
Single-Entity-Single-Relation
Question Answering with Minimal

Annotation

by

Zhongyu Peng

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Zhongyu Peng 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We present a novel bag-of-words based approach that automatically constructs a seman-
tic parsing based question answering (QA) system tailored to single-entity-single-relation
questions. Given a large community QA pair corpus and a knowledge base, our approach
uses knowledge base entries to supervise relation extraction from the corpus, reduces noise
in the extracted data via unsupervised clustering, and learns to identify each relation’s
question patterns. We implement the approach on a large Chinese corpus with little an-
notation, which we believe is one of the first of its kind. Experiments show that our
implementation manages to answer questions in test cases independent of the corpus with
relatively high accuracy and to avoid answering questions beyond its scope, achieving a
high accuracy on answered questions.

iii

Acknowledgements

I would first like to thank my supervisor, Dr. Ming Li. He is available for help at every
stage of my graduate study. His guidance and support made this thesis possible.

I would also like to thank the readers of my thesis, Dr. Grant Weddell and Dr.
Chrysanne DiMarco, for reviewing my work.

Special thanks to Anqi Cui and Borui Ye, who gave me lots of advice and helped
annotating the data used in this thesis.

Finally, I must express my very profound gratitude towards my parents. Without their
encouragement and support throughout my years of study, none of my accomplishments
would have been possible.

iv

Dedication

This is dedicated to my parents whose unwavering support sustains me through.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Work 3

2.1 Question Answering . 3

2.2 Relation Extraction . 5

3 Approach 7

3.1 Overview . 7

3.2 Question Pattern Extraction . 8

3.3 Noise Reduction . 10

3.4 Pattern Evaluation and Model Selection 13

3.5 Question Parsing and Answering . 14

4 Data and Implementation 15

4.1 Overview . 15

4.2 Data . 15

4.3 Experiment Environment . 17

4.4 Question Pattern Extraction . 17

vi

4.5 Noise Reduction . 19

4.6 Pattern Evaluation and Model Selection 22

4.7 Question Parsing and Answering . 28

5 Evaluation 30

5.1 Overview . 30

5.2 Noise Reduction . 30

5.3 System Parameters . 32

5.4 Answer Triggering . 32

5.5 Question Coverage . 33

5.6 Run Time . 38

6 Discussion 42

7 Conclusion 48

References 50

vii

List of Tables

5.1 Average precision, average recall, average f1-measure, and Pearson produce-
moment correlation coefficient (Pearson’s r) between f1-measure and num-
ber of extracted questions for different typed relations in noise reduction
component. 31

5.2 Statistics of SystemR, Solr, and basic configuration of our system on the
QA test cases. 37

5.3 Statistics of our system with θmodel = 0.6, θanswer = 0.6 and different ntree
and rnoise values on the QA test cases. 39

5.4 Statistics of our system with ntree = 25, rnoise = 10%, θanswer = 0.6 and
different θmodel values on the QA test cases. 39

5.5 Statistics of our system with ntree = 25, rnoise = 10%, θmodel = 0.6 and
different θanswer values on the QA test cases. 40

5.6 System’s average run time per question and number of relations in the sys-
tem with different ntree, rnoise, θmodel values on the QA test cases. 41

6.1 Answer triggering and question coverage statistics of our system with θmodel =
0.6, θanswer = 0.6 and different ntree and rnoise values. 46

viii

List of Figures

4.1 Relations and corresponding number of questions 20

4.2 Relations and corresponding number of extracted questions, non-noise ques-
tions . 22

4.3 Relations and corresponding average f1-measures on questions against related
relations’ questions during two independent cross validation runs with the
same parameters. 24

4.4 Relations and corresponding average f1-measures on questions against related
relations’ questions with rnoise = 10% and different ntree values. 24

4.5 Relations and corresponding average f1-measures on questions against noise
sample with rnoise = 10% and different ntree values. 25

4.6 Relations and corresponding average f1-measures on questions against noise
sample with ntree = 25 and different rnoise values. 26

4.7 Relations and corresponding average f1-measures on questions against noise
sample with rnoise = 20% and different ntree values. 26

4.8 Average f1-measures on questions against noise sample and on questions
against related relations’ questions with 25 trees and 10% noise sampling
rate. 27

5.1 Answer triggering accuracy and probability threshold for answer selection
with different values of ntree, rnoise, θmodel, and θanswer. 34

5.2 Answer triggering accuracy and f1 measure threshold for model selection
with different values of ntree, rnoise, θmodel, and θanswer. 35

6.1 Relations’ f1-measure in noise reduction and average f1-measure in classifi-
cation against 10% noise sample with 25 trees in random forests. 43

ix

6.2 Relations’ f1-measure in noise reduction and average f1-measure in classifi-
cation against related relations’ questions with 25 trees in random forests. 43

6.3 Relations’ accuracy on question coverage test cases at the basic configuration
of our system and corresponding f1-measure on noise reduction. 44

6.4 Relations’ accuracy on question coverage test cases at the basic configuration
of our system and minimum of average f1-measure in classification against
10% noise sample and in related relations’ questions with 25 trees in random
forests. 45

6.5 Answer triggering and question coverage statistics of our system with ntree =
25, rnoise = 10%, θmodel = 0.6 and different θanswer values. 46

6.6 Answer triggering and question coverage statistics of our system with ntree =
25, rnoise = 10%, θanswer = 0.6 and different θmodel values. 47

7.1 Relationships between community QA questions, single-entity-single-relation
questions, and questions that our implementation has learned to answer. . 48

x

Chapter 1

Introduction

Wolfram Alpha 1 is an answer engine developed by Wolfram Research. It can answer
factual queries directly with answers from its structured knowledge bases. For example,
query “Where’s Canada’s capital?” returns answer “Ottawa”. It is used to power Apple’s
intelligent personal assistant, Siri, and Samsung’s counterpart, S Voice.

Yet when asked the same question but in Chinese, “加拿大的首都在哪里? (Where’s
Canada’s capital?)”, Wolfram Alpha does not know how to interpret the question 2. Even
Siri, which supports the Chinese language, cannot answer the question and returns a list of
search results from the Web instead. We are motivated to build an open domain question
answering (QA) system that can answer such questions in Chinese.

Questions such as “NSA的总部在哪里? (Where’s NSA’s headquarters?)” and “奥
巴马什么时候出生的? (When was Obama born?)” are known as single-entity-single-
relation questions, as each question is composed of an entity mention and a binary relation
description. It is a subset of factoid questions and is observed to be the most common type
of questions in various community QA sites [13]. We focus on answering such questions.

Automatic QA systems that return the direct and exact answers to natural language
questions have been in the limelight of research since 1960s and 1970s (e.g., Baseball
[14], Lunar [30]). Though early systems are limited to closed-domains due to lack of
knowledge sources, recently there has been huge growth in open-domain systems since the
development of large scale knowledge bases, such as DBpedia [1], Freebase [5], ReVerb [12],
and Yago2 [18] in the past decade. The advent of publicly available large scale datasets,

1Wolfram Alpha, www.wolframalpha.com
2Wolfram Alpha doesn’t know how to interpret your input, www.wolframalpha.com/input/?i=加拿大

的首都在哪里, retrieved on July 9, 2016.

1

such as webpage collection ClueWeb09 3 with about 1 billion webpages, WikiAnswers
4 questions paraphrases [13] with 18 million paraphrase pairs, and annotated QA pairs
SimpleQuestions [7] with 108,442 labeled questions, further facilitates the development of
automatic QA systems.

Most approaches either use semantic parsing or information extraction methods. Infor-
mation retrieval based systems [6] [7] [10] [17] [28] [33] retrieve candidate documents and
then analyze them to obtain answers, while semantic parsing based systems [3] [4] [20] [34]
[37] [38] parse natural language questions into logical forms and lookup knowledge bases
for answers. State-of-the-art systems include information retrieval based Jacana-freebase
[32] and semantic parsing based PARALEX [13].

Despite the popularity of research on QA systems, few works on QA in the Chinese
language are known. The main reason is lack of data to work on. For example, the only
publicly available knowledge bases with a Chinese version is DBpedia [1], which we will
use for our implementation.

We start by gathering data. After scraping community QA websites in China, we have
collected about 260 million QA pairs. Based on the data that we have, we take the semantic
parsing approach and design a real-time QA system with the following goals in mind: 1) to
answer as many single-entity-single-relation questions as possible with reasonable accuracy,
and 2) to avoid answering non-single-entity-single-relation questions. Also we avoid manual
annotation as much as possible because manual labeling is costly and limits the scale of
the system.

Our approach uses knowledge bases to supervise the extraction of questions by rela-
tion, sifts through the noisy extracted data, and learns each relation’s question patterns.
We demonstrate through experiments that our bag-of-words based system has learned to
answer questions not present in its training data and even beyond the community QA data
while maintaining a high accuracy on answered questions.

Even though we experiment on data in the Chinese language, our approach is language-
independent.

3ClueWeb09, webpage collection, lemurproject.org/clueweb09/
4WikiAnswers, a English community QA site, answers.wikia.com/wiki/Wikianswers

2

Chapter 2

Related Work

2.1 Question Answering

Many studies have been done on question answering. Most methods fall into two categories:
information retrieval based and semantic parsing based.

Information retrieval based systems retrieve candidate documents and then analyze
them to obtain answers. Early systems, such as AnswerBus [40] and MULDER [21], use
features from questions to generate queries for Web search engines (e.g., Google1, Yahoo2),
retrieve short passages, extract answer candidates, and rank answers. The key to good
results is query generation and answer ranking. For example, MULDER would generate
additional query by replacing the adjective in the question with its attribute noun, and
pick the best candidate answer by clustering and voting. Current approaches for answer
selection include syntactic analysis (e.g., tree-edit distance based tree matching method
[10], tree kernel fucntion together with logeistic regression model with syntactic features of
edit sequences [17]), lexical semantic model (e.g., pairing semantically related words based
on word relations [33]), and deep learning neural networks (e.g., stacked bidirectional long
short-term memory network with keyword matching [28], embedding model that embeds
questions and corresponding answers close to each other [6]).

Jacana-freebase [32] is one of the state-of-the-art information retrieval-based systems.
It uses Freebase Search API 3 to retrieve topic graphs from Freebase [5] as candidate

1Google, search engine, www.google.com
2Yahoo!, search engine, www.yahoo.com
3Search overview for Freebase API, developers.google.com/freebase/v1/search-overview.

3

documents. It converts the dependency parse of the question into a feature graph and
uses rules to extract question features. Also it uses relations and properties of nodes in
retrieved topic graphs as knowledge base features. To rank candidate questions, it feeds the
extracted question features and the extracted knowledge base features to a binary classifier
that outputs correct or incorrect.

On the other hand, semantic parsing based systems usually work together with knowl-
edge bases. They parse natural language questions into logical forms and lookup knowledge
bases for answers. Generally, to answer a question, they decompose questions, map phrases
to knowledge base items (e.g., entities, relations, queries), generate knowledge base queries,
pick the top ranked query, and retrieve the answer. Early efforts [20] [37] [38] train the
parser with English sentences paired with manually annotated logical forms as supervi-
sion, while recent works [3] [4] use question-answer pairs as weak supervision to avoid the
expensive manual annotation.

PARALEX [13] is one of the first general open-domain QA systems that is scaled to
large knowledge bases. It maps questions to formal queries over ReVerb [12] extractions,
a database consisting of relation triples extracted from ClueWeb09 4. The model used to
generate the database query includes a lexicon used to map natural language patterns to
database items, and a linear ranking function used to rank the queries derived from the
input question. The system derives a query by decomposing the question into an entity
pattern, a relation pattern, and a question pattern, and then applying the lexicon. The
lexicon is induced by applying learned word alignments on paraphrases of questions from
WikiAnswers 5. Though the development of the system does not involve manual annotation
of questions, it requires a seed lexicon consisting of 16 question templates (e.g. What is
the r of e? r is a database relation, e is a database entity).

Inspired by PARALEX, Yih et al. [34] build a system that matches natural language
patterns with database items via a semantic similarity function instead of a lexicon, from
the same data that PARALEX uses. At the core of the system is a semantic similarity
model based on convolutional neural networks trained on the WikiAnswers paraphrases.
Given a question, the system decomposes it into two disjoint parts, an entity mention and
a relation pattern, by enumerating all possible combinations. The combinations are fed
into the semantic similarity model, mapped to database entity and database relation, and
scored. The system then looks up the ReVerb database with the entity and the relation
and returns the result as answer.

The major challenge for us to adopt an existing method is lack of data to operate on.

4ClueWeb09, webpage collection, lemurproject.org/clueweb09/
5WikiAnswers, a English community QA site, answers.wikia.com/wiki/Wikianswers

4

For example, neither Freebase [5] nor ClueWeb09 has Chinese versions, and paraphrases of
questions [13] similar to that of WikiAnswers are also difficult to obtain as users on Chinese
community QA sites do not get to tag similar questions. Moreover, manually annotated
QA pairs such as SimpleQuestions [7] not only are in English only, but are also costly to
produce. Consequently, we need to collect our own data and design a method suitable for
our data.

2.2 Relation Extraction

Relation extraction aims to detect and classify relations between named entities or marked
nominals. It plays a key role in question answering. Majority of the works considers it as
a supervised multi-class classification task. Most supervised methods can be categorized
into feature-based methods, kernel-based methods, and deep learning neural network-based
methods.

Feature-based methods extract various kinds of linguistics features and feed them into
multi-class classifiers (e.g., max entropy model [19], SVM [15]). Handcrafted features
include lexical features (e.g., entities, part-of-speech tags of entities), syntactic features
(e.g., parse trees), and semantic features (e.g., concept hierarchy, entity class).

Kernel-based methods explore structural features by using similarity measure (kernel
function). Zelenko et al. [35], one of the earliest works, use a tree kernel that computes the
similarity of shallow parse trees by a weighted sum of common subtrees. Later, Bunescu
et al. [9] use a kernel function that makes use of the shortest dependency path between
two entities. Furthermore, Zhang et al. [39] uses a composite kernel: a combination of a
tree kernel and a lexical feature kernel. Similarly, Wang [29] introduces syntactic features
into the kernel function, and Plank et al. [25] introduces semantic features.

Neural-network-based methods learn the underlying features automatically. Socher et
al. [27] propose a matrix-vector recursive neural network that assigns matrix-vector repre-
sentation to parse tree nodes and learns compositional vector representations for phrases
and sentences. Zeng et al. [36] learn sentence-level features via a convolutional neural
network, extract lexical features, and combine them for classification.

Aside from supervised methods that require costly manual labeling, there are other ap-
proaches. Unsupervised approaches [2] [26] extract and cluster sequences of words between
entity mentions from a large textual corpus. Compared to supervised methods, results
from unsupervised methods do not have clear labels associated with each relation. To
counter this issue, distant supervision [24] uses known relations from knowledge bases to

5

guide the extraction from a large textual corpus. The assumption is that if two entities
are known to have a known relation in a knowledge base, then any sentence that mentions
these entities expresses the relation in some way.

Mintz et al. [24] experiment on Freebase to extract relations from Wikipedia. Given
two entities, the system extracts features from sentences that contain the two entities,
aggregate the features into a single feature vector, and feeds it into a multi-class logistic
regression classifier. The extracted features include: lexical features (e.g., part-of-speech
tags of entities, sequence of words between entities), syntactic features (e.g., dependency
path between entities), and named entity tag features.

6

Chapter 3

Approach

3.1 Overview

In this chapter we describe the methodologies to build a specialized QA system from scratch
with question-answer pairs from community QA sites and entity-relation-value triples from
knowledge bases. The system is designed with the following goals in mind:

• The system should answer as many single-entity-single-relation questions as possible
with reasonable accuracy.

• The system should not answer questions that do not fall into the single-entity-single-
relation category.

Even though our motivation is to build a QA system that can answer questions in
Chinese language, our approach is independent of the language of the data.

Our system extracts question patterns from community QA sites, evaluates the ex-
tracted patterns, and couples them with knowledge bases to answer single-entity-single-
relation questions. The basic idea is that similar questions are asking about similar rela-
tions. We choose a bag-of-words approach, and there are four major steps:

1. (Offline) Extract single-entity-single-relation questions from community QA data
with the guidance of triples from knowledge base. (Section 3.2)

2. (Offline) Reduce the noise present in the extracted question by clustering. (Sec-
tion 3.3)

7

3. (Offline) Evaluate the filtered questions via classification and train models with se-
lected data. (Section 3.4)

4. (Online) Parse question and rank potential answers. (Section 3.5)

3.2 Question Pattern Extraction

One major challenge when building a machine learning system is collecting training data.
The correctness of the labeling and the quantity of the training data directly impact the
system performance. However, quality data is often hard to come by, because hand-labeled
corpora is expensive to produce and therefore limited in quantity. This is especially a
problem when the study focuses on the Chinese language, as labeled Chinese corpora is
very scarce.

In our Chinese question-answering case, we need single-entity-single-relation questions,
with the mentioned entities and implied relations labeled, in order to learn the varied
question patterns for each relation. For example, for question “碟中谍是谁拍的? (Who
directed Mission Impossible?)”, the corresponding annotation we would like to have is “碟
中谍(Mission Impossible)” as the entity and “导演(director)” as the relation. With such
labels, we can deduce that “X 是谁拍的? (Who directed X?)” is likely to be asking about
the “导演(director)” of X.

We extract the questions with the labels from a corpora of community QA pairs. Distant
supervision [24] is a commonly used technique to generate large amounts of automatically
labeled training data effectively. It assumes that if an entity-relation-entity triple exists in
a knowledge base, then any sentence that contains the pair of entities is likely to express
the relation in some way. It is a strong assumption and usually introduces wrong labels
into the training data, hindering the performance of trained models. Also, it is limited to
relations between entities in the sense that literals, such as dates, numbers, and strings,
are not considered during the extraction process. As a result, data pertaining to relations
that involve an entity and a literal, e.g. birthday, population, etc. cannot be generated.

To apply the idea of distant supervision to our work, we first extend it to extract QA
pairs instead of sentences, and to include entity-literal relations:

For an entity-relation-value1 triple in a knowledge base, a QA pair is said to be
associated with the triple if the two following conditions are met:

1A value can be an entity, or a literal

8

1. The question contains the entity but not the value,

2. The answer(s) contain the value.

For each entity-relation-value triple, all questions in associated QA pairs are
extracted with labels “entity” and “relation”.

For example, consider the relation triple (“纽约市(New York City)”, “人口(population)”,
“8336697”) and the QA pair (“纽约市有多少人? (How many people live in New York
City?)”, “据估计，2012年有8336697人住在纽约(According to estimate, in 2012 New York
City has a population of 8336697.)”): because the entity appears in the question while the
value only appears in the answer, the question meets the criteria and is extracted with
labels “纽约市(New York City)” and “人口(population)”.

Because answers on community QA sites vary from few words to several long para-
graphs, they tend to carry more information compared to single sentences. As a result,
QA pair extraction introduces more noise than sentence extraction. Consider the QA pair
(“介绍一下纽约市(Tell me about New York City)”, “纽约市位于纽约州南端，是美国人
口最多的城市，常驻人口8336697人，土地面积305平方英里. . . (New York City is located
at the southern tip of the State of New York. With a population of 8,336,697, it is the
most populous city in the United State. It has a land area of 305 square miles. . . ”). The
question does not fall into single-entity-single-relation category; however, with the simple
extraction rule stated above, the question would be extracted multiple times and labeled
with relations such as population, location, area, etc.

We mitigate the noise issue by introducing additional constraint. Under the simple
extraction rule, for each extraction, only one entity-relation-value triple is used to guide
the process. Yet in knowledge bases, an entity usually has more than one entity-relation-
value triples. Intuitively, if a QA pair can only be associated with one entity-relation-value
triple, it is more likely to be about the “relation” in the triple. In the “介绍一下纽约市(Tell
me about New York City)” example above, if we only extract the question if the QA pair
can only be associated with one triple, the question will not be extracted.

We use the following rule to extract questions from community QA pairs:

Given knowledge base K = {(e, r, v)} where (e, r, v) represents an entity-
relation-value triple, and community QA data C = {(q, a)} where (q, a) rep-
resents a question-answer pair, for an entity-relation-value triple (e, r, v) ∈ K
and an associated QA pair (q, a) ∈ C, we extract question q and label it with
entity e and relation r if and only if ∀(e, r′, v′) ∈ K, (e, r′, v′) is associated with
(q, a) ⇐⇒ r′ = r and v′ = v.

9

For further processing, we strip the extracted questions of the labeled entities and group
them by the labeled relations. For example, “纽约市有多少人? (How many people live in
New York City?)” is stored as “e有多少人? (How many people live in e?)” with other
questions such as “e的人口是多少? (What is the population of e?)” under relation “人
口(population)”.

3.3 Noise Reduction

As our data is produced by automatic extraction instead of manual labeling, it is expected
to contain more noise; therefore, noise reduction is a critical step. Consider the triple (“纽
约市(New York City)”, “人口(population)”, “8 million”) and the QA pair (“纽约市一套
房多少钱? (How much does a house in New York City cost?)”, “8 million”): though the
question is not asking about the population of New York City, it would be labeled with
“New York City” and “population” because the QA pair meets our extraction criteria. We
want to filter out the mislabeled questions and retain as many different question patterns
as possible.

Whether a question is making an inquiry about certain relation is closely related to
whether there are many similar questions labeled with the same relation. If several ques-
tions with the same relation label have a similar pattern, it is likely that the shared pattern
is an inquiry template about the relation. Meanwhile, if a question pattern is a popular
inquiry about certain relation, many people would use it when they ask about the relation;
as a result, the pattern is expected to match several questions in our collected data. Fol-
lowing this reasoning, we use clustering for noise reduction. For each relation, we cluster
similar questions together and consider the questions without cluster assignments as noise.

We model sentences as bags of their words and consider two sentences to be similar
if their vocabularies overlay: the more words the sentences share, the more similar we
consider them to be. We can measure it by calculating the cosine similarity between two
vector representations. Given an indexed vocabulary V , a straightforward bag-of-words
vector representation of a sentence would be a |V |-entry vector, where i-th entry is the
count of the i-th word of V in the sentence. But in our case calculating similarity directly
on bag-of-words representations is undesirable, mainly for two reasons:

• The Chinese language has tens of thousands of unique characters and millions of
common words. As a result, straightforward vector representations of bag-of-words
models are sparse. Moreover, we are calculating similarity measures between short

10

sentences instead of long passages, so it is less likely that two vectors have non-zero
values on any given component. Due to these factors, we would get coarse-grained
similarity measures: because the values on each dimensions are restricted to integer
values, the cosine similarity between a m-word sentence and a n-word sentence can
only be one of the m ·n discreet values between 0 and 1, no matter how they vary in
meaning. This makes differentiation difficult.

• For cosine similarity to accurately reflect how similar two vector are, the basis vectors
need to be independent of each other. However, individual words, the basis vectors in
our case, clearly are not independent of each other. Therefore, cosine similarity over
straightforward bag-of-words vector representations is not accurate. For example,
consider phrase pair (“非常(very)好(good)”, “很(very)好(good)”) and phrase pair
(“很(very)好(good)”, “不(not)好(good)”): both would have a cosine similarity of 0.5,
yet the first pair has similar meanings while the second pair has opposite meanings.

To refine the similarity measure, we use word embeddings. On a vocabulary V , a word
embedding δ projects a word w ∈ V into an n-dimension vector v. We show that with
word embedding, a |V |-dimension straightforward vector representation is projected to a
n-dimension vector:

Given indexed vocabulary V = {w1, w2, . . . , w|V |}, word embedding δ where
∀i, 1 ≤ i ≤ |V |, δ(wi) = vi = (vi1 , vi2 , . . . , vin) = vi1 · e1 + vi2 · e2 + . . .+ vin · en,
and a sentence s with straightforward vector representation (c1, c2, . . . , c|V |), we

11

have:

s = (c1, c2, . . . , c|V |)

= c1 · w1 + c2 · w2 + . . .+ c|V | · w|V |
δ−→ c1 · v1 + c2 · v2 + . . .+ c|V | · v|V |

= c1(v11 · e1 + v12 · e2 + . . .+ v1n · en)

+ c2(v21 · e1 + v22 · e2 + . . .+ v2n · en)

+ . . .

+ c|V |(v|V |1 · e1 + v|V |2 · e2 + . . .+ v|V |n · en)

= (c1v11 + c2v21 + . . .+ c|V |v|V |1)e1

+ (c1v12 + c2v22 + . . .+ c|V |v|V |2)e2

+ . . .

+ (c1v1n + c2v2n + . . .+ c|V |v|V |n)en

=

(c1v11 + c2v21 + . . .+ c|V |v|V |1 ,

c1v12 + c2v22 + . . .+ c|V |v|V |2 ,

. . . ,

c1v1n + c2v2n + . . .+ c|V |v|V |n)

Compared to straightforward bag-of-words vector representation, the new representa-
tion has many benefits. First, the vector space has drastically fewer dimensions, and the
vectors have real-number values instead of positive integer values on each dimension. Ac-
cordingly, cosine similarity would give more continuous numeric values and have better
differentiation. Moreover, if the word vectors have the property that similar words have
higher cosine similarities, cosine similarity based on the new representation would be more
accurate.

For clustering, we use unsupervised density-based clustering algorithms. Compared to
other clustering algorithms, density-based algorithms have several advantages that suits
our system. First, density-based clustering works on unlabeled data. Second, density-based
clustering allows outliers with no cluster assignments. In our case, such observation points
which are distant from other observations are noise. Finally, density-based clustering does
not need information on number of clusters. We cannot reasonably estimate number of
clusters because it is impractical to estimate each relation’s number of question patterns
and one cluster may contain several question patterns if the patterns are similar enough.

12

As we are looking for universal patterns for each relation, we put in additional restraint
to restrict any single entity’s influence: if all the questions in a cluster are labeled with one
single entity, we discard all the question in the cluster as noise.

3.4 Pattern Evaluation and Model Selection

In the noise reduction step, we filter out questions that do not have enough similar questions
to form clusters. However, this does not eliminate noise. When the system operates on
huge amounts of data, there may be a sufficient number of similar irrelevant questions for
irrelevant clusters to form and thereby pass the noise filtering. We need to evaluate the
processed data of each relation.

We measure the relevancy of each relation’s data by testing it against noise and other
relations’ data:

• we test whether it is distinguishable from the noise of the noise reduction step. If it
is difficult to tell it apart from noise, the data is likely to be noise. For example, the
data may consist of aforementioned irrelevant clusters.

• we test whether it is distinguishable from the data of the relation’s related relations.
Here we say relation B is relation A’s related relation if entities with entries on
relation A in the knowledge base are likely to also have entries on relation B. If it
is difficult to separate the data from related relations’ data, the data is likely to be
about multiple relations. For example, the data may consist of clusters similar to
related relations’ data. We restrict the testing to against related relations instead
of all other relations because in the knowledge base many relations have the same
meaning and their data would be indistinguishable from each other.

We approach testing distinguishability as a classification task. Using bag-of-words
model, if two collections of questions are distinguishable from each other, we expect binary
classifiers trained on the collections to achieve high f1-measures. For each relation, we
conduct cross-validation iterations of binary classifiers on its data against noise and on
its data against its related relations’ data, independently. We calculate the two average
f1-measures, and use the lower one as the relation’s relevancy score.

We retain the relations whose relevancy scores are higher than certain threshold, and
train classifiers on the data without any holdout. For each relation, we have a classifier
on its data against noise and a classifier on its data against its related relations’ data.

13

Combined, these classification models can tell whether a new question is similar to the
data of retained relations. In other words, given a question, now we can identify which
relation the question is referring to.

3.5 Question Parsing and Answering

Now that we can identify the relation, in order to search the knowledge base for the answers
to the question, we only need to extract the entity in the question by using a named-entity
recognizer (NER). For each entity candidate e that NER returns, we identify the relation
r in the question with classifiers and search the knowledge base for triples that have e as
entity and r as relation. We rank the results by the classifiers’ output, i.e. probability that
the question is referring to certain relation, and return the answer with the highest score.

14

Chapter 4

Data and Implementation

4.1 Overview

In this chapter, we describe in details how we implement the system and the data on which
the implementation is based. As data plays a critical role in our system, the implementation
is closely coupled with the data we have.

In Section 4.2, we list all the data we access to implement the system.

In Section 4.3, we briefly describe our experiment environment, which affects our im-
plementation by physically restricting the computing power available to us.

In Section 4.4, we describe the details of how we extract questions from the knowledge
base.

In Section 4.5, we describe the details of how we reduce noise in the extracted data.

In Section 4.6, we describe the details of how we evaluate the collected questions and
train the models to identify relations in questions.

In Section 4.7, we describe the details of how we parse the questions, generate candidate
answers, and rank them.

4.2 Data

We use following Chinese resources for our implementation:

15

• DBpedia infobox properties

For knowledge base, we use DBpedia [1], obtained from DBpedia 2014 data dump 1. It
consists of information extracted from Wikipedia infoboxes, stored as entity-relation-
value triples. We use DBpedia because it is the only publicly available knowledge
base in Chinese.

The release has 7,285,034 entries on 422,728 entities and 23,219 relations. An entity
is a link to a Wikipedia article. Since a Wikipedia article can be uniquely identified
by its title, we use the title to denote the entity. A relation is a nominal tag, usually
a parameter name in the Wikipedia infobox. However, in our case, the tags often
differ from the parameter names and are not accurate descriptors for the relations.
For example, while the actual parameter names are all Chinese, only 6,523 out of
23,219 relation tags in the data are Chinese. A value is either an entity or a literal
with type, e.g. number, text, date.

As the data is automatically extracted from Wikipedia, it has several issues aside
from errors in values. First of all, the data unfortunately includes meta information
in infoboxes such as “imagesize” as relation entries. Additionally, the literal types
are inaccurate. For example, date values are often mislabeled as number values.
Literal types are important to us because natural expression can vary a lot from
DBpedia expression depending on the actual data types. For example, date is stored
as “yyyy-mm-dd”, a format that does not exist in conversation or community QA
questions.

To mitigate the issues, we annotate the top 400 English relation tags and the top 404
Chinese relation tags with type “meta”, “entity”, “number”, and “date”. 29 rela-
tions are labeled “number”, 55 relations are labeled “date”, 389 relations are labeled
“entity”, and the rest 331 relations are labeled “meta”. The 804 annotated rela-
tion tags cover 416,254 (98.5%) entities and 5,763,288 (79.1%) triples. Among them,
473 (58.8%) have non-meta types, covering 380,513 (90.0%) entities and 2,467,063
(33.9%) triples. 273 out of 473 tags are in Chinese. This is the only human annotation
needed in our implementation.

• Community QA pairs

We have a data set consisting of 366,381,454 QA pairs from community QA websites
in China, including the two largest websites, Sougou Wenwen 2 and Baidu Zhidao

1DBpedia 2014 downloads, oldwiki.dbpedia.org/Downloads2014
2Sougou Wenwen, Chinese community QA site, wenwen.sougou.com, formerly known as Tencent Wen-

wen Soso

16

3. Each pair contains one question and at least one answers. The questions cover a
wide range of topics from computer games to agriculture.

Around 100 million questions are dated before 2010 and were collected by others in
2010. We contributed the rest of questions, dated between 2010 to 2014, by scraping
the websites from 2013 to 2015. The data is indexed and stored using Apache Solr
4. In our setup, Solr works like a search engine, allowing keyword matching against
questions.

• Wikipedia redirect list

We use the Wikipedia redirect list to identify aliases in name entity recognition,
obtained from Wikipedia data dump 5. The list has 576,627 redirect entries.

• Pre-trained word2vec word embedding

We have a word2vec [22] word embedding trained from the community QA data set.
There are 4,128,853 word vector representations and each vector has 200 dimensions.

4.3 Experiment Environment

The system is trained and implemented on a 4-core CPU 16GB memory desktop in Java.

4.4 Question Pattern Extraction

Because our community QA data is huge, it is prohibitive to iterate through the data
to fetch candidate questions for extraction. Instead, for each entity we gather candidate
question-answer pairs by querying Solr with its name. Finding entities’ names is a chal-
lenge: in DBpedia, each entity only has one official name, which often is different from how
the entity is mentioned in real life. For example, “上海市(Shanghai City)” is the official
name and is the one on DBpedia’s record, but the shortened form “上海(Shanghai)” is used
most often in reality, and there are many other more often used nicknames such as “魔都”,
“沪”, and “申”. The issue is complicated by formatting: western names in DBpedia use
the “·” symbol to separate first name and last name, while online users in China often do

3Baidu Zhidao, Chinese community QA site, zhidao.baidu.com
4Apache Solr, lucene.apache.org/solr
5dumps.wikimedia.org/zhwiki/

17

not use “·”. Therefore, if we query Solr with only the official name, it would significantly
reduce the candidate pool for extraction.

We identify the entities’ aliases with the help of Wikipedia redirect list and formatting
rules. As Wikipedia is the source of DBpedia’s information, the redirect target on the
list uses the same official name as DBpedia, making the list the prime resource for alias
discovery in our case. We use the two following simple rules for alias discovery:

• For each redirect target and redirect source on the list, add redirect source as an alias
for redirect target.

• For western names in the format of “First · Last”, add “First Last” as an alias for
“First · Last”.

In total, we discover 653,818 names for 380,513 entities. For each name, we query
Solr for questions that contain the name. 78,433 queries return 114,884,161 questions in
total (one question may appear multiple times). The low coverage, 12.0%, of the names is
expected and shows that community QA do not have information on many entities.

The next step is to determine whether a QA pair is associated with a entity-relation-
value triple. To do so, we need to detect a value’s presence in a question or an answer. We
achieve this by generating regular expressions automatically based on the value and the
relation’s type:

• If the relation has “meta” type, we discard the relation altogether because “meta”
information such as “imageheight” is specific to the Wikipedia and irrelevant to the
entities.

• if the relation has “entity” type, we generate regular expressions that literally match
one of the entity’s discovered aliases. For example, for entity-typed value “上海市”
we generate regular expressions “上海市”, “上海”, “沪”, and “申”.

• If the relation has “number” type, we generate regular expressions that match any
number within a close range of the value. Approximation is crucial because in the
DBpedia, number-typed values can be accurate to several digits after the decimal
mark, while online users rarely match the exact same accuracy. For example, for
number-typed value “1532.7” we generate regular expression “153[0-9]([^0-9]|$)”; if
the value is followed by a unit such as “米(meter)”, we generate regular expression
“153[0-9](\.[0-9]*)?米”.

18

• If the relation has “date” type, we generate regular expressions that match the date
in the most commonly used format. For example, for date-typed value “2016-07-01”
we generate regular expression “2016年7月1日”. If the month or day information is
missing in the value, we adjust the regular expression accordingly. The format change
from DBpedia’s “yyyy-mm-dd” is crucial for successfully detecting the values.

For each entity, we generate all the regular expressions for its relations and iterate
through its candidate QA pairs. Given a QA pair, we test it against every relation of the
entity to see:

• whether any regular expression matches the question. If there is a match, the question
is not associated with the relation.

• whether any regular expression matches one of the answers. If there are no matches,
the question is not associated with the relation.

If a QA pair is associated with only one relation, we extract the question, replace the
appearance of the entity in the question with a marker, and group it with other extracted
questions under the relation.

On average, a relation has 1,533,859 QA pairs tested against it. Among those, questions
in 883,836 (57.6%) pairs do not contain the value, 2,257 (0.15%) pairs are associated with
at least 1 triple, and only 1,668 (0.11%) questions are extracted. In general, the numbers
of questions display a long-tail pattern (see Figure 4.1), with the top 20% relations having
88.0% percent of the total questions. Moreover, 75 relations do not have any questions
extracted. The number of extracted questions has a Pearson product-moment correlation
coefficient of 0.34 with the number of QA pairs tested and a Pearson product-moment
correlation coefficient of 0.97 with the number of QA pairs which are associated with at
least 1 triples.

4.5 Noise Reduction

The word embedding we use is trained with word2vec and covers 4,128,853 words. It has
the property that similar words have higher cosine similarity. Our extracted questions
are made up of 97,910 different words, which are all contained in the word embedding.
However, the word embedding does not contain English words. As a result, we discard
questions that have English words.

19

Figure 4.1: Relations and corresponding number of questions

We use DBSCAN [11] to cluster the questions. DBSCAN is one of the density-based
clustering algorithms, which assigns closely packed data points to clusters and mark remote
points as outliers. Aside from not requiring information on the number of clusters, which
we cannot determine beforehand, its advantages include having few parameters and being
able to find arbitrarily-shaped clusters.

DBSCAN has two parameters: ε, a distance threshold, and minPoints, the minimum
number of data points required to form a cluster. A data point is either assigned to a
cluster or classified as noise. To be assigned to a cluster, a data point needs to meet one
of the two conditions:

• Core points: if in its ε-neighborhood there are at least minPoints data points (in-
cluding itself), then the data point is a core point of a cluster.

• Edge points: if the data point is not a core point and there exists a core point such
that the distance between the core point and the data point is less than ε, then the
data point is an edge point of a cluster.

For the implementation, we use the Java API of WEKA [16]. We need to define the
distance between two questions and provide ε and minPoints.

20

Building on the cosine similarity between bag-of-words modeling of the questions, we
define distance as 1 - cosine similarity. It has a real value between 0 and 2. We randomly
sample 1,000 questions from the extracted data and calculate the distance between every
two of them. The average distance of the 249,750 pairs is 0.70.

Ideally, ε should be set to a value such that any two questions are similar in meaning
if and only if the distance between the two is lower than ε. If ε is set too large, every data
point would be assigned to a single cluster and we would get lots of noise; if ε is set too
small, few data points would get assigned to clusters and we would have few data to work
with.

To determine the value empirically, we randomly sample 96 questions from the commu-
nity QA data directly and query our Solr system for questions that share keywords with
them. In the 2,014 top results, we find 1,591 questions to be different in meaning and 423
to be asking about the same question. The average distance between the 1,591 pairs of
different meanings is 0.32, which is significantly lower than the 0.70 average in the sample
of extracted data. This is expected because 0.32 is the average between pairs that share
words while 0.70 comes from pairs that may or may not share words. Meanwhile, the
average distance between the 423 pairs of very similar meaning is 0.12. We choose our ε
to be 0.2, which is approximately the average of 0.12 and 0.32.

ParameterminPoints also needs to be set properly. In an extreme case withminPoints =
1, every data point would be a cluster itself. Additionally, minPoints should be different
for each relation. It is unreasonable to use the same threshold for a relation with under
100 extracted questions as for a relation with over 10,000 extracted questions.

Setting minPoints puts an upper bound on the number of clusters DBSCAN produces
and does not affect the lower bound. As each cluster incorporates at least one question
pattern, we can estimate the upper bound of number of clusters by estimating the upper
bound of number of question patterns a relation can have. We set minPoints to be 1% of
the number of extracted questions of the relation with a minimum of 4. As long as there
are fewer than 100 question patterns that differ a lot from each other, we would be able to
identify all the clusters. For patterns with fewer than 1% questions, if such patterns ever
exist, we regard them as too marginal for our system.

After clustering, our system examines every cluster and discards clusters where every
question is labeled with the same entity.

After discarding questions with English words, there are 392 relations with more than 1
questions. On average, for each relation, the algorithm runs at minPoints = 18, discovers
2 clusters, discard 1 cluster, and marks 1263 questions out of 1615 as noise. In total, 242
relations have at least 1 non-noise questions. As shown on Figure 4.2, the noise ratios vary

21

Figure 4.2: Relations and corresponding number of extracted questions, non-noise ques-
tions

across relations. Number of extracted questions and number of non-noise questions have
a Pearson product-moment correlation coefficient of 0.82.

4.6 Pattern Evaluation and Model Selection

In classification, weighting is usually used when there is an imbalance between number
of positive instances and number of negative instances, which is the case in our data.
Moreover, for f1-measure to be comparable across different relations, the ratio of positive
to negative should remain constant. We use weighting to achieve a 1:1 ratio of positive to
negative.

Aside from having support for weighting, the classification model we use should also
be fast. For each parameter iteration, we are training nearly a thousand models. Since we
are also conducting cross validation, the running time is multiplied by the number of folds
of cross validation times number of runs in cross validation. As a result, we are looking at
the running time of training hundreds of thousands of models.

We use random forests [8] as our classification method. Based on decision trees, ran-
dom forests are simple, fast, and resistant to overfitting on training data. To overcome

22

the overfitting tendency of decision trees, random forests apply two ensemble learning
techniques:

• Bootstrap aggregating (bagging): for each decision tree, instead of learning from the
whole training data, it learns from a random sample with replacement of the data.

• Random subspace method: for each decision tree, instead of learning from all the
features, it learns from a random subset of the features.

We resort to JAVA API of WEKA for implementation. For parameter ntree, number
of decision trees in random forests, we test the performance on ntree = 25 and ntree = 50.
Performance of random forests goes up with this parameter with a diminishing return.
We could not test a larger value such as 100 due to limitations of physical memory in the
experiment environment, while a typical configuration would be ntree = 10 or ntree = 30.

Before we evaluate the questions via classification, we still need to identify each re-
lation’s related relations. Given a knowledge base, let E(r) be the set of entities with

relation r. For relation r1 and r2, if card(E(r1)∩E(r2))
card(E(r1))

≥ 0.1, we add r2 to r1’s related rela-
tions. Among the remaining 242 relations, on average, a relation has 16 related relations.
The ratio of a relation’s questions to those of its realted relations is 1:18.

Additionally, we need to train the models on a subset of noise questions instead of all
the noise. As there are 494,922 noise questions, it is not feasible to use all the data due
to physical memory constraint and time constraint. Therefore, we sample noise questions
without replacement at different sampling rates rnoise for noise samples to train the models.
We test the performance for rnoise = 10% and rnoise = 20%.

For each relation, we conduct three five-fold cross validation on its filtered questions
against noise sample, and on its filtered questions against its related relations’ questions,
independently. If the relation has fewer than 20 questions, we discard it due to inadequate
instance number. Accordingly, we evaluate 208 relations.

Figure 4.3 plots each relation’s average f1-measures on questions against related rela-
tions’ questions during two independent cross validation experiments with the same param-
eters. Though the noise sampling rate is different, classification against related relations’
questions does not involve noise samples. Therefore, the differences purely come from cross
validation’s random splitting of data. The differences have an average of 0.0001 and a stan-
dard deviation of 0.0169. This shows that the inherent randomness in the cross validation
process is balanced out by averaging over three runs.

23

Figure 4.3: Relations and corresponding average f1-measures on questions against related
relations’ questions during two independent cross validation runs with the same parameters.

Figure 4.4: Relations and corresponding average f1-measures on questions against related
relations’ questions with rnoise = 10% and different ntree values.

24

Figure 4.5: Relations and corresponding average f1-measures on questions against noise
sample with rnoise = 10% and different ntree values.

Figure 4.4 plots each relations’ average f1-measures on questions against related rela-
tions’ questions with rnoise = 10% and different ntree values. Overall the two series overlap
and having more trees in the random forests does not provide a clear advantage in this
case. The differences have an average of -0.0003 and a standard deviation of 0.0188.

Figure 4.5 plots each relations’ average f1-measures on questions against noise sample
with rnoise = 10% and different ntree values. Still having more trees in the random forests
does not provide a clear advantage. The differences have an average of -0.0022 and a
standard deviation of 0.0210.

Figure 4.6 plots each relations’ average f1-measures on questions against noise sample
with ntree = 25 and different rnoise values. The average f1-measures drop slightly with the
introduction of more data. One possibility would be that the random forests no longer
have the capacity to handle the additional data. Or the additional noise samples reduce
the distinguishability of the relations’ questions. The differences have an average of 0.0312
and a standard deviation of 0.0472. This is not a significant change considering we double
the number of negative instances in the classification task.

Figure 4.7 plots each relation’s average f1-measures on questions against noise sample
with rnoise = 20% and different ntree values. Doubling the number of trees in random
forests does not differentiate the results much. The differences have an average of 0.0010

25

Figure 4.6: Relations and corresponding average f1-measures on questions against noise
sample with ntree = 25 and different rnoise values.

Figure 4.7: Relations and corresponding average f1-measures on questions against noise
sample with rnoise = 20% and different ntree values.

26

Figure 4.8: Average f1-measures on questions against noise sample and on questions against
related relations’ questions with 25 trees and 10% noise sampling rate.

and a standard deviation of 0.0219. It shows that the slight decrease as seen in Figure 4.6
is not a result of random forests not having enough capacity to handle the additional data.

With ntree = 25 and rnoise = 10%, average f1-measure on questions against noise sample
has a Pearson product-moment correlation coefficient of 0.68 with average f1-measure on
questions against related relations’ questions, showing that questions that are distinguish-
able from noise do tend to be distinguishable from related relations’ questions, yet there
is not a strong correlation between the two. See Figure 4.8.

With the same parameters, number of non-noise questions has a Pearson product-
moment correlation coefficient of 0.49 with average f1-measure on questions against noise
sample, and a Pearson product-moment correlation coefficient of 0.28 with average f1-
measure on questions against related relations’ questions. Number of positive instances
has a weak correlation with average f1-measures.

For each relation, we also train two classification models without any hold-outs: its

27

questions against noise sample, and its questions against related relations’ questions. Given
a threshold θmodel, if the relation’s either cross validation f1-measure is lower than θmodel,
we discard the relation’s classification models.

4.7 Question Parsing and Answering

Question parsing and answering is the only online step in our design.

To answer a question, we first identify the entity by pattern matching through the alias
list which we have compiled in Section 4.4. If there is a match for alias a, we generate a
pair (a, qa), where qa is the question with a stripped.

Then we generate candidate answers from (a, qa) and score them. Let e be the entity
of which a is an alias. For every relation r that e has in the knowledge base, if we have
retained r classification models, we fetch the triple (e, r, v) from the knowledge base, use
v as a candidate answer, and assign the two probability outputs of the two classifiers as
the scores of the candidate answer.

Finally we rank the candidate answers. Given a threshold θanswer, if either score of the
candidate answer is lower than θanswer, we discard the candidate answer. If there are at
least one remaining candidates, we rank them by the average of the two scores, and choose
the one with the highest score as the answer.

For example, given θanswer = 0.6, the process to answer question “道光是哪个皇帝的
年号? (Which emperor has the Chinese era name Daoguang?)” is as follows:

1. (“道光”, “是哪个皇帝的年号?”) and (“光”, “道是哪个皇帝的年号?”) are produced
because aliases “道光” and “光” match the question.

2. 12 values from the knowledge bases are fetched and used as candidate answers. They
are scored by invoking the classification models. (“道光”, “是哪个皇帝的年号?”)
produces and scores 5 candidate answers while (“光”, “道是哪个皇帝的年号?”)
produces and scores the other 7 candidate answers.

3. Only 1 candidate answer “清宣宗爱新觉罗旻宁(Qing Xuanzong Aisin-Gioro Min-
ning)” has scores both of which are higher than θanswer. It is produced by (“道光”,
“是哪个皇帝的年号?”) and has scores of 1.0 and 0.99.

4. The system produces an answer “清宣宗爱新觉罗旻宁(Qing Xuanzong Aisin-Gioro
Minning)”, which is the correct answer to the question.

28

In the experiment environment (desktop PC), the system is able to answer the question
correctly well within 1 second, despite doing hundreds of thousands of pattern matching,
fetching 12 values from the knowledge base, and running 24 classification tasks.

29

Chapter 5

Evaluation

5.1 Overview

In this chapter, we conduct experiments to evaluate various aspects of the system.

First, we evaluate the performance of the noise reduction component in Section 5.2.

Before we evaluate the end-to-end performance of the system, we brief summarize the
parameters of our system in Section 5.3.

Then, we evaluate the overall performance of system along its two design goals:

• The system should not answer questions that do not fall into the single-entity-single-
relation category. In Section 5.4, we conduct experiments to test the system’s capa-
bility of opting for no answers when it should not answer the question.

• The system should answer as many single-entity-single-relation questions as possible
with reasonable accuracy. In Section 5.5, we conduct experiments to test the system’s
capability of producing the right answers to questions across different relations.

Finally, we evaluate the run time performance of the system in Section 5.6.

5.2 Noise Reduction

We evaluate the noise reduction component by examining the precision, recall, and f1-
measure across different relations.

30

Relation Type Average Precision Average Recall Average F1 Pearson’s r
Any 0.6424 0.7367 0.6800 0.0259

Number 0.6395 0.6058 0.6182 0.4099
Entity 0.6429 0.7613 0.6915 -0.0055
Date 0.6416 0.6831 0.6554 0.2122

Table 5.1: Average precision, average recall, average f1-measure, and Pearson produce-
moment correlation coefficient (Pearson’s r) between f1-measure and number of extracted
questions for different typed relations in noise reduction component.

For each relation, we randomly sample 20 questions with replacement: 10 from questions
with non-noise label, and 10 from questions with noise label. Note that if there are fewer
than 10 questions under certain label, we take all the questions as the sample instead of
sampling for 10 times. As a result, it is possible for relations to have fewer than 20 samples.
We then manually examine every sample and label it as noise or non-noise. Here we view
human annotation as true label. Accordingly, the ratio of noise to non-noise usually is not
1:1. To be able to compare the f1-measure over different relations, we use weighting to
balance the ratio of noise to non-noise to 1:1.

Among the 473 relations to which noise reduction is applied, 81 relations do not have
any extracted questions without English words. 8 of them have “date” type, 8 of them have
“number” type, and the rest 65 have “entity” type. Compared to their ratio in the 473
relations, “number” is more likely to have no extracted questions than “date” and “entity”.
As we have explained before, “number” values in DBPedia are usually much more accurate
than how they appear in everyday conversations or casual online exchanges. Though our
extractor is able to achieve approximation to some extent, in some circumstances it is still
not enough. For example, the value of “人口(population)” of “重庆市(Chongqing)” is
“28,846,170”, while it is often mentioned as “3千万(30 million)”.

Another 211 relations do not have samples with “non-noise” true labels. Though it
is possible that it is due to our relatively small sample size used in evaluation, it may
be an accurate portrait of the noisy extracted data. For 130 (61.6%) relations, our noise
reduction component successfully label all the questions as noise; and for the rest 38.4%
relations, on average, our system misclassify 18.6% of the data as non-noise.

Table 5.1 shows the average precision, average recall, average f1-measure, and Pearson
product-moment correlation coefficient (Pearson’s r) between f1-measure and number of
extracted questions for different typed relations in the rest 181 relations. Again, “number”-
typed relations tend to under-perform. The low Pearson’s r values show that f1-measure

31

is not correlated with the number of extracted relations.

5.3 System Parameters

Our system has four parameters, ntree, rnoise, θmodel, θanswer:

• ntree is used to train the classification models in Section 4.6. It is the number of trees
in random forests and is an inherent parameter of random forests. Higher values
improves the performance of random forests for a diminishing return, but requires
more computing power. We test it on {25, 50}.

• rnoise is used to train the classification models in Section 4.6. It is the sampling rate
of the noise sample used for model training. Higher values means more training data,
but requires more computing power. We test it on {10%, 20%}.

• θmodel, f1-measure threshold for model selection, is used to discard inadequate models
in Section 4.6. An increase in value decreases the number of model the system uses
and therefore decreases the number of relations that the system can identify. We test
it on {0.6, 0.7, 0.8, 0.9}.

• θanswer, probability threshold for answer selection, is used to discard improbable an-
swers in Section 4.7. An increase in value decreases the number of answer candidates
the system considers. We test it on {0.6, 0.7, 0.8, 0.9}.

Configuration ntree = 25, rnoise = 10%, θmodel = 0.6, θanswer = 0.6 is our basic configu-
ration as these are the most relaxed values for each parameters.

5.4 Answer Triggering

Answer triggering [31] is a task which requires QA systems to report no answers when
given questions that are known to have no correct answers or beyond the knowledge of
the systems. This is a relatively novel evaluation task, as traditionally QA systems are
evaluated on question-answer data sets where each question has at least 1 correct answers.
However, answer triggering is an important task. A system that excels in answer triggering
understands the limitation of its knowledge and works well with other QA systems, each of
which specializes or excels in certain domains. Meanwhile, a system that does extremely

32

poor in answer triggering would attempt to answer almost every question and eventually
produce much more incorrect answers.

We compile the test cases by randomly sampling our community QA data. As when
given a question, our system first uses pattern matching to identify the entities and does
not proceed if no known entities are found in the question, to accurately assess our system
in answer triggering, the test cases should have entities known to our system.

We gather the test cases by the following steps:

1. Randomly sample aliases from relations known to our system. At our system’s basic
parameter configuration, it has models of 130 relations. For each relation, we expand
its entity list with our alias list compiled in Section 4.4. Then we randomly sample
5 aliases from each of these relations, for a total of 650 aliases.

2. Query Solr, our storage system for community QA data, for questions that contain
the aliases and randomly sample questions from the query results. 6 of the 650 aliases
do not have any questions that mention them in community QA data, and we pull
a random sample of at most 5 for the rest 644 aliases. If the query result has fewer
than 5 questions, we take them all instead of sampling the result. In total we collect
2,689 questions.

3. Label the questions as “single entity single relation” or not. We use the 2,369 non-
“single entity single relation” questions as our test case candidates.

4. In the 2,369 candidates, a total of 55 appear in our extracted questions. 46 are
classified as noise: 11 of them are in the 10% noise sample, 17 of them are in the
20% noise sample, and 6 of them are in both noise samples. After excluding the
candidates that are used to train our models, we end up with 2,338 test cases.

In the testing, our system declines to answer at least 94.4% non-“single entity single
relation” questions. Figure 5.2 and 5.1 plots the accuracy in answer triggering task with
different parameters. A higher rnoise, θmodel, or θanswer results in higher accuracy in answer
triggering task.

5.5 Question Coverage

In Section 5.4, we test whether our system reject questions which it should not answer.
And in this section, we evaluate our system by testing whether it answers questions which
it should answer correctly.

33

Figure 5.1: Answer triggering accuracy and probability threshold for answer selection with
different values of ntree, rnoise, θmodel, and θanswer.

34

Figure 5.2: Answer triggering accuracy and f1 measure threshold for model selection with
different values of ntree, rnoise, θmodel, and θanswer.

35

Our test cases are generated by combining aliases with question patterns:

1. We begin with the 130 relations and 644 aliases in Section 5.4.

2. For each relation, we have native Chinese speakers come up with questions patterns
that are directly asking about the relation. The question patterns should apply to
all the alias samples.

For example, let a be a placeholder for alias, for relation “配偶(spouse)”, questions
patterns from our annotators include “a的老婆是谁? (Who’s a’s wife?)”, “a的爱
人是谁? (Who’s a’s lover?)”, “a和谁结婚了? (Who’s a married to?)”, “a娶了谁?
(Who did a marry?)”, etc.

In total we have 279 question patterns from 124 relations. Six relations do not have
question patterns: four of them have multiple relations mingled, and there lacks a
common question pattern in Chinese for all the alias samples; and the last two, on
close inspection, have obscure meanings.

3. Let r be one of the 124 relations, a be one of r’s sampled alias, and q be one of r’s
question patterns, we generate a QA pair by replacing the alias placeholder in q with
a and fetching a’s DBpedia value on r.

For example, for relation “director”, alias “角斗士(Gladiator)”, and patterns “a是
谁导演的? (Who directed a?)”, “a的导演是谁? (Who’s the director of a?)”, we first
fetch value “雷利·史考特(Ridley Scott)” from DBpedia, then generate two QA pairs:
(“角斗士是谁导演的? (Who directed Gladiator?)”, “雷利·史考特(Ridley Scott)”)
and (“角斗士的导演是谁? (Who’s the director of Gladiator?)”, “雷利·史考特(Ridley
Scott)”).

In total we have 1,395 QA pairs for 124 relations.

We compare the performance of our system to that of two retrieval-based systems, both
of which are developed on the same community QA data set and return the original answer
of a QA pair as answer:

• Solr

We use Solr to store our community QA data. Working as a search engine, it can be
used for question answering. When used as a simple QA system, Solr ranks the QA
pairs by the number of shared keywords between the query and its indexed questions.
Then it selects the QA pair whose question shares the most words with the query,
and returns the answer in the QA pair as the answer to the query.

36

SystemR Solr Basic configuration
Question Answered 380 1,345 892

Correct Answers 39 60 781
Accuracy on Answered Questions 10.3% 4.5% 87.6%

Accuracy on Test Cases 2.8% 4.3% 56.0%
Correct Answers on SystemR Correct Answers 39 26 25

Correct Answers on Solr Correct Answers 26 60 38
Relations with At Least One Correct Answers 25 29 78

Relations with At Least One Incorrect Answers 98 124 34
Relations with No Questions Answered 23 0 35

Table 5.2: Statistics of SystemR, Solr, and basic configuration of our system on the QA
test cases.

• Commercial QA system SystemR

We have access to a commercial QA system that is developed on the same community
QA data set. For the sake of naming, we call it SystemR. SystemR has a search
engine architecture similar to Solr. But instead of ranking QA pairs by the number of
shared words between query and the question, SystemR ranks the QA pairs by the
sentence similarity between query and the question. The similarity measure used by
SystemR is a combination of weighted cosine similarity, overlap similarity, longest
common substring, and word order similarity. If the similarity score is below certain
threshold, SystemR declines to answer the question.

We manually examine the answers of the two systems for each of the 1,395 questions
and label them “correct”, “incorrect”, or “missing answer”, based on whether the systems
give an answer and if they do, whether the answers have the same meaning as the DBpedia
values in the test cases.

We automatically mark the answers from our system: answers that are exact matches
of the DBpedia values are marked “correct”, and the others are matched “incorrect” or
“missing answer” depending on whether our system gives an answer or not.

Table 5.2 shows the performance of SystemR, Solr, and our system with the basic
configuration at the test cases. Accuracy on Test Cases is calculated as Correct Answers
/ 1395 (size of test cases), and Accuracy on Answered Questions is calculated as Correct
Answers / Questions Answered.

37

Our system comes at top in number of correctly answered questions, accuracy on an-
swered questions, accuracy on test cases, and number of relations with at least 1 correctly
answered questions. However, our system cannot identify the relation in any question of
35 relations. Also, even though our system gives much more correct answers, it cannot
answer all the question which SystemR or Solr answers correctly.

Our system’s high accuracy on the test cases, 56.0% compared to SystemR’s 2.8% and
Solr’s 4.3%, is largely attributed to the incorporation of structured knowledge base, and
the separation of a question into entity and question pattern. Once our system learns a
pattern for a relation, it can apply it to the relation’s numerous entities and their aliases to
answer numerous similar questions; meanwhile, for each newly acquired QA pair, retrieval-
based systems like SystemR and Solr can learn to answer at most one new question. Our
system does not need to encounter the question during the system’s development in order
to answer the question, while retrieval-based systems do.

Our system has very high accuracy on the answered questions, 87.6% compared to
SystemR’s 10.3% and Solr’s 4.5%. For it to answer a question, our system needs to be
able to recognize an entity and a matching relation in the question. Solr is a search engine,
therefore as long as one of the QA pairs shares keywords with the query, Solr produces an
answer. Even though SystemR also uses threshold to control its answer output, SystemR’s
similarity mechanisms fail to consider that two questions with the same pattern have totally
different meaning if they have different entities in the questions. The entity in a question
carries a weight disproportional of its length.

Table 5.3, Table 5.4, and Table 5.5 show how adjusting different parameters affect the
our system’s performance on the test cases. rnoise, θmodel, and θanswer, have similar effects:
higher values result in fewer answered questions, lower accuracy on test cases, and higher
accuracy on answered questions. The influence of θmodel is the most drastic, as it directly
controls the number of classification models in the system. ntree has little effects on the
performance, which corroborates our similar observation in Section 4.6.

5.6 Run Time

We test the run time performance of our system in a single-thread environment. Table 5.6
shows the average time per question it takes for our system to process all the 1,395 test
cases with different parameter values. As θanswer does not affect the processing time, it is
not shown here.

In general, our system takes at most 19.89 milliseconds to answer a question. The fewer

38

ntree = 25,
rnoise = 0.1

ntree = 25,
rnoise = 0.2

ntree = 50,
rnoise = 0.1

ntree = 50,
rnoise = 0.2

Question Answered 892 832 879 836
Correct Answers 781 733 772 741
Accuracy on Answered
Questions

87.6% 88.1% 87.8% 88.6%

Accuracy on Test Cases 56.0% 52.5% 55.3% 53.1%
Correct Answers on
SystemR Correct An-
swers

25 23 25 24

Correct Answers on Solr
Correct Answers

38 35 37 35

Relations with At Least
One Correct Answers

78 73 76 73

Relations with At Least
One Incorrect Answers

34 27 31 25

Relations with No Ques-
tions Answered

35 44 37 44

Table 5.3: Statistics of our system with θmodel = 0.6, θanswer = 0.6 and different ntree and
rnoise values on the QA test cases.

θmodel 0.6 0.7 0.8 0.9
Question Answered 892 746 554 100

Correct Answers 781 651 493 95
Accuracy on Answered Questions 87.6% 87.3% 89.0% 95.0%

Accuracy on Test Cases 56.0% 46.7% 35.3% 6.8%
Correct Answers on SystemR Correct Answers 25 19 14 3

Correct Answers on Solr Correct Answers 38 30 23 3
Relations with At Least One Correct Answers 78 59 42 9

Relations with At Least One Incorrect Answers 34 27 19 2
Relations with No Questions Answered 35 60 79 115

Table 5.4: Statistics of our system with ntree = 25, rnoise = 10%, θanswer = 0.6 and different
θmodel values on the QA test cases.

39

θanswer 0.6 0.7 0.8 0.9
Question Answered 892 873 824 753

Correct Answers 781 765 728 667
Accuracy on Answered Questions 87.6% 87.6% 88.3% 88.6%

Accuracy on Test Cases 56.0% 54.8% 52.2% 47.8%
Correct Answers on SystemR Correct Answers 25 25 23 22

Correct Answers on Solr Correct Answers 38 38 37 35
Relations with At Least One Correct Answers 78 78 77 71

Relations with At Least One Incorrect Answers 34 34 31 28
Relations with No Questions Answered 35 35 38 45

Table 5.5: Statistics of our system with ntree = 25, rnoise = 10%, θmodel = 0.6 and different
θanswer values on the QA test cases.

relations in the system, the lower the average time is. Overall, our system is shown to be
a real-time QA system.

40

ntree rnoise θmodel Number of Relations Average Time (ms)
25 0.1 6 130 19.89
25 0.1 7 96 17.83
25 0.1 8 68 15.41
25 0.1 9 15 3.24
25 0.2 6 118 18.29
25 0.2 7 90 16.94
25 0.2 8 41 13.28
25 0.2 9 7 2.21
50 0.1 6 131 19.87
50 0.1 7 97 17.95
50 0.1 8 68 16.46
50 0.1 9 15 3.24
50 0.2 6 118 18.88
50 0.2 7 91 18.05
50 0.2 8 42 13.16
50 0.2 9 8 2.43

Table 5.6: System’s average run time per question and number of relations in the system
with different ntree, rnoise, θmodel values on the QA test cases.

41

Chapter 6

Discussion

In this chapter we combine results from development and evaluation of our system to gain
more comprehensive insights.

Figure 6.1 and Figure 6.2 plot relations’ f1-measure in noise reduction and average f1-
measure in classification against related relations’ questions and in classification against
10% noise sample, with 25 trees in random forests. The former measures the correctness of
the labels in the classification models’ training data, and the latter measures the separa-
bility of the training data. We expect a higher percentage of correct labels in the training
data corresponds to better separability. However, we observe that to the left there are
relations with zero f1-measure in noise reduction yet very high f1-measure in classification
tasks, and in the lower right there are relations with high f1-measure in noise reduction
yet quite low f1-measure in classification tasks.

After examining these outliers, we discover that the data of those with zero f1-measure
in noise reduction consists of similar unrelated questions that are distinguishable. For
example, “湖泊类别(Lake type)” have 63.6% questions asking about “Which lake is the
biggest e?”, where e is the entity placeholder. These questions are introduced to our system
by lakes which share the alias “淡水湖(freshwater lake)” and have value “咸水湖(saltwater
lake)”. Though the question pattern is not related to the relation and not even a single-
entity-single-relation question, it is a valid question that is easily distinguishable from noise
or other question patterns. We need to improve our extraction process or noise reduction
process to eliminate these.

On the other hand, relations with high f1-measure in noise reduction yet low f1-measure
in classification tasks suffer from the problem of inadequate instances. The four relations
with the most disparity average 31 non-noise questions, while an average relation has 663

42

Figure 6.1: Relations’ f1-measure in noise reduction and average f1-measure in classification
against 10% noise sample with 25 trees in random forests.

Figure 6.2: Relations’ f1-measure in noise reduction and average f1-measure in classification
against related relations’ questions with 25 trees in random forests.

43

Figure 6.3: Relations’ accuracy on question coverage test cases at the basic configuration
of our system and corresponding f1-measure on noise reduction.

non-noise questions. We may work on our extraction process to gather more questions,
though it is also possible that the results are limited by our community QA data.

Figure 6.3 plots relations’ accuracy on question coverage test cases at the basic con-
figuration of our system and corresponding f1-measure on noise reduction. The former
measures our models’ performance on the test cases, and the latter measures the correct-
ness of the labels in the training data. Because our test cases are independent of the
training data, we do not expect any correlation. Indeed the data points scatter around,
with a Pearson product-moment correlation coefficient of 0.40 between noise reduction
f1-measure and accuracy on test cases.

We observe that there is an outlier, relation “主君(master)”, with a zero noise reduction
f1-measure yet a non-zero accuracy on the QA test cases. On close inspection, it has a zero
noise reduction f1-measure because random sampling fails to sample any truly non-noise
questions. During the extraction process it is flooded with questions about the popular
Chinese ancient novel Romance of the Three Kingdoms, where the main characters have
this relation with other main characters. As a result, many questions about the main

44

Figure 6.4: Relations’ accuracy on question coverage test cases at the basic configuration of
our system and minimum of average f1-measure in classification against 10% noise sample
and in related relations’ questions with 25 trees in random forests.

characters find their way past the noise reduction process, making up the majority of
questions with “non-noise” labeling.

Figure 6.4 plots relations’ accuracy on question coverage test cases at the basic config-
uration of our system and minimum of average f1-measure in classification against related
relations’ questions and in classification against 10% noise sample, with 25 trees in random
forests. The former measures our models’ performance on the test cases, and the latter
measures our models’ performance in cross validation on training data. Again, because the
our test cases are independent of our training data, we expect no correlation between the
two. Indeed, they have a Pearson product-moment correlation coefficient of 0.07.

In Table 6.1 is our system’s performance data in answer triggering and question coverage
tasks with different ntree and rnoise values. The accuracy does not vary much. This shows
that ntree = 25 is a sufficient number of decision trees in random forests, and that r = 10%
is a sufficiently large noise sampling rate.

In Figure 6.5 and Figure 6.6 we plot the effects of θmodel and θanswer on our system’s

45

ntree = 25,
rnoise = 0.1

ntree = 25,
rnoise = 0.2

ntree = 50,
rnoise = 0.1

ntree = 50,
rnoise = 0.2

Answer Triggering Accu-
racy

94.8% 95.9% 94.4% 95.6%

Accuracy on Answered
Questions

87.6% 88.1% 87.8% 88.6%

Accuracy on Test Cases 56.0% 52.5% 55.3% 53.1%

Table 6.1: Answer triggering and question coverage statistics of our system with θmodel =
0.6, θanswer = 0.6 and different ntree and rnoise values.

Figure 6.5: Answer triggering and question coverage statistics of our system with ntree = 25,
rnoise = 10%, θmodel = 0.6 and different θanswer values.

46

Figure 6.6: Answer triggering and question coverage statistics of our system with ntree = 25,
rnoise = 10%, θanswer = 0.6 and different θmodel values.

answer triggering accuracy, accuracy on answered questions, and accuracy on question
coverage test cases. Most changes are smooth, except increasing θmodel drastically lowers
the system’s accuracy on question coverage test cases because higher θmodel values result
in the fewer classification models in the system, thereby reducing the number of relations
the system can identify.

47

Chapter 7

Conclusion

We have presented a novel bag-of-words based approach that automatically constructs a
semantic parsing based question answering system from a large corpus of QA pairs and
knowledge base. The approach uses knowledge base to supervise relation extraction from
the corpus, reduces noise in the extracted data via unsupervised clustering, and learns to
identify each relation’s question patterns

We have implemented it on a Chinese corpus of community QA pairs and DBPedia
with minimal manual annotation. Through experiments we have demonstrated the effi-
ciency of our extraction process and noise reduction process. More importantly, we have
demonstrated that our implementation is able to answer new questions with a relatively
high accuracy and to avoid answering questions beyond its scope. Figure 7.1 illustrates
the relationships between community QA questions, single-entity-single-relation questions,

Figure 7.1: Relationships between community QA questions, single-entity-single-relation
questions, and questions that our implementation has learned to answer.

48

and questions that our implementation has learned to answer. Last but not least, our
implementation manages to answer a question within 20 milliseconds on a desktop envi-
ronment.

Several open challenges remain. For better implementations, we would like to start
with automating the annotation of relation types in DBPedia by utilizing the aggregation
of all values belonging to the same relation. If successful, we would be able to rid our
implementation of any costly manual annotation. However, automatic identification of the
“meta” types is a challenge in itself.

Another possible improvement for implementation would be identifying and separating
the composite relations. Composite relations in DBPedia are a direct consequence of
ambiguity of Wikipedia infobox tags and introduced by Wikipedia users incorrectly tagging
infobox properties. For example, “capital” is a composite relation in Chinese DBPedia. It
not only includes capital cities of regions and countries, but also includes financial assets of
companies (the other meaning of capital). Every major component of our implementation,
from extraction module to classification models, would benefit from splitting “capital” into
two or more distinct relations.

Finally, we would like to incorporate syntactic information into our approach. So far
our approach is based on bag-of-words models. Consequently, useful information such
as word order and sentence structure is lost. We want to explore introducing syntactic
features such as parse trees to our noise reduction procedure and classification models. We
believe modifying the similarity measure we use to include tree-kernel functions is a good
starting point.

49

References

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,
pages 722–735. Springer, 2007.

[2] Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and
Oren Etzioni. Open information extraction from the web. In IJCAI, volume 7, pages
2670–2676, 2007.

[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In EMNLP, volume 2, page 6, 2013.

[4] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In ACL (1),
pages 1415–1425, 2014.

[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pages 1247–1250. ACM, 2008.

[6] Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph
embeddings. arXiv preprint arXiv:1406.3676, 2014.

[7] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale sim-
ple question answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

[8] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[9] Razvan C Bunescu and Raymond J Mooney. A shortest path dependency kernel for
relation extraction. In Proceedings of the conference on human language technology
and empirical methods in natural language processing, pages 724–731. Association for
Computational Linguistics, 2005.

50

[10] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answer-
ing passage retrieval using dependency relations. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 400–407. ACM, 2005.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[12] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open
information extraction. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1535–1545. Association for Computational Lin-
guistics, 2011.

[13] Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni. Paraphrase-driven learning
for open question answering. In ACL (1), pages 1608–1618. Citeseer, 2013.

[14] Bert F Green Jr, Alice K Wolf, Carol Chomsky, and Kenneth Laughery. Baseball:
an automatic question-answerer. In Papers presented at the May 9-11, 1961, western
joint IRE-AIEE-ACM computer conference, pages 219–224. ACM, 1961.

[15] Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min. Exploring various knowledge
in relation extraction. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pages 427–434. Association for Computational Linguistics,
2005.

[16] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[17] Michael Heilman and Noah A Smith. Tree edit models for recognizing textual entail-
ments, paraphrases, and answers to questions. In Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 1011–1019. Association for Computational Linguistics,
2010.

[18] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2:
A spatially and temporally enhanced knowledge base from wikipedia. Artificial Intel-
ligence, 194:28–61, 2013.

51

[19] Nanda Kambhatla. Combining lexical, syntactic, and semantic features with maxi-
mum entropy models for extracting relations. In Proceedings of the ACL 2004 on In-
teractive poster and demonstration sessions, page 22. Association for Computational
Linguistics, 2004.

[20] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. In-
ducing probabilistic ccg grammars from logical form with higher-order unification. In
Proceedings of the 2010 conference on empirical methods in natural language process-
ing, pages 1223–1233. Association for Computational Linguistics, 2010.

[21] Cody Kwok, Oren Etzioni, and Daniel S Weld. Scaling question answering to the web.
ACM Transactions on Information Systems (TOIS), 19(3):242–262, 2001.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[23] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[24] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011.
Association for Computational Linguistics, 2009.

[25] Barbara Plank and Alessandro Moschitti. Embedding semantic similarity in tree
kernels for domain adaptation of relation extraction. In ACL (1), pages 1498–1507,
2013.

[26] Yusuke Shinyama and Satoshi Sekine. Preemptive information extraction using unre-
stricted relation discovery. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Compu-
tational Linguistics, pages 304–311. Association for Computational Linguistics, 2006.

[27] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Semantic
compositionality through recursive matrix-vector spaces. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning, pages 1201–1211. Association for Computational
Linguistics, 2012.

52

[28] Di Wang and Eric Nyberg. A long short-term memory model for answer sentence
selection in question answering. ACL, July, 2015.

[29] Mengqiu Wang. A re-examination of dependency path kernels for relation extraction.
In IJCNLP, pages 841–846, 2008.

[30] William A Woods and R Kaplan. Lunar rocks in natural english: Explorations in nat-
ural language question answering. Linguistic structures processing, 5:521–569, 1977.

[31] Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-
domain question answering. In Proceedings of EMNLP, pages 2013–2018. Citeseer,
2015.

[32] Xuchen Yao and Benjamin Van Durme. Information extraction over structured data:
Question answering with freebase. In ACL (1), pages 956–966. Citeseer, 2014.

[33] Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Question
answering using enhanced lexical semantic models. 2013.

[34] Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In ACL (2), pages 643–648. Citeseer, 2014.

[35] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel methods for rela-
tion extraction. Journal of machine learning research, 3(Feb):1083–1106, 2003.

[36] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. Relation classi-
fication via convolutional deep neural network. In COLING, pages 2335–2344, 2014.

[37] Luke S Zettlemoyer and Michael Collins. Online learning of relaxed ccg grammars for
parsing to logical form. In EMNLP-CoNLL, pages 678–687, 2007.

[38] Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420, 2012.

[39] Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou. A composite kernel to extract
relations between entities with both flat and structured features. In Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pages 825–832. Association
for Computational Linguistics, 2006.

53

[40] Zhiping Zheng. Answerbus question answering system. In Proceedings of the second
international conference on Human Language Technology Research, pages 399–404.
Morgan Kaufmann Publishers Inc., 2002.

54

	List of Tables
	List of Figures
	Introduction
	Related Work
	Question Answering
	Relation Extraction

	Approach
	Overview
	Question Pattern Extraction
	Noise Reduction
	Pattern Evaluation and Model Selection
	Question Parsing and Answering

	Data and Implementation
	Overview
	Data
	Experiment Environment
	Question Pattern Extraction
	Noise Reduction
	Pattern Evaluation and Model Selection
	Question Parsing and Answering

	Evaluation
	Overview
	Noise Reduction
	System Parameters
	Answer Triggering
	Question Coverage
	Run Time

	Discussion
	Conclusion
	References

