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1. Introduction

Given a directed graph E, we may associate to E a C⇤-algebra, C⇤(E), by associating edges in E to
partial isometries and vertices in E to pairwise orthogonal Hilbert spaces which satisfy some addi-
tional conditions. Such graph algebras were first studied by Cuntz and Krieger in 1980 [4]. Because
the structure theory of the C⇤-algebras is related to the combinatorial and geometrical properties
of the underlying graph E, graph algebras have gained a lot of attention. Examples of such graph
algebras include some AF-algebras, Cuntz-Krieger algebras, and C⇤-algebras built up from matrices
over C(T).

Our report is organized as follows. Section 2 will cover the basic terminology and properties one
may associate to the C⇤-algebra of the graph E which give us interesting relations between the
projections and partial isometries. In order to gaina good grasp on the concepts, we will look at
some particular graphs whhich generate familiar C⇤-algebras, including all finite C⇤-algebras, the
Toeplitz algebra, and C(T). Section 3 will investigate the conditions which allow us to concretely
find C⇤(E). We begin with the Gauge-Invariant Uniqueness Theorem and proceed on to an appli-
cation of this theorem regarding the equality of the C⇤-algebras generated by a graph and it’s so-
called dual graph. We conclude this section with the CK-Uniqueness Theorem, which tells us that
if every cycle has an entry, every non-degenerate CK E-family generates isomorphic C⇤-algebras.
These uniqueness theorems also allow us to present a number of graphs whose corresponding C⇤-
algebras will be familiar to the reader. Section 4 examines the ideals of C⇤(E) and completely clas-
sifies when the C⇤-algebra is simple. Finally, Section 5 is a study on the paper by Nagy and Rezniko↵
[9]. We begin by introducing the abelian core of a graph C⇤-algebra and work towards proving an
additional uniqueness theorem says that a ⇤-homomorphism on the C⇤-algebra being injective is
equivalent to it being injectie on the abelian core. As well, a brief investigation into the spectrum
of elements in the C⇤-algebra give an additional equivalent condition regarding the spectrum of the
image of some particular elements.

2. Background on Graph C⇤
-algebras

2.1. Cuntz-Krieger families. We begin by defining a Cuntz-Krieger family and then examining
some examples of Cuntz-Krieger families for given graphs.

Definition 2.1. A directed graph E is a collection E = (E0, E1, r, s) where E0 is a set of points,
called vertices, E1 can be viewed as a collection of ordered pairs e = (v, w) 2 E0⇥E0 called edges,
and r, s : E1 ! E0 are maps denoting the range and source of an edge, respectively. If a vertex v

does not receive edges or equivalently, if r�1(v) = ;, then we call the vertex a source. We call a
vertex v which does not emit edges a sink.

The existence of sources will prove to be particularly interesting in many of the theorems presented
in this report. We restrict our attention to graphs where each vertex receives finitely many edges
and we call such graphs row-finite. For the purposes of this report, all graphs will be assumed to
be row-finite. To reinforce these new terms, we look at an example.
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Example 2.2. Suppose E0 = {u, v, w,w
2

, w
3

, . . . } and E1 = {e, f, g, h, µ
1

, µ
2

, µ
3

, . . . }, where we
draw E as in Graph 1.

v u w w
2

w
3

. . .e

f

g

h

µ1

µ2

µ3 µ4

Graph 1. an example row-finite graph

Since v receives no edges, it is a source. If we consider the edge e, then we have s(e) = v and r(e) =
u. Notice that we allow multiple edges between the same pair of vertices, as demonstrated by the
existence of both µ

1

and µ
2

.

Definition 2.3. We let H be a Hilbert space, E a directed graph, and define a Cuntz-Krieger E-

family {S, P} on H to consist of a set P = {Pv | v 2 E0} of mutually orthogonal projections on H
and a set
S = {Se | e 2 E1} of partial isometries on H which satisfy

(CK 1) S⇤
eSe = Ps(e) for all e 2 E1

(CK 2) Pv =
P

{e2E1|r(e)=v} SeS
⇤
e whenever v is not a source

We will shorten the terminology by calling such a {S, P} a CK E-family and throughout this re-
port, we will often consider the C⇤-algebra generated by a CK E-family, C⇤(S, P ).

Note that because Se is a partial isometry, we can write Se = SeS
⇤
eSe = Se(S⇤

eSe) = SePs(e).
Furthermore, since SeH = SeS

⇤
eSeH ✓ SeS

⇤
eH (in fact, we have equality here) and Pr(e) = SeS

⇤
e +

P

{f 6=e|r(f)=r(e)} SfS
⇤
f where SfS

⇤
f � 0, then we have Pr(e) � SeS

⇤
e . It follows that for h 2 SeS

⇤
eH,

kPr(e)hk2 = hPr(e)h, Pr(e)hi = hPr(e)h, hi � hSeS
⇤
eh, hi = hh, hi = khk2.

Since we can write khk2 = kPr(e)hk2 + k(I � Pr(e))hk2, we get that k(I � Pr(e))hk2 = 0 and so
h = Pr(e)h 2 Pr(e)H. Thus, SeS

⇤
eH ✓ Pr(e)H, hence for any h 2 H, we have Pr(e)Seh = Seh. This

gives us the equality

Se = Pr(e)Se = SePs(e),

which will prove to be invaluable throughout the rest of this report.

One other result that is true of all CK E-families is that PvH = �{e2E1|r(e)=v}SeH. Indeed, since
Pv =

P

{e2E1|r(e)=v} SeS
⇤
e is a projection then the summands must be pairwise orthogonal. That is,

SeS
⇤
eSfS

⇤
f = 0 for e 6= f which satisfy r(e) = v = r(f). Since SeS

⇤
e is the projection onto the range

of Se, we have that the distinct partial isometries Se, with range in PvH, have mutually orthogonal
ranges. The span is clearly PvH and the map which sends a sequence (he) in �SeH to

P

e he in
PvH is an isomorphism from the direct sum of the SeH with r(e) = v onto the space PvH. Thus,
PvH = �{e2E1|r(e)=v}SeH.

A natural question is whether a CK E-family exists for every countable graph E under the con-
straint that every Pv and Se is non-zero. Indeed, we may construct such a family as follows. Choose
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Hv to be some separable, infinite-dimensional Hilbert space for each vertex v. We set H = �v2E0Hv

and let Pv be the projection of H onto Hv. We can decompose the space Hv into the direct sum
Hv = �r(e)=vHv,e where each Hv,e is again infinite-dimensional and take Se to be the unitary iso-
morphism of Hs(e) onto Hr(e),e viewed as a partial isometry on H with initial space Hs(e) and final
space Hr(e),e.

Definition 2.4. A degenerate CK E-family is one where some orthogonal projection Pv is the
zero operator, and we concern ourselves with non-degenerate CK E-families.

Example 2.5. We will see this in action to get a grasp on how it works. Consider Graph 2.

v fe

Graph 2

The CK-conditions are S⇤
eSe = Pv, S⇤

fSf = Pv, and Pv = SeS
⇤
e + SfS

⇤
f . Let Hv = H = `2(N) and

decompose this as H = He � Hf . One way to decompose H is to take the standard orthonormal
basis {en} and let He = span{e

2n | n � 1} and Hf = span{e
2n�1

| n � 1}. Since Hv = H,
we have that Pv is simply the identity operator. Then the isometries described above will be those
determined by Se(en) = e

2n and Sf (en) = e
2n�1

for n � 1.

This is indeed a CK E-family. By letting Eij be the elementary matrix unit relative to the ba-
sis {en} with a one in the (i, j) entry and zeros elsewhere, we can view Se and Sf as the matrices
P1

n=1

E
2n,n and

P1
n=1

E
2n�1,n, respectively. It is not hard to verify that S⇤

eSe = IH = S⇤
fSf and

that SeS
⇤
e =

P1
n=1

E
2n,2n while SfS

⇤
f =

P1
n=1

E
2n�1,2n�1

. Since Pv = IH = SeS
⇤
e + SfS

⇤
f , the

collection {S, P} is a CK E-family for this graph.

The Cuntz algebra On is the universal C⇤-algebra generated by a set {Si}ni=1

of isometries acting
on H satisfying

Pn
i=1

SiS
⇤
i = I and S⇤

i Sj = �ijI. Moreover, it is known that On is isomorphic to the
C⇤-algebra generated by any n isometries {Si}ni=1

satisfying the above relations (see [3]). Since Se

and Sf are isometries and the CK-conditions are precisely the relations which generate O
2

, we see
that in the above example, C⇤(S, P ) = C⇤(S) is equal to the Cuntz algebra, O

2

.

2.2. A brief investigation of dimension. The construction of O
2

for Graph 2 yielded an infinite-
dimensional space PvH = H. Moreover, we can verify that any non-degenerate CK E-family will
require H to be infinite-dimensional. Because Se is an isometry from PvH onto SeH, we have that
dimPvH = dimSeH. Similarly, dimPvH = dimSfH so the fact that PvH = SeH�SfH implies that
dimPvH = dimSeH + dimSfH = 2dimPvH. Thus, dimPvH can only be 0 or 1. If Pv is non-zero,
then the dimension must be infinite.

We further note that in general, if E is a directed graph, each projection Pv for v 2 E0 is non-zero,
and there is a loop e at v where v is also the range of some other edge, then dim(PvH) = 1. In-
deed, we have shown PvH = �{f |r(f)=v}SfH which implies dim(PvH) =

P

{f |r(f)=v} dim(SfH).
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However, we know that for any edge f , dim(SfH) = dim(Ps(f)H) and so

dim(PvH) = dim(PvH) +
X

{f 6=e|r(f)=v}
dim(SfH)

= dim(PvH) +
X

{f 6=e|r(f)=v}
dim(Ps(f)H).

Since we assume Pv 6= 0 for all v 2 E0, dim(Ps(f)H) is nonzero and so dim(PvH) = 1.

The next natural question may be whether there exist graphs E for which it is possible to construct
a CK E-family acting on a finite-dimensional Hilbert space H. The following example will show
that it is indeed possible.

Example 2.6. Let’s consider the graph E given in Graph 3.

v

w

u
e

f

g h

Graph 3

We start by looking at the constraints on the dimension of the subspaces PvH, PwH and PuH, and
seeing that

dim(PuH) = dim(SeH) + dim(SfH)

= 2 dim(PvH)

dim(PwH) = dim(ShH) + dim(SgH)

= dim(PuH) + dim(PvH)

= 3 dim(PvH).

If one of PvH, PwH or PuH is infinite-dimensional, they are forced to all be infinite-dimensional.
Let’s try to construct an appropriate CK E-family such that dim(PvH) = 1, dim(PuH) = 2, and
dim(PwH) = 3. Since we require Pv, Pw and Pu to be mutually orthogonal, the smallest dimension
of H that we can consider is 3 + 2 + 1 = 6. We will attempt to construct such a system in M

6

(C).
Let’s take {v} to be a basis of PvH, {u

1

, u
2

} a basis of PuH and {w
1

, w
2

, w
3

} a basis of PwH and
list the basis elements of H in the order

v u
1

u
2

w
1

w
2

w
3

.
4



Let Se send v to u
1

and Sf send v to u
2

so that we have Se = E
21

and Sf = E
31

. Next, let’s have
Sg send v to w

1

so Sg = E
41

. Now, set Sh to send PuH to PwH so we send u
1

to w
2

and u
2

to w
3

.
This gives us the partial isometry Sh = E

52

+ E
63

.

The CK-conditions tell us that we are forced to set Pv = E
11

, Pu = E
22

+E
33

and Pw = E
44

+E
55

+
E

66

.

We can now check the remaining CK-conditions to see that

S⇤
eSe = E

12

E
21

= E
11

= Pv;

S⇤
fSf = E

13

E
31

= E
11

= Pv;

S⇤
gSg = E

14

E
41

= E
11

= Pv;

S⇤
hSh = (E

25

+ E
36

)(E
52

+ E
63

) = E
22

+ E
33

= Pu;

SeS
⇤
e + SfS

⇤
f = E

21

E
12

+ E
31

E
13

= E
22

+ E
33

= Pu;

ShS
⇤
h + SgS

⇤
g = (E

52

+ E
63

)(E
25

+ E
36

) + E
41

E
14

= E
44

+ E
55

+ E
66

= Pw,

and so {S, P} is indeed a CK E-family.

Let’s now consider the C⇤-algebra generated by the the CK E-family, C⇤(S, P ). Note that we have
E

11

, E
21

, E
31

, E
41

all contained in the C⇤-algebra. Since we can write E
15

= E
12

(E
25

+ E
36

) =
S⇤
eS

⇤
h and E

16

= E
13

(E
25

+ E
36

) = S⇤
fS

⇤
h then each of these are also contained in C⇤(S, P ). Now

any matrix unit Eij is equal to Ei1E
⇤
j1 forcing each matrix unit to be contained in C⇤(S, P ). Thus,

C⇤(S, P ) must be all of M
6

(C).

It was argued above that we are able to represent C⇤(S, P ) on an infinite-dimensional Hilbert space
H. As noted earlier, this tells us that all of Hv, Hu and Hw will also be infinite-dimensional.

In order to completely exhaust this investigation of dimension restrictions, we ask whether the re-
striction that one space, Hv, is infinite-dimensional gives some further restrictions on the dimension
of the other spaces, Hw.

Example 2.7. Let’s consider the simplest graph E where this comes up, given in Graph 4.

v wf
e

Graph 4

Since there is a loop f at the vertex v and since v is also in the range of another edge e, then the
remark above forces dim(PvH) to be infinite-dimensional. The question now is whether there are
any hidden restrictions on the dimension of Hw = PwH?

We begin by searching for an explicit CK E-family such that dim(PwH) = dim(Hw) = 1. Take
{S, P} in B(`2(N)) defined by

5



Se =
1
X

n=1

E
4n�1,2n�1

Sf =
1
X

n=1

E
4n�3,2n

Pv = S⇤
eSe = sot�

1
X

n=1

E
2n�1,2n�1

=

2

6

6

6

6

6

6

4

1 0 0 0 . . .

0 0 0 0 . . .

0 0 1 0 . . .

0 0 0 0
...

...
...

. . .

3

7

7

7

7

7

7

5

Pw = S⇤
fSf = sot�

1
X

n=1

E
2n,2n =

2

6

6

6

6

6

6

4

0 0 0 0 . . .

0 1 0 0 . . .

0 0 0 0 . . .

0 0 0 1
...

...
...

. . .

3

7

7

7

7

7

7

5

Then

SeS
⇤
e + SfS

⇤
f = sot�

1
X

n=1

E
4n�1,4n�1

+ sot�
1
X

n=1

E
4n�3,4n�3

= sot�
1
X

n=1

E
2n�1,2n�1

= Pv.

Thus, {S, P} is a CK E-family and in this case, dim(PwH) = 1. We now attempt to find a CK
E-family {T,Q} such that dim(Hw) < 1. Define {T,Q} by

Te = E
21

Tf = sot�
1
X

n=1

En+2,n+1

,

so that the projections must be set to be

Qv = T ⇤
f Tf =



0 0

0 I

�

Qw = T ⇤
e Te = E

11

where the bold face 0 is an infinite matrix of zeros. Finally, TeT
⇤
e + TfT

⇤
f = E

22

+
P1

n=3

Enn = Qv

as desired, proving that {T,Q} is a CK family for the graph above with dim(PwH) = 1 < 1. We
will determine what C⇤(S, P ) and C⇤(T,Q) are later in this report.

2.3. Paths and a few results. We now expand our theory to the case of paths.

Definition 2.8. We define a path to be a sequence µ = µ
1

µ
2

. . . of edges µi in E1 such that
s(µi) = r(µi+1

). We let |µ| denote the number of edges in µ and let En be the set of paths of length
n.

6



Our previous notation of E1 being the set of edges and E0 the set of vertices (considered to be
paths of length 0) is consistent with this new notation. Finally, we let E⇤ be the set of all paths of
finite length. We extend the functions r and s in the obvious way: r(µ) = r(µ

1

) and s(µ) = s(µ|µ|),
where we may extend r to all paths and s to all paths of finite length.

We give a simple example to demonstrate the notation, as it can vary in the literature.

Example 2.9. We now look at Graph 5.

u v w
e

f

g

Graph 5

Consider the path µ of length 3 defined to be µ = gfe and note that the vertex v is repeated in µ.
We may also repeat the edge f and instead consider the path ⌫ = gffe of length 4. Both of these
paths have source at u and range at w.

Much of the theory will be similarly expanded for paths. For the sequence µ = µ
1

µ
2

. . . µn, we
define Sµ = Sµ1Sµ2 . . . Sµn , where we convene that Sv = Pv when considering paths of length
0. If we take two edges e and f with s(e) 6= r(f) (that is, ef is not a path) then Sef = SeSf =
SePs(e)Pr(f)Sf = 0 where the last equality holds true because the projections Ps(e) and Pr(f) are
mutually orthogonal. Thus, if Pv 6= 0 for all v 2 E0, then Sµ is non-zero if and only if µ is a path in
our graph.

For a path µ 2 E⇤, we have S⇤
µSµ = Ps(µ), so the Sµ’s are also a partial isometries. Moreover,

Sµ = Pr(µ)Sµ = SµPs(µ).

Proposition 2.10. Let E be a row-finite graph and {S, P} a CK E-family in a C⇤-algebra B.

Then for every vertex v and k 2 Z�0

,

Pv =
X

r(µ)=v
|µ|=k

SµS
⇤
µ +

X

r(µ)=v
|µ|<k and

s(µ) is a source

SµS
⇤
µ.

Proof. We will prove this by induction on k. If k = 0 then the equation holds trivially. Now sup-
pose the equation holds for some non-negative number k, and we will show it also holds for k + 1.

Firstly, note that because E is row-finite, there are at most finitely many paths µ 2 En with r(µ) =
v. We may now manipulate the induction hypothesis for k:

7



Pv =
X

r(µ)=v
|µ|=k

SµS
⇤
µ +

X

r(µ)=v
|µ|<k and

s(µ) is a source

SµS
⇤
µ

=
X

r(µ)=v
|µ|=k and

s(µ)is not a source

SµPs(µ)S
⇤
µ +

X

r(µ)=v
|µ|k and

s(µ) is a source

SµS
⇤
µ,

so that

Pv =
X

r(µ)=v
|µ|=k and

s(µ)is not a source

Sµ

0

@

X

r(e)=s(µ)

SeS
⇤
e

1

AS⇤
µ +

X

r(µ)=v
|µ|k and

s(µ) is a source

SµS
⇤
µ

=
X

r(µ)=v
|µ|=k and

s(µ)is not a source

X

r(e)=s(µ)

SµeS
⇤
µe +

X

r(µ)=v
|µ|k and

s(µ) is a source

SµS
⇤
µ.

Thus, the equation holds for k + 1, since |µe| = k + 1. ⇤

The following proposition will be used multiple times throughout the rest of this report:

Proposition 2.11. Let E be a row-finite graph and suppose {S, P} is a CK E-family in a C⇤-
algebra B and that µ = µ

1

µ
2

. . . µn and ⌫ = ⌫
1

⌫
2

. . . ⌫m are paths in E. Then

S⇤
µS⌫ =

8

>

>

<

>

>

:

S⇤
µ0 if µ = ⌫µ0 for some µ0 2 E⇤

S⌫0 if ⌫ = µ⌫0 for some ⌫0 2 E⇤

0 otherwise.

Proof. Suppose first that |µ| = |⌫| = n and let i be the smallest integer such that µi 6= ⌫i. Then

S⇤
µS⌫ = S⇤

µn
. . . S⇤

µi
(S⇤

µi�1
. . . S⇤

µ1
)(Sµ1Sµ2 . . . Sµi�1)S⌫1 . . . S⌫n

= S⇤
µn

. . . S⇤
µi
Pr(µi)

S⌫i
. . . S⌫n

since s(µi�1

) = r(µi)

= S⇤
µn

. . . S⇤
µi
S⌫i

. . . S⌫n
.

Now, S⇤
µi
S⌫i = Sµi(SµiS

⇤
µi
)(S⌫iS

⇤
⌫i
)S⌫i = 0. Next, let us assume that n = |µ| < |⌫| and write

⌫ = ↵⌫0 with |↵| = n so that S⇤
µS⌫ = (S⇤

µS↵)S⌫0 . If µ = ↵ then S⇤
µS⌫ = Ps(µ)S⌫0 = Pr(⌫0

)

S⌫0 = S⌫0 .
8



If µ 6= ↵ then S⇤
µS⌫ = (S⇤

µS↵)S⌫0 = 0. A similar argument for the case of |µ| > |⌫| will conclude the
proof. ⇤

We will now begin looking at the C⇤-algebra generated by a CK E-family.

Theorem 2.12. If {S, P} is a CK E-family for a row-finite graph E, then

C⇤(S, P ) = span{SµS
⇤
⌫ | µ, ⌫ 2 E⇤, s(µ) = s(⌫)}.

Proof. First note that every non-zero finite product of the partial isometries Se and S⇤
f has the form

SµS
⇤
⌫ for some µ, ⌫ 2 E⇤ with s(µ) = s(⌫).

More specifically, we have

(SµS
⇤
⌫ )(S↵S

⇤
�) =

8

>

>

<

>

>

:

Sµ↵0S⇤
� if ↵ = ⌫↵0

SµS
⇤
�⌫0 if ⌫ = ↵⌫0

0 otherwise.

This tells us that span{SµS
⇤
⌫ | µ, ⌫ 2 E⇤, s(µ) = s(⌫)} is a subalgebra of C⇤(S, P ). Moreover, it is a

⇤-subalgebra since (SµS
⇤
⌫ )

⇤ = S⌫S
⇤
µ. Thus, the closure is a C⇤-subalgebra of C⇤(S, P ) and so we’ve

shown one inclusion.

The other inclusion follows from the fact that SeS
⇤
s(e) = SeP

⇤
s(e) = SePs(e) = Se and SvS

⇤
v = Pv, so

the generators are in the span. Thus, the two spaces are equal. ⇤

Definition 2.13. For finite paths ↵ and ⌫, we say that ↵ extends ⌫ if there exists some path ↵0

which satisfies ↵ = ⌫↵0. We define a closed path to be a path µ which satisfies r(µ) = s(µ) and we
define a cycle to be a closed path µ of length at least one which does not repeat vertices. We call
E a finite graph if it has finitely many vertices and edges.

We now have the necessary terminology to present our next theorem.

Theorem 2.14. Suppose E is a finite graph without cycles. Let w
1

, ..., wn be the sources in E.

Then for every Cuntz-Krieger E-family {S, P} with non-zero projections Pv we have

C⇤(S, P ) ⇠= �n
i=1

M|s�1
(wi)|(C)

where s�1(wi) = {µ 2 E⇤ | s(µ) = wi}.

Proof. First, let’s confirm that the graph E has sources. Choose any vertex v in E0. If v is a source,
we’ve shown the claim. If not, it’s possible to find an edge e with r(e) = v. Is s(e) is a source then
the claim is again verified. If not, we can find another edge into s(e). Because there are finitely ver-
tices, repeating the argument above will eventually lead to either repeating a vertex (thus creating a
cycle, leading to a contradiction) or terminating at a source.

9



Note that for any two paths µ, ⌫ 2 E⇤ with s(µ) = s(⌫) = v, where v is not one of the sources, we
can write

SµS
⇤
⌫ = SµPvS

⇤
⌫ = Sµ

0

@

X

r(e)=v

SeS
⇤
e

1

AS⇤
⌫ =

X

r(e)=v

SµeS
⇤
⌫e.

We have now extended the length of the paths µ and ⌫. We can continue to use the CK-relation to
extend the paths until s(µ) = s(⌫) is some source, wi. Theorem 2.12 combined with this argument
tells us that

C⇤(S, P ) = span{SµS
⇤
⌫ | s(µ) = s(⌫) = wi for some i}.

For two paths ⌫,↵ 2 E⇤ with s(⌫) = s(↵) = wi for some fixed source wi, we have that ⌫ can-
not extend ↵ and neither can ↵ extend ⌫. Thus, if �µ,⌫ is the Kronecker product, (SµS

⇤
⌫ )(S↵S

⇤
�) =

�⌫,↵SµS
⇤
� making these SµS

⇤
⌫ matrix units. Since there are |s�1(wi)|2 such matrix units, span{SµS

⇤
⌫ |

s(µ) = s(⌫) = wi} is isomorphic to M|s�1
(wi)|(C).

Finally, if we have the element SµS
⇤
⌫ with s(µ) = s(⌫) = wi as well as S↵S

⇤
� with s(↵) = s(�) = wj

for i 6= j then ⌫ and ↵ cannot extend each other and thus (SµS
⇤
⌫ )(S↵S

⇤
�) = 0, giving us the desired

direct sum of C⇤(S, P ) = �n
i=1

span{SµS
⇤
⌫ | s(µ) = s(⌫) = wi}. ⇤

Example 2.15. Recall Graph 3 we examined earlier which had no cycles, shown again below.

v

w

u
e

f

g h

In Section 2.2, we defined a particular CK E-family {S, P} and found that C⇤(S, P ) is equal to
M

6

(C). Because v is the only source and s�1(v) = {v, e, f, g, hf, he}, the theorem above tells us
that for any CK E-family {T,Q} we have C⇤(T,Q) ⇠= M

6

(C).

To see the proof of the theorem above in action for this example, we show why Pu and Sh are con-
tained in span{SµS⌫ | s(µ) = s(⌫) = v}:

Pu = SeS
⇤
e

Sh = ShPu

= Sh(SfS
⇤
f + SeS

⇤
e )

= ShfS
⇤
f + SheS

⇤
e

Similarly, we can write any element of C⇤(S, P ) as SµS
⇤
⌫ for an appropriate choice of paths µ, ⌫ 2

s�1(v).
10



We are now able to characterize C⇤(S, P ) for any graph E with no cycles. What if the graph does
have a cycle?

Example 2.16. Let’s consider Graph 4 with cycles that we looked at earlier.

v we
f

We have the Cuntz-Krieger conditions S⇤
eSe = Pv, S

⇤
fSf = Pw, and Pv = SeS

⇤
e + SfS

⇤
f .

Then by applying the previous remarks, we have that

(Pv + Pw)Pv = Pv = Pv(Pv + Pw),

(Pv + Pw)Pw = Pw = Pw(Pv + Pw),

(Pv + Pw)Se = PvSe + Pw(PvSe) = Se = Se(Pv + Pw), and

(Pv + Pw)Sf = Pv(PwSf ) + PwSf = Sf = Sf (Pv + Pw),

proving that Pv + Pw is the identity for C⇤(S, P ). Moreover,

(Se + Sf )
⇤(Se + Sf ) = S⇤

eSe + S⇤
fSe + S⇤

eSf + S⇤
fSf = Pv + Pw;

(Se + Sf )(Se + Sf )
⇤ = SeS

⇤
e + SfS

⇤
e + SeS

⇤
f + SfS

⇤
f = Pv;

(Se + Sf )
⇤(Se + Sf )� Pv = Pw;

(Se + Sf )Pv = SePv + Sf (SeS
⇤
e + SfS

⇤
f ) = Se + SfSeS

⇤
e + SfSfS

⇤
f = Se;

(Se + Sf )Pw = Se(S
⇤
fSf ) + SfPw = Sf .

This argument shows that we can recover the generators of C⇤(S, P ) from Se + Sf . Thus, we may
recover all of C⇤(S, P ) from Se + Sf . This precisely means that C⇤(S, P ) is generated by the isome-
try Se + Sf .

Conversely, if V is an isometry then Pw = I � V V ⇤, Pv = V V ⇤, Se = V Pv, Sf = V Pw defines
a CK E-family (this is easy to check) and C⇤(S, P ) = C⇤(V ). Coburn’s Theorem [8, Theorem
3.5.18.] tells us that all C⇤-algebras generated by a single non-unitary isometry are isomorphic to
the Toeplitz algebra T .

Since Se + Sf is non-unitary precisely when Pw is non-zero then we know that all CK E-families
with non-zero projections generate C⇤-algebras which are isomorphic to T .

2.4. The universal C⇤
-algebra of a graph. In the previous example, we were required to use

Coburn’s Theorem to prove that the C⇤-algebra generated by any CK E-family was isomorphic
to T . This cannot be extended to apply to an arbitrary graph. Instead, we will present a theorem
which defines a universal C⇤-algebra, C⇤(E). This will be called the C⇤

-algebra of the graph E.

11



Theorem 2.17. For a given row-finite graph E there is a C⇤-algebra, C⇤(E), generated by a CK

E-family {s, p}, such that for every C⇤-algebra B and for every CK E-family {T,Q} in B, there

exists a homomorphism

⇡T,Q : C⇤(E) ! B

which maps se to Te and pv to Qv. Moreover, this construction is unique. That is, suppose C is a

C⇤-algebra generated by a CK-family {w, r} such that, for every CK-family {T,Q} in B, there is a

homomorphism

⇢T,Q : C ! B

which maps we to Te and rv to Qv. Under these conditions, there exists an isomorphism ' : C⇤(E) !
C such that '(se) = we and '(pv) = rv.

Proof. We take formal symbols dµ⌫ for paths µ, ⌫ 2 E⇤ and consider the set

V =
n

X

zµ⌫dµ⌫ | µ, ⌫ 2 E⇤ s(µ) = s(⌫)
o

,

equipped with the operations

a
⇣

X

wµ⌫dµ⌫

⌘

+
⇣

X

zµ⌫dµ⌫

⌘

=
X

(awµ⌫ + zµ⌫)dµ⌫ ;

d⇤µ⌫ = d⌫µ; and

dµ⌫d↵� =

8

>

>

<

>

>

:

dµ↵0,� if ↵ = ⌫↵0

dµ,�⌫0 if ⌫ = ↵⌫0

0 otherwise

.

We can check that product is associative and compatible with ⇤, making V a ⇤-algebra. For any CK
E-family {S, P} generating the C⇤-algebra A, the map

⇡S,P : V ! B(H)

dµ⌫ 7! sµs
⇤
⌫

is a ⇤-homomorphism since {sµs⇤⌫} satisfy the relations above. Moreover,

�

�

�

⇡S,P

⇣

X

zµ⌫dµ⌫

⌘

�

�

�


X

|zµ⌫ |ksµs⇤⌫k 
X

|zµ⌫ |,

so for all a 2 V , we may define

kak
1

= sup{k⇡s,p(a)k | {s, p} is a CK family} < 1.
12



This is a seminorm on V and kak2
1

= ka⇤ak
1

. Consider the space I = {a 2 V | kak
1

= 0}, which is a
⇤-ideal. Let V

0

= V/I be the ⇤-algebra with quotient norm k · k
0

defined by kv+ Ik
0

= inf{kv+ jk
1

|
j 2 I}.

It follows that V
0

, the closure of V
0

with respect to k·k
0

, is a C⇤-algebra, so we may let C⇤(E) = V
0

.
Consider se = de,s(e), pv = dv,v. We claim that this is a CK E-family which generates V

0

. Indeed,

p2v = dv,vdv,v = dv,v = pv = d⇤v,v = p⇤v

pvpw = dv,vdw,w = 0 if v 6= w

s⇤ese =
X

r(e)=v

de,s(e)d
⇤
e,s(e) =

X

r(e)=v

de,s(e)ds(e),e =
X

r(e)=v

de,e.

We now show that
P

r(e)=v de,e = dv,v. Indeed,

�

�

�

�

�

�

X

r(e)=v

de,e � dv,v

�

�

�

�

�

�

0

= inf

8

<

:

�

�

�

�

�

�

X

r(e)=v

de,e � dv,v + j

�

�

�

�

�

�

1

| j 2 I

9

=

;



�

�

�

�

�

�

X

r(e)=v

de,e � dv,v

�

�

�

�

�

�

1

= sup

8

<

:

�

�

�

�

�

�

⇡S,P

0

@

X

r(e)=v

de,e � dv,v

1

A

�

�

�

�

�

�

| {s, p} is a CK family

9

=

;

= sup

8

<

:

�

�

�

�

�

�

X

r(e)=v

ses
⇤
e � pv

�

�

�

�

�

�

| {s, p} is a CK family

9

=

;

= 0.

To see {s, p} generates V
0

, we note that if e, f are two edges with s(e) = s(f) then de,s(e)d
⇤
f,s(f) =

de,s(e)ds(f),f = de,f . If ef is a path, then de,s(e)df,s(f) = def,s(f) = def,s(ef). Indeed, {s, p} generates
V
0

. Now, we can consider a faithful representation ⇢ : B ! B(H). Set ⇡T,Q = ⇢�1 � ⇡⇢(T ),⇢(Q)

: V
0

!
B so that

13



⇡T,Q(se) = ⇡T,Q(de,s(e))

= ⇢�1(⇡⇢(T ),⇢(Q)

(de,s(e)))

= ⇢�1(⇢(Te)⇢(Qs(e)))

= ⇢�1(⇢(TeQs(e)))

= ⇢�1(⇢(Te))

= Te, and

⇡T,Q(pv) = ⇢�1(⇡⇢(T ),⇢(Q)

(dv,v))

= ⇢�1(⇢(Qv)⇢(Qv))

= ⇢�1(⇢(Qv))

= Qv.

Thus, ⇡T,Q does the trick. We are only left to prove the universal property. Since {w, r} is a CK
E-family, there exists a map ⇡w,r : C⇤(E) ! C. We are left to prove that this is an isomorphism.

Note that we = wew
⇤
s(e) = ⇡w,r(de,s(e)) and rv = wvw

⇤
v = ⇡w,r(dv,v), so since ran(⇡w,r) contains the

generators of C, it is surjective.

Conversely, there exists a ⇢s,p : C ! C⇤(E) so that

(⇢s,p � ⇡w,r)(se) = ⇢s,p(we) = se

(⇢s,p � ⇡w,r)(pv) = ⇢s,p(rv) = pv.

So ⇢s,p � ⇡w,r is the identity on C⇤(E). Thus, ⇡w,r(a) = 0 implies ⇢s,p(⇡w,r(a)) = 0 so that a = 0
and ⇡w,r is injective, which finally forces C ⇠= C⇤(E). ⇤

For the rest of this report, we will use lower case letters for a CK E-family only when we suppose it
has the universal property described above.

Example 2.18. Let’s apply this theorem to find the C⇤-algebra for Graph 6.

ve

Graph 6

We have the Cuntz-Krieger conditions s⇤ese = pv = ses
⇤
e, where C⇤(E) is generated by {s, p}. Since

C⇤(E) is generated by se, then pv is the identity on C⇤(E) making se a unitary operator.
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We consider the C⇤-algebra C(T) where T = {z 2 C | |z| = 1}. Consider the two functions

te = ◆ : z 7! z (inclusion function)

qv = 1 : z 7! 1. (constant)

Then {t, q} is a CK E-family and by the Stone-Weierstrass Theorem we have C⇤(t, q) = C(T). By
the universal property of C⇤(E), there is a ⇤-homomorphism

' : C⇤(E) ! C(T)
se 7! te = ◆

pv 7! qv = 1.

Clearly, ' is surjective. From the continuous functional calculus, we have the map

 : C(�(se)) ! C⇤(se) = C⇤(E)

f 7! f(se)

where  maps te to se and qv to pv. Now, T = �(◆) = �('(se)) ✓ �(se) ✓ T, so �(se) = T, which
proves that  is the inverse of '. Thus, ' is an isomorphism and C⇤(E) ⇠= C(T).

3. Uniqueness theorems

Under certain conditions we can guarantee that each of the C⇤-algebras generated by a given CK
E-family will be isomorphic. In this section, we will investigate these conditions. These theorems
are put into practice to find the universal C⇤-algebra for certain graphs.

3.1. Gauge-invariant uniqueness. We will now work towards proving the first uniqueness theo-
rem. This theorem will utilize the existence of a gauge action on the C*-algebra B to prove unique-
ness.

Definition 3.1. Given a locally compact group G and a C⇤-algebra A, we say a map � from G into
the automorphisms AutA is strongly continuous if for any fixed element a 2 A, the map z 7!
�z(a) is continuous. We define an action of G on A to be a homomorphism ↵ : G ! AutA which
sends g to ↵g and is strongly continuous.

The following result proves the existence of a particular action.

Theorem 3.2. For any graph E, there is an action � : T ! Aut(C⇤(E)) such that �z(se) = zse and

�z(pv) = pv.

Proof. Take {s, p} to be a CK E-family which generates C⇤(E). For a fixed z in T, we have zz = 1.
It is then easy to verify that {zs, p} is a CK E-family which generates C⇤(E). Similarly, if {T,Q}
is a CK E-family in a C⇤-algebra B, so is {zT,Q}, and using the notation of the previous theorem,
we have that ⇡zT,Q(zse) = z⇡zT,Q(se) = z(zTe) = Te.
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If we set ⇢T,Q = ⇡zT,Q then C⇤(E) generated by {zs, p} has the universal property. Applying Theo-
rem 2.17, we can find an isomorphism

�z : C⇤(E) ! C⇤(E)

se 7! zse

pv 7! pv.

For w in T, we have that �z � �w and �zw agree on the generators and so they must be equal on
all of C⇤(E). Thus, � : T ! Aut(C⇤(E)) given by �(z) = �z is a homomorphism. To finish the
proof, we require � to be strongly continuous, that is, for any fixed element a in C⇤(E) we require
the map z 7! �z(a) to be continuous. We check that now. Fix ✏ > 0 and choose c =

P

�µ,⌫sµs
⇤
⌫

such that ka� ck < ✏/3. Then

�z(sµ) = �z(sµ1 . . . sµ|µ|) = �z(sµ1) . . . �z(sµ|µ|) = zsµ1 . . . zsµ|µ| = z|µ|sµ1 . . . sµ|µ| = z|µ|sµ,

and so

�z(sµs
⇤
⌫) = �z(sµ)�z(s

⇤
⌫) = z|µ|sµz�|⌫|s⇤⌫ = z|µ|�|⌫|sµs⇤⌫ .

Since scalar multiplication is continuous, so is the map w 7! �w(c) =
P

�µ,⌫w
|µ|�|⌫|sµs⇤⌫ . Therefore,

for the fixed ✏, we can find some � > 0 such that |w � z| < � implies that k�w(c)� �z(c)k < ✏/3.

Since automorphisms of C⇤-algebras preserve the norm, k�z(a� c)k < ✏/3, which gives

k�w(a)� �z(a)k  k�w(a� c)k+ k�w(c)� �z(c)k+ k�z(a� c)k < 3
✏

3
= ✏,

and so the map z 7! �z(a) is continuous for each fixed a 2 C⇤(E) and the theorem holds. ⇤

We call this action � a gauge action. Throughout the remainder of this report, � will denote the
gauge action.

Definition 3.3. Let E be a graph and ↵ an action of T on C⇤(E). Define the fixed point alge-

bra, C⇤(E)↵, to be

C⇤(E)↵ = {a 2 C⇤(E) | ↵z(a) = a for all z 2 T}.

Note that for any µ 2 E⇤ we have �z(sµ) = z|µ|sµ and �z(s⇤µ) = z�|µ|s⇤µ which gives �z(sµs⇤⌫) =

z|µ|�|⌫|sµs⇤⌫ . Hence, the elements sµs⇤⌫ with |µ| = |⌫| are fixed points of �z. Thus, span{sµs⇤⌫ |
s(µ) = s(⌫) and |µ| = |⌫|} ✓ C⇤(E)� .
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Lemma 3.4. For a continuous f : T ! A, there exists a unique element
R

T f(z)dz in A such that

for every representation ⇡ : A ! B(H),

⌧

⇡

✓

Z

T
f(z)dz

◆

h, k

�

=

Z

T
h⇡(f(z))h, ki dz 8h, k 2 H

and

(1) b(
R

T f(z)dz) =
R

T bf(z)dz for any b 2 A;
(2) k

R

T f(z)dzk 
R

T kf(z)kdz;
(3) �(

R

T f(z)dz) =
R

T �(f(z))dz for all homomorphisms � : A ! B; and

(4) for w 2 T,
R

T f(wz)dz =
R

T f(z)dz.

In order to keep this report a reasonable length, we will skip the proof of this lemma, however such
an element can be constructed in the usual way using Riemann sums.

Definition 3.5. For a C⇤-subalgebra B of the C⇤-algebra A, we call a linear map E : A ! A a
conditional expectation of A onto B if

(1) E is positive
(2) E is idempotent
(3) kEk  1
(4) ranE = B
(5) E(ba) = bE(a) for all a 2 A, b 2 B.

Note that by taking adjoints, the last condition is equivalent to requiring E(ab) = E(a)b for a 2
A, b 2 B. We call such a map E faithful if E(aa⇤) = 0 implies that a = 0.

We direct the reader to Lemma 5.17 below for an example of such a conditional expectation.

Proposition 3.6. If ↵ is an action of T on C⇤(E), define the map

�↵ : C⇤(E) ! C⇤(E)

a 7!
Z

T
↵z(a)dz.

Then �↵ is a faithful conditional expectation.

Proof. The fact that �↵ is positive follows from ↵ being a *-homomorphism. If we take a 2 C⇤(E)
and w 2 T we have

↵w(�↵(a)) = ↵w

✓

Z

T
↵z(a)dz

◆

=

Z

T
↵w(↵z(a))dz (by part (3) of lemma 3.4)

=

Z

T
↵wz(a)dz

=

Z

T
↵z(a)dz (by part (4) of lemma 3.4)

= �↵(a).
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So �↵(a) 2 C⇤(E)↵. Now, if a 2 C⇤(E)↵, then �↵(a) =
R

T ↵z(a)dz =
R

T adz = a so that ranE =
C⇤(E)↵. It follows from above that �↵(�↵(a)) = �↵(a) so �↵ is idempotent. Finally, it is easy to
verify that for a 2 C⇤(E) and b 2 C⇤(E)↵,

�↵(ab) =

Z

T
↵z(ab)dz =

✓

Z

T
↵z(a)dz

◆

b = �↵(a)b.

Thus, �↵ is a conditional expectation. We now suppose �↵(a⇤a) = 0 and choose ⇡ to be a faithful
representation of C⇤(E) onto some H, the existence of which is given in [2, Theorem 7.10.]. Then
for any h 2 H,

0 = h⇡(�(a⇤a))h, hi

=

⌧

⇡

✓

Z

T
↵z(a

⇤a)dz
◆

h, h

�

=

Z

T
h⇡(↵z(a

⇤a))h, hidz (by lemma 3.4)

=

Z

T
h⇡(↵z(a

⇤)↵z(a))h, hidz

=

Z

T
h⇡(↵z(a))

⇤⇡(↵z(a))h, hidz

=

Z

T
h⇡(↵z(a))h,⇡(↵z(a))hidz

=

Z

T
k⇡(↵z(a))hk2dz.

Since k⇡(↵z(a))hk is a non-negative continuous function, it must be equal to zero. Thus, because
h 2 H was arbitrary, ⇡(↵z(a)) = 0 for all z 2 T. In particular, 0 = ⇡(↵

1

(a)) = ⇡(a), and because ⇡

is faithful, we have that a = 0. ⇤

In the theorem above, we may consider the gauge action � defined in Theorem 3.2.

Corollary 3.7. Suppose E is a row finite graph and take � to be the gauge action. For every finite

collection F ✓ E⇤ and for any scalars cµ⌫ we have

(?) ��

0

@

X

µ,⌫2F

cµ⌫sµs
⇤
⌫

1

A =
X

µ,⌫2F, |µ|=|⌫|
cµ⌫sµs

⇤
⌫

and

C⇤(E)� = span{sµs⇤⌫ | s(µ) = s(⌫) and |µ| = |⌫|}.

Proof. Fix some paths µ, ⌫ 2 E⇤ with s(µ) = s(⌫). Utilizing the map �� from above, we see that if
|µ| = |⌫|, sµs⇤⌫ is a fixed point of �� . If their lengths are not equal then �� sends sµs⇤⌫ to zero since
in this case

R

T z
|µ|�|⌫|dt = 0.
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Thus, we get equation (?):

��

0

@

X

µ,⌫2F

cµ⌫sµs
⇤
⌫

1

A =
X

µ,⌫2F

cµ⌫�(sµs
⇤
⌫) =

X

|µ|=|⌫|
cµ⌫sµs

⇤
⌫ .

We already know that span{sµs⇤⌫ | s(µ) = s(⌫), |µ| = |⌫|} ✓ C⇤(E)� and since �� is continuous,

C⇤(E)� = ��(C
⇤(E)�) ✓ ��(C

⇤(E)) = span{sµs⇤⌫ | s(µ) = s(⌫) |µ| = |⌫|}.
⇤

It follows that C⇤(E)� = ��(C⇤(E)).

Our next goal will be to prove that for any CK E-family {T,Q}, the ⇤-homomorphism ⇡T,Q is injec-
tive on C⇤(E)� . In order to do this, we will prove that ⇡T,Q is injective on a space which contains
C⇤(E)� .

Definition 3.8. To this end, we define two new classes of subsets, where k � 0 of C⇤(E) to be

Fk = span{sµs⇤⌫ | |µ| = |⌫| = k, s(µ) = s(⌫)}, and

Fk(v) = span{sµs⇤⌫ | |µ| = |⌫| = k, s(µ) = s(⌫) = v}.

It is not hard to verify that Fk = �v2E0Fk(v). If we take paths µ, ⌫,↵,� of equal length, then be-
cause ⌫ and ↵ cannot extend each other in a non-trivial way, (sµs⇤⌫)(s↵s

⇤
�) = �⌫,↵sµs

⇤
� , making the

collection of {sµs⇤⌫} \ Fk(v) a family of matrix units for Fk(v).

Now, if the graph E does not contain sources and µ, ⌫ 2 Ek \ s�1(v), then, using the CK relation,
we have

sµs
⇤
⌫ =

X

r(e)=v

sµes
⇤
⌫e.

Hence Fk ✓ Fk+1

, giving the equality that

C⇤(E)� = span{sµs⇤⌫ | s(µ) = s(⌫) and |µ| = |⌫|}
= [k�0

Fk

= [k�0

(�v2E0Fk(v)).

If the graph E does have sources, we need to take a di↵erent approach. Define the set

Ek = {µ 2 E⇤ | |µ| = k or |µ| < k and s(µ) is a source}.
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Note that, given paths ↵, ⌫ 2 Ek with |⌫| < |↵|, s(⌫) is a source so ↵ cannot extend ⌫. Thus, for
µ,↵,�, ⌫ 2 Ek we have (sµs⇤⌫)(s↵s

⇤
�) = �⌫,↵sµs

⇤
� .

Definition 3.9. We define similar sets to those above, namely:

Fk(v) = span{sµs⇤⌫ | µ, ⌫ 2 Ek s(µ) = s(⌫) = v}
Fk = span{sµs⇤⌫ | µ, ⌫ 2 Ek}.

Again, we have that Fk = �v2E0Fk(v). If v is not a source, then for any sµs
⇤
⌫ 2 Fk(v),

sµs
⇤
⌫ =

X

r(e)=v

sµes
⇤
⌫e

| {z }

2Fk+1

2 Fk+1

.

On the other hand, if v is a source, then any sµs
⇤
⌫ 2 Fk(v) is also contained in Fk+1

(v) ✓ Fk+1

so Fk ✓ Fk+1

. Thus, in the case that E has sources, we see that

C⇤(E)� ✓ [k�0

Fk = [k�0

(�v2E0Fk(v)).

We now have the definitions required to prove our lemma.

Lemma 3.10. For a row-finite graph E and a CK E-family {T,Q} in a C⇤-algebra B such that

Qv 6= 0 for all v 2 E0, the ⇤-homomorphism ⇡T,Q is injective on C⇤(E)� .

Proof. For every matrix unit sµs⇤⌫ in Fk(v) we have ⇡T,Q(sµs⇤⌫) = TµT
⇤
⌫ . If this were equal to zero,

then

TµT
⇤
⌫ = 0 ) T ⇤

µTµT
⇤
⌫ = 0

) T ⇤
⌫ = 0

) T ⇤
⌫ T⌫ = 0

) Qs(⌫) = 0,

which contradicts our assumption that the projections Qv in C⇤(T,Q) are non-zero. Thus, the im-
age of any matrix unit under ⇡T,Q must be non-zero. Now, if 0 = ⇡T,Q(

P

aµ⌫sµs
⇤
⌫) =

P

aµ⌫TµT
⇤
⌫ ,

then, because {TµT
⇤
⌫ | µ, ⌫ 2 Ek} is a set of matrix units for Fk(v), we can multiply on the left

and right by T↵T
⇤
↵ and T�T

⇤
� to get that 0 = a↵�T↵T

⇤
� , forcing a↵� = 0 for all choices of ↵,� 2 Ek.

This tells us that ⇡T,Q is injective on each Fk(v).

Thus, ⇡T,Q is injective on Fk = �vFk(v). Because Fk is a C⇤-algebra, ⇡T,Q is isometric on Fk

and so it’s also isometric on [k (�vFk(v)). Since [k (�vFk(v)) contains C⇤(E)� , then ⇡T,Q is
also isometric on C⇤(E)� . ⇤
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This subsection has been leading up to this point so without further ado, we present the Gauge-
Invariant Uniqueness Theorem:

Theorem 3.11. (Gauge-Invariant Uniqueness) Suppose that {T,Q} is a CK E-family in the

C⇤-algebra B with each Qv 6= 0. If there is a continuous action � : T ! AutB such that �z(Te) =
zTe and �z(Qv) = Qv for all e 2 E1 and v 2 E0, then ⇡T,Q is an isomorphism of C⇤(E) onto
C⇤(T,Q).

Proof. Let � be the gauge action on C⇤(E) defined in Theorem 3.2. Note first that ⇡T,Q � �z =
�z � ⇡T,Q on {pv, se} and so they are equal for any a 2 C⇤(E). Moreover, for the map � defined in
Proposition 3.6, we have

k⇡T,Q(�(a))k =

�

�

�

�

⇡T,Q

✓

Z

T
�z(a)dz

◆

�

�

�

�

=

�

�

�

�

Z

T
⇡T,Q(�z(a))dz

�

�

�

�

(by (3) of lemma 3.4)

=

�

�

�

�

Z

T
�z (⇡T,Q(a)) dz

�

�

�

�


Z

T
k�z(⇡T,Q(a))kdz (by (2) of lemma 3.4)

=

Z

T
k⇡T,Q(a)kdz (since automorphism are norm preserving)

= k⇡T,Q(a)k.

We will now show that ⇡T,Q is injective:

⇡T,Q(a) = 0 , ⇡T,Q(a
⇤a) = 0

, ⇡T,Q(�(a
⇤a)) = 0 (by above argument)

, �(a⇤a) = 0 (because ⇡T,Q is faithful on C⇤(E)�)

, a⇤a = 0 (by Proposition 3.6)

, a = 0.

Now, ⇡T,Q(se) = Te and ⇡T,Q(pv) = Qv giving us that ⇡T,Q(C⇤(E)) is generated by {T,Q}. Since
the range of ⇡T,Q must be a C⇤-algebra, ⇡T,Q(C⇤(E)) = C⇤(T,Q). Thus, ⇡T,Q is an isomorphism of
C⇤(E) onto C⇤(T,Q). ⇤

We may reword the theorem above as follows: Suppose for every CK E-family {T,Q} in a C⇤-algebra
B with each Qv 6= 0, there is an action � : T ! Aut(B) such that �z � ⇡ = ⇡ � �z for all z 2 T.
Then ⇡T,Q is an isomorphism of C⇤(E) onto C⇤(T,Q). Let’s look at how we may apply the Gauge-
Invariant Uniqueness Theorem.
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Example 3.12. Consider the graph Cn which is a cycle of n vertices, shown in Graph 7.

v
1

v
2

v
3

v
4

vn

vn�1

. . .

en�1

en
e1 e2

e3

Graph 7

We will build a CK E-family {S, P} in C(T,Mn(C)) ⇠= Mn(C(T)) by defining

Pvi(z) = Ei,i Sei(z) = Ei+1,i for i < n Sen(z) = zE
1,n.

We have the homomorphism ⇡S,P from C⇤(Cn) onto C⇤(S, P ). We may note that the range of ⇡S,P

contains all functions of the form z 7! zmEij where m is any integer. Indeed, we have that Ei1 =
Sei�1(z) . . . Se1(z), so we may obtain the map z 7! Ei1. Moreover, the map z 7! znE

11

for n � 1
can be obtained by Sen(z) . . . Se2(z)Se1(z) and so by combining these two maps and possibly taking
adjoints, we have the map z 7! Ei1z

mE
11

E⇤
j1 = zmEij for any integer m. By the Stone-Weierstrass

Theorem, we get that ran⇡S,P = C(T,Mn(C)), and so ⇡S,P is surjective. We are left to prove it is
injective, and we will utilize the Gauge-Invariant Uniqueness Theorem for this step. To do so, we
must construct an appropriate action �.

Fix some w 2 T and define Uw to be the diagonal unitary matrix
Pn

j=1

wjEjj . Let

�w(f)(z) = Uwf(w
nz)U⇤

w.

Then we have

�w(Pvi)(z) = �w(Ei,i)(z) = UwEi,iU
⇤
w = Ei,iUwU

⇤
w = Ei,i = Pvi(z).

For index i < n,

�w(Sei)(z) = UwEi+1,iU
⇤
w

=
n
X

j=1

n
X

k=1

wjEj,jEi+1,iw
�kEk,k

= wi+1w�iEi+1,i

= wSei(z).
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Similarly, we have

�w(Sen)(z) = UwE1,n(w
nz)U⇤

w

= Uw(w
nz)E

1,nU
⇤
w

= (snz)(w1w�nE
1,n)

= wzE
1,n

= wSen(z).

Thus, � is an appropriate action from T to Aut C(T,Mn(C)) where ⇡S,P � �w = �w � ⇡S,P for every
w 2 T. The Gauge-Invariant Uniqueness Theorem tells us that ⇡S,P is an isomorphism from C⇤(Cn)
to C(T,Mn(C)).

Since we know there exists the gauge action � on C⇤(E), we may wonder why the homomorphism
⇡T,Q from C⇤(E) to C⇤(T,Q) does not preserve the action to give us an appropriate action �z =
⇡T,Q � �z on C⇤(T,Q). We may instead ask if we can find some element a 2 ker⇡T,Q ✓ C⇤(E)
such that �z(a) /2 ker⇡T,Q. The existence of such an element will prove that ⇡T,Q is not injective
since �z(a) /2 ker⇡T,Q implies a is non-zero but a 2 ker⇡T,Q and so the Gauge-Invariant Uniqueness
Theorem will tell us that an appropriate action � does not exist.

Consider Figure 6 which consisted of one vertex v and the single loop e at v. We have already shown
that C⇤(E) = C(T). We take the CK E-family {s, p} to be se(z) = eiz so that pv(z) = s⇤e(z)se(z) =
eizeiz = 1 making pv = 1. Then

C⇤(S, P ) =

(

M
X

k=�N

akske | ak 2 Z
)

= C(T),

telling us that {s, p} is a universal CK E-family.

Now consider the CK E-family {T,Q} given by Te = ei1 and Qv = T ⇤
e Te = 1. C⇤(T,Q) =

span{ei1} = C, and by taking the homomorphism

⇡ : C⇤(E) ! C⇤(T,Q)

se 7! Te = ei1

pv 7! Qv = 1,

and the element a = se � eipv, we see that a 2 ker⇡ but ⇡(�z(a)) = (z � 1)ei1. Thus, �z(a) /2 ker⇡
if z does not equal 1.

Consequently, such an action � does not always exist, making the assumption in Theorem 3.11 a
non-trivial one.
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3.2. Dual graphs. Before we proceed to a relatively straightforward application of the Gauge-
Invariant Uniqueness Theorem, we define the notion of the dual graph. Note that this definition
is di↵erent from the one commonly seen in graph theory where each face is replaced with a vertex
and edges are added between vertices corresponding to adjacent faces.

Definition 3.13. Given a graph E, we can define the dual graph, bE, by setting bE0 = E1, bE1 =
E2 and modifying the maps r and s to be r bE(ef) = e and s bE(ef) = f .

Example 3.14. The easiest way to understand the definition is to look at a few examples:

v w

u

f

ge

f

ge

gf

eg

fe

Graph 8. the original graph E on the left with its dual on the right.

Here, we have the original graph on the left and the dual graph on the right. In this case, the graph
on the right is just a relabeled version of the original graph. That is, the original graph and the
dual graph are isomorphic to one another.

Example 3.15. This is not always the case, as we can see below:

v w

u

µ1

µ2

µ3

µ4
µ5

µ
2

µ
4

µ
5

µ
2

µ
3

µ4µ3

µ3µ4

µ5µ2 µ4µ5

µ5µ1

µ1µ4

µ2µ4

Graph 9. the original graph E on the left with its dual on the right.

Again, we have the original graph on the left and the dual graph on the right.

We have the following result regarding dual graphs.

Theorem 3.16. For a row-finite graph E with no sources, bE is also row-finite and C⇤( bE) ⇠= C⇤(E).

Proof. For any e 2 bE0 = E1, we have that

#r�1

bE
(e) = #{ef 2 E2 = bE1} = #{f | sE(e) = rE(f)} = #r�1

E (sE(e)).

Since E is row-finite, then #r�1

bE
(e) = #r�1

E (sE(e)) < 1 so that bE is also row-finite. Now let {s, p}
be the universal CK E-family which generates C⇤(E). We may define the following CK bE-family:

Qe = ses
⇤
e Tfe = sfses

⇤
e, e, f 2 E1.
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Since s⇤esf 6= 0 implies e = f , this tells us that QeQf = ses
⇤
esfs

⇤
f = 0 for e 6= f . Moreover,

Q⇤
e = ses

⇤
e = Qe and Q2

e = ses
⇤
eses

⇤
e = seps(e)s

⇤
e = ses

⇤
e = Qe so that the collection {Qe}e forms a set

of mutually orthogonal projections. We now check the CK-conditions. First, for fe 2 bE1,

T ⇤
feTfe = (sfses

⇤
e)

⇤(sfses⇤e)

= ses
⇤
e(s

⇤
fsf )ses

⇤
e

= ses
⇤
eQs(f)ses

⇤
e

= ses
⇤
e

= Qs(fe),

proving the Tfe are partial isometries. Finally,

Qf = sfs
⇤
f

= sf

0

@

X

r(e)=s(f)

ses
⇤
e

1

A s⇤f

=
X

r(e)=s(f)

sf (ses
⇤
e)(ses

⇤
e)s

⇤
f

=
X

r(fe)=f

TfeT
⇤
fe.

Thus, the collection {Q,T} is a CK bE-family. Now suppose that {t, q} generates the universal C⇤-
algebra C⇤( bE). By the universal property of C⇤( bE), there is a homomorphism ⇡T,Q : C⇤( bE) !
C⇤(T,Q) which sends tfe to Tfe and qv to Qv.

Since the operators Qe, Tfe were defined from {s, p}, we have C⇤(T,Q) ✓ C⇤(E). Note that we
can also recover the CK E-family {s, p} via pv =

P

r(e)=v Qe (this applies for each v 2 E0 since
E contains no sources) and sf =

P

s(f)=r(e) Tfe, which implies that we have C⇤(T,Q) = C⇤(E).

Since se 6= 0 for all e 2 E1, Qe = ses
⇤
e 6= 0. We know that there exists a gauge action � : T !

AutC⇤(E) = AutC⇤(T,Q) which satisfies �z(pv) = pv and �z(se) = zse. Thus, �z will then satisfy
�z(Qe) = �z(se)�z(s⇤e) = zsez

⇤se = ses
⇤
e = Qe and �z(Tfe) = �z(sfses⇤e) = zsfzsez

⇤s⇤e =
zsfses

⇤
e = zTfe. We can now apply the Gauge-Invariant Uniqueness Theorem to find that ⇡T,Q is

an isomorphism of C⇤( bE) onto C⇤(T,Q) = C⇤(E). ⇤

In general, if E has no sources, then bE also has no sources. Indeed, if bE has a source e then there is
no edge ef in bE. That is, there is no edge f in E with r(f) = s(e) and thus, s(e) is a source in E.
Hence, we may repeatedly apply Theorem 3.16.

Example 3.17. Consider the graph E, its dual bE and its second dual
b

bE given in Graph 10.

v we
f

g e f gee
ef fg

gg ee ef fg ggeeee
eeef effg fggg

gggg

Graph 10. the original graph E on the left, its dual in the center and its double
dual on the right.
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Since we can continue to take duals, we find that C⇤(E) ⇠= C⇤( bE) ⇠= C⇤(bbE) ⇠= C⇤(F ) where F is the
nth dual of E. Note that the nth dual of E would look like Graph 11.

v
0

v
1

. . . vn

Graph 11

Thus, the C⇤-algebra of any graph of the form above with n � 1 will be isomorphic to C⇤(E). We
will now find what C⇤(E) is. For 0  q < 1, let SUq(2) be the universal C⇤-algebra generated by
elements a and b (see [13] for existence) which satisfy

a⇤a+ b⇤b = 1 aa⇤ + q2b⇤b = 1 ab = qba ab⇤ = qb⇤a b⇤b = bb⇤.

Label the graph E as in Graph 12.

v we
f

g

Graph 12

We have the CK relations

pv = s⇤fsf = s⇤ese = ses
⇤
e pw = s⇤gsg = sgs

⇤
g + sfs

⇤
f .

It is already known that for any 0  q < 1 the spaces SUq(2) are isomorphic (see [13]). We further
claim that any SUq(2) is isomorphic to C⇤(E). For simplicity, we will show that C⇤(E) and SU

0

(2)
are isomorphic.

Indeed, define the mappings

' : SU
0

(2) ! C⇤(E)

a 7! s⇤f + s⇤g
b 7! se

� : C⇤(E) ! SU
0

(2)

pv 7! bb⇤

pw 7! a⇤a

se 7! b

sg 7! a⇤(1� bb⇤)

sf 7! a⇤bb⇤.
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We can check that '(a) and '(b) satisfy the relations of SU
0

(2) and that � preserves the CK-relations.
Finally, it is easy to check that � is the inverse of ' and so we have defined an isomorphism from
SU

0

(2) to C⇤(E), making the two spaces are isomorphic.

Note that if there is a cycle in E then there is a cycle in bE. Indeed, suppose µ
1

µ
2

. . . µn is a cycle in
E. Then we have {µiµi+1

| 1  i  n�1}[{µnµ1

} 2 E2 = bE1 so that µ = (µ
1

µ
2

)(µ
2

µ
3

) . . . (µn�1

µn)(µnµ1

) 2
bE⇤ and s(µ) = µ

1

= r(µ) making µ a cycle in bE.

Thus, by virtue of the fact that every finite directed graph with no sources has a cycle, we cannot
reduce such a graph to the case where the assumptions in Proposition 2.14 are satisfied.

3.3. The CK-Uniqueness Theorem. Our next goal will be to prove the CK-Uniqueness Theo-
rem. This theorem gives the powerful result that under certain conditions the C⇤-algebra generated
by any two CK-families is isomorphic. We first present a lemma which will be utilized in the proof
of the CK-Uniqueness Theorem. Because the proof does not introduce any new techniques and is
somewhat long, we skip the proof and refer the reader to [10]. Recall that the multiplier algebra

M(A) of a C⇤-algebra A is the unique C⇤-algebra with the property that M(A) is the maximal uni-
tal extension of A for which A is an essential ideal.

Lemma 3.18. Given a row-finite graph E and a set of vertices V ✓ E0 (which may be either finite

or infinite), there exists a projection pV =
P

v2V pv in M(C⇤(E)) such that

pV sµs
⇤
⌫ =

(

sµs
⇤
⌫ if r(µ) 2 V

0 otherwise.

Definition 3.19. We say that an edge e is an entry to the cycle µ = µ
1

. . . µn if there exists an
index i such that r(e) = r(µi) and e 6= µi. In particular, if we have a closed path with no entries
then it is guaranteed to be a multiple of some cycle ⌫ with no entries. We call a path µ 2 E⇤

non-

returning if µk 6= µ|µ| for k < |µ|.

Lemma 3.20. Suppose the row-finite graph E has no sources and every cycle in E has an entry.

Then for every vertex v and any positive integer n, there exists a non-returning path � 2 E⇤ of

length at least n with r(�) = v.

Proof. If there is path � 2 En with r(�) = v and no repeated vertices, then this concludes the
proof. If not, then every path of length n which ends at v contains a return path and so we can
choose the shortest return path ↵ such that r(↵) = v and there is a cycle � based at s(↵). The
assumption implies that � has an entry e, so for su�ciently many repetitions of �, the path � =
↵�� . . .��0e has the required properties, where �0 is the segment of � from r(e) to s(�). ⇤
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Example 3.21. Given the following graph, suppose we want a non-returning path � of length n

with r(�) = v in Graph 13.

v
1

v
2

v
3

v
4

w

u v

µ2

µ1

µ4

µ3 µ5

µ6

µ7

Graph 13

For su�ciently large n we cannot find a path with no repeated vertices, but any path of su�cient
length will contain the cycle � = µ

2

µ
1

µ
4

µ
3

. The entry e is given by µ
5

and we have that ↵ = µ
7

µ
6

.
Thus, we can set the path to be

� = ↵�� . . .��0µ
5

= (µ
7

µ
6

)
| {z }

↵

(µ
2

µ
1

µ
4

µ
3

)
| {z }

�

. . . (µ
2

µ
1

µ
4

µ
3

)
| {z }

�

(µ
2

µ
1

µ
4

)
| {z }

�0

µ
5

.

Note that if we repeat � n times then the path will certainly be of length at least n.

We now present the CK-Uniqueness Theorem:

Theorem 3.22. (CK-Uniqueness) Consider the row-finite graph E where every cycle has an en-

try. Let {T,Q} be a CK E-family in a C⇤-algebra B such that Qv 6= 0 for every vertex v. Then the

homomorphism ⇡T,Q : C⇤(E) ! B is an isomorphism of C⇤(E) onto C⇤(T,Q).

Proof. The case where E has a source follows from the theory of an extended graph E
+

which is
obtained from E by adding a sequence of edges into every source and a sequence of edges from ev-
ery sink. The rigorous proof may be found in [10]. For the purposes of this report, we will we only
consider the case where E has no sources. Fix some finite set F of pairs (µ, ⌫) 2 E⇤ ⇥ E⇤ where
s(µ) = s(⌫) and element a =

P

(µ,⌫)2F cµ⌫sµs
⇤
⌫ . Recall that we have �(a) =

R

T �z(a)dz as defined in
Theorem 3.6. Suppose we could show that there exists a projection Q 2 B satisfying

kQ⇡T,Q(�(a))Qk = k⇡T,Q(�(a))k, and QTµT
⇤
⌫Q = 0 when (µ, ⌫) 2 F and |µ| 6= |⌫|.
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If such a projection Q could be found, then

k⇡T,Q(�(a))k = kQ⇡T,Q(�(a))Qk

=

�

�

�

�

�

�

Q

0

@

X

(µ,⌫)2F,|µ|=|⌫|
cµ⌫TµT

⇤
⌫

1

AQ

�

�

�

�

�

�

=

�

�

�

�

�

�

Q

0

@

X

(µ,⌫)2F

cµ⌫TµT
⇤
⌫

1

AQ

�

�

�

�

�

�



�

�

�

�

�

�

X

(µ,⌫)2F

cµ⌫TµT
⇤
⌫

�

�

�

�

�

�

= k⇡T,Q(a)k.

Thus, if ⇡T,Q(a) = 0, then because ⇡T,Q is a *-homomorphism, ⇡T,Q(a⇤a) = 0. It follows that
⇡T,Q(�(a⇤a)) = 0, so �(a⇤a) = 0 implies a must be zero. Hence, ⇡T,Q is an isomorphism.

In order to prove such a projection exists, let’s first set k = max{|µ|, |⌫| | (µ, ⌫) 2 F}. Next, suppose
that cµ⌫ 6= 0 for (µ, ⌫) 2 F and let r�1(s(µ)) = {↵

1

,↵
2

, . . .↵n}. Then

sµs
⇤
⌫ = sµps(µ)s

⇤
⌫ =

n
X

i=1

sµ↵is
⇤
⌫↵i

.

By replacing each (µ, ⌫) in F with {(µ↵i, ⌫↵i)}ni=1

we can modify the length of each pair to force
max{|µ|, |⌫|} to equal k for any (µ, ⌫) 2 F with cµ⌫ 6= 0. In particular, if |µ| = |⌫| and cµ⌫ 6= 0 then
|µ| = |⌫| = k.

We’ve already shown that �(a) 2 Fk = �vFk(v) and so for some vertex w, we have

k�(a)k = kbwk where bw :=
X

(µ,⌫)2F
|µ|=|⌫|

s(µ)=s(⌫)=w

cµ⌫sµs
⇤
⌫ .

Let G = {µ, ⌫ | (µ, ⌫) 2 F, |µ| = |⌫| = k, s(µ) = s(⌫)}. For the vertex w and n > max{|µ|, |⌫| |
(µ, ⌫) 2 F} choose some non-returning path � as in Lemma 3.20, and let

Q :=
X

⌧2G

T⌧�T
⇤
⌧�.

We now check that this Q satisfies our criteria. Indeed, if (µ, ⌫) 2 F satisfies |µ| = |⌫| then µ, ⌫ 2 G.
Since for ⌧ 2 G, we have that T ⇤

⌧�Tµ is non-zero if and only if ⌧ = µ, which implies T ⇤
⌫ T⌧� is non

zero if and only if ⌧ = ⌫.
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Thus,

QTµT
⇤
⌫Q =

X

↵2G

X

⌧2G

T⌧�T
⇤
⌧�TµT

⇤
⌫ T↵�T

⇤
↵�

=

(

Tµ�T
⇤
µ�TµT

⇤
⌫ T⌫�T

⇤
⌫� if µ, ⌫ 2 G

0 otherwise

=

(

Tµ�T
⇤
⌫� if µ, ⌫ 2 G

0 otherwise.

For any path ⌧ in G, since T ⇤
⌧�T⌧� = Qs(⌧�) 6= 0 then T⌧�T

⇤
⌧� 6= 0 as well, making the set {QTµT

⇤
⌫Q |

µ, ⌫ 2 G} a collection of non-zero matrix units. Because the mapping b 7! Q⇡T,Q(b)Q is a faithful
representation (hence isometric mapping) of span{sµs⇤⌫ | µ, ⌫ 2 G},

k⇡T,Q(�(a))k = k�(a)k = kbwk = kQ⇡T,Q(bw)Qk = kQ⇡T,Q(�(a))Qk.

Now, if (µ, ⌫) 2 F with |µ| 6= |⌫|, then the longer one must have length k. We will assume without
loss of generality that µ is longer than ⌫, so |µ| = k. Then

QTµT
⇤
⌫Q =

X

⌧,↵2G

T↵�T
⇤
↵�TµT

⇤
⌫ T⌧�T

⇤
⌧� =

X

⌧2G

Tµ�(T
⇤
⌫�T⌧�)T

⇤
⌧�.

If T ⇤
⌫�T⌧� 6= 0 then ⌫� extends ⌧� or vice versa. However, because 0 < |⌫| � |⌧ | < |�| and � is

non-returning, this cannot happen. So if |µ| 6= |⌫| then QTµT
⇤
⌫Q = 0. Thus, we have the desired Q,

proving the theorem in the case where E has no sources. ⇤

Note that the CK-Uniqueness Theorem implies that, for a graph E with every cycle having an entry
and for any two CK E-families {S, P} and {T,Q} with Pv 6= 0 and Qv 6= 0 for all vertices v, there is
an isomorphism � of C⇤(S, P ) onto C⇤(T,Q) such that �(Se) = Te and �(Pv) = Qv.

Example 3.23. We now examine the graph with a single vertex v and n � 2 loops all at v as
shown in Graph 14.

·
v

en

e
2

e
1

...

Graph 14

Since cycles cannot repeat vertices, the only cycles are each edge. Since a particular edge is an en-
try for the others, each cycle has an entry and so we may apply the CK-Uniqueness Theorem.
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Note that for any edge e, we have se = pvse = sepv so that pv is an identity of C⇤(E). Then any
two families {si} of isometries such that

Pn
i=1

sis
⇤
i = pv = 1 and s⇤i si = 1 generate isomorphic

C⇤-algebras, and this is (by definition) the Cuntz algebra On. This was originally done by Cuntz in
[3].

Now because the Cuntz algebra has no sources, we can apply Theorem 3.16 to the corresponding
graph and find that we have the duals shown in Graph 15.

v fe e f ffee

fe

ef

ef

ee

ff

fe

eeee

eeef

feee

efff

fffe
feef

effe

ffff

Graph 15. the original graph is shown on the left, its first dual in the center and
the second dual on the right

While the double dual of the graph isn’t obvious from the first graph, we can always find the first
dual of the graph with a single vertex with n loops. It will consist of n vertices corresponding to
e
1

, e
2

, . . . en, there will be a loop at each vertex and there will be two edges between any pair of ver-
tices eiej and ejei. Theorem 3.16 tells us that the C⇤-algebra of this graph will also be On.

We now present a corollary of a previous proposition which gives us a way to know if a cycle has an
entry.

Corollary 3.24. Suppose we have a row-finite graph E with cycle µ. Then µ is entryless if and

only if SµS
⇤
µ = Pr(µ).

Proof. We first note that the cycle µ has an entry if and only if there exists a distinct path � with
r(�) = r(µ) such that one of

(1) |�| < |µ| and s(�) is a source
(2) |�| = |µ|.

Then from Proposition 2.10, and because S�S
⇤
� 6= 0, we have

Pr(µ) =
X

r(⌫)=r(µ),
|⌫|=|µ|

S⌫S
⇤
⌫ +

X

r(⌫)=r(µ),
|⌫|<|µ| and

s(⌫) is a source

S⌫S
⇤
⌫

� SµS
⇤
µ + S�S

⇤
� (first sum includes SµS

⇤
µ and second includes S�S

⇤
�)

� SµS
⇤
µ.

Thus, the statement holds. ⇤
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4. Ideal structure of C⇤(E)

We will now examine the ideal structure of C⇤(E) and completely classify when C⇤(E) is simple.

Definition 4.1. For vertices v and w, we write w  v if there exists a path µ 2 E⇤ with s(µ) = v

and r(µ) = w. Note that this is transitive and reflexive but it is not a partial order because v  w

and w  v do not imply that the two vertices are equal. We define the two sets E1 and E1 as

E1 = { infinite paths � = �
1

�
2

. . . } and

E1 = E1 [ { finite paths beginning at a source }.

Given a path µ 2 E⇤ [ E1, we define [µ] to be the set of vertices visited by µ.

Definition 4.2. We call a graph E cofinal if for every µ 2 E1 and v 2 E0 there exists a vertex
w 2 [µ] such that v  w.

Example 4.3. Consider Graph 12 studied in Section 3.2, shown again below.

v we
f

g

Because the graph E does not have any sources, then

E1 = E1 = {eee . . . } [ {gkfeee · · · | k 2 N
0

} [ {ggg . . . }.

We cannot reach v from any point on the path ggg . . . , and so the graph above is not cofinal. How-
ever, if we were to remove the edge g then E1 would contain only the two infinite paths eee . . .
and feee . . . and so the graph with the edge g removed would be cofinal.

Theorem 4.4. Suppose E is a row-finite graph in which every cycle has an entry. If E is cofinal,

then C⇤(E) is simple.

Proof. First, we claim that every ideal in C⇤(E) is the kernel of a CK-family representation. In-
deed, if I is the kernel of C⇤(E) then we can consider the quotient map q : C⇤(E) ! C⇤(E)/I =: A.
Because A is also a C⇤-algebra, we can find a *-isomorphism � : C⇤(E)/I ! B(H). Now ⇡ = � � q :
C⇤(E) ! B(H) is a representation with ker⇡ = ker q = I. It sends se to Te := ⇡(se) 2 B(H) and pv
to some Qv := ⇡(pv) 2 B(H). These satisfy,

T ⇤
e Te = ⇡(s⇤ese) = ⇡(ps(e)) = Qs(e)

X

r(e)=v

TeT
⇤
e = ⇡

0

@

X

r(e)=v

ses
⇤
e

1

A = ⇡(pv) = Qv,

so {T,Q} is a CK E-family. Now, the representation ⇡ is equal to ⇡T,Q, hence I = ker⇡T,Q. Thus,
it su�ces to prove that every non-zero representation ⇡T,Q of C⇤(E) is faithful.
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Suppose {s, p} is a CK E-family such that ⇡s,p is non-zero. If every projection pv were zero, then
s⇤ese = ps(e) = 0 would force se = 0 for each e 2 E1 making ⇡s,p identically zero. Hence, we can fix
some vertex v such that pv 6= 0. To see the kernel is trivial, we will show that pw 6= 0 for all vertices
w. This will allow us to apply the CK-Uniqueness Theorem to see that the representation ⇡T,Q is
faithful, and hence has no kernel.

Fix an arbitrary vertex v 2 E0. If v is not a source, then because 0 6= pv =
P

r(e)=v ses
⇤
e, there ex-

ists an edge e such that r(e) = v and ses
⇤
e 6= 0. Thus, ps(e) = s⇤ese 6= 0 and if s(e) is not a source, we

may repeat this argument by finding a second edge. Either this process will terminate at a source
or it will continue indefinitely to give us an infinite path. In either case, we have constructed a path
µ 2 E1 with r(µ) = v and px 6= 0 for every vertex x on µ.

Since E is cofinal, for every vertex w, there exists a path ↵ 2 E⇤ with r(↵) = w and s(↵) a vertex
on µ. Then s⇤↵s↵ = ps(↵) 6= 0, so s↵s

⇤
↵ 6= 0. Because pws↵s

⇤
↵ = s↵s

⇤
↵ 6= 0, we have pw 6= 0. Thus,

pw 6= 0 for every w 2 E0 and so by the CK-Uniqueness Theorem, the CK E-family {s, p} generates
C⇤(E) and ⇡s,p is an isomorphism. In particular, ⇡s,p is faithful. ⇤

Definition 4.5. A graph E is called transitive all vertices v and w satisfy v  w and w  v.

Proposition 4.6. Suppose E is a row-finite, transitive graph which is not a cycle itself. Then C⇤(E)
is simple.

Proof. Suppose we have such a graph E. Clearly, E is cofinal.

We claim that every cycle in E has an entry. For an arbitrary cycle µ and any edge e not in the cy-
cle, if e is an entry, then the result holds. If e is not an entry into µ then because r(e) � v for every
vertex v in the cycle, there exists a path ↵ = ↵

1

↵
2

. . .↵n from r(e) to v. Moreover, by possibly
truncating ↵ we can assume that ↵ is a path from r(e) to the cycle µ where no edge in ↵ is an edge
in µ. The edge ↵

1

is an entry to the cycle µ, proving that every cycle in such a graph E has an en-
try. Thus, the C⇤-algebra for any transitive graph which is not a cycle itself is simple by Theorem
4.4. ⇤

We now consider the case where C⇤(E) is not simple.

Definition 4.7. Suppose I is an ideal of C⇤(E). Let

HI = {v 2 E0 | pv 2 I}.

Under certain conditions, we claim that we can recover the ideal I from the collection of vertices
HI . Let’s investigate what these conditions are.

Consider the quotient map q : C⇤(E) ! C⇤(E)/I. If v /2 HI then q(pv) 6= 0. For any edge e, if
s(e) /2 HI then q(se)⇤q(se) = q(s⇤ese) = q(ps(e)) 6= 0. Now because pr(e) � ses

⇤
e, then q(pr(e)) �

q(ses⇤e) 6= 0. Thus, r(e) /2 HI .
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Definition 4.8. For such a collection HI , define

E\HI = (E0\HI , s
�1(E0\HI), r, s).

We have already shown that if the source of an edge is not in HI then neither is the range, and
so E\HI is a well-defined graph. Moreover, {q(se), q(pv) | s(e) /2 HI , v /2 HI} is a CK-family
for E\HI with every vertex projection non-zero. If every cycle in the graph E\HI has an entry,
then we may apply the CK-Uniqueness Theorem to conclude that the map from C⇤(E\HI) onto
C⇤(q(se), q(pv)) = C⇤(E)\I is an isomorphism.

Example 4.9. Take the graph E to be as in Graph 16.

u v we
f g

h

Graph 16

Let’s take a look at the collection HI = {u, v}, where will assume for now that it is of the form
presented above for some ideal I in C⇤(E). We see that E\HI looks like Graph 17.

w h

Graph 17

In this case, there is only one cycle and it does not contain an entry, so we may not apply the CK-
Uniqueness Theorem as described above.

Our next goal is to identify potential collections H ✓ E0 which arise as sets HI for some ideal I in
C⇤(E), and find a condition on the graph E to guarantee that every cycle in E\H has an entry.

Definition 4.10. We call a subset H ✓ E0

hereditary if w 2 H and w  v imply v 2 H. We
call H saturated if for any vertex v 2 E0 where v is not a source and {s(e) | r(e) = v} ✓ H imply
v 2 H.

Example 4.11. We revisit Graph 16. The set {u} is hereditary since there are no vertices v 6= u

which satisfy v � u. The set {u, v} is hereditary since we do not have w � v nor w � u, and thus
there is no assumption that w must also be included in the hereditary set containing u and v. Note
that {v} is not hereditary since v  u but u /2 {v}.

We now consider which collections of vertices are saturated. Since {s(e) | r(e) = w} * {u, v}
then {u, v} is saturated. The set {u} is not saturated since v /2 {u} is not a source but satisfies
{s(e) | r(e) = v} ⇢ {u}.

It may be natural to wonder whether every saturated set is necessarily hereditary. This is not the
case, as the next example shows.
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Example 4.12. Consider Graph 18.

v
1

v
2

v
3

v
4

v
5

v
6

Graph 18

We can verify that the hereditary sets of E are {v
1

, v
2

, v
3

, v
4

, v
5

, v
6

}, {v
4

, v
5

, v
6

}, {v
5

, v
6

}, {v
6

}, ; and
the saturated sets are {v

1

, v
2

, v
3

}, {v
6

, v
5

, v
4

}, {v
1

, v
2

, v
3

, v
4

, v
5

, v
6

}, ;.

Further note that for a source w, {w} is guaranteed to be hereditary but not necessarily saturated.
It is not hard to see that both E0 and ; are always saturated and hereditary, we call these the triv-

ial sets.

Definition 4.13. For any saturated, hereditary collection H, we define E\H to be the
graph (E0\H, s�1(E0\H), r, s).

Lemma 4.14. Given a row-finite graph E, suppose I is a non-zero ideal in the C⇤-algebra of E,

C⇤(E). Then the set HI is both saturated and hereditary.

Proof. We first see that HI is hereditary. Take some vertex w 2 HI and suppose we have w  v for
the vertex v. Choose the appropriate path µ 2 E⇤ with s(µ) = v and r(µ) = w. Since w 2 HI , we
have pw 2 I and sµ = pr(µ)sµ = pwsµ 2 I. So pv = s⇤µsµ 2 I as well. Thus, v 2 HI and so HI is
hereditary.

We will now see that HI is saturated. Suppose v is not a source and that {s(e) | r(e) = v} ✓
HI . For every edge e with r(e) = v we know se = seps(e) 2 I. Since v is not a source, pv =
P

r(e)=v ses
⇤
e 2 I and so v 2 HI . Thus, HI is saturated. ⇤

Definition 4.15. For a path µ, let [µ] be the set of all vertices visited by µ.

Definition 4.16. We will now define a graph E to satisfy condition (K) if for every vertex v 2
E0 either

(1) there is no cycle � with r(�) = v = s(�), or
(2) there are two distinct paths µ, ⌫ 2 E⇤ such that s(µ) = r(µ) = s(⌫) = r(⌫) = v with

r(µi) 6= v for i < |µ| and r(⌫j) 6= v for j < |⌫|.
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Example 4.17. Consider Graph 19.

u v w

e

u v w

Graph 19

The graph on the left does not satisfy condition (K) at w since we are looking for return paths and
thus, cannot find a distinct closed path at w which does not repeat e. However, it is satisifed at ver-
tices u and v. By adding a second loop at vertex w to obtain the graph on the right, we see that
condition (K) is satisfied.

It is important to note that we do not require the path µ, ⌫ 2 E⇤ to be cycles because there is no
stipulation regarding repeated vertices.

Example 4.18. To this end, Graph 20 satisfies condition (K). Indeed, at vertex w we have paths
µ = g and ⌫ = ef . At the vertex v we have the paths µ = fe and ⌫ = fge.

v w g

e

f

Graph 20

Proposition 4.19. The row-finite graph E satisfies condition (K) if and only if for every saturated,

hereditary subset H ⇢ E0, every cycle in E\H has an entry.

Proof. To see the forward direction, let H be a saturated and hereditary subset of E0 and suppose
µ is a cycle in E\H. Set v = s(µ) /2 H. Condition (K) says that there exists a distinct path ⌫ with
s(⌫) = v. Choose i such that µj = ⌫j for j < i and µi 6= ⌫i.

Since r(⌫i) = s(⌫i�1

) = s(µi�1

) then ⌫i is an entry to µ. Since ⌫ is a cycle, then v � s(⌫i). If we
suppose s(⌫i) 2 H then because H is hereditary, this would imply v 2 H, which cannot be true. So
s(⌫i) /2 H and thus, ⌫i 2 s�1(E0\H) = (E\H)1, proving the first direction.

To see the converse, we now take a vertex v and a cycle µ = µ
1

. . . µn 2 E⇤ with s(µ) = v. To prove
condition (K), we must find an appropriate path ⌫. Let’s first consider the collection H = {w | v ⇤
w}.

We claim that H is hereditary and saturated. Fix some w 2 H and suppose we take some z 2 E0

with z � w If z /2 H then we would have v � z � w which is contradicts the assumption that z /2 H.
Thus, z 2 H so H is hereditary.

We will now see that H is saturated. Take some vertex w such that r�1(w) 6= ; and {s(e) | r(e) =
w} ✓ H. If w /2 H then we would be able to find a path ↵ with s(↵) = v and r(↵) = w. Then
s(↵

1

) 2 H by the assumption on w. However, because v � s(↵
1

) and H has already been shown to
36



be hereditary, then v 2 H. This clearly cannot be true, so w must be an element of Hµ. Thus, Hµ

is saturated.

We have already shown in Lemma ?? that H must be hereditary and saturated. Because the cycle
µ lies in E\H, then it must have an entry e in E\H by the proposition assumption. By choosing an
appropriate index i, we may assume r(e) = r(µi) so that s(e) � r(e) = r(µi) � v. Then s(e) /2 H.
Since v � s(e) in E\H, we can find a path � with s(�) = v and r(�) = s(e). By setting ⌫ =
µi . . . µi�1

e� we have the desired distinct return path, and so E satisfies condition (K). ⇤

Example 4.20. To illuminate the forward direction of the proof, consider the graph E\H in Graph
21. Suppose we are given µ = µ

1

µ
2

µ
3

µ
4

µ
5

and we find the path ⌫ = µ
1

⌫
2

⌫
3

⌫
4

µ
5

. In this case, we
would choose i to be 2.

· v ·
· ·

·
⌫3

µ1 µ5

µ4

µ3

µ2

⌫4⌫2

Graph 21

Definition 4.21. Given a saturated, hereditary set H, define EH = (H, r�1(H), r, s), whose vertex
set is the complement of the vertex set belonging to E\H.

Example 4.22. We now look at Graph 22.

u v w
e

Graph 22

Taking H = {u, v} we have the subgraphs E\H and EH , shown in Graph 23.

w u v

Graph 23. On the left we have E\H and on the right we have EH

Note that the edge e is not included in either subgraph. This observation tells us that we cannot
recover the graph E from E\H and EH . We will now work towards a complete description of the
(closed) ideals of C⇤(E).

Definition 4.23. Given a saturated, hereditary set H, let IH be the ideal in C⇤(E) generated by
the set {pv | v 2 H}.
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While we may define IH for any collection H, we will see in Theorem 4.28 why we restrict our at-
tention to saturated, hereditary sets.

Lemma 4.24. Let E be a row-finite graph which satisfies condition (K). Given an ideal I of C⇤(E),
I = IHI

. Moreover, C⇤(E\H) ⇠= C⇤(E)/IH .

Proof. Set H = HI to avoid requiring double subscripts throughout the proof. Lemma 4.14 tells
us that H is saturated and hereditary, so IH is consistent with our definition above. First note that
if pv 2 IH then v 2 H and so pv 2 I. Since the generators of IH are in I, we have the inclusion
IH ✓ I. Now consider the quotient maps

qI : C⇤(E) ! C⇤(E)/I,

qIH : C⇤(E) ! C⇤(E)/IH , and

qI/IH : C⇤(E)/IH ! C⇤(E)/I = (C⇤(E)/IH)/(I/IH),

where qI = qI/IH � qIH . Note that the only projections qI or qIH send to zero are the pv with v 2 H.
Since the two quotient maps kill the same projections, they also kill the same partial isometries se,
since s⇤ese = ps(e).

It is not hard to check that {qI(se), qI(pv)} is a CK (E\H)-family which generates C⇤(E)/I and
similarly, {qIH (se), qIH (pv)} is a CK (E\H)-family which generates C⇤(E)/IH . By universality, we
have the homomorphisms

⇡ : C⇤(E\H) ! C⇤(E)/IH

⇢ : C⇤(E\H) ! C⇤(E)/I.

We may consider the composition qI/IH � ⇡ : C⇤(E\H) ! C⇤(E)/I which agrees with ⇢ on the
generators of C⇤(E\H). Hence, ⇢ = qI/IH � ⇡.

Since the graph E satisfies condition (K), every cycle in E\H has an entry. We may apply the CK-
Uniqueness Theorem to conclude that ⇢ is injective and ⇡ is surjective, we have that qI/IH is in-
jective as well. Thus, I = IH . Moreover, the CK-Uniqueness Theorem says that the map ⇢ from
C⇤(E\H) to C⇤(E)/IH is an isomorphism. ⇤

Lemma 4.25. Let E be a row-finite and let H be a saturated and hereditary subset of E0. Then

H = {v | pv 2 IH}.

Proof. The inclusion H ✓ {v | pv 2 IH} is immediate. To see the converse, consider the universal
(E\H)-family {t, q} which generates C⇤(E\H). We will extend this to a CK E-family by defining
te = 0 if s(e) 2 H and qv = 0 if v 2 H.

To confirm that this is indeed a CK E-family, if s(e) 2 H then t⇤ete = 0 = qs(e). For a vertex v 2 H

since H is hereditary, then if r(e) = v we have s(e) 2 H and so te = 0. Thus, qv = 0 =
P

r(e)=v tet
⇤
e

as desired.
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Now consider a vertex v 2 E\H. If v is not a source in E\H then

qv =
X

e2E\H, r(e)=v

tet
⇤
e

=
X

e2E\H, r(e)=v

tet
⇤
e +

X

r(e)2H, r(e)=v

tet
⇤
e

|{z}

=0

=
X

e2E, r(e)=v

tet
⇤
e.

On the other hand, if v is a source in E\H then for an edge e, if r(e) = v then s(e) 2 H as well.
Thus, {s(e) | r(e) = v} ✓ H and so by saturation v 2 H. This is a contradiction, and so any sources
v in E\H are still sources in E. So indeed, our collection {t, q} is a CK E-family.

Consider the homomorphism ⇡t,q : C⇤(E) ! C⇤(E\H). For a vertex v 2 H, we have ⇡t,q(pv) = 0. If
v /2 H then ⇡t,q(pv) = qv 6= 0 and so pv /2 IH . Hence, H = {v | pv 2 IH}. ⇤

Lemma 4.26. Let E be a row-finite graph and X be a hereditary subset of E0. Set ⌃X to be the

smallest saturated set containing X. Then ⌃X is also hereditary.

Proof. Suppose to the contrary that ⌃X is not hereditary. There would exist some v /2 ⌃X and
w 2 ⌃X with w  v. By truncating the path between v and w and possibly modifying our choice of
vertices, we may assume without loss of generality that there exists an edge f from v to w.

We claim that ⌃X\{w} is a smaller saturated set containing X. First, we note that if w 2 X then
since X is hereditary, v 2 X ✓ ⌃X, contradicting our assumption that v /2 ⌃X. Thus, w /2 X, so
⌃X\{w} contains X.

We now see that ⌃X\{w} is saturated. For any vertex u which is di↵erent from w, if {s(e) | r(e) =
u} ✓ ⌃X\{w} ✓ ⌃X then because ⌃X is saturated, we have u 2 ⌃X\{w}. Now, since v 2 {s(e) |
r(e) = w} then {s(e) | r(e) = w} * ⌃X\{w} and so removing the vertex w does not a↵ect the
saturation of ⌃X. Thus, the assumption that ⌃X is not hereditary allows us to build a smaller sat-
urated set containing X, contradicting the minimality of ⌃X. Hence, ⌃X must be hereditary. ⇤

Lemma 4.27. Let E be a row-finite graph, X be a hereditary subset of E0, and set ⌃X to be the

smallest saturated set containing X. Then there there is an isomorphism of C⇤(EX) onto the corner

pXI
⌃XpX , where the projection pX =

P

v2⌃X pv was defined in Lemma 3.18.

Proof. By Lemma 4.26, the set ⌃X is hereditary and so I
⌃X makes sense. We claim that I

⌃X =
span{sµs⇤⌫ | s(µ) = s(⌫) 2 ⌃X}. First fix paths µ, ⌫ such that s(µ), s(⌫) 2 ⌃X and consider paths
↵,� 2 E⇤. Because we have

(sµs
⇤
⌫)(s↵s

⇤
�) =

8

>

>

<

>

>

:

sµ↵0s⇤� if ↵ = ⌫↵0

sµs
⇤
�⌫0 if ⌫ = ↵⌫0

0 otherwise,

,

it follows that sµs⇤⌫s↵s
⇤
� = s�s

⇤
⌧ where s(µ)  s(�) = s(⌧). Since ⌃X is hereditary, s(�) 2 ⌃X.

Thus, span{sµs⇤⌫ | s(µ) = s(⌫) 2 ⌃X} is an ideal of C⇤(E). Moreover, it contains the generators of
I
⌃X so I

⌃X ✓ span{sµs⇤⌫ | s(µ) = s(⌫) 2 ⌃X}.
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Finally, if s(µ) = s(⌫) 2 ⌃X then sµs
⇤
⌫ = sµps(µ)s

⇤
⌫ 2 I

⌃X so the equality holds. By continuity and
linearity of the projections pX , we have

pXI
⌃XpX = span{sµs⇤⌫ | s(µ) = s(⌫) 2 ⌃X, r(µ) 2 X, r(⌫) 2 X}.

Then {se | r(e) 2 ⌃X} [ {pv | v 2 ⌃X} is a CK EX -family in pXI
⌃XpX which generates pXI

⌃XpX .
Since every cycle in EX has an entry in E, by hereditarity of X, it also has an entry in EX . Thus,
we may apply the CK-Uniqueness Theorem to see that pXI

⌃XpX is isomorphic to C⇤(EX). ⇤

We now compile the above lemmas to present the following theorem.

Theorem 4.28. Suppose E is a row-finite graph which satisfies condition (K). We have the corre-

spondence

{saturated, hereditary subsets of E0} $ {closed ideals in C⇤(E)}
H 7! IH

HI 7!I.

Moreover, C⇤(E)/IH is isomorphic to C⇤(E\H) and C⇤(EH) is isomorphic to the corner pHIHpH .

Proof. Surjectivity of the map is given by Lemma 4.24 and injectivity is given by Lemma 4.25.
Thus, we do indeed have the desired bijection and C⇤(E)/IH ⇠= C⇤(E\H). Finally, since H is sat-
urated and hereditary, then ⌃H = H and so by Lemma 4.27, C⇤(EH) is isomorphic to the corner
pHIHpH . ⇤

Example 4.29. Let’s apply this theorem to Graph 24.

u w

Graph 24

The hereditary sets are ;, {w, u} and {u}. We see that each of these sets are saturated. Thus, The-
orem 4.28 tells us that the ideals in C⇤(E) are I; = {0}, I{u,w} = C⇤(E) and I{u}. Since E{u}
consists only of the vertex u and the two loops at u, then C⇤(E{u}) = O

2

. Thus, p{u}I{u}p{u} is
isomorphic to O

2

. Moreover, because the graph for E\H is again a single vertex, w, with two loops
then C⇤(E\H) = O

2

⇠= C⇤(E)/I{u}.

We now conclude this section with a theorem which tells us precisely when C⇤(E) is simple.

Theorem 4.30. For a row-finite graph E, C⇤(E) is simple if and only if every cycle in E has an

entry and E is cofinal.
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Proof. We have already shown the ‘only if’ direction in Theorem 4.4 and are only left to prove the
‘if’ direction. Suppose C⇤(E) is simple. We will first prove that E is cofinal. Take an arbitrary path
µ 2 E⇤. By Theorem ?? we have Hµ is saturated and hereditary. If Hµ were non-trivial then IHµ

would be a proper ideal, contradicting the assumption that C⇤(E) is simple. Since r(µ) /2 Hµ then
we know Hµ cannot be all of E and so Hµ = ;. Thus, E is cofinal.

We will next see that every cycle has an entry. Suppose this were not the case, and find a cycle µ 2
E⇤ with no entry. Define X to be the hereditary set {s(µi) | 1  i  |µ|} 6= ;. As in Lemma 4.27,
let ⌃X be the smallest saturated set containing X. If ⌃X were non-trivial, then I

⌃X is a proper
ideal. Since C⇤(E) is simple, then ⌃X = E0 and so C⇤(EX) ⇠= pXI

⌃XpX = pXC⇤(E)pX by Lemma
4.27. However, it’s clear that EX = X and so the discussion of Graph 7 tells us that C⇤(EX) ⇠=
C(T,M|µ|(C)) ⇠= M|µ|(C(T)).

Let J be an arbitrary proper ideal in pXC⇤(E)pX ⇠= C⇤(EX) ⇠= C(T,M|µ|(C)). Since we may note
that the collection of functions in C(T,M|µ|(C)) which vanish at 1 form a proper ideal of the space,
such a proper ideal J exists. Consider the set

C⇤(E)JC⇤(E) = span{ajb | a, b 2 C⇤(E), j 2 J},

which is a non-zero ideal in C⇤(E). Finally, since C⇤(E) is simple, C⇤(E)JC⇤(E) = C⇤(E), and
thus

pXC⇤(E)pX = pX(C⇤(E)JC⇤(E))pX = pXC⇤(E)(pXJpX)C⇤(E)pX = J.

However we assumed J to be a proper ideal of the left hand side, proving that our assumption of
the cycle µ having no cycle was incorrect. Thus, every cycle in E has an entry. ⇤

We have now completely classified the graphs for which C⇤(E) is simple, as well as investigated the
ideals of C⇤(E), when they exist.

5. The Abelian Core

In this section, we will investigate the normal elements of C⇤(E) which generate the abelian core of
a graph algebra. We will spend much of this section giving the appropriate background in order to
present a new uniqueness theorem whose proof considers a particular representation on the set of all
essentially aperiodic trails. Szymański first proved this result in [12]. It was revisited by Nagy and
Rezniko↵ in [9] in 2012, and it is their proof that we present in this section.

Definition 5.1. We call an infinite path µ = µ
1

µ
2

. . . periodic if there exists positive integers j
and k such that µn+k = µn for all n � j. For such a periodic path µ, we can find a closed path ⌫ of
length k such that µ = µ

1

. . . µj�1

⌫⌫⌫ . . . where j and k are chosen to be minimal and we call ⌫ the
period of µ.
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Example 5.2. Given Graph 25, the path µ = µ
1

µ
2

(hefg)(hefg)(hefg) . . . is periodic since for
n � 3 we have µn+4

= µn. In this case, minimality of j and k force the period to be ⌫ = hefg.

v1 v2 v3

v4

v5 v6
µ1 µ2 e

fg

µ1 µ3

h

Graph 25

Definition 5.3. We call the path ⌧ = ⌧
1

⌧
2

. . . an essentially aperiodic trail if any of the follow-
ing hold:

(1) ⌧ is finite and s(⌧) is a source,
(2) ⌧ is infinite and periodic but its period has no entries (making its period an entryless cycle),
(3) ⌧ is infinite and not periodic.

We loosen this definition a bit and call ⌧ a trail if it either satisfies (1) or is an infinite path. The
set of all trails was denoted E1 in Section 4. Essentially aperiodic trails of form (1) or (2) are
called discrete and those of form (3) are called continuous. Note that if ⌧ is an essentially ape-
riodic trail and ↵ is a path with s(↵) = r(⌧) then ↵⌧ is also an essentially aperiodic trail. Let T be
the collection of all essentially aperiodic trails.

Example 5.4. In Graph 25 above, we see that all finite paths which begin at v
6

will be essentially
aperiodic trails, while any other finite paths will not be essentially aperiodic. Since the graph has
no entryless cycles, we cannot construct an essentially aperiodic trail of form (2).

Despite the fact that the graph is finite, we may still construct an infinite path ⌧ which is not peri-
odic. Indeed, if we set ⌫ = efg then one such construction is ⌧ = ⌫h⌫hh⌫hhh . . . , which we may
confirm is not periodic.

Definition 5.5. We call a vertex w 2 E0 a trap if

(a) w is a source,
(b) w lies on an entryless loop, or
(c) there exists two closed paths µ, ⌫ with s(µ) = s(⌫) = r(µ) = r(⌫) = w such that µ

1

6= ⌫
1

.

Example 5.6. Returning to Graph 25, we see that v
6

is a trap because it is a source. The vertex
v
3

is also a trap since µ = h and ⌫ = efg are closed paths where µ
1

= h 6= e = ⌫
1

. Now consider
Graph 26.

v
1

v
3

v
2

v
4

v
5

µ1

µ2

µ3

µ4

µ5

µ6

µ6

Graph 26
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For this graph, v
5

lies on the entryless loop µ
6

, making v
5

a trap. We may construct the two closed
paths µ = µ

4

µ
5

µ
3

and ⌫ = µ
2

µ
1

µ
3

which both start and end at v
3

where the first edge in the two
paths are not equal. Thus, v

3

is also a trap. We may confirm that v
1

, v
2

and v
4

are not traps.

Lemma 5.7. Suppose E is a row-finite graph. For every vertex v 2 E0, there exists an essentially

aperiodic trail ⌧ with v = r(⌧).

Proof. We split the proof into two cases. First suppose there exists a path ↵ with r(↵) = v such
that s(↵) is a trap. There are now three subcases describing the nature of s(↵). First, if s(↵) is a
source, we may set ⌧ = ↵. Second, if s(↵) sits on an entryless loop �, then we may set ⌧ = ↵��� . . .

to be a periodic trail. Finally, suppose there are two paths �, ⌧ as in the third case of a trap. Since
we may replace both � and ⌧ with a multiple of themselves, we may assume without loss of gener-
ality that |�| = |⌧ |. Now let ⌧ = ↵�⌧�⌧⌧�⌧⌧⌧ . . . . We claim that this path is not periodic. Indeed,
if it had period k and we were to label the segment �⌧⌧ . . . ⌧ where ⌧ is repeated k times by edges
e
1

e
2

. . . e
(k+1)|�|, then �

1

= e
1

= e
1+|�|k = ⌧

1

, which contradicts our choice of � and ⌧ . Thus, ⌧
cannot be periodic. This concludes the case where there exists a path ↵ with r(↵) = v and s(↵) a
trap.

Now suppose such a path does not exist. We will construct a sequence (⌧n) of paths with r(⌧
1

) = v

such that

s(⌧n�1

) = r(⌧n) and [⌧n] * [⌧
1

. . . ⌧n�1

],

where [⌧ ] is the collection of vertices visited by ⌧ . If we can show this, then ⌧ = ⌧
1

⌧
2

⌧
3

. . . will visit
infinitely many vertices, making it an essentially aperiodic trail. Let ⌧

1

be an arbitrary edge with
r(⌧

1

) = v, and now suppose we have constructed the first N paths. We will now find an appropriate
⌧N+1

.

Write the path ⌧
1

. . . ⌧N as edges e
1

e
2

. . . ek. Since s(ek) is not a trap, there exists an edge ek+1

with r(ek+1

) = s(ek). If s(ek+1

) /2 [⌧
1

. . . ⌧N ], then we may let ⌧N+1

= ek+1

. However, if s(ek+1

) 2
[⌧

1

. . . ⌧N ] then there is a closed path � = ek+1

epep+1

. . . ek for some p 2 {1, . . . , k + 1}. Since no
vertex in [�] is a trap, then � has an entry, call it ek+2

.

We now claim that s(ek+2

) /2 [⌧
1

. . . ⌧N ]. Suppose this were not the case; we would be able to find
a closed path ⌫ with r(⌫) = s(⌫) = s(ek+2

) which is a segment of ⌧
1

. . . ⌧N . We’ve now found two
appropriate paths with r(�) = s(�) = r(⌫) = s(⌫) = s(ek+2

) proving that s(ek+2

) is a trap. This is
a contradiction, and so s(ek+2

) /2 [⌧
1

. . . ⌧N ]. We may set ⌧N+1

= ek+1

epep+1

. . . ek+2

.

This now proves that in either case, there exists an essentially aperiodic trail ⌧ with r(⌧) = v. ⇤

5.1. The diagonal. We now introduce some terminology which will be used in the following re-
sults. We will show in Section 5.2 the relation between the diagonal and the abelian core. For now,
the examples in this section will justify the terminology.

Definition 5.8. For an arbitrary CK E-family {S, P}, we let G�(S, P ) = {SµS
⇤
µ | µ 2 E⇤} and

define the diagonal to be

�(S, P ) = C⇤(G�(S, P )) = span{SµS
⇤
µ | µ 2 E⇤}.
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Now, if µ = ⌫µ0 then (S⌫S
⇤
⌫ )(SµS

⇤
µ) = S⌫µ0Sµ = SµS

⇤
µ = (SµS

⇤
µ)(S⌫S

⇤
⌫ ). If ⌫ = µ⌫0 then

(S⌫S
⇤
⌫ )(SµS

⇤
µ) = S⌫S

⇤
µ⌫0 = S⌫S

⇤
⌫ = (SµS

⇤
µ)(S⌫S

⇤
⌫ ). Finally, if µ does not extend ⌫ and ⌫ does

not extend µ then (S⌫S
⇤
⌫ )(SµS

⇤
µ) = 0 = (SµS

⇤
µ)(S⌫S

⇤
⌫ ).

Thus, the generators of �(S, P ) are commuting projections. If {s, p} is the universal CK E-family
which generates C⇤(E), then we write G�

E = G�(s, p) and �(E) = �({s, p}).

Note that if {T,Q} is an arbitrary CK E-family in some C⇤-algebra B then ⇡T,Q : C⇤(E) ! B
maps G�

E onto G�({T,Q}). Thus, ⇡T,Q also maps �(E) onto �({T,Q}), so we say that �(E) is
universal in this sense. Let’s take a look at a few examples to get a handle on these new terms.

Example 5.9. Consider the graph E to be the single edge shown in Graph 27.

v w
e

Graph 27

Then we have E⇤ = {v, w, e} and so G�

E = {pv, pw, ses⇤e = pw} = {pv, pw}. Now, the identity
element in C⇤(E) is I = pv + pw which is an element of �(E), but is not contained in G�

E .

Example 5.10. Recall Graph 3, shown again below.

v

w

u
e

f

g h

In Section 2.2, we found a faithful representation of the universal CK E-family {s, p} on C6 to be

se = E
21

sf = E
31

sg = E
41

sh = E
52

+ E
63

pv = E
11

pu = E
22

+ E
33

pw = E
44

+ E
55

+ E
66

.

Then shes
⇤
he = E

55

and shfs
⇤
hf = E

66

and since E⇤ = {v, u, w, e, f, g, h, he, hf}, we have G�

E =
{E

11

, E
22

+ E
33

, E
44

+ E
55

+ E
66

, E
22

, E
33

, E
44

, E
55

+ E
66

, E
55

, E
66

}. Thus, �(E) = span{Eii | 1 
i  6}.

Definition 5.11. We define

�k(E) = span{s↵s⇤↵ | ↵ 2 Ek}

where Ek was defined in Section 3.1. For ↵ 2 Ek if s(↵) is a source, then s↵s
⇤
↵ 2 �k+1(E). If

s(↵) is not a source, then s↵s
⇤
↵ =

P

r(e)=s(↵) s↵es
⇤
↵e 2 �k+1(E).

Thus, �k(E) ✓ �k+1(E) and �(E) = [k�0

�k(E).
44



Proposition 5.12. If E has no sources, then for a *-homomorphism � : �(E) ! A, the following

are equivalent:

(1) � is injective

(2) �(sµs⇤µ) 6= 0 for all µ 2 E⇤

(3) �(pv) 6= 0 for all v 2 E0.

Proof. (1) ) (3) This is clear.

(3) ) (2) We may write �(sµs⇤µ) = �(sµ)�(s⇤µsµ)�(s
⇤
µ) = �(sµ)�(ps(µ))�(s

⇤
µ). Thus, if �(sµ) = 0

then �(ps(µ)) = 0 so �(sµs⇤µ) = 0.

(2) ) (1) For some ↵,� 2 Ek with ↵ 6= �, s⇤↵s� = 0. Thus, �k(E) = �↵2EkCs↵s⇤↵. Since
�(s↵s⇤↵) 6= 0, then � is injective on each �k(E) for all k � 0. Thus, � is injective.

⇤

Note the similarities between this proof and that of Lemma 3.10.

The proof of our final uniqueness theorem involves considering a particular faithful representation
of C⇤(E) on `2(T ⇥ Z). In the following section, we will see that this particular representation may
be intertwined with a conditional expectation to explain the relation between the diagonal and the
abelian core.

Theorem 5.13. Suppose E is a row-finite graph with no sources and let T be the set of all essen-

tially aperiodic trails in E. Consider the standard orthonormal basis (⇠n⌧ )⌧2T ,n2Z for `2(T ⇥ Z).
Then there exists a unique CK E-family {S, P} ✓ B(`2(T ⇥ Z)) such that for every path ↵ 2 E⇤,

S↵⇠
n
⌧ =

(

⇠
n+|↵|
↵⌧ if r(⌧) = s(↵)

0 otherwise.

Furthermore, the *-homomorphism ⇡S,P : C⇤(E) ! B(`2(T ⇥ Z)) is injective.

Proof. Fix some path ↵ 2 E⇤ and consider the set M = {⇠n⌧ | ⌧ 2 T , n 2 Z} of all basis elements.
Let S0

↵ : M ! M [ {0} be defined by

S0

↵(⇠
n
⌧ ) =

(

⇠
n+|↵|
↵⌧ if r(⌧) = s(↵)

0 otherwise.

Let M0

↵ = {⇠n⌧ 2 M | n 2 Z, ⌧ 2 T , s(↵) 6= r(⌧)} so that S0

↵|M0
↵
⌘ 0. If we take distinct ⇠n⌧ and ⇠m�

in M\M0

↵ then either n 6= m or ⌧ 6= �. In either case, S0

↵(⇠
n
⌧ ) = ⇠

n+|↵|
↵⌧ 6= ⇠

m+|↵|
↵� = S0

↵(⇠
m
� ). Thus,

S0

↵|M\M0
↵
is injective. Note that this implies that S0

↵ is also injective on span(M\M0

↵).

Thus, we may extend S0

↵ to a partial isometry S↵ in B(`2(T ⇥ Z)) with ker(S↵) = span(M0

↵) and
ranS↵ = span{⇠n⌧ | n 2 Z, ⌧ = ↵⌧ 0}. It is not hard to confirm that
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S⇤
↵⇠

n
⌧ =

(

⇠
n�|↵|
⌧ 0 if ⌧ = ↵⌧ 0

0 otherwise.

We will now check that the collection {Pv = Sv, Se} is a CK E-family. For a fixed v 2 E0, if ⇠n⌧ 2
M\M0

v then

Pv⇠
n
⌧ = Sv⇠

n
⌧ = ⇠n+0

v⌧ = ⇠n⌧ = P ⇤
v ⇠

n
⌧ .

Thus, Pv is a projection onto span(M\M0

v) = span{⇠n⌧ | r(⌧) = v}. We may verify that SeS
⇤
e =

Ps(e) by checking this equality at each basis element ⇠n⌧ . Finally, we fix v 2 E0 and some orthonor-
mal basis element ⇠n⌧ . If r(⌧) 6= v then we have Pv⇠

n
⌧ = 0 =

P

r(e)=v SeS
⇤
e ⇠

n
⌧ . If r(⌧) = v then we

may write ⌧ = e⌧ 0 and so

0

@Pv �
X

r(e)=v

SeS
⇤
e

1

A ⇠n⌧ = ⇠n⌧ �
X

r(e)=v

⇠ne⌧ 0 ,

where our assumption that E is row-finite tells us that the two sums are finite. There is precisely

one edge e where ⌧ = e⌧ 0, so independent of whether r(⌧) = v or not, we have
⇣

Pv �
P

r(e)=v SeS
⇤
e

⌘

⇠n⌧ =

0 for all ⇠n⌧ . Thus, Pv =
P

r(e)=v SeS
⇤
e . This proves that {Pv, Se} is indeed a CK E-family, and so it

makes sense to talk about the *-homomorphism ⇡S,P : C⇤(E) ! B(`2(T ⇥ Z)). By again checking
on the orthonormal basis elements, it is not hard to confirm that for a path ↵ = ↵

1

. . .↵n, the oper-
ator S↵ is equal to the composition S↵1S↵2 . . . S↵n

, and so it is only left to show that the map ⇡S,P

is injective.

By Lemma 5.7, for every vertex v 2 E0, there exists an essentially aperiodic trail ⌧ 2 T with v =
r(⌧). Thus, Pv⇠

n
⌧ = ⇠n⌧ and so Pv 6= 0. Consider the unitary operator Uz 2 B(`2(T ⇥ Z)) defined by

Uz⇠
n
⌧ = zn⇠n⌧ with adjoint U⇤

z ⇠
n
⌧ = z�n⇠n⌧ . We can then define the action � : T ! AutB(`2(T ⇥ Z))

to act on X 2 B(`2(T ⇥ Z)) by �z(X) = UzXU⇤
z . For any fixed ↵ 2 E⇤ and z 2 T, we may check

that �z(S↵) = UzS↵U
⇤
z = z|↵|S↵.

More precisely, �z(Pv) = UzPvU
⇤
z = Pv and �z(Se) = UzSeU

⇤
z = zSe. Thus, the Gauge-Invariant

Uniqueness Theorem (Theorem 3.11) tells us that ⇡S,P is injective. ⇤

We rename this unique *-homomorphism to be ⇡ap.

Definition 5.14. For an essentially aperiodic trail ⌧ and a path ↵ 2 E⇤, define the projections
R↵, Q⌧ 2 B(`2(T ⇥ Z)) by

Q⌧ = proj
span{⇠n⌧ |n2Z} and R↵ = proj

span{⇠n⌧ |⌧2T ,n2Z,⌧=↵⌧ 0} .

Note that in the proof of Theorem 5.13, we found that span{⇠n⌧ | ⌧ 2 T , n 2 Z, ⌧ = ↵⌧ 0} = ran(S↵)
and so because S↵ is a partial isometry, R↵ = proj

ranS↵
= S↵S

⇤
↵.
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Definition 5.15. We define the tail of length n for a trail ⌧ = ⌧
1

⌧
2

· · · 2 T to be

⌧
(n) =

8

>

>

<

>

>

:

r(⌧) if n = 0

⌧
1

⌧
2

. . . ⌧n if n > 0 and ⌧ is either infinite or finite with |⌧ | > n

⌧ if ⌧ is finite, with |⌧ |  n.

Note that for any trail ⌧ and any positive integer n, the tail ⌧
(n) is a path. Thus, R⌧(n)

is well-defined.

Proposition 5.16. For a row-finite graph E, an essentially aperiodic trail ⌧ 2 T with tails ⌧
(n),

and the operators R⌧(n)
and Q⌧ defined above, we have

sot� lim
n

R⌧(n)
= Q⌧ .

Proof. Fix any basis element ⇠m� 2 M and note that we may write � = ⌧
(n)�

0 if and only if � = ⌧ .
Thus,

lim
n

S⌧(n)
S⇤
⌧(n)

⇠m� = lim
n

R⌧(n)
⇠m� = lim

n

(

⇠m� if � = ⌧

0 otherwise
= Q⌧ ⇠

m
� .

Since each R⌧(n)
is a projection, it is bounded and therefore continuous. Thus, for any x 2 `2(T ⇥Z)

we have that limn R⌧(n)
x = Q⌧x, giving sot� limn R⌧(n) = Q⌧ . ⇤

We now notice that for ↵ 2 E⇤, if � = ⌧ = ↵�0 then

Q⌧R↵⇠
n
� = Q⌧ ⇠

n
� = ⇠n⌧ and

R↵Q⌧ ⇠
n
� = R↵⇠

n
⌧ = ⇠n⌧ .

If this assumption does not hold, then

Q⌧R↵⇠
n
� = 0 and R↵Q⌧ ⇠

n
� = 0.

Thus, Q⌧R↵ = R↵Q⌧ .

Recall that ⇡ap : C⇤(E) ! B(`2(T ⇥ Z)) is the map defined in Theorem 5.13. More generally, since
⇡ap(s↵s⇤↵) = S↵S

⇤
↵ = R↵ then for every X 2 �(E) = span{sµs⇤µ | µ 2 E⇤} and for all essentially

aperiodic trails ⌧ 2 T , there exists a unique c⌧ (X) 2 C such that

Q⌧⇡ap(X) = ⇡ap(X)Q⌧ = c⌧ (X)Q⌧ .

Furthermore, the projections (Q⌧ )⌧2T are mutually orthogonal and sot�
P

⌧2T Q⌧ = I.
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Thus, for X 2 �(E),

⇡ap(X) = ⇡ap(X)

 

sot�
X

⌧2T
Q⌧

!

= sot�
X

⌧2T
c⌧ (X)Q⌧ .

Lemma 5.17. Suppose H is an infinite, separable Hilbert space and consider a collection {Pn} of

mutually orthogonal projections such that sot�
P

n Pn = I. Then the map

E : B(H) ! B(H)

T 7! sot�
X

n

PnTPn

is a conditional expectation of B(H) onto P 0 where P 0 = {T 2 B(H) | TPn = PnT 8n}.

Proof. It is immediately clear that E is positive, idempotent and satisfies ranE ✓ P 0. If T 2 P 0

then E(T ) = sot �
P

n PnTPn = sot �
P

n PnT = T , so ranE = P 0. Finally, for T 2 P 0 and
S 2 B(H) we have

E(ST ) = sot�
X

n

PnSTPn = sot�
X

n

PnSPnT = E(S)T,

so E is indeed a conditional expectation. ⇤

Definition 5.18. Define the map Eap : B(`2(T ⇥ Z)) ! B(`2(T ⇥ Z)) by Eap(T ) = sot �
P

⌧2T Q⌧TQ⌧ . The lemma above tells us that Eap is a conditional expectation of B(`2(T ⇥Z)) onto
Q0 = {T 2 B(`2(T ⇥ Z)) | TQ⌧ = Q⌧T 8⌧ 2 T }.

Now let R = {R↵ = ⇡ap(s↵s⇤↵)}↵2E⇤ . It’s clear that R ✓ Q0. Moreover, for some T 2 R0 and a fixed
essentially aperiodic trail ⌧ then TR⌧(n)

= R⌧(n)
T so that

TQ⌧ = T · sot� lim
n

R⌧(n)
= sot� lim

n
TR⌧(n)

= sot� lim
n

R⌧(n)
T = Q⌧T,

which implies T 2 Q0. Thus, for T 2 R0 ✓ Q0 we have Eap(T ) = T .

5.2. The abelian core. Before we introduce the definition of the abelian core, we investigate the
normal elements from our standard generating set {sµs⇤⌫ | µ, ⌫ 2 E⇤} of C⇤(E).

Proposition 5.19. Suppose E is a row-finite graph with universal CK E-family {s, p} which gener-

ates C⇤(E). Then a non-zero element of the form X = sµs
⇤
⌫ with µ, ⌫ 2 E⇤ is normal if and only if

one of the following holds:

(1) µ = ⌫

(2) µ = ⌫�k for k � 1 where � is an entryless cycle

(3) ⌫ = µ�k for k � 1 where � is an entryless cycle.

Moreover, such normal elements commute.
48



Proof. Take X = sµs
⇤
⌫ with µ, ⌫ 2 E⇤ to be an element of C⇤(E). If µ = ⌫ then clearly X = X⇤, so

X is also normal. Now suppose µ = ⌫�k where � is an entryless cycle. By Corollary 3.24, we know
that s�s⇤� = pr(�) = ps(�) and it follows that sk�s

⇤k
� = pr(�). In this case,

XX⇤ = sµs
⇤
⌫s⌫s

⇤
µ = sµs

⇤
µ = (s⌫s

k
�)(s

⇤k
� s⇤⌫) = s⌫s

⇤
⌫

X⇤X = s⌫s
⇤
µsµs

⇤
⌫ = s⌫s

⇤
⌫ .

Thus, in case (2), the element X is normal. A nearly identical argument will be valid for case (3).

Now suppose X = sµs
⇤
⌫ 6= 0 is normal. We know that s(µ) = s(⌫) and

sµs
⇤
µ = sµs

⇤
⌫s⌫s

⇤
µ = XX⇤ = X⇤X = s⌫s

⇤
µsµs

⇤
⌫ = s⌫s

⇤
⌫ .

Since sµs
⇤
µ  pr(µ) and s⌫s

⇤
⌫  pr(⌫), then r(µ) = r(⌫). Moreover, X2 is non-zero and thus, sµs⇤⌫sµs

⇤
⌫

is non-zero. Either µ = ⌫� or ⌫ = µ� for some closed path �. If µ = ⌫ then we’re done. If not,
suppose µ = ⌫� and that the closed path � has an entry, so s�s

⇤
� < pr(�) = ps(⌫). Then XX⇤ =

s⌫s
⇤
⌫ = s�s�s

⇤
�s

⇤
⌫ < s⌫s

⇤
⌫ = X⇤X, a contradiction to the assumption that X is normal. Thus, �

cannot have an entry, and so it may be written uniquely as � = �k for some entryless cycle �. The
case where ⌫ = µ� is similar.

We will now see that such elements commute. Suppose we are considering two elements of form (2)

and (3), call them sµs
⇤
⌫ and s↵s

⇤
� where µ = ⌫�` and � = ↵�k and both � and � are entryless

cycles. If we assume sµs
⇤
⌫s↵s

⇤
� is non-zero, then either ↵ extends ⌫ or ⌫ extends ↵. In either case,

because both � and � do not have any entries, they must be equal and the di↵erence between ↵ and
⌫ must be some multiple of � = �. Suppose ↵ = ⌫�m, forcing � = ⌫�k+m and µ = ⌫�m+`. Then

sµs
⇤
⌫s↵s

⇤
� = s⌫s

m+`
� s⇤⌫s⌫s

m
� s⇤k+m

� s⇤⌫ = s⌫s
2m+`
� s⇤k+m

� s⇤⌫ = s⌫s
m+`�k
� s⇤⌫

s↵s
⇤
�sµs

⇤
⌫ = s⌫s

m
� s⇤k+m

� s⇤⌫s⌫s
m+`
� s⇤⌫ = s⌫s

⇤
�s

m+`�k
� s⇤⌫ .

Similarly, in the case where the two elements sµs⇤⌫ and s↵s
⇤
� are of form either (2) or (3), we find

that if sµs⇤⌫s↵s
⇤
� is nonzero, then the two entryless cycles must be equal which forces the two ele-

ments to commute.

We are now left with the case where one element is of form (1) and the other is of form (2) (this
will simultaneously give us the case where the two elements are of form (1) and (3) by taking ad-
joints). Suppose we have elements s↵s⇤↵ and sµs

⇤
⌫ where µ = ⌫�k for an entryless cycle �. Assume

that s↵s⇤↵sµs
⇤
⌫ is nonzero, so either ↵ extends µ or µ extends ↵.

If ↵ extends µ, then there exists some ` such that ↵ = µ�` = ⌫�k+` so that

s↵s
⇤
↵sµs

⇤
⌫ = s⌫(s

k+`
� s⇤k+`

� )(s⇤⌫s⌫)s
k
�s

⇤
⌫ = s⌫s

k
�s

⇤
⌫ = s⌫s

k
�(s

⇤
⌫s⌫)(s

k+`
� s⇤k+`

� )s⇤⌫ = sµs
⇤
⌫s↵s

⇤
↵.

Now, if µ extends ↵ we have two subcases: either µ = ⌫
1

⌫
2

�k where ↵ = ⌫
1

and ⌫ = ⌫
1

⌫
2

or µ =
⌫�`�

1

�
2

�k�`�1 where ↵ = ⌫�`�
1

and � = �
1

�
2

.
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If the first is true, then

s↵s
⇤
↵sµs

⇤
⌫ = s⌫1(s

⇤
⌫1
s⌫1)s⌫2s

k
�s

⇤
⌫2
s⇤⌫1

= s⌫s
k
�s

⇤
⌫ = s⌫1s⌫2s

k
�s

⇤
⌫2
(s⇤⌫1

s⌫1)s
⇤
⌫1

= sµs
⇤
⌫s↵s

⇤
↵.

However, suppose now that the second subcase holds and µ = ⌫�`�
1

�
2

�k�`�1 where � = �
1

�
2

and
↵ = ⌫�`�

1

. Because � is entryless, so is the path �
1

, in that for every v 2 [�
1

] there is only one edge
e with r(e) = v. Thus, s�1s

⇤
�1

= pr(�1)
, and so

s↵s
⇤
↵sµs

⇤
⌫ = s⌫s

`
�s�1s

⇤
�1
s⇤`� (s⇤⌫s⌫)s

k
�s

⇤
⌫ = s⌫s

`+k
� s⇤`� s⇤⌫ = s⌫s

k
�(s

⇤
⌫s⌫)s

`
�(s�1s

⇤
�1
)s⇤�`s

⇤
⌫ = sµs

⇤
⌫s↵s

⇤
↵.

And so, despite requiring a number of subcases, we’ve found that the normal elements of the form
X = sµs

⇤
⌫ do indeed commute. ⇤

Example 5.20. We return to Graph 12 investigated previously in Section 3.2, shown again below.

v we
f

g

All paths in the graph E have one of three forms, we can write

E⇤ = {ekfg` | 0  k, `}
[

{ek | 0  k}
[

{g` | 0  `}.

Theorem 5.19, along with the fact that g is the only entryless cycle tells us that the normal ele-
ments of C⇤(E) will fall into one of the following sets:

{seks⇤ek | 0  k}
{seksfsg`s⇤gms⇤g`s

⇤
fs

⇤
ek | 0  k, `,m}

{seksfsg`sgms⇤g`s
⇤
fs

⇤
ek | 0  k, `,m}

{sgks⇤gm | 0  k,m} = {sgk | 0  k} [ {s⇤gk | 0  k}.

Thus, we find that the only elements in the generating set {sµs⇤⌫ | µ, ⌫ 2 E⇤} which are not normal
are those of the form

{seks⇤e` | k 6= `}
{sekfg`s⇤gm = sekfg`�m | 0  k, `,m}
{sgms⇤ekfg` = sekfg`�m | 0  k, `,m}.

50



It is now easy to determine whether an element of the form X = sµs
⇤
⌫ in C⇤(E) is normal in this

example.

Definition 5.21. Let M(E) be the C⇤-algebra generated by all such normal elements of the form
sµs

⇤
⌫ . Proposition 5.19 implies that M(E) is abelian. Thus, we appropriately call M(E) the abelian

core of C⇤(E).

Because M(E) consists of all elements s↵s⇤↵ and M(E) is abelian, ⇡ap(M(E)) ✓ R0 ✓ Q0. Thus,
for every element X 2 M(E), we have Eap(⇡ap(X)) = ⇡ap(X).

The following result will define a new conditional expectation which will allow us to relate the diag-
onal of E with the abelian core.

Theorem 5.22. For a row-finite graph E, there exists a unique conditional expectation EM of

C⇤(E) onto M(E) such that

EM (X) =

(

X if X = s↵s
⇤
� is normal

0 if X = s↵s
⇤
� is not normal.

Furthermore, ⇡ap � EM = Eap � ⇡ap and in particular, EM is faithful.

Proof. Our goal will be to verify that those X = s↵s
⇤
� 2 C⇤(E) which are not normal satisfy

Eap(⇡ap(X)) = Eap(S↵S
⇤
�) = sot� lim

X

⌧2T
Q⌧S↵S

⇤
�Q⌧ = 0.

It is su�cient to show that for any essentially aperiodic trail ⌧ , if Q⌧S↵S
⇤
�Q⌧ is non-zero then X =

s↵s
⇤
� is normal.

Note that

Q⌧S↵S
⇤
�Q⌧ ⇠

n
� = Q⌧S↵S

⇤
�

(

⇠n⌧ if � = ⌧

0 otherwise

= Q⌧

(

⇠
n�|�|+|↵|
↵⌧ 0 if � = ⌧ = �⌧ 0

0 otherwise

=

(

⇠
n�|�|+|↵|
⌧ if � = ⌧ = �⌧ 0 = ↵⌧ 0

0 otherwise.

Thus, if Q⌧S↵S
⇤
�Q⌧ is non-zero, then ⌧ = �⌧ 0 = ↵⌧ 0, implying that either the two paths are equal,

↵ extends � or � extends ↵. In the case where the two paths are equal, we immediately get that
X = s↵s

⇤
� is normal. Let’s suppose without loss of generality that ↵ extends �, so ↵ = ��, where

s(↵) = s(�) implies that � is a closed path. Thus, ↵�⌧ 0 = �⌧ 0 = ⌧ = ↵⌧ 0 and so since ↵ is a finite
path, we get that �⌧ 0 = ⌧ 0. Thus, ⌧ 0 = ��� . . . . We then have that ⌧ is periodic with period � and
so, because ⌧ is an essentially aperiodic trail, � must be some multiple of an entryless cycle, call it
⌫. Thus, � = ↵⌫k for the entryless cycle ⌫, making X = s↵s

⇤
� normal. A similar argument holds if ↵

extends �.
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Since Eap(⇡ap(X)) = ⇡ap(X) for all normal X = s↵s
⇤
� , then Eap(⇡ap(C⇤(E))) ✓ ⇡ap(C⇤(E)). The

injectivity of ⇡ap implies that we may set EM to be ⇡�1

ap �Eap � ⇡ap. This is a linear continuous map

which satisfies ⇡ap �EM = Eap � ⇡ap. If eEM also satisfies this equation then ⇡ap �EM = Eap � ⇡ap =

⇡ap � eEM and by applying ⇡�1

ap to both sides, we get EM = eEM , giving us uniqueness of the operator
EM . Moreover, the injectivity of ⇡ap also tells us that

EM (X) =

(

X if X = s↵s
⇤
� is normal

0 if X = s↵s
⇤
� is not normal.

Finally, suppose we have some X 2 C⇤(E) with X � 0 and 0 = EM (X). Then 0 = ⇡ap(EM (X)) =
Eap(⇡ap(X)) = ⇡ap(X) and because ⇡ap is injective, then 0 = X. Thus, by continuity and linearity,
EM is a faithful conditional expectation from C⇤(E) onto M(E). ⇤

We will now see the relationship between the abelian core and the diagonal.

Corollary 5.23. Suppose E is a row-finite graph. Then

M(E) = �(E)0 = {X 2 C⇤(E) | XD = DX 8D 2 �(E)}.

Proof. We have seen previously that �(E) ✓ M(E) and that M(E) is abelian, so then M(E) ✓
M(E)0 ✓ �(E)0. We are only left to prove �(E)0 ✓ M(E). Fix some X 2 �(E)0 so that for every
path ↵ 2 E⇤,

⇡ap(X)R↵ = ⇡ap(Xs↵s
⇤
↵) = ⇡ap(s↵s

⇤
↵X) = R↵⇡ap(X).

Thus, ⇡ap(X) 2 R0, so Eap(⇡ap(X)) = ⇡ap(X). By Theorem 5.22 we have ⇡ap(X) = Eap(⇡ap(X)) =
⇡ap(EM (X)) and as ⇡ap is injective, X = EM (X) 2 M(E). ⇤

Definition 5.24. We define the map E⌧ to be

E⌧ : C⇤(E) ! Q⌧B(`2(T ⇥ Z))Q⌧

X 7! Q⌧⇡ap(X)Q⌧ .

For X 2 M(E), the fact that EM (X) = X implies that

⇡ap(X) = Eap(⇡ap(X)) = sot�
X

⌧2T
Q⌧⇡ap(X)Q⌧ = sot�

X

⌧2T
E⌧ (X) = sot�

M

⌧2T
E⌧ (X).

Note that the above equality combined with the fact that ⇡ap is a *-homomorphism tells us that
restricting E⌧ to M(E) gives a *-homomorphism. Let

⇡M
⌧ := E⌧ |M(E)

: M(E) ! Q⌧B(`2(T ⇥ Z))Q⌧ .
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Additionally, the system (E⌧ )⌧2T is jointly faithful in that for X 2 C⇤(E) with X � 0 and
E⌧ (X) = 0 for all ⌧ 2 T then X = 0. Indeed, for a non-zero X 2 C⇤(E), injectivity of ⇡ap tells
us that ⇡ap(X⇤X) is a non-zero element of B(`2(T ⇥ Z)). Suppose we write ⇡ap(X⇤X) as

P

c⌧,n⇠
n
⌧

where there exists at least one (�, n) 2 T ⇥ Z where the corresponding constant c�,n 6= 0. Then
E⌧ (⇡ap(X⇤X)) = Q�⇡ap(X⇤X)Q� = c�,n⇠

n
� 6= 0. Thus, the collection (E⌧ )⌧2T is indeed jointly

faithful.

Proposition 5.25. Suppose E is a row-finite graph. If ⌧ 2 T is either finite or continuous, then

there exists a unique state !⌧ on C⇤(E) such that E⌧ (X) = !⌧ (X)Q⌧ for all X 2 C⇤(E).

Proof. We first note that

Eap(E⌧ (X)) = sot�
X

�2T
Q�E⌧ (X)Q� = sot�

X

�2T
Q�Q⌧⇡ap(X)Q⌧Q� = Q⌧⇡ap(X)Q⌧ = E⌧ (X),

and

Eap(E⌧ (X)) = Eap(Q⌧⇡ap(X)Q⌧ ) = Q⌧Eap(⇡ap(X))Q⌧ = Q⌧⇡ap(EM (X))Q⌧ .

Together, these imply that E⌧ (X) = Q⌧⇡ap(EM (X))Q⌧ . Because EM (X) = 0 for X = s↵s
⇤
� which

are not normal, we only need to confirm the equation for normal generators X = s↵s
⇤
� .

Consider the normal element X = s↵s
⇤
� with the additional assumption that ↵ 6= �. Proposition

5.19 implies that either ↵ or � must begin with an entryless cycle. Suppose ↵ is the path which be-
gins with an entryless cycle �. The assumption that ⌧ is not periodic tells us that if ⌧ extended ↵,
⌧ would be forced to be periodic. If we assumed ↵ extended ⌧ , then this would force ⌧ to be finite
and s(⌧) would not be a source in this case. In either of these assumptions, we reach a contradic-
tion. Thus, s⇤↵s⌧(n)

s⇤⌧(n)
= 0 for n � |↵|.

Similarly, if we assume � begins with an entryless cycle, s⇤�s⌧(n)
s⇤⌧(n)

= 0 for n � |�|. In either case,

s⌧(n)
s⇤⌧(n)

s↵s
⇤
�s⌧(n)

s⇤⌧(n)
= 0 8n � max{|↵|, |�|}.

Thus, R⌧(n)
S↵S

⇤
�R⌧(n)

= 0 and so

E⌧ (s↵s
⇤
�) = Q⌧S↵S

⇤
�Q⌧

=
⇣

sot� lim
n

R⌧(n)

⌘

S↵S
⇤
�

⇣

sot� lim
m

R⌧(m)

⌘

= 0.

We are now left to check the normal elements X = s↵s
⇤
↵. In this case, we find that E⌧ (X) is equal

to Q⌧ if ⌧ = ↵⌧ 0 and 0 otherwise.

⇤

Note that it immediately follows from the proof that !⌧ = !⌧ � EM .
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Lemma 5.26. Suppose E is a row-finite graph. For every element X = s↵s
⇤
� 2 C⇤(E) and every

continuous ⌧ 2 T , there exists some N⌧ � 0 such that for all n � N⌧ we have

s⌧(n)
s⇤⌧(n)

Xs⌧(n)
s⇤⌧(n)

= !⌧ (X)s⌧(n)
s⇤⌧(n)

.

Proof. By taking adjoints if necessary, we may assume without loss of generality that |↵| � |�|.
Suppose we choose n > |↵| and assume s⌧(n)

s⇤⌧(n)
Xs⌧(n)

s⇤⌧(n)
6= 0. This immediately tells us that

s↵s
⇤
� , s

⇤
⌧(n)

s↵, and s⇤�s⌧(n)
are non-zero. Our assumptions on length imply that ⌧

(n) must extend

both ↵ and �. Thus, � � ↵ � ⌧
(n). Let’s write ↵ = �� where the assumption that s(↵) = s(�)

tells us that � is some closed path.

If ↵ 6= � then |�| � 1 and because ⌧ is not periodic, there exists a maximal k such that ��k � ⌧ .
Let N⌧ = |�|+ (k + 1)|�| > |↵| and choose any n � N⌧ . Then ⌧

(n) = ��k� for some �, and so

s⇤⌧(n)
s↵s

⇤
�s⌧(n)

= s⇤�s
⇤
�ks

⇤
�s�s�s

⇤
�s�s�ks�

= s⇤�s
⇤
�ks�k+1s� (since s⇤�s� = ps(�))

= s⇤�s�s� .

If s⇤�s� 6= 0 then since |�| = |⌧
(n)|� |��k| � (|�|+ (k+1)|�|)� (|�|+ k|�|) = |�|, we have that � � �.

But this contradicts the maximal choice of k.

Thus, if s⌧(n)
s⇤⌧(n)

s↵s
⇤
�s⌧(n)

s⇤⌧(n)
6= 0 for n > |↵| then ↵ = �. We may now take N⌧ = |↵|. For

n � N⌧ , if we write ⌧
(n) = ↵� then s⌧(n)

s⇤⌧(n)
s↵s

⇤
↵s⌧(n)

s⇤⌧(n)
= s⌧(n)

s⇤⌧(n)
. ⇤

Proposition 5.27. Suppose E is a row-finite graph. If ⌧ 2 T is continuous, then for X 2 C⇤(E)
and ! 2 C, the following are equivalent:

(1) limn ks⌧(n)
s⇤⌧(n)

Xs⌧(n)
s⇤⌧(n)

� !s⌧(n)
s⇤⌧(n)

k = 0

(2) limn kEM (X)s⌧(n)
s⇤⌧(n)

� !s⌧(n)
s⇤⌧(n)

k = 0

(3) ! = !⌧ (X).

Proof. (3) ) (1) It su�ces to prove this for elements of the form X = s↵s
⇤
� . This follows directly

from Lemma 5.26.

(1) ) (2) Assume (1) holds. By applying EM to (1), we get that

lim
n

kEM (s⌧(n)
s⇤⌧(n)

Xs⌧(n)
s⇤⌧(n)

)� !EM (s⌧(n)
s⇤⌧(n)

)k = 0.

Thus implying limn ks⌧(n)
s⇤⌧(n)

EM (X)s⌧(n)
s⇤⌧(n)

� !s⌧(n)
s⇤⌧(n)

k = 0. Since we know EM (X) commutes
with s⌧(n)

s⇤⌧(n)
, then

lim
n

kEM (X)s⌧(n)
s⇤⌧(n)

� !s⌧(n)
s⇤⌧(n)

k = 0.

(2) ) (3) Assuming (2) and applying ⇡ap, we find that
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lim
n

k⇡ap(EM (X)s⌧(n)
s⇤⌧(n)

)� !⇡ap(s⌧(n)
s⇤⌧(n)

)k = 0.

We may rewrite this as limn kEap(⇡ap(X))R⌧(n)
�!R⌧(n)

k = 0. This implies that sot�limn Eap(⇡ap(X))R⌧(n)
�

!R⌧(n)
= 0. Rearranging, we find Eap(⇡ap(X))Q⌧ = !Q⌧ .

We also know that Eap(⇡ap(X))Q⌧ = Q⌧Eap(⇡ap(X))Q⌧ = E⌧ (X) = !⌧ (X)Q⌧ where the final
equality holds from Proposition 5.25. Thus, !⌧ (X) = !. ⇤

Definition 5.28. For a trail ⌧ which is discrete, we define the essential path of ⌧ to be

⌧ess =

(

⌧ if ⌧ is finite

↵ if ⌧ is periodic with ⌧ = ↵��� . . . and |↵| minimal.

Note that we may recover the discrete trail ⌧ from ⌧ess. Indeed, if s(⌧ess) is a source, then ⌧ = ⌧ess
and if it is not a source, then there will exist a unique entryless cycle � with r(�) = s(�) = s(⌧ess)
and so we recover ⌧ as ⌧ess�� . . . .

If ⌧ is discrete, the sequence (R⌧(n)
) eventually becomes constant and equal to R⌧ess and so because

sot� limn R⌧(n)
= Q⌧ , then R⌧ess = Q⌧ . Now note that we have the following equalities:

⇡ap(EM (X)s⌧esss
⇤
⌧ess) = ⇡ap(EM (X))Q⌧

= Eap(⇡ap(X))Q⌧

= sot�
X

�2T
Q�⇡ap(X)Q�Q⌧

= Q⌧⇡ap(X)Q⌧

= E⌧ (X)

= R⌧ess⇡ap(X)R⌧ess

= ⇡ap(s⌧esss
⇤
⌧essXs⌧esss

⇤
⌧ess).

Since ⇡ap is injective, then

EM (X)s⌧esss
⇤
⌧ess = s⌧esss

⇤
⌧essXs⌧esss

⇤
⌧ess .

Definition 5.29. For a discrete trail ⌧ 2 T , we define M⌧ (E) = s⌧esss
⇤
⌧essC

⇤(E)s⌧esss
⇤
⌧ess . If ⌧

is finite, then we get that M⌧ (E) = Cs⌧s⇤⌧ = Cs⌧esss⇤⌧ess . On the other hand, if ⌧ is infinite and
⌧ = ↵��� . . . where � is an entryless cycle, then ⌧ess = ↵ and M⌧ (E) = C⇤(s↵s�s⇤↵).

Let the map F⌧ be given by

F⌧ : C⇤(E) ! M⌧ (E)

X 7! s⌧esss
⇤
⌧essXs⌧esss

⇤
⌧ess .
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Thus, F⌧ (X) = s⌧esss
⇤
⌧essXs⌧esss

⇤
⌧ess = EM (X)s⌧esss

⇤
⌧ess which tells us that ⇡ap(F⌧ (X)) = E⌧ (X).

Definition 5.30. We call a path ↵ distinguished if there exists a unique entryless cycle �↵ with
r(�↵) = s(�↵) = s(↵). For a distinguished path ↵ and the unique corresponding cycle �↵, let w↵ =
s↵s�↵s

⇤
↵. Note that w↵ is a normal partial isometry.

Moreover, if ⌧ is an infinite, discrete essentially aperiodic trail, then ⌧ess is distinguished.

Example 5.31. Consider Graph 28.

u v we
f g

h

Graph 28

The paths f , gf , and hkgf for k 2 N are all distinguished with �↵ = e. Note that the paths e`, fe`,
gfe`, and hkgfe` for k, ` 2 N are also distinguished paths with �↵ = e. No other paths in the graph
are distinguished.

We will use the following result in our final theorem.

Proposition 5.32. Suppose A,B are C⇤-algebras with A ✓ B. Then for any a 2 A, we have

specB(a) [ {0} = specA(a) [ {0}.

We are now ready to present the final theorem of this paper.

Theorem 5.33. Suppose E is a row-finite graph. For a *-homomorphism � : C⇤(E) ! A, the
following are equivalent:

(1) � is injective

(2) � restricted to M(E) is injective

(3) both of the following conditions are satisfied:

(a) �(s↵s⇤↵) 6= 0 for all paths ↵ 2 E⇤

(b) for all distinguished paths ↵ 2 E⇤, specA(�(w↵)) ◆ T.

Proof. (1) ) (2) This is clear.

(2) ) (3) Because s↵s
⇤
↵ 2 M(E) for all paths ↵ 2 E⇤, it’s immediately clear that (a) holds. To

see that (b) holds, fix some distinguished path ↵ 2 E⇤ and consider the normal partial isometry w↵.
We have that (w↵w

⇤
↵)w↵ = w↵ and (w↵w

⇤
↵)w

⇤
↵ = w⇤

↵w↵w
⇤
↵ = w⇤

↵. Similarly, w⇤
↵(w↵w

⇤
↵) = w⇤

↵ and
w↵(w↵w

⇤
↵) = w↵. Thus, w↵w

⇤
↵ acts as the identity on w↵ and w⇤

↵ and so acts as the identity on all
of C⇤(w↵). This tells us precisely that w↵ is unitary on C⇤(w↵) and so specC⇤

(w↵)

(w↵) ✓ T.

We know that there exists a gauge action on C⇤(E) which for any z 2 T, satisfies �z(w↵) = z|�↵|w↵

and �z(w⇤
↵) = z�|�↵|w⇤

↵. Thus, �z(C
⇤(w↵)) ✓ C⇤(w↵) for all z 2 T and so we have the action

� : T ! Aut(C⇤(w↵)) which sends w↵ to z|�↵|. Thus, if specC⇤
(w↵)

(w↵) ( T, we may find some z

with |z| = 1 and z /2 specC⇤
(w↵)

(w↵).

Then for any x 2 T, we have that

1 = �x(1) = �x((z1� w↵)
�1x|�↵|x|�↵|(z1� w↵)) = �x((z1� w↵)

�1x|�↵|)(x|�↵|z1� w↵).
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This tells us that x|�↵|z1 � w↵ is invertible and so x|�↵|z /2 specC⇤
(w↵)

(w↵). By choosing appropri-
ate x 2 T, we can show that specC⇤

(w↵)

(w↵) does not contain any element from T. However, the
spectrum is non-empty and so our assumption that specC⇤

(w↵)

(w↵) ( T must be incorrect. Thus,
specC⇤

(w↵)

(w↵) = T.

Because M(E) is C⇤-subalgebra of C⇤(E) with w↵ 2 M(E), then specC⇤
(E)

(w↵)[{0} = specM(E)

(w↵)[
{0} by Proposition 5.32. Except in the trivial case where w↵ is an isometry, we have that specC⇤

(E)

(w↵) =
specM(E)

(w↵) = T [ {0}. Because �(M(E)) is isometrically isomorphic to M(E), we also get
spec

�(M(E))

(�(a)) = specM(E)

(a). Putting these pieces together, we find that T ✓ specM(E)

(a) =
spec

�(M(E))

(�(a)) = specA(�(w↵)), where the last equality holds by Proposition 5.32 and the fact
that �(M(E)) is a C⇤-subalgebra of A.

(3) ) (1) Fix some element X 2 ker� and suppose first that ⌧ 2 T is discrete. Then it follows that
s⌧esss

⇤
⌧essX

⇤Xs⌧esss
⇤
⌧ess = F⌧ (X⇤X) 2 ker�\M⌧ (E). Now, T ✓ specA(�(w↵)) implies that �(w↵) 6=

0. Moreover, (a) tells us that �(s↵s⇤↵) 6= 0 combined with the fact that given a discrete ⌧ 2 T , ⌧ess
is a distinguished path, then � is injective on the generators of M⌧ (E). Thus, in a proof similar to
that shown in Proposition 5.12, � is also injective on all of M⌧ (E). Thus, F⌧ (X⇤X) = 0. Now, we
may utilize that E⌧ (X) = ⇡ap(F⌧ (X)) = 0.

In the case that ⌧ 2 T is continuous, then by the result of Proposition 5.27, we have that

lim
n

ks⌧(n)
s⇤⌧(n)

X⇤Xs⌧(n)
s⇤⌧(n)

� !⌧ (X
⇤X)s⌧(n)

s⇤⌧(n)
k = 0.

By applying � to to this result and recalling that �(X⇤X) = 0, we get that

|!⌧ (X
⇤X)|

⇣

lim
n

k�(s⌧(n)
s⇤⌧(n)

)k
⌘

= lim
n

k!⌧ (X
⇤X)�(s⌧(n)

s⇤⌧(n)
)k = 0.

Now note that assumption (3) (a) combined with

k�(s⌧(n)
s⇤⌧(n)

)k = k�(s⌧(n)
s⇤⌧(n)

s⌧(n)
s⇤⌧(n)

)k = k�(s⌧(n)
s⇤⌧(n)

)�(s⌧(n)
s⇤⌧(n)

)⇤k = k�(s⌧(n)
s⇤⌧(n)

)k2

tells us that k�(s⌧(n)
s⇤⌧(n)

)k = 1 for all n � 1. Thus, we must have !⌧ (X⇤X) = 0 and so E⌧ (X⇤X) =

!⌧ (X⇤X)Q⌧ = 0. We have now shown for that for any ⌧ 2 T , E⌧ (X⇤X) = 0. Finally, because
the collection {E⌧}⌧2T is jointly continuous, we have that X⇤X = 0. Equivalently, we have that
ker� = {0}. ⇤
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