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Abstract 

 

 
Chemical process design is still an active area of research since it largely determines the optimal 

and safe operation of a new process under various conditions. The design process involves a series 

of steps that aims to identify the most economically attractive design typically using steady-state 

optimization. However, optimal steady-state designs may fail to comply with the process 

constraints when the system under analysis is subject to process disturbances (e.g. the composition 

of a reactant in a feed stream) or parameter uncertainty (e.g. the activation energy in a chemical 

reaction). Moreover, the practice of overdesigning a process to ensure feasibility under process 

disturbances and parameter uncertainty has been proven to be costly. Therefore, a new 

methodology for simultaneous design and control for dynamic systems under uncertainty has been 

proposed. The proposed methodology uses Power Series Expansions (PSE) to obtain analytical 

expressions for the process constrains and cost function. The key idea is to use the back off 

approach from the optimal steady state design to address the simultaneous process and design 

problem in an efficient systematic manner using PSE approximations. The challenge in this 

method is to determine the magnitude of the back-off needed to accommodate the transient and 

feasible operation of the process in presence of disturbances and parameter uncertainty. In this 

approach, PSE functions are used to obtain analytical expressions of the actual process constraints 

and are explicitly defined in terms of system’s uncertain parameter and the largest variability in a 

constraint function due to time-varying changes in the disturbances. Also, the PSE approximation 

for each constraint is developed around a nominal point in the optimization variables and for each 

realization considered for the uncertain parameters. The PSE-based constraint represents the actual 

process constraint and can be evaluated faster since it is explicitly defined in the terms of the 
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optimization variables. The work focuses on calculating various optimal design and control 

parameters by solving various sets of optimization problems using mathematical expressions 

obtained from power series expansions. These approximations are used to determine the direction 

in the search of optimal design parameters and operating conditions required for an economically 

attractive, dynamically feasible process. The proposed methodology was tested on an isothermal 

storage tank and a step by step procedure to develop the methodology has been presented.  The 

methodology was also tested on a non-isothermal CSTR and the results were compared with the 

formal integration process. Effect of tuning parameter, which is a key parameter in the 

methodology, have been studied and the results show that the quality of the results improves when 

smaller values of tuning parameter are used but at the expense of higher computational costs. The 

effect of the order of the PSE approximation used in the calculations has also been studied and it 

shows that the quality in the results is improved when higher orders in the PSE approximations are 

used at the expense of higher computational costs. The methodology was also tested on a large-

scale Waste Water treatment plant. A comparison was made for different values of tuning 

parameters and the most feasible value was chosen for the case study. Effects of different 

disturbances profiles such as step and ramp changes were also studied. The studies concluded that 

a lower cost value is obtained when ramps are used as disturbance profile when compared with 

step changes. The methodology was also tested when parameter uncertainty was introduced and 

the results show a higher cost is required when uncertainty is present in the system when compared 

with no uncertainty.  

 The results show that this method has the potential to address the integration of design and 

control of dynamic systems under uncertainty at low computational costs. 
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Chapter 1 

Introduction 
 

 

Chemical processes are dynamic and complex systems in nature and are subjected to process 

disturbances and process uncertainty. Chemical process design is an important task carried out in 

order to achieve the desired output and quality of the final products taking into account the safety, 

environmental, operational and physical constraints at minimum possible capital, operating and 

dynamic variability cost. The design process typically involves a series of steps that aims to 

identify the most economically attractive design using steady-state optimization. Although 

chemical processes have been traditionally designed using this approach, the designs obtained 

from those analyses may fail to comply with the process constraints when it is subjected to process 

disturbances and uncertainty in the system’s parameters. The resulting instances of infeasibility or 

constraint violations due to the presence of uncertainties have adverse effects on the process 

economics and the quality of the product obtained. Therefore, the design obtained from steady-

state calculations at the nominal operating conditions may no longer be ‘optimal’ or even 

dynamically feasible when process disturbances and parameter uncertainty are introduced in the 

system. Since uncertainties are inevitable and inherent in almost every process, the conventional 

approach used to address this problem is to add overdesign factors [1, 2, 3], e.g., increasing the 

volume of a storage tank will aim to accommodate the uncertainty in the system at the expense of 

increasing the capital costs for this process. Any violation in the process constraint increases the 

operating cost of the process significantly. However, the main limitation with this approach is that 
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there is no systematic method to assign overdesign factors and is typically done from process 

experience, using process heuristics or even arbitrarily at times. Moreover, this practice of 

overdesigning a process to ensure feasibility under uncertainty has been proven to be costly. 

Therefore, one key challenge in process design is to specify an economically optimal system that 

can be operated safely and is dynamically feasible under a wide range of process disturbances and 

parameter uncertainty. This has motivated the development of systematic methods that explicitly 

account for dynamics in the calculation of the optimal process design. The aim of these methods 

is to analyze the effect of the system dynamics and then adjust the design of the plant (equipment 

size and operating conditions) to accommodate those dynamics and maintain the operation of the 

plant within its feasible limits. The designs obtained from the above discussed approach are 

expected to specify the most economically attractive process which is dynamically feasible in the 

presence of process disturbances and parameter uncertainty. Various methods have been proposed 

in this area and each of the methods has its own benefits and limitations in terms of, conservatism 

of the designs, ease of implementation, computational efficiency and its applicability to large-scale 

nonlinear chemical processes. The development of computationally-efficient methods that can be 

applied to design chemical plants is still an active area of research.  

 

It is the aim of this study to develop a new practical approach using Power series expansion (PSE) 

approximations to address the problem of integration of design and control for chemical processes 

under process disturbances and parameter uncertainty. The key idea in this approach is to back-off 

from the optimal steady state design, which is often found to be dynamically inoperable due to the 

effect of process disturbances, process dynamics and parameter uncertainty. The key challenge in 

this method is to determine in a systematic fashion the magnitude of the back-off needed to 



 

3 
 

accommodate the transient and feasible operation of the process in the presence of disturbances 

and parameter uncertainty. The work focuses on calculating various optimal design and control 

parameters by solving various sets of optimization problems using mathematical expressions 

obtained from power series expansions. These approximations are used to determine the direction 

in the search of optimal design parameters and operating conditions required for an economically 

attractive, dynamically feasible process. The key benefit of this methodology is the significant 

reduction in the computational costs associated with the formal optimization framework used for 

solving the integration of design and control for chemical processes under uncertainty. The above 

stated approach for integration of design and control problem will be tested on three different case 

studies – a) A mixing storage tank, b) A non –isothermal Continuous Stirred Tank Reactor (CSTR) 

and c) a waste water treatment plant. These case studies were chosen based on their complexity 

and the degree of non-linearity.  Each of these case studies will be analyzed in detail to investigate 

the benefits and limitations of the proposed back-off approach. 

1.1 Research objectives 

 
Based on the above, the research carried out in this work aims to achieve the following 

objectives: 

i. Develop a practical and efficient method for simultaneous design and control of 

chemical processes under process disturbances and parameter uncertainty using PSE. The work 

focuses on calculating the amount of back-off required from the steady state design, which 

might be infeasible due to process dynamics and parameter uncertainty, to obtain the optimal 

design parameters that will result in a dynamically feasible and economically attractive 

process. 



 

4 
 

 
ii.  Implement the method developed in this work to address the optimal design under 

process disturbances and parameter uncertainty for a non isothermal CSTR , a mixing storage 

tank and a highly nonlinear waste water treatment plant. This contribution will demonstrate the 

applicability of the proposed approach for the above mentioned case studies and the results 

obtained will be compared to the results obtained from the formal integration technique. 

 
iii. Evaluate  the effect of various key tuning parameters presented in this methodology 

on the optimal design of the Non isothermal CSTR , its economics and the computational 

costs.  

 

1.2  Outline of the thesis  

 

       This thesis is organized in five chapters as follows: 
 

Chapter 2 presents the literature review on the key subjects such as the concept of the back-

off employed in this work. The studies relevant to the different methods in the field of 

integration of design and control are reviewed. Previous studies carried out to address the idea 

of back-off in integration of design and control are also discussed in detail. Uncertainty 

sampling techniques and the basic idea of Power series Expansion (PSE) approximation are 

also discussed in this chapter. 

Chapter 3 presents the novel approach proposed in this work to address the optimal design of 

chemical processes in the presence of process disturbances and parameter uncertainty using 

PSE approximations. The key principles and procedures required to implement the proposed 

methodology are explained in this chapter. A simple case study featuring an isothermal storage 

tank design is presented here to illustrate the implementation of this methodology. 
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Chapter 4 presents a case study which involves the optimal design of  a CSTR under process 

dynamics and parameter uncertainty using the new PSE based methodology. This section 

explains in detail how each process constraint and the cost functions are represented using the 

corresponding PSE approximations. The results obtained with and without uncertainty  in the 

system’s parameters are dissued in detail. The results are also compared with the formal 

integration technique in order to compare the economic viability of the new proposed 

methodology. The effect of various key parameters used in the methodology have been also 

discussed in detail. In order to test the proposed methodology using a complex system, a waste 

water treatment plant was also designed using the proposed methodology, whose results are 

presented in this chapter. 

      Chapter 5 summarizes the key research outcomes of the present study and discusses the future          

research avenues that can be further explored in this emerging area.
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Chapter 2 

Literature Review 
 

Although the idea in simultaneous design and control is straightforward, there are challenges as it 

often involves a trade-off between the optimal steady state design and the corresponding process 

dynamics. Therefore, a unified framework to address this problem is not currently available; 

instead, multiple methodologies have been presented to perform simultaneous design and control. 

The studies relevant to the different methods and approaches to the optimal process design under 

process disturbances and parameter uncertainty are reviewed in this chapter. Several studies 

carried out to address the idea of back off in the context of integration of design and control have 

also been discussed in detail in this chapter. Uncertainty sampling techniques and the basic idea of 

Power series Expansion (PSE) approximation are presented at the end of this chapter. 

2.1 Integration of design and control  

 

The field of process design under process disturbances and parameter uncertainty has gained wide 

interest due to the fact that the process dynamics may cause serious operational problems if not 

accounted for at the design stage. In addition, the presence of uncertainty or process disturbances 

is almost inherent in every process due to lack of knowledge or imprecise measurements, making 

it a general design issue and not just specific to certain processes.  

The problem of integration of design and control under process disturbances and parameter 

uncertainty can be conceptually posed as follows: 
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                                     Minimize           Expected Total Annualized Cost (Θ) 

                                     Subject to           Process model,  

                                                                Process design and control equations,                 (2.1) 

                                                                Process constraints, 

                                                                Design specifications 

 

 

The aim is to minimize the total annualized cost (Θ) which can further be broken down into the 

process capital and operating costs. Since process disturbances and parameter uncertainty will be 

accounted for in this problem, the expected value of the total capital (CC) and operating (OC) costs 

becomes the objective function to be minimized. Process disturbances d(t) and parameter 

uncertainty 𝛇 will result in variability in the outputs (y) and states (x) of the system, and thus in the 

evaluations of the process feasibility constraints which may include safety, environmental or 

operational constraints. Problem (2.2) is the mathematical optimization model for problem (2.1). 

This problem aims to search for the process design variables (𝛚) and the controllers tuning 

parameter (𝛏) that remain feasible with respect to the process constraints (h) under the given set of 

disturbance profile d(t)  and under realizations of uncertainty set 𝛇. The present analysis assumes 

that a dynamic model describing the behavior of the process is available for simulations.  

 
𝑚𝑖𝑛

𝛈 = [𝛚, 𝛏]
 𝐸[Θ(𝐱(𝑡), 𝐮(𝑡), 𝐲(𝑡), 𝛇, 𝐝(𝑡), 𝛏, 𝛚)] 

s.t. 

𝐟(𝐱̇(𝑡), 𝐱(𝑡), 𝐮(𝑡), 𝐲(𝑡), 𝛇, 𝐝(𝑡) , 𝛚) = 0 

𝐠(𝐜̇(𝑡), 𝐜(𝑡), 𝐮(𝑡), 𝐲(𝑡), 𝛏, 𝐝(𝑡), 𝛚) = 0  

𝐪(𝐱(𝑡), 𝐮(𝑡), 𝐲(𝑡), 𝐝(𝑡), 𝛇, 𝛚, 𝑡𝑒) ≤ 0                                                                    (2.2) 

𝐡(𝐱(𝑡), 𝐮(𝑡), 𝐲(𝑡), 𝐝(𝑡), 𝛇, 𝛚) ≤ 0  

𝛈𝐿𝐵 ≤ 𝛈 ≤ 𝛈𝑈𝐵 

The decision variables (𝛈) comprise of the process design variables (𝛚) and the controller tuning 

parameters (𝛏). Moreover, f and g represents the set of differential and algebraic process model 
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and controller equations, respectively; q is the vector of end-point constraints evaluated at time te. 

The objective function is the expected value of the cost function (Θ) which is typically represented 

by the capital and operating costs. 

Integration of design and control is an active area of research in chemical engineering and various 

different schemes have been presented in the literature. There is no unified framework available 

as of now because every methodology which have been developed have their own advantages and 

limitations. The prominent works in the field of integration of design and control area are disused 

next. 

Perkins and Walsh [4] proposed the design under worst case scenarios during dynamics of the 

system and selection of optimal control schemes. Methods, based on optimization, to assess 

controllability and to develop integrated design of process and control system for cases where 

dynamic performance is critical were presented in that study. Luyben and Floudas [5] presented a 

systematic procedure to study the simultaneous design and control at the process synthesis stage 

by incorporating both steady-state economics and open loop controllability measures within a 

multi-objective mixed integer nonlinear optimization problem (MINLP). Alhammadi and 

Romagnoli [6] proposed a step-by-step integrated framework that incorporates economical, 

environmental, heat integration and controllability aspects of the process to be designed. Steady-

state controllability indicators were used to measure the process dynamic performance.  

Mohideen et al. [7] introduced the concept of simultaneous design and control in the presence of 

uncertain parameters while using formal mixed-integer dynamic optimization methods (MIDO). 

In that work, disturbances were allowed to follow a user-defined function with unknown (critical) 

parameters whereas the uncertain parameters’ range of space was reduced to a set of discrete events 

or scenarios. A mixing tank problem and a ternary distillation design problem was used to 
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demonstrate the potential of the approach. The results obtained were then compared with the 

sequential approach. Bansal et.al [8, 9] improved the methodology proposed by Mohideen et al. 

by solving a formal dynamic optimization problem that aims to estimate the disturbance profile of 

the system that produces the worst-case scenario. Both continuous and discrete decisions were 

explicitly considered in the analysis. Kookos [10] proposed a systematic methodology for the 

deterministic optimization of batch processes under uncertainty based on Monte Carlo simulation 

in order to evaluate the objective function and the process constraints together with their analytical 

derivatives with respect to the optimization parameters. Seferlis and Grievink [11] proposed a 

number of techniques based on a non-linear sensitivity analysis of the static and dynamic plant 

controllability properties that facilitate the process design and control in a fully optimized and 

integrated fashion. Chawankul et al. [12] and Gerhard et al [13] approximated the dynamic 

behavior of the system using suitable model structures which led to efficient computation of the 

worst case scenario. Another set of methodologies have approximated the dynamic behavior of the 

system using suitable model structures which led to efficient computation of the worst case 

scenario [14, 15, 16]. Therefore, these methods reduced the computation burden imposed by 

dynamic optimization methods and can be used for optimal design of large-scale processes. 

However, those methods may result in conservative designs since they are based on the 

identification of the worst-case scenario, which may not occur often during the actual operation of 

the plant. Model-based strategies for simultaneous process and design have also been proposed. 

Sanchez-Sanchez and Ricardez-Sandoval [17, 18] integrated the dynamic feasibility and flexibility 

in a single stage optimization problem and robust stability test was performed in presence of 

magnitude bounded perturbations. The approach was tested using standard feedback controllers 

and Model Predictive controllers (MPC). Bahakim and Ricardez-Sandoval [19] proposed an 
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optimization framework with the aim of achieving a feasible and stable optimal process design in 

the presence of stochastic disturbances using Model Predictive Control (MPC). A case study of a 

waste water treatment plant was studied using the methodology proposed by those authors and 

compared it with the sequential design approach. Vega and Lamanna [20] proposed a multi-

objective integration of design and control methodology and its successful application on an 

activated sludge process in a waste water treatment plant. Xia and Zhao [21] proposed a new 

methodology for steady state optimal design of chemical processes with robust stability constraints 

under parametric uncertainty and disturbances. Trainor et.al [22] incorporated robust flexibility, 

feasibility and stability analyses within a proposed simultaneous design and control methodology 

to ensure process dynamic operability and asymptotic stability in the presence of the worst-case 

scenario. Reviews on integration of design and control can be found elsewhere. [23, 24, 25, 26]. 

The present work focuses on a new methodology for simultaneous design and control using PSE 

approximations. The idea of this approach is to back-off from the optimal steady-state design point 

to a new operating condition which will be feasible under the given set of process dynamics and 

parameter uncertainty. Figure 2.1 illustrates the basic idea of back-off approach. Figure 2.1(a) 

shows that the optimal design point is feasible at steady-state conditions. However, this point might 

violate the constraints when transient changes are accounted for in the analysis as shown by red 

dotted circle in Figure 2.1(a). In order to accommodate process dynamics, the optimal steady state 

design has to be shifted (back-off) to a new feasible operating region. Figure 2.1(b) shows the 

direction and the magnitude of back-off that is required to specify a new feasible operating point 

under process disturbances and parameter uncertainty .The method proposed in this work will be 

explained in detail in the next chapter.  
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Figure 2.1 Idea of Back-off  

The idea of back off in simultaneous design and control was initially proposed by Bahri et.al [27, 

28]. In that work, the authors developed a method for determining the necessary open-loop back 

off from a steady state optimal point to ensure feasibility in presence of process disturbances. The 

approach consisted of defining a joint optimization-flexibility problem that can be solved in an 

iterative fashion at steady-state. The algorithm developed was based on a decomposition method 

which was broken into two levels of optimization problem. The first optimization problem seeks 

the optimality of steady state open loop problem with flexibility for a fixed set of disturbances. 

The second optimization problem evaluates the feasibility of the design found in the previous stage 

using different sets of disturbance profiles. Three examples were presented to illustrate the 

application of this approach: (1) a simple linear example, (2) a system of two CSTRs; and (3) an 

industrial distillation column. Figueroa et.al [29] extended the method proposed by Bahri to 

consider process dynamics, i.e. they proposed a joint dynamic optimization flexibility analysis for 

integration of design and control. In that approach, the optimization of the controllers tuning 

parameters was also included. A model consisting of a series of CSTR’s was used as an illustrative 

example to explain the methodology. Kookos and Perkins [30, 31] also used the idea of back-off 

for simultaneous process and control design problem. The idea was to analyze a sequence of 
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combined configurations making use of bounding schemes to successively reduce the size of the 

search region. A decomposition algorithm for solving the combined process and control design 

problem was used. The main idea in that work was to progressively generate tighter upper and 

lower bounds on the optimal dynamically feasible solution. Lower bounds were calculated by 

solving the improved steady state problem and the topology was optimized. Upper bounds were 

generated by solving the dynamic optimization problem keeping the topology fixed and the design 

parameters optimized. Case studies featuring an evaporator system, a binary distillation column, a 

reactor- separator with recycle process were used to test that methodology. 

Most of the optimization-based methods available in literature for simultaneous design and control 

follow the same key concept; that is, determine (or specify) the critical realizations in the process 

disturbances and the process uncertain parameter that produce the largest deviations in the 

controlled variables. This condition is often termed as the worst-case scenario, and the variability 

created in the system due to this scenario is called the worst-case process variability. The worst-

case scenario has been used by some of the simultaneous design and control methodologies to 

evaluate the process economics and the process constraints considered in the analysis. An optimal 

design and control scheme is referred to as the configuration that can accommodate the worst-case 

scenario (or critical scenarios identified a priori) in a safe and acceptable fashion without violating 

constraints in the control action movements or in the critical operating variables of the system. The 

challenge and difference in the approaches available in literature is in the method used to compute 

this worst-case scenario, e.g., using open-loop controllability indexes [3,9,10] from a formal 

dynamic optimization formulation [32], or from the implementation of robust control tools [18, 

33].  
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One of the key challenges faced is the computational costs associated with the repetitive evaluation 

of the process constraints and cost function for every set of decision variables’ values tested by the 

optimization algorithm. While this task may be relatively inexpensive for chemical processes 

described with just a few set of differential equations, the computational costs associated with this 

task while performing the integration of large-scale chemical systems is a daunting task that can 

become computationally prohibitive. The methodology developed in this thesis aims at reducing 

the computational costs by solving a set of simple optimization problems in an iterative manner. 

2.2 Uncertainty quantification methods 

 

Various uncertainty sampling methods have been proposed in the literature for uncertainty 

quantification. The Monte-Carlo (MC) sampling technique is one of the most popular methods 

used for sampling, which generates pseudorandom numbers to approximate a standard probability 

distribution function (PDF). Then, to obtain the specific values for each random variable, the 

pseudorandom samples are inverted over the cumulative distribution of the specified PDF for that 

variable. Another sampling technique called the Latin hypercube sampling (LHS) uses 

stratification sampling, which may provide more accurate estimates of the distribution function 

[34]. The range of the uncertain variables is divided into intervals of equal probability and a single 

value is sampled from each interval. In the case of multidimensional uncertainty, the 

pseudorandom samples obtained for one stochastic variable is randomly paired with all the other 

randomly sampled pseudorandom values of the other random variables. Florian [35] has proposed 

an efficient sampling scheme through an improved variant of the LHS which was called the 

Updated Latin Hypercube sampling, which results in a substantial decrease of the variance in the 

estimates of statistical parameters. Antithetic Variates (AV) method [36], is also one of the 
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sampling techniques that has been shown to reduce the mean squared error (bias) of an estimated 

statistical function when compared to the use of independent random sampling (such as MC); 

however,  this is not as efficient as the Latin Hypercube Sampling technique [37]. Johnson et al 

[38] proposed a sampling method based on Maxmin designs, which spreads the sampling region 

around the entire domain space by maximizing the minimum distance between any two samples. 

The propagation of uncertainties via traditional Monte Carlo methods based on standard or Latin 

Hypercube sampling is valid for a wide range of problems; however, it is computationally 

expensive since it requires a large number of simulations .Efficient sampling methods nowadays 

make use of low-discrepancy sequences instead of random sampling as is the case with the Monte 

Carlo and Latin hypercube techniques. These methods, typically referred to as quasi-Monte Carlo 

methods, usually converge faster than techniques employing random or pseudorandom sequences. 

Since the Monte Carlo sampling and the Latin hypercube sampling methods are computationally 

expensive, other methods have to be developed which are more efficient than these sampling 

techniques. Polynomial chaos Expansion (PCE), is also a non-sampling-based method to 

determine evolution of uncertainty in dynamic system, when there is probabilistic uncertainty in 

the system parameters. Wiener's polynomial chaos is fundamentally a framework for separating 

stochastic components of a system response from deterministic components. It is derived from the 

Cameron–Martin theorem which establishes that a random process with finite second-order 

moments can be decomposed into an infinite, convergent series of polynomials in a random 

variable. The key idea for using PCE's is that the variance of the predicted outputs can be rapidly 

calculated by an analytical expression thus critically reducing computational times [39, 40]. The 

polynomial chaos expansion can be used for studying the uncertainty propagation in open-loop or 

closed-loop systems, and can be applied for uncertainties in model parameters, initial conditions, 



 

15 
 

or inputs of the systems. Hence, the polynomial chaos is an efficient alternative to Monte Carlo 

simulations for complex systems. 

In this thesis, Power Series Expansion (PSE) approximations has been used extensively; hence, 

this uncertainty quantification method will be revised in detail next. 

2.2.1 Power Series Expansion Method 

 

Since the Monte Carlo sampling and the Latin hypercube sampling methods are computationally 

expensive, other efficient methods are needed to assess uncertainty quantification. One way to 

address this issue is to use the sensitivity analysis technique. This method represents the prediction 

as a perturbation around its nominal value, which is associated with the mean or expected value of 

the uncertain deterministic problem. Sensitivity analysis usually provides reliable predictions only 

when the associated perturbations are small, and cannot used to predict the shape of the whole 

distribution [40]. Like the PCE, PSE can be used for studying the uncertainty propagation in open-

loop or closed-loop systems, and can be applied for uncertainties in model parameters, initial 

conditions, or inputs of the systems. First, second or even higher order power series expansions 

can be considered for the sensitivity analysis. The first-order method can be computationally 

efficient way to propagate uncertainties but for highly nonlinear processes the order of the power 

series expansion may have to be increased in an attempt to obtain an optimal solution, which in 

turn will require higher computational costs. PSE has been used in this work for the calculation of 

the sensitivities. Using Power Series Expansions, complex, nonlinear functions can be replaced by 

a polynomial function with a finite number of terms. 

Assume f(x) is a complex function. Then, using power series expansion (PSE) approximation, f(x) 

can be represented as follows:  
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𝑓(𝑥) = 𝑓(𝑥𝑛𝑜𝑚) + 𝐙(1)(𝑥 − 𝑥𝑛𝑜𝑚) +
1

2
(𝑥 − 𝑥𝑛𝑜𝑚)𝑇  𝐙(2)(𝑥 − 𝑥𝑛𝑜𝑚) …                                            (2.1) 

Where,   

𝐙(1) =
𝜕𝑓

𝜕𝑥
    

                𝐙(2) =
𝜕2𝑓

𝜕𝑥2  

This equation can be generalized as follows: 

𝑓(𝑥) = 𝑓(𝑥𝑛𝑜𝑚) + ∑
𝑓(𝑛)(𝑥)

𝑛!

∞
𝑛=0  (𝑥 − 𝑥𝑛𝑜𝑚)𝑛                                                                           (2.2) 

𝐙(1) and  𝐙(2) are the first order and second order sensitivity terms. Generally, sensitivity analysis 

calculates the rates of change in the output variables in the system which results from perturbations 

in the systems various parameters. It should be noted that the above stated expansion is only valid 

around 𝑥𝑛𝑜𝑚.  Using this method, while designing any chemical process, nonlinear process design 

equations, nonlinear process constraints and the cost function can be represented in this form.  It 

should be noted that higher order approximation will lead to more accurate approximations at the 

expense of higher computational costs. Higher the order of approximation, the higher the 

computational costs. Note that the sensitivities can be calculated analytically or numerically. A 

few works presented in the literature have used PSE approximation for uncertainty propagation. 

Bahakim et. al [41]  proposed an methodology for the optimal design under uncertainty where PSE 

approximations were used to approximate the process constraint and the cost function. The PSE 

functions were used to identify the variability in the process constraint functions and model outputs 

due to multiple realizations in the uncertain parameters. A ranking based approach was adopted 

where the user can set the probabilities for different process constraints. This methodology was 

tested on a heat exchanger system, the Tennessee Eastman process, and a post-combustion CO2 

capture pilot-scale plant [42]. Rasoulian and Ricardez- Sandoval [43, 44, 45, 46] proposed a model 

for multiscale modelling of material growth subjected to model parameter uncertainty that can 
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significantly affect the control and optimization objective of the process. In that method, PSE was 

employed to analyze the model uncertainty propagation. The results showed that the PSE based 

approach for uncertainty analysis was more computationally attractive as compared with the 

traditional Monte Carlo approach. 

Summary 

A review on the simultaneous design and control strategies that have been proposed in the literature 

is discussed in this chapter. The chapter also discussed the idea of back-off from the steady state 

design which had been used in the methodology presented in this work. Several studies carried out 

to address the idea of back off have been discussed in detail. The aim of the methodology presented 

is to obtain optimal design and control parameter under process dynamics by using PSE function 

to at low computational costs. Hence, various uncertainty sampling techniques have been 

discussed. Given it relevance to this work, PSE based uncertainty propagation has been explained 

in detail. The next chapter discusses the step by step procedure of developing the PSE based 

algorithm for integration and design and control.
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Chapter 3 

Optimal design of large-scale chemical processes under uncertainty: 

PSE -based approach 
 

When process dynamics and parameter uncertainty are considered in a chemical system, the design 

obtained from a steady-state analysis might not be valid. In order to obtain a dynamically feasible 

design, it is required to move away or back-off from the optimal steady state design. Also, the 

process design equations and process constraints equations for a chemical process or in a large 

scale industry are highly complex and nonlinear in nature. Hence, high computational costs are 

often required to perform the optimal design. In order to reduce the computational demands while 

searching for the optimal design, approximations that can represent the key characteristics of the 

actual nonlinear system are required. Therefore, a novel approach has been developed in the area 

of integration of design and control where Power series expansions (PSE) are used to represent the 

complex and nonlinear equations.  

The proposed methodology uses PSE to obtain analytical expressions for the process constrains 

and cost function. The key idea is to apply the back off approach from the optimal steady state 

design to address the simultaneous process and design problem in an efficient systematic manner 

using PSE approximations. A set of optimization problems is solved in an iterative manner, which 

is mathematically formulated using PSE approximations.  

This chapter is structured in the sections as follows: Section 3.1 describes the disturbance profiles 

and uncertain parameters used in this methodology. Section 3.2 shows how each process constraint 

and the cost function is approximated using PSE approximations. The optimization frame work 

used in this methodology is presented in Section 3.3. The step-by-step procedure used in the 
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methodology is also shown in this section. Section 3.4 is the remarks section where the benefits 

and limitations of the methodology have been discussed. Section 3.5 gives an illustrative example 

how an isothermal storage tank has been designed using the methodology and the results have been 

discussed in detail. Note that the content of this chapter has been published in the Industrial & 

Engineering Chemistry Research Journal [47].   

3.1 Disturbances and parameter uncertainty  

 

The proposed back-off methodology assumes that the disturbances’ dynamics d(t) follow time 

dependent profiles specified a priori, e.g. a series of step changes or a sinusoidal function. Other 

methodologies have also used the same approach to specify the disturbance dynamics with critical 

model parameters. Parameter uncertainty (𝛇) is introduced in the system when an exact value of a 

particular parameter is considered to be unknown. In this methodology, the uncertain parameters’ 

range of space is discretized to a finite set of realizations (J) that are also weighted based on their 

probability of occurrence, i.e. 𝑤𝑗. As it is explained in the next section, PSE based functions are 

developed for each specific realizations in the uncertain parameters (𝜁𝑗). 

3.2  PSE approximations  

 

The process constraints h specify the feasible operating region for a process and is often described 

as a function of the manipulated variables 𝐮(t), the controlled variables 𝐲(t), the disturbances 

affecting the process d(t), and the realizations in the uncertain parameters 𝛇. In this approach, PSE 

functions are used to obtain analytical expressions of the actual process constraints and are 

explicitly defined in terms of system’s uncertain parameter and the largest variability in a 

constraint function h due to time-varying changes in the disturbances. Also, the PSE approximation 
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for each constraint is developed around a nominal point in the optimization variables 𝛈𝑛𝑜𝑚 and for 

each realization considered for the uncertain parameters 𝜻𝑗. Accordingly, each nonlinear process 

constraint can be represented as a PSE-based constraint function: 

ℎ(𝝎, 𝐮, 𝐲, 𝒅,  𝜻𝑗, 𝑡) ≤ 𝜌  ↔  ℎ𝑃𝑆𝐸(𝑡)|𝒅(𝑡),𝜁𝑗
 ≤ 𝜌                                                                                         (3.1)                             

where 𝜌 represents the input (saturation) limit on the constraint; the PSE-based constraint function 

is defined as follows: 

ℎ𝑃𝑆𝐸(𝛈)|𝐝(𝑡),𝜻𝑗 = ℎ(𝛈𝑛𝑜𝑚) + 𝛻𝒉𝑗(𝛈)(𝛈 − 𝛈𝑛𝑜𝑚) +
1

2
(𝛈 − 𝛈𝑛𝑜𝑚)𝑇𝛻2𝒉𝑗(𝛈)(𝛈 − 𝛈𝑛𝑜𝑚) + ⋯                                 (3.2) 

where, 𝛈 ∈ 𝑅𝑃×1    and  𝛈𝑛𝑜𝑚 ∈ 𝑅𝑃×1   ; similarly, 

𝛻𝒉𝑗(𝛈) = [𝑍1,𝑗
(1)

, 𝑍2,𝑗
(1)

, 𝑍3,𝑗
(1)

, … 𝑍𝑝,𝑗
(1)

, … 𝑍𝑃,𝑗
(1)

] 

 

                         𝑍11,𝑗
(2)

    𝑍12,𝑗
(2)

   …   …  …   𝑍1𝑃,𝑗
(2)

 

𝛻2𝒉𝑗(𝛈) =      𝑍21,𝑗
(2)

    𝑍22,𝑗
(2)

   …   …  …  𝑍2𝑃,𝑗
(2)                

                                ⋮             ⋮          𝑍𝑝𝑙,𝑗
(𝟐)

        ⋮                                   

                          𝑍𝑃1,𝑗
(2)

    𝑍𝑃2,𝑗
(2)

   …   …  …   𝑍𝑃𝑃,𝑗
(2)

 

 

 

𝑍𝑝,𝑗
(1)

=
𝜕ℎ

𝜕𝛈𝑝
|

𝛈=𝛈𝑛𝑜𝑚,𝐝(𝑡),𝜻𝑗

                                                                                                                                              (3.3) 

  𝑍𝑝𝑙,𝑗
(2)

=
𝜕2ℎ

𝜕𝛈𝑝𝜕𝛈𝑙
|

𝛈=𝛈𝑛𝑜𝑚,𝐝(𝑡),𝜻𝑗 

  

 

where 𝛻𝒉𝑗(𝛈)  and 𝛻2𝒉𝑗(𝛈) represent the first order and second order gradients, respectively.  

In this work,  𝛻i𝒉𝑗(𝛈)   represents the ith order gradient of the optimization variables 𝛈 with respect 

to worst-case (largest) variability observed in the time domain for the constraint function h due to 

the time-dependent realizations in the disturbances 𝐝(𝑡) and the jth realization in the uncertain 

parameter 𝜻𝑗. Figure 3.1 illustrates the idea to calculate the worst case variability point in constraint 
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h, around which ℎ𝑃𝑆𝐸(𝛈)|𝐝(𝑡),𝜻𝑗  is developed under process disturbances 𝐝(𝑡) and the uncertain 

parameter. 

 

Figure 3.1: Worst case variability point around which PSE based functions are developed 

 

The PSE-based constraint (ℎ𝑃𝑆𝐸), represents the actual process constraint h and can be evaluated 

faster since it is explicitly defined in the terms of the optimization variables 𝛈. Note that the ℎ𝑃𝑆𝐸  

function shown in (3.2) can also be expanded to consider higher order terms, which will lead to 

accurate results at the expense of higher computational costs. Therefore, the choice of expansion 

order depends on the number of optimization variables 𝛈, the system’s degree of nonlinearity, the 

desired accuracy in the results, and the method used for calculating the sensitivity terms. In the 

present work, the finite difference method was employed to compute the sensitivity terms in the 

expansion, e.g. 𝑍𝑝,𝑗
(1)

,  𝑍𝑝𝑙,𝑗
(2)

 as shown in (3.2). This method is the most commonly used to calculate 

sensitivities. Note that the computation of the sensitivity terms, involves a time-dependent term, 

i.e. the process disturbances d(t). The procedure to estimate  𝑍𝑝,𝑗
(1)

,  𝑍𝑝𝑙,𝑗
(2)

   is as follows: The dynamic 

process model f and the controller equations g are simulated around a nominal point given by 

 

Input (saturation) limit 

Time ,   

   

ℎ   ( )| ( ),     
(Developed around the 

worst case variability point) 
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𝛈𝑛𝑜𝑚, and for the jth realization in the uncertain parameters 𝜻𝑗. The inputs to these dynamic 

simulations are the time-dependent disturbances𝐝(𝑡), whose trajectory profiles remain fixed 

during the calculations. The simulation results are then used to identify the worst case deviation in 

time for the constraint function h (ℎ∗) due to the realizations in d(t) and 𝜻𝑗, i.e. 

ℎ∗|𝛈𝑛𝑜𝑚,𝑗
=max ℎ(𝑡)|𝛈𝑛𝑜𝑚,𝐝(𝑡),𝜻𝑗

                                                                                           (3.4)                                   

This procedure is then repeated for forward and backward values assigned to each optimization 

variable included in 𝛈 while keeping the rest of the optimization variables constant at equal to their 

nominal values, i.e. 𝛈𝑛𝑜𝑚. For example, the largest (worst-case) deviation in a process constrain h 

due to a single realization in the uncertain parameters at the forward step for the pth optimization 

variable can be expressed as follows: 

ℎ∗|𝜂𝑝,𝑗
+ =max ℎ(𝑡)|𝜂𝑝

+,𝐝(𝑡),𝜻𝑗
                                                                                                     (3.5) 

Note that the rest of the decision variables included in 𝛈 remain fixed and equal to their nominal 

values defined by 𝛈𝑛𝑜𝑚. Next, sensitivity terms, e.g. 𝑍𝑝,𝑗
(1)

 and 𝑍𝑝𝑙,𝑗
(2)

, can be calculated using the 

data collected from the simulations. The first-order sensitivity term for the pth decision variable at 

the jth realization in the uncertain parameters can be calculated as follows: 

𝑍𝑝,𝑗
(1)

= (ℎ∗|𝜂𝑝,𝑗
+ − ℎ∗|𝜂𝑝,𝑗

− ) 2Δ𝜂𝑝⁄                                                                                             (3.6)                                          

where Δ𝜂𝑝 represents the difference between the forward step (𝜂𝑝,𝑗
+ ) and the backward step (𝜂𝑝,𝑗

− ) 

for the pth decision variable for the jth realization in uncertain parameter. Similarly, the second 

order sensitivity term can be calculated as follows:  

𝑍𝑝𝑝,𝑗
(2)

= (ℎ∗|𝜂𝑝,𝑗
+ − 2ℎ∗|𝜼𝑛𝑜𝑚

+ ℎ∗|𝜂𝑝,𝑗
− ) Δ𝜂𝑝⁄ 2                                                                        (3.7)                                     
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Note that the first order and second order sensitivity terms are only valid around the nominal point 

𝜼𝑛𝑜𝑚 and have been calculated using centered finite difference. Higher order sensitivity terms can 

be calculated using the same approach; however, additional forward and backward points around 

the nominal point are required. This same procedure can be used to formulate a mathematical 

expression for the cost function using PSE approximations, i.e. 

Θ𝑃𝑆𝐸(𝛈)|𝐝(𝑡),𝜻𝑗
= Θ(𝛈𝑛𝑜𝑚) + 𝛻Θ𝑗(𝛈 − 𝛈𝑛𝑜𝑚) +

1

2
(𝛈 − 𝛈𝑛𝑜𝑚)𝑇𝛻2Θ𝑗  (𝛈 − 𝛈𝑛𝑜𝑚) + ⋯                    (3.8) 

where, 𝛻Θ𝑗and  𝛻2Θ𝑗are the first order and second order gradients for the cost function at the jth 

realization in uncertain parameter 𝜻 and that are evaluated around the nominal point 𝛈𝑛𝑜𝑚 under 

process disturbances 𝐝(𝑡) and for each realization in the uncertain parameters 𝜻𝑗.  

3.3 Optimization problem and algorithm  

 

Based on the above definitions, a PSE-based optimization problem can be formulated as follows: 

𝑚𝑖𝑛
𝛈, 𝛌

       ∑ 𝑤𝑗
𝐽
𝑗=1 Θ𝑃𝑆𝐸(𝛈, 𝐝(𝑡), 𝛇)+∑ ∑ 𝑀𝑆

𝑠=1
𝐽
𝑗=1 𝜆𝑠,𝑗  

Subject to: 

ℎ𝑃𝑆𝐸
𝑠,𝑚𝑎𝑥(𝛈, 𝐝(𝑡), 𝛇𝑗) − 𝜌 (1 + 𝜆𝑠,𝑗)  ≤ 0 ∀s = 1, … , S; ∀ j = 1, … , J  

ℎ𝑃𝑆𝐸
𝑠,𝑚𝑖𝑛(𝛈, 𝐝(𝑡), 𝛇𝑗) + 𝜌 (1 − 𝜆𝑠,𝑗)  ≤ 0 ∀s = 1, … , S; ∀ j = 1, … , J                                   (3.9) 

𝛈𝑛𝑜𝑚(1 − 𝛿) ≤ 𝛈 ≤ 𝛈𝑛𝑜𝑚(1 + 𝛿).                                                                                                              

∑ 𝑤𝑗 = 1
𝐽

𝑗=1
 

λ𝑠,𝑗 ≥ 0 

 

where 𝛿 is a tuning parameter that determines the lower and upper bounds on the optimization 

variables (𝛈) . That is, this parameter determines the size of the search space region in the 

optimization variables that will be considered while solving problem (3.9). Moreover, 𝑤𝑗is a 

weight assigned to the probability of occurrence of the jth realization in the uncertain parameters. 
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The decision variables 𝛈 includes the process design variables (𝛚) and the controller tuning 

parameters (𝛏), i.e. 𝛈 = [𝛚, 𝛏]. The first PSE-based constraint equation shown in (3.9) is employed 

when the worst case variability is calculated in the positive (maximum) direction whereas the 

second PSE-based constraint is used when the worst case variability is calculated in the negative 

(minimum) direction. Since all the constraints and the cost function are represented using PSE 

functions, the above optimization problem can be efficiently solved using standard optimization 

subroutines. 

As mentioned above, the present approach aims to perform the back-off from the optimal steady-

state design point. Therefore, active constraints identified from the optimal steady-state design 

problem are expected to be violated when process dynamics are first considered in the analysis. 

Accordingly, problem (3.9) may become infeasible when 𝛈𝑛𝑜𝑚 is set to be the point obtained from 

the optimal steady-state design or a nearby operating point. To avoid potential infeasibilities, an 

additional term has been added to the PSE-based cost function shown in problem (3.9). This term 

represents a penalty cost and is used to penalize any constraint violations that may occur while 

searching for the optimal design parameters that minimize the PSE-based cost function shown in 

problem (3.9). 𝜆𝑠,𝑗 ∈ 𝝀 is an optimization variable and represents the magnitude in the sth constraint 

function 𝐡𝑃𝑆𝐸
𝑠  that is required to be added (removed) to avoid infeasibility. M represents a big 

number that needs to be degrees of magnitude higher than the actual cost function. Note that there 

is one 𝜆𝑠,𝑗  for each constraint function ℎ𝑃𝑆𝐸
𝑠  and each realization in uncertain parameter 𝛇𝑗. 

Alternatively, if the solution from (3.9) returns 𝜆𝑠,𝑗 ≠ 0, then the solution obtained for 𝛈 

determines a search direction for the process design and control variables, i.e. 𝛚 and 𝛏. Note that 

the design and control parameters obtained from problem (3.9) are valid around a region near by 

𝛈𝑛𝑜𝑚, i.e., ℎ𝑃𝑆𝐸  and  Θ𝑃𝑆𝐸are developed around that nominal point; accordingly, the search space 
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for 𝛈 in (3.8) is determined based on 𝛈𝑛𝑜𝑚 and the tuning parameter 𝛿, which determines the 

magnitude of the feasible search space. Problem (3.9) represents the core calculation in the present 

back-off algorithm; this optimization problem works in an iterative manner as the result obtained 

from one iteration is used as the nominal (starting) point for the next iteration. Accordingly, the 

procedure proposed for the present back-off methodology is as follows: 

Step 1: Initialization 

The approach is initialised by defining the trajectory profiles for the disturbances 𝐝(𝑡); the set of 

realizations for the uncertain process parameters 𝜻; initial guesses for the control tuning parameters 

(𝛏) and the process design variables (𝛚). Also, set the tuning parameter 𝛿, the order of the PSE 

approximation to be used in the calculations, the maximum number of iterations (Niter), a tolerance 

criterion for convergence (𝜀), and M. Further, the iteration index i is set to i=0. 

Step 2: Optimal steady-state design under uncertainty 

Perform the optimal steady-state design under uncertainty, i.e. 

  
𝑚𝑖𝑛

𝛈
       ∑ 𝑤𝑗

𝐽
𝑗=1 Θ𝑆𝑆(𝛈, 𝐝, 𝛇𝑗)  

𝐟(𝛚, 𝐮, 𝐲, 𝐝, 𝛇𝑗) = 𝟎               ∀ j = 1,                                                           (3.10) 

𝐡(𝛚, 𝐮, 𝐲, 𝐝, 𝛇𝑗 ) ≤ 𝟎                      ∀ j = 1, … , J 

𝐝 = {𝐝𝑙 , 𝐝𝑢}  

 

As shown in (3.10), the disturbances are treated as uncertain time-invariant parameters with 

discrete realizations given by their corresponding set of upper and lower bounds. The formulation 

presented in (3.10) corresponds to the optimal design of a system using discrete realizations j in 

the uncertain parameters; hence, the multi-scenario approach has been used to solve this 

optimization problem. Note that in the optimal steady state design formulation 𝛈 = 𝛚 .The 
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solution obtained from this problem ( 𝛈0) represents the most economical steady-state design that 

can be accomplished under parameter uncertainty; therefore, 𝛈0 is used as the initial point to start 

the present back-off methodology, i.e. 𝛈0 =  𝛚0.  

At any iteration step i: 

Step 3: Develop the PSE-based functions 

Using 𝛈0 (𝛈𝑖) as the nominal operating point for the first (ith) iteration, PSE-based functions are 

developed for each constraint h (i.e.ℎ𝑃𝑆𝐸) considered in the formulation and also for the cost 

function (i.e. Θ𝑃𝑆𝐸). The expressions for ℎ𝑃𝑆𝐸  and Θ𝑃𝑆𝐸are shown in (3.2) and (3.8), respectively.  

Step 4: Optimization of the PSE-based functions 

Formulate the PSE-based optimization problem (3.9) using the PSE functions developed in Step 

3, the tuning parameter 𝛿, and the current nominal point 𝛈𝑖. The solution to this problem (𝛈𝑖+1) 

represents an improvement in the search direction for the optimal design variable (𝛚𝑖+1) and 

controller tuning parameters (𝛏𝑖+1), i.e. 𝛈𝑖+1= [𝛚𝑖+1, 𝛏𝑖+1]. 

Step 5: Convergence criterion 

As shown in (3.11), a floating average convergence technique is used as a stopping criterion in 

this work. In this method, a sampling period N is specified first; then the mean of the PSE-based 

cost function obtained from iterations i-2N+1 to i-N are subtracted from the mean of the same 

function obtained from iterations iter-N+1 to i; if the difference in means, i.e. the costs, is less than 

a threshold value (ε), then the approach has converged. 

𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
Θ =

1

𝑁
(∑ Θ𝑚 −𝑖−𝑁

𝑚=𝑖−2𝑁+1 ∑ Θ𝑛
𝑖
𝑛=𝑖−𝑁+1 )      (3.11) 

where Θ𝑚 and Θ𝑛 represent Θ𝑃𝑆𝐸 obtained from the solution of problem (3.11) at the mth and nth 

iteration as shown in (10), respectively. Similarly, for the optimization variables: 
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𝑇𝑜𝑙𝑓𝑙𝑜𝑎𝑡
𝜂

=
1

𝑁
(∑ 𝜂𝑚 −𝑖−𝑁

𝑚=𝑖−2𝑁+1 ∑ 𝜂𝑛
𝑖
𝑛=𝑖−𝑁+1 )                  (3.12) 

where 𝜂𝑚 and 𝜂𝑛 represent the value obtained from the solution of problem (3.9) for the 

optimization variable 𝜂 at the mth and nth iterations as shown in (3.12), respectively. Accordingly, 

norms on the vector 𝑻𝒐𝒍𝑓𝑙𝑜𝑎𝑡
𝜂

, i.e. |𝑻𝒐𝒍𝑓𝑙𝑜𝑎𝑡
𝜂

|
𝑝
, can be computed to determine the convergence in 

the optimization variables; typically the Euclidean norm (𝑝 = 2) or the infinity norm (𝑝 = ∞) can 

used to test for convergence. This same approach is employed to check for the convergence of the 

algorithm on each 𝜆𝑠,𝑗, i.e. |𝑻𝒐𝒍𝑓𝑙𝑜𝑎𝑡
𝜆 |

𝑝
. If |𝐓𝐨𝐥float

λ |
p
 is below the threshold value (ε), and either 

Tolfloat
Θ  or |𝐓𝐨𝐥float

η
|

p
  are below a threshold value (ε), then STOP, an optimal solution has been 

found, i.e. 𝛈𝑖+1 . Otherwise, set i=i+1 and go back to Step 3. Alternatively, the algorithm is also 

terminated if the maximum number of iterations is reached, i.e. 𝑖 ≥ 𝑁𝑖𝑡𝑒𝑟. A flow sheet explaining 

the complete methodology is shown in Figure 3.2. 

 

Figure 3.2 Flowsheet for the PSE based methodology 
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3.4  Remarks 

 

The present methodology assumes that the process flow sheet and the control schemes remain 

fixed during the course of the calculations. Although structural (integer) decisions can be added 

into the analysis to consider the process topology, higher computational costs are expected. The 

simultaneous design and control of chemical processes featuring structural decisions are being 

considered as part of the future work in this research. The approach presented in this work assumes 

specific time-dependent disturbance profiles and discrete realizations in the uncertain parameters. 

Therefore, the case of stochastic descriptions defined for the disturbances and the uncertain 

parameters cannot be addressed with the present approach. Given their importance and 

significance, the formal use of stochastic descriptions for the disturbances and uncertain 

parameters is considered as part of the future improvements for the present methodology. As 

shown in equation (8), 𝛿 determines the size of the search space region in the optimization 

variables, i.e. 𝛈nom(1 − 𝛿) ≤ 𝛈 ≤ 𝛈nom(1 + 𝛿). If large 𝛿 values are used, then the 

computational costs may be low; however, the search region around the nominal point will expand 

and PSE approximations may not be valid at that point thus leading to solutions that are sub-

optimal or even cause a divergence in algorithm .On the other hand, using a relatively small 𝛿 

value narrows the search direction in the optimization variables thus more surely resulting in 

identifying an optimal solution; however, the computational costs associated with this calculation 

may become significantly high due to the large number of iterations required to achieve such 

solution. It should be noted that the PSE based gradients can either be calculated analytically or 

numerically. In the present approach, analytical gradients can be calculated by integrating the 

original process models equations with an additional set of differential equations known as the 

sensitivity equations [48, 49]. On the other hand, the numerical computation of the gradients 



 

29 
 

requires sampling and introduces truncations errors in the calculations. While an analytical 

approach provides the true sensitivities of the process, the numerical approach is often preferred 

when the process is a black-box model or involves a large set of differential equations. The 

parameter N used for the convergence criterion also plays an important role in the present 

approach. If a small value of N is used, the cost function or the optimization variables might not 

converge. On the other hand, setting N to a large number will eventually converge at the expense 

of high computational costs. The step size in the finite difference method for the calculation of the 

gradients in the PSE functions is another key parameter. If a small step size is chosen, noise in the 

system increases affecting the quality of the gradients and therefore the PSE approximation. On 

the other hand, if a large step size is chosen, the sensitivity gradients calculated might not be 

accurate which will affect the accuracy of the PSE function and the optimization calculations. The 

big M values specified in problem (3.9), to penalize process constraints that are violated should be 

chosen carefully and a priori such that the set λ does not become part of the feasible solution once 

the proposed back-off method has converged. Relatively large M values might lead to ill 

conditioning of the optimization problem whereas small M values may not be sensitive enough to 

the overall cost function. The selection of the number of discrete points selected for the uncertain 

parameters will affect the computational costs and the quality of the solution. As the discrete 

realizations for the uncertain parameters increases, the computational costs will also increase. 

Also, the weights assigned to the corresponding discrete realization should also be carefully 

selected since they will directly determine the quality of the solution. Higher weights should be 

assigned to the realizations which have high probability of occurrence, e.g. the expected (mean) 

realizations in the uncertain parameters. Note that the dynamic performance of the actual system 

cannot be explicitly guaranteed using this approach since PSE-based functions are employed to 
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approximate the worst-case variability in time in the process constraints and the cost function due 

to specific realizations in the disturbances and uncertainty in the parameters. However, the PSE 

functions employed in this work are developed around the worst-case variability expected in the 

process constraints and cost function due to the realizations in the disturbances and uncertainty in 

the parameters (see Figure 3.1). Therefore, the present approach is implicitly considering the 

process dynamics behavior and through this means dynamic feasibility is assessed in the present 

approach. Accordingly, the optimal design and control scheme obtained by the present approach 

is able to guarantee dynamic feasibility only if the PSE functions employed are valid 

approximations to the actual process. The order of the PSE approximations used to represent the 

process constraints and the cost function also plays a vital role in the present algorithm. The higher 

the order of PSE approximation, the more accurate the approximations; however, this will also 

lead to higher computational costs. Generally, the order in the PSE approximation is chosen based 

on the nonlinearity present in the system and the desired accuracy in the optimal solution. There 

are two approaches that can be employed to determine the order of the PSE approximation. In the 

first approach, the order of the approximation is selected offline by performing trial-and-error 

simulations. The second method is a more formal approach in which the order of the PSE functions 

are calculated online, while implementing the back-off method, i.e. develop a PSE-function of a 

given order and determine its accuracy using the actual constraint function. An algorithm that can 

be embedded within the present methodology to determine online the order of the PSE-functions 

is presented in Figure 3.3. While the first approach reduces the computational costs, the second 

method is more accurate at the expense of using additional computational resources at each step 

in the proposed back-off methodology. 
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Figure 3.3: Procedure to select the order of the PSE 

3.5 Case Study 1: Isothermal Mixing Tank 

 

To illustrate the implementation of the methodology proposed in this work, the optimal design of 

an isothermal mixing tank is considered. Figure 3.4 shows the process flow sheet for this system. 

The step-by-step procedure describing the implementation of the methodology is described next.  

Specify the disturbance 

profile 𝒅(𝑡)and uncertain 

parameter realizations 𝜻𝒋 

Set order of PSE approximation to 1 

Compute the sensitivities of the PSE 

based model (equation 2) 

Build the PSE-based model (ℎ𝑃𝑆𝐸) 

(equation 1B) 

Generate random samples on the 

optimization variable 𝜼  

Run the PSE based model and the actual 

constraint function 

Check the error of approximation 

between  h  and ℎ𝑃𝑆𝐸 

Error 

significant? 

Use the current model for 

PSE based approximation 

Increase the order of PSE 

approximation by one 
YES 

NO 
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Figure 3.4 Flow sheet for Storage Tank 

The process involves an inlet and an outlet stream. The system is assumed to be at constant 

temperature and density. The material balance for this system is as follows: [50] 

𝐴
𝑑𝐻

𝑑𝑡
= 𝐹𝑖𝑛 −  𝐹𝑜𝑢𝑡  

𝐹𝑜𝑢𝑡 = 𝐾 𝐶𝑣 √1.45 ∗ 10−4β𝑔0H                                                            (3.13) 

where A and H are the area and the height of the tank, respectively. The height of the tank 

represents the state variable in this process and it is assumed that this variable can be measured 

on-line. The term 𝐹𝑖𝑛 is the inlet stream flow-rate and it is assumed to be a time-varying 

disturbance, i.e. d(t). The liquid level in the tank is controlled using the outlet stream flow-

rate, 𝐹𝑜𝑢𝑡, which is defined as a non- linear function of the height (H) of the liquid level in the tank. 

Cv is the valve coefficient and is considered as an uncertain parameter in the system 𝛇 , i.e. it is 

assumed that its true value is not known but it changes between lower and upper limits. The 

variable 𝐾 represents the stem position of the valve at the outlet stream and it can be manipulated 

by a closed-loop controller to regulate the liquid level in the tank. A proportional–integral (PI) 

feedback controller is used in the present analysis to maintain the liquid level in the tank at a 
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desired set point (𝐻𝑠𝑝) by adjusting the stem position of the outlet valve (K). The terms β and g0 

represent the density of the fluid (water) and the standard gravity, respectively. The tank is assumed 

to be well mixed and with constant density. The constant term in equation (3.13) is a conversion 

factor. Table 3.1 lists the numerical data for this case study. 

Table 3.1 Numerical Data for Storage Tank 

Variable Description 

Inlet stream flow rate  10𝑔𝑝𝑚 ≤ 𝐹𝑖𝑛 ≤ 30𝑔𝑝𝑚  

Outlet Valve Coefficient 10 ≤ C𝑣 ≤ 30  

Area of  the tank 𝐴 = 1𝑚2  

Density of the fluid 𝛽 = 1000 𝑘𝑔 𝑚3⁄   

Proportional gain −0.1 ≤ 𝐾𝑐 ≤ 1𝑒 − 4  

Time integral 0.5𝑚𝑖𝑛 ≤ 𝜏𝑖 ≤ 10  

 

The goal in this process is to estimate the liquid level controller’s set point, 𝐻𝑠𝑝, and the PI 

controller tuning parameters,  𝐾𝑐and, 𝜏𝑖, that minimize the cost of the tank. The final tank’s volume 

must be such that it can accommodate the variations in the external process disturbances (𝐹𝑖𝑛) and 

uncertainty in the process model parameters (Cv) without overflowing or without having height’s 

level below 5m (see equation (3.16) below). Thus, it is expected that the optimal controller’s tuning 

parameters and liquid level set point will be those that reduce the maximum variability in the tank’s 

liquid level, while complying with the process constraints. Therefore, the process design variable 

in this case is H, i.e. = 𝛚 = H. 
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 𝐾 is the manipulated variable, which represent the controlled valve opening.  Accordingly, the 

controllers’ equation is as follows:  

K(𝑡) =  𝑘̅ +  𝐾𝑐𝑒 +
𝐾𝑐

𝜏𝑖
∫ 𝑒𝑑𝑡

𝑡

0
                                                                                                                                 (3.14)                                                                         

where 𝑘̅ represents the nominal value in the manipulated variable. 𝐾𝑐 represents the controller’s 

gain whereas 𝜏𝑖 is the controller’s time integral, i.e. 𝝃 = [𝐾𝑐, 𝜏𝑖]. Moreover, 𝑒 is the error between 

the controlled variables, 𝐻 and their corresponding set point, 𝐻𝑠𝑝. The decision variables 𝛈 

 included in the formulation are the height set point and the controllers tuning parameter, i.e. 𝛈 =

[𝐻𝑠𝑝, 𝐾𝑐, 𝜏𝑖]. 

Based on the above, the PSE based algorithm for simultaneous design and control was applied to 

this process. The capital cost for this process is assumed to be proportional to the tank’s height H. 

Thus, the largest variation in the height of the tank with respect to the liquid level’s set point at 

any time t determines the tank’s capital cost. The largest variability in the tank’s liquid level will 

result from a particular combination of a critical time-dependent profile in 𝐹𝑖𝑛 and a critical steady-

state unknown value in the valve’s coefficient, Cv. The operating costs for this process are assumed 

to be negligible. Therefore, the cost function can be defined as follows: 

Θ𝑆𝑇 = 100𝐻1.5                                                                (3.15) 

The process constraints considered in the present analysis is the minimum allowable height in the 

tank at any time t, and the height of the tank should always be greater 5m; in addition, the stem 

opening must operate within its feasible operational limits. Therefore, the constraints considered 

for this process are as follows: 

0 ≤ K(t) ≤ 1 

H(t) ≥ 5                                                                             (3.16) 
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The step by step procedure used to implement the back-off methodology proposed in this work is 

discussed next. 

Step 1: Initialization 

The trajectory profile for the disturbances and the realization in uncertain parameters along with 

their respective weights are initialized first. The disturbance profile is assumed to be a series of 

step changes with the following nominal, lower and upper bounds: 

𝒅(𝑡): 𝐹𝑖𝑛 (
L

min
) = [6; 2.27; 6.81; 2.27; 6.81]                                                                         (3.17) 

                                                   

The first realization in the disturbance profile corresponds to the nominal value. The sampling time 

used for each realization in disturbances was set to 2,000 seconds. Likewise, each realization in 

the uncertain parameters along with their corresponding weights is shown in Table 3.2. Note that 

the nominal value for the valve coefficient (Cv) is 20 and is assigned the maximum weight (See 

Table 3.2). A total of 5 realizations including the nominal value in the uncertain parameter is 

considered for this case study. 

Table 3.2 Parameter Uncertain Description for Storage Tank 

  Valve’s coefficient, Cv. Weights (𝑤𝑗) 

10 0.15 

15 0.15 

20 0.40 

25 0.15 

30 0.15 

 



 

36 
 

The tuning parameter 𝛿 determines the lower and upper bounds on the PSE-based optimization 

variables. That is, this parameter determines the size of the search space region in the PSE-based 

optimization problem and was set to 0.1. First and  second order PSE approximation were 

considered and the results were compared. The maximum number of iterations (Niter) was set to 

400 whereas a tolerance criterion for convergence (𝜀) was set to 1 x10-4; the parameter M, which 

represents a penalty cost in the PSE-based optimization problem, was set to 1x106. Further, the 

iteration index i is initialized to i=0. 

Step 2: Optimal steady-state design under uncertainty 

This step aims to find the optimal process design under uncertainty at steady state. The result 

obtained from the steady state design is then used as the initial guess in the present back-off 

methodology. 

𝑚𝑖𝑛
𝛈

       ∑ 𝑤𝑗
𝐽
𝑗=1 Θ𝑆𝑇,𝑗(𝛈, 𝐝, 𝛇𝑗)  

Subject to: 

                  ℎ𝐻
𝑚𝑖𝑛(𝛈, 𝐝, 𝛇𝑗)   ≤ 0                           ∀j = 1, …, J     

                  
                 ℎ𝐾

𝑚𝑎𝑥(𝛈, 𝐝, 𝛇𝑗)  ≤ 0                            ∀j = 1, … , J                                                              (3.18) 

   ℎ𝐾,𝑃𝑆𝐸
𝑚𝑖𝑛 (𝛈, 𝐝, 𝛇𝑗) ≤ 0                           ∀j = 1, … , J 

                 𝐝 = {𝐝𝑙 , 𝐝𝑢}  

 

The formulation corresponds to the optimal design of a system using discrete realizations j in the 

uncertain parameters; hence, the multi-scenario approach has been used to solve this optimization 

problem. Note that in the present optimal steady state design formulation, the only optimization 

variable is the height of the tank H, i.e.  𝛈 = H. The tank’s height obtained from this problem 

represents the most economical steady-state design that can be accomplished under parameter 

uncertainty.  
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Step 3: Develop the PSE-based functions 

Using the tank’s height obtained from steady state design as the nominal operating point for the 

first (ith) iteration, PSE-based functions are developed for each constraint h (i.e.ℎ𝑃𝑆𝐸) considered 

in the formulation and also for the cost function. One example that describes the development of 

the PSE based functions is shown below. In order to explain this calculation, the constraint on the 

tank’s height (3.16) is exemplified. This constraint can be reformulated according to the 

description presented in section 3.2 and is as follows: 

ℎ𝐻(𝑡) ≥ 5 ⟺ 𝐻𝑚𝑖𝑛(𝑡) − 𝜌 ≥ 0 ⟺ − ℎ𝐻,𝑃𝑆𝐸
𝑚𝑖𝑛 (𝑡) + 5 ≤ 0                                         (3.19) 

𝐻𝑚𝑖𝑛(𝑡) is the maximum worst case deviation in the negative direction of the tank’s height at any 

time t under process disturbances d(t) and parameter uncertainty 𝛇; 𝜌 (5m) represents the input 

(saturation) limit on this constraint, i.e. the minimum allowed height of the tank during operation. 

PSE-based functions are developed for the reformulated constraint (3.16) for each iteration step i 

around the tank’s height’s nominal point 𝛈𝑖, i.e. around nominal values in the optimization 

variables at the ith iteration. First and second order sensitivity analyses were performed on each 

constraint and the cost function. The gradients are calculated using the finite difference method, 

more details regarding the computation of the sensitivities are provided in the first case study 

presented in the next chapter (See equations 4.16 and 4.17). 
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Step 4: Optimization of the PSE-based functions 

The PSE based optimization problem for this case study can be formulated as follows: 

𝑚𝑖𝑛
𝛈, 𝛌

       ∑ 𝑤𝑗
𝐽
𝑗=1 Θ𝑆𝑇,𝑗(𝛈, 𝐝(𝑡), 𝛇)+∑ ∑ 𝑀𝑆

𝑠=1
𝐽
𝑗=1 𝜆𝑠,𝑗  

Subject to: 

                  ℎ𝐻,𝑃𝑆𝐸
𝑚𝑖𝑛 (𝛈, 𝐝(𝑡), 𝛇𝑗) + 𝜌 (1 − 𝜆1,𝑗)   ≤ 0                           ∀j = 1, …, J     (3.20) 

                  

                 ℎ𝐾,𝑃𝑆𝐸
𝑚𝑎𝑥 (𝛈, 𝐝(𝑡), 𝛇𝑗) − 𝜌 (1 + 𝜆2,𝑗)  ≤ 0                         ∀j = 1, … , J 

ℎ𝐾,𝑃𝑆𝐸
𝑚𝑖𝑛 (𝛈, 𝐝(𝑡), 𝛇𝑗) + 𝜌 (1 − 𝜆3,𝑗) ≤ 0                          ∀j = 1, … , J 

𝛈𝑛𝑜𝑚(1 − 𝛿) ≤ 𝛈 ≤ 𝛈𝑛𝑜𝑚(1 + 𝛿)                                                                                                              

λ𝑠,𝑗 ≥ 0 

 

where, ℎ𝐻,𝑃𝑆𝐸
𝑚𝑖𝑛  , and ℎ𝐾,𝑃𝑆𝐸

𝑚𝑖𝑛  are the maximum deviation expected for the storage tank height and the 

valve’s stem opening in the negative direction, respectively; similarly, ℎ𝐾,𝑃𝑆𝐸
𝑚𝑎𝑥  is the worst-case 

variability expected for the stem opening in the positive direction. The solution to problem (3.20) 

(𝛈𝑖+1) represents an improvement in the search direction for the optimal design variable (𝐻𝑠𝑝 𝑖+1) 

and controller tuning parameters ( 𝐾𝑐 𝑖+1, 𝜏𝑖
𝑖+1), i.e. 𝛈𝑖+1= [𝐻𝑠𝑝 𝑖+1,  𝐾𝑐 𝑖+1, 𝜏𝑖

𝑖+1]. This is carried 

out in an iterative manner until one of the convergence criteria described in Step 5 in the algorithm 

is satisfied. 𝜆 is an optimization variable and represents the magnitude in the sth constraint function 

𝐡𝑃𝑆𝐸
𝑠  that is required to be added (removed) to avoid infeasibility. M represents a big number that 

needs to be degrees of magnitude higher than the actual cost function. Note that there is one 𝜆𝑠,𝑗  

for each constraint function ℎ𝑃𝑆𝐸
𝑠  and each realization in uncertain parameter 𝛇𝑗. It should be noted 

that the 𝜆 should be zero at the convergence point for the design and control parameters to be 

feasible under the given process dynamics and parameter uncertainty.  
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RESULTS  

The case study presented in this work was coded on MATLAB 2014a using an Intel core i7 3770 

CPU @3.4GHz processor (8GB RAM). Using the disturbance profile shown in equation (3.17) 

and for each realization is parameter uncertainty (Table 3.2) the results obtained for second order 

approximation are presented .The cost function and the decision variables are shown in Figure 3.5 

and Figure 3.6: Decision Variable Convergence chart, respectively.  The convergence of λs is shown 

in Figure 3.7. Validation of the process design obtained while using this approach is shown in 

Figure 3.8. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Cost Function Convergence chart 
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Figure 3.6: Decision Variable Convergence chart 

 

 

Figure 3.7: Convergence of λs 
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Fig 3.5 and 3.6 show that the cost function and the decision variables converged after 48 iterations. 

At the start of the simulation, large cost values are obtained. This is due to the fact that in this 

region some constraints are being violated when process dynamics are considered while using the 

optimal steady state design parameters as the starting point (see Step 2 above of the procedure). 

At these initial iterations, the λs were not equal to zero (See figure 3.7). The steady state cost when 

the dynamics of the system were not considered was $ 2192.86; the optimum cost value deviates 

from the optimal steady state design by around 10% when process disturbances and parameter 

uncertainty are considered in the system. The results obtained using the  first and second order 

PSE approximation are presented in Table 3.3 and is also compared with the formal integration 

technique. The mathematical formulation for the formal integration technique is given in equation 

3.21. 

𝑚𝑖𝑛
𝛈

       ∑ 𝑤𝑗

𝐽

𝑗=1

Θ𝑆𝑇,𝑗(𝛈, 𝐝(𝑡), 𝛇) 

Subject to           

 

Process model equations   (equation 3.13) 

Process constraints (equation 3.16)                                                                    (3.21) 

Disturbance dynamics (equation 3.17) 

Parameter uncertainty (Table 3.2) 
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Table 3.3 Storage Tank Design Results 

 PSE approximations 

1st order  

PSE approximations 

2nd order  

Formal integration 

technique 

𝐻𝑠𝑝  7.91 7.67 7.97 

 𝐾𝑐  0.013 0.05 0.062 

 𝜏𝑖  0.64 0.55 0.55 

Total Cost ($/yr) 2,523.15 2,427.96 2,276.43 

Computational Time 

(secs) 

98 127 188 

 

As shown in Table 3.3, a lower cost was obtained when second order PSE approximations are 

used. As the order increases, additional forward and backward points are required, which improve 

the quality in the results at the expense of additional computational costs, as observed in Table 3.3. 

The results obtained from the PSE based approach converges to an optimal design point that is 

somewhat similar to that obtained from the formal integration technique, i.e. less than 5% 

difference. It should be noted that, for the present case study, the computational time for the PSE-

based approach is around 65% less than that for the formal integration technique. The result thus 

shows that the PSE based algorithm has the potential to obtain optimal design and control 

parameters in short computation times. 

In order for the process constraints to be in their feasible limits, all the λs values should converge 

to zero, which can be seen in Figure 3.. As shown in Figure 3.8, the height of the tank H and the 

valve stem position K remained within their pre-specified operational limits in the presence of the 

process disturbances and parameter uncertainty considered for this case study.  Each line in the 



 

43 
 

validation chart corresponds to a particular realization in uncertain parameter (See Table 3.2). This 

results thus show that the design parameters obtained from the PSE-based algorithm are 

dynamically feasible and returned a valid design. 

 

Figure 3.8: Simulating the design: Storage Tank Case Study 

 

Summary  

This chapter presented the novel approach proposed in this work for the optimal design of chemical 

processes in the presence of process disturbances and parameter uncertainty using Power Series 

Expansion (PSE) approximations. The methodology assumes that the process dynamic follows 

time dependent profiles specified as a priori. The idea in this work is to approximate the process 

constraint functions and process outputs using Power Series Expansion (PSE)-based functions in 

order to approximate the system and hence reduce computational costs. A step by step procedure 

to develop the PSE based optimization problem has been developed and presented in this section. 

In order to explain the methodology, a simple case study pertaining to the design of an isothermal 
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storage tank along with its results are shown. The results obtained from PSE based approach were 

compared with formal integration technique and it was shown that PSE based method can specify 

optimal process design and control schemes at low computational costs.
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CHAPTER 4 

Applications of PSE-based integration of design and control 

schemes: Case studies and results 
 

The PSE-based integration of design and control methodology presented in the previous chapter 

has been tested using two different case studies. The first case study involves the optimal design 

of a non-isothermal CSTR under process dynamics and parameter uncertainty. The results from 

this case study have been compared with the formal integration technique in order to compare the 

computational cost of the new proposed methodology. The effect of various key parameters used 

in the methodology have been also discussed in detail. A waste water treatment plant, which is a 

large-scale complex process, was also designed using the proposed methodology and the results 

are presented in the later part of this chapter. The effect of tuning parameter and the type of 

disturbance profile used in the system has also been discussed in detail.  

4.1  Non-isothermal Continuous Stirred Tank Reactor (CSTR)  

 

In order to test the methodology proposed in the previous section, a case study involving the 

simultaneous design and control of a non-isothermal stirred tank reactor (CSTR) is considered. As 

shown in Figure 4.1, the reactor has a single input stream of reactant A which has a constant inlet 

concentration (CAin= 1mol/L). Time variant disturbances are considered in the inlet flow rate and 

the inlet temperature, i.e.,  𝐝(𝑡)= [qF(t), Tf(t)].  
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Figure 4.1: Schematic diagram of the CSTR closed-loop process. 

 

An irreversible reaction takes place in the CSTR and the reactant A is converted into product B. 

Assuming a first order reaction is taking place, the rate of reaction can be given as follows: 

           −𝑟𝐴 =  𝑘0𝐶𝐴𝑟exp (−
𝐸

𝑅𝑇𝑟
)                                                                                                                   (4.1) 

where 𝐶𝐴𝑟 is the concentration of A in the reactor and 𝑇𝑟 is the temperature inside the reactor; E is 

the activation energy and 𝑘0 is the pre-exponential factor. Both the activation energy (E) and the 

pre-exponential factor (𝑘0) are considered to be uncertain parameters, i.e. 𝛇 = [𝑘0, E]. A cooling 

jacket is attached to the CSTR to regulate the temperature inside the system; Qc is the cooling 

liquid flow rate inside the jacket whereas q and wA are the reactor’s outlet flow rate and the molar 

flow rate (mol/min) of reactant A at the outlet stream, respectively. The lower wA, the more of the 

reactant is being converted into the product; hence, this variable can be used as a performance 

index for this system. The model equations for the mass and energy balances for this system are 

as follows [51]: 
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𝑑𝑉

𝑑𝑡
= 𝑞𝐹 − 𝑞                                                                                                                                                         (4.2) 

 

𝑑𝑇𝑟

𝑑𝑡
=  

𝑞𝐹(𝑇𝐹−𝑇𝑟)

𝑉
+

Δ𝐻0𝑘0𝐶𝐴𝑟 exp(−
𝐸

𝑅𝑇𝑟
)

𝜌𝐶𝑃
−  

𝑄𝑐

𝜌𝐶𝑃𝑉
                                                                                                 (4.3) 

 
𝑑𝐶𝐴𝑟

𝑑𝑡
=

𝑞𝐹(𝐶𝐴,𝐹−𝐶𝐴𝑟)

𝑉
− 𝑘0𝐶𝐴𝑟 exp (−

𝐸

𝑅𝑇𝑟
)                                                                                                        (4.4) 

 
𝑄𝑐 = 48.1909𝑢1                                                                                                                                                 (4.5) 
 

𝑞 = 10𝑢2√𝑉                                                                                                                                                                        (4.6)  
 

The constants used in the above equations include the density of the fluid (𝜌=1e3g/L), the heat 

capacity of the fluid (𝐶𝑃=0.239J/gK), the heat of reaction (𝛥𝐻0 =47.8 kJ/mol), and the universal 

gas constant (R=8.3144 J/molK). The control scheme considered for this CSTR includes two PI 

controllers, which manipulate the cooling liquid flow rate Qc and the outlet stream flow rate q in 

order to regulate the temperature 𝑇𝑟 and the liquid volume V inside the reactor. As shown in (4.5)-

(4.6), 𝑢1 and 𝑢2 are the manipulated variables, which represent the controlled valve openings for 

Qc and q, respectively. Accordingly, the controllers’ equations are as follows:  

𝑢1(𝑡) =  𝑢1̅̅ ̅ + 𝐾𝑐1𝑒1 +
𝐾𝑐1

𝜏𝑖1
∫ 𝑒1𝑑𝑡

𝑡

0
                                                                                                                    (4.7) 

𝑢2(𝑡) =  𝑢2̅̅ ̅ + 𝐾𝑐2𝑒2 +
𝐾𝑐2

𝜏𝑖2
∫ 𝑒2𝑑𝑡

𝑡

0
                                                                                                                    (4.8)       

 

where 𝑢1̅̅ ̅ and 𝑢2̅̅ ̅ are the nominal values in the manipulated variables. 𝐾𝑐1 and 𝐾𝑐2 represent the 

controllers’ gains whereas 𝜏𝑖1 and  𝜏𝑖2 are the controllers’ time integrals, i.e. 𝝃 = [𝐾𝑐1, 𝐾𝑐2, 𝜏𝑖1, 

𝜏𝑖2]. Moreover, 𝑒1and 𝑒2 are the errors between the controlled variables, 𝑉 and 𝑇𝑟, and their 

corresponding set points, 𝑉𝑠𝑝 and 𝑇𝑠𝑝. The decision variables 𝛈  included the volume and 

temperature set points and the controllers tuning parameter, i.e. = [𝑉𝑠𝑝, 𝑇𝑠𝑝 , 𝐾𝑐1, 𝐾𝑐2, 𝜏𝑖1, 

𝜏𝑖2]. Process constrains are applied to the temperature in the reactor 𝑇𝑟, the concentration of 

reactant A at the outlet stream 𝐶𝐴𝑟 and the cooling water flow rate 𝑄𝑐, i.e.  
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400 ≤ 𝑇𝑟(𝑡) ≤ 480                                                                                                                                    (4.9) 
𝐶𝐴𝑟(𝑡) ≤ 0.05                                                                                                                                             (4.10) 
𝑄𝑐(𝑡) ≤ 11                                                                                                                                                  (4.11) 

 

As shown in (4.10) the concentration of reactant A in the outlet stream must be above 0.05 mol/L 

throughout the process time, which ensures a conversion of 95% or higher during the entire 

operation of this process. The cost function for this process (ΘCSTR) considers the capital and 

variability costs, i.e.  

 

Θ𝐶𝑆𝑇𝑅 =  ∑ 𝑤𝑗
J
𝑗=1 (𝐶𝐴𝑃𝐶𝑆𝑇𝑅,𝑗 + 𝑉𝐴𝑅𝐶𝑆𝑇𝑅,𝑗)                                                                             (4.12) 

 

where 𝐶𝐴𝑃𝐶𝑆𝑇𝑅,𝑗 is the capital cost of the reactor for the jth  realization in the uncertain parameters 

𝜻. This cost is a function of the size of the reactor, i.e. height (H) and diameter (D). The dimensions 

of the reactor are calculated using the maximum (worst-case) variability expected in the reactor’s 

volume hold up ( 𝑉𝑚𝑎𝑥) due to time-dependent trajectory profiles in the disturbances and 

realizations in the uncertain parameters; 𝑤𝑗 is the weight associated with the jth realization in the 

uncertain parameters. Similarly, 𝑉𝐴𝑅𝐶𝑆𝑇𝑅,𝑗 represents the process variability costs and it is 

incurred due to the maximum variability in the molar flowrate of reactant A in the outlet stream, 

i.e. 𝑤𝐴𝑚𝑎𝑥
. These cost correlations functions are expressed as follows: 

𝐶𝐴𝑃𝐶𝑆𝑇𝑅,𝑗 = 1917𝑟(𝐷𝑗
1.066𝐻𝑗

0.802)  

𝑉𝐴𝑅𝐶𝑆𝑇𝑅,𝑗 = 105.12 𝑤𝐴𝑚𝑎𝑥,𝑗
  

𝐷𝑗 = (0.03532 𝑉𝑚𝑎𝑥,𝑗 4𝜋⁄ )
3

2⁄   

𝐻𝑗 = 4𝐷𝑗           (4.13) 

where the term 𝑟 represents the annualized rate of return on investment (𝑟= 0.2). The operating 

cost due to steam consumption is negligible as compared to the capital and variable costs; hence, 

this cost is neglected from the process cost function. 

The main objective of the case study is to minimize the total cost of the system by searching for 

the values in the process design parameters, i.e. Vsp and Tsp, and the controllers’ tuning 
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parameters, 𝑖. 𝑒. 𝐾𝑐1, 𝐾𝑐2, 𝜏𝑖1 and 𝜏𝑖2, that will maintain the dynamic operability of the process 

within its feasible limits at the lowest possible cost. The actual disturbance profiles defined in this 

case study are as follows: 

𝒅𝟏(𝑡): 𝑞𝐹 (
L

min
) = [200,150,150,250,250,150,250,150,250,150,250]  

𝒅𝟐(𝑡):  𝑇𝐹(K) = [400,330,550,330,550,550,550,330,330,330,300]                                                      (4.14)  

 

Each realization in the uncertain parameters along with their corresponding weights is shown in 

Table 4.1. The first row in Table 4 are the nominal values for activation energy (E) and the pre 

exponential factor (𝑘0), respectively.  

Table 4.1 Parameter uncertainty descriptions for CSTR 

Activation Energy(E) 

    (J/mol)   

Pre Exponential factor(𝑘0) 

 

Weights (𝑤𝑗) 

83,145 7.2e-10 0.4 

1.10*83,145 1.10*7.2e-10 0.15 

0.90*83,145 0.90*7.2e-10   0.15 

0.90*83,145 1.10*7.2e-10 0.15 

1.10*83,145 0.90*7.2e-10 0.15 

 

The PSE based back-off methodology presented in the previous section was applied to this case 

study. The process model equations shown in (4.2) to (4.6) were used to search for the optimal 

steady-state design under the effect of process disturbances and parameter uncertainty. In this case, 

the critical scenarios assigned to the disturbances correspond to the different combination within 

their lower and upper bounds shown in (4.14). 
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In the next step, PSE-based functions were formulated for each of the process constraints shown 

in (4.9)-(4.11) and the cost function shown in (4.12). In order to explain this calculation, the 

constraint on the reactors concentration (4.10) is exemplified. This constraint can be reformulated 

according to the description presented in (3.1) as follows: 

ℎ𝐶𝐴𝑟
(𝑡) ≤ 0.05 ⟺ 𝐶𝐴𝑟𝑚𝑎𝑥

(𝑡) − 𝜌 ≤ 0 ⟺ ℎ𝐶𝐴𝑟,𝑃𝑆𝐸
𝑚𝑎𝑥 (𝑡) − 0.05 ≤ 0           (4.15)  

𝐶𝐴𝑟𝑚𝑎𝑥(t) is the maximum worst case variability of concentration of A inside the reactor at any 

time t under process disturbances d(t) and parameter uncertainty 𝛇; ρ (0.05 mol/L)  represents the 

input (saturation) limit on this constraint, i.e. the maximum allowed concentration of species A 

during operation. PSE-based functions are developed for the reformulated constraint (4.15) for 

each iteration step i around the nominal point 𝛈𝑖, i.e. around nominal values in the optimization 

variables at the ith iteration. First and higher order sensitivity analyses were performed on each 

constraint and the cost function. Closed-loop simulations of the process were performed using the 

design and controllers equations (4.2) to (4.8), the disturbances’ trajectory profiles shown in (4.14), 

and the realizations in the uncertain parameters shown in Table 4.1. If first-order sensitivity 

analysis is performed, seven closed-loop simulations will be required, i.e. one simulation using 

𝛈𝑛𝑜𝑚 and six other simulations, one for each optimization variable considered in this study. Using 

(4.15), the worst-case deviation due to process disturbances and parameter uncertainty are 

calculated for the nominal and the forward step, i.e., ℎ𝐶𝐴𝑟

∗ |𝛈𝑛𝑜𝑚
 and ℎ𝐶𝐴𝑟

∗ |𝜂𝑝,𝑗
+ , as shown in (3.4)-

(3.5). These values can then be used to calculate the first order sensitivity terms of the PSE 

expansion for ℎ𝐶𝐴𝑟
. For example, the first-order sensitivity term with respect to 𝑇𝑠𝑝 can be 

calculated using forward finite differences, i.e. 

𝑍𝑇𝑠𝑝,𝑗

(1)
= (ℎ𝐶𝐴𝑟

∗ |
𝑇𝑠𝑝,𝑗

+ − ℎ𝐶𝐴𝑟

∗ |𝛈𝑛𝑜𝑚
) (𝑇𝑠𝑝,𝑗

+ − 𝑇𝑠𝑝𝑛𝑜𝑚
)⁄                                                                                                       (4.16) 
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where 𝑇𝑠𝑝,𝑗
+  and 𝑇𝑠𝑝𝑛𝑜𝑚

  are the forward and the nominal values for 𝑇𝑠𝑝 at the ith iteration step and 

at the jth realization in uncertain parameter. Similarly, second-order sensitivity analysis can be 

performed as shown in (3.7). Hence, the constraint for ℎ𝐶𝐴𝑟
 can be formulated as a PSE-based 

function as follows: 

ℎ𝐶𝐴𝑟,𝑃𝑆𝐸
𝑚𝑎𝑥

(𝑡)|𝐝(𝑡),𝜁𝑗
= ℎ(𝛈

𝑛𝑜𝑚
) + ∑ 𝑍𝑝,𝑗

(1)P
𝑝=1 (𝜂

𝑝
− 𝜂

𝑝𝑛𝑜𝑚
) + ∑ ∑

1

2
𝑃
𝑙=1

𝑃
𝑝=1 (𝜂

𝑝
− 𝜂

𝑝𝑛𝑜𝑚
) 𝑍𝑝𝑙,𝑗

(2)
 (𝜂

𝑙
− 𝜂

𝑙𝑛𝑜𝑚
)+…             (4.17) 

As shown in equation (3.3), 𝑍𝑝,𝑗
(1)

and 𝑍𝑝𝑙,𝑗
(2)

 represent the first-order and second-order sensitivity for 

the constraint ℎ𝐶𝐴𝑟
 whereas 𝜂𝑝 and 𝜂𝑙 represent the pth and the lth elements in the decision variable 

vector 𝛈. 

The above procedure is employed to specify the rest of the PSE-based functions corresponding to 

each realization in the uncertain parameters for each constraint and the cost function. The next step 

in the present method is to formulate the PSE-based optimization problem: 

𝑚𝑖𝑛
𝛈, 𝛌

       ∑ 𝑤𝑗
𝐽
𝑗=1 Θ𝐶𝑆𝑇𝑅,𝑗(𝛈, 𝐝(𝑡), 𝛇)+∑ ∑ 𝑀𝑆

𝑠=1
𝐽
𝑗=1 𝜆𝑠,𝑗  

Subject to: 

                  ℎ𝑇𝑟,𝑃𝑆𝐸
𝑚𝑎𝑥 (𝛈, 𝐝(𝑡), 𝛇𝑗) − 𝜌 (1 + 𝜆1,𝑗)   ≤ 0                           ∀j = 1, …, J     (4.18) 

                 ℎ𝑇𝑟,𝑃𝑆𝐸
𝑚𝑖𝑛 (𝛈, 𝐝(𝑡), 𝛇𝑗) + 𝜌 (1 − 𝜆2,𝑗)  ≤ 0                           ∀j = 1, … , J 

                 ℎ𝐶𝐴𝑟,𝑃𝑆𝐸
𝑚𝑎𝑥 (𝛈, 𝐝(𝑡), 𝛇𝑗) − 𝜌 (1 + 𝜆3,𝑗)  ≤ 0                         ∀j = 1, … , J 

ℎ𝑄𝑐,𝑃𝑆𝐸
𝑚𝑎𝑥 (𝛈, 𝐝(𝑡), 𝛇𝑗) − 𝜌 (1 + 𝜆4,𝑗) ≤ 0                          ∀j = 1, … , J 

𝛈𝑛𝑜𝑚(1 − 𝛿) ≤ 𝛈 ≤ 𝛈𝑛𝑜𝑚(1 + 𝛿)                                                                                                              

λ𝑠,𝑗 ≥ 0 

 

where, ℎ𝑇𝑟,𝑃𝑆𝐸
𝑚𝑎𝑥 , ℎ𝐶𝐴𝑟,𝑃𝑆𝐸

𝑚𝑎𝑥   and ℎ𝑄𝑐,𝑃𝑆𝐸
𝑚𝑎𝑥  are the maximum variability expected for the reactor’s 

temperature, concentration and cooling water flow rate in the positive direction respectively; 

similarly, ℎ𝑇𝑟,𝑃𝑆𝐸
𝑚𝑖𝑛  is the worst-case variability expected for the reactor’s temperature in the negative 
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(decrease) direction. The PSE-based optimization problem shown in (4.18) is solved in an iterative 

manner until one of the convergence criteria described in Step 5 in the algorithm is satisfied. It 

should be noted that, for the optimization problem shown in (4.18), first or higher-order sensitivity 

analyses can be performed. Also, a key parameter in this algorithm is the tuning parameter 𝛿. 

Sensitivity analyses on the effect of the tuning parameter 𝛿 and the order of the PSE 

approximations were performed and the results obtained are compiled below. 

4.2  Results, Non-isothermal CSTR 

 

The case study presented was solved under different scenarios. Each of these scenarios is discussed 

next. The case study presented in this work was coded on MATLAB 2014a using an Intel core i7 

3770 CPU @3.4GHz processor (8GB RAM). 

 

Scenario 1: Simultaneous design and control of the non-isothermal CSTR under the effect of 

disturbances 

In this scenario, the optimal design and control parameters were identified using the disturbance 

profile specified in (4.14) whereas the uncertain process parameters shown in Table 4.1were 

assumed to be equal to their corresponding nominal values (first row in Table 4.1). Similarly, the 

tuning parameter 𝛿 was fixed to 0.03 and second order sensitivity analysis was employed. In the 

present analysis, the step size Δ𝜂𝑝used to compute the gradients was set to 0.005. The maximum 

number of iterations 𝑁𝑖𝑡𝑒𝑟 was set to 400 whereas the floating average convergence criterion 

described in Step 5 of the algorithm was used to stop the algorithm when a threshold value ε=1e-

4 was reached. The cost function convergence chart and convergence charts for the optimization 

variables are shown in Figure 4.2 and Figure 4.3, respectively.  
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Figure 4.2  (a) Cost function chart for first 50 iterations; (b) Cost function for last 20 iterations 

 

As shown in Figure 4.2 (b), the optimum cost value deviates from the optimal steady state design 

by around 30% when process disturbances are considered in the system. Similarly, all the 

optimization variables converged as it is shown in Figure 4.3(a). At the start of the simulation, 

large cost values are obtained as shown in Figure 4.2(a). This is due to the fact that in this region 

some constraints are being violated when process dynamics are considered for the optimal steady-

state design (𝜼0); hence, λs > 0 as shown in Figure 4.3b. The extra cost associated with it (i.e. Mλs 

) is added up with the cost value hence resulting in a higher cost function values for the first few 
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iterations. As shown in Figure 4.3b, all the λ values corresponding to each process constraint 

converged to zero, indicating that the solution obtained is dynamic feasible under the given set of 

process disturbances. During the first 50 iterations, the magnitude by which the process constraints 

are been violated are relative high for the first constraint; therefore, large λ values are obtained 

from the optimization calculations for those iterations. As the iterations progress, the values in the 

design and control variables (𝛈𝐢+𝟏) moves away (back-off) from their corresponding steady-state 

point in a search direction that improves closed-loop dynamic feasibility; accordingly, the 

magnitude of all the λ’s decreases and eventually converged to zero, indicating that a dynamically 

feasible solution while using the PSE-based approximation functions has been reached. A total of 

216 iterations were needed to arrive at the optimal solution. 
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Figure 4.3: (a) Convergence of the optimization variables; (b) Convergence of λs 

The results obtained from this scenario are compared with the formal integration of design and 

control technique in Table 4.2. In the formal integration approach, the problem aims to minimize 

the cost function and satisfy all the described process constrains under the process disturbances 

shown in (4.14) by solving all the process equations described in (4.2)-(4.8) and searching for the 

optimal values of the design and control optimization variables considered in the case study. 

Multiple initial points were considered in this formal integration of design and control approach 

including that obtained from the optimal steady-state design. As shown in Table 4.2 (Formal 

Integration: SS design), a higher cost is obtained when optimal steady state design was used as the 

initial point for the formal integration technique as compared to when other initial points were 

used for the formal integration technique. The results obtained from PSE-based method converge 

to a somewhat similar optimal design as that obtained from the formal integration process, i.e. less 

than ±5% difference. However, the computational cost obtained from the proposed back-off 

approach is around 70% less as compared with the formal integration method (Table 4.2, Formal 

Integration: Multiple initial points). This result shows that, for the present case study, the back-off 

methodology based on PSE approximations is a promising economically attractive approach to 

0 50 100 150 200 250 300
-10

0

10

20

30

Number of Iterations


1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

Number of Iterations


2

0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

Number Of Iterations


3

0 50 100 150 200 250 300
-0.5

0

0.5

1

1.5

2

Number Of Iteration


4

 

 

b)



 

56 
 

address simultaneous design and control. To validate the results, the design obtained from the PSE 

approach was simulated using the actual nonlinear dynamic model presented in (4.2)-(4.7) and the 

disturbance specification shown in (4.14). As shown in Figure 4.4, the concentration and 

temperature inside the reactor are maintained within their corresponding design limits in the 

presence of process disturbances. This shows that the design parameters obtained from the PSE-

based approach are dynamically feasible. 

 

Figure 4.4 : Simulating the design: Temperature and Concentration profile inside the reactor 

Table 4.2 Results: Scenario 1 

 PSE based approach Formal Integration:- 

Multiple initial points 

Formal Integration:- 

SS Design 

Vsp (L) 298.4 314.8 323.5 

Tsp (K) 466.2 467.6 467.2 

𝐾𝑐1  1.52 1.49 1.34 

𝐾𝑐2  3000 3000 3000 

𝜏𝑖1  0.38 0.57 0.64 

𝜏𝑖2  0.12 0.34 0.31 

Cost ($/yr) 3,446 3,512 3,587 

PSE Iterations 216 -- -- 

Total CPU Time 1,045 3,345 348 
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Scenario 2: Effect of the tuning parameter 𝛿 

In this second scenario, the effect of tuning parameter 𝛿 on the quality of the solution and the 

computational costs are discussed. Simulations were conducted for 𝛿 =0.1, 0.2 and 0.3 using 2nd 

order PSE approximations. In order to study the effect of this parameter, the stopping criterion was 

turned off; instead, the algorithm was run for a maximum number of iterations, i.e. Niter= 300. As 

shown in Figure 4.5(b), the solution obtained with 𝛿=0.1 and 𝛿=0.3 converged to different cost 

function values, which shows that selecting a suitable tuning parameter for this methodology is 

non-trivial and affects the overall performance of the algorithm. When 𝛿 is set to 0.3, the cost 

function converged to a value which is around 60% higher than the cost obtained when 𝛿 =0.1 

(Table 4.3); similarly, the volume and temperature’s set points converged to a different value as 

compared to the case when 𝛿 =0.1 or 𝛿 =0.2 (Figure 4.5c). When higher values of 𝛿 are used, there 

are sudden jumps (noise) in the decision variables and the cost function charts after every iteration, 

which can affect the quality of the solution (Figure 4.5a). These noises occur because the search 

region specified in the PSE-based optimization problem increases as 𝛿 is increased which might 

drive the search direction to different regions during the execution of the method. However, when 

𝛿 is set to 0.1 the noise is reduced significantly and the results obtained are more accurate as 

compared to higher 𝛿 values. 
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Figure 4.5 : (a) Cost function chart for first 50 iterations; (b) Cost function for last 50 iterations. (c) Volume 

and temperature’s set points chart 
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Table 4.3 Results for different values of δ using Niter and the stopping criterion 

 

 

 

 

As shown in Table 4.3, the CPU time is similar in these cases since the algorithm was allowed to 

run for a maximum number of iterations using the same order in the PSE approximation. The 

results obtained when the convergence criterion described in Step 5 of the algorithm was used are 

also tabulated in Table 4.3 (Converge criterion ON). As shown in this table, the optimization 

parameters converged to the same point as compared when the algorithm was allowed to run for 

maximum number of iterations. It should also be noted that the computational time for 𝛿 =0.3 is 

almost 20% less than that recorded for 𝛿= 0.1; however, accurate results were obtained when 𝛿 

was set to 0.1.  

Scenario 3: Effect of the power series approximation order 
 

The order of the sensitivity used in the PSE functions can play a significant role in determining 

the quality of the results and the computational costs associated with the present approach. As the 

order increases, additional forward and backward points are required, which improve the quality 

in the results at the expense of using additional computational time. In this scenario, the effect of 

first, second and third order PSE approximations were analyzed while the tuning parameter δ was 

kept fixed at 𝛿 =0.1. The results obtained are presented in Table 4.4. All the simulations performed 

for different order of approximation resulted in somewhat similar designs, i.e. a difference of 

around ± 10%. The back off cost (last row: Table 4.4) represents the difference between the total 

  
Niter= 300                                    

𝛿 = 0.1         𝛿 = 0.2             𝛿 = 0.3   𝛿 = 0.1 𝛿 = 0.2            𝛿=0.3 

𝑉𝑠𝑝 (L) 287.6           297.3              745.7 288.2            298.7                 744.6        
𝑇𝑠𝑝 (K) 462.3 465.8               466.2 462.1            465.4                 465.7 

Cost ($/yr) 3,482 3,487               5,276 3,471            3,476                 5,282               
PSE iteration 300 300                   300 103                92                     74 

CPU time (s) 1,526 1,512               1,581 721                628                   587 

Convergence criterion ON 
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cost and the optimal steady state cost. As the order of the approximations increases, the quality of 

the result also increases. The improvement in the total cost by using higher order PSE 

approximation is majorly owing to expanding the power series expansion which results in a lesser 

back-off value. However, this is obtained at higher computational costs as additional iterations are 

required to converge to the optimal solution. 

Table 4.4 Results obtained for different order of approximations 

Optimization 
variables 

1st Order 2nd order 3rd order 

VSp (V) 304.8 298.7 296.7 

TSp(K) 466.4 465.4 464.8 

𝐾𝑐1  1.89 1.69 1.28 

𝐾𝑐2  3000 3000 3000 

𝜏𝑖1  0.51 0.41 0.32 

𝜏𝑖2  0.26 0.18 0.14 

PSE Iteration 64 92 174 

CPU Time(s) 519 628 1,184 

Capital 
Cost($/yr) 

2,479 2,409 2,178 

Variable 
Cost($/yr) 

1,084 1,067 975 

Total Cost 
($/yr) 

3,563 3,476 3,153 

Total Cost, 
formal 
Integration 

3,676 
 

3,559 
 

3,194 
 

Error 3.07% 2.33% 1.28% 

Back-off cost 1,833 1,746 1,423 

 

In order to check the convergence of the results obtained by the present approach while using 

different orders in the PSE expansions, the results were used as initial points to perform the formal 

integration technique. As shown in Table 4.4, the error in costs reduces as high-order PSE 

expansions are used in the calculations. In addition, the errors are less than 3%, which confirms 

the convergence of the proposed back-off method within a certain tolerance error. Note that there 

is a significant change in cost when second order and third order approximations were used even 
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though the values obtained for VSp and TSp are approximately the same. However, the variability 

in the reactor’s hold up is significantly reduced when third order PSE functions were employed in 

this approach. This is mostly due to the improvements in the tuning of the controller parameters.  

As the capital cost is a direct function of the reactor’s maximum hold-up ( 𝑉𝑚𝑎𝑥,𝑗), the capital cost 

decreases by almost 10 % when third-order PSE functions are employed in the analysis. This result 

also demonstrates the key role control decisions play in the optimal design of dynamic systems 

under uncertainty. 

Scenario 4: Effect of model parameter uncertainty  

In the scenarios discussed above, only the effect of process disturbances was considered. In this 

scenario, both process disturbances and model parameter uncertainty are taken into consideration. 

As described before, the activation energy (E) and pre exponential factor (𝑘0) are the uncertain 

parameters for the present case study. These parameters were deviated by 10% of their nominal 

values and various combinations were used as parameter uncertainty (see Table 4.1). Second order 

sensitivity analysis was performed and the tuning parameter was set to 𝛿=0.03. The maximum 

number of iterations was fixed to 300. The optimal design and controller parameters for this 

scenario along with the cost and CPU time are presented in Table 4.5. The cost obtained in this 

case is almost four times higher as compared to Scenario 1 when no uncertainty was introduced. 

The volume’s set point also converged to a higher value (around ten times) as compared to 

Scenario 1. The total CPU time also increases by four times as simulations are now performed for 

each realization in the uncertain parameters. Figure 4.6 shows the time-based validation for this 

scenario using the actual nonlinear dynamic model presented in (13)-(19), the process disturbance 

specification shown in (26) and the realizations in the uncertain parameters shown in Table 4.1. 

As shown in this figure, the concentration and temperature inside the reactor are maintained within 
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their corresponding design limits. This demonstrates that the order of the PSE approximations 

employed for the present scenario are valid representations of the actual process constraints and 

cost function; therefore, dynamic feasibility is guaranteed for the specific disturbances and discrete 

realizations in the uncertain parameters considered in the analysis. 

Table 4.5 Optimal design and controller parameters under parameter uncertainty 

Optimization Variables Level 

VSp(V) 3,140 

TSp (K) 465.3 

Kc1 0.13 

Kc2 3,000 

𝜏𝑖1  1.03 

𝜏𝑖2  3.87 

Total Cost ($/yr) 13,250 

Total CPU Time(s) 4,267 
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Figure 4.6: Simulating the design for each realization in process uncertainty. Concentration and temperature 

profile inside the reactor. 

4.3  Waste Water treatment plant 

 

In order to explore the potential of the PSE-based methodology for integration of design and 

control problems for large-scale complex chemical systems, the methodology proposed in this 

study has been tested on a waste water treatment plant. An existent activated sludge waste water 

treatment plant, located in Manresa, Spain was used for the present case study [20] .The activated 

sludge process is generally used for treating sewage and industrial wastewaters using air and 

biological components like bacteria and protozoa. A general flowsheet of the plant is shown in 

Figure 4.7 . 
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Figure 4.7 Schematic Diagram for waste water treatment plant 

 

 The plant consists of an aeration tank and a settling tank (clarifier) which are connected in series. 

The biomass, which is a biological matter that grows in the aeration tank due to consumption of 

organic matter, which is present in the treated effluent. The goal of this process is to regulate the 

level of the substrate concentration in the biodegradable effluent stream. Dissolved oxygen is 

supplied to the reactor through the aeration turbines. Water exiting the reactor flows to the 

corresponding settler where the activated sludge is separated from the clean water and is partially 

recycled back to the bio reactor. Part of the biomass is also removed from the system (as shown in 

Figure 4.7) to avoid excessive accumulation. The purged sludge is further treated by aerobic or 

anaerobic digestions for safe disposal. To simplify the analysis, only the activated sludge reactor 

and the clarification process shown in Figure 4.7 are modelled since they represent the most 

important units for this process. The rate of change of biomass and the rate by which the organic 

substrate is been consumed in the reactor are described as follows:  
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𝑑𝑥

𝑑𝑡
= µ𝑦

𝑥𝑠

𝑘𝑠+𝑠
−  𝑘𝑑

𝑥2

𝑠
−  𝑘𝑐𝑥 +

𝑞

𝑉
(𝑥𝑖𝑟 − 𝑥)                                                   (4.19) 

𝑑𝑠

𝑑𝑡
=  µ

𝑥𝑠

𝑘𝑠+𝑠
+ 𝑓𝑘𝑑

𝑥2

𝑠
+ 𝑓𝑘𝑑𝑘𝑐𝑥 + 

𝑞

𝑉
(𝑠𝑖𝑟 − 𝑠)                                              (4.20) 

where 𝑥 and 𝑠 are the biomass and organic substrate concentrations (𝑚𝑔 𝐿)⁄  inside the bioreactor, 

respectively; 𝑥𝑖𝑟 and 𝑠𝑖𝑟 are the the biomass and organic substrate concentrations (𝑚𝑔 𝐿)⁄   entering 

the bioreactor, respectively; 𝑉 is the volume of the reactor (𝑚3) and 𝑞 denotes the bioreactors 

outlet flow (𝑚3 ℎ𝑟⁄ ). 

Since the concentration profile in the settler is a function of its depth, equations (4.21)-(4.23) 

describe the difference in settling rate between layers of different and increasing biomass 

concentration. Three layers were considered in this analysis which resulted in the following mass 

balance equations of biomass and oxygen: 

𝑑𝑥𝑏

𝑑𝑡
=

1

𝐴𝑙𝑏
(𝑞𝑖 + 𝑞2 − 𝑞𝑝)(𝑥 − 𝑥𝑏) −

1

𝑙𝑏
(𝑣𝑠(𝑑) − 𝑣𝑠(𝑏))                             (4.21) 

𝑑𝑥𝑑

𝑑𝑡
=

1

𝐴𝑙𝑏
(𝑞𝑖 − 𝑞𝑝)(𝑥𝑏 − 𝑥𝑑) −

1

𝑙𝑑
𝑣𝑠(𝑑)                                                      (4.22) 

 
𝑑𝑥𝑟

𝑑𝑡
=

1

𝐴𝑙𝑏
𝑞2(𝑥𝑏 − 𝑥𝑟) +

1

𝑙𝑟
𝑣𝑠(𝑏)                                                                  (4.23) 

𝑑𝑐

𝑑𝑡
= 𝑘𝑙𝑎𝑓𝑘(𝑐𝑠 − 𝑐) − 𝑂𝑈𝑅 −

𝑞

𝑉
𝑐                                                                   (4.24) 

𝑂𝑈𝑅 =  𝑘01µ𝑥
𝑥

𝑘𝑠+𝑠
                                                                                         (4.25) 

𝑞1 = 𝑞 − 𝑞2                                                                                                    (4.26) 

𝑞𝑟 = 𝑞2 − 𝑞𝑝                                                                                                   (4.27) 

 𝑞 = 𝑞𝑖 − 𝑞𝑟                                                                                                    (4.28)               

where 𝑥𝑑, 𝑥𝑏, 𝑥𝑟 are the biomass concentrations (mg/L) at the different layers in the clarifier unit, 

i.e. surface, intermediate  and bottom, respectively; 𝑙𝑑, 𝑙𝑏 and 𝑙𝑟 are the depth of the first, second 

and the bottom layer in the settler whereas 𝑣𝑠(𝑑), 𝑣𝑠(𝑏) and 𝑣𝑠(𝑟) refer to the rate of settling for 
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the activated sludge and its changes from layer to layer and depends on the concentration of 

biomass in those layers. Dissolved oxygen in denoted by 𝑐, which is supplied by the aeration 

turbines. The speed of these aeration turbines is denoted by 𝑓𝑘. The volume of the aeration tank is 

given by V(m3); the rest of the parameters, and their corresponding nominal values, are described 

in Table 4.6.  

The control problem consists of maintaining the substrate concentration (𝑠) in the bioreactor and 

to maintain the dissolved oxygen concentration (𝑐) in the settler at the desired levels in presence 

of process disturbances corresponding to the change in the feed rate (𝑞𝑖), inlet concentration of the 

substrate (𝑠𝑖) and the biomass concentration in the inlet feed (𝑥𝑖).  

Table 4.6 Description of model parameters 

Symbols Description Value 

µ  Specific growth rate 0.1824(hr -1) 

𝑦  Fraction of converted substrate 

to biomass 

0.5948 

𝑘𝑠  Saturation constant 300(hr -1) 

𝑘𝑑  Biomass death rate 5E-5(hr -1) 

𝑘𝑐  Specific Cellular activity 1.33E-4(hr -1) 

𝑘𝑙𝑎  Oxygen transfer into the water 

constant 

0.7(hr -1) 

𝑘01  Oxygen demand constant 1.00E-4 (hr -1) 

𝑐𝑠  Oxygen specific saturation 8.0 (hr -1) 

𝑓𝑘𝑑  Fraction of death biomass 0.2 

 

Cost function  

For the present case study, the annualized capital cost of the plant (𝐶𝐶) is given by the size of the 

bioreactor (𝑉) and the cross sectional area of the decanter (𝐴); i.e., 
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𝐶𝐶 = 364(1000𝑉 + 350𝐴)                                                                             (4.29) 

The volume (𝑉) and the area (𝐴) are the decision variables in the optimization problem. The annual 

operating cost for the system (𝑂𝐶) will depend by the amount the energy consumed by the aeration 

turbines and the pumps used for purging, i.e. 

𝑂𝐶 = 15𝑓𝑘 + 0.8𝑞𝑝                                                                                            (4.30) 

One of the key objectives of this process is to maintain the substrate concentration below a certain 

threshold. Since the substrate contains toxic components and any increase in the concentration 

from the desired level leads to high penalty cost. Therefore, a dynamic variability cost (𝑉𝐶) is 

considered for this variable; this variability cost is defined as a function of the largest variability 

observed in the substrate concentration throughout the process, i.e.  

𝑉𝐶 =  105𝑠𝑚𝑎𝑥(𝑡)                                                                                                (4.31) 

where 𝑠𝑚𝑎𝑥  is the largest variability in the substrate concentration at any time 𝑡. Note that a higher 

variable cost is assigned to the variability in the substrate concentration because of the 

environmental significance and restriction in having higher concentration of the substrate in the 

treated water to the effluent. Therefore, the annual total cost (Θ𝑊𝑊) for this process is as follows:  

Θ𝑊𝑊  =  𝐶𝐶 + 𝑂𝐶 + 𝑉𝐶                                                                                         (4.32) 

The following process constraints are considered for this process: 

0.01 ≤
𝑞𝑝(𝑡)

𝑞2(𝑡)
 ≤ 0.2  

0.8 ≤
𝑉.𝑥(𝑡)+𝐴.𝑙𝑟.𝑥𝑟(𝑡)

𝑞𝑝.𝑥𝑟(𝑡).24
≤ 15  

𝑠(𝑡) ≤ 100                                                                                                              (4.33) 

The first two constraints shown in equation (4.33) represents the feasible limits on the ratio 

between the purge to the recycle flow rates and the purge age in the decanter. The last constraint 
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in equation (4.33) refers to the maximum allowable substrate concentration in the treated water 

that leaves the classifier. It should be noted that all the three process constraints should be within 

their feasible limits during operation. These process constraints along with the cost function will 

be approximated using the PSE functions as described in the section 3.2 The control scheme 

considered for this case study includes two PI controllers that regulate the substrate concentration 

and the dissolved oxygen. The manipulated variables considered for the system are the purge flow 

rate (𝑞𝑝)and the turbine speed (𝑓𝑘) respectively. The controller gain 𝐾𝑐1 and time constant 𝜏𝑖1 

corresponds to the controller that regulates the substrate 𝑠 in the system whereas 𝐾𝑐2 and 𝜏𝑖2 

corresponds to the dissolved oxygen 𝑐 control loop. 

4.4  Results, waste water treatment plant 

 

The case study presented in the previous section was solved under different scenarios. Each of 

these scenarios is discussed next. The case study presented in this work was coded on MATLAB 

2014a using an Intel core i7 3770 CPU @3.4GHz processor (8GB RAM).  

Scenario 1: Simultaneous design and control under the effect of step disturbances 

The optimal design and control was performed using step changes as disturbance profiles whose 

nominal, upper and lower bounds are specified in equation (4.34). The three disturbances in the 

system are the inlet feed rate (𝑞𝑖), inlet concentration of the substrate (𝑠𝑖) and the biomass 

concentration in the inlet feed (𝑥𝑖).The first realization in the disturbances corresponds to the 

nominal values. The sampling time for each step change in the disturbances was performed every 

2,000 seconds.   
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𝒅𝟏(𝑡): 𝑞𝑖 (
𝑚3

hr
) = [500, 480 ,520, 480, 500 ,520 ,520]  

𝒅𝟐(𝑡):  𝑥𝑖(
𝑚𝑔

𝐿
) = [366 ,371 ,361, 366, 371 ,366, 366]  

𝒅𝟑(𝑡):  𝑠𝑖(
𝑚𝑔

𝐿
) = [80 ,75, 85 ,80 ,75,85 ,80]                                                                           (4.34) 

In the analysis, the maximum number of iterations 𝑁𝑖𝑡𝑒𝑟 was set to 400 whereas the floating 

average convergence criterion described in Step 5 of the algorithm to stop the algorithm was set 

to ε=1e-2. There were nine decision variables in the system. The decision variables include the 

area (A), Volume (V), nominal value for the biomass concentration 𝑥𝑛𝑜𝑚, the substrate set point 

𝑠𝑠𝑝  , the dissolved oxygen concentration set point 𝐶𝑠𝑝  and the tuning parameters for the 2 PI 

controllers.   

In order to obtain a suitable tuning parameter 𝛿 for this case study, the effect of the tuning 

parameter on the optimal process design and control scheme configuration was studied first. Four 

different 𝛿 values were chosen offline and compared. The cost function convergence chart for 

different 𝛿 values is shown in Figure 4.8. 
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Figure 4.8: Cost function convergence chart for different tuning parameters 

 

As shown in Figure 4.8, simulations were conducted for 𝛿 =0.05, 0.08, 0.1 and 0.13 using 2nd order 

PSE approximations. The maximum number of iterations 𝑁𝑖𝑡𝑒𝑟 was set to 200. As shown in Figure 

4.8, the system converged after 82 and 62 iterations when 𝛿=0.05 and 𝛿=0.08, respectively. It 

should be noted that when 𝛿=0.05, the algorithm required a larger number of iterations to converge 

but a lower cost ($1.86E+06/yr) was achieved when compared with 𝛿=0.08 ($1.93E+06/yr). When 

higher values are used, the search region increases and the system converged to a different point. 

The system did not converge after 200 iterations when 𝛿=0.1 and 0.13 were used, which indicated 

that these values will not be a suitable tuning parameter value for this case study as the search 

region is expanded when those values are used. The system might not have converged because the 

PSE approximations may no longer be valid for wider search space regions. Furthermore, these 

results matches with the conclusion drawn from the previous case study (Section 4.2) that high 
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noise is detected when higher 𝛿 values are used and therefore drive the optimal search direction to 

different regions during the execution of the method. 

Since the lowest cost was obtained when 𝛿 was set to 0.05, this value was fixed for the rest of the 

studies conducted for the present case study. Detailed results using 𝛿 = 0.05 are shown in Table 

4.7 for 2nd order PSE approximations (Scenario 1). Note that the sensitivities were calculated using 

the finite difference method as described in section 4.1 for the CSTR case study.  

Table 4.7 Results for different scenarios 

Optimization variable Scenario 1 Formal 

Integration  

Scenario 2 Scenario 3 

Area (m2) 1,397.6 1,641.2 1,441.7 1,545.4 

Volume(m3) 1,121.6 1,186.8 1024.3 1,021.2 

𝑥  2,659.8 2,589.6 2,712.5 2,682.1 

𝑠𝑠𝑝  93.66 93.14 99.7 93.4 

𝐶𝑠𝑝  0.022 0.023 0.034 0.04 

𝐾𝑐1  0.09 0.32 0.27 0.07 

𝐾𝑐2  0.07 0.07 0.133 0.087 

𝜏𝑖1  3.75 6.54 4.81 4.45 

𝜏𝑖2  6.75 10.1 11.25 13.53 

Total Cost($/yr) 1.785 E+06 1.9376 E+06 1.3497E+06 2.0637 E+06 

Iterations 42 - 122 62 

Total CPU Time (secs) 225 543 457 

 

1865 
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The cost function convergence chart and convergence charts for the optimization variables are 

shown in Figure 4.9 and Figure 4.10, respectively. The optimum cost value deviates from the 

optimal steady state design by around 60% when process disturbances are considered in the system 

(See Figure 4.9). As shown in Figure 4.10, the volume (V) are higher and the 𝑠𝑠𝑝 is lower for the 

first few iterations which also increases the cost value for the first few iterations which can be 

noticed in Figure 4.9. The cost function converged after 42 iterations when the convergence criteria 

shown in step 5 of algorithm was used. 

 

 

Figure 4.9.  Scenario 1: Cost function convergence chart. Black line shows the optimal steady state cost. 
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Figure 4.10:  Scenario 1: Convergence of the optimization variables 

 

The results were also compared with the formal integration technique and are shown in Table 4.7 

(Formal Integration). The mathematical model for the formal integration technique is as follows: 

𝑚𝑖𝑛
𝛈

      Θ𝑊𝑊 (𝛈, 𝐝(𝑡))  

Subject to           Process model equations   (equations 4.19- 4.28) 

                            Process constraints (equation 4.33)                                              (4.35) 

                            Process Dynamics (equation 4.34) 

 

 

As shown in Table 4.7 (Formal Integration), a higher cost of about 8% is obtained when the formal 

integration technique was used as compared with the PSE based approach. A difference of 8% was 

noticed because initial guess used in formal integration technique was the steady state optimization 

solution under uncertainty. If multiple initial guesses are used, a more optimal solution can be 
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found. A more optimal solution u It should be noted that since the substrate set point 𝑠𝑠𝑝 converges 

to a lower value when formal integration technique is used, higher cost is obtained in this case 

when compared with PSE based method. However, the computational cost obtained from the 

proposed back-off approach is around 60% less as compared with the formal integration method. 

This result shows that, for the present case study, the back-off methodology based on PSE 

approximations is a promising computationally attractive approach to address simultaneous design 

and control for large-scale complex systems.  

The CPU time required for this case study was found to be higher compared with the CSTR case 

study which is discussed before (Table 4.2). This is due to the fact that the waste water treatment 

plant is a more complex and highly non-linear when compared with the CSTR problem. Therefore, 

the CPU time is expected to increase with increase in the degree of non-linearity in the system. 

Figure 4.11 shows the dynamic validation for the system. As shown in this figure, the substrate 

concentration, the ratio between the purge to the recycle flow rates and the purge age in the 

decanter remained within their corresponding operational limits in the presence of step changes in 

the disturbances. Note that the constraint which bounds the substrate is the only active constraint 

in the system.  
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Figure 4.11 Simulating the Design, Scenario 1 

 

 

Scenario 2: Simultaneous design and control under the effect of ramp disturbances 

In this scenario, the optimal design and control was performed using ramps as the dynamic profiles 

for each of the disturbances considered in the present analysis (see Figure 4.12). During the ramp 

changes, the rate of change for inlet feed rate (𝑞𝑖) is maintained at 20 (
𝑚3

hr
) for a period of 1,000 

seconds and for the inlet concentration of the substrate (𝑠𝑖) and the biomass concentration in the 

inlet feed (𝑥𝑖) the rate of change is 5 (
𝑚𝑔

𝐿
) for a period of 1,000 seconds. 
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Figure 4.12 Ramp profiles for different Disturbances 

 

The cost function convergence chart obtained for this scenario is shown in Figure 4.13. The results 

obtained from this scenario are tabulated in Table 4.7 (Scenario 2). 
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Figure 4.13: Scenario 2: Cost function convergence chart 

As shown in Figure 4.13, the optimum cost value was found to be higher by around 15% from 

the optimal steady state design when ramp changes are used as disturbances. A sudden decrease 

in the cost at the 62nd iteration is noticed because the sensitivity for the cost function with respect 

to the area of the decanter (A) changed drastically in that iteration. The cost function converged 

after 122 iterations when the convergence criteria shown in step 5 of algorithm was used. 

As shown in Table 4.7 (Scenario 2), the cost obtained in scenario 2 is around 25% lower than the 

cost obtained in scenario 1. This is due to the fact that the ramp changes are slow and gradual 

changes when compared with steps changes where fast dynamics are introduced into the system. 

It should be noted that the slopes used during the formulation of ramps in the disturbance profile 

will affect the final cost.  The substrate set point 𝑠𝑠𝑝  converged to a higher value as compared to 

scenario 1 which in turns reduces the total cost of the system. It should be noted that area (A) and 

volume (V) also converged to lower values when compared with scenario 1 (See Table 4.7). Figure 
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4.14 shows the validation for the system when ramps are used to represent the disturbance 

dynamics. As in scenario 1, the constraint that bounds the substrate concentration is the only active 

constraint for the present scenario.  
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Figure 4.14 Simulating the design: Scenario 2 

 

Scenario 3: Effect of model parameter uncertainty  

In the two scenarios discussed above, only the effect of process disturbances was considered. In 

this scenario, both process disturbances and model parameter uncertainty were taken into 

consideration. Accordingly, the specific growth rate (µ), biomass death rate (𝑘𝑑)  and the 

specific cellular activity (𝑘𝑐) were considered as the uncertain parameters for the present 

scenario. The uncertain realizations, and their corresponding weights, that were used in the 

analysis are shown in Table 4.8. Step changes were considered as the disturbance dynamics and 

they follow the specifications provided for scenario 1, i.e. see equation 4.34. 
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Table 4.8 Parameter uncertainty descriptions, Waste Water Treatment Plant 

specific growth 

rate (µ), 

biomass death 

rate (𝑘𝑑)   

specific cellular 

activity (𝑘𝑐)    

Weights (𝑤𝑗) 

0.1824 (h-1) 5.00E-05 (h-1) 1.33 E-04 (h-1) 0.3 

1.10*0.1824 1.10*5.00E-05 1.10*1.33 E-04 0.1 

0.90*0.1824 0.90* 5.00E-05 0.90*1.33 E-04 0.1 

1.10*0.1824 0.90*5.00E-05 1.10*1.33 E-04 0.1 

0.90*0.1824 1.10*5.00E-05 0.90*1.33 E-04 0.1 

1.05*0.1824 0.95*5.00E-05 1.05*1.33 E-04 0.1 

0.95*0.1824 1.10*5.00E-05 0.95*1.33 E-04 0.1 

0.98*0.1824 1.07*5.00E-05 0.97*1.33 E-04 0.1 

 

 The optimal design and controller tuning parameters obtained for this scenario along with the 

cost and CPU time are presented in Table 4.7 (Scenario 3). The cost obtained for this scenario is 

almost 20% higher as compared to Scenario 1 when no uncertainty was introduced. This is due 

to the fact that multiple realizations in the uncertain parameters were introduced into the system 

which in turn made the area (A) and the volume (V) to converge to higher values (around 20%) 

as compared to when no uncertainty was introduced (See Table 4.7). The total CPU time also 

increases significantly as simulations are needed for each realization in the uncertain parameters. 

The cost function converged after 62 iterations. 

Figure 4.15 shows the validation of the design for this scenario using the process disturbance 

specification shown in (4.34) and the realizations in the uncertain parameters shown in Table 4.. 

As shown in this figure, the substrate concentration, the ratio between the purge to the recycle 
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flow rates and the purge age in the decanter are maintained within their corresponding feasible 

limits. This demonstrates that the second order PSE approximations employed for the present 

scenario are valid representations of the actual process constraints and cost function; therefore, 

dynamic feasibility is guaranteed for the specific disturbances and discrete realizations in the 

uncertain parameters considered in the analysis. Each line in Figure 4.15 shows the validation for 

each realization in uncertain parameter (See Table 4.8). 
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Figure 4.15 Simulating the results: Scenario 3 
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Summary 

This chapter discussed case studies using the PSE-based integration of design and control 

technique proposed in this work. A non-isothermal CSTR case study has been used in this work 

to illustrate the benefits and limitations of the present back-off approach. The results show that 

the present method converges to the optimal solution faster than the formal integration 

technique; hence, making this methodology a promising computationally attractive algorithm. 

Effect of tuning parameter δ, which is a key parameter in the present methodology, have been 

discussed and the results show that quality of the results improves when smaller values of tuning 

parameter are used at the expense of higher computational costs. The effect of the order of the 

PSE approximation used in the calculations has also been studied and it shows that the quality in 

the results is improved when higher orders in the PSE approximations are used at the expense of 

higher computational costs. 

This chapter also presented the implementation of the proposed back-off methodology to a waste 

water treatment plant. The results from this analysis showed that the system converges to the 

optimal solution faster than the formal integration technique. The effect of different disturbance 

dynamics were also studied and the results show the cost is lower when ramps are used as 

disturbance profile when compared with steps because slow and gradual changes take place in 

ramp input instead of sudden changes in step inputs. The case of uncertain parameters was also 

studied and the results showed that a higher cost is obtained when uncertainty is introduced in 

the system when compared to the scenario where no uncertainty is considered.  
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Chapter 5 

Conclusions and Recommendations 
 

Integration of design and control has emerged as an active area of research as process systems are 

always subject to external disturbances and parameter uncertainty. Several methodologies have 

been presented in this field of integration of design and control but no unified framework has been 

developed. This study uses the idea of back-off from the steady state point to obtain the optimal 

feasible solution when dynamics and parameter uncertainty considered in the analysis. Power 

Series Expansions (PSE) approximations are used to represent the cost function and the process 

constraint with an aim to calculate the optimal design and controller tuning parameters at low 

computational costs.  

5.1 Conclusion  

 

The research work developed in this thesis focuses on developing a new and novel methodology 

in the field of integration of design and control for chemical processes under process 

disturbances and parameter uncertainty. The key idea in this methodology is to back-off from the 

optimal steady state design, which might be infeasible due to process dynamics and parameter 

uncertainty. The aim is to obtain the optimal design parameters that result in a dynamically 

feasible and economically attractive process. The challenge in this method is to determine in a 

systematic fashion the magnitude of the back-off needed to accommodate the transient and 

feasible operation of the process in presence of disturbances and parameter uncertainty. The 

work focuses on calculating various optimal design and control parameters by solving various 

sets of optimization problems in an iterative manner using mathematical expressions obtained 
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from power series expansions. In this approach, PSE functions are used to obtain analytical 

expressions of the actual process constraints and are explicitly defined in terms of system’s 

uncertain parameters and the largest variability in a constraint function due to time-varying 

changes in the disturbances. Also, the PSE approximation for each constraint is developed 

around a nominal point in the optimization variables and for each realization considered for the 

uncertain parameters. The PSE-based constraint represents the actual process constraint and can 

be evaluated faster since it is explicitly defined in the terms of the optimization variables. These 

approximations are used to determine the direction in the search of optimal design parameters 

and operating conditions which is required for an economically attractive and dynamically 

feasible process. Three case studies were considered to demonstrate the performance of the 

above described methodology. The first case study is an illustrative example of an isothermal 

storage tank design where the step by step procedure to develop the methodology has been 

discussed. The second case study is based on the design of a non-isothermal CSTR under process 

disturbances and parameter uncertainty. This case study shows how the cost function and each of 

the process constraints are represented using PSE approximations. The results have been 

discussed in detail and have been also compared with the formal integration technique. The 

results show the present method converges to the optimal solution faster than the formal 

integration technique; hence, making this methodology a promising algorithm. Effect of tuning 

parameter δ, which is a key parameter in the present methodology, have been discussed and the 

results show that quality of the results improves when smaller values of tuning parameter are 

used at the expense of higher computational costs. The effect of the order of the PSE 

approximation used in the calculations has also been studied and it shows that the quality in the 

results is improved when higher orders in the PSE approximations are used at the expense of 
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higher computational costs. The case of uncertainty was also studied and the cost obtained for 

that case study was about four times the cost when no uncertainty was introduced in the system. 

A third case study featuring the design of a waste water treatment plant was also considered. The 

waste water treatment plant is a more complex chemical process that involves high degree of 

nonlinearity. The effect of using disturbance dynamics and parameters uncertainty were 

considered in the analysis. The results have shown that the present back-off approach is a 

promising technique to perform integration of design and control. 

5.2 Recommendations 

 

The research work presented in this thesis has contributed in the field of integration of design and 

control. The work can be further extended in several ways which involves working on the 

assumptions considered during the development of this work as well as taking into account some 

new factors. Various ways to improve upon the methodology is discussed next.  

 Adaptive formulation for the tuning parameter 𝛿  and the order of the PSE approximation: 

In the methodology presented in this thesis, the tuning parameter 𝛿 and the order of the 

approximation are chosen off line and are fixed throughout the length of the simulation.  

One way to improve the quality of the solution is to use an adaptive formulation for the 

tuning parameter 𝛿 and the order of the expansion. These parameters can be updated during 

the course of the simulation which may result in suitable solutions.  
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 Analytical calculation of the gradient: In the present methodology the gradients have been 

calculated numerically using the finite difference method. An alternative approach might 

be to calculate these gradients analytically. Even though this approach may increase the 

costs, better design solutions may be obtained using the analytical approach. 

 

 Consider alternative disturbance and parameter uncertainty descriptions: In this thesis, 

only steps and ramps were considered as the disturbance dynamics. Different disturbance 

profiles like oscillatory disturbances can be considered and their effect on the system can 

be studied. In this research the parameter uncertainty and their corresponding weights are 

chosen offline. Various sampling techniques like Monte Carlo sampling or the Latin 

hypercube sampling (LHS) can be used and the effect on the design parameters and the 

optimal cost can be compared.  
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Appendix (A) 

 
The part of contents of Chapter 3 and 4 has been published in the Industrial Engineering & Chemistry 

Research Journal [47] .The author of this thesis is the first and main author of this publication and 

contributed all the technical aspects of the work as well as writing the manuscript.  

 

 

 

 

 


