depicted in Figures 6.13 to 6.19. As it is apparent, for J = 1, the rate for each K is equal
to log

{
M
(
N
K

)}
as there is no collision.
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Figure 6.13: Rate for J = 1, M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.14: Rate for J = 2, M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.15: Rate for J = 5, M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.16: Rate of J = 10, M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.17: Rate of J = 15 , M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.18: Rate of J = 25, M = 16, N = 64 and variable SCMA per transmitter
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Figure 6.19: Rate of J = 40 , M = 16, N = 64 and variable SCMA per transmitter
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6.6.2 Fixed SCMA

The PDF of the number of erroneous resources in fixed SCMA, is discrete with K + 1
points and the probabilities are independent from m. In other words, for two different
m1 and m2, the probabilities of rm1 collisions in the first case, and rm2 collisions in the
second case are the same. So even for large values of m, with a nonzero probability1, all
the resources are in error. So we cannot talk about rate2. In this case we talk about outage
rate, which means we want to find the rate which yields a maximum frame error rate of α.
So we are interested in Pr(Ω ≥ tm) ≤ α. If we denote the CDF function of the number of
erroneous resources in just a single SCMA package by F , then

Pr(
Ω

m
≥ tm
m

) = 1− F (
tm
m

) ≤ α⇒

F (
tm
m

) ≥ 1− α.
(6.21)

Let us denote the minimum tm that satisfies 6.21 by t? = r?m. By using an MDS code like
RS, the rate of the channel code is

r = 1− t? − 1

mK
= 1− r?m− 1

mK
. (6.22)

The main difference in the fixed scenario with the variable one is that we have not
log
{
M
(
N
K

)}
bits for each transmission. Indeed for the first transmission we have M

(
N
K

)
choices, but as we aredealing with the fixed scenario, for the remaining m − 1 transmis-
sions, we have just M different symbols. So in the whole m packages we are transmitting
log
{
M
(
N
K

)}
+ (m− 1) logM bits. So the rate is

R =

(
1− r?m− 1

mK

)
×

log
{
M
(
N
K

)}
+ (m− 1) logM

m
(6.23)

bits per SCMA package. For large values of m, the rate is

R =

(
1− r?

K

)
logM. (6.24)

Optimizing 6.24 is more difficulte than the variable case as we must find the suitable tm
that satisfies the error condition. In Figures 6.20 to 6.23, the rates for different values of K

1which is independent of m
2as the error probability is not zero for all the rates
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are depicted. The fixed SCMA does not show a smooth behavior as the variable case. The
points which the rate is equal to zero are those which the probability of having the whole
resources in collision is greater than α = 0.01. As it is apparent from 6.24, the maximum
rate for the fixed scenario is logM bits per SCMA package. So in this case that M = 16,
the maximum rate is 4.
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Figure 6.20: Rate of (J,M,N, α) = (1, 16, 64, 0.01) for fixed SCMA per user
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Figure 6.21: Rate of (J,M,N, α) = (2, 16, 64, 0.01) for fixed SCMA per user
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Figure 6.22: Rate of (J,M,N, α) = (5, 16, 64, 0.01) for fixed SCMA per user
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Figure 6.23: Rate of (J,M,N, α) = (10, 16, 64, 0.01) for fixed SCMA per user

6.6.3 Rates using limited number of SCMA packages

In the previous section we calculated the rate for the variable and the fixed SCMA, when
the number of SCMA packages, m, is so large. In this section we obtain some practical
results, using finite m. Furthermore, to have a fare comparison, we obtain the maximum
rate to have the frame error rate of α1.
Figures 6.24 and 6.25 depicts the rate for the case of N = 64, M = 16, J = 20, m = 100
and α = 0.01. For each K, the maximum rate which the FER is less than α is depicted.
We have used from the equation 6.25 in calculating the rate.

r = 1− t− 1

Nc

= 1− t− 1

mK
(6.25)

As you see Figures 6.26 and 6.27 are compatiable with Figures 6.16 and 6.23 respectively.
Figures 6.28 to 6.31 depict the rate for the previous parameters but with five and two
users, indeed they are for J = 5 and J = 2.

1In the previous part, for the variable SCMA, we said we can achieve the rate which the FER is zero,
but for the fixed case, we considered a maximum FER and denoted it by α. In this section we calculate
the rate for both scenarios to have the FER of α.
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Figure 6.24: Rate for variable SCMA for (J,N,M,m, α) = (20, 64, 16, 100, 0.01)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
·10−2

K

R
at

e
p

er
u
se

r

Figure 6.25: Rate for fixed SCMA for (J,N,M,m, α) = (20, 64, 16, 100, 0.01)
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Figure 6.26: Rate for variable SCMA for (J,N,M,m, α) = (10, 64, 16, 100, 0.01)
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Figure 6.27: Rate for fixed SCMA for (J,N,M,m, α) = (10, 64, 16, 100, 0.01)
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Figure 6.28: Rate for variable SCMA for (J,N,M,m, α) = (5, 64, 16, 100, 0.01)
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Figure 6.29: Rate for fixed SCMA for (J,N,M,m, α) = (5, 64, 16, 100, 0.01)
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Figure 6.30: Rate for variable SCMA for (J,N,M,m, α) = (2, 64, 16, 100, 0.01)
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Figure 6.31: Rate for fixed SCMA for (J,N,M,m, α) = (2, 64, 16, 100, 0.01)

89



Chapter 7

Conclusion and future works

We showed by using a variable signature spreading, when the number of users is not so
large, and the effective rate of the system is small, the performance will improve. But if
there are a lot of user in the system, the fixed spreading can be better than variable one.

We obtained the PDF for the number of erroneous resources in a single SCMA pack-
age.Then we calculated the PDF for m consecutive packages’ erroneous resources. We
compared the FER performance between the fixed and the variable code scenario and we
showed the FER depends on several factors and there is the possibility for either of them to
be better. However the scenarios which leads the fixed SCMA to outperform the variable
one are usually those which the performance is not desirable. For example we showed by
increasing the user’s number, the fixed one can get better, however the overal performance
of the system for a large number of users is not so good.

We discussed the maximum achievable rate for fixed and variable SCMA as well. We
obtained a formula which needs combinatorial optimization to find the variable parame-
ters. But we fixed some parameters on reasonable and applicable values and found the
maximum rate by the simulation. We saw that in all of them the variable has significantly
higher rates than the frixed SCMA.

In section 5.3, we assumed the PDF of SINR at the input of the channel’s decoder
is Gaussian. We said that it is a poor assumption as the Q function has a maximum of
0.5, but we see in outage figures that the intersection of variable and fixed graphs occurs
in probabilities other than 0.5, so it is good to find the exact PDF of SINR and find the
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intersection point exactly. For large number of users, the interference can be modeled as
Gaussian distributed and the SINR will be the logarithm of a Gaussian random variable.
However, in the case that the number of users is not large enough, to approximate the
interference’s distribution, the PDF will take a non-simple form, which can be discussed
separately.

For a block code like BCH, as it can correct a specified number of errors in the sys-
tem, we know the performance without implementing the channel code. However, for a
complicated channel code like Turbo codes, it is not valid. we have made a guess on the
performance of the system by using a Turbo code, but we have not implemented it. The
exact and more reliable FER for this type of channel code obtains by implementing the
Turbo code in the system. So it is nice if we implement the Turbo code in the system for
further researches. To make the system more realistic, we can consider the channel to be
multipath and then use a rake receiver to exploit the multipath diversity.

In the SCMA section, we calculated the rates for both scenarios. But as their opti-
mization was difficult, we fixed some of the parameters on reasonable values. It is better
to solve them generally to obtain the optimized values.
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Appendix A

Welch’s Bound

Theorem: Welch’s bound [44]: If there are J normalized complex vectors of length G,
then the maximum absolute value of their inner product is bounded by:

max
i 6=j
|〈si, sj〉|2 ≥

J −G
(J − 1)G

(A.1)

Proof: The proof is from [31]. Let Rmax denotes maxi 6=j |〈si, sj〉|. As the vectors are
normalized, then we can say:

J(J − 1)R2
max + J ≥

J∑
i=1

J∑
j=1

|〈si, sj〉|2 =

J∑
i=1

J∑
j=1

G∑
n=1

G∑
m=1

si(n)s∗j(n)s∗i (m)sj(m) =

G∑
n=1

G∑
m=1

J∑
i=1

J∑
j=1

si(n)s∗i (m)s∗j(n)sj(m) =

G∑
n=1

G∑
m=1

(( J∑
i=1

si(n)s∗i (m)
)( J∑

j=1

s∗j(n)sj(m)
))

=

G∑
n=1

G∑
m=1

(∣∣∣ J∑
i=1

si(n)s∗i (m)
∣∣∣2)

(A.2)
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Now if we neglect those terms which m 6= n, then

G∑
n=1

G∑
m=1

(∣∣∣ J∑
i=1

si(n)s∗i (m)
∣∣∣2) ≥

G∑
n=1

(∣∣∣ J∑
i=1

|si(n)|2
∣∣∣2) (1)

≥

1

L

∣∣∣ G∑
n=1

J∑
i=1

|si(n)|2
∣∣∣2 (2)

=
J2

L

(A.3)

in which (1), is a result of Cauchy’s inequality for sum of squares and (2), is a result of
considering normalized vectors. So

(J − 1)R2
max + 1 ≥ J

L
⇒ R2

max ≥
J − L

(J − 1)L
(A.4)

�
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Appendix B

Symbols Packing’s bits error
probability

We claimed in the special case of 4-ASK, the correct decision’s probability for first and
second positions are as

Pr(cb1) = 0.5
(

(1− A) +G+ E + F
)

Pr(cb2) = 0.5
(

(1− E) + (1− A)
) (B.1)

Now we want to show it. The minimum distance between symbols is considered to be 2d.
We use minimum distance criterion for assigning a symbol to the receiver symbol r. r1 and
r2 are the first and the second bits of the received symbol. The probability that the first
bit is detected correctly is equal to

Pr(b1 : correct) =
∑
i=1,3

Pr(r1 = 0|Ai)Pr(Ai) +
∑
i=2,4

Pr(r1 = 1|Ai)Pr(Ai)

= 0.25
(∑
i=1,3

Pr(r1 = 0|Ai) +
∑
i=2,4

Pr(r1 = 1|Ai)
)

= 0.5
(∑
i=1,3

Pr(r1 = 0|Ai)
) (B.2)

which, we have assumed a priori probability is the same for all the modulation symbols.
The first bit is detected as 0 if the received point is in r < −2d or 0 < r < 2d. So if n
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2d

A1 A2 A3 A4

00 10 01 11

Figure B.1: The proposed labeling

represents the noise term, we can write

Pr(r1 = 0|A1) = Pr(n < d) + Pr(3d < n < 5d)

= (1− A) +G
(B.3)

and
Pr(r1 = 0|A3) = Pr(n < −3d) + Pr(−d < n < d)

= E + F
(B.4)

in which, we have used from the Figure 4.6 to represent the probability of noise in a certain
interval and noticing that Pr(3d < n < 5d) = Pr(−5d < n < −3d). So

Pr(b1 : correct) = 0.5
(

(1− A) +G+ E + F
)
. (B.5)

In a similar manner we can write

Pr(b2 : correct) = 0.5
(∑
i=1,2

Pr(r2 = 0|Ai)
)

(B.6)

but
Pr(r2 = 0|A1) = Pr(n < 3d) = 1− E (B.7)

and
Pr(r2 = 0|A2) = Pr(n < d) = 1− A (B.8)

so
Pr(b2 : correct) = 0.5

(
(1− E) + (1− A)

)
. (B.9)
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