
An Automaton-Theoretic View of Algebraic

Specifications

by

Elad Lahav

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2005
c© Elad Lahav 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We compare two methods for software specification: algebraic specifications and
automata. While algebraic specifications have been around since the 1970s and
have been studied extensively, specification by automata is relatively new. Its
origins are in another veteran method called trace assertions, which considers a
software module as a set of traces, that is, a sequences of function executions. A
module is specified by a set of canonical traces and an equivalence relation matching
one of the canonical traces to each non-canonical trace. It has been recently shown
that trace assertions is an equivalent method to specification by automata. In
continuation of this work on trace assertions and automata, we study how automata
compare with algebraic specifications. We prove that every specification using an
automaton can be converted into an algebraic specification describing the same
abstract data type. This conversion utilises a set of canonical words, representing
states in the automaton. We next consider varieties of monoids as a heuristic for
obtaining more concise algebraic specifications from automata. Finally, we discuss
the opposite conversion of algebraic specifications into automata. We show that,
while an automaton always exists for every abstract data type described by an
algebraic specification, this automaton may not be finitely describable and therefore
may not be considered as a viable method for software specification.

iii

Acknowledgements

I would like to thank my supervisor, Prof. John Brzozowski, for his invaluable
help in writing this thesis, as well as for supporting my work, both academically
and financially.

I would also like to thank the University of Waterloo, the School of Computer
Science, for presenting me with the opportunity and the means to pursue my in-
terests.

Finally, I would like to thank the members of the committee: Daniel Berry,
Stanley Burris, John Thistle and Richard Trefler for their advice.

iv

To Shelly and Alma

v

Contents

1 Introduction 1

1.1 The Case For Formal Methods . 1

1.2 On Abstraction and Automata . 2

1.3 About This Thesis . 4

2 Algebraic Automaton Theory 6

2.1 Introduction . 6

2.2 Semigroups and Monoids . 7

2.3 Semiautomata . 11

2.4 Mealy Machines . 16

3 Algebraic Specifications 18

3.1 Introduction . 18

3.2 Sorts . 20

3.3 Signatures . 20

3.4 Algebras . 23

3.5 Algebraic Specifications . 30

3.6 Categories . 35

3.7 Abstract Data Types . 37

vi

4 From Automata to Algebraic Specifications 39

4.1 Introduction . 39

4.2 Algebraic Specification of a Semiautomaton 40

4.3 Properties of Generating Sets . 44

4.4 Initial Algebras . 46

4.5 Infinite Semiautomata . 49

4.6 Output Values . 50

5 Varieties 57

5.1 Introduction . 57

5.2 Varieties . 59

5.3 The Transformation Monoid as an Algebra 60

5.4 Monoid-Derived Axioms for Semiautomata 63

5.5 Examples . 66

6 From Algebraic Specifications to Automata 69

6.1 Introduction . 69

6.2 Linear Data Structures . 70

6.3 Handling Errors . 75

6.4 Non-Linear Data Structures . 79

vii

List of Figures

3.1 The Initial Algebra Approach to ADTs 38

4.1 The Shift Register Semiautomaton 40

4.2 An Infinite Unary Counter . 50

4.3 The Shift Register Mealy Machine 53

5.1 A Semiautomaton Realising a Monoid 66

6.1 The nat − bool Quotient Term Automaton 74

6.2 Example of Error Propagation . 80

6.3 A Quotient Term Automaton with Multiple Initial States 81

6.4 A Quotient Term Automaton for a Non-Linear Specification 83

viii

Chapter 1

Introduction

1.1 The Case For Formal Methods

The increasing complexity of computer programmes makes development of correct,
flaw-free software more and more difficult. The emergence of relatively powerful
and cheap computers in the 1960s, as well as the development of high-level pro-
gramming languages and tools, enabled, for the first time, the creation of large-scale
software systems. Design techniques were then applied for making these systems
more modular, so that an ample project could be handled by dividing tasks among
several developers.

This evolution in software development, however, has led to the introduction of
new problems with which early programmers were not familiar [8]. The complexity
of these new software systems meant that it was ever harder to ensure their correct-
ness. The modularisation techniques implied that programmers working on different
sub-projects had to interact to ensure the compatibility and interoperability of the
modules under their responsibility. These problems led to the introduction of a
new field in computer science, software engineering, which attempts to bring the
rigour and formality of engineering into the somewhat “artistic” world of software
development.

One of the important tools introduced by software engineering is software spec-
ification. The specification stage is supposed to bridge the gap in the development
process between the requirements (the customer’s point of view) and the design
(the programmer’s point of view) [29].

Specifications may come in different formats. Most notably, a specification is
often given using a natural language, as a document provided to the designer. Such

1

documents, however, suffer from many drawbacks, some of which were identified by
Meyer [29] as the “seven sins of the specifier”: noise (excessive discussion obfuscat-
ing the important details), silence (omission of important issues), overspecification,
contradiction, ambiguity, forward reference and wishful thinking. But the greatest
shortcoming of natural language specifications is the lack of any verification tools.
This problem is the result of the informality of such specifications, as well as the
absence of a mathematical basis.

Formal methods have been designed to overcome the problems presented by
informal specification techniques. These methods are mathematical techniques for
describing software properties [36]. The introduction of mathematics, and especially
of set theory, logic and abstract algebra, provides the basis for a theorem-proving
system, which can be used to verify the correctness of the specified modules. More-
over, since mathematics is, by its very nature, a rigorous discipline, formal methods,
when applied correctly, remove any ambiguity from software specifications.

And yet, formal methods have not been generally accepted by the software
development community [4]. Despite several recorded success stories [3], and despite
a growing inclination in the hardware industry for using mathematical verification
techniques (see, for example [32] and [17]), it seems that programmers in general,
and those outside the academia in particular, are refusing to adopt formal methods.

Why is that so? The answer to this question is beyond the scope of this work.
It can be mentioned, however, that, while working on formal methods as part of
this thesis, the author has encountered several phenomena that may give some ex-
planation for the absence of formal methods in real-world programming. Among
those are cumbersome and confusing notation, lack of sufficient mathematical back-
ground and methods which, while appropriate for small examples, do not seem to
scale well when the modules to be specified become more complicated. This last
caveat in particular seems to be a recurring problem in the more theoretic work on
formal methods (including this thesis), and future work may benefit from a larger,
and perhaps standardised, set of complex modules against which new methods can
be tested.

1.2 On Abstraction and Automata

It was noted earlier that a specification precedes the design stage in the development
process. As such, a specification is not supposed to impose any design decisions
on the programmer, or, in other words, a specification should be as abstract as

2

possible. But what makes a specification abstract? This question has been the
topic of much debate among theoreticians of formal methods.

Consider, for example, the following specification of a queue:

A queue is a linked list with pointers to its first and last nodes. When
an item is added to the queue, a new node is created to contain the
item and linked after the last item in the list. When an item is removed
from the queue, the first node is erased. The “front” operation returns
the item held by the first node.

This specification clearly includes several design decisions. A queue may very
well be implemented in many different ways, such as using an array instead of a
linked list, or by linking a new item to the head of the list rather to its tail. The
only trait that describes a queue, and therefore the only requirement that should
be imposed by a specification, is the “first-in, first-out” (FIFO) principle. A good
specification is thus one that is able to state this requirement, without giving any
other restriction, either explicitly or implicitly.

While a natural language specification can certainly be used in this case, we are
still left with the question of a formal method that can express the requirements
without adding new ones in the process of specification. Moreover, such a method
has to be expressive enough so that a specification can be constructed for any kind
of module.

Lately it has been suggested that automata can provide a useful model for
software specification [6]. The reasoning behind such a model is that a software
module is often treated as a state machine by different specification techniques
(see [30], for example). If a state machine is already implied, then why not use
automata, the mathematical model for such machines, which are well-studied in
computer science?

The major objection to the use of automata as a formal method for software
specification is the claim that an automaton already gives a design for the module.
This notion, however, may be the result of a confusion on the role of automata
in the development process, arising from the widespread usage of automata in the
implementation of software modules. Writing a specification as an automaton does
not mean that the module needs to be implemented as one. Moreover, as Brzozowski
and Jürgensen have shown [6], the attempt to stay away from automata sometimes
results in what amounts to only a cumbersome description of such machines.

3

On the other hand, the use of automata gives the developer a concrete model
with which the programmer can compare the resulting implementation. Further-
more, automata, because of their ubiquity in software design and implementation,
may serve as a good basis for automatic tools for software specification and verifi-
cation.

The question as to whether automata are abstract enough remains open, though.
We shall see in Chapter 3 that algebraic specifications provide a mathematical def-
inition of abstraction, by whose criteria an automaton is only one possible imple-
mentation of an abstract data type. While this definition, which uses the concept
of an isomorphism class of algebras, seems to be correct, it has only theoretical
importance. This class still needs to be specified using one of its elements, and,
where appropriate, an automaton is as good a representative as any other class
member.

1.3 About This Thesis

Previous work on formal methods can be roughly divided into two categories. The
first is theoretical research, which focuses on the properties of software modules as
mathematical models. Examples of such work include the trace assertion method,
originally by Bartussek and Parnas [1], and algebraic specifications (see Chapter 3
for more information).

The second category involves a more practical approach towards the develop-
ment of tools for software specification and verification. Work of this kind has
resulted in the specification languages Z [33], VDM [26] and Larch [20], as well as
in theorem proving tools, such as the Larch Prover (LP) [11]. Usually these tools
are derived from theoretical research; for example, the specification language OBJ
[16] emerged from the theory of algebraic specifications.

This thesis clearly belongs to the first of the two categories. It attempts to
draw the similarities, and differences, between two fields that are closely related to
abstract algebra, namely algebraic automaton theory and the theory of algebraic
specifications. As such, it is more interested in the mathematical properties of the
models then in their applicability to real-world software development.

The current research started as an extension to the work by Brzozowski (who
supervised the thesis) and Jürgensen on Parnas’s trace-assertion method [6]. Their
goal was to show that this method amounted to little more than a specification of
software module using infinite, deterministic Mealy machines. The natural question

4

rising from the cited paper was whether the same result can be applied to other
specification techniques, or, in other words, if automata can be used as a universal
technique for software specifications.

The method chosen for research was the theory of algebraic specifications. It
was selected mainly because of its well-studied mathematical basis, as laid down
by Goguen et al. in several papers during the late 1970s (among those are [15]
and [14]). Moreover, this theoretical foundation turned out to be derived from
Birkhoff’s original work on abstract algebra [2], which is also related to algebraic
automaton theory.

Our results are not decisive. It seems that algebraic specifications are both more
abstract and more powerful than the selected automaton model. However, much
work was left outside the scope of this thesis, such as parameterised specifications,
terminal and loose semantics, as well as different automaton models. It is therefore
obvious that more research may come up with new, or at least clearer, conclusions.

This thesis is structured as follows: The first two chapters give some background
material, with Chapter 2 dedicated to algebraic automaton theory and Chapter 3
describing the initial algebra approach to algebraic specifications. Chapter 4 shows
how to construct a correct and complete algebraic specification from an automaton,
a result which applies the work of Brzozowski and Jürgensen in [5]. Chapter 5 shows
how the specifications in Chapter 4 can be made simpler and more elegant by using
properties of varieties of transformation monoids. Finally, Chapter 6 depicts some
initial results on the transformation of algebraic specifications into automata, and
discusses the limitations of this method. It is this chapter that, we believe, would
benefit most from future research.

5

Chapter 2

Algebraic Automaton Theory

2.1 Introduction

The study of machine models is among the oldest fields in computer science. Its
origins lie in the attempt by early computer scientists to capture the properties of
real-world machines using simple, yet accurate, mathematical models. This work
has culminated in the theories of automata, computation and complexity, which
are today considered to be cornerstones of modern computer science. It has also
given rise to numerous practical applications of machine models, such as pattern
recognition, language parsing, finite state controllers and much more.

Though originally inspired by actual machines, machine models were also stud-
ied as purely mathematical entities. It has been observed that some models are
strongly related to algebraic structures, such as semigroups and monoids, an obser-
vation which led to the development of algebraic automaton theory.1

This chapter begins with some concepts in abstract algebra required for the
development of an algebraic theory for machine models. It then describes some
machine models which will be studied later in relation to algebraic specifications.

Most of the definitions, examples and results in the following sections are
adapted from [12] and [24]. References are given only when other sources are
used.

1Though the common name is “automata theory,” we shall follow the English convention of
using the singular form before “theory” (e.g., graph theory, number theory, etc.). This ubiquitous
mistake has been pointed out by Eilenberg and others, though, for some reason, has persisted
throughout the years.

6

2.2 Semigroups and Monoids

An alphabet is a non-empty set Σ of symbols (or letters). A word over Σ is a sequence
of symbols from the set Σ. If u and v are words over Σ, then their concatenation
uv is also a word over Σ. The empty word ε is the word that contains no symbols.
The length of the word u, denoted by |u|, is 0 if u = ε, and |v|+ 1 if u = vσ, where
v is a word over Σ and σ is a symbol.

Definition 2.2.1. Let S be a set. An associative binary operator on S is a function
f : S×S → S, such that for all s1, s2, s3 ∈ S, f(f(s1, s2), s3) = f(s1, f(s2, s3)). For
every pair of elements s1, s2 ∈ S, the image f(s1, s2) is called the product of these
elements.

A binary operator is often written using infix notation: if ∗ is such an operator
and s1, s2 are set elements, the notation s1 ∗ s2 is equivalent to writing ∗(s1, s2).

Definition 2.2.2. A semigroup is a pair (S, ·), where S is a set and · : S × S → S
is an associative binary operator.

As a matter of convenience, we usually omit the · operator symbol when com-
bining two elements of a semigroup. That is, the product s1 · s2 is written as s1s2.
Other operator symbols are not omitted.

Definition 2.2.3. A semigroup (S, ·) is called a monoid if S contains a unit element
e ∈ S, such that se = es = s for all s ∈ S. A monoid with a set S, an operator ·
and a unit element e ∈ S is written as (S, ·, e).

Example 2.2.1. Let N
+ denote the set of natural numbers, not including 0 (that

is, N
+ = {1, 2, 3, ...}). Then (N+,+), where + denotes the addition operation on

natural numbers, is a semigroup. However, (N+,+) is not a monoid: there is no
number e ∈ (N+,+) such that for all n ∈ N

+, e + n = n + e = n. Using the
multiplication operation ×, on the other hand, we get the monoid (N+,×, 1). �

Definition 2.2.4. For every alphabet Σ, the set of all non-empty words over Σ with
the concatenation operator forms a semigroup, called the free semigroup generated
by Σ. This semigroup is denoted by Σ+. Similarly, the set of all words over
Σ, including the empty word ε, with the same operator, forms the free monoid
generated by Σ, denoted by Σ∗.

A homomorphism is a mapping between two algebraic structures that preserves
certain traits of these structures. In this chapter we are interested only in such
structure-preserving mappings between semigroups and monoids. Later we shall
also encounter other kinds of homomorphisms.

7

Definition 2.2.5. Let (S, ·) and (T, ∗) be semigroups. A function h : S → T is
called a semigroup homomorphism if

h(a) ∗ h(b) = h(a · b) for all a, b ∈ S

The function h : S → T is an isomorphism if it is a bijective homomorphism
(that is, if h is a one-to-one mapping onto the set T).

A homomorphism between monoids is defined similarly to a semigroup homo-
morphism, with the additional requirement that the unit element of the first monoid
is mapped to the unit element of the second monoid:

Definition 2.2.6. Let (S, ·, eS) and (T, ∗, eT) be monoids. A function h : S → T
is a monoid homomorphism if

• h is a semigroup homomorphism

• h(eS) = eT

Example 2.2.2. Let R,R+ be the sets of real numbers and positive real numbers,
respectively, and let ·,+ be the operations of multiplication and addition on real
numbers, respectively. The function log : R

+ → R is a semigroup homomorphism
from (R+, ·) to (R,+), due to the following property of logarithms:

log(ab) = log(a) + log(b) ∀a, b ∈ R
+

Moreover, since log is a bijection from R
+ to R, the semigroups (R+, ·) and (R,+)

are isomorphic. �

Monoid homomorphisms whose domain is a free monoid over some set Σ have a
special property: the homomorphism is a unique extension of a function assigning
set elements from Σ to elements in the range monoid. This property will enable us
to explore the nature of such homomorphism by obtaining results on the underlying
assignment function.

Definition 2.2.7. Let Σ be a set, let (M, ∗, e) be a monoid, and let f : Σ → M
be a function. The homomorphic extension of f is a function f ∗ : Σ∗ →M defined
recursively:

• f ∗(ε) = e

8

• f ∗(wσ) = f ∗(w) ∗ f(σ) for all σ ∈ Σ, w ∈ Σ∗

Proposition 2.2.1. The homomorphic extension of f is unique.

Proof. Trivial, as the definition constructs the homomorphic extension function
deterministically.

Theorem 2.2.1. Let Σ be a set, let (M, ∗, e) be a monoid, and let f : Σ → M be
a function. Then

1. The homomorphic extension f ∗ : Σ∗ →M is a monoid homomorphism.

2. Every monoid homomorphism h : Σ∗ → M is the homomorphic extension of
some function from Σ to M .

Proof.

1. First, observe that f ∗(ε) = e by the definition of f ∗. Let u, v ∈ Σ∗. We prove
that f ∗(uv) = f ∗(u) ∗ f ∗(v) by induction on |v|. If v = ε, then f ∗(uv) =
f ∗(uε) = f ∗(u) = f ∗(u) ∗ e = f ∗(u) ∗ f ∗(v). Assume the hypothesis holds
when |v| = k for some k ≥ 0. Let v = wσ for w ∈ Σ∗, σ ∈ Σ where |w| = k.
Then f ∗(uv) = f ∗(uwσ) = f ∗(uw) ∗ f(σ). By the induction hypothesis,
f ∗(uw) ∗ f(σ) = (f ∗(u) ∗ f ∗(w)) ∗ f(σ), and, since ∗ is associative, (f ∗(u) ∗
f ∗(w))∗f(σ) = f ∗(u)∗ (f ∗(w))∗f(σ)). Following the definition of f ∗, f ∗(u)∗
(f ∗(w) ∗ f(σ)) = f ∗(u) ∗ f ∗(v).

2. Let h : Σ∗ → M be a monoid homomorphism. Define a function f : Σ →
M as f(σ) = h(σ) for all σ ∈ Σ. Then h(ε) = e (since h is a monoid
homomorphism), and

h(wσ) = h(w) ∗ h(σ) (h is a semigroup homomorphism)

= h(w) ∗ f(σ) (definition of f)

which proves that h is the unique homomorphic extension of f .

Definition 2.2.8. Let S be a set. A relation ∼ ⊆ S × S is an equivalence relation
if the following conditions hold for all a, b, c ∈ S:

9

1. a ∼ a (reflexivity)

2. a ∼ b⇒ b ∼ a (symmetry)

3. a ∼ b and b ∼ c⇒ a ∼ c (transitivity)

An equivalence relation partitions a set into one or more distinct subsets, known
as equivalence classes. For each element s ∈ S, we denote by [s] the unique equiva-
lence class containing s. If the equivalence relation is not obvious from the context,
we shall subscript [s] with a symbol indicating the relevant relation (e.g., [s]∼ for
the relation ∼).

Definition 2.2.9. Let (S, ·) be a semigroup. A relation ∼ on S is a left congruence
(resp. a right congruence) if ∼ is an equivalence relation on S and for all a, b, c ∈ S,
a ∼ b implies ca ∼ cb (resp. a ∼ b implies ac ∼ bc).

A relation ∼ on S is a congruence if it is both a left and a right congruence.

Proposition 2.2.2. Let (S, ·) and (T, ∗) be semigroups, and let f : S → T be a
semigroup homomorphism. The relation ∼ defined as

a ∼ b⇔ f(a) = f(b) for all a, b ∈ S

is a congruence relation on S.

Proof. Reflexivity, symmetry and transitivity follow immediately from the fact that
f is a function and from the validity of the same conditions on the equality relation
= on T .

Assume that a ∼ b for some a, b ∈ S. Then

f(ac) = f(a) ∗ f(c) (def. of semigroup homomorphism)

= f(b) ∗ f(c) (assumption)

= f(bc)

which implies that ac ∼ bc as required. The equivalence of ca and cb is proved
similarly.

From now on we shall identify the semigroup (S, ·) with the set S. The meaning
of the symbol S should be clear from the context. The same convention applies to
monoids.

10

Lemma 2.2.1. Let M be a monoid, let m1, m2 ∈ M and let ∼ be a congruence
relation on M . Then m1 ∼ m2 if and only if mm1 ∼ mm2 for all m ∈M .

Proof. Assume that m1 ∼ m2. Then, by the congruence property, mm1 ∼ mm2

for all m ∈ M . Conversely, if mm1 ∼ mm2 for all m ∈ M , then, specifically, this
equality holds for the unit element e ∈ M . Therefore em1 ∼ em2, which implies
that m1 ∼ m2.

Definition 2.2.10. Let S be a semigroup, and let ∼ be a congruence on S. Define
the set S/∼ to be the set of all equivalence classes defined by ∼ on S, and define a
binary operator ∗ : S/∼ → S/∼ by

[a] ∗ [b] = [ab] for all a, b ∈ S

Then (S/∼, ∗) is a semigroup, called the quotient semigroup of S with respect to ∼.

Definition 2.2.11. Let S be a semigroup and let ∼ be a congruence relation on
S. The natural homomorphism of S onto S/∼ is a semigroup homomorphism
nat : S → S/∼ defined as

nat(a) = [a] for all a ∈ S

2.3 Semiautomata

In this section we describe a primitive machine model, called a semiautomaton,
which captures the definition of a pure state machine. A state machine is associated
with a set of internal values, or states, one of which is the current state at each
moment. The machine reacts to external stimuli by changing its current state to
some other value in the set.

Definition 2.3.1. A deterministic initialised semiautomaton (or simply a semiau-
tomaton) is a quadruple S = (Q,Σ, δ, q0), where Q is a set (of states), Σ is a set
(called the alphabet of the semiautomaton), δ : Q × Σ → Q a transition function
and q0 ∈ Q an initial state. A semiautomaton will be referred to as finite if the sets
Q and Σ are finite.

Definition 2.3.2. Given a semiautomaton S = (Q,Σ, δ, q0), the extended transi-
tion function δ̂ : Q× Σ∗ → Q is defined recursively:

• δ̂(q, ε) = q for all q ∈ Q

11

• δ̂(q, ua) = δ(δ̂(q, u), a) for all q ∈ Q, u ∈ Σ∗, a ∈ Σ

The distinction between an automaton’s transition function and its extended
transition function can be safely ignored, as every transition function uniquely
defines an extended transition function, and vice versa. We shall henceforth use
the notation δ for both functions.

Definition 2.3.3. A semiautomaton is connected if for every state q ∈ Q there is
a word w ∈ Σ∗ such that δ(q0, w) = q.

We will usually not be interested in disconnected semiautomata, where some
states are not reachable from the initial state. Therefore we shall always assume
that semiautomata are connected.

Definition 2.3.4. Given the semiautomaton S , define a relation ≡δ ⊆ Σ∗ × Σ∗

such that for u, v ∈ Σ∗, u ≡δ v if and only if δ(q0, u) = δ(q0, v).

Proposition 2.3.1. The relation ≡δ is a right congruence.

Proof. Assume that u ≡δ v for some u, v ∈ Σ∗. Then, by definition, δ(q0, u) =
δ(q0, v). Let x ∈ Σ∗ be an arbitrary word. Then:

δ(q0, ux) = δ(δ(q0, u), x) (def. of δ)

= δ(δ(q0, v), x) (assumption)

= δ(q0, vx) (def. of δ)

The equality δ(q0, ux) = δ(q0, vx) implies ux ≡δ vx.

Right congruence relations over the free monoid Σ∗ are strongly connected to
semiautomata. In fact, every such relation defines a semiautomaton: If ∼ is a right
congruence on Σ∗, construct a semiautomaton S∼ = (Σ∗/∼,Σ, nat∼, [ε]), where
nat∼ : Σ∗/∼ ×Σ → Σ∗/∼ is defined as nat∼([u], σ) = [uσ] for all u ∈ Σ∗, σ ∈ Σ.

Specifically, when the right congruence is ≡δ, the resulting semiautomaton is
isomorphic to the original semiautomaton (which defines the transition function δ):

Theorem 2.3.1. Let S = (Q,Σ, δ, q0) be a semiautomaton. Then S≡δ
is isomor-

phic to S .

12

Proof. Define a function f : Σ∗/≡δ → Q as f([w]) = δ(q0, w) for all w ∈ Σ∗. Note
that this function is well-defined: the state δ(q0, w) is the same regardless of the
representative chosen for the equivalence class [w] (by definition of ≡δ). We shall
now prove that f is an isomorphism.

The function f is certainly surjective: every state q ∈ Q has a word w ∈ Σ∗ such
that δ(q0, w) = q (remember that we assume that all semiautomata are connected).
The word w belongs to some equivalence class in Σ∗/≡δ (namely [w]), and so every
image q has a source [w]. This function can also be proved to be injective. Let
q1, q2 be states in S , and let w1, w2 be words leading to these states. Assume that
q1 = q2. Then δ(q0, w1) = δ(q0, w2), which, by the definition of ≡δ, means that
w1 ≡δ w2 and hence [w1] = [w2], as required.

Finally, we need to show that f preserves the structure of the semiautomaton.
This is trivial for the initial state, as f([ε]) = δ(q0, ε) = q0. To prove the required
result on the transition functions, let q ∈ Q be a state, let w ∈ Σ∗ be a word such
that δ(q0, w) = q, and let σ ∈ Σ. Then:

f(nat∼([w], σ)) = f([wσ]) (def. of nat∼)

= δ(q0, wσ) (def. of f)

= δ(δ(q0, w), σ) (def. of δ)

= δ(q, σ)

For the sake of brevity, we use the notation Sδ to refer to the semiautomaton
generated from S by the right congruence ≡δ (where δ is the transition function
of S).

In the relation ≡δ two words are considered equivalent if they take the semiau-
tomaton from the initial state to the same state. Similarly, we can define a relation
on words in Σ∗ where two words are equivalent if, starting from any state, they
take the semiautomaton to the same state. The importance of this relation is that
it defines a full congruence on Σ∗ (as opposed to the right congruence defined by
≡δ).

Definition 2.3.5. Let S = (Q,Σ, δ, q0) be a semiautomaton. Define a relation
≡T ⊆ Σ∗ × Σ∗ such that for u, v ∈ Σ∗, u ≡T v if and only if δ(q, u) = δ(q, v) for all
q ∈ Q.

Proposition 2.3.2. The relation ≡T is a congruence on Σ∗.

13

Proof. This relation is reflexive, symmetric and transitive since δ is a function and
since = is an equivalence relation on Q.

Assume u ≡T v for some u, v ∈ Σ∗. Then for all q ∈ Q:

u ≡T v ⇒ δ(q, u) = δ(q, v) (def. of ∼)

⇒ δ(δ(q, u), w) = δ(δ(q, v), w) (since δ is a function)

⇒ δ(q, uw) = δ(q, vw) (def. of the ext. transition function)

⇒ uw ≡T vw (def. of ∼)

which proves the right congruence property. To prove left congruence, let q ∈ Q be
some state and let w ∈ Σ∗ be an element of the free monoid. There exists a state
q′ ∈ Q such that δ(q, w) = q′. By the assumption, δ(q′, u) = δ(q′, v), and hence,
following the definition of δ, we have that δ(q, wu) = δ(q, wv). Since this equality
holds for an arbitrary choice of q, we conclude that wu ≡T wv, as required.

The congruence ≡T gives rise to a special structure, called the transformation
monoid of the semiautomaton. This structure will prove to be very useful in sub-
sequent chapters.

Proposition 2.3.3. Let S be a semiautomaton, let ≡T be the relation defined above
and let natT : Σ∗/≡T×Σ∗/≡T → Σ∗/≡T be a function defined as natT ([u], [v]) = [uv]
for all u, v ∈ Σ∗. Then the triplet (Σ∗/≡T , natT , ε) is a monoid.

Observe that this result does not apply to an arbitrary relation over Σ∗. For
example, the relation ≡δ does not, in the general case, generate a monoid. The
reason is that for the monoid’s operator to be defined properly, the relation has to
be a full congruence. If ≡δ is not a full congruence (and it is usually not), then
there exist words u, v, w ∈ Σ∗ such that u ≡δ v but wu 6≡δ wv. Then the mapping
natδ, defined similarly to natT , is not a function since natδ([w], [u]) 6= natδ([w], [v])
even though [u] = [v].

Definition 2.3.6. Let S be a semiautomaton. The transformation monoid of S

is the monoid T (S) = (Σ∗/≡T , natT , ε).

Brzozowski and Jürgensen have recently developed a theory of semiautomata
where states are associated with special words, known as canonical words [5]. For
each state of a semiautomaton, a canonical word is a representative chosen from
the equivalence class corresponding to that state under the relation ≡δ.

14

Definition 2.3.7. Let S be a semiautomaton with alphabet Σ. A set C ⊆ Σ∗ is
canonical if

1. ∀u, v ∈ C : u 6≡δ v

2. ∀v ∈ Σ∗ ∃u ∈ C : u ≡δ v

The above definition implies that, for every word in u ∈ Σ∗, there is exactly
one word v ∈ C such that u ≡δ v. The word v will be referred to as the canonical
representative of the word u. We can therefore define a function mapping each word
to its canonical representative:

Definition 2.3.8. Let C ⊆ Σ∗ be a canonical set. Define a function ξ : Σ∗ → C
such that for all u ∈ Σ∗, v ∈ C, ξ(u) = v if and only if u ≡δ v.

Brzozowski and Jürgensen use a slightly different view when talking about
canonical words. In their work canonical words are assigned to states rather than
to words:

Definition 2.3.9. Let S = (Q,Σ, δ, q0) be a semiautomaton, and let C ⊆ Σ∗ be
a canonical set. Define a function χ : Q → C which satisfies δ(q0, χ(q)) = q for all
q ∈ Q.

Note that the two views are equivalent. Brzozowski and Jürgensen assign canon-
ical words to states using the function χ, which is a bijection. In this work we first
identify a state with the subset of Σ∗ leading to this state, and then assign the same
canonical word to all words leading to the same state. The relations between these
two views are summarised in the following proposition:

Proposition 2.3.4. For all u, v ∈ Σ∗:

1. ξ(u) = χ(δ(q0, u))

2. ξ(u) = ξ(v) if and only if u ≡δ v

Definition 2.3.10. Let S = (Q,Σ, δ, q0) be a semiautomaton, and let C ⊆ Σ∗

be a canonical set. The set G(C) is the set of all pairs (wσ, ξ(wσ)), where w ∈
C, σ ∈ Σ and wσ /∈ C. The set Ĝ(C) is defined as Ĝ(C) = G(C), if ε ∈ C, and
Ĝ(C) = G(C) ∪ (ε, ξ(ε)) otherwise.

Definition 2.3.11. The relation ≡ is the smallest right congruence containing
Ĝ(C).

Theorem 2.3.2 ([5]). For every canonical set C, ≡ = ≡δ.

15

2.4 Mealy Machines

As mentioned in the previous section, semiautomata are pure state machines, whose
only reaction to input is the change of an internal value. As such, they provide
a simple theoretical model, but the lack of any externally visible behaviour makes
them of little use for the purpose of software specification.

Software modules are often described using a black-box approach, which means
that the internal behaviour of the module is of little importance to the user, as
long as conditions on the externally visible behaviour are met. These conditions
are usually specified by a relation between sequences of input and output values.
To specify a software module using such a relation, we extend our state machine
model to include output values.

The model studied here is called a Mealy machine [28]. Mealy machines are
state machines, in which transitions may also result in output values. A Mealy
machine is an obvious selection for software specification, as it provides a natural
way for describing module functions via input and output alphabets. Other model
options are Moore machines and full automata (recognisers). Note, however, that
Moore machines are equivalent to Mealy machines [25], and that a recogniser can be
easily modelled using a Moore machine by assigning output values that distinguish
between accepting and non-accepting states.

Definition 2.4.1. A Mealy machine is a six-tuple M = (Q,Σ, δ, q0,Θ, θ), where
(Q,Σ, δ, q0) is a semiautomaton, Θ is a set, called the output alphabet, and θ :
Q× Σ → Θ is a partial function, called the output function.

Given an input string, a Mealy machine switches between states, producing an
output symbol for each transition on which the output function is defined. If we
concatenate all those output symbols, we obtain a string in Θ∗. A Mealy machine
can therefore be viewed as a mapping from Σ∗ to Θ∗. Formally, we can construct
an extended output function which defines this mapping:

Definition 2.4.2. Let M = (Q,Σ, δ, q0,Θ, θ) be a Mealy machine. The extended
output function θ̂ : Q× Σ∗ → Θ∗ is defined recursively:

• θ̂(q, ε) = ε

• θ̂(q, σw) = θ(q, σ) ◦ θ̂(δ(q, σ), w)

where ◦ is a concatenation operator defined as

16

θ(q, σ) ◦ w =

{

θ(q, σ)w if θ(q, σ) is defined

w otherwise

for all w ∈ Θ∗, q ∈ Q, σ ∈ Σ.

To determine the output of a Mealy machine given an input w ∈ Σ∗, we compute
θ̂(q0, w).

As stated earlier, output values provide the only kind of a machine behaviour
that is visible to an external viewer. Therefore, from the viewer’s perspective, two
states are indistinguishable if they generate the same sequences of output values
from the same input strings. This observation results in the following equivalence
relation on the states of a Mealy machine:

Definition 2.4.3. Let M = (Q,Σ, δ, q0,Θ, θ) be a Mealy machine. The relation
≡θ ⊆ Q×Q is defined as q1 ≡θ q2 if and only if θ̂(q1, w) = θ̂(q2, w) for all words
w ∈ Σ∗.

Note that this equivalence relation can be easily converted into a relation on
words in Σ∗, by treating the words u and v as equivalent if and only if

θ̂(δ(q0, u), w) = θ̂(δ(q0, v), w)

for all w ∈ Σ∗. We shall subsequently use the notation ≡θ for both the relation
on the state set Q and the relation on the free monoid Σ∗ described above. The
relation referred to can be inferred by the type of objects on both sides of the
relation symbol.

Proposition 2.4.1. For every Mealy machine M = (Q,Σ, δ, q0,Θ, θ), ≡δ ⊆ ≡θ.

Proof. Let u, v ∈ Σ∗ such that u ≡δ v. By definition, δ(q0, u) = δ(q0, v), and
therefore θ̂(δ(q0, u), w) = θ̂(δ(q0, v), w) for all w ∈ Σ∗. This implies that u ≡θ v.

Definition 2.4.4. A Mealy machine M = (Q,Σ, δ, q0,Θ, θ) is called reduced if
≡δ = ≡θ.

The equivalence relation ≡θ is also known as the generalised Nerode equivalence
or observational equivalence [6].

17

Chapter 3

Algebraic Specifications

3.1 Introduction

Abstract data types have played a major role in computer science since the early
1970s. It was realised during these years that some commonly used data structures
can be defined solely by their behaviour, and independently of any implementation
issues. This observation resulted in a distinction between data types, which specify
the type of the stored data as well as the operations that are used to manipulate it,
and abstract data types (ADTs), for which the actual data being stored is not im-
portant. Thus, an abstract data type defines a class of objects, which is completely
characterised by a set of operations shared by these objects [27].

Throughout the years there have been several suggestions for ways in which
abstract data types can be specified formally. The emphasis has always been that
such a specification should describe the operations of the ADT without suggesting
any details related to its implementation. A specification method having this trait
is often referred to as “abstract”, a somewhat elusive concept, which is yet to be
properly defined.

Algebraic specifications, as a formal method for describing abstract data types,
were first suggested by Guttag in his Ph.D thesis [18]. Guttag’s specification con-
sisted of two parts, syntactic and semantic. The first, known as a signature, specifies
the operations that define the ADT. An operation consists of a name, the types
of arguments it can accept, and the type of its result. The second part is a set of
axioms, which defines the behaviour of the operations. Guttag further developed
his method in subsequent years, along with Horowitz and Musser [19, 21, 22].

18

The main problem with this work, however, was that it remained somewhat
informal. First of all, it was unclear what can be used in the axioms. For example,
Guttag used if-then-else constructs in his axioms, but did not give sufficient rea-
son as to why such a construct was allowed while others were not. Secondly, the
correctness of the method for specifying abstract data types was mainly intuitive:
for simple ADTs, one could be rather easily convinced that a given specification is
correct. But the method was still lacking more formal justification.

Such a justification, through an extensive mathematical foundation, was given
by Goguen, Thatcher, Wagner and Wright, who collaborated during the 1970s
in what was known as the “ADJ group”. The theory proposed by this group
was an extension to the work by Birkhoff [2] on universal algebra. Goguen et al.
suggested that algebraic specifications should be treated within the same framework
as universal algebra, only extended to many-sorted algebras. This resulted in the
theory of initial algebra semantics [15], which considers the class of initial algebras
in a category admitted by the specification as the semantics of the abstract data
type. It is this work which is presented in this chapter, and on which the next
chapters are based.

It should be mentioned that the initial algebra approach is not the only way to
attach formal semantics to algebraic specifications. Several authors have criticised
this theory, and suggested other approaches, such as final algebra semantics [35].
Some types of specifications, such as parameterised specifications [34] cannot be
handled by the initial algebra approach. Instead, they require loose semantics that
are neither initial nor final. We shall not consider these approaches in this thesis,
nor shall we handle any extensions to the initial algebra approach (e.g., hidden
functions), meant to solve some problems that were found in this method.

On a final note, we would like to mention a few endeavours to turn algebraic
specifications into a viable method for practical use in day-to-day programming. A
first attempt by Burstall and Goguen resulted in the specification language CLEAR
[7]. Goguen continued to work in this area, and later created the language OBJ,
which, in its latest incarnations (OBJ3, CafeOBJ) is in active use today. As a more
recent example of work in this area, see Henkel and Diwan’s work on systematically
generating algebraic specifications from Java code [23].

The material in this chapter is derived mostly from the book by Ehrig and Mahr
[9] and from an article by Wirsing [37]. For the most part, we adopt the notation
used in [37].

19

3.2 Sorts

A key notion in the theory of algebraic specifications is that of sorts. A sort can be
thought of as a tag that is attached to an element in a set, and is used to specify
its type. From a programming language point of view, sorts are analogous to data
types, such as int and char in C/C++.

Definition 3.2.1. Let S be a set of sorts. An S-sorted set is a set X, such that
each element x ∈ X is of some sort s ∈ S. The subset of all elements in X of sort
s ∈ S is denoted by Xs.

It is important to note that the sets {Xs}s∈S are subsets of X, and not elements
of X. Thus an S-sorted set is composed of elements, each of which may be of a
different sort. Note also that Xs may be empty for some s ∈ S.

Example 3.2.1. Let S = {nat, alpha} be a set of sorts. Let 1, 2, and 3 be elements
of sort nat and let a and b be elements of sort alpha. Then X = {1, 2, a, 3, b} is an
S-sorted set, with Xnat = {1, 2, 3} and Xalpha = {a, b}. �

Sorts can also be used to define the syntax of functions. Given a set S of sorts,
the notation f : s1, . . . , sn → s for some s1, . . . , sn, s ∈ S, declares a function whose
ith parameter is of sort si, and whose result is of sort s.

Example 3.2.2. Let S be the set of sorts in Example 3.2.1. A function name
f : nat, alpha → nat takes as an argument an ordered pair whose first element is
of sort nat and the second of sort alpha, and returns a value of sort nat. �

3.3 Signatures

Signatures are used to provide the syntactic definition of abstract data types. This
syntax is composed of a set of sorts and a set of function prototypes. The prototype
of a function includes its name and its type, the latter being a tuple of sorts.

We denote by Sn the set of all n-tuples over some set S, i.e., the Cartesian
product S × . . .× S of size n, and by S+ the union

⋃∞
n=1 S

n.

Definition 3.3.1. A signature is a pair Π = (S, F), where S is a set of sorts, and
F is an S+-sorted set.

20

We regard F as a set of function symbols. For each f ∈ F , the type of f is a
tuple of size n in S+. The first n− 1 elements in this tuple specify the sort of the
function’s domain, and the last element specifies the sort of its range.

We denote by f : s1, . . . , sn → s a function whose domain is of sort (s1, . . . , sn)
and whose range is of the sort s. Note, however, that this notation does not specify
the domain and range sets themselves.

Definition 3.3.2. A constant of sort s ∈ S in a signature Π = (S, F) is a function
whose type is a singleton, i.e., a function f :→ s ∈ F .

Example 3.3.1. Consider the following sets:

S = {bool, nat}

F = {true :→ bool,

false :→ bool,

zero :→ nat,

succ : nat→ nat,

not : bool → bool,

equal : nat, nat→ bool}

The pair Π = (S, F) is a signature. The type of true is (bool), and the type of equal
is (nat, nat, bool). The functions true, false and zero denote constants in Π. �

The sorts and functions in Example 3.3.1 may suggest that these names should
be interpreted according to their meaning in English. This is a pitfall that should
be avoided. It is important to keep in mind that a signature, by itself, provides
no semantic information. Thus, the use of nat and bool for sorts does not imply
in any way that this signature will be used in the specification of an abstract data
type involving natural numbers and Boolean values. Likewise, true, false, zero, succ
and equal do not suggest any semantics for the functions in the data type. In fact,
as we shall see in Section 3.4, these functions can be assigned meanings that are
completely different from those suggested by the selected names.

To emphasise this point, consider the following signature:

21

Example 3.3.2. Π′ = (S ′, F ′) with

S ′ = {α, β}

F ′ = {a :→ β,

b :→ β,

c :→ α,

f : α→ α,

g : β → β,

h : α, α→ β}

The signatures defined by Π and Π′ are identical, up to sort and function renaming.
In other words, Π and Π′ are isomorphic. �

Given a signature, we can use its functions, along with variables of the appro-
priate sorts, to construct terms. Terms represent syntactically correct expressions.

Definition 3.3.3. Let Π = (S, F) be a signature, and let X be an S-sorted set.
For every sort s ∈ S, the set T (Π, X)s of terms of sort s is defined recursively:

• If x ∈ Xs, then x ∈ T (Π, X)s;

• If f :→ s ∈ F , then f ∈ T (Π, X)s;

• For all non-constant function names f : s1, . . . , sn → s ∈ F and for all terms
t1 ∈ T (Π, X)s1

, . . . , tn ∈ T (Π, X)sn
, f(t1, . . . , tn) ∈ T (Π, X)s.

X is referred to as the set of free variables.

Definition 3.3.4. The set T (Π, X) is the union of the sets T (Π, X)s over all sorts
s ∈ S.

Definition 3.3.5. The set of ground terms T (Π, ∅), also denoted T (Π), is the set
of all terms that do not include free variables.

Example 3.3.3. Let Π be the signature in Example 3.3.1, and let X = {x, y, b} be
an S-sorted set, with Xnat = {x, y}, Xbool = {b}. Then the following are examples
of terms in T (Π, X)bool:

1. b

2. true

22

3. not(equal(zero, zero))

4. equal(succ(succ(y)), succ(zero))

Of these, (2) and (3) are ground terms. �

Structural induction is an important tool for proving assertions on data types
defined using algebraic specifications. This induction mechanism depends on the
following theorem:

Theorem 3.3.1. Let Π = (S, F) be a signature, X an S-sorted set and p :
T (Π, X) → {true, false} a predicate. Then p(t) = true for all terms t ∈ T (Π, X)
if the following conditions are satisfied:

• p(t) = true for all constants t :→ s ∈ F and for all variables t ∈ Xs;

• For each term f(t1, . . . , tn) ∈ T (Π, X), p(ti) = true for all i = 1, . . . , n,
implies p(f(t1, . . . , tn)) = true.

Proof. see [9], §1.8.

3.4 Algebras

Algebras are mathematical structures that are used to assign semantics to signa-
tures. An algebra is a set, called the carrier of the algebra, and a family of functions
on that set. This definition can be easily extended to S-sorted algebras for some
set S of sorts, by using an S-sorted carrier set and an S+-sorted set of functions.

Definition 3.4.1. Let Π = (S, F) be a signature. A Π-algebra is given by two sets
A and FA, where:

1. A is an S-sorted carrier set;

2. For each function symbol f : s1, . . . , sn → s ∈ F , FA contains a total function
fA : As1

× . . .× Asn
→ As.

3. If f :→ s is a constant, then fA is an element in As.

We will identify the set A with the algebra A = (A, FA).

23

Though this is not stated in the definition, we assume that a Π-algebra’s carrier
set contains at least one element of every sort. The reason for this is that many-
sorted algebras with empty carrier subsets require a different derivation system for
equational logic than the one used for one-sorted algebras [13]. By requiring all Π-
algebras to have non-empty carrier subsets (for every sort), we can use a generalised
version of one-sorted derivation for proving claims on many-sorted systems.

Example 3.4.1. Consider the signature in Example 3.3.1. Let A be an algebra
with the carrier sets:1

Anat = N

Abool = {T, F}

and the following functions:

trueA def
= T falseA def

= F

zeroA def
= 0 succA(n)

def
= n + 1 ∀n ∈ Anat

notA(b)
def
=

{

F b = T

T b = F
equalA(n,m)

def
=

{

T if n = m

F otherwise
∀n,m ∈ Anat

Then A is a Π-algebra.

The Π-algebra A in Example 3.4.1 assigns semantics to the sorts and function
symbols of the signature Π. In this case, the semantics is closely related to the usual
mathematical interpretation of the words nat, true, zero, etc. This, however, need
not be the case for a general Π-algebra. Recall from Section 3.3 that a signature only
carries syntactic information, which can be interpreted in many ways. Consider,
for instance, the following example:

Example 3.4.2. Let B be an algebra with the carrier sets:

Bnat = {red,orange,yellow,green,blue,indigo,violet}

Bbool = {gorgeous,awful}

1The set N of natural numbers includes 0.

24

and the following functions:

trueB def
= gorgeous falseB def

= awful

zeroB def
= red succB(n)

def
= violet for all n ∈ Bnat

notB(gorgeous)
def
= awful notB(awful)

def
= gorgeous

equalB(n,m)
def
= The expected response of a fashion designer to a

combination of these colours

Even though the meanings assigned to the sorts and functions of Π by the algebra
B are counter-intuitive, B is still a valid Π-algebra. �

In order to relate different algebras of the same signatures, we need the concept
of a Π-homomorphism. Recall that a homomorphism is a mapping between two
mathematical structures that preserves the operations defined on these structures.
A Π-homomorphism is therefore a mapping between two Π-algebras that preserves
the operations defined by their common signature.

Definition 3.4.2. A Π-homomorphism h : A→ B, where A and B are Π-algebras,
is a set of functions {hs : As → Bs}s∈S such that, for each f : s1, . . . , sn → s ∈ F
and each a1 ∈ As1

, . . . , an ∈ Asn
, hs(f

A(a1, . . . , an)) = fB(hs1
(a1), . . . , hsn

(an)).

We usually omit the sort index from the name of a homomorphism, and treat
it as a single mapping rather than a collection. Thus, for a term t of sort s the
notation h(t) is equivalent to hs(t).

Example 3.4.3. Let Π = (S, F) be a signature with:

S ={bool}

F ={true :→ bool,

false :→ bool,

not : bool → bool}

Let A, B be Π-algebras, defined as follows:

25

Abool = {1, 0} Bbool = {U}

trueA = 1 trueB = U

falseA = 0 falseB = U

notA(b) = 1 − b ∀b ∈ Abool notB(b) = U ∀b ∈ Bbool

Define a mapping h : A→ B as h(1) = h(0) = U . It is easy to see that h preserves
the functions, as defined in the algebra A. For example:

h(notA(trueA)) = h(0) = U = notB(trueB)

Thus, h is a Π-homomorphism. On the other hand, it can be easily verified that
no Π-homomorphism exists from B to A. Assume, towards contradiction, that
h : B → A is a Π-homomorphism. Without loss of generality, let h(U) = 1. Then
h(falseB) = h(U) = 1 6= falseA. �

Every signature, when coupled with a set of free variables, gives rise to a special
algebra, known as the term algebra. The carrier sets of this algebra are the terms
created from the signature’s functions and the free variables.

Definition 3.4.3. Let Π = (S, F) be a signature, and X an S-sorted set, such that
T (Π, X)s 6= ∅ for all s ∈ S. Then the term algebra, denoted T (Π, X) is a Π-algebra,
defined as follows:

• For each s ∈ S, the carrier set is T (Π, X)s;

• For each f : s1, . . . , sn → s ∈ F and t1 ∈ T (Π, X)s1
, . . . , tn ∈ T (Π, X)sn

,

fT (Π,X)(t1, . . . , tn)
def
= f(t1, . . . , tn).

When dealing with free variables, we need a mechanism that maps these vari-
ables to concrete values in the carrier sets of some algebra. Mappings from free
variables to carrier set elements are provided by valuations. The extensions of
these mappings to terms that include free variables are known as interpretations.

Definition 3.4.4. Let A be a Π-algebra, and let X be an S-sorted set. A valuation
(or an assignment) is a function ν : X → A. A valuation assigns elements from the
carrier sets of A to free variables in X.

Definition 3.4.5. Let ν : X → A be a valuation. An interpretation of a term
t ∈ T (Π, X) in A with respect to ν is a map ν∗ : T (Π, X) → A, defined recursively:

26

• For all x ∈ X, ν∗(x)
def
= ν(x);

• For all constants f ∈ F , ν∗(f)
def
= fA;

• For all non-constant function names f : s1, . . . , sn → s ∈ F and all terms
t1 ∈ T (Π, X)s1

, . . . , tn ∈ T (Π, X)sn
,

ν∗(f(t1, . . . , tn))
def
= fA(ν∗(t1), . . . , ν

∗(tn))

From the last two points it is evident that the interpretation of a ground term t is
independent of ν. This unique interpretation is denoted as tA.

It is easy to see that an interpretation is a Π-homomorphism from the term
algebra T (Π, X) to some other Π-algebra A.

Example 3.4.4. Let Π be a signature and X a set of free variables, as in Exam-
ple 3.3.3. The carrier sets of T (Π, X) are:

T (Π, X)bool = {true, b, not(b), equal(zero, zero), equal(succ(x), zero), . . .}

T (Π, X)nat = {zero, x, y, succ(zero), succ(succ(x)), . . .}

The result of applying the total function succT (Π,X) on the term y is simply succ(y),
which, by definition, is a term in T (Π, X)nat.

Now consider the algebra A of Example 3.4.1. A valuation ν : X → A can be
defined as follows:

ν(x) = 5, ν(y) = 3, ν(b) = F

Let t = equal(succ(succ(y)), x) be a term in T (Π, X)bool. Then

ν∗(t) = equalA(ν∗(succ(succ(y))), ν∗(x))

= equalA(succA(ν∗(succ(y))), ν(x))

= equalA(succA(succA(ν∗(y))), ν(x))

= equalA(succA(succA(ν(y))), ν(x))

= equalA(3 + 1 + 1, 5)

= T

�

27

The ground term algebra is a special case of a term algebra, where the set of
free variables is empty.

Definition 3.4.6. Let Π = (S, F) be a signature. The ground term algebra T (Π)
is the term algebra T (Π, ∅).

Proposition 3.4.1. For every Π-algebra A, the interpretation ν∗ : T (Π) → A is
unique.

Proof. Follows immediately from the definition of the term algebra T (Π, ∅), since
ν∗ is uniquely defined for all ground terms.

Definition 3.4.7. Let Π = (S, F) be a signature and let A be a Π-algebra. The
unique interpretation function ν∗ : T (Π) → A defines the semantics of signature Π
with respect to A.

One important consequence of Definition 3.4.2 is that a Π-homomorphism from
A to B must map the interpretation of a ground term under algebra A to the
interpretation of the same ground term under B.

Proposition 3.4.2. Let A,B be Π-algebras, and let t ∈ T (Π) be a ground term.
Then for every Π-homomorphism h : A→ B, h(tA) = tB.

Proof. By structural induction. Let f :→ s ∈ F be a constant of sort s ∈ S. Then,
by Definition 3.4.2, h(fA) = fB.

Now assume the lemma holds for the terms t1 ∈ T (Π)s1
, . . . , tn ∈ T (Π)sn

, and
let f : s1, . . . , sn → s ∈ F be a function symbol. If t = f(t1, . . . , tn) then

h(tA) = h(fA(tA1 , . . . , t
A
n)) (def. of tA)

= fB(h(tA1), . . . , h(tAn)) (def. 3.4.2)

= fB(tB1 , . . . , t
B
n) (induction hypothesis)

= tB

Many Π-algebras contain elements that are not interpretations of any ground
terms, and are therefore of no importance for the study of algebras as the semantics
of signatures. We would like to omit these algebras from any further discussion of
algebraic specifications.

28

Definition 3.4.8. A Π-algebra A is called reachable if for every sort s ∈ S and
every element a ∈ As there is a ground term t ∈ T (Π)s such that a = tA. In other
words, a Π-algebra A is reachable if ν∗ : T (Π) → A is surjective.

Proposition 3.4.3. For every pair A,B of reachable Π-algebras there is at most
one Π-homomorphism h : A→ B.

Proof. Let h1, h2 : A → B be two Π-homomorphisms. We need to show that, for
every sort s ∈ S and every element a ∈ As, h1(a) = h2(a). Let t ∈ T (Π)s be
a term such that a = tA (such a term exists since A is reachable). According to
Proposition 3.4.2, h(tA) = tB for any Π-homomorphism from A to B, and hence
h1(a) = h1(t

A) = h2(t
A) = h2(a).

It turns out that every Π-algebra can replaced by a reachable Π-algebra that
provides the same semantics.

Definition 3.4.9. Let Π = (S, F) be a signature, and let A be a Π-algebra. A
Π-algebra B is called a Π-subalgebra of A if

1. For every sort s ∈ S, Bs ⊆ As;

2. For every function name f : s1, . . . , sn → s and for all carrier set elements
b1 ∈ Bs1

, . . . , bn ∈ Bsn
, fB(b1, . . . , bn) = fA(b1, . . . , bn).

Proposition 3.4.4. Every Π-algebra A contains a reachable Π-subalgebra R(A),
such that ν∗ : T (Π) → A is equal to ν∗ : T (Π) → R(A).

Proof. By construction. Let A be a Π-algebra. Define a Π-algebra R(A) as follows:

1. For each sort s ∈ S and element a ∈ As, a ∈ R(A)s iff there exists a term
t ∈ T (Π)s such that a = tA;

2. For all function symbols f : s1, . . . , sn → s ∈ F and all elements a1 ∈
R(A)s1

, . . . , an ∈ R(A)sn
, fR(A)(a1, . . . , an) = fA(a1, . . . , an).

By definition, R(A) is a Π-subalgebra of A. It is reachable, because it contains
only elements of A which are interpretations of ground terms in T (Π).

Consider the interpretation function ν∗ : T (Π) → A, which we know to be a
Π-homomorphism. By definition, the image of ν∗ is R(A) and therefore ν∗ is a
Π-homomorphism from T (Π) to R(A). Since both T (Π) and R(A) are reachable,
ν∗ is the unique Π-homomorphism, and hence also the interpretation function from
T (Π) to R(A).

29

Recall that a Π-algebra A defines the semantics of a signature Π through the
interpretation function ν∗ : T (Π) → A. By Proposition 3.4.4, the interpretation
functions from the ground term algebra to A and to R(A) are identical, which
means that we can substitute R(A) for A, without changing the semantics.

As a consequence of the above analysis, we shall henceforth consider only reach-
able Π-algebras.

3.5 Algebraic Specifications

An algebraic specification of an abstract data type is composed of a signature, and a
set of axioms. Only those algebras of the specification’s signature that adhere to all
the given axioms can be regarded as “implementing” the data type (this somewhat-
vague description will become formal in a short while). The axioms can be given
using various logical systems. For instance, in [34] axioms are conditional formulae
(Horn clauses). We shall, however, follow [14], and restrict our specifications to
equational logic. In this system all axioms are equations of terms.

Definition 3.5.1. Let Π be a signature, and let X be a set of free variables. A
Π-equation is a pair (t1, t2) (usually written as t1 = t2), where t1, t2 ∈ T (Π, X)s.
Note that t1 and t2 are of the same sort s ∈ S.

We can now finally define algebraic specifications:

Definition 3.5.2. A specificationD = (Π, X, E) is an ordered triplet of a signature
Π, an S-sorted set X and a set E of Π-equations.2

Example 3.5.1. Let Π = (S, F) be the signature defined in Example 3.3.1, and let
E be a set of Π-equations over the set of free variables X. Symbols S, F , X and E
are defined as follows (the definition of Π is repeated for the sake of completeness):

2Usually the set X is omitted in the literature, and is only implied from the set E. I chose to
explicitly specify this set.

30

S = {bool, nat}

F = {true :→ bool,

false :→ bool,

zero :→ nat,

succ : nat→ nat,

not : bool → bool,

equal : nat, nat → bool}

X = {x : nat, y : nat}

E = {not(true) = false,

not(false) = true,

equal(zero, zero) = true

equal(zero, succ(x)) = false

equal(x, y) = equal(y, x)

equal(succ(x), succ(y)) = equal(x, y)}

Then D = (Π, X, E) is a specification. �

A signature Π admits a set of algebras, the Π-algebras. Similarly, a specification
D admits a set of D-algebras. However, since a signature does not include semantic
information, the only restriction imposed on Π-algebras is that they comply with
the syntactic structure of the signature Π. On the other hand, the inclusion of
axioms in a specification generates some semantic information to which the algebra
should adhere. In other words, the equations given in the specification should be
“correct” with respect to a D-algebra. This means that, given a signature Π, and
a specification D based on that signature, not all Π-algebras are also D-algebras.

In order to formalise the notion of equations which are “correct” with respect
to an algebra, we need to define validity:

Definition 3.5.3. Let A be a Π-algebra, ν : X → A a valuation and e = (t1, t2) a
Π-equation. We say that e is satisfied by A with respect to ν if ν∗(t1) = ν∗(t2). If
e is satisfied by A for all valuations ν, then e is valid in A.

Example 3.5.2. Let Π be the signature defined in Example 3.5.1. Consider the
Π-algebra B, defined as follows:

31

Bnat
def
= {0, 1} Bbool

def
= {T, F}

trueB def
= T falseB def

= F

zeroB def
= 0 succB(n)

def
= max{1 − n, 1} ∀n ∈ Bnat

notB(b)
def
=

{

F b = T

T b = F
equal(n,m)

def
=

{

T n = m

F otherwise
∀m,n ∈ Bnat

Let ν : X → B be a valuation, such that ν(x) = 0. Then the equation

equal(zero, succ(x)) = false

is satisfied by B w.r.t ν, since:

ν∗(equal(zero, succ(x))) = equalB(0, succB(ν(x)))

= equalB(0, succB(0))

= equalB(0, 1)

= F

= falseB

= ν∗(false)

However, this equation is not valid in B. Consider a valuation ν ′ : X → B,
such that ν ′(x) = 1. Then:

ν∗(equal(zero, succ(x))) = equalB(1, succB(ν ′(x)))

= equalB(1, succB(1))

= equalB(1, 1)

= T

= trueB

6= ν∗(false)

On the other hand, the equation not(false) = true is valid in B, regardless of the
selected valuation ν. (In this case, we only need to check that the equation holds
in B for one valuation, since the equation is ground, i.e., it equates two ground
terms.) �

32

Every Π-algebra has a set of equations which are valid in this algebra. This set
is called the theory of the algebra. Theories have some nice closure properties.

Definition 3.5.4. Let Π = (S, F) be a signature and let X be an S-sorted set
of free variables. If A is a Π-algebra, then we denote by Th(A) the set of all
Π-equations over X which are valid in A.

Definition 3.5.5. Let Π = (S, F) be a signature, and let A and B be Π-algebras.
The Π-algebra C is a product of A and B if the following conditions holds:

1. Cs = As ×Bs for all s ∈ S

2. fC = (fA, fB) for all constants f ∈ F

3. For all function names f : s1, . . . , sn → s and for all carrier set elements
a1 ∈ As1

, b1 ∈ Bs1
, . . . , an ∈ Asn

, bn ∈ Bsn

fC((a1, b1), . . . , (an, bn)) = (fA(a1, . . . , an), f
B(b1, . . . , bn))

Theorem 3.5.1. Let A and B and C be Π-algebras. Then

• If B is the Π-homomorphic image of a subalgebra of A, then Th(A) ⊆ Th(B)

• If C is the product of A and B, then Th(C) = Th(A) ∩ Th(B)

Proof. See [9] §4.12.

We now connect the theory of an algebra with the set of axioms given by a
specification. In the case that all axioms in a specification are valid in an algebra,
then we can view this algebra as realising the specification:

Definition 3.5.6. Let D = (Π, X, E) be a specification. If A is a Π-algebra such
that all equations in E are valid in A, then A is a D-algebra.

It should be clear that A is a D-algebra if and only if E ⊆ Th(A).

The algebra B in Example 3.5.2 is not a D-algebra for the specification of
Example 3.5.1, as it was shown that there exists a valuation, with respect to which
one of the equations is not satisfied by B. On the other hand, it can be proved that
the algebra A of Example 3.4.1 is a D-algebra for this specification.

33

Thus far, we have defined algebraic specifications, and seen how a specification
includes both syntactic information, through its signatures, and semantic informa-
tion, by admitting a set of algebras that correspond to both the signature and the
axioms. However, no connection was made between algebraic specifications and
abstract data types, though it was claimed that the former are a way for describ-
ing the latter. To make this connection, we introduce the quotient term algebra, a
special kind of algebra that is admitted by every algebraic specification.

Definition 3.5.7. Let D = (Π, X, E) be a specification. The relation ∼D is defined
on ground terms t1, t2 ∈ T (Π) in the following way:

t1 ∼
D t2 ⇔ tA1 = tA2

for all D-algebras A.

Theorem 3.5.2. The relation ∼D is a congruence, i.e., it is an equivalence relation
such that for all t1, t

′
1 ∈ T (Π)s1

, . . . , tn, t
′
n ∈ T (Π)sn

and f : s1, . . . , sn → s ∈ F :

t1 ∼
D t′1, . . . , tn ∼D t′n ⇒ f(t1, . . . , tn) ∼D f(t′1, . . . , t

′
n)

Proof. See [9] §2.4.

Definition 3.5.8. Let D = (Π, X, E) be a specification. The quotient term algebra
T (D) is a Π-algebra defined as follows:

• For all s ∈ S, the carrier set T (D)s
def
= T (Π)s/ ∼

D;

• If f :→ s ∈ F is a constant, then fT (D) def
= [f];

• For all non-constant function names f : s1, . . . , sn → s ∈ F and for all terms

[t1] ∈ T (D)s1
, . . . , [tn] ∈ T (D)sn

, fT (D)([t1], . . . , [tn])
def
= [f(t1, . . . , tn)].

Theorem 3.5.3. For any specification D = (Π, X, E), the quotient term algebra
T (D) is a D-algebra.

Proof. See [9] §2.9.

In the next sections we shall see how the quotient term algebra is used to
generate an abstract data type out of a specification.

34

3.6 Categories

Given a signature Π, the collection of all Π-algebras and Π-homomorphisms, forms
a special mathematical structure, known as a category. Category theory will be
used to extend the power of equational logic in algebraic specifications, and help
define abstract data structures.

Definitions in this chapter are taken from [31].

Definition 3.6.1. A category C comprises:

1. a collection of objects;

2. a collection of morphisms (or arrows);

3. operations assigning to each morphism f an object dom(f), called the domain
of f , and an object cod(f), called the co-domain of f . If dom(f) = A and
cod(f) = B, we write f : A→ B;

4. A composition operator assigning to each pair of morphisms f, g with cod(f) =
dom(g) a morphism g◦f : dom(f) → cod(g). This composition operator needs
to be associative, i.e., if f : A→ B, g : B → C and h : C → D are morphisms,
then

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

5. For each object A, a morphism idA, such that for any morphism f : A→ B

idB ◦ f = f ◦ idA = f.

Proposition 3.6.1. Given a signature Π, the set of all Π-algebras, together with
Π-homomorphisms, forms a category, denoted Alg(Π).

Proof. The objects of the category Alg(Π) are the Π-algebras, and the morphisms
are the Π-homomorphisms. If A,B,C are Π-algebras, and h1 : A→ B, h2 : B → C
are Π-homomorphisms, define the composition h1 ◦ h2 recursively:

• For each s ∈ S and a ∈ As, b ∈ Bs, c ∈ Cs such that h1(a) = b and h2(b) = c,
let

(h2 ◦ h1)(a)
def
= c

35

• For each f : s1, . . . , sn → s ∈ F and a1 ∈ As1
, . . . , an ∈ Asn

, define

(h2 ◦ h1)(f
A(a1, . . . , an))

def
= fC((h2 ◦ h1)(a1), . . . , (h2 ◦ h1)(an))

The composition h2 ◦ h1 is then a Π-homomorphism from A to C.

For every object A we define a mapping idA, such that for all a ∈ A, idA(a) = a.
It is easy to see that idA is a Π-homomorphism, and is indeed the required identity
morphism.

Finally, we need to show that the composition operator is associative. This is,
however, an immediate result, if we observe that for any object sort s ∈ S, any
element a ∈ As, and any Π-homomorphisms h1 : A → B, h2 : B → C, h3 : C → D,
the composition (h3 ◦ h2 ◦ h1)(a) is equal, by definition, to the composition of the
(set-theoretic) functions ((h3)s ◦ (h2)s ◦ (h1)s)(a). Since function composition is
associative, so is the composition of Π-homomorphisms.

Definition 3.6.2. A category D is a subcategory of category C if:

• Each object in D is also an object in C;

• Each morphism in D (including all identity morphisms) is also a morphism
in C;

• The composition operator in D is a restriction of the operator defined in C.

Proposition 3.6.2. Let D = (Π, X, E) be a specification. Then:

1. The set of all D-algebras, with the Π-homomorphisms between any two of
them, forms a category Alg(D);

2. Alg(D) is a subcategory of Alg(Π).

Proof. 1. The proof is identical to that of Proposition 3.6.1, with composition
and identity defined in the same way as for Alg(Π).

2. Follows immediately from the definition of a subcategory and the construction
of Alg(D).

The category Alg(D) contains one special object, which will prove to be very
important in our discussion of algebraic specifications:

36

Definition 3.6.3. Let C be a category. An object I ∈ C is called initial, if for
every object A ∈ C there exists a unique morphism fA : I → A.

Recall from Proposition 3.4.3 that between the elements of each pair of Π-
algebras there is at most one Π-homomorphism. The above definition can therefore
be revised for the category Alg(D):

Definition 3.6.4. Let D be a specification. An algebra I ∈ Alg(D) is called an
initial algebra if for every D-algebra A there exists a Π-homomorphism h : I → A.

Theorem 3.6.1. The quotient term algebra T (D) is an initial algebra in the cate-
gory Alg(D).

Proof. See [9] §3.7.

Proposition 3.6.3. A D-algebra I is initial in the category Alg(D) if there exists
a Π-homomorphism h : I → T (D).

Proof. Let I be a D-algebra, and let h : I → T (D) be a Π-homomorphism. By
Proposition 3.4.3, this homomorphism is unique. Let A ∈ Alg(D) be some al-
gebra. Since T (D) is an initial algebra, there exists a unique Π-homomorphism
h′ : T (D) → A. Now consider the composition h′ ◦ h : I → A, defined by taking
the compositions of the sorted functions {h′

s ◦ hs}s∈S. This composition is a Π-
homomorphism. Moreover, since both h and h′ are unique, so is their composition.
Thus for every D-algebra A there is a unique Π-homomorphism from I, which, by
definition, makes I initial.

The algebras T (D) and I are, in fact, isomorphic, as will be shown in the next
section.

3.7 Abstract Data Types

It is time to answer the fundamental question behind this chapter: “what is an
abstract data type?” According to the initial algebra approach to algebraic spec-
ifications, an abstract data type is the class of all initial algebras in a category
Alg(D). This definition gains its strength from the fact that each of these algebras
is isomorphic to every other.

37

D-algebras
Initial

Π-algebras

D-algebras

Figure 3.1: The figure depicts the relationship between the categories Alg(Π) and Alg(D) for
some specification D over a signature Π. The shaded area denotes the abstract data type, as an
isomorphism class of all initial D-algebras.

Definition 3.7.1. Let D = (Π, X, E) be a specification. The abstract data type
admitted by D is the set of D-algebras that are isomorphic to the quotient term
algebra T (D).

Theorem 3.7.1. If A and A′ are two initial algebras in a category C, then A and
A′ are isomorphic. If A is an initial algebra in C and A′′ ∈ C is isomorphic to A,
then A′′ is an initial algebra in C.

Proof. See [14].

Corollary 3.7.1. An abstract data type is the set of all algebras that are initial in
Alg(D).

Figure 3.1 summarises the initial algebra approach to algebraic specifications.
We can see how abstraction is achieved by this approach: the ADT is a set of
all possible implementations of the same specification. Any initial D-algebra, by
itself, is just a member of the isomorphism class, and can therefore be considered
an implementation of the ADT.

38

Chapter 4

From Automata to Algebraic

Specifications

4.1 Introduction

In this chapter we investigate one aspect of the relationship between algebraic
specifications and simple state machines. Specifically, we determine how a semiau-
tomaton can be used to derive both a specification and an algebra in such a way
that the resulting algebra is an initial object in the category created by the specifi-
cation. Such a construction implies that the abstract data type represented by the
semiautomaton is exactly the one specified by the derived algebraic specification.

The connection made between a semiautomaton and an algebraic specification
is based upon three seemingly different equivalence relations, which were defined in
previous chapters. The first is ∼D, defined by an algebraic specification on ground
terms of the specification’s signature. The second is ≡δ, defined on words from the
free monoid Σ∗, such that two words are equivalent if and only if they lead to the
same state under the semiautomaton’s extended transition function.

The third equivalence relation is likewise defined on words. It is derived from
a set of pairs of words, and is defined as the smallest right congruence containing
this set (which will be referred to as the generating set of the relation). We usually
denote this set as G and the resulting relation as ≡G. The generating set provides
us with a set of equations resulting in an algebraic specification D. Our main result
shows how to construct such a set so that the following two conditions hold:

1. ≡δ = ≡G and

39

1

0

1
1

0

(0, 0) (0, 1)

(1, 1)

1

(1, 0)

0

0

Figure 4.1: The shift register semiautomaton. The state names show the contents of the two-bit
register.

2. There is a function ϕ : Σ∗ → T (Π)state such that for all words u, v ∈ Σ∗,
u ≡G v if and only if ϕ(u) ∼D ϕ(v).

Some of the results given in the following sections are an extension of similar
results obtained by Brzozowski and Jürgensen in [5]. Since their work was motivated
by another method for software specifications, namely trace assertions, we obtain
an interesting (though, perhaps, not surprising) connection between specifications
by automata, trace assertions and algebraic specifications.

To facilitate the reading of this chapter we present a semiautomaton for a two-
bit shift register. We will refer to this example in the following sections.

Example 4.1.1. A two-bit shift register is an abstract data type that maintains
an array of two place holders, each containing either 0 or 1, and which supports
a single operation shift. This operation takes a bit value as an argument, copies
the bit value in the right place holder to the left one, and stores the argument in
the right place holder. A diagram of a semiautomaton implementing such a shift
register is given in Figure 4.1. �

4.2 Algebraic Specification of a Semiautomaton

Semiautomata were defined in Section 2.3 as complete and initialised state ma-
chines over some alphabet. We would now like to give a different definition, one
that will allow us to treat semiautomata with the tools of the theory of algebraic

40

specifications. The ultimate goal of this section is to provide an axiomatic definition
of a specific semiautomaton.

First, we need to establish the syntactic view of a semiautomaton over a given
alphabet:

Definition 4.2.1. Let Σ be a set. The signature ΠΣ = (SΣ, FΣ) gives the syntactic
structure of a semiautomaton over the alphabet Σ:

SΣ = {state, alpha}

FΣ = {aσ :→ alpha ∀σ ∈ Σ,

init :→ state,

trans : state, alpha → state}

Any semiautomaton over the alphabet Σ can now be made into a ΠΣ-algebra:

Definition 4.2.2. Let S = (Q,Σ, δ, q0) be a semiautomaton. Define the semiau-
tomaton algebra A(S) as follows:

• The carrier set is Q ∪ Σ

• a
A(S)
σ = σ for all σ ∈ Σ

• initA(S) = q0

• transA(S) = δ

Proposition 4.2.1. The algebra A(S) is a ΠΣ-algebra.

Proof. Follows immediately from the definitions and the construction of ΠΣ and
A(S).

It is important to note that the signature ΠΣ can only be used to give the syntax
of semiautomata over the alphabet Σ, or any alphabet Σ′ such that |Σ′| ≤ |Σ|.
A semiautomaton over an alphabet Σ′, where |Σ′| > |Σ| will not yield a reachable
ΠΣ-algebra: some letters in Σ′ will not be the image of any term of sort alpha. Of
the remaining semiautomata, those over alphabets which are not isomorphic to Σ
(namely, alphabets of size smaller than |Σ|) are of little importance. The initial
algebra approach guarantees that such machines will not be part of the abstract

41

data type defined over the signature ΠΣ (as long as there are no axioms involving
terms of sort alpha).

One possible alternative to the signature given here is to use a parameterised
specification [34], where the alphabet is omitted from the signature and instead
given as a parameter. Parameterised algebraic specifications, however, require a
different mathematical infrastructure, in which abstract data types are not defined
by the initial algebra approach. Instead, the theory of parameterised algebraic
specifications uses “loose semantics”: an abstract data type is defined as the en-
tire category of D-algebras, rather than an isomorphism class of initial algebras.
Parameterised algebraic specifications are beyond the scope of this thesis.

Any initial algebra in the category Alg(ΠΣ) is isomorphic to the free semi-
automaton over Σ. To obtain a specification for more interesting semiautomata,
we need to add a few axioms. Our main method for deriving appropriate axioms
will require a transformation of words over Σ∗ into terms of sort state. Such a
transformation is given by the following function:

Definition 4.2.3. The function π : Σ∗ → T (ΠΣ)state is defined inductively for all
w ∈ Σ∗, σ ∈ Σ:

• π(ε) = init

• π(wσ) = trans(π(w), aσ)

It is easy to see that this transformation maps each word in Σ∗ to a ground term
in T (Π)state. Moreover, given such a term t, the word w ∈ Σ∗ for which π(w) = t
can be uniquely reconstructed. We therefore obtain the following proposition:

Proposition 4.2.2. The function π is a bijection.

In this chapter we are only going to construct ground equations as axioms.
Recall that for the ground term algebra T (ΠΣ) and for any ΠΣ-algebra A, the
interpretation function ν∗ : T (ΠΣ) → A is unique (Definition 3.4.5). The next
lemma shows how to compute ν∗ from the transformation function π:

Lemma 4.2.1. Let ν∗ : T (ΠΣ) → A(S) be the unique interpretation function
for the semiautomaton algebra of S . Then for all terms t ∈ T (ΠΣ)state, ν

∗(t) =
δ(q0, π

−1(t)).

Proof. By structural induction.

42

Base Case Let t = init. Then

ν∗(init) = q0

= δ(q0, ε)

= δ(q0, π
−1(init))

Step Let t ∈ T (ΠΣ)state, aσ ∈ T (ΠΣ)alpha be terms. Then

ν∗(trans(t, aσ)) = δ(ν∗(t), ν∗(aσ))

= δ(δ(q0, π
−1(t)), σ) (hypothesis)

= δ(q0, π
−1(t)σ) (def. of δ)

= δ(q0, π
−1(trans(π(π−1(t)), aσ))) (def. of π)

= δ(q0, π
−1(trans(t, aσ)))

We are now ready to show the first method for obtaining correct axioms for a
given semiautomaton. Consider two words u, v ∈ Σ∗. We show that if u ≡δ v, then
the transformation of u and v into ΠΣ-terms of sort state yields an axiom which is
valid in the semiautomaton algebra. Thus, any subset of the relation ≡δ provides
a set of axioms which are valid in this algebra.

Definition 4.2.4. Let S be a semiautomaton, and let G ⊆ ≡δ be a set. The set
E(G) of ground equations over ΠΣ is defined as follows:

E(G) = {(π(w1), π(w2))|w1, w2 ∈ Σ∗, (w1, w2) ∈ G}

Theorem 4.2.1. Let S = (Q,Σ, δ, q0) be a semiautomaton, and let G ⊆ ≡δ be
a set. Define an algebraic specification D = (ΠΣ,∅, E(G)). Then A(S) is a D-
algebra.

Proof. Let (t1, t2) ∈ E(G) be an equation. By definition, there exist words w1, w2 ∈
Σ∗ such that (w1, w2) ∈ G and π(w1) = t1, π(w2) = t2. By Lemma 4.2.1, we know
that ν∗(t1) = δ(q0, w1) and ν∗(t2) = δ(q0, w2). But (w1, w2) ∈ G implies w1 ≡δ w2,
and therefore

43

ν∗(t1) = δ(q0, w1) = δ(q0, w2) = ν∗(t2)

as required.

Recall that the set Ĝ(C) is a set of pairs of words over Σ∗, such that for every
pair (u, v) ∈ Ĝ(C), u ≡δ v (Definition 2.3.10). The following corollary can therefore
be obtained from Theorem 4.2.1:

Corollary 4.2.1. The algebra A(S) is a D-algebra for the specification D =
(ΠΣ,∅, E(Ĝ(C))).

Proof. Apply Theorem 4.2.1 on the set Ĝ(C) ⊆ ≡δ.

4.3 Properties of Generating Sets

We have seen that a set G ⊆ ≡δ gives rise to two algebraic structures that are of
interest to our discussion. The first is the smallest right congruence containing G,
which is defined on the free monoid Σ∗. The second structure is the specification
D = (ΠΣ,∅, E(G)), which uses a transformation of the set G into a set of equations.

It may not come as a big surprise that these two structures share a great deal in
common. In fact, as we shall now prove, the term congruence that arises from the
specification D is strongly related to the smallest right congruence containing G.

In the following results we assume the existence of a semiautomaton S =
(Q,Σ, δ, q0) and of a set G ⊆ ≡δ. The latter gives rise to the relation ≡G,
defined as the smallest right congruence containing G, and to the specification
D = (ΠΣ,∅, E(G)).

Lemma 4.3.1. For all words w1, w2 ∈ Σ∗, w1 ≡G w2 implies π(w1) ∼
D π(w2).

Proof. Define a relation ≡D ⊆ Σ∗ × Σ∗ such that for all u, v ∈ Σ∗, u ≡D v if and
only if π(u) ∼D π(v). It is easy to see that ≡D is an equivalence relation (reflexivity,
symmetry and transitivity follow from the same properties on the relation ∼D).

We shall now prove that ≡D is a right congruence. Assume that w1 ≡D w2 for
some words w1, w2 ∈ Σ∗. Then π(w1) ∼

D π(w2) by definition. Remember that ∼D

is a Π-congruence, and therefore for all aσ ∈ T (ΠΣ)state we get

trans(π(w1), aσ) ∼D trans(π(w2), aσ)

44

By the definition of π this implies that π(w1σ) ∼D π(w2σ) for all σ ∈ Σ. We can
now apply the same process on strings of any length to prove right congruence.

To complete the proof we note that ≡D includes the pairs inG (since ∼D includes
the equations in E(G)). But ≡G was defined as the smallest right congruence
containing G, and so it must follow that ≡G ⊆ ≡D. Thus we get that for all w1, w2 ∈
Σ∗, w1 ≡G w2 implies w1 ≡D w2 and then by definition π(w1) ∼

D π(w2).

Proving the converse of the above lemma is a bit harder, and requires the use
of a D-algebra generated by the set G:

Definition 4.3.1. The algebra A(G) is a ΠΣ-algebra, defined as follows:

• The carrier set is Σ∗/≡G ∪Σ

• a
A(G)
σ = σ for all σ ∈ Σ

• initA(G) = [ε]G

• transA(G) = natG

where natG : Σ∗/≡G ×Σ → Σ∗/≡G is defined as natG([u]G, σ) = [uσ]G.

Lemma 4.3.2. For all t ∈ T (ΠΣ)state, t
A(G) = [π−1(t)]G.

Proof. By structural induction.

Base Case initA(G) = [ε]G = [π−1(init)]G

Step Let t ∈ T (ΠΣ)state be a term, and let w ∈ Σ∗ be a word such that
π(w) = t.

(trans(t, aσ))A(G) = transA(G)(tA(G), aA(G)
σ)

= natG([π−1(t)]G, σ)

= [wσ]G

= [π−1(trans(π(w), aσ))]G

= [π−1(trans(t, aσ))]G

45

Lemma 4.3.3. Let D = (ΠΣ,∅, E(G)) be a specification. Then the algebra A(G)
is a D-algebra.

Proof. Let (t1, t2) ∈ E(G) be an equation in D. By construction of the set E(G),
(π−1(t1), π

−1(t2)) ∈ G, which means that [π−1(t1)]G = [π−1(t2)]G. By Lemma 4.3.2

we get t
A(G)
1 = t

A(G)
2 .

Theorem 4.3.1. Let S = (Q,Σ, δ, q0) be a semiautomaton, let G ⊆ ≡δ be a set,
let ≡G be the smallest right congruence containing G and let D = (ΠΣ,∅, E(G))
be a specification. Then, for all words w1, w2 ∈ Σ∗, w1 ≡G w2 if and only if
π(w1) ∼

D π(w2).

Proof. The direction w1 ≡G w2 ⇒ π(w1) ∼
D π(w2) was already proved in Lemma

4.3.1.

Assume that π(w1) ∼
D π(w2). Then for every D-algebra A, π(w1)

A = π(w2)
A.

Specifically, this equation holds for the D-algebra A(G). According to Lemma 4.3.2,
π(w)A(G) = [w]G for all words w ∈ Σ∗, and therefore [w1]G = [w2]G, or, in other
words, w1 ≡G w2.

4.4 Initial Algebras

We now turn our attention to the conditions under which a semiautomaton provides
an initial algebra for a specification created from that machine. Such conditions
are important as they provide the means through which we can create algebraic
specifications that truly reflect the semiautomata from which they were generated.

Theorem 4.4.1. Let S = (Q,Σ, δ, q0) be a semiautomaton, let C be a canonical
set and let D = (ΠΣ,∅, E(Ĝ(C))) be the resulting algebraic specification. Then for
all words w1, w2 ∈ Σ∗, w1 ≡δ w2 ⇔ π(w1) ∼

D π(w2).

Proof. Let t1 = π(w1), t2 = π(w2), and assume that t1 ∼D t2. Then for all D-
algebras ν∗(t1) = ν∗(t2) (by definition). Specifically, this equality holds for the
algebra A(S). By Lemma 4.2.1, δ(q0, π

−1(t1)) = δ(q0, π
−1(t2)), which implies

π−1(t1) ≡δ π
−1(t2). But π−1(t1) = w1 and π−1(t2) = w2 and thus w1 ≡δ w2.

Conversely, assume that w1 ≡δ w2. From Theorem 2.3.2 we know that w1 ≡ w2.
By Theorem 4.3.1 this means that π(w1) ∼

D π(w2).

46

Our aim now is to prove that the algebra A(S) is initial. To facilitate the proof,
we first construct an algebra isomorphic to A(S), prove that it is initial, and then
use Theorem 3.7.1 to conclude the initiality of A(S).

Definition 4.4.1. Let S = (Q,Σ, δ, q0) be a semiautomaton, and let Sδ =
(Σ∗/≡δ ,Σ, natδ, [ε]) be its isomorphic image created by the relation ≡δ (see The-
orem 2.3.1). Define the algebra A(Sδ) as follows:

• The carrier set is Σ∗/≡δ ∪Σ

• a
A(Sδ)
σ = σ for all σ ∈ Σ

• initA(Sδ) = [ε]δ

• transA(Sδ) = natδ

(Note that this definition is similar to Definition 4.3.1 with ≡δ replacing ≡G.)

Lemma 4.4.1. The algebras A(S) and A(Sδ) are isomorphic.

Proof. follows immediately from the isomorphism of S and the semiautomaton
Sδ.

Lemma 4.4.2. The algebra A(Sδ) is an initial D-algebra.

Proof. Let h : T (D) → A(Sδ) be an S-sorted mapping, defined as follows:

• h([aσ]D) = σ

• h([t]D) = [π−1(t)]δ, ∀t ∈ T (ΠΣ)state

We shall now prove that h is an isomorphism. The mapping halpha is clearly an
isomorphism, since [aσ] is a singleton for all σ ∈ Σ.

Consider the mapping hstate. This mapping is surjective, since π is invertible:
for every word u ∈ Σ∗, there is a term t ∈ T (ΠΣ)state such that π(u) = t and hence
h([t]D) = [u]δ. The mapping is also injective:

h([t1]D) = h([t2]D) ⇒ [π−1(t1)]δ = [π−1(t2)]δ

⇒ π−1(t1) ≡δ π
−1(t2)

⇒ t1 ∼
D t2 (Theorem 4.4.1)

⇒ [t1]D = [t2]D

47

Theorem 4.4.2. The algebra A(S) is an initial D-algebra.

Proof. Combine Lemma 4.4.2 with Lemma 4.4.1.

Example 4.4.1. Consider the shift register semiautomaton. Assume that the
canonical set is selected to be C = {0, 1, 10, 11}. It can be easily verified that
every state is represented in this set, and that no two words take the initial state
to the same state. The set G(C) is composed of the following pairs: (00, 0), (01, 1),
(100, 0), (101, 1), (110, 10) and (111, 11). The set Ĝ(C) adds the pair (ε, 0). The
resulting equations are

trans(trans(init, a0), a0) = trans(init, a0)

trans(trans(init, a0), a1) = trans(init, a1)

trans(trans(trans(init, a1), a0), a0) = trans(init, a0)

trans(trans(trans(init, a1), a0), a1) = trans(init, a1)

trans(trans(trans(init, a1), a1), a0) = trans(trans(init, a1), a0)

trans(trans(trans(init, a1), a1), a1) = trans(trans(init, a1), a1)

init = trans(init, a0)

�

Note that the only property of the set Ĝ(C) we have used to prove Theorem 4.4.2
is that the resulting right congruence was equal to the right congruence generated
by the transition function. We can therefore generalise Theorem 4.4.2 as follows:

Theorem 4.4.3. Let S = (Q,Σ, δ, q0) be a semiautomaton, let G ⊆ ≡δ be a
set and let ≡G be the smallest right congruence that contains G. If ≡G = ≡δ,
then the algebra A(S) is an initial D-algebra for the algebraic specification D =
(ΠΣ,∅, E(G)).

It turns out that the converse of Theorem 4.4.3 also holds. That is, if the
semiautomaton algebra is an initial object in the algebraic specification category
generated by the set G, then the δ-equivalence of the semiautomaton is also the
smallest right congruence containing G:

Theorem 4.4.4. Let S , G, ≡G and D be as in Theorem 4.4.3. If A(S) is an
initial D-algebra, then ≡G = ≡δ.

Proof. Assume that A(S) is an initial D-algebra. By initiality, there exists a ΠΣ-
homomorphism h : A(S) → T (D). We shall first prove, by induction on the length
of a word, that for all w ∈ Σ∗, h(δ(q0, w)) = [π(w)]D.

48

Base Case

h(δ(q0, ε)) = h(q0)

= h(initA(S))

= initT (D)

= [init]D

Step Let w ∈ Σ∗ be a word and let σ ∈ Σ be a symbol. Then

h(δ(q0, wσ)) = h(δ(δ(q0, w), σ))

= h(transA(S)(δ(q0, w), σ))

= transT (D)(h(δ(q0, w)), h(σ))

= transT (D)([π(w)]D, [aσ]D)

= [trans(π(w), aσ)]D

= [π(wσ)]D

We can now prove that ≡δ ⊆ ≡G. Assume w1 ≡δ w2 for some words w1, w2 ∈ Σ∗.
Then, by definition of ≡δ, δ(q0, w1) = δ(q0, w2). Applying h we get h(δ(q0, w1)) =
h(δ(q0, w2)), which, by the claim proved above, implies that [π(w1)] = [π(w2)] (or
equivalently, π(w1) ∼

D π(w2)). From Theorem 4.3.1 we know that π(w1) ∼
D π(w2)

if and only if w1 ≡G w2.

The other inclusion is immediate: we know that ≡δ is a right congruence that
contains G, and that ≡G is the smallest right congruence containing G. Therefore
≡G ⊆ ≡δ.

4.5 Infinite Semiautomata

So far we have seen an example of a finite semiautomaton (the shift register), which
resulted in a finite set of equations for the algebraic specifications. Many abstract
data types, however, are infinite (at least in theory). Consider, for example, a very
simple infinite data type: a unary counter. This ADT has two operations, increment
and decrement, and an infinite number of states, one for each natural number
counted. An infinite semiautomaton for such a counter appears in Figure 4.2.

49

0 1 2 3

i i i i

d

d d d d

Figure 4.2: An infinite unary counter. The symbol i stands for increment, and the symbol d for
decrement. A state’s name reflects the net number of increments leading to that state.

Since the state set of an infinite semiautomaton is infinite, so is any chosen
canonical set. This, in turn, may result in an infinite set Ĝ(C). While this imposes
no problems on the mathematics used in the previous section (all theorems are valid
whether the set Ĝ(C) is finite or infinite), the result, from a software specification
point of view, may be impractical. Remember that the purpose of algebraic speci-
fications is to describe software modules, and an infinite description is generally of
little use.

So far we have not used one aspect of algebraic specifications in our discussion
of semiautomata. Free variables give us the power to reduce an infinite number of
equations to a finite one. This is possible due to the nature of such variables, which
are always assumed to be universally quantified.

Consider the infinite counter, and assume the canonical set is C = {ik|k =
0, 1, 2, . . .}. The set Ĝ(C) is: (d, ε), (id, ε), (iid, i), (iiid, ii), etc. We can observe
that for each canonical word w we have the pair (wid, w) in Ĝ(C). We can therefore
use a universally quantified variable c of sort state to substitute an infinite number
of equations with the following two:

trans(trans(c, ai), ad) = c

trans(init, ad) = init

In Chapter 5 we discuss another method for finding axioms containing free
variables. This method, although demonstrated for use with finite automata, may
prove useful in the infinite case as well.

4.6 Output Values

In the last section of this chapter we turn our attention to Mealy machines, that
is, to state machines with output values. As mentioned in Chapter 2, infinite,

50

deterministic Mealy machines were chosen as the model for specifying abstract
data types with state machines.

Since most of the work presented here concentrated on semiautomata, we do not
provide a comprehensive theory on obtaining algebraic specifications from Mealy
machines. Instead, we provide some notes and present an open problem that is left
for further research.

First, we consider a significant difference between modules specified by Mealy
machines to those described using algebraic specifications. In a general Mealy ma-
chine, an input symbol may result in both a state change and an output value.
Such behaviour cannot be modelled by algebraic specifications: every function has
only one sort in its range. In a specification of a stack, if a function has stack as
its range sort, then this function is used to change the internal state of the module.
Otherwise, it is a function that retrieves some information from the module. In
programming terminology, functions of the first kind are “modifiers” and of the
second kind are “accessors”. While this property seems to be a limitation of al-
gebraic specifications when compared with Mealy machines, it is actually a part
of their strength as a formal method: it is always a good practice to differentiate
between modifiers and accessors, so that the user is guaranteed that an accessor
never has side effects. The user of the module can always obtain a result equivalent
to the one achieved by a modifier–accessor function (such as a pop method in a
stack, which also returns the value of the popped item) by combining two or more
interface functions.

We therefore assume that the alphabet Σ of a Mealy machine can be partitioned
into two sets ΣS and ΣV , such that the letters in ΣS do not produce output and
the letters in ΣV do not change the state of the machine (by partition, we mean
that Σ = ΣS ∪ ΣV and ΣS ∩ ΣV = ∅). Note that it is easy to convert any Mealy
machine to a machine that possesses this property. Let M = (Q,Σ, δ, q0,Θ, θ) be a
Mealy machine. We now construct a new Mealy machine M ′ = (Q,Σ′, δ′, q0,Θ, θ

′)
by replacing every symbol σ ∈ ΣS ∩ ΣV with two symbols σS, σV such that for all
q ∈ Q

δ′(q, σS) = δ(q, σ)

δ′(q, σV) = q

θ′(q, σV) = θ(q, σ)

and θ′(q, σS) is not defined. Let ϕ : Σ → (Σ′)∗ be a function defined as:

51

ϕ(σ′) =

{

σSσV σ′ = σ

σ σ′ 6= σ

and let ϕ∗ : Σ∗ → (Σ′)∗ be the unique homomorphic extension of ϕ. Then for
every word w ∈ Σ∗ and every state q ∈ Q, δ′(q, ϕ∗(w)) = δ(q, w) and θ′(q, ϕ∗(w)) =
θ(q, w).

From now on we assume that a Mealy machine’s alphabet can be partitioned
as mentioned above.

In order to create a specification for a Mealy machine, we first need to modify
the signature in Definition 4.2.1. This is done by splitting the sort alpha in two
and adding a sort for output values, a constant for each output symbol and a value
function.

Definition 4.6.1. Let M = (Q,Σ, δ, q0,Θ, θ) be a Mealy machine. Define the
signature ΠΣ,Θ = (S, F) as follows:

SΣ,Θ = {state, alpha-state, alpha-val, output}

FΣ,Θ = {aσ :→ alpha-state ∀σ ∈ ΣS,

aσ :→ alpha-val ∀σ ∈ ΣV ,

aς :→ output ∀ς ∈ Θ,

init :→ state,

trans : state, alpha-state → state,

value : state, alpha-val → output}

The reason for separating the alphabet into two sorts is that algebraic specifications
cannot define value as a partial function. An alternative signature can use a unary
function aς : state → output for every alphabet symbol producing a value.

Example 4.6.1. A Mealy machine for a two-bit shift register is depicted in Figure
4.3. The alphabet symbols l and r, when applied by the output function on a state,
return the contents of the left and right register cells, respectively. Note that the
output alphabet Θ = {0, 1} is distinct from the input alphabet Σ = {0, 1}. The
signature ΠΣ,Θ contains two constants a0, a1 of sort alpha-state, two constants al, ar

of sort alpha-val and two constants a0, a1 of sort output. �

A significant problem that arises from this definition is that words over Σ∗ can
no longer be converted into terms. Consider, for example, the word

52

1

0

1
1

0

(0, 1)

(1, 1)

1

(1, 0)

0

r/1
l/1

r/0
l/1

(0, 0)

r/0
l/0

0

r/1
l/0

Figure 4.3: The shift register Mealy machine. The output alphabet consists of the symbols 0 and
1.

w = σ1σ2σ3ς1σ4ς2

where σi ∈ ΣS and ςi ∈ ΣV . The 4 letter prefix of this word, σ1σ2σ3ς1, can be
translated into the term

value(trans(trans(trans(new, aσ1
), aσ2

), aσ3
), aς1)

However, this term is of sort output, and cannot be a subterm of trans. This seems
to be a shortcoming of algebraic specifications, which does not allow this method to
model the concept of a “trace” (a sequence of function executions on the module).
To correctly translate the word w, we first need to remove all occurrences of letters
in ΣV .

Writing axioms for a Mealy machine specification is a straightforward extension
of the procedure described for semiautomata. Ostensibly, the generalised Nerode
equivalence can give us further information and simplify equations generated for the
underlying semiautomaton. Alternatively, we can first obtain the reduced automa-
ton and then write the axioms for that machine, including those for the underlying
semiautomaton. It is safe to assume that the second method is at least as easy as
the first. We shall therefore consider all Mealy machines as having been reduced
by a preprocessing stage of the specification translation procedure.

53

The only task that remains to be done for a reduced Mealy machine is to specify
the value of every term of the sort output. The only way to obtain such terms is
by applying the function name value on a term of sort state and a constant of sort
alpha-val (there are no terms of sort alpha-val but the constants). We therefore end
up with a set of equations of the form

value(t, a) = o

where t is a term of sort state, a is a constant of sort alpha-val and o is a term
of sort output. Note that we need to write such an equation only once for every
equivalence class of terms of sort state: if t1 ∼

D t2, then

[value(t1, a)]D = valueT (D)([t1]D, [a]D) = valueT (D)([t2]D, [a]D) = [value(t2, a)]D

which means, by the initiality of T (D), that for every D-algebra value(t1, a) and
value(t2, a) are interpreted the same way. Thus, it is sufficient to include one axiom
for every term produced from a canonical set (see Section 4.2) and every constant
of sort alpha-val.

Example 4.6.2. Consider the Mealy machine for a 2-bit shift register, depicted in
Figure 4.3. The value producing symbols in the machine’s alphabet are r, which
returns the contents of the right cell, and l, which returns the contents of the left
cell. The axioms for the underlying semiautomaton are given in Example 4.4.1,
which assumes the canonical set to be C = {0, 1, 10, 11}. The resulting axioms for
output values are

value(trans(new, a0), ar) = a0

value(trans(new, a0), al) = a0

value(trans(new, a1), ar) = a1

value(trans(new, a1), al) = a0

value(trans(trans(new, a1), a0), ar) = a0

value(trans(trans(new, a1), a0), al) = a1

value(trans(trans(new, a1), a1), ar) = a1

value(trans(trans(new, a1), a1), al) = a1

�

54

Note that we cannot combine the second and fourth equations in Example 4.6.2
into something like

value(trans(new, x), al) = x

since x cannot be at the same time both a variable of sort alpha-state and a vari-
able of sort output. We can, however, add an input-to-output alphabet conversion
function with axioms such as

convert(x, 0) = 0

and then write

value(trans(new, x), al) = convert(x)

where x is a free variable of sort alpha-state. Generally speaking, when specifying
a Mealy machine in which the output alphabet is a subset of the input alphabet
one should be cautious with assigning the same sort to both alphabets: while the
constants of both sorts may be the same, the set of terms produced for each sort can
be different, leading to valid syntactical forms, which are semantically incorrect.

As a final note on output values, we consider the following alternative set of
axioms for specifying the two-bit shift register:

Example 4.6.3. Let x be a free variable of sort state and let y be a free variable
of sort alpha-val. Let X = {x, y} be a set of free variables. The following axioms
are defined over T (ΠΣ,Θ, X), where ΠΣ,Θ is the signature defined in Example 4.6.1:

value(trans(x, a0), ar) = a0

value(trans(x, a1), ar) = a1

value(trans(trans(x, a0), y), al) = a0

value(trans(trans(x, a1), y), al) = a1

�

It can be easily verified that the set of axioms in Example 4.6.3, when added to
the set of semiautomaton axioms in Example 4.4.1, completely specifies the shift
register Mealy machine. Moreover, from an observational point of view, which is the

55

only one that matters for software specification, we can omit the semiautomaton
axioms. We would then have a specification of a Mealy machine with an infinite
number of states (as there are no axioms equating two terms of sort state), which,
once we add a couple of axioms for the values on init, behaves in exactly the
same way as the 4-state machine. Whether this set of axioms can be obtained
algorithmically remains an open question.

56

Chapter 5

Varieties

5.1 Introduction

In the previous chapter we have introduced a method for converting automaton
specifications into algebraic specifications. While the method was proved to be
correct in all cases, it often produces poor results, in the sense that the derived
algebraic specification is lengthy and cluttered. Such a result was demonstrated in
Example 4.4.1, where a shift register was specified using 5 axioms, each containing
several subterms. It may be suspected (justifiably, as it turns out), that such a
simple data structure can be specified in a more compact and elegant manner.

The most important reason for these rather poor results is that the aforemen-
tioned method completely ignores one of the fundamental mechanisms in algebraic
specifications, namely the use of free variables. Such variables can turn axioms into
universally quantified statements, thus replacing several axioms (one for each term
of a given sort) with a single equation.

But how does one obtain such axioms from a semiautomaton? In Section 4.5 it
was suggested that by looking at the axioms one can sometimes discover patterns
that lead to the aggregation of several axioms. In this chapter we will describe an-
other method for writing axioms containing free variables by using prior knowledge
on classes of monoids.

While semiautomata and monoids are different algebraic structures, they are
closely related through the concept of a transformation monoid (see Definition
2.3.6). This relation allows us to investigate the properties of a transformation
monoid and apply the findings to its semiautomaton. (Such a course of action

57

is widely used in automaton theory. See, for example, [24].) Our main tool of
investigation will be varieties.

A variety of semigroups is a class of semigroups closed under finite direct prod-
ucts and under homomorphic images of subsemigroups. In one of the seminal pa-
pers in algebra, Birkhoff has shown [2] that varieties can be described by equations
composed of strings of free variables. For example, the equation

xy = yx

describes all commutative semigroups. Birkhoff proved that all semigroups on which
this equation is applicable form a variety, and that every variety can be described
by a set of equations. Eilenberg later proved the same result [10] on classes of finite
monoids, known as M-varieties. Furthermore, Eilenberg has shown that every finite
monoid gives rise to an M-variety.

Birkhoff’s work immediately suggests a resemblance between a variety and the
category Alg(D): both are classes of algebraic structures satisfying a common set
of equations. (Indeed, the resemblance in not coincidental, as this work greatly
inspired the developers of algebraic specifications.) It is therefore interesting to see
in what way variety equations can be translated into axioms, and of what use they
are in this case. In this chapter we show that equations describing M-varieties can
be helpful in simplifying algebraic specifications of semiautomata.

The key theorem in this chapter can be summarised as follows: Let S be a
semiautomaton, and let TS be its transformation monoid. The monoid TS belongs
to several M-varieties. Assume that we know the equations defining one or more
of these varieties. Then a straightforward translation of these equations into ΠΣ-
equations (using a suitable set of free variables) results in axioms which are valid
in the semiautomaton’s algebra.

An important restriction on the usefulness of this theorem is that one has to
know the equations defining a certain variety in order to use it. It can be argued
that finding equations for varieties is no easier than finding axioms for algebraic
specifications, thus doubting any real-world application of the theorem. Neverthe-
less, the theorem does not require one to investigate a specific M-variety in order
to get results. Instead, it is sufficient that the transformation monoid belongs to
any well-studied variety for the theorem to provide information that can be used
to simplify the specification of the semiautomaton.

58

5.2 Varieties

This section contains a brief introduction to varieties, focusing on pseudo-varieties
of finite monoids. Definitions and results were adapted from [10].

Definition 5.2.1. A semigroup T divides a semigroup S if there is a subsemigroup
S ′ of S and a mapping h : S ′ → T such that h is a semigroup homomorphism. (In
other words, T divides S if T is a homomorphic image of a subsemigroup of S.)

Definition 5.2.2. The direct product of two semigroups (S, ·) and (T, ∗) is a pair
(S × T, ◦), where ◦ is a binary operation defined as

(s, t) ◦ (s′, t′) = (s · s′, t ∗ t′)

for all s, s′ ∈ S and t, t′ ∈ T .

Proposition 5.2.1. The direct product of two semigroups is a semigroup.

Definition 5.2.3. A variety V is a family of semigroups closed under divisions and
direct products. That is, if S, S ′ ∈ V are semigroups, then

• If T is a semigroup that divides S, then T is in V.

• The direct product of S and S ′ is in V.

Definition 5.2.4. An S-variety (or a pseudovariety) is a variety restricted to finite
direct products.

Definition 5.2.5. An M-variety is an S-variety whose members are all monoids.

Note that the above definition implies that an M-variety is not a variety per se,
as it is not closed under semigroup divisions. The reason is that a subsemigroup of
a monoid need not be a monoid. Eilenberg defines an M-variety as the intersection
of an S-variety with the set of all monoids. We will use a different definition which,
hopefully, will make things clearer:

Definition 5.2.6. An M-variety is family V of monoids such that:

• If M,M ′ ∈ V, then the direct product of M and M ′ is also in V

• If M ∈ V and M ′ is a submonoid of M ′, then any homomorphic image of M ′

is also in V

59

Definition 5.2.7. Let M be a monoid. The M-variety generated by M is the least
M-variety containing M .

One of the earliest results in abstract algebra, which is due to Birkhoff [2],
states that a family of semigroups is a variety if and only if it is defined by a set
of equations. We will use this fact later in this chapter to establish a connection
between semigroup equations and axioms in algebraic specifications.

Definition 5.2.8. Let Σ∗ be the free monoid generated by a denumerable alphabet
Σ, and let u, v ∈ Σ∗. A monoid M satisfies the equation u = v if for every
homomorphism h : Σ∗ →M , h(u) = h(v).

Proposition 5.2.2. Let V(u, v) be the family of all monoids satisfying the equation
u = v. Then V(u, v) is an M-variety.

Proof. See [10], §V.2.

The above proposition can be easily extended to a set E ⊆ Σ∗×Σ∗ of equations.
Thus, if E is such a set, then V(E) is the variety of all monoids satisfying every
equation in E.

Definition 5.2.9. An M-variety V is defined by a set of equations E if V = V(E).
If there exists a set of equations E that defines V, we say that V is equational.

Theorem 5.2.1. Let M be a monoid. Then the M-variety generated by M is
equational.

Proof. See [10], §V.2.

5.3 The Transformation Monoid as an Algebra

Before any results on monoids can be used in the algebraic specifications of semi-
automata, we need to establish a common framework to handle both structures.
Fortunately, transformation monoids can be easily made into algebras for the semi-
automaton signature ΠΣ. Thus we can use treat both structures as algebras over
the same signature.

Definition 5.3.1. Let S = (Q,Σ, δ, q0) be a semiautomaton with a transformation
monoid TS = (Σ∗/≡T , natT , [ε]). Make TS into a ΠΣ-algebra A(TS) by defining
Σ∗/≡T as the carrier set elements of sort state, Σ as the carrier set elements of sort
alpha and the following functions:

60

• initA(TS) = [ε]

• For all u ∈ Σ∗, σ ∈ Σ, transA(TS)([u], σ) = [uσ]

Before we establish the relationship between a semiautomaton algebra and its
transformation monoid algebra, we need the following general result:

Lemma 5.3.1. Let D = (Π, X, E) be a specification, where Π is a signature, X a
set of free variables and E a set of equations over Π and X. Let I be an initial
D-algebra and let A be a reachable Π-algebra. Then A is a D-algebra if and only if
there exists a surjective Π-homomorphism h : I → A.

Proof. Assume A is a D-algebra. Since I is initial in the category Alg(D), there
exists a unique Π-homomorphism h : I → A. Consider the interpretation function
νI : T (Π) → I. This function is a Π-homomorphism, and therefore the composition
h ◦ νI : T (Π) → A is also a Π-homomorphism. The algebra T (Π) is initial in
the category Alg(Π), and therefore there is only one Π-homomorphism between
T (Π) and A, namely the interpretation function ν∗A. The algebra A was assumed
to be reachable, which means that ν∗A is surjective. Since ν∗A is unique, we have
ν∗A = h ◦ νI , and hence h must also be surjective.

Conversely, assume there is a surjective Π-homomorphism h : I → A. We first
show that for any valuation νA : X → A there is a valuation νI : X → I such that
νA = h ◦ νI .

Let νA : X → A be a valuation. Since h is surjective, we can define a function
h−1 : A → I such that h ◦ h−1 = IdA (where IdA is the identity on A). Note that
h−1 may be defined in more than one way (e.g., if both h(i1) = a and h(i2) = a,
we can define either h−1(a) = i1 or h−1(a) = i2), but it does not matter for our
purpose. Define νI = h−1 ◦ νA. By composing both sides with h we get νA = h ◦ νI .
Moreover, νI is clearly a valuation from X to I, and thus we obtain the required
result.

Consider now the unique homomorphic extensions of νA and νI , namely ν∗A :
T (Π, X) → A and ν∗I : T (Π, X) → I. Since h is a Π-homomorphism, so is h ◦ ν∗I .
Let x ∈ X be a free variable. Then

h ◦ ν∗I (x) = h(ν∗I (x))

= h(νI(x)) (by homomorphic extension)

= h ◦ νI(x)

= νA(x)

61

This shows that h ◦ ν∗I is a homomorphic extension of νA, and by the uniqueness
of the extension it must follow that ν∗A = h ◦ ν∗I . We thus conclude that, for every
interpretation ν∗A, there is an interpretation ν∗I such that ν∗A = h ◦ ν∗I .

Let (t1, t2) be an equation in E, and let ν∗A : T (Π, X) → A be an interpretation.
By the above conclusion, there is an interpretation ν∗I : T (Π, X) → I such that
ν∗A = h ◦ ν∗I . Furthermore, since I is a D-algebra, ν∗I (t1) = ν∗I (t2), and since h is a
Π-homomorphism, h(ν∗I (t1)) = h(ν∗I (t2)). Hence the equation (t1, t2) is valid in A,
which makes A a D-algebra.

Recall that for every semiautomaton S there is an isomorphic semiautomaton
Sδ which is generated from the right-congruence ≡δ (see Definition 2.3.4 and The-
orem 2.3.1). As in other cases, it is easier to first prove the main result of this
section on the semiautomaton Sδ, and then use the isomorphism property to infer
a similar result on S .

Lemma 5.3.2. Let S = (Q,Σ, δ, q0) be a semiautomaton and let TS be its trans-
formation monoid. Let Sδ be the semiautomaton generated from S by the right-
congruence ≡δ. If D is a specification such that A(TS) is an initial D-algebra, then
A(Sδ) is a D-algebra.

Proof. Define an S-sorted mapping h : A(TS) → A(Sδ) as follows:

• For all σ ∈ Σ, halpha(aσ) = σ

• For all w ∈ Σ∗, hstate([w]T) = [w]δ

We first note that hstate is a well-defined function from Σ∗/≡T to Σ∗/≡δ, since for
all u, v ∈ Σ∗, [u]T = [v]T implies [u]δ = [v]δ. Furthermore, hstate is surjective: every
class [u]δ is defined by at least one word u ∈ Σ∗, which, in turn, gives rise to a class
[u]T . By the definition of hstate, h([u]T) = [u]δ, and thus hstate covers all classes in
Σ/≡δ.

We now claim that h is a ΠΣ-homomorphism. The claim holds trivially for all
elements of sort alpha. The proof on hstate proceeds by structural induction:

Base Case The only constant in ΠΣ of sort state is init. By definition,
initA(TS) = [ε]T and initA(Sδ) = [ε]δ, and so hstate(initA(TS)) = initA(Sδ).

62

Step Let q ∈ T (ΠΣ)state, aσ ∈ T (ΠΣ)alpha be terms. The algebra A(TS) is a
reachable ΠΣ-algebra (by its initiality), and therefore there is a word u ∈ Σ∗ such
that [u]T = qA(TS). Consider the term trans(q, aσ). By the definition of hstate,
h([u]T) = [u]δ, and by the induction hypothesis [u]δ = qA(Sδ). Therefore

h(ν∗T (trans(q, aσ))) = h(transA(TautoS)([u]T , σ))

= h([uσ]T)

= [uσ]δ

= ν∗δ (trans(q, aσ)))

where ν∗T , ν
∗
δ are the unique ground term interpretation functions for the algebras

A(TS), A(Sδ), respectively.

Since h is a surjective ΠΣ-homomorphism, we can now use Lemma 5.3.1 to
conclude that A(Sδ) is a D-algebra.

Theorem 5.3.1. Let S = (Q,Σ, δ, q0) be a semiautomaton and let TS be its
transformation monoid. If D is a specification such that A(TS) is an initial D-
algebra, then A(S) is a D-algebra.

Proof. From Lemma 5.3.2 and the isomorphism of A(S) and A(Sδ).

Corollary 5.3.1. Any ΠΣ-equation over some set X of free variables which is valid
in A(TS) is also valid in A(S).

Proof. Take all equations E over X which are valid in A(TS), and create a specifi-
cation D = (ΠΣ, X, E). Then A(TS) is an initial D-algebra. From Theorem 5.3.1
it follows that all equations E are valid in A(S).

5.4 Monoid-Derived Axioms for Semiautomata

Variety equations, as defined in Section 5.2, cannot be used in the algebraic speci-
fications of semiautomata for the obvious reason that such equations are not com-
posed of ΠΣ-terms. However, a simple transformation can be used to obtain proper
axioms:

Definition 5.4.1. Let ΠΣ = (S, F) be the semiautomaton signature over alphabet
Σ, and let X be an S-sorted set such that Xalpha is a denumerable set and Xstate =
{q}. Let Ξ be a denumerable set, and let π : Ξ → Xalpha be a bijective function.
The function π∗ : Ξ∗ → T (ΠΣ, X) is defined recursively:

63

• π∗(ε) = q

• For all u ∈ Ξ∗, x ∈ Ξ, π(ux) = trans(π∗(u), π(x))

Recall that the monoid property of satisfying equations is defined through
monoid homomorphisms. The following proposition shows that the function com-
position ν∗ ◦π∗ behaves very much like a monoid homomorphism, in the sense that
one can always extract the homomorphic extension of ν◦π from the image of ν∗◦π∗.
We will use this behaviour in the proof of the next result.

Proposition 5.4.1. Let A(TS) be a ΠΣ-algebra for the transformation monoid of
some semiautomaton S . For all words u = x1...xn ∈ Ξ∗ and for all assignments
ν : X → A(TS),

ν∗(π∗(u)) = natT (ν(q), [ν(π(x1))...ν(π(xn))])

where ν∗ : T (ΠΣ, X) → A(S) is the extension of ν to an interpretation function.

Proof. By induction on the length of u.

Base Case For u = ε we get

ν∗(π∗(ε)) = ν∗(q)

= ν(q)

= natT (ν(q), [ε])

Step Assume the proposition holds for some u = x1...xn ∈ Ξ∗, and let x ∈ Ξ.
Then

ν∗(π∗(ux)) = ν∗(trans(π∗(u), π(x))) (def. of π∗)

= transA(TS)(ν∗(π∗(u)), ν∗(π(x))) (def. of ν∗)

= transA(TS)(ν∗(π∗(u)), ν(π(x))) (def. of ν∗)

= [ν∗(π∗(u))ν(π(x))] (def. of A(TS))

= [natT (ν(q), [ν(π(x1))...ν(π(xn))])ν(π(x))] (hypothesis)

= natT (natT (ν(q), [ν(π(x1))...ν(π(xn))]), [ν(π(x))]) (def. of natT)

= natT (ν(q), natT ([ν(π(x1))...ν(π(xn))], [ν(π(x))])) (associativity)

= natT (ν(q), [ν(π(x1))...ν(π(xn))ν(π(x))]) (def. of natT)

64

We are now ready to prove that the equation transformation procedure, as de-
scribed in Definition 5.4.1, preserves the satisfaction property: if a monoid satisfies
an equation, then the translation of this equation is a valid axiom in the ΠΣ-algebra
of this monoid.

Lemma 5.4.1. Let S = (Q,Σ, δ, q0) be a semiautomaton with the transformation
monoid TS = (Σ∗/≡T , natT , ε). Then for every equation (u, v) over Ξ∗ which is
satisfied by TS , the ΠΣ-equation (π∗(u), π∗(v)) is valid in A(TS).

Proof. Let ν : X → A(TS) be an assignment. Define a function ψ∗ : Ξ∗ → Σ∗ such
that for all u ∈ Ξ∗

ν∗(π∗(u)) = natT (ν(q), [ψ∗(u)])

From Proposition 5.4.1 it is clear that ψ∗ is the unique homomorphic extension of
νalpha ◦π : Ξ → Σ∗ (while νalpha was defined with range Σ, it can certainly be treated
as a function from X to Σ∗).

If u = v is an equation satisfied by TS , then ψ∗(u) = ψ∗(v) and hence

ν∗(π∗(u)) = natT (ν(q), [ψ∗(u)]) = natT (ν(q), [ψ∗(v)]) = ν∗(π∗(v))

Thus, ν∗(π∗(u)) = ν∗(π∗(v)) for all assignments ν : X → A(TS), which makes
the axiom π∗(u) = π∗(v) valid in A(TS).

Finally, the results in this section are combined with the results of the previous
section to obtain the main theorem of this chapter:

Theorem 5.4.1. Let S = (Q,Σ, δ, q0) be a semiautomaton, with the transforma-
tion monoid TS = (Σ∗/≡T , natT , ε). Then for every equation (u, v) over Ξ∗ which
is satisfied by TS , the ΠΣ-equation (π∗(u), π∗(v)) is valid in A(S).

Proof. By Corollary 5.3.1 and Lemma 5.4.1.

65

0

1

a

b

c

d

0

1

0,1

Figure 5.1: This semiautomaton realises the free commutative idempotent monoid over {0, 1}.

5.5 Examples

Let us consider two simple semiautomata, and observe how the method described
above can assist in providing axioms for their specifications.

Example 5.5.1. Consider the semiautomaton in Figure 5.1. This semiautomaton
realises a 4 element monoid over {0, 1} with the following multiplication table

ε 0 1 01

0 0 01 01
1 01 1 01
01 01 01 01

This monoid is the free commutative idempotent monoid over {0, 1}. It satisfies
the equations uu = u (idempotence) and uv = vu (commutativity). We can then
add the two axioms

trans(trans(q, x), x) = trans(q, x)

trans(trans(q, x), y) = trans(trans(q, y), x)

to the algebraic specifications of the semiautomaton (with x, y as free variables
of sort alpha). Since the semiautomaton realises the monoid, these are the only
axioms required in the specification.

Example 5.5.2. The shift register semiautomaton was defined in Example 4.1.1.
The transformation monoid of the shift register has 7 elements and can be described
by the following multiplication table:

66

ε 0 1 00 01 10 11

0 00 01 00 01 10 11
1 10 11 00 01 10 11
00 00 01 00 01 10 11
01 10 11 00 01 10 11
10 00 01 00 01 10 11
11 10 11 00 01 10 11

The above monoid satisfies the equation uvw = vw, which yields the axiom

trans(trans(trans(q, x), y), z) = trans(trans(q, y), z)

Notice, however, that the semiautomaton in Example 5.5.2 can be described by
a simpler axiom than the one achieved:

trans(trans(q, x), y) = trans(trans(init, x), y)

The reason we were unable to get this more elegant form using the described trans-
lation method is that a significant piece of information was lost in the process.
Consider the original equation

xyz = yz

We know that for all monoid homomorphisms ϕ : Ξ∗ → Σ∗/≡T

ϕ(xyz) = ϕ(yz)

Since ϕ(xyz) and ϕ(yz) are both equivalence classes under ≡T , we can use the
property of this relation to determine that for all monoid homomorphisms ψ :
Ξ∗ → Σ∗ and for all states q ∈ Q

δ(q, ψ(xyz)) = δ(q, ψ(yz))

and specifically

δ(q0, ψ(xyz)) = δ(q0, ψ(yz))

We now use the homomorphism property to obtain

δ(δ(δ(q0, ψ(x)), ψ(y)), ψ(z)) = δ(δ(q0, ψ(y))ψ(z))

67

But, since the semiautomaton is connected, and since the equation is true for all
assignments of words to x, we can replace δ(q0, ψ(x)), and claim that for all states
q ∈ Q

δ(δ(q, ψ(y)), ψ(z)) = δ(δ(q0, ψ(y))ψ(z))

which suggests the simple axiom mentioned above.

The loss of information has occurred when the translation process replaced the
variables in the variety equations with free variables of sort alpha, representing
single letters in the alphabet. If x is a variable that can be set to alphabet letters
only, then the universally quantified δ(q0, ψ(x)) (where ψ is the free variable) cannot
be replaced by a universally quantified variable representing a state.

This limitation is a consequence of the signature chosen for representing semi-
automata: the transition function takes a state and a single letter, rather than
a state and a word in Σ∗. It may be interesting to see what other benefits (and
perhaps disadvantages) would be to a different approach in axiomatic definitions of
semiautomata.

68

Chapter 6

From Algebraic Specifications to

Automata

6.1 Introduction

In the previous two chapters we have shown how to convert an automaton into an
algebraic specification in such a way that the two specifications describe the same
abstract data type. The natural question arising from this work is whether the
opposite way can also be taken, that is, whether algebraic specifications can always
be translated into automata.

The answer to this question, as discussed in this chapter, is somewhat equivocal.
We prove that for every abstract data type described by an algebraic specification
there exists an automaton describing the same, or, at least, a closely related, ADT.
However, the existence of such a machine is not sufficient, as we are considering
automata as a method for software specification. An automaton can provide useful
information to software developers only if it can be easily described. We shall
see that the automaton specification of some abstract data types is too complex
to provide any meaningful description of the module. We suspect that this is an
inherent problem of automata, as well as of other equivalent methods for software
specification, which consider a module as a consecutive sequence of operations on
the same object. Unfortunately, not all abstract data types present such behaviour.

On the other hand, the algebraic specification of such an abstract data type is
clear and concise. This leads us to the belief (which is yet to be formally proved
or disproved) that algebraic specifications yield a more powerful tool for software
specification than automata do.

69

6.2 Linear Data Structures

Every well-defined algebraic specification designates a single sort in the signature
as its type of interest. The type of interest is the sort corresponding to the abstract
data type which is defined by the specification. For example, a specification of a
natural number has a sort nat as its type of interest, a stack ADT has a stack sort,
and so on. In this chapter we designate the type of interest in a signature by using
a bold face typeface.

Definition 6.2.1. Let Π = (S, F) be a signature with s ∈ S as the type of interest.
The signature is linear if the following conditions hold:

1. There is exactly one constant f :→ s;

2. For every non-constant function name f : s1, . . . , sn → s ∈ F , there is exactly
one i ∈ {1, . . . , n} such that si = s;

3. For every non-constant function name f : s1, . . . , sn → s ∈ F with s 6= s,
there is at most one i ∈ {1, . . . , n} such that si = s.

A specification D = (Π, X, E) is linear if the signature Π is linear.

We assume that in a linear signature the type of interest is always the first
sort in the domain tuple of a function name. It should be clear that every linear
signature can be converted to this form, without any change to the specification’s
semantics. The only reason we add this condition is to simplify the notation used
in this chapter.

Example 6.2.1. The following signature, with nat as the type of interest, is linear:

S = {nat, bool}

F = {0 :→ nat,

true :→ bool

false :→ bool

succ : nat → nat

positive : nat → bool

70

Adding a function name 1 :→ nat or omitting the function name 0 :→ nat

would make this signature non-linear by condition 1 of the definition; The function
names add : nat,nat → nat and bool2nat : bool → nat would make it non-linear,
according to condition 2; The function name equal : nat,nat → bool makes it non-
linear, following condition 3. On the other hand, the function name or : bool, bool →
bool does not violate the linearity property, as bool is not the type of interest. �

We now show how a Mealy machine can be constructed from a linear specifica-
tion. We begin by setting the states to be the equivalence classes of terms of the
type of interest under the congruence ∼D. That is, the set of states is T (D)s, where
s is the type of interest. Of these classes, the one holding the single constant of the
type of interest is the initial state.

Next, we define the alphabet. In an automaton, an alphabet is used as part
of the domain of the transition function, but the alphabet can be looked upon
also as a set of functions, mapping states to states. Consider a Mealy machine
M = (Q,Σ, q0, δ,Θ, θ). It is easy to see that every letter σ ∈ Σ uniquely defines a
function fσ : Q→ Q, such that for all q ∈ Q

fσ(q) = δ(q, σ)

Similarly, any letter σ producing an output value defines a function gσ : Q → Θ
with

gσ(q) = θ(q, σ)

for all q ∈ Q. Therefore, in order to construct an alphabet for the Mealy machine,
we need to turn quotient term algebra functions, taking multiple parameters, into
functions from T (D)s to T (D)s (state changing) and from T (D)s to T (D)s, where
s 6= s (for value outputs). Recall that all function names in a linear signature
contain at most one instance of the type of interest in their domain sorts. We shall
ignore the ones that do not contain the type of interest as a domain sort.1 By
convention, all other functions have the following prototype:

f : s, s1, . . . , sn → s

Let t1 ∈ T (Π)s1
, . . . , tn ∈ T (Π)sn

be terms. We can define the quotient term algebra
function

1It can be argued that, in a well-defined algebraic specification, there should be no function
whose domain does not include the type of interest. Such a function belongs in a different
specification, from which this one can inherit.

71

f
T (D)
[t1],...,[tn] : T (D)s → T (D)s

as

f
T (D)
[t1],...,[tn]([t]) = fT (D)([t], [t1], . . . , [tn])

for all ground terms t ∈ T (Π)s. Moreover, by definition of T (D)

fT (D)([t], [t1], . . . , [tn]) = [f(t, t1, . . . , tn)]

Thus, every function f : s, s1, . . . , sn → s and every tuple (t1, . . . , tn) of terms of
the appropriate sorts define a function

ft1,...,tn : T (D)s → T (D)s

such that, for all ground terms t ∈ T (Π)s

ft1,...,tn([t]) = [f(t, t1, . . . , tn)]

We denote the alphabet letter corresponding to the function ft1,...,tn by the tuple
(f, t1, . . . , tn).

Example 6.2.2. Suppose we are given a specification D for a table of characters.
The type of interest is table, the stored elements are of sort char and indices are
given by the sort nat. One of the function names in the specification’s signature is

put : table, char, nat → table

If the terms of sort char include a, b, c, . . . and the terms of sort nat are 0, succ(0), . . .,
then alphabet letters in the constructed Mealy machine include

(put, a, 0)

(put, b, 0)

(put, c, 0)

...

(put, a, succ(0))

(put, b, succ(0))

(put, c, succ(0))

...

72

�

The formal definition of the constructed Mealy automaton is given next. Note
that we have divided the alphabet into two sets, ΣS for letters resulting in a state
change, and ΣV for letters resulting in output values (see Section 4.6 for a discussion
on the reasons for this distinction).

Definition 6.2.2. Let D = (Π, X, E) be a linear specification. The quotient term
automaton is a Mealy machine M = (Q,Σ, δ, q0,Θ, θ) where

• Q = T (D)s

• Σ = ΣS ∪ ΣV with

– ΣS = {(f, t1, . . . , tn)|f : s, s1, . . . , sn → s ∈ F ; ti ∈ T (Π)si
, i = 1, . . . , n}

– ΣV = {(g, t′1, . . . , t
′
m)|g : s, s′1, . . . , s

′
m → s′ ∈ F ; t′i ∈ T (Π)s′

i
,

i = 1, . . . , m; s′ 6= s}

• q0 = [f]D, where f :→ s ∈ F

• δ([t]D, (f, t1, . . . , tn)) =

{

[f(t, t1, . . . , tn)]D (f, t1, . . . , tn) ∈ ΣS

[t]D (f, t1, . . . , tn) ∈ ΣV

• Θ =
⋃

s6=s
T (D)s

• θ([t]D, (f, t1, . . . , tn)) =

{

undefined (f, t1, . . . , tn) ∈ ΣS

[f(t, t1, . . . , tn)]D (f, t1, . . . , tn) ∈ ΣV

Example 6.2.3. Consider the signature Π in Example 6.2.1. We create the speci-
fication D = (Π, X, E), where X has a single element x of sort nat, and E consists
of the following axioms:

positive(0) = false

positive(succ(x)) = true

A diagram for the resulting quotient term automaton is given in Figure 6.1. �

73

(positive)/[false]

(succ)

(positive)/[true]

[succ(succ(0))][0] [succ(0)]

(positive)/[true]

(succ)

Figure 6.1: The quotient term automaton for the nat − bool abstract data type given by the
specification in example 6.2.3.

While the construction of an automaton from a linear specification results in
a valid Mealy machine, it is not clear whether this machine truthfully represents
the same abstract data structure as the specification. One option to justify this
construction would be to apply the reverse construction of an algebra from an
automaton, as presented in Chapter 4. However, a proof that applies only con-
structions may be justly dismissed. Instead, we attempt to justify the construction
suggested in this section by proving that the specification congruence ∼D, which
lies at the core of the quotient term algebra, is closely related to the relation ≡δ of
the generated automaton. It was argued in Chapter 2 that ≡δ encapsulates all the
information of the state machine from which it was defined.

To obtain a result connecting these two relations, we use a method similar to
the one used in Chapter 4. We define a function that converts terms into words
over the alphabet of the constructed automaton, and then show that two terms
are related under ∼D if and only if their corresponding words are equivalent under
≡δ. The proofs themselves are straight-forward, and mostly involve a translation
of terms into strings. Such a translation is only feasible if the signature is linear.

Definition 6.2.3. Let M = (Q,Σ, δ, q0,Θ, θ) be a quotient term automaton for
the linear specification D = (Π, X, E). The function ϕ∗ : T (Π)s → Σ∗ is defined
inductively:

• ϕ∗(f) = ε for f → s ∈ F

• ϕ∗(f(t, t1 . . . , tn)) = ϕ∗(t)(f, t1, . . . , tn) for all f : s, s1, . . . , sn → s ∈ F ,
t ∈ T (Π)s and ti ∈ T (Π)si

for i = 1, . . . , n.

Lemma 6.2.1. For all ground terms t ∈ T (Π) of sort s, δ(q0, ϕ
∗(t)) = [t]D.

Proof. By structural induction on t. Since D is linear, there is only one constant f
of sort s. Furthermore, by definition, [f]D = q0. Therefore

74

δ(q0, ϕ
∗(f)) = δ(q0, ε) = q0 = [f]D

Assume the lemma holds for some term t of sort s. Let f : s, s1, . . . , sn → s be
a function name and let t1 ∈ T (Π)s1

, . . . , tn ∈ T (Π)sn
be terms. Then

δ(q0, ϕ
∗(f(t, t1, . . . , tn))) = δ(q0, ϕ

∗(t)(f, t1, . . . , tn))

= δ(δ(q0, ϕ
∗(t)), (f, t1, . . . , tn))

= δ([t]D, (f, t1, . . . , tn))

= [f(t, t1, . . . , tn)]D

as required.

Theorem 6.2.1. For all terms t1, t2 ∈ T (Π) of sort s, t1 ∼D t2 if and only if
ϕ∗(t1) ≡δ ϕ

∗(t2).

Proof. By definition, ϕ∗(t1) ≡δ ϕ
∗(t2) if and only if δ(q0, ϕ

∗(t1)) = δ(q0, ϕ
∗(t2)). By

Lemma 6.2.1, this equation holds if and only if [t1]D = [t2]D, or, in other words, if
and only if t1 ∼

D t2.

6.3 Handling Errors

Algebraic specifications, in the form presented in this thesis, do not have an integral
mechanism for specifying error conditions. This has led to several misconceptions
in the literature regarding error handling. As we shall see, the initial algebra
approach allows us considerable freedom of choice as to how error conditions should
be specified, while maintaining a correct specification of the abstract data type.

Consider, for example, a stack abstract data type. The stack contains items that
can be inserted and removed, following a Last-In-First-Out policy. We shall consider
three different models for handling errors in a stack, and present the resulting
algebraic specifications and automata for each model.

An error in the stack ADT occurs when the user tries to remove an item from an
empty stack, or ask for the top item of such a stack. Our first model ignores errors
altogether, assuming the user is careful enough not to perform an illegal operation
(for example, the user may test whether the stack is empty before attempting to pop
an item). Such a behaviour is analogous to dereferencing an uninitialised pointer in
C/C++: the result of this illegal operation is undefined, and it is the responsibility
of the user to avoid such an error.

75

Example 6.3.1. A stack ADT is specified by the signature Π = (S, F) and the
specification D = (Π, X, E), defined as follows:

S = {stack, item}

F = {new :→ stack

0, 1 :→ item

push : stack, item → stack

pop : stack → stack

top : stack → item

X = {s : stack, i : item}

E = {pop(push(s, i)) = s,

top(new) = 0,

top(push(s, i)) = i}

The axioms in this specification show two separate options for handling errors
within the first approach. For the top(new), we have set the result to some arbitrary
value. Such a value cannot be distinguished from the result of a legal operation.
For the second option, consider the term pop(new), which represents an illegal
sequence. Note that there is no axiom in the specification that allows us to infer an
equivalence between pop(new) and any other term. In this case we have used the
important property of initial algebras, which states that two terms are considered
distinct unless proved to be equal. Therefore, pop(new) produces an equivalence
class under ∼D for which it is the only member. The same is true for any term that
includes pop(new) as a sub-term. �

The second approach, referred to as error recovery [9], distinguishes a special
term as the result of an illegal operation. The user can then immediately observe
when an error has occurred by checking the returned value. However, the user is
not restricted from using this value as a parameter to other operations. That is,
unless the user checks the returned item, a trace of operations that includes an
illegal one is fully executed, with possibly undesired results.

Example 6.3.2. The following specification demonstrates the use of a dedicated
error value for the result of an illegal top operation:

76

S = {stack, item}

F = {new :→ stack

0, 1, undef :→ item

push : stack, item → stack

pop : stack → stack

top : stack → item

X = {s : stack, i : item}

E = {pop(new) = new,

pop(push(s, i)) = s,

top(new) = undef,

top(push(s, i)) = i}

In this example, the term push(new, undef) is syntactically legal, even though
this term clearly does not represent a valid sequence of operations on a stack. �

The last model uses a method called error propagation [14]. This approach
resembles exceptions in languages like C++ and Java, in that an illegal operation
causes the ADT to enter a trap state in which it remains until the user explicitly
performs a recovery operation (usually creating a new instance of the ADT). In
algebraic specifications, a trap can be modelled by a term t that is equivalent to all
terms that contain t as a sub-term. Formally:

Definition 6.3.1. Let Π = (S, F) be a signature and let D = (Π, X, E) be a
specification. A term t of sort s is called a trap term if for all function names
f : s1, . . . , s, . . . , sn → s and for all terms t1 ∈ T (Π)s1

, . . . , tn ∈ T (Π)sn
,

f(t1, . . . , t, . . . , tn) ∼D t

Example 6.3.3. The specification below defines pop(new) as a trap term:

77

S = {stack, item}

F = {new :→ stack

0, 1, undef :→ item

push : stack, item → stack

pop : stack → stack

top : stack → item

X = {s : stack, i : item}

E = {pop(pop(new)) = pop(new),

push(pop(new), i) = pop(new),

push(s, undef) = pop(new),

pop(push(s, i)) = s,

top(new) = undef,

top(push(s, i)) = i}

While the trap term could have been defined as a new constant of sort stack,
we have used here the term pop(new) in order to keep the specification linear (see
Definition 6.2.1).

Note that we have added an axiom which states that pushing the undefined
value is an error, by equating any such term to the trap term.

There is, however, a semantic flaw in the specification in Example 6.3.3: the
choice of axioms collapses all values of sort item to one equivalence class. Consider
the following equalities:

[0]D = [top(push(pop(new), 0))]D

= topT (D)([push(pop(new), 0)]D)

= topT (D)([pop(new)]D)

= [top(pop(new))]D

= [undef]D

Similarly, it can be shown that [1]D = [undef]D. This example proves an important
point about algebraic specifications: one cannot write a “wrong” specification, in
the sense that any specification that is syntactically correct leads to a valid abstract

78

data type. The only question, in this case, is how does the specified ADT compares
with the one intended by the specification’s author.

To correct the problem with the specification in Example 6.3.3, we can use a
function that determines whether a state is the trap state, and then use it to break
top(push(s, i)) into two cases. Such a scheme can be implemented by adding the
function prototype

select : stack, item, item → item

to the stack signature, and the axioms

select(pop(new), i1, i2) = i1

select(new, i1, i2) = i2

select(push(s, i), i1, i2) = select(s, i1, i2)

to the specification. What select does is to check whether a given term of sort stack

is the trap term. If so, it selects the first item (i1), and if not it selects the second
item (i2). We can now write a new axiom for top(push(s, i)) that reads

top(push(s, i)) = select(s, undef, i)

The resulting quotient term automaton is depicted in Figure 6.2. The trap
term pop(new) defines a trap state in the automaton, that is, a state which has
only incoming edges and self loops. This state is reached either when the letter
(pop) is applied to the state new, or the letter (push, undef) is applied to any state.

6.4 Non-Linear Data Structures

We conclude this chapter with a discussion of non-linear data structures. Recall
from Definition 6.2.1 that a specification is linear if it adheres to three conditions.
Consequently, a specification is non-linear if it violates at least one of these condi-
tions. We shall investigate what happens to the quotient term automaton in any
of these cases.

First, assume that a signature contains more than one constant of the type of
interest. The result is a machine with more than one initial state, which is therefore

79

[push(new, 0)]

[pop(new)]

∗/[undef]

(top)/[undef]

[new]

(top)/[0]

(top)/[1]

(push, 0)

(pop)

[push(new, 1)]

(push, undef)

(push, undef)

(pop)

(pop)

(pop)

(push, 1)

(pop)

(pop)
(push, undef)

(pop)

(push, 0)

(push, 1)

(push, 0)

(push, 1)

Figure 6.2: The stack quotient term automaton with error propagation. The term pop(new) is a
trap term and hence the automaton state [pop(new)] is a trap state. The bold edges represent
transitions to the trap state. Dashed edges indicate that there are more states that are not shown
in this diagram. See Example 6.3.3 for the stack’s algebraic specification.

80

[false]

[true]

[mk-false(init)]

[mk-true(init)]

[init]

(mk-true)

(mk-false)

(not)

(a) (b)

(not)

(mk-false)

(mk-true)

(not) (not)
(mk-true)(mk-false)

Figure 6.3: A quotient term automaton for a Boolean ADT specification with multiple initial
states (a) and a possible deterministic automaton for the same data type (b).

a non-deterministic machine. Consider, for example, the signature Π = (S, F) and
specification D = (Π,∅, E) for a Boolean abstract data type:

S = {bool}

F = {true :→ bool,

false :→ bool,

not : bool → bool}

E = {not(true) = false,

not(false) = true}

The non-deterministic quotient term automaton for this specification is given in
Figure 6.3(a).

This non-determinism, however, is quite superficial, as the transition function
remains deterministic. In fact, we can make the automaton deterministic quite
easily by using one of these methods:

• Modify the automaton by adding a state and an alphabet letter for each initial
state. The new state becomes the unique initial state, from which the new
alphabet letters lead to the old initial states. The transition function becomes

81

a partial function in which the new alphabet letters are ignored for all but
the new initial state.

• Modify the specification by changing every constant c :→ s of the type of
interest into a unary function (e.g., make-c : s → s), and adding a single
constant (e.g. init). The old constants are now represented by the application
of their corresponding unary functions to the new constant term.

The main problem with the first approach is that the abstract data type speci-
fied by the automaton is no longer the same as the one described by the algebraic
specification. However, the new automaton M ′ closely resembles the original au-
tomaton M , in the sense that for any initial state in M and any word in the
alphabet of M , both transition functions take their respective machines to the
same state.

In the second approach, the machine is the quotient term automaton, which
means that it follows the specification exactly. On the other hand, the modified
specification results in a new abstract data type. In this type, we first create an
uninitialised instance of the ADT, and then use the new unary functions to give
it some initial value. The new specification needs to describe the semantics of
applying the unary functions to terms other than the new constant, as well as of
applying any other function on the uninitialised instance. The first can be done by
treating the unary functions as reset operations, and the second by using any of
the error handling methods described in Section 6.3.

While a non-linear specification violating the first condition results in mostly
technical difficulties, a violation of the second condition raises more profound prob-
lems. Recall that the second condition states that a function name whose range
sort is the type of interest must have exactly one instance of this sort in its domain
tuple. Following this assumption, we were able to treat terms as functions taking
one term of the type of interest as an argument and returning another as the result.
We shall now consider specifications containing a function name with more than
one instance of the type of interest in its domain tuple. Such functions will be
referred to as non-linear.

From a purely mathematical point of view, there seems to be nothing wrong with
the construction introduced in Section 6.2 when applied to specifications containing
non-linear function names. In some cases, the result is even reasonable, as in the
following specification of a Boolean ADT with a logical-and function:

82

[not(true)]

[true]

(and, not(true))

(and, true)

(not)(not)
(and, not(true))

(and, true)

Figure 6.4: A quotient term automaton for a Boolean ADT specification containing a non-linear
function name.

S = {bool}

F = {true :→ bool,

not : bool → bool,

and : bool,bool → bool}

X = {x, y : bool}

E = {not(not(x)) = x,

and(true, true) = true,

and(not(true), x) = not(true),

and(x, y) = and(y, x)}

The quotient term automaton for this specification is depicted in Figure 6.4.

On the other hand, the construction of the quotient term automaton leads to
strange results for some abstract data types defined with non-linear specifications.
To illustrate this point, we shall use the following specification of a binary tree:

83

S = {tree, item}

F = {empty :→ tree,

0, 1 : item,

make : tree, item, tree → tree

left : tree → tree

right : tree → tree

root : tree → item}

X = {x, y : tree, r : item}

E = {left(empty) = empty,

left(make(x, r, y)) = x,

right(empty) = empty,

right(make(x, r, y)) = y,

root(make(x, r, y)) = r}

The binary tree specification contains the non-linear function name make, which
takes two sub-trees and a root item, and creates a new tree. Mathematically, the
construction of the quotient term automaton results in a valid machine. Moreover,
there is nothing in the proof of Theorem 6.2.1 which prevents this result from being
applicable to the tree specification.

Nevertheless, we are not interested in algebraic specifications and automata as
abstract mathematical structures. The ultimate goal of the construction of the
quotient term automaton is to come up with a useable specification of a software
module. In this respect, the resulting machine for the binary tree fails in this test,
as it can hardly be considered as a reasonable specification. This claim is supported
by two important observations.

First, the automaton fails to capture the process of a tree’s construction. Con-
sider, for example, the binary tree

1 0

0

which is specified by the term

84

make(make(empty, 1, empty), 0,make(empty, 0, empty))

If we use the construction described in Section 6.2, we get that the state corre-
sponding to this tree is the result of applying the string

(make, 1, empty)(make, 0,make(empty, 0, empty))

on the initial state [empty]. It can be seen how describing the construction of a
tree as a sequence of operations misrepresents the actual process, where each sub-
tree is constructed independently and then the two are merged into a new object.
Also, the sequence completely ignores the symmetric nature of the construction, by
assuming that the tree is created from its leftmost node, with a new tree obtained
by adding a root and a right sub-tree to the current object.

The second obstacle that renders this specification impractical is the connection
between the alphabet and the state set in the automaton. By construction, if
f : s, s1, . . . , sn → s is a function name, then the alphabet contains a symbol for
every combination of terms t1 ∈ T (Π)s1

, . . . , tn ∈ T (Π)sn
. We have already seen

that we need to consider only one representative of each equivalence class under
∼D. Therefore, the set of alphabet symbols generated by the function name f is in
one-to-one correspondence with the set

T (Π)s1
/∼D × . . .× T (Π)sn

/∼D

In the case of the binary tree, the alphabet symbols generated by the make function
are in one-to-one correspondence with the set

T (Π)item/∼
D ×T (Π)tree/∼

D

However, it can be inferred from the axioms that every application of make results
in a new class in T (Π)tree/∼

D. A representative of this new class then generates
more alphabet symbols, which, when applied by the transition function, create more
states that need to be specified, and so on.

Consider once again the binary tree. The initial state is [empty]. When the
transition function applies the alphabet symbol (make, 0, empty) to this state we
get the new state [make(empty, 0, empty)]. This state represents a class of terms of
sort tree, which is not equal to [empty]. We therefore take a representative of this
class and create the alphabet symbols

85

(make, 0,make(empty, 0, empty))

and

(make, 0,make(empty, 0, empty))

Applying these new symbols to current states results in new states and new alphabet
symbols, all of which need to become a part of the specification.

It appears that this feedback process of generating new states from alphabet
symbols and new symbols from states makes it impossible to provide a finite defi-
nition of the transition function. It is unlikely that such a definition exists for the
binary tree, and, consequently, for any other specification of a tree. Moreover, we
can deduce the same conclusion for many other ADTs whose algebraic specifica-
tion is clear and concise. The reason is that every algebra of terms can be looked
upon as a set of trees with constants and variables as leaves and with non-constant
function names as internal nodes [14].

Unfortunately, we have been unable to characterise the set of ADTs for which a
practical automaton specification can be obtained from the algebraic specifications.
We know that the procedure works for linear ADTs as well as for some non-linear
ones (for example, the specification of a queue in [9] §2.14 contains the non-linear
selection function IF-THEN-ELSE which can be easily modelled in the transition
function). A better description of the set of ADTs that cannot be specified by
automata is left for future research.

There are two more options for non-linear specifications we have not yet con-
sidered, and will now describe briefly. A function name with the type of interest
as the range sort and without any occurrence of the type of interest in the domain
creates new instances of the object without any prior state. Therefore, we can
consider such functions as defining a set of constants. For example, if f : s, s → s

is a function name, such that s 6= s, and if t1, t2 are terms of sort s, then f(t1, t1),
f(t1, t2), f(t2, t1) and f(t2, t2) should all be treated as constants of sort s.

A function name whose range sort is not the type of interest and whose domain
contains more than one instance of the type of interest may not lead to problems,
since it does not suffer from the same feedback property described above. Whether
such function can be described efficiently as part of the automaton’s output function
seems to depend on the structure of the function names that affect the state set.

86

Bibliography

[1] W. Bartussek and D. L. Parnas. Using assertions about traces to write abstract
specifications for software modules. In Proceedings of the 2nd Conference of the
European Cooperation on Informatics, pages 211–236. Springer-Verlag, 1978.

[2] G. Birkhoff. On the structure of abstract algebras. Proceedings of the Cam-
bridge Philosophical Society, 31:433–454, 1935.

[3] J. P. Bowen and M. G. Hinchey, editors. Applications of Formal Methods.
Prentice Hall International Series in Computer Science. Prentice Hall, 1995.

[4] J. P. Bowen and M. G. Hinchey. Ten commandments revisited: a ten-year
perspective on the industrial application of formal methods. In FMICS ’05:
Proceedings of the 10th International Workshop on Formal Methods for Indus-
trial Critical Systems, pages 8–16. ACM Press, 2005.

[5] J. Brzozowski and H. Jürgensen. Representation of semiautomata canonical
words and equivalences. International Journal of Foundations of Computer
Science, 16(5):831–850, 2005.

[6] J. Brzozowski and H. Jürgensen. Theory of deterministic trace-assertion spec-
ifications. Technical Report CS-2004-30, School of Computer Science, Univer-
sity of Waterloo, 2005.

[7] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification
language. In Proceedings of the Abstract Software Specifications, 1979 Copen-
hagen Winter School, pages 292–332. Springer-Verlag, 1980.

[8] E. W. Dijkstra. The humble programmer. Communications of the ACM,
15(10):859–866, 1972.

[9] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I - Equations
and Initial Semantics. Springer-Verlag Berlin, 1985.

87

[10] S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press,
1976.

[11] S. J. Garland and J. V. Guttag. A guide to LP, the Larch prover. Technical
Report 82, Digital Equipment Corporation Systems Research Center, 1991.

[12] A. Ginzburg. Algebraic Theory of Automata. Academic Press, 1968.

[13] J. A. Goguen and J. Meseguer. Completeness of many-sorted equational logic.
SIGPLAN Notices, 16(7):24–32, 1981.

[14] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In
R. T. Yeh, editor, Current Trends in Programming Methodology, volume IV:
Data Structuring, pages 80–149. Prentice Hall, 1978.

[15] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977.

[16] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. P. Jouannaud.
Introducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software Engi-
neering with OBJ: Algebraic Specification in Action. Kluwer, 2000.

[17] R. M. Gott, J. R. Baumgartner, P. Roessler, and S. I. Joe. Functional formal
verification on designs of pseries microprocessors and communication subsys-
tems. IBM Journal of Research and Development, 49(4/5):565–580, 2005.

[18] J. V. Guttag. The specification and application to programming of abstract
data types. PhD thesis, University of Toronto, 1975.

[19] J. V. Guttag. Abstract data types and the development of data structures.
Communications of the ACM, 20(6):396–404, 1977.

[20] J. V. Guttag and J. J. Horning, editors. Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag,
1993.

[21] J. V. Guttag, E. Horowitz, and D. R. Musser. The design of data type spec-
ifications. In ICSE ’76: Proceedings of the 2nd International Conference on
Software Engineering, pages 414–420. IEEE Computer Society Press, 1976.

[22] J. V. Guttag, E. Horowitz, and D. R. Musser. The design of data type speci-
fications. In R. T. Yeh, editor, Current Trends in Programming Methodology,
volume IV: Data Structuring, pages 60–79. Prentice Hall, 1978.

88

[23] J. Henkel and A. Diwan. Discovering algebraic specifications from java classes.
In 17th European Conference on Object-Oriented Programming (ECOOP
2003). Springer, 2003.

[24] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge University Press,
1982.

[25] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[26] C. B. Jones. Systematic software development using VDM, 2nd Edition. Pren-
tice Hall, 1990.

[27] B. Liskov and S. Zilles. Programming with abstract data types. In Proceedings
of the ACM SIGPLAN Symposium on Very High Level Languages, pages 50–
59, 1974.

[28] G. H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34:1045–1079, 1955.

[29] B. Meyer. On formalism in specifications. IEEE Software, 2(1):6–26, 1985.

[30] D. L. Parnas and Y. Wang. The trace assertion method of module interface
specification. Technical Report 89-261, Queen’s University, 1989.

[31] B. C. Pierce. Basic category theory for computer scientists. MIT Press, 1991.

[32] N. Narasimhan R. Kaivola and. Formal verification of the Pentium R© 4 floating-
point multiplier. In Design, Automation and Test in Europe Conference and
Exhibition (DATE’02), pages 20–27, 2002.

[33] J. M. Spivey. The Z Notation: a Reference Manual. Prentice Hall, 1992.

[34] J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification:
Parameterization and the power of specification techniques. ACM Transactions
on Programming Languages and Systems, 4(4):711–732, 1982.

[35] M. Wand. Final algebra semantics and data type extensions. Journal of
Computer and System Sciences, 19(1):27–44, 1979.

[36] J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–
23, 1990.

89

[37] M. Wirsing. Algebraic specifications. In Handbook of Theoretical Computer
Science (vol. B): Formal Models and Semantics, pages 675–788. MIT Press,
1990.

90

