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Abstract

Visual based place recognition involves recognising familiar locations despite changes in
environment or view-point of the camera(s) at the locations. There are existing methods
that deal with these seasonal changes or view-point changes separately, but few methods
exist that deal with these kind of changes simultaneously. Such robust place recognition
systems are essential to long term localization and autonomy. Such systems should be
able to deal both with conditional and viewpoint changes simultaneously. In recent times
Convolutional Neural Networks (CNNs) have shown to outperform other state-of-the art
method in task related to classification and recognition including place recognition. In this
thesis, we present a deep learning based planar omni-directional place recognition approach
that can deal with conditional and viewpoint variations together. The proposed method
is able to deal with large viewpoint changes, where current methods fail. We evaluate the
proposed method on two real world datasets dealing with four different seasons through out
the year along with illumination changes and changes occurred in the environment across
a period of 1 year respectively. We provide both quantitative (recall at 100% precision)
and qualitative (confusion matrices) comparison of the basic pipeline for place recognition
for the omni-directional approach with single-view and side-view camera approaches. The
proposed approach is also shown to work very well across different seasons. The results
prove the efficacy of the proposed method over the single-view and side-view cameras
in dealing with conditional and large viewpoint changes in different conditions including
illumination, weather, structural changes etc.
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Chapter 1

Introduction

Visual place recognition is one of the most important parts of visual robot navigation, and
can be defined as the task of identifying the same locations visited at different periods of
time. It has gained lot of traction in recent times [29] due to its many advantages over other
sensor modalities such as low cost, low power consumption, easy setup and ability to work
even in areas with no GPS signal. Also, the potential applications of place recognition
in the field of loop closures, localization, etc., makes it a vital task under the banner
of Simultaneous Localization and Mapping (SLAM) [54] that needs to be solved. Place
recognition, in particular, provides a reliable method for elimination of accumulated errors
in SLAM, as revisited locations enable loop-closure in constructed maps, or geo-referenced
pose estimates when performed relative to previously collected image sets in a fixed map.
Other applications of place recognition include augmented reality, where the user obtains
information about important places, monuments or texts from a single image taken with
a smartphone camera and service robotics in the industrial space.

As the robots are tested over longer time periods in real world environments, it is
becoming clear that perceptual change, caused by factors such as day-night cycles, varying
weather conditions and seasonal change, remains a significant challenge for vision based
place recognition methods. Though many advance have been made in the recent past [33,
56, 22], improving place recognition accuracy and reliability, however, still remain open
problems. There are particular issues in the domain of changing environments (such as
illumination changes, across seasons, structural changes in the environment, etc.) and
viewpoint changes that affect place recognition accuracy, which need to be addressed to
achieve long term autonomy. Therefore, there is a need to have robust place recognition
systems that can deal with these changes, i.e, are conditional and viewpoint invariant. The
biggest advantage of a such system would be for long term autonomy across months or
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Figure 1.1: Demonstration of various application areas of visual place recognition such as
(a) no GPS service availability, (b) indoors robotics, (c) near or under the bridge conditions
for UAVs, (d) loop closures, (e) visual SLAM and (f) long term autonomy .

years, as there will not be a need to update the map with multiple copies of the same
location under different conditions.

In recent times, many methods have been proposed to deal with conditional vari-
ances [41, 31, 22] including cross season changes [22, 50], illumination changes [30, 44]
and viewpoint changes [8, 51] individually, but there are only a few methods [43, 32, 31]
that deal with these invariances simultaneously. Also, the existing methods are either
single-view [22, 51, 53] or side-view camera [43, 42] based approaches which makes them
ineffective in dealing with extreme viewpoints changes that arise in unrestricted operations
such as in parking lots or off-road.

Many of the above mentioned methods are based on deep learning or more specifically
convolutional neural network (CNN) based methods. This comes as no surprise as CNNs
have been gaining importance in most of the recognition and classification tasks [23]. Even
when used as a generic feature extractor, CNNs outperform the state-of-the art meth-
ods for task other than classification [48]. The features extracted from CNNs have been
demonstrated to be versatile and transferable that is, even though they have be trained to
solve a particular task, that can be used to solve different problems often outperforming
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traditional methods. The success of CNN or deep learning is attributed to the reason that
much of the design of these networks is inspired by the human visual processing pathway
specifically to incorporate both the selectivity and tolerance or invariance qualities of the
pathway. Another factor that is attributed to the success of CNNs is their ability to learn
millions of parameters using large amounts of labeled data. This makes CNNs a very im-
portant tool in the domain of place recognition and broadly in the domain of computer
vision and machine learning which is being realized by many researchers in the field. This
is the reason behind the recent explosion in the field of computer vision field for methods
related to deep learning including the field of place recognition, hence the many recent
methods exploring the feasibility of CNNs in this area.

In this thesis, we present an omni-directional deep learning based method for cross
season and appearance change invariant visual place recognition. Using a five camera
system, we obtain a 360◦ degree planar omni-directional view of the environment (Fig. 1.2)
and use deep features extracted from a pre-trained convolutional neural network (CNN) to
perform visual place recognition, as shown in Fig. 1.4. To prove the efficacy of the presented
approach over the conventional single and side-view camera approaches, we conduct the
following experiments:

• Challenging changing environment place recognition on outdoors for four different
time of the year (cross season: spring, summer, fall and winter) and snow laden en-
vironment vs snow laden environment with a gap of 1 year (same season, appearance
changes). The dataset was collected using an omni-directional camera on a segway
robot at the University of Michigan campus, as shown in Fig. 1.3

• Extreme viewpoint place recognition on the above datasets (cross season for sum-
mer and winter and same season) by querying the same place with five different
orientations.

It is important to point out here that we use the NCLT dataset [3] to perform training
and testing for different environmental conditions but the presented method can be
implemented on any dataset with omni-directional images.

1.1 Thesis Contributions

The presented place recognition system is a deep learning based method which uses an
omni-directional approach for four different seasons that improves the fundamental visual

3



(a) Winter 2012

(b) Spring 2012

◦

(c) Winter 2013

Figure 1.2: Sample of images identified as the same location by the method presented in
this thesis. The images show the diversity of changes compared to each other including
illumination, orientation and seasonal changes.
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Figure 1.3: Figure showing the Segway robot with different mounted sensor including the
Ladybug3 camera system with 6 camera cluster. The figure also shows the path followed
by the Segway robot on north campus of the University of Michigan [3] for collecting the
dataset. We make use of all cameras except the one facing upwards to create a planar
omni-directional view of the scene for our place recognition system.
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place recognition pipeline in comparison to conventional single and side-view camera ap-
proaches. It is important to note here that to do unbiased comparison with the single
and side-view camera studies in the past, we do not perform any pre-processing or post-
processing on the input and output data. It is certainly possible to improve the results
further by performing post processing checks like sequence matching e.g. SeqSLAM [33],
spatial continuity check [6] or using the lighting invariant transform [56] but we focus on
performance of single point comparison with the single and side-view camera approaches in
this work. To prove the efficacy of the presented approach over the recent approaches, we
provide both quantitative (recall at 100% precision) and qualitative (confusion matrices)
comparison to prior work.

The main advantages of the presented method are: 1) using omni-directional imaging
instead of single and side-view cameras significantly improves the results, 2) the omni-
directional approach can deal with extreme viewpoint changes arising due to changes in
orientation.

1.2 Literature Review

In the past, numerous place recognition methods have been proposed for large scale envi-
ronments, including FAB MAP [7, 8], typically used for appearance based loop closures,
MonoSLAM [10] and SeqSLAM [33], which are used to handle considerably large degrees of
perceptual change but there are very few long term place recognition systems [34, 50, 28].
Even these long term place recognition systems only account for little to no viewpoint
variations [50, 32, 22]. This is one of the issues that is addressed in this thesis.

An ideal place recognition system that can be used for long term localization should
be both condition and viewpoint invariant. In the recent past, place recognition systems
have been proposed to deal with conditional changes such as illumination changes [30, 44],
cross season & weather changes [22, 50] and day-night changes [33]. Most of these place
recognition systems use training to dynamically model or predict changes in appearance [38,
32] or create large databases which account for all of these changes. This places limitations
on these methods in terms of collecting large training sets and limited capabilities in terms
of unseen changes. Also, many of the existing approaches lack robustness to significant
viewpoint changes. In [22], the authors present a discriminative scene descriptor for single-
view cross-season place recognition using naive Bayes nearest neighbor approaches. Milford
et. al. [31] use a top-down single camera patch matching approach to deal with conditional
changes. In [43, 41] Pepperell et. al. deal with viewpoint variations by using side-view
camera approach with their SMART algorithm.
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Figure 1.4: Overview of the planar omni-directional architecture for N camera cluster
systems.
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To deal with viewpoint changes, many keypoint based methods [51, 22] using SIFT,
SURF and other keypoints have been proposed. These methods work very well for view-
point changes under similar conditions. But a major shortcoming of such methods is when
the conditions change for example such as day to night, or summer to winter. In some of
these conditions, the images exhibit little texture with little to no keypoints detection [9].
Thus there are lot of these methods that use point based features as SIFT, SURF etc.,
in less challenging environmental conditions. Recently, ORB-SLAM [37] was proposed
that uses ORB features [47] to perform place recognition using key-point features with
considerable accuracy.

Deep learning based methods have been shown to be effective in dealing with conditional
and viewpoint changes [32, 52, 15, 34] as they are able to extract generic descriptors
from images that are invariant to seasonal or slight viewpoint changes [6]. One of the
important recent study in this area is Milford et al. [32] where a CNN is used to create
generic daytime single camera depth images that match with night time depth images with
viewpoint changes hence dealing with condition and viewpoint changes simultaneously.
Sunderhauf et al. [53] used edge boxes object proposal method combined with a mid-
level convolutional neural network(CNN). The other methods (non deep-learning based)
that do so were presented by Pepperell et. al. in [43, 41]. The authors extended the
method by incorporating path memory for selecting past experiences candidate matches to
improve the computational time [28]. A similar approach of learning and calibrating pre-
location califiers for place recognition was proposed by gronat et al. [16]. But in all these
studies mentioned above the maximum viewpoint changes are changes in resolution due to
traveling on opposites side of roads [43, 41]. There are also other methods that use data
from additional sensors such as lasers[40] or RGB-D cameras [13, 59]. These techniques
use novel sensors that provide dense depth information as well as image data image data
that has accelerated the development of dense mapping techniques [25, 59, 14].

Place recognition system efficacy can be increased by using hierarchical searching at
the place level as well as at the vocabulary level. Mohan et. al. [34], proposed a coocurrent
feature matrices based method to pre-select the most likely. Preselecting global envi-
ronment can help in considerably reducing the search space, thus increasing the overall
efficiency. Earlier methods used Hamming embedding [21] to perform more precise view-
point matching, multiple assignment to reduce optimization error [5] and adaptive soft-
assignment procedure for repeated structures in database [55].

In this thesis, we deal simultaneously with conditional changes and large viewpoint
variants (as shown in Fig. 3.1) using a fast nearest neighbor search without the need of
repeated data collection under different conditions. One important thing to note is that,
many methods mentioned above use additional metrics such as temporal information to
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boost the results. As we would like to compare basic pipeline of place recognition for the
presented approach mainly with single and side-view camera approaches, we refrain from
using such additional information.

1.3 Thesis Outline

The rest of the thesis proceeds as follows: Chapter II describes the related background the-
ory on deep learning in particular convolutional neural network (CNN) that is required to
understand many concepts and algorithms presented in this thesis. The chapter lays down,
in detail, the process of creating the CNNs and also formulates them mathematically. It also
includes a description of the state-of-the art nearest neighbor search algorithm used in this
thesis. Chapter III puts forward in detail the presented omni-directional approach. The
presented method uses an omni-directional camera to capture planar omni-directional view
of a scene and uses that to perform conditional and view-point invariant place recognition
using CNN. Evaluation methodology and results are presented in Chapter IV along with
some discussion on the obtained results. The evaluation methodology involves both quan-
titative and qualitative metrics to establish the efficacy of the presented omni-directional
approach. The evaluation is done on a comprehensive dataset containing scenes from four
different scenes. Finally we conclude with Chapter V where a summary of the work done
is this thesis is presented. The chapter also includes a brief outline of the future work
directions.

9



Chapter 2

Background

This chapter presents the background information required for the contributions made by
this work. First general motivation for using deep learning is explained, followed by detailed
explanation of convolutional neural network (CNN) design including pre-training. We end
with an explain of Fast localization using Nearest Neighbor Approximation (FLANN)
method used in this thesis.

2.1 Deep learning

In the past few recent years, there has been a resurgence of neural networks with multiple
layers which were discovered first in the late 80’s and early 90’s. These multi-layered neural
network come under the topic, known as deep learning, which is based on set of algorithms
and mathematical models that try to learn high level abstractions in data using non-linear
transforms with multiple layers processing.

Recently numerous studies that use deep learning have been presented with promising
results in various field such as robotics [49, 45, 63, 27, 12], speech recognition [19], medical
imaging [1, 24], scene understanding [63, 31, 58] etc. Apart from the fact that design of deep
learning architectures in these studies were motivated from advancement of neuroscience
and how information is interpreted and processed by the nervous system of humans, most
of the success in the studies have been attributed to advancement of processing power
(GPUs) and availability of large datasets of learning.

Various deep learning architectures have been proposed using both, supervised and
unsupervised approaches for learning abstract features from given data. Deep learning

10
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Figure 2.1: Illustration of a simple feed forward neural network with layer of input, one
hidden layer with nodes represented as hj and an output layer. fw is the activation function.

architectures such as convolutional neural networks (CNN), deep belief networks, autoen-
coders, recurrent neural networks (RNNs) and Restricted Boltzman machine (RBM) have
been proposed. Even though there are many different architectures, they have the same
underlying pipeline, as shown in Fig. 2.1. Recent studies [26, 17, 4, 18, 60] have shown
that CNNs are the best architectures to perform recognition and classification tasks. As
this thesis uses a CNN for place recognition, the design architecture for CNNs have been
explained in the following section.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs or ConvNets) are feed-forward neural networks that
are biologically inspired variants of the multi-layer perceptrons (MLPs) with learnable
weights and biases. The connections between different layers of CNNs is based on the
connections in visual cortex of animals (including humans), which is arranged in a manner
that the neurons in the cortex respond to overlapping regions in the visual field. These
overlapping sub-regions are called receptive fields. The sub regions are titled to cover the
whole visual field. CNNs learn these sub-regions filters i.e., weights of the filters over the
input space. CNNs make an explicit assumption that the input is images, which allows
the encoding of certain specific properties to its architecture. Some of the properties are
explained in the section below. For a better understanding of CNNs, brief overview of the
feed forward neural networks is presented in this section followed by detailed description
of CNNs including the design and training aspect.
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2.2.1 Feed-forward neural networks

This section gives a description of the feed-forward neural networks, which are the most
basic neural networks (NNs). A more detailed description of the feed-forward networks can
be found in [20]. Usually feed-forward NNs consists of single input layer, one or more hidden
layer followed by an output layer as shown in Figure 2.1. Consider an input consisting of
labeled data {x(i), y(i)}. Here x(i) and y(i) are the ith input case (feature) and class label
respectively. In the next step, using a complex non-linear function fW (x) usually known as

activation function the neural network transforms the input feature vector x
(i)
1 , x

(i)
2 , .., x

(i)
n

into a higher dimensions complex representation of the input data. The function fW (x) is
parameterized by weight matrix W that can be learned. Using the learned weights the
feed-forward NNs propagate an input through the different layers in the network to the
output to make a decision. As shown in the Figure 2.1, the activation of the jth hidden
layer’s ith unit can be represented as,

zji =
n∑
k=0

W j
ikxik + bj (2.1)

aj = f(zji ) (2.2)

Here bj is the bias term. The activation function f in most of the cases is a non-linear
function such as sigmoid 1

1+exp−x or tanh. Activation of each unit of hidden layers can
be calculated using the above mentioned equations. Since the activation unit value of
a unit in layer relies on the activation units of the preceding layer, we initiate from the
first hidden layer and proceed through the network layer-wise. Propagating information
through a neural network in this manner is referred to as forward-propagation. Using the
forward-propagation step, at the end of the network, we obtain y1, y2, .., yk labels. These
labels are then used to perform classification.

During training, the objective is to learn the parameters of the weight matrix W .
Generally the parameters are learned by minimizing some kind of objective or loss function.
The objective function can be as simple as least squares error or a much more complex
one, such as cross entropy [46]. One of the popular methods to minimize the objective
function is back-propagation. The readers are encouraged to go through [2] for a detailed
description of gradient descent.
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2.2.2 CNN architecture overview

Using the information provided above, in this section we will now describe the different
components involved in a convolutional neural network’s architecture starting briefly with
convolution and later describing different layers such as non-linearity layer, fully connected
layer and different functions such as pooling or sub-sampling etc.

2.2.3 Convolution

For the sake of completeness, we briefly describe convolution in this part. For simplicity,
consider an gray-scale image I as:

I = {1, 2, ...., p1} × {1, 2, ...., p2} → W ⊆ <(i, j) 7−→ I(i, j) (2.3)

such that the image I can be represented by an array of size p1 × p2 . Given the filter
F ∈ R(2h1+1×2h2+1) , the discrete convolution of the image I with filter F is given by :

(I ∗ F )a,b =

h1∑
c=−h1

h2∑
c=−h2

Fc,dIa+c,b+d (2.4)

where the filter F is a typical filter image of odd dimensions.

One thing to note while using convolution is that the behavior of the convolution
operation should be carefully defined at the border of the images. There are many useful
convolutional filters that are constantly applied in many applications. One such filter is
Gaussian filter which is used to provide smoothing effect.

2.2.4 Layers

Using the information above, we now introduce the different layers and operation between
the layers that are used in a typical CNN. Any complex CNN such as ones used in [62] can
be constituted by stacking the below layers together.

Convolutional Layer

Consider a convolutional layer l which uses an input that comprises of n
(l−1)
1 feature maps

from the previous layer, each of size n
(l−1)
2 × n(l−1)

3 . If l = 1 i.e., it is the first layer of the
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Input image
or Input feature map Output feature maps

Figure 2.2: Illustration of a single convolutional layer. If layer l is a convolutional layer,
the input image (if l = 1) or a feature map of the previous layer is convolved by different
filters to yield the output feature maps of layer l.

convolutional neural network then the input is the raw image I consisting of one or more
channels. The output of the layer l consists of n

(l)
2 × n

(l)
3 . The mth feature map in layer l

which is denoted as fm
(l)
m , is computed as:

fm(l)
m = b(l)m +

n
(l−1)
1∑
q=1

F (l)
m,q ∗ fm(l)

q (2.5)

here b
(l)
m is the bias matrix and F

(l)
m,q is the convolutional filter of size 2h1 + 1 × 2h2 + 1

which joins the qth feature map in the (l − 1) layer with the mth feature map in layer l.

As described before, n
(l−1)
2 ×n(l−1)

3 are effected by the border regions. When implementing
the discrete convolution in the valid region i.e., the region of pixels where the sum of
equation 2.4 is defined properly, we obtain the feature maps of sizes:

n
(l)
2 = n

(l−1)
2 − 2h

(l)
1 (2.6)

n
(l)
3 = n

(l−1)
3 − 2h

(l)
2 (2.7)

A visual example of convolution is shown in Fig. 2.2. Usually the fixed feature map
fm

(l)
m is constructed using the same filters, that is F

(l)
m,q = F

(l)
m,r for q 6= r. Also, the

sum in equation 2.5 may be implemented on part of the input feature maps. For better
understanding of the convolutional layer and it’s working as stated using equation 2.5, we
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can rewrite the equation 2.5 in terms of multi-layered perceptron. The layer l with feature
maps fm

(l)
m , contains n

(l)
2 × n

(l)
3 units arranged in two dimensional arrays. The output at

any position (a, b) for a unit is given by:

(fm(l)
m )a,b = (b(l)m )a,b+

n
(l−1)
1∑
q=1

(F (l)
m,q∗fm(l)

q )a,b = (b(l)m )a,b+

n
(l−1)
1∑
q=1

h
(l
1∑

c=−h(l)1

h
(l)
2∑

d=−h(l)2

(F (l)
m,q)c,d(fm

(l−1)
q )a+c,b+d

(2.8)

In the equation above, filter F
(l)
m,q and bias b

(l)
m contains the trainable weights. As

explained in the later sections, sub-sampling or pooling can be used to minimize the effect
of noise and distortion. The idea is to skip a fixed number of pixels, both in horizontal
and vertical directions, before applying the filter again.

Non-linearity layer

If a layer is a non-linearity layer and the input to the layer is given by n
(l)
2 feature maps

then the output is given as n
(l)
1 = n

(l−1)
1 . Each map is of size n

(l−1)
2 × n

(l−1)
3 such that

n
(l)
2 = n

(l−1)
2 and n

(l)
3 = n

(l−1)
3 are given by:

fm(l)
m = ϕ(fm(l−1)

m ) (2.9)

where ϕ is a non linear function, also known as activation function, used for layer
l and is implemented point-wise. In many cases, a non-linearity layer is included in a
convolutional layer and not represented individually. For the sake of clarification, it is
mentioned separately in this thesis.

Rectification

Let a layer, l, be a rectification layer with an input consisting of n
(l−1)
1 feature maps of size

n
(l−1)
2 × n(l−1)

3 . The value of each component of the feature maps is defined by:

fm(l)
m = |fm(l)

m | (2.10)
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The above equation is sometimes also represented as:

fm(l)
m = max(0, fm(l)

m ) (2.11)

For both equations, the values are calculated point wise such that the output feature
map size is unchanged i.e., equal to input. Many past experiments [62, 61, 19] have shown
that rectification helps in achieving better performance in the CNN. This layer can also
be incorporated into a convolutional layer, but we follow the convention of representing
this operation as an independent layer. The rectification layer can sometimes be also
represented as Rectified Linear Unit (ReLU).

Local Contrast Normalization Layer

Local contrast normalization encourages local competitiveness among different adjacent
units in feature map and units at the same locations in different feature maps. For expla-
nation, consider a layer l be a contrast normalization layer. Given n

(l−1)
1 feature maps of

size n
(l−1)
2 ×n(l−1)

3 , the output layer then is obtained as n
(l)
1 = n

(l−1)
1 feature maps, same as

input. One type of local contrast normalization (subtractive) can be formulated as :

fm(l)
m = fm(l−1)

m +

n
(l−1)
1∑
q=1

Gµ,σ ∗ fm(l−1)
q (2.12)

Here Gµ,σ is the Gaussian filter with mean, µ, and standard deviation of σ.

Feature Pooling

Feature pooling or sub-sampling’s main motivation is to impart robustness to the feature
maps from noise and distortions. Pooling is obtained generally by reducing the resolution
of the input image or feature map which can be performed in different ways. For better
explanation, consider a pooling layer l. Its output comprises n

(l)
1 = n

(l−1)
1 feature maps of

smaller sizes than the input. In general, pooling is performed by dividing the input image
or feature map into non-overlapping windows and then sub-sampling from each window
separately. This can be done in the following two ways:

• Average pooling : This is performed by taking the average of the values present in a
particular window.
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feature maps layer (l − 1) feature maps layer l

Figure 2.3: Illustration of a pooling and sub-sampling layer. If layer l is a pooling and
sub-sampling layer and given n1 = 4 feature maps of the previous layer, all feature maps
are pooled and sub-sampled individually. Each unit (l) in one of the n1 = 4 output feature
maps represents the average or the maximum within a fixed window of the corresponding
feature map in layer (l1).

• Max pooling: This is performed by selecting the maximum value from a particular
window and using that to create the reduced feature map.

A visual illustration of pooling is shown in Fig. 2.3. As discussed in [?], max pooling
performs better for the tasks of recognition and classification. It also helps to get faster
convergence during training. Pooling also helps in reducing the problem of over-fitting on
training sets [23, ?].

Fully Connected Layer

Let l be a fully connected layer. The layer l needs an input of n
(l−1)
1 feature maps of size

n
(l−1)
2 × n(l−1)

3 , which then for mth unit computes:

fm(l)
m = K(z(l)m ) where, (2.13)

z(l)m =

n
(l−1)
1∑
q=1

n
(l−1
2∑
c=1

n
(l−1)
3∑
d=1

w
(l)
m,q,a,b(fm

(l−1)
q )c,d(fm

(l−1)
q )a+c,b+d (2.14)
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Figure 2.4: The architecture of the typical convolutional neural network, alternates between
convolutional layers including hyperbolic tangent non-linearities and sub-sampling layers.
In this illustration, the convolutional layers already include non-linearities and, thus, a
convolutional layer actually represents two layers. The feature maps of the final sub-
sampling layer are then fed into the actual classifier consisting of an arbitrary number of
fully connected layers. The output layer usually uses softmax activation functions.

where w
(l)
m,q,a,b denotes the connecting weights between the unit at position (a, b) in the

qth feature map of layer (l − 1) and the mth unit of layer l. In practice, the convolutional
layers are used to learn a feature hierarchy and one or more fully connected layers are used
to condense the learned features which are then used for the purpose of classification. It
should be pointed out that the fully connected layers already contain non-linearities while
for the convolutional layers the non-linearities are separated in their own layer.

CNN Full Architecture

This section explains the typical architecture of a convolutional neural network that can
be constructed using different layers explained in the earlier sections of this chapter. A
typical CNN is shown in Fig. 2.4. The CNN shown comprises of three convolutional layers
and in between them contains pooling and ReLU layers. The network at the end has a fully
connected layer, features from which are then used for classification. The dimensions of
each layer are shown in the Fig 2.4. Back-propagation and drop-out is used in the training
similar to what is used in feed-forward networks as explained earlier in the chapter.

In this thesis, we use a pre-trained VGG-s CNN of 19 layers which was trained on
ImageNet dataset of 1000 classes with 1.2 million example cases. For a more detailed
explanation on the VGG-s network, the readers are encouraged to read through [57].
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2.3 Fast Library for Approximate Nearest Neighbors:

FLANN

One of the prominent bottleneck in terms of implementation speeds for many robotics
algorithms is searching for most similar matches to high dimensional feature vectors i.e.,
nearest neighbor searching. This problem becomes even worse in the cases where the search
space is huge, for example in the application area of long term autonomy. To deal with this
problem, in this thesis, we make use of an approach based on priority search k-means tree
which is popularly known as fast library for approximate nearest neighbors (FLANN) [36].
Even though there is another well known approach known as randomized k-d forest in this
framework, but we choose the priority search approach as it produces results with higher
precision comparatively. The remainder of this part of the chapter describes the underlying
algorithm used in this thesis to determine the nearest neighbor search.

2.3.1 Priority Search K-Means Tree Algorithm

The priority search k-means tree algorithm produces higher precision results by exploit-
ing the natural structure present in the data. The priority search k-means computes full
distance across all the dimensions which leads to the better clustering of the data points
compared to the other popular k-d tree approach which divides the data into only one di-
mension at a time. Also, the presented priority k-means tree approach is different than the
other k-means approaches [39], as the presented approach uses a better and improved ver-
sion of the k-means tree. The presented k-means tree approach uses best-bin-first strategy,
which improves the performance of the approximate k-d tree searches. The best-bin-first
strategy is explained below.

Best-Bin-First Approach: Algorithm Description

In the initial stage of the implementation of the priority search k-means tree algorithm, the
data region is divided into K distinct regions to create the k-means tree by using k-means
clustering. This is applied recursively to create distinct regions for each point at different
levels. The recursion is halted if the number of obtained points in a region is smaller than
K.

After the creation stage, in the next stage the tree is then searched by traversing from
root to closest leaf, following at each inner node the branch with the closest cluster centre
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to the query point, and adding all unexplored branches along the path to a priority queue.
After the addition, sorting of the priority queue is done.The order is than changed from
the point closest in distance to the query up-to the branch being added to the queue. Once
an initial traversal is done, the algorithm continues traversing the tree, always from the
top branch in the queue.

Choosing the factor K, known as the branch factor, is vital for getting good search
performance. The FLANN framework includes an algorithm for finding the optimum
branch factor. More details regarding this can be found in [36]. Another important factor in
the priority search k-means tree approach is the maximum number of iterations factor. Too
few iterations can result in less optimum search performance results though the experiments
in [36] prove that even smaller iterations ( around 7) can give up to 90% of precision.

The FLANN framework has been tested on many different datasets to prove its effec-
tiveness. Thus considering that we used this framework in this thesis to find the closest
matches to the incoming scenes in our datasets. The details regarding the implementation
of FLANN in this thesis can be found in the next chapter.

2.4 Summary

This chapter provided the necessary background that is important to understand the work-
ing and implementation of convolutional nerual networks and the state-of-the art nearest
neighbor search algorithm (FLANN). The above sections formulated CNNs and FLANN
mathematically and explained the process of creating and inner working of CNNs and
FLANN algorithm. By using the above presented theoretically background, the next chap-
ter lays out in detail, how these methods are implemented to create a robust visual place
recognition system.
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Chapter 3

Methodology

This section describes the components of the planar omni-directional place recognition
system depicted in Fig. 1.4. A planar omni-directional multi-camera system consisting of
N cameras is used to capture a 360◦ degree planar view of the scene. The set of N images
is then input into pre-trained convolutional neural network to obtain the feature set as
output. We use a CNN trained on imagenet instead of training a separate CNN because
as seen in Gomez-Ojeda et.al. [15], even after training a CNN with 2 million images for
the specific task of place recognition, it fails to outperform the pre-trained CNN at many
datasets. This output is then used to build an kd-tree index from a fast nearest neighbor
approximation approach. When a query image set is given to this kd-tree index, it gives
the approximate closest matched place using L2 distance. Individual modules of the omni-
directional place recognition system are explained below.

3.1 Omni-directional Feature Extraction

To obtain the omni-directional deep features for each scene, we input each image individ-
ually into conventional neural network. We use a deep convolutional neural network from
the MatconvNet library [57] trained on ImageNet [11] which consist of 1.2 million images
from 1000 classes of object. The CNN consists of 20 layers, out of which 5 are convolu-
tional layers, 3 are fully connected layers and the rest are rectification linear unit (ReLu)
and pooling layers. When an image I, from Cj

th camera, from the N camera cluster for a
scene is input into network, it is first down-sampled to 231× 231 as required by the CNN
network and is then passed through the various layers in the network. The penultimate
fully connected layer is used as the feature extraction layer, which produces a 4096 element

21



feature vector fij. This process is repeated for each image from the N cameras, in a planar
omni-directional scene for j = 1 to N resulting into a feature set Fi of 4096 ∗N length for
the ith scene in the dataset.

Fi = [fi1, fi2, .., fiN−1, fiN ] (3.1)

3.2 Building Search Space for Fast Place Recognition

Using the 4096 ∗N dimensional feature set Fi obtained from the previous Sub-section 3.1
for the ith image in a given dataset, we input this feature set into a kd-tree using Fast
Library for Approximate Nearest Neighbors (FLANN) [35] which uses nearest neighbor
search to extract the closest distance match from a large database quickly. The kd-tree
is built using the features obtained from feature extraction module for all the images in a
dataset and by further synthetically creating different orientation variations of the same
scene (described in Sub-section 3.3 below). The kd-tree built by this process provides a
fast method to query a large database for matching locations, which is essential for long
term autonomy.

3.3 Extreme Viewpoint Generation via Orientation

Changes

To achieve viewpoint invariance, we synthetically create a range of different orientations of
a particular scene. The procedure to create such viewpoint changes is shown in Fig. 3.1.
We rotate the feature vector fij as shown in Eqn. 3.2, in order to automatically create the
N different orientations of the same scene which result in extreme viewpoint changes with
respect to individual cameras.

di1 = [fi1, fi2, fi3, .., fiN ]

di2 = [fiN , fi1, fi2, .., fiN−1]
:
.

diN = [fi2, fi3, fi4, .., fiN , fi1]

(3.2)

D =
N∑
j=1

M∑
i=1

dTij (3.3)
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Figure 3.1: Visual representation for synthetic creation of viewpoint changes by changing
the camera orientation resulting in N different orientations. Cj is the jth camera image in
an N camera cluster of planar omni-directional camera system.
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Here dij is the jth camera orientation for the ith image in a dataset with M frames
and D is the collection of all the orientations. All orientations in D are added to the
higher dimensional database k-d tree to deal with large viewpoint changes in the future
transversal of the same location.

Once all the orientation from every image in the dataset is added to the kd-tree, we stop
the training and fix it for the testing. It is possible to expand the kd-tree online, but we do
not consider this option in this work. As shown in Fig. 1.4, once we fix the kd-tree, we use
the same feature extraction process as described in Sub-section 3.1 for the incoming query
image. We extract a feature length of 4096 ∗ N for the down-sampled query image and
input it into the kd-tree. The kd-tree provides the index to the closest match to the query
image from the index database build earlier (Fig. 1.4). As we already know the orientation
of all the indexes in the kd-tree, we get both the place hypotheses and orientation of the
query image. It vital to point out here that, in the present work we use fixed rotations
of 72◦ to create different orientations. A possible extension of this would be consider finer
rotations as well, which is currently not addressed in this work.

It is also important to describe here that there were many other extensions that we
tried, for example removing sky from the images before extracting features to constraint the
seasonal and other environmental vulnerabilities in the images. We implemented this with
our system, but the state-of-the art techniques which were to do this also mis-classified the
snow on the ground as sky and decreased the over all place recognition accuracy. Hence,
we decided against using this in the present system. We also implemented the binarizing
feature vectors and reducing number of feature vectors from 4096 to 1000 using PCA, but
both of these techniques decreased the accuracy of the system.

3.4 Summary

The above sections in this chapter explained the process of the creating of the presented
omni-directional place recognition along with the detailed explanation of the various com-
ponents involved in the system. The chapter explains the process of extracting features
from the images using the pre-trained CNN and building the search space for fast searching.
The next chapter uses the presented omni-directional system to conduct various compre-
hensive experiments for different environmental conditions. The next chapter explains
the experimental set-up, dataset used to conduct these experiments and the results thus
obtained from the experiments.
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Chapter 4

Experimentation

4.1 Experimental Set-up

Experiments were performed on two different datasets that are derived from North Campus
Long-Term (NCLT) Vision and Lidar dataset [3]. NCLT dataset was created by multiple
runs of a segway robot on the University of Michigan’s North Campus over a period of
around 1.5 years. The Segway robotics platform was equipped with many sensors including
a Ladybug3 omnidirectional camera, a Velodyne HDL-32E 3D lidar, two Hokuyo planar
lidars, an inertial measurement unit (IMU), a single-axis fiber optic gyro (FOG), a con-
sumer grade global positioning system (GPS), and a real-time kinematic (RTK) GPS. The
Pointgrey Ladybug3 (LB3) uses six 2 megapixel cameras with a resolution of 1600x1200
with five CCD camera in a horizontal ring and the last one positioned vertically. The
five horizontal cameras provide an almost 360◦ planar view. The undistored images of the
dataset were collected at 5 Hz and were stored in JPEG compressed format.

To create the databases (cross season, and same season) used in this thesis, we choose
the data collected on five different dates: 2012-01-22, 2012-03-31, 2012-06-15, 2012-09-28
and 2013-01-10. Using this data, we form the following databases:

• Cross season : 2012-01-22 (winter), 2012-03-31 (spring), 2012-06-15 (summer) and
2012-09-28 (fall) (Fig. 4.1)

• Same season with gap of 1 year : 2012-01-22 (winter 2012) and 2013-01-10 (winter
2013)

More details about these derived databases are presented in Table 4.1 and Table 4.2.
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Figure 4.1: Illustrations for three different scenes across four different seasons: spring,
summer, fall and winter from the NCLT dataset [3].

4.2 Ground Truth

Ground truth was determined by matching the GPS data obtained from real-time kinematic
(RTK) GPS. We select GPS co-ordinates 1 m apart from one sequence (e.g. winter 2012)
and then match with the same GPS co-ordinate in another sequence (e.g. spring 2012). To
extract the images associated with the GPS co-ordinate we match UTIME of both the GPS
and imaging sensor. The final results were manually matched through visual inspection
and the orientation data was verified by the heading provided by the IMU sensor.

4.3 Pre- and Post-Processing

We perform minimal pre-processing on the images. We selected a fixed window for size
of 700 × 1200 pixels in the center of the image, which removes most of the sky and part
of the ground, leaving the most relevant information in the image untouched. The fixed
window was selected to remove the non-essential information from scenes which might
hinder in the place recognition performance. Each image is then scaled and downsampled
to 231× 231 as required by MatconvNet CNN. We do not perform any post processing on
the matching results and consider only L2 distance as a metric for determining accuracy.
This approach was chosen to maintain a fair comparison of the presented approach with
single and side-view camera approaches.
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Figure 4.2: Confusion matrices belonging to the best performing individual camera 5, best
performing side-view camera 1 & 4 and the presented omni-directional approach for a
cross season dataset (winter (snow) vs spring). The confusion matrices are obtained by
first traversing in spring to create a database and then traversing the same location in
winter with snow (query).

27



0 100 200 300 400 500 600 700 800

Frame Traversed  in Snow 2012
0

100

200

300

400

500

600

700

800

Fr
am

e 
Tr

av
er

se
d 

 in
 S

no
w 

20
13

Same Season : Cam 3
True Positive
Ground truth

0 100 200 300 400 500 600 700 800

Frame Traversed  in Snow 2012
0

100

200

300

400

500

600

700

800

Fr
am

e 
Tr

av
er

se
d 

 in
 S

no
w 

20
13

Same Season : Cam 1,4
True Positive
Ground truth

0 100 200 300 400 500 600 700 800

Frame Traversed  in Snow 2012
0

100

200

300

400

500

600

700

800

Fr
am

e 
Tr

av
er

se
d 

 in
 S

no
w 

20
13

Same Season : Omni-directional
True Positive
Ground truth

Figure 4.3: Confusion matrices belonging to the best performing individual camera 3, best
performing side-view camera 1 & 4 and the presented omni-directional approach for a same
season dataset across a gap of one year (snow 2012 vs snow 2013). The confusion matrices
are obtained by first traversing in winter 2012 to create a database and then traversing at
the same location in winter 2013 with snow (query).
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Figure 4.4: Figure showing the confusion matrix results obtained by querying two different
datasets with five different orientations at the same location. The left confusion matrix
is for cross season database (snow vs spring) and the right confusion matrix is for same
season (winter 2012 vs winter 2013). From the figure, it is evident that the presented omni-
directional approach produces similar results even if queried with different orientations thus
producing a robust system that can handle extreme viewpoint changes.
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Table 4.1: Description of cross season database used in the thesis, which are derived from
NCLT [3] database.

Database Name
(cross season)

Total
Dis-
tance

Total
Frames

Description

Winter 0.65 km 648 traversal done in Jan 2012 (2012-01-
22)

Spring 1.59 km 1594 traversal done in March 2012 (2012-
03-31)

Summer 1.59 km 1594 traversal done in June 2012 (2012-
06-15)

Fall 1.59 km 1594 traversal done in September 2012
(2012-09-08)

Table 4.2: Description of same season database used in the thesis, which are derived from
NCLT [3] database

Database Name Total
Dis-
tance

Total
Frames

Description

Same Season
(Winter’12 vs
Winter’13)

0.65 km 648 first traversal in winter 2012 and
querying in winters 2013

4.4 Experiments and Results

In this Section, we present three different types of experiments and the results thus showing
the place recognition performance of the omni-directional approach in different scenarios.
First a comparison to single-view and side-view camera approaches is done with omni-
directional approach for small set (winter and summer) derived from cross season dataset
and the same season dataset. We also present results of the performance of the presented
approach for extreme viewpoint changes created from individual test images using the same
season in the same manner as described when constructing viewpoint invariant databases
in Section 3.3. We end with evaluating the performance of the presented approach on the
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full cross season database, presenting place recognition results from all four seasons.

4.4.1 Place Recognition Comparison: Omni-directional vs Single
and Side-View Camera Approaches

To prove the efficacy of the presented omni-directional approach over the conventional
single and side-view camera approaches, we calculate the place recognition performance of
the approaches over the two datasets. In this part, we only use a smaller part of the cross
season dataset i.e., winter vs summer only, and full same season dataset as mentioned
in Table 4.1 and Table 4.2. Recall performance at 100% precision is the criterion of
interest, as false positives are undesirable in visual place recognition. The results of place
recognition in terms of recall values at 100% precision for a sequence length of 10 m for each
individual cameras in the 5 camera cluster, side-view combinations of these cameras along
with the omni-directional approach is shown in Table 4.3. From Table 4.3 it is evident
that the omni-directional approach outperforms both the single view and side-view camera
approaches for both the datasets, which indicates the efficacy of the presented approach
over the single-view and side-view camera methods.

We also present the best raw confusion matrix results in Fig. 4.2 and Fig. 4.3 for cross
season and same season datasets for each method respectively. In the figures, we can
notice that most of the orientations belonging to same locations are identified as such
(overlapping), and only few orientations are identified as different places (green dots in
cross season and blue in same season figure). From both figures, it is visually evident that
the omni-directional approach generates far fewer false positives as compared to individual
and side-view cameras.

4.4.2 Performance Under Extreme Viewpoint Changes

To state the effectiveness of the presented approach under viewpoint changes, we create
5 different orientations of each scene in both the datasets (Table 4.1 and Table 4.2) as
explained in Sub-section 3.3. Similar to the above Sub-section 4.4.1, we use part of the
cross-season dataset (winter and spring) and full same season dataset. This results in 7970
frames in the mini cross season and 3240 frames in the same season dataset. We then
query each orientation separately for both datasets. We plot the confusion matrices thus
obtained for both datasets in Fig. 4.4. Inspecting the raw confusion matrices in Fig. 4.4,
it is clear that even after changing the orientation significantly, the presented approach
creates very few outliers in both cases. Outliers here are defined as the place hypotheses
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results that are different from the ones that were identified while training and testing on
single orientation omni-directional images (Fig. 4.2 & 4.3). This observation is verified by
the results shown in Table 4.4. From the confusion matrices (Fig. 4.4) and Table 4.4, we
can conclude that the presented method does not increase the number of outliers due to
synthetically created orientations.

We also calculate the recall at 100% precision values for these cases, which remain the
same for all the orientations. Both of these results demonstrate that the omni-directional
approach can withstand extreme viewpoint changes without any significant change in per-
formance. It is also interesting to note here that this same approach can also be used to find
the orientation. This can be easily done by labeling each orientation in the dataset differ-
ently and then matching the orientation of the query image with the existing orientations
in the dataset.

To further analyze the effectiveness of the presented omni-directional approach in deal-
ing with viewpoint changes, we evaluated the error percentage with respect to the difference
in heading angle of the training and testing set without the synthetic orientations. The
results of this experiment for both dataset are demonstrated in Fig. 4.5. Observing the
histogram we can conclude that there is a significant growth in the error rate as a function
of orientation change in the same season dataset, but not in the mini cross season dataset.
This suggests that the error percentage might be a function of number of samples (cross
season: 1594 × 5 and same season: 648 × 5). Also, the error percentage is greater for
same season, one reason for such performance might be because of the similarity of scenes
covered in snow that lead to a harder place recognition problem, and a greater sensitivity
to orientation. For the cross season, as the matched images have significant differences,
the sensitivity is not as pronounced as in the case of the same season dataset.

4.4.3 Cross Season Place Recognition Performance

To prove that the presented omni-directional approach works for all weather conditions,
we evaluate the presented approach over four different weather conditions as mentioned in
the cross season dataset (Table 4.1). The experiments were done by training the network
on one of the seasons separately and then testing individually on the rest of the three
seasons. As the winter part contains smaller number of frames, training and testing for
all the seasons is done using only 648 frames in the case where the network is trained on
winter season. When the CNN is trained on rest of the seasons, the training and testing is
done on full length of 1594 frames, except when testing is done against winter season. In
that case, frames are only used up-to the length of 648 i.e., of 0.65 km. The results thus
obtained, pertaining to recall at 100% precision are shown in Table 4.5.
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Figure 4.5: Histogram showing the percentage of locations mis-classified with respect to
the difference in the heading angle between training set and testing set.

From the Table 4.5, it is clearly evident that even though the presented place recognition
system works with decent results, the results are better when there are only gradual changes
in the weather. For example, the best results are produced while training and testing for
summer and fall. The main reason for such results is the lack of major changes in the
appearance of the season as the two sequences were collected close to each other (mid
summer and early fall). Similarly, the results for winter and summer are the worst compared
to the rest of the set as the difference in scenes due to major changes between sunny and
clear conditions in summer and grim with ice covered conditions in winters. Also, it is
important to note that as training and testing was done on different seasons albeit from
the same dataset. A natural extension to this is to use other datasets with omni-directional
images to either train and test in various other conditions, which would be an interesting
and vital step. However, this method cannot be extended to datasets with only single-view
or side-view images. But as more and more sensors are installed in robots these days we
hope the presented results will encourage other researches in the field of place recognition
to move towards omni-directional imaging.
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Table 4.3: Recall values (%) at 100 % Precision for two different Datasets (Cross Sea-
son: Winter’12 vs Spring’13 & Same Season: Winter’12 vs Winter’13). Best results are
highlighted in bold.

Cam No. Cross Season (%) Same Season (%)

Single-View

01 39 47
02 36 36
03 37 48
04 36 44
05 42 42

Avg 38 43.4

Side-View

1, 2 39 54
1, 3 51 61
1, 4 55 63
1, 5 50 61
2, 3 49 53
2, 4 49 55
2, 5 52 52
3, 4 47 57
3, 5 54 58
4, 5 51 52
Avg 49.7 56.6

Omni-dir. 1, 2, 3, 4, 5 66 71

4.5 Summary

This chapter explains the experimental set-up and the various experiments conducts using
a dataset that contains wide variety of conditional and viewpoint changes. The chapter
first explains the creation of the dataset including the ground truth used to verify the
correctness of the collected data. The chapter then explains the various pre-processing
techniques involved in the experiments. After this, various experimental scenarios and
obtained results from the respective experiments are explained including a comparison of
single and side-view camera approaches. A discussion is also presented for the obtained
results. The next chapter summaries the whole work presented in this thesis and also
provides a short discussion on the future directions for presented work.
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Table 4.4: Number and percentage of outliers introduced for different testset with kd-tree
trained on 5 different orientations (d1-d5).

Orientation Testset Cross Season Same Season
d1 : 1, 2, 3, 4, 5 46 (0.029%) 3 (0.004%)
d2 : 5, 1, 2, 3, 4 33 (0.020%) 3 (0.004%)
d3 : 4, 5, 1, 2, 3 27 (0.017%) 3 (0.004%)
d4 : 3, 4, 5, 1, 2 46 (0.029%) 3 (0.004%)
d5 : 2, 3, 4, 5, 1 46 (0.029%) 3 (0.004%)

Avg 40 (0.025%) 3 (0.004%)

Table 4.5: Recall values (%) at 100 % Precision for four different seasons (spring, summer,
fall and winter of 2012 in the cross season dataset. Best results are highlighted in bold.

Training/Testing set Spring Summer Fall Winter
Spring – 75 71 66

Summer 76 – 72 63
Fall 71 73 – 68

Winter 64 64 67 –
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Chapter 5

Conclusion

This chapter provides a summary of the work presented in this thesis along with discussion
on the avenues of futures directions.

5.1 Summary

This thesis proposes a deep learning based visual place recognition using planar omni-
directional imaging. Unlike many recent deep learning based approaches, which use the
single or side-view camera approach for place recognition, the presented approach is robust
to viewpoint changes without using any additional information from any other source or
device. The presented approach is shown to work well for cross seasonal changes for four
different weather conditions namely, winter, spring, summer and fall. Along with this, the
presented approach is also shown to work for long term structural changes by using imaging
data from the same location after a gap of a year i.e., winter 2012 and winter 2013.

Our presented technique enhances the overall performance of place recognition by 20%
& 22% over the single camera technique and 8% & 7% over side-view camera approach
for recall at 100% performance on two different real datasets that deal with illumination,
seasonal changes and structural changes over 1 year respectively. We also demonstrate that
the presented technique has the capability to handle large changes in viewpoint or orien-
tation. We believe both of these improvements are important steps toward creating more
robust place recognition systems that can withstand difficult and changing environments.

The presented approach for place recognition is also shown to work across different
weather condition throughout the year. The presented approach produces a good 76%
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recall at 100% precision for summer and spring testing and does well for the rest of the
seasons too.

5.2 Future Work

In future, we want to explore the performance of the omni-directional approach for place
recognition in the following different scenarios:

• For unmanned aerial vehicles

• For key-frame selection

• Fine-grained rotations

• Using saliency maps for place recognition

As large viewpoint changes are common in aerial vehicles, it will be interesting to
see the results in this domain.While GPS has long been used as a localization sensor on
both piloted and unpiloted air vehicles, localization using GPS is not possible in indoor or
cluttered outdoor environments where GPS is generally not available. Thus it is important
to have a GPS independent system for aerial vehicles. The initial experiments will hopefully
provide a direction to improve and implement a working place recognition system for aerial
vehicles.

One of the most important area in the visual SLAM field is key-frame selection. Key-
frames are the scenes/images in the SLAM database that are used as anchor points in
the world to accurately localize the autonomous vehicles. In future, we want to explore
the possibilities of using omni-directional visual place recognition system to select robust
key-frames that increase the effectiveness of the visual SLAM algorithms.

We also want to improve the viewpoint invariance of the presented approach by incor-
porating fine grained rotations of the scenes with stitched and masked images for larger
training sets. The inclusion of fine grained rotations in the dataset will help in providing
a more robust place recognition that can handle any and all type of view-point changes.

Along with above mentioned scenarios, we also want to explore the possibility of us-
ing saliency maps with out presented omni-directional system for performing visual place
recognition. The saliency maps can be used to only focus on important areas of a partic-
ular scene and then the information presented in the map cab be used for perform further
matching in the database.
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We hope to implement the above mentioned scenarios to create a robust place recogni-
tion system that can simultaneously deal with conditional and viewpoint variations.
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