
Analysis of Microcontroller Embedded

SRAMs for Applications in

Physical Unclonable Functions

by

Sakib Imtiaz

A thesis

presented to the University of Waterloo

in ful�llment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

© Sakib Imtiaz 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The growth of the Internet of Things (IoT) market has motivated widespread prolifera-

tion of microcontroller- (MCU) based embedded systems. Suitable due to their abundance,

low cost, low power consumption and small footprint. The memory architecture typically

consists of volatile memory such as block(s) of SRAM, and non-volatile memory (NVM)

for code storage. Authentication and encryption safeguard these endpoints within an IoT

framework, which requires storage of a secure key. Keys stored within integrated circuits

(ICs) are susceptible to attack via reverse engineering of the NVM. Newer approaches use

Physical Unclonable Functions (PUFs), which produce unique identi�ers that takes advan-

tage of device-level randomness induced by manufacturing process variation in silicon.

The unclonable property of PUFs is demonstrated with an analytical model. The un-

predictable yet repeatable start-up values (SUVs) of SRAM bit-cells form the basis of an

SRAM PUF. Performance measures, such as reliability, randomness, symmetry, and stabil-

ity, dictate the quality of a PUF. Two commercial o�-the-shelf (COTS) ARM-Cortex based

MCU products, the STM32F429ZIT6U and ATSAMR21G18A, underwent automated and

manual power cycling experiments that examined their embedded SRAM SUVs. The

characterization framework provided acquires data via debug software and a developed C

program, power cycling using a USB controlled relay and post-processing using Python.

Applications of PUFs include cryptographic key generation, device identi�cation and true

random number hardware generation.

Statistical results and a comparative analysis are presented. Amongst the total bit-

cell count of the embedded SRAM in STM and ATSAM MCUs, 36.86% and 28.86% are

classi�ed as non- or partially-skewed, respectively across N = 10, 000 samples. The Atmel

MCU outperforms the STM MCU in reliability by 1.42 %, randomness by 0.65 % and

stability by 8.00 %, with a 4.74 % SUV bias towards a logic '1'. Max errors per 128-bit

data item is 22 and 38 bits for MCU #1 and MCU #2, respectively. The STM MCU

exhibits column-wise correlation illustrated in a heatmap, where the Atmel MCU shows a

random signature. The embedded SRAM in the Atmel MCU outperforms the STM MCU's

and is thereby considered the more suitable PUF.

iii

Acknowledgements

There are several individuals who I am thankful for in my graduate studies.

I would like to express my sincere gratitude to supervisors Professor Manoj Sachdev and

Dr. Derek Wright. Their expertise, resourcefulness and patience combined with the ability

to maintain a professional interpersonal relationship with myself has led to an exceptional

positive graduate studies experience. I am indebted to their generous acts to facilitate my

learning experience as a graduate student and preparing me for the industry.

I have been fortunate to be a research member of the prestigious CMOS Design and

Reliability (CDR) Group. Special thanks to my mentor Adam Neale whom was crucial in

guiding me through the steep learning curve of research. Thanks to Derek for providing

exceptional proof-reading and teaching me how to improve my writing ability for technical

documents. Thanks to all the group members I have interacted with for sharing life stories

and research endeavours − Qing, Maarten, Anthony, Morteza, Mehdi, Dhruv. In addition,

I'd like to thank Professor Bruce Richmond and Professor Liang-Liang Xie for assisting me

with the development of the combinatorial analytical model.

I would like to acknowledge my parents, my sister, & brother-in law & his respective

family and the rest of my extended family for going above and beyond in supporting my

decision to pursue graduate studies. They've been right by my side in aiding me in this

journey and held a vital role in my well being.

This work has been funded by an industry partner through a NSERC Research grant

for the PUF Engage Initiative.

iv

Dedication

To my family & friends

Remembering Neelanjana. . . Fellow MASc Student

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Physical Unclonable Functions . 3

1.3 Outline . 5

2 Background 7

2.1 Numerical Theory . 7

2.2 SRAM based PUFs . 16

2.2.1 Bit-cell Architecture . 16

2.2.2 Bit-cell Start-up Behaviour . 17

2.2.3 Bit-cell Types . 21

2.3 Characterization . 21

2.3.1 Reliability . 22

2.3.2 Randomness . 22

vi

2.3.3 Symmetry . 23

2.3.4 Stability . 23

2.4 Silicon based PUFs . 24

2.4.1 Delay based PUFs . 25

2.4.2 Memory based PUFs . 27

2.5 Applications . 28

2.5.1 Secret Key Generation . 29

2.5.2 Device Authentication . 30

2.5.3 True Hardware Random Number Generation 31

3 Characterization Framework 33

3.1 Commercial o�-the-shelf Products . 34

3.1.1 Microcontrollers . 34

3.2 Power Cycling Experiment . 35

3.2.1 Automated . 36

3.2.2 Manual . 37

4 Measurement Results and Comparative Analysis 40

4.1 Automated . 40

4.1.1 Reliability . 40

4.1.2 Randomness . 43

4.1.3 Symmetry . 44

4.1.4 Stability . 45

4.1.5 Summary . 46

vii

4.2 Manual . 47

4.2.1 Reliability . 47

4.2.2 Randomness . 48

4.2.3 Symmetry . 49

4.2.4 Stability . 50

4.2.5 Summary . 51

4.3 Pro�les . 52

4.3.1 Comparison . 55

5 Conclusion 56

Bibliography 56

Appendix A Power Cycling Automation Script 62

Appendix B Embedded SRAM Access API Code 66

viii

List of Tables

2.1 Summary − PUF Approximate Solution [Uniform Distribution] 13

2.2 Probable Outcomes of Signatures [λ = 2] pU = 0.5 and pNU = 0.6 14

2.3 SRAM Bit-cell Classi�cation . 21

3.1 Embedded Development Boards − Product Information 35

3.2 API − Embedded SRAM Access for PUFs 38

4.1 Summary − Errors per 128-bit Data Item [Automated | K = 100] 42

4.2 PUF Uniformity − SUV Distribution [Automated] 45

4.3 Summary − Reliability & Randomness [Automated | K = 10, 000] 47

4.4 Reliability − MCU #2 with varying References [Manual | K = 10] 49

4.5 Summary − PUF Uniformity − SUV Distribution [Manual] 49

4.6 Summary − Reliability & Randomness for MCU #2 [Manual | K = 10] . . 51

4.7 Summary − Comparison of Microcontroller Embedded SRAMs 55

ix

List of Figures

1.1 Principle of Silicon-based PUF . 4

1.2 PUF Unclonable Property . 5

2.1 PUF Bit-stream Signature Collision Problem 8

2.2 Probability of Distinctness − Exact Solution [λ = 32] 10

2.3 Probability of Distinctness − Exact vs. Approx Solution [λ = 32] 11

2.4 Probability of Distinctness − Taylor Series Approx [λ = 256] 12

2.5 Binomial Distribution − Unique Probable Outcomes of 8-bit Signature . . 15

2.6 Schematic − SRAM Bit-cell [6T] . 17

2.7 Bistable System Nomenclature . 18

2.8 Bit-cell start-up behavior due to Vt mismatch 19

2.9 SRAM Bit-cell − Power-on Characteristic 20

2.10 Bitmap − Ideal Response of SRAM PUF [18] 24

2.11 Schematic − Arbiter PUF . 26

2.12 Schematic − Glitch PUF . 27

2.13 Schematic − Latch PUF . 28

2.14 Schematic − Butter�y PUF . 28

2.15 Application − Cryptographic Key Generation 29

x

2.16 Application − Device Authentication . 30

2.17 Application − True Random Number Generation 32

3.1 SRAM Architectural Organization . 34

3.2 Power Cycling Experiment − Automated Setup 36

3.3 Power Cycling Experiment − Manual Setup 37

3.4 Microcontroller Memory Layout . 39

4.1 PUF Reliability − Fractional Intra-Hamming Distance [Automated] fHD−Intra 41

4.2 PUF Reliability − Errors per 128-bit Data Item [Automated] 42

4.3 PUF Randomness− Fractional Inter-Hamming Distance [Automated] fHD−Inter 43

4.4 PUF Uniformity − SUV Distribution [Automated] 44

4.5 PUF Stability Unstable Bit-cells Distribution 46

4.6 PUF Reliability Fractional Intra-Hamming Distance [Manual] fHD−Intra . 48

4.7 PUF Randomness Fractional Inter-Hamming Distance [Manual] fHD−Inter 50

4.8 PUF Stability Unstable Bit-cells Distribution [Manual] 51

4.9 Memory Pro�le Heatmap − MCU #1 [K = 1] 53

4.10 Memory Pro�le Heatmap − MCU #1 [K = 10, 000] 53

4.11 Memory Pro�le Heatmap − MCU #2 [K = 1] 54

4.12 Memory Pro�le Heatmap − MCU #2 [K = 10, 000] 54

xi

Chapter 1

Introduction

The Internet of Things (IoT) aims to integrate physical objects with real time computer

systems connected to the Internet. This technology is made possible from broadband Inter-

net availability, ingenuity in embedded systems equipped with microcontrollers (MCUs),

and the ongoing reduction in semiconductor costs. American market research �rm Gart-

ner estimates that the IoT market currently consists of 1.6 billion devices [1]. Networking

company Cisco projects this will grow to over 50 billion connected devices by 2020. [2].

1.1 Motivation

With an ever growing number of connected physical, trustworthy machine-machine com-

munication becomes increasingly vital, and e�ective device authentication protocols are

necessary to prevent counterfeiting [3]. These interactions bring forth a wide range of

challenges including interoperability, scalability, and trustworthy communication. Encryp-

tion with a secret key is necessary for secure data transmission over public channels [4].

Secret keys stored on non-volatile memories (NVM) are susceptible to malicious reverse

engineering attacks. Adversaries can exploit algorithm timing and power consumption in

side channel attacks.

A promising alternative is to generate a secret key without the need to store it. In

1

digital integrated circuits (ICs), a physical unclonable function (PUF) is the source for

generating volatile, chip-speci�c signatures at runtime or power-on [3]. In the past decade,

research indicates that PUFs may be a hopeful solution for the aforementioned security

issues. The premise of this work is a study of the suitability of PUFs implemented in

existing commercial o�-the-shelf (COTS) products.

A PUF is an expression of an unclonable instance-speci�c feature of a physical object,

analogous to biometric features of humans, such as �ngerprints [3]. Applications of PUFs

include key generation, device identi�cation and true random number hardware generation

(TRNG) [4]. There are various implementations of PUFs, including those based on IC

coatings, �ip-�ops, latches, optical techniques, and numerous other methods [4]. Silicon

PUFs, the focus of this research, use the transistor mismatches due to manufacturing

process variabilities to produce a unique signature. In an SRAM-based PUF, the bit-cell

start-up-values (SUVs) upon power-on form the basis of a PUF.

Embedded systems equipped with MCUs are in abundance and suitable for the IoT

market due to their low cost, low power consumption and small footprint. The memory

architecture in these systems typically consists of volatile memory such as small block(s)

of SRAM, and some NVM for code storage. Prior to utilizing the SUVs of the SRAM bit-

cells to construct PUFs, one undergoes a quali�cation process to determine its suitability.

In this work, the analysis of embedded SRAM in COTS products − ARM Cortex based

MCUs are presented in accordance to their PUF performance with regards to reliability,

randomness, symmetry and stability.

In addition to existing embedded SRAM characterization work for COTS MCUs in [5]

and [6], this thesis contributes a new set of reference data. Using the birthday problem [7],

a combinatorial analytical model for SRAM- based PUFs is presented. Lastly, this thesis

provides a PUF characterization framework for SRAMs. whether external or within a

system on chip (SoC) such as a MCU.

2

1.2 Physical Unclonable Functions

A PUF is that it is a physical one-way function in which an input produces an output,

whereas the input cannot be determined given the output. The concept of a PUF origi-

nated when Pappu observed unique speckle patterns on a transparent epoxy wafer �lled

with bubbles upon shining it with a laser [8]. Gassend et al. [9] introduced silicon-based

PUFs. In this class of PUFs, process variation during fabrication leads to local device pa-

rameter varations used to generate chip-speci�c unique IDs. The unclonable property stems

from this phenomenon, since the manufacturing process is stochastic in nature, resulting

in random unpredictable process variations. Hardware security solutions using PUF tech-

nology are applied in IoT, embedded systems, identi�cation, automotive, communications,

content distribution, government and defense markets [2].

A PUF is a feature of a physical system that reacts to an input stimulus known as a

challenge and generates a single response determined by mismatches in physical properties,

together called a challenge-response pair (CRP). The function mapping is denoted as:

f : Ri ←− PUF(Ci, Si), where:

� Ri = Corresponding output response from the instance i

� Ci = Speci�c input stimulus to the instance i

� Si = Collection of all physical parameters for instance i

In Figure 1.1, an example is provided of a silicon-based PUF. The challenge and response

relationship is binary and is described by bit-streams. Examples of challenges include

test vectors for arbiter circuits that exercise critical delay paths, or memory addresses

for SRAMs that store SUVs. A PUF with a substantial set of CRPs is classi�ed as a

strong PUF, otherwise classi�ed as a weak PUF. A system with 1 CRP is termed as

a physical obsfuscated key (POK) [3]. Strong PUFs are recommend for high security

systems, limiting attackers with opportunities to decipher patterns due to the vast set of

CRPs. As depicted in Figure 1.2, PUF instances return unique responses when supplied

with identical challenges − the fundamental property of unclonability.

3

Instance
Feature

Q

Q
SE T

C LR

S

R

100 MHz Q1

Figure 1.1: Principle of Silicon-based PUF

Based on the evaluation method, PUF primitives exist as both non-intrinsic and in-

trinsic forms. The coating PUF by Tuyls et al. [10] relies on measuring the capacitance

between two metallic lines on an IC where the top layer is covered by an applied coating

with randomly distributed dielectric particles. In this PUF along with the aforementioned

optical PUF by Pappu et al. [8], the source of randomness in the system is exposed by

additional equipment and hence the PUF is externally evaluated. Other PUFs under this

class exist such as paper, CD, RF DNA, magnetic and accoustical. Intrinsic PUFs on the

other hand rely on the inherent physical characteristics of the system, like silicon-based

PUFs, and are self-evaluated. Delay-based PUFs such as arbiter, glitch and ring oscilla-

tor PUFs generate unique responses based on signal delays between critical paths [3] and

oscillation frequency di�erences. Memory-based PUFs such as SRAM, latch, �ip-�op and

butter�y PUFs generate unique responses based on the probable outcome of a known state

from a metastable state [4]. This thesis focuses on intrinsic or silicon based PUFs with an

emphasis on SRAM-based PUF.

Properties of PUFs:

� Evaluation: The PUF yields a device speci�c output response by evaluating an input

challenge. In complexity analysis, the evaluation is within one-degree polynomial

time or O(n), where n refers to the bit-stream length of the challenge input. This

infers using minimal resources with respect to cost, area and power.

� Unclonable: There are no two PUFs with identical CRPs. An analytical model or

4

Challenge
C

R1

[010...110]
R2

[011...111]
R3

[011...001]
Rn-1

[110...010]
Rn-1

[101...110]

R1 R2 R3 . Rn-1 Rn

PUF1

Q

Q
SE T

C LR

S

R

100 MHz Q1

PUF2

Q

Q
SE T

C LR

S

R

100 MHz Q1

PUF3

Q

Q
SE T

C LR

S

R

100 MHz Q1

PUFn – 1

Q

Q
SE T

C LR

S

R

100 MHz Q1

PUFn

Q

Q
SE T

C LR

S

R

100 MHz Q1

Figure 1.2: PUF Unclonable Property

probabilistic algorithms cannot be derived to predict behaviour.

� Reproducible: Under varied environmental conditions with respect to temperature,

power supply �uctuations and aging, the PUF maintains a reliable set of CRPs.

� Secure: A PUF can only produce an output response given an input challenge. A

PUF cannot provide the corresponding input challenge given an output response.

1.3 Outline

This thesis is organized as follows. Chapter 2 provides an analytical model to demonstrate

the unclonable property of a PUF, a literature review on silicon based PUFs with an

5

emphasis on SRAM memories and performance metrics to gauge PUF quality. Chapter

3 proposes a framework to characterize embedded SRAM in COTS MCUs and provides

applications of PUFs. Chapter 4 entails results of empirical data acquired from embedded

SRAM in two ARM-Cortex based MCUs. Chapter 5 concludes this work.

6

Chapter 2

Background

To understand this work, this section provides adequate background information including

probability theory, characterization parameters, and SRAM memories.

2.1 Numerical Theory

This section proposes a probabilistic analytical model modelled in software (Python) to

demonstrate a PUF's fundamental property, unclonability or distinctness. A Mathemati-

cian named Richard von Mises introduced the birthday problem [11] which questions how

many students must be present in a classroom such that the probability that two students

sharing the same birthday is 50%. Contrarily, what is the probability of two students

having distinct birthdays? A combinatorial solution was derived with key assumptions:

� Number of birthdays in a year is 365 and they are equally possibly likely or evenly

distributed. Probable outcome of a birth is the same across all students, or 1
365

.

� Anomalies, like leap years or twins are disregarded.

Using the birthday problem, an analytical model for PUFs is described. Referring

to Figure 2.1, what is the probability that two PUF entities do not share the same bit-

stream �ngerprint, derived from a silicon based PUF primitve such as SRAM. The number

7

of students is interchanged with the number of PUFs and the number of birthdays is

interchanged with the bit-stream length which gives the total number of possible unique

signatures. This analytical model is demonstrated in two forms: an uniform and non-

uniform distribution. The former of which is extensively covered in this work and the latter

of which is in progress. The purpose of this analytical model is to provide a theoretical

means to provide design insight and understand related PUF concepts.

0 1 1 1 0 0

1 1 0 0 0 1

0 0 1 1 1 0

1 1 1 0 0 0

0 1 0 1 0 1

PUF1

PUF2

PUF3

PUFn-1

PUFn

λ # of bits wide

d = 2λ # of responses

Challenges

(Addresses)

P(n, d) Probability of

two PUFs not sharing

identical responses

n # of PUFs

Figure 2.1: PUF Bit-stream Signature Collision Problem

8

Uniform Distribution

The distinctness probability P (n, d) of a set of n students with d possible but equally likely

birthdays is expressed in Equation 2.1. The probability that two students share the same

birthday is 50% in a group of n = 23 with d = 365 birthdays [7].

P (n, d) = (
d− 1

d
)(
d− 2

d
) . . . (

d− (n− 1)

d
)

=
(d− 1)(d− 2) . . . [d− (n− 1)]

dn−1

=
d!

dn(d− n)!

(2.1)

In the context of PUFs, the parameters now have the following meanings:

� n→ Total number of silicon-based PUF entities

� d→ Total number of unique signatures = 2λ, where λ bit-stream length

In �gure 2.2, the statistical relationship between PUF entities and bit-stream length

up to λ = 32 is illustrated in log-scale. As the length λ increases, the total space of unique

bit-stream signatures signatures exponentially increases. This allows for increased capacity

of PUF entities in-turn reducing probability of collision.

The following observations can be made:

� For any n > d, P (n, d) = 0 : There are more PUF entities than available bit-stream

responses, hence at least two PUFs share identical responses.

� For n = 1, P (n, d) = 1 : Since there is only PUF entity, no collisions can occur.

9

100 101 102 103 104 105 106

PUF Entities (n)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ti
nc

tn
es

s
P

(n
,d

) Bit-stream Responses (d)

21

22

24

28

216

232

Figure 2.2: Probability of Distinctness − Exact Solution [λ = 32]

As λ grows beyond 64-bits, the exact solution becomes computationally intensive, sig-

ni�cantly increasing program runtime. Sayra�ezadeh [7] derived an approximate solution

based on the Taylor series expansion based on natural logithm base e. Equation 2.2 is used

here-on to compute distinctness probabilities for λ = [64, 128, 256]. In �gure 2.3, the solid

line represents the actual solution and the dashed line with triangles represents the approx-

imate solution. Deviations are noticeable for λ = 1, 2 and 4. Quantitatively expressed in

equation 2.3 [12], the deviation error is expresses the absolute di�erence between the exact

and approximate solution for a set of n, d parameters. As λ increases, deviation error is

reduced signi�cantly. As a sample input set of n = 1x 108 and d = 264, the deviation error

is ε ≈ 4.898x10−16. Figure 2.4 illustrates distinctness up to λ = 256 using the approximate

solution, similar trend as the exact solution with less runtime.

10

P (n, d) ≈ 1− e
−n(n−1)

2d

≈ 1− (1− n

2d
)n−1

(2.2)

ε ≤ n3

6(d− n+ 1)2
(2.3)

100 101 102 103 104 105 106

PUF Entities (n)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ti
nc

tn
es

s
P

(n
,d

)

Bit-stream Responses (d)

21

21

22

22

24

24

28

28

216

216

232

232

Figure 2.3: Probability of Distinctness − Exact vs. Approx Solution [λ = 32]

Table 2.1 summarizes numerical results for varied λ. Results include distinctness prob-

ability in relation to yield P (n, d) with results surpassing a standard of 6σ = 0.999997 [13].

11

100 103 106 109 1012 1015 1018 1021 1024 1027 1030 1033 1036 1039

PUF Entities (n)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ti
nc

tn
es

s
P

(n
,d

)

Bit-stream Responses (d)

21

22

24

28

216

232

264

2128

2256

Figure 2.4: Probability of Distinctness − Taylor Series Approx [λ = 256]

12

Table 2.1: Summary − PUF Approximate Solution [Uniform Distribution]

Number of

Signatures (2λ)
Collision Rate

Distinctness

P (n, d)
PUF Entities

65536

λ = 16

1.0e−3 0.999 10

1.0e−4 0.9999 4

1.0e−5 0.99999 1

1.0e−6 0.999999 1

1.0e−7 0.9999999 1

4294967296

λ = 32

1.0e−3 0.999 2000

1.0e−4 0.9999 900

1.0e−5 0.99999 200

1.0e−6 0.999999 90

1.0e−7 0.9999999 20

1.8446744e+19

λ = 64

1.0e−3 0.999 1.0e+8

1.0e−4 0.9999 6.0e+7

1.0e−5 0.99999 1.0e+7

1.0e−6 0.999999 6.0e+6

1.0e−7 0.9999999 1.0e+6

3.4028237e+38

λ = 128

1.0e−3 0.999 8.0e+17

1.0e−4 0.9999 2.0e+17

1.0e−5 0.99999 8.0e+16

1.0e−6 0.999999 2.0e+16

1.0e−7 0.9999999 8.0e+15

1.1579209e+77

λ = 256

1.0e−3 0.999 1.0e+21

1.0e−4 0.9999 1.0e+21

1.0e−5 0.99999 1.0e+21

1.0e−6 0.999999 1.0e+21

1.0e−7 0.9999999 1.0e+21

13

Non-uniform Distribution

In the work presented by Berresford [14], the birthday problem takes into consideration

of an empirical data set of 239, 762 births in New York in 1977. The probability of births

is non-uniformly distributed, birthdays are not equally probable. This results in a larger

collision rate.

In the context of PUFs, bit-stream signatures are not always equally probable for a

given λ. Individual bits in the bit-stream do not have a presumed probable outcome of

p = 0.5 upon power-on. The bit-cell is termed skewed, covered at the end of this chapter.

A particular bit-cell may tend to a logic '0' more often than '1' implying that for this given

PUF, creating instances of it will produce signatures that comprise of more logic '0' than

logic '1' resulting in increased collisions.

Consider the case of λ = 2, a total of 4 possible bit-stream responses, [00, 01, 10, 11] as

enlisted in Table 2.2. If each bit-cell has a probable outcome of p = 0.5, each signature

amongst the set of all signatures is equally probable with P = (0.5)∗(0.5) = 0.25. Presum-

ing that we have a PUF where p = 0.6, implying that the bit-cell is slightly skewed towards

a logic '1', and given that all PUF instances have a similar non-uniform distribution, the

probable outcome of a signature 01 is P = (1− 0.6) ∗ (0.6) = 0.24.

Table 2.2: Probable Outcomes of Signatures [λ = 2]

pU = 0.5 and pNU = 0.6

p1 p0 PUniform PNon−uniform

0 0 0.25 = (0.5)2 0.16 = (1− 0.6)2

0 1 0.25 = (0.5)2 0.24 = (1− 0.6) ∗ (0.6)
1 0 0.25 = (0.5)2 0.24 = (0.6) ∗ (1− 0.6)

1 1 0.25 = (0.5)2 0.36 = (0.6)2

A bit-stream is a series of independent Bernoulli trials − where each trial results in

a success (logic '1') or fail (logic '0'). The Binomial theorem expressed in Equation 2.4

accounts for non-unique signatures, as in 0110 is treated the same as 0101 due to number

14

of successes. The Binomial coe�cient
(
n
k

)
is removed to account for unique signatures.

Figure 2.5 portrays the unique probable outcomes of a signature for length λ = 8 versus the

number of successes/logic '1's within the bit-stream. In the left Figure 2.5a, all signatures

are equally probable whereas Figure 2.5b shows signatures with more logic '1's than '0's

are more likely, detrimental to distinctness probability. The conventional approach used

in the birthday problem utilizing a sum of remaining probable outcomes in Equation 2.1

will not be useful in this case since conditional probabilities arise.

0 1 2 3 4 5 6 7 8

Number of Successes (X)

0.00370

0.00375

0.00380

0.00385

0.00390

0.00395

0.00400

0.00405

0.00410

0.00415

P
(n

,k
,p

)[
U

ni
qu

e]

Bit-stream length

8

(a) p = 0.5

0 1 2 3 4 5 6 7 8

Number of Successes (X)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

P
(n

,k
,p

)[
U

ni
qu

e]

Bit-stream length

8

(b) p = 0.6

Figure 2.5: Binomial Distribution − Unique Probable Outcomes of 8-bit Signature

P (n, k, p) =

(
n

k

)
pk(1− p)n−k (2.4)

Where the binomial coe�cient n choose k is mathematically expressed as:

(
n

k

)
=

n!

k!(n− k)!

An initial base model can be derived based on Bernoulli trials to tackle the problem of

non-uniform distributions. Given 2 PUF bit-streams:

� Find the probability that pi is equal for PUF1 and PUF2 in position i. There are

two cases, the ith bit in both PUFs is a 1, probability p2, or a 0, probability (1− p)2,

15

respectively. Adding these two probabilities and iterating through all λ bits (raising

to the power of λ) yields probability of PUF1 and PUF2 being equal.

� Subtract 1 from this probability to get the probability that these 2 PUFs are distinct.

PUF 1: 010 . . . 101

PUF 2: 100 . . . 001

PEqual = [p2 + (1− p)2]λ

PDistinct = 1− PEqual = 1− [p2 + (1− p)2]λ

(2.5)

2.2 SRAM based PUFs

Static random access memory (static RAM or SRAM) is a type of semiconductor memory

used in integrated circuits for a wide range of computing systems including mobile devices

and enterprise servers. It's smallest functional unit, the bit-cell, is solely responsible for

storing a single bit of information, a logic '0' or '1'. It is classi�ed as volatile, where data

is lost in absence of the supply voltage. A variety of topologies exist such as 6T and 8T,

which represent the number of transistors to construct a functional bit-cell. In this thesis,

the concept of a SRAM based PUF is demonstrated by the 6T SRAM bit-cell topology.

2.2.1 Bit-cell Architecture

Every 6T SRAM bit-cell is comprised of a fundamental storage element which is realized

through CMOS technology using back-to-back inverters as illustrated in 2.6a. Surrounding

this core are access devices as NMOS transistors and peripheral circuitry pertinent for

read/write operations. In the low level schematic in Figure 2.6b, transistors M1 and M2,

M3 and M4 form the back-to-back inverters, respectively. Transistors M1 and M3 are

referred to herein as drivers, and M2 and M4 are referred to herein as loads. In this work,

we focus on understanding the behaviour of SRAM bit-cells in the case of power-on.

16

BLBL

WL

(a) Block Level

VDD

Q Q

BL BL

M4M2

M1 M3

WL

M5 M6

VSS

(b) Transistor Level

Figure 2.6: Schematic − SRAM Bit-cell [6T]

2.2.2 Bit-cell Start-up Behaviour

A bit-cell exhibits the behaviour of a bistable system portrayed in Figure 2.7. Ideally, a bit-

cell should store a stable state upon power-up with equal probable outcomes (≈ 50% 0 or 1)

from a metastable state as per illustrated in Figure 2.7a. However, process variation during

fabrication leads to a potential mismatch in the storage element causing a predisposition

to power on to a preferred cell state, for e.g. ≈ 71%% a logic '0' and ≈ 29%% a logic '1'.

Figure 2.7b along with Figure 2.7c demonstrates this biased behaviour in a bistable system.

A unique signature in the form of a bit-stream can be produced by collecting the SUVs of

an uninitialized block or data word(s) of SRAM for a multitude of applications. Addressed

17

by Kumar et. al [15], it is common for FPGA products to perform a fresh initialization

sequence which involves a hard reset clearing all SRAM bit-cells to a logic '0', e�ectively

destroying the random SUVs.

 0 1

Metastable

(a) Balanced

 0 1

(b) Logic ′0′ Friendly

 0 1

(c) Logic ′1′ Friendly

Figure 2.7: Bistable System Nomenclature

Process variation and inherent device mismatches is becoming a predominant issue

as technology nodes are scaled down [16]. The mismatch in threshold voltages of the

driver transistors dominates the start-up behavior [4]. Figure 2.8 shows the bit-cell's SUV

18

behavior when driver M3 has a lower threshold voltage in comparison to driver M1 with

a supply voltage VDD applied. In a switch-based model, M3 turns on earlier in relation to

M1 and the node Q is pulled down to a logic '0'. With the additional load devices M2 and

M4, regenerative feedback from the back-to-back inverters [4] stabilizes Q to a ′1′.

+ΔVt -ΔVt

 0 1

VDD

Q Q

BL BL

M4M2

M1 M3

WL

M5 M6

Figure 2.8: Bit-cell start-up behavior due to Vt mismatch

Electrical characteristics of SRAM bit-cells are shown in Figure 2.9. The transient

response in Figure 2.9a illustrates small signal behaviour in both cases of drive strength

mismatches between M1 and M3. In the voltage transfer characteristic (VTC) presented

in Figure 2.9b, an ideal bit-cell based on a balanced set of back-to-back inverters begins

o� at the voltage level VDD

2
. Any small o�set induced by mismatches is ampli�ed and one

of the two stable states is reached randomly.

19

VDD

t

VQ

Logic 1

VSS

Power-on Stable

VDD

2

Logic 0

(a) Transient Response of SRAM Bit-cell Start-up Behav-

ior

VQ

VQ

VDD

VDD

2

VSS

Mid-point Voltage
[Metastable]

VM

VDD

2

(b) Static Noise Margin (SNM) Butter�y Curves

Figure 2.9: SRAM Bit-cell − Power-on Characteristic

20

2.2.3 Bit-cell Types

An SRAM bit-cell can be categorized under one of three types as outlined in Table 2.3.

Fully-skewed cells are desired for PUF applications due to their ability to produce consistent

reliable responses [17]. The symbols pi and qi = (1− pi) refer to the probable outcomes of
bit-cell i having logic '0' and '1' SUVs, respectively.

Bit-cell Type Description

Non-skewed

Process variation on each half of the bit-cell

cancel or nullify each other

pi = 0.5

Partially-skewed

Process variation causes moderate Vt mis-

match, leading to a stronger driver transistor

on one half of the bit-cell

0 < pi < 1, pi 6= 0.5

Fully-skewed

Process variation causes large Vt mismatch,

leading to an always preferred SUV

pi = {0, 1}

Table 2.3: SRAM Bit-cell Classi�cation

2.3 Characterization

This section provides an overview of well-known quality metrics in the literature that

demonstrate PUF performance. In subsequent equations, ai,j,k refers to the ith bit of the

jth word of the kth sample in PUF space a. The word size or length is λ bits, there are N

words in the space, and L = λ∗N total bits in the space. The SUVs are sampled K times.

A "PUF challenge" refers to an input bit-stream.

21

2.3.1 Reliability

This parameter is a measure of the reproducibility of the PUF. Multiple queries of the

PUF with the same challenge should consistently produce the same bit-stream response.

Unreliable responses (bit �ips) can be tolerated by applying error correcting codes (ECC)

which are stored in NVM, however introducing area and design overhead. A parameter

used to characterize reliability is the fractional intra-hamming distance, fHD−Intra, which is

the number of bitwise di�erences between PUF responses to the same challenge normalized

to the total bit-stream length M. Equation 2.6 expresses this relationship. Summing the

number of bit-wise di�erences between samples k1 and k2 and normalizing with respect to

L total bits yields a measure of reliability. A reference vector/golden copy such as the �rst

response and successive responses are compared. An ideal PUF has fHD−Intra = 0 for all

pairs of samples.

fHD−Intra(k1, k2) =
1

L

N−1∑
j=0

λ−1∑
i=0

XOR(ai,j,k1 , ai,j,k2)|k1 6=k2 (2.6)

2.3.2 Randomness

This parameter characterizes the uniqueness between two PUFs. There should be no corre-

lation between bit-stream responses and they are independently random. In a given PUF

instance, di�erent challenges, should not produce correlated responses. The statistical pa-

rameter to express randomness is fractional inter-hamming distance (within-die fHD−Inter
%). Captured in Equation 2.7, it states the number of bitwise di�erences between two

di�erent PUF responses, for words j1 and j2 within a particular sample k0. Pairs of two

responses in a PUF instance are compared. Ideally, a purely random PUF response is

uncorrelated with all other PUF responses, hence the ideal fHD−Inter = 0.5.

fHD−Inter(j1, j2, k0) =
1

λ

λ−1∑
i=0

XOR(ai,j1,k0 , ai,j2,k0)|j1 6=j2 (2.7)

22

2.3.3 Symmetry

This parameter is concerned with the expected value of the entire SRAM PUF space.

Ideally, half of the total SUVs are logic '0' and the other half are logic '1' on a single power-

on. Otherwise, any systematic skew demonstrates biasing and develops an asymmetry

thereby reducing the entropy of the PUF. For an SRAM PUF, the expected value is the

mean, µ. Equation 2.8 shows the mean value for sample k0. A purely uniform SRAM PUF

has µ = 0.5, meaning equal probabilistic outcomes of logic '0' or '1' SUVs.

µ(k0) =
1

L

N−1∑
j=0

λ−1∑
i=0

ai,j,k0 (2.8)

2.3.4 Stability

This parameter characterizes the stability of bit-cells within the SRAM space. Ideally, the

SUVs are perfectly repeatable with all cells being fully-skewed towards '0' or '1'. Realisti-

cally, non- or partially-skewed bit-cells exist and tend to toggle their SUV response between

a logic '0' and '1', vice-versa. These bit-cells exhibit random SUVs and can be disregarded

from the PUF, but can still be used in hardware random number generation. The SUV

probability of bit i in word j, pi,j, can be determined with any given level of accuracy by

taking a su�ciently large number of SUV samples, K, to deem whether a bit-cell be stable

or not, which is assumed in Equation 2.9. Hence, a bit-cell that is for example nearly a

strong '0' pi = or '1'. Ideally, pi,j = 1 or 0, however non- or partially-skewed bit-cells

will have intermediate probabilities. Moreover, the elimination process of these unstable

bit-cells is in�uenced by the allowable error margin of the ECC hardware.

Unstable bit-cells in the SUV patterns can be exposed visually. Heatmaps are drawn in

reference to a colour intensity scale to illustrate the various normalized bit-cell count values

within the pi = {0, 1} spectrum. An ideal bitmap shows a random digital �ngerprint with

no row- or column-wise correlations. Black and white heatmaps will be illustrated for one

data capture and coloured heatmaps will be used for more than one data capture. Figure

23

2.10 illustrates a bitmap with an ideal random response of a SRAM PUF with a grey-scale

intensity expressing bit-cell probable outcome values.

pi,j =
1

K

K−1∑
k=0

ai,j,k (2.9)

Figure 2.10: Bitmap − Ideal Response of SRAM PUF [18]

2.4 Silicon based PUFs

This section provides a literature review of silicon-based PUFs, derived from intricate pro-

cess variation present in the IC fabrication processes. Sources of variability at the semi-

conductor level in modern CMOS technology include sub-wavelength lithography, layout-

dependent transistor performance such as induced compressive stress and random dopant

24

�uctuations (RDF) [18]. Based on their principle of operation, silicon based-PUFs are

classi�ed as follows:

� Delay: Using variation of interconnects in a circuit with numerous signal paths.

� Memory: Using device parameter mismatches in bi-stable memory storage elements.

Hereafter, existing implementations of silicon-based PUFs are discussed.

2.4.1 Delay based PUFs

Arbiter PUF

Lee et. al [19] proposed the �rst silicon-based PUF, the arbiter PUF. It consists of two

parallel identical chains of 2 − to − 1 multiplexers ending with an arbiter, a fair decision

making device implemented as a SR latch recommended by Lin et. al [20] due to it's

symmetrical construction. Referring to Figure 2.11, a clock edge signal transition enters

the chain travelling through two unique paths and experiences propagation delay. The

arbiter outputs a logic '0' or '1' response accordingly based on the race of gate delays,

whether the �rst or second input sees the incoming clock transition signal. The challenge

to this PUF system controls the select lines of the multiplexers and creates straight or

crossed connections to produce CRPs. In order to exploit process variation for creating

unique responses to input challenges, this necessitates the delay paths to be unbiased and

perfectly symmetrical.

In the unlikely scenario of both delay paths being exactly identical for a certain input

challenge, the clock transition appears at both inputs of the arbiter. The latch implementa-

tion of the arbiter will shift into a metastable state and eventually settle to an unpredictable

random state based on external noise in�uences. This unreliability is the major drawback

of arbiter PUFs. Another well known delay based PUF in the literature is the ring os-

cillator (RO) PUF. A chain of an odd number of inverter stages is used to implement a

RO. The most common purpose of a RO is to synthesize a square waveform that serves

25

as a clock signal in IC systems. Providing an input challenge to a number of oscillator

pairs compares synthesized frequencies and thereby exposes any deviations manifested by

process variation. Complex con�gurable RO PUFs designed by Maiti and Schaumont [21]

improves reliability and randomness demonstrating progress in this PUF primitive.

D

E

latch

Q
0 Response

arbiter

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

Challenge

0 1 0 1

Figure 2.11: Schematic − Arbiter PUF

Glitch PUF

In a glitch PUF topology, Suzuki et. al [22] demonstrates that there is a non-linear cor-

relation between glitch waveforms discovered in combinatorial circuits and path delays for

input transitions. Whereas for arbiter PUFs, one can identify a linear correlation between

the CRPs and path delays in the multiplexer chain [23]. In a combinatorial circuit, the

time di�erence between output changes caused by a set of input transitions (challenges)

can arise in intermediary unstable states at the ouput (bit-stream responses). Properties

of a glitch such as occurrence and waveform shape is dictated by deviations in logical gate

delay paths. As proposed in [23], the glitch PUF operation can be abstracted as follows:

� Data input transitions to a combinatorial logic circuit.

� Discovery and acquisition of glitch waveforms at the output.

� Convert glitches into response bits using hashing techniques. For e.g., perform mod-

ulo operations on the number of positive edges discovered in the glitch.

The timing diagram of a basic combinatorial block is illustrated with a XOR and AND

logic gate in Figure 2.12. In the �rst set of inputs on the left, during the time between X1

26

andX2 both transitioning from low to high,X3 is active beforehand and hence at the output

of the XOR gate is logic '1' and hence the output is momentarily Y = 1 depicting a glitch.

On the right side with the second set of inputs, X3 is asserted during signal transitions

of X1 and X2, however this may not produce a glitch. In the work presented by Shimizu

et. al [24], an AES S-Box is used as an complex combinatorial logic block connected to a

toggle �ip-�op which performs even parity against the glitch count. Elegant pre-processing

bit-masking techniques are used to alleviate unreliable bit-cells. As a result, a reliability

of 98.7% and a randomness of 35% is reported amongst 16 FPGA boards.

X1

X2

X3
Y

X1

X2

X3

Y

X1

X2

X3

Y

Figure 2.12: Schematic − Glitch PUF

2.4.2 Memory based PUFs

Latch PUF

The principle of operation for a latch PUF is the same as an SRAM-based PUF. Nom-

inally matched cross-coupled or back-to-back devices exhibit random mismatches caused

by process variation. In Figure 2.13, the 2 cross-coupled NOR logic gates form a SR latch.

Upon power-on with the input challenge RST pulled to a logic '1', the output response of

the PUF is stable. Once the RST signal is released or pulled down to logic '0', the output

response shifts to a metastable state and eventually converges to a stable state, logic '0' or

'1' governed by device parameter mismatches. In the proposed latch PUF implementation

by Su et. al [25] using NOR gates at the 130nm node, measurements across 19-die show

96.96 % reliability, and randomness of 50.55 %.

27

RST

Response

Figure 2.13: Schematic − Latch PUF

Butter�y PUF

Referring to Figure 2.14, the butter�y PUF utilizes two cross-coupled latches to retrieve an

output response. Initially, the CLR/Clear signal of latch 1 and the PRE/Preset of latch

2 is driven by the input signal Excite causing the output response to fall into an unstable

state. Once released, the output response oscillates and converges to a stable state based

on physical parameter mismatches between the latches and wire interconnects. This PUF

can be evaluated during power-on − unlike SRAM PUFs.

Excite

D

E
latch 0

Q

D

E

Q

latch 1

CLR

PRE

CLR

PRE

0

0

1

1

Response

Figure 2.14: Schematic − Butter�y PUF

2.5 Applications

Commonly known useful applications of PUFs in the literature are provided in this section.

28

2.5.1 Secret Key Generation

Secure data transmission requires encryption of a secret key over public communication

channels. Existing secure key generation is accomplished through complex TRNG hard-

ware embedded in devices and stored in NVM − susceptible to physical or side-channel

attacks. Motivated by [26], memoryless secret key storage is a use case of PUFs. Encryp-

tion algorithms such as Rivest, Shamir and Adleman (RSA) and Advanced Encryption

Standard (AES) advocate a minimum key length of 3072 bits and 128, respectively [27].

In the work presented by Dodis et al. [28], and Suh and Devadas [29], a method is

proposed to generate cryptographic keys. In Figure 2.15, a key generation process utiliz-

ing PUFs is illustrated. In the initialization stage, the PUF response undergoes ECC to

alleviate any noisy responses caused by environment �uctuations. The ECC encoded bits

or termed as helper data is stored in NVM or in a public database to recognize bit-�ips in

future PUF responses. In the regeneration stage, the key is generated using a combina-

tion of the PUF response, helper data and additional hashing techniques. Integrity of the

generated key is not compromised by the publically available helper data [26].

NVM

Initialization

Phase

Re-generation

Phase

PUF

ECC

[Helper Data]
PUF

ECC

[Helper Data]

Hash

Function

Cryptographic Key Generation

Secret

Key

Challenge Response

Figure 2.15: Application − Cryptographic Key Generation

29

2.5.2 Device Authentication

The unique output response a PUF generates is exploited for device identi�cation and

authentication. This application is divided into two steps − enrolment and veri�cation.

Referring to Figure 2.16, upon manufacturing the IC, an authentication authority enrols

many, if not all, CRPs of the PUF primitive in a secure remote database. In order to verify

the authenticity of the IC when it is active in the consumer market, a randomly chosen

set of challenges from the database is presented to the PUF and if the generated responses

and the corresponding responses match within an error tolerance described by a speci�ca-

tion, then the PUF is successfully veri�ed and authentic. In malicious physical attacks or

attempting to clone PUFs, an error response should be encoded in addition to the PUF

response authentication scheme from the perspective of the remote database. Platonov's

thesis provides statistical analysis of SUVs of ten Atmel ATmega1284P MCUs [30] with

proposed PUF designs for identi�cation and key generation, results are summarized in the

comparison section of Chapter 4.3.1.

Secure Cloud Database

Challenge-Response Pairs

(CRPs)

ENROLMENT

PHASE

PUF Device

[Manufactured]

Response_iChallenge_i

Challenge_1 Response_1

Challenge_2

Challenge_3

Response_2

Response_3

VERIFICATION

PHASE

PUF Device

[In-field]

Response_j

[Generated]

Challenge_i

[Selected]

Response_i

[Corresponding]

AUTHENTIC =

(Resp_i == Resp_j) ?

TRUE : FALSE;

Figure 2.16: Application − Device Authentication

30

2.5.3 True Hardware Random Number Generation

A true hardware random number generator takes advantage of the non-skewed bit-cells

in SRAM PUFs. Instead of discarding these unreliable bit-cells in the context of key

generation, they can be concatenated to form a random number within a range speci�ed

by the incoming request. The overhead to identify non-skewed bit-cells can be costly based

on SRAM size and a lengthy iterative power cycling process.

Figure 2.17 illustrates a small byte-addressable portion of a SRAM with an arbitrarily

chosen starting address in hex and normalized probable bit-cell outcome SUVs for 100

power cycling iterations. Four non-skewed bit-cells are highlighted in yellow, p = 0.5 ±
C, where C is a constant adhering to a speci�c security requirement by the governing

body Federal Processing Standards Publication (FIPS) [31]. Generated values for a 4-

bit unsigned or signed integer range from [0, (24 − 1)] or from [−7, 8], inclusively and

respectively. In Herrewege's PhD thesis, a lightweight PUF based TRNG is implemented

using the ARM Cortex-M0 MCU [32].

For a truly random seed, maximum entropy is needed hence the random number bit

generator must have a probable outcome of p = 0.5, hence C = 0. In the case of C 6= 0, the

random bits are considered pseudo-random and the seed output is deterministic, even after

applying it through a hash function. The National Institute of Standards and Technology

(NIST) provides a set of comprehensive randomness tests to qualify TRNG. In the work

presented by [31], the SHA-256 hash function is a suggested hash function that compresses

input strings of multiples of 512 bits into an output of 256 bits. This hashing algorithm

requires an input entropy of 256 truly random seed bits for it's output to have full entropy.

Further conditioning algorithms utilize the output of the SHA-256 hash function in a

random number generation procedure.

31

0 0.01 0.89 0.97 1 0.47 0 1

0.51

0

0.96

1 1 0 0.03 0 0.78 0.99

0 0.48 1 0.96 0.15 0.89 0

0 1 0.92 0 0.98 1 0.52

4-bit Wide Random Number

Unsigned Integer [0 24 - 1]

Signed Integer [-7 8]

0x40040000

0x40040001

0x40040002

0x40040003

Figure 2.17: Application − True Random Number Generation

32

Chapter 3

Characterization Framework

In this section, an overview of the experimental setup is provided along with practical

applications of SRAM based PUFs. Figure 3.1 depicts the principle of operation of an

SRAM-based PUF. Memory information is provided as follows:

� Conventional byte-addressable direct mapped matrix with N rows by M columns.

� Word size: 4 bytes = 32 bits

� Block size (row) = 4 words = 16 bytes = 128 bits

� Peripheral decoding circuitry for reading/writing operations.

� Knowledge of organization such as word interleaving, or parity is unknown. Em-

bedded SRAM is treated as a black box DUT for PUF characterization and pro�ling.

33

Column Decoder

R
o
w

D
ec

o
d
e
r

Challenge

[Address]

B
u

ff
e
r

Response

[Start-up Values]

[N

0
]

[0 M]

Bit-cell

Figure 3.1: SRAM Architectural Organization

3.1 Commercial o�-the-shelf Products

The commercial o�-the-shelf products of interest are:

� Microcontrollers:

� STM32F429ZIT6U

� ATSAMR21G18A

3.1.1 Microcontrollers

MCUs contain a processor core, programmable input/output (I/O) peripherals, NVM for

code storage and limited volatile memory typically in the form of SRAM. Majority of MCUs

do not implement high performance memory architectural improvements such as hierarchy

with caching mechanisms and cache coherency protocls. This allows e�cient extraction of

PUF responses from SUVs in the available limited SRAM due to non-intervened SRAM

bit-cell content. Whereas, other programmable COTS products such as FPGAs pose di�-

culties to extract PUF responses due to internal resets which results in the loss of random

34

SUVs. Wild et. al suggest strategies using power gating and partial recon�guration of

bit-streams in FPGA development boards to extract uninitialized SRAM SUVs [33].

The COTS investigated are prototyping development boards made by silicon vendors

STMElectronics and Atmel. At the core of each embedded system is an ARM Cortex-

based MCU based on STM32F4 and ATSAMR21 MCU product families, respectively.

They contain embedded SRAM for data storage during program execution. Table 3.1

entails product information and SRAM organization.

Table 3.1: Embedded Development Boards − Product Information

MCU #1 #2

Manufacturer STMElectronics Atmel

Product [Board] STM32F429I-DISCOVERY ATSAMR21-XPRO

Product [MCU] STM32F429ZIT6U ATSAMR21G18A

Architecture ARM Cortex−M4 180 MHz ARM Cortex−M0+ 48 MHz

Operating Voltage 1.7 - 3.6 V 1.8 - 3.6 V

SRAM Size(s)

Total: 192 KB

Total: 32 KB

SRAM1: 112 KB

0x2000000⇔ 0x2001BFFF

SRAM2: 16 KB

0x2001C000⇔ 0x2001FFFF

SRAM3: 64 KB 0x20020000⇔ 0x20008000

0x20020000⇔ 0x2002FFFF

3.2 Power Cycling Experiment

The experimental framework consisted of an automated and manual data acquisition strat-

egy. Both MCU development boards received power from a 5 V USB supply voltage, sup-

plied from a host computer. The automated strategy uses a USB programmable data relay

to collect large data sets in a productive manner. The manual strategy required physical

35

removal of the USB interface to power cycle each target board. This mimics the use case

of in-�eld battery removal or transient operation of embedded devices.

3.2.1 Automated

A power cycling experiment, illustrated in Figure 3.2 was devised to characterize SUVs

of both MCUs under a single nominal power supply condition. The embedded SRAM

instance within each MCU is considered to be a black-box DUT.

Referring to Appendix A, the host machine used an automation script to perform power

cycling and data transfer of SRAM SUVs. During power-on for �ve seconds, a supply

voltage of VDD−Board = 3.3V , derived from the USB line, VDD−USB = 5.0V and passing

through the USB-controlled data relay, was applied to each DUT. Proprietary embedded

debug software tools [34, 35] on the host machine initiated sequential SRAM reads, and

data was transferred as a binary �le (.bin). Power-o� was for two seconds, during which

time the SRAM bit-cells discharge. The power cycling repeated until the collected data

set reaches K = 10, 000 total captures.

USB

MCU FPGADATA

External IC

Figure 3.2: Power Cycling Experiment − Automated Setup

36

3.2.2 Manual

In this strategy, only the ATSAM MCU was tested to determine the bene�t of performing

a manual power cycling strategy. Illustrated in Figure 3.3, a console application must be

open on the host machine and successfully connected to the target MCU via a COMPORT

interface. In an integrated development environment, a C program is loaded onto �ash

memory to access and print embedded SRAM SUVs which in turn is visible on the console.

Full implementation details with comments is entailed in Appendix B. This versatile API

in C has been developed to facilitate access of embedded SRAM. The function prototypes,

description and arguments are entailed in Table 3.2.

USB

DATA

GND

VDD

MCU FPGA

External IC

Figure 3.3: Power Cycling Experiment − Manual Setup

37

Table 3.2: API − Embedded SRAM Access for PUFs

Description
Arguments

Inputs Outputs

readEmbeddedSRAM:

Read SRAM contents and

print byte data to terminal

(char ∗) inc_mem_start None

int inc_num_bytes

getPUFWord: Return

32-bit PUF data word at

given address

(char ∗) inc_mem_start long puf_word

getPUFLongWord:

Return 128-bit PUF data

word at given address

(char ∗) inc_mem_start long puf_long_word

A suggested approach for implementing this API is shown in Figure 3.4. The PUF API

can be integrated into the bootloader sequence at the beginning of �ash memory, while the

remainder is occupied by user program code. Both MCU #1 and #2 allocate the SRAM

memory from the start address for stack and heap usage. The SUVs derived from source

bits near the end of the SRAM address space can be utilized as PUFs.

38

Bootloader

User

Program

Available

SRAM

Source Bits

NVM: Flash VM: SRAM

Configuration

Program Code

Stack or Heap

Memory

SRAM PUF

Figure 3.4: Microcontroller Memory Layout

39

Chapter 4

Measurement Results and Comparative

Analysis

A comparative analysis between the measurement results gathered from the STM and

ATSAMMCUs for both power cycling experiments is provided. The automated experiment

completed under 25 hours for K = 10, 000 samples or power cycles in an environment with

an ambient temperature of 24.0 °C.

4.1 Automated

4.1.1 Reliability

The sole purpose of the automated experiment is to collect a large data set of SRAM SUVs

to perform statistical analysis. The SUVs were evaluated to determine their reproducibility

over K = 10, 000 power cycles in comparison to the �rst captured sample. Referring to

Figure 4.1, MCU #1 and #2 have calculated mean intra-hamming distances of fHD−Intra =

5.80 % and 4.38 %, respectively. The spikes around samples 5800, 8800 and 9400 can be

potentially attributed to temperature variations and tampering of the USB cables during

data acquisition. As outlined in [36, 37], PUF reliability can be improved by applying

40

repetition ECC using XOR logic and storing correction bits in NVM to reduce bit �ips.

MCU #2 performs better with respect to reliability.

0 2000 4000 6000 8000 10000

Data Capture Number

0

1

2

3

4

5

6

7

8

In
tr

a-
H

D
(%

)

MCU #1
MCU #2
Ideal

Figure 4.1: PUF Reliability − Fractional Intra-Hamming Distance [Automated] fHD−Intra

In Figure 4.2, the number of errors per 128-bit data item are investigated. Surprisingly,

despite the lower fHD−Intra of MCU #2, particular 128-bit data words are subject to many

bit �ips with a maximum fHD−Intra ≈ 29.69 % implying that about 38 bits are unreliable.

Whereas, for MCU #1, the maximum approaches fHD−Intra ≈ 17.19 %, which is about

22 bits �ipped. However, on average, fHD−Intra for MCU #2 is about 1.223% lower than

MCU #1, 4.155 % as opposed to 5.483 %, respectively. The standard deviation on the

maximum errors per 128-bit data word for MCU #2 is considerably larger than MCU #1,

as entailed in Table 4.1. This is important information that dictates the design complexity

for resilient ECC circuitry.

41

0 20 40 60 80 100

Data Capture Number

0

5

10

15

20

25

30

In
tr

a-
H

D
[1

28
-b

it
D

at
a

It
em

](
%

)

MIN
MCU #1 MAX
MCU #1 AVG
MCU #2 MAX
MCU #2 AVG

Figure 4.2: PUF Reliability − Errors per 128-bit Data Item [Automated]

Table 4.1: Summary − Errors per 128-bit Data Item [Automated | K = 100]

MCU
Mean

(%)

Max

(%)

STD

(%)

#1 14.675 17.19 0.7798

#2 15.428 29.69 6.2690

42

4.1.2 Randomness

In this analysis, the PUF primitive was 128 bit data items, four aligned 32-bit words. All

combinations of two distinct PUFs in the total memory space for a given sample underwent

a bit-wise comparison to yield an average fractional inter-hamming distance. Referring to

4.3, MCU #1 and MCU #2 have a calculated mean within-die inter-hamming distance of

fHD−Inter = 49.02% and 49.67%, respectively. With respect to randomness and correlation

between bit-cells in each PUF, MCU #2 marginally outperforms MCU #1.

0 2000 4000 6000 8000 10000

Data Capture Number

47.5

48.0

48.5

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

In
te

r-
H

D
[w

it
hi

n-
di

e]
(%

)

MCU #1
MCU #2
Ideal

Figure 4.3: PUF Randomness − Fractional Inter-Hamming Distance [Automated]

fHD−Inter

43

4.1.3 Symmetry

In this analysis, the mean value of SUVs captured from one power on event was calculated.

In each embedded SRAM, the PUF included the entire bit-cell population. Referring to

Figure 4.4, MCU #1 has a near even distribution of SUVs with µ = 0.5001. MCU #2 has

µ = 0.5474, the latter result means that constructed PUFs utilizing these bit-cells will have

a slight bias towards logic '1', reducing PUF entropy. A summary is provided in Table 4.2

which expresses these values as percentages of '0's and '1's.

0 1

Start-up-value (SUV) Binary Response

0

25000

50000

75000

100000

125000

150000

175000

200000

B
it

-c
el

lQ
ua

nt
it

y

49.99 % 50.01 %

45.26 %

54.74 %

MCU #1
MCU #2

Figure 4.4: PUF Uniformity − SUV Distribution [Automated]

44

Table 4.2: PUF Uniformity − SUV Distribution [Automated]

MCU
SUV

Response

Fractional bit-cell

Quantity (%)

#1
'0' 49.99

'1' 50.01

#2
'0' 45.26

'1' 54.74

4.1.4 Stability

This analysis identi�es unstable bit-cells using a counting technique. The sum of all 10, 000

SUV samples of each unique bit-cell is calculated. If the resultant value is 0 or 10, 000, then

this signi�es a strong '0' or strong '1', respectively. The remaining bit-cells hold values

between 0 and 10, 000 implying that the bit-cell SUV was erroneously '0' or '1' at least

once. These bit-cells are therefore non- or partially-skewed and are not suitable for use in a

PUF. Figure 4.5 shows that 36.86% and 28.86% of the total bit-cell count of MCU #1 and

#2, respectively, are non- or partially-skewed. As the number of successive SUV captures

increases, the number of unstable bit-cells approaches a threshold, illustrating asymptotic

behaviour. The chosen number of samples 10, 000 was in�uenced by experiment runtime in

the proposed setup. Due to the linear relationship between number of samples taken and

experimental runtime, if 100, 000 samples were taken, the expected experimental runtime

would be ≈ 250 hours. Certainly, a larger number of captures increases the con�dence that

a bit-cell is stable and improves the quali�cation process. Further, other work entailed in

Table 4.7 perform experiments that capture a similar scale of data samples in the thousands.

45

0 2000 4000 6000 8000 10000
Data Capture Number

0

5

10

15

20

25

30

35

40

Q
ua

nt
it

y
of

U
ns

ta
bl

e
B

it
-c

el
ls

(%
)

MCU #1

MCU #2

Ideal

Figure 4.5: PUF Stability Unstable Bit-cells Distribution

4.1.5 Summary

In Table 4.3, reliability and randomness quality parameters are summarized. In both

aspects, MCU #2 performs comparatively better and is a more suitable PUF.

46

Table 4.3: Summary − Reliability & Randomness [Automated | K = 10, 000]

Metric MCU
Mean

(%)

STD

(%)

Max

(%)

Min

(%)

Intra-HD
#1 5.8 0.107 7.1 5.25

#2 4.38 0.107 4.93 4.02

Inter-HD
#1 49.02 0.359 50.3 47.88

#2 49.67 0.172 50.23 49.09

4.2 Manual

The manual experiment involved physical removal of the USB interface to power cycle MCU

#2. This conveys in-�eld battery removal or transient operation use cases for embedded

devices housing a MCU. The goal here is to manually collect a small data set of K = 10

data captures and observe similar trends in comparison to analysis performed with the

automated data set for MCU #2.

4.2.1 Reliability

The reliability plot showcased in Figure 4.6 has an average fHD−Intra = 4.89%. Recalling

Equation 2.6, calculating the reliability via fHD−Intra requires a particular reference sample

to be chosen (k1). Results infer fHD−Intra is not heavily in�uenced by di�erent references.

47

2 3 4 5 6 7 8 9 10

Data Capture Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

In
tr

a-
H

D
(%

)

MCU #2
Ideal

Figure 4.6: PUF Reliability Fractional Intra-Hamming Distance [Manual] fHD−Intra

Table 4.4 shows a ≈ 0.5% increase on average in fHD−Intra for the manual experiment

in comparison to the automated experiment. This may be attributed to the physical

maneuvering of the USB cable during power cycling.

4.2.2 Randomness

The randomness plot showcased in Figure 4.7 has an average fHD−Inter = 52.25%. This is

an increase of 1.92% over the automated experiment. This is due to the pre-initialized to 0

bit-cells allocated for stack and heap memory for storing temporary data during instruction

execution. Summary of fHD−Intra and fHD−Inter results are shown in Table 4.6.

48

Table 4.4: Reliability − MCU #2 with varying References [Manual | K = 10]

Metric Experiment
Mean

(%)

STD

(%)

Max

(%)

Min

(%)

fHD−Intra

Automated

[k1 : 1st]
4.36 0.140 4.42 4.09

Manual

[k1 : 1st]
4.89 0.208 5.18 4.41

Manual

[k1 : 3rd]
4.83 0.060 4.92 4.71

Manual

[k1 : 7th]
4.88 0.147 5.18 4.73

Manual

[k1 : 10th]
4.91 0.105 5.09 4.71

4.2.3 Symmetry

A mean value of µ = 52.72 as shown in Table 4.5, indicates a skew towards a SUV of

logic '1'. This outperforms the automated experiment by a value of 2.02%. However, the

allocated portion of SRAM is cleared for stack or heap memory for program code.

Table 4.5: Summary − PUF Uniformity − SUV Distribution [Manual]

MCU
SUV

Response

Fractional bit-cell

Quantity (%)

#2
'0' 47.28

'1' 52.72

49

1 2 3 4 5 6 7 8 9 10

Data Capture Number

50.0

50.5

51.0

51.5

52.0

52.5

In
te

r-
H

D
(%

)

MCU #2
Ideal

Figure 4.7: PUF Randomness Fractional Inter-Hamming Distance [Manual] fHD−Inter

4.2.4 Stability

The sum of all 10 SUV samples of each unique bit-cell is calculated. Bit-�ips from logic '0'

to logic '1' or vice-versa indicate an unstable bit-cell. Figure 4.8 shows 13.30% of the total

bit-cell count of ATSAM MCUs are non- or partially-skewed. A similar trend is observed

in the automated experiment, with the exception that reserved bit-cells at the beginning of

the SRAM space are wiped to 0, they are discarded from the unstable bit-cell distribution.

50

1 2 3 4 5 6 7 8 9 10

Data Capture Number

0

2

4

6

8

10

12

14

Q
ua

nt
it

y
of

U
ns

ta
bl

e
B

it
-c

el
ls

(%
)

MCU #2
Ideal

Figure 4.8: PUF Stability Unstable Bit-cells Distribution [Manual]

4.2.5 Summary

Reliability and randomness metrics are summarized for the manual experiment in Table

4.6. Automated power cycling is recommended during the characterization of SRAM PUFs.

Table 4.6: Summary − Reliability & Randomness for MCU #2 [Manual | K = 10]

Metric
Mean

(%)

STD

(%)

Max

(%)

Min

(%)

Intra-HD 4.89 0.208 5.18 4.41

Inter-HD 52.25 0.063 52.37 52.17

51

4.3 Pro�les

In this section, SRAM heat-maps are drawn to illustrate bit-cell stability, based on the

data set acquired through the automated experiment. Grey and colour scales are used

for one data capture, and more than one data capture, respectively using Matplotlib 2D

graphics library [38]. Intensity ranges from {0, 1} in which pi maps to based on normalized
bit-cell count values to total number of samples. The start and endpoints of the colour bar

indicate a strong '0' or '1' with intermediary values as unstable bits.

Illustrated by streaking patterns in Figure 4.9 and 4.10, the heatmap of MCU #1

exhibits column-wise correlation. Despite MCU #1's promising numerical results, quanti-

tative performance metrics cannot solely describe the quality of a PUF. One can speculate

that the physical organization of memory is word interleaved, where consecutive memory

addresses are allocated to each bank of memory. The translation scheme from logical to

physical addresses is unknown making it challenging to determine the root cause of this

pattern.

Referring to Figure 4.11 and 4.12, the bitmap of MCU #2 appears random. This

resembles an ideal bitmap previously shown in Figure 2.10 with high entropy SUVs.

52

0 20 40 60 80 100 120

Column [Bit] - n

0

2000

4000

6000

8000

10000

12000

R
ow

[B
lo

ck
]-

m

0

1

Figure 4.9: Memory Pro�le Heatmap − MCU #1 [K = 1]

0 20 40 60 80 100 120

Column [Bit] - n

0

2000

4000

6000

8000

10000

12000

R
ow

[B
lo

ck
]-

m

0.0 [Strong 0]

0.1

0.2

0.3

0.4

0.5 [Unstable]

0.6

0.7

0.8

0.9

1.0 [Strong 1]

Figure 4.10: Memory Pro�le Heatmap − MCU #1 [K = 10, 000]

53

0 20 40 60 80 100 120

Column [Bit] - n

0

500

1000

1500

2000

R
ow

[B
lo

ck
]-

m

0

1

Figure 4.11: Memory Pro�le Heatmap − MCU #2 [K = 1]

0 20 40 60 80 100 120

Column [Bit] - n

0

500

1000

1500

2000

R
ow

[B
lo

ck
]-

m

0.0 [Strong 0]

0.1

0.2

0.3

0.4

0.5 [Unstable]

0.6

0.7

0.8

0.9

1.0 [Strong 1]

Figure 4.12: Memory Pro�le Heatmap − MCU #2 [K = 10, 000]

54

4.3.1 Comparison

In this section, MCU #2 is chosen to be compared against other works with regards to the

aforementioned quality parameters for various COTS microcontroller embedded SRAMs.

The automated data set statistical results are used. As outlined in Table 4.7, MCU #2

performs well in relation to the other MCUs, in particular a relatively low fHD−Intra and

close to ideal fHD−Inter. Whereas, the ATmega1284P in Platonov's thesis [30] has poor

fHD−Inter and the NXP LPC1768 has nearly twice as much fHD−Intra. Our MCU does

su�er from a bias towards logic '1', which is not evident in other works. The comparison

does not adhere to a standard experimental setup, as each work has a unique test-bed for

power cycling and data acquisition. Further, a varied number of MCUs are tested with

di�erent temperatures, SRAM sizes and number of captured samples.

Table 4.7: Summary − Comparison of Microcontroller Embedded SRAMs

This Work [5] [30] [36]

Year 2016 2015 2013 2011

Product ATSAMR21G18A STM32F3/F4 ATmega1284P NXP LPC1768

Chips Tested 1 67 10 3

SRAM (KB) 32 112 16 32

Temp (°C) 24 25 20 25

Samples 10, 000 2331 'Thousands' 1000

Intra-HD (%) 4.38 3.036 6.7 8

Inter-HD (%)
49.67 48.428 40 49.78

[within-die] [within-die] [die-to-die] [die-to-die]

Symmetry (µ) 0.5474 0.4955 0.73 0.5205

Instability (%) 28.86 N/A 39 N/A

55

Chapter 5

Conclusion

This section concludes the thesis with a summary, an overview of results and future work.

Motivated by the IoT and low-cost appeal of MCUs, this thesis' intent was to de-

termine the suitable PUF amongst two COTS Arm Cortex MCUs. The unclonability

property of PUFs is demonstrated with an analytical model. Evolution of PUFs and re-

lated background information regarding PUF types, SRAM bit-cells and characterization

are provided. An embedded SRAM characterization framework is developed and used in

an automated power cycling experiment to collect SUV data. A manual experiment is also

used for data acquisition and uses application code implemented in C. Statistical analysis

of SUV measurements describe PUF performance in accordance to quality parameters.

Results show that MCU #2 outperforms MCU #1 in reliability by 1.42 %, randomness

by 0.65 % and stability by 8.00 %, with a 4.74 % SUV bias towards a logic '1'. Max

errors per 128-bit data item is 22 and 38 bits for MCU #1 and MCU #2, respectively.

Heat-map of MCU #2 illustrates a random signature whereas MCU #1 shows column-wise

correlation. Comparative analysis shows that MCU #2 is the suitable PUF.

Future work involves expanding the quali�cation process to incorporate advanced en-

tropy metrics, investigating die-to-die correlations, temperature sensitivity and various

power supply strategies. An investigation in the column-wise correlations of the STM

MCU is suggested.

56

Bibliography

[1] Gartner. "Smart Cities Will Use 1.6 Billion Connected Things in 2016". http:

//www.gartner.com/newsroom/id/3175418. Accessed: 2016-06-08. 1

[2] Cisco. "New Cisco Internet of Things (IoT) System Provides a Founda-

tion for the Transformation of Industries". https://newsroom.cisco.com/

press-release-content?articleId=1667560. Accessed: 2016-06-09. 1, 3

[3] Roel Maes. Physically Unclonable Functions: Constructions, Properties and Applica-

tions. Springer, Berlin, Germany, 2013. 1, 2, 3, 4

[4] Christopher B. and Maximillian H. Physical Unclonable Functions in Theory and

Practice. Springer-Verlag, New York, USA, 2013. 1, 2, 4, 18, 19

[5] M. Barbareschi, E. Battista, A. Mazzeo, and N. Mazzcocca. "Testing 90nm Mi-

crocontroller SRAM PUF Quality". In 10th International Conference on Design &

Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1�6, Naples, Italy,

April 21-23, 2015. IEEE. 2, 55

[6] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. de Groot, V. van der Leest,

G.J. Schrijen, M. van Hulst, and P. Tuyls. "Evaluation of 90nm 6T-SRAM as Physical

Unclonable Function for secure key generation in wireless sensor nodes". In IEEE

International Symposium of Circuits and Systems (ISCAS), pages 567�570, Rio de

Janeiro, Brazil, May 15-18, 2011. IEEE. 2

[7] Wolfram MathWorld. "Birthday Problem". http://mathworld.wolfram.com/

BirthdayProblem.html. Accessed: 2016-06-10. 2, 9, 10

57

http://www.gartner.com/newsroom/id/3175418
http://www.gartner.com/newsroom/id/3175418
https://newsroom.cisco.com/press-release-content?articleId=1667560
https://newsroom.cisco.com/press-release-content?articleId=1667560
http://mathworld.wolfram.com/BirthdayProblem.html
http://mathworld.wolfram.com/BirthdayProblem.html

[8] P. S. Ravikanth. "Physical One-Way Functions". PhD thesis, Massachusetts Institute

of Technology, 2011. 3, 4

[9] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. "Silicon physical random func-

tions". In V. Atluri, editor, Proceedings of the 9th ACM conference on Computer

and communications security (CCS), pages 148�160, New York, USA, Nov. 18, 2002.

ACM. 3

[10] P. Tuyls, G.J. Schrijen, B. �kori¢, J. van Geloven, N. Verhaegh, and R. Wolters. Read-

Proof Hardware from Protective Coatings, pages 369�383. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006. 4

[11] Teacher Link. "The Birthday Problem". http://www.teacherlink.org/content/

math/interactive/probability/lessonplans/birthday/home.html. Accessed:

2016-06-20. 7

[12] M. Sayra�ezadeh. The birthday problem revisited. "Mathematics Magazine",

67(3):220�223, 1994. 10

[13] Tutorials Point. "Six Sigma - Measure Phase". http://www.tutorialspoint.com/

six_sigma/six_sigma_measure_phase.htm. Accessed: 2016-07-09. 11

[14] G.C. Berresford. "The uniformity assumption in the birthday problem". Math Mag-

azine, 53(5), Nov. 1980. 14

[15] S. S. Kumar, J. Guajardo, R. Maes, G.J. Schrijen, and P. Tuyls. "The butter�y

PUF protecting IP on every FPGA". In IEEE International Workshop on Hardware-

Oriented Security and Trust (HOST), pages 67�70, Anaheim, CA, USA, June 9, 2008.

IEEE. 18

[16] N. H. E. Weste and D. M. Harris. CMOS VLSI Design: A Circuits and Systems

Perspective 4th Edition. Pearson, Boston, Massachusetts, 4 edition, March 11, 2010.

18

58

http://www.teacherlink.org/content/math/interactive/probability/lessonplans/birthday/home.html
http://www.teacherlink.org/content/math/interactive/probability/lessonplans/birthday/home.html
http://www.tutorialspoint.com/six_sigma/six_sigma_measure_phase.htm
http://www.tutorialspoint.com/six_sigma/six_sigma_measure_phase.htm

[17] A. Dargar, M. Cortez, S. Hamdioui, and G.J. Scchrijen. "Modeling SRAM Start-

up Behavior for Physical Unclonable Functions". In Proceedings of the 2012 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), pages 1�6, Washington, D.C., USA, Oct. 3-5, 2012. IEEE Computer

Society. 21

[18] D. Holcomb. "Randomness in Integrated Circuits with Applications in Device Identi�-

cation and Random Number Generation". Master's thesis, University of Massachusetts

Amherst, 2014. x, 24, 25

[19] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Dijk, and S. Devdas. "A technique

to build a secret key in integrated circuits for identi�cation and authentication appli-

cations". In VLSI Circuits, 2004. Digest of Technical Papers, pages 176�179. IEEE,

2004. 25

[20] L. Lin, D. Holcomb, D. K. Krishnappa, P. Shabadi, and W. Burleson. "Low-power sub-

threshold design of secure physical unclonable functions". In ACM/IEEE International

Symposium on Low-Power Electronics and Design (ISLPED), ISLPED '10, pages 43�

48, Austin, Texas, USA, Aug. 18-20, 2010. IEEE. 25

[21] A. Maiti and P. Schaumont. "Improving the quality of a Physical Unclonable Func-

tion using con�gurable Ring Oscillators". In International Conference on Field Pro-

grammable Logic and Applications, pages 703�707, Prague, CZ, Aug. 31 � Sept. 2,

2009. IEEE. 26

[22] D. Suzuki and K. Shimizu. "The Glitch PUF: A New Delay-PUF Architecture Ex-

ploiting Glitch Shapes". In CHES Proceedings of the 12th International Conference

on Cryptographic Hardware and Embedded Systems, pages 366�382, Santa Barbara,

CA, USA, Aug. 17, 2010. Springer-Verlag Berlin. 26

[23] R. Silwal. "Asynchronous Physical Unclonable Function using FPGA-based Self-

Timed Ring Oscillator". Master's thesis, University of Toledo, August 2013. 26

59

[24] K. Shimizu, D. Suzuki, and T. Kasuya. "Glitch PUF: Extracting Information from

Usually Unwanted Glitches",. IEICE Transactions on Fundamentals of Electronics

Communications and Computer Sciences, 95-A(1):223�233, Dec. 2011. 27

[25] Y. Su, J. Holleman, and B. P. Otis. "A Digital 1.6 pJ/bit Chip Identi�cation Circuit

Using Process Variations",. IEEE Journal of Solid-State Circuits, 43(1):69�77, Jan.

28, 2008. 27

[26] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi, and

Pim Tuyls. "E�cient Helper Data Key Extractor on FPGAs". In Elisabeth Oswald

and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems � CHES

2008: 10th International Workshop, Washington, D.C., USA, pages 181�197, Berlin,

Heidelberg, Aug. 10 -13, 2008. Springer Berlin Heidelberg. 29

[27] Boxcryptor. "AES and RSA Encryption". https://www.boxcryptor.com/en/

encryption. Accessed: 2016-07-10. 29

[28] Y. Dodis, L. Reyzin, and A. Smith. "Fuzzy Extractors: How to Generate Strong Keys

from Biometrics and Other Noisy Data". In C. Cachin and J.L. Camenisch, editors,

Advances in Cryptology - EUROCRYPT 2004: International Conference on the The-

ory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,

2004. Proceedings, pages 523�540, Berlin, Heidelberg, May 2-6, 2004. Springer Berlin

Heidelberg. 29

[29] G.E. Suh and S. Devadas. "Physical Unclonable Functions for Device Authentication

and Secret Key Generation". In Proceedings of the 44th Annual Design Automation

conference, San Diego, CA, USA, pages 9�14. IEEE, June 4 - 8, 2007. 29

[30] M. Platonov. "SRAM-Based Physical Unclonable Function on an Atmel ATmega

Microcontroller". Master's thesis, Czech Technical University in Prague, Faculty of

Information Technology, Department of Computer Systems, May 1, 2013. 30, 55

[31] Vincent van der Leest, Erik van der Sluis, Geert-Jan Schrijen, Pim Tuyls, and Helena

Handschuh. E�cient Implementation of True Random Number Generator Based on

60

https://www.boxcryptor.com/en/encryption
https://www.boxcryptor.com/en/encryption

SRAM PUFs, pages 300�318. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

31

[32] A. V. Herrewege. "Lightweight PUF-based Key and Random Number Generation".

PhD thesis, KU Leuven - Arenberg Doctoral School, January 2015. 31

[33] A. Wild and T. Güneysu. "Enabling SRAM-PUFs on Xilinx FPGAs". In 24th Inter-

national Conference on Field Programmable Logic and Applications (FPL), Munich,

GE, pages 1�4. IEEE, Sept. 2 - 4, 2014. 35

[34] STM. "STM32 ST-LINK Utility". http://www.st.com/content/st_com/en/

products/embedded-software/development-tool-software/stsw-link004.

html. Accessed: 2015-08-19. 36

[35] Alex Taradov. "CMSIS-DAP programmer (Formerly Atmel EDBG programmer)".

https://github.com/ataradov/edbg. Accessed: 2015-08-17. 36

[36] C. Böhm, M. Hofer, and W. Pribyl. "A Microcontroller SRAM-PUF". In 5th Interna-

tional Network and System Security (NSS), Milan, Italy, pages 269�273. IEEE, Sept.

6 - 8, 2011. 40, 55

[37] A. Neale and M. Sachdev. "A low energy SRAM-based physically unclonable function

primitive in 28 nm CMOS". In Custom Integrated Circuits Conference (CICC), San

Jose, USA, pages 1�4. IEEE, Sept. 28 - 30, 2015. 40

[38] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &

Engineering, 9(3):90�95, 2007. 52

61

http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link004.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link004.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link004.html
https://github.com/ataradov/edbg

Appendix A

Power Cycling Automation Script

This batch script ran on a Windows host machine via command line. It interfaced with

debug software to perform sequential reads in embedded SRAM for both MCUs. Data

captures are in the form of binary �les and a a USB controlled relay is used for power

cycling. Note that directories need to be modi�ed accordingly to the respective �le system.

@ECHO off

setlocal enabledelayedexpansion

::Clear console log

CLS

::Memory capture commands

::Atmel -> "C:\Users\Sakib\Documents\Atmel Studio\

6.2\edbg-master-working\edbg" -brf <file_name>

::ST -> "C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\

ST-LINK Utility\ST-LINK_CLI" -Dump 0x20000000 0x30000 <file_name>

SET utility_atmel="C:\Users\Sakib\Documents\Atmel Studio\

62

6.2\edbg-master-working\edbg"

SET utility_st="C:\Program Files (x86)\STMicroelectronics

\STM32 ST-LINK Utility\ST-LINK Utility\ST-LINK_CLI"

SET utility_usb="C:\Program Files (x86)

\DenkoviRelayCommandLineTool\DenkoviRelayCommandLineTool_10.jar"

SET utility_usb_ser_num=DAE002dM

SET date=12_22

SET /a capture_total=10000

SET /a capture_number=1

SET folder_dest_atmel="../ATSAMR21G18A/captures_%date%_10000_samples_automated"

SET folder_dest_st="../STM32F429ZIT6U/captures_%date%_10000_samples_automated"

::Create ST directory if it doesn't already exist

IF EXIST %folder_dest_st% ECHO ST Directory already exists

IF NOT EXIST %folder_dest_st% MKDIR %folder_dest_st%

::Create Atmel directory if it doesn't already exist

IF EXIST %folder_dest_atmel% ECHO Atmel Directory already exists

IF NOT EXIST %folder_dest_atmel% MKDIR %folder_dest_atmel%

ECHO "Ensuring all individual relays are off"

java -jar %utility_usb% %utility_usb_ser_num% 4 turn 0000

ECHO ""

TIMEOUT 1

:LOOP

ECHO "Current Capture number is %capture_number%"

63

SET file_name_atmel="%date%_MCU_ATSAMR21G18A_32KB_%capture_number%.bin"

SET file_name_st="%date%_MCU_STM32F429ZIT6U_192KB_%capture_number%.bin"

SET file_name_absolute_atmel="%folder_dest_atmel%/%file_name_atmel%"

SET file_name_absolute_st="%folder_dest_st%/%file_name_st%"

ECHO "Turning on 1st and 2nd relay - check status LEDs on board"

java -jar %utility_usb% %utility_usb_ser_num% 4 turn 1100

ECHO "Ensuring devices are fully on - PC recognition sound"

TIMEOUT 5

::Both Atmel & ST Devices should be recognized by PC via USB port

::ST SRAM Capture

ECHO ST MCU: Capturing and saving %file_name_absolute_st%

%utility_st% -Dump 0x20000000 0x30000 %file_name_absolute_st%

::Atmel SRAM Capture

ECHO Atmel MCU: Capturing and saving %file_name_absolute_atmel%

%utility_atmel% -brf %file_name_absolute_atmel%

TIMEOUT 1

java -jar %utility_usb% %utility_usb_ser_num% 4 turn 0000

TIMEOUT 1

IF EXIST %file_name_absolute_st% (

IF EXIST %file_name_absolute_atmel% (

SET /a capture_number=capture_number+1

)

64

) ELSE (

ECHO "Error: Could not capture file %file_name_absolute_st%"

ECHO "Error: Could not capture file %file_name_absolute_atmel%"

)

IF %capture_number% LEQ %capture_total% GOTO loop

65

Appendix B

Embedded SRAM Access API Code

void readEmbeddedSRAM(char * inc_mem_start, int inc_num_bytes) {

// Point to starting physical address of SRAM

char *mem_start = inc_mem_start;

// Specify number of bytes to be read

int num_bytes = inc_num_bytes;

// Bit-stream field initialization to zero

long puf_word = 0x00000000;

// Iterate through address space until all bytes read

for (int i = 0; i < inc_num_bytes; i = i + 4) {

puf_word = getPUFWord(mem_start, i);

// Print 32-bit PUF word to screen

printf("ADDRESS : DATA");

printf("%p : %x \n", (int*) (mem_start + i), puf);

}

}

66

long getPUFWord(char * inc_mem_start, int inc_start_idx) {

// Construct 32-bit PUF using bit-shifting and

// concatenation of 1-byte (8-bit) data items

char puf_byte_one = inc_mem_start[inc_start_idx];

char puf_byte_two = inc_mem_start[inc_start_idx + 1];

char puf_byte_three = inc_mem_start[inc_start_idx + 2];

char puf_byte_four = inc_mem_start[inc_start_idx + 3];

long puf_word = (long) (puf_byte_four | (puf_byte_three << 8)

| (puf_byte_two << 16) | (puf_byte_one << 24));

return puf_word;

}

long * getPUFLongWord(char * inc_mem_start) {

// Acquire four separate 32-bit PUF words

long puf_word_one = getPUFWord(inc_mem_start);

long puf_word_two = getPUFWord(inc_mem_start + 4);

long puf_word_three = getPUFWord(inc_mem_start + 8);

long puf_word_four = getPUFWord(inc_mem_start + 12);

// Concatenate four 32-bit PUF words to

// construct a 128-bit PUF long word

long puf_long_word[4] = {puf_word_one, puf_word_two, puf_word_three,

puf_word_four};

// Aux: Printing purposes

printf("ADDRESS: %x => %x %x %x %x \r\n", mem_start, puf_long_word[0],

puf_long_word[1], puf_long_word[2], puf_long_word[3]);

67

return puf_long_word;

}

68

	List of Tables
	List of Figures
	Introduction
	Motivation
	Physical Unclonable Functions
	Outline

	Background
	Numerical Theory
	SRAM based PUFs
	Bit-cell Architecture
	Bit-cell Start-up Behaviour
	Bit-cell Types

	Characterization
	Reliability
	Randomness
	Symmetry
	Stability

	Silicon based PUFs
	Delay based PUFs
	Memory based PUFs

	Applications
	Secret Key Generation
	Device Authentication
	True Hardware Random Number Generation

	Characterization Framework
	Commercial off-the-shelf Products
	Microcontrollers

	Power Cycling Experiment
	Automated
	Manual

	Measurement Results and Comparative Analysis
	Automated
	Reliability
	Randomness
	Symmetry
	Stability
	Summary

	Manual
	Reliability
	Randomness
	Symmetry
	Stability
	Summary

	Profiles
	Comparison

	Conclusion
	Bibliography
	Appendix Power Cycling Automation Script
	Appendix Embedded SRAM Access API Code

