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Abstract

Quantum error correction is the backbone of fault-tolerant quantum computation, a
necessary requirement for any large scale quantum computer. The fault-tolerance threshold
theorem has long been a target for experimental precision, allowing for the possibility of
reducing logical error rates to arbitrarily low levels without excessive overhead. While
there are many promising fault-tolerant architectures, the path towards the most practical
fault-tolerant scheme is far from decided and may vary for differing physical models. This
thesis proposes new schemes for universal fault-tolerant quantum computation in both the
concatenated and topological code settings.

Through the concatenation of two different error correcting codes, a set of universal
fault-tolerant gates can be obtained without requiring the need for magic state distillation.
A lower bound of 1.28× 10−3 for the fault-tolerance threshold under circuit level depolar-
izing noise is obtained. Additionally, stacked codes are proposed as a means to simulate
the action of a 3D topological code in 2D, allowing for the application of a universal set
of transversal operations. While fault-tolerant, unfortunately the scheme does not exhibit
a threshold due to the decreasing pseudo-threshold with growing code distance, yet points
to potential interesting avenues for fault-tolerant computation in 2D without distillation.

One of the primary avenues to constructing fault-tolerant logical operations is through
transversal operations. In this thesis, the set of single qubit logical gates that can be
implemented transversally are characterized and determined to all belong to the Clifford
hierarchy. Moreover, any diagonal two-qubit operation that can be applied transversally
must belong to the same level of the Clifford hierarchy as the set of gates that can be
implemented in the single-qubit case.

The opposite to quantum error correction is privacy, where the output of a channel
is disguised from its input. The two are fundamentally related through the complemen-
tary channel construction. This thesis presents a new class of private quantum channels,
expanding the existing class beyond a seemingly fundamental restriction. This yields in-
teresting insights into the structure of quantum information and the leaking of information
to external environments. Additionally, the duality is only recovered when extending the
complementary channel to sufficiently high environmental dimension.

Finally, the error properties of bucket brigade quantum Random Access Memory (qRAM)
are assessed. It is determined that using the bucket brigade qRAM architecture for the
running of Grover’s algorithm necessitates reducing the error rate of the individual compo-
nents to exponentially small levels for an exponential sized memory. As such, fault-tolerant
architectures will likely play an essential role in the construction of such computing prim-
itives.
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Chapter 1

Quantum mechanics: a new realm for
computation

1.1 Research motivation

The discovery of quantum mechanical phenomena and the axiomatization of its princi-
ples has been at the core of physics for the last century. In parallel, the development of
computational devices has proved to be instrumental in modern society, revolutionizing
everyday life and enhancing the scientific questions that modern research aims to answer.
As researchers continue to push the frontiers of all areas of science, a new player that imple-
ments quantum states as the basis for storing and manipulating information has emerged:
quantum computers.

Historically, quantum computers were proposed as a means to simulate quantum sys-
tems that were thought to be intractable for traditional computing devices. However,
quantum algorithms have since been proposed that could push frontiers in many different
directions. Paul Benioff proposed the quantum Hamiltonian model as a means to simulate
the Turing machine model [15]. Richard Feynman proposed the idea of simulating complex
quantum systems [54, 99], Bennett and Brassard developed a method for quantum key dis-
tribution [17] laying the foundations for quantum cryptography, and Peter Shor discovered
an algorithm to efficiently factor a number into its prime roots [125]. All of these examples
point to an exciting future for quantum computing and information research and open a
realm of unexplored techniques and algorithms that may further the advantages of using
quantum computers instead of their classical counterparts.
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Classical algorithms manipulate information stored in binary systems, such as transis-
tors, where a state is in one of two possible states at a given time. Alternatively, most
quantum algorithms use systems that can be in a superposition of states, allowing for a form
of parallel computing that is not accessible to classical devices. Moreover, quantum sys-
tems allow for correlations that are stronger than those present in classical systems, defined
as entangled systems. Many experimental efforts have been aimed to show the presence
of these two phenomena in different physical systems [42, 105, 44, 67, 108, 135, 103, 50].
The progress in these areas has been monumental and has arrived at the stage where the
question of scalability has come to the forefront of experimental research.

Due to the high sensitivity of quantum systems to external parameters, quantum states
will be susceptible to errors. Quantum error correction is the theory behind the suppression
of noise for quantum systems. Although experimental systems have continuously improved,
demonstrating tremendous progress in the control and shielding of quantum systems to
external noise, there will reach a point at which relying only on technological improvements
will be unrealistic. Namely, in order to implement complex quantum algorithms that could
have on the order of 1015 operations, by using the bare physical systems themselves as the
means for storing and manipulating the quantum information would necessitate noise levels
to be suppressed on the order of magnitude of 10−15. In order to combat this continuous
need to experimentally improve precision1, the quantum information is encoded in multiple
quantum systems by using entanglement, and in doing so the noise can be suppressed when
considering its action on the logical qubit.

The holy grail for noise suppression is a fault-tolerant quantum computer. That is,
a quantum computing device in which the logical qubits can be stored and manipulated,
with the error rate being suppressed to arbitrarily small levels, as well as reasonable over-
head of quantum computing resources. Such a device is plausible due to the quantum
fault-tolerance threshold theorem. The theorem states that if the physical error rate of the
fundamental operations needed for a quantum computing device is below a certain thresh-
old value, then suppression of the noise is achievable with realistic overhead2. While the
threshold theorem was established in the early stages of theoretical quantum computing re-
search, the experimental systems that have the potential for scalability have recently began
to exhibit the level of control to approach and even surpass the fault-tolerance threshold for
certain fault-tolerant architectures [50, 12, 40, 83, 134]. As such, it has become of prime
importance to understand which quantum computing architectures exhibit the smallest

1We shall define the specific meaning of an error rate of 10−15 later in this work when we expand on
error correction as a whole, yet for now you can take it for granted that this is very challenging.

2In reality, the fault-tolerance threshold theorem allows for a poly-logarithmic overhead in the inverse
of the target error rate in order to suppress logical noise.
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possible resource overhead, as well as the architectural requirements that a particular error
correcting code will impose on the underlying physical device.

This thesis aims to further develop the theory of quantum error correcting codes and
fault-tolerant architectures as well as to provide potential practical alternatives to tradi-
tional fault-tolerant architectures. The research presented in this thesis has contributed to
a new class of fault-tolerant models which avoid bottlenecks such as magic state distillation
that yield a major road block to current proposed architectures. Additionally this thesis
addresses the limits of error correction and fault-tolerance by classifying a particularly
prominent class of fault-tolerant operations. Moreover, the connection of quantum error
correction to privacy and protection of quantum information is explored, and a characteri-
zation of the set of operations that can privatize information is proposed. Finally, a study
of the practicality of quantum Random Access Memories is discussed in the context of one
of the fundamental quantum algorithms, Grover’s algorithm.

The remainder of this chapter will be devoted to reviewing the foundations of quan-
tum mechanics and information, highlighting notions that will reappear throughout the
remainder of the thesis. We shall begin by reviewing the structure of the qubit and the
roles of superposition and entanglement before presenting the core ideas behind quantum
error correction and fault-tolerance. There are many good textbooks and academic notes
that provide excellent reading on these subjects [82, 107, 53, 120, 136].

1.2 The fundamentals of quantum information

1.2.1 From bits to qubits

1.2.1.1 The qubit

In traditional computers, information is encoded in bits, that is, in sequences of 0s and 1s.
Therefore, for an n-bit string s, a total of 2n possible states (or messages) can be encoded,
that is s ∈ {0, 1}n.

The fundamental unit of information in a quantum computer is the qubit, which like its
classical counterpart is defined in a two-state system. A quantum state is defined according
to its expectation values of Pauli observables. We will come to axiomatizing the notion
of measurement and observables later in this section, but for now it will be sufficient to
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define the Pauli observables as follows:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.1)

A general quantum state ρ is defined as:

ρ =
1

2
(I + σXX + σY Y + σZZ), (1.2)

where αP ∈ R∩ [−1, 1] such that σ2
X +σ2

Y +σ2
Z ≤ 1. Qubits are elements of a 2-dimensional

complex Hilbert space H = C2. Note that since the Pauli matrices P are traceless, the
trace of a quantum state is always 1, Tr (ρ) = 1.

A single-qubit pure state is a quantum state such that σ2
X + σ2

Y + σ2
Z = 1. A pure state

can always be expressed as the outer product of a complex vector |ψ〉 = α|0〉+ β|1〉, that
is ρ = |ψ〉〈ψ|, where α, β ∈ C. This statement can be affirmed by choosing α and β such
that:

σZ = |α|2 − |β|2, (1.3)

σX = αβ∗ + α∗β, (1.4)

σY = iαβ∗ − iα∗β. (1.5)

We define composite quantum systems composed of multiple qubits by taking the tensor
product of the respective Hilbert spaces of each of the qubit systems. The set of quantum
states ρ ∈ H⊗n = C⊗n2 is the set of density matrices which is the set of completely positive
matrices with trace 1. The Pauli group on n qubits is the set of all possible tensor products
of Pauli operators, denoted Pn. In a similar manner to that of the single qubit system,
a pure state on a multi-qubit system is a state that can be expressed as ρ = |ψ〉〈ψ|,
where |ψ〉 is a normalized complex vector |ψ〉 ∈ Cn

2 . A necessary and sufficient condition
for a state ρ to be pure is Tr (ρ2) = 1. Any state that is not pure is defined to be mixed,
and any such mixed state can be expressed as a probabilistic combination of pure states,
that is ρ =

∑
i pi|ψi〉〈ψi|, where

∑
i pi = 1.

It should be noted that the tensor product of a set of n quantum states ρi is a valid
quantum state since Tr (ρ1 ⊗ · · · ⊗ ρn) = Tr (ρ1) ·Tr (ρ2) · · ·Tr (ρn) = 1, by the multiplica-
tive property of the trace function. A quantum system B is a subsystem of H if we can
write H = (A⊗ B)⊕ (A⊗ B)⊥. This definition is symmetric in that A is also considered
a subsystem of S. The subspaces of H can be viewed as subsystems B for which A is
one-dimensional.
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Definition 1. A quantum state ρ ∈ A⊗B, where A and B are subsystems, is a separable
state if and only if it can be expressed as follows:

ρ =
∑

i

piηi, (1.6)

where ηi = ρi,A ⊗ ρi,B and
∑

i pi = 1. All states ρ that are not separable are defined as
being entangled.

The simplest form of entangled states are the Bell states, ρ = |Bi〉〈Bi|, where:

|B0〉 =
1√
2

(|00〉+ |11〉) =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉), (1.7)

|B1〉 =
1√
2

(|00〉 − |11〉), (1.8)

|B2〉 =
1√
2

(|01〉+ |10〉), (1.9)

|B3〉 =
1√
2

(|01〉 − |10〉). (1.10)

(1.11)

1.2.1.2 Measurement and evolution

We shall define observables O as Hermitian operators in finite-dimensional Hilbert spaces.
Typically for infinite-dimensional systems, quantum observables are defined as self-adjoint
operators. In this thesis, we will be focusing on finite-dimensional systems where self-
adjoint operators are equivalent to Hermitian operators.

Definition 2. Given a finite-dimensional Hilbert space H, an observable O ∈ H is
a Hermitian operator with spectral decomposition O =

∑
λiΠi, where Πi are orthogonal

projectors that have the property ΠiΠj = δijΠi and Πi = Π†i . The measurement of O
given a state of the system ρ ∈ H will produce outcome λi with probability Tr (Πiρ), the

resulting state of the system after measurement is
Πiρ

Tr (Πiρ)
.

The measurement axiom has two fundamental components: each eigenvalue of O
corresponds to a measurable outcome and the probability of such an outcome is given
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by Tr (Πiρ), which is often referred to as Born’s rule. We define the expectation value of
an observable as the average value of the measurement outcome, that is:

〈O〉 =
∑

i

piλi =
∑

i

Tr (Πiρ)λi = Tr

((∑

i

λiΠi

)
ρ

)
= Tr (Oρ) . (1.12)

Suppose closed state evolution is given by an operator U . Let |ψ1〉 and |ψ2〉 be the
initial and final normalized states, respectively. Consider then the following:

〈ψ2|ψ2〉 = 〈ψ1|U †U |ψ1〉 = 1 = 〈ψ1|ψ1〉, (1.13)

since this must hold for all states |ψ1〉 and |ψ2〉 the evolution operator U must sat-
isfy U †U = I, that is U must be unitary. We therefore restrict all closed-system state
evolution processes as unitary processes. A particular example of such an evolution is
given by the time-independent Schrödinger equation:

i~
d

dt
|ψ〉 = H|ψ〉, (1.14)

where H is a Hermitian operator. The solution to this equation for time t is given by:
|ψ(t)〉 = e−iHt|ψ〉 = U |ψ〉.

The restriction of closed evolution being a unitary process has an interesting conse-
quence for the ability to copy arbitrary quantum states.

Theorem 3 ([139]). Let H be a Hilbert space of dimension greater than 1. Then there
exists no unitary operation U and ancilla state |a〉 such that:

U |ψ〉|a〉 = |ψ〉|ψ〉, ∀ |ψ〉 ∈ H. (1.15)

Proof. Suppose not. Let |ψ〉 and |φ〉 be two non-orthogonal states such that 〈ψ|φ〉 ∈ R
and 0 < 〈ψ|φ〉 < 1. Then,

〈ψ|φ〉 = (〈ψ| ⊗ 〈a|)(|φ〉 ⊗ |a〉)
= (〈ψ| ⊗ 〈a|)U †U(|φ〉 ⊗ |a〉)
= (〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉) = 〈ψ|φ〉〈ψ|φ〉

⇒ 〈ψ|φ〉 = 〈ψ|φ〉2.

The last statement is a contradiction to the fact that 0 < 〈ψ|φ〉 < 1, implying no such
unitary exists.
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1.2.1.3 Stinespring dilation and the unknown

Quantum systems can be very complex, spanning many degrees of freedom in the universe,
not all of which we may have access to in the form of observables. Suppose we have a
quantum state on the joint Hilbert space AB, that is ρAB ∈ HAB. It is important to
establish a consistent definition for the restricted state ρA on a single subsystem, that is
we want the observable OA to produce the same measurement result independent of which
description we were to choose. We require that for any state ρAB, ρA is a state such that:

Tr (OAρA) = 〈OA〉 = 〈(OA ⊗ IB)〉 = Tr ((OA ⊗ IB)ρAB) . (1.16)

The only consistent definition for the state ρA is taking the partial trace of the state ρAB.

Definition 4. Given a state ρAB ∈ HAB, the state ρA of the restricted subsystem HA is
given by the partial trace of the subsystem HB:

ρA ≡ TrB (ρAB) ≡
∑

b

〈ub|ρAB|ub〉, (1.17)

where {|ub〉} is an orthonormal basis for the subsystem HB.

In Subsection 1.2.1.2 we discussed two different transformations of quantum states. The
first was the measurement of a quantum observable, whose final state was in the projected
subspace of the appropriate eigenvalue. Secondly, we saw that time-evolution from one
pure state to another is performed via a unitary transformation. These are both examples
of quantum channels.

Definition 5. A quantum channel N : HA → HB is a completely positive, trace-preserving
map on linear operators.

The fact that it is trace-preserving means that it maps valid density matrices to density
matrices, and thus quantum states to quantum states (quantum states are always positive
and as such the channel is required to be completely positive). A quantum channel can
always be expressed in its Kraus representation and moreover such a representation is
unique up to unitary equivalences.

Lemma 6. Let N : HA → HB be a quantum channel. Then there exists a finite collection
of operators {Ak} such that:

N (ρA) =
∑

k

AkρAA
†
k, ∀ ρA ∈ HA. (1.18)

Moreover, if there is another set of operators {Bl} such that (1.18) holds, then Bl =∑
k UlkAk, where ulk are entries from a unitary matrix U .
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Example 7. Let H = H⊗n2 be the Hilbert space associated with n qubits. Let Pn be the
Pauli group on H, then the depolarizing channel Dp with strength p is defined as:

Dp(ρ) = (1− p+
p

4n
)ρ+

p

4n

∑

Pi∈Pn\I

PiρPi. (1.19)

Example 8. Let H2 be a qubit space. Then the phase damping channel with strength p
is defined as:

Φ(ρ) = (1− p

2
)ρ+

p

2
ZρZ. (1.20)

Example 9. Let H2 be a qubit space. Then the amplitude damping channel with
strength p is defined as:

A(ρ) = A0ρA
†
0 + A1ρA

†
1, (1.21)

where A0 =

(
1 0
0
√

1− p

)
, A1 =

(
0
√
p

0 0

)
.

One of the most important insights in the mathematical construction of quantum me-
chanics is that any quantum channel can be expressed as a unitary transformation on a
higher-dimensional system followed by the partial trace of part of the system.

Theorem 10 ([132]). Given a quantum channel N : HA → HB, there exist ancillary
subsystems HA′ , HE, and a unitary UN : HA ⊗ HA′ → HB ⊗ HE, such that

N (ρ) = TrE

(
UN (ρ⊗ |0〉〈0|A′)U †N

)
, ∀ρ ∈ HA. (1.22)

The notion that any quantum channel can be expressed as a unitary transformation
on a higher-dimensional Hilbert space, and moreover that such a unitary is unique (up to
choice of ancillary input state), leads to the notion of a complementary channel.

Definition 11. Given a quantum channel N : HA → HB and a unitary dilation UN :
HA ⊗HA′ → HB ⊗HE, then the complementary channel N ] : HA → HE is given by:

N ](ρ) = TrB

(
UN (ρ⊗ |0〉〈0|A′)U †N

)
, ∀ρ ∈ HA. (1.23)

The complementary channel can be thought of as the quantum information that is
leaking to the environment given the action of the quantum channel N . We will return to
this in much more detail in Chapter 4.
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1.2.1.4 Entanglement and locality

In the next few subsections we review important properties of entangled states and how
they differ from their classical counterparts. The key difference is that an entangled state
can only be prepared jointly, that is through some joint quantum operation on the set of
qubits to be entangled. Therefore, suppose Alice and Bob are two distance parties, each
with a qubit (initially non-entangled), then there exists no protocol by which they can
entangle their qubits using only local quantum operations along with classical communi-
cation (LOCC). However, that is not to say that correlated states cannot be created using
LOCC. Suppose Alice and Bob each start with their respective states |0〉, and Alice flipped
an unbiased coin and changes the state of her system accordingly by applying Pauli X.
Then, through classical communication, she relays the result of her flip to Bob, at which
point he does the same. Without knowledge the the result of the coin flip, their joint state
can thus be expressed as:

1

2
(|00〉〈00|+ |11〉〈11|), (1.24)

which is a correlated state yet remains separable.

1.2.1.5 Superdense coding

Entanglement can be used in various ways and plays a central role in quantum algorithms.
In this subsection we discuss a method to increase the rate of classical communication
using an entangled state between two parties, Alice and Bob [19]. Suppose Alice and Bob
share an entangled state and are spatially separated. They have access to a quantum
channel and thus the ability to share qubits, but would like to minimize their (perhaps
costly) communication. Alice’s goal then becomes to send classical information to Bob
with minimal uses of the quantum channel.

Of course, without using the entangled state, Alice could send a classical bit of infor-
mation to Bob encoded in the form of a quantum state. However, Alice would be limited
to only sending one classical bit of information this way. By using her side of the entangled
state, Alice can encode two classical bits of information by manipulating the entangled Bell
state. Suppose Alice and Bob begin with the Bell state |B0〉 = (|00〉 + |11〉)AB/

√
2, then

Alice can encode the classical message (ab) by first applying Pauli X if a = 1 and then
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a b

Xa Zb

|00〉+ |11〉√
2

• H 












Figure 1.1: Protocol for superdense coding [19]. Alice and Bob initially share an entangled
pair. Alice performs a Pauli X and Z gate to her half of the entangled pair, dependent on
the message she would like to send. She then sends her half of the entangled pair to Bob,
who then measures the two qubits in the Bell basis to infer the intended 2-bit classical
message.

applying Pauli Z if b = 1, resulting in the following transformation:

Classical Message Final state

(00) |B0〉 = (|00〉+ |11〉)/
√

2 (1.25)

(01) |B1〉 = (|00〉 − |11〉)/
√

2 (1.26)

(10) |B2〉 = (|01〉+ |10〉)/
√

2 (1.27)

(11) |B3〉 = (|01〉 − |10〉)/
√

2. (1.28)

Since these are all orthogonal states, there exists a two-qubit observable that can distinguish
between these four states. As such, if Alice sends her state to Bob, he can perform a joint
measurement in the entangled basis to infer the 2-bit message that Alice intended to
communicate. A graphical representation of the scheme is presented in Figure 1.1.

Entanglement plays an essential role in this protocol as Bob will need to distinguish
between four possible outcomes upon receiving the qubit sent by Alice (equivalent to 2 bits).
However, if the state are not entangled, then no matter the transformation Alice performs
on her state, Bob will only be able to gather 1 bit of information as his state will have no
bearing on any information that can be extracted from Alice’s state via measurement.

1.2.1.6 Quantum state teleportation

Entanglement can also be a useful resource for the communication of quantum states be-
tween two distant parties that do not have access to a quantum channel but are restricted
to classical communication. Alice can send Bob an arbitrary quantum state by coupling
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|ψ〉 • H 


 •





|00〉+ |11〉√
2

a b

Xa Zb |ψ〉





Figure 1.2: Protocol for quantum teleportation [18]. Alice and Bob each share one half
of a Bell pair. Alice begins by performing a Bell measurement on the qubit she wants to
send along with her half of the entangled pair, this is represented by the CNOT , H, and
Z basis measurements in the first two qubits. She then sends the two measurement results
to Bob (2 bits of classical information) upon which he chooses to apply the Pauli X and Z
operators to his half of the Bell pair.

her qubit to her half of the entangled state through a quantum measurement and commu-
nicating to Bob the classical result of the quantum measurement [18].

Suppose Alice and Bob share an entangled Bell pair |B0〉 = (|00〉 + |11〉)/
√

2 and
Alice would like to send Bob the arbitrary state |ψ〉 = α|0〉 + β|1〉. Alice begins the
protocol by measuring the qubits at her disposal in a Bell measurement, that is using the
observable: O =

∑
ij cij|Bij〉〈Bij|. The resulting state of Alice and Bob’s systems, according

to the appropriate measurement result that can be obtained by normalizing the projected
state (|Bij〉〈Bij|A ⊗ IB)(α|0〉+ β|1〉)A(|00〉+ |11〉)AB/

√
2, is:

Measurement outcome Resulting state

c00 |B0〉A ⊗ (α|0〉+ β|1〉)B (1.29)

c01 |B1〉A ⊗ (α|0〉 − β|1〉)B (1.30)

c10 |B2〉A ⊗ (α|1〉+ β|0〉)B (1.31)

c11 |B3〉A ⊗ (α|1〉 − β|0〉)B. (1.32)

Therefore, by performing a Bell measurement, Alice has mapped Bob’s half of the entangled
Bell pair to one of 4 states that differ from Alice’s original state by the application of
Pauli operators. Moreover, Alice will know which state Bob will have, and as such can
communicate the recovery operation by sending two classical bits of information. Alice
sends the message (ab) and Bob applies Pauli X if a = 1 followed by Pauli Z if b = 1.
Bob’s final state is then the original state Alice wanted to send and no quantum channel
was needed! Just as in the case of superdense coding, this would be impossible without
the initial shared entanglement between the two parties.
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Figure 1.3: Quantum circuit to solve Deutsch’s problem with a single query to the black
box Of [49].

1.2.2 Superposition in quantum algorithms

Quantum superposition and entanglement play an essential role in the development of
quantum algorithms. Deutsch’s problem is one of the first algorithms that uses superpo-
sition as a key ingredient [49]. The premise of the problem is to query a black box and
determine certain properties of the box given some promise. The quantum black box model
is stated in a reversible manner as per the description of quantum mechanics as unitary
evolution. Given a binary input space X and output space Y , the black box oracle is
defined as:

Of |x〉|a〉 = |x〉|a⊕ f(x)〉, ∀ x ∈ X . (1.33)

1.2.2.1 Deutsch’s problem

Deutsch’s problem asks, given a function f : {0, 1} → {0, 1}, to compute f(0)⊕f(1). Given
a classical black box, one would have no choice but to query the function for both inputs,
and then compute the result, therefore requiring two queries to the oracle. However, in
the quantum setting we can use superposition to compute the desired result only using a
single query to the quantum black box [49]. Consider the circuit in Fig. 1.3, it will result
in the following evolution of the input states:

|+〉|−〉 =
1

2
(|0〉+ |1〉)(|0〉 − |1〉) (1.34)

−→1

2
(|0〉(|f(0)〉 − |1⊕ f(0)〉) + |1〉(|f(1)〉 − |1⊕ f(1)〉)) (1.35)

−→1

2
((−1)f(0)|0〉+ (−1)f(1)|1〉)(|0〉 − |1〉) (1.36)

=
(−1)f(0)

2
(|0〉+ (−1)f(0)+f(1)|1〉)(|0〉 − |1〉) (1.37)

−→(−1)f(0)|f(0)⊕ f(1)〉|−〉, (1.38)
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therefore the measurement of the first qubit at the output of the circuit will yield the
desired solution to Deutsch’s problem (the global phase (−1)f(0) has no bearing on the
state or solution). Notice the interesting feature that the oracle is set up to yield phase
information on the first qubit which can be extracted using a Hadamard gate. This is
a common feature in quantum algorithms and will play an integral role in the upcoming
examples.

1.2.2.2 Grover’s algorithm

Deutsch’s problem provided an example of quantum information processing yielding a
strict speedup over its classical counterpart. How far can these speedups be extended?
One example is in the problem of searching for a marked item in a list. Suppose there is
a list of N = 2n bits, one of which is 1 while all others are 0. The problem is to minimize
the number of calls to a black box in order to query the values of all the items. It has been
shown that in order to succeed with probability at least 2/3, it will take O(2n) queries
in the case of a classical oracle. However, one can identify the marked state using only
O(
√
N) = O(2n/2) calls to the quantum black box [62], and this was subsequently shown

to be optimal scaling for the number of oracle calls in terms of N [16].

First, we can use an equivalent description of the black box following the procedure
used for Deutsch’s problem:

Of |x〉|−〉 =
1√
2
|x〉(|f(x)〉 − |f(1)〉) (1.39)

=
(−1)f(x)

√
2
|x〉(|0〉 − |1〉) (1.40)

= (−1)f(x)|x〉|−〉, (1.41)

therefore we can think of the oracle as the transformation Of |x〉 = (−1)f(x)|x〉. For now
suppose such a black box can be prepared error-free, Chapter 5 will focus on the im-
plementation of such an oracle in a fault-tolerant setting. There is one more element
needed in the implementation of Grover’s algorithm, and that is the reflection opera-
tor Ur = 2|0n〉〈0n| −∑x∈X |x〉〈x|, which implements a phase of (−1) on all inputs except
for the all-0 string (this could be implemented using a high-controlled phase operator).
Note that the reflection operator acts independently of the oracle, and can be thought of
as a unitary implemented on the quantum computing device. The Grover iterate is then
defined as the sequence G = H⊗nUrH

⊗nUf .

13



Consider the action of the Grover iterate G on the superposition over all input states:

G

(
1

2n/2

∑

x∈X

|x〉
)

= H⊗nUrH
⊗nUf

(
1

2n/2

∑

x∈X

|x〉
)

(1.42)

= H⊗nUrH
⊗n

(
1

2n/2

∑

x∈X

(−1)f(x)|x〉
)

(1.43)

= H⊗nUr

(
1

2n

∑

x∈X

∑

z∈X

(−1)f(x)(−1)x·z|z〉
)

(1.44)

= H⊗n

(
1

2n

∑

x∈X

(−1)f(x)

(
|0n〉 −

∑

z∈X ,z 6=0n

(−1)x·z|z〉
))

(1.45)

= H⊗n

(
1

2n

∑

x∈X

(−1)f(x)

(
2|0n〉 −

∑

z∈X

(−1)x·z|z〉
))

(1.46)

= H⊗n

(
1

2n

(
2(2n − 2)|0n〉 −

∑

x∈X

∑

z∈X

(−1)f(x)(−1)x·z|z〉
))

(1.47)

=
2(2n − 2)

2n
1

2n/2

∑

x∈X

|x〉 − 1

2n/2

∑

x∈X

(−1)f(x)|x〉 (1.48)

= (1− 4

2n
)

1

2n/2

∑

x∈X ,x 6=m

|x〉+ (3− 4

2n
)

1

2n/2
|m〉, (1.49)

where |m〉 is the marked state. Note that from line 1.47 to 1.48, the fact that H⊗n is its
own inverse was used to simplify calculations. Therefore, we note that the final state is a
superposition of the marked state |m〉 and another state which is an even superposition
over all other computational basis states, which we shall denote |m⊥〉. It turns out that
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the Grover iteration preserves this basis as per the following:

G

(
1

2n/2

∑

x∈X

|x〉
)

= G

(
1

2n/2

∑

x∈X ,x 6=m

|x〉+
1

2n/2
|m〉
)

(1.50)

= G

(√
2n − 1

2n
|m⊥〉+

√
1

2n
|m〉
)

(1.51)

= G (cos θ|m⊥〉+ sin θ|m〉) (1.52)

= (1− 4

2n
)

1

2n/2

∑

x∈X ,x 6=m

|x〉+ (3− 4

2n
)

1

2n/2
|m〉 (1.53)

= (1− 4

2n
)

√
2n − 1

2n
|m⊥〉+ (3− 4

2n
)

√
1

2n
|m〉 (1.54)

= (1− 4 sin2 θ) cos θ|m⊥〉+ (3− 4 sin2 θ) sin θ|m〉 (1.55)

= cos 3θ|m⊥〉+ sin 3θ|m〉, (1.56)

where we have used the trigonometric identities: 3 sin θ − 4 sin2 θ = sin 3θ and (1 −
4 sin2 θ) cos θ = (−3 cos θ + 4 cos3 θ) = cos 3θ. Therefore, the action of the Grover iter-
ate G is to rotate the state in the {|m〉, |m⊥〉} plane by the angle 2θ. Repeating this
procedure k times will yield the following state:

Gk

(
1

2n/2

∑

x∈X

|x〉
)

= Gk (cos θ|m⊥〉+ sin θ|m〉) (1.57)

= cos (2k + 1)θ|m⊥〉+ sin (2k + 1)θ|m〉. (1.58)

Therefore, in order to maximize the probability of measuring the marked state |m〉, the
Grover iterations are repeated to maximize sin (2k + 1)θ, which will occur after O(

√
2n)

iterations. Notice the key role that superposition plays in this algorithm; having the ability
to call the oracle over such superpositions is the key difference to outperform classical
algorithms.

1.3 Quantum error correction

1.3.1 Overcoming quantum noise

The goal of quantum error correction is to overcome unwanted quantum processes on
encoded information from external sources of noise. In general, quantum systems that are
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|ψ〉 • •
|0〉
|0〉

Figure 1.4: Encoding circuit for Shor’s 3-qubit code. An arbitrary quantum state |ψ〉 is
coupled to two ancillary qubits through CNOT gates, yielding a state robust against X
errors.

used in quantum computation are very sensitive to external parameters. This sensitivity is
crucial to controlling such experimental systems, yet has the adverse consequence of being
prone to unwanted external sources of noise.

Unlike error correction for classical systems, one of the primary obstacles for quantum
error correction is that an arbitrary quantum state cannot be copied, as per the No-cloning
Theorem 3. As such, quantum error correction techniques must find alternative methods
of redundancy in encoding the quantum information to be protected. Again, entanglement
will play an essential role in such encodings.

1.3.1.1 Shor’s three-qubit code and stabilizers

One of the simplest forms of classical error correcting codes is the repetition code. Suppose
one wanted to protect against arbitrary single bit flips Xi (we use the Pauli Xi operator
here which is equivalent to the ¬i for binary classical codes). If we know that such flips
happen with low probability p, then the probability of two such flips will be even more
unlikely, being of order p2. We encode the classical bit xi by copying it over to other bits
before exposing the full string to noise. Then, order to establish the state of the string
after being subject to noise, we measure each of the bits and take the majority. Consider
the following encoding [125]:

0→ 000 = 0E , 1→ 111 = 1E , (1.59)

therefore the probability that an encoded state xE has a majority of bits that have flipped
to ¬x is: 3p2(1− p) + p3 which is strictly less than p for p < 1/2.

A similar form of encoding can be used to protect against this classical form of noise
for qubits3. While arbitrary state cloning is not possible, it is possible to copy the basis

3We denote this noise as classical since the Kraus operators for the noise map have representation in
only one type of Pauli basis (X in this example).
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state representation of a state using a simple unitary transformation composed of CNOT
gates, Fig. 1.4 shows an explicit encoding circuit for the following:

|0〉 ⊗ |00〉 → UE |000〉 = |000〉,
|1〉 ⊗ |00〉 → UE |100〉 = |111〉. (1.60)

Using the above encoding, an arbitrary qubit α|0〉 + β|1〉 is mapped to the encoded
state α|000〉 + β|111〉 that will protect against X errors (as in the case of the classical
repetition code). The initial qubits in Eq. 1.67 that are always in the state |0〉 are called
the ancillary qubits and are required for any quantum error correction encoding.

It was stated above that the 3-qubit encoding can protect against X errors just as in
the classical case, however we know that directly measuring the state of the qubit and
taking a majority vote approach will not necessarily work as it will collapse the quantum
state onto one of the two codestates |000〉 or |111〉 (after correction). However, we would
like to protect the encoded quantum state, not necessarily perform an operation that would
amount to measuring it. Therefore, we require a quantum operation that extracts which
state the majority of the qubits are in without directly measuring each of the individual
qubits. This can be completed by measuring a sequence of parity measurements of pairs of
qubits. Firstly measuring the parity of the first two qubits, followed by qubits 2 & 3. Such
measurements correspond to measuring the observables Z1Z2 and Z2Z3, where Zi is the
Pauli operator on qubit i. The measurements will project onto the “+1” (“-1”) eigenspaces
thus recording an even (odd) parity of the corresponding qubits. Consider the four possible
outcomes for X errors of weight 1 or less:

Error Final state Measurement outcomes

I(α|000〉+ β|111〉)→ (α|000〉+ β|111〉) +1, +1, (1.61)

X1(α|000〉+ β|111〉)→ (α|100〉+ β|011〉) −1, +1, (1.62)

X2(α|000〉+ β|111〉)→ (α|010〉+ β|101〉) −1, −1, (1.63)

X3(α|000〉+ β|111〉)→ (α|001〉+ β|110〉) +1, −1. (1.64)

Therefore, by associating each of the single-qubit error possibilities with one of the out-
comes from the two parity measurements, we can correct for any single qubit X error by
physically reapplying the appropriate X correction according to the measurement outcome.
This is our first encounter with the notion of stabilizers.

We say that the operators Z1Z2 and Z2Z3 are stabilizers of the 3-qubit code as they
have a trivial (equivalent to the identity operator) action on the codespace. Therefore any
Pauli error that anti-commutes with these stabilizers must be an error that maps states
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inside the codespace to states orthogonal to the codespace. We will return to this in much
greater detail in Section 1.3.3.

Finally, it should be noted, given that the stabilizers of the 3-qubit code are composed
of only Z type operators, any Z error will go undetected as such errors will commute with
the stabilizers of the code. Of course, the code was designed to protect against X errors
(to mimic the classical error correction repetition code), however any weight-1 Z error
will result in a logical phase error, namely: Z1(α|000〉 + β|111〉) = α|000〉 − β|111〉, and
similarly for Z2 and Z3.

1.3.1.2 Shor’s 9-qubit code and code concatenation

The idea behind Shor’s 9-qubit code is to re-encode the physical qubits in the 3-qubit code
into their own respective version of the 3-qubit code [125]. However, the new encoding
is in a rotated basis in order to protect against phase errors. First consider the following
rotated version of the 3-qubit code:

|+〉 ⊗ |00〉 → UE |+00〉 = |+ + +〉,
|−〉 ⊗ |00〉 → UE |−00〉 = |− − −〉. (1.65)

This encoding is equivalent to the previous version of the 3-qubit code, with the final states
rotated into the X eigenbasis (this could simply be achieved by applying Hadamard gates
to all of the qubits of the code, H⊗3). Therefore, the action of the Pauli errors are reversed,
X errors result in a phase error while single-qubit Z errors can be corrected by measuring
the parity of the qubits in the new basis, that is by measuring the observables X1X2

and X2X3. These also correspond to the new stabilizers of the code.

Shor’s idea was to concatenate the first encoding of the 3-qubit code with the second
rotated version of the encoding of the 3-qubit code, that is to re-encode the qubits from
the first encoding. This can be summarized below:

|0〉 → UE1 |000〉 = |000〉
→ UE2 ((|+〉+ |−〉)|00〉 ⊗ (|+〉+ |−〉)|00〉 ⊗ (|+〉+ |−〉)|00〉)
= (|+ + +〉+ |− − −〉)⊗ (|+ + +〉+ |− − −〉)⊗ (|+ + +〉+ |− − −〉),

|1〉 → UE1 |100〉 = |111〉
→ UE2 ((|+〉 − |−〉)|00〉 ⊗ (|+〉 − |−〉)|00〉 ⊗ (|+〉 − |−〉)|00〉)
= (|+ + +〉 − |− − −〉)⊗ (|+ + +〉 − |− − −〉)⊗ (|+ + +〉 − |− − −〉), (1.66)

(1.67)
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where normalization factors have been omitted for ease of notation. By concatenating the
two codes, this 9-qubit code gains important features from both codes, that is, the ability to
protect against both single-qubit X and Z errors4. The code can protect against any single-
qubit phase error by just considering the effect of the phase error on a single 3-qubit block.
Consider the first 3 qubits, the action of a phase error will flip a qubit from |+〉 to |−〉, and
vice-versa. As such, by measuring the observables associated with the rotated version of
the 3-qubit code, we can detect and correct such an error. To correct for the bit flip errors
is slightly tricker, as the action of a single X error on a 3-qubit block will go undetected
within that block, as with the rotated version of the 3-qubit code which cannot correct
against X errors. However, we can then use the property of the first encoding E1 to identify
which blocks of three have undergone a logical X error. Suppose an X error occurred on
one of the first 3 qubits, this would be equivalent to the error X1X2X3 occurring, which can
be thought of as a logical X error having occurred on the first 3 encoded qubits. This error
can be differentiated from the same error having occurred on the second or third blocks of
3 qubits by measuring stabilizers that are equivalent to the traditional 3-qubit code, except
now in block form. That is, Z1Z2 → Z1Z2Z3Z4Z5Z6, and similarly Z2Z3 → Z4Z5Z6Z7Z8Z9.
Therefore, the overall stabilizers of the 9-qubit code are:

X1X2, X2X3, X4X5, X5X6, X7X8, X8X9, (1.68)

Z1Z2Z3Z4Z5Z6, Z4Z5Z6Z7Z8Z9. (1.69)

In order to decode after measuring the different syndrome observables, we proceed
similarly to the 3-qubit code case. In the case of detected Z errors, we correct on each
3-qubit block identically to the case of the rotated 3-qubit code. In the case of X errors,
we will correct by applying an X operator to a single qubit in the block that has been
detected. Recall that an individual error on a single qubit block is equivalent to a logical
fault on that block, that is X1

∼= X2
∼= X3

∼= X1X2X3. As such, if we apply Pauli X1 when
in fact the error X2 had occurred, we will be left with the “error” X1X2 at the completion
of decoding. However, notice that this is a stabilizer of the code, and as such is equivalent
to the logical identity and the error has been corrected. This statement is equivalent to
saying that the errors X1, X2, and X3 have the same syndrome measurement outcomes,
and therefore we can correct for them by applying any of the individual X operators. The
fact that multiple errors produce the same syndrome measurements is an example of a
degenerate code, and not all codes will have this property.

4The code presented here has a much higher protection against phase errors Z, being able to protect
up to four Z errors.

19



1.3.1.3 Correcting arbitrary single-qubit noise

Thus far in our discussion of quantum error correction we have addressed the need to correct
for single-qubit Pauli errors, however, in reality, noise will be much more complicated.

Since an arbitrary quantum channel is a completely positive map, we can express the
action of the channel in its Pauli basis (which form an orthonormal spanning basis for such
operators). As such, any single-qubit quantum channel can be expressed as follows:

N (ρ) =
∑

k

AkρA
†
k (1.70)

=
∑

ijk

(ak,iPi)ρ(a∗k,jPj) (1.71)

Recall that for an error correcting code that can correct for arbitrary single qubit errors,
we know there exists a recovery operator R such that for all |ψ〉 in the code and any single
qubit Pauli error Pi the following holds: UMΠMPi|ψ〉 = |ψ〉, where ΠM is the projector
obtained from measuring syndromeM , and UM is the recovery operator that depends onM .
Thus given any single-qubit error, there exists a set of recovery unitary operators {UM},
depending on the measurement result obtained, that correct for the single-qubit error and
map the encoded quantum state back to its noise-free encoding. Consider the action of the
recovery operator R on a state that has undergone arbitrary noise of the form of Eq. 1.71
for a logical state of the form ρ =

∑
m pm|ψm〉〈ψm|, where all |ψk〉 are members of the
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quantum error correcting code:

R ◦N (ρ) = R ◦
(∑

ijk

ak,ia
∗
k,jPiρPj

)

=

(∑

ijk

ak,ia
∗
k,jUMΠMPiρPjΠMU

†
M

)

=

(∑

ijk

ak,ia
∗
k,jUMΠMPi(

∑

m

pm|ψm〉〈ψm|)PjΠMU
†
M

)

=

(∑

ijkm

ak,ia
∗
k,jpmUMΠMPi|ψm〉〈ψm|PjΠMU

†
M

)

=

(∑

ijk

ak,ia
∗
k,j

)∑

m

pm|ψm〉〈ψm|

=
∑

m

pm|ψm〉〈ψm| = ρ. (1.72)

where the sum over the coefficients
∑

ijk ak,ia
∗
k,j = 1 for trace preserving channels. There-

fore, given an error correcting code along with a decoder that can correct any single-qubit
Pauli operator, the code will naturally be protected against any form of single-qubit noise
as well!

The 9-qubit code encompasses many important concepts in quantum error correction
that will be revisited in great detail in the next few sections. To summarize:

• Encoding and decoding: Quantum information is encoded, via an encoding circuit, in
order to protect the information in a higher-dimensional (typically highly entangled)
subspace. Measurements that do not collapse the state of the encoded information
are performed to inform the decoder of the location of the errors. Unitary decoding
operations are applied given the information from the measurement.

• Stabilizers: Stabilizers are special Pauli operators that preserve the codespace (log-
ically equivalent to the identity operation). The stabilizers form the observables to
be measured in order to locate the presence of an error.

• Code concatenation: Two error correcting codes can be concatenated to form a larger
error correcting code that will have many of the features of both codes. This can be
used to increase the protection of the logical qubits.
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• Degenerate codes: Quantum error correcting codes in which not all errors have a
unique syndrome. However, errors can still be corrected because errors sharing the
same syndrome form a stabilizer when combined together.

• Arbitrary single-qubit noise: Any quantum error correcting code that can protect
against any single-qubit Pauli error will also be able to protect against arbitrary
single-qubit noise. A similar form of result will hold for codes that can protect
against Pauli noise on more than 1 qubit.

1.3.2 Conditions for quantum error correction

In the previous section, two notions of error correcting codes were presented, one which
protected against one form of Pauli noise (analogous to classical noise) and one which
corrected arbitrary noise on a single qubit. One may ask: “What then are the central
conditions for quantum error correction?” We first require a formal definition of an error
correcting code.

Definition 12. A n-qubit quantum error correcting code composed of k logical qubits
is defined as a pair (C,R), where C a 2k dimensional Hilbert space denoted the codespace,
and R is a recovery channel.

Definition 13. Given a set of errors E, the quantum error correcting code (C,R) is said
to correct for the errors E if the following holds:

R ◦ (Ei|ψ〉〈ψ|E†i ) = |ψ〉〈ψ|, ∀ |ψ〉 ∈ C, Ei ∈ E . (1.73)

Knill and Laflamme discovered that since errors act by mapping encoded qubits outside
the protected Hilbert space C, in order for a recovery operation to be possible orthogonal
logical states get mapped to orthogonal subspaces under the action of the error channel.
Since no quantum channel can distinguish between non-orthogonal states, if orthogonal
logical states are mapped to states that are non-orthogonal, we have no hope of recovering
the information in a perfect manner. Moreover, Knill and Laflamme were able to show
that not only is this necessary but it is indeed sufficient for the existence of a recovery
operator.

Theorem 14 (Knill–Laflamme conditions [88]). Given a set of errors E and a Hilbert
space C, then there exists a recovery operator R such that the quantum error correcting
code (C,R) corrects for the errors E if and only if:

〈ψα|E†iEj|ψβ〉 = cijδαβ, ∀ |ψα〉, |ψβ〉 ∈ C, Ei, Ej ∈ E , (1.74)

where cij ∈ C and δαβ is the Kronecker delta.
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Corollary 15 ([88]). Given a set of errors E and a Hilbert space C, then there exists a
recovery operator R such that the quantum error correcting code (C,R) corrects for the
errors E if and only if:

ΠCE
†
iEjΠC = cijΠC, ∀ Ei, Ej ∈ E , (1.75)

where ΠC is the projector onto the Hilbert space C.

1.3.3 The stabilizer formalism

In this section we present what is now known as the stabilizer formalism, developed by
Gottesman, which has become the primary language for discussing quantum error correct-
ing codes. Many important concepts are summarized here, for a more detailed description
of the founding ideas see Ref. [58].

Definition 16. Given a subspace Q ⊆ H, a stabilizer S is a Pauli operator such that:

S|ψ〉 = |ψ〉, ∀ |ψ〉 ∈ Q. (1.76)

Lemma 17. Given a subspace Q ⊆ H, the set of stabilizers form a multiplicative Abelian
group S.

Proof. The identity element of the group is clear as IH ∈ S, where IH is the identity element
on the Hilbert spaceH. Since any Pauli operator has the property P 2 = IH, any stabilizer S
is its own inverse. Let |ψ〉 ∈ Q, given two stabilizers S1 and S2, S1S2|ψ〉 = S1|ψ〉 = |ψ〉,
and as such (S1S2) is a stabilizer. Finally, given now a third stabilizer S3, S1(S2S3)|ψ〉 =
|ψ〉 = (S1S2)S3|ψ〉, showing associativity. Therefore the set of stabilizers are a group,
what remains to be shown is that the group is Abelian. Since by definition stabilizers
are Pauli operators, we can use the following fact about Pauli operators: S1S2 = ±S2S1.
However, we cannot have that S1S2 = −S2S1 else we would conclude that |ψ〉 = S1S2|ψ〉 =
−S2S1|ψ〉 = −|ψ〉 which is a contradiction.

We have demonstrated that the stabilizers of a given subspace Q form an Abelian
subgroup S ⊂ Pn of the n-qubit Pauli group (assuming dim(H) = 2n), however the
converse is also true, any Abelian subgroup S ⊂ Pn such that −I, iI /∈ S will form a
subspace Q such that dim(Q) = dim(H)− dim(S).

Definition 18. A n-qubit stabilizer group is an Abelian subgroup S ∈ Pn such that −I, iI /∈
S.
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Definition 19. A stabilizer group S ∈ Pn and recovery operator RS define a stabilizer
code (QS ,RS), where QS = {|ψ〉 ∈ H | S|ψ〉 = |ψ〉 ∀ S ∈ S}. Moreover, given dim(S) =
2n−k, dim(QS) = 2k, that is the error correcting code is composed of k logical qubits.

The stabilizer group by definition leaves the codespace invariant and is logically equiv-
alent to the identity operator. Given a codespace QS encoding k logical qubits, there must
be k logical Pauli X and Z operators. By definition, a logical Pauli operator PL must map
any element of QS to another element of QS , that is for all |ψ〉 ∈ QS , PL|ψ〉 = |ψ′〉 ∈ QS ,
where |ψ′〉 does not have to necessarily be different from |ψ〉. As such, we must have the
following for all |ψ〉 ∈ QS and S ∈ S, PLS|ψ〉 = PL|ψ〉 = |ψ′〉 = S|ψ′〉 = SPL|ψ〉 ⇒ PLS =
SPL. Therefore, the set of logical Pauli operators are the Pauli operators that commute
with the stabilizer group S, that is the centralizer of S. However, in the case of Pauli
operators, the centralizer of S is equivalent to the normalizer of S and typically we define
the logical Pauli operators as the elements from this group.

Definition 20. Given a stabilizer code composed from the stabilizer group S, the non-
trivial (non-identity) logical Pauli operators of the code are given by the elements of
the normalizer of S that are not in S, that is N (S)\S, where

N (S) = {P ∈ Pn | PSP † = S ′ ∈ S}. (1.77)

The normalizer gives a very nice characterization of the form of logical operators that a
stabilizer code can have. Moreover, it is very indicative of how well a code protects against
noise and defines a very important parameter for stabilizer codes.

Definition 21. The distance of a stabilizer group S is defined as:

d = min{wt(P )|P ∈ Pn, P ∈ N (S)\S}, (1.78)

where wt(P ) is the weight of the Pauli operator P = ⊗ni=1Pi, that is the total number of
qubits where Pi 6= I.

Theorem 22. Given a n qubit stabilizer group S, encoding k logical qubits with distance d,
there always exists a recovery operator RS such that the associated stabilizer code can
correct any error of weight less than or equal to b(d− 1)/2c. The associated stabilizer code
is denoted a [[n, k, d]] stabilizer code.

Proof. Let E = {Ei} be a set of errors of weight less than or equal to b(d − 1)/2c. Then
we must have that

〈ψk|E†iEj|ψl〉 = cijδkl, ∀ |ψk〉, |ψl〉 ∈ QS , Ei, Ej ∈ E , (1.79)
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since else E†iEj would have overlap with a logical operator, yet we know that E†iEj has
weight at most (d− 1), thus this would contradict the definition of the normalizer. There-
fore, for any set of errors E satisfying the statement of the Theorem, the codespace satisfies
the Knill-Laflamme Theorem 14 and the decoder RS exists.

Theorem 23. Given a [[n, k, d]] stabilizer code and let Hd−1 be a subset of at most (d −
1) qubits. Then there always exists a recovery operator RS that corrects for any set of
errors E = {Ei} ∈ Hd−1.

Proof. Since for anyEi and Ej, the support of both is contained inHd−1, as such wt(E†iEj) ≤ d−
1 and the Knill-Laflamme conditions must trivially hold.

Therefore, the distance of a quantum error correcting code provides two important
notions for correctable errors. Firstly, if the error set is of weight less than half the size of
the distance then such errors must be correctable. Secondly, if the location of the errors are
known, the quantum error correcting code will be able to correct for up to (d− 1) errors.

1.3.4 Fault-tolerant quantum computation

Thus far we have discussed the properties of quantum error correcting codes and how in
theory recovery operations can be constructed to map back to the initial logical state.
However, in practice, the physical qubits storing the information will not only undergo
some form of quantum noise while being stored, but rather both the encoding and recovery
operations will be noisy as well. Moreover, logical operations will also result in errors, and it
will be important that the set of logical operations do not spread errors in an uncontrollable
manner. We will return to the different possible construction of logical gates in Chapter 2
and will define the notion of fault-tolerance here.

Traditionally the idea behind a fault-tolerant operation is that a correctable error re-
mains correctable at the conclusion of the logical operation. We will present a slightly
looser notion of fault-tolerance that guarantees that some subset of correctable errors re-
main correctable at the conclusion of the operation. In introducing this notion, some of the
error correction properties of the code will be sacrificed, however, overall quantum state
protection will be guaranteed and a fault-tolerance threshold will still exist.

Definition 24. Given a quantum error correcting code Q, a quantum operation A is said to
be fault-tolerant against a set of physical errors E if the resulting error at the conclusion
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of the operation remains correctable. That is, there exists a recovery operation RE such
that:

RE ◦ AE(ρ) = A(ρ), ∀ ρ ∈ Q, E ∈ E , (1.80)

where AE is the noisy quantum channel associated with the composition of the ideal oper-
ation A and the error E that may occur at a given point throughout the action of the ideal
gate.

The simplest form of fault-tolerant operation is one that does not couple qubits within
the error correcting code, thereby not increasing the weight of the errors.

Definition 25. Given a quantum error correcting code Q, a logical gate G is said to be
transversal if there is a representation of G as a product of individual gates. That is,
there exists an operation of the form ⊗ni=1Gi, such that

GρG† =(⊗ni=1Gi)ρ(⊗ni=1G
†
i )

= ⊗ni=1GiρG
†
i , ∀ ρ ∈ Q. (1.81)

Importantly, the definition of transversal gates encompasses 2-qubit as well as single-
qubit logical gates, namely there will be some codes that will contain a transversal CNOT gate.

Lemma 26. Given a quantum error correcting code Q, any transversal gate G will be
fault-tolerant for the set of correctable errors E = {Ei} of weight wt(Ei) ≤ b(d− 1)/2c.

Proof. Given any error Ei, that can occur either before or after the action of the gate G,
the resulting set of errors that can occur at the conclusion of the gate is given by E ∪ F ,
where F = {GEiG†}. However, note that for any codestate ρ ∈ Q the action of the
modified error will be:

GρG† = ⊗nj=1GjEiρE
†
iG
†
j

= ⊗nj=1GjEiG
†
jGjρG

†
jGjE

†
iG
†
j

= ⊗nj=1GjEiG
†
j(GρG

†)GjE
†
iG
†
j, (1.82)

and as such the error GEiG
† will only have non-trivial action at the locations where Ei

will have support, therefore GEiG
† is logically equivalent to an error of weight at most

b(d − 1)/2c and as such is correctable. Therefore, the union of correctable errors remain
correctable, and G is fault-tolerant for the set of errors of weight ≤ b(d− 1)/2c.
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Fault-tolerant operations are essential as they will allow for the construction of schemes
to reduce the logical error rate to arbitrarily small levels, allowing for the possibility of
large scale quantum computations. The basic idea of the fault-tolerance threshold theorem
is that given a family of codes with increasing distance, there will always be a threshold
error rate below which the logical error rate can be made arbitrarily small with only
poly-logarithmic overhead in the number of operations. As with many statements about
error correction in large systems, there are underlying assumptions that go into the fault-
tolerance threshold theorem, most importantly that the individual errors remain bounded
in the number of qubits that they influence. Here, the threshold theorem is stated for
concatenated codes, yet strong numerical evidence supports the existence of a threshold
for topological codes as well. We shall return to this in Chapter 2.

Theorem 27 ([1, 2, 3]). Suppose a quantum error correcting code Q and a noise map N = EN ◦
· · ·◦ E1 consisting of the composition of a set of correctable errors E = {Ei}Ni=1 each occur-
ring with probability at most p. Then, there exists a fault-tolerance threshold error
rate pth such that for any fault-tolerant quantum circuit A and target logical error rate ε,
there exists a quantum circuit with overhead O(poly(log 1/ε)) for all p < pth.

Proof. Given a quantum error correcting code Q and a set of correctable errors E occurring
with probability p, then given the fault-tolerant operationA, the probability of the resulting
error being uncorrectable at the conclusion of the operation A is bounded by:

p(1) ≤
N∑

k=2

(
N

k

)
pk(1− p)N−k (1.83)

≤
N∑

k=2

(
N

k

)
p2(1− p)N−2 (1.84)

≤ 2Np2(1− p)N−2 (1.85)

≤ 2Np2, (1.86)

where N is the cardinality of the set of correctable errors E that occur with probability p.
Notice that the logical error rate will be smaller than the physical error rate below a thresh-
old p < pth = 1/2N . Now, the logical information can be re-encoded by concatenating the
code with itself, resulting in a new quantum code where each logical qubit is composed of
multiple logically encoded qubits. After applying error correction to each of the individual
blocks, errors are projected onto the logical subspace as either the identity map (in the
case of correctable errors) or a logical fault (in the case of uncorrectable errors). Therefore,

27



the new error correcting code will have a logical error rate bounded by the same equation
as given above with the physical error rate p replaced by the logical error rate p(1):

p(2) ≤ 2N(p(1))2 (1.87)

≤ 2N(2Np2)2 (1.88)

= 23Np4 (1.89)

≤
(
p

pth

)3

p. (1.90)

By continuing to concatenate using the same code, the logical error rate can be continually
suppressed in a doubly exponential manner. Generally, the logical error rate at the m-th
concatenation level will be upper bounded by:

p(m) ≤ 2N

((
p

pth

)2m−1−1

p

)2

(1.91)

=

(
p

pth

)2m−1

p. (1.92)

Therefore, the logical error rate decreases double-exponentially with respect to the frac-
tion p/pth, thus allowing for efficient overhead with respect to the exponential increase
in qubits as m increases. The overall number of concatenation levels required to reach a
target error rate ε will thus be:

(
p

pth

)2m−1

p ≤ ε (1.93)

⇒2m − 1 ≤ logp/pth ε (1.94)

⇒m ≤ C log log
1

ε
. (1.95)

Given that each concatenation level consists of encoding the qubits of the previous level
in a quantum error correcting code, assuming the original code has n qubits, the total
overhead in qubit number for a code with m levels of concatenation is:

nm = nC log log 1
ε = A · poly(log

1

ε
) (1.96)
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Chapter 2

Transversality and fault-tolerant
quantum error correction

2.1 Fault-tolerant universal gate sets

2.1.1 Transversal gate sets

In Section 1.3, the notion of a fault-tolerant operation was introduced. An important set
of naturally fault-tolerant operations are traversal gates, that is the set of logical gates
of the form G = ⊗ni=1Gi. Transversal gates are of interest for both theoretical fault-
tolerance purposes but also for their potential ease of application in an experimental setting.
The ability for transversal gates to implement a logical gate by addressing each qubit
individually, in one time step, without having to use ancillary systems or complicated
coupling, makes them the most desirable gate in terms of reducing the overhead associated
with fault-tolerance.

Definition 28. Given a [[n, k, d]] qubit stabilizer code S, we define the the parity check
matrix KS as a (2n)× (n− k) binary matrix where each row is associated with one of the
(n− k) stabilizer generators of the code. Given a stabilizer generator S, the associated row
has an entry of 1 in the first n columns for every location where S has an X or Y , and an
entry of 1 in columns n+ 1 to 2n for every location where S has a Y or Z. If the stabilizer
generators can be partitioned into two sets of X and Z generators, then the parity check
matrix can be separated into two submatricies KSX and KSZ .
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Example 29. The parity check matrix for the Shor 9-qubit code, whose stabilizers are
given in Eqs. 1.68–1.69, is:

KS =




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1




(2.1)

Notice that the parity check matrix of the code can be partitioned into two submatricies for
both the X and Z type.

Definition 30. Let C1 be a [n, kX , dX ] code that corrects for X errors, defined by the sta-
bilizer group SZ (single square brackets for the code parameters signifying this is equivalent
to a classical code). Let C2 be a [n, kZ , dZ ] code that corrects for Z errors, defined by the
stabilizer group SX . Suppose Ker(KSX ) ⊆ Ker(KSZ ) and d = min(d1, d2) (where Ker(A) is
the Kernel of A), then C1 and C2 define a [[n, kX−kZ , d]] CSS stabilizer code, where the
stabilizer group S can be partitioned into two subgroups containing operators of X and Z
type, that is S = SX ∪ SZ.

The CSS code construction allows for the creation of a quantum error correcting code
from two classical codes, each aimed to address the errors of X or Z type. The statement
that Ker(KSX ) ⊆ Ker(KSZ ) is equivalent to stating that the classical code defined to
correct against Z errors must be contained in the one defined to correct against X errors.
The logical X and Z Pauli operators will also consist only of X and Z Pauli operators,
respectively, as each of the classical codes will have a logical operator with even overlap
with the stabilizers of their respective types. As such, codewords of the CSS codes can be
constructed in a simple manner.

Lemma 31. Given a [[n, k, d]] CSS code with stabilizers S = SX ∪ SZ and stabilizer
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generators SX = 〈GX
i 〉, SZ = 〈GZ

i 〉, then the codestates can be expressed as follows:

|0 · · · 0〉L =
1√
|SX |

∏

i

(I +GX
i )|0〉⊗n (2.2)

=
1√
|SX |

∑

sx∈SX

|sx〉, (2.3)

|j1 · · · jk〉L =

(
k∏

m=1

Xjm
L,m

)
1√
|SX |

∏

i

(I +GX
i )|0〉⊗n. (2.4)

Proof. The codestates of a stabilizer code are defined to be the states that are eigenstates
of the stabilizer group S. Equivalently, |ψ〉 is a codestate if it is stabilized by all of the
stabilizer generators of the code. Consider first the Z type stabilizer generators and their
action on the state |0 · · · 0〉L defined above:

GZ
j |0 · · · 0〉L =

1√
|SX |

GZ
j

∏

i

(I +GX
i )|0〉⊗n (2.5)

=
1√
|SX |

∏

i

(I +GX
i )GZ

j |0〉⊗n (2.6)

=
1√
|SX |

∏

i

(I +GX
i )|0〉⊗n, (2.7)

(2.8)

since GZ
j commutes with all the X type stabilizer generators by definition of being a

stabilizer group. Moreover, the action of GZ
j on the state |0〉⊗n is trivial since GZ

j is
composed of only Z operators. Now, consider the action of the X operators:

GX
j |0 · · · 0〉L =

1√
|SX |

GX
j

∏

i

(I +GX
i )|0〉⊗n (2.9)

=
1√
|SX |

(∏

i 6=j

(I +GX
i )

)
GX
j (I +GX

j )|0〉⊗n (2.10)

=
1√
|SX |

∏

i

(I +GX
i )|0〉⊗n, (2.11)

(2.12)
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where the terms in the product can be reordered in any way due to commutativity, and we
have used the simple identity that GX

j (I + GX
j ) = I + GX

j . Therefore, the state |0 · · · 0〉L
must be an eigenstate of the stabilizer group, and moreover all other codestates can be
generated from the logical X operators as by definition they preserve the codespace and
will act non-trivially on the state |0 · · · 0〉L as the logical X operators cannot be generated
from the stabilizer group SX .

Lemma 32. The CNOT gate can be implemented transversally for all CSS codes. Given
two encoded codeblocks of the same code Q, the transversal CNOT has the following action
on the computational logical basis states:

CNOT⊗n|i1 · · · ik〉|j1 · · · jk〉 = |i1 · · · ik〉|(i1 ⊕ j1) · · · (ik ⊕ jk)〉. (2.13)

Proof. This result will be proved by considering the action of the transversal CNOT gate
on the stabilizers of the codestates. The stabilizers of the state |i1 · · · ik〉|j1 · · · jk〉 are:

SX ⊗ I⊗n I⊗n ⊗ SX (2.14)

SZ ⊗ I⊗n I⊗n ⊗ SZ (2.15)

(−1)i1ZL,1 ⊗ I⊗n I⊗n ⊗ (−1)j1ZL,1 (2.16)

...
...

(−1)ikZL,k ⊗ I⊗n I⊗n ⊗ (−1)jkZL,k. (2.17)

The action of the CNOT gate on the Pauli basis can be summarized as follows (from qubit
1 to 2):

CNOT : XI −→ XX (2.18)

IX −→ IX (2.19)

ZI −→ ZI (2.20)

IZ −→ ZZ. (2.21)

Therefore the action of the transversal CNOT gate on any X stabilizer SX :

SX ⊗ I⊗n −→ SX ⊗ SX (2.22)

I⊗n ⊗ SX −→ I⊗n ⊗ SX , (2.23)

however by multiplying the two resulting outputs together, these stabilizers are equivalent
to the original X stabilizers of the code. Similarly for any given Z stabilizer SZ :

SZ ⊗ I⊗n −→ SZ ⊗ I⊗n (2.24)

I⊗n ⊗ SZ −→ SZ ⊗ SZ , (2.25)
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and again by multiplying the two stabilizers the original Z stabilizers are recovered, there-
fore the final state must be a codestate. Finally, consider the action of the gate on the
logical operators:

(−1)imZL,m ⊗ I⊗n −→ (−1)imZL,m ⊗ I⊗n (2.26)

I⊗n ⊗ (−1)jmZL,m −→ (−1)jmZL,m ⊗ ZL,m, (2.27)

the mapped logical operators are equivalent to the following by multiplying the second line
with the first:

(−1)imZL,m ⊗ I⊗n (2.28)

(−1)im+jmI⊗n ⊗ ZL,m. (2.29)

Therefore, the stabilizers of the output state are given by:

SX ⊗ I⊗n I⊗n ⊗ SX (2.30)

SZ ⊗ I⊗n I⊗n ⊗ SZ (2.31)

(−1)i1ZL,1 ⊗ I⊗n I⊗n ⊗ (−1)i1+j1ZL,1 (2.32)

...
...

(−1)ikZL,k ⊗ I⊗n I⊗n ⊗ (−1)ik+jkZL,k, (2.33)

which are the stabilizers of the computational basis state |i1 · · · ik〉|(i1 ⊕ j1) · · · (ik ⊕ jk)〉.

Example 33. The 7-qubit Steane code is a [[7, 1, 3]] CSS code with the following stabilizer
generators [128]:

XXXXIII ZZZZIII

XXIIXXI ZZIIZZI

XIXIXIX ZIZIZIZ, (2.34)

and logical operators XL = X⊗7 ∼= IIIIXXX, and ZL = Z⊗7 ∼= IIIIZZZ.

Lemma 34. The Clifford gate set is transversal for the 7-qubit Steane code.

Proof. In order to show that the full set of Clifford gates is transversal for the 7-qubit code,
it suffices to show that a generating set of gates are transversal for the code. As shown
above, the CNOT gate is transversal for the 7-qubit code as it is a CSS code.
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The Hadamard gate is transversal as the X and Z stabilizers of the code are symmetric
and Hadamard has the action of mapping X to Z and vice versa, as well under the action
of the Hadamard H⊗7X⊗7H⊗7 = Z⊗7, therefore concluding the correct logical operation
on the logical Pauli operators.

Finally, to complete the generating set for the Clifford group, consider the action of
the transversal phase gate, that is the gate S = |0〉〈0| + i|1〉〈1|. Since the phase gate is
diagonal it preserves the Z gate under conjugation and the action on the X gate results
in: SXS† = Y . Therefore the X stabilizers will transform as follows:

XXXXIII −→ Y Y Y Y III

XXIIXXI −→ Y Y IIY Y I

XIXIXIX −→ Y IY IY IY. (2.35)

However, note that the transformed stabilizers are a product of the original X and Z sta-
bilizers, and as such the stabilizer group remains the same. Finally, the logical X operator
transforms as: S⊗7X⊗7S†⊗7 = Y ⊗7 = (−iZX)⊗7 = iZ⊗7X⊗7 = −Y ⊗7. Therefore, S⊗7

results in the logical application of S†, which is still a generating gate for the Clifford gate
set.

Note that S⊗7 being logically equivalent to S† for the 7-qubit code is the first example
we have seen of a transversal gate applying a logical gate that is not equivalent to the
physical underlying gate (albeit very related in that it is the inverse of the applied gate).
Moreover, the proof of the above statement for the transversal phase gate could have also
been obtained from considering the weight of the computational basis states that are in
the codewords of the logical states of the code |0〉L, |1〉L. Namely, for the 7-qubit code the
logical |0〉L state is composed of computational basis states with weight 0 mod 4 and the
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logical |1〉L state is composed of basis states of weight 3 mod 4:

|0〉L =
1

23/2
(I +GX

1 )(I +GX
2 )(I +GX

3 )|0〉⊗7 (2.36)

=
1

23/2
(I +GX

1 )(I +GX
2 )(|0〉⊗7 + |1010101〉) (2.37)

=
1

23/2
(I +GX

1 )(|0〉⊗7 + |1010101〉+ |1100110〉+ |0110011〉) (2.38)

=
1

23/2
(|0〉⊗7 + |1010101〉+ |1100110〉+ |0110011〉

+ |1111000〉+ |0101101〉+ |0011110〉+ |1001011〉), (2.39)

|1〉L =
1

23/2
(|1〉⊗7 + |0101010〉+ |0011001〉+ |1001100〉

+ |0000111〉+ |1010010〉+ |1100001〉+ |0110100〉). (2.40)

(2.41)

Example 35. The 5-qubit perfect code is a [[5, 1, 3]] quantum error correcting code with
the following stabilizer generators [95]:

XZZXI IXZZX

XIXZZ ZXIXZ, (2.42)

with logical operators XL = X⊗5, and ZL = Z⊗5.

Notice that the 5-qubit code has stabilizers that are cyclic permutations of one another.
As such, the Pauli twirl operator K will be a transversal gate for the code:

K =
1√
2

(
1 i
1 −i

)
, (2.43)

KXK† = −Y, (2.44)

KYK† = −Z, (2.45)

KZK† = X. (2.46)

Lemma 36. The twirl operator K is transversal for the perfect [[5, 1, 3]] code.

Proof. First consider the action of the transversal twirl operation K⊗5 on the stabilizers.
Due to the cyclic symmetry of the stabilizer generators and of the transversal operation,
without loss of generality we can consider the transformation of a single stabilizer generator.
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Showing that it remains in the stabilizer group will be sufficient to showing that the group
remains unchanged.

Consider the following:

K⊗5(XZZXI)K⊗5 = Y XXY I

= (XIXZZ)(ZXIXZ), (2.47)

therefore the transformed stabilizer is a product of two of the original stabilizers of the
group and thus remains in the stabilizer group. Therefore we conclude that S remains
unchanged.

Finally, it must be checked whether the logical operation implements the correct map-
ping of the logical X and Z operators. It is fairly straightforward to check:

K⊗5(XXXXX)K⊗5 = −Y Y Y Y Y = −YL, (2.48)

K⊗5(ZZZZZ)K⊗5 = XXXXX = XL, (2.49)

(2.50)

thus completing the proof.

Example 37. The 15-qubit Reed-Muller code is a [[15, 1, 3]] code with the following stabi-
lizers [89, 129]:

IIIIIIIXXXXXXXX IIIIIIIZZZZZZZZ

IIIXXXXIIIIXXXX IIIZZZZIIIIZZZZ

IXXIIXXIIXXIIXX IZZIIZZIIZZIIZZ

XIXIXIXIXIXIXIX ZIZIZIZIZIZIZIZ

IIIIIIIIIIIZZZZ IIIIIZZIIIIIIZZ

IIIIIIIIIZZIIZZ IIIIZIZIIIIIZIZ

IIIIIIIIZIZIZIZ IIZIIIZIIIZIIIZ, (2.51)

and the logical Pauli operators are XL = X⊗15 and ZL = Z⊗15.

Lemma 38. The CNOT and T gates are transversal for the 15-qubit code.

Proof. The CNOT is transversal since the 15-qubit code is a CSS code. In order to show
the transversality of the T gate, rather than show the preservation of the stabilizer group, it
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will be shown that the action of the transversal T has the desired mapping for the stabilizer
states |0〉L and |1〉L. As shown in Lemma 31, the logical |0〉L state can be expressed as:

|0〉L =
1√
|SX |

∑

sx∈SX

|sx〉, (2.52)

where sx is a binary string representing the locations of Pauli X operators for every element
SX ∈ SX . It can be shown that every element in SX is of weight-8, except for the identity
operator of weight-0. Therefore, all elements in the sum will be of states of weight-8, and
as such will remain invariant under the action of T⊗15:

T⊗15|0〉L =
1√
|SX |

∑

sx∈SX

T⊗15|sx〉

=
1

4


|0〉⊗15 +

∑

sx∈SXsx 6=~0

ei8π/4|sx〉


 , (2.53)

=
1

4

∑

sx∈SX

|sx〉, (2.54)

therefore T⊗15|0〉L = |0L〉. On the other hand, due to the fact that XL = X⊗15, the logical
state |1〉L will be a sum over computational basis states with weight 7 and 15, thus resulting
in the following action:

T⊗15|1〉L = T⊗15XL|0〉L =
1√
|SX |

∑

sx∈SX

T⊗15X⊗15|sx〉

=
1√
|SX |

∑

sx∈SX

T⊗15
∣∣∣~1⊕ sx

〉

=
1

4


ei15π/4|1〉⊗15 +

∑

sx∈SXsx 6=~0

ei7π/4
∣∣∣~1⊕ sx

〉

 , (2.55)

=
ei7π/4√
|SX |

∑

sx∈SX

∣∣∣~1⊕ sx
〉

= e−iπ/4|1〉L. (2.56)

Therefore, T⊗15|1〉L = e−iπ/4|1〉L, which means that the transversal T gate results in a log-

ical action of T †L. One could equivalently apply the logical T gate by applying T † transver-
sally.
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The above three codes exhibit all different classes of transversal gates, however none
of the transversal gate sets for a given error correcting code are universal for quantum
computation.

Definition 39. A finite gate set G = {G1, G2, . . . , Gn} is called a universal gate set for
a Hilbert space H if for any unitary transformation U and error rate ε there exists a

decomposition using O(logc (
1

ε
)) gates in G, where c is a constant.

In fact, it was shown that any transversal gate set for a given quantum error correcting
code can only generate a finite gate set and thus cannot be universal. A similar result was
obtained for quantum error correcting codes generated from the group GF (4) (stabilizer
codes belong to this class). These results are summarized in the theorem below.

Theorem 40 (Eastin–Knill Theorem [52, 142]). Given a quantum error correcting code Q,
then the set of transversal gates GT cannot be universal for quantum computation.

This result creates a problem for fault-tolerant theory as transversal operations form
the most natural realization of fault-tolerant operations, and the idea of using a gate that
is non-transversal for a given code would seem to break fault-tolerance. We will return to
using non-transversal gates later in this chapter, however there are methods to circumvent
the lack of a universal gate using special ancillary state preparation.

2.1.2 Magic state distillation

2.1.2.1 Gate teleportation

In Section 1.2.1.6, the state teleportation algorithm was introduced using an entangled
qubit between two parties to transport the information from one party to another. It turns
out that there is a very similar scheme called gate teleportation that will be useful in fault-
tolerant quantum computation. The scheme was developed by Gottesman and Chuang
and is presented below [61].

Quantum gate teleportation is identical to quantum state teleportation from Alice’s
perspective. What changes is that prior to receiving Alice’s message, Bob performs the
unitary U on his half of the entangled pair and follows this by applying the unitary UPU † on
his qubit based on the resulting measurement from Alice (where P is the Pauli operation
that would have been performed in the usual state teleportation scheme). At first this
seems to provide no advantage, Bob is simply applying the unitary, undoing it, applying
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Figure 2.1: Protocol for quantum gate teleportation [61]. Alice and Bob each share one
half of a Bell pair and Alice begins with the arbitrary state used in the computation. Alice
performs a Bell measurement on her two qubits, while Bob applies the unitary U to his
half of the Bell pair. Alice then sends the result of the measurement to Bob who in turn
performs a controlled unitary UXaZbU † that depends on the measurement result (a, b).
The resulting final state on Bob’s side is U |ψ〉.
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the Pauli, and applying the unitary again. Why not wait until the state teleportation
scheme has completed before applying his unitary? The important observation is that the
action of the unitary U is on the Bell state that Alice and Bob share and this is particularly
important when the unitary is noisy!

Taking a step back and thinking about the different elements of state teleportation,
there is the preparation of the entangled state between Alice and Bob, the measurement
in the Bell basis for Alice, and the controlled Pauli gate application for Bob depending on
Alice’s measurement and message. Gate teleportation contains the same basic elements,
except that the prepared state is no longer necessarily a Bell pair, but rather a different
entangled state, Alice’s measurement is the same, and Bob now performs a different con-
trolled unitary, which could potentially be easier than applying U itself! This is the key
aspect, that the application of U is pushed to the state preparation, and Bob now has to
perform the gate UPU † on his copy of the state which may be easier to perform than U
itself.

2.1.2.2 The Clifford hierarchy

As eluded to in the previous section, gate teleportation becomes useful primarily in sit-
uations when performing the gate UPU † is easier than performing U . This has its most
obvious impact in the implementation of unitaries from the Clifford hierarchy.

Definition 41. Let C(1)
n := Pn be the Pauli group on n qubits as well as the first level

in the Clifford hierarchy. The higher levels of the Clifford hierarchy are then defined
recursively as follows:

C(l)
n := {U ∈ U(H⊗n)|UPU † ∈ C(l−1)

n , ∀ P ∈ Pn}, (2.57)

where U(H⊗n) is the set of unitaries in the n qubit Hilbert space. The set of operators

in C
(2)
n are denoted the Clifford gates, mapping Pauli operators to Pauli operators.

Note that from the definition of the Clifford hierarchy, unitaries that reside in the
Clifford hierarchy imply that the unitary that Bob has to apply, UPU †, is one level lower
in the hierarchy. This fact becomes particularly important in the case when U ∈ C(3)

1 that
is a single qubit gate at the third level of the hierarchy, then every element in the gate
teleportation scheme remains Clifford except for the state preparation protocol (note that
measurement in the computational basis is considered a Clifford operation here, as it is
included in the class of operations that are efficiently simulatable using a classical computer
by the Gottesman-Knill Theorem [59]).
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Relating this notion back to quantum error correction, we have already seen examples
of a code that has a generating set of transversal gates for the Clifford group, that is
{H,S,CNOT} in the case of the 7-qubit code. Also, computational basis measurement can
be performed transversally in such a code using techniques such as Shor error correction,
Steane error correction, or Knill error correction [126, 130, 87]. Moreover, adding any single
qubit gate from outside the Clifford group will generate a universal gate set for quantum
computation. Therefore, by applying gate teleportation to a unitary U ∈ C(3)

1 will allow for
the application of a universal set of operations, assuming that one can prepare the logical
state (I ⊗ U) (|00〉+ |11〉/

√
2 reliably since UPU † is Clifford and transversal.

2.1.2.3 Distilling the magic state

It has been shown in the last few sections that the problem that the Eastin-Knill Theo-
rem 40 poses on the impossibility of transversal universality can be sidestepped by having
the ability to prepare a special logical state of the form (I ⊗ U) (|00〉+|11〉)/

√
2, where U is

a gate from C(3)
1 and the underlying code can implement the full Clifford group transver-

sally1. Preparing any eigenstate of a stabilizer group can be done in a fault-tolerant man-
ner using fault-tolerant measurement techniques, which can be done to arbitrary precision
assuming the underlying gates are below threshold. Such states shall be referred to as
stabilizer states. However, the state (I ⊗ U) (|00〉+ |11〉)/

√
2 is not a stabilizer state and

thus given an error correcting code with only transversal Clifford operations, it is unclear
how such a state can be prepared in a fault-tolerant manner.

The most commonly used gate to complete the universal gate set with the Clifford
operations is the π/8-gate, or T gate:

T =

(
e−iπ/8 0

0 eiπ/8

)
= e−iπ/8

(
1 0
0 eiπ/4

)
(2.58)

. Up to global phases, the T gate induces a phase of π/4 on the |1〉 state, we shall refer
to this version of the gate (without global phase) for the remainder of the thesis. The
following identities should be noted for the T gate:

TZT † = Z (2.59)

TXT † =
1√
2

(X + Y ), (2.60)

1While thus far only the 7-qubit code has been discussed in relation to transversal Clifford operations,
this will hold for another very important family of topological error correcting codes, the color codes.
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and it can be verified that the operator (X + Y )/
√

2 is indeed in the Clifford group and

as such T ∈ C(3)
1 . Therefore, C(2)

n + T is universal for quantum computation and moreover,
by using gate teleportation, universal quantum computation can be obtained from reliably
preparing the state (I ⊗ T ) (|00〉+ |11〉/

√
2, or more simply given that CNOT is assumed

to be fault-tolerant and as such have low noise, preparing the state T (|0〉 + |1〉)/
√

2) =
(|0〉+ eiπ/4|1〉)/

√
2 is sufficient.

To recap, assuming the error correcting code that is being used allows for the application
of all Clifford operations in a transversal manner, and thus fault-tolerant, the error on
such gates can be made arbitrarily small. Unfortunately, this is not sufficient for universal
quantum computation, and gate teleportation would allow to complete the universal gate
set assuming one could fault-tolerantly prepare the state (|0〉+ eiπ/4|1〉)/

√
2.

This section reviews the 15-qubit state distillation scheme, originally presented by
Bravyi and Kitaev [32]. Other distillation schemes do exist that exhibit different fault-
tolerant properties, we refer to them at the end of this section. State distillation begins
with the preparation of many copies of the noisy logical state, denoted ρ. Defining the
state |H〉 = (|0〉+ eiπ/4|1〉)/

√
2, note that |H〉 is an “+1” eigenstate of the Clifford opera-

tor TXT † while |H⊥〉 = (|0〉 − eiπ/4|1〉)/
√

2 is a “-1” eigenstate. As such, by applying the
probabilistic map of the identity and TXT † with even weight, we can dephase the noisy
state ρ in this basis (recall that TXT † is Clifford and as such can be applied with high
accuracy):

ρ→ ρH =
1

2
(ρ+ TXT †ρTXT †) = (1− ε)|H〉〈H|+ ε|H⊥〉〈H⊥|, (2.61)

where ε is now a single parameter that characterizes the level of noise in the initial encoded
state.

The idea behind |H〉-type magic state distillation is that by taking 15 copies of the noisy
state, the overlap of the joint state with the codespace of the 15-qubit Reed-Muller code will
yield a state with higher fidelity in the |H〉 state assuming ε is below some threshold value.
Moreover, in order to project the joint state onto the 15-qubit codespace, the decoder of
the 15-qubit code along the computational basis measurements need to be applied, all of
which belong to the Clifford group and can be applied with high accuracy. Let Π15 be the
projector onto the eigenspace of the 15-qubit code and D15 be the decoder of the code,
this projection can be implemented using Clifford operations and post-selection. Then
the resulting state after the projection and decoding will be diagonal in the {|H〉, |H⊥〉}
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basis [32]:

D15 ◦
(
Π15ρ

⊗15
H Π15

)
= (1− ε′)|H〉〈H|+ ε′|H⊥〉〈H⊥|, (2.62)

ε′ =
1− 15(1− 2ε)7 + 15(1− 2ε)8 − (1− 2ε)15

2(1 + 15(1− 2ε)8)
, (2.63)

where the states are post-selected on having projected onto the codespace of the 15-qubit
code, which occurs with probability:

Psucces =
1 + 15(1− 2ε)8

16
. (2.64)

The output state will therefore be a less noisy state assuming that ε′ < ε, which occurs
for all ε < 0.14. Moreover, by repeating the procedure, multiple copies of the less noisy
state can be fed back into the same distillation process and the error rate can be reduced
to arbitrarily small levels in a very rapidely. In fact, the error rate of the distilled state is
suppressed double-exponentially in the number of levels of distillation, overcoming the ex-
ponential growth in the number of noisy qubits required for such a distillation. In practice,
it will be rare that a computation would require more than three levels of distillation. The
process is called magic state distillation as not only can the |H〉 state be distilled allowing
for the application of a universal set of quantum gates, the distillation can be done using
only Clifford operations in the first place!

Is the problem of universal fault-tolerant quantum computation then solved? Magic
state distillation certainly provides a means towards such a universal set of operations.
However, the primary drawback of magic state distillation is that while it is technically
efficient in terms of the rate at which the noise is suppressed, the number of noisy logical
states that need to be prepared is still very large, for even a few distillation levels. Moreover,
in gate compilation schemes using the aforementioned universal gate set, typically the
T gate is applied approximately half of the time [86], therefore there will always have to be
an active ancillary factory ready for each logical qubit. Despite many efforts to reduce the
overhead in magic state distillation [104, 80, 31, 79], studies have assessed that in schemes
where magic state distillation may be most useful, such as in completing the universal
gate set for the Toric code [85], the overhead in terms of physical qubit number would be
close to 90% of the total physical qubit space [55]. Therefore, developing techniques to
circumvent the need for magic state distillation and being able to complete the universal
gate set has become a very active area of research in recent years.
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2.2 Universal fault-tolerance via code concatenation

The ideas presented in this section are based on the research that appeared in Ref. [78],
copyrighted by the American Physical Society. I developed the idea for this project and
both authors contributed to the final scheme which was developed to realize the research
goal of the project. I wrote the manuscript and both parties contributed to the editing of
the work for publication.

2.2.1 Overview

This work presents an alternative approach to obtaining a universal set of transversal
gates by using concatenated quantum error correcting codes, rather than state distillation.
The scheme proposed uses two different quantum error correcting codes, with differing
sets of transversal operations, in concatenation. We argue that by sacrificing the full
distance of the concatenated quantum error correcting code, we can exploit the transversal
properties of both quantum codes to produce a set of operations that, while not globally
transversal, provide a means for universal fault-tolerant quantum gates. In this work
we shall focus on protecting against arbitrary single-qubit errors, however, we provide a
brief description of how such a scheme could be generalized to correct against t errors.
Recently, Paetznick and Reichardt [114] have proposed a similarly motivated work on
universal quantum fault-tolerance without the preparation of special ancillary states and
their idea was further developed to a topological setting by Bomb́ın [23]. In their scheme,
additional transversal measurements and error correction are introduced after the action
of the transversal Hadamard gate in order to recover the codespace. The presented scheme
differs from such a construction in that it does not require an additional round of error
correction since the logical gates do not disrupt the codespace as they are not necessarily
transversal. This comes at the expense of requiring an additional concatenated code for
protection. Additionally, there has been research that focused on obtaining a set of fault-
tolerant operations to transfer between different quantum error correcting codes, yet such
schemes do not yield a set of universal operations [131, 69, 46].

2.2.2 Concatenated QEC

We say a logical gate G on a quantum error correcting code C is called t-transversal if G
interacts with at most t locations of the underlying qubits composing the code C. The
general concatenated error correcting scheme is as follows: the qubits that we desire to
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protect against errors are encoded into a quantum error correcting code C1. In this work,
we shall require the code distance of C1 to be at least 3, so that it can correct arbitrary
single-qubit errors. The qubits that make up the code C1 are subsequently encoded into a
second code C2, which again will be required to have distance of at least 3. The general
layout of the scheme is summarized in Figure 2.2. As we are focusing on codes that correct
for an arbitrary single-qubit error, we shall refer to a transversal gate for a given code as
a gate which is 1-transversal and any gate not having this form as non-transversal.
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Figure 2.2: General construction of a logical gate for a concatenated error correction
scheme. The qubit of information is encoded in a quantum error correcting code C1, whose
qubits are in turn encoded into a code C2. As such, the logical gate g1 (given by the
boxed region) on the encoded space C1 will be composed of multiple logical gates g2 on the
C2 codeblocks.

The important properties for the quantum error correcting codes C1 and C2 for the
implementation of universal fault-tolerant quantum logic are as follows: 1. For any logical
gate that is non-transversal in C1, there must exist an application of this logical gate
using gates that are transversal in C2, 2. The recovery operations (syndrome measurement
and error correction operations) on C1 and C2 must be globally transversal (in the full
concatenated codespace).

Since there exists no quantum error correcting code that exhibits a full set of transversal
quantum gates [52, 142], there will always be at least one gate in a given universal gate set
that will couple qubits that make up the error correcting code, leading to the possibility
of bad error propagation. Consider the first level of encoding C1, the non-transversal gate
can lead to a propagation of errors, however, if we are now encoding each of the qubits
making up the code C1 into a further error correcting code, the propagation from a single
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to multiple physical faults will not necessarily lead to a propagation of logical faults if the
errors are sufficiently sparse.

Specifically, the first requirement of the concatenated quantum error correction scheme
stipulates that every non-transversal gate in the code C1 can be implemented using transver-
sal gates in the code C2. The non-transversality of a given gate will cause the propagation
of a single physical fault between different logical qubits in C1. The implementation of
the non-transversal C1 gates will govern the propagation of the physical errors between the
qubits. Therefore, we require the gates that make up the logical gate on C1, themselves
logical gates for the code C2, to be transversal in the encoded space C2. By imposing
such a restriction, a single error occurring in the non-transversal gate application in C1

will propagate to at most a single physical error in each of the logical qubits forming C1,
which themselves are encoded blocks of C2. This is precisely the property one is after in a
fault-tolerant quantum computation, that a single physical error will propagate to at most
a single physical error on encoded codeblocks, allowing for the correction of such errors.

Given a choice of codes C1 and C2, not all gates of the universal gate set will be transver-
sal in C2. By the properties outlined above, any logical gate in C1 that uses gates from C2

that are not transversal in its construction, must be transversal in C1. In performing such
a gate, a single fault on a particular C2 codeblock could propagate to multiple errors within
this codeblock and could lead to a logical C2 fault in the codeblock where the error occurred.
However, a single logical fault on one of the C2 codeblocks will not yield a global logical
fault on C1, as such a code can correct for arbitrary logical faults on one of its encoding
logical qubits.

The concatenation scheme therefore protects all gates in the universal gate set. The
scheme circumvents the result claiming that no universal gate set can be implemented
transversally [52, 142] by not implementing the gates in a strict transversal manner. Rather,
the gates are implemented such that errors spread to locations that are further protected
by an additional code through concatenation.

How is error correction then applied? We shall describe the error correction properties
that are required after the application of two types of logical quantum gates, those that
are non-transversal in C1 yet use an application of transversal C2 gates, and the application
of logical gates that are transversal in C1, whose individual block gates are non-transversal
in C2. In the case of the former, the important property of the error correction is that it does
not couple qubits within the codeblocks of C2, as the application of the gate could propagate
a single fault into multiple single faults on each of the C2 codeblocks. If the error correction
procedure propagates errors within the C2 codeblocks, then single errors on each codeblock
will propagate to multiple errors on each codeblock, thus possibly leading to logical errors
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on multiple codeblocks, therefore causing a global logical fault. As such, it is very important
that the error syndrome measurement and correction be performed transversally on each
of the C2 codeblocks. Error correction at the C1 level is not necessary after the application
of this type of logical gate, as the errors propagate within the codeblocks and the scheme
is constructed in a way that all such errors on the codeblocks are recoverable as long as
only a single fault occurs in the application of the gate.

The error correction procedure after the implementation of the transversal gate in C1

(using non-transversal C2 gates) will require an additional level of error correction. As in
the application of the non-transversal C1 gates, error correction on each of the C2 codeblocks
is first applied. As the application of the logical gate on C1 uses non-transversal C2 gate
applications, a single (correctable) error on a particular C2 codeblock can propagate to a
non-correctable set of errors on that given codeblock. As such, performing the C2 error
correction on that codeblock will introduce a logical error (if the error were to occur during
the C2 error correction process itself then this error will be weight one). However, as
mentioned above, if only a single logical C2 error has occurred, the logical fault introduced
by the error correction will be correctable using error correction procedure on C1. However,
it is important that the error correction procedure on C1, which is a logical error correction
procedure as it acts on logically encoded states in C2, is itself globally transversal. As such,
errors that could occur during error correction will not propagate to multiple physical
errors that could be detrimental upon the application of further logical computation.

2.2.3 Example: A 105-qubit quantum error correcting code

A simple example of the scheme outlined in this work involves two of the most well studied
quantum error correcting codes, C1 will be the 7-qubit Steane code [128] and C2 the 15-qubit
Reed-Muller code [89]. The 15-qubit Reed-Muller code has the following set of transversal
gates: {T,CNOT}, where each logical gate is achieved by applying the gate itself to each
of the qubits (or T † in the case of the logical T gate). The missing gate from the universal
gate set is the Hadamard gate. The 7-qubit Steane code (corresponding to C1) has the
following set of transversal gates: {S,H,CNOT}, where S = |0〉〈0| + i|1〉〈1|. Each logical
gate is achieved by applying an individual gate to each of the qubits, or pair of qubits
(in the case of applying logical S, one applies S† to each of the qubits). As such, C1 can
implement gates from the Clifford group transversally, yet are missing the T gate from the
universal gate set that can be implemented transversally.

The concatenated code is 7 blocks of 15 qubits, totalling 105 qubits, encoding 1 qubit
of information. As both quantum codes share the property that all Pauli gates, the S
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phase gate, and the CNOT gate can be implemented logically by applying the gate to
each qubit, or pair of qubits, then the globally logical version of these gates for the 105
qubit code are also achieved by applying the corresponding gate to each qubit, or pair of
qubits, of the full 105 qubit code. Additionally, all syndrome measurements (which will
correspond to the measurement of Pauli observables) will be transversal within the code,
as well as the Pauli corrections.

The logical T gate is achieved by combining logical gates on the different C2 codeblocks,
which as shown in Figure 2.3 is not transversal in the C1 code, yet uses gates that are all
transversal within the 15 qubit C2 codeblocks. As explained in the previous section, a
single error in the implementation of the logical gate can propagate to multiple errors (a
maximum of 3 for this particular gate application) yet will be distributed such that there
are only single errors on each C2 codeblock. The error correction procedure measures the
syndromes on each of the C2 codeblocks individually, which corresponds to measuring the
14 syndromes corresponding to the 15-qubit code. The Pauli error correction operations
are then applied to correct for the errors that occurred during the application of the logical
T gate. As such, the concatenated code can correct for an arbitrary weight-1 error that
occurs during the implementation of the logical T gate.

In order to implement the logical H, one applies the logical H15 on each of the C2

codeblocks, as such it is transversal in the encoded states that form the code C1, yet each
individual H15 is not transversal in its implementation on the C2 codeblocks. A single
error that occurs in one of the individual applications of the H15 gates could propagate to
multiple errors within the codeblock, leading to possible logical errors. However, if only
one such error occurs the full quantum code will still be protected. After the action of
the gate, error correction is applied to each of the C2 codeblocks, possibly resulting in
correction causing a C2 logical fault. However, if only one such logical C2 fault occurs,
subsequent global error correction at the logical C1 level will detect such an error. The
C1 error correction involves measuring the 6 stabilizers of the 7-qubit Steane code, where
each stabilizer is now a logical stabilizers composed of X15 or Z15 operators. However, as
such operators are transversal for the 15-qubit code, they can be measured in a transversal
way. The maximal weight of the stabilizers measured for C1 code is 32, since each of the
logical X15 gates involve 8 X gates on the C2 codeblock, and the weight of the 7-qubit
X stabilizers is 4. Error correction for the C1 level will then be completed by performing
logical Pauli error correcting operations on affected C2 codeblocks. The measurement of
the C1 stabilizers will be the most expensive error correction step due to the high weight
of the stabilizers.

As described, the concatenated code can correct for any weight one error. However,
it is worth noting that if one used a straight concatenation of the two codes to protect
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Figure 2.3: (a) Logical T gate for the Steane code C1, composed of logical CNOT15 and
T15 gates on the C2 codeblocks. These gates are transversal in C2, and therefore only
propagate errors to different codeblocks, without propagating within a given C2 codeblock.
(b) Logical H gate for the Steane code C1, implemented using logical H15 gates on each of
the C2 codeblocks. Note that the individual H15 are non-transversal on each codeblock.

against quantum noise, the concatenated code will be a [[105,1,9]] quantum error correcting
code, that is, it would protect against 4 arbitrary errors. In this fault-tolerant scheme, we
are sacrificing the larger distance of a straight concatenation scheme in order to protect
against arbitrary single qubit errors when performing logical gates.

2.2.4 Summary & outlook

In this work we have proposed a method for universal quantum fault-tolerance using con-
catenated error correcting codes. The full distance of the concatenated scheme is sacrificed
in order to establish a set of universal quantum gates that are robust to a smaller set
of errors. The transversal properties of the two different error correction schemes are
exploited to limit the propagation of errors to either be sufficiently sparse, only a small
number of errors per encoded codeblock, or limiting all errors to be contained within a
single codeblock.

The scheme described in this work could be adapted to account for quantum error
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correcting codes C1 and C2 that correct against arbitrary weight t errors. The key properties
of universal gate sets developed for such a concatenation scheme would be modified such
that given a gate which is not t-transversal in C1, the logical gates in C2 which form such
a gate must be t-transversal in C2 when applied in composition. Additionally, similar
requirements for the quantum error correction operations would be necessary. The error
correction operations should be 1-transversal as to not possibly propagate errors that
occur during the error correction process to multiple errors that could be detrimental at
the next stage of computation. The presented scheme could be generalized to arbitrary
distance codes by concatenating the higher distance 2D and 3D color code, of which the
7-qubit Steane and 15-qubit Reed-Muller are the lowest non-trivial code in each respective
dimension.

At first it may seem that the presented scheme would have quite a low fault-tolerance
threshold due to the high number of physical qubits for such a small global distance. The
non-transversal nature of the logical Hadamard gate on each of the 15-qubit codeblocks will
introduce many potential fault locations which would seem to indicate a high probability
of logical errors arising unless the physical error rate is very low. However, as shown in
the next section, the fault-tolerance threshold can actually be higher than expected due to
the form of logical noise for each of the respective logical gates. As such, the threshold is
comparable to many other concatenated schemes [113]. Moreover, it should be noted that
in the presented example, the protection of the code C2 is really only needed on three of the
codeblocks, the logical qubits that are involved in the non-transversal T gate application.
Therefore, the 105-qubit code could, in theory, be replaced by a 49-qubit encoding (3
encoded blocks of 15 qubits, and 4 single qubits) and still have a fault-tolerant set of
universal logical gates 2. This provides a means to reduce the number of faulty locations
and increases the theoretical threshold for some noise models [37].

2.3 Thresholds for universal concatenated codes

The material from this section is based on the journal article of Ref. [38], copyrighted by
the American Physical Society. In this work, Christopher Chamberland and myself were
the primary investigators of the research, developed the framework of the fault-tolerant
numerical tests and wrote of the manuscript. I was involved in the development of the
simulation code, and advised Christopher Chamberland in the writing of much of the code

2I would like to acknowledge Jonas Anderson, Chris Cesare, and Guillaume Duclos-Cianci for interesting
discussions regarding this construction as well as a recent parallel work that outlines this encoding [110]
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in the latter part of the project. All three authors of Ref. [38] contributed to the analysis
of the results and the editing of the manuscript.

2.3.1 Fault-tolerance threshold under depolarizing noise

In this work, we establish a lower bound on the fault-tolerant threshold for the 105-qubit
universal concatenated code under depolarizing noise. We show that the dual protection
coming from the concatenation of two different error correcting codes provides more than
just minimal fault-tolerant protection, it also serves as a means for logical error suppression
at the second level of concatenation (and above). We believe that this provides new
insights in the development of quantum error correcting codes and emphasizes an important
principle: to logically protect the quantum gates that are most present in the fault-tolerant
architecture.

The key property of fault-tolerant architectures is the presence of an asymptotic thresh-
old. For concatenated coding schemes, the asymptotic threshold is the physical error rate
pth such that for physical error rates p < pth the logical error rate can be made arbitrar-
ily small for sufficiently large number of concatenation levels (and the overall time/space
resource overhead scales as O(poly(log (A/ε))A), where A would be the required resources
for a noiseless circuit).

All currently known fault-tolerant schemes for quantum logic require active error cor-
rection between logical gates. Error correction steps are interleaved between the imple-
mentation of various fault-tolerant gates. In this study, fault-tolerant syndrome measure-
ment and error correction is implemented using Steane’s method [130], see Fig. 2.4. At
a given concatenation level, each component of the logical circuit (gates and error detec-
tion/measurement) will be themselves composed of many operations from the previous
level of concatenation. These components include state preparation and measurement,
logical gates and memory locations. We consider a depolarizing model for each physical
location (level-0) in the circuit. Depolarizing noise is modelled in a similar manner to
that of Paetznick and Reichardt’s study of the 23-qubit Golay code [113]. Each single
qubit gate (including resting qubits) undergoes Pauli noise with probability p/4 for each
Pauli operation, and each two-qubit gate undergoes two-qubit Pauli noise with probabil-
ity p/16 for each non-trivial two-qubit Pauli. Under this noise, state preparation in the
stabilizer Z (X) basis is flipped from |0〉 (|+〉) to |1〉 (|−〉) with probability p/2. Similarly,
measurement in the stabilizer Z (X) basis is flipped with probability p/2.

As first proposed by Aliferis et al. [2] we analyze logical gates by considering the whole
as an extended rectangle (exRec), that is the logical gate itself along with its leading (LEC)

51



•

•

|ψ〉L •
...

•










|+〉L 




...













(a)

|ψ〉L
...

• H 




• H 




|0〉L • H 




...

• H 












(b)

Figure 2.4: Steane error correction scheme for detecting (a) X and (b) Z errors. A logical
stabilizer state is prepared fault-tolerantly (not shown in Figure) and is coupled to the
logical state using a transversal CNOT . The transversal CNOT has no effect on the
logical state, however errors of the desired type are propagated onto the ancillary state for
detection.

and trailing (TEC) error correction circuits (see Figure 2.5). In order to characterize the
rate at which logical errors occur, we define malignant error events. Let |ψ1〉 be a single
or two-qubit logical state obtained by applying ideal decoders immediately after the LEC
circuit and |ψ2〉 the state obtained by applying ideal decoders immediately after the TEC.
We define the event malE as |ψ2〉 = EU |ψ1〉 where E is a single or two-qubit logical Pauli
error and U is the desired gate. We denote the malignant logical error E present at the
output of the circuit by malE. In what follows we will be interested in obtaining estimates
of the probability that the event malE occurs for the CNOT, Hadamard and T gate.

We use Monte-Carlo sampling in order to determine the probability of each malignant
event given an underlying physical depolarizing model. Given N simulations of the logical
gateG at a physical error rate p, we track the number of malignant faults aE(p) of each error
type E, and estimate the probability of a given logical fault as Pr[malE|G, p] = aE/N . The
estimate of Pr[malE|G, p] improves as the number of iterations N increases by reducing
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Figure 2.5: Extended rectangle consisting of leading and trailing error correcting circuits
implementing the desired logical gate G.

the standard deviation. Using a least-squares fitting to determine the error probability
as a function of input depolarizing error rate, we can determine the pseudo-threshold for
each of the logical operations for our error-correcting code. For a level-1 exRec encoding
the logical gate G, we define the pseudo-threshold as the crossing point p = p

(1)
G (p),

where p
(1)
G (p) =

∑
Ei

Pr[malEi |G, p] for all possible logical Pauli errors Ei for a given logical
gate G. Intuitively, the pseudo-threshold corresponds to the error rate below which the
logical error rate at level-1 is guaranteed to be lower than the physical error rate. In
all previously studied error correction codes, the pseudo-threshold was conjectured to be
an upper bound on the asymptotic threshold [133, 113]. In this work we show that this
intuitive bound does not necessarily have to hold and that the asymptotic threshold can
be much larger than the pseudo-threshold. To our knowledge this is the first exhibition
of this type of logical error behaviour and is fundamentally related to the structure of the
underlying 105-qubit error correcting code.

At each location of the level-one exRec, errors are introduced following the depolarizing
noise model with noise strength p. Since the logical gates in question are fault-tolerant, a
logical fault can only occur if a sequence of failures occur at the physical level. Namely,
we can upper bound the failure probability for each logical fault E as follows:

Pr[mal
(1)
E |G, p] ≤

LG∑

k=d d∗
2
e

c(k)pk =: Γ
(1)
G , (2.65)

where the coefficients c(k) are positive integers that parametrize the number of possible
weight-k errors that can lead to a logical fault, LG is the total number of circuit locations
in the logical gate G, and d∗ characterizes the minimal distance of a given logical gate (that
is dd∗/2e is the minimum weight error that must occur to produce a logical fault). For
example in the 105-qubit code, the logical CNOT gate has d∗ = 9, while the Hadamard
and T logical gates have d∗ = 3 since they sacrifice some of the distance of the code due
to the fact that they are not globally transversal. As was shown in [113], the polynomial
Γ(1)(p) is monotone non-decreasing making its construction straightforward with the role
of upper bounding the logical error probabilities of all the logical operations G at level-1.

We can then generalize this notion to the level l concatenation level, where each of the
physical locations are replaced by logical exRec locations of the (l − 1) level. Taking the
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worst case error rate for the (l − 1) logical components, the error rate of logical gates at
the l-th concatenation level can be bounded as follows:

Pr[mal
(l)
E |G, p] ≤

LG∑

k=d d∗
2
e

c(k)
(

Γ
(l−1)
G

)k
=: Γ

(l)
G , (2.66)

where the polynomials given by the coefficients c(k) remain the same as the logical gate
is composed of the same operations, just replacing physical locations with logical exRecs
from the previous concatenation level.

Finally, we generalize a claim of Ref. [113] required to show the suppression of errors
for level-2 and higher concatenation levels when below the fault-tolerance threshold pth.

Lemma 42. Suppose the error rate of a logical gate G at the l-th concatenation level can
be upper bounded as follows:

Pr[mal
(l)
E |G, p] ≤ Γ

(l)
G =

LG∑

k=d d∗
2
e

c(k)
(

Γ
(l−1)
G

)k
. (2.67)

If the upper bounding error polynomial satisfies the following Γ(l) ≤ εΓ(l−1) for 0 ≤ ε ≤ 1,
then the following holds:

Pr[mal
(m)
E |G, p] ≤ Γ

(m)
G ≤ ε

∑m−l
r=0 d

d∗
2
erΓ

(l−1)
G , (2.68)

where m > l, and d∗ is the minimal distance of the encoded state throughout the logical
application of the gate G.

Proof. We shall show this result by induction. Therefore, consider first the case ofm = l+1.
By definition Pr[mal

(l+1)
E |G, p]) ≤ Γ

(l+1)
G , for all logical errors E. In order to show the right

side of the inequality given in Eq. 2.68 consider the expansion of Γ
(l+1)
G as a sum over
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failures of the gates at the (l)-th level, and use the claim that Γ
(l)
G ≤ εΓ

(l−1)
G .

Γ
(l+1)
G =

∑

k

c(k)
(

Γ
(l)
G

)k

≤
∑

k

c(k)
(
εΓ

(l−1)
G

)k

= εd
d∗
2
e
∑

k

c(k)εk−d
d∗
2
e
(

Γ
(l−1)
G

)k

≤ εd
d∗
2
e
∑

k

c(k)
(

Γ
(l−1)
G

)k

= εd
d∗
2
eΓ

(l)
G

≤ εd
d∗
2
e+1Γ

(l−1)
G .

We used the fact that all of the c(k) coefficients in the expansion are positive and due to
the fault-tolerance of the logical gates, errors of order smaller than dd∗/2e are correctable
and therefore c(k) = 0 ∀ k < dd∗/2e.

To complete the proof, we assume the induction hypothesis for level m and show for
level (m+ 1):

Γ
(m+1)
G =

∑

k

c(k)
(

Γ
(m)
G

)k

≤
∑

k

c(k)
(
ε
∑m−l
r=0 d

d∗
2
erΓ

(l−1)
G

)k

≤ εd
d∗
2
e
∑m−l
r=0 d

d∗
2
er
∑

k

c(k)
(

Γ
(l−1)
G

)k

= ε
∑m+1−l
r=1 d d

∗
2
er
∑

k

c(k)
(

Γ
(l−1)
G

)k

= ε
∑m+1−l
r=1 d d

∗
2
erΓ

(l)
G

≤ ε
∑m+1−l
r=0 d d

∗
2
erΓ

(l−1)
G ,

thus completing the induction proof.

The importance of this Lemma cannot be understated, it is key to the double-exponential
suppression of the error rate as the concatenation level increases, which is the underlying
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property required from the logical error rate in order to guarantee a ploy-logarithmic over-
head in computational resources for fault-tolerant quantum computation. We explore the
behaviour of these polynomials further for the 105-qubit code in the upcoming sections.

2.3.2 Concatenated 105-qubit thresholds

2.3.2.1 Error type analysis

EC G1 EC G2 EC

_ _ _ _ _ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _

Figure 2.6: An example of shared EC’s between two consecutive level-one exRecs

In computing the probability of obtaining a logical error E at the second level of
concatenation for an error rate p and gate G (Pr[mal

(2)
E |G, p]), each level-one exRecs in

the level-two circuit was treated as a physical independent location with a redefined noise
model given by the polynomials Γ

(1)
G,E(p). For example, a level-one CNOT gate in a level-

two simulation would be treated as a physical CNOT gate. A two-qubit Pauli error would
be inserted with a probability upper bounded by the polynomials obtained in Eq. 2.66 with
l = 2 instead of the probability arising from the depolarizing noise model. To be consistent
with Eq. 2.66, the notation is chosen such that Γ

(l)
G is the upper bounding polynomial

at level-l for all error types E whereas Γ
(l)
G,E is the upper bounding polynomial for the

particular error type E.

As can be seen in Fig. 2.6, a level-two simulation will typically contain many level-one
exRecs with overlapping ECs and so it is not entirely correct to treat them independently.
If two level-one exRecs share ECs, then the rectangle that precedes the other one is replaced
with a faulty gate only if it is still incorrect after the shared ECs have been removed. As was
shown in Ref. [113], we must calculate probability of a logical fault for both complete and
incomplete exRecs where one or more TECs have been removed and take the polynomial
that bounds all cases, see Fig. 2.7a for an example. We would also like to point out that
for single qubit gates, exRec’s without a TEC always had a lower probability of obtaining
a logical fault (for any error type) compared to the case where the TEC was kept. This
can be understood from the fact that the TEC adds more locations and hence more ways
for errors to be introduced at the output of the circuit.
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(a) (b)

Figure 2.7: (a) Polynomials upper bounding the event malIZ for either the full level-
one CNOT exRec or the level-one CNOT exRec with one or both TEC’s removed. The
polynomial upper bounding the event malIZ will upper bound all the curves in the above
figure. (b) Polynomials upper bounding the level-one CNOT exRec for the different logical
error types.

The polynomials in Fig. 2.7b upper bound the probability of obtaining a logical error at
the first level of concatenation of the CNOT exRec. Each curve corresponds to a different
error type (error types that are not displayed occur with a probability less than 10−7 for all
sampled physical error rates). Note that the upper bounds on logical Z malignant events
are significantly higher than their X counterpart. This is primarily due to the fact that
the 15-qubit Reed-Muller code offers better protection against X errors.

The polynomials of Fig. 2.9a upper bound the probability of obtaining a logical X, Z or
Y error for the level-one Hadamard exRec. The circuit encoding the logical H, see Fig. 2.8
on the 15-qubit codeblocks is very sensitive to input Z errors. Any Z error propagating
through the target qubit of the CNOT gates will result in a logical X error on the 15-qubit
codeblock. The latter is the main reason for a larger upper bound on the event malX
compared to the event malZ even though the 15-qubit Reed-Muller code provides better
protection against X errors.

Fig. 2.3 illustrates the T gate circuit construction for the 105-qubit concatenated code,
where qubits that are inactive at a given time step would undergo memory noise. Notice
that compared to the Hadamard circuit construction in Fig. 2.8, there are much fewer
locations where errors can propagate leading to a logical fault on multiple codeblocks.
Since the 105-qubit code is more efficient at correcting X errors, and X errors propagating
through a physical T gate location transforms as TXT † = X(I + iZ)/

√
2 (leading to a Z

error contribution), we expect the probability of obtaining a logical Z error at the output of
the T gate circuit to be much higher than the probability of obtaining a logical X error. In
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Figure 2.8: Logical Hadamard H circuit for [[15, 1, 3]] Reed-Muller code. The bold dark
lines represent resting qubits subject to storage errors. The dotted vertical lines are used to
separate the time steps for which gates are applied in parallel. Logical H for the 105-qubit
code is implemented fault-tolerantly by applying each non-fault-tolerant logical H gates in
parallel.

fact, our simulations showed that the level-one logical X error probability could be upper
bounded by 10−7 for all considered error rates.

2.3.2.2 Threshold analysis

In order to lower bound the level-1 pseudo-threshold, the probability of all logical error
types are summed for each of the logical gates and bounded as in Eq. 2.65. The resulting
polynomials are compared to the input physical error rate and their crossing point deter-
mines the pseudo-threshold, see Fig. 2.11. The resulting values are presented in Table 2.1.

The pseudo-threshold values for a gate G given in Table 2.1 were obtained from the
crossing point between the physical error rate p and the curves p

(1)
G (p) =

∑
Ei

Pr[malEi|G, p]
for all possible logical Pauli errors Ei. The plots on the left column of Fig. 2.11 illustrates
the crossing point for the logical CNOT, Hadamard and T gate. The CNOT gate has the
largest pseudo-threshold value of (2.11± 0.02) × 10−3 due to the double protection from
the CSS 7-qubit Steane code and the 15-qubit Reed-Muller code. On the other hand, the
Hadamard gate has the lowest pseudo-threshold value of (4.47± 0.29) × 10−5 due to the
sensitivity of the encoding circuit on the 15-qubit codeblocks to input Z errors.

Following Lemma 42, a lower bound for the asymptotic threshold value for a particular
gate G is given by the the intersection between the polynomials upper bounding the proba-
bility of obtaining a logical error E at the first and second level of concatenation (Γ

(1)
G,E and
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(a) (b)

Figure 2.9: (a) Polynomials upper bounding the events malX , malZ and malY for the level-
one Hadamard exRec. Input Z errors are most likely to result in a logical X error on a 15-
qubit codeblock which explains why the event malX is most likely to occur. (b) Polynomials
upper bounding the event malZ for the level-one T gate exRec. Note that the logical error
probabilities for the event malX and malY are too small to be displayed.

Γ
(2)
G,E). Note that the error type E in the asymptotic threshold calculation is chosen such

that the intersection between Γ
(1)
G,E and Γ

(2)
G,E occurs at the smallest physical error rate. For

the CNOT gate (Fig. 2.11b) this is given by E = ZI, for the Hadamard gate (Fig. 2.11d)
it is E = X and for the T gate (Fig. 2.11f) it is E = Z.

It is important to observe that the CNOT pseudo-threshold is nearly two orders of mag-
nitude larger than the Hadamard pseudo-threshold. Furthermore, all other operations in
our circuits (resting qubits, measurement in the X and Z basis and state preparations) are
upper bounded by level one polynomials that have larger pseudo-thresholds than CNOT.
The dominant set of errors leading to logical faults in the level-1 Hadamard gate is a result
of input errors from the LEC as well as failures in the CNOT gates within the 15-qubit
Hadamard codeblocks. These components are composed of only memory, CNOT, X and Z
basis state preparation and measurement locations. Since the level-1 logical error probabil-
ity of these gates will be much smaller in the level-2 Hadamard exRec, detrimental faults
will be much less likely to occur. Hence, there will be error rates p above the pseudo-
threshold p1,H such that the level-2 error polynomials characterizing the logical error rate
will be below the level-1 bounding polynomial,

Γ(2)(p) ≤ Γ(1)(p), ∀ p ≤ p2,H , (2.69)

where p2,H > p1,H . The error rate p2,H is the threshold rate below which all level-2 logical
gates have a lower error rate compared to the level-1 logical error rate. As shown in
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Pseudo-Threshold Asymptotic threshold

CNOT gate (2.11± 0.02)× 10−3 (1.95± 0.01)× 10−3

T gate (4.89± 0.11)× 10−4 (1.58± 0.02)× 10−3

Hadamard gate (4.47± 0.29)× 10−5 (1.28± 0.02)× 10−3

105-qubit (4.47± 0.29)× 10−5 (1.28± 0.02)× 10−3

23-qubit Golay (1.73)× 10−3 (1.32)× 10−3

Table 2.1: Lower bounds for the pseudo and asymptotic threshold results for the Hadamard,
T gate and CNOT gates. The Hadamard asymptotic-threshold is larger than its pseudo-
threshold resulting from the double protection of the CNOT gates as seen by the high
CNOT pseudo-threshold. In bold, the overall thresholds for the 105-qubit and 23-qubit
codes are compared.

Ref. [113] and argued in the previous section, the value p2,H serves as a lower bound for
the asymptotic threshold pth.

In previous studies of asymptotic thresholds for the Golay and 7-qubit CSS codes, the
CNOT exRec provided a lower bound on the threshold value since it contained the largest
amount of locations relative to all the other gates in the universal gate set [2, 113, 47].
Since the CNOT exRec is itself composed entirely of gates that are transversal, as the
error rate approaches the pseudo-threshold value, certain malignant events (for example,
the probability of getting a logical ZI error at the output of the CNOT circuit, as can be
seen in Fig. 2.7b) become more likely to occur than the level-zero probabilities determined
from the depolarizing noise model. Recall that the pseudo-threshold was conjectured to
be an upper bound on the asymptotic threshold value. However, it is the CNOT locations
that are the leading contributors to logical errors. Consequently, the pseudo-threshold
of the CNOT gate, as opposed to the H and T gates, will be the limiting factor to the
asymptotic threshold. As argued above, this will give rise to reduced logical error rates of
the H and T gates at the second level of concatenation, and using Eq. 2.68, a lower bound
for the asymptotic threshold pth can be determined. The plots in Fig. 2.10 illustrate the
level-1 and level-2 polynomials upper bounding the logical error rates at the first and second
level for the Hadamard and CNOT gate circuits, see Fig. 2.11 for the corresponding T gate
plots. As expected, the CNOT exRec contains a lower asymptotic threshold value given
by (1.95± 0.01)× 10−3. The Hadamard exRec limits the threshold value of the 105-qubit
code to be (1.28± 0.02) × 10−3. Interestingly, the level-two polynomials satisfy Eq. 2.68
for error rates nearly 30 times larger than their corresponding level-one polynomials. This
is a distinctive feature of the 105-qubit concatenated scheme and clearly demonstrates
the impact of having an exRec primarily composed of gates which are transversal in both
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(a) (b)

Figure 2.10: Probability of logical error as function of physical error rate for the level-1
and level-2 logical (a) Hadamard and (b) CNOT. The crossing point of the fitted curve
allows for the determination of a lower bound for the asymptotic threshold for each of the
logical gates. The CNOT gate exhibits a much lower logical error rate than the Hadamard
at the first level.

codes with much larger pseudo-threshold rates. The asymptotic threshold derived for the
105-qubit code compares favourably to the [[23, 1, 7]] Golay code studied under the same
depolarizing error model and metric for gate failures under malignant set counting [113].
This scheme does not require magic state distillation in order to achieve fault-tolerance
and may lead to reduced overhead [55]. Determining the resource overhead remains an
interesting open problem.

It should be noted that the shift in the crossing point for different concatenation levels in
the logical H and T gate (Figs. 2.11d and 2.11f) may at first glance violate the assumption
that the polynomial coefficients c(k) from Lemma 42 are the same at all levels. However,
one of the assumptions of the polynomials were that the logical error rate of all locations at
the previous level have the same error rate, and thus contribute equally in a potential error
chain. The fact that CNOT is in fact less noisy than other gates in the regime between
the H (and T ) pseudo-threshold and asymptotic CNOT threshold means that certain error
chains are further suppressed and as such the logical error rate is lower than the worst case
bound set by the polynomials. The CNOT crossing points (Fig. 2.11b) are uniform across
all levels, indicating that the true logical error rate is very close to the worst-case bound.

An interesting feature can be observed from the plots on the right column of Fig. 2.11.
Notice that the polynomial upper bounding the event malZI at the third level of con-
catenation for the logical CNOT gate Γ

(3)
CNOT,ZI(p) intersects Γ

(1)
CNOT,ZI(p) at the asymp-

totic threshold value (1.95± 0.01) × 10−3. The reason is that for higher error rates than
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Figure 2.11: The plots on the left column illustrate the probability of logical error as
function of physical error rate for logical (a) CNOT, (c) Hadamard and (e) T gate. The
crossing point of the fitted curve allows for the determination of the level-1 pseudo-threshold
for each of the logical gates. The CNOT pseudo-threshold is the largest among all three
gates due to the double protection of the 7-qubit and 15-qubit code. The plots on the right
column illustrate the polynomials upper bounding the probability of obtaining a logical
error E for the first, second and third level of concatenation. The crossing point between
the level-one and level-two polynomials determine the asymptotic threshold for the gate
under consideration. For the logical CNOT gate (b), it is the event malZI which limits the
threshold value. For the logical gate H (d), malX limits the threshold value. Lastly, for
the logical T gate (f), malZ limits the threshold value.
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the asymptotic threshold value, the level-two CNOT exRecs (in the level three simula-
tion) are more likely to fail than the level-one CNOT exRecs (in the level two simu-
lation). Consequently, there is a higher probability of obtaining a logical fault at the

output of the CNOT exRec. However, for the logical H and T gate exRecs, Γ
(3)
G,E(p) in-

tersects Γ
(1)
G,E(p) at an error rate which is larger than the asymptotic threshold value for

these particular gates ((1.28± 0.02) × 10−3 for H and (1.58± 0.01) × 10−3 for T ). Con-
sider the logical Hadamard gate (the following argument applies equally well to the T
gate). For error rates p that are between the H and CNOT asymptotic threshold values,
(1.28± 0.02) × 10−3 ≤ p ≤ (1.95± 0.01) × 10−3, the level-two Hadamard exRecs in the
level-three simulation will be more likely to fail than at the previous level of concatenation.
However, this will be compensated by all of the level-two CNOT exRecs in the level-three
simulation which will be less likely to fail than at the previous level (since p is below the

CNOT asymptotic threshold value). Above the error rate where Γ
(3)
H,X(p) intersects Γ

(1)
H,X(p)

(p = 1.44×10−3), the level-two Hadamard exRecs will be noisy enough such that the prob-
ability of obtaining a logical X error will be larger than at the previous level. Therefore,
by considering the crossing points of the logical error rates for higher concatenation levels,
a better lower-bound for the asymptotic threshold can be established. However, in order
to fairly compare the performance of the concatenated scheme with the Golay code [113],
we emphasized the lower bound obtained from the crossing point of the first and second
concatenation levels.

2.3.3 Summary & outlook

In this work, we established the first rigorous lower bound on the asymptotic thresh-
old for the concatenated 105-qubit code. We show that the pseudo-threshold value of
(4.47± 0.29)×10−5 arising from the H gate is significantly improved at higher levels of con-
catenation yielding a lower bound on the asymptotic threshold value of (1.28± 0.02)×10−3.
The increase in asymptotic threshold is primarily due to the relatively high threshold of the
logical CNOT gate. We believe that this non-traditional behaviour of logical error prob-
abilities at higher concatenation levels is an interesting property of the studied scheme
and points to an interesting direction for future error correction research. Due to the high
concentration of CNOT gates for the purposes of error detection, we believe that tailoring
codes to correct for logical errors in encoded CNOT gates at the expense of perhaps noisy
single qubit gates would allow for higher asymptotic thresholds for concatenated codes.
Furthermore, an interesting direction for future research is to establish similar thresholds
for other types of concatenated codes, such as the 49-qubit code outlined at the conclu-
sion of the previous section. Additionally, studying the performance of the concatenated
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scheme under more complex noise models would be of theoretical and practical interest,
as in Refs. [66, 64, 65]. Moreover, determining the resource overhead of these schemes in
comparison to those based on magic state distillation is subject to an active study [37] and
minimizing such overheads may have significant impact on the development of quantum
computing architectures.

2.4 Gate restrictions for transversal operations in sta-

bilizer codes

This section is based on the work that is presented in Ref. [7], copyrighted by Rinton Press.
Both authors contributed to the development of the research direction, ideas and writing
of the manuscript, and editing of the manuscript.

2.4.1 Overview

As seen in the previous sections, the role of transversal gates is an important one for
the implementation of logical gates in a fault-tolerant manner. We have already seen
examples of codes that can implement gates from the Clifford hierarchy transversally, as
well as the T gate transversally for the 15-qubit code. While such gates are sufficient for
universal quantum computation (albeit of course with the caveat that no single gate can
have a universal set of transversal gates), a natural question to ask is whether other codes
with different classes of transversal gates exist. The Reed-Muller code family points to
a class of transversal operations for fractional roots of unity of higher powers of 2, that
is of the form eiπZ/2

c
[96], however other classes of operations are not known. Moreover,

recent results in the area of quantum gate decomposition have focused on expressing an
arbitrary single-qubit quantum gate as a sequence of Hadamard (H) and V gates, where
V = diag(1 + 2i, 1 − 2i)/

√
5 [21]. Therefore, the discovery of quantum error correcting

codes that allow for the application of V in a transversal manner could potentially lead to
adaptation of the above mentioned techniques for universal fault-tolerant gate application
without state distillation for these proposed gate decompositions.

Recently, a parallel work by Pastawski and Yoshida [115] showed many exciting results
pertaining to fault-tolerant operations in topological stabilizer codes. They also proved
that families of stabilizer codes with a finite loss threshold must have transversal gates in
the Clifford hierarchy. Furthermore, they show that higher loss thresholds impose greater
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restrictions on the level in the Clifford hierarchy at which transversal gates can be imple-
mented. The result presented in this section does not need a finite loss threshold or a family
of codes to be applicable. Additionally, this result applies to transversal gates between two
like codes; however, this result only applies to qubits and restricts the transversal gates
to being in the Clifford hierarchy (although it does not specify the level). A parallel work
has also shown that transversal logical gates for qubit stabilizer codes must belong to the
Clifford hierarchy, and that the level of the Clifford hierarchy which can be implemented
is bounded as a function of the number of physical qubits and code distance [20].

The main result of this work is that for quantum qubit stabilizer codes, the only diagonal
gates that can be implemented transversally using physical diagonal gates are those whose
entries along the diagonal are of the form eiπc/2

k
, for some power of k depending on the

choice of code. This result holds both for single and two-qubit gates, and moreover we
show that all such gates must be contained within the Clifford hierarchy. Moreover, as
Zeng, Cross, and Chuang showed [142], any transversal non-trivial single-qubit logical gate
for a qubit stabilizer code must result from the application of diagonal gates along with
local Clifford operations and potential swapping of qubits. Therefore, our result classifies
all transversal single-qubit logical gate operations up to local Clifford equivalences and
relabelling of qubits. Additionally, our result classifies all transversal diagonal single-qubit
logical gates that can map one stabilizer code to another stabilizer code. It is worth noting
that the Reed-Muller family of quantum codes provides a means to implement any of these
diagonal transversal gates, where changing to higher order in the code family allows for the
implementation of diagonal logical gates with finer angles, all of which are in the Clifford
hierarchy and of the form eiπc/2

k
. Finally, we show that the two-qubit transversal gates

that can be applied for a given quantum stabilizer code must belong to the same level of
the Clifford hierarchy as the single qubit transversal logical gates that can be applied for
such a code. As such, there is no increased computational logical power by considering
two-qubit transversal gates and we conjecture this result to generalize to multi-qubit gates.

2.4.2 Single qubit transversal Z rotations

In this work we aim to classify the set of logical transversal gates for a stabilizer code, that is
logical gates that are composed of individual unitary gates on each of the underlying qubits
of the code, U =

⊗n
j=1 Uj. We begin by noting an important result from Zeng et al. [142]

where it was shown that unitary, single-qubit logical transversal operators in qubit stabilizer
codes must be of the form:
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U = L

(
n⊗

j=1

diag(1, eiπθj)

)
R†Pπ. (2.70)

Here L,R† are transversal Clifford operations and Pπ is a coordinate permutation (a set
of SWAP gates). Notice that if an [[n, k, d]] stabilizer code exists which implements U
transversally, then up to local Clifford equivalences, an [[n, k, d]] stabilizer code exists which
implements U =

⊗n
j=1 diag(1, eiπθj) transversally. In this work we look at the restrictions

on these diagonal, transversal gates.

We begin by focusing on Z(θ) rotations, that is rotations about the Z-axis by some
angle θ. For qubits, this rotation is given by a diagonal matrix

A =

[
eiπθ1 0

0 eiπθ2

]
= eiπθ1

[
1 0
0 eiπ(θ2−θ1)

]
. (2.71)

Up to a global phase, we therefore need only consider rotations of the form

A =

[
1 0
0 eiπθ

]
≡ Z(θ), (2.72)

where we are using the above equation as the definition of a single-qubit Z(θ) rotation of
angle πθ (we shall assume for the remainder of this work that the angular rotations are
rational multiples of π, as discussed in detail below).

In this work, we study constraints on transversal implementations of logical Z(θ) rota-
tions. A transversal Z rotation is defined as

ZT (θ) := Z(θ1)⊗ Z(θ2)⊗ ...⊗ Z(θn). (2.73)

Before considering the most general form of transversal gate outlined above, we first
focus on the case when all physical qubits undergo the same rotation θ, that is, we require
that the logical implementation be strongly transversal, ZL(θ′) = Z(θ)⊗n, with n being
the number of physical qubits. While each single-qubit rotation is a rotation by the same
angle, we do not require that the logical Z applies the same rotation to the logical qubit.

2.4.2.1 CSS codes

We begin by focusing on the case of CSS codes S = 〈GX
1 , . . . , G

X
|GX |, G

Z
1 , . . . , G

Z
|GZ |〉, where

|GX | and |GZ | refer to the number of X and Z stabilizers. Additionally, a CSS code
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defines logical X and Z operators composed only of X and Z operators, again respectively.
Recall the definition of the codestates presented in Lemma 31. The codestates can then
be expanded in terms of each of the X generators:

|0L〉 = |g0〉+
∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉

+ · · ·+
∑

i1<···<i|GX |−1

|gi1 ⊕ · · · ⊕ gi|GX |−1
〉+ |g1 ⊕ ...⊕ g|GX |〉, (2.74)

|1L〉 = |gL〉+
∑

i1

|gL ⊕ gi1〉+
∑

i1<i2

|gL ⊕ gi1 ⊕ gi2〉+ ...+ |gL ⊕ g1 ⊕ ...⊕ g|GX |〉, (2.75)

where gi is a n-bit binary string representing the location of the X operators in the gen-
erator GX

i , g0 is the all-0 vector and gL is a binary vector representing XL. In order to
classify the set of transversal Z-axis rotations that can implement a logical operation we
derive a set of conditions restricting the rotation angles due to constrains arising from the
form of the binary vectors gi.

Theorem 43. Given a [[n, l, d]] error-detecting CSS code Q (distance d ≥ 2). A strongly
transversal rotation, that is a gate of the form Z(θ)⊗n, that implements a non-identity
logical gate for Q is restricted to be composed of individual rotations of the form Z(a/2k),
where a, k ∈ N.

Proof. Consider the action of the strongly transversal rotation Z(θ)⊗n on the codestates
given in Equations 2.74–2.75. Given that Z(θ)⊗n will preserve computational basis states,
other than introducing a complex phase, then in order for the transversal rotation to
implement a logical operation each term in the expansion of |0L〉 must obtain an identical
phase (in this case a trivial phase of 1 since Z(θ)⊗n|g0〉 = |g0〉). Similarly, all states in the
expansion of |1L〉 must obtain an identical phase, a non-trivial complex phase in order for
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the logical operator to be a non-identity gate, as follows:

Z(θ)⊗n|0L〉 = |g0〉+ Z(θ)⊗n

(∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉+ ...+ |g1 ⊕ ...⊕ g|GX |〉
)

= |g0〉+
∑

i1

eiπθ|gi1 ||gi1〉+
∑

i1<i2

eiπθ|gi1⊕gi2 ||gi1 ⊕ gi2〉

+ ...+ eiπθ|g1⊕...⊕g|GX |||g1 ⊕ ...⊕ g|GX |〉
= |g0〉+

∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉+ ...+ |g1 ⊕ ...⊕ g|GX |〉,

Z(θ)⊗n|1L〉 = eiπθ|gL|

(
|gL〉+

∑

i

|gL ⊕ gi〉+ ...+ |gL ⊕ g1 ⊕ ...⊕ g|GX |〉
)
,

where |x| denotes the weight of the binary string x. The constraint that each of the
states in the expansion of |0L〉 must obtain the same phase, and similarly for |1L〉, can be
summarized by the following set of modular algebraic constraints:

θ|gi1| = 0 mod 2 θ|gL| = a mod 2

θ|gi1 ⊕ gi2| = 0 mod 2 θ|gL ⊕ gi1| = a mod 2

...
...

θ|g1 ⊕ ...⊕ g|GX || = 0 mod 2 θ|gL ⊕ g1 ⊕ ...⊕ g|GX || = a mod 2,

∀ 0 < i1 < i2 < ... < i|GX |−1 ≤ |GX |,
where θ, a ∈ R and |.| ∈ N. The constraints on the left correspond to those for the |0L〉
state and those on the right the |1L〉 state.

We begin by making some observations on the above equations to rule out certain values
of θ.

1. First, notice that if θ is irrational these equations can never be satisfied since nθ =
p ≡ 0 mod 2 =⇒ θ = 2t

n
∈ Q. We can therefore restrict our attention to rational

angles (θ = p
q
∈ Q). Without loss of generality, we can assume this fraction is

irreducible and in the range (0, 2]. Moreover, we must have that the weight of the
binary strings is a multiple of q, that is p

q
| · | = 0 mod q =⇒ | · | = 0 mod q.

2. We can express these constraints as conditions on overlap similarly to Bravyi and
Haah [31] by noting that

|g1 ⊕ ...⊕ gn| =
n∑

i=1

|gi| − 2
∑

i<j

|gi ∧ gj|+ ...+ (−2)n−1|g1 ∧ ... ∧ gn|, (2.76)
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where ∧ is the bitwise AND.

With these observations, we can express the constraints as:

|gi1| = 0 mod q

|gi1|+ |gi2| − 2|gi1 ∧ gi2| = 0 mod q

...
n∑

i1

|gi1| − 2
∑

i1<i2

|gi1 ∧ gi2|+ ...+ (−2)|GX |−1|g1 ∧ ... ∧ g|GX || = 0 mod q

|gL| = b mod q

|gL|+ |gi1| − 2|gL ∧ gi1| = b mod q

...

∀ 0 < i1 < i2 < ... < i|GX |−1 ≤ |GX |

We can see that these equations are not independent since the requirement that |gi| =
0 mod q, implies

|gi1|+ |gi2| − 2|gi1 ∧ gi2 | = 0 mod q =⇒ 2|gi1 ∧ gi2| = 0 mod q. (2.77)

Using this, we can express the above constraints as overlap conditions

|gi1| = 0 mod q,

2|gi1 ∧ gi2| = 0 mod q

4|gi1 ∧ gi2 ∧ gi3| = 0 mod q

...

(2)|GX |−1|g1 ∧ ... ∧ g|GX || = 0 mod q

|gL| 6= 0 mod q

2|gi1 ∧ gL| = 0 mod q

4|gi1 ∧ gi2 ∧ gL| = 0 mod q

...

(2)|GX ||g1 ∧ ... ∧ g|GX | ∧ gL| = 0 mod q

∀ 0 < i1 < i2 < ... < i|GX |−1 ≤ |GX |,
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We have also dropped the minus sign since it has no effect. For the logical operator
to be nontrivial, we have assumed that b 6= 0. Notice that the 0 mod q conditions are
independent constraints.

Observe that if q has only even prime factors (i.e. q = 2t for some integer t) then all
higher-order overlap conditions will, at some point, become trivial. For example, if q = 2k

overlap conditions will be trivial for any k + 1 or more rows and Reed-Muller codes exist
which have any Z(1/2k) gate transversally. In fact, since the transversal gates form a group,
Reed-Muller codes exist which have any Z(c/2k) (where c is an integer) gate transversally.
Therefore the existence of transversal gates is already solved in the positive for that case.

In what follows we will assume that q has at least one odd prime factor and that
|gL| 6= 0 mod qo for at least one such qo (we will choose this qo). If |gL| = 0 mod qo for all
odd prime factors, again assuming θ = p/q then Z(θ)⊗n|1L〉 = eiπ|gL|p/q|1L〉 = eiπc/2

k |1L〉
for some positive integer k, where c ≡ |gL| mod 2k. In this case, the odd prime factors add
nothing, and we could apply the same logical operator using Z(1/2k)⊗n instead of Z(p/q)⊗n,
which reduces to the case we considered above. Therefore, we assume |gL| 6= 0 mod qo for
at least one such qo and note that in this case all overlap conditions are nontrivial. We
can write q = qo · qP/o where qP/o is the product of the other prime factors of q. Since
|g| = 0, 1 mod q =⇒ |g| = 0, 1 mod qo, we can write a weaker set of overlap conditions as

|gi1| = 0 mod qo,

|gi1 ∧ gi2| = 0 mod qo

|gi1 ∧ gi2 ∧ gi3| = 0 mod qo
...

|g1 ∧ ... ∧ g|GX || = 0 mod qo

|gL| 6= 0 mod qo

|gi1 ∧ gL| = 0 mod qo

|gi1 ∧ gi2 ∧ gL| = 0 mod qo
...

|g1 ∧ ... ∧ g|GX | ∧ gL| = 0 mod qo

∀ 0 < i1 < i2 < ... < i|GX |−1 ≤ |GX |.
In what follows, we will attempt to find the smallest binary matrix (in terms of number of
rows) which satisfies all of the weaker overlap conditions.

Let SX be the parity check matrix for the X stabilizers, that is SX is a binary matrix
where each row is given by independent binary strings gi, i ∈ {1, ..., |GX |}. In the statement
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of the Theorem we are assuming the code is an error-detecting code with distance d ≥ 2,
therefore each column of SX must have at least one non-zero entry as this is a necessary
and sufficient condition for Z error detection. We will consider the case of a single logical
operator and show that no nontrivial matrix SX with at least one X logical operator exists,
such that all rows satisfy the overlap conditions derived above 3.

Let us now try to find the smallest number of rows in SX such that the overlap conditions
are satisfied. We begin by defining the variable w~µ, where ~µ = (µ1 µ2 . . . µ|GX |) is a |GX | bit
binary vector, as follows:

w~µ =
∣∣(∧(µi=1)gi

)
∧
(
∧(µi=0)¬gi

)
∧ gL

∣∣ , (2.78)

that is w~µ is the weight of the bitwise AND of gL along with all binary vectors gi such
that µi = 1 and ¬gj (negation of gj) such that µj = 0. For example if |GX | = 2, that is
SX is composed of just two rows, then w(10) = |g1 ∧ (¬g2) ∧ gL|, w(01) = |(¬g1) ∧ g2 ∧ gL|,
and w(11) = |g1 ∧ g2 ∧ gL|. While this definition may at first seem non-intuitive, we choose
such a definition in order to consider quantities from the constraints on gi above. For
example, again in the case of |GX | = 2, the constraint |g1∧gL| = 0 mod qo can be expressed
as w(11) + w(10) = 0 mod qo by the straightforward binary string relationship |g1 ∧ gL| =
|g1 ∧ g2 ∧ gL|+ |g1 ∧ (¬g2) ∧ gL|.

Using the definition of w~µ we can arrive at a contradiction to the set of overlap condi-
tions. First consider the case of w~µ where ~µ = (11 . . . 1) is the all-1 vector. Therefore, by
the above constraints,

w(11...1) = |g1 ∧ ... ∧ g|GX | ∧ gL| = 0 mod qo.

Now consider the overlap condition consisting of |GX | − 1 binary vectors gi, that is |gi1 ∧
... ∧ gi|GX |−1

∧ gL| = 0 mod qo. Without loss of generality, consider the case of the first

|GX | − 1 vectors gi. Then the following identity holds:

|g1 ∧ ... ∧ g|GX |−1 ∧ gL| = w(11...11) + w(11...10) = 0 mod qo,

and therefore w(11...10) = 0, where equality for the remainder of the proof is mod qo. Thus,
without loss of generality w~µ = 0 for all vectors ~µ of weight |GX | − 1. We can now
recursively prove the same statement for any weight ~µ. Suppose w~µ = 0 for all |~µ| > k and
consider without loss of generality the bitwise AND of the first k vectors gi and gL,

|g1 ∧ ... ∧ gk ∧ gL| =
|GX |∑

i=k+1

1∑

µi=0

w(1...1µk+1...µ|GX |)
= 0 mod qo.

3This part of our proof uses techniques developed in [31].

71



However, since all of the terms in the above sum are equal to 0 by the induction hypothesis
except for the term where µi = 0 ∀ i > k, we arrive at the conclusion that w(~1k~0|GX |−k)=0,

that is w~µ = 0 when the only the first k entries of ~µ are non-zero. Since the choice of which
k entries were non-zero was arbitrary, we arrive at the conclusion that w~µ = 0 ∀|~µ| ≥ k. We
have therefore proven the induction statement that w~µ = 0 ∀ ~µ. Finally, in order to arrive at
the contradiction to the satisfiability of the vector constrains, note that |gL| =

∑
~µw~µ = 0,

which contradicts the condition for a non-trivial gate |gL| 6= 0 mod qo Therefore no such
qo exists.

Finally, it is worth noting that the set of constraints are only dependant on the X
type stabilizer generators and their parity check matrix SX , and are not dependant on the
number of logical operators. Therefore, additional logical qubits (and thus constraints for
the different binary strings gXL,i of the different logical XL,i operators would only further
constrain the problem and reduce the set of angles. As such, this result holds for multiple
logical qubits as well.

Remark 1. We made the assumption that the logical X operator was composed of a set
of individual X operators on a collection of qubits characterized by the bit string gL, where
gL(i) = 1 if XL performs the operation X at qubit i. However in theory, XL could also be
comprised of Z (or Y ) operations as well. A particular Z (or Y ) gate could introduce a
phase on some of the state vectors in the expansion of the logical |1L〉, yet these phases must
be preserved by the action of Z(θ)⊗n. Since these diagonal rotations will not change the
form of the computational basis state, they will only introduce a phase. In that manner,
the presence of Z (or Y ) operations in the logical XL gate will not change the set of
algebraic conditions for the physical rotations Z(θ).

Remark 2. We made the assumption that the individual rotation on the physical qubits,
Z(θ), were of the form diag(1, eiθ), however in full generality the diagonal gates can be
of the form diag(eiϕ, eiθ). The resulting conditions on the transformation of the logical
states |0L〉 and |1L〉 will have the form:

Z(θ)⊗n|0L〉 = Z(θ)⊗n

(
|g0〉+

∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉+ ...+ |gi1 ⊕ ...⊕ g|GX |〉
)

= eiϕn|g0〉+
∑

i1

eiθ|gi1 |+iϕ(n−|gi|)|gi1〉+
∑

i1<i2

eiθ|gi1⊕gi2 |+iϕ(n−|gi1⊕gi2 |)|gi1 ⊕ gi2〉

+ · · ·+ eiθ|gi1⊕...⊕g|GX ||+iϕ(n−|gi1⊕...⊕g|GX ||)|gi1 ⊕ ...⊕ g|GX |〉

= eiϕn

(
|g0〉+

∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉+ ...+ |gi1 ⊕ ...⊕ g|GX |〉
)
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and

Z(θ)⊗n|1L〉 = eiϕn+i(θ−ϕ)|gL|

(
|gL〉+

∑

i1

|gL ⊕ gi1〉+ ...+ |gL ⊕ gi1 ⊕ ...⊕ g|GX |〉
)
.

The constraints can then be shown to have the form:

(θ − ϕ)|gi1| = 0 mod 2

2(θ − ϕ)|gi1 ∧ gi2| = 0 mod 2

...

2|GX |−1(θ − ϕ)|gi1 ∧ . . . ∧ g|GX || = 0 mod 2

(θ − ϕ)|gL| 6= 0 mod 2

2(θ − ϕ)|gL ∧ gi1| = 0 mod 2

...

2|GX |(θ − ϕ)|gL ∧ gi1 ∧ ... ∧ g|GX || = 0 mod 2

∀ 0 < i1 < i2 < ... < i|GX |−1 ≤ |GX |,

which are the same constrains on the difference of the phases (θ−ϕ) as the case when ϕ = 0.
Therefore, an arbitrary global phase can be introduced on the individual rotations of the
form diag(1, eiθ) which are allowed in the CSS construction.

It is worth noting that the restriction on the set of rotations that can be applied to
the individual qubits of a CSS code will impose a restriction on the set of logical rotations
that can be applied. This shows a strong connection to the Clifford hierarchy. The Clifford
hierarchy is defined recursively, where the first level of the hierarchy on n qubits is defined
as the Pauli operators on n qubits, denoted C(1)

n = Pn. Higher levels (k ≥ 2) of the Clifford
hierarchy are then defined as follows:

C(k)
n = {U ∈ U(2n) | UPU † ∈ C(k−1)

n ∀P ∈ Pn},

that is, a unitary U in the k-th level of the Clifford hierarchy maps by conjugation the
Pauli operators on n qubits to an element in the (k − 1)-th level of the Clifford hierarchy.
Namely, the second level of the Clifford hierarchy is the Clifford operators, mapping Pauli
operators to Pauli operators. It is worth noting that each level of the Clifford hierarchy
contains all lower levels of the Clifford hierarchy, that is C(p)

n ( C(q)
n , if p < q.
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Proposition 1. Let A = Z(θ) be a diagonal single-qubit operator. If θ = c/2k, for any

integer k ≥ 0 where θ is in its most reduced form, then A ∈ C(k+1)
1 . Otherwise, A is not in

the Clifford hierarchy, that is A /∈ C(k)
1 for all k.

Proof. Consider the action of conjugation of the operator A = Z(θ) on the single qubit
Pauli matrix X, the action on Pauli Z is trivial due to the commutation of diagonal matri-
ces. Consider the recursive construction of the matrices Ap defined as: Ap = Ap−1XA

†
p−1,

where A0 = A. Notice the following:

A1 = A0XA
†
0 =

(
1 0
0 eiπθ

)(
0 1
1 0

)(
1 0
0 e−iπθ

)
=

(
0 e−iπθ

eiπθ 0

)
,

A2 = A1XA
†
1 =

(
0 e−iπθ

eiπθ 0

)(
0 1
1 0

)(
0 e−iπθ

eiπθ 0

)
=

(
0 e−2iπθ

e2iπθ 0

)
,

...

Ap = Ap−1XA
†
p−1 =

(
0 e−2piπθ

e2piπθ 0

)
.

If A ∈ C(k+1)
1 for some k ≥ 0, then by definition A1 ∈ C(k)

1 , A2 ∈ C(k−1)
1 , . . . , Ak ∈ C(1) = P1.

However, notice by the form of Ak that Ak = X ⇔ θ = c/2k−1, Ak = Y ⇔ θ = c/2k, and
Ak 6= Z ∀ θ, where the angle θ is in its most reduced form.

Corollary 44. Strongly transversal logical gates Z(θ)⊗n on CSS stabilizer codes must be
composed of individual rotations that are an element of the Clifford hierarchy, that is Z(θ) ∈
C(k)

1 , for some value of k. Moreover, the logical gate that is implemented must also be an
element of Clifford hierarchy on the logically encoded subspace.

Proof. The first statement follows from Theorem 43 and Proposition 1. The second state-
ment follows by considering the action of the individual rotations on the logical states
written out in their expansion in terms of the computational basis. Since the individ-
ual phases must be of the form θ = c/2k, any logical phase will be a multiple of such a
phase.

2.4.2.2 Stabilizer codes

We have proven that the only possible strongly transversal operations for CSS codes must
be composed of rotations of the form Z(a/2k). The proof relied upon the fact that for CSS
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codes it is trivial to write logical states expressed as a sum of states in the computational
basis such that orthogonal logical states do not share common computational states in
their sums. Namely, if SX represents the stabilizer group formed by all the X stabilizer
generators SX = 〈GX

i 〉 of a given CSS code CS , then the logical basis states can be expressed
as follows:

|0L〉 =
1

2|SX |/2

∏

i

(I +GX
i )|0〉⊗n =

1√
|SX |

∑

s∈SX

|s〉,

XLi |0L〉 =
1

2|SX |/2

∏

i

(I +GX
i )XLi |0〉⊗n =

1√
|SX |

∑

s∈SX

∣∣∣s⊗ gXLi
〉
,

where XLi is the logical X operators composed of individual X operators. Importantly, for
two orthogonal states XLi |0L〉 and XLj |0L〉, any two elements of the sum will be orthogonal,
that is 〈s ⊗ gXLi |s

′ ⊗ gXLj 〉 = 0, ∀ s, s′ ∈ SX . This fact is important for showing the

restriction of the transversal Z rotations as it implies that any transversal phase rotation
must introduce the same phase on all elements of the sum in order to remain in the
codespace. Therefore, in order to impose the same argument for restricting the phase in
the case of stabilizer codes, we must find a basis for a general stabilizer code that has the
same properties with respect to non-overlapping computational basis states when written
out as a sum over computational basis states. The following Lemma 45 and Corollary 46
will show such a construction.

Lemma 45. Given a [[n, k, d]] stabilizer code CS , one can always find a set of 2k logical
basis states of the following form:

|ψm〉 =
∑

l

iam,l |ml〉, (2.79)

where am,l is an integer and ml is an n-bit binary string such that two different logical
basis states cannot share any elements in the computation basis expansion. That is, given
|ψp〉, |ψq〉 such that p 6= q then 〈ps|qt〉 = 0 ∀ s, t.

Proof. Let the stabilizer generators of S be given by 〈Gi〉n−ki=1 , and the logical Pauli operators
be given by XL,j, ZL,j for 1 ≤ j ≤ k, satisfying XL,jZL,l = (−1)δjlZL,lXL,j. There must
exist at least one computational basis state that has non-zero overlap with the stabilizer
codespace CS . Without loss of generality, we assume that |0〉⊗n is such a state. Then, the
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following state is a codestate of CS ,

|φ〉 =
1

2(n−k)/2

n−k∏

i=1

(I +Gi)|0〉⊗n =
1

2(n−k)/2

∑

i

Si|0〉⊗n

=
1

2(n−k)/2

∑

i

|si〉,

where {Si} are the set of all stabilizers generated by 〈Gi〉n−ki=1 and we have defined the
state |si〉 = Si|0〉⊗n. Consider the action of two anti-commuting logical Pauli opera-
tors XL,1, ZL,1, on the state |φ〉. We know that |φ〉 cannot be an eigenstate of both
operators, as no state can be a joint eigenstate of two anti-commuting operators. There-
fore, we can consider the following two cases: either |φ〉 is an eigenstate of one of the
operators, or |φ〉 is not an eigenstate of either operator. We shall consider the case of the
former first.

Without loss of generality, assume that ZL,1|φ〉 = |φ〉 = |ψ1〉 andXL,1|φ〉 = |ψ2〉 6= α|ψ1〉
(where α is a global phase). Consider the action of XL,1|φ〉:

XL,1|φ〉 =
1

2(n−k)/2

n−k∏

i=1

(I +Gi)XL,1|0〉⊗n

=
1

2(n−k)/2

∑

i

Si
∣∣gXL,1

〉
,

if
∣∣gXL,1

〉
= |sj〉 for some j then after the action of the sum over stabilizer operators, the

final state XL,1|φ〉 = α|φ〉 would be a contradiction. Therefore, the state
∣∣gXL,1

〉
must be a

computational basis state that is not present in the expansion of |φ〉, and moreover, each
element of the state |ψ2〉 must have zero overlap with the state |ψ1〉,

|ψ2〉 = XL,1|φ〉 =
1

2(n−k)/2

∑

i

∣∣gXL,1 ⊕ si
〉
.

Therefore, two states of the form of Equation 2.79 have been constructed. Consider now
the action of the next pair of anti-commuting logical Paulis XL,2, ZL,2 on the state |ψ1〉.
Again, since |ψ1〉 cannot be a joint eigenstate of both operators, without loss of generality,
assume XL,2|ψ1〉 = |ψ3〉 6= α|ψ1〉. Moreover, it must be that |ψ3〉 6= α|ψ2〉 or else the
following would be true: XL,1XL,2|ψ1〉 = αXL,1|ψ2〉 = α|ψ1〉, which would imply that |ψ1〉
is an eigenstate of two anti-commuting operators, ZL,1 and XL,1XL,2, which results in a
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contradiction. Therefore, we can express the state |ψ3〉 as follows:

|ψ3〉 = XL,2|ψ1〉 =
1

2(n−k)/2

n−k∏

i=1

(I +Gi)XL,2|0〉⊗n

=
1

2(n−k)/2

∑

i

∣∣gXL,2 ⊕ si
〉
,

where each state in the computational basis expansion must have zero overlap with the
states |ψ1〉 and |ψ2〉. Finally. consider the action of the same anti-commuting pair on the
state |ψ2〉. As will be shown below, it does not matter which we choose, and thus, without
loss of generality, we assume it to be the operator ZL,2. First note that if ZL,2|ψ2〉 = α|ψ1〉,
then |ψ1〉 would be the joint eigenstate of two anti-commuting Paulis, ZL,1 and XL,1ZL,2,
which is a contradiction. Moreover, if ZL,2|ψ2〉 = α|ψ3〉 then again |ψ1〉 would be the
joint eigenstate of two anti-commuting Paulis, ZL,1 and XL,1XL,2ZL,2. Therefore, the
state ZL,2|ψ2〉 = |ψ4〉 must have zero overlap with the previous established states and can
be expressed as follows:

|ψ4〉 = ZL,2|ψ2〉 =
1

2(n−k)/2

n−k∏

i=1

(I +Gi)ZL,2XL,1|0〉⊗n

=
1

2(n−k)/2

∑

i

∣∣gXL,1 ⊕ gZL,2 ⊕ si
〉
.

Notice the form of |ψ3〉 and |ψ4〉. By taking the previous states |ψ1〉 and |ψ2〉 and a pair of
non-commuting logical Paulis, for each state in the previous level, we can construct a new
state by applying the logical Pauli for which it is not an eigenstate. One can continue the
same constructive process for preparing states of the form of Equation 2.79 by taking the
m-th pair of anti-commuting logical operators and the 2m−1 previous constructed states,
thereby creating another 2m−1 set of orthogonal states, following similar constraints as laid
out above. Applying this to all pairs of logical Pauli gates for the given code, 2k basis
states for the codespace can be constructed.

In the case when the state |φ〉 is not an eigenstate of either of the first two logical Pauli
gates, ZL,1 and XL,1, the following modifications have to be made. Let |ψ1〉 = ZL,1|φ〉 and
|ψ2〉 = XL,1|φ〉. If |ψ1〉 = |ψ2〉 then by redefining the logical Pauli ˜ZL,1 = XL,1ZL,1 and∣∣∣ψ̃1

〉
= |φ〉, we recover the original case where ˜ZL,1

∣∣∣ψ̃1

〉
=
∣∣∣ψ̃1

〉
= |φ〉 and |ψ2〉 = XL,1|φ〉.

Therefore, the final case to consider is where |ψ1〉 6= α|ψ2〉. In this case, they must not
have overlapping states in the computational basis, and their expansion can be written as
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follows:

|ψ1〉 = ZL,1|φ〉 =
1

2(n−k)/2

∑

i

∣∣gZL,1 ⊕ si
〉
,

|ψ2〉 = XL,1|φ〉 =
1

2(n−k)/2

∑

i

∣∣gXL,1 ⊕ si
〉
.

Again, as in the previous case, consider the action of the pair of logical Pauli gates XL,2

and ZL,2 on the state |ψ1〉. Without loss of generality, assume that |ψ1〉 is not an eigenstate
of XL,2. Unlike the previous case, it is now possible that XL,2|ψ1〉 = |ψ2〉. However, if this

holds, then redefining ˜ZL,1 = XL,1ZL,1XL,2 and
∣∣∣ψ̃1

〉
= |φ〉 we recover the original case

with ˜ZL,1

∣∣∣ψ̃1

〉
=
∣∣∣ψ̃1

〉
and XL,2

∣∣∣ψ̃1

〉
= |ψ3〉, as well as all redefined operators satisfying

the appropriate commutation relations. Otherwise, we can conclude that XL,2|ψ1〉 = |ψ3〉
and must be orthogonal to the two previous states as well as have the following form:

|ψ3〉 = XL,2|ψ1〉 =
1

2(n−k)/2

∑

i

∣∣gZL,1 ⊕ gXL,2 ⊕ si
〉
.

Therefore, continuing in the same manner as in the previous case, we can construct the set
of 2k logical basis states of the form given by Equation 2.79.

Corollary 46. Suppose CS is an n-qubit stabilizer containing k logical qubits. Given 2k

states |ϕm〉 ∈ CS whose expansion in terms of the computational basis states are all non-
overlapping, then these states must be of the form

|ϕm〉 =
∑

l

iam,l |ml〉.

Proof. Since all 2k states are elements of CS , they must be convex combinations of any
basis chosen for CS . Choose the basis given by the states from Lemma 45. Then, if any
of the |ϕm〉 were a convex combination of states from such a basis, there must be at least
one overlapping state relative to the individual states in its computational basis state
expansion. Otherwise the dimension of the logical Hilbert space would be too small to fit
all of these logical states.

We know by Lemma 45, that the computational basis state expansion of |1L〉 will be a
sum of states such that each state differs from those in the representation of |0L〉. Moreover,
the gate Z(θ)⊗n will preserve all of these basis states, potentially introducing relative phases
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between the elements of the sum, however by Corollary 46 the resulting states must also
form a basis for the stabilizer code, and in particular for the case of an automorphism
the states must form the same logical basis. We can now proceed to proving the set of
transversal Z rotations for stabilizer codes in a very similar manner to Theorem 43.

Proposition 2. A nontrivial qubit stabilizer code (distance d ≥ 2) can only have strongly
transversal Z rotations which are of the form Z(a/2k).

Proof. We can represent a general string of Pauli matrices as a binary string using the
associations: {I → 00, X → 10, Y → 11, Z → 01}. We will write an n-qubit Pauli string
as a 2n-bit string f = (g|h). Here we have separated the string into the two substrings
of n-bits (an X (g) and Z (h) substring). We can express the expansion of |0L〉 and |1L〉
in terms of binary strings of the X operators as follows (without loss of generality assume
that |0〉⊗n is in the stabilizer codespace):

|0L〉 = (I + ZL)
∏

i

(I +Gi)|0〉⊗n

= |g0〉+ (i)aZL |gZL〉+
∑

i1

((i)ai1 |gi1〉+ (i)aZL⊕i1 |gZL ⊕ gi1〉)

+
∑

i1<i2

((i)ai1⊕i2 |gi1 ⊕ gi2〉+ (i)aZL⊕i1⊕i2 |gZL ⊕ gi1 ⊕ gi2〉)

+ ...+ ((i)
ai1⊕···⊕i|G| |gi1 ⊕ · · · ⊕ gi|G|〉+ (i)

aZL⊕i1⊕···⊕i|G|

∣∣∣gZL ⊕ gi1 ⊕ · · · ⊕ gi|G|
〉

),

(2.80)

and

|1L〉 = XL|0L〉
= (i)aXL |gXL〉+ (i)aXL⊕ZL |gXL ⊕ gZL〉

+
∑

i1

((i)aXL⊕i1 |gXL ⊕ gi1〉+ (i)aXL⊕ZL⊕i1 |gXL ⊕ gZL ⊕ gi1〉)+

+ ...+ ((i)
aXL⊕i1⊕···⊕i|G| |gXL ⊕ gi1 ⊕ · · · ⊕ gi|G|〉

+ (i)
aXL⊕ZL⊕i1⊕···⊕i|G|

∣∣∣gXL ⊕ gZL ⊕ gi1 ⊕ · · · ⊕ gi|G|
〉

). (2.81)

Here g0 is the “all-zeros” string, gi, gXL , gZL is a binary string corresponding to the location
of the X Pauli operators in the respective operators Gi, XL, ZL, and ⊕ is bitwise XOR.
We have added the additional projector (I+ZL) in order to project to the eigenspace of ZL
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(which may contain X operators). There are relative phases between the different states as
the Y and Z Pauli operators from the stabilizers Gi may introduce phases, these phases are
characterized by the term (i)a~µ , where a~µ is an integer setting the phase for the particular
ket |~µ〉. Importantly, the computational basis states in the sum are all a function of the
bit strings gi which encode the location of X (or Y ) operators in the stabilizer Gi. If |0〉⊗n
is not in the codespace, another computational basis state can be chosen and the proof
would follow identically.

The effect of applying a Z(θ)⊗n rotation to the computational basis state composed of
the string g will be:

Z(θ)⊗n|g〉 = eiπθ|g||g〉. (2.82)

Using the result of Lemma 45 we see that for Z(θ)⊗n to be a valid logical operator it cannot
introduce relative phases between the states in the expansions of Eqs. 2.80 and 2.81, and
as such must introduce the same phase to all the states in the expansion (there can be a
relative phase between |0L〉 and |1L〉 however).

For the CSS codes, we assumed that XL(ZL) consisted of single qubit unitaries X and
I (Z and I). In this case we make no such assumptions,

θ|gi1| = 0 mod 2

θ|gi1 ⊕ gi2| = 0 mod 2

...

θ|gi1 ⊕ ...⊕ gi|G|| = 0 mod 2

θ|gXL| 6= 0 mod 2

θ|gXL ⊕ gi1| 6= 0 mod 2

...

θ|gXL ⊕ gi1 ⊕ ...⊕ gi|G|| 6= 0 mod 2

θ|gZL| = 0 mod 2

∀0 < i1 < i2 < ... < i|G| ≤ |G|.

The additional requirement is from [ZL, Z(θ)⊗n] = 0. Otherwise Z(θ)⊗n|0L〉 = |0L〉 6=
Z(θ)⊗nZL|0L〉.

These constraints are the same (actually slightly more constraining) as the constraints
from the proof of Theorem 43 and the proof carries through analogously.
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Corollary 47. Given a nontrivial qubit stabilizer code (distance d ≥ 2), a strongly transver-
sal diagonal logical gate U =

⊗
i Z(θ) can only implement a logical diagonal gate in the

Clifford hierarchy, that is U = ZL(c/2k) ∈ C(k+1)
1 .

Proof. Consider the action of the transversal rotation on the logical basis states for the
the stabilizer code chosen according to Lemma 45, that is:

n⊗

i=1

Z(θ)|ψm〉 =
∑

l

iam,l
n⊗

i=1

Z(θ)|ml〉 =
∑

l

iam,leiπθ|ml||ml〉. (2.83)

Therefore, the action of U =
∏

i Z(θ) will result in orthogonal logical basis states to remain
orthogonal by the following:

〈ψn|U |ψm〉 = (
∑

p

(−i)an,p〈np|)(
∑

l

iam,leiπθ|ml||ml〉) (2.84)

=
∑

l,p

(−i)an,piam,leiπθ|ml|〈np|ml〉 (2.85)

= 0, (2.86)

since by the choice of basis 〈np|ml〉 ∀ l, p for m 6= n. As such, for this choice of logical basis
the logical gate is by definition diagonal. By Proposition 2, the only allowable rotations
are of the form Z(θ) = Z(a/2k) and the logical gate must introduce the same phase to all
the computational basis states in the expansion of the logical states. Therefore, the logical
rotation must have the following form:

n⊗

i=1

Z(a/2k)|ψm〉 =
∑

l

iam,leiπ|ml|a/2
k |ml〉 (2.87)

= eiπ|m1|a/2k
∑

l

iam,l |ml〉 (2.88)

= eiπc/2
k
∑

l

iam,l |ml〉. (2.89)

Therefore, since the phases are restricted to be of the form eiπc/2
k

the logical gate must be
in the (k + 1)-th level of the Clifford hierarchy.
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2.4.2.3 Relaxing strong transversality

We have proven a restriction on the set of diagonal strongly transversal gates for stabilizer
codes, however there is no physical reason requiring all qubits in the code have the same
rotation applied to them. Namely, each physical qubit could in theory undergo a different
rotation. In this subsection, we show that this added freedom will still not allow an
increased freedom in the set of diagonal rotations that one can implement.

First, notice that if the transversal operator includes the identity anywhere, it will have
no effect on that qubit and therefore, we can formulate the overlap conditions on a new
code with that qubit removed. Unlike puncturing a code we are not actually removing the
qubit from the code, it is simply not included in the overlap conditions. In what follows, we
will assume this process has been implemented, and no identity operators remain. We can
do this without any difficulties since our overlap conditions make no use of the commuting
properties of stabilizer generators. To prove this more general case we will introduce a new
tool: the decompression lemma.

Lemma 48. If an [[n, k, d]] code exists with a transversal ZT (θ) = Z(θ1) ⊗ Z(θ2) ⊗ ... ⊗
Z(mθn) gate, then there exists an [[n + m − 1, k, 2]] code with a transversal Z ′T (θ) =
Z(θ1)⊗ Z(θ2)⊗ ...⊗ (Z(θn)⊗m) gate.

Proof. If a code admits a transversal operation ZT (θ) = Z(θ1)⊗Z(θ2)⊗ ...⊗Z(mθn), this
code’s X stabilizer generators and logical operators clearly satisfy the overlap conditions
for the transversal Z operator. Now, if we take the last column of the check matrix
and repeat it m times, we have a new code which has distance two since a repeated
column in the check matrix creates a weight two logical operator. It is easy to see that
Z ′T (θ) = Z(θ1)⊗ Z(θ2)⊗ ...⊗ (Z(θn)⊗m) satisfies the same overlap conditions on the new
code that ZT satisfied for the original code, and it follows that Z ′T (θ) implements the same
logical operation as ZT (θ). Here we have not specified the Z stabilizer generators and it
should be noted that in the new code obtained after applying the decompression lemma,
there will be m− 1 new Z stabilizer generators.

Before proceeding to the general statement for transversal gates, we present a Lemma
that rules out the possibility of irrational angles contributing to the logical gate.

Lemma 49. Suppose Q is a [[n, k, d]] error-detecting stabilizer code (d ≥ 2) with a transver-
sal logical gate of the form ZT (θ) =

⊗n
i=1 Z(θi) such that θi 6= pi/qi for i ∈ Γ, where Γ

is an arbitrary set of integers from the set [1, . . . , n]. Then, one can replace the irrational
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angles by the identity gate and obtain the same logical gate. That is, let

βi =

{
0 i ∈ Γ

θi i /∈ Γ
,

then ∀ |ψ〉 ∈ Q,
⊗n

i=1 Z(θi)|ψ〉 =
⊗n

i=1 Z(βi)|ψ〉.

Proof. We allow each Z(θi) to be a Z rotation about any angle, not just a rational angle.
Without loss of generality we can assume each θi is in the range (−1,+1) and θi 6= 0 (since
we can just use a new code with that qubit removed). Now we have a transversal gate of
the form:

ZL(θ′) := Z(θ1)⊗ Z(θ2)⊗ ...⊗ Z(θn). (2.90)

We will also assume that at least one of the angles is irrational as we have already solved
the rational case. Constraints from ZL(θ′)|0L〉 = |0L〉 restrict as follows:

~θ · gTi1 = 0

~θ · (gi1 ⊕ gi2)T = 0

...

~θ · (gi1 ⊕ ...⊕ gi|GX |)
T = 0,

while constraints from ZL(θ′)|1L〉 = eiπθ|1L〉 provide the following:

~θ · gTXL = θ

~θ · (gXL ⊕ gi1)T = θ

...

~θ · (gXL ⊕ gi1 ⊕ ...⊕ gi|GX |)
T = θ

∀0 < i1 < i2 < ... < i|GX | ≤ |GX |.

Here the equality is taken over the Real numbers if at least one term in the sum ~θ · gTi
is irrational, otherwise the equality is modulo some integer as before.

Some observations:

1. If θi = p
q
θj, then if θi− p

q
θj = 0 =⇒ θi

q
(q−p) = 0 =⇒ θ′(q−p) = 0. Here θ′ = θi/q.

We can use the decompression lemma to create a new code where ZL applies Z(θ′)
to p+ q qubits.
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2. If θi 6= p
q
θj, then θi + θj = 0 iff θi = 0 and θj = 0. Notice that θi and θj could be two

irrational numbers which are not proportional or an irrational and a rational number
(which by definition are not proportional).

3. We can use these observations to reorder the qubits in the code (and possibly apply

the decompression lemma to create a new code) to write ~θ as Z(1/q)⊗ ...⊗Z(1/q)⊗
Z(θ1)⊗ ...⊗Z(θ1)⊗Z(θ2).... Here the Z(1/q) are from the rational part of ZL (with
q a common denomonator) and Z(θi) are the irrational part of ZL. We have used the
decompression lemma to express proportional irrational angles as the same θi. Each
different i corresponds to irrational angles which are not proportional.

4. Using the second observation we see that the rational angles and each set of pro-
portional irrational angles must individually satisfy the above constraints. We have
already discussed the allowable solutions given rational angles. In what follows we
will show that no nontrivial solutions exist given irrational angles.

For each θi we will have constraints from ZL(θi)|0L|θi〉 = |0L|θi〉 such that,

~θi · gTi1|θi = 0

~θi · (gi1|θi ⊕ gi2|θi)T = 0

...

~θi · (gi1|θi ⊕ ...⊕ gi|GX ||θi)
T = 0,

while constraints from ZL(θi)|1L|θi〉 = eiπθ|1L|θi〉 provide the following,

~θi · gTXL|θi = θ

~θi · (gXL|θi ⊕ gi1|θi)T = θ

...

~θi · (gXL|θi ⊕ gi1|θi ⊕ ...⊕ gi|GX ||θi)
T = θ

∀0 < i1 < i2 < ... < i|GX | ≤ |GX |.

Here |0L|θi〉 refers to the restriction to qubits which ~θi acts nontrivially upon. Note that
it is possible that θ = 0 for some set of proportional irrational angles. As long as θ 6= 0
for some set of proportional irrational angles, then the irrational part of ~θ has contributed
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nontrivially ZL(θ′). We will only consider the case when θ 6= 0 as the other case is trivial
(equivalent to applying the identity).

Now, we will try to find a set of rows of HX and XL which satisfy all these conditions.
For the underlying code to be nontrivial we require that HX has no zero columns. We
assume that a 6= 0, otherwise the transversal operator is trivial (ZL(θ′) = I).

If there is only one row h1 then it must be all ones and

~θ · gT1 = 0

~θ · gTXL 6= 0

~θ · (g1 ∧ gXL)T = 0,

but ~θ · (g1 ∧ gXL)T = ~θ · gTXL = 0 and we have a contradiction.

If HX is nontrivial and has two rows, the columns of HX are one of three types:

a =

[
1
0

]
, b =

[
0
1

]
, c =

[
1
1

]
. (2.91)

We will refer to the combination of all columns of type a, b, c, by the matrix A,B,C,
respectively.

If we have a logical operator XL, then

~θ · (g1 ∧ gXL)T = θ(∆wA + ∆wC) = 0,

~θ · (g2 ∧ gXL)T = θ(∆wB + ∆wC) = 0,

~θ · (g1 ∧ g2 ∧ gXL)T = θ(∆wC) = 0,

~θ ·XL = θ(∆wA + ∆wB + ∆wC) 6= 0.

Here, ∆wA = w+
A − w−A and w+

A(w−A) is the overlap of A and XL which has support on
H+
X(H−X). Since θ 6= 0 the first three constraints imply that ∆wA,∆wB,∆wC = 0 which

imply |XL| = 0 and hence a contradiction.

As we can see the proof proceeds in the same manner as in Sec. 2.4.2.1 with wi replaced
by ∆wi. We reach the same contradiction given any set of proportional irrational angles
and have, therefore, proven that transversal gates with single qubit rotations by irrational
angles have no effect and are equivalent to applying the identity.
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We now have the tools to proceed to the general proof for the classification of diagonal
transversal gates for stabilizer codes.

Proposition 3. A nontrivial stabilizer code (distance d ≥ 2) can only have transversal Z
rotations which are of the form Z(a/2k).

In this case we have a transversal gate

ZT (θ) := Z(θ1)⊗ Z(θ2)⊗ ...⊗ Z(θn). (2.92)

As per Lemma 49, irrational angles must cancel and therefore cannot contribute to the
logical gate. As such, we can assume that Z(θi) is rational. Therefore, we have a transversal
gate of the form

ZT (θ) := Z(p1/q1)⊗ Z(p2/q2)⊗ ...⊗ Z(pn/qn). (2.93)

We can find the least common denominator q of q1, ..., qn and express this as

ZT (θ) := Z(p′1/q)⊗ Z(p′2/q)⊗ ...⊗ Z(p′n/q). (2.94)

We can also use that Z(2 + p/q) = Z(p/q) to claim p′i/qi ∈ [0, 2) and also assume that
Z(p/q) 6= I, else we could ignore this operator and the qubit it acted upon as they would
not affect the overlap conditions.

Now, we repeatedly apply the decompression lemma until we have an [[
∑

i pi, k, 2]] code
with a transversal gate

ZT (θ) := Z(1/q)⊗ ...⊗ Z(1/q). (2.95)

We have now reduced these more general gates to strongly transversal gates, and the proof
follows as before.

2.4.2.4 Classification of all single qubit logical gates

Recall that Zeng et al. showed that all single-qubit logical transversal gates for a stabilizer
code must have the form [142]:

U = L

(
n⊗

j=1

diag(1, eiπθj)

)
R†Pπ, (2.96)

where Pπ is a permutation matrix of the physical qubits while R and L are transversal
single-qubit Clifford operators. Given that the action of the transversal unitary is given
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by the composition of a transversal diagonal gate with Clifford operations, by classifying
all possible mappings between stabilizer codes given by transversal diagonal operations we
can classify all possible transversal gates. We summarize this statement in the following
two results.

Proposition 4. Given two nontrivial (distance d ≥ 2) n-qubit stabilizer codes CS and CT
consisting of r logical qubits, transversal Z rotations of the form D = ⊗rj=1Z(θj) which
map CS −→ CT (and possibly apply a logical unitary in the process) must be of the form
D = ⊗rj=1Z(aj/2

kj).

Proof. Let {|ψm〉2
r

m=1} form a logical basis set for the stabilizer code and choose CS to be
of the form outlined in Lemma 45. Then, given a transversal application of diagonal gates,
the resulting set of states must also form a basis for a stabilizer code (in this case chosen
to be CT ) such that each individual basis state will have the same expansion in terms
of the computational basis states. However, the transversal application of diagonal gates
may result in relative phases between the states; since the states must form a basis for the
stabilizer code of the type given by Lemma 45, the relative phases must be powers of i.
Therefore, the transformed states read:

|ψm〉 =
∑

l

iam,l |ml〉 D−→ |ϕm〉 = eiπφm
∑

l

iam,licm,l |ml〉.

Therefore, repeating the action of the diagonal transversal gate 4 times must return the
original set of basis states (with the possible introduction of a phase).

|ψm〉 =
∑

l

iam,l |ml〉 D4

−→ ei4πφm|ψm〉 = ei4πφm
∑

l

iam,l |ml〉.

We are now back to the original case of classifying transversal diagonal gates for logical
gates returning to the same codespace, which we have already classified to be rotations of
the form D = ⊗nj=1Z(aj/2

kj). Therefore, we are similarly restricted for the case of logical
mappings between stabilizer codes.

Corollary 50. Given an n-qubit stabilizer code CS and a transversal unitary U implement-
ing a logical gate, then U must be of the following form:

U = L

(
n⊗

j=1

Z(aj/2
kj)

)
R†Pπ, (2.97)

and must implement a logical unitary in the Clifford hierarchy.
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Proof. First note that by the characterization in Ref [142], a transversal unitary gate must
have the form given in Equation 2.96. Given that Pπ is a permutation unitary, it must
necessarily map CS to another stabilizer code CS1 with the exact same code properties,
namely code distance. Additionally, since R† is a transversal Clifford operation, it will
map any stabilizer code CS1 to another stabilizer code CS2 whose distance is preserved.
The distance is preserved as suppose one is given a Pauli error E such that wt(E) < d,
where d is the distance. Then for |ψ2〉 ∈ CS2 , R(E|ψ2〉) = E ′|ψ1〉, where |ψ1〉 must be in CS1
and E ′ is a modified Pauli error of the same weight as E since R is a transversal Clifford.
Therefore since E ′ is correctable by the distance property of CS1 , the transformed error must
remain correctable in CS2 . Similarly, L† must map CS to a stabilizer code CS3 with the same
distance d. Therefore, since R†Pπ maps CS to CS2 and L maps CS3 to CS , in order for U
to be a logical operation that preserves the codespace, the operator D = ⊗nj=1Z(θj) must
be a mapping between two nontrivial stabilizer codes CS2 and CS3 . As such, the operator
must be constrained by the result of Proposition 4 and the resulting gate is given by the
form in Equation 2.97. Finally, since U is a result of the application of a transversal gate
belonging to the Clifford hierarchy in composition with Clifford gates, and using the fact
that Clifford gates must preserve the given level of the Clifford hierarchy, the resulting gate
must belong to the Clifford hierarchy by the same argument as given in Corollary 44.

2.4.3 Multi-block gates

In this subsection we consider the case of multi-qubit logical gates, where each logical qubit
(or codeblock) is encoded in the same [[n, k, d]] error correcting codeQ. Zeng et al. classified
the set of gates that can be transversal across these codeblocks. Namely, if U is a transversal
gate on Q⊗r, then for each j ∈ [n] either Uj ∈ Lr or Uj = L1V L2, where L1, L2 ∈ L⊗r1 are

local Clifford gates, and V keeps the linear span of the group elements of 〈±Z(i)
j , i ∈ [r]〉.

This work focuses on the gates V , which must be diagonal in order to preserve the span
of the group of Z operators across qubits at a fixed i.

2.4.3.1 Strong transversality for two-qubit logical gates

Consider first the implementation of a logical diagonal gate in the case of two codeblocks,
where the logical gate is implemented by using a strongly transversal gate. That is, consider
the implementation of the diagonal two-qubit logical gate by applying a given two-qubit
gate, U =

∑
j e

iπθj |j〉〈j| transversally U⊗n among the corresponding pair of qubits between
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the codeblocks. The desired logical gate to be implemented has the form

UL =
∑

j

eiπωj |j〉〈j|L,

where the states {|j〉L}j = {|00〉L, |01〉L, |10〉L, |11〉L} are two-qubit logical states spanning
the two codeblocks.

As in the single block case, the desired action of the logical gate on the logical states will
impose a restriction on the form of the two-qubit physical gates that can be implemented
in a strongly transversal manner. In the case of a quantum CSS code, the above logical
gate description will have the following form, similar to the construction in Theorem 43:

UL|00〉L = U⊗n
|GX |∏

i=1

(I +GXi)|0〉⊗n
|GX |∏

j=1

(I +GXj)|0〉⊗n

= U⊗n
(
|g0〉+

∑

i1

|gi1〉+
∑

i1<i2

|gi1 ⊕ gi2〉+ . . .+
∣∣i1 ⊕ . . .⊕ i|GX |

〉)

⊗
(
|g0〉+

∑

j1

|gj1〉+
∑

j1<j2

|gj1 ⊕ gj2〉+ . . .+
∣∣j1 ⊕ . . .⊕ j|GX |

〉)

= eiπω00 |00〉L.

Note that each of the 4|GX | states in the summation of the |00〉L state are computational
basis states and will not change under the action of U⊗n except for the possible addition of
a phase. Therefore, in order to remain a codeword, all states in the expansion must have
the same phase.

Without loss of generality, one can assume that the phase θ00 = 0 (this maps to a
global phase freedom in the logical gate UL). Consider now the phases introduced on all
2|GX | states in the expansion of the first qubit, along with the state |g0〉 in the expansion
of the second qubit. For clarity, we will list the state in the expansion, along with the
corresponding condition imposed on its phase.

|g0〉|g0〉 : nθ00 = ω0 = 0 mod 2

|gi1〉|g0〉 : |gi1|θ10 + (n− |gi1|)θ00 = |gi1|θ10 = 0 mod 2

|gi1 ⊕ gi2〉|g0〉 : |gi1 ⊕ gi2|θ10 = 0 mod 2

...∣∣∣gi1 ⊕ . . .⊕ gi|GX |
〉
|g0〉 : |gi1 ⊕ . . .⊕ gi|GX | |θ10 = 0 mod 2
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These conditions are equivalent to the conditions derived on a single codeblock and
therefore θ10 is restricted to be an integer multiple of 1/2c (when paired with the appropriate
restrictions on the logical phase ω10 as given below). In a very similar manner, a set of
constraints can be obtained for the angle θ01 due to the symmetry of the two codes:

|g0〉|gj1〉 : |gj1|θ01 + (n− |gj1|)θ00 = |gi1|θ01 = 0 mod 2

|g0〉|gj1 ⊕ gj2〉 : |gj1 ⊕ gj2|θ01 = 0 mod 2

...

|g0〉
∣∣∣gj1 ⊕ . . .⊕ gj|GX |

〉
: |gj1 ⊕ . . .⊕ gj|GX | |θ01 = 0 mod 2

Therefore, the phase angle θ01 will also be restricted to be an integer multiple of 1/2c.

In order to obtain a restriction on the phase angle θ11, higher order state vectors must
be considered in both expansions of the logical |0〉L states. Consider the full summation
over states in the expansion of the first block, along with state vectors in the second block
of the form |gj1〉.
|gi1〉|gj1〉 : |gi1 ∧ gj1|(θ11 − θ01 − θ10) + |gi1|θ10 + |gj1 |θ01 = 0 mod 2

|gi1 ⊕ gi2〉|gj1〉 : |(gi1 ⊕ gi2) ∧ gj1|(θ11 − θ01 − θ10)

+|gi1 ⊕ gi2|θ10 + |gj1 |θ01 = 0 mod 2

...∣∣∣gi1 ⊕ . . .⊕ gi|GX |
〉
|gj1〉 : |(gi1 ⊕ . . .⊕ gi|GX |) ∧ gj1|(θ11 − θ01 − θ10)

+|gi1 ⊕ . . .⊕ gi|GX ||θ10 + |gj1|θ01 = 0 mod 2

First notice that every term other than the first term in each of the conditions will be equal
to zero (mod 2), as a result of the set of conditions imposed on the phase angles θ01 and θ10.
Therefore, what remains are conditions on the phase difference θ′11 = (θ11−θ01−θ10), which
is equivalent to a condition on θ11. Moreover, consider the expansion of the direct sum as
given by Equation 2.76:

|(gi1 ⊕ gi2) ∧ gj1|θ′11 = |(gi1 ∧ gj1)⊕ (gi2 ∧ gj1)|θ′11

=
(
|gi1 ∧ gj1|+ |gi2 ∧ gj1| − 2|gi1 ∧ gi2 ∧ gj1|

)
θ′11 = 0

⇒ 2|gi1 ∧ gi2 ∧ gj1|θ′11 = 0,
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where the implication in the final line is due to |(gi ∧ gj1)|θ′11 = 0, for all i from the first
set of constraints of the state vector |gi1〉|gj1〉. Similarly,

|(gi1 ⊕ gi2 ⊕ gi3) ∧ gj1|θ′11 = |(gi1 ∧ gj1)⊕ (gi2 ∧ gj1)⊕ (gi3 ∧ gj1)|θ′11

=
(
|gi1 ∧ gj1|+ |gi2 ∧ gj1|+ |gi3 ∧ gj1|
− 2|gi1 ∧ gi2 ∧ gj1 | − 2|gi1 ∧ gi3 ∧ gj1 | − 2|gi2 ∧ gi3 ∧ gj1 |

+ 4|gi1 ∧ gi2 ∧ gi3 ∧ gj1|
)
θ′11 = 0

⇒ 4|gi1 ∧ gi2 ∧ gi3 ∧ gj1|θ′11 = 0.

The final implication is a consequence of the above condition on 2|gi1 ∧ gi2 ∧ gj1|. The
same procedure will follow for all states in the expansion, and conditions on θ′11 can thus
be modified as:

|gi1〉|gj1〉 : |gi1 ∧ gj1|θ′11 = 0 mod 2

|gi1 ⊕ gi2〉|gj1〉 : 2|gi1 ∧ gi2 ∧ gj1|θ′11 = 0 mod 2

|gi1 ⊕ gi2 ⊕ gi3〉|gj1〉 : 4|gi1 ∧ gi2 ∧ gi3 ∧ gj1|θ′11 = 0 mod 2

...∣∣∣gi1 ⊕ . . .⊕ gi|GX |
〉
|gj1〉 : 2|GX |−1|gi1 ∧ . . . ∧ gi|GX | ∧ gj1|θ

′
11 = 0 mod 2.

Given that the two codebocks are encoded in the same quantum error correcting code,
these conditions are a modified version of the conditions derived in the single block case,
where an extra factor of 2 is present in all of the constraints. This extra factor of 2 will
have a consequence on the type of logical gates that can be implemented transversally
and will limit the 2-qubit gates to reside in the same level of the Clifford hierarchy as the
1-qubit gates that can be implemented for a given code.

Finally, consider the action of the strongly transversal gate on the logical states |01〉L,
|10〉L, and |11〉 when performing a logical XL on the appropriate qubit(s). The resulting
set of conditions impose a restriction on the logical phases ω01, ω10, and ω11. For the logical
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state |01〉L the conditions are:

|g0〉|gL〉 : |gL|θ01 = ω01 mod 2

|g0〉|gj1 ⊕ gL〉 : |gj1 ⊕ gL|θ01 = ω01 mod 2

...

|g0〉
∣∣∣gj1 ⊕ . . .⊕ gj|GX | ⊕ gL

〉
: |gj1 ⊕ . . .⊕ gj|GX | ⊕ gL|θ01 = ω01 mod 2.

Therefore these restrictions, along with the conditions for the phase θ01, will impose the
restriction of the form of phases that can be applied, as shown in the single block case.
In the exact same manner, restriction on the phases θ10 and ω10 are obtained. Finally, in
order to obtain restrictions on the phase ω11, consider the following:

|gL〉|gL〉 : |gL|θ11 = ω11 mod 2

|gL〉|gj1 ⊕ gL〉 : |gj1 ⊕ gL|θ11 = ω11 mod 2

...

|gL〉
∣∣∣gj1 ⊕ . . .⊕ gj|GX | ⊕ gL

〉
: |gj1 ⊕ . . .⊕ gj|GX | ⊕ gL|θ11 = ω11 mod 2,

there conditions are in fact exactly the same as the overlap between the gL string in
both states has to be the same since the two codes are encoded into the same codeblock.
Therefore, the exact same overlap conditions are obtained for the phases θ11 and ω11.

These set of conditions result in the following Theorem for two-qubit transversal diag-
onal gates.

Theorem 51. Suppose for a given quantum error correcting code the logical gate ZL(1/2k)
can be obtained by applying a transversal Z(1/2k)⊗n on the underlying physical qubits,
yet the transversal application of the logical gate ZL(1/2k+1) is impossible due to code
constraints. Then, the two-qubit logical gate UL that can be applied transversally is in
the same level of the Clifford hierarchy as the single-qubit logical gate that transversal
single qubit diagonal gates can implement, i.e. ZL(1/2k) ∈ C(k+1)

1 and UL ∈ C(k+1)
2 . More

specifically, the set of two-qubit diagonal gates U =
∑

j e
iπθj |j〉〈j| that can implement a

logical two-qubit operation by applying such gates transversally U⊗n will be restricted to the
angles (up to a global phase freedom),

θ00 = 0,

θ01 = a/2k,

θ10 = b/2k,

θ11 = a/2k + b/2k + c/2k−1,
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where a, b and c are arbitrary integers. The resulting two-qubit logical gate will have the
form (up to arbitrary Clifford gates),

UL =




1 0 0 0

0 eiπα/2
k−1

0 0

0 0 eiπβ/2
k

0

0 0 0 eiπγ/2
k


 ,

where β = 0⇔ γ = 0.

Proof. The first result of the proof is proved in the above subsection by the resulting
constraints on the angles that can be implemented transversally. More specifically, since
ZL(1/2k) can be implemented transversally, we know that the generators of stabilizer of
the code must satisfy,

|gi1| = 0 mod 2k

2|gi1 ∧ gi2| = 0 mod 2k

...

2k−1|gi1 ∧ . . . ∧ gik | = 0 mod 2k,

for all choices of valid indices {i1, . . . ik}. Moreover, since the code is constrained to not be
able to implement Z(1/2k+1) transversally, we know the following must be true for some
choice of indices {µ1, . . . , µk+1},

2k|gµ1 ∧ . . . ∧ gµk+1
| 6= 0 mod 2k+1.

Therefore, given the resulting set of constraints on the angle difference θ′11 = θ11−θ01−θ10,

|gi1 ∧ gj| = 0 mod q

2|gi1 ∧ gi2 ∧ gj| = 0 mod q

...

2k−1|gi1 ∧ . . . ∧ gik ∧ gj| = 0 mod q,

where 1/q is the desired angular rotation. The above conditions will not be able to be satis-
fied for q = 2k as for the indices {µ1, · · · , µk+1} the following would lead to a contradiction
with the final condition:

2k|gµ1 ∧ . . . ∧ gµk+1
| 6= 0 mod 2k+1 =⇒ 2k−1|gµ1 ∧ . . . ∧ gµk+1

| 6= 0 mod 2k.
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Conversely, we know that we can satisfy the above equations for q = 2k−1 by using an
implication from the single-qubit conditions that must be satisfied for all indices {i1, . . . ik},

2l|gi1 ∧ . . . ∧ gil+1
| = 0 mod 2k =⇒ 2l−1|gi1 ∧ . . . ∧ gil+1

| = 0 mod 2k−1.

Therefore, combining the results for the single qubit gates on the same restrictions and
the above observations we know the angle θ′11 is restricted to have the form c/2k−1. Since
the angles θ01 and θ10 satisfy the same restrictions as the single qubit block case, this
completes the proof of the first claim of Theorem 51 regarding the allowable angles which
a multi-qubit diagonal gate can implementing a logical multi-qubit gate via a transversal
application of the chosen gates. In order to obtain a description of the two-qubit logical
gate, we can consider the set of equations that provide the restrictions on the allowable
angles in order to obtain an explicit description of the logical angle that can be applied:

U⊗n|00〉L = eiπnθ00 |00〉L = |00〉,
U⊗n|01〉L = eiπ|gi|θ01|01〉L = eiπa|gi|/2

k |01〉L = eiπα/2
k |01〉L,

U⊗n|10〉L = eiπ|gi|θ10|10〉L = eiπb|gi|/2
k |10〉L = eiπβ/2

k |10〉L,
U⊗n|11〉L = eiπ|gi∧gj |θ11|11〉L = eiπ|gi|(θ01+θ10+θ′11)|11〉L = eiπ(a+b+2c)|gi|/2k |11〉L

= eiπ(α+β+2η)/2k |11〉L.
The above equations must hold for any choice of the weight of the individual (or pairs)
of stabilizer generators and in the last equation we have chosen gj to equal gi as we
have a freedom over which j we choose. We have also introduced the integers α = a|gi|,
β = b|gi|, and η = c|gi|. Consider the angle that is applied by the logical operation to
the state |11〉L in more detail, (α + β + 2η)/2k. If both α and β are odd, then the overall
angle will be of the form γ/2k−1. If either α or β are even (or zero), but not both, then
the angle will have the form γ/2k; however this would mean that the other angle could
then be expressed in its most reduced form as α′/2k−1. Finally, if both are even, it follows
that all these angles can be reduced and shown to be proportional to 1/2k−1. Therefore,
up to a relabelling of logical basis states (which can be achieved using either a logical XL

or CNOT gate), the two-qubit logical gate can be expressed in the form

UL =




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπβ/2
k

0

0 0 0 eiπγ/2
k−1


 ,

where α = 0 ⇔ β = 0, such that either both phases are zero or the two phases are
proportional to 1/2k (in the case when only one is zero, then the gate will be a product of
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a single logical qubit rotation proportional to Z(1/2k) and a controlled-Z(1/2k−1) which are

both in C(k)
2 ). To prove the final statement of Theorem 51 we must show that the above

gate is contained within the Clifford hierarchy at the (k + 1)-th level of the two-qubit

Clifford hierarchy, UL ∈ C(k+1)
2 .

We shall prove this by induction. Begin with the case k = 1, and without loss of
generality, assume α < β, that both are not equal to zero, and that the angles are written
in their most reduced form (if both α = β = 0. Now the proof of the base case is trivial,

as it becomes a controlled-Z gate which is clearly in C(2)
2 , a Clifford gate). We can rewrite

the logical gate as

UL =




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπβ/2
k

0

0 0 0 eiπγ/2
k−1


 =




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπα/2
k

0
0 0 0 1







1 0 0 0
0 1 0 0

0 0 eiπ(β−α)/2k 0

0 0 0 eiπγ/2
k−1




=




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπα/2
k

0
0 0 0 1







1 0 0 0
0 1 0 0

0 0 eiπ(β−α)/2k 0

0 0 0 eiπ(β−α)/2k







1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiπ(2γ+α−β)/2k


 .

The above sequence of unitaries can be expressed as the following sequence of gates:

• • Z((β − α)/2k) •

Z(α/2k) Z((2γ + α− β)/2k)

In this case, k = 1, and all of the single qubit gates are achieved by repeated action of the
Clifford phase gate S = diag(1, i). The two-qubit coupling gate is actually the application
of a controlled-Z gate since α 6= 0, β 6= 0, and both are odd; therefore, their difference is
even and the gate can be expressed in the form Z(ζ/2). Since all of these gates are in C(2)

2

and the first two levels of the Clifford hierarchy form a group, the resulting composition is
an element of C(2)

2 .

Assume the claim holds for k − 1; we will now show that it holds for k. By definition,
if UL ∈ C(k)

2 it must map any two-qubit Pauli to an element in C(k−1)
2 when conjugating

by UL. We need only consider the action of UL on the Pauli X elements, as the action on
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Pauli-Z is trivial since diagonal gates commute. Consider the following:

UL(X ⊗ I)U †L =




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπβ/2
k

0

0 0 0 eiπγ/2
k−1







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







1 0 0 0

0 e−iπα/2
k

0 0

0 0 e−iπβ/2
k

0

0 0 0 e−iπγ/2
k−1




=




0 0 e−iπβ/2
k

0

0 0 0 eiπ(α−2γ)/2k

eiπβ/2
k

0 0 0

0 e−iπ(α−2γ)/2k 0 0


 = A.

Through the action of CNOT gates, we can map the above operator to the following:

e−iπβ/2
k




1 0 0 0

0 eiπ(α+β−2γ)/2k 0 0

0 0 eiπ2β/2k 0

0 0 0 e−iπ(α−β−2γ)/2k


 .

Note that the left or right action of any Clifford gate will not change the level of an element
in the Clifford hierarchy, as proven in Prop. 3 in Ref [141]. Therefore we can show that

the above gate is in C(k−1)
2 which is equivalent to showing that A ∈ C(k−1)

2 . We know we
can write the integers α and β as α = 2kα + 1 and 2kβ + 1. Consider the following angular
expressions:

α + β − 2γ

2k
=

2(kα + kβ)− 2γ + 2

2k
=

(kα + kβ)− (γ − 1)

2k−1
,

α− β − 2γ

2k
=

2(kα − kβ)− 2γ

2k
=

(kα − kβ)− γ
2k−1

.

Since (kα + kβ) is even if and only if (kα − kβ) is even, one of the numerators in the final
expression will be even, and as such, one of the above angles will necessarily be of the
form 1/2k−2. Therefore, up to a logical Clifford operation (which preserves the level of the
Clifford hierarchy), the gate A will have the form:




1 0 0 0

0 eiπα
′/2k−1

0 0

0 0 eiπβ
′/2k−1

0

0 0 0 eiπγ
′/2k−2


 ,
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which by the induction hypothesis is an element of C(k−1)
2 . Finally, we must show the same

property for the following mapping:

UL(I ⊗X)U †L =




1 0 0 0

0 eiπα/2
k

0 0

0 0 eiπβ/2
k

0

0 0 0 eiπγ/2
k−1







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







1 0 0 0

0 e−iπα/2
k

0 0

0 0 e−iπβ/2
k

0

0 0 0 e−iπγ/2
k−1




=




0 e−iπα/2
k

0 0

eiπα/2
k

0 0 0

0 0 0 eiπ(β−2γ)/2k

0 0 e−iπ(β−2γ)/2k 0


 = B.

Up to logical Clifford operations, the gate B has the following form:




1 0 0 0

0 eiπ2α/2k 0 0

0 0 eiπ(αβ−2γ)/2k 0

0 0 0 e−iπ(β−α−2γ)/2k


 .

We can see that this has the same form as the case above when the roles of α and β are
exchanged; therefore B ∈ C(k−1)

2 by the induction hypothesis. Furthermore, since UL(Z ⊗
I)U †L = Z ⊗ I and UL(I ⊗ Z)U †L = I ⊗ Z, we conclude that UL ∈ C(k)

2 , thus proving the
induction hypothesis correct.

It is fairly straightforward to note that the equivalent of Proposition 3 will also apply
in the two-qubit case. That is, the gate restrictions will also apply to general transversal
operations and not just to those that are strongly transversal by using the Decompression
Lemma.

2.4.4 Summary & outlook

Zeng et al. classified the set of single-qubit logical transversal gates [142], showing that they
must result from the application of single-qubit diagonal gates in addition to possible local
Clifford operations and permutations (SWAP gates). In this work we have characterized
the set of individual diagonal gates that can result in the application of a non-trivial logical
gate, concluding that all of the entries must be of the form eiπc/2

k
. This severely limits the
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set of logical gates that can be implemented in a transversal manner for qubit stabilizer
codes. It also provides an important result for fault-tolerant quantum computing, as it rules
out the possibility of finding transversal implementations for important gates in certain
decomposition algorithms, such as the V gate. It also places restrictions on new fault-
tolerant schemes which have thus far used a combination of codes to achieve fault-tolerant
quantum computation.

Additionally, we have extended our analysis to two-qubit logical gates through the use
of two-qubit physical diagonal gates, showing that a very similar restriction holds. In
fact, in both the single and two-qubit case, the logical gates that can be implemented by
transversal diagonal gate application must belong to the Clifford hierarchy, and moreover,
both the single and two-qubit gates that can be implemented for a given code must reside
at the same level of the hierarchy. We conjecture that this is true for all multi-qubit gates.

Open questions for future research would be to classify the set of physical diagonal
gates that can implement a non-trivial logical gate for qudit systems. Additionally, it
would be interesting to consider the set of logical gates that can be generated by coupling
two codeblocks corresponding to different quantum error correcting codes, and determine
if the same logical gate restrictions apply. Classifying the set of transversal gates for other
types of codes is another interesting direction for future research which could provide
insight into ways to circumvent the gate restrictions introduced in this work.

Additionally, many magic state distillation schemes use CSS codes to distill higher fi-
delity magic states. These schemes use stabilizer codes with strongly transversal gates
directly related to the magic state which the scheme distills. Our results suggest that
magic state distillation based on these methods, can only distill gates in the Clifford hier-
archy. However, it is worth noting that the 5-to-1 distillation scheme proposed in Ref. [32]
is not based on such a method and does allow for the distillation of a state that can
implement Z(π/6).
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Chapter 3

Topological methods for universality

3.1 Topological codes

In Chapter 2, many examples of codes were presented in the context of concatenated
quantum error correction. While concatenated codes provide the simplest means to arriving
at a fault-tolerance threshold, there are some drawbacks to their implementation. Firstly,
the weight of the stabilizer generators naturally get very large as the Pauli operators that
form the stabilizer generators at the first level now become encoded Pauli operators, of
weight d, the distance of the code. Therefore, in order to measure the stabilizers of the
code for the purposes of error correction, the joint Pauli operator of a high number of
qubits need to be measured. This can be countered by using techniques such as Shor,
Steane, or Knill error correction [126, 130, 87], however all of these techniques add extra
ancillary overhead as well as require to post-select logical state preparation needed for their
implementation. Another more subtle point, which at first may not seem overly impactful,
is that the distance of the code takes large (exponential) jumps from one level to the
next. Topological quantum codes avoid these complications by encoding information in
error correcting codes where the stabilizers are finite-sized local observables and logical
information is stored in non-local degrees of freedom.

3.1.1 The Toric and surface codes

Perhaps most famous among the class of topological codes is the Toric code. Originally
defined with periodic boundary conditions, the Toric code encodes two logical qubits on
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(a) (b)

Figure 3.1: The surface code with distance d = 6. (a) Layout of the surface code with
qubits on the edges. Z stabilizers are defined by square plaquette operators, shown in
Blue. X stabilizers are defined by star operators, shown in Red. (b) Logical operators
for the surface code, ZL in blue and XL in red. The ZL logical operator connects rough
boundaries on left and right while the XL logical operators connect the smooth boundaries
on top and bottom.

a toroidal surface with logical operations corresponding to non-contractable loops on the
surface of the torus [85]. A planar version of the Toric code is obtained by cutting the
torus, no longer imposing periodic boundary conditions, and thus negating one of the logical
degrees of freedom. This version of the Toric code is given the popular name surface code.

The stabilizers of the Toric (and surface) code are weight-4 X and Z stabilizers, thus
forming a CSS code. Qubits are placed on the edges of a lattice, with Z stabilizers being
defined by plaquette operators, and X stabilizers being defined by star operators, see
Fig. 3.1 for a pictoral representation. If we label the logical subspace as the ground state
of the stabilizer Hamiltonian:

H = −
∑

SX

GX
i −

∑

SZ

GZ
i , (3.1)

errors will cause excitations in the energy spectrum of the Hamiltonian, characterized by
the anti-commutation of the error with the syndromes. Boundaries are formed by cutting
the weight of the stabilizers to be 3 at the boundary, of a given type. The boundaries
will be characterized as rough and smooth, depending on the type of excitation that can
terminate at the boundary. X-type excitations terminate at the rough boundary, while
Z-type excitations terminate at the smooth boundary. Logical operators are formed by

100



(a) (b)

Figure 3.2: 2D hexagonal color code of distance d = 5. Two instances of equivalent logical
operators are presented. Logical operators are formed by connecting string-like excitations
to all three colored boundaries, fusing within the bulk at the white qubit. In the case of
subfigure (a), the logical operator lives on the purple boundary and is trivially connected
to that boundary (fusion could be defined at any point in the chain). (b) Logical operators
are formed by connecting the three boundary points in the bulk.

creating non-local excitations that connect two boundaries of the same type. As per their
definition, logical operators will commute with all the stabilizers of the Hamiltonian, but
will cause a change in the energy spectrum of the logical qubit. Since the logical X and Z
operators need to cross the surface to connect their respective boundaries, they will meet at
an odd number of qubits, therefore satisfying the necessary anti-commutation relationship.
Note the parameters of the code, in general for a d× d lattice, the logical Pauli operators
will be of weight-d, the length of one of the boundaries. Therefore, the surface code is
a [[cd2, 1, d]] code, where c is a constant.

3.1.2 2D color code

The color codes are another family of topological error correcting codes, where logical
qubits are encoded into systems with geometrically local stabilizers and non-local degrees
of freedom corresponding to the logical information [25, 26]. Just as the case with the
surface code, the color codes can be defined in a planar geometry.

The stabilizers of the 2D color code are again of X and Z type, resulting in a CSS code.
However, unlike in the case of the surface code, all of the stabilizers are now plaquette
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operators and each plaquette contains both an X and Z stabilizer. Due to this constraint,
all of the plaquettes must meet at an even number of sites, with qubits now residing on
the vertices of the lattice. The 2D color code is defined on a lattice where each vertex is
of degree 3, and the plaquettes are 3-colorable. Boundaries of the color code are identified
with one of the colors, where excitations of a given colored set of plaquettes can terminate at
the boundary. Logical operators correspond to excitations that connect all three boundary
types, fusing at a given vertex in the lattice.

The 2D color code offers some advantages over the surface code at the expense of
slightly higher weights in the stabilizer generators. Since it is a CSS code, the CNOT
gate is naturally transversal for the 2D color code. However, due to the symmetry in
the X and Z stabilizers of the code, the logical Hadamard is transversal for this code.
Moreover, even though the stabilizers are not always of weight 0 mod 4, the phase gate
can be implemented transversally by applying S† to a subset of the qubits [25, 93]. As
for the 7-qubit Steane code, the 2D color code can implement all of the Clifford group
logical operators transversally. In fact, the 7-qubit Steane code actually corresponds to
the smallest distance non-trivial 2D color code. As in the case of the surface code, the
parameters of the code will scale as [[c′d2, 1, d]], where c′ is a constant. Roughly, c′ will
be half the size of the constant c for the surface code, that is an encoded color code qubit
requires roughly half that of a surface code qubit [97].

3.1.3 3D color code

The 3D color code is an encoding of a logical qubit in a code whose stabilizers are of finite
weight and local in a 3D geometry. Therefore, unlike the case of the 2D color code, the
3D code cannot be projected into a 2D geometry without introducing some form of non-
local gate. Moreover, the lattice is defined to be 4-colorable, where stabilizers are defined
on 3D cells, and 2D faces. There is some freedom in how one defines the stablizers, but
typically the X stabilizers will be defined on 3D cells, and the Z stabilizers will be defined
on the intersections of these 3D cells, forming small 2D faces. Therefore, while still forming
a CSS code, the symmetry of the X and Z stabilizers is broken, and as such the code will
no longer exhibit a transversal logical Hadamard operator.

However, given the 3-dimensional nature of the code, it is possible to find a combination
of X stabilizers such that the codewords satisfy the triorthogonality conditions required
for the ability to implement a transversal T gate [31]. A code is said to be triorthogonal if
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Figure 3.3: Instance of the [[15, 1, 3]] Reed-Muller code as a 3D color code.

the following hold for the X generators of the code:

|GX
i ·GX

j | = 0 mod 2, ∀ i, j (3.2)

|GX
i ·GX

j ·GX
k | = 0 mod 2, ∀ i, j, k. (3.3)

Moreover, an error correcting code has a transversal T gate if and only if the code is
triorthogonal. Therefore just as the 2D color codes provide a generalization of the 7-
qubit Steane code for varying distances, the 3D color codes provide a generalization of
the 15-qubit Reed-Muller code at higher distances. There seems to be an interesting
connection between the dimensionality of a topological code and the class of gates that
can be implemented transversally, as eluded to by the notion that a 3rd dimension is
required in order to generate a triorthogonal code. This notion was made concrete by
Bravyi and König in the following Theorem.

Theorem 52 ([33]). Given a D-dimensional topological stabilizer code encoding a logi-
cal qubit in a subspace. Any local, finite-depth quantum circuit implementing the logical
gate GL, implies that GL ∈ C(D)

n , the D-th level of the Clifford hierarchy.

The Bravyi-König result implies that in effect, the 2D color code is the best one could
hope for in 2D in terms of logical gates as it can implement all Clifford gates. Furthermore,
implementing 3D color codes, or other potential 3D architectures, would pose significant
experimental challenges. Moreover, all universal fault-tolerant schemes that circumvent
the use of magic states, based on code concatenation or gauge-fixing would require the use
of a 3D architecture for the underlying code.
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3.2 Code conversion for topological stabilizer codes

The research presented in this section is based on the manuscript from Ref. [75], copyrighted
by the American Physical Society. Both authors contributed to the development of the
framework of the project and the research ideas within. I did the majority of the writing
of the manuscript with editing being done equally by both authors.

3.2.1 Overview

In this paper, we present a method for fault-tolerantly performing a universal set of quan-
tum logic gates within a 2D architecture. Our method translates between error correcting
codes—a 2D color code, and a special class of 3D color codes—to allow for the transversal
application of different sets of logical gates. Specifically, we present a mapping from 2D
color codes to a 3D code, which we call the stacked code, by pairing multiple copies of the
2D color code, generalizing the work of Ref. [6]. Multiple 2D color codes can be pairwise
stacked to increase the overall distance of the newly created stacked code to equal the
distance of the 2D color code. We show that the stacked code admits a transversal π/8
logic gate, and that the transformation from the 2D color code to the stacked code and
back can be performed fault-tolerantly. Furthermore, by unfolding the stacked code and
tiling the original 2D color codes in a 2D layout, this code maintains its properties. The
transformation from 2D color code to stacked code in this 2D layout can be performed with
a sequence of local gauge measurements in the bulk of the 2D color codes and Bell pairing
measurements along the boundary of neighboring 2D codes. In order to not violate the
Bravyi–König no-go theorem, the measurements pairing the different 2D color codes are
necessarily nonlocal, but in a very limited way. Specifically, these measurements can be
performed along one-dimensional (1D) strips forming the boundary between neighboring
2D codes in a 2D arrangement.

A recent result by Bravyi and Cross [30] presents a very similar construction to the
one we present here. Specifically, they detail a fault-tolerant 2D construction for universal
quantum computation that relies on the same type of pairing of 2D color codes (which they
call doubled color codes) and measurements between the different layers of color codes, as
we propose, to implement a gate outside the Clifford group. Importantly, the results of
Ref. [30] go beyond our construction to show how to reduce the nonlocal joint logical Pauli
operators that have to be measured into a sequence of local measurements by proposing
a “subdivision gadget.” They further supplement their findings by proposing a decoding
method to address for the correlated noise that is introduced by the action of the non-
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Clifford π/8 gate. In addition, Jones, Brooks, and Harrington recently proposed a method
to implement a similar form of construction for the [4.8.8] color code [81], as opposed to
the hexagonal color code studied here and in Ref. [30]. In their construction, they propose
a method for measuring the set of nonlocal joint logical Pauli operators through a series of
local measurements inspired by lattice surgery methods [72, 97]. Our results complement
those of Refs. [30, 81] by providing an explicit presentation of the properties of this 2D
structure as a type of 3D color code with stabilizers that can be inferred by measurements
only of local 2D stabilizers and gauge operators, as well as weight-O(d) 1D operators on
the boundaries of 2D codes.

3.2.2 Transforming to the stacked code

In this section, we describe a transformation to map the logical qubit encoded in a 2D
color code into a particular form of 3D color code, which we call a stacked code. This
stacked code will allow for the transversal implementation of a logical π/8 gate (defined by
diag[e−iπ/8, eiπ/8]), which together with the transversal logical gates in the 2D color code
form a universal gate set. We introduce this transformation by generalizing the technique
of Anderson et al. [6], which mapped a seven-qubit Steane code (also a d = 3 2D color code)
to a 15-qubit quantum Reed-Muller code (also a d = 3 3D color code). Our generalization
applies to hexagonal color codes of any distance, and gives rise to a 3D color code of
distance d = 3. We then show to further generalize this transformation to yield a stacked
code with arbitrary distance d.

3.2.2.1 Transforming 2D color codes to 3D: distance 3 protection

Consider a [[n, 1, d]] hexagonal color code family [26], with n = (3d2 + 1)/4, defined by X
and Z stabilizer generators expressed as plaquette operators GPi = ⊗ν∈PiXν and HPi =
⊗ν∈PiZν , where the tensor product is over vertices ν defining a hexagonal plaquette Pi, with
appropriate modification at the boundaries. Our construction will use multiple copies of
such codes with stabilizer generators {G(l)

Pi
} and {H(l)

Pi
}, where l is a label for the particular

copy of the 2D color code. For any such code, one can identify a set of weight-2 Z-type
edge operators {H(l)

ei }, see Fig. 3.4, that will, along with the Z-type plaquette operators,
generate any Z-type edge in the 2D lattice. We label these edges by ei, as they can be
identified in a one-to-one correspondence with plaquette operators labeled by Pi. Given
such a generating set {H(l)

ei }, one can identify each X plaquette generator G
(l)
Pi

with a

particular Z edge operator H
(l)
ei such that this pair of operators anti-commute, as they will

intersect at only one site.
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(a)

(b)

Figure 3.4: Two instances of the 2D hexagonal color code of distance (a) d = 3 and (b) d =
5. In each case, a set of independent edges {Hei}, shown in red, can be chosen as the set
that will form the Z gauge operators when paired with the identical edge from another
code copy, thus forming weight-4 gauge operators {H(2k−1)

ei H
(2k)
ei }.

Consider a logical qubit encoded in a 2D hexagonal color code labeled l = 1 of dis-
tance d, with stabilizer generators {G(1)

Pi
} and {H(1)

Pi
}. We now consider a process by which

we transform this 2D code into a 3D code, following the method of Anderson et al. [6].
Our transformation makes use of a second 2D color code of equivalent size to the first,
with its encoded logical qubit entangled in a Bell state with a single ancilla qubit. That
is, denoting the logical operators for the second color code labeled l = 2 by X

(2)
L and Z

(2)
L ,

and the operators for a single ancilla qubit by X and Z, this Bell state is stabilized by
X

(2)
L ⊗X and Z

(2)
L ⊗ Z as well as the code stabilizers {G(2)

Pi
} and {H(2)

Pi
}.

We induce the transformation through joint measurement of gauge operators of the two
color codes. Specifically, we measure the Z-type gauge operators between the two codes
corresponding to pairing up the generating Z-type edge operators of the two codes and
jointly measuring the corresponding weight-4 operators {H(1)

ei ⊗H(2)
ei }. Because each of the

original X-type plaquette operators of the two codes G
(l)
Pi

anti-commute with the measured

gauge operator H
(1)
ei ⊗ H(2)

ei , they will no longer be stabilizers of the code. However, the

joint volume operator G
(1)
Pi
⊗ G(2)

Pi
obtained by pairing corresponding plaquette operators

between the two code copies will remain a stabilizer as it has even overlap with the gauge
operator H

(1)
ei ⊗ H(2)

ei . As a result of these measurements, the evolution of the stabilizers
for the entire system is given by:

106



2D code + ancilla Bell

{G(1)
Pi
} ⊗ I⊗n ⊗ I

{H(1)
Pi
} ⊗ I⊗n ⊗ I

{G(1)
Pi
⊗G(2)

Pi
} ⊗ I

{H(1)
Pi
⊗H(2)

Pi
} ⊗ I

I⊗n ⊗X(2)
L ⊗X

I⊗n ⊗ Z(2)
L ⊗ Z

3D code

{H(1)
ei
⊗H(2)

ei
} ⊗ I (3.4)

{H(1)
Pi
} ⊗ I⊗n ⊗ I (3.5)

{G(1)
Pi
⊗G(2)

Pi
} ⊗ I (3.6)

{H(1)
Pi
⊗H(2)

Pi
} ⊗ I (3.7)

I⊗n ⊗X(2)
L ⊗X (3.8)

I⊗n ⊗ Z(2)
L ⊗ Z (3.9)

where the last two stabilizers represent those corresponding to the second code copy being
prepared in a Bell pair with an ancilla qubit. We note that choosing the smallest nontrivial
2D color code, corresponding to n = 7 and d = 3 and equivalent to the seven-qubit Steane
code, this mapping corresponds to that of Anderson et al. [6] in this case. Even though
in general the 2D codes used in this construction are of distance d, the overall distance of
transformed code is limited to be 3. Logical Z string operators are formed by matching
pairs of qubits from the two copies of the 2D codes along with the single ancilla qubit, and
take the form Z

(1)
i Z

(2)
i Z. A higher weight logical Z operator can be obtained by traversing

the 2D color code layers and connecting error strings of different colors. We shall expand
upon this point for the general case in Sec. 3.2.3.2.

This new code is a 3D color code, where the 3D code stabilizers of Eqs. (3.8)–(3.9)
correspond to the stabilizers of the fourth color and the boundary of the new color cor-
responds to the original 2D code. We prove that it is a 3D color code, and determine its
distance in the general case, in Sec. 3.2.3.2. The code possesses a transversal π/8 gate, as
proven below, in a similar manner to the techniques proposed in Refs. [25, 31, 93], and will
therefore form a universal fault-tolerant gate set along with the logical Clifford gates that
can be applied transversally to the original 2D code.1

However, this code has a number of undesirable features from the perspective of topo-
logical stabilizer codes. First, we note that the stabilizers in Eqs. (3.8)-(3.9) are very high
weight, having support on the entire set of qubits across a full 2D layer. We postpone
discussion about how one might infer the values of these high-weight stabilizers using only
lower-weight measurements to Sec. 3.2.3.3. Second, the distance of this 3D code is limited

1The transversal gates are not strictly transversal, that is all the same rotation, for the hexagonal
color code. However, by applying the inverse rotation to the appropriate set of qubits the correct logical
operator can be applied [23, 93].
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by the width of the third dimension (two layers + one ancilla qubit). This limitation is
in line with the intuition behind the no-go result of Bravyi and König [33], where it is
shown that a topological stabilizer code must be at least dimension 3 or higher to possess
a transversal gate operation that lies outside the Clifford group. One might suspect that
the fault-tolerance protection that one should get from the distance of the code should be
related to the depth of the third dimension of the code.

3.2.3 Proof of transversal logical π/8 gate for the stacked code

Consider a [[n, 1, d]] qubit 2D color code whose X and Z generators are labeled by {G(1)
i }

and {H(1)
i }, respectively, that encodes a single logical qubit. Consider the following basis

for the 2D code based off the CSS code construction (up to state normalization):

|02D〉 =
∏

i

(I +G
(1)
i )|0〉⊗n =

∑

gx

|gx〉,

|12D〉 = X
(1)
L

∏

i

(I +G
(1)
i )|0〉⊗n =

∑

gx

|gx〉,

where X
(1)
L = X⊗n is the X logical operator for the code and gx is an n-bit binary vector

that lies in the set of vectors generated by the operators {Gi}, and gx = gx ⊕ (1, . . . , 1).

Introduce a (n+ 1)-qubit ancillary system in the following state:

1√
2

(|02D〉|0〉+ |12D〉|1〉). (3.10)

The stabilizer generators of the original encoded state and the ancillary state thus
correspond to:

2D code + ancilla Bell state stabilizers

{G(1)
Pi
} ⊗ I⊗n ⊗ I

{H(1)
Pi
} ⊗ I⊗n ⊗ I

I⊗n ⊗G(2)
Pi
⊗ I

I⊗n ⊗H(2)
Pi
⊗ I

I⊗n ⊗X(2)
L ⊗X

I⊗n ⊗ Z(2)
L ⊗ Z

Equivalent stabilizers

{G(1)
Pi
} ⊗ I⊗n ⊗ I (3.11)

{H(1)
Pi
} ⊗ I⊗n ⊗ I (3.12)

{G(1)
Pi
⊗G(2)

Pi
} ⊗ I (3.13)

{H(1)
Pi
⊗H(2)

Pi
} ⊗ I (3.14)

I⊗n ⊗X(2)
L ⊗X (3.15)

I⊗n ⊗ Z(2)
L ⊗ Z (3.16)
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where the right stabilizer generators are equivalent to those on the left by multiplying lines
3 and 4 on the left by lines 1 and 2, respectively (using the notation {G(1)

i ⊗G(2)
i } to signify

that we are multiplying the corresponding ith stabilizer of each code with one another).
Then by following a procedure similar to that proposed by Anderson et al. [6], one can
replace the X generators from the first line on the right by measuring appropriate gauge Z
operators. to form a new (2n + 1)-qubit code. The code remains a valid CSS code as the
stabilizers all commute and satisfy the requirements of C2 ⊂ C1, where C1 is the classical
code whose parity check matrix is given by the X stabilizers {G(1)

i ⊗ G(2)
i } and C2 is the

classical code whose parity check matrix is obtained from the Z stabilizers.

We proceed to show we can implement a logical gate from C3 transversally. We define
an individual Z-axis rotation as follows: Z(θ) = diag[1, eiπθ]. Suppose that the 2D color
code is chosen such that UT = ⊗ni=1Z(θi) = Z(θ) implements a logical phase gate SL =
diag[1, i] ∈ C2 (the vector θ represents the individual rotations about the Z axis on the
physical qubits forming the quantum code). Note the following observation:

UT |02D〉 = Z(θ)
∑

gx

|gx〉 =
∑

gx

eiπθ·gx|gx〉 =
∑

gx

|gx〉

=⇒ eiπθ·gx = 1, ∀ gx
=⇒ θ · gx = 0 mod 2, ∀ gx, (3.17)

UT |12D〉 = Z(θ)
∑

gx

|gx〉 =
∑

gx

eiπθ·gx|gx〉 = eiπ/2
∑

gx

|gx〉

=⇒ eiπθ·gx = eiπ/2, ∀ gx
=⇒ θ · gx =

1

2
mod 2, ∀ gx. (3.18)

The assumption that the transversal gate UT implements a logical phase gate translates
into conditions on the individual physical rotations θ coupled to the form of the binary
vectors gx related to the X generators of the 2D quantum code. Consider the CSS code
proposed in Sec. 3.2.2, where the X generators are given by,

{G(1)
i ⊗G(2)

i } ⊗ I
I⊗n ⊗X(2)

L ⊗X,

then a particular choice of code states can be obtained by the CSS code construction as
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(upto state normalization):

|03D〉 = (I⊗(2n+1) + I⊗n ⊗X(2)
L ⊗X) (3.19)

×
∏

i

(I +G
(1)
i ⊗G(2)

i ⊗ I)|0〉⊗(2n+1)

= (I⊗(2n+1) + I⊗n ⊗X(2)
L ⊗X)

∑

gx

|gx〉|gx〉|0〉

=
∑

gx

(
|gx〉|gx〉|0〉+ |gx〉|gx〉|1〉

)
, (3.20)

|13D〉 = (X
(1)
L ⊗X

(2)
L ⊗X)|02D〉

=
∑

gx

(
|gx〉|gx〉|0〉+ |gx〉|gx〉|1〉

)
. (3.21)

Claim 53. The (2n+1) qubit transversal gate VT = Z(θ
2
)⊗Z(θ

2
)⊗Z(α), where α is chosen

such that α ∈ {1/4, 5/4}, implements a logical T or TZ gate in the logical computational
basis {|03D〉, |13D〉}, where T = π/8 gate.

Proof. For the purpose of this proof, we consider the case where the π/8 gate has the
form T = diag[1, eiπ/4], which is equivalent to diag[e−iπ/8, eiπ/8] up to a global phase.
Consider first the action of VT upon the state |03D〉 which should return |03D〉 without a
phase.

VT |03D〉 =
∑

gx

(
eiπ

θ
2
·gxeiπ

θ
2
·gx |gx〉|gx〉|0〉

+ eiπ
θ
2
·gxeiπ

θ
2
·gxe−iπα|gx〉|gx〉|1〉

)
(3.22)

=
∑

gx

(
eiπθ·gx |gx〉|gx〉|0〉

+ eiπ
θ
2
·gxeiπ

θ
2
·gxe−iπα|gx〉|gx〉|1〉

)
(3.23)

=
∑

gx

(
|gx〉|gx〉|0〉+ |gx〉|gx〉|1〉

)
, (3.24)

where the first coefficient in (3.23) is equal to 1 by the identity in Eq. 3.17, and the second
coefficient is equal to 1 by the following observation. Define the phase a to be the phase
eiπa = eiπ

θ
2
·gxeiπ

θ
2
·gx . Due to the symmetries of color codes, the value of a in the following
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is independent of gx:

θ

2
· gx +

θ

2
· gx = a mod 2

=⇒ θ · gx + θ · gx = 2a mod 2

=⇒ 0 +
1

2
= 2a mod 2

=⇒ a = {1

4
,
5

4
} mod 2, (3.25)

therefore α is chosen in order to set the coefficient equal to 1. Consider now the ac-
tion of VT , with the appropriate choice of α for the state |13D〉, which should return the
state ±eiπ/4|13D〉.

VT |13D〉 =
∑

gx

(
eiπ

θ
2
·gxeiπ

θ
2
·gx|gx〉|gx〉|0〉

+ eiπ
θ
2
·gxeiπ

θ
2
·gxe−iπα|gx〉|gx〉|1〉

)
, (3.26)

which given a choice of α gives the following:

VT |13D〉 =
∑

gx

(
eiπα|gx〉|gx〉|0〉+ eiπ( 1

2
−α)|gx〉|gx〉|1〉

)
,

= eiπα|13D〉 = ±eiπ/4|13D〉, (3.27)

since α =
1

2
− α mod 2.

Therefore we can apply a transversal π/8 gate to the code construction given above by
applying a transversal logical Z gate at the completion of our gate (the action of T or TZ
is fixed by the code and is not probabilistic).

Corollary 54. The stacked code has a transversal logical π/8 gate.

Proof. The only assumption the proof of Claim 53 makes about the ancilla state is that
the rotation Z(α) induces a phase of eiπα on the |1〉 state and leaves the |0〉 state invariant.
Therefore, we replace the single physical qubit by a logical qubit {|03D〉, |13D〉} prepared in
a 3D state according to the construction laid out in this appendix. Replacing the single Z
of angle α by a transversal rotation as given by the construction of the previous claim, we
can recursively build the stacked code to implement an overall transversal rotation of the
π/8 gate for the stacked code.
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3.2.3.1 Transforming 2D color codes to 3D: distance d protection

To increase the distance of our newly formed code, we must increase the width of its third
dimension. A natural method to provide such added protection would be to encode the
weakest part of the code, the bare ancilla qubit, into a 3D code of its own using the exact
same technique. We can continue this process recursively, by performing the joint stabilizer
measurements in (3.8)–(3.9) as joint logical X and Z measurements. The encoded ancilla
state will be prepared offline using 2D color codes arranged as layers in a stack, coupled into
logical Bell pairs by performing joint logical X and Z measurements, henceforth referred to
as Bell stabilizers. This bulk ancilla state will allow us to transform our 2D color code into
a 3D color code with large distance. In addition, as the individual components forming the
bulk ancilla state are restricted to pairs of 2D layers, this will allow us to show in Sec. 3.2.4
that such a process can be made fault-tolerant on a 2D lattice.

Specifically, our recursive transformation from a 2D color code on layer k = 1 to a
d-layer stack is defined by the following evolution of stabilizers:

2D code + ancilla Bell

{G(2k−1)
Pi

}
{H(2k−1)

Pi
}

{G(2k−1)
Pi

G
(2k)
Pi
}

{H(2k−1)
Pi

H
(2k)
Pi
}

X
(2k)
L X

(2k+1)
L

Z
(2k)
L Z

(2k+1)
L

3D code

{H(2k−1)
ei

H(2k)
ei
} (3.28)

{H(2k−1)
Pi

} (3.29)

{G(2k−1)
Pi

G
(2k)
Pi
} (3.30)

{H(2k−1)
Pi

H
(2k)
Pi
} (3.31)

X
(2k)
L X

(2k+1)
L (3.32)

Z
(2k)
L Z

(2k+1)
L (3.33)

where k ∈ {1, · · · , d−1
2
}. As the final layer is a single qubit, we have X

(d)
L = X, and

Z
(d)
L = Z. The logical qubit is initially stored in the first 2D color code layer, stabilized

by the operators {G(1)
Pi
} and {H(1)

Pi
}. The additional layers are prepared in joint Bell pairs,

as indicated by the Bell stabilizers X
(2k)
L X

(2k+1)
L and Z

(2k)
L Z

(2k+1)
L . The pairs of copies of

the 2D sheets are then coupled together by measuring the gauge operators {H(2k−1)
ei H

(2k)
ei }

between one sheet and another sheet from a different pair. This is logically equivalent to
stacking the different pairs to form one large stack of height distance d, where each layer is
a copy of a 2D color code also with distance d, as shown in Fig. 3.5. We call the resulting
3D code the (d − 1) + 1 stacked code. At this point, the Bell stabilizers in Eqns. (3.32)–
(3.33) have a cell-like structure connecting the two 2D color code sheets with which they
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(a)
(b)

Figure 3.5: (a) Graphical representation of the primal lattice of the (d − 1) + 1 stacked
code formed by stacking different copies of 2D color codes, shown here for d = 5. The
copies of the 2D code are coupled either by measuring gauge operators or logical operator
pairs (shown in blue) between the different layers. (b) Dual lattice for the 3D stacked code
(d = 5). Vertices represent cell stabilizers in the primal lattice and edges represent faces
shared by connected stabilizers.

are associated. These correspond to the Blue stabilizers in Fig. 3.5 and will have particular
features when viewing this code as a 3D color code, as we explore in the next section, as
well as several properties needed to make our 2D arrangement of this code in Sec. 3.2.4.1.

3.2.3.2 Properties of the stacked code

The (d − 1) + 1 stacked code is also a 3D color code. This can most easily be seen using
its dual lattice, as follows. Take the dual lattice of the 2D color code, connect each of the
vertices of the dual lattice (consisting of 3 colors) to a single vertex of a different color. We
shall denote the colors of the original 2D code as green (g), purple (p), and yellow (y) and
the color of the newly formed stabilizers in 3D by blue (b). Connect this single vertex to
another set of vertices forming a 2D code, and repeat this process (d− 1)/2 times. Each of
the vertices in the dual lattice form a 3D stabilizer cell in the primal lattice, where edges
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between the vertices in the dual lattice are equivalent to faces at the intersection of cells in
the primal lattice, see Fig. 3.5 for an example of the dual lattice. It is straightforward to
see that this construction is equivalent to the construction outlined for the stacked code,
and moreover, because the dual lattice is four-colorable and composed of tetrahedra, it is
a valid 3D color code [25, 93].

We now proceed to determine the distance of the (d − 1) + 1 stacked code, making
use of the well-studied properties of the 3D color code. The edges in the primal lattice
of a color code can be identified with one of the colors of the code [23, 93]. In the case
of a 3D color code, the faces at the intersection of two tetrahedra in the dual lattice
correspond to edges in the primal lattice, where the color of the edge in the primal lattice
is given by the complementary color to the vertices forming the face in the dual lattice. A
boundary of a given color is the set of points at which edges of that given color terminate
without a stabilizer of the given color being present. In the case of the stacked code, the
three original colors of the 2D lattice form boundaries along the three sides of the stack
extending upwards from their original 1D boundary given by the 2D color code. The fourth
boundary, for the newly introduced color in three dimensions (blue), is located along the
bottom boundary of the 3D lattice, as none of these qubits touch a blue stabilizer.

The Bell stabilizers given in Eqs. (3.32)–(3.33) correspond to the blue stabilizers in
Fig. 3.5, and are equivalent to measuring the joint logical X and Z operators of the two
2D color codes forming the top and bottom faces of the blue stabilizer. As opposed to
traditional constructions of 3D color codes, the Blue stabilizers are not of low weight, but
rather act on O(d2) qubits. This is a particular feature of the stacked code structure, as
the Blue stabilizers measure joint logical operators across pairs of 2D sheets and thus must
contain all qubits across those faces. However, as we show in Sec. 3.2.3.3, these high weight
stabilizers across the full 2D sheets need not be measured in practice.

Logical operators in any color code are given by string operators that connect the
boundaries of different colors [25]. A c-colored string operator is given by a set of qubits
formed of connected edges of color c (two edges are connected if they share a stabilizer
of color c). A c-colored string operator either has endpoints at the boundary of color c,
in which case the final edge of this string connects the endpoint to the boundary, or in
the bulk where the endpoint is located at a particular c-colored stabilizer, thus causing an
excitation. If all of the colored strings meet at a given qubit, then the strings can “fuse”
and the bulk excitation formed by this endpoint will be negated [25, 26]. Therefore, in
order to obtain a logical string operator, all colored string operators must connect their
respective boundary to a shared fusion point, leading to a nontrivial string connecting
boundaries of all colors without excitations. These properties now allow us to prove the
distance of the stacked code.
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(a) (b) (c)

Figure 3.6: Examples of the different representations of equivalent logical error strings
that exist in the 3D stacked code. The color of the logical strings are chosen according to
the color of the edges they follow. The curved lines represent joining of edges through a
stabilizer of the same color. In (a), because the string lies on the green–yellow boundary,
it can be chosen to be either of the complementary colors, blue or purple. In (b), the error
string connects the bottom blue boundary to the joint boundary of the other three colors at
the ancilla qubit, following blue edges. Example (c) shows how multiple colored boundaries
can fuse in the bulk, thus negating the excitation that would otherwise be present.
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Lemma 55. A (d− 1) + 1 stacked code is a 3D color code whose distance is d.

Proof. The stacked code comprises pairs of 2D layers separated by large blue (b) stabilizers.
We shall consider two different representations of logical Z operators, one where the logical
operator is composed of qubits that are only in a single pair of these 2D layers, and one
where the logical operators span multiple pairs of 2D layers. In the first case, the only
way for such a logical operator to connect to the b boundary would be for it to be in the
bottom-most pair of 2D layers, as they themselves are trivially connected to the b boundary.
However, because we are focusing on a single pair of 2D layers, we can map the problem
of finding a logical operator to that of finding one in a single 2D layer, where connecting
edges correspond to one of the pair of edges connecting two stabilizer cells of the same
color (these edges correspond to the original edges of the individual 2D codes). If the same
edge in both color code copies is part of the error chain, then these two edges cancel out
as the resulting face corresponds to a gauge Z operator. Therefore, we can refer back to
individual edges connecting stabilizers in the 2D color code. As such, because the 2D code
is a code of distance d, the smallest-weight logical string that connects the different colored
boundaries must be weight d, and therefore any such logical operator will be of distance d.

Suppose we are given a set of Z errors forming a string operator of one of the colors
of the original 2D code. Without loss of generality, let this string be of color g. Now,
given that a string operator formed by a set of edges of color g, the only way for a string
operator of color g to connect qubits from different pairings of 2D layers (that is, traverse
a blue stabilizer) is by using g-colored edges at the corner of a given layer. These points
lie at the joint boundary of p and y by definition. There are then two methods for such
an error string to connect to the g boundary, either by traversing through a given 2D pair
to the g boundary of the other side, or by connecting up to the single ancilla qubit that
is at the intersection of the g, p, and y boundaries. In the case of the former, in order for
a logical string to connect across a given pair of 2D layers to the boundary on the other
side, the minimal weight will be governed by the distance of the individual 2D codes, as
we previously saw. Therefore, the minimal weight of such a logical operator will be d. In
the case when the error string connects to the single ancilla qubit, then in order to form a
logical operator it must also connect to the b boundary, as shown in Fig. 3.6a. The single
ancilla qubit is as far away from the b boundary as it can be, and in order to create a logical
string that connects to the bottom boundary through g edges, there will have to be at least
a single qubit per 2D layer connecting to the ancilla qubit. Therefore, the minimal distance
of such an operator will also be d. Finally, we must consider the case where the logical
string is not composed of strings of colors {g, p, y} (the original colors of the 2D code). In
such a case, the string operator must terminate at the joint boundary of the three colors,
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again given by the single ancilla qubit, and as in the previous case must connect the single
qubit to the bottom b boundary through a b-colored chain, as shown in Fig. 3.6b. Such
an operator will be of weight at least d as argued above. As such, the minimum weight
non-trivial Z operator is of weight d. Since logical X operators are formed by connecting
2D membranes in the 3D code [25], the X logical distance will be greater than that of the
Z logical operators, and as such the distance of the code is d.

We note a potential efficiency that may be gained in the number of qubits in the stacked
code. Because the distance to the blue boundary (the bottom layer) of each pair of 2D
code sheets increases by 2 for each separation by a blue stabilizer, as shown in Fig. 3.5,
we can in principle use pairs of 2D color codes of decreasing distance according to how far
away they are from the blue boundary, i.e., decreasing with k. Although we do not prove
this result here, the intuition behind this idea is as follows. Because a logical error must
connect to the blue boundary, there is extra protection for any logical error that wants to
span a given pair of 2D sheets as the error string will have to traverse all layers below the
pair of layers. The stacked code prepared in such a way would resemble more of a pyramid
than a prism. This method of stacked code construction leads to an analogous code as
presented by Bravyi and Cross, based on differing sizes of doubled color codes [30].

3.2.3.3 Fault-tolerant implementations of a universal gate set

Consider a qubit encoded into a 2D hexagonal color code. By the properties of this code,
logical Hadamard H and Phase S are transversal, and a logical CNOT between two such
codes is also transversal. These are all logical Clifford gates, and so we require an additional
gate such as the logical π/8 gate to complete a universal set. As we now show, transforming
to the 3D stacked code can be used as a means to complete a universal gate set, just as
gauge fixing provides a means for dimensional jumps in gauge color codes [22, 23].

The initial ancillary 2D layers can be prepared in their appropriate Bell pairs offline.
Because these states are stabilizer states, they can be prepared fault-tolerantly. In order
to preserve the fault-tolerance property of the high-weight Bell stabilizers measurements,
a cat state of the same number of qubits as the weight can be prepared fault-tolerantly
offline [126, 51]. The measurement of these high-weight stabilizers is repeated in order to
ensure fault-tolerance [2]. Note that this preparation process can be combined with the
final measurement process outlined below, and therefore will not contribute to the overall
runtime to complete the operation.

With the ancilla layers prepared in the appropriate state, the transformation from the
k = 1 2D color code to the stacked code can be induced by measuring the gauge operators in
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a fault-tolerant manner similar to that of surface code, such that any errors do not spread
between data qubits. At this point, the logical qubit is stored throughout the different
stacks in the (d − 1) + 1 stacked code. We emphasize that the high-weight stabilizers of
the stacked code are not measured at this stage. Rather, the logical transversal π/8 gate
is performed, and we then immediately transform back to the 2D code (without any active
error correction being performed on the stacked code). The transformation back to the
2D color code is induced by measuring the original stabilizers of the 2D code, and the
ancillary 2D stacks and their Bell stabilizers. Because the measurements can be performed
fault-tolerantly without spreading errors, the code is protected by a distance d code at all
times, and any error that occurred throughout the process can be inferred from the final
measurements, as explained below.

Having returned to the original 2D code, the computation can continue with the ap-
plication of transversal Clifford gates before potentially doing the same process for an-
other π/8 gate at a different point in the computation. It is worth noting that the ancilla
state is required to be measured fault-tolerantly through repeated measurements in order
to correctly infer the errors on the final 2D color code after completion of the gate. There-
fore, this ancilla remains “ready” at this stage for future non-Clifford computation and
does not have to be re-prepared.

What remains to be shown is how an error that occurs while the information is encoded
in the stacked code can be inferred from the final 2D code plus ancilla measurements.
Suppose an error of weight less than d occurred while the state is encoded in the stacked
code. Because the logical π/8 gate is transversal, errors may transform but will not increase
in weight as a result of the logical gate. Therefore, such an error will remain of weight less
than d. As such, if one were to measure the stabilizers of the stacked code, one would see
a change in the sign of one of the cell stabilizers. Suppose the error anticommutes with
cell G

(2k−1)
Pi

G
(2k)
Pi

(this corresponds to an Z error, a similar argument follows for X errors).
The presence of the error can be inferred from the measurement of the original stabilizers
of the 2D planes, because the product of the individual outcomes of measurements G

(2k−1)
Pi

and G
(2k)
Pi

will be equivalent in sign to the measurement of the cell of the stacked code.
It should be noted that the sign of the individual measurements will not necessarily be
preserved, because the individual stabilizers of the 2D sheets anticommute with the gauge
operators. However, the effect of these sign changes will simply be to set the stabilizer
reference frame for subsequent measurements. Finally, if the error anticommutes with a
blue stabilizer of the form X

(2k)
L X

(2k+1)
L , one can still infer the error from the measurement

of the individual operators on the sheets and the joint logical measurements along the
shared boundary of the sheets. We return to this last point in Sec. 3.2.4.
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(a) (b)

Figure 3.7: A 2D layout for the implementation of the stacked code (d = 5 shown). Pairs
of copies of the 2D hexagonal color code are layered on top of one another in a single 2D
layer, in such a way as to keep the gauge operators geometrically local. (a) Initial layout
of the stacked code transformation in 2D. The 2D layers (2k) and (2k + 1) are coupled by
measuring joint logical X and Z operators (Bell stabilizers), with supporting qubits shown
in blue. Although Bell stabilizers for the stacked code are high-weight, involving all blue
qubits, the only required measurements are those associated with local 2D stabilizer/gauge
operators together with one-dimensional operators of weight O(d) (shaded blue). The only
2D plane that is not initially coupled to another layer (or ancilla qubit) is the bottom
k = 1 layer, which stores the encoded qubit. (b) Measurement of the weight-4 Z-type
gauge operators, shown in Red. X-type stabilizers from individual layers are combined
to form cell-like stabilizers by stabilizer evolution. Original joint logical X measurements,
given by Blue shaded region, are mapped to all Blue qubits.

3.2.4 Unfolding the stacked code: A 2D implementation

Our stacked code provides a mechanism for performing a fault-tolerant logical π/8 gate
on a qubit encoded in a 2D color code by switching to a third dimension. It requires
the measurement of high-weight Bell stabilizers that couple pairs of 2D color codes—a
requirement that is not necessary if one used the related approach of dimensional jumps
in gauge color codes [22, 23], wherein the 3D color codes have low-weight, geometrically
local stabilizers in three dimensions.

In this section, we show that our stacked code has a key advantage over more standard
3D color codes possessing geometrically local stabilizers, in that it can be arranged in a
two-dimensional geometry. For the transformation to and from the stacked code in 2D,
we require only geometrically local (in 2D) gauge measurements in the bulk, together with
Bell stabilizers measurements along one-dimensional boundaries in this 2D layout.
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3.2.4.1 Arranging the stacked code in two dimensions

Consider the 2D layout of different copies of the 2D hexagonal color code presented in
Fig. 3.7, where layers (2k−1) and (2k) are combined into a single 2D plane and neighboring
pairs of layers are arranged next to each other within this 2D plane, equivalent to the
doubled color codes of Ref. [30]. The geometric arrangement can be viewed as unfolding
the pairs of copies of the 2D code separated by the Bell stabilizers and tiling the pairs
in a 2D plane. We shall refer to this arrangement as the unfolded stacked code. While it
is visually useful to place layers (2k − 1) and (2k) separated vertically as in Fig. 3.7, the
qubits in these layers can be arranged in a single 2D plane; see Fig. 3.8.

The key feature of this geometric arrangement, which we show in the next section, is
that the Bell stabilizers between layers (2k) and (2k+1) can be measured along the shared
boundary. Although not geometrically local, this is a very desirable type of measurement
from the perspective of physical implementations as the measurement is along a single 1D
strip defined by the boundary of the two layers, and may be performed by coupling to a
common mode or bus. One way to ensure fault-tolerance for such a measurement would
be to prepare an ancillary state for readout, such as a cat state [126, 51], and repeat the
measurement O(d) times [2]. The qubits composing the cat state could be arranged along
the boundary, and because they will have to be measured to infer the logical measurement,
they will be reset and available for the next round of measurement. We note that the scheme
is not limited to performing this measurement using a cat state. Any fault-tolerant readout
scheme for these high-weight operators may be applied here, assuming it can conform to
the architectural constraints. We leave this for future work. A nonlocal operation, such
as the one described here, is a necessary feature in order to circumvent the Bravyi–König
no-go theorem for constant-depth logical gates outside the Clifford group in topological
stabilizer codes in two dimensions [33]. The resulting code is equivalent to the stacked
code, as the joint logical measurement operators along the boundary are mapped to 2D
sheets due to the modification of the stabilizers by the gauge measurements.

3.2.4.2 Transformation of the joint boundary Bell stabilizers

In order to understand the transformation of the Bell stabilizer operators along the bound-
ary, we consider the transformation of stabilizer operators under measurement of anti-
commuting Pauli operators. The Z-type Bell stabilizer measurement is straightforward,
because the gauge measurements are of type Z and thus a Z-type Bell stabilizer along the
boundary remains of that form. This statement is equivalent to the fact that the volume

120



operator of weight O(d2) can be mapped to a boundary plaquette operator due to the
gauge Z measurements.

Next, we consider the transformation of the joint X logical boundary operators. Con-
sider an instance of two pairs of 2D codes that are connected by joint logical string opera-
tors X

(2k)
L,s X

(2k+1)
L,s and Z

(2k)
L,s Z

(2k+1)
L,s , initially shown in Fig. 3.7a. Let {H(2k−1)

ci H
(2k)
ci } denote

the set of gauge operators that touch the joint logical boundary for 2D layers (2k − 1)
and (2k) of color c, indexed by the label ci. Because these Z operators only inter-

sect with X
(2k)
L,s X

(2k+1)
L,s at a single qubit, these operators anti-commute. Additionally,

{H(2k−1)
ci H

(2k)
ci } anti-commutes with the individual GPci

plaquette operators of matching
color from the individual 2D codes (2k − 1) and (2k). The stabilizers of the code are thus

modified as follows: {H(2k−1)
ci H

(2k)
ci } becomes a new stabilizer of the code, replacing G

(2k)
Pci

.

Then, G
(2k−1)
Pci

is modified by being multiplied by the replaced stabilizer, thus becoming

the cell operator G
(2k−1)
Pci

G
(2k)
Pci

. Finally, the joint logical operator is also modified by being
multiplied by all replaced plaquettes of color c, that is, it becomes

(∏

ci

G
(2k)
Pci

)
X

(2k)
L,s X

(2k+1)
L,s . (3.34)

Because similar joint gauge Z measurements are performed between layers (2k+1) and (2k+
2), the original joint boundary operator is mapped to the operator:

(∏

ci

G
(2k)
Pci

)(∏

c′j

G
(2k+1)
Pc′
j

)
X

(2k)
L,s X

(2k+1)
L,s , (3.35)

which corresponds to all qubits on layers (2k) and (2k + 1). An example of the modified
joint logical operator is shown in Fig. 3.7b. The joint logical X operator is spread over the
full 2D lattice, as governed by the transformation of stabilizer operators, and thus becomes
one of the blue cells shown in Fig. 3.5.

3.2.4.3 Implementation of a fault-tolerant π/8 gate in two dimensions

We now describe how to perform a fault-tolerant π/8 gate using this stacked code arranged
in two dimensions. We initialize with the information encoded into a 2D color code and
pairs of 2D codes laid out edge-to-edge in a 2D arrangement. Bell stabilizers are measured
along 1D boundaries between two single sheets from different pairs, before finally measuring
out the gauge operators in a local manner between pairs of 2D sheets. Having completed
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Figure 3.8: A two-dimensional layout of the construction presented in Fig. 3.7. The two
originally superimposed lattices have respective grey and white lattice qubits. Only one
of the color code stabilizers (per pair) have been colored, for clarity. Gauge measurement
operators are given by red faces. Here, we have identified three individual gauge measure-
ments per pair of codes for clarity, there are actually 3(d2−1)/8 such gauge measurements
for each pair of distance d codes.

this process, the original information of the 2D code is now stored in a stacked code, and
the non-Clifford π/8 gate can be executed transversally. After completion of the gate, the
process is reversed by measuring the original stabilizers of the 2D code and ancilla qubits.
The information is mapped back into the 2D color code, where transversal Clifford gates
are available for further logical computation.

We emphasize that the expanded joint logical operators are never measured in practice,
as the transformation from the 2D color code to the stacked code only serves for the
application of the logical π/8 gate. Because the code has distance d throughout the process
without coupling qubits during the measurements, the procedure remains fault-tolerant. If
an error of weight less than d were to occur while the state was encoded in the stacked code,
such an error will anticommute with one of the stabilizer cells of the stacked code. We
covered the case when it anticommutes with one of the cells of the original 2D code color
in Sec. 3.2.3.3. Thus, consider the case where the error anti-commutes with X

(2k−1)
L,2D X

(2k)
L,2D,

where this joint logical operator is across the full 2D surface of the sheets. However, note
the following:

X
(2k−1)
L,2D X

(2k)
L,2D =

∏

i

G
(2k−1)
Pci

∏

j

G
(2k)
Pcj

(
X

(2k−1)
L,b X

(2k)
L,b

)
,
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where X
(2k−1)
L,b X

(2k)
L,b is the joint boundary operator of color c that is shared by both 2D

sheets, and G
(l)
Ci

are the individual X stabilizers of color c of the two sheets. Therefore,
the product of the outcome of all these individual measurements will have to be preserved,
that is by taking their product one can infer the measurement outcome of the joint logical
operator across the full 2D sheets, as given by the blue qubits in Fig. 3.7b. As such, this
large weight operator does not actually have to be measured to ensure fault-tolerance and
rather it is sufficient to measure the individual 2D operators and joint-logical operators
along their boundary after the completion of the transversal π/8 gate.

This construction results in a fault-tolerant application of a logical π/8 gate, yet the
growing size of the joint boundary operators leave open the question of whether a rigorous
fault-tolerance threshold exists. We note that, although the subdivision gadget of Ref. [30]
establishes a method to reduce the overall weight of the individual operators that have to
be measured, it bears similarities to weight reduction techniques proposed in subsystem
codes [10] which exhibit a decreasing pseudothreshold for each distance rather than a
threshold.

3.2.4.4 Comparison to Bravyi–Cross result

We briefly compare our construction with that of the very recent parallel result by Bravyi
and Cross [30]. In that paper, the authors present a construction of a code for the applica-
tion of a transversal π/8 gate through the construction of a triply even code from multiple
copies of doubly even codes. They use a construction that mirrors the construction pre-
sented here, where 2D color code lattices are chosen with two qubits per site, denoted
“doubled color codes.” Each 2D lattice interacts with another 2D lattice through a joint
logical measurement at their boundary (the Bell stabilizers presented in our work). A key
insight in Ref. [30] is the proposal of a method to measure the Bell stabilizers using only
local gauge measurements by applying a “subdivision gadget.” Jones, Brooks, and Har-
rington recently proposed a similar method for breaking down the measurement of the Bell
stabilizers in the construction of triply even codes based on the 2D [4.8.8] color code [81].
Their construction is inspired by lattice surgery methods for the implementation of joint
logical measurements between two copies of 2D color codes [72, 97].

Another key contribution of Ref. [30] is the development of an online decoder to handle
the transformation of Pauli errors to non-Pauli errors due to the action of the non-Clifford
π/8 gates. Because this gate transforms X errors into a form of correlated X and Z
errors, this can cause difficulties in the decoding of such errors. The authors introduce a
Pauli twirling map after the application of the transversal π/8 in order to map the original
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X error to a probabilistic application of Z errors in combination with the original X error.
This twirling map allows for the construction of a maximum likelihood decoder for error
correction. Techniques developed for the purpose of this decoder could potentially be
applied to our construction as well.

3.2.5 Mapping from a larger distance 2D color code to the stacked
code

Figure 3.9: Initial coupling of split regions of a 2D color code. The original code is split into
multiple color code copies by turning off and modifying certain stabilizer measurements.
Different patches are coupled to form a Bell pair by measuring joint logical X and Z
stabilizers between them, shown in blue. The patch that is not coupled in this way retains
the quantum information that was originally stored in the code. The different patches
are then further joined together by measuring gauge operators by matching up weight-2
edges from the different patches (forming weight-4 gauge operators), shown by red and
cyan edges.

In this section, we describe a procedure to construct the stacked code as a reduction of
a single higher distance 2D color code. This analysis is provided not as a direct means to
implement the stacked code in 2D, as we believe the scheme outlined in Sec. 3.2.4.1 is a
more practical approach. Rather, we introduce this scheme in order to analyze the scaling
of the distance of the stacked code architecture when constructed from a larger 2D color
code. The motivation of this analysis is to characterize the degree of nonlocality that is
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required for stacked codes as a function of the larger 2D distance d2 in order to implement
a non-Clifford transversal gate.

To convert between the 2D architecture and the stacked code architecture, consider ini-
tializing a qubit encoded in a higher distance 2D color code, with distance d2 ≥ d

√
d− 1+1,

where d is the target distance of the stacked architecture. The initial 2D code is then con-
verted to multiple copies of smaller color codes by “turning off” certain stabilizers and
changing the weighting of others, while simultaneously measuring joint logical X and Z
operators between neighboring pairs of these newly formed smaller regions, as shown in
Fig. 3.9. The logical qubit that was encoded in string operators spanning the full distance
of the 2D code is mapped by this process to only a single patch in the 2D layout—the
patch that is not paired with another. This process corresponds to initializing the different
layers of the 3D stacked code before the measurement of the gauge operators. The errors
that occur can be tracked by recording the statistics of the measurement of the stabilizers
before and after their modification, mirroring the technique for various logical gates in the
2D surface code [55]. The disadvantage of this architecture is that the gauge operators have
to be measured by pairing qubits at different spatial locations in the 2D code, by match-
ing individual edges in each code to form weight-4 operators. A particular set of edges
that could be used for gauge measurements in the case of d = 5 is identified in Fig. 3.9.
However, the pairings remain relatively local with respect to the 2D code distance as their
separation is O(d) = O(d

2/3
2 ), which is the same order of nonlocality as the required joint

logical measurements. Therefore, by modifying stabilizer measurements and performing
joint measurements whose spatial nonlocality is of order O(d

2/3
2 ) one can logically map a

2D color code to a 3D color code, thus providing the framework to perform a transversal
π/8 gate and enabling a universal set of fault-tolerant gates.

The distance penalty one pays for such a process is a reduction from d2 to d
2/3
2 , however

note that for two color codes with the same number of physical qubits n, the distance of the
2D color code has scaling d2 = O(

√
n) while the 3D color code has scaling d = O(n1/3) =

O(d
2/3
2 ). Such a distance penalty is to be expected, as the no-go result of Bravyi and König

states that any circuit of depth h whose individual gates have geometric nonlocal range r
that satisfies hr � d1/2, for a 2D topological stabilizer code, can only implement a gate
from the Clifford group. Therefore, it should be expected that if one can map to code
that can implement a transversal π/8 gate the degree of geometric nonlocality must be at

least of order O(d
1/2
2 ), which our scheme clearly satisfies (yet does not saturate). Whether

there exists methods to implement a fault-tolerant non-Clifford gate in 2D using a reduced
degree of nonlocality is an interesting open problem.
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3.2.6 The existence of a threshold?

In this section we present arguments for why the stacked code construction, while being
fault-tolerant, will not have a threshold. First recall that a threshold is an error rate p
below which the noise rate can be made arbitrarily small as the code distance d grows. We
denote the pseudothreshold of the code for a given distance d, as the error rate pd below
which the logical error rate at that distance pL,d is smaller than the physical error rate.
That is, pL,d < p, ∀ p < pd. We have already seen examples of the difference between the
threshold and pseudothreshold in Section 2.3 for the concatenated setting.

Consider the stacked code of distance d. While the stabilizers of the stacked code are
not measured directly, its stabilizers are inferred from the 2D measurements once mapping
back into 2D in order to guarantee error correction. As such, any non-trivial error that
commutes with the stabilizers of the stacked code will result in a logical error. Consider
a potental Z error connecting the bottom of the stacked code to the top, resulting in a
logical error. If on two consecutive layers that are not separated by a Blue joint stabilizer,
there are Z errors on the same qubit locations, such errors will go undetected by the
stabilizers between these two layers. Given that there are n = cd2 qubits per layer, where
c is a constant, there will be that many possible ways for such errors to occur. Again, the
same argument will hold for the next two layers, and moreover these errors will now go
undetected by the Blue stabilizers as there will be an error on the two layers above and
below, therefore of even parity. This argument continues until the top of the stack.

Roughly, the probability of such an error occurring will be on the order of Npd, where
p is the error probability, and N is the total number of such length d errors. Since there

are cd2 possible pairs of errors for each pair of layers, N = ((cd2))
d/2

and therefore the
logical error rate will be bounded as:

pL,d ≤ Npd (3.36)

= (cd2)d/2pd (3.37)

= (
√
cdp)d. (3.38)

As such, in order for the logical error rate to be below the physical error rate, we know that
at the very least

√
cdp < 1 which implies pd < 1/(

√
cd), that is the pseudothreshold must

scale inverse proportionally with d. Since the psudothreshold has distance dependance, no
threshold can exist. However, it should be emphasized that in all likelihood the distance
that would be required to implement interesting quantum algorithms would not necessarily
be too high, and as such the constant prefactors in determining the pseudothreshold will
likely dominate over the distance dependance.
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3.2.7 Summary & outlook

Here, we have introduced stacked codes: a class of 3D color codes composed of individual
2D color code layers. We present a method to implement a universal set of logical gates
transversally based on a 2D topological stabilizer code. We show that by layering pairs of
2D hexagonal color codes and connecting individual copies of the color code from different
pairs through the measurement of nonlocal Bell-like stabilizers, we can then use gauge
measurements as proposed in previous works [114, 22, 6] to map the logical information
initially stored in a 2D color code into a stacked code. This fault-tolerant transformation
allows for the application of a transversal gate outside the Clifford group in a 2D layout
without having to resort to magic state distillation. Our proposal circumvents the Bravyi–
König no-go result for transversal non-Clifford gates in 2D stabilizer codes by relying on a
realistic form of nonlocal measurements along 1D boundaries in the 2D lattice.

Due to the growing size of the joint boundary operators, it is argued the proposed
scheme for fault-tolerant universal computation does not exhibit a threshold in contrast
to traditional 3D gauge color codes [34]. However, it remains of interest to establish the
value of the pseudothreshold for low distance realizations of this scheme for the purposes
of near-future experiments as well as potential multilayered quantum error correcting ar-
chitectures, as in Ref. [47]. Moreover, the stacked codes merit further investigation into
their stabilizer measurement properties, because 3D gauge color codes have the capacity
for single-shot measurement [24]. Further research into the development of schemes for
nonlocal operations to map a 2D stabilizer code to a 3D code, such as the recent proposal
in Ref. [30], could lead to great reductions in architectural complexity and qubit overhead
for the implementation of universal fault-tolerant quantum logic.

3.3 Other methods to circumvent magic state distil-

lation

The last two chapters have presented methods for implementing a universal gate set without
the need for magic state distillation. Given the expensive overhead associated with magic
state distillation, this has been a very active area of research and it should be noted that
alternative methods have also been proposed for completing the universal fault-tolerant
gate set.
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3.3.1 Stabilizer state preparation methods

Before the discovery of magic state distillation, alternative ancillary state distillation tech-
niques were proposed. The first was a method developed by Shor to implement the Toffoli
gate in a fault-tolerant manner by preparing an ancillary cat state offline and further ex-
tended to general stabilizer codes by Gottesman [126, 60]. Knill, Laflamme, and Zurek
developed a scheme to implement the Hadamard gate fault-tolerantly on the 15-qubit code
using a method that was equivalent to gate teleportation for the H gate [89]. In order
to implement this scheme, the logical |+〉 state had to be prepared fault-tolerantly which
required some overhead, yet would be required in any fault-tolerant implementation.

3.3.2 Gauge fixing

The 15-qubit code has the ability to perform transversal T and CNOT gates, however lacks
the ability to perform a transversal H (or any other gate that would allow for universality).
However, consider the action of the transversal H gate on the stabilizers of the code,
originally presented in Eq. 2.51. The stabilizer generators of the code will map to:

IIIIIIIXXXXXXXX IIIIIIIZZZZZZZZ

IIIXXXXIIIIXXXX IIIZZZZIIIIZZZZ

IXXIIXXIIXXIIXX IZZIIZZIIZZIIZZ

XIXIXIXIXIXIXIX ZIZIZIZIZIZIZIZ

IIIIIIIIIIIXXXX IIIIIXXIIIIIIXX

IIIIIIIIIXXIIXX IIIIXIXIIIIIXIX

IIIIIIIIXIXIXIX IIXIIIXIIIXIIIX, (3.39)

where all of the stabilizer generators above the horizontal line are also present in the original
formulation of the code, while those below have changed from being Z-type to X-type.
Additionally, the logical XL will be mapped to ZL, and vice versa as per the action of the
logical H. However, note as well that the X and Z stabilizers above the line are sufficient
to correct an arbitrary weight-1 error of either type. In fact, using only these stabilizer
generators will restrict the code to only being of distance 3 in both Z and X errors, as
opposed to originally being distance 7 in error of X type. What Paetznick and Reichardt
showed was that by remeasuring the missing Z stabilizer generators, one could forgo the
information in the new X stabilizers and map back to the original code [114]. Moreover,
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this process could be done in a fault-tolerant manner, thus allowing for the application of
transversal H without the need for magic state distillation. The method is called gauge
fixing, as the additional stabilizers can be interpreted as fixing a particular gauge, and
while the action of the transversal H will change the gauge, the original gauge can be
recovered without disrupting the logical state and still allowing for error correction.

This idea was further generalized by Bomb́ın to the family of 3D color codes [23], which
allows for the application of the transversal T gate for a family of codes with growing
distance, as presented in Sec. 3.1.3. In the 3D code, the X stabilizers correspond to cells
in a 3D structure, while the Z stabilizers correspond to faces between the cells. However,
the Z faces can be multiplied in order to infer Z stabilizers on the same cells as the
X stabilizers. Then, the remaining Z stabilizers will form the gauge syndromes, that will
be remeasured after the action of the transversal H.

3.3.3 Dimensional jumps

We have already seen in Sec. 3.2.2 the idea of mapping between the 7-qubit an 15-qubit
code in a fault-tolerant manner using gauge measurements [6]. To recap, suppose an
arbitrary state is encoded in the 7-qubit code, allowing for the application of transversal
Clifford operators, then an ancillary stabilizer state is prepared offline fault-tolerantly, and
then can be fused to the original code through gauge measurements, a subset of the same
gauge measurements that were present in the gauge fixing method. In order to guarantee
fault-tolerant properties of the code, the X and Z distance of the scheme will be the same.
The logical state will then be encoded in the 15-qubit code and the transversal T gate can
be applied to complete the universal gate set. The code can be mapped back to the 7-qubit
codespace by remeasuring the original stabilizer of the code.

Bomb́ın generalized this method to logical systems of larger distances [24]. Namely,
if the logical state is now instead encoded in a 2D color code of arbitrary distance, an
ancillary state can be prepared offline that will allow for an equivalent mapping. The
ancillary state that is prepared offline is a 3D bulk stabilizer state, that is the eigenstate
of local stabilizers in 3D. Then, the bulk fixed state can be fused to the encoded state
by performing a set of gauge measurements between the boundary of the bulk ancillary
state and the 2D plane. Using this method, the original 2D state is mapped to a 3D state,
allowing for the application of the transversal T gate. Again, the logical state can then be
mapped back to the original 2D color code by remeasuring the original stabilizers of the
code.
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3.3.4 Pieceable fault-tolerance

A recent addition to the set of schemes for universal fault-tolerant logic is the idea of
Pieceable Fault-Tolerance [140]. In this method, rather than attempting to complete the
universal gate set in a transversal manner by mapping between code, the gate implemented
will necessarily couple different qubits within the code, similar to the scheme presented in
Chapter 2. However, unlike the previously presented method, protection is not guaranteed
by using a different code, but rather by breaking the non-transversal operation into different
pieces. Between each segment, a subset of the stabilizers are remeasured to allow for the
correction of errors. Therefore, while if all of the gates were strung together the operation
would not be fault-tolerant, by breaking it into pieces, errors can be managed and fault-
tolerance restored. In this scheme, rather than complete the universal gate set with the
T gate, typically the Toffoli or Controlled-controlled-Z gate are applied in a transversal
manner, and can be generalized to high distance codes.
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Chapter 4

Private quantum channels

The ideas presented in this chapter encompass the research that was developed in Refs. [76,
77], both copyrighted by the American Physical Society. All authors contributed to the
development of the research program and ideas, with David Kribs providing the initial
catalyst for the development of this project due to his contributions to the connection of
privacy and quantum error correction [90]. Sarah Plosker and myself did the majority
of the writing of the manuscript, with all four authors contributing in the editing of the
manuscript.

4.1 Privacy vs. quantum error correction

Quantum error correction serves as a means to protect quantum information from external
errors. However, as was discussed in Chapter 1.3.4, any quantum channel can be thought
of as a unitary channel on a higher dimensional Hilbert space, where external degrees
of freedom are traced out due to the observer not having access to the extension of the
channel. This allows for the establishment of a complementary channel which characterizes
the flow of information to the external environment. As such, the protection of the quantum
information by using an error correcting code, and allowing for the recovery of information,
should prevent any information about the state of leaking to the external environment.
This can be thought of as a consequence of the no-cloning theorem since there exists no
quantum operation that should be able to clone arbitrary quantum states. If the quantum
error correcting code allows for full recovery of the logical state, then if any element of the
state has leaked to the environment and as such could be recovered, then that element of
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the arbitrary state must have been copied which should not be allowed. Therefore, the
external system has no knowledge of the original logical state and the channel introduces
a notion of privacy. More generally, we can define an operator private quantum channel in
the following sense:

Definition 56. A subsystem B is an operator private subsystem for Φ if for all
σA ∈ L(A) there is a ρ0 = ρ0(σA) ∈ L(S) such that

Φ(σA ⊗ σB) = ρ0, ∀ σB ∈ L(B). (4.1)

We will arrive at more general notions of privacy later in this chapter, however we first
introduce the following notion due to its connections to a class of quantum error correcting
codes called operator quantum error correcting codes.

Definition 57. Let S = (A ⊗ B) ⊕ (A ⊗ B)⊥ and let E be a channel acting on L(S).
Then B is an operator quantum error correcting code (OQECC) for E if there
exists a quantum channel R such that for all σA, for all σB, there exists some fixed state
τA = τA(σA) (dependent on σA) such that

R ◦ E(σA ⊗ σB) = τA ⊗ σB. (4.2)

Equipped with these two notions, we can now more formally state the duality between
a channel that is private and one that is error correctable.

Theorem 58 ([90]). Let S = (A⊗B)⊕ (A⊗B)⊥ and let Φ be a channel acting on L(S).
Then B is an operator private subsystem for Φ if and only if it is an operator quantum
error correcting code for the the complementary channel Φ].

Therefore, by developing a stronger sense of the theory of private quantum channels,
one can hope to gain some understanding in potential error correction models through this
complementary link. This chapter aims to further characterize the set of channels that can
be private and uncover the underlying mathematical structure behind them.

4.2 Private quantum subsystems

4.2.1 Introduction & background

The most essential primitive for private communication between two parties, Alice and
Bob, in classical computation is the one-time pad. In such a scheme, the two parties
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share a secret key that is unknown to an external observer Eve; this key enables reliable
communication by the parties as the message appears to be a random mixture of input
bits from Eve’s viewpoint without the key.

Private quantum codes were initially introduced as the quantum analogue of the clas-
sical one-time pad. The basic setting for a “private quantum channel” [5, 27] is as follows:
Alice and Bob share a private classical key that Alice uses to inform Bob which of a set of
unitary operators {Ui} she has used to encode her quantum state: ρ 7→ UiρU

†
i . With this

information in hand, Bob can decode and recover the state ρ without disturbing it. The set
of unitaries {Ui} and the probability distribution {pi} that makes up the random key which
determines the encoding unitary are shared publicly. Thus, without further information,
Eve’s description of the system is given by the random unitary channel Φ(ρ) =

∑
i piUiρU

†
i .

By selecting certain sets of unitary operators with appropriate coefficients, the random uni-
tary channel will provide Eve with no information about the input state.

The body of work on private quantum codes now includes a variety of other applica-
tions, with realizations both as subspaces and subsystems of Hilbert space. Private shared
reference frames exploit private subspaces and subsystems that also arise from the igno-
rance associated with an eavesdropper’s description of a system [14, 13]. The notion of
using mixed state ancilla qubits to encode information, which can be viewed as subsystem
encodings, has also been studied in the context of quantum secret sharing [43, 45]. There,
the goal is to encode information into a globally mixed state of n qubits such that to recover
the quantum information one would need access to k qubits of the global state, where any
fewer would yield no information regarding the initial state. Using mixed states allows for
the increase of k for a fixed n, thus solidifying the idea that mixed state encodings increase
privacy. There are also bridges between these works and quantum error correction, for-
malized by the complementarity results of [90]. Connections between the study of private
quantum codes and the theory of operator algebras have recently been found as well [41].

In this work we consider the most general notion of a private quantum code [5, 27, 14],
which involves the encoding of quantum bits into subsystems. Private quantum channels,
private subspaces, and what we refer to as “operator” private subsystems—are captured
as special cases of this general phenomena. We consider a class of phase damping channels
throughout the presentation that highlights the main differences between mappings on
subsystems and subspaces. Most surprisingly, we show that certain classes of channels can
only be private in the subtle subsystem sense; thus establishing that private subsystems
can exist in the absence of private subspaces.

We also make the first significant move toward a structure theory for private quantum
codes; specifically we set out algebraic conditions that characterize privacy of a code in
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terms of the Kraus operators for a given quantum channel. This can be viewed as an
analogue of the set of Knill-Laflamme conditions [88] from quantum error correction to
this setting, and indeed we discuss further connections with error correction. In particular
we show that complementarity of private and error-correcting codes fails at the most general
level, and we point out a potentially new type of quantum error-correcting code.

We now describe our notation and nomenclature. Given a quantum system S, with
(finite-dimensional and complex) Hilbert space also denoted by S, we will use customary
notation such as ρ, σ for density operators. The set of linear operators on S is denoted
by L(S). Linear maps on L(S) can be viewed as operators acting on the operator space
L(S). We use the term (quantum) channel to refer to a completely positive and trace-
preserving linear map Φ : L(S) → L(S). Such maps describe (discrete) time evolution
of open quantum systems in the Schrödinger picture, and can always be written in the
Choi-Kraus operator-sum form Φ(ρ) =

∑
i ViρV

†
i for some operators Vi in L(S) satisfying∑

i V
†
i Vi = I. The composition of two maps will be denoted by Φ ◦Ψ(σ) = Φ(Ψ(σ)).

A (linearly closed) subspace C of S is said to be a private subspace for Φ if there is
a density operator ρ0 on S such that Φ(|ψ〉〈ψ|) = ρ0 for all pure states |ψ〉 in C. By
linearity, Φ(ρ) = ρ0 for all ρ in L(C). We could also consider a collection of private states
not associated with a subspace of the Hilbert space, but, as in quantum error correction,
we wish to allow for arbitrary superpositions of our code states and this demands the set
of states considered are linearly closed.

Definition 59. A subsystem B is a private subsystem for Φ if there is a ρ0 ∈ L(S) and
σA ∈ L(A) such that

Φ(σA ⊗ σB) = ρ0 ∀σB ∈ L(B). (4.3)

The case of random unitary channels Φ in Eq. (4.3) was first considered in [5, 27] where
the terminology private quantum channels was used, and the case of general channels Φ
was formalized in [14] where private subsystems were given the extra prefix “completely”
that we have dropped. If Eq. (4.3) holds for all σA, as opposed to a single state σA, then
we shall refer to B as an operator private subsystem as defined in Definition 56 (since
these are precisely the private subsystems that are complementary to operator quantum
error-correcting subsystems discussed below).

4.2.2 Private subsystems in the absence of private subspaces

An operator private subsystem is one in which the private channel splits into a product
of maps on the individual subsystems A and B when the channel is restricted to the
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combined product subspace A ⊗ B. Such private subsystems cannot exist without the
existence of private subspaces; indeed, if Eq. (4.3) holds for all states on A, it follows that
every subspace |ψ〉 ⊗B is private for Φ for any fixed pure state |ψ〉 on A.

Even though the definition given by Eq. (4.3) allows for the possibility of examples
of private subsystems that do not extend to private subspaces, the private subsystems
exhibited in the literature [5, 27, 14, 13] thus far have either been of operator type, or are
already subspaces. Here we present the first examples of private subsystems for which there
are no private subspaces that exist; in particular these are private subsystems that are not
of operator type. Our motivating class of channels is built upon a simple phase damping
model. We begin the discussion by recalling the most basic private quantum channel and
asking some basic questions on quantum privacy.

The completely depolarizing channel (Φ(ρ) = 1
dimS

I for all ρ) is an easy to describe
example of a quantum channel that is private. In this case the entire Hilbert space acts as
a private code for the channel, and so in order to implement such a private channel a full
set of Pauli rotations must be available. This leads to a very basic question in the study of
private quantum codes: Do there exist channels with fewer physical operations such that
we can still encode qubits for privacy?

Perhaps the simplest class of channels one could imagine would be the family of phase
damping channels that can be applied to any qubit of a larger Hilbert space S of n qubits,

Λi(ρ) =
1

2
(ρ+ ZiρZi), ∀ρ ∈ L(S). (4.4)

A single qubit phase damping channel is not private. Yet we can ask: can composing the
phase damping channel on multiple qubits yield a private subspace C ⊆ S? Such a question
is analogous to the sort of questions that have been asked in quantum error correction for
some time; for example, given a set of errors that are uncorrectable on a single qubit, does
there exist a larger Hilbert space such that the action of the error on the encoded Hilbert
space is correctable? The answer to such a question in quantum error correction is yes,
as demonstrated by the five-qubit code which corrects for arbitrary single-qubit errors, an
error that would be uncorrectable if one did not have access to a larger Hilbert space to
encode the quantum information into a quantum code.

We shall define the map Λ as the composition of the maps Λi on each of the n qubits
of the state ρ ∈ S,

Λ(ρ) = Λn ◦ Λn−1 ◦ · · · ◦ Λ1(ρ). (4.5)
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Equivalently one could consider the n-product map Λ⊗n1 of the single qubit channel Λ1. For
any input state ρ, this channel will decohere all off-diagonal terms in the computational
basis; as such, the resulting output density matrix will be diagonal.

Consider the case when n = 2. Every output state of Λ has the form

ρ0 =
1

4

(
II + αIZ + βZI + γZZ

)
, (4.6)

where I and Z are the one-qubit identity and Pauli Z matrices. The goal is to find a
subspace C of dimension 2 and a state ρ0 ∈ L(S) such that Λ(ρ) = ρ0 ∀ρ ∈ L(C). This
would show that Λ has a private qubit subspace, defined by a pair of orthogonal logical
states |0L〉, |1L〉 in C.

However, one can show that such a subspace does not exist. In fact we can prove the
following more general result, which applies to the channels Λ directly, and can be extended
to channels with commuting normal Kraus operators as well.

Theorem 60. Let Φ be a random unitary channel with mutually commuting Kraus oper-
ators. Then Φ has no private subspaces.

Proof. Let Φ be a random unitary channel with mutually commuting Kraus operators
described by

Φ(ρ) =
∑

i

piUiρU
†
i ∀ρ. (4.7)

Since the unitaries Ui are mutually commuting, there exists a common eigenbasis {|ej〉}dj=1

for all of the unitaries such that,

Ui|ej〉 = αij|ej〉 with |αij| = 1. (4.8)

Suppose a non-trivial private subspace C exists. Then there must exist at least two pure
states |0L〉, |1L〉 such that Λ(|0L〉〈0L|) = Λ(|1L〉〈1L|) = ρ0, where ρ0 is some fixed density
matrix. Then for some scalars βj, γj ∈ C, we can write

|0L〉 =
d∑

j=1

βj|ej〉, |1L〉 =
d∑

j=1

γj|ej〉. (4.9)

Consider the action of the channel on these states:

Φ(|0L〉〈0L|) =
∑

i piUi

(∑d
j,k=1 βjβ

∗
k|ej〉〈ek|

)
U †i

=
∑

i pi
∑d

j,k=1 αijα
∗
ikβjβ

∗
k|ej〉〈ek|

=
∑d

j,k=1

(∑
i piαijα

∗
ik

)
βjβ

∗
k|ej〉〈ek| (4.10)
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Similarly,

Φ(|1L〉〈1L|) =
d∑

j,k=1

(∑

i

piαijα
∗
ik

)
γjγ

∗
k|ej〉〈ek|. (4.11)

Comparing the diagonal terms, where j = k, the inside sum over i is always equal to 1
since the modulus of the eigenvalues is 1, thus the respective coefficients are |βj|2 and |γj|2.
Therefore, if the output of the channel is the same in both cases, we must have |βj| = |γj|,
∀j. (Observe that this is independent of the orthogonality of |0L〉 and |1L〉; any two basis
states mapped by Φ to the same state would satisfy this coefficient condition.) However,
we prove below that no such |0L〉 and |1L〉 can form a subspace. Indeed, we can write

|0L〉 =
∑d

j=1 βj|ej〉 = |β1||e1〉+
∑d

j=2 |βj|eiθj |ej〉 (4.12)

|1L〉 =
∑d

j=1 γj|ej〉 = |β1||e1〉+
∑d

j=2 |βj|eiφj |ej〉, (4.13)

where we have, without loss of generality, performed a global phase shift on the two vectors
so that the coefficient of |e1〉 is real for both vectors (under a global phase shift, the vectors
remain orthogonal). We have relabelled the coefficients to reflect the fact that |βj| = |γj|.

Any linear combination of the basis states must additionally be in C by the closure of
the subspace under scalar addition. With this in mind, consider the normalized state,

|0L〉+ |1L〉√
2

=
2|β1||e1〉+

∑d
j=2 |βj|(eiθj + eiφj)|ej〉√

2
. (4.14)

Since such a state must be an element of C, it must satisfy the conditions on the moduli
of its coefficients; namely, the jth coefficient must be equal in modulus to |βj|. However,
one can clearly see that the modulus of the coefficient of the |e1〉 term is equal to

√
2|β1|

which is not equal to |β1| unless |β1| = 0. Therefore, we have reduced the basis states to
have the form,

|0L〉 = |β2||e2〉+
∑d

j=3 |βj|eiθ
′
j |ej〉 (4.15)

|1L〉 = |β2||e2〉+
∑d

j=3 |βj|eiφ
′
j |ej〉, (4.16)

where we have performed a global phase shift on both states and redefined the phase on
the components |ej〉, 3 ≤ j ≤ d. By the same argument as above, we can show that all
coefficients must be equal to zero in order for the channel Λ to be private while C remains
a subspace. As such, there does not exist two orthonormal basis vectors satisfying the
requirements for the channel to be private, implying that no non-trivial subspace C ⊂ S
exists.
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Corollary 61. Let S be n-qubit Hilbert space. Then there exists no subspace C ⊂ S where
dim(C) ≥ 2 such that C is private for the channel Λ = Λn ◦ Λn−1 ◦ · · · ◦ Λ1.

Proof. All Kraus operators are tensor products of I2 and Z, and thus Theorem 60 applies.

Is this the end of the story? This result is intuitive—at first glance it certainly does
not “feel” as though we should be able to find private codes for channels such as the phase
damping maps Λ = Λn ◦ · · · ◦ Λ2 ◦ Λ1 due to the preservation of information stored in the
diagonal elements of the initial density matrix. Moreover, the experience with operator
private subsystems, which demand the existence of private subspaces, also suggests we can
go no further with these channels. Somewhat surprisingly, we do find private subsystems
for these channels, and necessarily they are not of the type exhibited before.

Consider the following logically encoded qubits in two-qubit Hilbert space:

ρL =
1

4
(II + αXX + βY I + γZX). (4.17)

This describes a single qubit encoding, as equation (4.17) describes the coordinates for
a logical Bloch sphere in two-qubit Hilbert space with logical Pauli operators given by
XL = XX, YL = Y I, ZL = ZX. Now, observe that the dephasing map Λ = Λ2 ◦ Λ1 acting
on each density operator ρL produces an output state that is maximally mixed; that is,
Λ(ρL) = 1

4
II for all ρL. Thus, we see that equation (4.17) yields a private single-qubit

code for the dephasing map Λ.

We claim that this private code can be viewed as a single qubit subsystem embedded
inside two qubit space, where the ancilla operator σA, from equation (4.3), in this case is the
single qubit identity operator I2; that is, up to a unitary equivalence the set of operators ρL
can be seen to generate the operator algebra I2⊗M2. To see this, it is enough to show that
all two-qubit states ρ of the form ρ = 1

4
(II + αXX + βY I+γZX) can be sent through

appropriate unitary gates to obtain ρ′ of the form ρ′ = I2⊗ 1
4
(I2 + α′X + β′Y + γ′Z).

Since I,X, Y, Z form a basis for M2, the claim will follow.

We find that an application of the inverse of the K-gate,

K =
1√
2

(
1 1
i −i

)
=

1√
2

(|0〉(〈0|+ 〈1|) + i|1〉(〈0| − 〈1|)),

on the first qubit, and applications of CNOT2,1 and CNOT1,2, yields the desired transfor-
mation. Indeed, the composition CNOT1,2CNOT2,1

(
(K†⊗I2)(·)(K⊗I2)

)
CNOT2,1CNOT1,2
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Figure 4.1: The gates in the box region implement the encoding of an arbitrary two-qubit
state belonging to the I ⊗C2×2 algebra into encoded states of the form of Eq. (4.17). The
encoded two-qubit state subjected to the two-qubit phase damping channel Λ = Λ2 ◦ Λ1

results in an output of the completely mixed state on two qubits, ρ0 = 1
4
II.

acts as:

XX 7−→ Y X 7−→ ZY 7−→ IY

Y I 7−→ ZI 7−→ ZZ 7−→ IZ

ZX 7−→ XX 7−→ IX 7−→ IX.

Thus, we obtain ρ′ = 1
4
(I4 + γIX + αIY + βIZ). In particular, by defining the unitary

U = CNOT1,2 ◦ CNOT2,1 ◦ (K† ⊗ I2) =
1√
2




1 0 −i 0
0 1 0 i
0 1 0 −i
1 0 i 0


 ,

we see the set of operators UρLU
† generate the algebra I2 ⊗M2.

Thus, this subsystem encoding fits into the framework of the definition of private quan-
tum subsystem; that is, the subsystem defined by the set of operators UρLU

† is a private
subsystem for the channel Λ. In fact, it is a private subsystem that is not operator private.
This follows from Theorem 60 together with the complementarity theorem of [90]: If the
subsystem was operator private, it would complement an operator quantum error correct-
ing code (discussed in the next subsection), which would imply the complementary channel
also has a correctable subspace code of the same size, and then incorrectly imply that the
original channel has a private subspace again by complementarity. For completeness, we
will show directly below that this private subsystem is not operator private.

We have shown explicitly that L(C) is isomorphic to I2⊗M2, where C is the set of all
private states for Λ, via UL(C)U † = I2 ⊗M2. Alternatively, we can consider the modified
channel Λ′(·) := UΛ(·)U ′. Then the second qubit in the standard computational basis
decomposition A⊗ B, A = C2 = B, is private for Λ′ with σA = 1

2
I2. That is, rather than

applying the unitary transformation ρL 7→ UρLU
† and sending this resulting state through
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the channel Λ, we can modify the Kraus operators of Λ by the same unitary U so that Λ′

is private for 1
2
I2 ⊗ σB for any σB ∈ L(B). In this manner, our example directly fits the

definition of private subsystem.

For any

σA =

(
aA bA
cA dA

)
∈ L(A), σB =

(
aB bB
cB dB

)
∈ L(B),

we compute

Λ′(σA ⊗ σB) =
1

2




γAB 0 0 ηAB
0 γAB ζAB 0
0 ζAB γAB 0
ηAB 0 0 γAB


 . (4.18)

where γAB = aAaB + dAdB, ηAB = bAbB + cAcB, and ζAB = bAcB + cAbB. Note that this
output is symmetric in the subsystems A and B. In particular, Λ′(σA⊗ 1

2
I2) = 1

4
diag(aA +

dA, aA+dA, aA+dA, aA+dA) and Λ′(1
2
I2⊗σB) = 1

4
diag(aB+dB, aB+dB, aB+dB, aA+dB).

Thus for density matrices σA, σB we have Λ′(σA⊗ 1
2
I2) = Λ′(1

2
I2⊗ σB) = 1

4
I4, and so both

the first and second computational basis subsystems are private for Λ′.

If we were looking at an operator private subsystem here, the channel Λ′ would split
up into two distinct channels acting on systems A and B respectively. Thus, we would
have density matrices τA, τB such that Λ′(σA ⊗ σB) = τA ⊗ τB. Equating this equation
with equation (4.18), we find the system has no solution for general σA, σB (equating
components forces τB to be the zero matrix, which then forces Λ′(σA ⊗ σB) to be the zero
matrix). Hence, this subsystem is private for Λ′, but not operator private. More generally,
a logical qubit encoding into a subsystem of a n-qubit Hilbert space can be constructed to
privatize the n-qubit phase damping channel Λ = Λn ◦ · · · ◦Λ2 ◦Λ1, which by Theorem 60
cannot have a private subspace.

Theorem 62. For any n-qubit Hilbert space H, there exist quantum channels Φ for which
a private quantum subsystem B of H can be constructed in the absence of the existence of
any private quantum subspace C ⊆ H.

4.2.3 Testable conditions for private quantum codes

If we are given a quantum channel Φ(ρ) =
∑

i ViρV
†
i and a subsystem B, we can ask if it is

possible to decide whether B is private for Φ; and more to the point, we can ask if this can
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be answered in terms of the Kraus operators Vi for the channel. The analogous question in
quantum error correction is answered by the fundamental Knill-Laflamme conditions [88],
which provide an explicit set of algebraic constraints in terms of the Kraus operators and
the code, and allow one to test whether a given code is correctable for a channel. The
generalization of these conditions to the case of operator error-correcting subsystems was
established in [91, 92, 109].

The following result answers this question for private quantum subsystems. In addition
to Kraus operators, we would expect the algebra to include the fixed A state σA and output
state ρ0—observe that this information is indeed included in the conditions.

Theorem 63. A subsystem B is private for a channel Φ(ρ) =
∑

i ViρV
†
i with fixed A state

σA and output state ρ0 if and only if there are complex scalars λijkl forming an isometry
matrix λ = (λijkl) such that

∑

m

√
pkVj|ψA,k〉|ψB,m〉〈ψB,m| =

∑

i,l

λijkl
√
ql|φl〉〈ψB,i|, (4.19)

where |ψA,k〉 (pk) and |φl〉 (ql) are eigenstates (eigenvalues) of σA and ρ0 respectively, |ψB,i〉
is an orthonormal basis for B.

The key observation in establishing this result is that the left and right hand sides of
Eq. (4.3) each define channels from B to S which are in fact the same. One can then use
basic results from the theory of completely positive maps to obtain the equations spelled
out in the theorem.

Proof. Consider first the left-hand side of the equation (4.3) of the definition of pri-
vate quantum subsystem. Let Φ : L(S) → L(S) be a quantum channel satisfying this
definition. Let {Vj} be the Kraus operators of Φ. Consider a spectral decomposition
σA =

∑
k pk|ψA,k〉〈ψA,k|, where |ψA,k〉 and pk are the eigenstates and eigenvalues, respec-

tively, of σA. We can consider the action of Φ on L(S) as the composition of maps Φ◦Ψ(σB),
where, for fixed σA, Ψ : L(B) → L(S) is the map σB 7→ σA ⊗ σB. The Kraus operators
of Ψ are {∑m

√
pk|ψA,k〉|ψB,m〉〈ψB,m|}k (the

∑
m |ψB,m〉〈ψB,m| acts trivially on σB, but is

necessary to obtain the correct dimension when later acted on by Vj). It follows that the
Kraus operators of the composition Φ ◦Ψ(σB) are {∑m

√
pkVj|ψA,k〉|ψB,m〉〈ψB,m|}j,k.

On the other hand, the right-hand side of equation (4.3) can be viewed as a quantum
channel

σB 7→ Tr(σB)
∑

l

ql|φl〉〈φl| =
∑

i,l

ql|φl〉〈ψB,i|σB|ψB,i〉〈φl|,
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where {|ψB,i〉} is an orthonormal basis for the subsystem B, and we have used the fact
that |φl〉 and ql form a spectral decomposition for ρ0. The Kraus operators of this map are
{√ql|φl〉〈ψB,i|}i,l.

However, the quantum channels described by the left- and right-hand sides of equation
(4.3) are equal in that, given an arbitrary input σB, their outputs are equal. Thus we may
use a well-known fact regarding equal CP maps with Kraus operators {Xi}mi=1 and {Yj}nj=1,
respectively, with m ≤ n; that is, they are related via Xi =

∑
j λijYj for some isometry

matrix λ = (λij). When m = n, λ is unitary. It follows immediately from this that for
all j, k, we have

∑
m

√
pkVj|ψA,k〉|ψB,m〉〈ψB,m| =

∑
i,l λijkl

√
ql|φl〉〈ψB,i|, for some isometry

(or, appropriately, unitary) λ, as desired.

The converse implication follows by reversing the above steps, or by direct calculation,
to show that Eq. 4.19 implies Eq. 4.3 is satisfied.

The conditions of Theorem 63 are somewhat intricate in the most general case, so it
is worthwhile to give further context and discuss some special cases. We note that this
result is new even for the special cases of operator private codes and private subspaces,
and, via complementarity, the result can thus be viewed as the quantum privacy analogue
of the Knill-Laflamme theorem for quantum error-correcting (subspace) codes [88] and its
operator quantum error correction generalization [91, 92]. However, the most general case
covered by Theorem 63 may have no analogue in quantum error correction. The next two
subsections discuss this topic in more detail.

As one would expect, the algebraic conditions can be further simplified in the case of
private subspaces; which is captured in the formalism when A is one-dimensional and B
is a subspace. In this case, the Theorem statement becomes VjPB =

∑
i,l λijl

√
ql|φl〉〈ψB,i|.

By taking the inner product of this equation with its complex conjugate, one arrives at
the statement PBV

†
j1
Vj2PB =

∑
i1,i2,l

qlλij1lλij2l|ψB,i1〉〈ψB,i2 | for all j1, j2, where PB is the
projector onto the B subspace. Here we have a more noticeable connection with the Knill-
Laflamme conditions for quantum error correction: PBV

†
j1
Vj2PB = αj1,j2PB, where the Vj’s

are the Kraus operators of the error map and PB is the projection onto the correctable B
subspace.

The algebraic conditions of the theorem can also be simplified in the case that ρ0 is a
scalar multiple of a projection, as we now state.

Corollary 64. Suppose the output state ρ0 of a private quantum channel Φ = {Vi} is
proportional to a projection: ρ0 ∝ Q =

∑
k |ψk〉〈ψk|, and P =

∑
l |φl〉〈φl|. It follows that
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there are scalars uikl such that for all i

ViP =
∑

k,l

uiklAkl where Akl =
1√

rank(Q)
|ψk〉〈φl|.

Here Akl are the Kraus operators of the channel X 7→ λXP .

Thus far in our investigations, most of the physical examples of private codes that
we have come across do indeed have a projector output as in this Corollary. Of course,
the simplest general class of channels satisfying this condition is the n-qubit complete
depolarizing channel. In that case, both P and Q are the maximally mixed state, and
the result indicates that any family of Kraus operators for the map will arise as linear
combinations, where the scalars are precisely defined with the right balance to induce
privacy, of the matrix units |i〉〈j|. Another simple (non-unital) example is provided by
the spontaneous emission channel. In the single qubit case, the extremal channel from
this class is given by Φ(ρ) = |0〉〈0| for all single qubit ρ. Here P is the maximally mixed
state and Q = |0〉〈0|, and the result simply states that any Kraus operators for Φ must be
balanced multiples of |0〉〈0| and |0〉〈1|.

As a more intricate example in the most general (non-subspace, non-operator) case of
a private code, we point out how the 2-qubit phase damping channel Λ can be viewed from
the perspective of this result. The eigenstates of ρ0 = 1

4
I4 are |00〉, |01〉, |10〉, |11〉, each

having eigenvalue 1
4
. For simplicity, we will use the standard orthonormal basis on the

subsystem B: {〈ψB,i|} = {〈0|, 〈1|}. In our example, σA = 1
2
I2, hence its eigenstates are

{|ψA,k〉} = {|0〉, |1〉}, with corresponding eigenvalues 1
2
.

Using the Kraus operators {Vj} = {1
2
II, 1

2
XX, 1

2
ZZ,−1

2
Y Y } of Λ′, we compute Vj|ψA,k〉
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as follows:

V1|ψA,1〉 =
1

2




1 0
0 1
0 0
0 0


 =

1

2
(|00〉〈0|+ |01〉〈1|)

V1|ψA,2〉 =
1

2




0 0
0 0
1 0
0 1


 =

1

2
(|10〉〈0|+ |11〉〈1|)

V2|ψA,1〉 =
1

2




0 0
0 0
0 1
1 0


 =

1

2
(|10〉〈1|+ |11〉〈0|)

V2|ψA,2〉 =
1

2




0 1
1 0
0 0
0 0


 =

1

2
(|00〉〈1|+ |01〉〈0|)

V3|ψA,1〉 =
1

2




1 0
0 −1
0 0
0 0


 =

1

2
(|00〉〈0| − |01〉〈1|)

V3|ψA,2〉 =
1

2




0 0
0 0
−1 0
0 1


 =

1

2
(−|10〉〈0|+ |11〉〈1|)

V4|ψA,1〉 =
1

2




0 0
0 0
0 −1
1 0


 =

1

2
(−|10〉〈1|+ |11〉〈0|)

V4|ψA,2〉 =
1

2




0 1
−1 0
0 0
0 0


 =

1

2
(|00〉〈1|+ |01〉〈0|) .

Note that the Vj are 4× 2 matrices formed with 2× 2 Pauli operators and zero blocks.
Recall that we can consider both the left-hand and right-hand side of equation (4.19) as
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quantum channels. Moreover, the Kraus operators {Xi}, {Yj} of equal quantum channels
are related via Xi =

∑
j λijYj for some isometry λ = (λij). When the number of Kraus

operators Xi is equal to the number of Kraus operators Yi, λ is unitary. In this case,√
pk = 1√

2
for all k, and each Vj has a factor of 1

2
, so the coefficient of the left-side of

this equation is always 1
2
√

2
. The coefficient of λijkl

√
ql|φl〉〈ψB,i| is λijkl

√
ql = 1√

2
· 1

2
for all

i, j, k, l.

Thus in our example, we find that λ is the following matrix:

λ =
1√
2




1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 −1 1 0
0 1 −1 0 0 0 0 0




.

The scalar matrix λ = (λijkl) is indeed an isometry. Furthermore, because the number
of operators

∑
m

√
pkVj|ψA,k〉|ψB,m〉〈ψB,m| agrees with the number of operators |φl〉〈ψB,i|

(namely, 8), the matrix λ is in fact unitary.

4.2.3.1 Complementarity and quantum error correction

Several links have been made between quantum error correction and quantum privacy.
In the case of operator private subsystems and operator error-correcting subsystems, the
complementarity theorem of [90] discussed below established an algebraic bridge between
the two subjects. This firmly links the operator quantum error correction theory to that
of operator private subsystems—results in one field can immediately be exported to the
other. Thus, it is natural to ask whether such a result holds in this more general setting.
To answer this we need the concept of complementary channels.

As a consequence of the Stinespring dilation theorem, every channel Φ may be seen
to arise from an environment Hilbert space E, a pure state |ψ〉 on the environment, and
a unitary operator U on the composite S ⊗ E in the following sense: Φ(ρ) = TrE

(
U(ρ ⊗

|ψ〉〈ψ|)U †
)
. Tracing out the system instead yields a complementary channel: Φ](ρ) =

TrS
(
U(ρ⊗ |ψ〉〈ψ|)U †

)
. The uniqueness built into the theorem yields a certain uniqueness

for such a pair of channels, so that we talk of “the” complementary channel Φ] for a given
channel Φ [70, 84].
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We have already discussed operator private subsystems—the essential difference being
that instead of a single state on A, it is demanded that Eq. (4.3) holds for all states on
A. Similarly, an operator quantum error-correcting subsystem B for a channel E [91, 92]
requires the existence of a correction operation R such that: ∀σA ∀σB, ∃τA for which
R ◦ E(σA ⊗ σB) = τA ⊗ σB. The main result of [90] shows that B is private for Φ if and
only if it is error-correcting for Φ].

Does this result extend to the more general setting? The Kraus operators of the com-
plementary map Λ] are four orthogonal rank-one projectors in two-qubit Hilbert space,
and in particular the map determines a von Neumann measurement. No error-correcting
subsystem can be extracted in such a setting; moreover, when the input space is restricted
to be that of our example, the complementary map is private, as we saw in Section 4.2.2.
Thus, not only does the complementarity result fail, it fails dramatically.

This discussion motivates the following observation: The notion of an operator quantum
error-correcting subsystem can be expanded to mimic the general definition of a private
quantum subsystem. Indeed, a revised definition analogous to that of Eq. (4.3) could
be proposed as follows: B is correctable for E if there exists an operation R such that
for all σB and some fixed states σA, τA, we have R ◦ E(σA ⊗ σB) = τA ⊗ σB. This is a
potentially new notion of quantum error-correcting code. We show this is not the case in
the following discussion, which focusses on the class of phase damping examples considered
above. However, in the general discussion that follows, we show how a modified view of
the associated dilations recaptures the complementarity result.

For our phase damping channel Λ, we can compute the Kraus operators of the comple-
mentary channel Λ] by “stacking” the j-th column of each of the eight Kraus operators Vi
of Λ one below the next, to obtain the j-th Kraus operator of Λ]:

A1 =
1

2




1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


 A2 =

1

2




0 1 0 0
0 −1 0 0
0 1 0 0
0 −1 0 0




A3 =
1

2




0 0 1 0
0 0 1 0
0 0 −1 0
0 0 −1 0


 A4 =

1

2




0 0 0 1
0 0 0 −1
0 0 0 −1
0 0 0 1


 .

We now ask what is the behaviour of the complementary channel on the subsystem B paired
with the fixed state σA; that is, we compute how Φ] acts on operators σA ⊗ σB for all σB.
Again, we must be careful: this pairing, which in this case we can identify with the algebra
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I2 ⊗M2, is private for Λ′, and so we wish to test I2 ⊗M2 on (Λ])′, where we obtain (Λ])′

by applying the unitary transformation U(·)U †, with U = CNOT1,2CNOT2,1(K† ⊗ I2), as
before.

We compute the Kraus operators of (Λ])′ to be {Bi = UAiU
†}, where

B1 =
1

4




1− i 0 0 1− i
1 + i 0 0 1 + i
1− i 0 0 1− i
1 + i 0 0 1 + i




B2 =
1

4




0 1− i 1− i 0
0 −1− i −1− i 0
0 −1 + i −1 + i 0
0 1 + i 1 + i 0




B3 =
1

4




1− i 0 0 −1 + i
−1− i 0 0 1 + i
1− i 0 0 −1 + i
−1− i 0 0 1 + i




B4 =
1

4




0 −1 + i 1− i 0
0 −1− i 1 + i 0
0 1− i −1 + i 0
0 1 + i −1− i 0


 .

Now, for any σB =

(
a b
c d

)
∈ L(B), we find

(Λ])′
(

1

2
IA ⊗ σB

)
=
∑

i

Bi

(
1

2
IA ⊗ σB

)
B†i =

1

4
I4.

Far from being correctable on the algebra I2 ⊗M2, the complementary channel (Λ])′

(with the proper unitary transformation) is completely depolarizing. All information is
lost, so there is no possibility of the channel being correctable in any sense. In fact, note
in this case that the Kraus operators of the complementary map Λ] are four orthogonal
rank-one projectors in two-qubit Hilbert space, and in particular the map determines a
von Neumann measurement.

However, one can rightly ask if the dephasing map Λ and its complementary map are
both private, where does the quantum information go? Figure 4.2 illustrates the isometric
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extension of the dephasing channel, along with the encoding of the information from the
algebra I2 ⊗M2 to a state of the form of equation (4.17).

σB • Z
Λ(σB)

|0⟩⟨0|A • K Z

|+⟩⟨+| • Mixing ancilla

|+⟩⟨+| •
Λ♯(σB)|+⟩⟨+| •

⎫⎪⎬
⎪⎭

⎫⎬
⎭

1

Figure 4.2: Isometric extension of the two-qubit dephasing channel Λ = Λ2 ◦ Λ1. The
extension of the channel to be a unitary transformation is given in the solid box (—) by
introducing ancilla qubits 4 and 5. The dashed box (– –) contains the encoding of ρ of the
form in equation (4.17) into the algebra I2 ⊗M2. The dotted box (· · · ) gives a particular
preparation of the mixed state for the subsystem encoding, using a “mixing ancilla” that
is traced out for both the channel Λ and its complementary channel Λ].

As Figure 4.2 shows, the isometric extension of the channel to a larger Hilbert space,
where the state evolution is described by unitary evolution, can be achieved using two
extra qubits. Moreover, in order to purify the mixed state used in the subsystem encoding,
one could use an additional “mixing ancilla”. Such an ancilla would be traced out both for
the dephasing channel Λ and its complementary channel Λ]. By definition of the unitary
extension of the channel, the channel mapping Λ(ρ) can be obtained by tracing out the
final two qubits as well as the mixing ancilla. The complementary channel is obtained by
tracing out qubits 1 and 2 as well as the mixing ancilla. As shown above, both of these
outputs are private.

However, what if one had access to the information stored in the mixing ancilla? The
role of this state is to twirl the second qubit to obtain a mixed state, however, if one now
had access to this state the overall evolution of the channel is no longer on a subsystem
encoding, but rather it would be on a subspace encoding that included the mixing ancilla
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itself. Define UΛ as the full unitary evolution described in Figure 4.2, and let ρ̃ = ρ ⊗
|0〉〈0|⊗ |+〉〈+|⊗ |0〉〈0|⊗ |0〉〈0| be the input state into the unitary evolution. The dephasing
channel is given by Tr345(UΛρ̃U

†
Λ), where we trace out qubits 3 (the mixing ancilla), 4, and

5. If we now look at the output on registers 345, the channel Tr12(UΛρ̃U
†
Λ) must describe

an operator quantum error-correcting code as it is the complement to a channel that is an
operator private quantum channel. It is clear that this is not the complementary channel
in the sense of the isometric extension, as we are adding on an extra level of operations,
namely the mixing of the qubit |0〉 using a mixing ancilla (and then considering the mixing
ancilla as qubit 1 of a larger Hilbert space). However, in this modified notion of the
complementary channel we find the quantum information that was lost. We can thus
conclude that the mixing ancilla plays an important role in the perseverance of global
quantum information, and that the information must be stored in the correlations between
this space and one of the two output spaces.

More generally, given a private subsystem L(B) for a channel Φ (with fixed mixed
state σA ∈ L(A)), one can formalize the notion of a correctable complementary channel in
a similar fashion. Let σA =

∑N
i=1 pi|ψi〉〈ψi|A and define a mixing ancillary Hilbert space

L(M) containing N basis states. The mixing ancillary space L(M), as in the example, is
used to apply a controlled unitary operation Ui based on the state |ϕ〉A in L(A), and the
unitaries Ui are chosen such that Ui(|i〉M |ϕ〉A) = |i〉M |ψi〉A. That is,

∑

i

piUi|i〉M |ϕ〉〈ϕ|A〈i|MU †i =
∑

i

pi|i〉M |ψi〉〈ψi|A〈i|M

=
∑

i

pi|i〉〈i|M ⊗ |ψi〉〈ψi|A.

Since σA = TrM
(∑

i pi|i〉〈i|M ⊗ |ψi〉〈ψi|A
)
, we find

σA = TrM
(∑

i

piUi|i〉M |ϕ〉〈ϕ|A〈i|MU †i
)

= TrM
(
UMA|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|AU †MA

)
,

where |Θ〉M =
∑

i

√
pi|i〉M is a chosen pure state for the mixing ancilla such that the UMA

performs the appropriate unitary transformation UMA =
∑

i |i〉〈i|M ⊗|ψi〉〈ϕ|A. The private
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quantum subsystem channel can then be expressed as follows:

Φ(σA ⊗ σB) =
∑

j

Aj(σA ⊗ σB)A†j

= TrK

(
UΦ(σA ⊗ σB ⊗ |ζ〉〈ζ|K)U †Φ

)

= TrMK

(
UΦUMA(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|K)U †MAU
†
Φ

)
. (4.20)

The transformation within the parenthesis is a unitary transformation, as UΦ is a unitary
defined by the isometric extension of the channel Φ (that is, by Stinespring’s dilation
theorem), where we have introduced the ancillary system K to form the isometric extension
with |ζ〉K being a fixed pure state. The unitary UMA corresponds to the transformation
in order to prepare a mixed state σA, after tracing out over the mixing ancillary space M .
Since the transformation within the brackets is a unitary transformation, if the output state
of the channel contains no information about the input state σB, the quantum information
must be completely contained in the traced out subsystem: the MK subsystem. That is,
if one traced out the output space, and we were left with the MK subsystem, such an
output would necessarily be correctable since all quantum information is contained in that
system. That is to say, the generalized conjugate channel,

Φ̃(σA ⊗ σB) = TrA⊗B

(
UΦ(σA ⊗ σB ⊗ |ζ〉〈ζ|K)U †Φ

)

= TrAB

(
UΦUMA(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|)U †MAU
†
Φ

)
, (4.21)

has the feature that B is error-correctable for it. The generalized form of a private quantum
subsystem can thus be summarized as a unitary transformation on an extended Hilbert
space by the circuit in Figure 4.3.

If we consider the action of the private subsystem channel Φ via the isometric exten-
sion UΦ, then the Kraus operators of the original channel can be expressed as follows
(without the extension to the mixing ancilla space M):

Φ(σB) = TrK
(
UΦ(σA ⊗ σB ⊗ |ζ〉〈ζ|K)U †Φ

)

=
∑

i

〈i|KUΦ(σA ⊗ σB ⊗ |ζ〉〈ζ|K)U †Φ|i〉K

=
∑

i

Pi(σA ⊗ σB ⊗ |ζ〉〈ζ|K)P †i ,
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σB

UΦ

Φ(σB)
|ϕ⟩⟨ϕ|A

UMA

|Θ⟩⟨Θ|M
Φ̃(σB)

|ζ⟩⟨ζ|K

⎫⎬
⎭

⎫⎬
⎭

1

Figure 4.3: Generalized form of extending a private quantum subsystem channel to a
unitary transformation via Stinespring’s dilation theorem. The subsystem σA ⊗ σB that
encodes the arbitrary state of quantum information σB is prepared by entangling an ancil-
lary pure state mixing ancilla |Θ〉〈Θ|M with a chosen pure state |ϕ〉〈ϕ|A via the unitary UMA

and tracing out over the mixing ancilla space M . This operation corresponds to the dotted
box in Figure 4.2. The action of the private quantum channel Φ can also be extended to a
unitary transformation over a larger Hilbert space, as described by the action of UΦ on sys-
tems ABK by introducing the ancillary state |ζ〉〈ζ|K , as described in Eq. 4.20. The unitary
transformation UΦ corresponds to the dashed and solid boxes in Figure 4.2. The comple-
mentary channel is defined on the output space of the extension of the channel Φ, and
therefore corresponds to the final state on system K, yet in general will not be quantum
error correctable for an arbitrary subsystem channel. However, a generalized conjugate
channel Φ̃ can be constructed on the Hilbert space MK, as described in Eq. 4.21, which
will necessarily be a quantum error correctable channel since the overall extension is a
subspace channel.
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where the Kraus operators of the channel Φ are given by {Pi = 〈i|KUΦ}i. In a similar
manner, the Kraus operators of the complementary channel Φ] are given as follows:

Φ](σB) = TrAB
(
UΦ(σA ⊗ σB ⊗ |ζ〉〈ζ|K)U †Φ

)

=
∑

j

Qj(σA ⊗ σB ⊗ |ζ〉〈ζ|K)Q†j,

where the Kraus operators are given by {Qj = 〈j|ABUΦ}j. Finally, in order to extend
the input space to be a subspace, rather than a subsystem, the ancillary mixing state
is introduced. Defining the generalized complementary channel Φ̃ as above, the Kraus
operators of this channel can be defined on the extended Hilbert space as follows:

Φ̃(σB) = TrAB
(
UΦUMA(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|K)U †MAU
†
Φ

)

=
∑

k

〈k|ABUΦUMA(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|K)U †MAU
†
Φ|k〉AB

=
∑

k

(IM ⊗Qk)UMA(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|K)U †MA(IM ⊗Qk)
†

=
∑

k

Rk(|Θ〉〈Θ|M ⊗ |ϕ〉〈ϕ|A

⊗ σB ⊗ |ζ〉〈ζ|K)R†k,

where the Kraus operators of the generalized complementary channel Φ̃ mapping to theMK Hilbert
space are related to the Kraus operators of the complementary channel Φ] via the rela-
tionship {Rk = (IM ⊗Qk)UMA}k. As outlined above, this channel must be quantum error
correcting, and as such must satisfy the Knill-Laflamme conditions [88]:

〈i|BR†pRq|j〉B = 〈i|BU †MA(IK ⊗Q†p)(IK ⊗Qq)UMA|j〉B
= 〈iUMA

|MA(IK ⊗Q†p)(IK ⊗Qq)|jUMA
〉MA

= δijcpq.

For any generalized private subsystem channel there must be the existence of a higher
dimensional Hilbert space such that the above Knill-Laflamme conditions for quantum
error correcting hold for a set of Kraus operators related to the Kraus operators of the
complementary channel of the original private subsystem channel.
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4.2.3.2 Generalized channels on subspace and subsystem encodings

A common theme throughout this work has been that encoding into a subsystem, rather
than a subspace, generates an increased freedom in the types of channels that can be used to
privatize quantum information. In this subsection we explore this notion further, explicitly
showing that the set of unitaries that can be used to privatize quantum information in a
subsystem code are inherently richer than those for subspace codes. We shall focus on
the case of encoding a single qubit of information into either a two-qubit subspace or a
two-qubit subsystem.

Consider an arbitrary encoding of a single qubit into a two-qubit subspace:

(α|0〉+ β|1〉)|0〉 → α|0L〉12 + β|1L〉12,

where |0L〉 and |1L〉 represent the logically encoded states in a higher dimensional Hilbert
space. An arbitrary CPTP map can be described as a transformation of the encoded basis
states to a larger dimensional Hilbert space, after which a trace is taken in the environment.
Any arbitrary transformation can be described as follows:

|0L〉12 →
∑

ij

|ij〉12

∣∣E0
ij

〉
E

|1L〉12 →
∑

ij

|ij〉12

∣∣E1
ij

〉
E
,

where the states
∣∣Em

ij

〉
are arbitrary environment states, that are not necessarily normal-

ized or orthogonal. The environment states are the states on the ancillary qubits when
expressing the final state in the computational basis of the first two qubits. Tracing out
over the environment states, the resulting entries of the two-qubit mixed states have a
particular form:

|ij〉〈kl|12TrE
(
α
∣∣E0

ij

〉
+ β

∣∣E1
ij

〉
)(α∗

〈
E0
kl

∣∣+ β∗
〈
E1
kl

∣∣)

=|ij〉〈kl|12TrE
(
|α|2|E0

ij〉〈E0
kl|+ αβ∗|E0

ij〉〈E1
kl|

+ α∗β|E1
ij〉〈E0

kl|+ |β|2|E1
ij〉〈E1

kl|
)
, (4.22)

this imposes a set of conditions on the environmental states in order for the output on the
first two qubits to be private, namely the terms after tracing out can yield no information
about the input state as described by α and β.

Consider now the same isometric extension mapping along with the inclusion of a third
qubit that will serve as a mixing ancilla. The encoding operation is now generalized to a
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three qubit encoding, which upon tracing out the mixing ancilla will return the subsystem
encoding on qubits 1 and 2. The generalized mapping is modified to include the third
qubit.

|0L〉123 →
∑

ij

|ijk〉123

∣∣E0
ijk

〉
E

|1L〉123 →
∑

ij

|ijk〉123

∣∣E1
ijk

〉
E
.

The generalized form of the mixed state entries on the first two qubits thus have the form

|ij〉〈kl|12Tr3E

((∑

p

α|p〉3
∣∣E0

ijp

〉
+ β|p〉3

∣∣E1
ijp

〉)

(∑

q

α∗〈q|3
〈
E0
klq

∣∣+ β∗〈q|3
〈
E1
klq

∣∣)
)

=|ij〉〈kl|12TrE

(
|α|2(|E0

ij0〉〈E0
kl0|+ |E0

ij1〉〈E0
kl1|)

+ αβ∗(|E0
ij0〉〈E1

kl0|+ |E0
ij1〉〈E1

kl1|)
+ α∗β(|E1

ij0〉〈E0
kl0|+ |E1

ij1〉〈E0
kl1|)

+ |β|2(|E1
ij0〉〈E1

kl0|+ |E1
ij1〉〈E1

kl1|)
)
, (4.23)

therefore, by comparing equations 4.22 and 4.23, we find that in the case where a mixing
ancilla has been introduced the set of conditions upon privatizing the output on the first two
qubits is looser in terms of the environment states. Namely there is a freedom in choosing
the environment states such that certain terms can cancel out to yield no information;
this freedom does not exist in the case of a pure state encoding. We explore these set of
conditions in more detail in Appendix A.

4.2.4 Quantum error correction revisited

In this subsection, we revisit the notion of an operator quantum error correctable sub-
system, as given in Definition 57, and its parallels to private quantum subsystems. The
discussion of private subsystem versus operator private subsystem in this work motivates
the following observation: The notion of an operator quantum error-correcting subsystem
can be expanded to mimic the general definition of a private quantum subsystem. We
propose the following definition, which can be seen as the QEC analogue of equation (4.3):
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Definition 65. Let S = (A⊗B)⊕ (A⊗B)⊥ and let E be a channel acting on L(S). Then
B is a generalized operator quantum error correcting code (GenOQECC) for E if there
exists a quantum channel R for which there exists a fixed state σA and a state τA = τA(σA)
(dependent on σA) such that for all σB, we have

R ◦ E(σA ⊗ σB) = τA ⊗ σB. (4.24)

Clearly no generality is lost in this definition by setting τA = σA.

The key difference in this generalized definition as opposed to Definition 57 is that the
state σA is fixed, as opposed to having to hold for all σA.

Example 66. Consider the following example of a generalized operator quantum error
correcting code. Let

σA = (1− 4p)|0000〉〈0000|+ p
∑

wt(x)=1

|x〉〈x|

be the fixed ancilla state, a mixed 4-qubit state, where the states |x〉 are the set of (four)
computational basis states with Hamming weight 1. The weighting p can be thought of
as a probability of failure of preparing a desired ground state |0〉 for the purpose of error
correction, where we have omitted higher order p terms. Let σB be any single qubit state.
The encoding of the subsystem code is a controlled operation from qubit B which targets
all qubits of the state σA with a controlled-X, we shall call such an encoding operation UAB.
The error map will be the probabilistic application of an X error on any of the 5 encoded
qubits given by the set of Kraus operators {√εiXi}5

i=0, where εi is the probability of the
error Xi occurring (X0 denoting the identity operation). The application of such an error
map will produce the following mapping on the encoded state for an arbitrary B state
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|ψ〉B = α|0〉+ β|1〉,

E
(
UAB(σA ⊗ |ψ〉〈ψ|B)U †AB

)

= E
(
|α|2
(
(1− 4p)|00000〉〈00000|+ p

∑

wt(x)=1

|x0〉〈x0|
)

+ αβ∗
(
(1− 4p)|00000〉〈11111|+ p

∑

wt(x)=1

|x0〉〈x1|
)

+ βα∗
(
(1− 4p)|11111〉〈00000|+ p

∑

wt(x)=1

|x1〉〈x0|
)

+ |β|2
(
(1− 4p)|11111〉〈11111|+ p

∑

wt(x)=1

|x1〉〈x1|
))

=
5∑

i=0

(
|α|2
(
(1− 4p)Xi|0〉〈0|⊗5Xi

+ p
∑

wt(x)=1

Xi|x0〉〈x0|Xi

)

+ αβ∗
(
(1− 4p)Xi|0〉〈1|⊗5Xi + p

∑

wt(x)=1

Xi|0〉〈x1|Xi

)

+ βα∗
(
(1− 4p)Xi|1〉〈0|⊗5Xi + p

∑

wt(x)=1

Xi|x1〉〈x0|Xi

)

+ |β|2
(
(1− 4p)Xi|1〉〈1|⊗5Xi + p

∑

wt(x)=1

Xi|x1〉〈x1|Xi

))
,

where we have defined |x〉 = X⊗5|x〉. One can notice that the error map will flip at most
one bit. This is important as the encoded |0〉 terms have weight 0 or 1 for all terms,
while the encoded |1〉 have weight 4 or 5. This means that after the application of the
error map, the encoded |0〉 will have a weight between 0 and 2, while the encoded |1〉 will
have weight between 3 and 5. The recovery operation will then perform a weight check
using measurement in the computational basis, associating all states with weight ≤ 2 to an
encoded |0〉 and all states with weight ≥ 3 to an encoded |1〉 state. As such all Xi errors are
corrected. Since this error correction procedure works for an arbitrary pure state encoding
of σB, it will necessarily work for the full set of states in L(B). That is, B is a generalized
operator quantum error correcting code for E .

It is worth noting that the error correction procedure does not work if we chose the
ancillary mixed state to be outside the set of states of weight 0 or 1. Consider a particular
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example of a 4-qubit state of weight 2, given by σA = |1100〉〈1100|A. We shall show that
encoding using such an ancillary state will not correct the error map for a particular choice
of |ψ〉〈ψ|B = |0〉〈0|B. The action of the error map is as follows:

R ◦ E
(
UAB|11000〉〈11000|U †AB

)

= R ◦ E
(
|11000〉〈11000|

)

= R
( 5∑

i=0

εiXi|11000〉〈11000|Xi

)

= (ε0 + ε1 + ε2)τA,0 ⊗ |0〉〈0|B + (ε3 + ε4 + ε5)τA,1 ⊗ |1〉〈1|.

The recovery operator maps all states that correspond to either no error or errors on the
first 2 qubits to the correct state |0〉〈0|, this is since the action of the error map returns
a state of weight 1 or 2. However, for an error that occurs on qubits 3 through 5, the
state state before the action of the recovery operator is now of weight 3, which will then
be mapped to the state |1〉〈1| by the definition of the action of recovery operator. Thus,
as long as there is a non-zero probability of an error on the last 3 qubits, the action of the
error map will result in the recovery of an incorrect state, as the state does not have the
form τA ⊗ σB. Similarly, for any choice of ancillary state σA of weight greater or equal to
2 there will exist a state |ψ〉〈ψ| that will result in faulty error correction.

Therefore, we know that the GenOQECC corrects for the error map {√εiXi}5
i=0 for the

given fixed state, and will not be error correcting for ancillary states with weight greater
or equal to 2. However, it is worth noting that as long as only one of the qubits has a
preparation error (therefore weight 1), the value of p does not matter. Thus, the channel
E is correctable for all σB and for all σA of weight 0 or 1; but, it is not correctable for any
arbitrary σA ∈ L(A) (that is any 4-qubit state in the ancillary space). Hence, if we consider
the full 4-qubit ancillary Hilbert space L(A), we will not have an operator quantum error
correcting code (OQECC) on such a space.

This example shows that a GenOQEC code may not be an OQEC code for a given
error map. Nevertheless, the following result shows that whenever a GenOQECC exists,
we can still find an OQECC for the map of the same dimension. To find such a code we
must consider the ancilla A more carefully.

Theorem 67. Given a decomposition S = (A ⊗ B) ⊕ (A ⊗ B)⊥ and channel E on L(S),
suppose there exists σA and channel R on L(S) such that for all σB,

R ◦ E(σA ⊗ σB) = σA ⊗ σB.
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Then there exists |α〉 ∈ A and channel Rα on L(S) such that for all σB,

Rα ◦ E(|α〉〈α| ⊗ σB) = |α〉〈α| ⊗ σB;

in other words, the subspace α⊗B is an error-correcting code for E.

Proof. First let |ψ〉 ∈ B and put P = |ψ〉〈ψ|. Let {|αk〉} be the normalized eigenvectors
of σA so that σA =

∑m
k=1 pk|αk〉〈αk| where 0 < pk ≤ 1. By assumption and using the

positivity of R ◦ E we have for all k,

0 ≤ R ◦ E(pk|αk〉〈αk| ⊗ P )

= pkR ◦ E(|αk〉〈αk| ⊗ P )

≤ R ◦ E(σA ⊗ P )

= σA ⊗ P
= (IA ⊗ P )(σA ⊗ P )(IA ⊗ P ).

It follows that there are positive operators σψ,k ∈ L(A) such that R◦ E(pk|αk〉〈αk| ⊗ P ) =
σψ,k ⊗ P for all k. We can trace-normalize to write R ◦ E(|αk〉〈αk| ⊗ P ) = σψ,k ⊗ P for all
k, where σψ,k are now density operators.

In fact, the operators σψ,k do not depend on |ψ〉. To verify this claim, for brevity
we shall assume dimB = 2. The case of general B easily follows. So let |ψi〉, i = 1, 2,
be an orthonormal basis for B. Let Pi = |ψi〉〈ψi|, i = 1, 2, and put P± = |±〉〈±| where
|±〉 = 1√

2
(|ψ1〉 ± |ψ2〉). Fix α = αk. By the above argument, there are operators σ±,α and

σi,α on A such that

R ◦ E(|α〉〈α| ⊗ P±) = σ±,α ⊗ P±
and R ◦ E(|α〉〈α| ⊗ Pi) = σi,α ⊗ Pi.

In particular, as IB = P+ + P− = P1 + P2, we have

E(|α〉〈α| ⊗ IB) = σ1,α ⊗ P1 + σ2,α ⊗ P2

= σ+,α ⊗ P+ + σ−,α ⊗ P−.

If we compress this equation by the projection IA ⊗ P1, we obtain

(IA ⊗ P1)E(|α〉〈α| ⊗ IB)(IA ⊗ P1) = σ1,α ⊗ P1

=
1

2
(σ+,α + σ−,α)⊗ P1.
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Thus, σ1,α = 1
2
(σ+,α + σ−,α) and since the same identity holds for σ2,α when we compress

by IA ⊗ P2, we obtain σ1,α = σ2,α. There is nothing particularly special about our use of
|±〉 here, and in fact this argument may be applied to show the same operator is obtained
for any pure state on A.

The proof is now completed by a simple linearity argument. Indeed, write σk := σψ,k,
so we have R ◦ E(|αk〉〈αk| ⊗ Pψ) = σk ⊗ Pψ, and by linearity Pψ can be replaced by an
arbitrary σB. We may then choose a channel Rk such that Rk(σk ⊗ σB) = |αk〉〈αk| ⊗ σB
for all σB. It follows that |αk〉 ⊗B is correctable for E , with a recovery operation given by
Rk ◦ R.

We note that the above argument can be adjusted to show that in fact any eigenspace
A′ for σA determines an OQEC code (which will be a subsystem when dimA′ > 1) for the
error map of the same size, via the pairing A′ and B.

4.2.5 Conclusion & outlook

Private quantum subsystems are subsystem encodings of quantum information that are
privatized under the action of a given channel. In this work, we analyzed the development
of private subsystems for the special case given by the composition of phase damping
channels on many qubit Hilbert spaces. While each individual channel of this form is not
private, the composition of such channels were shown to contain a private single qubit
subsystem. Yet, for such channels, and for a wide class of more general channels, no
private subspace or operator private subsystem exists. Moreover, we discussed how the
channel fails to have the corresponding complementary error-correctable pair as in the
case of operator subsystems. We have added to our analysis showing that the multi-qubit
dephasing channel has a private subsystem without exhibiting a private subspace. We
explicitly showed that this private subsystem is not operator private, which is the first
such example we are aware of. Additionally, we have provided a set of testable algebraic
conditions for private quantum subsystems, expanding the discussion of examples and
providing further results for particular forms of the channels and output states.

One of the surprising structural aspects of the most general private quantum subsystem
channels (in contrast to operator private subsystems) is that their complementary channel,
obtained through the Stinespring dilation, is no longer necessarily correctable on the sub-
system, and can in fact be private. In this work, we have given an analysis and discussion
of where the quantum information is leaking to in such a setting by dilating to an even
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higher dimensional Hilbert space than is required by the usual notion of complementary
channels.

Finally, the difference between general private subsystems and operator private sub-
systems presented suggests there could be an analogous notion of generalized operator
quantum error correction. In this work we provided an explicit definition for these codes
and showed that the existence of such a code implies the existence of a standard (subspace)
QEC code of the same size, determined by the fixed ancillary state used in the generalized
code. Thus, the generalized notion does not lead to larger codes than what can be found in
standard QEC. However, the same is true when one compares operator QEC to standard
QEC; indeed, this is even obvious from the definitions of the two code types in that case.
What generated significant interest in OQEC codes beyond the theoretical appeal of the
mathematical framework, was that it turned out such codes can have extra features that
make them quite valuable for fault tolerant quantum computing. It would be interesting to
know whether generalized QEC codes have similar advantages. A next step in the analysis
would be to broaden the set of generalized code examples which are neither subspaces nor
operator subsystems. We have further expanded upon the mathematical structure of the
codes by connecting the theory of private subsystems to quasiorthogonal algebras, this
work is presented in Appendix B.
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Chapter 5

Practical quantum architectures:
qRAM

The preceding chapters have focused mainly on the construction and structure of quantum
error correcting codes. Now we will focus on the architectural components of a quantum
computer as they span multiple avenues, not just quantum state manipulation and direct
computation. One of the primary elements of classical computers is a Random Access
Memory (RAM) which serves as a quick lookup table for live computations. The main
idea of the RAM is to convert information from a computation into path information to
point to particular storage locations, revealing or utilizing the information that is stored
therein. As will be covered throughout this chapter, the purpose of a quantum RAM (or
qRAM) is similar to that of its classical counterpart, that is to convert the information from
a quantum state and couple that information to the classical information that is stored in
some classical memory. This process is essential to the running many important quantum
algorithm primitives, such as Grover’s search, where the state of the computation (that
is in a superposition) is coupled to the classical memory by entangling the state of the
quantum information to that of the classical memory. Therefore, it is very important that
the quantum information is transferred into path information, possibly in superposition,
and that this path information is not known to the external observer, in order to avoid
decoherence.

The goal of the project presented in this chapter was to investigate the bucket brigade
qRAM model proposed in Refs. [57, 56]. In these works, the authors argued that since a
memory of size 2n can be accessed using a tree-like path structure with depth n, the total
number of operations that would be needed to access the memory would scale polynomially
with n. It was argued that due to this scaling, the error rate of the physical operators would
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only have to be inversely proportional to poly(n), therefore potentially negating the need
for quantum error correction. This chapter addresses this claim under simple, realistic
noise, and concludes that errors are more detrimental than initially expected and would
require exponentially low failure rate in order to guarantee success for the implementation
of the qRAM for Grover’s search.

5.1 qRAM: converting state to path information

This section covers research that was published in Ref. [9], copyrighted by IOP Publishing
Ltd and Deutsche Physikalische Gesellschaft. Michele Mosca provided the motivation for
this project, all authors contributed to the development of the ideas, analysis of the results,
and manuscript writing. Vlad Gheorghiu and myself did the majority of the editing for
publication.

5.1.1 Introduction

The typical physical implementation of the addressing mechanism uses the fanout archi-
tecture [74, 124], in which the routing scheme corresponds to a binary tree. Each node
consists of a pair of transistors which routes the electronic signal down one of the two paths
to the subsequent level. In the fanout architecture, a given level has all nodes sharing the
same routing direction (left or right), set by the corresponding address bit. An n bit query
string determines a unique path in the binary tree, corresponding to the desired memory
location. In the process, O(2n) transistors are activated.

Alternative routing schemes with O(poly(n)) activated transistors have been proposed,
corresponding to exponentially lower energy consumption. One such example is the “bucket
brigade” scheme [57, 56]. However, most of the classical implementations follow the simpler
fanout architecture, as the power consumption of RAM is negligible in comparison with
the power consumption of other components in the architecture.

The classical RAM addressing scheme can be generalized to a quantum RAM (which we
simply call qRAM from here on) scheme, where the input is a quantum state, the routing
components are inherently quantum, and the information stored can be either classical, i.e.
|0〉 or |1〉 but not a superposition of both, or quantum, i.e. any arbitrary superposition of
|0〉 and |1〉. In the present paper we consider qRAM that stores only classical information.
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Such memory allows querying superposition of addresses
∑

j

αj|j〉|0〉 qRAM−→
∑

j

αj|j〉|mj〉, (5.1)

where
∑

j αj|j〉 is a superposition of queried addresses and |mj〉 represents the content of
the j-th memory location. A memory that stores classical information but allows queries
in superposition is required for quantum algorithms such as Grover’s search on a classical
database [62], collision finding [29], element distinctness [4], dihedral hidden subgroup prob-
lem [94], quantum matrix inversion [68, 138], quantum machine learning [101, 121, 102, 100]
and various practical applications mentioned in [8]. In fact, such a quantum memory plays
the role of the oracle and is ideal in implementing any oracle-based quantum algorithm, in
which the oracle is used to query classical data in superposition. It is important to distin-
guish between algorithms such as quantum matrix inversion [68, 138] or quantum machine
learning [101, 121, 102, 100] that only require a number of queries polynomial in n, and
those such as quantum searching [62] that require a number of queries super-polynomial
in n. In the former case, as will be seen, the maximum qRAM gate error rate tolerated
by the algorithms scales polynomially in n, and qRAM quantum error correction may not
be required. In the latter case, which is the one that we concentrate on in this paper, the
maximum tolerable qRAM error rate scales super-polynomially in n and quantum error
correction is needed.

A conceptually simple physical implementation of a qRAM corresponds to a direct
generalization of the fanout architecture used in classical RAMs. However, the number of
faulty components that can be tolerated by the quantum architecture is of prime impor-
tance due to the difficulty in maintaining quantum coherence. This motivates searching
for schemes with fewer faulty components. A fundamental assumption of the qRAM ar-
chitecture is that “active” gates1 are the only ones with significant errors.

In this project we investigate the bucket brigade qRAM proposal introduced in [57, 56].
Assuming one requires a constant error probability for the oracle query, then with the

1The concept of “active” gates introduced in [57, 56] is somewhat unnatural when extended to quantum
gates. At the physical level, a gate is considered active if it physically acts on its input. Since the qRAM
may be in a superposition of querying many (or all) possible bit values in the memory, every gate may be in
a superposition of being active or not. Implicitly, there is a physical process that is checking whether each
gate is active, and then acting in that case, and such a process will not be perfect in practice. Translated
into the circuit model, such gates may be modelled as controlled-gates, i.e. gates that act on its input
provided that the control qubit is set to |1〉. Therefore, such a gate is considered “active” if its control
is set to |1〉 and “non-active” otherwise. In practice, even non-active gates will be prone to errors. The
implicit assumption is that these errors are much smaller than the errors in active gates, and the focus of
the bucket brigade models is to reduce the impact of the higher order errors found in the active part of a
gate.
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bucket brigade error model it suffices to have an error rate that is on the order of O(1/n2).
In the bucket brigade model, one assumes that each computational path only contains O(n)
components that are faulty, and that a total of O(n2) faulty operations are performed. One
can argue that it is optimistic to assume that the so-called “non-active” components will
be completely error-free. And, one could counter-argue that the error rates will be much
lower, and thus ignored for problem instances of appropriate size. For the purposes of this
article, we set aside these concerns and accept the premise of there only being O(n) faulty
components.

In contrast to such a qRAM, if one just used a regular fanout circuit for the lookup, with
no error correction, one would need to maintain quantum coherence over an exponential
number of components [56]. In order to achieve a constant error rate for the query in this
case, one would need to implement a fault-tolerant version of the look-up circuit, which
would normally incur an overhead that is polynomial in n. One advantage of bucket brigade
qRAM is thus to bypass the poly-log overhead of fault tolerant quantum error correction
needed to achieve a constant error rate for a look-up. Such an error rate would be sufficient
if the qRAM is used in an algorithm making a constant number of queries, for example,
for certain state generation algorithms [106, 63]. In general, for an algorithm with inverse
polynomially many queries, it would suffice to reduce the query error rate to be inverse
polynomial in n, e.g. [101, 39].

In this work, we firstly shed doubt on the usefulness of a qRAM that provides queries
with constant probability of error, when used with algorithms such as quantum searching
that make super-polynomially many oracle queries. As an aside, we note that if the im-
perfect query operation is assumed to be unitary, and if one can apply the inverse of this
imperfect query, then one can apply simple amplification methods to achieve queries with
arbitrarily small error δ using a number of repetitions that is proportional to log(1/δ). It
was shown that this logarithmic overhead is not necessary for quantum searching [73] and
other problems [35]. However, there is no reason to expect the errors in a realistic qRAM
to behave this way, and in this article we consider incoherent errors.

We first show that a very simple model of incoherent physical errors induces an over-
all query error similar to the one described by Regev and Schiff [122]. Consequently, a
qRAM that produces queries with constant error will not permit the quadratic speed-up
in Grover’s search algorithm [62] or any other quantum search algorithm one might design.
We show that one cannot escape achieving an error rate that is super-polynomially small.
We conjecture that this error model nullifies the asymptotic speed-ups of other quantum
query algorithms as well, and leave as open questions the extension of this result to other
important query problems.
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This negative result implies the need for some means of error reduction for the qRAM,
with a look-up error rate exponential in n. For consistency we assume a physical error rate
that is inverse polynomial in n, the logarithm of the size of the database. We thus explore
a natural approach, using quantum error correcting codes, to provide this error reduction,
and argue that the apparent advantage of qRAM disappears in this case; in principle, one
can make the error rate arbitrarily small, however the advantage of a small number of
activated gates in the bucket brigade architecture appears to be lost when active error
correction has to be performed on each gate. The main motivation for the quantum bucket
brigade approach over a straightforward binary-tree approach is that the equivalent of the
active gates are the only gates prone to error, and thus an inverse polynomial in n error
rate suffices in order to achieve an overall constant error per qRAM look-up.

The remainder of this chapter is organized as follows. In Sec. 5.1.2 we describe the
bucket brigade qRAM architecture and prove that for the Regev and Schiff model [122]
the error rate per gate must scale as inverse polynomial in the size of the database. In
Sec. 5.1.3 we develop and analyze a simple error model that provides intuition for the overall
behaviour of the memory with realistic noisy environments. In Sec. 5.1.4, in order to discuss
approaches for introducing quantum error correction inside the qRAM architecture, we
introduce a circuit model for the bucket brigade architecture. We then argue in Sec. 5.1.5
that a fault-tolerant bucket brigade qRAM loses the advantage of small number of active
components. Finally, in Sec. 5.1.6 we conclude and present some open problems and
directions for future research.

5.1.2 Quantum RAM architectures

In [57, 56], Giovanetti et al. proposed a quantum bucket brigade addressing scheme re-
quiring only O(n) activations per memory call. The nodes of the routing binary tree are
three level quantum systems (qutrits), with an energy spectrum schematically depicted in
Fig. 5.1.

The 2n qutrits at the nodes of the binary tree are initially prepared in the ground state
|•〉, named the “wait” state, and the memory address is specified by the n-qubit state
|a0a1 . . . an−1〉. At time t0, the address qubit |a0〉 is input at the root of the tree and it
interacts with the qutrit at node 0 changing its state from |•〉 to |a0〉. The states {|0〉, |1〉}
of the node qutrit are coupled to two spatial directions (paths), right and left respectively.
The role of the coupling is to route the following incoming address photon along the correct
path of the binary routing tree. At time t1, the subsequent address qubit |a1〉 is input at the
root of the tree. The address qubit |a1〉 interacts with the qutrit at node 0 and is physically
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|•⟩

|0⟩
|1⟩

Ground state

Figure 5.1: Representation of the energy levels of a qutrit used at the nodes of the routing
binary tree. The states |0〉 and |1〉 form a metastable subspace since the energy difference
between the states is required to be much smaller than the difference between the ground
state |•〉 and |0〉.

routed down the left or right path of the tree depending upon the state |a0〉 of node 0.
Consequently it changes the state of the corresponding node at level 1 to |a1〉. The process
continues until all the remaining address qubits are sent through the tree, with the k-th
address qubit changing the state of the node at the k-th level from |•〉 to |ak〉. After O(n2)
time steps2, a routing path is assigned from the root of the tree to the desired memory
location, with only n nodes in the path (one node per level) having a state different from
|•〉. A bucket brigade routing scheme for an 23-address qRAM is schematically depicted
in Fig. 5.2. The proposed physical implementation of bucket brigade in [56] uses atoms in
a cavity as routing nodes and polarization photon states as addressing qubits.

In [56], the authors claim that the bucket brigade scheme is coherent as long as the
error per gate, ε scales as O(1/n2). For this error scaling, as n increases, the overall error
rate of the qRAM oracle asymptotically approaches a constant. Although constant or
polynomial error rates suffice for some quantum algorithms [101, 39], such error rates are
not favourable for some other important quantum algorithms. For example, Regev and
Schiff [122] showed that the quadratic speed-up in Grover’s searching algorithm vanishes
when using oracles with a constant error rate. Namely, in order to regain the quadratic
speed-up, the error rate per oracle call should scale no worse than O(2−n/2) (therefore the
error rate not only needs to be non-constant but it must vanish at a fast enough rate with
increasing n).

In the next few subsections, we construct a simple model of bucket brigade qRAM
with errors and show in Appendix C that Regev and Schiff error model [122] resembles the

2The k-th address qubit interacts with the first k−1 routing nodes, followed by a single interaction with
the corresponding node at the k-th level. Considering each interaction takes a single time step, the k-th
address qubit changes the state of the corresponding node at the k-th level after k time steps. Considering
there are a total of n address qubits, the overall time required is O(n2).
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|•⟩ Qutrit in wait state

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|0⟩

Figure 5.2: Bucket brigade scheme for a qRAM with 8 memory locations. The address
register is |010〉, corresponding to the memory location m010. The path 0 → 1 → 0 is
established by sequentially introducing the address qubits |010〉 into the root of the binary
tree.

model we construct. Based on this resemblance and assuming O(n2) faulty operations per
memory call, we conjecture that in order to implement the qRAM for quantum searching,
the overall error rate per memory call has to be in O(2−n/2). In fact, for this to hold, the
error rate per gate ε should decrease faster than 1/f(n), where f(n) ∈ ω(2n/2). Thus ε
has to be in o(2−n/2) and hence much smaller than O(1/n2), since the overall error rate
per memory call must scale as

1−
(

1− 1

f(n)

)O(n2)

∈ Ω

(
n2

f(n)

)
, (5.2)

and in order to satisfy

1−
(

1− 1

f(n)

)O(n2)

∈ O(2−n/2), (5.3)

it is required that

f(n) ∈ Ω
(
n22n/2

)
=⇒ 1

f(n)
∈ O

(
1

n22n/2

)

=⇒ ε ∈ o(2−n/2). (5.4)

Recently Hong et al. [71] proposed a bucket brigade qRAM scheme in which the number
of time steps required per memory call is reduced from O(n2) to O(n). While this reduction
decreases the overall error rate, the error rate per gate ε must still be in o(2−n/2).
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The need for super-polynomially small (in n) error rate per gate for real world applica-
tions motivates a more thorough analysis of the bucket brigade qRAM scheme and the need
for quantum error correction, these topics being the subject of the following subsections.

5.1.3 Error analysis

In this subsection we introduce a simple toy error model for the physical implementation
proposed in [56], in which the qutrits are implemented by trapped atoms in cavities. The
address qubits are implemented by photons that propagate along the network of cavities,
and excite the corresponding qutrit to either of the states |0〉 or |1〉, depending on their
polarization. In this way, the incoming address photons create a “path” through the
binary tree of cavities, leading to the desired memory location. The readout is performed
by injecting a “bus” qubit (photon) at the root of the tree that interacts with the desired
memory location, copies its value (the states stored by the memory are |0〉 or |1〉, and
not any superposition), and finally is sent back along the routing tree exiting through the
root with the corresponding memory location content. For more details about the physical
model an interested reader is referred to [56].

5.1.3.1 Toy error model

In the following we assume that the only source of errors in the above model is due to
random flips between the states |0〉 and |1〉 of the qutrit. We assume a typical symmetric
bit-flip error, in which at each time step the state |j〉 can either flip to |j ⊕ 1〉 with prob-
ability ε or remain unchanged with probability 1− ε. The motivation for considering this
error model is that, since the states {|0〉, |1〉} are close together in the energy spectrum,
significantly less energy is required to cause a flip between them, hence such flips are more
likely to occur. In reality, there may be other sources of errors such as coupling errors,
decaying of excited qutrit states to the ground state, loss of photons during the routing
process and so on. However, our toy model illustrates the effects of an error that would
naturally occur in a realistic physical realization of a qRAM. There is no reason to expect
these other sources of errors would help matters (otherwise, one could seek to deliberately
introduce or simulate such errors).

It is not hard to observe that any error in the routing process can propagate through
the tree resulting in various possibilities. Considering all possible errors in such a model,
the possible paths that the bus photon could take in the final step termed as right path,
wrong path and no-path, respectively. For convenience, we further assume the operations
used to un-compute the path information encoded in the qRAM are error-free.
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1) Right path – This scenario occurs when no flips (errors) arise during the routing
process. In this ideal scenario, the bus reaches the correct location in the qRAM as
specified by the input address. Fig. 5.2 depicts an example of a right path given an input
address |010〉.

To compute the probability prp of such an event, we require that no bit flip occurs at
each of the j levels. Taking the intersection of such events for all n− 1 levels of the binary
tree gives the probability of the right path

prp =
n−1∏

j=0

(1− ε)n−j = (1− ε)
n−1∑
j=0

(n−j)

= (1− ε)n(n+1)/2. (5.5)

2) Wrong path – This error refers to the cases wherein the the bus reaches any other
location in the qRAM other than the location corresponding to the input address. A wrong
path error occurs at level i if the state |j〉 of the active routing qutrit at level i flips to
|j ⊕ 1〉 and no other errors occur subsequently (at later time steps). The scenario where
another error occurs at a later time step in the levels preceding to the j-th level leads to
a no-path error which we discuss later. The following two figures illustrate two possible
wrong paths for the input address |010〉. In Fig. 5.3, the error is assumed to occur in the
third time step, due to which the bus accesses the wrong location corresponding to |011〉.
In Fig. 5.4, the error is assumed to occur in the second time step, with the bus wrongly
accessing the location corresponding to |000〉.

In order to calculate the probability of a wrong path occurring, we consider the proba-
bility of any path occurring, regardless of whether it is the right or wrong path, we denote
this probability by ppath. Suppose the state |ψj〉 is being routed down the qRAM circuit to
the j-th level. If any of the (j − 2) first routing nodes have flipped then the state will be
routed down an unexpected branch and will not excite the j-th level of the tree, resulting
in a no-path. The probability of success at this given time step is therefore (1 − ε)j−1,
where ε is the probability of a node flipping, recall we must include the level-0 root node
here. This can only for levels 2 and above. The overall probability of success is therefore
the product of each of the individual probabilities of success at each time step (including
the time step to send the bus qubit down the tree to recover the information stored in the
RAM). This probability is given by:

169



|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|1⟩

Figure 5.3: Example of a wrong path produced by an error at the third time step, given
the address |010〉.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|0⟩

|0⟩

Figure 5.4: Example of a wrong path produced by an error at the second time step, given
the address |010〉.

ppath = pwp + prp =
n∏

j=2

(1− ε)j−1

= (1− ε)
n∑
j=2

(j−1)

= (1− ε)n(n−1)/2. (5.6)

As we computed before the probability of a right path prp in Eq. (5.5), the probability
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of a wrong path is then

pwp = ppath − prp
= (1− ε)n(n−1)/2 − (1− ε)n(n+1)/2. (5.7)

3) No-path – This error refers to the scenario where the bus never reaches any location
of the qRAM. Such an error arises when a bit flip error occurs in levels 0 to n − 3. The
smallest such tree where this error can occur is therefore a three-level tree (corresponding to
a qRAM with 23 memory cells), as shown in Fig. 5.5. The difference between a wrong path
and a no-path is that, in the latter, the bus photon does not reach the memory address,
hence does not read any information, whereas in the former scenario the bus reaches
the wrong address in the qRAM and after the un-computing stage, the bus contains the
information of some particular address in the qRAM.

We present an example of a no-path error in Fig. 5.5, for an input address 010. At the
first time instant, the first address photon (i.e. |0〉) activates the switch (qutrit) in the
first layer of the tree. At the second time instant, the address photon |1〉 interacts with
the switch in the first layer, now in state |0〉, to decide the direction in which it has to
be routed. Assuming no error during the second time step, the second address photon is
correctly routed to the left path. Assume now that at the third time instant, a flip error
occurs on the root qutrit, which flips its state from |0〉 to |1〉. The third address photon
would then be incorrectly routed to the path on the right. As it can be seen from Fig. 5.5,
at the third time instant there are two activated switches in the second level. The readout
bus photon can no longer reach any of the memory locations, and will be lost in the second
level of routing tree.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩ |•⟩

Input: |010⟩

|1⟩

|1⟩

|•⟩

Figure 5.5: Example of a no-path given the address |010〉
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The probability of a no-path event is simply

pnp = 1− pwp − prp = 1− (1− ε)n(n−1)/2. (5.8)

If the qRAM is used to implement a quantum oracle O, then O will be faulty, with an
error model described by

ρ
O→ prpÔρÔ

† + pwpEwp(ρ) + pnpEnp(ρ), (5.9)

with Ô denoting a perfect oracle. Here Ewp(·) and Enp(·) are error channels that corresponds
to the wrong path and no-path errors, respectively.

Our error model Eq. (5.9) is less optimistic than the one of Regev and Schiff [122] of

the form ρ
O→ (1 − p)ÔρÔ† + pρ. The main difference is that the latter does not mix the

amplitudes of the initial starting superposition state in Grover’s search algorithm, whereas
our model decoheres the system much faster due to the non-trivial errors Ewp and Enp.
Although we do not have a proof that the quantum query complexity of our model cannot
be less than the one considered in [122] (i.e. linear in N), we conjecture (based on a formal
proof for a similar decoherence model, see Appendix C) that this is indeed the case.

5.1.3.2 Asymptotic behaviour

In Figs. 5.6, 5.7 and 5.8 we analyze the probabilities of the three types of errors discussed
in the previous subsection. The parameters of interest are the error probability per gate,
denoted by ε, the overall fidelity of the addressing circuit (i.e. the probability of a right-
path), denoted by prp, and the number of levels in the qRAM addressing binary tree denoted
by n (corresponding to 2n memory locations).

For a fixed ε, we see that the no-path factor dominates in the error model, asymptoti-
cally with n, as depicted in Fig. 5.6.

For a fixed n, again the no-path error dominates when the error per gate ε becomes
large, see Fig. 5.7.

Finally, for a fixed desired overall fidelity prp, the maximum allowed error probability
per gate ε to achieve the overall fidelity prp decays exponentially as a function of n, as
plotted in Fig. 5.8. From Fig. 5.8 it can be seen that, the error rate per gate of O(1/n2)
(blue line in Fig. 5.8) as considered in Giovannetti et al. [56] is more optimistic than our
error rate ε(n) (red line in Fig. 5.8)
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Figure 5.6: Comparison of errors for fixed ε as a function of n.
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Figure 5.7: Comparison of errors for fixed n as a function of ε.
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Figure 5.8: Required ε (in dimensionless units of 10−2) as a function of n, for a fixed circuit
fidelity. GLM denotes the model proposed in [56].

For larger output fidelity prp, ε(n) will always be bounded above by 1/n2, with the
gap between the two increasing as prp approaches towards 1. Asymptotically in n, the two
graphs converge towards zero.

Simply, the difference between our error ε(n) and the one in [56] can best be understood
by investigating the series expansion

prp = (1− ε)n2

= 1 + 2 log(1− ε) 1

n(n+ 1)
+O(

1

n4
). (5.10)

In [56] the authors considered only the first order 1/n2 as a desirable error rate per gate.
However, when the output fidelity prp approaches 1, this approximation is no longer ac-
curate, and higher order terms are important. As mentioned at the end of Sec. 5.1.2,
inverse polynomial error rates are not good enough in implementing Grover’s search with
a qRAM-based oracle. In fact, overall error rates of at most O(2−n/2) are essential.

The dominant no-path error term poses a fundamental implementation problem, due
to lack of oracle information, similar (see Appendix C) to the noise model investigated by
Regev and Schiff [122]. If in the future, qRAM designs could be constructed without the
presence of such a no-path term (i.e. with only wrong-path noise), one can attempt error
correction to efficiently reduce the error rate. We demonstrate in Appendix D a possible
error correction scheme for a simplified wrong-path term governed by bit-flip channels, then
show however that the scheme is neither applicable to our error model nor to the Regev
and Schiff error model [122].
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5.1.4 Circuit model

To facilitate the discussion of error correction, in this section we reformulate the physical
model of bucket brigade qRAM in [56] as a quantum circuit. In Fig. 5.9 we present a
possible circuit description for an N = 23 qubit bucket brigade qRAM, in which the mem-
ory contains only states in the computational basis {|0〉, |1〉}. Our circuit is immediately
extendable to N = 2n and closely simulates the physical model3 proposed in [56].

The circuit description of the bucket brigade addressing scheme accounts for the tempo-
ral aspects of the bucket brigade scheme. Namely, since the address qubits are introduced
into the binary tree architecture sequentially, the circuit description should respect this or-
dering. The input to the circuit are the address qubits |a0a1 . . . an〉. The circuit resembles
a binary tree composed of 2n−1 routing nodes, 2n memory cells and 2n readout nodes that
perform the inverse operations of the routing circuit, used to decouple the qRAM from the
address qubits. Additionally, a bus qubit is introduced that interacts with the memory
nodes to extract the information stored in the appropriate memory location. It is worth
noting that this bus qubit as described may not be physically realistic since it may interact
with all the bits in the qRAM. We leave it as such, for simplicity. In practice, if such
a non-local qubit is not feasible, one may either work with a phase oracle (as described
in Ch. 8 of [82]), or one may use a binary-tree circuit to bring the result of the qRAM
look-up to a specific qubit that will be accessed by the quantum algorithm that performs
the look-up.

The address qubit |a0〉 is used to activate the appropriate branch at the first level of
the routing. The address qubit is coupled via a CNOT to an ancillary state prepared in
the state |0〉. This qubit then serves as one of the input qubits along with an additional
qubit prepared in the |1〉 state for the routing node (a CNOT gate with the first qubit as
control). Depending on the state of the address qubit, the resulting two-qubit output of
the routing node will have a single excited qubit in the |1〉 state, which we shall call the
activated qubit. The activated branch of the tree governs the routing of the subsequent
interactions with the address qubits, playing the role of the routing atom in the case of the
bucket brigade outlined in [56].

The two qubits at the exit of the level-0 routing node serve as inputs to the second
register of the two level-1 routing nodes. These qubits control which of the routing nodes
are activated at the next level of the qRAM binary tree architecture. Namely, the qubit
that is excited in the |1〉 state allows for the coupling between the address qubit and an

3Further modifications could be made to more closely mimic this model, and are discussed in the caption
of Figure 5.9.
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introduced |0〉 state ancilla via a Toffoli gate. Therefore the input to the active routing
node is either |01〉 or |11〉 depending on the state of the address qubit |a1〉. Effectively,
the routing operation given by a CNOT gate activates a branch of the tree. For the node
that is non-active, the state at the output of the previous level is |0〉, meaning the Toffoli
is not activated and the resulting input and output state to the routing node remains |00〉.
Therefore, after two routing node levels, the output of the routing qubits is composed of
22 qubits, with only a single branch being excited depending on the state of the first two
address qubits |a0a1〉. Therefore, this corresponds to an isometry:

|00〉a0a1 → |0001〉
|01〉a0a1 → |0010〉
|10〉a0a1 → |0100〉
|11〉a0a1 → |1000〉, (5.11)

where the excited output qubits in the |1〉 state represent an active physical path for the
subsequent qRAM operations. This procedure is repeated for n levels, where at the k-th
level there are 2k Toffoli gates and routing nodes. The 2k Toffoli gates are required to route
of the address qubit |ak〉 through the previous k levels and the routing node establish the
output states in order to route the subsequent address qubits. Since such a circuit performs
the appropriate unitary mapping of the address qubits for all computational basis state
inputs, by linearity it will extend to all superpositions of input address qubits. An example
of the routing procedure for a three-qubit input address state |010〉 is presented in Fig. 5.9,
where the blue highlighted nodes correspond to the activated nodes.

After the completion of the n routing node levels, memory readout is performed. The
reading is performed by introducing a bus qubit prepared in the |0〉 state which is the
target of 2n Toffoli gates. Each of the 2n qubits at the output of the qRAM routing nodes
pair with one of the memory cells to serve as control qubits for the Toffoli gates. Since
only a single output qubit from the routing scheme is activated, only a single Toffoli gate
couples with a memory location to the bus qubit. The bus qubit is represented by the
bottom qubit in Fig. 5.9 while the 23 memory qubits are represented between the qRAM
routing architecture and the bus qubit.

Having completed the coupling of the address qubit, the state of the qRAM routing
qubits must be decoupled from the address and bus qubits. Each of the gates from the
routing circuit are performed in reverse order, which corresponds to performing the inverse
unitary coupling transformation between the address qubits and the routing qubits. The
resulting state couples the address qubits with the corresponding memory qubit and has
decouples the routing qubits to their input ancillary states.
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5.1.5 Error correction

The results from Sec. 5.1.3 motivate the need for quantum error correction to be imple-
mented at each node in order to protect against errors that may cause detrimental faults
in path information.

5.1.5.1 Imposing a quantum error correcting code

In choosing a quantum error correcting code (QECC) to protect the path information
that is stored in each node, it is essential to choose an encoding that can be implemented
fault-tolerantly, to allow for the generalization to large computational systems. Moreover,
the QECC should be chosen such that it can naturally be incorporated from the quantum
computer that is accessing the qRAM. In order to analyze the desired error correction
properties of a bucket brigade qRAM architecture we consider the circuit presented in
Fig. 5.9. The key gate components at each site are the CNOT and Toffoli gates.

The most natural construction of a QECC that can implement such operations with
minimal overhead would be the 15-qubit Reed-Muller code. The reason for choosing such
a code would be that decomposing the gate operations in the routing circuit as a sequence
of CNOT and Toffoli gates has the advantage that each of these gates can be implemented
in a transversal manner. Transversality is defined as the ability to implement a logical
gate by applying physical gates that have support at at most a single location per encoded
codeblock: it is the most natural way to guarantee fault-tolerance. However, if the quan-
tum computing device leads more naturally to another form of quantum error correction
encoding, methods such as state distillation or other schemes for universal fault-tolerance
can be used [32, 114, 23, 78, 6].

The focus of many fault-tolerant implementations are through the CSS code construc-
tion [127, 36, 128]. A CSS quantum code is constructed using two classical error correcting
codes, each individually used to address X and Z type errors. Given that any quantum
error can be decomposed in terms of a linear combination of Pauli operators, developing
an error correcting code that can address both types of errors will be sufficient for the
construction of a QECC.

Let CX be a classical error correcting code of length n that has the associated parity
check matrix HX , where each 0 in the parity check matrix of the classical code is replaced
by the two-dimensional identity matrix I and each 1 in the classical parity check matrix is
replaced by the Pauli X operator. Similarly, let CZ be a second classical error correcting
code of length n with an associated parity check matrix HZ , where each 1 in the classical
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parity check matrix has been now replaced by the Pauli Z operator. If C⊥X ⊆ CZ then by
combining the stabilizers generated from the parity check matrices of both codes, HX and
HZ , the resulting stabilizer code forms a QECC. The number of physical qubits in the code
is n, the number of logical qubits is given by kX +kZ−n, where ki is the number of logical
states in the given classical code i and the distance of the code is at least the minimum of
the distance of the two classical codes. One of the many appealing features of the CSS code
construction is the transversality of the CNOT gate, a feature of the X and Z stabilizers
being independent. A particular example of a CSS code is the 15-qubit Reed-Muller code
mentioned above.

5.1.5.2 Number of activations in a CSS code

In the implementation of Giovanetti et al. [56], one of the primary advantages is the number
of gate activations that are needed per level of the bucket brigade scheme. More simply, a
CNOT (Toffoli) gate in their scheme is “activated” only when the control qubit(s) is (are)
in the state |1〉. Since only one register is in such a state at a given level, the total number
of activations can thus be kept low. In a physical implementation, this is relevant as
an activated path may represent the presence of a physical excitation without which no
physical process occurs, therefore one can think of these non-activated gates as in fact
being the identity operation. However, such an advantage vanishes when imposing a CSS
code in order to protect from errors due to the symmetry in the number of |0〉 and |1〉
states the logical states encoding the path information.

In the CSS code construction, two classical codes were taken to form a QECC. There-
fore, given some codeword of the classical code c ∈ CZ , the equivalent quantum state
written out in computation basis |c〉 must be stabilized by the Z generators of the code, by
definition of being a codeword of the classical code CZ . However, in order to be a logical
state of the CSS code, it must also be stabilized by the elements of the group generated
by the X stabilizers. Therefore, the codestate will be the superposition of the application
of all X stabilizers upon |c〉,

∣∣c+ C⊥Z
〉

=
∑

x∈C⊥Z

|c+ x〉 =
1

2n−kX

∏

i

(I⊗n + SX,i)|c〉, (5.12)

where {SX,i} are the generators of the X stabilizer group, equivalently given by the rows
of the parity check matrix HX .

Consider the form of Eq. (5.12), given the state |c〉 written in the computational basis,
the action of the operator (I⊗n + SX,1) will be the equally weighted superposition of the
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state |c〉 and SX,1|c〉, which will differ at the location where SX,1 has a Pauli X in its
description. Therefore, at these locations half of the states in the superposition will have a
physical |0〉 state and half will have a physical |1〉 state. Then acting upon the state with
the operator (I⊗n + SX,2) will have the same effect on all the states in the superposition,
with now an even number of physical |0〉 and |1〉 states occurring at location with Pauli X
in SX,2. Repeating this for all X generators, any location with a X operator in one of the
stabilizers will necessarily have half of the states in the superposition in each of the physical
basis states. In order for the code to protect against any arbitrary single qubit error, each
physical qubit must be protected by at least one X stabilizer operator with support the
given location, otherwise it would be vulnerable to a single Z error at this location. As
such, all relevant CSS codestates will have an equal number of each of the physical basis
states when writing out the expansion of the state in the computational basis.

In a physical implementation, such as that of Giovanetti et al. [56], a qubit in the
state |1〉 represents an activated physical process, and as such the advantage of the bucket
brigade scheme is that the number of such processes are kept low. However, due to the
symmetry in the number of activations that must exist in both the logical ground and
excited states, this advantage no longer exists when considering CSS codes. More generally,
non-symmetric codes, that is codes where the logical |0〉 state and logical |1〉 have a differing
number of physical states in the excited state |1〉, are not desirable for the purposes of error
correction as they will be more susceptible to Z errors. The three-qubit repetition code is
an extreme example of such a property.

In principle, for the physical error model discussed in Subsection 5.1.3, one can envision
using the detection of a photon lost in the routing structure as a means to correct for no-
path errors (see Figure 5.5). However, detecting the exact node at which a photon was
lost reveals path information about the state being read by the qRAM (since the previous
node in the routing structure would have necessarily been activated by the address qubits)
which leads to a loss of coherence in the system. Therefore, any photon detection has to
identify the level at which the photon was lost, while not revealing exactly where. It is
hard to envisage a practical means for experimentally realizing a photon detection with
this property (for example, by somehow symmetrizing the loss of the photon across the
exponentially many nodes at a given level). Furthermore, even if this is achieved, one still
faces the problem that the lost photon contained path information. Thus, destroying the
photon with this path information is equivalent to a dephasing error leading to a further
loss of coherence.

In conclusion, if one encodes each node of the bucket brigade qRAM in an error correct-
ing code, then all nodes of the circuit are activated at a physical level, and essentially the
qRAM architecture becomes equivalent to a fanout architecture. Even it the latter case,
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designing a good quantum error correcting code is highly non-trivial. An important issue
is that the syndrome measurement should not reveal any information whatsoever about
the physical location of the nodes affected by errors. Otherwise, path information is being
revealed, which decoheres the system.

5.1.6 Summary & outlook

We analyzed the robustness of the bucket brigade qRAM scheme introduced in [57, 56]
under an optimistic error model.

The primary advantage of the bucket brigade scheme is the need for a polynomial in n
(rather than exponential) number of gate activations per memory reading. When used for
quantum algorithms [68, 138, 101, 121, 102, 100] that require only a polynomial number of
queries, the error rate of the qRAM can scale polynomially in n, and error correction may
not be required. By contrast, we give evidence that under realistic error models, whenever
the qRAM is used as an oracle for quantum searching, its per gate error rate has to scale
as o(2−n/2) [56], motivating the need for quantum error correction.

We argued that using traditional error correcting techniques offsets the main advantage
of the bucket brigade scheme when used with algorithms that make super-polynomially
many oracle queries. Since each component of the routing architecture has to be actively
error corrected in order to protect against detrimental faults, the overall scheme requires
an exponential number of physical gate activations, even if the number of logical gate
activations remains polynomial.

An interesting question that remains unanswered is whether there exists a realistic
architecture-specific error correction technique that could recover the polynomial number
of physical gate activations of the routing scheme while still guaranteeing fault-tolerance.
For example, if one tries to use an error correction mechanism whereby one only uses multi-
qubit code states along the active path, then one has the problem of extracting syndromes
and applying corrections in a way that does not identify which path has the non-trivial
syndromes (since such information would lead to decoherence). If in this case one attempts
to extract the syndrome without leaving a trace of which node in a given level it came from,
then the problem seems at least as challenging as implementing a reliable qRAM.

Moreover, it would be interesting to investigate whether the requirement for super-
polynomial suppression of the error rate is a characteristic of quantum searching algorithms
or a more general feature of query complexity with faulty oracles.
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Figure 5.9: Circuit for bucket brigade qRAM. Nodes to the left of the memory cell are
routing nodes. The dashed squares represents the memory locations. The first layer of
nodes immediately to the right of the memory are the coupling nodes. Finally, the nodes
on the right are the read out nodes. A possible input is e.g. |a0a1a2〉 = |010〉, for which
the circuit reads the memory location m010. The path leading to the location m010 is
represented in blue colour, and the active routing and readout nodes are highlighted. One
could more closely mimic the physical flow of information in the bucket brigade qRAM by
adding an additional qubit at each node in the binary tree we see in the diagram. Then,
for k ∈ {0, . . . , n− 1}, we add an initial controlled-NOT gate to copy ak to the root node,
followed by a series of O(2k) controlled-SWAPs that will bring the value of ak to the unique
node in level k defined by the bits a0, a1, . . . , ak−1. While this adds exponentially many
gates, it does not change the overall gate complexity, and these additional gates only add
O(k) to the depth of the circuit. This also illustrates that the exponential depth implicit
in the circuit we describe in the diagram can easily be reduced to polynomial depth by
further mimicking the ideas presented in the qRAM proposal. We leave the circuit diagram
in this simpler form, since it does not affect our arguments in Subsections 5.1.3 and 5.1.5.
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Chapter 6

Conclusion

Over the past decades, quantum computing and quantum information have seen rapid
growth in both experimental and theoretical domains. Having demonstrated levels of
control to implement small information theoretic tasks, the presence of entanglement and
superposition, and even small instances of error correcting codes in a variety of different
physical architectures, experiments have began to push to levels of precision that would be
required for fault-tolerant computation. As these experimental efforts continue to improve
in accuracy and increase the number of qubits which can be coherently controlled, the
questions that are asked in this thesis will start to come to the forefront of implementation
design.

Chapter 2 provided a solution to the overhead problem that is presented by magic state
distillation. Distillation is a beautiful idea in which logical computational requirements are
reduced at the expense of more complicated state preparation, and while improvements
have been made in its theoretical performance, it will likely dominate the resource over-
head of leading architectural proposals [55]. The universal concatenation scheme provides
a potential alternative, where distance and protection of the code are traded for the ability
to perform universal fault-tolerant gates. Moreover, the theoretical threshold of the code
against circuit level depolarizing noise is quite promising being similar to other concate-
nated proposals. However, the threshold is still roughly an order of magnitude lower than
the leading architectural proposal, the surface code, under similar noise models. There-
fore, the need to concatenate to further levels will likely outweigh the resource advantage
of not requiring magic state distillation. That being said, it would still be an interesting
theoretical challenge to implement the presented scheme using other error correcting codes,
and perhaps with such an implementation the threshold could be improved. However, it is
difficult to imagine a lower threshold without reducing the weight of stabilizer generators of
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the concatenated scheme. Moreover, the result of Section 2.4 points to a rather restricted
class of transversal operators, many of which already have existing codes. Alternatively,
the option of hybrid approaches could be explored where only a subset of the qubits are
re-encoded, as was eluded to with the 49-qubit proposal. Such an idea could be generalized
to the full class of 2D and 3D color codes and this could potentially provide an avenue to
reduce overhead.

Chapter 3 addressed the compatibility of 2D topological error correcting codes with
universal fault-tolerant computation. Planar topological architectures are very interest-
ing experimentally as their requirements are much less strict than other error correction
schemes. However, the implementation of a universal fault-tolerant gate set had also been
limited to state distillation. The idea behind the stacked code design is to provide certain
non-local long range interactions between qubits in order to simulate the code as if it was
in a 3D architecture. Moreover, Bravyi and Cross showed that one could forgo the need
for arbitrary long range operations and could cut such operations into local terms. How-
ever, the main drawback of the proposed scheme is that no fault-tolerant threshold exists.
This poses an interesting set of open questions: Given the restriction of 2D architectures
to gates outside the Clifford hierarchy, what non-local operations are required in order to
implement a gate other than a Clifford gate? How can one measure the degree of non-
locality that a set of non-local operations are introducing? What is the connection between
the dimension in which a local circuit can be embedded and fault-tolerance and can these
connections be generalized to topological memories? The upshot is that the structure of
quantum information can be quite complex, its manipulation can take many forms, and
the theoretical ideas of such operations seem plentiful.

Operationally, quantum error correctable channels admit an interesting duality with
private quantum channels. Chapter 4 uncovers the structure of private quantum channels,
provides a new form of privacy, and expands the set of private quantum channels. Namely,
just as the theory of quantum error correctable subsystems changed which encodings and
operations can be realized in an error correction setting, the realm of private channels
is enhanced by the structure of private quantum channels. Due to the aforementioned
duality between error correction and privacy, we explored whether this expanded notion of
privacy would expand the set of error correctable systems. While the answer is negative, it
does emphasize an important principle for quantum information: quantum operators may
be very well understood in a given setting, however it is always important to clarify the
underlying assumptions, and asses whether these assumptions could be challenged. If so,
how does the structure of quantum operations change? What is the underlying operational
significance and does it affect other fields?

Chapter 5 assessed the viability of a proposed scheme for quantum RAM. It was shown
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that mapping computational information to path information, while keeping error rates
low, is a complicated task and would likely require a full fault-tolerant architecture. As
fault-tolerant architectures improve and increasingly complex algorithms are implemented,
it will be imperative that all forms of errors can be addressed within information access-
ing designs. Developing essential primitives for computing devices will continue to gain
importance as the experimental research community scales up fault-tolerant computing
architectures.

We are at a very interesting crossroad in quantum information and computation, as
technology advances from prototypes to full computational machines. This thesis explores
theoretical questions that are fundamental to the development of successful quantum com-
putational machines by correcting for the unavoidable errors that will plague such devices.
Quantum information is imperative to the future of science and computing and also pro-
vides insight into the structure of quantum mechanics in nature.

184



References

[1] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with
constant error. In Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, pages 176–188. ACM, 1997.

[2] Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold
for concatenated distance–3 codes. Quant. Inf. Comput., 6:97–165, 2006.

[3] Panos Aliferis, Daniel Gottesman, and John Preskill. Accuracy threshold for posts-
elected quantum computation. Quant. Inf. Comput., 8:181–244, 2008.

[4] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal
on Computing, 37(1):210–239, 2007.

[5] Andris Ambainis, Michele Mosca, Alain Tapp, and Ronald de Wolf. Private quantum
channels. IEEE Symposium on Foundations of Computer Science (FOCS), pages
547–553, 2000.

[6] Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-tolerant
conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett.,
113:080501, 2014.

[7] Jonas T. Anderson and Tomas Jochym-O’Connor. Classification of transversal gates
in qubit stabilizer codes. Quant. Inf. Comput., 16:0771–0802, 2016.

[8] Srinivasan Arunachalam. Quantum speed-ups for boolean satisfiability and derivative-
free optimization. PhD thesis, University of Waterloo, 2014.

[9] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-OConnor, Michele Mosca,
and Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum ram.
New J. Phys., 17(12):123010, 2015.

185



[10] Dave Bacon. Operator quantum error-correcting subsystems for self-correcting quan-
tum memories. Phys. Rev. A, 73(1):012340, 2006.

[11] Somshubhro Bandyopadhyay, P. Oscar Boykin, Vwani Roychowdhury, and Farrokh
Vatan. A new proof for the existence of mutually unbiased bases. Algorithmica,
34:512–528, 2002.

[12] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White,
J. Mutus, A. G. Fowler, B. Campbell, et al. Superconducting quantum circuits at
the surface code threshold for fault tolerance. Nature, 508(7497):500–503, 2014.

[13] Stephen D. Bartlett, Patrick Hayden, and Robert W. Spekkens. Random subspaces
for encryption based on a private shared cartesian frame. Phys. Rev. A, 72(5):052329,
2005.

[14] Stephen D. Bartlett, Terry Rudolph, and Robert W. Spekkens. Decoherence-full
subsystems and the cryptographic power of a private shared reference frame. Phys.
Rev. A, 70(3):032307, 2004.

[15] Paul Benioff. The computer as a physical system: A microscopic quantum mechan-
ical hamiltonian model of computers as represented by turing machines. Journal of
Statistical Physics, 22(5):563–591, 1980.

[16] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Computing,
26(5):1510–1523, 1997.

[17] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key dis-
tribution and coin tossing. In International Conference on Computer System and
Signal Processing, IEEE, 1984, pages 175–179, 1984.

[18] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
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Appendix A

Conditions on a generalized private
quantum channel

The generalized private quantum channel on a two-qubit subspace encoding of a single
qubit of information was shown in Equation 4.22 to have the following density matrix
output:

|ij〉〈kl|12TrE
(
|α|2|E0

ij〉〈E0
kl|+ αβ∗|E0

ij〉〈E1
kl|

+ α∗β|E1
ij〉〈E0

kl|+ |β|2|E1
ij〉〈E1

kl|
)
.

For such an output to be private, the output state must encode no information about the
input state of the channel, therefore must yield no information about the coefficients α
and β. The cross terms (αβ∗ and α∗β) must always be zero as there is no choice of non-
zero overlap between the states

∣∣E0
ij

〉
and |E1

kl〉 that will cancel out all information stored
in αβ∗ and its complex conjugate for arbitrary choices of α and β. This should come as no
surprise, as the complementary channel should be quantum error correcting for a subspace
code, and an overlap of

∣∣E0
ij

〉
and |E1

kl〉 would violate the Knill-Laflamme conditions.

For any non-zero |α|2 term 〈E0
ij|E0

kl〉, the corresponding |β|2 term 〈E1
ij|E1

kl〉 must be the
same as otherwise information about the relative magnitude of α and β will be contained in
the output density matrix, yielding a non-private channel. Therefore, the set of conditions
for a private quantum channel on a subspace encoding can be summarized by the following
conditions on the environment states when considering the isometric extension:

〈E0
ij|E0

kl〉 = 〈E1
ij|E1

kl〉, (A.1)

〈E0
ij|E1

kl〉 = 0, (A.2)
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for all choices of i, j, k, l.

The output density matrix in the case of a subsystem encoding, with respect to an
enlarged set of environment states is given in Equation 4.23 as follows:

|ij〉〈kl|12TrE

(
|α|2(|E0

ij0〉〈E0
kl0|+ |E0

ij1〉〈E0
kl1|)

+ αβ∗(|E0
ij0〉〈E1

kl0|+ |E0
ij1〉〈E1

kl1|)
+ α∗β(|E1

ij0〉〈E0
kl0|+ |E1

ij1〉〈E0
kl1|)

+ |β|2(|E1
ij0〉〈E1

kl0|+ |E1
ij1〉〈E1

kl1|)
)
,

The increased freedom in choosing this output state to be private comes from the fact
that in considering the cross terms (αβ∗ and α∗β), while the trace over the set of states
corresponding to these terms must be zero, there can be cancellation between the two
corresponding terms. Therefore, unlike the case of a subspace encoding, one could have
〈E0

ij0|E1
kl0〉 6= 0, however its corresponding pair must cancel the term out, that is 〈E0

ij0|E1
kl0〉 =

−〈E0
ij1|E1

kl1〉. There is additional freedom in the diagonal terms in order for no informa-
tion about the magnitude of the amplitudes of α and β to be present in the output density
matrix. The result conditions for privatization are summarized as follows:

〈E0
ij0|E0

kl0〉+ 〈E0
ij1|E0

kl1〉 = 〈E1
ij0|E1

kl0〉+ 〈E1
ij1|E1

kl1〉, (A.3)

〈E0
ij0|E1

kl0〉 = −〈E0
ij1|E1

kl1〉, (A.4)

for all choices of i, j, k, l.

Applying the above set of conditions to the case of the two-qubit dephasing channel Λ
described throughout this work, we can show that there is insufficient freedom in a two-
qubit subspace encoding to privatize a single encoded qubit. That is, no two-qubit subspace
encoding will satisfy Equations A.1 and A.2 for the environment states produced by the
two-qubit dephasing channel Λ.

Let the following parameters denote an arbitrary two-qubit subspace encoding:

|0L〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉
|1L〉 = β00|00〉+ β01|01〉+ β10|10〉+ β11|11〉.

By the uniqueness of the Stinespring dilation Theorem up to the preparation of the ancillary
states, we assume that the form extension of the channel to unitary transformation on
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a larger Hilbert space by preparing an additional pair of qubits in the |+〉 state and
performing controlled–Z operations on each corresponding physical qubit in the encoding,
as described in solid boxed operation in Figure 4.2. The resulting mapping of the logical
states is given as follows:

|0L〉 =
∑

ij

αij|ij〉 −→
∑

ij

αij|ij〉Zi|+〉Zj|+〉

|1L〉 =
∑

ij

βij|ij〉 −→
∑

ij

βij|ij〉Zi|+〉Zj|+〉,

where the operation Zi is applied to the state |+〉 depending on the value of the state on
qubit 1, and similarly for Zj and qubit 2. The resulting environment states therefore have
the form

∣∣E0
ij

〉
= αijZ

i|+〉Zj|+〉,∣∣E1
ij

〉
= βijZ

i|+〉Zj|+〉.

The conditions set by Equation A.2 impose restrictions on the values of the coefficients
in the subspace encodings. Since 〈E0

ij|E1
ij〉 = α∗ijβij = 0, this implies either αij = 0 or

βij = 0. Without loss of generality, suppose αij = 0, then the corresponding condition set
by Equation A.1 imply 〈E0

ij|E0
ij〉 = |αij|2 = 0 = |βij|2 = 〈E1

ij|E1
ij〉. Thus, for all values (ij)

the associated coefficients αij and βij will be equal to 0, implying that no private subspace
encoding exists for the dephasing channel Λ that satisfy the set of conditions outlined by
Equations A.1–A.2.

We now show that the set of conditions on a two-qubit subsystem encoding, by intro-
ducing a mixing ancilla, can be satisfied by the chosen encoding given by the first two
boxes in Figure 4.2.

|0L〉 =
1

2
(|000〉+ i|010〉+ |101〉+ i|111〉)

|1L〉 =
1

2
(|100〉 − i|110〉+ |001〉 − i|011〉)

The resulting mapping as given by the isometric extension of the channel by introducing
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two ancillary |+〉 states and controlled–Z operations will have the form

|0L〉 =
∑

ijk

γijk|ijk〉 −→
∑

ijk

γijk|ijk〉Zi|+〉Zj|+〉

|1L〉 =
∑

ijk

ηijk|ijk〉 −→
∑

ijk

ηijk|ijk〉Zi|+〉Zj|+〉,

resulting in the environment states

∣∣E0
ijk

〉
= γijkZ

i|+〉Zj|+〉∣∣E1
ijk

〉
= ηijkZ

i|+〉Zj|+〉.

The environment states are orthogonal unless (ij) = (kl), thus the set of conditions A.3–
A.4 will be trivially satisfied unless (ij) = (kl). Therefore let (ij) = (kl), Equation A.3
then becomes

|γij0|2 + |γij1|2 = |ηij0|2 + |ηij1|2.

Each side of the above equation will have one non-zero term that will be equal to 1 as all
the coefficients in the encoding are of equal magnitude, therefore Equation A.3 will always
be satisfied. The condition set out by Equation A.4 will have the following form when
(ij) = (kl),

γ∗ij0ηij0 = −γ∗ij1ηij1,

yet since the logical states have support on differing computational basis states, both sides
of the above equation will always be equal to zero as for any (ijm), γ∗ijmηijm = 0.
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Appendix B

Operator private quantum channels

The ideas in this appendix were originally published in Ref. [98], copyrighted by IOP Pub-
lishing Ltd. Jeremy Levick and Rajesh Pereira contributed the majority of the mathemat-
ical framework for the project. David Kribs, Raymond Laflamme, and myself contributed
many of the ideas relaying the mathematical structure to physical systems as well as de-
veloped motivating examples. Jeremy Levick, Rajesh Pereira, and myself did the majority
of the writing of the manuscript with all authors contributing to the editing and analysis
of the results.

B.1 Introduction

This work began with an effort to generalize the example from Chapter 4 more widely; in
particular to obtain a large class of simple and easily implemented n-qubit quantum chan-
nels, which as a consequence of their simplicity would not privatize any subspace, but that
nevertheless do privatize quantum information through more delicate subsystem encodings.
In addition to building on previous work, one could imagine such a class of channels and
encodings as being useful in quantum computing when deleting information swiftly is a de-
sired outcome. As an outgrowth of our example-based effort, we also uncover an advance
in the general theory of private quantum subsystems. Specifically, we show how finite-
dimensional private quantum subsystems can be cast in the framework of quasiorthogonal
operator algebras, which have been studied in quantum information for their intrinsic in-
terest [137, 112, 111, 118] and specific connection with identifying maximal collections of
mutually unbiased bases [11, 119, 28]. Combining the quasiorthogonal perspective with
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conditional expectation tools from operator algebra [117] and a group-theoretic analysis
[123], we then show how quantum channels defined by operators forming an Abelian sub-
group of the Pauli group can privatize quantum information encoded into subsystems of
n-qubit Hilbert space, even though they can never privatize qubits directly encoded into
subspaces of the Hilbert space. This gives a full picture of privatizing quantum information
for such subgroups.

This Appendix organized as follows. In the next subsection we present preliminary ma-
terial on private quantum subsystems. This is followed by a discussion on quasiorthogonal
operator algebras and conditional expectations, and we indicate how private subsystems
fit into the framework. In the next subsection we turn our attention to the structure
of Abelian subgroups of the Pauli group. We conclude by explicitly showing how such
subgroups can be used to privatize quantum information.

B.2 Private quantum subsystems & subspaces

The motivating communication scenario for a private quantum code starts with two parties,
Alice and Bob, who share a private classical key that Alice uses to inform Bob which of a
set of unitary operators {Ui} she has used to encode her quantum state (density operator)
ρ 7→ UiρU

†
i . Bob can then decode and recover the state ρ without disturbing it. The

set of unitaries {Ui} and the probability distribution {pi} that makes up the random key
which determines the encoding unitary are shared publicly. Hence an eavesdropper Eve’s
description of the system is given by the random unitary channel Φ(ρ) =

∑
i piUiρU

†
i . By

carefully selecting the unitary operators and probabilities, the random unitary channel will
provide Eve with no information about the input state.

More generally, quantum channels are given by completely positive trace-preserving
maps Φ : Mn(C) → Mn(C), and in the context of private communication one looks for
sets S of density operators ρ that are mapped by Φ to the same state, Φ(ρ) = ρ0 for
all ρ ∈ S. Analogous to quantum error correction, we focus on sets of states that are
associated with underlying Hilbert space structure and hence form a true quantum code
in the sense that superpositions of privatized states are also private. We define a qubit to
be a two-dimensional subspace of Cn whose observables are given by the Pauli matrices in
that fixed subspace,

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.
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Thus the most basic choice for a set of private states is for S to be the set of density
matrices whose non-zero action is entirely on a k-qubit, 2k-dimensional subspace of the
Hilbert space Cn; i.e., there exists a subspace C such that the operators in S, when written
in any basis containing C, has the block form

ρ =

(
ρC 0
0 0

)
.

As a convenience we shall identify the full set of such operators with the set of operators
L(C) that act on C, which in this case is isomorphic to L(C2k) and thus Φ privatizes k
qubits of information. Two of the simplest examples in the single qubit case are given by
the complete depolarizing channel, which satisfies Φ(ρ) = 1

2
I and I is the identity operator,

and the spontaneous emission channel, which satisfies Φ(ρ) = |0〉〈0| for all single qubit ρ
[107]. The complete depolarizing channel in particular is the random unitary channel
implemented by the equally weighted Pauli operators I,X, Y, Z.

However, not all quantum channels admit a private subspace. In particular, as proved
in [76, 77], any quantum channel Φ(ρ) =

∑
iAiρA

†
i whose (normal) Kraus operators Ai are

mutually commuting, cannot privatize a (multi-dimensional) subspace. Nevertheless, even
in such instances it can still be possible to privatize quantum information. The following
phase flip example was presented and discussed in detail in [76, 77]: Let Φ : L(C2⊗C2)→
L(C2 ⊗ C2) be the completely positive map on two-qubit space whose Kraus operators
are {1

2
II, 1

2
ZI, 1

2
IZ, 1

2
ZZ}, where we have suppressed tensor symbols so that ZI is Z ⊗ I,

etc. These operators are all diagonal in the computational basis {|00〉, |01〉, |10〉, |11〉}, and
form an orthonormal basis for the diagonal subalgebra of M4(C) in the normalized trace
(Hilbert-Schmidt) inner product. In particular they are mutually commuting and so the
channel Φ has no private subspaces. However, the subalgebra spanned by II, IX, Y Y, Y Z
is privatized by Φ, and moreover, is isomorphic to the Pauli algebra on one qubit; thus the
channel still privatizes a qubit:

Φ
(1

4
(II + c2IX + c3Y Y + c4Y Z)

)
=

1

4
II.

This example relies on the more subtle notion of quantum subsystem to privatize a
qubit. A space A (or B) is a subsystem of a Hilbert space H if there is a subspace C of H
such that C admits a tensor decomposition as C = A⊗B.

Definition 68. Let Φ : L(H)→ L(H) be a channel and let B be a subsystem of H. Then
B is a private subsystem for Φ if there is a ρ0 ∈ L(H) and σA ∈ L(A) such that

Φ(σA ⊗ σB) = ρ0 ∀σB ∈ L(B). (B.1)
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As shown in [76, 77], the above example channel privatizes a qubit subsystem in the
sense of Eq. (B.1), yet does not privatize a subspace. Moreover, the mapping is “non-
operator” in the language of [76, 77] in the sense that Eq. (B.1) holds for a particular
state σA ∈ L(A) but not for every state on A. We seek to understand this example and
generalize it, and we shall make use of conditional expectations and quasiorthogonality of
two subalgebras, notions to which we now turn.

B.3 Quasiorthogonal subalgebras & conditional ex-

pectations

We begin this subsection by reviewing basic notions from operator algebras and then we
indicate how private subsystems can be cast in the quasiorthogonal subalgebra framework
and discuss examples.

A unital subalgebra of the N×N complex matrices MN(C) is a subset A ⊆MN(C) that
is closed under matrix addition, scalar multiplication, and multiplication, and includes the
identity matrix IN , which we denote by I when the dimension is clear. It follows from the
representation theory of finite-dimensional C∗-algebras [48], that any unital subalgebra A
of MN(C) that is also closed under taking adjoints is unitarily equivalent to an algebra of
the form

m⊕

i=1

Iki ⊗Mqi(C), (B.2)

where
∑

i kiqi = N .

Definition 69. Let A be a unital subalgebra of MN(C). Then ΦA : MN(C) → MN(C) is
called the trace-preserving conditional expectation onto A when it is the unique completely
positive trace-preserving map satisfying

1. ΦA(a) = a ∀a ∈ A

2. ΦA(a1xa2) = a1ΦA(x)a2 ∀a1, a2 ∈ A, ∀x ∈MN(C)

3. ΦA(x) ≥ 0 ∀x ≥ 0.

The trace-preserving conditional expectation onto a unital subalgebra is unique as a
linear map, and is always a completely positive map. Any unital subalgebra induces an
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inner product, the left-regular trace inner product, which is the Hilbert-Schmidt inner
product in the induced left-regular trace given by the subalgebra A. More explicitly, let
a ∈ A and consider the left-regular representation of a, La(x) = ax for x ∈ MN(C). The
left-regular trace of a is the trace of the operator La; trA(a) := tr(La). This gives the
left-regular trace inner product as 〈a, b〉A = trA(a∗b).

Denote by A′ the commutant of A; A′ = {x ∈ MN(C) : xa = ax ∀a ∈ A}. Impor-
tantly, the Kraus operators for ΦA must be an orthonormal basis for A′ in the left-regular
inner product induced byA. In addition, recall that two different choices of Kraus operators
must be related by a partial isometry conjugation. For more on conditional expectations
onto matrix algebras, including for proofs and further references, see [117].

For the phase flip example discussed in the previous subsection, the map Φ = Φ∆4

is the trace-preserving conditional expectation onto the 4 × 4 diagonal subalgebra, ∆4 =
{∑1

i,j=0 aij|ij〉〈ij| : aij ∈ C} ∼= C⊕ C⊕ C⊕ C. Since ∆′4 = ∆4, the Kraus operators for Φ
should be a basis for the diagonal matrices, and indeed they are.

Geometrically, quasiorthogonal algebras arise through a natural broadening of the no-
tion of orthogonality for algebras; namely, unital algebras A, B satisfy quasiorthogonality
if tr(ab) = 0 whenever tr(a) = 0 = tr(b) and a ∈ A, b ∈ B. The algebras are not orthog-
onal themselves as they both contain the identity operator, however the sets A	 CI and
B 	 CI are orthogonal in the Hilbert-Schmidt inner product <a, b>= tr(b∗a). We state
equivalent forms of this definition in our current notation.

Definition 70. Two unital subalgebras A,B ⊆ MN(C) are said to be quasiorthogonal if
any of the following equivalent conditions hold:

1. tr
(
(a− tr(a)

N
I)(b− tr(b)

N
I)
)

= 0 ∀a ∈ A, ∀b ∈ B

2. 1
N
tr(ab) = 1

N
tr(a) 1

N
tr(b) ∀a ∈ A, ∀b ∈ B

3. ΦA(b) = tr(b)
N
I and ΦB(a) = tr(a)

N
I ∀a ∈ A, ∀b ∈ B

4. ΦA ◦ ΦB(ρ) = ΦB ◦ ΦA(ρ) = tr(ρ)
N
I for all ρ.

In particular, condition (3) says that the trace-preserving conditional expectation onto
A privatizes an element of B (and vice-versa) precisely when the two subalgebras are
quasiorthogonal to each other.

In the extremal case with A = MN(C) and B = CI = A′, ΦB is the complete de-
polarizing channel with Kraus operators given by a complete orthonormal set (in the
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Hilbert-Schmidt inner product) of operators, and ΦB(a) = tr(a)
N
I for all a ∈ A. As a simple

subsystem example, consider the first qubit algebra A in two-qubit space generated by
{II,XI, Y I, ZI}. The commutant A′ = I2 ⊗M2(C) is generated by the orthonormal set
{II, IX, IY, IZ}, which also act as Kraus operators (after normalizing) for the map ΦA.
Thus, A and A′ form a quasiorthogonal pair and in particular the second qubit is a private
subsystem for the channel ΦA. Not all quasiorthogonal algebra pairs arise through the
commutant in this way though; indeed, as an example note that the phase flip example
above is determined by the algebra pairing A = ∆4 and B generated by {II, IX, Y Y, Y Z},
which is unitarily equivalent to I2 ⊗M2(C).

This behaviour is not unique to qubit systems and can be generalized to multi-dimensional
systems. The following example exhibits the behaviour of privatized sub-algebras for ele-
mentary systems composed of qutrits.

Example 71. Let X =




0 1 0
0 0 1
1 0 0


 and Z =




1 0 0
0 ω 0
0 0 ω2


, ω = e2iπ/3, be the generalized

Pauli operators for qutrits. Consider the channel on two qutrits given by

Φ(ρ) =
1

9

2∑

i,j=0

(X2iZi ⊗XjZj)ρ(X2iZi ⊗XjZj)†.

The Kraus operators for this channel are Abelian, and thus do not admit a private subspace.
However, one may check that the sub-algebra A generated by X2 ⊗X,XZ2 ⊗ Z is priva-
tized by Φ, and moreover that A is isomorphic as an algebra to the one-qutrit sub-algebra
generated by I ⊗X, I ⊗ Z.

Proof. Explicitly, X3 = Z3 = I, and XZ = ωZX, so the group generated by X,Z has a
bicharacter given by [g, h] = χ(g, h)I, yielding the following character matrix:

F =




I X X2 Z XZ X2Z Z2 XZ2 X2Z2

I 1 1 1 1 1 1 1 1 1
X 1 1 1 ω ω ω ω2 ω2 ω2

X2 1 1 1 ω2 ω2 ω2 ω ω ω
Z 1 ω2 ω 1 ω2 ω 1 ω2 ω
XZ 1 ω2 ω ω 1 ω2 ω2 ω 1
X2Z 1 ω2 ω ω2 ω 1 ω 1 ω2

Z2 1 ω ω2 1 ω ω2 1 ω ω2

XZ2 1 ω ω2 ω ω2 1 ω2 1 ω
X2Z2 1 ω ω2 ω2 1 ω ω ω2 1




(B.3)
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In two qutrit space, the matrix of commutation relations is F ⊗F ; any all-1s submatrix
of F ⊗ F yields an Abelian subalgebra. Our choice corresponds to the tensor product of
the {1, 6, 8} submatrix of F with itself union the tensor product of the {1, 5, 9} submatrix
of F with itself.
To find a quasiorthogonal algebra to this Abelian algebra, we take a quotient by the
subalgebra to obtain the following equivalence classes:

I ⊗ I I ⊗X I ⊗X2 X ⊗ I X2 ⊗ I
I ⊗XZ I ⊗X2Z I ⊗ Z X ⊗XZ X2 ⊗XZ
I ⊗X2Z2 I ⊗ Z2 I ⊗XZ2 X ⊗X2Z2 X2 ⊗X2Z2

X2Z ⊗ I X2Z ⊗X X2Z ⊗X2 Z ⊗ I XZ ⊗ I
X2Z ⊗XZ X2Z ⊗X2Z X2Z ⊗ Z Z ⊗XZ XZ ⊗XZ
X2Z ⊗X2Z2 X2Z ⊗ Z2 X2Z ⊗XZ2 Z ⊗X2Z2 XZ ⊗X2Z2

XZ2 ⊗ I XZ2 ⊗X XZ2 ⊗X2 X2Z2 ⊗ I Z2 ⊗ I
XZ2 ⊗XZ XZ2 ⊗X2Z XZ2 ⊗ Z X2Z2 ⊗XZ Z2 ⊗XZ
XZ2 ⊗X2Z2 XZ2 ⊗ Z2 XZ2 ⊗XZ2 X2Z2 ⊗X2Z2 Z2 ⊗X2Z2

X ⊗X X ⊗X2 X2 ⊗X X2 ⊗X2

X ⊗X2Z X ⊗ Z X2 ⊗X2Z X2 ⊗ Z
X ⊗ Z2 X ⊗XZ2 X2 ⊗ Z2 X2 ⊗XZ2

Z ⊗X Z ⊗X2 XZ ⊗X XZ ⊗X2

Z ⊗X2Z Z ⊗ Z XZ ⊗X2Z XZ ⊗ Z
Z ⊗ Z2 Z ⊗XZ2 XZ ⊗ Z2 XZ ⊗XZ2

X2Z2 ⊗X X2Z2 ⊗X2 Z2 ⊗X Z2 ⊗X2

X2Z2 ⊗X2Z X2Z2 ⊗ Z Z2 ⊗X2Z Z2 ⊗ Z
X2Z2 ⊗ Z2 X2Z2 ⊗XZ2 Z2 ⊗ Z2 Z2 ⊗XZ2

Notice that cosets 3, 5, 8, and 9 are obtained by squaring cosets 2, 4, 7 and 6 respectively,
so a choice of two generators for a quasiorthogonal subalgebra should make sure to avoid
these pairs. Our choice corresponds to choosing X2 ⊗X from coset 8 and XZ2 ⊗ Z from
coset 3. To see that this choice of generators is isomorphic to a qutrit algebra, note that
the block unitary

U =




I X2Z2 XZ
XZ2 Z X2

X2Z X Z




acts by on I ⊗X and I ⊗ Z by

U(I ⊗X)U∗ = ω2XZ2 ⊗ Z
U(I ⊗ Z)U∗ = X2 ⊗X
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As a next-step generalization of our motivating phase flip example, for the rest of the
paper we consider conditional expectations onto algebras generated by Abelian subgroups
of the n-qubit Pauli group. The subalgebras generated in this way will be Abelian, so by
choosing a maximal Abelian subgroup of the n-qubit Pauli group that contains the initial
subgroup, we obtain a maximal Abelian subalgebra generated by Pauli operators. The com-
mutant of such an algebra will be itself, and so the Kraus operators for the trace-preserving
conditional expectation will simply be the elements of the Abelian group, suitably weighted.
Thus, having mutually commuting Kraus operators, there can be no private subspace for
such a channel. However, if the Abelian subalgebra has a quasiorthogonal partner with
a non-scalar component as in Eq. (B.2), the channel will still have a private subsystem.
This motivates us to learn more about the structure of maximal Abelian subgroups of the
n-qubit Pauli group, Pn, a topic to which we now turn.

B.4 Commutation relations of the Pauli group

Given n ≥ 1, let Pn be the n-qubit Pauli group, which is the unitary subgroup of M2n(C)
generated by all n-fold tensor products of the Pauli matrices X, Y, Z.

Note that the group-theoretic commutator [σ, τ ] = στσ−1τ−1 (as opposed to the more
typically considered Lie algebra commutator) of any two n-qubit Pauli matrices is equal
to ±I. Also, [σ, τ ] = [c1σ, c2τ ] for σ, τ ∈ Pn and c1, c2 ∈ {±1,±i}. Hence, the function
χ : Pn×Pn → C defined by χ([σ], [τ ])I = [σ, τ ] is well-defined on the central quotient Pn =
Pn/{±I,±iI}. Notice that P1 is isomorphic to the Klein four-group V = {e, v1, v2, v3}
where e is the identity element, each vi is its own inverse, and vivj = vk. Similarly,
Pn ' V n, where V n is the (Abelian) direct product of n copies of the Klein four-group
with itself.

We recall that a bicharacter on a group G is a function B(·, ·) : G×G→ C satisfying
the following:

1. B(e, g) = B(g, e) = 1 for all g ∈ G,

2. B(g, hk) = B(g, h)B(g, k) and B(hk, g) = B(h, g)B(k, g) ∀ g, h, k ∈ G.

Moreover, a bicharacter is non-degenerate if for all non-identity g ∈ G there exists some
element h ∈ G such that B(g, h) 6= 1.
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Notice that a bicharacter, when restricted in either argument to a fixed g ∈ G becomes
a character on G.

Proposition 5. The function χ(·, ·) defined above is a non-degenerate bicharacter on Pn.

Proof. Firstly, χ([I], [σ]) = [I, σ] = I, hence χ([I], [σ]) = 1 and similarly χ([σ], [I]) = 1.
To prove the second condition holds, note that σρ = χ([σ], [ρ])ρσ and τρ = χ([τ ], [ρ])τσ.
Hence

στρ = χ([στ ], [ρ])ρ(στ)

= χ([τ ], [ρ])σρτ

= χ([τ ], [ρ])χ([σ], [ρ])ρστ,

and the other identity is similarly proved. The claim that χ(·, ·) is non-degenerate is
equivalent to the claim that for any non-identity [σ] ∈ Pn, there is some [τ ] ∈ Pn that
anti-commutes with [σ], which is easily seen to be the case.

Consider the character matrix for P1 given by

H =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ,

where the columns and rows index the Pauli matrices and the entries of H record whether
elements of the Pauli basis commute or anti-commute. Then H is the so-called bicharacter
matrix of χ(·, ·) on P1; that is Hσ,τ = χ([σ], [τ ]). Moreover, since the restriction of χ([σ], [τ ])
to any particular σ yields a character of the Abelian group P1, H is a character matrix.

The group P1 is isomorphic to the Klein four-group, V = {e, x, y, z}, an Abelian group
defined by x2 = y2 = z2 = e and xy = z, xz = y, yz = x. Thus, Pn is isomorphic to
V n, the direct product of V with itself n times, and Hn := H⊗n is a character matrix for
the Abelian group Pn, and records the commutation relations between basis elements for
the n-qubit Pauli group. Lastly, we point out that a maximal Abelian subgroup of Pn
corresponds to a maximal submatrix of H⊗n containing all 1’s.

We recall another notion from group theory to continue. Let G be a group with dual
group Ĝ and K a subgroup of G. Then the annihilator of K in G, AnnG(K) is the set of
characters χi ∈ Ĝ satisfying χi(k) = 1 for all k ∈ K. We cite a well-known fact about the
annihilator subgroup [123].
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Lemma 72. Let G,K, Ĝ be as above; then AnnG(K) is isomorphically homeomorphic to
the dual group of G/K.

In particular, this implies that when G is finite and Abelian, that |AnnG(K)| =
|G/K| = |G|/|K|. The following is a direct consequence of this statement.

Corollary 73. Let G = Pn and K be any subgroup of Pn. Let I be column indices of H⊗n

associated to the elements of K. Let J = χ−1(AnnG(K)) be the row indices associated to
the annihilator of K. Then we have |I||J | = 4n.

Corollary 74. Let K be an Abelian subgroup of Pn with |K| = 2k < 2n. Then K can be
extended to an Abelian subgroup of size 2n.

Proof. We will show that so long as k < n, there exists a g ∈ Pn \K such that g commutes
with every element of K; and so that < K, g >, the group spanned by K and g, must be
Abelian.

We use the previous corollary as follows: let I be the indices associated to the elements
of K; since K is Abelian the submatrix Hn[I] is an all 1 submatrix. Thus, by the previous
result, there exist 4n|I|−1 = 4n2−k rows whose intersection with each column in I contains
only 1’s. As k < n, we have 2k < 4n

2k
, and so there is at least one row not already in I

with this property. Call this row i. By the symmetry of Hn, the intersection of column i
with the rows of I is all 1’s, and Hnii=1, and so the submatrix indexed by I ∪ {i} is an all
1 submatrix. Let g be the element of Pn associated with the ith column; then g ∈ Pn is an
element of Pn \K that commutes with every element of K. Hence < K, g > is an Abelian
group of size at least 2k+1.

We can iterate the procedure until 4n

2k
= 2k, or k = n.

We are now ready to prove the following theorem which will be useful in constructing
examples that generalize our motivating phase flip example.

Theorem 75. Any maximal Abelian subalgebra A of M2n(C) generated by elements of Pn
has dimension 2n.

Proof. To begin, we note that if σ ∈ Pn is an element of A, then so are −σ,±iσ, and hence
independent generators of A must all come from different conjugacy classes. Thus, we may
regard our generators as coming from Pn, rather than Pn. It follows that a generating set
for a maximal Abelian subalgebra is simply a maximal Abelian subgroup K ≤ Pn, which
by the previous corollary has size 2n. Since such a subgroup is already closed under matrix
multiplication, we have dim < K >= 2n.
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Corollary 76. Any subalgebra A contained in the span of elements from Pn has the prop-
erty that |A||A′| = 4n.

Now we may turn our attention to the private structure of quantum channels whose
normalized Kraus operators form an Abelian subgroup of the Pauli group.

B.5 Privatizing qubits with Abelian subgroups

We begin by discussing the simplest case, the channel whose Kraus operators are a nor-
malized basis for the diagonal algebra, on arbitrary n-qubit space.

Let ∆2n be the diagonal algebra on 2n × 2n complex matrices, with basis the group ∆
generated by {Z1, Z2, · · · , Zn} where Z1 = Z⊗ I⊗ . . .⊗ I, etc. Then ∆′2n = ∆2n , and thus
the conditional expectation Φ∆2n

onto ∆2n , has as its Kraus operators the elements of ∆,
multiplied by 1

2n/2
.

Of course, we now know the answer is any algebra quasiorthogonal to the diagonal
algebra ∆2n . We can give an abstract description of such algebras, and also a concrete
construction. The abstract result follows from the following result of [116] and provides an
upper bound on the number of privatized qubits.

Lemma 77. Let A be a subalgebra of MN(C) unitarily equivalent to
⊕m

k=1 Iik ⊗Mjk(C).
Then the following conditions are equivalent:

1. A is quasiorthogonal to ∆N ;

2. ik ≥ jk for all 1 ≤ k ≤ m.

As k-qubits can be encoded into the unital algebra I2n−k ⊗ M2k(C), the conditional
expectation onto ∆2n can privatize k qubits if and only if n− k ≥ k. In other words, the
conditional expectation onto ∆2n can privatize at most bn

2
c qubits.

One explicit construction of such a subalgebra is to make use of the private subalgebra
from our motivating example. For 1 ≤ i ≤ bn

2
c let X̂i =

⊗n
k=1 σk, where

σk =

{
X if k = 2i
I otherwise
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and let Ŷi =
⊗n

k=1 σk, where

σk =

{
Y if k = 2i− 1, 2i
I otherwise

Then B = Alg{X̂i, Ŷj : 1 ≤ i, j ≤ bn
2
c}, where Alg{S} is the unital algebra generated by

operators in S, is quasiorthogonal to ∆2n , precisely because X̂i, Ŷi and all their products
are never diagonal, unless they are the identity. This algebra encodes bn

2
c qubits in the

obvious way, where X̂i, and Ŷi act as the Pauli matrices Xi, Yi on bn
2
c qubits with an X

or Y in the ith tensor spot respectively.

We may use this explicit construction to prove the following in the general maximal
Abelian case.

Theorem 78. Let Φ be a a completely positive trace-preserving map on M2n(C) whose
Kraus operators are equally weighted elements of a maximal Abelian subgroup G ≤ Pn.
Then Φ can privatize bn

2
c qubits.

Proof. Let A = Alg{G} be the algebra generated by G. Then A is a maximal Abelian
subalgebra of MN(C). Thus A′ = A. The elements of G are clearly a basis for A, and
hence Φ is the trace-preserving conditional expectation onto A′ = A. Moreover, since A
is maximal Abelian, by simultaneously diagonalizing, there is a change of basis such that
UAU∗ = ∆2n . Denote by B the subalgebra generated by {X̂i, Ŷj} where X̂i and Ŷj are as
above. Then U∗BU is privatized by Φ; and following the discussion above, we see that B
is sufficient to encode bn

2
c qubits.

We now examine the case that A is a non-maximal Abelian algebra generated by Pauli
operators. Corollary 76 says that for any subalgebra A generated by elements of Pn,
dim(A) dim(A′) = 4n = dim(H)2. The algebras for which this equality holds can be
characterized as follows from [116].

Lemma 79. Let A be a unital subalgebra of Mn(C), then the following are equivalent:

1. dim(A) dim(A′) = N2

2. A = U(
⊕m

i=1 Iski ⊗Mrki)U
∗ for some unitary matrix U

Lemma 80. Every commutative subalgebra A ⊆ MN(C) generated by Pauli operators is
unitarily equivalent to one of the form I2n−k ⊗ Alg{Zi}ki=1 for some k ≤ n.
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Proof. By Lemma 79, any commutative subalgebra A generated by commuting Pauli op-
erators satisfies rki = 1 for all i, and hence for some s, decomposes as

A = U(
m⊕

i=1

Is ⊗ C)U∗ = U(I2n−k ⊗∆2k)U
∗,

for some k. Finally, as {Zi}ki=1 generate ∆2k , we have that I2n−k ⊗ Alg{Zi}ki=1 = I2n−k ⊗
∆2k .

Theorem 81. Let Φ : MN(C) → MN(C) be a completely positive map whose Kraus
operators {Ki}2k

i=1 are equally weighted members of an Abelian subgroup of Pn. Then there
is a k

2
-qubit algebra privatized by Φ.

Proof. By Lemma 80, the algebra generated by the Kraus operators must be unitarily
equivalent to I2n−k ⊗ ∆2k ; hence after diagonalizing and restricting to the subalgebra
spanned by only the last k qubits, we obtain the maximal Abelian subalgebra on k qubits;
theorem 78 tells us how to privatize k

2
qubits in this scheme. Tensoring any private algebra

encoding k
2

qubits for the 2k × 2k maximal Abelian case with a 2n−k × 2n−k identity yields
an algebra encoding k

2
qubits that is private for Φ.

The results in this Subsection can be thought of as the subsystem analog of the results
from Ref. [5], where there they showed that k unitaries could be used to privatize a k

2
-qubit

subspace. Here, we have shown that we can privatize a k
2
-qubit subsystem algebra using

k elements from an Abelian subgroup of Pn.

B.6 Summary

In this work, we demonstrate the underlying mathematical principles behind private quan-
tum subsystems. Namely, by using the theory of quasiorthogonal algebras and developing
the set of tools therein, we can make definite statements on the dimension of the sub-
systems that can be privatized by commuting Kraus operators. We show that by taking
elements of a maximal Abelian subgroup G of the n-qubit Pauli group Pn, the elements of
such a group can privatize bn

2
c qubits when used as equally weighted Kraus operators of

the channel. Moreover, we show that this result can be generalized to fewer qubits when
the size of the Abelian subgroup is not taken to be maximal.
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Appendix C

A simple decoherence model for
bucket brigade qRAM

Let us consider the error model considered in [122],

Rp(ρ) := (1− p)ÔρÔ† + pρ, (C.1)

with Ô denoting the perfect oracle for quantum searching and let us define

Dq(ρ) := (1− q)ρ+ q ~Xρ ~X†, (C.2)

as the multi-qubit bit-flip channel where ~X is a shorthand notation for a tensor product
of σX bit-flip operators acting on some fixed subset of the qubits. The proof technique
presented below for Dq also applies to the case of multi-qubit dephasing channels).

The error model proposed in this paper (see Eq. (5.9)) is

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ). (C.3)

We show that the composition Rp ◦ Dq resembles (although not exactly the same) our
error model Eq. (5.9), for suitable chosen p and q. It follows immediately that the Ω(N)
lower bound for the searching algorithm considered in [122] is also a lower bound for the
composition Rp ◦Dq, since channel composition cannot decrease the query complexity (one
can simply incorporate Dq into an appropriate unitary for the Rp algorithm). A simple
calculation yields:

Rp ◦ Dq(ρ) = (1− p)ÔDq(ρ)Ô† + pDq(ρ)

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + p(1− q)ρ+ pq ~Xρ ~X†

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + pDq(ρ). (C.4)
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We now identify the coefficients in Eq. (C.3) and Eq. (C.4)





prp = (1− p)(1− q)
pwp = (1− p)q
pnp = p, (C.5)

and note that for any given probabilities prp, pwp, pnp satisfying prp+pwp+pnp = 1, equations
Eq. (C.5) have the solution





p = pnp

q =
pwp

pwp + prp
. (C.6)

We can therefore write

Rp ◦ Dq(ρ) = prpÔρÔ
† + pwpÔ( ~Xρ ~X†)Ô† + pnpDq(ρ). (C.7)

Comparing Eq. (C.3) and Eq. (C.7), we observe that the term Ô( ~Xρ ~X†)Ô† is very
similar to our wrong path term Ewp(ρ) (the error that corresponds to reading out an
incorrect memory location). The last term term Dq(ρ) in Eq. (C.7) is not of the form of
our no-path error term Enp(ρ), as the latter consists of depolarizing channels of different
strengths depending on the position of the address qubit (i.e., the qubits are affected in
decreasing order of significance, that is, the first qubit is affected the most, whilst the
last one the least). However, Dq(ρ) is a decohering term, which seems to be a “weaker”
form of noise than Enp(ρ). We showed above that even with this weaker decoherence
term the quadratic speedup of any searching algorithm is lost. Therefore we have strong
reasons to believe that adding a stronger decoherence term will not lower the quantum
query complexity for the quantum searching problem. A rigorous proof of this conjecture
remains an open problem.
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Appendix D

Error correction schemes for qRAM

D.1 Correcting simple bit-flip errors

We show below that for a qRAM governed by a toy error model of the form

O(ρ) = (1− p)ÔρÔ† + pÔ( ~Xρ ~X†)Ô†, (D.1)

the query error rate can be made arbitrarily small by using quantum error correction.
Here Ô denotes the perfect oracle and ~X represents a multi-qubit bit-flip channel (a tensor
product of individual bit-flip operators acting on an arbitrary subset of qubits). While
such error models are not realistic for the architecture presented in this work, it may be
that future designs allow for simpler error propagation. Such schemes could benefit from
quantum error correction to sufficiently reduce their error rate to enable Grover search.

As Grover’s algorithm requires O(
√
N) steps, one desires a target logical error rate of

δ = O(1/
√
N). Since the faulty oracle has an error model that consists of a bit flip channel

followed by the perfect oracle call, one can use a quantum error correcting code and apply
the oracle in parallel along the qubits composing the code. The parallelism of the oracle
calls mimics majority counting and allows for error correction to be performed between
logical oracle call steps. For simplicity, we provide an example that corrects against bit
flip errors only using the repetition code, however such an analysis could be extended to
correct for phase flips using code families such as the color codes [25], higher dimensional
Shor codes [125], or triorthogonal codes [31].

For example, consider an oracle of the form |a〉|b〉 → |a〉|b⊕ f(a)〉, where a, b ∈ {0, 1}.
A logical oracle call that uses an n-qubit repetition code behaves as follows for states in
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the computational basis:

|a〉|b〉 V→ |a〉⊗n|b〉⊗n Ô⊗n−→ |a〉⊗n|b⊕ f(a)〉⊗n, (D.2)

where V denotes the isometric encoding. Therefore, given a repetition code of length d,
the code corrects for all errors up to d/2− 1 physical bit flips by majority counting, using
non-destructive Z-type stabilizer measurements. Therefore, the logical error rate becomes
pL = pd/2. Choosing d large enough allows the logical error rate to satisfy pL = pd/2 < δ,
where δ is the desired target fidelity. Therefore

d >
2 log δ

log p
=

2 log
(

1/
√
N
)

log p
=

n

log (1/p)
. (D.3)

Each of the n address qubits that serve as input to the oracle call must be encoded into
a repetition code of length d. Hence, the total number of oracle calls for the complete
Grover search algorithm is O(nd

√
N) = O(n2

√
N) = O(

√
N(logN)2). As such, there is a

logarithmic penalty for error correction, yet the scaling is not linear as in the error model
of Regev and Schiff [122].

D.2 The failure of repetition codes for Regev and

Schiff error model

The above error correction scheme is not applicable to the error model presented in [122],
described by Rp(ρ) = (1 − p)ÔρÔ† + pρ, since the failure of an oracle call can lead to an
uncorrectable error, as demonstrated below. Consider the following example of the 3-qubit
repetition code, where rather than all three oracles calls succeeding, the oracle call on the
first set of qubits fails. The computational states evolve as:

|000〉|000〉 Ô2Ô3−→ |000〉|0f(0)f(0)〉 (D.4)

|111〉|000〉 Ô2Ô3−→ |111〉|0f(1)f(1)〉. (D.5)

Consider the action of such a faulty oracle on the encoded state (|000〉 + |111〉)/
√

2, for
f(0) = 0 and f(1) = 1 . The resulting mapping is

1√
2

(|000〉+ |111〉)⊗ |000〉

Ô2Ô3−→ 1√
2

(|000〉|000〉+ |111〉|011〉). (D.6)
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The syndrome check operators for the repetition code are the parity check operators
{Z1Z2, Z2Z3}. They are used to determine if an oracle call has failed by measuring
the ancilla qubits. However, the measurement collapses the state to either |000〉|000〉
or |111〉|011〉. Upon applying the appropriate correction based on the measured syndromes,
the resulting state becomes either |000〉|000〉 or |111〉|111〉. Therefore, the logical oracle call
has failed, since the correct result must yield the superposition (|000〉|000〉+|111〉|111〉)/

√
2.

As expected, the error correction properties of the repetition code are not in violation
of the results of Ref. [122], which state that a linear number of noisy black-box oracle calls
are required, even with the addition of error correction.

D.3 The failure of repetition codes for our error model

Consider the oracle error model:

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ), (D.7)

where Ô is the perfect oracle call while Ewp(ρ) and Enp(ρ) are the wrong path and no-path
terms, respectively. We model the wrong path term as a convex combinations of bit-flip
channels followed by perfect oracle calls. An example of one of those terms is the second
term in Equation D.1. We model the no-path term as taking any input state and mapping
it to a fixed state |g〉, which represents the loss of a qubit to be replaced by any fixed
ancillary state. It should be noted that in the no-path case, the readout ancilla state does
not change. Consider the action of the noisy channel on the five-qubit repetition code.
Each instance of the channel has a certain probability of failure given by the associated
weights. Focusing on one particular instance where the first address photon is lost and the
second is affected by a bit flip, the resulting mapping on the computational basis states is
given by:

|00000〉|00000〉−→|g1000〉|0f(1)f(0)f(0)f(0)〉 (D.8)

|11111〉|00000〉−→|g0111〉|0f(0)f(1)f(1)f(1)〉. (D.9)

Again choosing f(0) = 0 and f(1) = 1, a superposition of input states in the computa-
tional basis evolves as

1

2
P [(|00000〉+ |11111〉)⊗ |00000〉]−→

1

2
(P [|g1000〉 ⊗ |01000〉] + P [|g0111〉 ⊗ |00111〉]) , (D.10)
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where P[•] denotes the projector onto its argument. The measurement of the stabilizers of
the 5-qubit code on the ancillary states results in the collapse of the state into one of two
terms depending on the syndrome measured. Note that the no-path term is the term that
destroys coherence, similarly to the error term in the Regev and Schiff model [122].
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