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Abstract

The growing availability of genomic, transcriptomic, and metabolomic data has opened

the door to the synthesis of multiple levels of information in biological research. As a con-

sequence, there has been a push to analyze biological systems in a comprehensive manner

through the integration of their interactions into mathematical models, with the process

frequently referred to as “systems biology”. Despite the potential for this approach to

greatly improve our knowledge of biological systems, the definition of mathematical rela-

tionships between different levels of information opens the door to diverse sources of error,

requiring precise, unbiased quantification as well as robust validation methods. Failure

to account for differences in uncertainty across multiple levels of data analysis may cause

errors to drown out any useful outcomes of the synthesis. The application of a systems

biology approach has been particularly important in metabolic modeling. There has been

a concentrated effort to build models directly from genomic data and to incorporate as

much of the metabolome as possible in the analysis. Metabolomic data collection has been

expanded through the recent use of hydrogen Nuclear Magnetic Resonance (1H-NMR)

spectroscopy for cell culture monitoring. However, the combination of uncertainty from

model construction and measurement error from NMR (or other means of metabolomic)

analysis complicates data interpretation. This thesis establishes the precision and accuracy
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of NMR spectroscopy in the context of cell cultivation while developing a methodology for

assessing model error in Metabolic Flux Analysis (MFA).

The analysis of cell culture media via NMR has been made possible by the development

of specialized software for the “deconvolution” of complex spectra, however, the process

is semi-qualitative. A human “profiler” is required to manually fit idealized peaks from

a compound library to an observed spectra, where the quality of fit is often subject to

considerable interpretation. Work presented in this thesis establishes baseline accuracy

as approximately 2%-10% of the theoretical mean, with a relative standard deviation of

1.5% to 3%. Higher variabilities were associated primarily with profiling error, while lower

variabilities were due in part to tube insertion (and the steps leading up to spectra acqui-

sition). Although a human profiler contributed to overall uncertainty, the net impact did

not make the deconvolution process prohibitively imprecise. Analysis was then expanded

to consider solutions that are more representative of cell culture supernatant. The com-

bination of metabolites at different concentration levels was efficiently represented by a

Plackett-Burman experiment. The orthogonality of this design ensured that every level

of metabolite concentration was combined with an equal number of high and low con-

centrations of all other variable metabolites, providing a worst-case scenario for variance

estimation. Analysis of media-like mixtures revealed a median error and standard devia-

tion to be approximately 10%, although estimating low metabolite concentrations resulted

in a considerable loss of accuracy and precision in the presence of resonance overlap. Fur-

thermore, an iterative regression process identified a number of cases where an increase

in the concentration of one metabolite resulted in increased quantification error of an-

other. More importantly, the analysis established a general methodology for estimating
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the quantification variability of media-specific metabolite concentrations.

Subsequent application of NMR analysis to time-course data from cell cultivation re-

vealed correlated deviations from calculated trends. Similar deviations were observed for

multiple (chemically) unrelated metabolites, amounting to approximately 1%-10% of the

metabolite’s concentration. The nature of these deviations suggested the cause to be inac-

curacies in internal standard addition or quantification, resulting in a skew of all quantified

metabolite concentrations within a sample by the same relative amount. Error magnitude

was estimated by calculating the median relative deviation from a smoothing fit for all

compounds at a give timepoint. A metabolite time-course simulation was developed to de-

termine the frequency and magnitude of such deviations arising from typical measurement

error (without added bias from incorrect internal standard addition). Multiple smoothing

functions were tested on simulated time-courses and cubic spline regression was found to

minimize the median relative deviation from measurement noise to approximately 2.5%.

Based on these results, an iterative smoothing correction method was implemented to iden-

tify and correct median deviations greater than 2.5%, with both simulation and correction

code released as the “metcourse” package for the R programming language.

Finally, a t-test validation method was developed to assess the impact of measurement

and model error on MFA, with a Chinese hamster ovary (CHO) cell model chosen as a case

study. The standard MFA formulation was recast as a generalized least squares (GLS)

problem, with calculated fluxes subject to a t-significance test. NMR data was collected

for a CHO cell bioreactor run, with another set of data simulated directly from the model

and perturbed by observed measurement error. The frequency of rejected fluxes in the

simulated data (free of model error) was attributed to measurement uncertainty alone. The
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rejection of fluxes calculated from observed data as non-significant that were not rejected

in the simulated data was attributed to a lack of model fit i.e. model error. Applying this

method to the observed data revealed a considerable level of error that was not identified

by traditional χ2 validation. Further simulation was carried out to assess the impact of

measurement error and model structure, both of which were found to have a dramatic

impact on statistical significance and calculation error that has yet to be addressed in the

context of MFA.
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Introduction

With sales of $140 billion in 2013 (Walsh 2014), biopharmaceutical production is an im-

portant target for bioprocess development. Cell culture expression systems, which are used

to manufacture practically all biopharmaceuticals currently available on the market, offer

unparalleled potential for monitoring and control when compared to many other biotech-

nology processes. A high level of process control is particularly important for biopharma-

ceuticals produced in mammalian cell lines, which are more sensitive to process conditions

than bacterial or yeast systems (Schmidt 2004). Beyond just keeping the cells alive, ex-

panding the range of observed process parameters and applying multivariate data analysis

has made it possible to drastically increase product yield (Schaub et al. 2012). More-

over, the typical requirements of high product quality and yield are further amplified by

the use of biopharmaceuticals like monoclonal antibodies (mAbs) to treat life-threatening

conditions such as cancer.

In 2004, the Food and Drug Administration (FDA) issued a guidance on the Process

Analytical Technology (PAT) framework for pharmaceutical development (FDA 2004). The

document highlighted the importance of process control through the identification of critical

quality attributes (CQAs) that impact final product characteristics. The FDA argued

against freezing manufacturing practices for the benefit of simplifying regulatory burdens.
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Rather, the suggestion is to focus on continued process development and understanding.

According to the guidance, “a process is generally considered well understood when (1) all

critical sources of variability are identified and explained; (2) variability is managed by the

process; and (3) product quality attributes can be accurately and reliability predicted. . . ”.

This guidance has been interpreted as a push for the greater application of design of

experiment (DOE) methodology and multivariate analysis in biopharmaceutical process

development (Read et al. 2010).

The focus on greater process monitoring and understanding has coincided with the de-

velopment of new technologies for genomic, transcriptomic, proteomic, and metabolomic

analysis – referred to together as multi-omic technology. These developments have spurred

the development of a “systems biology” approach, characterized by the combination of

comprehensive multi-omic data collection and its incorporation in descriptive mathemati-

cal models (Ideker et al. 2001). An important ambition of this strategy is to identify re-

search areas that may have been overlooked by traditional hypothesis-driven investigation.

Despite the potential benefits of adopting a systems biology perspective, important caveats

have emerged from dealing with large-scale data collection and analysis. For example, in-

depth investigation of microarray data has revealed considerable issues with reproducibility

and sensitivity that may not always be considered (Fathallah-Shaykh 2005). The results of

modeling may be similarly questionable. Gutenkunst et al. (2007) have found evidence of

universal “sloppiness” in dynamic biological models, leading to high levels of uncertainty

in parameter estimation.

The recent application of hydrogen nuclear magnetic resonance (1H-NMR) spectroscopy

to cell culture monitoring falls directly in line with the systems biology approach. Unlike
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13C-NMR, which has been used for targeted metabolic analysis through 13C labeling stud-

ies, 1H-NMR can be used to assess the concentrations of all hydrogen-containing small

molecules in extracellular or intracellular environments. In contrast to (chromatographic)

analytical methods such as high performance liquid chromatography (HPLC) or gas chro-

matography mass spectrometry (GCMS), NMR uses a single procedure for the uniform

detection of all small molecules. The lack of compound-specific sample preparation re-

duces the possibility of (hypothesis) confirmation bias and falls directly in-line with the

discovery-driven science championed by systems biology. However, the lack of chromato-

graphic separation results in the generation of highly overlapping spectra when analyzing

complex mixtures, complicating concentration quantification. An increasingly common ap-

proach to the peak fitting problem has made use of a human to manually match spectral

peaks of interest to idealized ones generated from a library – commonly termed targeted

profiling (Weljie et al. 2006). Following use in clinical biofluid analysis and other appli-

cations, the methodology has recently expanded to cell culture monitoring (Aranibar and

Reily 2014; Bradley et al. 2010; Khoo and Al-Rubeai 2009; Read et al. 2013). However,

despite the high possibility of bias or imprecision, there is a serious lack of quantifica-

tion validation in this context. The validation that has been done has tended to focus

on spectra integration (rather than human peak matching) or metabolite identification

(rather than concentration quantification) and typically in the context of biofluid analysis.

Although 1H-NMR offers great potential for unbiased cell culture process monitoring in

the context of biopharmaceutical production, potential sources of quantification variability

need to be identified and explained to bring it in line with the recommendations of the

PAT framework.
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Genomic technology has also seen new applications in recent years. Although genetic

modification has practically defined the field of bioengineering, ready access to genomic

sequencing is relatively new in some bioprocess contexts. A draft genome of a Chinese

hamster ovary (CHO) K1 cell line was only published in 2011 (Xu et al. 2011) despite

the commercial importance of CHO cells in biopharmaceutical production. Similarly, the

first genome assembly of a Spodoptera frugiperda, Sf21 cell line, used in the baculovirus

expression vector system (BEVS), was published in 2014 (Kakumani et al.). High qual-

ity genomic data has a direct application in rational bioengineering strategies. Moreover,

it allows for the generation of metabolic models based on the observed genes. Although

metabolic models can take many forms, a common approach focuses on major material

flows in the cell to give a broad overview of the metabolic network. The typical approach

to developing such models has relied on generic Eukaryotic cell pathways available from

bioengineering texts. The growing availability of genomic data has allowed for a more tai-

lored approach of simplifying the metabolic model directly from the genome scale (Quek

et al. 2010). However, the process of model simplification, whether from traditional bio-

engineering texts or genomic data allows for a considerable amount of uncertainty that has

yet to be sufficiently explored.

The overall objective of this research project is to address the variability of a metabolic

modeling toolchain from the systems biology perspective i.e. integrating error or uncer-

tainty associated with metabolite concentration, flux estimation, and model choice. 1H-

NMR metabolomics through the targeted profiling method offers considerable possibilities

to bioprocess monitoring and control; however, continued implementation must address

potential sources of error. Similarly, the process of model development is not trivial, and
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modeling must address the possibility of disagreement between the model and data be-

ing due to model error. Model simplification involved in Metabolic Flux Analysis (MFA)

makes the analysis of particular interest for validation. The thesis is divided into 5 chap-

ters. Chapter 1 consists of a literature review of cell culture monitoring and modeling via

MFA. Chapter 2 establishes a base level of variability for targeted profiling quantification,

while Chapter 3 presents a detailed investigation of variability in the context of cell culture

media analysis. Chapter 4 addresses bias correction in 1H-NMR data, required for accurate

flux estimation, and Chapter 5 presents a generalized least-squares (GLS) framework for

MFA validation and assesses the impact of both measurement and model error. Chap-

ters 2–4 take the form of published manuscripts, while Chapter 5 has been formatted for

forthcoming submission.
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Chapter 1

Background and Literature Review

1.1 Metabolomics in cell culture

Although precise definitions vary, the metabolome is generally taken as the collection

of small molecules that participate in cellular metabolism. What constitutes as “small”

remains quite vague, with some authors excluding polymeric compounds such as peptides.

On the other hand, Khoo and Al-Rubeai (2007) suggest a 1 kDa cut-off that includes

polypeptides and compounds that are not direct substrates or products in cellular reactions.

The term “metabolome” first appeared around 1998 (Oliver et al. 1998; Tweeddale et al.

1998), and was used to emphasize the holistic analysis of all observable metabolites. As it

stands, only a fraction of over 1400 unique metabolites included in recent metabolic models

of Escherichia coli (Weaver et al. 2014) can be detected. Nonetheless, metabolomics (like

all ‘omic analyses) is distinguished by the goal of establishing a collective profile of cellular

function, rather than focusing on individual components (Lederberg and McCray 2001).

As the chemical environment of the cell, the metabolome represents the phenotype

of higher level processes. Evaluation of genomic or proteomic perturbation requires a
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measurement of outcome, and observation at the metabolic level has the potential to

capture the full impact of small changes in enzyme activity (Dunn and Ellis 2005). This

idea has made metabolomic analysis popular across a wide array of applications. Chief

among these is the detection of disease biomarkers in biofluids such as urine or plasma

(reviewed by Zhang et al. 2012b). Similarly, the metabolic response to drug exposure

has also seen considerable study both in vitro and in vivo (reviewed by Schnackenberg and

Beger 2008). Although the study of metabolic response to drug administration was initially

coined as metabonomics (Nicholson et al. 1999), the distinction in terminology has largely

faded away since then (Cuperlović-Culf et al. 2010). More broadly, metabolomic analysis

has also been used to study the impact of environmental toxins (Garćıa-Sevillano et al.

2015). Although many developments are shared across the broader field of metabolomics,

monitoring of recombinant protein production bioprocesses presents a number of unique

challenges and opportunities.

1.1.1 Footprints and fingerprints

In the context of cell culture monitoring, the broader concept of metabolomics can be di-

vided into the observation of extracellular or intracellular metabolites, referred to respec-

tively as footprinting (or exo-metabolomics) and fingerprinting (or endo-metabolomics)

(Oldiges et al. 2007). Extracellular metabolite analysis is relatively simple but remains

limited to metabolic substrates and excreted products. Sample preparation consists of

centrifugation or fast filtration to remove cellular material. Further processing may con-

sist of derivatization or fractionation, depending on the analytical method. Intracellular

analysis allows access to the greatest number of metabolites, which can include short-lived
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intermediates. However, observation is severely limited by difficulties in sample prepara-

tion. To ensure an accurate snapshot of the cellular metabolism, all enzyme activity must

be halted as the cells are sampled. This is referred to as the quench step and typically con-

sists of a rapid reduction in cell sample temperature. Metabolites must then be extracted

from the cellular debris, which may require membrane disruption along with the selection

of an extraction buffer. In many cases, however, this division is not clear and the two steps

overlap.

The most common quenching procedure consists of mixing cell culture broth with a

larger volume of methanol-water mixture cooled to −40 ◦C, followed by either fast filtra-

tion or centrifugation to eliminate the remains of extracellular fluid. The protocol is gen-

erally credited to de Koning and van Dam (1992), who were studying short-lived glycolytic

metabolites in yeast cells. Since then, it has been applied to everything from bacteria to

mammalian tissue culture, with mixed success. Bolten et al. (2007) compared the use of a

60% methanol mixture at −58 ◦C with 10 mM HEPES buffer (and centrifugation) to fast

vacuum filtration through a nominal pore size of 0.2 µm for a number of Gram-positive

and Gram-negative bacteria. The methanol quench resulted in the leakage of more than

60% of many metabolites, quantified by measuring metabolite levels in the supernatant.

In contrast, leakage from fast-filtration only impacted Gram-negative species and could be

largely eliminated through the use of a 2.6% NaCl solution during filter wash. Methanol-

induced leakage was considerably worse for amino acids and TCA cycle intermediates than

phosphorylated glycolysis intermediates. Similar leakage problems were reported for dif-

ferent bacteria in the comparison of the cold methanol quench (buffered or unbuffered) to

a number of other methods (Shin et al. 2010; Taymaz-Nikerel et al. 2009; Winder et al.
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2008). Of the alternatives, recent application of glycerol saline quenching solutions appears

quite promising (Link et al. 2008; Villas-Bôas and Bruheim 2007).

Reports of leakage as a result of methanol-quenching in Eukaryotic cells are more con-

flicted. Working with Saccharomyces cerevisiae cells, Villas-Bôas et al. (2005) have ob-

served considerable membrane damage (as assessed by propidium iodide) resulting from a

60% or 75% methanol quench at −40 ◦C, with a number of amino and organic acids being

almost entirely excreted from the cell. Canelas et al. (2008) have found similar issues,

but showed dramatic leakage reduction using pure methanol at high ratios of quench so-

lution to sample broth. In contrast, quenching comparisons performed on Pichia pastoris

showed minimal leakage across practically all methanol concentrations (Carnicer et al.

2012; Tredwell et al. 2011b). Similarly, no issues with leakage could be identified in the

methanol-quench of Aspergillus niger (Lameiras et al. 2015) or Penicillium chrysogenum

(de Jonge et al. 2012). While the conflicting reports may be attributed to the different

species, there remain a number of non-systematic deviations in the various protocols. For

example, Carnicer et al. (2012) used fast filtration in combination with the quench whereas

Canelas et al. (2008) used centrifugation.

Systematic comparison of quenching methods for CHO cells have only appeared quite

recently. Sellick et al. (2009) tested the use of 60% methanol at −40 ◦C with a number of

different supplements and found the addition of 0.85% ammonium bicarbonate to give best

results with minimal leakage. However, their analysis focused on larger molecular weight

metabolites such as ATP and glucose-6-phosphate, which have been previously shown to

suffer fewer leakage problems in other cell types (Bolten et al. 2007; Canelas et al. 2008).

On the other hand, both Dietmair et al. (2010) and Kronthaler et al. (2012) have shown
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considerable damage to the cell membrane from the use of methanol, in contrast to 0 ◦C

water with 0.9 w/v NaCl and PBS respectively. The use of fast filtration for CHO cell

quenching has also shown potential (Volmer et al. 2011).

Whereas quenching comparisons have generally focused on methanol-water mixtures

and the question of filtration vs. centrifugation, metabolite extraction protocols are much

more varied. A number of the more aggressive protocols have survived from the 40s and

50s, including the use of perchloric acid (Hancock 1958), hot water (Gale 1947; Work

1949), or hot ethanol (Fuerst and Wagner 1957). Recent method comparisons have also

tended to include pure cold methanol or various combinations of cold methanol, chloroform,

acetonitrile, and water (Canelas et al. 2009; Faijes et al. 2007; Maharjan and Ferenci 2003;

Sellick et al. 2010; Villas-Bôas et al. 2005; Winder et al. 2008). In general, hot water

or ethanol extractions ensure enzyme denaturation, but may cause side-reactions such as

amino acid interconversion or protein hydrolysis (Canelas et al. 2009; Dietmair et al. 2010).

While the use of cold organic solvents is meant to slow down reactions, some enzymes may

continue to function at temperatures as low as −100 ◦C (Bragger et al. 2000), and Canelas

et al. (2009) have suggested that freeze-thaw methods commonly employed with methanol

extraction raise the temperature enough for considerable enzyme activity to occur.

As it stands, both quenching and extraction processes are based on compromise. An

aggressive quench and rinse step may reduce the turnover of highly energetic compounds

such as ATP or the concentration of extracellular compounds, while facilitating the leakage

of smaller acids. Similarly, the use of boiling ethanol for extraction may prevent intercon-

version of extracellular glucose into glucose-6-phosphate but cause changes to amino acid

pools. Finally, different extraction solutions will naturally favour some metabolites over
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others, which may or may not be observable with various available analytical methods.

At the same time, continued developments in rapid (< 1 second) sampling (Canelas et al.

2008; Canelas et al. 2009; Lameiras et al. 2015; Lange et al. 2001) as well as chemical-free

quenching using microstructure heat exchangers (Wiendahl et al. 2007) may be able to

reduce experimental variability and ease future method comparison.

1.1.2 Applications

The ultimate goal of metabolomic analysis is the integration of the greater metabolome

into a systematic understanding of cellular metabolism (Chen et al. 2016; Wang et al.

2006). However, the lack of a truly comprehensive analytical method and the complexity

of modeling interactions across multiple levels of metabolic regulation has limited the

current scope of metabolomic applications. As it stands, most studies use metabolomics

to identify a subset of chemical species that can be linked to suboptimal culture process

performance. Cell culture media optimization represents a particularly common target

of analysis. The systematic quantification of all media components over the course of a

cultivation allows for simple identification of limiting substrates. For example, Read et al.

(2013) identified the depletion of aspartate, cysteine, methionine, tryptophan, and tyrosine

in the cultivation of murine hybridoma cells producing an IgG antibody. Supplementation

of these compounds resulted in 20% increased yield. In a study on IgG producing CHO

cells, Sellick et al. (2011) identified the depletion of aspartate, asparagine, glutamate, and

pyruvate. Supplementation of these compounds maintained exponential growth for an

extra day, increasing overall yield by over 100%. Although the identification of metabolite

depletion is not novel in itself, metabolomic methods allow for a much broader scope of
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quantification using a single analytical method (Aranibar et al. 2011; Bradley et al. 2010).

Even if no limiting substrates can be identified, metabolomic analysis can nonetheless

reveal targets for bioprocess improvement. For example, Mohmad-Saberi et al. (2013) com-

pared CHO cell growth on two different medias and connected consumption of asparagine

with improved cell health and the production of ornithine with the onset of apoptosis.

Indeed, multiple metabolites produced during the course of cell growth have been found to

induce apoptosis in CHO cells (Chong et al. 2011). A number of studies have focused on

the overflow of glucose into lactate in CHO cell metabolism. Ma et al. (2009) developed an

optimized media that improved maximum cell density and supported a shift from lactate

production to consumption. Metabolomic analysis revealed that the extracellular concen-

trations of metabolites “downstream” of pyruvate and “upstream” of fumarate imitated

lactate’s time-course profile. Subsequent studies have also connected sorbitol, fructose (Luo

et al. 2012), and glycerol (Carinhas et al. 2013) to inefficient glucose processing associated

with lactate production. Broader overflow metabolism has also been studied for differ-

ent microorganisms (Paczia et al. 2012). Ideally, metabolomic analysis can reveal targets

for feed optimization or genetic engineering. One example of this process can be seen in

the work of Hasunuma et al. (2011), who investigated the negative impact of acetate on

the growth of S. cerevisiae on lignocellulosic feedstock. Intracellular metabolomic analy-

sis identified the accumulation of pentose phosphate pathway (PPP) intermediates such

as sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-

phosphate. To deal with the accumulation, new strains were constructed to overexpress

either transaldolase (TAL) or transketolase (TKL) and shown to have improved acetate

tolerance in the form of improved cell growth and productivity.
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The amount of data generated by metabolomic analysis (and its complexity) frequently

requires the use of multivariate statistics or multivariate data analysis (MVDA). Key chal-

lenges involve identifying related metabolites and connecting metabolic phenotype to cel-

lular function. Among the available techniques (reviewed by Cuperlović-Culf et al. 2010;

Rathore et al. 2015; Wang et al. 2006), principal components (PCA) and partial least

squares (PLS) regression1 are some of the most commonly used. PCA is used to map

changes in concentrations of many metabolites onto a small set of “principal components”

that best explain overall data variability. This process can be used to identify group-

ings among different samples and propose biological or mechanistic relationship between

grouped metabolites. PLS is similar, but identifies a set of principal components that best

explain the variability in a set of variables designated as a response. PCA and PLS (as well

as related approaches) have been used to discriminate between different microbial strains

(Pope et al. 2007), identify gene deletions (Mas et al. 2007), detect contamination (Sue

et al. 2011), and study the effect of process parameters such as temperature (Wagstaff et al.

2013) or growth inhibiting additives (Badsha et al. 2016). In one particularly interesting

study, Chong et al. (2012) used PLS to link high antibody production in different CHO

clones to high levels of NADH and glutathione, suggesting that clone redox/oxidative state

may have a particularly important role in protein productivity.

1PLS is used as an acronym for “partial least squares” as well as “projection to latent structures”. In
the context of metabolomics, the two terms are generally used interchangeably.
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1.2 Analytical methods

The primary analytical methods of metabolomics are mass spectrometry (MS) and nuclear

magnetic resonance (NMR) (Dunn and Ellis 2005; Zhang et al. 2012a). Mass spectrometry

is based on sample ionization and observation of the resulting mass-to-charge ratios, which

can be related to metabolite identity. Ionization causes many metabolites to fragment

and the fragmentation pattern can be included as a component of the analysis. Nuclear

magnetic resonance, on the other hand, relies on the fact that certain nuclei will resonate

at radio frequencies when placed in a strong magnetic field, with the resonant frequency

depending on the nucleus and strength of the magnetic field. Electron density around

functional groups can alter the local magnetic field that a nucleus experiences – causing

the resonance of nuclei found in different functional groups to appear at different points

of a Fourier transformed spectrum. Although both methods have seen extensive use in

broader metabolomics applications, cell culture and bioprocess monitoring has tended to

favour mass spectrometry. Due to the chemical complexity of the samples involved, a mass

spectrometer detector is typically coupled with sample separation using gas or liquid chro-

matography (GC and LC respectively). Despite the growing popularity of capillary elec-

trophoresis (CE) separation, CE-MS has thus far been limited to more targeted approaches

(Monton and Soga 2007). Together, coupled separation-mass spectrometry methods such

as GC-MS and LC-MS are referred to as “hyphenated” methods. Despite their general

similarity, GC-MS and LC-MS differ considerably in their processing steps as well as the

results they are able to generate.

GC-MS offers high resolution and reproducible separation with the added benefit of
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standardized electron impact ionization (Gao and Xu 2015; Lei et al. 2011). This allows

for relatively simple database generation (Babushok et al. 2007; Kind et al. 2009; Koo et

al. 2014). However, GC-MS is mostly limited to volatile and thermally stable metabolites

such as short chain alcohols, acids, esters, and hydrocarbons (Lei et al. 2011). While the

quantification of such compounds may be sufficient for some microbial applications (Gao

and Xu 2015), analysis of other compounds requires derivatization (Chace 2001). LC-MS

is able to analyze a much broader collection of metabolites with less sample preparation;

however, commonly used electrospray ionization suffers from inconsistent ionization sup-

pression that depends on sample composition (King et al. 2000; Lei et al. 2011). The total

number of metabolites that can be identified by GC-MS and LC-MS (and the quality of

concentration quantification) will depend on both the specific protocol of chromatographic

separation and ionization (as reviewed by Gao and Xu 2015). In some cases, protocol op-

timization may result in a tradeoff between different metabolites. For example, Danielsson

et al. (2010) found that increasing purge vent time and injector temperature in their GC-

MS protocol resulted in an overall increase of peak area but considerable decreases of peak

areas corresponding to phosphoenolpyruvate, asparagine, histidine, glutamine, and gluta-

mate (in their derivatized form). As the work of van der Werf et al. (2007) highlights, truly

comprehensive metabolomic analysis requires the combination of multiple chromatographic

methods as well as multiple separation protocols.

In contrast to MS, typical NMR experiments require no sample preparation beyond

the addition of an internal standard solution and no separation step (Barding et al. 2012).

Furthermore, quantification is independent of many chemical properties such as polarity

or hydrophobicity (assuming that a metabolite can stay in solution). These factors make
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NMR a near-“universal” method (Leenders et al. 2015), considerably simplifying analy-

sis. But universality comes at the cost of sensitivity. While MS can detect metabolites at

nanomolar concentrations (Lei et al. 2011), NMR is constrained by limits of detection in the

high micromolar range (Leenders et al. 2015). At the same time, NMR requires up to 500x

greater sample volumes. It should be noted, however, that NMR analysis is non-destructive,

allowing sample reuse. Whereas hyphenated MS techniques are primarily distinguished by

their method of separation, NMR relies on magnet strength and the detection of multiple

nuclei to discriminate between different metabolites. Four biologically relevant nuclei can

be detected by NMR: 1H, 13C, 31P, and 15N, of which 1H and 31P are found at high nat-

ural abundance. Considering the prevalence of 1H in practically all metabolites, 1H-NMR

has become the default NMR technique for a wide variety of metabolomic applications

(Larive et al. 2015). The abundance of 1H nuclei in metabolomic samples also results in

a high degree of resonance (peak) overlap in 1H-NMR spectra. Although characteristic

peak shapes can aid the deconvolution process, the primary driver for peak separation is

magnet strength. Typically measured as the frequency of 1H resonance (which increases

in stronger magnetic fields), 600 MHz instruments and above have become the norm for

analyzing complex samples. Apart from increasing magnet strength (which can become

prohibitively expensive beyond 1 GHz resonance), it’s also possible to perform 2D experi-

ments to identify coupled nuclei. Whether the coupled nuclei are the same (homonuclear

experiments e.g. 1H coupled to 1H) or different (heteronuclear experiments e.g. 1H coupled

to 13C), 2D experiments spread resonances into two dimensions, thereby reducing overlap

and simplifying identification (Leenders et al. 2015).
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1.2.1 1H-NMR targeted profiling

Despite the popularity of 1D-1H-NMR in metabolomic applications, spectral overlap re-

mains a considerable challenge for metabolite quantification, even at high magnetic strengths.

Although 2D NMR can be a powerful method for spectral deconvolution, there is a consid-

erable cost in the form of decreased sensitivity and increased experimental time. Recent

developments of so-called “ultrafast” 2D methods (as reviewed by Akoka and Giraudeau

2015; Gal and Frydman 2015) and their application to metabolomic analysis (Guennec

et al. 2014) are paving the way towards more common use, but thus far, 1D-1H-NMR ex-

periments have remained the norm. The extraction of quantitative data from 1D-1H-NMR

spectra can be accomplished through a number of different means. Fundamentally, NMR

quantification relies on the principle that the integrals of resonance peaks are proportional

to the number of nuclei that make up the resonances (Bharti and Roy 2012). Quantifica-

tion schemes primarily differ in how the area is estimated. One common approach is to

divide the spectra into a series of section or “bins” and calculate the area for each bin,

which may be equidistant, specified manually, or set according to an adaptive algorithm

(De Meyer et al. 2010; De Meyer et al. 2008). Multivariate analysis like PCA can then

be used to identify spectral regions that correlate with a response of interest. Although

some resonances can be linked to specific metabolites, other spectral regions will remain

convoluted. Another approach is to decompose the spectra into a subset of simpler peaks.

For example, “total-line-shape fitting” has been used to convert whole spectra into a series

of Gaussian and Lorentzian peaks (Laatikainen et al. 1996; Soininen et al. 2005). Alter-

natively, spectral features can be extracted based on variations between different samples

(Eads et al. 2004; Ochs et al. 1999). Features extracted in this way may happen to corre-
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spond to specific metabolite resonances (Eads et al. 2004), but the overall process does not

take advantage of metabolite-specific resonance information. The third major approach is

to use a spectral library to fit collected data. Although automated methods are becoming

increasingly sophisticated (Crockford et al. 2005; Gipson et al. 2006; Gómez et al. 2014;

Hao et al. 2012; Mercier et al. 2011; Ravanbakhsh et al. 2015; Zheng et al. 2011), commonly

used commercial software requires a human to perform metabolite resonance assignment

and fitting.

First introduced by Weljie et al. (2006), “targeted profiling” refers to the process of

manually matching computer generated resonance peaks to a spectra as a means of “de-

convoluting” resonance overlap – with the functionality provided by NMR Suite software

(Chenomx Inc., Edmonton, Canada). The generated curves are drawn from a library of

pure compound spectra, collected over a range of pH values (since pH can have a consider-

able impact on the chemical shift, or position, of the resonances). The library can be used

to identify metabolites based on the location of individual resonances, their characteristic

shapes, and the correlation of multiple metabolite resonances across the spectra. A human

“profiler” chooses metabolites from a shortlist generated by the software to arrive at the

best overall fit. Ideally, subtracting the generated resonances from the original spectra

should result in a “subtraction line” that is consistently near 0. Comparing the integrals

of metabolite resonances identified in this way to the resonance integral of a known quan-

tity of internal standard allows for the accurate quantification of all identified metabolites.

However, as resonance integral values can depend on the specific parameters of the NMR

experiment, quantification is contingent on experimental data and the database sharing

the same NMR pulse sequence.
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The relative novelty of the targeted profiling method and the possibility of human error

in the quantification raises a number of questions around expected variability. Previous

work with single compound solutions or well resolved peaks has suggested that NMR

quantification can reach relative standard deviations of approximately 0.5% (Malz and

Jancke 2005; Maniara et al. 1998; Wells et al. 2002), even when comparing analysis by

different laboratories (Malz and Jancke 2005). However, the method of quantification was

limited to simple integration. A number of studies have also examined the analytical

reproducibility of highly convoluted biofluid samples in the context of spectral binning

(Dumas et al. 2006; Keun et al. 2002b; Parsons et al. 2009; Viant et al. 2009; Ward

et al. 2010). While it’s possible to conclude that spectra acquisition by NMR is quite

robust, less can be said about the method of deconvolution. Two studies have explicitly

considered variability associated with human profiling (Slupsky et al. 2007; Tredwell et al.

2011a), however, analysis focused on between-profiler variability. Although coefficients of

variation as high as 25% or more were routinely observed, the source of variability remains

unclear and a number of questions remain. Is profiling alone to blame, or does underlying

spectral variability contribute to human inaccuracy? Furthermore, is there a way to predict

variability estimates from solution composition?

1.3 Metabolic flux analysis

Due to the complexity of cellular metabolism – consisting of overlapping systems that in-

corporate genetic information, transcription/translation levels, and enzyme activities (Lee

et al. 2005; Tyo et al. 2007) – the conversion of metabolomic data to metabolic informa-
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tion typically requires some form of mathematical modeling. A system-level approach to

metabolic engineering that considers all levels of information has been a major goal in

the field for some time (Stephanopoulos et al. 1999). Although some studies have begun

to collect and analyze combinations of metabolomic, proteomic, and transcriptomic data

(frequently referred to as multi-omic) (Al Zaid Siddiquee et al. 2004; Krömer et al. 2004;

Wang et al. 2003; Yoon et al. 2003), the incorporation of this data into a single comprehen-

sive model has proven to be challenging (Dauner 2010; Stephanopoulos et al. 2004). The

relationship between (and regulation of) gene expression level, protein concentration, and

metabolite production has yet to be fully elucidated (Blank and Kuepfer 2010; Carinhas

et al. 2012; Kim et al. 2008; Maertens and Vanrolleghem 2010; Shimizu 2009). As such,

most modeling efforts have focused on relatively simple stoichiometric balancing (Boghi-

gian et al. 2010), with the calculated intracellular flux seen as the cumulative output of all

the regulatory systems (Blank and Kuepfer 2010; Boghigian et al. 2010; Kim et al. 2008;

Niklas et al. 2010).

At its core, the stoichiometric model is nothing more than a system of linear equations

representing mass or energy balances around the chemical reactions that take place inside

a cell. The scope of the model, however, has changed considerably over the years from sim-

ple element balances (Stephanopoulos et al. 1998) to full genome-scale reaction networks

(Quek et al. 2010). Despite the recent advances, the process of translating genomic infor-

mation to cellular reactions is still under development. Even the well-studied genomes of

Escherichia coli and Saccharomyces cerevisiae still have approximately 20% of their open

reading frames (ORFs) uncharacterized (Dauner 2010) and the development of reaction

networks requires a significant amount of curation (Boghigian et al. 2010; Dauner 2010;
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Maertens and Vanrolleghem 2010). Furthermore, the large number of reactions that can

occur inside a cell make it difficult to calculate metabolite flux through the network as a

function of extracellular metabolite concentrations. Thus, where intracellular flux calcu-

lation is required, the reaction network must be reduced by removing reactions that are

presumed to be irrelevant under particular experimental conditions and combining smaller

reactions into pooled pathways (Quek et al. 2010). The calculation of intracellular fluxes

from such a reduced, overdetermined stoichiometric model is generally referred to as simple

or traditional metabolic flux analysis (MFA). For the purpose of this document, MFA will

always refer to traditional overdetermined MFA, unless noted otherwise.

The process of generating an MFA stoichiometric model can be argued as being some-

what ad hoc, with model curation guided by (generally well-argued) assumptions about

cellular metabolism and culture conditions (Quek et al. 2010). Despite this freedom in

model formulation, the effect of model structure on the calculated fluxes is not well stud-

ied (Maertens and Vanrolleghem 2010). Furthermore, frequently employed model and data

validation techniques have remained largely unchanged since their first introduction (van

der Heijden et al. 1994), in contrast to the continued growth of metabolic model size and

scope. The accepted validation strategies have to be carefully evaluated given the advances

in model formulation, and updated where necessary. Moreover, new techniques are needed

to incorporate a model’s inherent explanatory power in the interpretation of experimental

data.
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1.3.1 Formulation

Although the development of MFA has been a gradual process, its current mathematical

formulation is generally attributed to Stephanopoulos et al. (1998). The basis of metabolic

flux analysis takes the form of a mass balance around intracellular metabolite concentra-

tions:

dCmet
dt

= rmet − µCmet (1.1)

where dCmet

dt
is the “change in concentration” vector for intracellular metabolites, rmet

is the “net rates of formation” vector (generation and consumption), and µCmet is the

“biomass dilution” term, which represents the amount of metabolite leaving the cell upon

cell division. From Equation 1.1, two major simplifications are made: assumption of steady

state and incorporation of biomass growth as a consumption reaction, resulting in:

0 = rmet = Sv (1.2)

where S is the stoichiometric matrix and v is the vector of fluxes that correspond to

reactions defined by S. The steady state assumption follows from the observation that

metabolite pools are often much smaller than the metabolite production and consumption

fluxes and can be ignored. A similar assumption is applied to pool dilution as a result of

cell division. Even when a metabolic pool is split in half, the amount of metabolite needed

to reestablish the pool is small in comparison to the flux passing through it.

The Sv matrix can be be separated into Scvc + Sovo, where c stands for calculated

flux and o for observed flux. The manner of solution for the unknown fluxes depends on
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the form of Sc. Taking Sc to be an n-by-m matrix, three cases are possible: i) n < m, ii)

n > m, iii) n = m. In the first case, the matrix is undetermined and must be solved through

optimization – the most common result when using the full scope of a genomic model. In

the second, the matrix is overdetermined and must be solved using a pseudo-inverse, which

is equivalent to least-squares regression2. The third case is quite rare in practice and can

be accomplished with a simple matrix inverse.

1.3.2 Strategies for estimating unknown fluxes

The differences in the solution of underdetermined and overdetermined systems influences

the types of questions that these models can answer. The most important distinction

is that the analysis of underdetermined systems, or flux balance analysis (FBA) as it is

frequently referred to, defines a feasible solution space for the unknown reaction fluxes

based on the metabolic network, while MFA calculates a single flux estimate (Toya et al.

2011). The number of reactions that occur inside a cell is generally far greater than then

number of observed metabolites (Quek et al. 2010). FBA takes advantage of detailed

metabolic network data and known flux constraints to restrict the possible solution space

of the unknown fluxes (Kauffman et al. 2003). The calculation of a single flux estimate

requires the assumption of a metabolic objective, such as the maximization of growth

rate or the maximization of glucose consumption efficiency (among others) (Schuetz et al.

2007). By specifying the objective as an optimization criteria, a single flux estimate can

be calculated by linear (or quadratic) programming. This approach is typically used to

predict the effects of specific gene insertions or deletions (Kim et al. 2008).

2Overdetermined MFA is covered in greater detail in Chapter 5.
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While FBA models can offer a very detailed picture of a microorganism’s metabolism,

they also pose considerable challenges. FBA models require the specification of each enzy-

matic reaction (Wiechert et al. 2001) and are typically used on well-curated genome-scale

metabolic models (Lewis et al. 2012). Detailed models will naturally result in more precise

feasible solution spaces. Unfortunately, animal cell lines relevant to cell culture applications

frequently lack the necessary genomic data (Carinhas et al. 2012), with mouse hybridoma

cells a notable exception (Quek et al. 2010; Selvarasu et al. 2009). Even the well-studied

S. cerevisiae has approximately 20% of its protein-coding genes uncharacterized and the

formulation of the various available databases has required a considerable amount of man-

ual confirmation and curation (Christie et al. 2009). Furthermore, the relation between

the presence of a gene sequence and enzymatic activity is not always obvious (Maertens

and Vanrolleghem 2010). A combined transcriptomic-metabolomic modeling study of E.

coli has revealed the existence of redundant gene expression where no flux was observed

(Shlomi et al. 2007). Meanwhile, a study of lysine-producing Corynebacterium glutamicum

metabolism suggested that while the expression of some genes appears tightly coupled to

metabolic fluxes, others can remain practically constant despite considerable changes in

metabolic flux (Krömer et al. 2004). Even where genomic data is readily available, its

translation into accurate metabolic models can be limited.

To avoid the analysis of underdetermined systems, the formulation of an overdetermined

system can be achieved with the combination of model simplification (Quek et al. 2010)

and/or the collection of extra information in the form of isotopomer analysis (13C-MFA)

(Wiechert et al. 2001). The latter approach takes into account the carbon distribution of

site-specific enzyme reaction products by using 13C-labeled substrate. Unlike FBA and
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traditional MFA, this method is able to calculate unique intracellular fluxes of parallel

and bi-directional reactions (Iwatani et al. 2008; Wiechert and Nöh 2005). On the other

hand, the introduction of a labeled substrate adds a considerable amount of complexity

in the form of labeling transients, as isotopic equilibrium is achieved in both intracellular

pools and biomass components (Wiechert and Nöh 2005). To avoid these transients, ex-

periments must be performed in continuous culture - in contrast to batch-mode operation

frequently used in industrial production (Wiechert et al. 2001). Semi-continuous cultures

have also been used for this purpose (Sheikholeslami et al. 2013), but the high cost of

labeled substrate can make high volume experiments prohibitive (Wiechert et al. 2001).

While more advanced, non-stationary 13C-MFA approaches have the ability to overcome

continuous-culture requirements by directly considering the transient profiles of isotopic la-

bels, new complications arise in the form of intracellular pool quantification and the need

for very rapid sampling (Nöh and Wiechert 2011). Accurate quantification of intracellular

metabolite pools is particularly problematic for Eukaryotes, as some metabolites may have

distinct pools between mitochondria and cytosol, subject to different enzymes (Nöh and

Wiechert 2011).

Although both 13C-MFA and FBA offer significant advantages over the traditional MFA

approach, they also pose considerable challenges. The use of complex models requires

information or techniques that may not be currently available for mammalian or insect

cell cultures. On the other hand, simpler, mass balance approaches such as traditional

MFA can still be used to gain a better understanding of cellular metabolism. Such models

continue to see use for the metabolic analysis of mammalian cell lines (Niklas et al. 2012;

Niklas et al. 2011; Nyberg et al. 1999; Priesnitz et al. 2012; Quek et al. 2010; Xing et al.
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2011) and have recently been applied to insect cell cultures as well (Bernal et al. 2009;

Drugmand 2007). A number of extensions to traditional MFA have also been developed.

Goudar et al. (2006) implemented a quasi real-time strategy where MFA calculation is

performed as data is collected during a perfusion reactor cultivation. More recently, a

dynamic MFA (or DMFA) approach has been proposed to integrate flux estimation from

metabolite concentration trends and stoichiometric flux modeling (Leighty and Antoniewicz

2011). Whereas the original formulation was limited to piecewise linear trends (Leighty

and Antoniewicz 2011), Mart́ınez et al. (2015) extended the approach to use B-spline curve

fitting. Ongoing development and continued implementation have kept traditional MFA

relevant despite the existence of more sophisticated methods.

1.3.3 Current validation methods

Model and data validation have been an important component of MFA for some time

(Stephanopoulos et al. 1998). The basis of validation was established by van der Heijden

et al. (1994) and revolves around the idea of “gross error detection”. The basis for this

analysis stems from the fact that measurement error will result in a difference between some

hypothetically true value of measured fluxes and those that are observed. If such deviations

stem from random measurement noise, they can be assumed to follow a normal distribution.

Thus, a χ2-test can be used to determine the presence of significant outliers signifying the

presence of a gross error3. If no such errors are identified then all observed values must

contain only random noise, which can be “balanced” by finding an estimate for the observed

values that minimizes the sum of squared errors for the observations (Stephanopoulos et al.

1998). This idea of “balancing” a set of observations based on a stoichiometric model has
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been used extensively as a form of data reconciliation around chemical reactors to account

for observation error (Madron et al. 1977). A traditional application of this approach to

cell culture has been to make use of known element balances to correct observed values

before calculating culture parameters such as growth yields (Solomon et al. 1982).

The χ2-test and the accompanying observed value correction have been established

as the default validation method for MFA models. Recent work continues to use this

test to determine model and observation accuracy (Bernal et al. 2009; Niklas et al. 2012;

Niklas et al. 2011; Nyberg et al. 1999; Priesnitz et al. 2012; Quek et al. 2010; Xing et al.

2011). However, today’s models are much larger and more complex than the ones used

for test development (van der Heijden et al. 1994). Furthermore, the initial argument for

observed value correction, to use a well established empirical model for the correction of

relatively questionable data (Wang and Stephanopoulos 1983), has remained unchanged

despite greater availability of high-throughput data and the growing complexity of model

formulation.

Complementary forms of model validation also consider error sensitivity (Niklas et al.

2012; Niklas et al. 2011; Nyberg et al. 1999; Priesnitz et al. 2012; Xing et al. 2011).

The calculation of stoichiometry matrix condition number4 has long been established as

one method to predict the effect of observation error on calculated fluxes (Vallino and

Stephanopoulos 1990). Condition numbers smaller than 100 are generally seen as reason-

able, whereas those greater than 1000 suggest serious issues in the model where even small

experimental errors could be magnified to unacceptable levels. Minimizing condition num-

bers has also been suggested as an objective function for deciding which fluxes need to be

3Mathematical details are presented in Chapter 5.
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observed (Savinell and Palsson 1992). More recently, Goudar et al. (2009) have proposed

the use of a normalized sensitivity matrix as a more specific measure of error effect. As

opposed to using a single estimate of error magnification in the form of condition number,

this method calculates the effect of all observed variables for each calculated flux. The

researchers found that while large calculated fluxes could tolerate observation error rea-

sonably well, calculated fluxes of lower magnitude were very susceptible to even relatively

small changes in observed fluxes of high volume.

4The condition number of a matrix A is defined as κ(A) = ||A|| · ||A−1||. Given the equation Ax = b,
κ(A) represents how sensitive the solution of x is to error in b when using A−1. In loose terms, κ(A) serves
as an upper boundary of the scaling factor that relates a relative change in b to a relative change in x
(Cheney and Kincaid 2007).
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Chapter 2

Establishing the Base Level Variance
of Targeted Profiling

As discussed in Chapter 1, cell culture monitoring represents a relatively new application

for targeted profiling methods. While a number of studies have considered variability due

to human error (Slupsky et al. 2007; Tredwell et al. 2011a), the context was primarily

biofluid analysis. The differences between biofluid and cell culture samples have a conflict-

ing impact on the quality of metabolite quantification. The relative simplicity of cultured

organisms in comparison to the Homo sapien (or even Mus musculus used in toxicological

studies) leads to much simpler metabolic phenotypes and fewer challenges in metabolite

identification. The smaller number of metabolites leads to less spectral convolution and

background “chemical noise”. On the other hand, differences in cell culture phenotypes

may be biologically relevant at very small concentration and are unlikely to be as drastic

as in biofluid samples, where a disease or metabolic disturbance can have a pronounced

impact on metabolic phenotype. To get a better idea of how useful targeted profiling

quantification would be for cell culture analysis, it was necessary to establish a baseline of

quantification variability.
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The overall process of extracting a metabolite concentration value from an NMR scan

using the targeted profiling method can be broken down into three steps – tube insertion

and shimming, acquisition of the spectrum, and profiling. The position of the NMR tube in

the sample holder influences the orientation of the sample within the instrument’s magnetic

field and the receiver coil used for spectra acquisition. Not every part of the tube may ex-

perience the exact same magnetic field, with potential inhomogeneity caused by the design

of the magnet itself, certain materials used in internal instrumentation, small variations in

the thickness of the sample tube, or the presence of paramagnetic particles in the sample.

The correction of field inhomogeneity is referred to as “shimming” and consists of passing

low levels of current through special coils around the sample in order to generate magnetic

fields capable of balancing the deviations. Failure to correct field inhomogeneity typically

results in a broadening of individual chemical resonances (as molecules will resonate at

frequencies dictated by the local magnetic fields they experience).

A basic 1H-NMR scan consists of exciting all protons in a sample with a single strong

radio signal and recording the resulting radio wave emissions as excited protons drop to

a lower energy state. This output signal contains a mixture of sine waves with varying

frequencies and amplitudes that slowly decay over time (an example of this output can be

seen in Figure 2.1a). A Fourier transform converts this information into a series of peaks

(as shown in Figure 2.1b), with peak location indicative of resonance frequency, i.e., the

electron environment of the proton, and peak area corresponding to the abundance of that

proton. As most metabolites contain multiple protons in different electron environments,

more than one peak “cluster” is generally observed per metabolite. Although the ideal peak

shape should take the form of a Lorentzian function, interactions between neighbouring
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protons can result in much more complex shapes. If a metabolite resonance is well resolved,

its area can be calculated through simple integration. However, most complex mixtures

feature a considerable degree of overlap, requiring peak separation. The targeted profiling

method provides the user with a library of ideal spectra that can be overlaid through a

“drag-and-drop” type interface to match observed results. An illustration of this process

can be seen in Figure 2.2. Regardless of how peak area is calculated, comparing the area

of a metabolite resonance to the area of an internal standard resonance allows absolute

concentration quantification.

Given the qualitative nature of profiling and the potential for errors at all stages of

the process, a number of questions had to be considered. First, what is the minimum

expected variability for a relatively simple mixture? Second, is baseline variability the

product of human error alone, or are other factors involved? Third, what is the impact of

small differences between the excitation pulse sequence used during NMR spectra acquisi-

tion and library generation i.e. how robust is the quantification? While answering these

questions was important for future cell culture work, the results were judged to be relevant

for biofluid analysis as well. To broaden potential interest in the results, we partnered with

Ryan McKay from the National High Field Nuclear Magnetic Resonance Centre (NANUC)

as well as Chenomx Inc. and the results of the investigation were published in the journal

Metabolomics (Sokolenko et al. 2013). The manuscript is presented below in its original

form. Online resources available with the publication are provided in Appendix A.
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Figure 2.1: a) Example of resonance data observed using NMR and b) the corresponding
Fourier transformed spectrum.
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Figure 2.2: An illustration of targeted profiling with three metabolite peaks overlaid to
match the observed spectrum.
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2.1 Abstract

The growing use of ‘targeted profiling’ approaches for the deconvolution of 1D-1H-NMR

spectra by comparison to a pure compound library has created a need for an in-depth

characterization of quantification variability that is beyond what is currently available in

the literature. In this study, we explore the underlying source of quantification variability

(tube insertion, spectra acquisition, and profiling) as well as a number of other factors, such

as temporal consistency of repeated NMR scans, human consistency in repeated profiles,

and human versus machine sampling. We also look at the effect of different pulse sequences

on the differences between acquired spectra and the peak reference library. Two sample

types were considered for this work – a synthetic five compound mixture as well as human

urine. The result is a comprehensive examination of 1D-1H-NMR quantification error. Our

investigation into variability sources revealed that apart from profiling, sample insertion

and/or shimming can play a significant role in final quantification, a finding that is equally

applicable to all integration-based methods of quantification. Both sources of error were

also found to have temporal relationships, with bias identified as a function of both scan

and profiling order, reinforcing the need for randomization in scanning and profiling. As

well as presenting a practical estimate of variability in human urine samples, we have

uncovered a considerable amount of complexity in underlying NMR variability that will

hopefully serve as impetus for future exploration in this area.
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2.2 Introduction

The study of small molecules originating from endogenous and exogenous metabolism has

developed rapidly over the past several years. Routine identification and quantitation of

metabolites is performed on a number of human bodily fluids including, but not limited to,

whole blood, serum, plasma, cerebrospinal fluid, and urine. Mass spectrometry (MS) and

nuclear magnetic resonance spectroscopy (NMR) are the predominant analytical techniques

used to this end, although rarely used in concert (undoubtedly due to cost restraints). MS

has the advantage of rapid individual component identification and inherent sensitivity.

While NMR has no theoretical sensitivity limit due to the ability to add repeated scans,

data collection much below the micromolar concentration level quickly becomes impracti-

cal for metabolic samples in terms of required acquisition time. Biofluid analysis is further

limited by considerable levels of peak overlap. On the other hand, NMR has the advan-

tage of being able to acquire not only qualitative (composition) but also quantitative data

on intact biological samples without the chromatographic separation needed in most MS

experiments. Combined together, the two techniques offer unparalleled identification ca-

pabilities of a range of concentrations, and cover a broad range of source compounds (i.e.

types of solubility, molecular size, functional groups etc.).

Despite the fact that all NMR applications are based on the same physio-chemical quan-

tum mechanical principles, experimentation and data processing vary considerably in the

results they can generate. The most obvious division is between one or multi-dimensional

experiments (1D-NMR and 2D-NMR respectively). As it stands now, 1D-NMR tech-

niques have the advantage of considerably shorter acquisition time and better sensitivity,
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although new developments for 2D-NMR analysis are quickly bridging this gap (McKenzie

et al. 2011). 1D-NMR can be further subdivided into how the generated spectral data

is used. It is possible to use spectral information directly for sample classification (as in

disease biomarker identification), such as with the commonly used combination of spectral

binning followed by principal components analysis (PCA). Another approach is to convert

spectral information to metabolite concentrations before classification, frequently referred

to as (targeted) profiling (Weljie et al. 2006). The application of spectral binning for the

purpose of disease biomarker identification through discriminant analysis is extremely pow-

erful, but only scratches the surface of the information held within a spectrum. Spectral

deconvolution allows the profiling of individual compounds and provides researchers fur-

ther information towards deciphering cellular function. A number of software packages have

been developed to aid a human profiler in the task of spectra deconvolution (as reviewed

in (Dieterle et al. 2011)), including Bio-Rad Laboratories Know-It-All (Bio-Rad Labora-

tories, Philadelphia, PA),Bruker Biospin Biofluid Spectra Base (Bruker Biospin GmbH,

Rheinstetten), and Chenomx NMR Suite (Edmonton, Alberta), the software considered

in this work. More recently, fully automated deconvolution algorithms have also begun

to appear (Hao et al. 2012; Mercier et al. 2011; Zheng et al. 2011). The development of

new techniques requires a new look at measurement reproducibility as previously reported

results (such as those from binning spectral data) cannot be applied.

With the increasing number of NMR-based metabolomics studies of human diseases

(Nagrath et al. 2011; Psychogios et al. 2011; Wei 2011; Zulyniak and Mutch 2011), there

is a need for a comprehensive examination of NMR quantification variability, similar to

the work done by Zelena et al. (2009) for UPLC-MS. A fundamental question that has
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yet to be answered is how much variability exists, and where does the variability in an

NMR quantified concentration come from, given that there are numerous potential sources

of error e.g. tube positioning and shimming, spectra acquisition, metabolite assignment

and deconvolution, to name a few. More generally, what are the error bounds that one

can expect in a typical biofluid sample following quantitation with software such as the

Chenomx NMR Suite – and how should these bounds be interpreted? From a commercial

point of view, an in-depth error analysis is key for personalized medicine applications

of biofluid analysis, especially because small spectral differences are being encouraged as

patentable intellectual property. These differences can be viewed as biomarkers for disease

identification, disease severity evaluation, and optimal treatment Nagrath et al. (2011).

While there have been studies regarding sample preparation, sample handling, and how

the subsequent data should be analyzed (Beckonert et al. 2007; Begley et al. 2009; Beltran

et al. 2012; Foxall et al. 1993; Garde et al. 2004; Kohl et al. 2012; Lauridsen et al. 2007;

Saude et al. 2007; Saude and Sykes 2007; Sukumaran et al. 2009; Warrack et al. 2009; White

et al. 2010), few studies have addressed the very serious need for ‘error bars’ on the raw

information, lacking from virtually all metabolic data published to date. Where spectral

reproducibility has been addressed directly, the context has often been the integration of

relatively unconvoluted peaks, more typical of analytical chemistry and limited to only

select biofluid constituents (Malz and Jancke 2005; Maniara et al. 1998; Viant et al. 2009;

Ward et al. 2010; Wells et al. 2002), or binning approaches for convoluted spectra (Dumas

et al. 2006; Keun et al. 2002a; Parsons et al. 2009; Viant et al. 2009; Ward et al. 2010). The

reproducibility of software assisted profiling of biofluid spectra has so far largely focused

on ‘between-person’ comparisons (Slupsky et al. 2007; Tredwell et al. 2011b).
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The issue of error quantification is further confounded by the effect of solvent suppres-

sion. As the most convenient biological NMR samples are aqueous in nature, successful

NMR analysis requires a 105–106–fold reduction of the inherent 1H signal from the solvent

in order to have any chance of viewing the solute signals (i.e. metabolites). Fortunately

there has been a wealth of excellent development in this regard (for reviews, see Liu and

Mao 1999; McKay 2009; Price 1999 and references therein). While the number of pos-

sible pulse sequences makes the selection of a standard technique quite daunting, one

has nonetheless emerged. The first increment of the 2D [1H,1H]-nuclear Overhauser spec-

troscopy (NOESY) sequence has a simple setup (with few parameters to optimize), robust

solvent suppression, and simple hardware requirements. For example, the sequence does

not require pulse field gradients, waveform generators, or even multi-channel/nuclei con-

soles and probes. Essentially, even the simplest instrumentation will likely be able to run

this pulse sequence with little trouble and the experimental protocol comes standard with

the operating software from most major instrument vendors. While the pulse sequence

itself is capable of multi-dimensional data acquisition, only the first dimension is collected.

The NOESY utilizes both presaturation, as well as inherent solvent suppression capabili-

ties from the delays and phase cycling used in the sequence (Mckay 2011). The simplicity,

water suppression, low hardware requirements, and the use by major research groups made

the 1D-NOESY the sequence of choice for the Chenomx software package (Chenomx Inc,

Edmonton, Alberta). While protocols have been established for the collection of highly

reproducible data, for particular samples (such as highly dilute urine) the residual solvent

signal can be unexpectedly difficult to suppress, requiring the exploration of pulse sequence

alterations or entirely new sequences with improved water suppression.
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To address this issue, the effect of using a non-standard version of the NOESY and

a different pulse sequence on the Chenomx NMR Suite analysis was investigated. The

comparison was performed on a simple five-compound mixture as well as a human urine

sample. In the process, we present a comprehensive examination of the precision that

can be expected from metabolite quantification, ranging from the ideal scenario of only

somewhat convoluted spectra to the more realistic case of heavily convoluted samples i.e.

a great deal of spectral overlap. A simple mixture was then used to investigate the source

of variability inherent to NMR analysis, considering the impact of tube insertion and shim-

ming, spectral acquisition, and lastly the profiling itself. A fully randomized experimental

design also allowed the investigation of time/order related effects (such as measurement

drift) at the sample insertion/shimming and profiling levels. In this manuscript, we have

gone a long way towards elucidating the error contribution of each aspect of the experiment

to suggest protocols for monitoring, and possible avenues for improving metabolomics data

for all interested groups.

2.3 Materials and methods

2.3.1 Sample composition

Simple mixture

A five-compound, synthetic mixture consisting of glucose (Aldrich, ChEBI:17634), glycine

(Aldrich, ChEBI:15428), maltose (Sigma, ChEBI:17306), sucrose (Sigma, ChEBI:17992)

and nicotinic acid (Aldrich, ChEBI:15940) was used to probe the base-level accuracy and
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variability of the 1D-1H-NMR data. Each compound was dissolved to a randomly chosen

concentration close to 10 mM. Compound concentration has been previously observed not

to influence quantification precision, as long as the concentration remains above the limit

of detection. A relatively high concentration was chosen to limit the impact of weighing

and volumetric errors. Briefly, dry compound stocks were dissolved in 70 mL of 30 mM

PO4 buffer. The pH of the solution was adjusted to 6.9, and 8 mL of an internal standard

solution was added. The internal standard consisted of 99.9% D2O with 4.6861 mM 2,2-

dimethyl-2-silapentane-5-sulfonate (DSS, see Markley et al. 1998) serving as an internal

chemical shift reference and 0.2% w/v sodium azide (NaN3) to inhibit bacterial growth

(Chenomx Inc., Edmonton, Alberta). The mixture was brought up to a final volume of

80 mL with 30 mM PO4 buffer, to produce a solution containing 9.92 mM glycine, 10.30 mM

maltose, 10.58 mM sucrose, 8.61 mM glucose, 10.18 mM nicotinic acid, and 0.4686 mM

DSS. The solution was stored frozen at −80 ◦C before being separated into 21 tubes for

spectra acquisition and profiling.

Urine

A single human urine sample was selected randomly from a healthy donor. The sample

was stored at −80 ◦C until scanned. The sample was filtered through a 0.22 µm filter

(VWR Scientific, Mississauga, ON), and transferred to a Wilmad 535P-8 inch NMR tube

(Wilmad Glass Inc, Vineland NJ) for spectra acquisition and profiling.
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2.3.2 NMR

Pulse sequences

Three pulse sequences (hereafter referred to as 1D-NO-ESY s1a4, 1D-NOESY s2a3, and

grd-NOESY s1a4) were investigated to determine their relative contribution to measur-

able error and to test whether a database created with a single pulse sequence (Chenomx

Inc.) would still yield reliable qualitative and quantitative information when other pulse se-

quences were utilized. The nomenclature indicates the initial presaturation and acquisition

times, e.g. in 1D-NOESY s1a4, s1 corresponds to ∼ 1 s of presaturation (10 ms of relax-

ation delay with 990 ms of active water suppression at an induced field strength/gammaB1

of ∼ 80 Hz, see Mao and Chen 1996) while the term a4 corresponds to an acquisition period

of 4 s. The recommendations when using the Chenomx Software database for biomarker

identification require a 10 ms delay, 990 ms presaturation period, 100 ms mixing time (with

saturation), and a 4 s acquisition period for a total recycle delay of 5 s (i.e. relaxation can

occur freely during this entire period, but not during mixing as the evolution is perturbed by

the final pulses). 1D-NOESY s2a3 is the same general pulse sequence as 1D-NOESY s1a4

with the presaturation period extended by 1 s and the acquisition time shortened by the

same amount, yielding an identical total relaxation delay. Finally, grd-NOESY s1a4 was

a pulse sequence developed for improved solvent suppression (McKay et al. 2009). Where

the sequence names appear in figures, a shortened form is used – grd s1a4, met s1a4, and

met s2a3, where the ‘grd’ stands for grd NOESY and ‘met’ refers to the frequently used

name of ‘metnoesy’ in reference to the 1D-NOESY sequence. Additional information on

the pulse sequences used can be found in Appendix A.
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Sample acquisition

800 MHz NMR The single urine sample (600 µL) was repeatedly scanned at 25 ◦C

on an Inova 18.8T (800 MHz) NMR Spectrometer (Varian Inc. now Agilent, California)

using VNMRJ 2.2D controller software on a RHEL 5.3 operating system. The instrument

was equipped with a 5 mm HCN Z-pulsed field gradient cryogenically cooled probe. The

magnetic field was manually optimized until a line shape for the DSS methyl peak (see

above) of less than 1.0, 12, and 20 Hz at 50, 0.55 and 0.11% respectively, was achieved.

Deuterium lock was maintained on the 10% D2O added as part of the internal standard.

The sweep width was 9599.2 Hz; presaturation (∼ 80 Hz gammaB1) time was 990 ms with a

10 ms relaxation delay; mixing time was 100 ms (also with saturation power); and all pulse

lengths were manually calibrated to optimal 90◦ excitation. The acquisition period was 4 s

(76794 real plus imaginary points) with 32 scans collected per experiment after 4 steady

state scans to establish equilibrium. Digital oversampling of a factor of 20 was utilized

during acquisition, and the extraneous points automatically removed prior to storage.

600 MHz NMR Simple mixture NMR samples were transferred to 5 mm diameter

Wilmad 512P-4-inch tubes with robotic caps. Sample volumes were made up to precisely

700 µL for dependable automated optimization of the spectrometer magnetic field (i.e.

shimming). Samples were run on a Varian (now Agilent Inc., California) VNMRS console

equipped with a Varian 768AS automatic sampling handling system controlled by VNMRJ

2.2C software in a RHEL 4u3 environment. Spectrometer lock was established on the 10%

D2O and maintained throughout the experiments. Automated Z-axis pulsed field gradient
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shimming was performed on each sample. Line shape of the methyl group resonance of

DSS was evaluated and was only deemed acceptable when the width of the peak was <1.0,

12 and 20 Hz for the 50, 0.55 and 0.11% peak heights, respectively. The effective 90◦

pulse width was automatically calibrated using nutation theory (Wu and Otting 2005)

along with the optimal carrier position for water saturation. A simple presaturation pulse

sequence (Figure A.1a) was used for sample parameter optimization (i.e. spectrometer

locking, shimming, pulse width, and carrier position). Optimized parameters were then

transferred to the 1D-NOESY (Figure A.1b) and grd-NOESY (Figure A.1c) experiments,

respectively.

Spectra were collected with 32 transients and 4 steady state scans. Manual handling of

the sample included sample length measurement and position of the sample in the spinner

for centering in the receiver NMR coil. Robotic sample handling was carried out using

the Varian 768AS sample handling system. The 1D-NOESY pulse sequence is shown in

Figure A.1b and the phase cycling has been described in detail previously (Mckay 2011).

Spectra processing and profiling

All spectra were processed and profiled using NMR Suite 7.1 (Chenomx Inc., Edmonton,

Alberta) by a single profiler. Spectrum phasing and baseline correction were applied au-

tomatically. Reference deconvolution to remove line asymmetry (Morris et al. 1997) and

spectrum profiling were done manually. The pre-profiling steps of spectrum phasing, base-

line correction, and reference deconvolution (together, termed processing) were performed

in 1 day as a single stage of analysis for all of the samples before a second stage of profiling

carried over a 4 day period. Urine profiles were reviewed and any ambiguous compound
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assignments were removed. For more information about the theoretical principles behind

the software, consult http://www.chenomx.com/ and the work of Weljie et al. (2006).

2.3.3 Experimental design

Simple mixture

The basis of the simple mixture design was to (a) estimate underlying sources of 1D-1H-

NMR quantification variability, (b) compare the effect of human and machine sampling

on quantification and (c) compare quantification accuracy and variability from the use of

different pulse sequences. A single experimental run was carried out to this end on 21

prepared sample tubes, divided into two experimental sets – the first with human sample

handling and the second with machine manipulation. In the first set, each tube was posi-

tioned in the spinner (centering the sample in the receiver coil space), inserted, and scanned

with each of the three pulse sequences (1D-NOESY s1a4 followed by 1D-NOESY s2a3 and

grd-NOESY s1a4) before removal. In the second set, the above procedure was repeated

on the same 21 samples with the modification that each of three spectra acquisitions were

done using only the 1D-NOESY s1a4 sequence. Spectra from the first set were processed

and quantified once; spectra from the second set were duplicated and randomized be-

fore processing/profiling. The first set was used to compare the quantification of three

different pulse sequences. The latter set allowed statistical separation between tube inser-

tion/shimming, spectra acquisition, and processing/profiling for the estimation of variabil-

ity from these different sources.
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Urine

A single human urine sample tube was scanned eleven times using each of the three pulse

sequences described in 2.3.1.

2.3.4 Statistical analysis

All statistical analysis was carried out using the R programming language (R Core Team

2012). In particular, plyr (Wickham 2011) and ggplot2 (Wickham 2009) packages were ex-

tensively used for data manipulation and presentation, respectively. All mean comparisons

were performed using two-tailed t-tests and variance comparisons using F tests, both at the

95% confidence level. The term ‘significant’ is generally reserved for use in the statistical

sense, unless it’s clear that no numerical comparison was performed. In some figures, a

smoothing trend line was added using locally weighted scatterplot smoothing (LOESS).

This line is not meant to signify a statistically significant trend; it is used for visual aid

only.

2.4 Results and discussion

2.4.1 Design justification

Pulse sequences

While the 1D-NOESY is one of, if not the most used pulse sequence for metabolomic bioflu-

ids analysis via NMR (Beckonert et al. 2007), we have experienced difficulty with receiver
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overloading issues on highly dilute samples. This prompted part of the initial exploration

to see if modifying the length of internal delays, without altering the total experiment time,

would perturb analysis results. To this end we performed the standard 1D-NOESY s1a4

pulse sequence, then increased the presaturation period from 990 to 1990 ms with a con-

comitant decrease of the acquisition time from 4 s down to 3 s. It is crucial to maintain

the total experiment length otherwise T1 relaxation issues can come into play and dis-

tort the relative peak intensities expected by the Chenomx software, thereby disrupting

the carefully determined database of metabolite peak intensities for quantitation. We

also included the grd-NOESY s1a4 sequence, reported previously to have superior water

suppression capabilities (McKay et al. 2009) but not certified for use on metabolomics

samples. We wished to ascertain the identification and quantitation capabilities of the

modified 1D-NOESY s1a4 (i.e. 1D-NOESY s2a3) and grd-NOESY against the standard

1D-NOESY s1a4 sequence.

Compound selection

The selected compound mixture was restricted to five compounds to ensure that funda-

mental NMR quantification variability would not be masked by excess convolution. To

underline the applicability of the simple mixture to deconvolution based quantification (of

the type frequently carried out on more complex samples like urine), these compounds

nevertheless featured a small degree of known convolution. While this peak overlap did

not significantly impact quantification using Chenomx NMR Suite software, it did rule out

simple integration-based quantification techniques for all compounds except nicotinate, the

only unconvoluted compound. Metabolites were chosen to cover a broad range of chemical
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functionalities (including a simple amino acid, a vitamin and a number of sugars) and

molecular weights (from 75 to 342 g/mol), while remaining relevant to biofluids (and cell

culture applications). Three sugars were used to provide a reasonable amount of convolu-

tion and served to compare the properties of compounds having similar functionality and

structure. Although the use of only three compounds meant that variability could not be

generalized, differences could be used to disprove a generalization.

Sample number

The choice of sample number was based on the desire to maximize statistical power for

variance comparison while maintaining a reasonable total number of samples. The power

of a test is defined based on a hypothetical “real” variance that one is trying to observe.

Sets of 21 samples allowed variance estimates with 20 degrees of freedom, equating to a

2% probability of incorrectly determining that the variances were not different (rejecting

the null hypothesis) when one variance is, in reality, two times the other. While a twofold

difference may be considered as too lenient, we believe that it is an acceptable sensitivity

threshold as smaller variance differences can still be correctly identified (albeit with lower

probability). The end result of using sample sets much larger than the frequently encoun-

tered triplicates was a greater confidence in negative results i.e. failure to see a difference

between two variances was much more likely to mean that they are actually very similar.

A somewhat smaller sample size of 11 was chosen for the analysis of urine due to practical

time limitations of profiling such a complex mixture.
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2.4.2 Pulse sequence comparison

One of the primary goals of this study was to determine the effect that the choice of NMR

parameters, or pulse sequence, would have on quantification variability. As inherently

greater variability in more complicated (and convoluted) mixtures have the possibility of

obscuring or distorting this effect, we opted to focus the analysis on a representative simple

mixture to establish the points of comparison between the three pulse sequences. Real urine

data was reserved as a case study of their application.

Mixture mean concentration

The use of each tested pulse sequences resulted in mean concentration values that were

comparable in their difference between observed and theoretical values (Table 2.1). Means

of compound concentrations generated using the grd-NOESY s1a4 sequence were closest

to theoretical concentrations for glucose, maltose, and nicotinate, while both 1D-NOESY

sequences resulted in closer agreement to theoretical values for sucrose (glycine concen-

tration was similarly close for all pulse sequences). Figure 2.3a presents a graphical in-

terpretation of these results. While no one sequence can be said to be most accurate, a

definite relationship was observed between the three sequences. The grd-NOESY s1a4 se-

quence gave consistently lower concentrations than either of the 1D-NOESY ones. Between

1D-NOESY s1a4 and 1D-NOESY s2a3, the latter generally resulted in slightly higher con-

centrations with sucrose concentration as the only exception (highlighted in Figure 2.3b).
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Figure 2.3: a) Comparison of mean observed concentration values and b observed concen-
tration distributions between three pulse sequences. Theoretical compound concentrations
are represented by dashed lines. In b), thick lines represent data medians, box edges
represent 25th and 75th percentiles, whiskers extend out to the furthest point up to a
maximum of 1.5 times the inter-quartile range beyond the box edges, and dots represent
outliers falling more than 1.5 times the interquartile range away from the box edges. 95%
confidence intervals around the mean values are on the same magnitude as individual line
widths and were excluded from the plots.
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Table 2.1: Mean observed concentrations and their deviations from theoretical values for
the 5-compound simple mixture sample.

Sequence grd-NOESY s1a4 1D-NOESY s1a4 1D-NOESY s2a3

Sampling Human Machine Human Human

Mean
concentration

(mM)

Difference
from

theoretical
value
(%)

Mean
concentration

(mM)

Difference
from

theoretical
value
(%)

Mean
concentration

(mM)

Difference
from

theoretical
value
(%)

Mean
concentration

(mM)

Difference
from

theoretical
value
(%)

Glucose 8.89 −0.96 9.35 4.18 9.32 3.83 9.55 6.44
Glycine 9.61 −4.14 10.24 2.11 10.15 1.23 10.24 2.11
Maltose 11.39 4.00 12.01 9.66 12.00 9.54 12.22 11.61
Nicotinate 10.43 0.42 11.04 6.28 10.82 4.13 11.07 6.62
Sucrose 9.53 −10.34 10.16 −4.39 10.11 −4.86 10.06 −5.36

Mixture variability

Apart from influencing observation accuracy, the choice of pulse sequence was also hypoth-

esized to have an effect on quantification variability. A graphical comparison of variability

is presented in Figure 2.4 as distributions of individual observations from their mean val-

ues (which we have termed deviations in the figure). Overall, the distributions from the

three sequences were quite similar, with only the concentration of nicotinate showing signs

of bimodality when using the 1D-NOESY s2a3 sequence. Pairwise variance comparisons

using F-tests identified only the variance of maltose concentrations to be different for the

three pulse sequences, with grd-NOESY s1a4 being the odd one out. It should be noted

that the observations for maltose using the grd-NOESY s1a4 pulse sequence featured two

prominent outliers (Figure 2.4) that skewed the variance estimation considerably.

The results of the experiment extend beyond just a pulse sequence comparison. More

generally, we have established an approximate 1.5–3.5% base estimate for standard devia-
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Figure 2.4: Comparison of observation distributions around mean values for each compound
and pulse sequence tested. Distribution curves were generated via kernel density estimates.
Individual observations are indicated by points below the distributions.
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tion when profiling with Chenomx software (Table 2.2). While profiling resulted in higher

standard deviation than previously reported integration methods (Malz and Jancke 2005),

this level of variability is exceptional when considering that it is unaffected by a consider-

able amount of convolution – where integration techniques will falter. The concentration

of nicotinate, the only unconvoluted compound had a higher standard deviation than both

maltose and glucose (species with spectral overlap) when using the 1D-NOESY s1a4 pulse

sequence (Table 2.2). Therefore, convolution does not imply greater variability as long as

NMR clusters are not entirely obscured by other compounds, which can drastically reduce

measurement precision. While no trends were expected to be observed with only five com-

pounds in the standard, the relative difference in the variability of sucrose and maltose, two

relatively similar compounds, suggests the idea that functionality and molecular weight are

unlikely to act as predictors for measurement variability. For applications where twofold

differences in standard deviation can be problematic, we would therefore recommend that

generic variability estimates not be used.

Table 2.2: Observed standard deviations for the 5-compound simple mixture sample,
human-sampled.

Sequence grd-NOESY s1a4 1D-NOESY s1a4 1D-NOESY s2a3

Standard
deviation

(mM)

Relative standard
deviation

(%)

Standard
deviation

(mM)

Relative standard
deviation

(%)

Standard
deviation

(mM)

Relative standard
deviation

(%)

Glucose 0.13 1.45 0.14 1.46 0.11 1.18
Glycine 0.31 3.21 0.29 2.81 0.30 2.97
Maltose 0.26 2.25 0.17 1.40 0.15 1.21
Nicotinate 0.18 1.68 0.22 2.05 0.25 2.28
Sucrose 0.23 2.45 0.27 2.70 0.21 2.06
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Urine sample data variability

The variability range presented in Section 2.4.2 is, naturally, an ideal case. NMR spectra

of real urine samples have long been known to suffer from significant levels of ‘chemical

noise’, i.e. unidentified compounds that mask the baseline and other known compounds

(Nicholson and Wilson 1989). While the deconvolution process is still able to quantify the

general concentration of such compounds, high quantification precision cannot be expected

from all of them.

As this study did not consider the problem of compound mis-identification, a conser-

vative approach was taken during profiling. Of the 304 biologically and clinically relevant

compounds found in the Chenomx library, 56 compounds were unique in their ability to

match the observed spectra and have all been previously observed in urine samples. It

should be noted that if compound mis-identification did occur, it would not influence the

goal of assessing quantification precision. Approximately 30 more compounds from the

Chenomx compounds database could have been profiled, but their presence in the samples

was deemed ambiguous and would have required confirmation by other analytical methods,

as recommended by Tredwell et al. (2011a). While conservative, the compound set did en-

compass a greater collection of compounds than previously considered in urine variability

studies employing Chenomx software – 9 by Slupsky et al. (2007), 24 by Saude et al. (2007),

and 37 by Tredwell et al. (2011a). Of the 56 identified compounds, 18 were found to have

relative standard deviations below the previously identified maximum of 3.5%. Indeed, 9 of

the compounds actually had a relative standard deviation smaller than the 1.5% minimum

of the simple mixture set, with the lowest equal to ∼ 0.5% and comparable to integration

of unconvoluted spectra (Malz and Jancke 2005). Creatinine was among the most precisely
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quantified compounds, suggesting that the common practice of normalizing concentration

to that of creatinine does not impose a significant loss of observation precision at the in-

dividual sample level. 16 more compounds had a relative standard deviation in the range

of 3.5–10%, while the remaining 22 compounds had a relative standard deviation higher

than 10% (with some reaching the 50–70% range).

In 5 replicated profiles of a single urine spectra, (Tredwell et al. 2011a) reported that 32

out of 37 compounds had a relative standard deviation (referred to as coefficient of variance

in their work) of under 10% (as compared to 34 of 56) and a median relative standard

deviation of 2.4%. While the number of compounds in the stated range of precision was

comparable, we did not observe as low of a median. However, as will be described in

Section 2.4.3, replicated profiling of the same acquired spectra does not capture the full

extent of variability with this method. The reported inter-profiler variability (Tredwell

et al. 2011a), however, is much closer to the range of variability observed in this work,

suggesting that the two are of similar magnitude. A full list of concentration means and

standard deviations for all quantified compounds (including the compounds left out of the

analysis above due to identification ambiguity) can be found in Appendix A.

To add further context to the urine sample results, observed mean and standard devia-

tion values of compounds clearly identified using the Chenomx Inc. software were compared

to concentration ranges reported in literature (Wishart et al. 2007) and compiled in the

Human Metabolome Database (HMDB) (Table 2.3). In most cases, the results indicated

that observation variability is much less than the variability encountered in urine samples

from healthy adults (5%). Only rarely did the fraction increase as high as 20% (Table 2.3).

Thus, where profiled compounds can be clearly identified, the observed concentration error
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of compounds with highly overlapping spectra is still likely to be only a fraction of over-

all variability in normal, healthy individuals. A similar comparison for compounds whose

identity was less certain, but still profiled, is given in Table A.2 in Appendix A.

Table 2.3: Observed mean and standard deviations of compounds unambiguously identi-
fied in urine sample, normalized to creatinine concentration (µmol/mmol creatinine units),
as compared to literature values taken from the Human Metabolome Database (HMDB),
version 2.5. HMDB concentrations were limited to urine from normal, healthy adults (18+)
reported in the database in µmol/(mmol creatinine). Information from the indicated num-
ber of sources was compiled and a single grand range presented as overall minimum and
maximum. Where the observed mean did not deviate more than 25 % from the mini-
mum–maximum range found in literature, the observed standard deviation was expressed
as a percent of the range span to illustrate the proportional differences between observation
variability and normal variation between healthy patients.

Observed
mean

Observed
standard deviation

HMDB Literature

Compounds
(µmol/
mmol)

(µmol/
mmol)

(% of
HMDB
range)

Min
(µmol/
mmol)

Max
(µmol/
mmol)

Number
of

sources

Urea 4226.45 46.61 0.12 6.58 38 812.40 10
Hippurate 611.79 8.46 0.93 19.30 932.66 22
Citrate 222.62 1.85 0.33 46.87 599.90 21
Trigonelline 122.42 0.96 0.92 5.50 109.30 3
Trimethylamine N-oxide 84.51 0.46 0.09 0 509.60 11
Glycine 63.12 0.94 NA NA NA 0
Formate 55.75 0.65 0.33 0.65 195.63 14
Glycolate 49.32 3.63 2.97 0.04 122.10 14
3-Indoxylsulfate 47.67 2.42 3.77 0.66 64.80 10
Ethanolamine 38.83 2.52 4.92 4.91 56.20 12
Glucose 32.47 2.23 2.01 0 111.07 13
Pyroglutamate 28.57 7.06 27.37 6.80 32.60 6
Dimethylamine 24.36 0.63 1.57 19.20 59.20 14
Creatine 23.61 1.42 NA NA NA 0
cis-Aconitate 22.79 3.31 3.57 2.70 95.30 7

Continued on next page
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Table 2.3 – continued from previous page

Observed
mean

Observed
standard
deviation

HMDB Literature

Compounds
(µmol/
mmol)

(µmol/
mmol)

(% of
HMDB
range)

Min
(µmol/
mmol)

Max
(µmol/
mmol)

Number
of

sources

1,3-Dimethylurate 18.82 0.28 NA 1.34 10.10 5
Taurine 18.28 3.24 1.31 4.00 251.60 12
Malonate 17.67 1.26 NA 0.60 9.40 3
3-Aminoisobutyrate 17.02 0.67 NA NA NA 0
Glutamine 16.51 5.41 7.85 9.00 77.90 15
Succinate 13.89 8.93 27.05 0.30 33.30 23
Alanine 12.34 0.46 0.94 7.10 56.15 23
Carnitine 12.08 1.60 5.96 0.70 27.50 11
Histidine 11.71 3.21 1.64 17.10 212.81 20
Betaine 11.70 0.22 0.25 2.70 92.70 11
Xanthine 11.66 1.08 NA 2.20 3.75 2
π-Methylhistidine 11.62 4.87 7.33 2.80 69.27 10
Acetate 11.50 0.26 0.25 0 106.00 7
τ -Methylhistidine 11.27 2.04 1.32 0 153.77 26
4-Hydroxyphenylacetate 10.63 0.33 NA NA NA 0
Phenylalanine 10.16 1.49 9.02 1.65 18.17 21
Methylamine 9.04 0.30 1.94 1.33 16.70 6
Asparagine 7.72 5.57 11.13 3.00 53.01 21
Dimethyl sulfone 7.46 0.14 0.28 1.30 48.90 4
Sucrose 7.30 0.41 2.11 0 19.50 4
3-Methylxanthine 7.28 0.41 2.51 1.40 17.80 5
trans-Aconitate 6.90 1.59 6.84 1.80 25.10 3
Lactate 5.94 0.54 0.12 3.50 444.29 25
2-Hydroxyisobutyrate 5.93 0.12 2.96 1.70 5.90 5
3-Hydroxyisovalerate 5.93 1.06 4.85 3.20 25.00 7
Tyramine 5.56 0.78 NA 0.20 0.78 5
1,6-Anhydro-β-D-glucose 5.44 0.79 2.90 2.40 29.60 2
Tyrosine 5.29 0.50 1.39 2.57 38.66 20
Ethanol 5.28 2.01 NA NA NA 0
Lysine 5.21 2.48 3.39 2.11 75.29 16
Methanol 5.11 0.09 0.09 9.60 116.60 4
Hypoxanthine 5.09 0.24 1.01 0 24.10 8
N,N-Dimethylglycine 4.69 1.72 16.37 0.70 11.20 6
Acetone 4.50 0.14 0.17 0.20 86.14 9
1-Methylnicotinamide 3.99 0.39 2.65 0.24 15.00 12

Continued on next page
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Table 2.3 – continued from previous page

Observed
mean

Observed
standard
deviation

HMDB Literature

Compounds
(µmol/
mmol)

(µmol/
mmol)

(% of
HMDB
range)

Min
(µmol/
mmol)

Max
(µmol/
mmol)

Number
of

sources

N-Acetylaspartate 3.06 1.57 17.71 0 8.84 10
Trimethylamine 2.31 0.97 5.08 0.30 19.40 4
Leucine 2.14 0.76 4.27 1.20 19.07 16
Valine 1.91 0.14 0.58 1.10 25.62 24
Isobutyrate 0.56 0.09 0.07 1.20 122.00 5

In most cases, the general range of precision could have been identified a priori in a

qualitative manner based on the profiling process alone. Compounds with unconvoluted

NMR peaks (most frequently found in the aromatic range, (∼ 6.5–8.5 ppm) or peaks that

stood out from other resonances could be quantified with similar precision as the com-

pounds in the simple mixture. While the convolution level was generally similar for these

compounds, their exact standard deviation would still vary from compound to compound

in the range of ∼ 0.5–3.5%. More severe cases of convolution resulted in a marked loss

of precision, with the lowest precision (30–70% relative standard deviation) observed for

compounds found almost entirely within regions of unprofilable ‘chemical noise’. It has

been our experience, however, that the levels of background noise and local convolution

can vary considerably between different samples, making it impossible to pinpoint general

precision levels as a function of the compounds observed. In lieu of full replication as a

concrete estimate of variability, it would be advisable for researchers to apply a contex-

tual filter in the presentation and interpretation of their results. Uncertainty during the

profiling process will most likely result in uncertainty of the final quantification.
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Pulse sequence comparison for urine sample data

Given the large number of compounds identified in urine, comparing the effect of pulse

sequences on individual compound quantification, although possibly necessary, is tedious

and challenging. Furthermore, it was highly likely that the effect of pulse sequences could

be masked by the inherent variability of profiling (as recorded by the relative standard de-

viation). We, therefore, investigated a subset of compounds with small standard deviations

(< 5%).

After excluding the highly variable compounds, differences between the means resulting

from the pulse sequences were plotted as distributions (Figure 2.5). Overall, the 1D-

NOESY s2a3 showed less deviation from the 1D-NOESY s1a4 observations than did the

grd-NOESY s1a4. Moreover, the deviations in 1D-NOESY s2a3 appeared more uniform.

A closer look at the results from the grd-NOESY s1a4 pulse sequence revealed that the

five points in the -10–0% difference range corresponded to 2-hydroxyisobutyrate, acetate,

alanine, formate, and trigonelline – easily profilable compounds with clusters on the edges

of the spectra. All but one of the compounds in the -20 to 10% difference range had clusters

closer to the water peak. The fact that compounds with clusters on the edges of the spectra

experienced less quantification underestimation suggested that the primary factor for the

difference was water suppression bleaching. This effect could also be seen by looking at the

clusters of trigonelline, which happen to be generally free of background noise and found

across the 9.8–4.4 ppm region. The 4.4 ppm cluster was indeed considerably lower than

the ideal curve generated from the Chenomx library, as compared to the 9.8 and 8.8 ppm

clusters. Final confirmation was achieved by binning the spectral data (normalizing to total

spectral area) and comparing the differences between average sums as a function of chemical
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shift (Figure 2.6). Once again, grd-NOESY s1a4 showed a pronounced underestimation

near the water peak when compared to 1D-NOESY s1a4 results. While 1D-NOESY s2a3

sequence also showed some difference from the 1D-NOESY s1a4, the trend was much less

prominent. Performing the binning normalized to the internal standard also revealed that

grd-NOESY s1a4 had a smaller total spectral area in proportion to the DSS. The overall

phenomena of underestimation, when using the grd-NOESY s1a4 sequence, could be the

result of a relative overestimation of the reference standard and underestimation in the

proximity of the water peak.
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Figure 2.5: Distribution of differences of mean compound concentrations obtained with
different pulse sequences. Only compounds with relative standard deviations less than 5%
were considered in this analysis.

The results from the urine data expand on and reinforce the simple standard compar-

ison. The five compounds used in the simple standard had at least some of their clusters
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Figure 2.6: Averaged percent difference in binned spectral data between grd-NOESY s1a4
and 1D-NOESY s1a4 as well as 1D-NOESY s2a3 and 1D-NOESY s1a4 as a function of
chemical shift (thin coloured lines) with LOESS trend lines added for visual aid (thick
black lines). The area under the spectra was divided into bins 0.04 ppm wide (with the
4.68–4.88 ppm water region excluded) and averaged across the 11 replicates for each of the
pulse sequences. Excessive noise was removed by filtering all bins that accounted for less
than 0.0001 of the total area.
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relatively far away from the water peak and were present at much higher concentrations

than those of typical urine constituents. The suppression effect was therefore less noticeable

and the human profiler was able to balance out some of the discrepancies by referencing

other clusters that were generally available. The final underestimation (∼ 4%) was in

the same general range as that of 2-hydroxyisobutyrate, acetate, alanine, formate, and

trigonelline in the urine data. Many of the compounds found in urine, however, had only

one or two readily profilable clusters. Their underestimation would further depend on

their relative proximity to the water peak (anywhere between 2 and 6 ppm). Although the

grd-NOESY s1a4 resulted in a greater mean deviation from the 1D-NOESY s1a4 than did

the 1D-NOESY s2a3, this deviation was also more predictable.

A few practical implications can be drawn from these results. The use of pulse sequences

other than 1D-NOESY s1a4 with Chenomx software can result in statistically significant

changes in observed mean compound concentration values. Where the method of water

suppression is not altered, these changes are likely to be minimal (±5% as in the use

of 1D-NOESY s2a3). The introduction of a different water suppression technique, such

as with the grd-NOESY s1a4 sequence, however, can result in changes as a function of

chemical shift. Hypothetically, it may be possible to incorporate water suppression effects

into peak fitting software to correct for the underestimation; however, such developments

lie outside the scope of this work. Results from simple standard analysis suggested that

quantification variability remained relatively independent from the choice of pulse sequence.

Comparison of urine samples gave a similar impression, although inherent measurement

variability made the comparison less precise. This similarity in measurement variability

bodes well for applications such as disease biomarker identification, where relative changes
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in compound concentration may be more important than absolute accuracy. Our results

suggest that using pulse sequences other than 1D-NOESY s1a4 in this fashion would be

no less effective.

2.4.3 Underlying NMR variability

Variance source breakdown

With the simple mixture set, we also used a hierarchical (or nested) statistical design with

analysis of variance (ANOVA) to split the sources of quantification variability into three

component parts—tube insertion/shim, spectra acquisition, spectra processing/profiling.

This was done to determine the fraction of total variability that can be attributed to

human profiling as compared to the inherent variability of NMR analysis, with the goal of

contextualizing observed variability and improving quantification strategies.

A breakdown of observed variability (in the form of variance) can be seen in Figure 2.7.

Similar to the rest of the results presented thus far, there are considerable differences among

the five compounds. While profiling was found to be the only significant source of variability

for glycine and sucrose concentrations, it made up less than half of the observed variability

of glucose and nicotinate concentrations. Of the three sources considered, spectra acqui-

sitions had the least impact on net variability, suggesting that it is the most reproducible

aspect of the process. The same could not be said for tube insertion/shimming, in the

cases where it was possible to separate it from profiling. The most direct application of

these results pertains to replication strategies. It would appear that re-profiling acquired

spectra to get a more consistent result is not guaranteed to have a significant effect and

62



may create a false impression of sample consistency when a considerable portion of the

variability can originate from tube insertion/shimming. Due to the low variability associ-

ated with sample acquisition, the same can be said for performing two spectra acquisitions

and profiling each of the resulting spectra. The only recommended replication strategy

for improving quantification precision is complete, randomized sample reinsertion for repli-

cated scanning. Although our findings could not differentiate between the effects of tube

insertion and shimming, both are factors that are not frequently considered in the topic of

quantification precision and may warrant closer investigation.
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Figure 2.7: Comparison of variance sources as a percentage of total variance for each
compound. Component variance values were estimated from an ANOVA of hierarchical
design data.

Comparison to integration quantification methods

With the inclusion of a single compound with entirely unambiguous clusters (nicotinate),

it was possible to confirm whether variability corresponding to tube insertion was related
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to the area of the NMR peaks (standardized to DSS). While it was not surprising to find

the actual integration calculation had zero associated variability, the results also revealed

that tube insertion/shim was indeed the greatest source of variability with the acquisition

step accounting for no more than 5% of peak cluster area variability. This suggests that the

recommended replication strategy is equally applicable for quantification via integration.

More interesting was the comparison of overall distributions from integration and human

profiling (Figure 2.8). Not only did the distributions associated with the four integrated

peak cluster vary considerably in their shapes, but all featured pronounced multimodality.

Taking the average of all the areas did not correct the multimodality, with the resulting

distribution appearing similar to the distribution of the 8.3 ppm peak. Although human

profiling had an undoubtedly larger quantification range, the observation distribution was

more robust, with a greater proportion of observations clustering around the overall mean.

Profiling variability

As the profiling was carried in a random order, independent of other experimental condi-

tions, it was possible to assess if any profile-order-dependent trends were present in the

data. In particular, it was sought to determine if a human profiler would go through a

‘burn-in’ period of initially high variability before converging on a long-term mean with

lower variability. A plot of observation deviations from overall means as a function of pro-

filing order can be seen in Figure 2.9a. 1D-NOESY s1a4 data from the first experimental

set (with human sampling) was added as a control to guarantee that observed trends are

indeed the result of profiling order, independent of other conditions. The most prominent

profiling-related trend was observed for glycine, resulting in up to 10% differences between-
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Figure 2.8: Comparison of observation distributions around mean values for human profil-
ing and integration quantification of nicotinate. Integration was performed on each of the
clusters associated with nicotinate and normalized by the area of the DSS peak. Distribu-
tion curves were generated via kernel density estimates.
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quantification performed at different times. Three different profiling interpretations could

be observed with relatively rapid shifts between them occurring in the middle of day 2 as

well as between days 3 and 4. The most likely explanation is that glycine NMR spectra

consists of only a single peak, making it impossible to validate the quantification if there

is a slight difference in shape between the spectra and the ideal peak generated from the

Chenomx database.

Daily statistics from Figure 2.9b reveal trends that are not immediately obvious from

Figure 2.9a, such as the fact that all standard deviations except glycine vary more in the

first 3 days than between day 3 and 4, which can be interpreted as a variation of the

previously mentioned ‘burn-in’ effect, where the variability fluctuates until converging on

a more or less fixed value. Perhaps more prominent is the fact that most of the trends for

both means and standard deviations appear very similar. Thus, apart from the ‘burn-in’

period, there also exists evidence for global profiling patterns impacting the accuracy and

variability of more than one compound at once. Together, these observations reinforce the

need for randomization at the profile level, independent of both scan order and any natural

groupings of the samples themselves.

Temporal variability

In a similar fashion to the profile order investigation, it was also possible to assess if trends

could be identified as a function of scanning time. Concentration data from both the pulse

sequence comparison and variance breakdown data is presented as a function of time in

Figure 2.10. The analysis revealed correlated changes in all of the compounds beginning at

hour 8. Glucose, maltose, and most prominently, nicotinate, all saw a change in their time
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Figure 2.9: a) Observed concentrations represented as percent deviations from mean com-
pound concentration as a function of the order in which the spectra were profiled (including
duplicated spectra) over a 4-day period. Trend lines were added using LOESS for visual aid
only. b) Daily mean and standard deviations of observed concentrations as a percentage
of overall values for each of the compounds over the 4-day period.
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trends at approximately the 8 h mark. Since glucose and maltose both see an increase,

compound breakdown can be ruled out. Comparing the 6–8 h period to the 8–10 h period,

mean glucose and maltose concentrations both increased by approximately 1% while that

of nicotinate decreased by approximately 2% (statistically significant at 95% confidence).

While not large in absolute terms, the changes still represent as much as half of total

variability. It would be tempting to suggest that these time-dependent trends are singular

phenomena that are not present in everyday NMR applications; however, it should be

noted that the nature of the performed experiment was particularly well-suited to observe

this type of deviation. Rarely would identical samples be scanned multiple times over a

period of 2 h, much less with repeated spectral acquisitions.

2.4.4 Human vs. machine sampling

Human and machine sampling were compared based on the means and standard deviations

of observations for each compound. Mean concentration values were found to be statis-

tically equal for all compounds except nicotinate, where machine sampled concentration

data was approximately 2% higher than human sampled data. The increase in nicotinate

concentration can be observed to some extent in Figure 2.10, just as the sampling switches

from human to machine. The standard deviation of nicotinate was found to be larger for

machine sampling than human sampling by approximately 1% of the mean nicotinate con-

centration, which is not surprising given the trend observed in Figure 2.10 between 8 and

10 h. Given that these differences pertain to only one of the compounds, we are unable to

conclude that any of the differences are due specifically to the nature of the sampling.
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Figure 2.10: Combined human and machine sampled data as a function of experimental
time. Human sampled data represents individual 1D-NOESY s1a4 observations recorded
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observation standard deviations. Both experimental sets were carried out on the same 21
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2.4.5 Concluding remarks

The results presented in this work establish a baseline for quantification variability via tar-

geted profiling approaches and highlight the complexity of NMR quantification that may

have otherwise been tempting to overlook. First and foremost, we have established that

the choice of pulse sequence has a tangible effect when compound concentration measure-

ment is carried out by comparison to a reference library, even with pulse sequences very

similar to the one used for library generation. Differences in solvent suppression were found

to have two effects – general underestimation as a result of relative overestimation of the

reference peak, coupled with a resonance frequency specific underestimation presumably

as a result of bleaching resonances in proximity to the solvent. More generally, we have

identified that a large proportion of total spectral variability is due to sample tube inser-

tion and/or shimming – a source of variability that does not generally receive attention.

Furthermore, we were able to identify quantification bias as a function of scan and profiling

order, providing direct evidence for the importance of randomization at multiple stages of

experimentation and analysis. While the magnitude of the observed effects differed consid-

erably in each case, the overall impression is clear – all sources of quantification variability

must be considered for the continuing development of NMR technology and practice.
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Chapter 3

Targeted Profiling for Cell Culture

Applications

Following the determination of basic profiling variability, analysis was expanded to consider

the context of cell culture media. Given the dependence of measurement variability on the

particular convolution pattern of a specific mixture, it was necessary to tailor analysis to

the media of interest. A Plackett-Burman design was implemented as a convenient way to

generate orthogonal combinations of high and low concentration levels of each metabolite.

Traditionally, the Plackett-Burman design is used as a screening experiment to identify

the main effects of a large number of experimental factors in a small number of experi-

mental runs. For this application, factors corresponded to the concentration levels of each

metabolite and each run represented a single mixture. An example of an 8 mixture design

combining high and low concentration levels of 7 metabolites is presented in Figure 3.1.

The orthogonal nature of the design can be seen by focusing on the mixtures where the
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Figure 3.1: An example of a Plackett Burman design for 8 mixtures combining 7 metabo-
lites at low (light) and high (dark) concentration levels.

concentration of metabolite A is high (mixtures 1–4) – each other metabolite is found at

high and low levels in exactly half of these mixtures (independently of all other metabolite

concentrations). Plackett Burman designs can be generated for any number of mixtures

n, where n is a multiple of 4. Up to n − 1 metabolites can be combined in an n mixture

design.

By combining an equal number of high and low concentration levels in this fashion, vari-

ances calculated for the measurement of each metabolite serve as “worst-case” estimates,

featuring many combinations of different overlap patterns. Considering the deviation from

mean concentration as a response variable, it also becomes possible to use the Plackett

Burman design in traditional regression to estimate the impact of all metabolite concen-

tration levels on the calculation error of each metabolite. Although estimated main effects

would be confounded with two-way interaction terms, significant interaction effects are not

expected for this application. As an illustration, consider the resonance of metabolite A to
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be overlapped by the resonances of metabolites B and C. An increase in the concentration

of B may hide portion x of A’s resonance. Likewise, an increase in the concentration of C

may hide portion y of A’s resonance. An increase in both B and C would hide portions

x + y, with the net effect equivalent to a sum of the two main effects (with little to no

interaction effect). This principle forms the basis of Plackett Burman design justification

presented in section 3.3.1. With the efficiency of this design and the large amount of in-

formation that could be extracted from a small number of runs, the results were published

in the journal Analytical Chemistry (Sokolenko et al. 2014). The manuscript is presented

below in its original form. Supporting information that was made available online is pro-

vided in Appendix B.

Profiling convoluted single-dimension proton NMR spectra: A Plackett-Burman

approach for assessing quantification error of metabolites in complex mixtures

with application to cell culture

Stanislav Sokolenko1, Eric J. M. Blondeel1, Nada Azlah1, Ben George1, Steffen Schulze1,2,

David Chang3, and Marc G. Aucoin1

1 Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University

of Waterloo. 2 Institute of Applied Biotechnology, University of Applied Sciences Biberach.

3 Chenomx Inc., Edomonton, Alberta.

74



3.1 Abstract

Single-dimension hydrogen, or proton, nuclear magnetic resonance spectroscopy (1D-1H

NMR) has become an attractive option for characterizing the full range of components

in complex mixtures of small molecular weight compounds due to its relative simplicity,

speed, spectral reproducibility, and noninvasive sample preparation protocols compared to

alternative methods. One challenge associated with this method is the overlap of NMR

resonances leading to “convoluted” spectra. While this can be mitigated through “targeted

profiling”, there is still the possibility of increased quantification error. This work presents

the application of a Plackett-Burman experimental design for the robust estimation of

precision and accuracy of 1D-1H NMR compound quantification in synthetic mixtures,

with application to mammalian cell culture supernatant. A single, 20 sample experiment

was able to provide a sufficient estimate of bias and variability at different metabolite

concentrations. Two major sources of bias were identified: incorrect interpretation of

singlet resonances and the quantification of resonances from protons in close proximity to

labile protons. Furthermore, decreases in measurement accuracy and precision could be

observed with decreasing concentration for a small fraction of the components as a result

of their particular convolution patterns. Finally, the importance of a priori concentration

estimates is demonstrated through the example of interpreting acetate metabolite trends

from a bioreactor cultivation of Chinese hamster ovary cells expressing a recombinant

antibody.
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3.2 Introduction

In recent years, metabolomics has become an attractive experimental tool for generating

multivariate quantification data from systems featuring complex mixtures of small molec-

ular weight compounds, with applications in cell culture bioprocessing (Read et al. 2013),

biofluid analysis (Fukuhara et al. 2013), environmental toxicology (Davis et al. 2013), and

pharmacology (Liu et al. 2014), as well as food and nutrition (Jung et al. 2013), among

others. Analytical methods employed in this field are derived from classical analytical

chemistry methodologies, such as mass spectrometry (MS), nuclear magnetic resonance

spectroscopy (NMR), and high- and ultraperformance liquid chromatography (HPLC and

UPLC).

While mass spectrometry is capable of metabolite quantifications in the picogram range,

offering the greatest sensitivity of available metabolomics methods, this sensitivity varies

as a function of sample characteristics such as acidity and hydrophobicity (Pan and Raftery

2007). Furthermore, sample preparation and processing can be relatively time-consuming

and multiple MS methods may need to be employed for final determination of unknown

species.

Single-dimension hydrogen, or proton, nuclear magnetic resonance spectroscopy (1D-

1H NMR) offers numerous competitive advantages over MS and HPLC. NMR spectra are

highly reproducible and can be rapidly acquired; furthermore, sample-preparation is simple,

noninvasive, and nondestructive (Bradley et al. 2010; Issaq et al. 2009; Khoo and Al-Rubeai

2007). Metabolite detection occurs uniformly, providing detailed structural information for

compound identification (Bradley et al. 2010; Issaq et al. 2009). Challenges associated with
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employing 1D-1H NMR for global metabolite analysis include a lower sensitivity (typically

in the micromolar range), the overlap or “convolution” of spectral resonance peaks of

different metabolites, and differences between samples due to matrix effects such as altered

pH and ionic strength (Issaq et al. 2009). The latter of these may cause shifts in the

positions of metabolite peaks, hampering tools such as automated spectral binning.(Weljie

et al. 2006)

To overcome these challenges, 1D-1H NMR spectra can be analyzed through “targeted-

profiling”, a method whereby metabolite peaks of NMR spectra are directly matched

against pure compound spectra from a database by a human “profiler” (Weljie et al. 2006).

This method is tolerant to peak shifts from matrix effects and also allows for “deconvolu-

tion” of overlapping peaks (Weljie et al. 2006). With respect to our work, identification and

quantification of metabolites through targeted profiling was achieved by using Chenomx

NMR Suite 7.5 (Chenomx Inc., Edmonton, Alberta). While multidimensional NMR has

been argued as a possible solution to the problem of convolution, 1D-1H NMR remains

an attractive option for quantification on the basis of sensitivity and scan time (McKenzie

et al. 2011).

Despite the appearance of automated or semiautomated deconvolution methods over 10

years ago (Wishart 2008) and their growing application to cell culture (Behrends et al. 2013;

Read et al. 2013), little in depth validation has been done to assess their applicability to

particular complex mixtures. A lot of work has focused on quantifying the error associated

with the integration of well-dispersed peaks (Malz and Jancke 2005; Maniara et al. 1998;

Pinciroli et al. 2004; Wells et al. 2002), but these studies treated spectral overlap as an

occasional problem rather than the norm, making their conclusions only loosely relevant
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to analysis of cell culture supernatant and other complex spectra, where overlap is highly

prevalent. NMR spectra reproducibility has also been examined in the context of a large-

scale split-sample study (Dumas et al. 2006). However, the focus was on binning, meaning

that metabolites found at low concentrations, whose resonances are almost entirely hidden,

would not have had a significant impact on the analysis, despite their possible importance.

In more recent years, at least two studies tackled the issue of metabolite quantification with

significant convolution with the use of Chenomx software (Slupsky et al. 2007; Tredwell et

al. 2011a). Unsurprisingly, the general level of precision was much lower than the ∼ 1.5%

standard deviation reported for the integration of well-dispersed peaks (Malz and Jancke

2005). Slupsky et al. (2007) also found that mean concentrations could systematically

deviate from theoretical values by as much as 22% for the nine compounds tested. In our

work, we have found that relative standard deviation can vary from 1% to 70% depending

on a compound’s concentration and the environment around its NMR resonance (Sokolenko

et al. 2013). These studies make it clear that to determine the precision and accuracy of

NMR quantification, convolution must be considered explicitly. Unfortunately, the nature

of convolution is that it is entirely dependent on the metabolic makeup of a tested sample,

meaning that its effect must be considered on an application basis.

In this work, we apply 1D-1H NMR to a typical animal cell culture media to deter-

mine the metabolic profiles NMR analysis can reveal. More importantly, we make use of a

common Plackett-Burman design to rigorously probe the observed data for quantification

accuracy and precision through the analysis of synthetic metabolite mixtures. The chosen

design assesses orthogonal (independent) combinations of compound concentrations, al-

lowing the estimation of accuracy and precision of a given compound considering possible
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variation in other (convoluting) compounds (Plackett and Burman 1946). Consistent with

the idea of tailored media compositions and rational nutrient feed regimes, the metabolic

profile results are specific to the cell line and media under consideration and cannot be

generalized. However, we show how a simple, 20–30 sample synthetic mixture design is

able to reveal a wealth of useful information about 1D-1H NMR quantification, necessary

for understanding application-specific results.

3.3 Experimental section

3.3.1 Experimental design

The purpose of this investigation was to determine the impact of spectral overlap on the

precision and accuracy of metabolite quantification in cell culture supernatant by 1D-

1H NMR. The hypothesis was that the concentration of one compound may, by spectral

overlap, hinder the accuracy and precision in the quantification of another. A more pro-

nounced effect was expected for resonances whose peaks were found exclusively in over-

lapping regions corresponding to multiple metabolites, particularly in circumstances of

significant concentration differences between the chemical species. In order to achieve an

accurate measure of quantification error, it was necessary to simultaneously vary multi-

ple compounds at known concentrations. Therefore, synthetic media formulations were

constructed with defined two-level component concentrations and varied according to a

Plackett-Burman design, allowing for a realistic amount of variability in an experiment of

practical size.
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One limitation of this design (as compared to the full or fractional factorial design)

was the convolution of main effects with two-factor interaction terms. However, Plackett

and Burman (1946) have previously argued that interaction terms can be validly neglected

if they are of the same order of magnitude as main effects. As spectral convolution is

summative in nature, the presence of multiple convoluting compounds was not expected

to produce an effect that is substantially greater than the sum of their individual effects.

Thus, there was no reason to suspect that factor interactions, if present, would exceed the

magnitude of the main effects, allowing the use of the more efficient Plackett-Burman design

rather than the full or fractional factorial approach. More information about the Plackett-

Burman design as well as steps to reproduce it can be found in many textbooks on statistical

design, such as “Statistical Design and Analysis of Experiments: With Applications to

Engineering and Science” by Mason et al. (2003).

3.3.2 Synthetic media formulation

The compound concentration levels used in the synthetic media formulations were gen-

erated from commonly observed metabolic time course data collected in our lab using

Chenomx NMR Suite, excluding those that were not biologically relevant or were identi-

fied inconsistently. The remaining compounds were divided into two groups – compounds

whose concentration remains approximately constant during fermentation and those whose

concentration changes with respect to time. Compounds that were found to have a signifi-

cant correlation to time (using a Spearman rank correlation coefficient at a 95% confidence

level) were added at two concentration levels equal to the minimum and maximum ob-

served concentration values extended by 25% of the minimum to maximum range. The
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lower level concentrations were not prevented from reaching zero. For these compounds,

it was deemed more important to assess the possibility of false detection, to determine if a

true zero concentration would actually be observed. Compounds without a significant cor-

relation to time were added at a single constant concentration level equal to their median

observed value. pH was not controlled other than through the use of a pH buffer. Thus,

compound composition was allowed to dictate natural pH variation, as it would during a

fermentation process, e.g., higher lactate concentration resulting in increased acidity.

Concentrated stocks were made from pure chemical stock (Table B.1) dissolved in PBS

buffer. For powder stock, the minimum amount of chemical added was kept at a level

sufficient to achieve 99.9% weighing accuracy. The amount of PBS added was determined

by the solubility of each compound. The formulation of individual mixtures was performed

by volumetric addition of the concentrated stocks with the further addition of PBS to en-

sure accurate total volume measurement. The use of PBS was a significant simplification

when considering the more complex salt and buffer composition of most media. While this

ignored the effect of NMR-detectable buffers such as HEPES, the impact on quantification

had been previously assessed as minimal (data not shown), in that nonmetabolite reso-

nances did not overlap with metabolite resonances to a significant degree. A full list of

compound concentrations and measured pH values for all mixtures can be seen in Table B.2.

3.3.3 NMR analysis

An amount of 630 µL of each clarified medium sample was mixed with 70 µL of internal

NMR standard composed of 99.9% D2O with 5 mM 2,2-dimethyl-2-silapentane-5-sulfonate

(DSS) serving as a chemical shape indicator (CSI) and 0.2% w/v sodium azide (NaN3) to
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inhibit bacterial growth (Chenomx Inc., Edmonton, Canada). The solution was vortexed,

and 700 µL was pipetted into a 5 mm NMR tube (NE-UL5-7, New Era Enterprises Inc.,

Vineland, NJ) for scanning.

NMR spectra were acquired using the first increment of a nuclear Overhauser effect

spectroscopy (NOESY) pulse sequence with a 1 s presaturation pulse (10 ms relaxation

delay, 990 ms water suppression), 100 ms mixing time, and a 4 s acquisition time on a

Bruker Avance 600.13 MHz spectrometer with a triple resonance probe (TXI 600). Fol-

lowing acquisition, spectra were imported into Chenomx NMR Suite 7.5 (Chenomx Inc.,

Edmonton, Canada). Phase and baseline corrections were carried out manually. Line

asymmetry correction (reference deconvolution, see Morris et al. 1997) was performed au-

tomatically on each sample by the software based on a manual comparison of ideal and

observed DSS peaks. Compounds were quantified (“profiled”) by a single person using the

software’s built-in 600 MHz compound library by comparison to a known amount of DSS

as the internal standard (see http://www.chenomx.com/ or Weljie et al. 2006 for more in-

formation on targeted profiling). Briefly, all resonances were considered in the fitting of a

compound’s concentration. Isolated resonances were given preference, with concentrations

confirmed based on the overall fit of overlapping regions.

3.3.4 General statistical analysis

All data manipulation and analysis were carried out using the R programming language

(R Core Team 2012). All plots were generated with the ggplot2 package (Wickham 2009).

Unless otherwise noted, the significance of a difference between an observed sample mean

and a theoretical value was determined with the use of a two-tailed t test at a significance
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level of 0.05. Likewise, the significance of a difference between the variability of two

observed samples was determined using a two-tailed F-test at a significance level of 0.05.

3.3.5 Modeling the effect of convoluting compounds on the mean
of individual compounds

The experimental design allowed the estimation of spectral overlap effect on the observed

concentrations in the form of the following model:

yi = µi +
∑

j∈J,j 6=i

aijλj + εi (3.1)

where yi is the column vector of concentrations of compound i from all samples where

compound i is at a single concentration level, µi is the mean concentration of compound i

across those samples, λj is the concentration level of compound j whose resonance overlaps

with that of compound i (1 for high, 0 for low), aij is the regression coefficient, J is the

set of all varied compounds, and εi is a column of residuals. In this way, it was possible to

determine if the concentration level of one compound resulted in an increased or decreased

observed concentration of another when the two have overlapping resonances. The effect

was quantified using iterative linear regression. When no effect is observed, the model

breaks down to the base case of mean estimation. For each compound, a list of compounds

with overlapping resonances was compiled based on the spectra obtained in the experiment

(Table B.3). Any compounds with overlapping resonances large enough to have a possible

effect on the quantification of a target compound were added to the list (judged subjectively

– corresponding to the presence of resonance sections with more than ∼ 5% overlap), as
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were any compounds whose resonances could be mistaken for those of the target compound,

or vice versa.

Linear models of each compound’s concentration mean were generated by iteratively

considering the effect of overlapping compounds’ concentration level. Overlapping com-

pound levels were included in the model one at a time, and any whose level was found to

have a significant effect on the measured concentration of a target compound (as judged by

an F-test with a significance level of 0.05) was added to a model shortlist. From this list,

the compound whose inclusion in the model resulted in the greatest increase in adjusted R2

value was kept in the model. The process was then repeated to test if further compound

terms should be added. Once no improvement could be made to the adjusted R2 value,

the iteration was terminated with the selection of current best model. A schematic of this

procedure is presented in Figure B.1.

3.4 Results and discussion

Overall, 28 biologically relevant compounds were used in the synthetic formulation, with

the bulk consisting of amino acids, making the formulation typical of a generic animal cell

culture process. Of the 28, 16 compounds were included at two levels (corresponding to a

significant change with respect to time), while the rest were kept at constant concentrations.

With two levels per varying compound, this corresponded to a 20 run Plackett-Burman

experiment. While synthetic complex mixtures have previously been used to probe different

aspects of NMR-based analysis (Alves et al. 2012; Athersuch et al. 2013; Lewis et al. 2007);

this application of synthetic formulations is the first to account for the significant amount
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of variation in the metabolite composition of cell culture supernatant. The following is

presented as a case study to illustrate the accuracy and precision that can be achieved

with the application of 1D-1H NMR to the observation of cell culture, explicitly considering

realistic resonance overlap.

3.4.1 Measurement accuracy

A comparison of observed means to theoretical concentrations is presented in Table 3.1

(a box-plot representation can be found in Figure B.2). The level of accuracy was found

to vary considerably between different compounds as well as for different concentrations

of the same compound. Overall, the absolute percent differences between observed and

theoretical concentrations ranged from a low of 1.8% to a singular high of 193.0%, with a

median deviation of 9.7%.

Table 3.1: Measurement errors and standard deviations for all compounds included in
the synthetic media. An error significance of *** represents 95% confidence that the
mean observed deviation from theoretical concentration is significantly different from 0 as
determined via a t-test. Compounds marked with * have significantly different percent
standard deviations between their high and low concentration levels as judged by an F-test
at a 95% confidence level.

Compound Level
Theoretical

Concentration
(mM)

Measurement
Error
(%)

Measurement
SD
(%)

Error
Significance

Glucose High 19.944 −1.941 3.801
Low 9.650 −4.064 4.404 ***

Continued on next page
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Table 3.1 – continued from previous page

Compound Level
Theoretical

Concentration
(mM)

Measurement
Error
(%)

Measurement
SD
(%)

Error
Significance

*Lactate High 6.222 7.576 3.809 ***
Low 0.834 16.029 11.638 ***

*Glutamine High 3.966 −7.289 5.345 ***
Low 0 NA NA ***

Alanine High 2.348 −4.945 3.066 ***
Low 0 NA NA ***

Proline High 2.047 −10.796 8.793 ***
Low 1.261 −11.796 10.468 ***

*Isoleucine High 1.403 −14.149 1.639 ***
Low 0.314 −13.849 9.236 ***

Valine High 1.238 −4.876 2.181 ***
Low 0.534 −5.28 2.996 ***

*Leucine High 1.154 −10.604 5.979 ***
Low 0.248 −3.843 2.823 ***

*Glycine High 1.038 −13.802 5.588 ***
Low 0.033 −16.152 12.121 ***

Threonine Constant 0.888 −8.979 3.941 ***
Lysine Constant 0.814 −10.452 4.791 ***
Arginine Constant 0.692 −4.425 10.838
Glutamate High 0.560 −5.819 16.071

Low 0.049 192.952 242.857 ***
*Formate High 0.570 6.021 2.632 ***

Low 0 NA NA ***
Pyruvate Constant 0.497 −4.736 2.616 ***
Tyrosine Constant 0.454 18.676 8.590 ***
Phenylalanine Constant 0.431 3.741 5.104 ***
Serine Constant 0.42 −14.107 4.286 ***
Methionine High 0.360 2.178 4.444

Low 0.211 2.587 4.739
Pyroglutamate Constant 0.269 22.204 24.907 ***
Asparagine Constant 0.144 14.362 9.028 ***

Continued on next page
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Table 3.1 – continued from previous page

Compound Level
Theoretical

Concentration
(mM)

Measurement
Error
(%)

Measurement
SD
(%)

Error
Significance

*Tryptophan High 0.118 1.772 5.085
Low 0.063 18.042 12.698 ***

myo-Inositol Constant 0.111 4.611 10.811
Arabinose High 0.101 4.873 17.822

Low 0.035 48.647 54.286 ***
Acetate Constant 0.087 21.168 11.494 ***
*Choline High 0.059 −11.113 1.695 ***

Low 0.015 −14.595 13.333 ***
Aspartate Constant 0.057 17.912 17.544 ***
Succinate High 0.045 −6.223 4.444 ***

Low 0.002 NA 0 ***

On the basis of the results presented in Table 3.1, the consistency of measurement

accuracy across concentration levels depended in large part on the compound in question.

Three of the compounds – glutamate, tryptophan, and arabinose – had considerable spikes

in percent measurement error at lower concentrations. In all three cases, the magnitude of

percent measurement error at the higher concentration level was below or at the median

error, in the range of 1.8–10.0%. At lower concentration levels, the lowest percent error for

measurement was tryptophan at 18.0%. Analysis of the profiled spectra revealed that the

particularly high percent error for glutamate (193.0%) was due primarily to its significant

spectral overlap as both of the other compounds had nonconvoluted resonances at 7.5 and

7.7 ppm for tryptophan and 4.5 ppm for arabinose, which could be used for quantification.

However, the presence of isolated resonances did not guarantee perfect accuracy. With

a lower concentration of approximately 0.05 mM, the resonances of both tryptophan and
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arabinose were very close to the baseline and proved difficult to quantify accurately. For

many of the other compounds, the general trend was of constant percent error. Proline,

isoleucine, valine, glycine, methionine, and choline were all observed with similar percent

error, whether at high or low concentrations. Glucose is singular in that it actually had a

relatively constant absolute error (0.39 mM) with a corresponding change in percent error

at different concentration levels. As the experimental conditions included the variation

of all compounds whose concentrations were previously observed to vary with time, the

measurement errors presented in Table 3.1 are good general estimates for the expected

bias in the concentration measurement of the above compounds. Overall, a compound’s

concentration was not an effective predictor of its quantification error, as highlighted by the

fact that the compound found at one of the lowest concentrations, succinate, was observed

with an absolute percent error of only 6.2%. This compound-dependent nature of the

observations reinforces the need for validation experiments to include as many relevant

compounds as possible and at realistic concentrations.

Depending on the application, consistent biases in metabolite quantifications with 1D-

1H NMR may not be problematic. Often, it is not the absolute concentration values that

are being analyzed, but correlations (or lack thereof) between time course trends (Aranibar

et al. 2011; Bradley et al. 2010; Schaub et al. 2012). For these types of applications, a

constant deviation of a reasonable magnitude (∼ 10–20%) is unlikely to result in disputed

conclusions. As we have been able to identify, however, the accuracy of some compounds is

not consistent over all concentrations. As compound concentrations are generally correlated

with time, this can result in biased time trends whether looking at the trends of compound

concentrations (Aranibar et al. 2011; Bradley et al. 2010; Schaub et al. 2012) or their rates
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of change (Schaub et al. 2012).

3.4.2 False positive identification

Three of the compounds included in the formulation – glutamine, alanine, and formate

– had a theoretical concentration of 0 mM as their low concentration level. The use of

a 0 mM lower level prevented their comparison to other compounds as they could only

be overestimated at this level. It was judged more important to know the prevalence of

false positives for these compounds rather than get an estimate of their precision at a low

concentration. At low concentration levels, glutamine and formate were both “observed”

despite a theoretical concentration of 0 mM; alanine was correctly identified as not being

present. The measured concentrations were between 0.005 and 0.015 mM for formate and

between 0.01 and 0.05 mM for glutamine, making these values a good estimate of their

detection limits. Observations in these ranges can therefore be said to be likely the result

of noise and indistinguishable from 0 mM. While false positives in this range are unlikely

to influence general time trends, a good understanding of quantification limits can help

distinguish between the cases when a metabolite has been entirely depleted versus when

its uptake has been down-regulated.

3.4.3 Improving measurement accuracy

The use of synthetic compound mixtures with known compound concentrations allowed

a direct assessment of profiling technique. Analysis of the deconvoluted spectra revealed

peak-specific strategies that can be used to improve accuracy. Tredwell et al. (2011a)
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have approached this subject already by recommending group overview of profiled spectra

for the generation of a master profiling list as a way to avoid inconsistent metabolite

identification. Our results go a step further and illustrate how a validation experiment can

provide actionable information for the improvement of quantification accuracy.

In Chenomx NMR Suite 7.5 software, fit quality is generally determined with the use

of a “subtraction line”, the difference between the observed spectra and the fitted curve.

While the ideal is to get the subtraction line all the way to zero, the reality is that the

line may be high in some parts of the curve and low in others, resulting in a considerable

amount of profiling ambiguity. How much the sum line tends to vary across the span

of a curve is often resonance-dependent. This was found to be particularly problematic

for compounds whose spectra consisted of only one or two narrow peaks, such as choline,

formate, glycine, and lactate, resulting in inaccurate quantification (for a comparison of

peak width, see Figure B.3). The knowledge of true concentrations from the synthetic

mixture study made it possible to adjust the profiling pattern to achieve better accuracy

by identifying the specific shape of the subtraction line that resulted in the most accurate

fit. In particular, glycine and choline concentration accuracy was improved when the total

area between the subtraction line and the baseline was set close to zero (treating sections

of the subtraction line below the baseline as having a negative area), ignoring poor fitting

at the peak itself. The concentrations of formate and lactate, on the other hand, were

more accurately fit by using the peaks alone (1.3 ppm doublet for lactate). For lactate,

quantification of the 1.3 ppm doublet is preferred to that of the quartet at 4.1 ppm due

to the latter’s proximity to the suppressed water peak. It should be noted, however, that

these techniques may not be valid for different sample compositions.
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It was also found that less reliable quantification was obtained for resonances resulting

from labile protons, more specifically, hydrogen atoms bonded to nitrogen atoms, or pro-

tons vicinal to labile protons. While this configuration is technically found in all amino

acids, such resonances were more characteristically problematic for proline, lysine, and

isoleucine, where they caused considerable underestimation of the true concentration of

the compounds. Even in cases where there was no significant underestimation, these prob-

lematic resonances were frequently wider than the pure-compound spectra of the Chenomx

NMR Suite 7.5 library (an example can be seen in Figure 3.2). While this would not be a

problem for scans of pure compounds, where all resonances are available for quantification

and problematic ones can be ignored, complex mixtures such as cell culture supernatant

do not always allow the luxury of resonance comparison due to significant spectral overlap

from a myriad of metabolites. While the above strategies pertain only to Chenomx soft-

ware, the synthetic mixture design proposed in this work can be used to identify compound-

or peak-specific issues regardless of the software used for quantification.

3.4.4 Effect of spectral overlap on accuracy

From the results of this experiment, two effects of spectral overlap were identified. As

mentioned in Section 3.4.1, overlap can have an indirect impact on the accuracy of com-

pound quantification by masking quantifiable resonances. This can occur when the relative

intensity of a compound resonance is large enough to completely absorb visible signs of

smaller overlapping compound peaks. As expected for animal cell culture supernatant, this

effect was observed most prominently for (but not exclusive to) glucose, due to its high

concentration. If alternative quantifiable resonances of a compound are available, the net
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Figure 3.2: Examples of convolution between methionine and glutamine a) as well as
proline and lactate b). Shaded areas represent pure compound spectra generated from the
Chenomx library, with the observed spectra superimposed (thin black line). The differences
in peak width of observed spectra when compared to the generated spectra of proline b)
are also an example of the shape distortion observed for some peaks associated with a
labile hydrogen.

92



effect may be negligible. However, it can also force a profiler to rely on less dependable

resonances, such as those corresponding to hydrogen atoms near an amine group, or simply

more overlapping regions, leading to a loss in precision. As long as the masking compound

resonance stays significantly larger than the masked compound, the overall effect will not

be dependent on the exact concentrations of the compounds involved.

A more direct impact of spectral overlap was also identified. When overlapping com-

pound resonances were of similar size, resonance peaks could be misattributed, result-

ing in a measurement bias that was dependent on the concentration of overlapping com-

pounds. This was tested by modeling the effect of overlapping compound concentration

level on the measured concentration of a given compound with linear regression (described

in Section 3.3.5), corresponding to main effect estimation generally performed on Plackett-

Burman data. Unlike in general practice, however, the effects had to be calculated sep-

arately for each level of a target compound as measured concentration distributions were

not consistent between levels of the target compound (described in greater detail in Sec-

tion 3.4.5, below).

Of all the compound relationships tested, three were found to have been statistically

significant. Two of these involved methionine and proline quantification. At high levels

of methionine, high glutamine levels corresponded to a statistically significant increase in

the observed concentration of methionine. Of methionine’s five resonances, three are of

sufficiently large relative intensity to allow quantification – one at 2.6 ppm and two at

2.1 ppm. The resonances at 2.1 ppm generally overlapped with glutamine (Figure 3.2a).

Following the results of the analysis, it was found that when the methionine concentration

level was high, high levels of glutamine resulted in a slight (but significant) overestimation
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of methionine. At low methionine concentrations, a similar effect was also observed, but it

was not found to be statistically significant. The results suggest that some of glutamine’s

resonances at 2.1 ppm were being incorrectly attributed to methionine, which is in agree-

ment with the general pattern of glutamine underestimation. A similar relationship was

observed between proline and lactate, whose resonances overlap considerably at 4.1 ppm

(Figure 3.2b). At low proline concentration levels, high lactate levels corresponded to

significantly lower proline concentrations, despite the fact that proline has at least four

other resonances suitable for verification. A similar but nonsignificant trend could also be

observed for high proline concentrations. Similarly to the issues described in the context

of direct profiling improvements (Section 3.4.3), these biases can be avoided by a human

profiler once identified.

The third identified relationship was also the most directly relevant to cultures sup-

plemented with glutamine. Pyroglutamate, present at only one level, was observed to be

approximately 30% higher when the glutamine concentration level was high. An analysis of

the spectra revealed that this was not an example of spectral overlap but, rather, evidence

of glutamine breakdown, a phenomenon that has been previously observed in literature

(Gawlitzek et al. 1998). An increase in glutamine concentration from 0 to approximately

4.0 mM resulted in an increase of pyroglutamate concentration of approximately 0.1 mM

and is responsible for most of the overestimation seen in Table 3.1. Similar forms of degra-

dation, if present, could also be detected with this form of analysis.
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3.4.5 Measurement variance

Standard deviation values (Table 3.1), like the differences between observed mean and

theoretical concentrations, did not have a single general trend. While there was a slight

tendency for compounds found at lower concentrations to have a higher relative standard

deviation, the results for choline, tryptophan, and methionine are clear counterexamples.

When looking at the concentration levels of each compound individually, however, there

did appear to be an indication that lower concentrations translate into higher relative

variability. Of all the varied compounds, only leucine had a significantly lower standard

deviation at lower concentrations for reasons that have not been identified. The rest of

the compounds that had a nonzero lower concentration level either showed no change in

standard deviation (glucose, proline, valine, glutamate, and methionine) or a significant

increase of 2-fold or more (lactate, isoleucine, glycine, tryptophan, arabinose, and choline).

While the increase in the standard deviation of glutamate was not technically significant,

as it was already high to begin with, its magnitude suggests that this compound belongs

more with the latter group than the former. At lower concentrations, the relative standard

deviations of these compounds frequently increased to a magnitude of 10% or more. As a

95% confidence interval around an observed concentration with a standard deviation of 10%

translates into a range of ±20%, required precision levels should be carefully considered

when dealing with low concentrations of these compounds.

The applications of estimating standard deviation values for metabolite quantification

may not be as easily apparent as those of bias estimation, but they are just as important. A

priori information about the confidence of a metabolite observation can be used to confirm

the applicability of 1D-1H NMR observation for a given task. The particular overlap
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patterns of specific media or cell type can render some metabolites (such as glutamate at low

concentrations in the case of certain animal cell culture media) practically unquantifiable.

While general glutamate levels can still convey a considerable amount of information, it

should be clear that studies focusing on glutamate in particular should seek more tenable

methods of quantification.

3.4.6 Application to cell culture results

One example of how these results can be applied relates to the monitoring of acetate con-

centration in Chinese hamster ovary (CHO) culture. A mammalian bioprocess is typically

sampled only once per day, resulting in four or more sample points per compound, de-

pending on the length of cultivation. Acetate concentrations from the first four days of

culture can be seen in Figure 3.3a. Due to the sparseness of the data, it was difficult to

conclude whether the concentration fluctuations corresponded to a parabolic trend or were

the result of measurement noise around a nearly constant value. Adding the variability

estimates from the Plackett-Burman results (Figure 3.3b) suggested that the acetate con-

centrations on days 1 and 2 may be different from those on days 0 and 3, a hypothesis

that could be confirmed with the use of t tests. For this particular cultivation, sampling

was performed three times a day, rather than only once. Adding the extra data points

to the plot (Figure 3.3c) confirmed the calculated trend. While acetate is not typically

seen as a particularly important metabolite in mammalian cell culture, its concentration

profile can be important in monitoring pyruvate metabolism. This application serves to

demonstrate how the generation of a priori variability allows better data interpretation

while diminishing the need for high-frequency or repeated sampling.
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Figure 3.3: Application of variability estimates to acetate concentration data from a 3
L bioreactor (Applikon Biotechnology Inc., Foster City, U.S.A.). Cells were seeded at a
concentration of 3×105 cells/mL with a working volume of 1.5 L. Supernatant samples were
taken three times a day and stored at −80 ◦C until NMR analysis 1 week later. The process
parameters were set to a pH of 7.4, 50% dissolved oxygen (DO), 37 ◦C, and an agitation
speed of 120 rpm. a) Daily samples with the possibility of high variability around an
approximately constant or decreasing concentration. b) Error bars in the form of standard
deviations added to the observed data, allowing the use of t tests to compare acetate
concentrations at days 2 and 3 to those on day 0 and day 3. c) High-frequency sampling
from the same cultivation reinforcing the trends determined with the use of variability
estimates.
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3.5 Further analysis

The manuscript submission was structured around a case study of a specific media com-

position; however, a number of more general trends were considered outside the submis-

sion. Relative standard deviations and absolute bias estimates were combined and plotted

as kernel density estimates in Figures 3.4 and 3.5, respectively. The observations below

the overall density estimates highlight the overall effect of concentration. Although some

metabolites found at low concentrations had relatively low variability and error, decreasing

the concentration of any given metabolite generally increased both. Plotting the absolute

measurement error versus relative standard deviation (Figure 3.6) reinforced the idea that

both bias and variability are effected by resonance overlap. Whereas averaging out multiple

uncertain measurement can decrease variability, bias would remain unchanged.
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Relative standard deviations of metabolites added at low and high concentration levels
are shown one metabolite per line below the overall density estimate. Relative standard
deviations of metabolites added at a single constant concentration are shown together on
a single line.
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Figure 3.5: Kernel density estimate for the distribution of absolute measurement error of
all metabolites except those with singularly high deviations like glutamate and arabinose.
Absolute measurement errors of metabolites added at low and high concentration levels are
shown one metabolite per line below the overall density estimate. Absolute measurement
errors of metabolites added at a single constant concentration are shown together on a
single line.
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Figure 3.6: Absolute measurement error plotted versus relative standard deviation for
all estimates made at low metabolite concentration levels. The line represents a linear
regression of the data, with the standard error represented by the shaded region.
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Chapter 4

Nonparametric Smoothing of

Time-course Trends

Metabolic flux analysis (and other flux balancing methods) naturally rely on the accurate

estimation of metabolic flux from extracellular concentrations. Although it’s possible to

estimate a flux from the slope of the line between two concentration levels (as in Bernal

et al. 2009, for example), increasing the sampling resolution allows application of non-

parametric curve fitting and derivative estimation (Niklas et al. 2012; Niklas et al. 2011;

Priesnitz et al. 2012). However, applying nonparametric regression methods to metabolic

time-courses collected in our lab revealed the presence of suspiciously correlated deviations

across multiple metabolites at some of the sampled timepoints. Given our understand-

ing of single compound variability, it was possible to simulate realistic time-course trends

with the expected amount of uncorrelated error to determine the probability of observing

correlated deviations. The results ruled out the possibility of such deviations resulting
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from random chance, requiring the development of a correction strategy. The resulting

algorithm and validation were published in the journal BMC Systems Biology (Sokolenko

and Aucoin 2015). The manuscript is presented below in its original form. Although the

publication included a number of additional files providing source code for the analysis,

this code is not included here as it has been made available in the form of the metcourse

R package available on github (https://github.com/ssokolen/metcourse).

A correction method for systematic error in 1H-NMR time-course data vali-

dated through stochastic cell culture simulation

Stanislav Sokolenko and Marc G. Aucoin

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University

of Waterloo.

4.1 Abstract

4.1.1 Background

The growing ubiquity of metabolomic techniques has facilitated high frequency time-course

data collection for an increasing number of applications. While the concentration trends

of individual metabolites can be modeled with common curve fitting techniques, a more

accurate representation of the data needs to consider effects that act on more than one
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metabolite in a given sample. To this end, we present a simple algorithm that uses nonpara-

metric smoothing carried out on all observed metabolites at once to identify and correct

systematic error from dilution effects. In addition, we develop a simulation of metabo-

lite concentration time-course trends to supplement available data and explore algorithm

performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the

context of cell culture, a number of possible extensions are discussed.

4.1.2 Results

Realistic metabolic data was successfully simulated using a 4-step process. Starting with

a set of metabolite concentration time-courses from a metabolomic experiment, each time-

course was classified as either increasing, decreasing, concave, or approximately constant.

Trend shapes were simulated from generic functions corresponding to each classification.

The resulting shapes were then scaled to simulated compound concentrations. Finally,

the scaled trends were perturbed using a combination of random and systematic errors.

To detect systematic errors, a nonparametric fit was applied to each trend and percent

deviations calculated at every timepoint. Systematic errors could be identified at time-

points where the median percent deviation exceeded a threshold value, determined by

the choice of smoothing model and the number of observed trends. Regardless of model,

increasing the number of observations over a time-course resulted in more accurate error

estimates, although the improvement was not particularly large between 10 and 20 samples

per trend. The presented algorithm was able to identify systematic errors as small as 2.5%

under a wide range of conditions.
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4.1.3 Conclusion

Both the simulation framework and error correction method represent examples of time-

course analysis that can be applied to further developments in 1H-NMR methodology and

the more general application of quantitative metabolomics.

4.2 Background

Hydrogen nuclear magnetic resonance (1H-NMR) spectroscopy is an emerging tool for

metabolomic analysis of cell culture. In contrast to the established use of 13C-NMR for

targeted elucidation of intracellular metabolic flux (reviewed in (Szyperski 1998)), the

quantification of a broader cellular metabolome with 1H-NMR in the context of recombi-

nant protein production has been much more recent (Aranibar et al. 2011; Bradley et al.

2010; Khoo and Al-Rubeai 2009; Read et al. 2013; Yen et al. 2014). Unlike 13C-NMR,

which requires relatively expensive 13C labelled compounds and often complex interpreta-

tion, 1H-NMR benefits from simple sample preparation and non-selective data acquisition.

The result is that a single scan can reveal the concentration of many small molecules in

an unbiased manner, with concentration levels reaching as low as the micromolar range.

Despite the maturity of 1H-NMR technology, the context of cell culture metabolomics

offers opportunities for further developments in both acquisition and post-processing of

metabolomic time-course data.

Quantitative NMR relies on the principle that the integrals of resonance peaks are

proportional to the number of nuclei that make up the resonances (Bharti and Roy 2012).

The absolute area of the integrals is also dependent on spectrometer and sample properties
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that include the relaxation time of various metabolites, pulse excitation, and broad-band

decoupling. While the effect of relaxation time can be ignored with a sufficiently long

acquisition time (or measured and factored in directly – see (Bharti and Roy 2012)), the

effect of other factors is accounted for by comparison to a calibration standard. Typical

calibration standards can be broadly categorized as internal (where a known quantity of

a compound is added directly to the sample), external (where a known quantity of a

compound is scanned in a co-axial tube), or electronic (where a synthetic signal generated

inside the NMR is used as reference) (see Giraudeau et al. 2014 for an in-depth review).

Regardless of how the reference signal is generated, metabolite quantification relies on

the ratio of target resonance and reference peak integrals. Unlike typical measurement

variability, error in the generation or measurement of the reference signal will have the

same relative impact on all the quantified metabolites and represents one example of a

systematic bias.

Error related to the reference standard can stem from sample preparation (in the form

of pipetting) as well as spectra processing and analysis. Although external and electronic

standards do not rely on the addition of a chemical standard, the lack of internal standard

introduces extra variability from the the amount of sample analyzed. Proper technique

can ensure good reproducibility, but occasional mistakes are nonetheless possible. More

importantly, the reference peak is subject to the same variability as any other resonance.

Phase and baseline correction, which are typically performed on all NMR spectra, are

known to have a considerable impact on the accuracy of peak area integration (Griffiths

and Irving 1998). Malz and Jancke (2005) have observed that while routine standard

deviation can be reduced to 1.5% of mean concentration, the relative uncertainty can be as
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high as 11% with just “slightly” wrong phase and baseline corrections. Other factors may

also come into play depending on the quantification method. Some commercial packages

such as Chenomx NMR Suite (Chenomx Inc., Edmonton, Canada), which has been used

in recent cell culture applications (Aranibar et al. 2011; Bradley et al. 2010; Read et al.

2013; Yen et al. 2014), require the user to match the observed internal standard peak to

an idealized representation. Apart from introducing user uncertainty, this method may

be particularly sensitive to line shape variability. Discrepancies between the ideal and

observed shapes of the internal resonance peak due to imperfect shimming are a likely

source of quantification error.

While errors from standard quantification impact practically all NMR samples to some

extent, biofluid and cell culture samples are also subject to dilution effects. Urine samples

vary in their water content, which is corrected by normalization to either total spectrum

area or a reference metabolite such as creatinine (reviewed in (Smolinska et al. 2012) and

(Giraudeau et al. 2014)). The metabolomic analysis of cell lysates, common to many cell

culture applications such as drug discovery (Powers 2014), suffers from similar problems due

to the variability of extraction efficiency. The effect of variable solvent concentration results

in the same systematic error as from reference quantification – a global underestimation or

overestimation in the relative concentrations of all observed metabolites in a given sample.

The application of NMR spectroscopy and other metabolomic approaches to time-course

samples presents both a unique challenge and opportunity in dealing with systematic er-

rors. On the one hand, a single biased sample can skew the trends of multiple compounds

and suggest false metabolic relationships. On the other hand, the time-course trends of

metabolite concentrations have a significant degree of implicit replication that can be ex-
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ploited through mathematical means. Recent work with cell culture (Niklas et al. 2011)

and biofluid (Berk et al. 2011) data has used nonparametric curve fitting techniques to

model metabolite concentration trends by leveraging the inherent smoothness of biologi-

cal trends. This work extends the concept by identifying systematic deviations across a

number of metabolites. In the same way that a dramatic deviation from an overall trend

of a metabolite’s concentration is identified as measurement error via smoothing spline

regression, the deviations of many metabolites in one sample can be identified as the result

of reference error or a dilution effect.

In the context of cell culture process monitoring, a subset of compound concentration

trends from a batch culture shown in Figure 4.1 illustrates the confusion that can arise

from possible systematic errors (details provided in the Cell culture section of Methods).

The jumps in concentrations of glycine and lysine on days 4 and 5 correspond with the

exhaustion of choline and the peak of o-phosphocholine concentration. The question is

whether these deviations from the general trend of the compounds can be interpreted as

a physiological shift in cellular metabolism or if they are more likely to be the result of

systematic error that is associated with internal standard addition. This work presents a

simple iterative smoothing algorithm as a means to address this issue. The method is tested

by the stochastic generation of cell culture trends subject to simulated observation error

to ensure that identified systematic errors are independent of measurement uncertainty.

108



●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

Choline O−Phosphocholine

Glycine Lysine

0.00

0.05

0.10

0.05

0.10

3.6

3.8

4.0

4.2

4.2

4.4

4.6

4.8

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Day

C
on

ce
nt

ra
tio

n 
(m

M
)

Figure 4.1: An example of 4 metabolite trends from a metabolic study. Jumps in glycine
and lysine concentration trends (highlighted as white points) were hypothesized to be the
result of choline exhaustion (region highlighted in grey). Time-course data was collected
as described in the Cell Culture subsection of the Methods section.
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4.3 Methods

4.3.1 Cell culture

Metabolic data presented in this work originated from an insect cell media supplementation

experiment. Spodoptera frugiperda (Sf9) cells were grown in shake flasks at 27 ◦C and

130 RPM using in-house supplemented IPL-41 media (Weiss et al. 1981). The cells were

routinely split to 0.5·106 cells/mL upon reaching a concentration of 2·106 cells/mL, with

experiments carried out on cells that have undergone less than 30 passages. A 1 L mother

flask was seeded at 0.5·106 cells/mL with a working volume of 250 mL and grown up to

2·106 cells/mL. This flask was used to seed 125 mL flasks at 0.5·106 cells/mL with a working

volume of 30 mL. Cells were counted and sampled for NMR every 24 hours until reaching

their maximum concentration (of approximately 7·106 cells/mL). 1 mL samples of cell

culture media were collected and centrifuged for 8 minutes at 250 g, with the supernatant

collected and stored at −80 ◦C until NMR analysis.

The experimental data used as a template for stochastic trend generation, hereafter

referred to as reference data, consisted of 4 different carbohydrate supplemented flasks

cultured over a period of 10 days. The cultures were identical and seeded from the same

stock, but with varying concentrations of glucose and maltose. 43 Compounds were profiled

for a total of 172 model trends across the 4 flasks. Although many of the compound

concentration trends were similar across the flasks, the use of different conditions resulted

in more general trends than would be available from replicates.
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4.3.2 NMR

The collected supernatant samples were thawed at room temperature and NMR samples

prepared by the addition of 70 µL internal standard to 630 µL supernatant. The standard

consisted of 5 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) and 0.2% w/v sodium

azide preservative dissolved in 99.9% D2O (Chenomx Inc., Edmonton, Canada). The

NMR sample solutions were vortexed and pipetted into 5 mm NMR tubes (NE-UL5-7,

New Era Enterprises Inc., Vineland, NJ). Samples were randomized and scanned over

a two day period on a Bruker Avance 600 MHz spectrometer with a triple resonance

probe (TXI 600). Scans were performed using the first increment of a 1D-NOESY pulse

sequence with a 1 s presaturation pulse, 100 ms mixing time, and a 4 s acquisition. The

acquired spectra were re-randomized (Sokolenko et al. 2013) and analyzed using Chenomx

NMR Suite 7.7 (Chenomx Inc., Edmonton, Canada). Phasing and baseline correction

were done automatically by the software and adjusted by a human profiler. Compound

concentrations were calculated using the “targeted profiling” method (see Weljie et al. 2006

for more information). Briefly, the observed spectra were fit by the overlay of idealized

NMR resonance peaks from the software library, with compound concentration quantified

by comparison to an idealized fit of the DSS resonance peak.

4.3.3 Systematic error correction

Starting with all compound concentration time-courses from a single cell culture, a non-

parametric (smoothing) model was fit to each time-course. Percent deviations from the fits

were calculated at each timepoint and for each compound (εtime=i,compound=j = (yi,j,observed−
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yi,j,smoothed)/yi,j,smoothed). A median percent deviation was taken at each timepoint, corre-

sponding to sorting all the deviations at a given timepoint from lowest (εtime=i,1) to highest

(εtime=i,n), and focusing on the middle (or median) value (εtime=i,n/2). If the largest median

percent deviation exceeded a specified threshold, it was subtracted from the observed con-

centrations of all compounds at the corresponding timepoint. The process was repeated

until the largest deviation failed to exceed the specified threshold. An overview of the

algorithm is presented as a flowchart in Figure 4.2.

In principle, the algorithm takes advantage of the fact that an error in internal standard

addition or quantification will result in a deviation for all quantified compounds relative to

their concentration. As the percentage error from measurement uncertainty can be quite

high for some media components (Sokolenko et al. 2014), the median of relative deviations

was chosen as a conservative statistic that could still be capable of identifying systematic

error. Mean values were also tested but found to be more susceptible to random noise. An

iterative process was used to account for the effect an erroneous measurement can have on

a smoothing trend. Once a systematic deviation is identified, the deviating timepoint is

corrected and the trend re-smoothed to calculate new deviations. Although the elimination

of a deviating timepoint would also be suitable, correction has been chosen in this work as

it conserves more of the observed data in the form of a consensus between all compound

trends.

The choice of smoothing model and median deviation threshold are two important

parameters for error detection. A smoothing model should be chosen according to the

expected smoothness of compound concentration trends i.e. how likely they are to ex-

hibit rapid fluctuations. A high-density cell culture or one subject to perturbation may
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maximum median deviation dm
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Figure 4.2: Algorithm flowchart. Step by step description of the internal standard er-
ror correction algorithm. Corrected values can be kept or flagged for further investiga-
tion/removal.
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require less smoothing to ensure that rapid physiological changes are not mistaken for

internal standard error. On the other hand, a slow-growing or continuous culture could

use a much greater degree of smoothing. The median deviation threshold represents the

minimum amount of deviation that can be attributed to come from systematic error rather

than random measurement uncertainty. High measurement uncertainty is reflected in the

variability of median deviation, requiring higher thresholds to prevent false bias detection.

However, a number of other factors can also have an impact, including the number of

observed compounds and the number of timepoints included in the trend. The effect of

these factors on the threshold is explored in this work using stochastic trend generation.

4.3.4 Stochastic trend generation

The development of a framework for stochastic generation of extracellular compound con-

centration trends was based on the need to estimate the variability of median relative

deviations from a smoothing fit. Trend simulation was reduced to four general parameters

– overall trend shape, maximum compound concentration, percent change in compound

concentration, and measurement variability. The framework was developed around a refer-

ence of collected data and consisted of four steps. First, the reference trends were classified

as either increasing, decreasing, concave, or approximately constant. A parametric model

was chosen for each classification, and representative curves generated with a domain and

range of 0 to 1. The combination of simulated maximum compound concentrations and

percent changes were used to generate maximum and minimum concentration values to

scale the trend. Finally, measurement variability was simulated and applied to the data.

The combination of multiple trends with varying parameters was taken to be a represen-
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tative of the data one would collect from the time-course of a single culture and is termed

“an experiment” throughout the text.

Trend classification

Initial classification of the reference data identified trends with a net change in concen-

tration greater than 10%. Concentrations with changes of less than 10% were taken as

having approximately constant concentrations, or “unclassified”. Simple linear regression

was used to classify trends as either increasing or decreasing if the slope was found to be

statistically different from 0 at a 95% confidence level using a t-test. Compound concen-

trations that had a statistically significant increase followed by a statistically significant

decrease were classified as concave (none of the trends could be statistically determined as

convex). Trends were left unclassified if the classification of a compound differed across

the different experimental conditions. This was done to ensure that classification was re-

stricted to general patterns rather than singular observations. In this way, 15 compounds

were classified as decreasing, 14 increasing, 2 concave, and 12 were left unclassified. To

allow changes in the number of simulated compounds, these numbers were reformulated

and rounded to 35%, 30%, 5% and 30% of the total compounds respectively.

Trend shape

Classified reference data trends were smoothed using cubic regression splines with an upper

limit of 4 degrees of freedom (Figure 4.3a). When normalized to the same domain and

range, most of the concentration trends appeared to take very similar shapes. Sigmoidal
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equations (with 2 parameters) were used to model the increasing/decreasing trends while

the concave curves were approximated by a truncated beta distribution density function:

sigmoidal decrease: y =
1

1 + e
x−a
b

x ∈ [0, 1] (4.1)

sigmoidal increase: y = 1− 1

1 + e
x−a
b

x ∈ [0, 1] (4.2)

concave: y = xa−1 · (1− x)b−1 x ∈ [c ≥ 0, d ≤ 1] (4.3)

The sigmoid functions were defined over a domain of 0 to 1, while the beta function’s

domain was kept variable. The extra parameters offered greater flexibility in controlling

the rate of concentration changes. The y values (and beta distribution x values) were scaled

to a range of 0 to 1 after simulation for easier comparison. Unclassified compounds were

assumed to follow a linear trend with equal probability of either increasing or decreasing.

The linear trend was used to convey a lack of information rather than a strictly linear

relationship in compound concentration i.e. the case where a true trend was dwarfed by

relative measurement error.

Model parameter ranges were selected by trial and error to visually match the observed

trends. As the increasing/decreasing trends showed evidence of two distinct patterns each,

two sets of parameters were chosen for the sigmoidal curves along with a separate parameter

that related the probability of sampling from one population or the other. The parameters

in Table 4.1 were used to generate the trends in Figure 4.3b. Overall, the simulated trends

were highly comparable to the observed ones. Although there was less agreement between

the concave trends, parameter constraints were kept flexible to account for the low number

of concave reference curves.
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Figure 4.3: Trend shape simulation. A comparison of a) observed and b) simulated
compound concentration trends mapped to a domain and range of 0 to 1. Observed data
has been smoothed using cubic regression splines with a maxium of 4 degrees of freedom.
The line widths represent estimated standard error ranges from the regression spline model.
Simulated trend generation is described in the text and the line widths have been set to a
constant 5% of maximum value. Lines were plotted using a high degree of transparency,
with darker areas indicating a higher density of curves passing through them. In b), 100
trends were generated for each of the classifications using Equations 4.1-4.3 and parameter
values listed in Table 4.1.
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Table 4.1: Parameter ranges used in the trend shape simulation of reference data (via
Equations 4.1-4.3). Parameter values were drawn from a uniform distribution constrained
to the given ranges. Where two ranges are given, the range was chosen randomly for each
trend based on the given probability.

Trend Parameter Range 1 Range 2 P(Range 1)

Sigmoidal decrease
a 0.200-0.600 0.600-0.900 0.05
b 0.100-0.180 NA 1.00

Sigmoidal increase
a 0.045-0.055 0.945-0.955 0.15
b 0.200-0.400 0.100-0.300 0.15

Concave
a 3.500-4.500 NA 1.00
b 2.500-3.500 NA 1.00
c 0.000-0.200 NA 1.00
d 0.800-0.900 NA 1.00

Trend range

The conversion of idealized trend shapes to realistic concentration time-courses required

the generation of minimum and maximum values. The distribution of maximum compound

concentrations from the reference data is shown in Figure 4.4b. Compounds increasing in

concentration were observed to have lower maximum concentrations than decreasing ones,

requiring the simulation to be based on trend classification (with concave compounds being

treated as increasing). On a logarithmic scale, the spread of maximum concentrations

was reasonably modelled by a mixture of two normal distributions with means of -0.4

and 0.8 (corresponding to approximately 0.4 mM and 6.3 mM respectively) and standard

deviations of 0.35. The probability density functions of the resulting distributions can be

seen in Figure 4.4a with the comparison to observed values in Figure 4.4b. The proportions

between the lower and higher concentration clusters were chosen as 0.20, 0.70, and 0.35 for
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the decreasing, increasing, and unclassified trends respectively. Although a greater degree

of fine tuning was possible to achieve better agreement between observed and simulated

distributions, the marginal improvement did not warrant deviating from more general

consistency.

To avoid dealing with the correlation between maximum and minimum concentrations

(for compounds with relatively small changes in concentration), minimum values were gen-

erated from the simulation of net concentration change as a fraction of maximum value.

Relative concentration changes were assumed to be less dependent than minimum concen-

trations on maximum values. As compounds with increasing concentrations were generally

observed to have an initial concentration of approximately 0, their percent change was

taken as 100% for the purpose of the simulation. The distribution of fractional changes for

decreasing compound concentrations is shown in Figure 4.4d. One compound was prac-

tically exhausted in all 4 of the tested conditions, with the remainder of the compounds

being consumed to various degrees but clustering around 25% reduction. No change of less

than 10% can be observed as this value had been chosen as a cutoff for separating com-

pounds with a significant trend. The simulation distribution was modelled by a mixture

of two beta distributions – one to represent the distribution of non-exhausted compounds

(α = 2, β = 5) and another to increase the probability of values close to 0 and 1 (α = 0.5,

β = 0.5), with the proportion between the two set to 0.7 (Figure 4.4c). The simulated

distribution was truncated to the range of 0.1-1.0 to reflect the reference data. Figure 4.4d

suggests that the simulation was in good agreement with the reference data.
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Figure 4.4: Trend scale and perturbation simulation.a) Probability density functions used
to simulate maximum compound concentration distributions. b) A comparison of ob-
served (darker grey) and simulated (lighter grey) maximum compound concentration dis-
tributions (with a semi-transparent overlap). c) Probability density functions used to
simulate fraction concentration change distribution. d) A comparison of observed (darker
grey) and simulated (lighter grey) fraction concentration change distributions (with a semi-
transparent overlap). e) Probability density functions used to simulate fraction relative
standard deviation distribution. f) A comparison of observed (darker grey) and simulated
(lighter grey) relative standard deviation. The curves represent kernel density estimates,
with the simulated data generated from 10000 samples per classification from mixtures of
two normal distributions (see text for details). Observed data points are shown below the
curves.
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Measurement variability

A measurement variability distribution was developed from our previous work on estimat-

ing 1H-NMR measurement uncertainty for cell culture applications (Sokolenko et al. 2014).

Briefly, a Plackett-Burman design was used to generate a series of media-like formulations

with an orthogonal combination of high and low compound concentrations. In this way,

measurement standard deviations for each compound could be estimated independently

of other compound concentrations. The result was a collection of relative standard de-

viations (otherwise referred to as the coefficients of variation) for all compounds in the

media. Relative standard deviations for compounds with a statistically significant change

in concentration during cell growth were estimated at both high and low concentrations;

a single estimate was used for compounds without a significant change.

As the differences in relative standard deviation between compound concentrations were

not typically large, all of the relative standard deviations were pooled together into a single

distribution of measurement uncertainty (Figure 4.4f). Three of the compounds that were

particularly challenging to quantify (Sokolenko et al. 2014) (and had correspondingly high

uncertainties) were excluded as they were not representative of typical quantification –

compounds identified to have low concentrations and considerable resonance overlap were

not quantified in this work. The resulting distribution took the shape of a bimodal normal

distribution (Figure 4.4f) with means of 4% and 11% and a common standard deviation

of 2% (probability density function shown in Figure 4.4e).
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4.3.5 Algorithm validation

The simulation framework was applied to answer two fundamental questions. What is

the minimum level of bias that can be identified given normal measurement variability?

How is bias identification impacted by the choice of smoothing model and experimental

parameters? Two smoothing models were considered – local linear least squares regression

and a cubic regression spline. The former was implemented by the loess function in base

R and the latter as a general additive model (gam) provided by the mgcv package (Wood

2011). Both models made use of a smoothing parameter. The loess approach required a

span that dictated what fraction of data points to use in local regression. This parameter

was varied from 2.0 (less smooth) to 0.5 (more smooth). The gam approach required

the choice of basis dimension number, which was varied from 3 (less smooth) to 6 (more

smooth). In the text, models are referred to by their smoothing parameter i.e. loess-0.5

or gam-6. Combined with model type and smoothing parameter, the number of quantified

compounds (20–60) and the number of observed data points (10–20) were also seen as

important factors that could influence bias detection.

1000 experiments were simulated for each factor combination (with the number of

trends making up a single experiment varied as a parameter). Half of the experiments

were subject to normal measurement variability, while half were further perturbed with a

systematic bias of 5% at a single randomly selected timepoint. Algorithm performance was

assessed by smoothing the simulated data using a given model and calculating the median

relative deviation of observations from the fit for each timepoint in each experiment. The

result was a pool of median values for each timepoint corresponding to a certain factor

combination.
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4.3.6 Implementation

The algorithms and all analysis has been implemented in the R programming language

(R Core Team 2012). Figures were generated using the ggplot2 package (Wickham 2009).

4.4 Results and Discussion

4.4.1 Application

The correction algorithm was applied to the example data from Figure 4.1 and the results

can be seen in Figure 4.5. Although only glycine and lysine results are shown, all 43

observed compounds were used in the calculation (using a gam-5 smoothing model and

a threshold of 2.5% median deviation). The algorithm provided strong evidence that the

jumps in glycine and lysine concentration were not due to metabolic shifts but were the

result of a systematic error. Figure 4.5a also demonstrates that random measurement error

such as the pronounced deviation in glycine concentration on day 6 was not impacted by

the correction, as it was not general to all metabolites. The influence of the correction

was most pronounced in the rates of concentration changes calculated as the derivatives

of the smoothing curves (Figure 4.5b). As a result of the changes in concentration, both

compounds went from being produced then consumed to a steady pattern of increasing

consumption. More importantly, the correction of only two points resulted in considerable

changes to derivative estimates across all time-points. This can have an important impact

on the use of spline smoothing for flux estimation in metabolic flux analysis (as in (Niklas

et al. 2011), for example).
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Figure 4.5: Correction applied to example data. a) White points represent initially ob-
served concentrations that were marked for correction by the algorithm, while black points
represent final compound concentrations (with arrows signifying correction). Smoothing
lines were generated using the gam-5 model using uncorrected (solid line) and corrected
(dashed line) data. Time-course data was collected as described in the Cell Culture sub-
section of the Methods section. b) Derivatives calculated from the uncorrected (solid line)
and corrected (dashed line) smoothed fits.
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4.4.2 Validation

Smoothing bias

The smoothing model used in the correction algorithm must strike a balance in having

enough flexibility to follow metabolism related changes in compound concentrations while

avoiding undue influence from deviating observations. A lack of flexibility can result in

systematic deviations from a smoothing fit where no errors are present, while too much

flexibility can underestimate deviations due to error. The simulated trends described in

the Algorithm validation section were smoothed using loess and gam models (with varying

smoothness parameters) and the median deviations from each experiment were averaged

to identify overall trends (Figure 4.6). Unsurprisingly, a greater degree of smoothing re-

sulted in less biased deviations i.e. loess-0.5 and gam-6/gam-5 models had practically

constant deviations across all timepoints. On the other hand, using an inadequate amount

of smoothing generally resulted in an underestimated fit early in the culture (positive devi-

ations from the smoothing fit) and an overestimated fit later. Between the two smoothing

functions, gam was found to have a better discrimination of artificially biased timepoints

than loess at comparable smoothing levels (gam-5/6 and loess-0.5) – the deviations were

more consistent across different timepoints and were not as sensitive to the number of

observations. Although the jump from loess-0.5 to loess-1.0 in Figure 4.6 is quite consid-

erable, further analysis using other span parameters reinforced the observation that gam

smoothing is superior for bias discrimination. As gam-5 requires less information than

gam-6, it can be seen as a good compromise between an unbiased fit and deviation iden-

tification. For best results, the smoothing model should be tailored to the data under
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study.
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Figure 4.6: Average bias as a function of smoothing model. Lines represent averages of
simulated median relative deviations from smoothing fits. Dashed lines are used to distin-
guish timepoints simulated with a 5% bias. The gam-6/loess-0.5 models correspond to a
greater degree of smoothing in comparison to gam-3/loess-2.0. The number of observations
corresponds to the number of timepoints in the generated metabolic trends. Although the
number of compounds per time-course set was varied in the simulation, these were found
to have no impact on average trends.

Apart from smoothing model, the number of observations over the course of a culture

was also found to have an influence on deviation estimation (Figure 4.6). Increased sample
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frequency yielded a more accurate deviation estimate for biased timepoints. However, the

net impact of having a greater number of observations remained quite small. For gam-5, for

example, a true bias of 5% was estimated as approximately 4% with 15 or 20 observations

and closer to 3.5% with only 10 observations. Further simulations on lower observation

numbers suggested that comparable performance could be attained down to 8 observations

before degrading to a significant degree (data not shown). As batch processes may be

operational for as few as 5 days, this translates to a required sampling frequency of two

samples a day. Since 12 hour sampling may not always be practical, the effect of a staggered

sampling on the correction algorithm was also investigated. With gam-5 smoothing, little

to no difference was observed between even 12 hour sampling and a routine where 2 samples

are taken 8 hours apart, followed by a break of 16 hours (data not shown).

Confidence intervals

The variability of median deviations is particularly important for the selection of a correc-

tion threshold. The threshold must be high enough to avoid correcting deviations due to

random measurement noise while remaining sensitive to systematic sources of error. Em-

pirical 90% confidence intervals were constructed from the simulated data by excluding the

5% highest and 5% lowest median deviations at each timepoint (Figure 4.7). Between the

number of compounds and the number of observations, only the number of compounds was

found to have an effect on confidence interval width. Naturally, the observation of more

compounds reduced the impact of measurement noise and allowed for a more robust me-

dian estimate. However, the simulation of more compounds assumed equal quantification

quality. If the number of observed compounds is increased by profiling highly convoluted
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or otherwise poorly quantifiable compound resonances, the beneficial impact is likely to be

limited.
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Figure 4.7: 90% confidence interval around median deviations. Empirical 90% confidence
intervals were constructed from the simulated data by excluding the 5% highest and 5%
lowest median deviations at each timepoint. Lighter grey colour is used to distinguish
timepoints simulated with a 5% bias.

Based on the results, the observation of 40 compounds at 10 timepoints (typical of

the data obtained in our lab) will exhibit a natural variation in median deviation of ap-
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proximately 2–2.5%. Thus, deviations beyond this threshold have a high probability of

occurring due to a source of bias such as internal standard addition or quantification. The

results also show that a 5% bias is more likely to be identified as anywhere between 2.5–5%

(with further reduction in performance at earlier timepoints), meaning that a subtraction

of the estimated median deviation is more likely to dampen the bias, rather than remove

it. Reduced performance at the end-points reflects the relative lack of trend data and can

be ameliorated by adding replicates or extending the observation time beyond the span of

direct interest.

Simulation extension

To determine how robust the correction method is to changes in the underlying data, four

modifications to the simulated data were considered. The ratio of decreasing to increasing

trends (intially taken as 35%:30% based on our cell culture data) was set to 60%:5% as

well as 5%:60%. Despite these dramatic shifts, both average bias and confidence interval

trends remained very similar to those presented in Figures 4.6 and 4.7. The only excep-

tion was at the end points, where lower concentration magnitudes resulted in much more

variable relative deviations. Since increasing and decreasing trends reach their minimum

concentrations at different endpoints, the overall effect on median relative deviations is

not pronounced when the two trends are balanced in number. However, the extreme case

of a 12:1 imbalance between increasing and decreasing trends resulted in larger variability

ranges at time-course edges. With 60% of the trends increasing, the bias threshold at early

timepoints increased from 2.5% to 5%. With 60% of the trends decreasing, the bias thresh-

old increased at late timepoints but did not go beyond the overall average of 2.5% (as the
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threshold at these timepoints was already low). The difference between the two conditions

can be explained by the fact that all increasing trends start at or very close to 0, while

only some of the decreasing trends reach such low concentrations. Since a more balanced

proportion of increasing and decreasing trends is expected in real data, the overall effect

would be minimal. Two other conditions – increasing the net concentration changes of

decreasing trends (by doubling the proportion of compounds with large relative changes)

and increasing the variability of observations (by doubling the standard deviation of highly

variable compounds) did not appear to have any impact on the threshold calculation. For

all conditions, gam-5 smoothing remained the best choice.

Taken together, these results suggest that a bias threshold of approximately 2.5% us-

ing gam-5 smoothing would be an adequate default choice for diverse data sets. Beyond

cell culture applications, we predict the bias correction algorithm to be just as useful for

other time-course metabolomic data. One such example is biofluid analysis in toxicology.

The Consortium for Metabonomic Toxicology (COMET) has already established a large

collection of time-course urine samples that meet the requirements for systematic error

correction (Lindon et al. 2005). While the proposed correction is not designed to replace

standard normalization techniques, it can build on the development of recent smoothing

spline techniques (Berk et al. 2011) and serve a complementary role in the identification

of spurious results. Further extension to mass spectrometry (MS) methods is also likely to

be fruitful. Techniques such as multiple reaction monitoring (MRM) are commonly used

for pharmaceutical and toxicological metabolomics (Kitteringham et al. 2009; Steven H

et al. 2001) and suffer from similar dilution effects as NMR (exacerbated by the need

for more sample manipulation such as liquid extraction steps). The correction of system-
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atic biases may serve to reduce the relative standard deviations of quantified compound

concentrations.

4.5 Conclusions

The growing popularity of quantitative metabolomics for time-course applications presents

a new context for data processing and acquisition. While this work deals primarily with

the correction of internal standard quantification in cell culture data, it’s not difficult to

imagine similar approaches applied to other analytical methods. Improvements in accuracy,

precision, and analysis speed can be best achieved by leveraging the replication inherent

to the parallel observation of multiple metabolite trends. The algorithm presented in

this work took advantage of inherent autocorrelation to identify and correct systematic

bias originating from internal standard addition and quantification. The gam-5 model

was identified as the best smoothing function for the task, with the ability to detect a

bias greater than 2.5% across most of a culture’s time-course. The simulation framework

followed the context-driven approach by capturing the key elements of a cell culture time-

course. Although the presented validation has focused on trends typically observed in our

lab, full code has been provided to allow rapid adaptation to user needs.

Availability and requirements

Project name: metcourse

Project home page: https://github.com/ssokolen/metcourse

131



Operating system: Platform independent (tested on Linux)

Programming language: R (version 3.2.1)

Other requirements: R packages – dplyr (version 0.4.2), mgcv (version 1.8-6)

License: Apache (version 2.0)

Any restrictions to use by non-academics no
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Chapter 5

Metabolic Flux Validation

The development of robust variance estimates and the correction of quantification bias

opened the door to accurate estimation of intracellular flux from extracellular concentra-

tion data using metabolic flux analysis. Previously published MFA models were applied

to cultures of CHO and Sf9 (Spodoptera frugiperda insect) cells. Whereas no errors were

identified through the standard detection of gross measurement errors, some of the results

featured unexpectedly large material imbalances. This prompted an investigation into al-

ternative forms of validation that could be used to verify accuracy and precision. The

result was a combined simulation and t-test strategy that could address both the impact

of measurement uncertainty and lack of model fit. This work was submitted to the journal

BMC Systems Biology, with the manuscript is presented below in its original form. Addi-

tional files meant to support the manuscript that would be available online are provided

in Appendix C.
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Identifying model error in metabolic flux analysis – A generalized least squares

approach

Stanislav Sokolenko, Marco Quattrociocchi, and Marc G. Aucoin

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University

of Waterloo.

5.1 Abstract

5.1.1 Background

The estimation of intracellular flux through traditional metabolic flux analysis (MFA)

using an overdetermined system of equations is a well established practice in metabolic

engineering. Despite the continued evolution of the methodology since its introduction,

there has been little focus on validation and identification of poor model fit outside of

identifying “gross measurement error”. The growing complexity of metabolic models, which

are increasingly generated from genome-level data, has necessitated robust validation that

can directly assess model fit.

5.1.2 Results

In this work, MFA calculation is framed as a generalized least squares (GLS) problem,

highlighting the applicability of the common t-test for model validation. To differentiate

between measurement and model error, we simulate ideal flux profiles directly from the
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model, perturb them with estimated measurement error, and compare their validation to

real data. Application of this strategy to an established CHO cell model shows how fluxes

validated by traditional means may be largely non-significant due to a lack of model fit.

With further simulation, we explore how t-test significance relates to calculation error and

show that fluxes found to be non-significant have 2-4 fold larger error (if measurement

uncertainty is in the 5%-10% range).

5.1.3 Conclusions

The proposed validation method goes beyond traditional detection of “gross measurement

error” to identify lack of fit between model and data. Although the focus of this work is

on t-test validation and traditional MFA, the presented framework is readily applicable to

other regression analysis methods and MFA formulations.

5.2 Background

As the metabolic phenotype of the cell, the flow of material through intracellular reactions

(or metabolic flux) represents the sum total of all underlying cellular processes. The

accurate determination of metabolic flux is becoming increasingly important for assessing

the impact of metabolic engineering or feeding strategies on cellular metabolism (Chen

et al. 2016). In lieu of in vivo observation, the inference of intracellular fluxes is commonly

accomplished through metabolic flux analysis (MFA). At its most basic, MFA refers to the

process of modeling intracellular flux via a stoichiometric balance of metabolic reaction

and transport rates (assuming a “pseudo steady-state” in the form of negligible molecule
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accumulation) (Stephanopoulos et al. 1998). The original applications of the technique

centered on using simple element balances as a means to correct unreliable measurements

(Wang and Stephanopoulos 1983). However, the increasing availability of data from multi-

omic technologies has led to the development of metabolic flux models that extend far

beyond these foundations.

The basis of MFA is the stoichiometry matrix. In the typical arrangement, rows rep-

resent balances on molecular species, with each column encoding the stoichiometry of a

reaction (see Stephanopoulos et al. 1998 for details). As cellular reaction networks gen-

erally have more reactions than species, the resulting stoichiometry matrix is typically

underdetermined. The estimation of a single flux profile requires that the number of un-

known reaction rates be equal to or less than the number of molecular species, and this

has traditionally been accomplished by observing as many extracellular transport rates

as possible. However, the growing availability of genomic data has opened the door to

developing models that may contain thousands of reactions, complicating the calculation

of a unique flux profile.

A considerable amount of metabolic information can be gathered without calculating a

unique flux profile through constraint-based reconstruction and analysis (COBRA) meth-

ods. The combination of mass balance constraints from stoichiometric relations as well as

other factors such as enzyme capacity and reaction thermodynamics can be used to gen-

erate a feasible solution space for cellular metabolism. If a unique flux profile is required,

one can be estimated by assuming an objective function such as cell growth maximization.

However, it is also possible to study the solution space directly (for a detailed review, see

Bordbar et al. 2014). The popularity of COBRA methods has resulted in the develop-
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ment of a large number of software packages that have considerably simplified analysis (see

Lewis et al. 2012). However, the complexity of genome-scale models remains an on-going

challenge.

Despite the recent advances, the process of translating genomic information to cellular

reactions is still under development. Even the well-studied genomes of Escherichia coli and

Saccharomyces cerevisiae had approximately 20% of their open reading frames (ORFs) un-

characterized as recently as 2010 (Dauner 2010) and the development of reaction networks

requires a significant amount of curation (Boghigian et al. 2010; Dauner 2010; Maertens and

Vanrolleghem 2010). Furthermore, the relation between the presence of a gene sequence

and enzymatic activity is not always obvious (Maertens and Vanrolleghem 2010). A com-

bined transcriptomic-metabolomic modeling study of E. coli has revealed the existence of

redundant gene expression where no flux was observed (Shlomi et al. 2007). Meanwhile, a

study of lysine-producing Corynebacterium glutamicum metabolism suggested that while

the expression of some genes appears tightly coupled to metabolic fluxes, others can remain

practically constant despite considerable changes in metabolic flux (Krömer et al. 2004).

The popular Chinese Hamster Ovary (CHO) cell line has an added problem of high genetic

variability that may question the generality of a given model (Feichtinger et al. 2016; Kaas

et al. 2015). Taken together, these issues add a considerable amount of uncertainty to

modeling efforts, especially for less studied expression systems.

The addition of isotopically labelled substrate and the analysis of resulting metabolites

through 13C-MFA can be a powerful means to gain better understanding of a metabolic

system. But despite the ready availability of algorithms and software packages to assist

with everything from identifying optimal labelling strategies to final analysis (as reviewed
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in Antoniewicz 2015; Young 2014), 13C-MFA is not always practical. Isotopic labelling

is expensive, especially for large volume bioreactor cultivation, and can not be used to

monitor ongoing production processes. Moreover, studying transient labelling patterns re-

quires accurate intracellular metabolite quantification, which is not always straightforward

(Mashego et al. 2007), and increased computational resources (Antoniewicz 2015).

As such, one approach to dealing with genome-scale model uncertainty and complex-

ity has been to simplify the models to a level where they can be solved directly from

measured extracellular transport rates (Quek et al. 2014; Quek et al. 2010), continuing

the use of traditional overdetermined MFA. The simplification can be aided by software

such as CellNetAnalyzer that can deal with both underdetermined COBRA models and

overdetermined MFA formulations (Klamt et al. 2007; Klamt and von Kamp 2011). Recent

developments have also led to an automation of the model simplification process (Erdrich

et al. 2015). Despite increasing model size, overdetermined MFA has continued to see

use over the last 10 years (Bernal et al. 2009; Carinhas et al. 2010; Carinhas et al. 2013;

Niklas et al. 2012; Niklas et al. 2011; Priesnitz et al. 2012; Quek et al. 2010; Xing et al.

2011), especially for less commonly used cell lines that lack well curated genomic and

transcriptomic data. However, the reduction of genome-levels models in this fashion is an

inversion of the original MFA foundations. In contrast to the use of a simple, reductive

model for the reconciliation of questionable data, it is the accuracy of the model that is

becoming increasingly variable – making it necessary to rigorously assess the validity of

model simplification.

A number of strategies are currently available for model validation. The stoichiometric

matrix can be probed directly by checking its condition number (Vallino and Stephanopou-
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los 1990) or by determining the sensitivity of calculated fluxes to measurement error

(Goudar et al. 2009). The incorporation of measurement flux uncertainty allows the use of

gross measurement error detection (van der Heijden et al. 1994), which identifies whether

deviations between observed and fit data are normally distributed through a χ2-test. While

useful for identifying singular errors of large magnitude, this statistic does not asses the

overall quality of fit – errors may be unreasonably large while remaining normally dis-

tributed. Despite the increasing consideration of confidence intervals around calculated

fluxes in recent studies (Antoniewicz et al. 2006; Leighty and Antoniewicz 2011), the ques-

tion of whether a set of data fits a given metabolic model has thus far remained open.

In this work, we propose the use of a standard t-test as a natural extension of the

least-squares calculation that underpins traditional MFA calculation. Applying MFA to a

Chinese Hamster Ovary (CHO) cell culture, t-tests were used to determine whether each

calculated flux could be deemed sufficiently distinct from zero. Once non-significant fluxes

were identified, we explored whether the uncertainty in calculated fluxes could be explained

by measurement uncertainty alone, or if a lack of model fit could be to blame. To do this,

the solution space of the stoichiometric model was constrained by observed flux ranges

and hypothetical flux profiles were generated directly from the model. The profiles were

perturbed by measurement error and collected to establish a baseline of calculated flux

significance given perfect model fit.
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5.3 Methods

5.3.1 Theoretical principles1

The material balance on molecular species that forms the basis of MFA is typically ex-

pressed as

Sv = 0 (5.1)

where S is the stoichiometric matrix and v is the vector of fluxes that correspond to

reactions defined by columns of S. This formulation proceeds from a pseudo steady-state

assumption that changes in metabolite pools (as a result of cell division or other processes)

are much smaller than metabolite production and consumption fluxes and can therefore be

ignored. The Sv matrix can be be separated into Scvc+Sovo, where c stands for calculated

flux and o for observed flux.

Scvc + Sovo = 0 (5.2)

−Sovo = Scvc (5.3)

Since vo is a vector of observed data, Sovo can be calculated directly. The dimension of Sc

depends on how many fluxes can be observed, i.e., the length of vo. Sc must have no more

columns than rows to calculate a unique flux profile, although the observation of more

fluxes (and the accompanying reduction in the number of Sc columns) is useful for error

estimation 2. Pooling cyclic or parallel pathways may be required in the initial formulation

1A more detailed discussion of the theoretical principles, including a worked example and some proofs,
is available in Appendix C.1
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of S to ensure the required form of Sc is obtained.

Assuming that an overdetermined form of Sc can be formulated (with sufficient infor-

mation to calculate vc), Equation (5.3) is equivalent to linear regression and can be solved

in a similar fashion.

Linear regression MFA

y = Xβ + ε (5.4) − Sovo = Scvc + ε (5.5)

β̂ =
(
XTX

)−1
XTy (5.6) v̂c = −

(
STc Sc

)−1
STc Sovo

(5.7)

With this formulation, ε represents the deviation between observed and calculated fluxes

that may be the result of either measurement error or lack of model fit. Equation (5.7)

assumes ε is independently and identically distributed, which is unlikely to be the case. The

variance-covariance matrix Cov(ε) can be expressed as a scalar σ2 multiplied by a matrix

of relative covariance terms V , i.e., Cov(ε) = σ2V . If observed fluxes do not covary and

have equal variance, then V = I, where I is the identity matrix. Otherwise, Equation (5.5)

needs to be rescaled by the matrix square root of V . Taking V = PP , the scaled form of

Equation (5.5) is:

− P−1Sovo = P−1Scvc + P−1ε (5.8)

2It is typically assumed that Sc is sufficient for the estimation of all vc values. However, failure to
observe a key metabolite may result in a case where not all values of vc can be estimated despite Sc

appearing determined or overdetermined. See van der Heijden et al. 1994 for details on stoichiometry
matrix classification.
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where P−1ε now satisfies the assumptions of linear regression. Formally, this is equivalent

to generalized least squares (GLS) regression, however, incorporating P−1 directly into

each term allows the use of all ordinary least squares techniques. Letting P−1So = S ′o,

P−1Sc = S ′c, and P−1ε = ε′:

v̂c = −
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo (5.9)

The calculation of P−1 requires the estimation Cov(ε) from the variance of observed

fluxes. Calculating the covariance-variance matrix of both sides of Equation (5.5):

Cov(−Sovo) = Cov(Scvc + ε) (5.10)

Cov(ε) = SoCov(vo)S
T
o (5.11)

Since Cov(ε) = σ2V for any value of σ, σ is set to 1 so that V = Cov(ε). In practice, Cov(vo)

need only capture the relative magnitudes of observed flux variances as σ̂ is estimated

during regression. Balances around molecular species that do not include an observed flux

vo will have a row of zeros in Cov(ε), which prevents the calculation of a matrix inverse

(required to get P−1). Although this mathematically equates to a variance of zero for

those balances, a better interpretation is that there is an unknown variance around the

“observation” of no net flux. The simplest solution is to add a small non-zero value to each

diagonal entry of Cov(ε), representing the confidence of the calculated fluxes being fully

balanced. If there is more uncertainty around some balances than others, this information

could be encoded in the magnitude of the added variance. P can then be calculated via a
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matrix square root of estimated Cov(ε). Since a variance (covariance) matrix is positive

semi-definite, P is known to be unique.

Whereas calculated fluxes v̂c are commonly estimated using a very similar “weighted”

least squares approach, the use of validation methods that are part of the regression frame-

work have yet to be explored. The common χ2 test can still be used to detect gross mea-

surement errors in estimated residuals (ε̂); however, the validation of a regression model

also requires the use of t-tests to ensure the significance of calculated fluxes. Confidence

and prediction intervals are also highly relevant to MFA. Estimated fluxes require a confi-

dence interval to report the uncertainty of calculation, while a prediction interval around

a predicted balance can be used to judge the validity of that balance being closed. The

calculation of a t-statistic follows from normal regression:

Linear regression MFA

tβ̂i =
β̂i

se(β̂i)
(5.12)

tv̂c,i =
v̂c,i

se(v̂c,i)
(5.13)

Thus:

tv̂c,i =

(
−
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo

)
i

σ̂
√

(S ′Tc S
′
c)
−1
i,i

(5.14)

The estimated standard deviation of ε (or σ̂) is calculated as follows:

σ̂2 =

∑
(ε̂′i)

2

nb − nc − 1
(5.15)
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where:

ε̂′ = −S ′ovo + S ′c
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo (5.16)

and nb is the number of balances (rows of S ′c) while nc is the number of fluxes to be

calculated (columns of S ′c). If the model is correct and Cov(ε) was correctly estimated, σ̂2

should be approximately equal to 1. Once the t-value is calculated, a flux can be judged

statistically significant if |tv̂c,i| ≥ tα/2,nb−nc−1 where α is the significance level.

The identification of non-significant flux may be interpreted in two ways. The mea-

surement error around observed fluxes may be too high to allow robust flux calculation.

In that case, non-significant fluxes should be treated as having a flux of zero and excluded

from the model or further analysis. Alternatively, non-significance may be the result of

excess variability from a lack of fit between the model and observed data, requiring model

correction. To distinguish between these cases, it is necessary to separate model error

from measurement uncertainty. One way to accomplish this is to reduce measurement un-

certainty through added replication, however, the required effort can make this approach

practically infeasible. Another solution is to simulate a set of feasible fluxes directly from

the stoichiometric model (and therefore free of model error) for comparison to the observed

data.

The simulation of feasible fluxes can be simplified by eliminating flux equality con-

straints expressed by the stoichiometry matrix. Essentially, only nc − nb fluxes have to

specified in order to generate all the other values. More formally, the relationships be-

tween the fluxes can be succinctly summarized through the nullspace (or kernel) of S,

which describes all flux balance conservations in the model. This makes it possible to
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calculate all fluxes from a smaller set of variables referred to as the basis. Unlike fluxes,

which must satisfy constraints imposed by Sv = 0, the basis can take any arbitrary value

to generate fluxes that satisfy all required constraints. Expressed mathematically,

Null(S) = K (5.17)

Kb = v (5.18)

where b is a basis vector of any value with the same number of rows as columns of K.

While all values of b satisfy Sv = 0, it is still necessary to constrain fluxes to a set of

realistic values representative of a cell cultivation. The space of all feasible fluxes v can be

constrained by defining upper and lower bounds on each observed flux:

v = Kb

subject to Kib ≤ vi + a · sd(vi)

Kib ≥ vi − a · sd(vi)

(5.19)

where vi is an observed flux, Ki is the corresponding row of K, and a is a scaling constant

that can be set to tα/2,df to specify a confidence interval around vi. As the basis solution

space is only constrained by inequalities, it is readily amenable to stochastic sampling.

All values of v that satisfy Equation (5.19) represent feasible fluxes that would perfectly

satisfy the stoichiometric model while remaining within measurement uncertainty of real

observations. If the resulting space is infeasible, then the observed data does not fit the

specified model. Otherwise, a random sample of feasible fluxes can be taken for comparison

to observed results. If the addition of measurement error to simulated fluxes results in less
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uncertainty than from observed results, then model error is to blame.

5.3.2 Cell culture

CHO-BRI cells were grown in a 3 L bioreactor (Applikon Biotechnology Inc., Foster City,

CA) in serum-free BioGro-CHO media (BioGro Technologies Inc., Winnipeg, Canada)

with an in-house amino acid supplement (manuscript submitted). The culture was seeded

at 0.3 · 106 cells/ml with a working volume of 2 L. Temperature, pH, dissolved oxygen,

and agitation speed were held at 37◦C, 7.4, 50%, and 120 RPM respectively. Samples

were taken three times a day for offline analysis. Cell density was determined using a

Coulter Counter Z2 (Beckman Coulter, Miami, FL) calibrated to results from trypan blue

exclusion analysis. Aliquots were centrifuged, with the supernatant collected and stored

at -80◦C until NMR analysis. Dry cell mass was calculated by vacuum filtering 15 mL of

cell culture through a type A/D glass filter (Pall Corporation, Port Washington, NY) and

weighing the filter after drying it for 24 hours at 50◦C.

5.3.3 Metabolite quantification

NMR spectra acquisition, metabolite quantification, and internal standard correction are

described by Sokolenko and Aucoin (2015). In brief, samples were scanned on a Bruker

Avance 600 MHz spectrometer using the first increment of a 1D-NOESY pulse sequence

with metabolite quantification carried out using Chenomx NMR Suite 8.1 (Chenomx Inc.,

Edmonton, Canada). GlutaMAX™ was added manually to the software library using the

Chenomx NMR Suite’s ‘compound builder’ tool. All compounds were profiled in triplicate.
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Ammonia measurements were taken using an Orion Star™Plus ISE Meter (Thermo Fisher

Scientific, Waltham, MA).

5.3.4 MFA model

A CHO cell MFA model was taken from the work of Altamirano et al. (2001). New

transport fluxes were added for acetate, formate, pyruvate, citrate, malate, pyrogluta-

mate, and GlutaMAX™ (the fluxes of which could all be observed via NMR). The trans-

port of GlutaMAX™ was grouped together with the conversion of the dipeptide into glu-

tamine and alanine. The transport of cystine was grouped together with the reduction

of cystine into cysteine. A new reaction was added for the conversion of glutamate into

pyroglutamate (Kumar and Bachhawat 2012) (via a number of possible enzymatic and

non-enzymatic reactions). New reactions were also added for acetyl-CoA hydrolase and

formate-tetrahydrofolate ligase to explain acetate and formate production. A full list of

reactions and an outline of metabolite flow can be found in Appendix C.2. As in the

original formulation, a number of unbalanced species were removed from the model before

analysis, including O2, CO2, ATP, NADH, NADPH, and FADH (NADH and NADPH were

later reintroduced in a modified form of the model).

5.3.5 Flux estimation

Metabolite and cell concentration timecourse data was fit by a regression spline with 4

cubic basis functions, provided by the gam function (Wood 2011) in the R programming

language (R Core Team 2016). Measurement error was estimated by calculating the vari-
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ance of observation deviation from the fit. 1000 predicted concentration timecourses were

simulated for each trend by adding normally distributed error corresponding to the sum

of regression and measurement variance. A new regression split fit was calculated for each

of the simulated timecourses. Metabolite transport fluxes were calculated by dividing the

derivative of the metabolite concentration fit by cell concentration (vo = 1
X

dCo

dt
). The mean

and variance of the simulated fluxes at each time-point were used for all MFA analysis.

Biomass fluxes were calculated as by Altamirano et al. (2001), with the exception that

dry cell mass measured to be 0.24 mg/106 cells. A single mid-exponential time-point of 66

hours was chosen for MFA analysis to fulfill pseudo steady-state conditions.

5.3.6 Implementation

All MFA calculations, validation, and sampling were carried out using the omfapy Python

package, developed in-house. The package as well as analysis code is available on github

(https://github.com/ssokolen/omfapy). Basic functionality was based on theoretical

principles presented by Stephanopoulos et al. (1998). Sampling of a feasible flux space

was implemented using the random direction algorithm (Smith 1984) as well as the mirror

algorithm presented by Van den Meersche et al. (2009). Although slower than the random

direction algorithm, the mirror algorithm was able to generate more even coverage of the

sampling space.
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5.4 Results

5.4.1 Identification of model error

Observed uptake fluxes and their corresponding coefficients of variation 66 hours post in-

oculation are shown in Table 5.1, with overall metabolite concentration profiles and cell

density in Figure 5.1. As usual for CHO cells, the metabolic profile was dominated by large

fluxes of glucose and lactate. Considerable fluxes of alanine, GlutaMAXTM, ammonia, and

glutamine were also observed. The median coefficient of variation was found to be 9.3%.

Although this was similar to previously reported estimates for concentration quantification

via NMR (Sokolenko et al. 2014), incorporating the uncertainty of derivative calculation re-

sulted in a somewhat larger probability of high variance values. As described by Sokolenko

et al. (2014), the singularly high variability of glutamate flux was primarily due to its low

concentration and heavy spectral convolution.

Table 5.1: Observed uptake fluxes and coefficients of variation (standard deviation of flux
divided by flux) 66 hours post inoculation.

Flux ( nmol
106cells·h) CV (%)

Acetate −1.03 5.08
Alanine −33.95 3.32
Ammonia −17.65 23.10
Arginine 2.52 16.33
Asparagine 2.21 7.64
Aspartate 2.14 7.09
Carbohydrates −2.13 12.25

(Continued on next page)
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Table 5.1 – continued from previous page

Flux ( nmol
106cells·h) CV (%)

Citrate −1.56 7.14
Cystine 0.33 19.04
DNA −0.31 13.15
Formate −7.52 2.06
Glucose 161.87 2.89
Glutamate −0.17 213.18
Glutamax 17.98 10.69
Glutamine 7.35 12.48
Glycine −2.25 8.79
Histidine 1.02 14.92
Isoleucine 1.52 8.13
Lactate −283.53 3.19
Leucine 2.66 9.47
Lipids −1.36 14.86
Lysine 1.80 8.05
Malate −0.40 13.78
Methionine 0.89 6.44
Phenylalanine 1.19 7.04
Proline 1.94 9.17
Protein −32.69 13.11
Pyroglutamate −3.86 3.86
Pyruvate −2.62 5.74
RNA −0.89 13.77
Serine 2.64 12.36
Succinate −0.15 15.52
Threonine 1.70 11.45
Tryptophan 0.34 17.40
Tyrosine 1.11 6.57
Valine 2.24 5.26

The incorporation of the observed fluxes into the MFA model showed no issues using

typical metrics. The condition number of the reduced stoichiometry matrix was consider-
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Figure 5.1: Observed time-course trends. Panels depict a) metabolites that changed by
more than 50% of their maximum concentration, b) those that changed by less than
50%, and c) cell density. All metabolite concentrations are expressed as fractions of their
maximum value. Curves were calculated from cubic regression spline fits constrained to 4
basis functions. Grey area designates 99% prediction interval used for sampling.

ably below 1000 and the χ2 p-value was 0.93, indicating little evidence of gross measurement

error. However, t-test analysis on the calculated fluxes using the GLS framework revealed

that only 15 of 47 fluxes were statistically significant (at the standard 5% significance

level). The statistically significant fluxes were primarily those that related to glycolysis

– offering only a shallow look at cellular metabolism. All of the TCA and many of the

amino acid degradation fluxes were deemed non-significant. To determine whether mea-

surement variability or model error was to blame, 100 flux profiles were sampled from the

stoichiometric matrix bounded by 99% confidence intervals on the measured fluxes (fluxes

generated directly from the model in this way will be referred to as “balanced”). 99%

intervals were chosen to include practically all possible flux values. The sampled fluxes

had good coverage of the constraint space, suggesting that the model was flexible enough

to fit fluxes similar to those observed. Each balanced flux profile was then perturbed 100

times using normally distributed noise generated from observed flux standard deviations.

The result was 10 000 sets of fluxes subject to observed measurement error but no model

error.

Figure 5.2 compares the percentage of simulated (balanced) fluxes found to be non-

significant to the results from observed data. The simulation revealed that approximately
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half of the calculated fluxes (and all TCA fluxes) are entirely non-significant even when

there is no model error (Figure 5.2B). Many of the other fluxes were only significant for 50%

of the simulations or fewer. The lack of significance showed that the model was incapable

of providing high confidence results for the collected data. Along with the overall low

significance, evidence of model error could also be observed. Focusing on approximately 20

of the lowest magnitude fluxes, all were deemed to be non-significant based on the observed

data. Comparing the simulated data, the same fluxes were rejected as non-significant 50%-

95% of the time. Taken together, the probability of all the low magnitude fluxes being

observed as non-significant is extremely low, giving strong indication of poor fit beyond

the effect of measurement error alone, i.e., as a result of model error. Although model

correction is outside the scope of this work, the proposed methodology was successful in

identifying a considerable degree of uncertainty overlooked by commonly used validation

methods.

5.4.2 Effect of measurement noise

An extended simulation was carried out to determine whether the lack of statistical signif-

icance was due to measurement variability. The flux constraints were extended beyond 66

hours post inoculation to consider the broader applicability of the model. 99% confidence

intervals were generated for all fluxes 18-80 hours post inoculation with the minimum

and maximum values for each flux used to bound the flux solution space. 100 balanced

flux profiles were generated with 100 sets of measurement error drawn from a normal

distribution using 5%, 10%, 15%, and 20% coefficients of variation for each flux. The 45

calculated fluxes spanned more than 3 logarithms of values from approximately 0.1 nmol
106cells·h
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Figure 5.2: Comparison of flux rejection between observed and simulated data. Panels
depict a) calculated flux magnitude and b) the percent of simulations in which the calcu-
lated fluxes were found to be non-significant (with asterisks indicating fluxes calculated to
be non-significant using observed data). Simulated data was drawn from the stoichiomet-
ric model described in the Materials and Methods section, constrained by 99% confidence
intervals on fluxes observed at 66 hours post inoculation. 100 balanced flux profiles were
generated with 100 random generated sets of measurement error applied to each. See
Appendix C.2 for reaction definitions.
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to 400 nmol
106cells·h (Figure 5.3A). Fluxes had variable magnitudes across the simulations, so all

analysis was performed as a function of flux rank, where a rank of 1 indicates the smallest

magnitude flux in a given flux profile.

All the simulated flux profiles were subject to a χ2 test, with only 5% of the simulations

rejected (equal to the false positive rate). The remainder of the fluxes are show in Fig-

ure 5.3. As the simulated fluxes included both observed and calculated values, a percent

error could be calculated for each calculated flux. Despite passing the χ2 test, most fluxes

were characterized by median errors of 10%-20% (Figure 5.3B), increasing with measure-

ment variability. It should be noted that the median is a relatively conservative statistic.

By definition, half of the calculated fluxes featured much greater errors than the reported

values. The pronounced jump in error for flux ranks of 36 to 44 was traced to the TCA

fluxes, which had high error despite large flux magnitudes. Similar to median error, the

percentage of fluxes identified as non-significant increased with measurement variability

(Figure 5.3C). However, even measurements with 5% coefficient of variation resulted in

rejection rates of 50% or more across practically all fluxes. The TCA fluxes in particular

(ranks 36 to 44) were rejected as non-significant 75% of the time or more (at all levels of

measurement variability). The high level of flux rejection at low levels of measurement

variability suggested the uncertainty in MFA calculation using observed data was primar-

ily due to model structure rather than the uncertainty of observed data. Despite passing

traditional validation tests, the simulation of stoichiometrically balanced fluxes revealed

that the model is incapable of explaining observed metabolic profiles with an acceptable

degree of confidence.
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Figure 5.3: Comparison of fluxes simulated with different measurement errors. Panels
depict a) flux magnitude, b) median error, and c) percent non-significance. Simulated data
was drawn from the stoichiometric model described in the Materials and Methods section,
constrained by 99% confidence intervals on fluxes observed between 18 and 80 hours post
inoculation. 100 balanced flux profiles were generated with 100 random generated sets of
measurement error applied to each. Each balanced flux profile was ordered according to
increasing absolute flux magnitude to generate an associated rank from 1 to 45.
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5.4.3 Effect of model structure

To test the influence of model structure on the significance of calculated fluxes, we simulated

the effect of a broken electron transport chain – allowing a closed balanced on NADH and

NADPH. Essentially, NADH and NADPH were reintroduced into the model and assumed

to be balanced by the defined stoichiometric relations. Although arbitrary, this assumption

is consistent with largely anaerobic metabolism of CHO cells (termed the “Warburg Effect”)

and allowed the addition of balances around intermediate compounds participating in

many reactions. Incorporating the modified model into analysis of the observed fluxes

at 66 hours post inoculation revealed no sign of gross measurement error (χ2 p-value of

0.91) and decreased the number of non-significant fluxes from 32 (of 47) to 16. As before,

10 000 sets of fluxes were simulated from 99% confidence intervals around the observed

measurement fluxes, subject to observed measurement error (Figure 5.4). In comparison

to Figure 5.2B, Figure 5.4B reveals a considerable increase in significance across a large

number of fluxes, consistent with the idea that model structure plays an important role

in uncertainty around calculated fluxes. The impact was particularly drastic for TCA

fluxes, most of which changed from entirely non-significant to significant. Despite the

improvement in model fit, some model error could also be observed – too many of the

low magnitude fluxes calculated from observed data were found to be non-significant when

compared to the simulated results.

The modified model was also tested with an extended simulation (Figure 5.5). As with

the original model, 99% confidence intervals were generated for all fluxes 18-80 hours post

inoculation with the minimum and maximum values for each flux used to bound the flux

solution space. The most pronounced impact of the modification was on the rate of flux
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Figure 5.4: Comparison of flux rejection between observed and simulated data following
model modification. Panels depict a) calculated flux magnitude and b) the percent of
simulations in which the calculated fluxes were found to be non-significant (with asterisks
indicating fluxes calculated to be non-significant using observed data). Simulated data
was drawn from a modification of the stoichiometric model described in the Materials and
Methods section (with balances on NADH and NADPH), constrained by 99% confidence
intervals on fluxes observed at 66 hours post inoculation. 100 balanced flux profiles were
generated with 100 random generated sets of measurement error applied to each. See
supplementary materials for reaction definitions.

157



rejection (Figure 5.5C). At 5% measurement variability, approximately two thirds of the

fluxes were always significant. The remaining third of the lowest magnitude fluxes were

significant at least 50% of the time. In comparison, none of the fluxes calculated with

the original model were significant for more than 75% of the simulations. To get a better

idea of how the t-test metric related to flux inaccuracy, median errors were separated

for significant and non-significant fluxes. At 5% coefficient of variation, fluxes deemed

statistically significant had a constant median error of less than 5% (with relation to flux

rank), while non-significant fluxes had considerably higher errors (Figure 5.6). Increasing

coefficients of variation resulted in dramatic increases in overall rates of flux rejection

(Figure 5.5C). However, the median error of statistically significant fluxes also increased,

diminishing the ability of the t-test metric to identify inaccuracy in higher magnitude

fluxes (Figure 5.6). In comparison, the typical χ2 test retained a 5% rejection rate for all

measurement errors (equal to the false positive rate).

5.5 Discussion

Taken together, the results of the simulations suggest that both measurement uncertainty

and model structure have an impact on MFA results that are not assessed by typical

validation methods. The structure of the model may lead to a considerable amount of

uncertainty around calculated fluxes despite a high level of measurement precision. Math-

ematically, this impact can be seen in the (S ′Tc S
′
c)
−1 term that stems from the variance

of estimated regression parameters, i.e., Cov(β̂). Less formally, it may be intuitive that

a model featuring a balance on important intermediate metabolites such as NADH and
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Figure 5.5: Comparison of fluxes simulated with different measurement errors following
model modification. Panels depict a) flux magnitude, b) median error, and c) percent
non-significance of fluxes simulated with different measurement errors. Simulated data
was drawn from a modification of the stoichiometric model described in the Materials and
Methods section (with balances on NADH and NADPH), constrained by 99% confidence
intervals on fluxes observed between 18 and 80 hours post inoculation. 100 balanced
flux profiles were generated with 100 random generated sets of measurement error applied
to each. Each balanced flux profile was ordered according to increasing absolute flux
magnitude to generate an associated rank from 1 to 45.
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Figure 5.6: Comparison of median error of significant and non-significant fluxes (deter-
mined by t-test with α = 0.05) simulated with different measurement errors. Simulated
data was drawn from a modification of the stoichiometric model described in the Mate-
rials and Methods section (with balances on NADH and NADPH), constrained by 99%
confidence intervals on fluxes observed between 18 and 80 hours post inoculation. 100 bal-
anced flux profiles were generated with 100 random generated sets of measurement error
applied to each. Each balanced flux profile was ordered according to increasing absolute
flux magnitude to generate an associated rank from 1 to 45.
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NADPH would be able to estimate intracellular fluxes with a greater degree of confidence

than a model without the extra information afforded by the balance. Naturally, the addi-

tion of isotopically labelled substrates can add a much greater degree of certainty. Indeed,

an important application of the proposed testing and simulation framework is to provide

a rigorous assessment of when extra information from sources such as labelled substrate

would be essential for accurate flux calculation.

Beyond offering an a priori determination of a model’s predictive strength, the pro-

posed methodology explicitly considers the lack of fit between model and measured data.

Model validity is particularly important in the context of overdetermined MFA due to the

large degree of simplification involved in model generation. However, lack of fit is rarely

considered outside of “gross measurement error” detection. The combination of t-test

validation and balanced flux simulation avoids the assumption of model validity in the

determination of significance. Identified lack of fit is independent of gross measurement

errors and is overlooked by standard χ2 tests.

It is important to note that the GLS framework for validation is also more robust to

estimated measurement error than the standard χ2 test. GLS regression only requires an

estimate of relative measurement variance and covariance in the form of V . Residual vari-

ance magnitude (σ̂2) is still estimated from the model. On the other hand, variance scaling

in the χ2 test allows for large measurement variance to reduce the χ2 statistic. Effectively,

high variability leads to a lower confidence that deviations are not normally distributed.

Given that variance does not factor into any other aspect of validation, assuming a large

variance can serve as a way to avoid dealing with lack of fit.

Following the case study presented in this work, we recommend the following valida-
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tion procedure. Before any experiments are carried out (but after a model of interest has

been identified), construct reasonable limits around each observable flux from literature or

other available data. Simulate flux profiles from the constrained flux space and perturb

them with a range of measurement errors. If the flux space is infeasible, there is consid-

erable disagreement between fluxes and the model that needs to be resolved. Otherwise,

generate confidence intervals around the calculated fluxes and calculate the proportion

of simulated fluxes that are non-significant. If many high magnitude fluxes are found to

be non-significant in the majority of simulations (regardless of measurement error), then

the model may have structural issues that need to be resolved. Alternatively, extra flux

information may be required. If the model is sound, then experiments can be carried out

and collected data analyzed via MFA. Apply the model and generate confidence intervals

around calculated fluxes. Construct limits in close vicinity of observed values, simulate flux

profiles, and perturb them with estimated measurement error. If the confidence intervals

of simulated fluxes are considerably smaller than those of observed fluxes, then the model

may have errors resulting in a lack of fit.

5.6 Conclusion

The interpretation of MFA through the GLS framework opens the door to a suite of

readily applied validation methods. Furthermore, the mathematical equivalence of MFA

and regression suggests that the failure to follow good practices of regression analysis can

lead to questionable results. This work establishes the use of t-tests for the detection

of error due to measurement variability as well as presenting a means to directly assess
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model error via flux profile simulation. At the same time, we highlight the impact of

measurement variability on calculation error and validation, underlining the need for better

reporting. Although this work has focused on the validation of a traditional MFA model

via t-test analysis, the overall framework is likely to be just as applicable to other regression

validation methods or alternative MFA formulations (such as dynamic MFA).
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Conclusions and Recommendations

The increased pace of metabolomic data collection associated with systems biology research

requires an increased vigilance against bias and variability. At its simplest, a greater

volume of data will naturally contain a greater number of erroneous observations. More

importantly, however, increasing synthesis of metabolomic and genomic information (as

well as the eventual integration of transcriptome regulation) has the potential to hide

errors under layers of modeling. At the same time, a greater volume of data also allows

for improved error detection and reconciliation. Although this thesis applies a relatively

narrow focus on targeted profiling quantification of 1H-NMR data and traditional metabolic

flux analysis, the results of the investigations have broader implications.

Despite its human component, the targeted profiling method was found to be remark-

ably precise, with a relative standard deviations as low as 0.5–1.5% at the base level –

comparable to spectral integration. However, the accuracy of quantification was found

to be highly dependent on the water suppression technique implemented in the pulse se-

quence. Considering the difficulty of generating a spectral library from pure chemical

stocks across a range of pH values, the development of new pulse sequences will need to

show a considerable improvement over the accepted standards to warrant implementation.
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This can be seen as a considerable limitation of library based approaches. Indeed, the issue

of library robustness highlights the potential value of accurately simulating the impact of

water suppression or even whole library generation through quantum mechanical modeling

of NMR principles.

The implementation of a Plackett-Burman design for application-specific variance es-

timation revealed further useful information about quantification accuracy and precision.

Although few general trends could be identified, the efficiency of the experiment provides

a convenient framework for further application-specific studies. Estimating variance is es-

sential for low sample number time-course trends, which may otherwise be confused for

nothing more than noise around a straight line. Even though high throughput sampling re-

duces the need for a priori variance estimates (as variance can be estimated directly from a

fitted trend), bias remains a source of concern. Even high sampling rates will not be able to

detect, for example, when high concentrations of one metabolite inflate the concentration

estimates of another, especially if both metabolites have correlated trends. Perhaps more

interesting, however, is that both accuracy and precision stem from relatively predictable

convolution patterns. Thus, further development of quantification methods may be able

to provide estimates of error alongside the concentration values.

The in-depth understanding of quantification error developed as part of this thesis

also led to better data interpretation. Without an understanding of expected variance, it

would have been difficult to detect correlated deviations of multiple metabolites as a result

of dilution error. Although the developed correction strategy was designed primarily to

resolve issues of inconsistent internal standard addition, its implications are far broader.

A similar approach may be used to account for variable extraction efficiency and cell
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concentration in intracellular metabolomic analysis. Moreover, the correction strategy

represents a move towards more integrated methods of analysis that incorporate as much

of the data as possible, illustrated by the fact that observing 80 or more metabolites reduces

the threshold of dilution error detection to 1% or lower. In contrast to commonly applied

unsupervised methods of analysis, understanding and incorporating the structure of the

data and sources of variation can result in more accurate models to come.

The identification of biases in sampling or metabolite concentration estimation has a

considerable impact on the use of metabolic models. Whereas the traditional use of simple

stoichiometric models was to reconcile possible error in metabolite detection, the growing

complexity of model development requires a stronger emphasis on model validation. De-

spite its age, traditional metabolic flux analysis remains a convenient means of estimating

overall flux flows. However, the accuracy of the metabolic model does not always receive

enough attention. The ability to generate good variance estimates and correct biases be-

fore the modeling stage allows a more stringent examination of the model. The application

of simple t-test validation revealed considerable deviations between data and model that

were not detected by traditional methods focusing on gross measurement error. Pairing

t-test validation with the simulation of theoretically valid fluxes, it became possible to dif-

ferentiate between measurement uncertainty and lack of model of fit. Separating data and

model error and developing improved validation methods will only become more important

as modeling complexity increases.
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Appendix A

Supplementary Information for
Chapter 2

A.1 Pulse sequence details

a) Presat 1D-1H A simple 1D-1H presaturation experiment was used for carrier frequency

and pulse width optimization, and is universally available on major manufacturer’s spec-
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trometers. The presaturation period (wide low rectangle denoting relatively low power)

was comprised of continuous wave irradiation at the carrier position tuned to the solvent

peak via an empirical array of the frequency and then observing the residual signal minima.

The power setting was adjusted to deliver ∼ 80 Hz of gamma-B1 induced field strength for

convenient periods of ∼ 2.5 seconds. The optimized pulse width for high power (∼ 33 kHz

gamma-B1) excitation (shown as tall narrow rectangles) was either determined by arraying

the pulse period and observing a 360◦ rotation, and then dividing by a factor of 4 for the 90◦

(Agilent Inova console), or by use of the newer nutation single pulse calibration available on

digital architectures (e.g. Agilent VNMRS console). The pulse sequence typically performs

little phase cycling except basic Cyclops (i.e. rotation of the excitation and observed phase

by 90◦ per increment). b) 1D-NOESY s1a4 The 1D-NOESY, or metnoesy, contained an

initial delay (10 ms), then a presaturation period of 990 ms using the same power settings as

the 1D-1H presaturation detailed above. Following the presaturation period, two 90◦ high

power pulses were followed by a “mixing” period (100 ms) also executed with saturation

of the solvent peak (same power as presaturation period). Lastly a 90◦ high power pulse is

executed before a 4 second acquisition period. The phase cycle and subsequent magnetiza-

tion behaviour can be deceptively complex, and has been detailed elsewhere (Mckay 2011).

c) grd-NOESY s1a4 Lastly, for comparison, a modified 1D-NOESY utilizing a simple

composite inversion pulse (90◦x180◦y90◦x (Bax 1985; Levitt 1986; Tate and Inagaki 1992))

and pulsed field gradients during the mixing time was acquired for each sample. The grd-

NOESY has the same period and power presaturation as the standard 1D-NOESY but is

followed by the composite pulse that alternates between an effective 180◦ and 0◦ pulse on

odd and even transients, respectively via the phase cycle. This was followed by a “mix”
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delay totaling 100 ms in length, split into three solvent saturation of 59, 29, and 9 ms

each. These sections were separated by pulse field gradients (Keeler et al. 1994) of 1 ms

duration and amplitudes of 3.75, -18.75, and 5.625 Gauss/cm (i.e. 2:-10:3) respectively.

Lastly a 90◦ pulse perturbed bulk magnetization into the transverse plane for the 4 second

acquisition period. The sweep width used on all experiments (600 MHz instrument) was

7225.4 Hz, with 4 steady states before collection of 32 transients. Data were zero filled to

twice the number of acquired points, and an apodization window of 0.5 Hz line broadening

was applied before fast Fourier transformation and analysis with Chenomx Suite software.

Bax A. (1985). “A spatially selective composite 90° radiofrequency pulse”.
Journal of Magnetic Resonance 65, pp. 142–145.

Keeler J., Clowes R. T., Davis A. L., and Laue E. D. (1994).
“Pulsed-field gradients: theory and practice.”
Methods in Enzymology 239, pp. 145–207.

Levitt M. H. (1986). Composite pulses. Wiley Online Library.
Mckay R. T. (2011).

“How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy:
An examination of the pulse sequence components and evolution”.
Concepts in Magnetic Resonance A 38A.5, pp. 197–220. doi: 10.1002/cmr.a.20223.

Tate S.-I. and Inagaki F. (1992).
“Reduction of the water hump using a composite refocusing pulse”.
Journal of Magnetic Resonance 96.3, pp. 635–643.
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A.2 Compounds quantified in urine

Table A.1: Full list of compounds profiled in the urine sample. Mean and standard devia-
tion values calculated from profiling 11 fully replicated scans (including sample re-insertion)
of a single NMR tube.

Compound Mean (mM)
Relative standard

deviation (%)

Urea 29.136 0.81
Creatinine 6.894 0.47
Hippurate 4.218 1.38
Citrate 1.535 0.77
Trigonelline 0.844 0.86
Trimethylamine N-oxide 0.583 0.46
Glycine 0.435 1.40
Formate 0.384 1.12
Glycolate 0.34 7.40
3-Indoxylsulfate 0.329 4.95
Ethanolamine 0.268 6.32
Glucose 0.224 6.88
Pyroglutamate 0.197 24.96
Dimethylamine 0.168 2.44
Creatine 0.163 5.99
cis-Aconitate 0.157 14.53
1,3-Dimethylurate 0.130 1.31
Taurine 0.126 17.66
Malonate 0.122 7.04
3-Aminoisobutyrate 0.117 3.92
Glutamine 0.114 33.01
Succinate 0.096 64.26
Alanine 0.085 3.86
Carnitine 0.083 13.24

Continued on next page
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Table A.1 – continued from previous page

Compound Mean (mM)
Relative standard

deviation (%)

Histidine 0.081 27.48
Betaine 0.081 1.80
Xanthine 0.080 9.54
π-Methylhistidine 0.080 41.98
Acetate 0.079 2.15
τ -Methylhistidine 0.078 18.09
4-Hydroxyphenylacetate 0.073 3.25
Phenylalanine 0.070 14.98
Methylamine 0.062 3.40
Asparagine 0.053 72.22
Dimethyl sulfone 0.051 1.65
Sucrose 0.050 5.72
3-Methylxanthine 0.050 5.82
trans-Aconitate 0.048 22.98
Lactate 0.041 9.13
2-Hydroxyisobutyrate 0.041 2.23
3-Hydroxyisovalerate 0.041 17.83
Tyramine 0.038 14.10
1,6-Anhydro-β-D-glucose 0.037 14.35
Tyrosine 0.036 9.59
Ethanol 0.036 37.99
Lysine 0.036 47.82
Methanol 0.035 1.82
Hypoxanthine 0.035 4.82
N,N-Dimethylglycine 0.032 36.85
Acetone 0.031 3.32
1-Methylnicotinamide 0.028 9.93
N-Acetylaspartate 0.021 51.13
Trimethylamine 0.016 41.61
Leucine 0.015 35.75
Valine 0.013 7.68
Isobutyrate 0.004 16.16
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Table A.2: List of compounds profiled in the urine sample that were excluded from the
main analysis as their presence in the sample was deemed ambiguous without confirmation
by other analytical methods. Mean and standard deviation values calculated from profiling
11 fully replicated scans (including sample re-insertion) of a single NMR tube.

Compound Mean (mM)
Relative standard

deviation (%)

O-Phosphoserine 0.665 17.70
Homoserine 0.344 29.19
Gluconate 0.313 45.63
Serine 0.301 20.53
Glycylproline 0.263 24.24
Arginine 0.213 23.92
Mannitol 0.157 52.94
Guanidoacetate 0.142 26.42
Carnosine 0.103 21.95
N-Methylhydantoin 0.089 36.77
Lactose 0.089 62.04
Glutamate 0.088 27.69
Methylsuccinate 0.085 16.73
Tryptophan 0.059 46.21
N-Acetylglycine 0.055 49.91
Acetoacetate 0.054 28.38
Benzoate 0.052 35.66
Phenylacetate 0.051 69.55
Succinylacetone 0.049 25.17
N-Nitrosodimethylamine 0.049 58.75
Tiglylglycine 0.048 21.88
2-Oxoglutarate 0.047 24.10
Imidazole 0.047 59.04
Anserine 0.045 23.27
Salicylurate 0.044 38.69
Xylose 0.040 28.56

Continued on next page
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Table A.2 – continued from previous page

Compound Mean (mM)
Relative standard

deviation (%)

Fucose 0.040 42.54
Homocystine 0.039 26.65
O-Acetylcarnitine 0.034 36.47
N-Acetylglutamate 0.033 33.94
Methionine 0.021 64.89
Thymol 0.019 33.43
Tartrate 0.018 17.19
Butanone 0.017 34.06
Isoleucine 0.015 23.63
Isopropanol 0.013 22.46
Fumarate 0.008 19.78
N-Acetylglutamine 0.001 331.66
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Appendix B

Supplementary Information for

Chapter 3

B.1 Supplementary tables

Table B.1: List of compounds used to make concentrated compound stocks.

Compound Source Cas No. CheBI

Acetate Sigma Aldrich 64-19-7 CHEBI:15366
Alanine Sigma Aldrich 56-41-7 CHEBI:16977
Arabinose Sigma Aldrich 5328-37-0 CHEBI:30849
Arginine Acros Organics 1119-34-2 CHEBI:16467
Asparagine Sigma Aldrich 70-47-3 CHEBI:17196
Aspartate Sigma Aldrich 56-84-8 CHEBI:17053

Continued on next page

201



Table B.1 – continued from previous page

Compound Source Cas No. CheBI

Choline Sigma Aldrich 67-48-1 CHEBI:133341
Formate Sigma Aldrich 64-18-6 CHEBI:30751
Glucose Thermo Scientific 50-99-7 CHEBI:17634
Glutamate Alfa Aesar 56-86-0 CHEBI:16015
Glutamine Thermo Scientific 56-85-9 CHEBI:18050
Glycine Sigma Aldrich 56-40-6 CHEBI:15428
Isoleucine Sigma Aldrich 73-32-5 CHEBI:17191
Lactate Sigma Aldrich 79-33-4 CHEBI:422
Leucine Nutritional Biochemical Corp. 61-90-5 CHEBI:15603
Lysine Sigma Aldrich 56-87-1 CHEBI:18019
Methionine Sigma Aldrich 63-68-3 CHEBI:16643
myo-Inositol Sigma Aldrich 87-89-8 CHEBI:17268
Phenylalanine Sigma Aldrich 63-91-2 CHEBI:17295
Proline Acros Organics 147-85-3 CHEBI:17203
Pyroglutamate Sigma Aldrich 98-79-3 CHEBI:18183
Pyruvate Acros Organic 127-17-3 CHEBI:32816
Serine Sigma Aldrich 56-45-1 CHEBI:17115
Succinate Sigma Aldrich 110-15-6 CHEBI:15741
Threonine Sigma Aldrich 72-19-5 CHEBI:16857
Tryptophan Sigma Aldrich 73-22-3 CHEBI:16828
Tyrosine Sigma Aldrich 60-18-4 CHEBI:17895
Valine Sigma Aldrich 72-18-4 CHEBI:16414
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Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pH 7.12 6.24 6.24 7.21 7.12 6.5 6.31 6.4 6.5 6.98 6.13 7.21 6.28 7 7.16 7.17 7.03 6.19 6.14 7.23

Glucose 20 20 9.7 9.7 20 20 20 20 9.7 20 9.7 20 9.7 9.7 9.7 9.7 20 20 9.7 9.7

Lactate 0.83 6.2 6.2 0.83 0.83 6.2 6.2 6.2 6.2 0.83 6.2 0.83 6.2 0.83 0.83 0.83 0.83 6.2 6.2 0.83

Proline 2.1 1.3 2.1 2.1 1.3 1.3 2.1 2.1 2.1 2.1 1.3 2.1 1.3 2.1 1.3 1.3 1.3 1.3 2.1 1.3

Alanine 2.4 2.4 0 2.4 2.4 0 0 2.4 2.4 2.4 2.4 0 2.4 0 2.4 0 0 0 0 0

Isoleucine 0.31 1.4 1.4 0.31 1.4 1.4 0.31 0.31 1.4 1.4 1.4 1.4 0.31 1.4 0.31 1.4 0.31 0.31 0.31 0.31

Valine 0.53 0.53 1.2 1.2 0.53 1.2 1.2 0.53 0.53 1.2 1.2 1.2 1.2 0.53 1.2 0.53 1.2 0.53 0.53 0.53

Leucine 0.25 0.25 0.25 1.2 1.2 0.25 1.2 1.2 0.25 0.25 1.2 1.2 1.2 1.2 0.25 1.2 0.25 1.2 0.25 0.25

Methionine 0.21 0.21 0.21 0.21 0.36 0.36 0.21 0.36 0.36 0.21 0.21 0.36 0.36 0.36 0.36 0.21 0.36 0.21 0.36 0.21

Glycine 1 0.033 0.033 0.033 0.033 1 1 0.033 1 1 0.033 0.033 1 1 1 1 0.033 1 0.033 0.033

Glutamate 0.049 0.56 0.049 0.049 0.049 0.049 0.56 0.56 0.049 0.56 0.56 0.049 0.049 0.56 0.56 0.56 0.56 0.049 0.56 0.049

Tryptophan 0.12 0.063 0.12 0.063 0.063 0.063 0.063 0.12 0.12 0.063 0.12 0.12 0.063 0.063 0.12 0.12 0.12 0.12 0.063 0.063

Arabinose 0.035 0.1 0.035 0.1 0.035 0.035 0.035 0.035 0.1 0.1 0.035 0.1 0.1 0.035 0.035 0.1 0.1 0.1 0.1 0.035

Formate 0.57 0 0.57 0 0.57 0 0 0 0 0.57 0.57 0 0.57 0.57 0 0 0.57 0.57 0.57 0

Glutamine 4 4 0 4 0 4 0 0 0 0 4 4 0 4 4 0 0 4 4 0

Choline 0.059 0.059 0.059 0.059 0.015 0.059 0.015 0.059 0.015 0.015 0.015 0.015 0.059 0.059 0.015 0.059 0.059 0.015 0.015 0.015

Succinate 0.002 0.045 0.045 0.045 0.045 0.002 0.045 0.002 0.045 0.002 0.002 0.002 0.002 0.045 0.045 0.002 0.045 0.045 0.002 0.002

Arginine 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Lysine 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

Threonine 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Tyrosine 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Phenylalanine 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43

Serine 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Pyroglutamate 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

Pyruvate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Asparagine 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Myo-Inositol 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Aspartate 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057

Acetate 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087

Table B.2: Theoretical compound concentrations (mM) and observed pH values of the synthetic mixtures
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Table B.3: Convolution matrix of profiled compounds. Compounds were judged to convo-
lute if any of their spectra clusters had more than ∼5% overlap or if there was a possibility
of misidentification

Compound
Cluster
location
(ppm)

Convoluting compounds

Acetate 1.9 arginine, lysine
Alanine 3.8 glucose, glutamine, arginine

1.5 isoleucine, lysine
Arabinose 4.1 asparagine, phenylalanine, serine, glucose

3.9 serine
3.6 isoleucine

Arginine 3.8 glucose, glutamine
3.2 glucose
1.9 lysine, acetate
1.7 leucine, lysine

Asparagine 4.1 tryptophan, myo-inositol, choline
Aspartate 3.9 glucose

2.6 methionine
Choline 4.1 myo-inositol, tryptophan

3.2 tyrosine
Glucose 3.8 methionine, serine

3.7 leucine
3.4 proline

Glutamate 3.7 glucose, glutamine, lysine
2.3 pyroglutamate, proline
2.1 glutamine, methionine
2.0 proline, pyroglutamate

Glutamine 3.7 glucose, arginine
2.5 pyroglutamate
2.4 pyroglutamate, succinate
2.1 methionine, proline, glutamate

Continued on next page
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Table B.3 – continued from previous page

Compound
Cluster
location
(ppm)

Convoluting compounds

Isoleucine 2.0 proline
1.5 alanine, lysine
0.9 leucine

Lactate 4.1 proline
1.3 threonine

Leucine 3.7 glucose, lysine
1.7 lysine, arginine
0.9 isoleucine, valine

Lysine 3.7 glucose, glutamine, leucine
3.0 tyrosine
1.9 arginine, acetate
1.7 leucine, arginine
1.5 isoleucine, lysine, alanine

Methionine 3.8 glucose, serine
2.6 aspartate
2.1 glutamine, glutamate

Myo-inositol 4.1 choline, tryptophan, asparagine
3.6 valine
3.5 glucose
3.3 glucose, phenylalanine, arginine, tryptophan

Phenylalanine 7.3 tryptophan
4.0 serine
3.3 glucose, myo-inositol, arginine
3.1

Proline 4.1 lactate
3.4 glucose
3.3 tryptophan
2.3 pyruvate, glutamate
2.1 glutamine, glutamate, methionine, pyroglutamate
2.0 pyroglutamate, isoleucine

Pyroglutamate 2.5 glutamine

Continued on next page
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Table B.3 – continued from previous page

Compound
Cluster
location
(ppm)

Convoluting compounds

2.4 succinate
2.3 glutamine
2.1 proline, glutamate

Pyruvate 2.3 proline
Serine 4.0 phenylalanine

3.9 arabinose, glucose, tyrosine
3.8 glucose, methionine

Succinate 2.4 pyroglutamate, glutamine
Threonine 1.3 lactate
Tryptophan 7.3 phenylalanine

7.2 tyrosine
4.1 asparagine, myo-inositol, choline, arabinose
3.5 glucose
3.3 proline, myo-inositol

Tyrosine 7.2 tryptophan
3.9 serine, glucose
3.2 choline
3.0 lysine

Valine 3.6 myo-inositol
0.9 leucine
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B.2 Supplementary figures

Figure B.1: A schematic of the iterative linear regression algorithm used to estimate the
effect of one compound’s concentration level on the measured concentration of another. In
the equations, yi is the column vector of concentrations of compound i from all samples
where compound i is at a single concentration level, µi is the mean concentration of com-
pound i across those samples, λj is the concentration level of compound j whose resonance
overlaps with that of compound i (1 for high, 0 for low), aij is the regression coefficient, J
is the set of all varied compounds, and εi is a column of residuals.
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Figure B.2: Comparison of theoretical compound concentrations (grey bars) to overlaid box
and whisker plots of observed values for all concentration levels from the Plackett-Burman
experiment. Each box plot represents the distribution of all the observed concentrations
for each compound. For compounds that were added at two levels, the data was split
into a low and high level accordingly. Box plots were generated in standard fashion, with
the whiskers extending out to the furthest observation that is still within a length of
two interquartile ranges from the median. Outliers that extend beyond these ranges are
identified by individual points. As the interpretation of a percentage value can be quite
difficult, the tabular data presented in the main body of the manuscript is depicted here
in a graphic form. From this plot, it’s possible to get context about what the percentage
values represent in terms of observed concentrations (such as the high error and variability
of glutamate). It is also possible to see the prevalence of outliers (such as those of myo-
inositol), which cannot be determined from a simple standard deviation value.
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Figure B.3: An example of the type of sharp pure compound spectra peaks generated form
the Chenomx library that resulted in ambiguous quantification (choline, formate, glycine,
and lactate at their high concentration levels). For a relative comparison of peak sharpness,
the chemical shift range of each cluster’s subplot corresponds to relative intensity values
greater than 1% of that cluster’s peak intensity.
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Appendix C

Supplementary Information for

Chapter 5

C.1 Extended theoretical principles

To make the proposed protocol as accessible as possible, the theoretical section has been

extended with a number extra details as well as a simplified example model.

C.1.1 Basic principles of MFA1

The basis of MFA stems from a mass balance on each intracellular compound (Equa-

tion C.1).

rate of change = transport in − transport out

1Mathematical description of MFA is largely based on Stephanopoulos et al. 1998.
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+ generation − consumption (C.1)

The right hand side of the equation can be separated into a net rate of formation and

a dilution term that results from increasing cellular volume through cell division (Equa-

tion C.8),

dC

dt
= r − µC (C.2)

where dC
dt

is a column vector of metabolite rates of change, r is a column vector of net fluxes,

and µC is the dilution term. r combines transport fluxes and consumption/production from

reactions (which include biomass production). Due to high turnover rate of intracellular

metabolite pools, both dC
dt

and µC are generally assumed to be negligible in relation to large

flux magnitudes (termed “pseudo-steady state”). The result is that the sum of transport

and reaction fluxes must be equal to zero.

0 = r (C.3)

The sum of transport and reaction fluxes can be expressed as a product of a stoichiom-

etry matrix S and a column vector of fluxes v (Equation C.4).

r = Sv (C.4)

Each row of S corresponds to a metabolite, with the columns encoding the stoichiometry

of reactions included in the model. As an example, a simple set of reactions is presented

in Box 1, with the corresponding stoichiometry matrix defined in Equation C.5. Fluxes
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O1-O3 can be observed, while fluxes C1-C3 need to be calculated.

O1 Aexternal −−→ A
O2 Bexternal −−→ B
C1 A + B −−→ C
C2 C −−→ D
C3 A + D −−→ E
O3 E −−→ Eexternal

B

A

C D E
O2

O1

C1 C2 C3 O3

Box 1: Simple set of reactions defining a metabolic model.

S =

C1 C2 C3 O1 O2 O3



A −1 0 −1 1 0 0

B −1 0 0 0 1 0

C 1 −1 0 0 0 0

D 0 1 −1 0 0 0

E 0 0 1 0 0 −1

(C.5)

Letters A, B, C, D, and E designate row names and correspond to balances on metabolites

A, B, C, D, and E. C1, C2, C3, O1, O2, and O3 designate column names and refer to

observed and calculated reactions. S can be partitioned into observed So and unknown (or

calculated Sc) components,

Sv = Scvc + Sovo (C.6)

where the observed fluxes tend to be metabolite uptake or secretion rates. For the reactions
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in Box 1,

So =

O1 O2 O3



A 1 0 0

B 0 1 0

C 0 0 0

D 0 0 0

E 0 0 1

Sc =

C1 C2 C3



A −1 0 −1

B −1 0 0

C 1 −1 0

D 0 1 −1

E 0 0 −1

(C.7)

Combining Equations (C.3), (C.4), and (C.6),

0 = Scvc + Sovo (C.8)

Since So, Sc and vo are all known, vc can then be calculated. Going back to the example,

assume that the uptakes of A and B have been observed as 2.1 and 0.9, while the secretion

of E was found to be 1.2:

0 = Scvc + Sovo (C.9)

0 =

C1 C2 C3



A −1 0 −1

B −1 0 0

C 1 −1 0

D 0 1 −1

E 0 0 1




C1 vC1

C2 vC2

C3 vC3

+

O1 O2 O3



A 1 0 0

B 0 1 0

C 0 0 0

D 0 0 0

E 0 0 −1




O1 2.1

O2 0.9

O3 1.2

(C.10)

The calculation and validation of vc can be approached in multiple ways.
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C.1.2 Traditional calculation

Assuming that sufficient fluxes can be observed, Equation (C.8) can be used to solve for

the value of vc through linear algebra:

0 = Scvc + Sovo (C.11)

−Scvc = Sovo (C.12)

To isolate for vc, Sc must be invertible. If Sc has more rows than columns (and all rows

are independent), then multiply both sides by STc . Since STc Sc is square, it’s possible to

calculate vc using a matrix inverse.

(STc )− Scvc = (STc )Sovo (C.13)

vc = −
(
STc Sc

)−1
STc Sovo (C.14)

For the example model:




C1 0.975

C2 1.050

C3 1.125

(C.15)

If vo is known exactly, then Equation (C.14) can be substituted back into Equation (C.8)

to define a redundency matrix R, which represents the flux balances around each metabolite
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as a function of the observed fluxes alone.

0 = Sc

[
−
(
STc Sc

)−1
STc Sovo

]
+ Sovo (C.16)

0 =
[
−Sc

(
STc Sc

)−1
STc So

]
vo + Sovo (C.17)

0 =
[
So − Sc

(
STc Sc

)−1
STc So

]
vo (C.18)

0 = Rvo (C.19)

For the example model:

R =

O1 O2 O3



A 0.3333 −0.3333 −0.3333

B −0.3333 0.5833 0.0833

C 0 0.2500 −0.2500

D 0 0.2500 −0.2500

E 0.3333 −0.0833 −0.5833

(C.20)

Given that Rvo = 0, each row of R represents a relationship that must be satisfied by vO1,

vO2, and vO3. For example the balance on A will only hold if vO1 = vO2 + vO3. Whereas vo

is a set of ideal observations that satisfy the balance perfectly, fluxes observed in practice

(v̂o) are subject to experimental error and will result in some of the flux balances failing

to close:

ε = Rv̂o (C.21)

where ε is the vector of residual fluxes associated with the flux balances around each of

the metabolites (the length of ε is equal to the number of metabolites in the model). For
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the example model:

ε =

O1 O2 O3



A 0.3333 −0.3333 −0.3333

B −0.3333 0.5833 0.0833

C 0 0.2500 −0.2500

D 0 0.2500 −0.2500

E 0.3333 −0.0833 −0.5833




O1 2.1

O2 0.9

O3 1.2

(C.22)

=





A 0

B −0.075

C −0.075

D −0.075

E −0.075

(C.23)

By considering v̂o as the sum of hypothetically true values (vo) and a vector of obser-

vation errors (δ),

v̂o = vo + δ (C.24)

it’s possible to describe ε as a function of observation error alone. Starting from Equa-

tion C.21:

ε = Rv̂o

= R(vo + δ) (C.25)

Given that Rvo = 0 by definition:

ε = Rδ (C.26)
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Relationships among the reactions in the metabolic model will cause linear dependencies

in the redundancy matrix (R). In the simple reaction network of A→ B → C, for example,

a discrepancy in the observed transport fluxes of A and C will cause the same residual

fluxes around A, B, and C, stemming from three linearly dependent rows in R. The degree

of freedom that can be used to assess whether a significant observation error has been made

is equal to the number of independent rows (rank) of R. For this reason, the redundancy

matrix is reduced to only the linearly independent rows (R′), resulting in a corresponding

change to ε (ε′). For the example model, R has a rank of two, so R′ can be taken as two

linearly independent rows of R:

R′ =

O1 O2 O3 0.3333 −0.3333 −0.3333

0 0.2500 −0.2500
(C.27)

The vector of residuals ε is similarly reduced to ε′:

ε′ = R′v̂o (C.28)

ε′ = R′δ (C.29)

For the example model:

ε′ =

O1 O2 O3 0.3333 −0.3333 −0.3333

0 0.2500 −0.2500




O1 2.1

O2 0.9

O3 1.2

(C.30)
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=
 0

−0.075
(C.31)

The test for “gross measurement error” consists of determining whether the residual

fluxes (ε′) are normally distributed. If this is the case, then it can be concluded that the

residuals are due to random noise in the observations. If the residuals are not normally

distributed, at least one of the observations must contain a significant (gross) error. The

sum of squares of standard normally distributed (Z) random variables (xi) is known to be

chi-squared (χ2) distributed. Expressed mathematically:

xi ∼ Z (C.32)

x = [x1, x2, · · · , xn−1, xn]T (C.33)

n∑
i=1

(x2i ) ∼ χ2 (C.34)

The sum of squares can also be expressed in linear algebra as:

n∑
i=1

(x2i ) = xTx (C.35)

xTx ∼ χ2 (C.36)

From this relationship, the “gross measurement error” test is a χ2 test on the sum of

squares of (row-reduced) residual fluxes, with the ε′ terms standard normal variance of 1.
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The χ2 statistic, h, is estimated as follows:

h = ε′TCov(ε′)−1ε′ (C.37)

∼ χ2 (C.38)

Cov(ε′) is the variance-covariance matrix of ε′ can be calculated using (C.26):

ε′ = R′δ

Cov(ε′) = Cov(R′δ) (C.39)

= R′Cov(δ)R′T (C.40)

The transition from Equation (C.39) to Equation (C.40) can be shown from the definition

of a variance-covariance matrix:

Cov(X) = E([X − E(X)][X − E(X)]T ) (C.41)

Cov(RX) = E([RX − E(RX)][RX − E(RX)]T ) (C.42)

Since E(RX) = RE(X),

Cov(RX) = E([RX −RE(X)][RX −RE(X)]T ) (C.43)

= E([(R)(X − E(X))][(R)(X − E(X))]T ) (C.44)
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Since (RX)T = XTRT

Cov(RX) = E(R[X − E(X)][X − E(X)]TRT ) (C.45)

= RE([X − E(X)][X − E(X)]T )RT (C.46)

= RCov(X)RT (C.47)

Cov(δ) is a covariance matrix of observed flux values that can be calculated directly through

replication or estimated from prior information. For the example problem, vo was taken to

be [2.1, 0.9, 1.2]T . Following the estimation of a covariance matrix around the observations,

the χ2 would be carried out as follows:

Cov(δ) =

O1 O2 O3


O1 0.01 0 0

O2 0 0.01 0

O3 0 0 0.04

(C.48)

Cov(ε′) =

O1 O2 O3 0.3333 −0.3333 −0.3333

0 0.2500 −0.2500

·

O1 O2 O3


O1 0.01 0 0

O2 0 0.01 0

O3 0 0 0.04




O1 0.3333 0

O2 −0.3333 0.2500

O3 −0.3333 −0.2500

(C.49)

=

 0.006667 0.002500

0.002500 0.003125 (C.50)
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h =

[ ]
0 −0.075

 0.006667 0.002500

0.002500 0.003125

 0

−0.075 (C.51)

= 2.5714 (C.52)

Since 2.5714 is smaller than the critical value of χ2
0.05 = 5.991 for two degrees of freedom,

no gross errors can be identified in the observations.

The suggested procedure is to use the χ2 test to identify whether any significant errors

are present among the observations. If no gross errors are identified then all observed

values must contain only random noise, which can be “balanced” by finding an estimate

for the observed values that minimizes the sum of squared errors for the observations (v̄o)

given by:

v̄o = (I − Cov(δ)R′TCov(ε′)−1R′)v̂o (C.53)

For the example problem, the corrected observations are v̄o = [2.0571, 1.0286, 1.0286]T .

C.1.3 Generalized least squares calculation

Following the generalized least squares framework, the residual term ε is not assumed to

be the result of measurement error alone and is introduced earlier in the formulation.

0 = Scvc + Sovo + ε (C.54)
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Since So and vo are known, Sovo is a column vector, and Equation (C.54) can be rearranged

to look more like linear regression,

−Sovo = Scvc + ε (C.55)

y = Xβ + ε (C.56)

If the elements of ε are independently and identically distributed, then v̂c can be estimated

through ordinary regression (note that residuals don’t have to be normally distributed for

the estimate to be a best linear unbiased estimator).

β̂ =
(
XTX

)−1
XTy (C.57)

v̂c = −
(
STc Sc

)−1
STc Sovo (C.58)

Going back to the example model in Box 1,

Sovo =

O1 O2 O3



A 1 0 0

B 0 1 0

C 0 0 0

D 0 0 0

E 0 0 −1




O1 2.1

O2 0.9

O3 1.2

(C.59)

=





A 2.1

B 0.9

C 0

D 0

E −1.2

(C.60)
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A 2.1

B 0.9

C 0

D 0

E −1.2

=

C1 C2 C3



A −1 0 −1

B −1 0 0

C 1 −1 0

D 0 1 −1

E 0 0 1




C1 vC1

C2 vC2

C3 vC3

(C.61)

v̂c =




C1 0.975

C2 1.050

C3 1.125

(C.62)

With this formulation, ε represents the deviation between observed and calculated fluxes

that may be the result of either measurement error or lack of model fit. However, the

assumption of ε being independently and identically distributed is unlikely to be true.

Balances around large magnitude fluxes are likely to have higher associated variabilities.

Mathematically, it is necessary to have Cov(ε) = σ2 with a variance-covariance matrix

Cov(ε) = Iσ2, whereas real balances may have unequal variances and non-zero covariance

terms, equivalent to Cov(ε) = V σ2.

If Equation (C.55) is scaled by matrix A, then the variance-covariance of the scaled

error term becomes

Cov(Aε) = ACov(ε)AT (C.63)

= AV σ2AT (C.64)

= σ2AV AT (C.65)

where A must be chosen such that AV AT = I to meet the required conditions of linear
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regression. This is true if A is taken to be the inverse of the matrix square root of V , i.e.,

A = P−1 and PP = V . Finding the square root of a matrix P , such that PP = V can

be performed by matrix diagonalization of V . To prove this, start from the matrix P and

assume that that there exists a diagonal matrix DP and matrix Γ, for which:

P = ΓDPΓ−1 (C.66)

PP = (ΓDPΓ−1)(ΓDPΓ−1) (C.67)

= ΓDPDPΓ−1 (C.68)

Since PP = V and the square of a diagonal matrix is that same matrix with all diagonal

entries squared, then DPDP can be redefined as diagonal matrix DV :

V = ΓDPDPΓ−1 (C.69)

V = ΓDV Γ−1 (C.70)

P can thus be calculated by diagonalizing V and taking the square root of its diagonal

matrix, which is equal to the square root of the individual diagonal values. Since V is

symmetric (Cov(X1, X2) = Cov(X2, X1)),

V = ΓDV ΓT (C.71)

Therefore, P must also be symmetric:

P T = (ΓDPΓT )T (C.72)
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= (ΓT )T (DP )T (Γ)T (C.73)

= ΓDPΓT (C.74)

= P (C.75)

Combining PP = V and P = P T :

Cov(P−1ε) = P−1Cov(ε)(P−1)T (C.76)

= P−1V σ2(P T )− 1 (C.77)

= σ2P−1PPP−1 (C.78)

= σ2I (C.79)

as required.

Scaling Equation (C.55) by P−1:

− P−1Sovo = P−1Scvc + P−1ε (C.80)

where P−1ε now satisfies the assumptions of linear regression. Formally, this is equivalent

to generalized least squares (GLS) regression, however, incorporating P−1 directly into

each term allows the use of all ordinary least squares techniques:

−S ′ovo = S ′cvc + ε′ (C.81)

v̂c = −
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo (C.82)
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The calculation of P−1 requires the estimation Cov(ε) from the variance of observed

fluxes. Calculating the covariance-variance matrix of both sides of Equation (C.55):

Cov(−Sovo) = Cov(Scvc + ε) (C.83)

Cov(ε) = SoCov(vo)S
T
o (C.84)

Since Cov(ε) = σ2V for any value of σ, σ is set to 1 so that V = Cov(ε). In practice, Cov(vo)

need only capture the relative magnitudes of observed flux variances as σ̂ is estimated

during regression. Balances around molecular species that do not include an observed flux

vo will have a row of zeros in Cov(ε), which prevents the calculation of a matrix inverse

(required to get P−1). Although this mathematically equates to a variance of zero for

those balance, a better interpretation is that there is an unknown variance around the

“observation” of no net flux. The simplest solution is to add a small non-zero value to each

diagonal entry of Cov(ε), representing the confidence of the calculated fluxes being fully

balanced. If there is more uncertainty around some balances than others, this information

could be encoded in the magnitude of the added variance. P can then be calculated via a

matrix square root of Cov(ε). Since a variance (covariance) matrix is positive semi-definite,

P is known to be unique.

Coming back to the example problem, assume that Cov(vo) has been defined as follows:

Cov(vo) = σ2

O1 O2 O3


O1 0.01 0 0

O2 0 0.01 0

O3 0 0 0.04

(C.85)
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Then,

Cov(ε) = σ2

O1 O2 O3



A 1 0 0

B 0 1 0

C 0 0 0

D 0 0 0

E 0 0 −1

·

O1 O2 O3


O1 0.01 0 0

O2 0 0.01 0

O3 0 0 0.04

A B C D E


O1 1 0 0 0 0

O2 0 1 0 0 0

O3 0 0 0 0 −1

(C.86)

= σ2

A B C D E



A 0.01 0 0 0 0

B 0 0.01 0 0 0

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0.04

(C.87)

Rows corresponding to balances on C and D do not include any observed fluxes, and are

therefore all zero. The variance on the balance can be set to 0.0001 arbitrarily to reflect

the relative confidence of the balance being closed:

Cov(ε) = σ2V (C.88)
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Cov(ε) = σ2

A B C D E



A 0.01 0 0 0 0

B 0 0.01 0 0 0

C 0 0 0.0001 0 0

D 0 0 0 0.0001 0

E 0 0 0 0 0.04

(C.89)

Since V is a diagonal matrix, P−1 can be calculated as the reciprocal square root of each

element.

P−1 =

A B C D E



A 10 0 0 0 0

B 0 10 0 0 0

C 0 0 100 0 0

D 0 0 0 100 0

E 0 0 0 0 5

(C.90)

S ′o =

A B C D E



A 10 0 0 0 0

B 0 10 0 0 0

C 0 0 100 0 0

D 0 0 0 100 0

E 0 0 0 0 5

O1 O2 O3



A 1 0 0

B 0 1 0

C 0 0 0

D 0 0 0

E 0 0 −1

(C.91)

=

O1 O2 O3



A 10 0 0

B 0 10 0

C 0 0 0

D 0 0 0

E 0 0 −5

(C.92)
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S ′c =

A B C D E



A 10 0 0 0 0

B 0 10 0 0 0

C 0 0 100 0 0

D 0 0 0 100 0

E 0 0 0 0 5

C1 C2 C3



A −1 0 −1

B −1 0 0

C 1 −1 0

D 0 1 −1

E 0 0 1

(C.93)

=

C1 C2 C3



A −10 0 −10

B −10 0 0

C 100 −100 0

D 0 100 −100

E 0 0 5

(C.94)

Performing the least squares calculation as before:

S ′ovo =

O1 O2 O3



A 10 0 0

B 0 10 0

C 0 0 0

D 0 0 0

E 0 0 −5




O1 2.1

O2 0.9

O3 1.2

(C.95)

=





A 21

B 9

C 0

D 0

E −6

(C.96)
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A 21

B 9

C 0

D 0

E −6

=

C1 C2 C3



A −10 0 −10

B −10 0 0

C 100 −100 0

D 0 100 −100

E 0 0 5




C1 vC1

C2 vC2

C3 vC3

(C.97)

v̂c =




C1 1.0278

C2 1.0287

C3 1.0295

(C.98)

Whereas calculated fluxes v̂c are commonly estimated using a very similar “weighted”

least squares approach, the use of validation methods that are part of the regression frame-

work have yet to be explored. The common χ2 test can still be used to detect gross mea-

surement errors in estimated residuals (ε̂), however, the validation of a regression model

also requires the use of t-tests to ensure the significance of calculated fluxes. Confidence

and prediction intervals are also highly relevant to MFA. The calculation of a t-statistic

follows from normal regression:

tβ̂i =
β̂i

se(β̂i)
(C.99)

tv̂c,i =
v̂c,i

se(v̂c,i)
(C.100)

tv̂c,i =

(
−
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo

)
i

σ̂
√

(S ′Tc S
′
c)
−1
i,i

(C.101)
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The estimated standard deviation of ε (or σ̂) is calculated as follows:

σ̂2 =

∑
(ε̂′i)

2

nb − nc − 1
(C.102)

where:

ε̂′ = −S ′ovo + S ′c
(
S ′Tc S

′
c

)−1
S ′Tc S

′
ovo (C.103)

and nb is the number of balances (rows of S ′c) while nc is the number of fluxes to be

calculated (columns of S ′c). If the model is correct and Cov(ε) was correctly estimated, σ̂2

should be approximately equal to 1. Once the t-value is calculated, a flux can be judged

statistically significant if |tv̂c,i| ≥ tα/2,nb−nc−1 where α is the significance level.

As v̂c has already been calculated for the example model, only σ̂ and
√

(S ′Tc S
′
c)
−1
i,i are

required to perform a t-test.

ε̂′ =





A −0.4261

B 1.2784

C 0.0852

D 0.0852

E 0.8523

(C.104)

σ̂ = 1.60 (C.105)

√
(S ′Tc S

′
c)
−1
i,i =




C1 0.0441

C1 0.0442

C3 0.0444

(C.106)
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t0,v̂c,i =




C1 14.59

C1 14.55

C3 14.51

(C.107)

The critical t-value for a two-tailed test with 1 degree of freedom and 5% significance level

is 12.71, making all three calculated fluxes statistically significant.

The identification of non-significant flux may be interpreted in two ways. The mea-

surement error around observed fluxes may be too high to allow robust flux calculation.

In that case, non-significant fluxes should be treated as having a flux of zero and excluded

from the model or further analysis. Alternatively, non-significance may be the result of

excess variability from a lack of fit between the model and observed data, requiring model

correction. To distinguish between these cases, it is necessary to separate model error

from measurement uncertainty. One way to accomplish this is to reduce measurement un-

certainty through added replication, however, the required effort can make this approach

practically infeasible. Another solution is to simulate a set of feasible fluxes directly from

the stoichiometric model (and therefore free of model error) for comparison to the observed

data.

The simulation of feasible fluxes can be simplified by eliminating flux equality con-

straints expressed by the stoichiometry matrix. Essentially, only nc − nb fluxes have to

specified in order to generate all the other values. More formally, the relationships be-

tween the fluxes can be succinctly summarized through the nullspace (or kernel) of S,

which describes all flux balance conservations in the model. This makes it possible to

calculate all fluxes from a smaller set of variables referred to as the basis. Unlike fluxes,
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which must satisfy constraints imposed by Sv = 0, the basis can take any arbitrary value

to generate fluxes that satisfy all required constraints. Expressed mathematically,

Null(S) = K (C.108)

Kb = v (C.109)

where b is a basis vector of any value with the same number of rows as columns of K.

While all values of b satisfy Sv = 0, it is still necessary to constrain fluxes to a set of

realistic values representative of a cell cultivation. The space of all feasible fluxes v can be

constrained by defining upper and lower bounds on each observed flux:

v = Kb

subject to Kib ≤ vi + a · sd(vi)

Kib ≥ vi − a · sd(vi)

(C.110)

where vi is an observed flux, Ki is the corresponding row of K, and a is a scaling constant

that can be set to tα/2,df to specify a confidence interval around vi. As the basis solution

space is only constrained by inequalities, it is readily amenable to stochastic sampling.

All values of v that satisfy Equation (C.110) represent feasible fluxes that would perfectly

satisfy the stoichiometric model while remaining within measurement uncertainty of real

observations. If the resulting space is infeasible, then the observed data does not fit the

specified model. Otherwise, a random sample of feasible fluxes can be taken for comparison

to observed results. If the addition of measurement error to simulated fluxes results in less

uncertainty than from observed results, then model error is to blame.
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The example model can be solved by specifying only 1 flux value, meaning that K is a

column vector.

K =





C1 1

C1 1

C3 1

O1 2

O2 1

O3 1

(C.111)

Based on K, a flux profile is consistent with the model as long as the flux of compound

A (vO1) is two times greater than all other fluxes. From the estimated variance-covariance

matrix, the standard deviations of the observed fluxes are [0.1, 0.1, 0.2]T . Assuming that

these estimates came from a large number of samples, approximate 95% confidence intervals

can be constructed by multiplying the standard deviation values by 2.

v =





C1 1

C1 1

C3 1

O1 2

O2 1

O3 1

b (C.112)




O1 2

O2 1

O3 1

b ≤



O1 2.1

O2 0.9

O3 1.2

+ 2





O1 0.1

O2 0.1

O3 0.2

 (C.113)
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O1 2

O2 1

O3 1

b ≤



O1 2.3

O2 1.1

O3 1.6

(C.114)




O1 2

O2 1

O3 1

b ≥



O1 2.1

O2 0.9

O3 1.2

− 2





O1 0.1

O2 0.1

O3 0.2

 (C.115)




O1 2

O2 1

O3 1

b ≥



O1 1.9

O2 0.7

O3 0.8

(C.116)

With only a single basis value b, the constraints can be combined to limit b between 0.95

and 1.1. Random values can then be generated from a uniform distribution. For basis

vectors with more than one value, independent limits on values of b can not be isolated

and the solution space must be sampled directly. Once basis vectors are generated, flux

profiles can be calculated from Kb = v and subject to measurement error.
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C.2 Model definition

The model used in this work was largely taken from Altamirano et al. 2001 with only

minimal changes (listed in the Materials and Methods section of the manuscript). A full

list of reactions is presented below with a rough outline of matetrial flow in figure C.1.

C.2.1 Glycolysis and PPP

HK Glc + ATP −−→ ADP + G6P
FBA G6P + ATP −−→ ADP + 2 DHAP

PK DHAP + 2 ADP + NAD + P −−→ 2 ATP + NADH + Pyr + H2O
PPP G6P + 2 NADP + H2O −−→ 2 NADPH + R5P + CO2

HK hexokinase

FBA fructose-biphosphate aldolase

PK pyruvate kinase

PPP pentose phosphate pathway

C.2.2 Pyr and AcCoA

LDH Pyr + NADH −−→ Lac + NAD
ACAS mAcCoA + −−→ mCoA + AcOH

ME Mal + NADP −−→ Pyr + CO2 + NADPH
PDH mPyr + mCoA + NAD −−→ mAcCoA + NADH + CO2

LDH lactate dehydrogenase
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ACAS acetyl-coa synthetase

ME NADP-malic enzyme

PDH pyruvate dehydrogenase

C.2.3 TCA cycle

CS mAcCoA + mOxal + H2O −−→ mCit + mCoA
mCit + NAD −−→ mAKG + NADH + CO2

AKGDH mAKG + mCoA + NAD −−→ mSucCoA + NADH + CO2

SCS ADP + mSucCoA + P −−→ ATP + mCoA + mSuc
mFAD + mSuc + H2O −−→ mFADH + mMal

mMalDH mMal + NAD −−→ mOxal + NADH
cMalDH NADH + Oxal −−→ Mal + NAD

CS citrate synthase

AKGDH alpha-ketoglutarate dehydrogenase

SCS succinyl-coa synthetase

mMalDH mitochondrial malate dehydrogenase

cMalDH cytosolic malate dehydrogenase

C.2.4 Glutaminolysis

ALT Glu + Pyr −−→ AKG + Ala
GLDH mGlu + NAD + H2O −−→ Amm + mAKG + NADH

GS Glu + ATP + Amm −−→ Gln + ADP + P
AST Glu + Oxal −−→ Asp + AKG

Glu −−→ Pgl
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ALT alanine transaminase

GLDH glutamate dehydrogenase

GS glutamine synthetase

AST aspartate transaminase

C.2.5 Amino acid degradation

SDH Ser −−→ Pyr + Amm
SHMT Ser + FH4 −−→ Gly + N5N10methyleneFH4 + H2O

GCS CO2 + Amm + N5N10methyleneFH4 + NADH −−→ Gly + FH4 + NAD
Thr + mCoA + NAD −−→ Gly + mAcCoA + NADH
Cys + AKG −−→ Glu + Pyr
His + FH4 + NADPH + 2 H2O −−→

Glu + N5N10methyleneFH4 + NADP + 2 Amm
Arg + AKG + NAD + 2 H2O −−→ 2 Glu + NADH
Pro + 2 NAD + 2 H2O −−→ Glu + 2 NADH

ASNS Asn + H2O −−→ Amm + Asp
Ile + AKG + ATP + 2 mCoA + mFAD + 2 NAD + H2O −−→

mSucCoA + Glu + mAcCoA + ADP + P + mFADH + 2 NADH
Leu + ATP + AKG + NAD + mCoA + mFAD + H2O + mSucCoA −−→

2 mAcCoA + mSuc + Glu + NADH + mFADH + ADP + P
Lys + AKG + 2 mCoA + 0.5 O2 + 2 H2O + 2 mFAD + 2 NAD −−→

Glu + 2 mAcCoA + 2 CO2 + Amm + 2 mFADH + 2 NADH
Met + Ser + 3 ATP + FH4 + 2 NAD + ATP + mCoA + 4 H2O −−→

mSucCoA + Cys + Amm + 3 ADP + 3 P + N5N10methyleneFH4 + 2 NADH + ADP
PAH Phe + NADPH + O2 −−→ Tyr + NADP + H2O

Trp + 2 mCoA + 3 O2 + 4 H2O + NADPH + 3 NAD + mFAD −−→
2 mAcCoA + 4 CO2 + Ala + NADP + 3 NADH + mFADH + Amm

Tyr + AKG + mCoA + mSucCoA + 2 O2 + 2 H2O −−→
Glu + Mal + 2 mAcCoA + mSuc + CO2

Val + AKG + 2 ATP + mCoA + mFAD + 3 NAD + 4 H2O −−→
mSucCoA + Glu + 2 ADP + 2 P + mFADH + 3 NADH + CO2
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SDH serine dehydratase

SHMT serine hydroxymethyltransferase

GCS glycine cleavage system

ASNS asparagine synthetase

PAH phenylalanine hydroxylase

C.2.6 Macromolecules

Carb G6P + 3.5 ATP −−→ Carb + ADP
OA 9 mCit + 9 Mal + 17 ATP + 17 NADPH + 9 NADH + O2 −−→

OA + 9 mMal + 9 Oxal + 17 ADP + 17 P + 7 NADP + 9 NAD + H2O
DNA 1.9 Gln + 1.3 Asp + 7.5 ATP + 0.5 Gly + 1.3 N5N10methyleneFH4 +

0.7 NAD + 0.3 NADPH + R5P + 0.3 NADH + 0.5 CO2 + 3.1 H2O −−→
1.9 Glu + 0.8 Mal + 7.5 ADP + 7.5 P + 1.3 FH4 +
0.7 NADH + 0.3 NADP + 0.3 NAD + DNA

RNA 2.091 Gln + 1.194 Asp + 7.487 ATP + 0.489 Gly + 0.978 N5N10methyleneFH4 +
0.806 NAD + 0.978 NADP + R5P + 0.194 NADH +
0.489 CO2 + 4.59 H2O + 0.097 O2 −−→
2.091 Glu + 0.683 Mal + 7487 ADP + 7.487 P + 0.978 FH4 +
0.806 NADH + 0.978 NADPH + 0.194 NAD + RNA

Prot 0.095 Ala + 0.048 Asp + 0.039 Asn + 0.063 Arg + 0.028 Cys +
0.052 Gln + 0.064 Glu + 0.078 Gly + 0.022 His + 0.052 Ile +
0.088 Leu + 0.089 Lys + 0.02 Met + 0.021 Phe + 0.028 Pro +
0.057 Ser + 0.061 Thr + 0.006 Trp + 0.02 Tyr + 0.059 Val + 4 ATP + 4 H2O −−→
Prot + 4 ADP + 4 P

OA oleic acid (lipid) synthesis
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C.2.7 Misc.

mMal + AKG −−→ mAKG + Mal
mMal + Cit −−→ mCit + Mal

GLAST Glu −−→ mGlu
MPC Pyr −−→ mPyr

FH4 + FoOH + ATP + NADH −−→ ADP + P + NAD + N5N10methyleneFH4

GLAST glutamate aspartate transporter

MPC mitochondrial pyruvate carrier

C.2.8 Phosphorylation

3 ADP + NADH + 0.5 O2 + 3 P −−→ 3 ATP + NAD + 4 H2O
2 ADP + mFADH + 0.5 O2 + 2 P −−→ 2 ATP + mFAD + 2 H2O
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Figure C.1: Outline of metabolic network used in this work. A number of intermediate
compounds have been omitted to clarify overall material flow.
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