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1. INTRODUCTION

Given a directed graph F, we may associate to E a C*-algebra, C*(FE), by associating edges in E to
partial isometries and vertices in E to pairwise orthogonal Hilbert spaces which satisfy some addi-
tional conditions. Such graph algebras were first studied by Cuntz and Krieger in 1980 [4]. Because
the structure theory of the C*-algebras is related to the combinatorial and geometrical properties
of the underlying graph E, graph algebras have gained a lot of attention. Examples of such graph
algebras include some AF-algebras, Cuntz-Krieger algebras, and C*-algebras built up from matrices
over C(T).

Our report is organized as follows. Section 2 will cover the basic terminology and properties one
may associate to the C*-algebra of the graph F which give us interesting relations between the
projections and partial isometries. In order to gaina good grasp on the concepts, we will look at
some particular graphs whhich generate familiar C*-algebras, including all finite C*-algebras, the
Toeplitz algebra, and C(T). Section 3 will investigate the conditions which allow us to concretely
find C*(E). We begin with the Gauge-Invariant Uniqueness Theorem and proceed on to an appli-
cation of this theorem regarding the equality of the C*-algebras generated by a graph and it’s so-
called dual graph. We conclude this section with the CK-Uniqueness Theorem, which tells us that
if every cycle has an entry, every non-degenerate CK E-family generates isomorphic C*-algebras.
These uniqueness theorems also allow us to present a number of graphs whose corresponding C*-
algebras will be familiar to the reader. Section 4 examines the ideals of C*(E) and completely clas-
sifies when the C*-algebra is simple. Finally, Section 5 is a study on the paper by Nagy and Reznikoff
[9]. We begin by introducing the abelian core of a graph C*-algebra and work towards proving an
additional uniqueness theorem says that a *-homomorphism on the C*-algebra being injective is
equivalent to it being injectie on the abelian core. As well, a brief investigation into the spectrum
of elements in the C*-algebra give an additional equivalent condition regarding the spectrum of the
image of some particular elements.

2. BACKGROUND ON GRAPH C*-ALGEBRAS

2.1. Cuntz-Krieger families. We begin by defining a Cuntz-Krieger family and then examining
some examples of Cuntz-Krieger families for given graphs.

Definition 2.1. A directed graph FE is a collection E = (E°, E',r,s) where E° is a set of points,
called vertices, E' can be viewed as a collection of ordered pairs e = (v, w) € E°x E° called edges,
and 7,5 : E' — E° are maps denoting the range and source of an edge, respectively. If a vertex v
does not receive edges or equivalently, if r~1(v) = (), then we call the vertex a source. We call a
vertex v which does not emit edges a sink.

The existence of sources will prove to be particularly interesting in many of the theorems presented
in this report. We restrict our attention to graphs where each vertex receives finitely many edges
and we call such graphs row-finite. For the purposes of this report, all graphs will be assumed to
be row-finite. To reinforce these new terms, we look at an example.



Example 2.2. Suppose E® = {u,v,w, ws,ws,...} and E' = {e, f, g, h, 1, pi2, i3, - - - }, where we
draw F as in Graph 1.
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GRAPH 1. an example row-finite graph

Since v receives no edges, it is a source. If we consider the edge e, then we have s(e) = v and r(e) =
u. Notice that we allow multiple edges between the same pair of vertices, as demonstrated by the
existence of both p1 and ps.

Definition 2.3. We let ‘H be a Hilbert space, E a directed graph, and define a Cuntz-Krieger E-
family {S, P} on H to consist of a set P = {P, | v € E°} of mutually orthogonal projections on H
and a set

S ={S. | e € E'} of partial isometries on H which satisfy

(CK 1) SiSe = Py for all e € E*
(CK2) P, = Z{eeE1|r(e):u} SeS) whenever v is not a source

We will shorten the terminology by calling such a {S, P} a CK E-family and throughout this re-
port, we will often consider the C*-algebra generated by a CK E-family, C*(S, P).

Note that because S, is a partial isometry, we can write S. = ScSiSe = Sc(5:Se) = SePye).
Furthermore, since SeH = S.5;S.H C S.S M (in fact, we have equality here) and P,y = S.S7 +
Z{f#‘,.(f)ﬂ(e)} S¢St where SpS7 > 0, then we have P(¢) > SeS¢. It follows that for h € SeSIH,

1Prie)hlI* = (Prey s Preyh) = (Prieyhs h) > (SeSzhy b = (b h) = ||B|*.

Since we can write ||h[|> = [|P.e)h||* + [|[(I — Po(e))h||?, we get that [[(I — Py(e))h||* = 0 and so
h = P.eyh € P.eyH. Thus, SeSeH C ProyH, hence for any h € H, we have P,.()Sch = Sch. This
gives us the equality

Se = Pr(e)se = SePs(e)a
which will prove to be invaluable throughout the rest of this report.

One other result that is true of all CK E-families is that PyH = @©eept|r(e)=v)Se H. Indeed, since
Py =3 (cept|r(e)y=v} Se5¢ is a projection then the summands must be pairwise orthogonal. That is,
S.8:8¢57 = 0 for e # f which satisfy r7(e) = v = r(f). Since SS; is the projection onto the range
of Se, we have that the distinct partial isometries S., with range in P,H, have mutually orthogonal
ranges. The span is clearly P, and the map which sends a sequence (h.) in ®@ScH to >, he in
P,H is an isomorphism from the direct sum of the S.H with r(e) = v onto the space P,H. Thus,
PUH = ®{€€E1‘T(S)ZU}S€H'

A natural question is whether a CK FE-family exists for every countable graph E under the con-
straint that every P, and S, is non-zero. Indeed, we may construct such a family as follows. Choose
2



‘H,, to be some separable, infinite-dimensional Hilbert space for each vertex v. We set H = @, cgoH,
and let P, be the projection of H onto H,. We can decompose the space H,, into the direct sum

Hy = Sp(e)=vHv,e Where each H, . is again infinite-dimensional and take Se to be the unitary iso-
morphism of H) onto H,() . viewed as a partial isometry on H with initial space H,(.) and final
space Hy(e),e-

Definition 2.4. A degenerate CK FE-family is one where some orthogonal projection P, is the
zero operator, and we concern ourselves with non-degenerate CK E-families.

Example 2.5. We will see this in action to get a grasp on how it works. Consider Graph 2.

(oD
(GRAPH 2

The CK-conditions are S} Se = P, S3Sy = P, and P, = S.S} + 5¢S}. Let H, = H = (2(N) and
decompose this as H = H. ® Hs. One way to decompose H is to take the standard orthonormal
basis {e,} and let H, = span{es, | n > 1} and H; = span{es,—1 | n > 1}. Since H, = H,
we have that P, is simply the identity operator. Then the isometries described above will be those
determined by Sc(ey) = €2, and Sy(ey) = eap—1 for n > 1.

This is indeed a CK E-family. By letting F;; be the elementary matrix unit relative to the ba-

sis {e,,} with a one in the (4, j) entry and zeros elsewhere, we can view S, and Sy as the matrices
oo Eopyn and Y07 | Eo,_ 1y, respectively. It is not hard to verify that S¥S. = I = S3Sy and
that S€S: = 27010:1 Egn,gn while SfS; = Z,Zozl E2n—1,2n—1- Since PU = I”,L[ = SeS: + SfS;, the
collection {S, P} is a CK E-family for this graph.

The Cuntz algebra O,, is the universal C*-algebra generated by a set {S;}7; of isometries acting
on H satisfying > | S;S7 = I and S;S; = §;;1. Moreover, it is known that O, is isomorphic to the
C*-algebra generated by any n isometries {S;}7; satisfying the above relations (see [3]). Since S
and Sy are isometries and the CK-conditions are precisely the relations which generate Os, we see
that in the above example, C*(S, P) = C*(S5) is equal to the Cuntz algebra, Os.

2.2. A brief investigation of dimension. The construction of Oy for Graph 2 yielded an infinite-
dimensional space P,H = H. Moreover, we can verify that any non-degenerate CK E-family will
require H to be infinite-dimensional. Because S, is an isometry from P,H onto S.H, we have that
dim P,’H = dim S.H. Similarly, dim P, = dim S¢H so the fact that P,H = ScH®S¢H implies that
dim P,H = dim S.H + dim S¢H = 2dim P,’H. Thus, dim P,H can only be 0 or oco. If P, is non-zero,
then the dimension must be infinite.

We further note that in general, if E is a directed graph, each projection P, for v € E° is non-zero,
and there is a loop e at v where v is also the range of some other edge, then dim(P,H) = oco. In-
deed, we have shown PyH = @ {y(y)=v}SfH which implies dim(PyH) = 3¢ ¢/, )=y dim(SpH).



However, we know that for any edge f, dim(S;H) = dim(PysyH) and so

dim(P,H) = dim(P,H) + Y dim(SpH)
{f#elr(f)=v}

=dim(P,H)+ > dim(PypH).
{F#elr(f)=v}

Since we assume P, # 0 for all v € EY, dim(P;(s)H) is nonzero and so dim(P,H) = oc.

The next natural question may be whether there exist graphs E for which it is possible to construct
a CK E-family acting on a finite-dimensional Hilbert space H. The following example will show
that it is indeed possible.

Example 2.6. Let’s consider the graph E given in Graph 3.

GRAPH 3

We start by looking at the constraints on the dimension of the subspaces P,H, P,H and P,H, and
seeing that

dim(P,H) = dim(S.H) + dim(SyH)
= 2dim(P,H)

dim(P,H) = dim(SpH) + dim(S,H)
= dim(P,H) + dim(P,H)
= 3dim(P,H).

If one of P,H, P,H or P,H is infinite-dimensional, they are forced to all be infinite-dimensional.
Let’s try to construct an appropriate CK E-family such that dim(P,H) = 1,dim(P,H) = 2, and
dim(P,H) = 3. Since we require P,, P, and P, to be mutually orthogonal, the smallest dimension
of H that we can consider is 3 4+ 2 4+ 1 = 6. We will attempt to construct such a system in Mg(C).
Let’s take {v} to be a basis of P,H, {u1,us} a basis of P,H and {w, w2, ws} a basis of P,H and
list the basis elements of H in the order

V U3 Uy wWp W2 wWs.
4



Let Se send v to u; and Sy send v to up so that we have Sc = Fy; and Sy = E3;. Next, let’s have
Sy send v to wy so Sy = E4;1. Now, set S, to send P,’H to P,H so we send u; to wy and us to ws.
This gives us the partial isometry Sy, = Eso + Fg3.

The CK-conditions tell us that we are forced to set P, = F11, P, = Fos+ F33 and P, = Ey4+ E55+
E66-

We can now check the remaining CK-conditions to see that

S2Se = F19F2 = Ey; = Py

S§3Sp = E13E31 = Eq1 = Py;

S;;Sg =Eubny =En =Py

SpSn = (Eas + E36)(Es2 + Eg3) = Faa + E33 = Py;

S¢Sy + SpSt = Ea1E1a + E31Er3 = Eop + E33 = Py;

SpSh + 84Sy = (Es2 + Eez)(Eas + Ese) + Es1 E1a = Eay + Ess + Ege = P,

and so {S, P} is indeed a CK E-family.

Let’s now consider the C*-algebra generated by the the CK E-family, C*(S, P). Note that we have
E11, B2y, E31, Eyq all contained in the C*-algebra. Since we can write F15 = Eio(Eos + F3g) =
SES; and Evg = Er3(Eas + Esp) = S5}, then each of these are also contained in C*(S, P). Now
any matrix unit E;; is equal to E;; EY, forcing each matrix unit to be contained in C* (S, P). Thus,
C*(S, P) must be all of Mg(C).

It was argued above that we are able to represent C*(S, P) on an infinite-dimensional Hilbert space
H. As noted earlier, this tells us that all of H,, H, and H,, will also be infinite-dimensional.

In order to completely exhaust this investigation of dimension restrictions, we ask whether the re-
striction that one space, H,, is infinite-dimensional gives some further restrictions on the dimension
of the other spaces, H,,.

Example 2.7. Let’s consider the simplest graph E where this comes up, given in Graph 4.

fC?M;w

GRAPH 4

Since there is a loop f at the vertex v and since v is also in the range of another edge e, then the
remark above forces dim(P,H) to be infinite-dimensional. The question now is whether there are
any hidden restrictions on the dimension of H,, = P,H?

We begin by searching for an explicit CK E-family such that dim(P,H) = dim(H,,) = oco. Take
(S, P} in B(£2(N)) defined by



o0 oo
Se = Z Ein—1,2n-1 Sy = Z Ein-32n
n=1 n=1

1 0 0 0
N 000 0
PU:S:Se:SOT_ZEQn—l,Qn—lz 0010
n=1 0 0 0 O
[0 0 0 0 ...
N 010 0
Pw:S*Sf:SOT— Egn)gnz 0000
f 2 P =0

Then

SeS; + SpSt =sorT — Z Ein-1,4n-1+S0T — Z Ein34n-3 = SOT — Z Ean12n-1 = Py.

n=1 n=1 n=1

Thus, {S, P} is a CK E-family and in this case, dim(P,H) = oo. We now attempt to find a CK
E-family {T, @} such that dim(#,) < co. Define {T,Q} by

oo
T, = Eo Tf = SOT — Z En+2,n+1a

n=1
so that the projections must be set to be

QU = Tfo = |:0 I:| Qw = Te T. = En

where the bold face 0 is an infinite matrix of zeros. Finally, T.T + TfT}‘ = FEoy + 22023 E., =Q,
as desired, proving that {7, @} is a CK family for the graph above with dim(P,H) = 1 < co. We
will determine what C*(S, P) and C*(T, Q) are later in this report.

2.3. Paths and a few results. We now expand our theory to the case of paths.

Definition 2.8. We define a path to be a sequence t = pifio ... of edges u; in E' such that
s(pi) = r(pir1). We let || denote the number of edges in p and let E™ be the set of paths of length
n.



Our previous notation of E! being the set of edges and E° the set of vertices (considered to be
paths of length 0) is consistent with this new notation. Finally, we let E* be the set of all paths of
finite length. We extend the functions  and s in the obvious way: r(x) = r(u1) and s(u) = s(p),)),
where we may extend r to all paths and s to all paths of finite length.

We give a simple example to demonstrate the notation, as it can vary in the literature.

Example 2.9. We now look at Graph 5.

GRAPH 5

Consider the path u of length 3 defined to be . = gfe and note that the vertex v is repeated in u.
We may also repeat the edge f and instead consider the path v = gf fe of length 4. Both of these
paths have source at v and range at w.

Much of the theory will be similarly expanded for paths. For the sequence u = pips ... fin, we
define S, = S,,5,,...5,,, where we convene that S, = P, when considering paths of length

0. If we take two edges e and f with s(e) # r(f) (that is, ef is not a path) then Sy = S.5; =
SePyeyPr(s)Sy = 0 where the last equality holds true because the projections Py and P,y are
mutually orthogonal. Thus, if P, # 0 for all v € E°, then S, is non-zero if and only if x is a path in
our graph.

For a path p € E*, we have S5, = Py(,), so the S,’s are also a partial isometries. Moreover,
S = PruySu = SuPs)-

Proposition 2.10. Let E be a row-finite graph and {S, P} a CK E-family in a C*-algebra B.
Then for every vertex v and k € Z>y,

Pyo= > S8y + Y. S
r(p)=v r(p)=v
[u|=Fk lu|<k and
s(p) s a source

Proof. We will prove this by induction on k. If & = 0 then the equation holds trivially. Now sup-
pose the equation holds for some non-negative number k, and we will show it also holds for k + 1.

Firstly, note that because E is row-finite, there are at most finitely many paths p € E™ with r(u) =
v. We may now manipulate the induction hypothesis for k:
7



Py= ) S8, + Y. S
()= ()=
|p|=Fk || <k and
s(p) is a source

= Z SuPs(u)Sz + Z S“SZ’
r(m)=v r(w)=v
|pu|=k and |p|<k and
s(p)is not a source s(p) is a source

so that

P, = > Sul > SeSr|Ssn o+ >SS

r(m)=v r(e)=s(u) r(p)=v
|p|=Fk and |p|<k and
s(p)is not a source s(p) is a source

2 D SwSie DL SuSp

r(p)=v r(e)=s(u) r(p)=v
|n|=k and |x|<k and
s(p)is not a source s(p) is a source

Thus, the equation holds for k + 1, since |ue| = k + 1.

The following proposition will be used multiple times throughout the rest of this report:

Proposition 2.11. Let E be a row-finite graph and suppose {S, P} is a CK E-family in a C*-
algebra B and that p = prpe ... iy and v = 11vy ... v,y are paths in E. Then

Sy if p=wvp' for some y' € E*
S5, =4S, ifv=up for some v € E*

0 otherwise.

Proof. Suppose first that |p| = |v| = n and let ¢ be the smallest integer such that u; # v;. Then

S, = 8% S (S SE ) (S Sy - S )Sur - S

M1 n
= S:n e SZZPT(M)SW P Syn since S(/Li_1) = r(ui)
=S 85 Su S

Now, S5 Sy, = S, (84,5,,)(5,,5;,)S,, = 0. Next, let us assume that n = [u| < |v| and write
v = av' with |a| = n so that 5,8, = (SZSQ)SV/. If u = a then S},S, = Pyu)Sy = Pr)Su = Sur.
8



If p # o then S;S, = (5;84)S,, = 0. A similar argument for the case of |u| > |v| will conclude the
proof. O

We will now begin looking at the C*-algebra generated by a CK E-family.
Theorem 2.12. If {S, P} is a CK E-family for a row-finite graph E, then

C* (S, P) =span{S,S; | p,v € E*,s(u) = s(v)}.

Proof. First note that every non-zero finite product of the partial isometries S, and S;Z has the form
5,55 for some p,v € E* with s(u) = s(v).

More specifically, we have

Smx’SE if a =va/
(5,57)(5a55) = SuSh, fv=ar

0 otherwise.

This tells us that span{S,S; | p,v € E*,s(u) = s(v)} is a subalgebra of C*(S, P). Moreover, it is a
*-subalgebra since (5,57)* = S,5;,. Thus, the closure is a C*-subalgebra of C*(S, P) and so we've
shown one inclusion.

The other inclusion follows from the fact that SeS:(e) = SePs*(e) = Sc Py = Se and S, S, = Py, so

the generators are in the span. Thus, the two spaces are equal. O

Definition 2.13. For finite paths o and v, we say that o extends v if there exists some path o’
which satisfies « = va/. We define a closed path to be a path p which satisfies () = s(u) and we
define a cycle to be a closed path p of length at least one which does not repeat vertices. We call
E a finite graph if it has finitely many vertices and edges.

We now have the necessary terminology to present our next theorem.

Theorem 2.14. Suppose E is a finite graph without cycles. Let wy, ..., w, be the sources in E.
Then for every Cuntz-Krieger E-family {S, P} with non-zero projections P, we have

C*(Sv P) = @?:1M|s*1(wi)\((c)
where s~ (w;) = {u € E* | s(u) = w; }.

Proof. First, let’s confirm that the graph E has sources. Choose any vertex v in EY. If v is a source,
we’ve shown the claim. If not, it’s possible to find an edge e with r(e) = v. Is s(e) is a source then
the claim is again verified. If not, we can find another edge into s(e). Because there are finitely ver-
tices, repeating the argument above will eventually lead to either repeating a vertex (thus creating a
cycle, leading to a contradiction) or terminating at a source.



Note that for any two paths pu,v € E* with s(u) = s(v) = v, where v is not one of the sources, we
can write

SuSy =S8, PySy =S, | Y. S.8;| Sy = S, S5,

r(e)=v r(e)=v

We have now extended the length of the paths p and v. We can continue to use the CK-relation to
extend the paths until s(u) = s(v) is some source, w;. Theorem 2.12 combined with this argument
tells us that

C*(S,P) =span{S,S, | s(u) = s(v) = w; for some i}.

For two paths v, € E* with s(v) = s(a) = w; for some fixed source w;, we have that v can-
not extend o and neither can « extend v. Thus, if §,,, is the Kronecker product, (5,,57)(Sa55) =
0v,09uS) making these S, 57 matrix units. Since there are |s=1(w;)]?
s(pu) = s(v) = w;} is isomorphic to M)s-1(y,)(C).

such matrix units, span{S,,S} |

Finally, if we have the element 5,5 with s(u) = s(v) = w; as well as 5,55 with s(a) = s(8) = w;
for i # j then v and « cannot extend each other and thus (5,57)(5,55) = 0, giving us the desired
direct sum of C*(S, P) = @, span{S,S; | s(u) = s(v) = w;}. O

Example 2.15. Recall Graph 3 we examined earlier which had no cycles, shown again below.

In Section 2.2, we defined a particular CK E-family {S, P} and found that C*(S, P) is equal to
M;g(C). Because v is the only source and s~'(v) = {v,e, f, g, hf, he}, the theorem above tells us
that for any CK E-family {T,Q} we have C*(T, Q) = Mg(C).

To see the proof of the theorem above in action for this example, we show why P, and S} are con-
tained in span{S,S, | s(u) = s(v) = v}:

P, = S.5
Sh = ShPu
= Sh(SfSF + SeS7)

= ShyS} + SheS;

Similarly, we can write any element of C*(S, P) as S,,S;, for an appropriate choice of paths p,v €
-1
s7H(v).

10



We are now able to characterize C*(S, P) for any graph E with no cycles. What if the graph does
have a cycle?

Example 2.16. Let’s consider Graph 4 with cycles that we looked at earlier.

e Vé&——w
f

We have the Cuntz-Krieger conditions S5, = P,, S}Sf = P,, and P, = 5.5} + SfS;.

Then by applying the previous remarks, we have that

(P, + Py)P, = P, = Py(P, + Py),
(Py + Py)Py = Py = Py(P, + Py),

(P, + Py)Se = P,Se + Py(PySe) = Se = Se(P, + Py), and
(Py + Py)S§ = Py(PySy) + PuSy = Sy = Sp(Py + Py),

proving that P, + P, is the identity for C*(S, P). Moreover,

(Se +Sf)*(Se + Sf) =53S. + S;Se + S:Sf + S;Sf =P, + Py;

(Se + Sf)(Se + Sf)* = SeS: + SfSZ + SES; + SfS;c =P,

(Se +S¢)"(Se + Sf) — Py = Pu;

(Se + Sf)Pv =S.P, + Sf(SeS; + SfS;) =S+ SfSeSZ + SfoS} =S.;
(Se + Sf)Puw = Se(S7S¢) + SpPuw = S

This argument shows that we can recover the generators of C*(S, P) from S, + Sy. Thus, we may
recover all of C*(S, P) from S + Sy. This precisely means that C*(S, P) is generated by the isome-
try Se + Sy.

Conversely, if V' is an isometry then P, = I — VV*, P, = VV*, S, = VP,, Sy = VP, defines
a CK E-family (this is easy to check) and C*(S,P) = C*(V). Coburn’s Theorem [8, Theorem
3.5.18.] tells us that all C*-algebras generated by a single non-unitary isometry are isomorphic to
the Toeplitz algebra 7.

Since S, + Sy is non-unitary precisely when P, is non-zero then we know that all CK E-families
with non-zero projections generate C*-algebras which are isomorphic to 7.

2.4. The universal C*-algebra of a graph. In the previous example, we were required to use
Coburn’s Theorem to prove that the C*-algebra generated by any CK FE-family was isomorphic

to 7. This cannot be extended to apply to an arbitrary graph. Instead, we will present a theorem
which defines a universal C*-algebra, C*(FE). This will be called the C*-algebra of the graph F.

11



Theorem 2.17. For a given row-finite graph E there is a C*-algebra, C*(E), generated by a CK
E-family {s,p}, such that for every C*-algebra B and for every CK E-family {T,Q} in B, there
exists a homomorphism

mrq: C*(E) =B
which maps se to T, and p, to Q.. Moreover, this construction is unique. That is, suppose € is a

C*-algebra generated by a CK-family {w,r} such that, for every CK-family {T,Q} in B, there is a
homomorphism

prQ: € —B

which maps we to T, and 1, to Q,. Under these conditions, there exists an isomorphism ¢ : C*(E) —
€ such that ¢(se) = we and p(py) = 1y.

Proof. We take formal symbols d,,,, for paths p,v € E* and consider the set

V= {3 s v € B s) = ()}

equipped with the operations

a (Z wwdw) + (Z deﬂu) = Z(aww + 2u0)d s

*
duv =d,,; and

dyor g if a=vd
d,uudozﬁ - d“,ﬁl/ lf V= OlVl .

0 otherwise
We can check that product is associative and compatible with %, making V' a x-algebra. For any CK

E-family {S, P} generating the C*-algebra 2, the map

TS, Pt V—>B(,H)

*
duy = 848,

is a *-homomorphism since {s,s}} satisfy the relations above. Moreover,

e (5 i)

so for all a € V', we may define

<> llsusil <3 Lz,

llallx = sup{||7s p(a)ll | {s,p} is a CK family} < oco.
12



This is a seminorm on V and ||a||? = |la*al|;. Consider the space I = {a € V | |lal]j; = 0}, which is a
x-ideal. Let Vo = V/I be the x-algebra with quotient norm || - || defined by ||v+ I||o = inf{|lv + j||1 |
Jjel}.

It follows that Vp, the closure of Vj with respect to ||-||o, is a C*-algebra, so we may let C*(E) = ;.
Consider se = dg s(c), Pv = dov,p- We claim that this is a CK E-family which generates V. Indeed,

2 — g —
v = dv,vdv,v = dv,v =Dv = dv,v — Po

PovPw = dv,vdwﬁw =0 if v # w

ste: Z dE,S(e)d:,s(e) Z de s(e)d (e)e Z dee

r(e)=v r(e)=v r(e)=v

We now show that ) de e = dy . Indeed,

r(e)=

Z de,e - d'u,v = inf Z de,e - d'u,v +.7 | J €l

r(e)=v 0 r(e)=v 1

Z deef v,v

r(e)=v 1

IN

=sup{ ||7s,p Z dee — dyy || | {s,p} is a CK family
r(e)=v

= sup Z Sess — poll | {s,p} is a CK family

r(e)=v

To see {s,p} generates Vp, we note that if e, f are two edges with s(e) = s(f) then d, s(e) @} s(f) =
de,s(e)ds(f),f = de,y- If ef is a path, then d, ge)dy s(5) = def s(f) = def.sef)- Indeed, {s,p} generates
Vo. Now, we can consider a faithful representation p : B — B(H). Set mp g = p 1o To(T),p(Q) Vo —
B so that

13



T7,Q(Se) = m1,Q(de,s(e))
= (Tp(1),p(@) (de,s(e))
= p H(p(Te)p(Qse)))
= p H(p(TeQs(e)))

= o7 (p(T2)
=T, and

11.0(Po) = P (Tp(1),0(@) (duw))
= p~ (p(Qu)p(Qu))
=0 (p(Qv))
= Q-

Thus, 71 o does the trick. We are only left to prove the universal property. Since {w,r} is a CK
E-family, there exists a map my, , : C*(E) — C. We are left to prove that this is an isomorphism.

Note that w, = wewz(e) = Tw,r(de,s(e)) and 7, = wWyw}y = Ty r(dy,v), S0 since ran(m,, ) contains the
generators of C, it is surjective.

Conversely, there exists a p, , : C — C*(E) so that

S0 ps,p © Ty, is the identity on C*(E). Thus, 7, r(a) = 0 implies ps p(7w,r(a)) = 0 so that a = 0
and 7, is injective, which finally forces C = C*(E). O

For the rest of this report, we will use lower case letters for a CK E-family only when we suppose it
has the universal property described above.

Example 2.18. Let’s apply this theorem to find the C*-algebra for Graph 6.

e C v
GRAPH 6

We have the Cuntz-Krieger conditions sks. = p, = s.s, where C*(FE) is generated by {s,p}. Since
C*(FE) is generated by s., then p, is the identity on C*(F) making s. a unitary operator.

14



We consider the C*-algebra C(T) where T = {z € C | |z| = 1}. Consider the two functions

te=1t:2—2 (inclusion function)

G=1:2—1. (constant)

Then {¢,q} is a CK E-family and by the Stone-Weierstrass Theorem we have C*(t,q) = C(T). By
the universal property of C*(E), there is a *-homomorphism

p:C*(F)—C(T)
Se > le =1

Do gy = L.

Clearly, ¢ is surjective. From the continuous functional calculus, we have the map

U2 C(o(s0)) = C*(s0) = C*(E)
= f(se)

where ¥ maps t. to s, and g, to p,. Now, T = o(¢) = o(p(se)) C o(s.) C T, so o(s.) = T, which
proves that U is the inverse of ¢. Thus, ¢ is an isomorphism and C*(E) = C(T).

3. UNIQUENESS THEOREMS

Under certain conditions we can guarantee that each of the C*-algebras generated by a given CK
E-family will be isomorphic. In this section, we will investigate these conditions. These theorems
are put into practice to find the universal C*-algebra for certain graphs.

3.1. Gauge-invariant uniqueness. We will now work towards proving the first uniqueness theo-
rem. This theorem will utilize the existence of a gauge action on the C*-algebra 9 to prove unique-
ness.

Definition 3.1. Given a locally compact group G and a C*-algebra I, we say a map - from G into
the automorphisms Aut 2l is strongly continuous if for any fixed element a € 2, the map z —
v-(a) is continuous. We define an action of G on 2 to be a homomorphism « : G — Aut2 which
sends g to oy and is strongly continuous.

The following result proves the existence of a particular action.

Theorem 3.2. For any graph E, there is an action v : T — Aut(C*(E)) such that v,(se) = zs. and
Yz (pv) = Puv-

Proof. Take {s,p} to be a CK E-family which generates C*(E). For a fixed z in T, we have 2z = 1.
It is then easy to verify that {zs,p} is a CK E-family which generates C*(FE). Similarly, if {T,Q}
is a CK E-family in a C*-algebra B, so is {ZT, @}, and using the notation of the previous theorem,
we have that mz1 g (2se) = 2mzr,0(se) = 2(ZTe) = Te.

15



If we set pr g = mzr,g then C*(E) generated by {zs,p} has the universal property. Applying Theo-
rem 2.17, we can find an isomorphism

v, : C*(E) — C*(E)
Se > 2S¢

Py 2 Dy-

For w in T, we have that v, o v, and ~,,, agree on the generators and so they must be equal on
all of C*(FE). Thus, v : T — Aut(C*(E)) given by v(z) = 7. is a homomorphism. To finish the
proof, we require 7 to be strongly continuous, that is, for any fixed element a in C*(F) we require
the map z — ~v(a) to be continuous. We check that now. Fix € > 0 and choose ¢ = >\, 5,5},
such that ||a — ¢|| < ¢/3. Then

u

Yo (Sp) = Ve (Spuy -+ Spupy) = V2 (Spa) V2 (Spayy) = 28y« 28y, = 2l S = 2l

and so

Ta(5u85) = 15 )a(s5) = sz My = 2, s

Since scalar multiplication is continuous, so is the map w — 7, (c) = > )\M,Vw‘“‘_‘”sus,’j. Therefore,
for the fixed €, we can find some § > 0 such that |w — z| < § implies that ||y, (c) — 7. (c)|| < €/3.

Since automorphisms of C*-algebras preserve the norm, ||v,(a — ¢)|| < €/3, which gives

[7w(a) = 2z(a)l| < [lw(a = Ol + [lrw(e) =2z ()] + [rz(a — )l < 3% =6

and so the map z — v, (a) is continuous for each fixed a € C*(E) and the theorem holds. O

We call this action v a gauge action. Throughout the remainder of this report, v will denote the
gauge action.

Definition 3.3. Let F be a graph and « an action of T on C*(E). Define the fixed point alge-
bra, C*(E)®, to be

C*(E)={ae C"(E)|a.(a)=aforall z € T}.

Note that for any u € E* we have v,(s,) = zI"ls, and Y=(8}) = z*“"s; which gives v.(s,s}) =
ZIH=IVls  s* . Hence, the elements s, s’ with |u| = |v| are fixed points of .. Thus, Span{s,s} |
s(n) = s(v) and |p| = v|} € C*(E)".
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Lemma 3.4. For a continuous f : T — 2, there exists a unique element fT z)dz in A such that
for every representation 7 : A — B(H),

<7r (/T f(z)dz) h, k> = /T (r(f(z)h.k)dz  VhkeH

and
(1) b(foz :fT f(2)dz for any b € A;
2) |l Jz f( S Jelf(2)lldz;
(3) ¢(Jy f( = fT (f(2))dz for all homomorphisms ¢ : A — B; and
(4) forw € T fT wz)dz f f(z)d=.

In order to keep this report a reasonable length, we will skip the proof of this lemma, however such
an element can be constructed in the usual way using Riemann sums.

Definition 3.5. For a C*-subalgebra 8 of the C*-algebra 2, we call a linear map £ : A — %A a
conditional expectation of 2l onto % if

1
2) F is idempotent

(1)
(2)
3) Bl <1
(4)
(5)

F is positive

4) ranE =B
5) E(ba) =bE(a) for all a € A, b € B.

Note that by taking adjoints, the last condition is equivalent to requiring F(ab) = E(a)b for a €
A, b € B. We call such a map E faithful if E(aa*) = 0 implies that a = 0.

We direct the reader to Lemma 5.17 below for an example of such a conditional expectation.

Proposition 3.6. If « is an action of T on C*(E), define the map
o, :C*(E)— C*"(E
ar—>/ozz
Then @, is a faithful conditional expectation.

Proof. The fact that ®,, is positive follows from « being a *-homomorphism. If we take a € C*(FE)
and w € T we have

o (Pa(a)) = ( /T az(a)dz>

= /Taw(az(a))dz (by part (3) of lemma 3.4)
= / sz (a)dz
T
= [ a.(a)dz (by part (4) of lemma 3.4)
T
=P, (a).

17



So ®,(a) € C*(E)“. Now, if a € C*(E)*, then ®4(a) = [, a.(a)dz = [,adz = a so that ran F =
C*(E)“. Tt follows from above that ®,(®,(a)) = P,(a) so P, is idempotent. Finally, it is easy to
verify that for a € C*(F) and b € C*(FE)%,

D, (ab) = / a,(ab)dz = (/ az(a)dz) b= ®,(a)b.
T T
Thus, @, is a conditional expectation. We now suppose ®,(a*a) = 0 and choose 7 to be a faithful

representation of C*(E) onto some H, the existence of which is given in [2, Theorem 7.10.]. Then
for any h € H,

0 = ((®(a*a))h, h)
- <7T </T az(a*a)dz> h,h>
_ /T (m(as(a*a))h, h)dz (by lemma 3.4)
= [ ta-(@)a(a)n. iz
- [ o-@) wta-@h.na:
- [ wlo-@)hw(o(@)miz
~ [ In(a-@plPa:

Since ||m(a,(a))h] is a non-negative continuous function, it must be equal to zero. Thus, because
h € H was arbitrary, m(a,(a)) = 0 for all z € T. In particular, 0 = m(a;(a)) = 7(a), and because 7
is faithful, we have that a = 0. ]

In the theorem above, we may consider the gauge action 7y defined in Theorem 3.2.

Corollary 3.7. Suppose E is a row finite graph and take v to be the gauge action. For every finite
collection F' C E* and for any scalars c,, we have

* _ *
(%) 2, E , Cuvsusy | = E CuvSpSy

wVEF wVEF, |u|=|v|

and

C*(E)" =span{sus, | s(u) = s(v) and |p| = |v[}.

Proof. Fix some paths p,v € E* with s(u) = s(v). Utilizing the map @, from above, we see that if
|| = |v], sus; is a fixed point of ®.. If their lengths are not equal then ®., sends s, to zero since
in this case [;zI*~I"ldt = 0.

18



Thus, we get equation (*):

* _ *\ *
o, E CuvsSus, | = E cuw®(sus)) = E CuvSpuS,.-

u,veF w,veF lpul=lv|

We already know that span{s,s;, | s(u) = s(v), |u| = |v|} € C*(E)” and since ®,, is continuous,

CH(E)T = &,(C(E)Y) € ®,(C"(E)) = span{sus, | s(u) = s(v) [ul = [v[}.

It follows that C*(E)Y = @, (C*(E)).

Our next goal will be to prove that for any CK E-family {7, Q}, the *-homomorphism 7 ¢ is injec-
tive on C*(E)”. In order to do this, we will prove that 7p ¢ is injective on a space which contains

C*(E).

Definition 3.8. To this end, we define two new classes of subsets, where k > 0 of C*(E) to be

Fr =span{syus, | |ul = [v| =k, s(u) = s(v)}, and
Fr(v) =span{s,s; | |p| = [v| =k, s(p) = s(v) = v}

It is not hard to verify that Fy, = @,ecpoFi(v). If we take paths u, v, «, 8 of equal length, then be-
cause v and « cannot extend each other in a non-trivial way, (s.s;)(sasj) = 0u,a5,5), making the
collection of {s,s}} N Fi(v) a family of matrix units for Fj(v).

Now, if the graph E does not contain sources and pu,v € E* N s~!(v), then, using the CK relation,
we have

k *
S8, = E SpeSye-
(

r(e)=v

Hence Fi, C Fiy1, giving the equality that

C*(E)" = span{s,s,, | s(u) = s(v) and || = |v[}
= Ug>0Fk
= Uk>0 (Boero Fi(v))-

If the graph E does have sources, we need to take a different approach. Define the set

EsF ={ue€ E*||u| =k or |u| < k and s(u) is a source}.
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Note that, given paths a, v € E<F with |v| < |a, s(v) is a source so o cannot extend v. Thus, for
w,a, B, v € ESF we have (sus,*j)(sas;g) = u,a8uSh-

Definition 3.9. We define similar sets to those above, namely:

Fer(v) =span{s,s; | p,v € EXF s(n) = s(v) = v}
Fei = span{s,s;, | p,v € E=F}.

Again, we have that F<, = ®,epoF<i(v). If v is not a source, then for any s,s; € F<i(v),

* *
s,8, = E SpeSye € F<kt1-

r(e)=v €Fcri

On the other hand, if v is a source, then any s,s}, € F<x(v) is also contained in F<py1(v) € F<pi1
so F<i € F<p+1. Thus, in the case that E has sources, we see that

C*(E)Y C Urz0F <k = Ur20 (Gvepo F<k(v))-
We now have the definitions required to prove our lemma.

Lemma 3.10. For a row-finite graph E and a CK E-family {T,Q} in a C*-algebra B such that
Qy # 0 for all v € EY, the x-homomorphism 7r.q is injective on C*(E)7.

Proof. For every matrix unit s, s} in F<p(v) we have mr g(s,s)) = T, T,. If this were equal to zero,
then

T,T; = 0= T:T,T; =0

=T,=0
=1T,;T,=0
= Qs(u) =0,

which contradicts our assumption that the projections @, in C*(T, Q) are non-zero. Thus, the im-
age of any matrix unit under 7y ¢ must be non-zero. Now, if 0 = mr o (> auvsusy) = > a1,
then, because {T,, T | p,v € E<*} is a set of matrix units for F<j(v), we can multiply on the left
and right by T, 7 and Th\Ty to get that 0 = an T T, forcing anx = 0 for all choices of o, A € E=k,
This tells us that 7p g is injective on each F<y(v).

Thus, 7 ¢ is injective on F<j = @, F<k(v). Because F<y, is a C*-algebra, mp g is isometric on F<y
and so it’s also isometric on Uy (B, F<k(v)). Since Uy (B, F<k(v)) contains C*(E)7, then nr ¢ is
also isometric on C*(FE)7. O
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This subsection has been leading up to this point so without further ado, we present the Gauge-
Invariant Uniqueness Theorem:

Theorem 3.11. (Gauge-Invariant Uniqueness) Suppose that {T,Q} is a CK E-family in the
C*-algebra B with each Q, # 0. If there is a continuous action § : T — AutB such that 5,(T.) =
2T, and B.(Qy) = Q, for alle € E' andv € EY, then mr g is an isomorphism of C*(E) onto
C*(T, Q).

Proof. Let v be the gauge action on C*(E) defined in Theorem 3.2. Note first that mp g 0 v, =

Bs o on {py, sc} and so they are equal for any a € C*(E). Moreover, for the map ® defined in
Proposition 3.6, we have

Inr.0(®(@)] = |70 ( / WW) H

= /WT,Q(%(G))dZ (by (3) of lemma 3.4)

T
= || [ B:(7rq(a))dz

T
< [ 18-rrfa)) iz (by (2) of lemma 3.4)
T
= / lmr.q(a)|dz (since automorphism are norm preserving)
T
= [Imr.q(a)ll-

We will now show that 77 ¢ is injective:

*

mro(a) =0< mpg(a*a) =0

< mr,o(P(a*a)) =0 (by above argument)
< ®(a"a) =0 (because mp,g is faithful on C*(E)7)
S a*a=0 (by Proposition 3.6)
< a=0.

Now, m7,g(se) = T and mr,o(py) = Qv giving us that mp o(C*(E)) is generated by {7, Q}. Since
the range of 7y ¢ must be a C*-algebra, 7w o(C*(E)) = C*(T, Q). Thus, 7 ¢ is an isomorphism of
C*(FE) onto C*(T, Q). O

We may reword the theorem above as follows: Suppose for every CK E-family {T, @} in a C*-algebra
B with each @, # 0, there is an action 5 : T — Aut(®B) such that 8, omr = mo~, forall z € T.
Then 7 g is an isomorphism of C*(E) onto C*(T, Q). Let’s look at how we may apply the Gauge-
Invariant Uniqueness Theorem.
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Example 3.12. Consider the graph C,, which is a cycle of n vertices, shown in Graph 7.

V) —— V2
en/w €1 \zz
Un U3
€n—1 €3
Vn—1 vy
GRAPH 7

We will build a CK E-family {5, P} in C(T, M,,(C)) = M, (C(T)) by defining

P,Ui (Z) = Ei,i Sei (Z) = Ei+1,i fori<n Sen (Z) = ZEl,n-

We have the homomorphism 7g p from C*(C),) onto C*(S, P). We may note that the range of 7g p
contains all functions of the form z — 2™ FE;; where m is any integer. Indeed, we have that F;; =
Se,_1(2) ... 8¢, (2), so we may obtain the map z — E;;. Moreover, the map z — 2"Ey; forn > 1
can be obtained by Se, (2)...Se,(2)Se, (2) and so by combining these two maps and possibly taking
adjoints, we have the map z — E;;12" En £y = 2™ E;; for any integer m. By the Stone-Weierstrass
Theorem, we get that ranmg p = C(T, M, (C)), and so 7g p is surjective. We are left to prove it is
injective, and we will utilize the Gauge-Invariant Uniqueness Theorem for this step. To do so, we
must construct an appropriate action f.

Fix some w € T and define U,, to be the diagonal unitary matrix Z?Zl wlEj;. Let

Bu(f)(2) = Un f(w"2)Uy,.

Then we have

Buw (P, )(2) = Puw(Eii)(2) = UyE; ;U = E; ;UyUy, = E; ; = Py, (2).

For index ¢ < n,

Bw(sei)('z) = UwEi-i-lJU:)

D> wWE; iy aw FEyy,
J=1 k=1

i+

YW B
= wS,, (z).

=w
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Similarly, we have

Buw(Se, )(2) = UpEr n(w"2)Uy,
=Uy(w"2)E1 U,

w
— (") (w "B )
=wzE; ,

=wS,, (2).

Thus, 3 is an appropriate action from T to AutC(T, M,,(C)) where wg p © vy = By © ws,p for every
w € T. The Gauge-Invariant Uniqueness Theorem tells us that 7g p is an isomorphism from C*(C,,)
to C(T, M, (C)).

Since we know there exists the gauge action v on C*(E), we may wonder why the homomorphism
mr,o from C*(E) to C*(T, Q) does not preserve the action to give us an appropriate action 3, =
T © v, on C*(T, Q). We may instead ask if we can find some element a € kermpr g C C*(E)
such that v,(a) ¢ kermp g. The existence of such an element will prove that 77 g is not injective
since 7, (a) ¢ ker mr g implies a is non-zero but a € ker 7 g and so the Gauge-Invariant Uniqueness
Theorem will tell us that an appropriate action 5 does not exist.

Consider Figure 6 which consisted of one vertex v and the single loop e at v. We have already shown
that C*(E) = C(T). We take the CK E-family {s,p} to be s.(z) = e'® so that p,(2) = s%(2)sc(2) =
eize'* = 1 making p, = 1. Then

M
C*(S,P) = { > sk |ay € Z} =C(T),

k=—N
telling us that {s,p} is a universal CK E-family.

Now consider the CK E-family {T,Q} given by T, = el and Q, = T:T. = 1. C*(T,Q) =
span{e‘l} = C, and by taking the homomorphism

m:C*(E) = C*(T,Q)
Se — T, = el
po = Qu =1,
and the element a = s, — e'p,, we see that a € ker m but 7(7y,(a)) = (2 — 1)e‘l. Thus, v.(a) ¢ ker 7

if z does not equal 1.

Consequently, such an action 8 does not always exist, making the assumption in Theorem 3.11 a
non-trivial one.
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3.2. Dual graphs. Before we proceed to a relatively straightforward application of the Gauge-
Invariant Uniqueness Theorem, we define the notion of the dual graph. Note that this definition
is different from the one commonly seen in graph theory where each face is replaced with a vertex
and edges are added between vertices corresponding to adjacent faces.

Definition 3.13. Given a graph E, we can define the dual graph, E, by setting E® = E!, E! =
E? and modifying the maps r and s to be rp(ef) =eand sg(ef) = f.

Example 3.14. The easiest way to understand the definition is to look at a few examples:

u . eg g
e g
fe af
Y f v f

GRAPH 8. the original graph E on the left with its dual on the right.

Here, we have the original graph on the left and the dual graph on the right. In this case, the graph
on the right is just a relabeled version of the original graph. That is, the original graph and the
dual graph are isomorphic to one another.

Example 3.15. This is not always the case, as we can see below:

22:72%1
H5 —— 2

u
pa Hs 2 Hapts H1fg
M3, §
2 —— Uy
2 K2 g Hap3
v w \
\—/ 3t
M1

H3
GRAPH 9. the original graph E on the left with its dual on the right.

Again, we have the original graph on the left and the dual graph on the right.

We have the following result regarding dual graphs.
Theorem 3.16. For a row-finite graph E with no sources, E is also row-finite and C* (E) ~ C*(E).

Proof. For any e € E° = E', we have that

#r-t(e) = #{ef € B> = E'} = #{f | sple) = ru(f)} = #rp (sm(e))-
Since E is row-finite, then #rél(e) = #r,' (sp(e)) < oo so that E is also row-finite. Now let {s, p}

be the universal CK E-family which generates C*(F). We may define the following CK E-family:

1
Qe = SeSp Tpe = SfSeSy, e, feE.
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Since sgsy # 0 implies e = f, this tells us that QeQy = sesgsgs} = 0fore # f. Moreover,
QF = 505" = Q. and Q? = 5,57 8.5 = SeDs(e)Se = SeSe = Qe so that the collection {Q.}. forms a set

of mutually orthogonal projections. We now check the CK-conditions. First, for fe € El,

TjcTye = (spsese) (spsese)
= 850 (8F5f)5ese
= 55, Qs(f)5cSe
=SS5

= Qs(fe)7

proving the T, are partial isometries. Finally,

Qr = sys}
= sy Z sesy | s}
r(e)=s(f)
= Y splsest)(sest)s
r(e)=s(f)

= Z Ty T},
r(fe)=f

Thus, the collection {Q,T} is a CK E—family. Now suppose that {t,q} generates the universal C*-
algebra C*(E). By the universal property of C*(E), there is a homomorphism 77 ¢ : C*(E) —
C*(T, Q) which sends t¢. to Ty and ¢, to Q..

Since the operators Qe, Ty were defined from {s, p}, we have C*(T,Q) C C*(E). Note that we

can also recover the CK E-family {s,p} via p, = Zr(e):v Q. (this applies for each v € EY since

E contains no sources) and sy = > y_,.() L’fe, which implies that we have C*(T,Q) = C*(E).
Since s, # 0 for alle € E', Q. = s.s* # 0. We know that there exists a gauge action v : T —
Aut C*(E) = Aut C*(T, Q) which satisfies v,(p,) = py and 7, (s.) = zs.. Thus, v, will then satisfy
’Yz(Qe) - ’72(56)72(5:) = 28¢2%s, = SeSZ = Q. and ’Yz(Tfe) - ﬂYz(SfSeSZ) = ZSfZSeZ*Sz =
2555e5, = 21t.. We can now apply the Gauge-Invariant Uniqueness Theorem to find that 77 ¢ is
an isomorphism of C*(E) onto C*(T, Q) = C*(E). O

In general, if E has no sources, then E also has no sources. Indeed, if E has a source e then there is
no edge ef in E. That is, there is no edge f in E with 7(f) = s(e) and thus, s(e) is a source in E.
Hence, we may repeatedly apply Theorem 3.16.

Example 3.17. Consider the graph F, its dual E and its second dual E given in Graph 10.

“CoeruDe wCeorfooDm wCeeel g fos g0 7 Joms

GRAPH 10. the original graph E on the left, its dual in the center and its double
dual on the right.
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Since we can continue to take duals, we find that C*(E) = C* (E) = O (E) = C*(F') where F is the
nth dual of E. Note that the n*"* dual of E would look like Graph 11.

Crve—ne—e—n D)

GRAPH 11

Thus, the C*-algebra of any graph of the form above with n > 1 will be isomorphic to C*(FE). We
will now find what C*(E) is. For 0 < ¢ < 1, let SU,(2) be the universal C*-algebra generated by
elements a and b (see [13] for existence) which satisfy

afa+bb=1  aa*+¢*b*b=1  ab=gqba  ab* =¢b*a  b*b=bb".

Label the graph E as in Graph 12.

SCU%U}QQ
GRAPH 12

We have the CK relations

%k %k _ * %k _ * *
Dy = SpSf = S,8¢ = Sc5, Dw = SgS8g = 5S4 + S§Sy-

It is already known that for any 0 < ¢ < 1 the spaces SU,(2) are isomorphic (see [13]). We further
claim that any SU,(2) is isomorphic to C*(E). For simplicity, we will show that C*(E) and SUp(2)
are isomorphic.

Indeed, define the mappings
p:SUN2) — C*(E)
ar— sp+ sy

b s,

¢ : C*(E) = SUy(2)
Py —> bb*
Pw > a’a
Se > b
sq > a™(1—bb")
sp — a’bb”.
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We can check that ¢(a) and ¢(b) satisfy the relations of SUy(2) and that ¢ preserves the CK-relations.
Finally, it is easy to check that ¢ is the inverse of ¢ and so we have defined an isomorphism from
SUy(2) to C*(E), making the two spaces are isomorphic.

Note that if there is a cycle in E then there is a cycle in E. Indeed, suppose pips - .. iy, is a cycle in

E. Then we have {pifti41 |1 <4< n—1}0{pnp} € E? = E' so that g = (u1p2)(1as) - - (a1 tn) (nfi1) €
E* and s(p) = p1 = r(p) making p a cycle in E.

Thus, by virtue of the fact that every finite directed graph with no sources has a cycle, we cannot
reduce such a graph to the case where the assumptions in Proposition 2.14 are satisfied.

3.3. The CK-Uniqueness Theorem. Our next goal will be to prove the CK-Uniqueness Theo-
rem. This theorem gives the powerful result that under certain conditions the C*-algebra generated
by any two CK-families is isomorphic. We first present a lemma which will be utilized in the proof
of the CK-Uniqueness Theorem. Because the proof does not introduce any new techniques and is
somewhat long, we skip the proof and refer the reader to [10]. Recall that the multiplier algebra
M (2) of a C*-algebra 2 is the unique C*-algebra with the property that M (2) is the maximal uni-
tal extension of 2 for which 2( is an essential ideal.

Lemma 3.18. Given a row-finite graph E and a set of vertices V. C E° (which may be either finite
or infinite), there exists a projection py = Y oy Py in M(C*(E)) such that

pys,st = susy ifr(p) eV
rw 0 otherwise.

Definition 3.19. We say that an edge e is an entry to the cycle p = py ..., if there exists an
index 7 such that r(e) = r(u;) and e # p;. In particular, if we have a closed path with no entries
then it is guaranteed to be a multiple of some cycle v with no entries. We call a path y € E* non-
returning if i # pu,) for k < |ul.

Lemma 3.20. Suppose the row-finite graph E has no sources and every cycle in E has an entry.
Then for every vertex v and any positive integer n, there exists a non-returning path A € E* of
length at least n with r(A) = v.

Proof. If there is path A € E™ with r(\) = v and no repeated vertices, then this concludes the
proof. If not, then every path of length n which ends at v contains a return path and so we can
choose the shortest return path « such that r(a) = v and there is a cycle 8 based at s(a). The
assumption implies that § has an entry e, so for sufficiently many repetitions of 8, the path A =
aBf ... B0 e has the required properties, where 3’ is the segment of 5 from r(e) to s(8). O
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Example 3.21. Given the following graph, suppose we want a non-returning path A of length n
with 7(A\) = v in Graph 13.

GRAPH 13

For sufficiently large n we cannot find a path with no repeated vertices, but any path of sufficient
length will contain the cycle 5 = popipgps. The entry e is given by ps and we have that a = prpsg.
Thus, we can set the path to be

A=aBf... 308 us = (prpe) (paprprapss) - . . (papey praprs) (fiapin pia) fis-
~—— ——
@ B8 B B’

Note that if we repeat 8 n times then the path will certainly be of length at least n.

We now present the CK-Uniqueness Theorem:

Theorem 3.22. (CK-Uniqueness) Consider the row-finite graph E where every cycle has an en-
try. Let {T,Q} be a CK E-family in a C*-algebra B such that Q, # 0 for every vertex v. Then the
homomorphism mr g : C*(E) — B is an isomorphism of C*(E) onto C*(T, Q).

Proof. The case where E has a source follows from the theory of an extended graph F, which is
obtained from E by adding a sequence of edges into every source and a sequence of edges from ev-
ery sink. The rigorous proof may be found in [10]. For the purposes of this report, we will we only
consider the case where E has no sources. Fix some finite set F' of pairs (u,v) € E* x E* where
s(p) = s(v) and element a = 7, \cp CurSus;,. Recall that we have ®(a) = Jp7=(a)dz as defined in
Theorem 3.6. Suppose we could show that there exists a projection @ € B satisfying

1Q7r,q(®(a)Q = lI7r,o(®(a))ll, and  QT,T;Q =0 when (p,v) € F and |u| # [v].
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If such a projection @ could be found, then
I77.0(2(a))]| = |Q7r,0(2(a)) Q|

=@ S DT | Q

(w,v)EF | pul=|v|

=lQ| Y. T

(n,v)EF
<> T
(p,v)eF
= [lrr.q(a)]-
Thus, if mr,g(a) = 0, then because 77 g is a *-homomorphism, 7 g(a*a) = 0. It follows that

mr,o(P(a*a)) =0, so ®(a*a) = 0 implies a must be zero. Hence, 77 ¢ is an isomorphism.

In order to prove such a projection exists, let’s first set &k = max{|u|,|v| | (u,v) € F}. Next, suppose
that ¢, # 0 for (u,v) € F and let r~'(s(n)) = {a1,a2,...an}. Then

n
E * *
SuSy = SuPs(u)Sy = E Spua; Sy -

=1

By replacing each (u,v) in F with {(uo;, va;)}; we can modify the length of each pair to force
max{|u|,|v|} to equal k for any (u,v) € F with ¢,,, # 0. In particular, if |u| = |v| and ¢y, # 0 then
ul = v] = k.

We've already shown that ®(a) € Fi, = ®,F;(v) and so for some vertex w, we have

(@)l = bwll  where  byi= D cusus.

s(u)=s(v)=w

Let G = {u,v | (p,v) € F,|pu| = |v| = k,s(u) = s(v)}. For the vertex w and n > max{|ul,|v| |
(1, v) € F} choose some non-returning path A as in Lemma 3.20, and let

Q=Y TnT;,.

TEG

We now check that this @ satisfies our criteria. Indeed, if (u,v) € F satisfies |u| = |v| then u,v € G.
Since for 7 € G, we have that 77,7}, is non-zero if and only if 7 = p, which implies 777> is non
zero if and only if 7 = v.
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Thus,
AT = Y S TATA T T T

aeGTEG
_ TH,\T;ATMTJTV,\T;& if u,v e G
0 otherwise

) TLTy ifpved
0 otherwise.

For any path 7 in G, since T, Trx = Qq(rx) # 0 then Tr\T7, # 0 as well, making the set {QT,T,;Q |
u,v € G} a collection of non-zero matrix units. Because the mapping b — Q7r,o(b)Q is a faithful
representation (hence isometric mapping) of span{s,s;, | u,v € G},

I77.0(®(a)] = 12(a)[| = [[bw] = Q77,0 (bw)Qll = |Q7T.0(®(a)) Q-

Now, if (u,v) € F with |u| # |v|, then the longer one must have length k. We will assume without
loss of generality that u is longer than v, so |u| = k. Then

QTMT;Q = Z Ta)\Ta*/\TMT:TTAT:/\ = Z TMA(T;/\TT/\)T:A-

T7,a€G T7€G
If T\ Ty # 0 then v\ extends 7 or vice versa. However, because 0 < |v| — |7| < |A| and X is
non-returning, this cannot happen. So if |u| # |v| then QT,T;;Q = 0. Thus, we have the desired Q,
proving the theorem in the case where E has no sources. |

Note that the CK-Uniqueness Theorem implies that, for a graph E with every cycle having an entry
and for any two CK E-families {S, P} and {T,Q} with P, # 0 and Q,, # 0 for all vertices v, there is
an isomorphism ¢ of C*(S, P) onto C*(T, Q) such that ¢(S.) = T, and ¢(P,) = Q,.

Example 3.23. We now examine the graph with a single vertex v and n > 2 loops all at v as
shown in Graph 14.

€n

v

GRAPH 14

Since cycles cannot repeat vertices, the only cycles are each edge. Since a particular edge is an en-
try for the others, each cycle has an entry and so we may apply the CK-Uniqueness Theorem.
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Note that for any edge e, we have s, = pySe = Sepy s0 that p, is an identity of C*(E). Then any
two families {s;} of isometries such that >_1 ; s;s7 = p, = 1 and s}s; = 1 generate isomorphic
C*-algebras, and this is (by definition) the Cuntz algebra O,,. This was originally done by Cuntz in
[3].

Now because the Cuntz algebra has no sources, we can apply Theorem 3.16 to the corresponding
graph and find that we have the duals shown in Graph 15.

eeee

Q feee

ee ———— fe
effe

eeef \/f@e; fffe
ef «<——
Uy f‘b

f
T «Cee s Dw

fe

GRAPH 15. the original graph is shown on the left, its first dual in the center and
the second dual on the right

While the double dual of the graph isn’t obvious from the first graph, we can always find the first
dual of the graph with a single vertex with n loops. It will consist of n vertices corresponding to

€1, €a,...€en, there will be a loop at each vertex and there will be two edges between any pair of ver-
tices e;e; and eje;. Theorem 3.16 tells us that the C*-algebra of this graph will also be O,,.

We now present a corollary of a previous proposition which gives us a way to know if a cycle has an
entry.

Corollary 3.24. Suppose we have a row-finite graph E with cycle u. Then u is entryless if and
only if SuS;, = Pr-

Proof. We first note that the cycle p has an entry if and only if there exists a distinct path A with
r(A) = r(u) such that one of

(1) |\ < |p| and s(A) is a source
(2) (Al = |-

Then from Proposition 2.10, and because 5355 # 0, we have

Py= >, S8+ >, S8

r(v)=r(n), r(v)=r(un),
[vI=]ul [v|<|u| and
s(v) is a source
> S8, + SxS3% (first sum includes S, S}, and second includes S)53)
> 8.5,
Thus, the statement holds. O
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4. IDEAL STRUCTURE OF C*(FE)

We will now examine the ideal structure of C*(E) and completely classify when C*(E) is simple.

Definition 4.1. For vertices v and w, we write w < v if there exists a path u € E* with s(u) = v
and r(u) = w. Note that this is transitive and reflexive but it is not a partial order because v < w
and w < v do not imply that the two vertices are equal. We define the two sets £ and E<> as

E®* = { infinite paths A = A\ Aa... } and

E=°° = E> U/{ finite paths beginning at a source }.
Given a path p € E* U E*°, we define [u] to be the set of vertices visited by p.

Definition 4.2. We call a graph E cofinal if for every p € E<> and v € E° there exists a vertex
w € [u] such that v < w.

Example 4.3. Consider Graph 12 studied in Section 3.2, shown again below.

Gt

Because the graph E does not have any sources, then

E=® = >~ = {eee...} U{gF feee--- | k € Ng} U{ggg...}.

We cannot reach v from any point on the path ggg..., and so the graph above is not cofinal. How-
ever, if we were to remove the edge g then E<> would contain only the two infinite paths eee. ..
and feee... and so the graph with the edge g removed would be cofinal.

Theorem 4.4. Suppose E is a row-finite graph in which every cycle has an entry. If E is cofinal,
then C*(E) is simple.

Proof. First, we claim that every ideal in C*(E) is the kernel of a CK-family representation. In-
deed, if I is the kernel of C*(E) then we can consider the quotient map ¢ : C*(E) — C*(E)/I =: 2.
Because 2 is also a C*-algebra, we can find a *-isomorphism ¢ : C*(E)/I — B(H). Now 7 = ¢ oq:
C*(E) — B(H) is a representation with ker 7 = kerq = I. It sends s, to T, := m(s.) € B(H) and p,
to some @, := 7(py) € B(H). These satisty,

T:Te = W(S:Se) = 7T(ps(e)) = Qs(e) Z TeTe* =7 Z Scsz - W(pv) = Qu,

r(e)=v r(e)=v

so {T,Q} is a CK E-family. Now, the representation 7 is equal to mp g, hence I = ker mp o. Thus,
it suffices to prove that every non-zero representation my g of C*(E) is faithful.
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Suppose {s,p} is a CK E-family such that 7, is non-zero. If every projection p, were zero, then
558¢ = Ps(e) = 0 would force s, = 0 for each e € E! making 75, identically zero. Hence, we can fix
some vertex v such that p, # 0. To see the kernel is trivial, we will show that p,, # 0 for all vertices
w. This will allow us to apply the CK-Uniqueness Theorem to see that the representation mr g is
faithful, and hence has no kernel.

Fix an arbitrary vertex v € E°. If v is not a source, then because 0 # p, = ZT(Q):U 555, there ex-
ists an edge e such that r(e) = v and scs} # 0. Thus, py) = sise # 0 and if s(e) is not a source, we
may repeat this argument by finding a second edge. Either this process will terminate at a source
or it will continue indefinitely to give us an infinite path. In either case, we have constructed a path
p € ES* with r(u) = v and p, # 0 for every vertex x on p.

Since F is cofinal, for every vertex w, there exists a path a € E* with r(«a) = w and s(«) a vertex
on p. Then s 54 = Ps(a) # 0, 80 845, # 0. Because py,sas;, = sas;, # 0, we have p,, # 0. Thus,
pw # 0 for every w € EY and so by the CK-Uniqueness Theorem, the CK E-family {s, p} generates
C*(E) and 7, is an isomorphism. In particular, 7 , is faithful. O

Definition 4.5. A graph FE is called transitive all vertices v and w satisfy v < w and w < v.
Proposition 4.6. Suppose E is a row-finite, transitive graph which is not a cycle itself. Then C*(E)

18 stmple.

Proof. Suppose we have such a graph F. Clearly, F is cofinal.

We claim that every cycle in FE has an entry. For an arbitrary cycle u and any edge e not in the cy-
cle, if e is an entry, then the result holds. If e is not an entry into u then because r(e) > v for every
vertex v in the cycle, there exists a path @« = ajas. .., from r(e) to v. Moreover, by possibly
truncating o we can assume that « is a path from r(e) to the cycle u where no edge in « is an edge
in y. The edge a4 is an entry to the cycle u, proving that every cycle in such a graph E has an en-
try. Thus, the C*-algebra for any transitive graph which is not a cycle itself is simple by Theorem
4.4. |

We now consider the case where C*(E) is not simple.

Definition 4.7. Suppose I is an ideal of C*(E). Let
Hy={veE"|p, €I}

Under certain conditions, we claim that we can recover the ideal I from the collection of vertices
Hj. Let’s investigate what these conditions are.

Consider the quotient map ¢ : C*(E) — C*(E)/I. If v ¢ Hjy then q(p,) # 0. For any edge e, if
s(e) ¢ Hi then q(sc)"q(se) = q(sise) = q(ps(e)) # 0. Now because py(c) > sesg, then q(pree)) >
q(sest) # 0. Thus, r(e) ¢ Hy.
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Definition 4.8. For such a collection Hj, define

E\H; = (E°\Hy,s ' (E"\Hy),r,s).

We have already shown that if the source of an edge is not in H; then neither is the range, and

so E\H; is a well-defined graph. Moreover, {q(s.),q(p,) | s(e) ¢ Hr,v ¢ Hr}is a CK-family
for E\ H; with every vertex projection non-zero. If every cycle in the graph E\H; has an entry,

then we may apply the CK-Uniqueness Theorem to conclude that the map from C*(E\H ) onto
C*(q(se),q(py)) = C*(E)\I is an isomorphism.

Example 4.9. Take the graph F to be as in Graph 16.
Gt D)
e u v w h

GRAPH 16

Let’s take a look at the collection Hy = {u,v}, where will assume for now that it is of the form
presented above for some ideal I in C*(E). We see that E\Hy looks like Graph 17.

w )

GRAPH 17

In this case, there is only one cycle and it does not contain an entry, so we may not apply the CK-
Uniqueness Theorem as described above.

Our next goal is to identify potential collections H C E° which arise as sets H; for some ideal I in
C*(E), and find a condition on the graph F to guarantee that every cycle in E\H has an entry.

Definition 4.10. We call a subset H C EY hereditary if w € H and w < v imply v € H. We
call H saturated if for any vertex v € E® where v is not a source and {s(e) | 7(e) = v} C H imply
veH.

Example 4.11. We revisit Graph 16. The set {u} is hereditary since there are no vertices v # u
which satisfy v > u. The set {u, v} is hereditary since we do not have w > v nor w > u, and thus
there is no assumption that w must also be included in the hereditary set containing u and v. Note
that {v} is not hereditary since v < u but u ¢ {v}.

We now consider which collections of vertices are saturated. Since {s(e) | r(e) = w} € {u,v}
then {u,v} is saturated. The set {u} is not saturated since v ¢ {u} is not a source but satisfies

{s(e) [r(e) = v} < {u}.

It may be natural to wonder whether every saturated set is necessarily hereditary. This is not the
case, as the next example shows.
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Example 4.12. Consider Graph 18.

U1 V2 V4 Us Ve

GRAPH 18

We can verify that the hereditary sets of E are {vy, va, v3,v4, U5, Ug }, {v4, V5, V6 }, {v5, 06}, {vs }, } and
the saturated sets are {v1,v2,v3}, {ve, vs,v4}, {v1, V2,3, va,v5,v6}, 0.

Further note that for a source w, {w} is guaranteed to be hereditary but not necessarily saturated.
It is not hard to see that both E° and () are always saturated and hereditary, we call these the triv-
ial sets.

Definition 4.13. For any saturated, hereditary collection H, we define E\H to be the
graph (E°\H, s " (E°\H),r,s).

Lemma 4.14. Given a row-finite graph E, suppose I is a non-zero ideal in the C*-algebra of E,
C*(E). Then the set Hy is both saturated and hereditary.

Proof. We first see that Hj is hereditary. Take some vertex w € Hj and suppose we have w < v for
the vertex v. Choose the appropriate path p € E* with s(u) = v and r(u) = w. Since w € Hj, we
have p,, € I and s, = pr(,)Su = PwSu € 1. So py, = spsp € I as well. Thus, v € Hy and so Hy is
hereditary.

We will now see that H; is saturated. Suppose v is not a source and that {s(e) | r(e) = v} C
Hjy. For every edge e with 7(e) = v we know s, = s¢ps) € I. Since v is not a source, p, =
Zr(e):v sess € I and so v € Hy. Thus, H is saturated. O

Definition 4.15. For a path p, let [u] be the set of all vertices visited by p.

Definition 4.16. We will now define a graph FE to satisfy condition (K) if for every vertex v €
E° either

(1) there is no cycle A with 7(\) = v = s(\), or

(2) there are two distinct paths u, v € E* such that s(u) = r(p) = s(v) = r(v) = v with
r(p;) # v for ¢ < |p| and r(v;) # v for j < |v|.
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Example 4.17. Consider Graph 19.

€

O O

O

GRAPH 19

The graph on the left does not satisfy condition (K) at w since we are looking for return paths and
thus, cannot find a distinct closed path at w which does not repeat e. However, it is satisifed at ver-
tices u and v. By adding a second loop at vertex w to obtain the graph on the right, we see that
condition (K) is satisfied.

It is important to note that we do not require the path u,v € E* to be cycles because there is no
stipulation regarding repeated vertices.

Example 4.18. To this end, Graph 20 satisfies condition (K). Indeed, at vertex w we have paths
pn=gand v =ef. At the vertex v we have the paths ;= fe and v = fge.

f
/\
v v Qg
GRAPH 20

Proposition 4.19. The row-finite graph E satisfies condition (K) if and only if for every saturated,
hereditary subset H C E°, every cycle in E\H has an entry.

Proof. To see the forward direction, let H be a saturated and hereditary subset of E° and suppose
wis a cycle in E\H. Set v = s(u) ¢ H. Condition (K) says that there exists a distinct path v with
s(v) = v. Choose i such that p; = v; for j < ¢ and p; # v;.

Since r(v;) = s(vi—1) = s(pi—1) then v; is an entry to . Since v is a cycle, then v > s(v;). If we
suppose s(v;) € H then because H is hereditary, this would imply v € H, which cannot be true. So
s(v;) ¢ H and thus, v; € s~ (E°\H) = (E\H)!, proving the first direction.

To see the converse, we now take a vertex v and a cycle p = py ... u, € E* with s(u) = v. To prove
condition (K), we must find an appropriate path v. Let’s first consider the collection H = {w | v #

We claim that H is hereditary and saturated. Fix some w € H and suppose we take some z € E°
with z > w If 2 ¢ H then we would have v > z > w which is contradicts the assumption that z ¢ H.
Thus, z € H so H is hereditary.

We will now see that H is saturated. Take some vertex w such that r~!(w) # 0 and {s(e) | r7(e) =

w} C H. Ifw ¢ H then we would be able to find a path « with s(o) = v and r(«r) = w. Then

s(a1) € H by the assumption on w. However, because v > s(cay) and H has already been shown to
36



be hereditary, then v € H. This clearly cannot be true, so w must be an element of H,,. Thus, H,
is saturated.

We have already shown in Lemma 7?7 that H must be hereditary and saturated. Because the cycle
w lies in E\ H, then it must have an entry e in E\H by the proposition assumption. By choosing an
appropriate index ¢, we may assume r(e) = r(u;) so that s(e) > r(e) = r(u;) > v. Then s(e) ¢ H.
Since v > s(e) in F\H, we can find a path 8 with s(8) = v and r(8) = s(e). By setting v =

Wi - .. i—1ef we have the desired distinct return path, and so E satisfies condition (K). (Il

Example 4.20. To illuminate the forward direction of the proof, consider the graph F\H in Graph
21. Suppose we are given pu = pipuspspaps and we find the path v = pvor3v4u5. In this case, we
would choose i to be 2.

M3
¢ e

Hy \#4
H1 M5
. U .
(k /
.

()

v3

GRAPH 21

Definition 4.21. Given a saturated, hereditary set H, define By = (H,r~'(H),r, s), whose vertex
set is the complement of the vertex set belonging to F\ H.

Example 4.22. We now look at Graph 22.

u v w

O O

GRAPH 22

Taking H = {u,v} we have the subgraphs E\H and Ey, shown in Graph 23.

() ()

w U —7

O O

GRAPH 23. On the left we have E\H and on the right we have Ep

Note that the edge e is not included in either subgraph. This observation tells us that we cannot

recover the graph F from E\H and Ex. We will now work towards a complete description of the
(closed) ideals of C*(E).

Definition 4.23. Given a saturated, hereditary set H, let Iy be the ideal in C*(E) generated by
the set {p, | v € H}.
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While we may define Iy for any collection H, we will see in Theorem 4.28 why we restrict our at-
tention to saturated, hereditary sets.

Lemma 4.24. Let E be a row-finite graph which satisfies condition (K). Given an ideal I of C*(E),
I =1Iy,. Moreover, C*(E\H) =2 C*(E)/Iy.

Proof. Set H = Hj to avoid requiring double subscripts throughout the proof. Lemma 4.14 tells
us that H is saturated and hereditary, so Iy is consistent with our definition above. First note that
if p, € Iy thenv € H and so p, € I. Since the generators of Iy are in I, we have the inclusion
Iy C I. Now consider the quotient maps

q": C*(E) = C*(E)/I,
¢" . C*(E) —» C*(E)/Ig, and
¢/ CH(E) /Iy — C*(B)/I = (C*(E)/In)/(I/1),

where ¢! = ¢!/77 0’5 . Note that the only projections ¢’ or ¢'# send to zero are the p, with v € H.
Since the two quotient maps kill the same projections, they also kill the same partial isometries s,
since s;se = Ps(e)-

It is not hard to check that {q(s.), ¢’ (p,)} is a CK (E\H)-family which generates C*(E)/I and
similarly, {¢'# (s.), ¢’ (p,)} is a CK (E\H)-family which generates C*(E)/Iy. By universality, we
have the homomorphisms

71 C*(E\H) — C*(E) /Iy
p: C*(E\H) — C*(E)/I.

We may consider the composition ¢///# o 7 : C*(E\H) — C*(E)/I which agrees with p on the
generators of C*(E\H). Hence, p = ¢'/1# o 7.

Since the graph E satisfies condition (K), every cycle in E\ H has an entry. We may apply the CK-
Uniqueness Theorem to conclude that p is injective and 7 is surjective, we have that ¢//# is in-
jective as well. Thus, I = Iy. Moreover, the CK-Uniqueness Theorem says that the map p from
C*(E\H) to C*(FE)/Iy is an isomorphism. O

Lemma 4.25. Let E be a row-finite and let H be a saturated and hereditary subset of E°. Then
H={v|p, € In}.

Proof. The inclusion H C {v | p, € Iy} is immediate. To see the converse, consider the universal
(E\H)-family {t, ¢} which generates C*(E\H). We will extend this to a CK E-family by defining
te=0if s(e) € H and ¢, =0 if v € H.

To confirm that this is indeed a CK E-family, if s(e) € H then t}t, = 0 = g,(). For a vertex v € H
since H is hereditary, then if r(e) = v we have s(e) € H and so te = 0. Thus, ¢, =0 =3_,)_, tl:
as desired.
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Now consider a vertex v € E\H. If v is not a source in E\H then

v = Z tete

e€E\H, r(e)=v

= > tti+ tot?
e€E\H, r(e)=v r(e)eH, r(e)=v

= > ket

e€cE, r(e)=v

=0

On the other hand, if v is a source in E\H then for an edge e, if r(e) = v then s(e) € H as well.
Thus, {s(e) | r(e) = v} C H and so by saturation v € H. This is a contradiction, and so any sources
v in E\H are still sources in E. So indeed, our collection {t, ¢} is a CK E-family.

Consider the homomorphism 7 4 : C*(E) — C*(E\H). For a vertex v € H, we have m; 4(py) = 0. If
v ¢ H then m; 4(py) = q» # 0 and so p, ¢ Iy. Hence, H = {v | p, € Iy}. O

Lemma 4.26. Let E be a row-finite graph and X be a hereditary subset of E°. Set ©X to be the
smallest saturated set containing X. Then XX 1is also hereditary.

Proof. Suppose to the contrary that X is not hereditary. There would exist some v ¢ X and
w € XX with w < v. By truncating the path between v and w and possibly modifying our choice of
vertices, we may assume without loss of generality that there exists an edge f from v to w.

We claim that X \{w} is a smaller saturated set containing X. First, we note that if w € X then
since X is hereditary, v € X C ¥X, contradicting our assumption that v ¢ ¥X. Thus, w ¢ X, so
Y X\{w} contains X.

We now see that XX \{w} is saturated. For any vertex u which is different from w, if {s(e) | r(e) =
u} € EX\{w} € XX then because LX is saturated, we have v € LX\{w}. Now, since v € {s(e) |
r(e) = w} then {s(e) | 7(e) = w} € TX\{w} and so removing the vertex w does not affect the
saturation of ¥X. Thus, the assumption that 3.X is not hereditary allows us to build a smaller sat-
urated set containing X, contradicting the minimality of ¥X. Hence, XX must be hereditary. O

Lemma 4.27. Let E be a row-finite graph, X be a hereditary subset of E°, and set ©X to be the
smallest saturated set containing X. Then there there is an isomorphism of C*(Ex) onto the corner
pxIsxpx, where the projection px =Y o5y Do was defined in Lemma 3.18.

Proof. By Lemma 4.26, the set XX is hereditary and so Isx makes sense. We claim that Inx =
span{s,s; | s(u) = s(v) € XX }. First fix paths p, v such that s(u), s(v) € XX and consider paths
«, f € E*. Because we have

* : _ /
SparSy  Ha=va
* * _ * . _ /
(susy)(sasp) = § sush,, ifv=ar,

0 otherwise,

it follows that s,s;s485 = sos7 where s(u) < s(0) = s(7). Since £X is hereditary, s(o) € XX.
Thus, span{s,s;, | s(u) = s(v) € XX} is an ideal of C*(E). Moreover, it contains the generators of
Isx so Inx Cspan{s,s} | s(u) = s(v) € XX}
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Finally, if s(u) = s(v) € £X then 5,5} = s.ps(.)5; € Ixx so the equality holds. By continuity and
linearity of the projections px, we have

pxInxpx =span{s,s; | s(n) =s(v) € ¥X, r(p)eX, r(v)eX}

Then {s. | r(e) € XX} U {p, | v € X} is a CK Ex-family in pxIsxpx which generates pxIsxpx.
Since every cycle in Ex has an entry in F, by hereditarity of X, it also has an entry in Fx. Thus,
we may apply the CK-Uniqueness Theorem to see that pxIs,xpx is isomorphic to C*(EXx). ]

We now compile the above lemmas to present the following theorem.

Theorem 4.28. Suppose E is a row-finite graph which satisfies condition (K). We have the corre-
spondence

{saturated, hereditary subsets of E°} <+ {closed ideals in C*(E)}
Hw— Iy
HI —i 1.

Moreover, C*(E) /Iy is isomorphic to C*(E\H) and C*(Ey) is isomorphic to the corner pglppm.

Proof. Surjectivity of the map is given by Lemma 4.24 and injectivity is given by Lemma 4.25.
Thus, we do indeed have the desired bijection and C*(E)/Ig = C*(E\H). Finally, since H is sat-
urated and hereditary, then ¥H = H and so by Lemma 4.27, C*(Ey) is isomorphic to the corner

pulapH. U

Example 4.29. Let’s apply this theorem to Graph 24.

(2 Q)

U—w

O 0O

GRAPH 24

The hereditary sets are @, {w,u} and {u}. We see that each of these sets are saturated. Thus, The-
orem 4.28 tells us that the ideals in C*(E) are Iy = {0}, Iy} = C*(E) and Iy,}. Since Ey,y
consists only of the vertex u and the two loops at u, then C*(Ey,}) = Oq. Thus, pr,y[{uypgu} is
isomorphic to Oy. Moreover, because the graph for E\ H is again a single vertex, w, with two loops
then C*(E\H) = Oy = C*(E) /Iy

We now conclude this section with a theorem which tells us precisely when C*(E) is simple.

Theorem 4.30. For a row-finite graph E, C*(E) is simple if and only if every cycle in E has an

entry and E is cofinal.
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Proof. We have already shown the ‘only if” direction in Theorem 4.4 and are only left to prove the
‘if” direction. Suppose C*(E) is simple. We will first prove that E is cofinal. Take an arbitrary path
u € E*. By Theorem ?? we have H), is saturated and hereditary. If H,, were non-trivial then Iy,
would be a proper ideal, contradicting the assumption that C*(E) is simple. Since r(u) ¢ H,, then
we know H,, cannot be all of E and so H,, = (. Thus, E is cofinal.

We will next see that every cycle has an entry. Suppose this were not the case, and find a cycle p €
E* with no entry. Define X to be the hereditary set {s(u;) | 1 < i < |u|} # 0. As in Lemma 4.27,
let XX be the smallest saturated set containing X. If ¥ X were non-trivial, then I x is a proper
ideal. Since C*(E) is simple, then XX = E° and so C*(Ex) = pxIsxpx = pxC*(E)px by Lemma
4.27. However, it’s clear that Ex = X and so the discussion of Graph 7 tells us that C*(Ex) =
C(T, M, (C)) = My, (C(T)).

Let J be an arbitrary proper ideal in pxC*(E)px = C*(Ex) = C(T, M|, (C)). Since we may note
that the collection of functions in C(T, M),(C)) which vanish at 1 form a proper ideal of the space,
such a proper ideal J exists. Consider the set

C*(E)JC*(E) = span{ajb | a,b € C*(E),j € J},

which is a non-zero ideal in C*(E). Finally, since C*(E) is simple, C*(E)JC*(E) = C*(E), and
thus

pxC*(E)px = px (C*(E)JC*(E))px = pxC*(E)(px Jpx)C* (E)px = J.

However we assumed J to be a proper ideal of the left hand side, proving that our assumption of
the cycle p having no cycle was incorrect. Thus, every cycle in E has an entry. O

We have now completely classified the graphs for which C*(E) is simple, as well as investigated the
ideals of C*(FE), when they exist.

5. THE ABELIAN CORE

In this section, we will investigate the normal elements of C*(E) which generate the abelian core of
a graph algebra. We will spend much of this section giving the appropriate background in order to
present a new uniqueness theorem whose proof considers a particular representation on the set of all
essentially aperiodic trails. Szymarniski first proved this result in [12]. It was revisited by Nagy and
Reznikoff in [9] in 2012, and it is their proof that we present in this section.

Definition 5.1. We call an infinite path y = pipus ... periodic if there exists positive integers j
and k such that p,r = py, for all n > j. For such a periodic path p, we can find a closed path v of
length k such that 4 = py ... pj—1vvv... where j and k are chosen to be minimal and we call v the
period of p.
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Example 5.2. Given Graph 25, the path u = pypua(hefg)(hefg)(hefg)... is periodic since for
n > 3 we have pi,+4 = pi,. In this case, minimality of j and k force the period to be v = hefg.

V4
N
V3 Vs
11 M2 Q € M3

h

Ve

GRAPH 25

Definition 5.3. We call the path 7 = 772 ... an essentially aperiodic trail if any of the follow-
ing hold:

(1) 7 is finite and s(7) is a source,
(2) 7 is infinite and periodic but its period has no entries (making its period an entryless cycle),
(3) 7 is infinite and not periodic.

We loosen this definition a bit and call 7 a trail if it either satisfies (1) or is an infinite path. The
set of all trails was denoted E<* in Section 4. Essentially aperiodic trails of form (1) or (2) are
called discrete and those of form (3) are called continuous. Note that if 7 is an essentially ape-
riodic trail and « is a path with s(«) = r(7) then a7 is also an essentially aperiodic trail. Let 7 be
the collection of all essentially aperiodic trails.

Example 5.4. In Graph 25 above, we see that all finite paths which begin at vg will be essentially
aperiodic trails, while any other finite paths will not be essentially aperiodic. Since the graph has
no entryless cycles, we cannot construct an essentially aperiodic trail of form (2).

Despite the fact that the graph is finite, we may still construct an infinite path 7 which is not peri-
odic. Indeed, if we set v = efg then one such construction is 7 = vhvhhvhhh ..., which we may
confirm is not periodic.

Definition 5.5. We call a vertex w € E? a trap if

(a) w is a source,
(b) w lies on an entryless loop, or
(c) there exists two closed paths p, v with s(u) = s(v) = r(u) = r(v) = w such that pq # v.

Example 5.6. Returning to Graph 25, we see that vg is a trap because it is a source. The vertex
vg is also a trap since p = h and v = efg are closed paths where 1 = h # e = v;. Now consider
Graph 26.

H2 Ha
(%) V3 () Vs M6
He

U1

GRAPH 26
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For this graph, vs lies on the entryless loop ug, making vs a trap. We may construct the two closed
paths u = papsps and v = popg g which both start and end at v where the first edge in the two
paths are not equal. Thus, vs is also a trap. We may confirm that vy, vy and v4 are not traps.

Lemma 5.7. Suppose E is a row-finite graph. For every vertex v € EV, there exists an essentially
aperiodic trail T with v = r(T).

Proof. We split the proof into two cases. First suppose there exists a path « with r(a) = v such
that s(«) is a trap. There are now three subcases describing the nature of s(«). First, if s(«) is a
source, we may set 7 = . Second, if s(«) sits on an entryless loop A, then we may set 7 = @AM . ..
to be a periodic trail. Finally, suppose there are two paths A, 7 as in the third case of a trap. Since
we may replace both A and 7 with a multiple of themselves, we may assume without loss of gener-
ality that |A| = |7]. Now let 7 = aATAT7AT77.... We claim that this path is not periodic. Indeed,
if it had period k& and we were to label the segment A\77...7 where 7 is repeated k times by edges
€162 ... e(k+1)A|, then A1 = e1 = ey |\ = 71, which contradicts our choice of A and 7. Thus, 7
cannot be periodic. This concludes the case where there exists a path a with r(a) = v and s(a) a
trap.

Now suppose such a path does not exist. We will construct a sequence (7,) of paths with r(7) = v
such that

$(Th—1) = r(10) and [T € (71 .- T,

where [7] is the collection of vertices visited by 7. If we can show this, then 7 = 717973 ... will visit
infinitely many vertices, making it an essentially aperiodic trail. Let 7, be an arbitrary edge with
r(m1) = v, and now suppose we have constructed the first N paths. We will now find an appropriate

TN+1-

Write the path 71 ...7n as edges ejey ... €. Since s(eg) is not a trap, there exists an edge exy1
with r(egy1) = s(eg). If s(eg1) € [71...7n], then we may let 7411 = ept1. However, if s(egt1) €
[T1...7n] then there is a closed path A = egyiepepy1...ex for some p € {1,...,k + 1}. Since no
vertex in [A] is a trap, then A has an entry, call it eg 2.

We now claim that s(eg42) € [71...7n]. Suppose this were not the case; we would be able to find
a closed path v with r(v) = s(v) = s(eg42) which is a segment of 7y ... 7y. We've now found two
appropriate paths with 7(\) = s(\) = r(v) = s(v) = s(exr2) proving that s(egy2) is a trap. This is
a contradiction, and so s(ex+2) ¢ [71...7n]. We may set Tn11 = €x41€p€pt1 - .. €kta.

This now proves that in either case, there exists an essentially aperiodic trail 7 with r(7) = v. O

5.1. The diagonal. We now introduce some terminology which will be used in the following re-
sults. We will show in Section 5.2 the relation between the diagonal and the abelian core. For now,
the examples in this section will justify the terminology.

Definition 5.8. For an arbitrary CK E-family {S, P}, we let G2(S,P) = {S,S; | n € E*} and
define the diagonal to be

A(S, P) = C*(G2(S, P)) = span{S,.S;, | p € E*}.
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Now, if p = vu' then (S,S55)(SuS;) = SuwSu = SuS;, = (5u5;)(8,S;). If v = pv' then
(SuSE)(SuSy) = SuSy, = SuS) = (5,5,)(5,57). Finally, if i does not extend v and v does
not extend g then (5,.57)(5,S;;) = 0= (S.5};)(5,57).

Thus, the generators of A(S, P) are commuting projections. If {s,p} is the universal CK E-family
which generates C*(E), then we write G4 = G2(s,p) and A(E) = A({s, p}).

Note that if {T, @} is an arbitrary CK E-family in some C*-algebra B then np g : C*(E) — B
maps G4 onto G2 ({T,Q}). Thus, 71 ¢ also maps A(E) onto A({T,Q}), so we say that A(E) is
universal in this sense. Let’s take a look at a few examples to get a handle on these new terms.

Example 5.9. Consider the graph E to be the single edge shown in Graph 27.

€
V—mw

GRAPH 27

Then we have E* = {v,w,e} and s0 G2 = {py, puw,5e5; = puw} = {Pv,pw}. Now, the identity
element in C*(E) is I = p, + p,, which is an element of A(E), but is not contained in G4.

Example 5.10. Recall Graph 3, shown again below.

In Section 2.2, we found a faithful representation of the universal CK E-family {s,p} on C° to be

8¢ = Eay sp = FE3; sqg = Ey4 sp = Esg + Eg3
pv = En Pu = FEoo + Es3  py = Eys + E55 + Ege-
Then spesy,, = Ess and sppsy; = Ege and since E* = {v,u,w,e, f,g,h, he, hf}, we have Go =

{E11, E22 + E33, Esa + Es5 + Egg, Ea2, Es3, Eua, Ess + Ege, Ess, Ege}. Thus, A(E) = span{E;; | 1 <
i < 6).

Definition 5.11. We define

ASF(E) = span{s,s?, | a € E<k}

where E<F was defined in Section 3.1. For a € E<F if s(a) is a source, then s, s, € ASFL(E). If
s(a) is not a source, then sas3, = 3_,.(o)—5(a) SacSae € ASEL(E).

Thus, ASK(E) C ASF+1(E) and A(E) = UrsoA<F(B).
44



Proposition 5.12. If E has no sources, then for a *~homomorphism ® : A(E) — 2, the following
are equivalent:

(1) @ is injective
(2) ®(sus;,) # 0 for all p € E*
(3) ®(py) #0 for allv € EY.

Proof. (1) = (3) This is clear.

(3) = (2) We may write ®(s,s;,) = (s,)P(s,5,)P(s},) = P(5,)P(Ps(n))P(5};). Thus, if ®(s,) =0
then ®(p,(,)) = 0 so ®(ss},) = 0.

(2) = (1) For some «, 8 € E<F with a # S, sisz = 0. Thus, ASF(E) = @©ycp<xCsqys’. Since
®(545%) # 0, then @ is injective on each ASF(E) for all k > 0. Thus, ® is injective.

Note the similarities between this proof and that of Lemma 3.10.

The proof of our final uniqueness theorem involves considering a particular faithful representation
of C*(E) on £2(T x Z). In the following section, we will see that this particular representation may
be intertwined with a conditional expectation to explain the relation between the diagonal and the
abelian core.

Theorem 5.13. Suppose E is a row-finite graph with no sources and let T be the set of all essen-
tially aperiodic trails in E. Consider the standard orthonormal basis (€7)re7 nez for (T x Z).
Then there exists a unique CK E-family {S, P} C B(¢*(T x Z)) such that for every path o € E*,

n+lal . .
SE" = {Oa‘r if r(t) = s(a)

otherwise.

Furthermore, the *-homomorphism wg p : C*(E) — B({3(T x Z)) is injective.

Proof. Fix some path o € E* and consider the set M = {7 | 7 € T,n € Z} of all basis elements.
Let S2 : M — MU {0} be defined by

SO (é-n) _ zjla‘ if T(T) = S(a)

T 0 otherwise.
Let M), ={f e M |neZ, €T, s(a)#r(r)} so that S|y = 0. If we take distinct £ and &2
in M\M?Y then either n # m or 7 # 7. In either case, S2(£7) = ijla‘ =+ fglfla‘ = S9(&7). Thus,
S8 myamo is injective. Note that this implies that Sj is also injective on span(M\MQ,).

Thus, we may extend SO to a partial isometry S, in B(¢*(T x Z)) with ker(S,) = span(M?) and
ran S, = span{&? | n € Z,7 = ar’}. It is not hard to confirm that
45



Suer = {fﬁ"“ if = a7’

0 otherwise.

We will now check that the collection {P, = S, S.} is a CK E-family. For a fixed v € E, if £ €
MA\MY then

P&l = 8,67 = €410 = 7 = PIen.

vT

Thus, P, is a projection onto span(M\ M) = span{¢” | r(r) = v}. We may verify that S.S* =

Py ey by checking this equality at each basis element . Finally, we fix v € E° and some orthonor-
mal basis element 7. If r(7) # v then we have P& = 0 = 3, _, SeS&. If r(1) = v then we
may write 7 = e7’ and so

Py— Y SeSI| &= Y &,

r(e)=v r(e)=v

where our assumption that E is row-finite tells us that the two sums are finite. There is precisely

one edge e where 7 = e7’, so independent of whether r(7) = v or not, we have (PU — ZT(E):U SeS:) =
0 for all 7. Thus, P, =}, ), SeS¢. This proves that {F,, Sc} is indeed a CK E-family, and so it
makes sense to talk about the *-homomorphism 7g p : C*(E) — B((*(T x Z)). By again checking

on the orthonormal basis elements, it is not hard to confirm that for a path o = a; ... a,, the oper-

ator S, is equal to the composition Sq,Sa, - .. Sa,,, and so it is only left to show that the map 7s p

is injective.

By Lemma 5.7, for every vertex v € E, there exists an essentially aperiodic trail 7 € T with v =

r(7). Thus, P,&" = £" and so P, # 0. Consider the unitary operator U, € B(¢*(T x Z)) defined by
U.Em = 2"¢" with adjoint UZEP = 27"¢". We can then define the action 8 : T — Aut B(¢2(T x Z))
to act on X € B(¢%(T x Z)) by B.(X) = U,XU;. For any fixed « € E* and 2z € T, we may check
that (,(S,) = U, S Ur = 21183,

More precisely, 8.(P,) = U.P,Uf = P, and ,(S.) = U.S.Uf = zS.. Thus, the Gauge-Invariant
Uniqueness Theorem (Theorem 3.11) tells us that mg p is injective. ]

We rename this unique *-homomorphism to be 7.

Definition 5.14. For an essentially aperiodic trail 7 and a path a € E*, define the projections
Ro,Q, € B(3(T x Z)) by

QT = projspan{{ﬂnGZ} and Ro = projspﬁ{&ﬁ‘rGT,nEZ,‘r:aT’} .

Note that in the proof of Theorem 5.13, we found that span{{? | 7 € T,n € Z,7 = a7’} = ran(S,)
and so because S, is a partial isometry, Ry = proj,,, 5. = SaSy-
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Definition 5.15. We define the tail of length n for a trail 7 = 775 --- € T to be

r(7) ifn=0
Tn) = { T1T2... Ty ifn >0 and 7 is either infinite or finite with |7| > n
T if 7 is finite, with |7| < n.

Note that for any trail 7 and any positive integer n, the tail 7, is a path. Thus, R is well-defined.

T(n)

Proposition 5.16. For a row-finite graph E, an essentially aperiodic trail T € T with tails 7y,

and the operators Ry, and Q; defined above, we have

SOT — lim R:.,, = Q.
n

Proof. Fix any basis element 7" € M and note that we may write v = T(nyY if and only if v = 7.
Thus,

& ify=r7
0 otherwise

T(n)

li7ILnST(n)S* & = liinl%ml)fzT = liTan{

Since each R, is a projection, it is bounded and therefore continuous. Thus, for any z € 2(T x7Z)
we have that lim, R, = = Q.z, giving SOT — lim,, R;n) = Q. O

We now notice that for « € E*, if y = 7 = o’ then

QTRCM&:L = Q'rgf; = 5771 and
RaQ'rg;l = -Rozg:lrI = g:’rl

If this assumption does not hold, then

QTRafz; =0 and RQQTSZ/I =0.
Thu87 QTRa = RaQ‘r-

Recall that 7., : C*(E) — B(¢*(T x Z)) is the map defined in Theorem 5.13. More generally, since
Tap(8asy) = SaS; = R then for every X € A(E) = span{s,s;, | p € E*} and for all essentially
aperiodic trails 7 € T, there exists a unique ¢,(X) € C such that

QTﬂ.ap(X) = ﬂ-a;D(X)QT - CT(X>QT'

Furthermore, the projections (Q-),e7 are mutually orthogonal and soT — > Q. = I.
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Thus, for X € A(E),

7Tap(‘X) = 7Tap(AX) <SOT - Z QT) = SOT — Z e (X)Qr.
TET TET

Lemma 5.17. Suppose H is an infinite, separable Hilbert space and consider a collection {P,} of
mutually orthogonal projections such that SOT — 3 P, = I. Then the map

E:B(H) — B(H)
T — SOT — Z P, TP,

is a conditional expectation of B(H) onto P’ where P! = {T € B(H) | TP, = P,T Vn}.

Proof. Tt is immediately clear that F is positive, idempotent and satisfiesran E C P'. If T € P’
then E(T) = sor — >, P,TP, = sor — ) P, T = T,soran E = P’. Finally, for T € P’ and
S € B(H) we have

E(ST) =sor — Y _P,STP, =sor— Y P,SP,T = E(S)T,

n n

so F is indeed a conditional expectation. O

Definition 5.18. Define the map E,, : B({*(T x Z)) — B(*(T x Z)) by Eap(T) = sOT —
> e Q-TQ,. The lemma above tells us that E,, is a conditional expectation of B(¢?(T x Z)) onto
Q' = (T e B*(T xZ)) | TQ. = Q. T YreT}

Now let R = {Ry = Tap(Sash) tacr+. It’s clear that R C Q'. Moreover, for some 7' € R’ and a fixed
= R, T so that

essentially aperiodic trail 7 then TR, | )

TQ,=T-50T —lim R, , =soT —limTR =soT —lim R, T =Q-T,

T(n) T(n)

which implies T' € Q'. Thus, for T € R’ C Q" we have E,,(T) =T.

5.2. The abelian core. Before we introduce the definition of the abelian core, we investigate the
normal elements from our standard generating set {s, s}, | u,v € E*} of C*(E).

Proposition 5.19. Suppose E is a row-finite graph with universal CK E-family {s,p} which gener-
ates C*(E). Then a non-zero element of the form X = s,s;, with p,v € E* is normal if and only if
one of the following holds:

(1) p=v
(2) o =vAF for k> 1 where X is an entryless cycle
(3) v =p\* for k> 1 where X is an entryless cycle.

Moreover, such normal elements commute.
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Proof. Take X = s,s}, with u,v € E* to be an element of C*(E). If 4 = v then clearly X = X*, so
X is also normal. Now suppose p = vA*¥ where \ is an entryless cycle. By Corollary 3.24, we know
that sxs} = pr) = Ps(n) and it follows that s§s3* = p,(y). In this case,

XX* = 5,5,5,8), = 8.5, = (sysﬁ)(siks;) = 5,8}

*

* _ * *
X*X = 5,8,8.8, = SuS,,.

Thus, in case (2), the element X is normal. A nearly identical argument will be valid for case (3).

Now suppose X = s,s; # 0 is normal. We know that s(u) = s(v) and

*
Sus

_ * * * * _ * * *
p = Susysus, = XX" = X"X =s5,5,5,5, = su8,,.

n

Since s,5% < pr(u) and 8,85, < pr(y), then r(p) = r(v). Moreover, X? is non-zero and thus, s,5%5,5},
is non-zero. Either y = vy or v = py for some closed path . If 4 = v then we’re done. If not,
suppose p = vy and that the closed path v has an entry, so sys3 < pp(y) = Ps(v). Then XX* =
S8, = Spsysys, < sys, = X*X, a contradiction to the assumption that X is normal. Thus, v
cannot have an entry, and so it may be written uniquely as v = \* for some entryless cycle A. The
case where v = py is similar.

We will now see that such elements commute. Suppose we are considering two elements of form (2)
and (3), call them s,s;, and SaSj where i = vy* and B = a)* and both \ and « are entryless
cycles. If we assume 5,575, is non-zero, then either v extends v or v extends a. In either case,
because both A and v do not have any entries, they must be equal and the difference between a and
v must be some multiple of A\ = . Suppose o = vy™, forcing 8 = vy**t™ and pu = vy™*+¢. Then

* * m-+Lf _x m _xk+m _x __ 2m—+L _xk+m x __ m+l—k _x
SuSySasg = Susy s, sys) s T s, = 8,8 T ST s, = s8] s,
* * m _xk+m _* m—+L x __ * m+l—k _*

SaSaSuS, = Susy' sy s, s,8) T s, = s,8,8) s,

Similarly, in the case where the two elements s,s;, and s, s} are of form either (2) or (3), we find
that if SuS,SaS 1s nonzero, then the two entryless cycles must be equal which forces the two ele-
ments to commute.

We are now left with the case where one element is of form (1) and the other is of form (2) (this
will simultaneously give us the case where the two elements are of form (1) and (3) by taking ad-

*
[e%

that s s}, 5,5, is nonzero, so either o extends p or p extends «.

joints). Suppose we have elements s, s}, and s, s} where p = vA¥ for an entryless cycle X. Assume

If o extends p, then there exists some ¢ such that a = pA* = vA*+¢ so that

k % k

SN (s 0)s8s) = susks) = susk(shs)(

* * k+tl xk+0N\ x * *
Sa55Su8;, = Su( Sy TSN s, = 88505,
Now, if ;1 extends o we have two subcases: either y = 15 \F where o = vy and v = V15 or p =
XA AN T where o = v AN and A = M\ )\,
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If the first is true, then

* ok kox k * * * *
5y, = SuSNS,, = 81,50, 5x50, (55,501 )5), = 55,505,

* * * k
SaSqSusSy = Sy (sulsVl)sl/zS/\SuQ V1

However, suppose now that the second subcase holds and p = VXA AN 1 where A = A Ay and
a = vA*A;. Because ) is entryless, so is the path \q, in that for every v € [\;] there is only one edge
e with r(e) = v. Thus, sy, s}, = pr(,), and so

* * l * x4 k x C+k _x0 x k/ * V4 * * * * *
SaSnSus, = SuSxSx, 5\, 5\ (S,50)8%8, = 8,531 8\ 5, = 5,5 (55,5,)5\(5x,1 5%, )SALS, = 545,554

And so, despite requiring a number of subcases, we’ve found that the normal elements of the form
X = s,s;, do indeed commute. ]

Example 5.20. We return to Graph 12 investigated previously in Section 3.2, shown again below.

e V——w Q g
Crve—;
All paths in the graph E have one of three forms, we can write

E*={efg o<k} (J{ lo<k} {g" 00}

Theorem 5.19, along with the fact that g is the only entryless cycle tells us that the normal ele-
ments of C*(E) will fall into one of the following sets:

{sexsta |0 < k)
{serspsgesymsyesysie |0 <k, 6,m}
{8ckspsgesgmsyesyson |0 <k, €, m}

{sgrsgm |0 <k,m} ={sgr [0<k} U {s;u [0 <k}

Thus, we find that the only elements in the generating set {s,s} | u,v € E*} which are not normal
are those of the form

{Sensie | k #¢}
{Serpgesgm = Serpge-—m | 0 < K, £, m}
{sgms:kfg[ = Sekfgt-m | 0 <k, £, m}.
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It is now easy to determine whether an element of the form X = s,s} in C*(F) is normal in this
example.

Definition 5.21. Let M(E) be the C*-algebra generated by all such normal elements of the form
s, s5. Proposition 5.19 implies that M(E) is abelian. Thus, we appropriately call M(FE) the abelian
core of C*(E).

Because M(E) consists of all elements s,s¥, and M(FE) is abelian, m,,(M(E)) € R’ C Q. Thus,
for every element X € M(E), we have Eqp(mqp(X)) = map(X).

The following result will define a new conditional expectation which will allow us to relate the diag-
onal of F with the abelian core.

Theorem 5.22. For a row-finite graph E, there exists a unique conditional expectation Ey; of
C*(E) onto M(E) such that

X if X = 5485 is normal
En(X) = { "

0 ifX= sas’g is not normal.

Furthermore, Tap 0 Ea = Eqp © Tap and in particular, Eyp ts faithful.

Proof. Our goal will be to verify that those X = s,sj € C*(E) which are not normal satisfy

Bap(mtap(X)) = Eap(SaSj) = 50T — lim Y Q-5aS3Q- = 0.
TET

It is sufficient to show that for any essentially aperiodic trail 7, if Q-S,S5Q- is non-zero then X =
sas;g is normal.

Note that

& ify=r
0  otherwise

QTSQSEQTg;I = QTSO(SE {

gn—/\ﬁ|+|0¢\ if y =1 = B7/
_ QT{ o

0 otherwise

§¢*|5\+|a| ify=7=p87=ar
{O otherwise.
Thus, if QTSQSEQT is non-zero, then 7 = A7/ = a7/, implying that either the two paths are equal,
« extends [ or 8 extends «. In the case where the two paths are equal, we immediately get that
X = sqsp is normal. Let’s suppose without loss of generality that o extends 3, so @ = SA, where
s(a) = s(B) implies that X is a closed path. Thus, aA7’ = 37" = 7 = a7’ and so since « is a finite
path, we get that A7/ = 7/. Thus, 7/ = A\\.... We then have that 7 is periodic with period A and
so, because T is an essentially aperiodic trail, A must be some multiple of an entryless cycle, call it
v. Thus, 8 = av® for the entryless cycle v, making X = SaSp normal. A similar argument holds if «
extends f.
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Since Eop(map(X)) = map(X) for all normal X = s,5%, then Eqp(ma,(C*(E))) C mapy(C*(E)). The
injectivity of 7, implies that we may set Es to be 7r;p1 0 Eq4p 0 Tap. This is a linear continuous map
which satisfies 74, 0 Eps = Egp 0 Tap. If EM also satisfies this equation then 7., 0 Epy = Egp © Tgp =
Tap oE‘M and by applying 7r;p1 to both sides, we get Eyy = E'M, giving us uniqueness of the operator
Enr. Moreover, the injectivity of 74, also tells us that

X ifX= sasz is normal
Ey(X)=

0 if X= sasz is not normal.

Finally, suppose we have some X € C*(E) with X > 0 and 0 = Ep(X). Then 0 = 7y, (Ep (X)) =
Eop(Tap(X)) = map(X) and because 7, is injective, then 0 = X. Thus, by continuity and linearity,
E); is a faithful conditional expectation from C*(E) onto M(E). O

We will now see the relationship between the abelian core and the diagonal.

Corollary 5.23. Suppose E is a row-finite graph. Then
M(E)=A(E) ={X € C*(E)| XD=DX VDe€A(E)}.

Proof. We have seen previously that A(E) C M(E) and that M(E) is abelian, so then M(E) C
M(E) C A(E). We are only left to prove A(E)" C M(E). Fix some X € A(E)’ so that for every
path o € E*,

Tap(X)Ro = Tap(X8a5s) = Tap(sasaX) = RaTap(X).

Thus, 7.p(X) € R, 850 Eqp(map(X)) = Tap(X). By Theorem 5.22 we have mqp(X) = Eqp(map(X)) =
Tap(Em (X)) and as g, is injective, X = Ep(X) € M(E). O

Definition 5.24. We define the map E, to be

E.:C*(E) = Q. B(*(T x 7))Q,
X = Q‘rﬂ—ap(X)QTo

For X € M(E), the fact that Ep(X) = X implies that

Tap(X) = Bap(map(X)) = SOT = Y Qr7ap(X)Qr = 50T — Y E-(X) =sor — @ E,(X).

TeT TeT TeT

Note that the above equality combined with the fact that 7., is a *-homomorphism tells us that
restricting E, to M(E) gives a *-homomorphism. Let

o= Erl gy - M(E) = Q- B(C*(T x 2))Q-.

52



Additionally, the system (E.),c7 is jointly faithful in that for X € C*(F) with X > 0 and
E.(X) =0forall 7 € T then X = 0. Indeed, for a non-zero X € C*(E), injectivity of m,, tells
us that 7,,(X*X) is a non-zero element of B(¢*(T x Z)). Suppose we write Tq,(X*X) as > ¢y &7
where there exists at least one (y,n) € T X Z where the corresponding constant ¢, # 0. Then
Er(Tap(X*X)) = Qymap(X*X)Qy = ¢y &} # 0. Thus, the collection (E;)-e7 is indeed jointly
faithful.

Proposition 5.25. Suppose E is a row-finite graph. If T € T is either finite or continuous, then
there exists a unique state w, on C*(E) such that E.(X) = w,(X)Q, for all X € C*(E).

Proof. We first note that

Eap(ET(X)) =S0T — Z Q’YET(X)Q’Y = S0T — Z Q'yQ'rﬂ—ap(X)Q‘rQ'y = Q‘rﬂap(X)Q'r = E-(X),

yeT YET

and

Eop(Er (X)) = Eop(Qrmap(X)Qr) = Qr Eop(Tap(X))Qr = Qrmap(Em (X))@

Together, these imply that E-(X) = Qrmap(Em(X))Qr. Because Ey(X) = 0 for X = sqs% which
are not normal, we only need to confirm the equation for normal generators X = SaSh-

Consider the normal element X = Sq8j; with the additional assumption that « =% (. Proposition
5.19 implies that either a or 8 must begin with an entryless cycle. Suppose « is the path which be-
gins with an entryless cycle A. The assumption that 7 is not periodic tells us that if 7 extended «,
7 would be forced to be periodic. If we assumed « extended 7, then this would force 7 to be finite
and s(7) would not be a source in this case. In either of these assumptions, we reach a contradic-
tion. Thus, s3 sz, 7, =0 forn > lal.

Similarly, if we assume § begins with an entryless cycle, sjsr, =0 for n > |B|. In either case,

n) S:(”>
ST(n) Sj’(“) SO"SZST(n) Sifk'(n) =0 vn 2 maX{|O[‘ ) ‘Bl}

Thus, R;, SQSERT(n) =0 and so

E;(5a83) = Q- 5.55Q-
— (sor —1im Ry, ) Sa8j (sor —lim Ry, )
=0.
We are now left to check the normal elements X = s,s%. In this case, we find that E.(X) is equal

to Q. if 7 = a7’ and 0 otherwise.

O

Note that it immediately follows from the proof that w, = w, o Ey;.
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Lemma 5.26. Suppose E is a row-finite graph. For every element X = SaSh € C*(E) and every
continuous T € T, there exists some N > 0 such that for all n > N, we have

* * _ *
870y sT(n>XsT(n) Sty = wr (X) 87, CH.

Proof. By taking adjoints if necessary, we may assume without loss of generality that |a| > |3].
Suppose we choose n > |a| and assume s, si(n)XsT(n) sj(n) # 0. This immediately tells us that
SaSj, si(n)sa, and 8j38r(,, are non-zero. Our assumptions on length imply that 7,y must extend
both o and 3. Thus, f < a < 7(,). Let’s write « = S\ where the assumption that s(a) = s(3)
tells us that A is some closed path.

If a # 8 then |A\| > 1 and because T is not periodic, there exists a maximal k such that SA* < 7.
Let N = |B] + (k + 1)|A| > |a| and choose any n > N;. Then 7(,) = BA¥y for some v, and so

Sty SaSpSt) = SyS\kSSFSNSSFS\k Sy
= 81 S\kSAk+15y (since sjsg = py(s))
= sf/sAsA,.
If s%sx # 0 then since |y] = || — [BA] > (18] 4 (k + 1)|A]) = (18] + k|A]) = |A], we have that A < 7.
But this contradicts the maximal choice of k.

Thus, if s, s7 | SaSjSr, ST, # 0forn > |af then o = B. We may now take N; = |al. For
. . _ * * * _ *
n > N,, if we write T(n) = ay then 57 (n) 570y 5050 5T(m) Sy = 57(m) Sy O

Proposition 5.27. Suppose E is a row-finite graph. If 7 € T is continuous, then for X € C*(E)
and w € C, the following are equivalent:

(1) l%m" 187ny 87y K870y 87y = WSy 87, | =0
(2) Y, || Eag (X)sr, 53, — w55, | =0
(3) W = Wsr (X)

Proof. (3) = (1) It suffices to prove this for elements of the form X = sqsj. This follows directly
from Lemma 5.26.

(1) = (2) Assume (1) holds. By applying Exs to (1), we get that

lim || Eag (v, 85, X7y 55,)) = @Enr (57,85l = 0.
Thus implying lim,, Hsr(n)si(n)EM(X)sT(n) si(n) — wsT(n)sj(n) || = 0. Since we know Ej;(X) commutes
with s, s7 ~, then
li’I’ILIl 1E21 (X) 57, S:m) - wsT(mSi(n) =0.

(2) = (3) Assuming (2) and applying 7y, we find that
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h};n [ 7ap(Em (X)Snn)si(n)) - WWap(S‘r(msj—(n))H =0.

We may rewrite this as lim,, || Eqp(map(X))R
whiR

oy W Ry | = 0. This implies that sOT—lim,, E,p, (74, (X)) R
= 0. Rearranging, we find E,p,(mqp(X))Qr = wQ-.

T(n)

We also know that E,p,(7ep(X))Qr = QrEap(mep(X))Qr = E-(X) = w,(X)Q, where the final
equality holds from Proposition 5.25. Thus, w,(X) = w. |

Definition 5.28. For a trail 7 which is discrete, we define the essential path of 7 to be

7 if 7 is finite
Tess —

a if 7 is periodic with 7 = aAAA ... and |«| minimal.

Note that we may recover the discrete trail 7 from 7.ss. Indeed, if $(7ss) is a source, then 7 = 7o
and if it is not a source, then there will exist a unique entryless cycle A with r(A) = s(A) = $(7Tess)
and SO We recover T as Tegs AN . ...

If 7 is discrete, the sequence (RT(”)) eventually becomes constant and equal to R, _, and so because

soT — lim, R, ., = Q., then R, __ = Q.. Now note that we have the following equalities:

T(n) Tess

WGP(EM (X)STESSS;k-CSS) = 71'ap(EM (X))@~
= Eop(map(X))Qr

= SOT — Z Qymap(X) Q1 Qr

YET

= Qrﬂap(X)Q‘r
= RTessﬂ'ap(X)R

_ * *
= Tap(S7e0e87,,, X Srena87,..):

Tess

Tess

Since 7.y, is injective, then

Ey(X)sr,.. Sk D,

Tess Stess Tess Tess “Tess”

Definition 5.29. For a discrete trail 7 € 7, we define M (E) = s, 55 C*(E)s;,  si . Ifr

is finite, then we get that M, (E) = Cs,si = Cs,, 55 . On the other hand, if 7 is infinite and
T = aX\ ... where X is an entryless cycle, then 7., = @ and M, (E) = C*(s4515%).

Let the map F; be given by

F,:C*(E) > M.(E)
X sr.87,, XSS,

55

T(n)



Thus, Fr(X) = s.,,.85  Xsr,, 55 = Ey(X)sq,., 55

Tess Tess

which tells us that 7,4, (F- (X)) = E-(X).

Definition 5.30. We call a path « distinguished if there exists a unique entryless cycle A\, with
r(Aa) = s(Aa) = s(«). For a distinguished path « and the unique corresponding cycle A, let w, =
SaSx, Sy Note that w, is a normal partial isometry.

Moreover, if 7 is an infinite, discrete essentially aperiodic trail, then 744 is distinguished.

Example 5.31. Consider Graph 28.

eCu 7 v P U}Qh

GRAPH 28

The paths f, gf, and h¥gf for k € N are all distinguished with \, = e. Note that the paths ef, fe,
gfe, and hFgfet for k,¢ € N are also distinguished paths with A, = e. No other paths in the graph
are distinguished.

We will use the following result in our final theorem.

Proposition 5.32. Suppose A,B are C*-algebras with A C B. Then for any a € A, we have
specg (a) U {0} = specy(a) U {0}.

We are now ready to present the final theorem of this paper.

Theorem 5.33. Suppose E is a row-finite graph. For a *homomorphism ® : C*(E) — 2, the
following are equivalent:

(1) @ is injective
(2) ® restricted to M(E) is injective
(8) both of the following conditions are satisfied:
(a) ®(sas) # 0 for all paths a € E*
(b) for all distinguished paths a € E*, specy (®(wy)) 2 T.

Proof. (1) = (2) This is clear.

(2) = (3) Because sus), € M(FE) for all paths a € E*, it’s immediately clear that (a) holds. To

[e3%
see that (b) holds, fix some distinguished path o € E* and consider the normal partial isometry wg,.

*

We have that (waw?)ws = ws and (waw?)w?k = wiwaw? = w. Similarly, w’ (waw?) = w? and
W (Waw?) = wgs. Thus, waw? acts as the identity on w, and w} and so acts as the identity on all

of C*(wq). This tells us precisely that w, is unitary on C*(wq) and so speccu(,, ) (wa) € T.

We know that there exists a gauge action on C*(E) which for any z € T, satisfies v, (w,) = z*lw,
and 7, (w) = z7Pelw®. Thus, v,(C*(wa)) € C*(wy) for all z € T and so we have the action

v : T — Aut(C*(wq)) which sends w,, to z*=l. Thus, if SPeCes () (Wa) & T, we may find some z
with |z| = 1 and z ¢ specc« (4, ) (Wa)-

Then for any x € T, we have that

1= 72(1) = 72((21 — wy) " tzPelzPel (21 —wy)) = 7. (21 — wa) LaPreh (@Rl 21 — w,,).
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This tells us that 7«21 — w, is invertible and so ' !z ¢ Specc*(wu)(wa). By choosing appropri-
ate ¥ € T, we can show that specc. (,,)(wa) does not contain any element from T. However, the
spectrum is non-empty and so our assumption that specc.(,,)(wa) & T must be incorrect. Thus,

SPeCe () (Wa) = T.

Because M(E) is C*-subalgebra of C*(E) with w, € M(E), then specc. (g (wa)U{0} = spec v gy (wa)U
{0} by Proposition 5.32. Except in the trivial case where w,, is an isometry, we have that specc. gy (wa) =
spec gy (wa) = T U {0}. Because ®(M(E)) is isometrically isomorphic to M(E), we also get
speco(a(g)) (P(a)) = specyyg)(a). Putting these pieces together, we find that T C spec (g (a) =
specoam(p)) (P(a)) = specy (P(wa)), where the last equality holds by Proposition 5.32 and the fact

that ®(M(E)) is a C*-subalgebra of 2.

(3) = (1) Fix some element X € ker ® and suppose first that 7 € T is discrete. Then it follows that
Sro. St X*Xs, st  =F(X*X) € ker M, (E). Now, T C specy (®(wy)) implies that ®(wq) #

Tess Tess

0. Moreover, (a) tells us that ®(sys%) # 0 combined with the fact that given a discrete T € T, Tess
is a distinguished path, then ® is injective on the generators of M, (FE). Thus, in a proof similar to
that shown in Proposition 5.12, ® is also injective on all of M. (E). Thus, F,(X*X) = 0. Now, we
may utilize that E-(X) = mqp(Fr (X)) =0.

In the case that 7 € T is continuous, then by the result of Proposition 5.27, we have that

liTan ||57(n)5:<n>X*XST(n> si(n) - wT(X*X)sT(n)sj(m | =o0.

By applying @ to to this result and recalling that ®(X*X) = 0, we get that

o (XX (T (57,57, ) = lim oo (X X)D(sr,,, 57, ) = 0.

Now note that assumption (3) (a) combined with

||¢(ST(W)S:(.,,))|| = ||¢(ST(n) S;k_(n)s-,—(n)s;k_("))” = ||¢(ST(7—1)Sj‘(n))(b(s'r(n)s;k'(n))*H = ||¢<ST(TI) S;K'(n))HQ

tells us that [|[®(sr, s7 )l =1 for all n > 1. Thus, we must have w-(X*X) =0 and so E-(X*X) =
wr(X*X)Qr = 0. We have now shown for that for any 7 € T, E.(X*X) = 0. Finally, because

the collection {E;} 7 is jointly continuous, we have that X*X = 0. Equivalently, we have that
ker ® = {0}. O
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