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Abstract

Prostate cancer is a major health care concern in our society. Early detection of prostate
cancer is crucial in the successful treatment of the disease. Many current methods used in
detecting prostate cancer can either be inconsistent or invasive and discomforting to the
patient. Magenetic resonance imaging (MRI) has demonstrated its ability as a non-invasive
and non-ionizing medical imaging modality with a lengthy acquisition time that can be
used for the early diagnosis of cancer. Speeding up the MRI acquisition process can greatly
increase the number of early detections for prostate cancer diagnosis.

Compressive sensing has exhibited the ability to reduce the imaging time for MRI by
sampling a sparse yet sufficient set of measurements. Compressive sensing strategies are
usually accompanied by strong reconstruction algorithms. This work presents a compre-
hensive framework for a cross-domain stochastically fully connected conditional random
field (CD-SFCRF) reconstruction approach to facilitate compressive sensing MRI. This
approach takes into account original k -space measurements made by the MRI machine
with neighborhood and spatial consistencies of the image in the spatial domain. This
approach facilitates the difference in domain between MRI measurements made in the
k -space, and the reconstruction results in spatial domain. An adaptive extension of the
CD-SFCRF approach that takes into account regions of interest in the image and changes
the CD-SFCRF neighborhood connectivity based on importance is presented and tested as
well. Finally, a compensated CD-SFCRF approach that takes into account MRI machine
imaging apparatus properties to correct for degradations and aberrations from the image
acquisition process is presented and tested.

Clinical MRI data were collected from twenty patients with ground truth data exam-
ined and confirmed by an expert radiologist with multiple years of prostate cancer diag-
nosis experience. Compressive sensing simulations were performed and the reconstruction
results show the CD-SFCRF and extension frameworks having noticeable improvements
over state of the art methods. Tissue structure and image details are well preserved while
sparse sampling artifacts were reduced and eliminated. Future work on this framework
include extending the current work in multiple ways. Extensions including integration into
computer aided diagnosis applications as well as improving on the compressive sensing
strategy.
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Chapter 1

Introduction

1.1 Prostate Cancer

Cancer is a major health care concern for our society. In Canada and US for 2015 [1–3],
1,658,370 and 196,900 new cases of cancer were diagnosed with an expected mortality rate
of nearly 35% and 40% respectively. Two out of every five Canadians should expect to
develop cancer in their lifetime. Of all cancer cases 51% belong to the four major occurring
types of cancer: Prostate cancer in men, breast cancer in women, lung and colorectal cancer
in both sexes as show in Table 1.1.

Table 1.1: Cancer Statistics for US and Canada [1, 2]

Occurrences Mortality

Cancer Type US Canada US Canada

Prostate 220,800 24,000 27,540 4,100

Breast Cancer 234,190 25,200 40,730 5,100

Lung 221,200 26,600 158,040 20,900

Colorectal 132,700 25,100 49,700 9,300

Prostate cancer specifically is the most commonly occurring cancer in Canadian and
American men. One in eight men will be diagnosed in their lifetime [4]. However, early
detection can greatly increase the successful treatment of prostate cancer and cancer in
general. Prostate cancer in particular, it is a slow growing cancer and patients can live many
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years without the cancer detected. In later stages of the disease, it becomes increasingly
more difficult for successful treatment. Early detection can drastically increase the survival
rate. Fast, efficient and accurate screening methods are highly desired to increase early
detection rate and improve survival rate.

Current screening methods involve prostate-specific antigen (PSA) tests , digital rectal
exams (DRE), prostate biopsy and transrectal ultrasounds [5]. However, reliability of
these methods are hindered due to their limitations. PSA blood test results are usually
influenced by a variety of factors including certain medicines, age, size of prostate and
physical activities [5] and results can be inconsistent and thus unreliable. DREs, biopsies,
and transrectal ultrasounds are invasive and cause great patient discomfort discouraging
patients to partake in these examinations for early detection. Non-invasive and highly
reliable screening methods are highly desired for early prostate cancer detection.

1.2 Magnetic Resonance Imaging

One non-ionizing, non invasive method for the early detection of prostate cancer is magnetic
resonance imaging (MRI). MRI utilizes the body’s natural magnetic properties to produce
detailed images from any part of the body. Large magnets usually between 0.5 to 1.5 tesla,
create strong magnetic fields to align the body’s proton axes and cause the hydrogen nuclei
to resonate. When the magnetic field is turned off, the body protons return to their original
states. Different types of tissue behave differently and capturing the different responses
yields images that doctors can use to help identify different tissue types. [6]

Additionally MRI can provide a wide variety of information through multi-parametric
MRI (MP-MRI) with modalities including T1w, T2w, diffusion weighted imaging (DWI),
dynamic contrast-enhanced MRI (DCE), correlated diffusion imaging (CDI) [7], and Ap-
parent diffusion coefficient (ADC) maps. These modalities can all be used to help with
more accurate and reliable diagnosis from MRI imagery.

Being non-ionizing and non-invasive in nature coupled with the abundant amount of
diagnostic information available, MRI makes a reliable early screening method for prostate
cancer.

1.3 Challenges for MRI

MRI does have it’s challenges, most notably its’ lengthy acquisition process ranging from
10 minutes to over 2 hours especially for MP-MRI. [8,9] Due to the long acquisition times,
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the throughput of the system is low, hindering the practicality of MRI imagery for cancer
diagnosis.

Compressive sensing has demonstrated to be an effective strategy for reducing MRI
acquisition times by acquiring significantly fewer samples in k -space. A complete signal
can be then reconstructed fully through sparse yet sufficient number of samples. [10–12]

Due to the reduction in the number of acquisitions at the imaging step, strong recon-
struction algorithms are usually needed to facilitate for compressive sensing MRI. Sparse
reconstruction algorithms need to provide accurate and high quality reconstruction results.
Furthermore, reconstruction algorithms should be able to fully take advantage of available
information in the reconstruction process.

Therefore, strong algorithms capable of fully utilizing available information to produce
accurate and reliable reconstructions for compressive sensing MRI are highly desired. This
can greatly increase the health care system throughput and the number of early detections
for prostate cancer.

1.4 Thesis Contributions

The aim of this thesis is to introduce a new cross-domain stochastically fully connected
conditional random field (CD-SFCRF) reconstruction approach to facilitate for compres-
sive sensing MP-MRI. The CD-SFCRF reconstruction framework better utilizes available
information by taking into account both original k -space measurement as well as spa-
tially driven potentials to produce high quality reconstruction. The CD-SFCRF utilizes
spatial and frequency information in a stochastically fully connected condtional random
field graphical model to infer original information based on sparse MRI measurements.
Results show quality reconstruction at low sampling rates while enhancing details in the
region of interest. Furthermore, extensions on the framework are proposed which includes
an adaptive CD-SFCRF (ACD-SFCRF) approach that learns intrinsic properties of tu-
morous, prostate as well as non-interest regions. Then the system adjust neighborhood
stochastivity to increase the speed of the overall framework while retaining original quality
and details in the region of interest. This thesis extends on the CD-SFCRF framework
additionally by introducing a compensated CD-SFCRF (CCD-SFCRF) approach, this ex-
tension learns the intrinsic properties of MRI imagery and tries to compensate for the
aberrations and distortions of the MRI machine. Results show enhanced compensated
views for regions of interest with detail enhancement which allow for better tissue differen-
tiation. The CD-SFCRF and its accompanying extensions are able to produce accurate and
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clinically reliable reconstruction for compressively sensing MP-MRI while greatly reducing
acquisition time increasing the throughput of the health care system.

1.5 Thesis Outline

Background information about the problem domain is introduced in Chapter 2, where
state of the art compressive sensing strategies and sparse reconstruction algorithms are
also compared. Mathematical background information is presented as well. In Chapter 3,
the methodology behind the CD-SFCRF and its extensions are explained in detail. Chapter
4 focuses on presenting the experimental setup and demonstrating preliminary results from
real patient data. Finally in Chapter 5, future work is discussed and conclusions are drawn
from current work.
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Chapter 2

Background Information

2.1 Compressive Sensing

Due to the vast amount of information acquired by current devices, a lot of the informa-
tion is discarded specifically for cases such as lossy compression for images, sounds and
technical data. Since there is no significant need for a complete set of data, compressive
sensing strategies captures a sparse yet sufficient set of measurements representative of the
original data [10–12]. Compressive sensing is mostly used for speeding the acquisition pro-
cess. With a decreased set of acquired information, less time is required in the acquisition
process to produce a meaningful image. Compressive sensing strategies are usually accom-
panied by strong reconstruction algorithms to infer missing information and reconstruct
the original signal. The better the quality of the sparse reconstruction algorithm, the lower
the compressive sensing rate and faster the acquisition process.

Compressive sensing has demonstrated to be an effective strategy for reducing MRI ac-
quisition times by acquiring significantly fewer samples in k -space. A complete signal can
be then be reconstructed fully through sparse, yet sufficient number of samples [10–12].
In MRI, compressive sampling strategies have been demonstrated to be highly effective
at reducing acquisition time while maintaining image quality as different types of tissue
structure have been shown to be sparse in certain domains [13]. Furthermore, different
techniques have been proposed to improve the imaging process [14] as well as the re-
construction process [15–27] in compressive sensing. Due to the limited amount of data
available through compressive sensing, advanced reconstruction algorithms are required to
produce high quality reliable images. The ongoing challenges mainly span in improving
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the reconstruction algorithms, improving the efficiency and quality of compressive sensing
MRI.

Total Variation Reconstruction

A number of different methods have been proposed for sparse reconstruction of compres-
sive sensing MRI [15–27]. As a notable example, Block et al. [18] proposed an iterative
image reconstruction technique using a modified total variation (TV) [24,25] constraint for
sparse reconstruction of compressive sensing brain MRI. The total variational reconstruc-
tion method iteratively solves for image vector ~y that optimizes matrix A for this known
forward problem :

~x = A~y (2.1)

where ~x is the original observations data vector (Fourier transform of MRI acquisitions)
and ~y is the image vector (estimation of image from data vector). Because of the ill posed
nature and scale of the problem the TV approach optimizes for A using:

~y = argmin
~y

Φ(~y) (2.2)

Φ(~y) =
1

2
||A~y − ~x||2 +

∑
j

λjψj(~y) (2.3)

This becomes an iterative optimization problem to optimize an l2 norm for A based
on a penalty function ψj(.) with weight λj for all j. The optimal A should minimize the
penalty functions based on the result vector ~y. The result vector that optimizes these
conditions is finally returned. Note that the observations ~x and the reconstructed image ~y
are both in the spatial domain.

l0 Minimization

Another notable reconstruction algorithm is the l0 minimization technique. Trzasko et
al. [19] introduced a homotopic l0 minimization method for the sparse reconstruction of
compressive sensing spinal MRI. Wong et al. [16] extended upon this idea to a regional
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sparsified domain for the sparse reconstruction of breast MRI. A similar technique was also
demonstrated by Qu et al. using combined sparsifying transforms and smoothed l0 norm
minimization [17], where they showed that the use of combined transforms can improve
image quality compared to the reconstructed images from compressive sensing MRI when
compared to methods using a single sparsifying transform.

The l0 minimization technique models k -space observations X as a set of sites k ∈ K
in discrete k -space lattice J and their transformed image Y as a set of sites s ∈ S in a
discrete spatial lattice R. Here ĵ(s) and R̂(k) are estimates of the signals j(s) and R(k) in
their respective domains with their relationship expressed by 2.4:

j(s) = F−1[ΩR(k)] (2.4)

where Ω is a measurement operator to indicate positions of true measurements and F (·, ·)
is the Fourier operator (used later as well).

Using the idea that MRI images are inherently sparse in sparse domain Ψ, the l0
minimization models the inverse problem of getting our image Ŷ as shown in Eq 2.6 :

Ŷ = ĵ(s) (2.5)

ĵ(s) = argmin
j(S)

||Ψj(s)||0 s.t. ΩR̂(k) = ΩR(k) (2.6)

where ΩR̂(k) = ΩR(k) enforces data fidelity.

The homotopic l0 minimization tries to solve the above problem iteratively as the
constrained l0 problem is nondeterministically polynomial-time hard (NP-hard) [16]. The
iterative method introduces a relaxation factor υ to model the difference between the
approximated homotopic l0 norm and the actual l0 norm in the approximation function
ρ(.). Finally, the data fidelity condition is now approximated as a l2 norm with error bound
ε. This is shown in 2.8 :

ĵ(s) = lim
υ→0

argmin
j(s)

∑
S

ρ(|Ψj(s)|, υ) (2.7)

s.t. ||ΩR̂(k)− ΩR(k)||2 < ε (2.8)

Note that the relaxation factor υ can greatly affect the convergence rate of this iterative
approach.
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2.2 Conditional Random Fields and Graph Theory

An area that is little explored but can be significantly beneficial is the applications of
random field modeling for improved sparse reconstruction of compressive sensing MRI.
Random field modeling such as Markov random fields (MRFs) [28, 29] and conditional
random fields (CRFs) [30] have long been shown to be powerful tools for incorporating
spatial context within a probabilistic graphical modeling framework.

Markov random fields (MRF) [28, 29] are undirected graphs that model relationships
between nodes in the graph. Nodes in Markov random fields must satisfy the Markov prop-
erty that the conditional probability distribution of future states in the process depends
only upon the present state and not on the sequence of events that precede it. This prop-
erty can be specifically useful in imaging applications to model pixels and their represented
states. For MRI imaging applications we are given observations (MRI machine sparse ac-
quisitions) and we attempt to infer the label associated with the observation (reconstructed
image representative of patient condition). Markov random fields are generative models
that learn the model of the joint probability P (X, Y ) of inputs X and their labels Y and
then use Bayesian rules to calculate P (Y |X) and then pick the label Y with the highest
probability [31].

Conditional random fields (CRFs) [30] are similar to MRFs. The difference is that a
CRF is discriminative graphical model, which models the posterior probability P (Y |X)
directly [31]. This is an advantage as modeling the posterior solves the inference problem
directly. It is better to solve the problem directly than solving a more general problem as an
intermediate step (such as modeling the joint probability) [32]. CRFs have demonstrated a
success in machine learning for classification and labeling problems. Because a CRF takes
into account relationships between observations and neighborhood consistencies, it can be
especially useful for imaging applications.

Shafiee et al. proposed a stochastically fully connected conditional random field model
(SFCRF) that greatly improves the number of connections in the CRF graphical model
for better modeling of the posterior while at the same time maintaining computational
efficiency [33]. This model has shown the potential to take a larger neighborhood context
into consideration for better enhancement of structural details in the image. Furthermore,
the SFCRF maintains computational efficiency as well by stochastially determining the
connection between nodes in the graph. This ensures that nodes with low probability of
connectivity are not considered. This model has great potential for sparse reconstruction
of compressive sensing MRI.

8



2.3 Shortcomings of Existing Methods

The existing state of the art reconstruction algorithms are mostly focused on the spatial do-
main. Additionally, current sparse reconstruction techniques are limited to the modeling
that they incorporate. For example, in total variational approaches [18], image recon-
struction can yield block-like features in the image due to total variation constraint. In
homotopic l0 approaches, run time is hindered by the convergence rate to the l0 norm and
thus the reconstruction has to be tuned to reduce runtime. Original MRI measurement are
made in the k -space, so it is beneficial to directly utilize this information for better quality
reconstruction. The biggest hurdle for compressive sensing MRI is that all MRI measure-
ments are made in k -space, whereas the reconstructed image exists in the spatial domain.
Most random field models tend to model information in a singular domain, these models
are insufficient for the sparse reconstruction of compressive sensing MRI. This is further
complicated by MRI measurement in the k -space being sparse and incomplete making it
difficult to leverage current random field models. Therefore a probabilistic graphical model
that can consolidate the fact that partial measurements are made in a different domain
than the desired states of the reconstructed image is needed to truly leverage the power of
random field modeling for spare reconstruction for compressive sensing MRI.

2.4 Summary

Compressive sensing has demonstrated the ability to reconstruct complete signals using
sparse yet sufficient measurements. Compressive sensing strategies are often accompanied
by strong reconstruction algorithms. Additionally, random field modeling has potential
for applications in improving sparse reconstruction of compressive sensing MRI. The main
challenge of compressive sensing MRI is that sparse observations are made in a different
domain (k -space) than the reconstructed image (spatial domain). Many state of the art
reconstruction algorithms are in a singular domain. In addition, current random field mod-
els tends to model in a singular domain. Therefore to utilize random field modeling for the
sparse reconstruction of compressive sensing MRI, a model that accounts for observations
and states being in different domains is required. This paper proposes such a Cross-domain
stochastically fully connected conditional random field approach that takes into account
the multi-domain nature of compressive sensing MRI to improve sparse reconstruction re-
sults. With a strong reconstruction algorithm, compressive sampling rates can be further
reduced to decrease MP-MRI acquisition times and increase the number of early detection
for cancer.
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Chapter 3

Methodology

The cross domain stochastic fully connected conditional random field (CD-SFCRF) is first
introduced and lays down the foundation for how to utilize original k -space measurements
within a CD-SFCRF approach. Two extensions are proposed, the adaptive CD-SFCRF
(ACD-SFCRF) tries to speed up the reconstruction by first learning about the feature
space and then classifying regions of interest to increase neighborhood connectivity and
lower neighborhood connectivity in regions of non interest. Second, a compensated CD-
SFCRF (CCD-SFCRF) approach is proposed to compensate the image based on intrinsic
properties of the imaging system. This compensation corrects for degradations caused by
the imaging apparatus and enhances image details.

3.1 CD-SFCRF

In MRI, measurements are made in the k -space [34], with the lower frequency coefficients
in the k -space containing coarse-grained contrast information while higher frequency co-
efficients contain fine-grained image detail information. The MRI measurements from the
k -space are transformed into the spatial domain to form the reconstructed MRI image.
Most compressive sensing strategies [12, 19] sparsely sample the k -space to reduce image
acquisition time significantly. Therefore, to fully utilize available information in the re-
construction process, data-driven constraints in the k -space domain and data and spatial
driven constraints in the spatial domain would be highly beneficial in improving image
reconstruction quality from compressive sensing MRI.

Motivated by this, the proposed cross-domain stochastically fully connected conditional

10



random field (CD-SFCRF), introduced here for the purpose of sparse reconstruction of com-
pressive sensing MRI, extends upon the seminal work on stochastically fully connected con-
ditional random fields (SFCRF) [33] to facilitate for this cross-domain optimization. Let
us first discuss the concept of SFCRFs briefly for context to build CD-SFCRFs. SFCRFs
are fully-connected conditional random fields with stochastically defined cliques. Unlike
traditional conditional random fields (CRFs), where nodal interactions are deterministic
and restricted to local neighborhoods, each node in the graph representing a SFCRF is
connected to every other node in the graph, with the cliques for each node stochastically
determined based on a distribution probability. Therefore, the number of pairwise cliques
might not be the same as the number of neighborhood pairs as in the traditional CRF
models. By leveraging long-range nodal interactions in a stochastic manner, SFCRFs fa-
cilitate improved detail preservation while maintaining similar computational complexity
as CRFs, which makes SFCRFs particularly enticing for the purpose of improved sparse
reconstruction of compressive sensing MRI. However, here the problem is to reconstruct an
MRI image in the spatial domain while the available measurements are made in k -space
domain. Like most CRF models, SFCRFs cannot be leveraged directly for this purpose.
Motivated by the significant potential benefits of using SFCRFs in improving reconstruc-
tion quality of compressive sensing MRI, we extend the SFCRF model into a cross-domain
stochastically fully connected conditional random field (CD-SFCRF) model that incor-
porates cross-domain information and constraints from k -space and spatial domains to
reconstruct the desirable MRI image from sparse observations in k -space.

The main goal here is to reconstruct the spatial domain image Y given original sparsely
sampled k -space observations X. We model the conditional probability P (Y |X) of the full
state set Y (estimated by Ŷ ) in spatial domain given the set of sparse measurements X in
k -space, which can be written as:

P (Y |X) =
1

Z(X)
exp(−ψ(Y |X)) (3.1)

where Z(X) is the normalization function to constrain probabilities between [0, 1] and ψ(.)
is a combination of unary and pairwise potential functions:

ψ(Y |X) =
n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (3.2)

Here yi ∈ Y is a single state in the set Y = {yi}ni=1, yϕ ∈ Y encodes a clique structure in
the set C, and X = {xj}nj=1 represents the observations (radially sub-sampled frequency
coefficients) in the frequency domain (k -space). n is the total number of nodes in the
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graph. The unary potential ψu is enforced in the k -space while the pairwise potential ψp
is applied in the spatial domain. The unary potential enforces original observations to
preserve data fidelity. Since the available observations are captured in k -space in MRI, the
model must be formulated in a way to be consistent in both k -space and spatial domain.

The pairwise potential, has to be in the spatial domain to better preserve image detail
since neighboring coefficients in the k -space does not contain any meaningful spatial or
data consistencies to be utilized by the pairwise potential. Therefore, the optimal way
to fully utilize available data within this random field model is to formulate the unary
potential in the k -space and the pairwise potential in the spatial domain. This is because
working with a MRI machine, the output signal is in the k -space. There is no spatial
information in the k -space.

One of main differences between the proposed CD-SFCRF framework from conven-
tional CRF models is to incorporate long-range information in the model and preserve
boundaries and image structural properties more effectively which is important here due
to sparse available observation. To capture long-range information, CD-SFCRF assumes
fully connected neighboring structure for the underlying graph in which each node i has a
set of neighbors N(i), where

N(i) =

{
j|j = 1 : n, j 6= 1

}
(3.3)

where |N(i)| = n − 1 and includes all other nodes in the graph as neighbors of node i.
Here the pairwise clique structures are utilized such that:

C =

{
Cp(i)

}n
i=1

(3.4)

Cp(i) =

{
(i, j)|j ∈ N(i), 1S{i,j} = 1

}
. (3.5)

The active cliques in the inference procedure are determined by the stochastic indicator
function 1S{i,j} = 1. The indicator function decides whether or not nodes can construct a

clique, Cp(i), for node i. This stochastic indicator function combines spatial and data driven
information to model the probability distribution of informative cliques which informative
cliques have higher probability to participate in the inference. This combination of spatially
driven and data driven probabilities can be expressed as:

1S{i,j} =

{
1 Qd

i,j ≥ γ

0 otherwise
(3.6)
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1S{i,j} = 1 incorporates the data relationship in the image between the states Qd
i,j while

γ is the real value sparsity factor between (0 and 100) used to determine the number of
active cliques in the inference. The set of active cliques are obtained to extract pairwise
potentials in Eq. 3.2. Qd

i,j is defined as :

Qd
i,j = exp((σ)− (F [xi]−F [xj])

2) · 100 (3.7)

(3.8)

where σ is a control variable for the amount of weighting node pairs in the clique ϕ = {i, j}.

As mentioned before ψ(·) in Eq. 3.2 is the combination of two potential functions
ψu(.), the unary potential and ψp(.), the pairwise potential. These potential functions are
formulated with their corresponding weights λ, respectively as:

ψu(Y,X) =
K∑
j=1

λujFj(Y,X) (3.9)

ψp(yϕ, X) =
K′∑

{yi,yj}∈yϕ,k=1

λpkfk(yi, yj, X) (3.10)

where λ controls the importance of each feature function in the energy formulation and
it is calculated in the training stages. Although it is possible to provide several arbitrary
feature functions to model the conditional probability P (Y |X), here two feature functions
are provided to formulate the image reconstruction for the purpose of sparse reconstruction
from compressive sensing MRI. The conditional distribution of Y given X is trained to
promote/suppress different features in both the unary and pairwise potentials. Higher
λuj values promotes a higher reinforcement of original observations while high λpk values
promotes higher consideration of spatial and data driven neighborhood constraints. In
Eq. 3.9, F refers to the frequency domain potential function. The unary potential is
calculated in the k -space while the pairwise remains in the spatial domain. This is the
novelty of the CD-SFCRF and facilitates for better preservation of fine tissue details and
contrast in the reconstructed image. The unary potential is in the k -space and the simplest
unary function is the l1-norm. The unary potential function Fj(yi, X) can be formulated
as:
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Fj(Y,X) =

π
2∑

ω=−π
2

F−1(Y, ω)− xω (3.11)

where F (·, ·) is the Fourier operator and returns the k -space coefficient corresponding to
frequency ω. Based on this formulation, the unary potential is enforced in the k -space and
in the inferencing step the model tries to estimate image Y to be consistent to the original

k -space observation X = {xω}
π
2

ω=−π
2
.

The pairwise function tries to penalize the intensity differences between nodes in the
spatial domain, similar nodes will have more influence on each other while different nodes
will have their differences highlighted. The pairwise function fk(yi, yj, X) can be formulated
as:

fk(yi, yj, X) = exp
(−(yi − yj)2 · (F [xi]−F [xj])

2

3σ2

)
(3.12)

where σ is the same σ in 3.8. Contrary to the unary potential, the pairwise potential is
enforced in the spatial domain.

Graph Representation for CD-SFCRF

Graph G(V,E) (Figure 3.1) is the realization of the CD-SFCRF where V is the set of
nodes of the graph representing states Y = {yi}ni=1, E is the set of edges in the graph.
Observations xi ∈ X are made in the k -space domain. Our final state estimations Ŷ
(approximation of Y ) are in the spatial domain (image). Figure 3.1 shows the graphical
representation how the spatial and k -space domain are incorporated to model the condi-
tional probability P (Y |X). xi comes from the set sparse measurements X in the k -space.
In the inference procedure the k -space observations are transformed into the spatial do-
main using the Fourier transform to compute the pairwise potentials. Pairwise potentials
are calculated in the spatial domain (Eq. 3.12) and transformed back into the k -space
using the inverse Fourier transform to combine with the unary potential and perform data
fidelity (Eq. 3.11). For different types of MRI data, different sparse sampling patterns can
be used. Furthermore, pairwise connectivity can be trained for specific types of details and
tissue structure.

The proposed CD-SFCRF framework utilizes consistencies from the spatial domain
through the pairwise potential in conjunction with k -space information through the unary
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Figure 3.1: Realization of CD-SFCRF graph. Xi represents original observations made
in the k -space, xi represents spatial domain representation of the k -space measurements
and yi represent states. F (·, ·) denotes the Fourier operator used in transforming k -space
observations into the spatial domain. Connectivity is determined based on probability
distributions. Nodes with higher connectivity have solid black edges while lower probable
connections are represented as dashed red lines

potential. A combination of the two potentials is enforced simultaneously. The unary po-
tential utilizes original observations in the k -space, while the pairwise potential utilizes the
spatial domain representation of the observation/state information and calculates pairwise
potentials for nodes in the spatial domain. This allows CD-SFCRF to take advantage of
the lower computation complexity introduced by the stochastically fully-connected random
field model, while leveraging the original k -space observations in improving signal fidelity.
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3.1.1 ACD-SFCRF

The adaptive CD-SFCRF (ACD-SFCRF) approach takes into account the importance
of regions in the spatial domain. Having classification information about the different
regions of interest, the neighborhood connectivity of the CD-SFCRF can be tuned. This is
performed in the spatial domain as the neighborhood connectivity only applies in the CRF
pairwise potential calculated in the spatial domain. Mathematically this can be formulated
as follows.

Eq 3.13, shows the different levels of stochastic connectivity of the ACD-SFCRF. L(i)
is the label assigned to node i.

γ(.) =


γt L(i) = tumor

γp L(i) = prostate

γo otherwise

(3.13)

where γt > γp > γo

Pairwise connectivity thresholds γt, γp, and γo (real values between 0 and 100) were
tested and set accordingly for tumor, prostate and others class. Tumors are areas of highest
importance. Therefore, these areas have the highest connectivity for the highest level of
neighborhood enforcement. Prostate areas are second in importance and connectivity.
Other pixels are irrelevant and thus the connectivity can be lowered for these pixels. This
increases the algorithm processing speed. L(i) is a Bayesian classifier function following
the naive Bayes constraint is defined by :

L(i) = arg max
li∈L

P (li|a1, a2, ...ak) (3.14)

= arg max
li∈L

P (li)P (a1, a2, ...ak|li) (3.15)

(3.16)

following Bayes theorem (Eq. 3.18), Eq. 3.14 is expressed as Eq. 3.15. Finally, the naive
independence assumption in Eq. 3.19 is used and the classifier assumes the final form (Eq.
3.19). Notice P (a1, a2, ...ak) is constant given the input and can thus be omitted in Eq.
3.15. Bayes theorem and the naive independence assumption is defined by :
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P (li|a1, a2, ...ak) =
P (li)P (a1, a2, ...ak|li)

P (a1, a2, ...ak)
(3.17)

(3.18)

P (a1, a2, ...ak|li) = Π
k
P (ak|li) (3.19)

The terms < a1, a2, a3, ....ak > represent the set of attributes that describe each instance
of li. The label li indicate each probable class label for node i. The naive Bayesian classifier
finds the class label that maximizes the optimal Bayes probability in Eq 3.15. However,
following the naive Bayes assumption as the learning data set is limited and does not
contain every possible attribute that describes li, the naive Bayes assumption is taken in
Eq 3.19, the classifier L(i) assumes the final form of Eq 3.21.

L(i) = arg max
li∈L

P (li)Π
k
P (ak|li) (3.20)

(3.21)

Different estimates of P (li) gives different variations of the naive Bayes classifier. For
the maximum a-priori classification P (li) is calculated based on the training data to provide
general distribution of each label. For the maximum likelihood case, P (li) is equal for all
labels. The ACD-SFCRF utilizes a higher P (li) for regions of interest compared to regions
of non-interest.

Graph Representation for ACD-SFCRF

The graph representation of the ACD-SFCRF changes slightly from the CD-SFCRF to
incorporate the change in neighborhood connectivity as shown in Figure 3.2. Each node
now has a classification label. The different classification results varies the neighborhood
connectivity of each node. This further promotes high connectivity between nodes with
similar labels because nodes with low connectivity would favor connections to similar nodes
and nodes with high connectivity have more neighborhood information to utilize.
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Figure 3.2: Realization of ACD-SFCRF graph. Xi represents original observations made
in the k -space, xi represents spatial domain representation of the k -space measurements
and yi is state in set Y . F (·, ·) denotes the Fourier operator used in transforming k -space
observations into the spatial domain. Connectivity is determined based on probability
distributions and classification from learning. Nodes with higher connectivity have solid
black edges while lower probable connections are represented as dashed red lines. Center
nodes with higher importance(red) have higher neighborhood connectivity while nodes
with lower importance(green) have lower neighborhood connectivity.

3.1.2 CCD-SFCRF

The compensated CD-SFCRF (CCD-SFCRF) includes an additional compensation stage
that takes into account the intrinsic properties of the imaging system to compensate for
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degradations caused by the imaging apparatus.

First, a calibration process is performed to quantitatively characterize the intrinsic
properties of the MRI apparatus in the form of a compensation function B. This informa-
tion is available through testing on phantom data. The measured sparse signal X, along
with B, as well as CD-SFCRF reconstruction are then used to form a CCD-SFCRF image
Ŷ that tries to estimate the full set of states Y .

The CCD-SFCRF slightly alters the unary potential calculation by introducing the
compensation function B, as in Eq 3.22. The pairwise potential changes slightly as well in
Eq 3.23

ψu(yi, X) = xi −F−1[B(yi)] (3.22)

ψp(yi, yj, X) = e(−
(F [xi]−F [xj ])

2

σ
)(yi − yj) (3.23)

The unary potential is calculated after the estimate of yi has been calculated through
the CD-SFCRF reconstruction. The compensated yi is then used to calculate the unary
potential by enforcing original measurements xi for node i.

The compensation function B is formulated in Eq 3.24:

B(yi) =
e−ζζyi
yi!

(3.24)

the parameter ζ is a learned parameter that best suits the blur model. This parameter is
learned through testing with phantom MRI data.

With the additional compensation involved, enhancement of tissue structures and image
details can be achieved.

3.2 Implementation

An implementation of the proposed CD-SFCRF framework for the purpose of sparse re-
construction from compressive sensing MRI is illustrated in Figure 3.3. Here, an iterative
gradient descent optimization approach is employed, and can be described as follows. First,
the original compressive sensing MRI data in k -space is transformed to the spatial domain
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Figure 3.3: Optimization framework of the proposed CD-SFCRF framework for sparse
reconstruction from compressive sensing MRI. The left image represents spiral sampled k -
space measurements. The right image in the loop represents the final result the algorithm
tries to achieve.

to provide an initial estimate of the reconstructed image. Second, the gradient of the
unary and pairwise energy potentials in Eq. 3.9 and Eq. 3.10 is computed, where the
unary data driven consistencies with respect to the original observations are enforced in
the k -space, and spatial and data driven consistencies are enforced in the spatial domain.
Third, the estimate of the reconstructed image is updated based on the previous estimate
and the computed gradient. The second and third steps of this process is repeated until
convergence.

With the addition of the ACD-SFCRF, two implementation details are added. The
first being a classification of the reconstructed image in step one after transforming k -
space measurements into the spatial domain. This initial classification changes the level of
pairwise connectivity when calulating pairwise energy potentials in step two. The classifi-
cation is done a singular time while the different levels of pairwise connectivity is applied
at every iteration.

The addition of the CCD-SFCRF introduces an additional compensation step after
enforcing pairwise potentials in step two. After compensation the unary potential is then
calculated. This is based on original k -space measurements and compensated image (trans-
formed into k -space). The compensation step is performed at every iteration as well.
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Chapter 4

Experimental Setup and Results

The following sections outlines the experimental setup for evaluating the efficacy of the
CD-SFCRF and its extension frameworks.

4.1 Expermental Setup

4.1.1 Patient Data and Ethics

To test the efficacy of the proposed CD-SFCRF framework and extension frameworks
within a clinical scenario, MRI data of 20 patients (17 with cancer and 3 without cancer)
were acquired using a MRI machine at Sunnybrook Health Sciences Centre, Toronto, On-
tario, Canada. All data was obtained retrospectively under the local institutional research
ethics board (Research Ethics Board of Sunnybrook Health Sciences Centre). For each
patient, the following MP-MRI modalities were obtained (Table 4.1): T2w and DWI. The
patients’ age ranged from 53 to 83. Table 4.1 summarizes the information about the 20
patients’ datasets used in this study, which includes displayed field of view (DFOV), res-
olution, echo time (TE), and repetition time (TR). Furthermore, ground truth labels for
tumor, prostate and other areas are provided as well. The ground truth labels are created
by radiologist from Sunnybrook Health Sciences Center with multiple years of experience.
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Table 4.1: Description of the prostate T2w and DWI images

Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22× 22 0.49× 0.49× 3 110 4,687

DWI 20× 20 1.56× 1.56× 3 61 6,178

4.1.2 MRI Machine Parameters

Patients were scanned using a Philips Achieva 3.0T machine. The axial single-shot echo-
planner DWI sequences used from the cases were performed with the following imaging
parameters: TR ranged from 3336 − 6178ms with a median of 4890ms, and TE ranged
from 61 − 67ms with a median of 61ms. the resolution of the signal acquisitions ranged
from 1.36×1.36mm2 to 1.67×1.67mm2, with a median of 1.56×1.56mm2. Slice thickness
ranged from 3.0 − 4.0mm with a median of 3.5mm. The display field of view (DFOV)
ranged from 20× 20cm2to24× 24cm2 with a median 24× 24cm2. The number of b-values
in each case is either 4 or 6 with the highest b-value being b = 1400s/mm2.

4.1.3 Compressive Sensing Simulation

Figure 4.1: Radial k -space sampling pattern at 32% percentage sampled.

To test the reconstruction quality of the algorithm, fully sampled phantom and patient
data was sub-sampled and reconstructed. The fully sampled data was used as ground
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Figure 4.2: Radial k -space sampling pattern at 32% percentage sampled.

truth to compare with reconstructed data. Multiple k -space sampling patterns were used
to simulate the compressive sensing of MRI [35,36]. The two sampling patterns used were
the radial and spiral sampling pattern shown in Figures 4.1 and 4.2 respectively. Multiple
k -space sub-Nyquist [37] sampling ratios were explored as well ranging from 5 % to 40 %.

4.1.4 Evaluation Metrics

Quantitative analysis was performed using two metrics. The first being peak signal-to-noise
ratio (PSNR) [38]. PSNR calculates the ratio between the maximum power of a signal and
the power of the noise/degredation corrupting the fidelity of the signal. PSNR is usually
expressed in a logarithmic decibel scale and can be calculated in Eq 4.1 as :

PSNR = 10 · log10

(
MAX2

I√
MSE

)
(4.1)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[Y (i, j)− Ŷ (i, j)] (4.2)

Where Y is the noise free image (ground truth) and Ŷ is the approximation (recon-
struction result).
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Additionally, to test the ACD-SFCRF, algorithm runtime is captured in seconds(s)
to evaluate the speed improvements that can be achieved, ten fold cross validation is
performed to test classifier robustness and accuracy measured in percentages (%).

4.2 Detailed Results

4.2.1 CD-SFCRF results

To evaluate the efficacy of the proposed CD-SFCRF framework for sparse reconstruction
of compressive sensing MRI, a comparative evaluation analysis was performed alongside
a baseline l2 minimization (L2) reconstruction method, and a state-of-the-art homotopic
l0 minimization (HL0) [19] reconstruction method. The tested methods are compared
quantitatively though peak signal-to-noise (PSNR) analysis, and qualitatively via visual
assessment. All tested methods are implemented based on the original literature, with
optimal parameters used in this study. All tested methods are run until convergence.

Figure 4.3 shows the PSNR vs. sampling percentage plots for the tested methods for
the phantom MRI data. The proposed CD-SFCRF framework achieved noticeable PSNR
improvements over the other tested methods at all tested sampling percentages. The CD-
SFCRF produced improvements of up to 4dB over HL0 and 7dB over L2 in low sampling
conditions. It can be observed that as sampling percentage increases, the performance
differences decreases. This is due to the fact that as the sampling percentage increases the
amount of available measurements increases, and as such the level of reconstruction quality
improvements that can be achieved will naturally decrease given the amount of available
information becomes increasingly sufficient for high quality reconstruction. The ability of
the CD-SFCRF framework to produce high quality reconstruction at very low sampling
rates can be demonstrated visually as well.

Tables 4.2, 4.3, and 4.4, show the PSNR results for the three reconstructed methods
for the T2w, DWI, as well as ADC map images for the patient experiments at different
sampling rates. It can be observed that the proposed CD-SFCRF framework achieved the
greatest PSNR improvements for the lowest sampling rate (i.e., 17%) where for T2w, CD-
SFCRF improves PSNR by 1.78dB and 1.12dB over the L2 and HL0 methods, respectively.
For DWI, CD-SFCRF improves PSNR by 1.85dB and 0.28dB over the L2 and HL0 methods,
respectively. Interestingly for ADC maps, the best improvements in PSNR are achieved
for the highest sampling rate (47%) where for CD-SFCRF improves PSNR by 4.44dB and
0.21dB over the L2 and HL0 methods, respectively.
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Table 4.2: Calculated PSNR for T2w image for the patient experiments across different
methods

Percentage Sampled (%) L2 (dB) HL0 (dB) CD-SFCRF (dB)

17 25.56 26.22 27.34
32 28.39 28.80 29.72
47 30.42 30.80 31.23

Table 4.3: Calculated PSNR for DWI images for the patient experiments across different
methods

Percentage Sampled (%) L2 (dB) HL0 (dB) CD-SFCRF (dB)

17 26.90 28.46 28.75
32 31.92 33.39 33.61
47 36.45 37.85 37.99

Figure 4.4 shows the visual comparison between between the reconstructed images
produced using the proposed CD-SFCRF framework compared with that produced using

Figure 4.3: PSNR vs. sampling percentage plots for the tested methods for the phantom
MRI data at different sampling percentages.
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Table 4.4: Calculated PSNR for ADC images for the patient experiments across different
methods

Sampling Rate (%) L2 (dB) HL0 (dB) CD-SFCRF (dB)

17 17.20 19.35 19.50
32 18.05 21.66 21.72
47 18.72 22.94 23.16

(a) Patient 1 Fully
Sampled

(b) Patient 1 L2 (c) Patient 1 HL0 (d) Patient 1 CD-
SFCRF

(e) Patient 2 Fully
Sampled

(f) Patient 2 L2 (g) Patient 2 HL0 (h) Patient 2 CD-
SFCRF

(i) Patient 3 Fully
Sampled

(j) Patient 3 L2 (k) Patient 3 HL0 (l) Patient 3 CD-
SFCRF

Figure 4.4: Sample T2w results for three patient cases produced using CD-SFCRF, L2,
and HL0 at 32% radial percentage sampled. Compared to other methods, CD-SFCRF
preserves tissue details and contrast especially in the tumourous regions. The arrow shows
tumourous region in the fully sampled image (a).

the L2 and homotopic l0 minimization reconstruction methods for three cases for T2w
images using radial sampling. The L2 method resulted in blurry images as well as noticeable
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radial artifacts at low sampling rates. The HL0 approach performed better than the L2
minimization and was able to noticeably reduce artifacts and provide a higher quality
reconstruction. However, in comparison, the CD-SFCRF was able to better restore details
and fine tissue structure in the reconstructed image when compared to HL0. This is to
be expected as the CD-SFCRF takes advantage of more complete data and spatial driven
consistencies in a fully connected nature, thus better modeling the underlying tissue detail
and structures.

(a) Patient 1 Fully
Sampled

(b) Patient 1 Fully
Sampled

(c) Patient 1 L2 (d) Patient 1 HL0 (e) Patient 1 CD-
SFCRF

(f) Patient 2 Fully
Sampled

(g) Patient 2 Fully
Sampled

(h) Patient 2 L2 (i) Patient 2 HL0 (j) Patient 2 CD-
SFCRF

(k) Patient 3 Fully
Sampled

(l) Patient 3 Fully
Sampled

(m) Patient 3 L2 (n) Patient 3 HL0 (o) Patient 3 CD-
SFCRF

Figure 4.5: Sample DWI results (b = 100s/mm2) for three patient cases produced using
CD-SFCRF, L2, and HL0 at 32% radial percentage sampled. Compared to other methods,
CD-SFCRF preserves tissue details and contrast especially in the tumourous regions. The
tumourous region in the fully sampled image is marked (a).

Figures 4.5, 4.6 and 4.7, 4.8 shows the visual comparison between the reconstructed
images produced using the proposed CD-SFCRF framework compared with that produced
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(a) Patient 1 Fully
Sampled

(b) Patient 1 Fully
Sampled

(c) Patient 1 L2 (d) Patient 1 HL0 (e) Patient 1 CD-
SFCRF

(f) Patient 2 Fully
Sampled

(g) Patient 2 Fully
Sampled

(h) Patient 2 L2 (i) Patient 2 HL0 (j) Patient 2 CD-
SFCRF

(k) Patient 3 Fully
Sampled

(l) Patient 3 Fully
Sampled

(m) Patient 3 L2 (n) Patient 3 HL0 (o) Patient 3 CD-
SFCRF

Figure 4.6: Sample DWI results (b = 100s/mm2) for three patient cases produced using
CD-SFCRF, L2, and HL0 at 32% spiral percentage sampled. Compared to other methods,
CD-SFCRF preserves tissue details and contrast especially in the tumourous regions. The
tumourous region in the fully sampled image is marked (a).

using the L2 and HL0 methods for three patient cases for DWI (b = 100s/mm2) and
ADC images for radial and spiral sub-sampling. As it can be seen in both set of figures,
the L2 method resulted in blurry images again with noticeable radial and spiral artifacts.
Although the HL0 approach performed better than the L2 method, it can be observed
once again that the proposed CD-SFCRF approach was able to preserve more fine tissue
structure and detail in the reconstructed image when compared to the HL0 method.

In Figures 4.4 to 4.8, the tumourous regions marked by a radiologist and confirmed by
pathology report (biopsy results) are shown by arrow. It can be seen that the proposed
CD-SFCRF method preserves the separability of the cancerous and healthy tissue in all
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(a) Patient 1 Fully
Sampled

(b) Patient 1 Fully
Sampled

(c) Patient 1 L2 (d) Patient 1 HL0 (e) Patient 1 CD-
SFCRF

(f) Patient 2 Fully
Sampled

(g) Patient 2 Fully
Sampled

(h) Patient 2 L2 (i) Patient 2 HL0 (j) Patient 2 CD-
SFCRF

(k) Patient 3 Fully
Sampled

(l) Patient 3 Fully
Sampled

(m) Patient 3 L2 (n) Patient 3 HL0 (o) Patient 3 CD-

SFCRF

Figure 4.7: Sample ADC map results for three patient cases produced using CD-SFCRF,
L2, and HL0 at 32% radial percentage sampled. Compared to other methods, CD-SFCRF
preserves tissue details and contrast especially in the tumourous regions. The tumourous
region in the fully sampled image is marked (a).

cases, which is an important measure for usability of the proposed method in practice. As
it can be seen the tumourous regions are blurred in the L2 method, which may make it
difficult to detect for radiologists.

Both quantitative and qualitative analysis demonstrate the potential of the proposed
CD-SFCRF framework as a reliable reconstruction approach for compressive sensing in
MRI. It demonstrates the ability to produce edge and tissue details at very low sampling
rates. The CD-SFCRF framework better utilized available information to produce quality
reconstruction given very limited available information. Preservation of tissue structure,
detail enhancement and noise and artifact mitigation are very important for MRI as the
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(a) Patient 1 Fully
Sampled

(b) Patient 1 Fully
Sampled

(c) Patient 1 L2 (d) Patient 1 HL0 (e) Patient 1 CD-
SFCRF

(f) Patient 2 Fully
Sampled

(g) Patient 2 Fully
Sampled

(h) Patient 2 L2 (i) Patient 2 HL0 (j) Patient 2 CD-
SFCRF

(k) Patient 3 Fully
Sampled

(l) Patient 3 Fully
Sampled

(m) Patient 3 L2 (n) Patient 3 HL0 (o) Patient 3 CD-

SFCRF

Figure 4.8: Sample ADC map results for three patient cases produced using CD-SFCRF,
L2, and HL0 at 32% spiral percentage sampled. Compared to other methods, CD-SFCRF
preserves tissue details and contrast especially in the tumourous regions. The tumourous
region in the fully sampled image is marked (a).

diagnostic quality is directly related to the image quality.

4.2.2 ACD-SFCRF Results

In order to test the ability of the ACD-SFCRF, qualitative and quantitative analysis are
performed. The ACD-SFCRF is compared with the original CD-SFCRF [39], as well
as classification results based on the four classifiers. The classification masks from the
four classifiers are compared with ground truth masks as well to provide a measure of
classification accuracy. Quantitative analysis on the include image PSNR analysis, classifier
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accuracy analysis, reconstruction timing analysis. Qualitative comparison is only shown
for patient 10 slice 14 with b-value 400 for consistency. The single b-value classifier is
trained using the b-value 400 images as well.

Classifier Results

Table 4.5: Ten fold classifier accuracy (%)

Fold single
b-
value
Bayes

multi
b-
value
Bayes

multi
b-
value
ML

Three
clas-
sifier
vot-
ing

1 98.26 97.89 95.74 97.75
2 95.44 94.37 91.44 93.78
3 95.73 94.43 91.03 94.01
4 97.65 96.85 94.19 96.12
5 96.57 95.90 93.90 95.74
6 96.30 95.56 91.97 94.54
7 97.52 97.17 94.01 96.41
8 97.64 96.53 93.78 95.89
9 97.70 97.16 94.85 96.23
10 98.37 98.42 95.85 97.81
mean 97.10 96.41 93.65 95.81

(a) ground
truth mask

(b) single
b-value Bayes
classifier mask

(c) multi
b-value Bayes
classifier mask

(d) multi b-
value ML clas-
sifier mask

(e) combined
classifier mask

Figure 4.9: Comparison of different classification masks for prostate(red) and tumor(green)
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The accuracy of each classifier is tested by comparing the number of correct classi-
fication in each of the masks generated with ground truth masks. Table 4.5 shows the
accuracy of each classifier through ten fold cross validation classifier testing. The single
class modified Bayes classifier performed the best in classifying each pixel at 97% overall
accuracy. This is because the single b-value Bayes classifier is trained specifically on images
with similar b-values, therefore tissue structures will have the similar pixel values for the
same b-value. The multi b-value Bayes classifier came in second with overall 96% accu-
racy. The multi b-value ML classifier had the least accuracy with 94% overall, as the class
probabilities did not favor any single class, therefore the classifier could not use additional
information to guide the classification. The three class voting classifier performed a good
job of classification as well with 96% accuracy, it was able to combine the results of all
three classifiers.

Table 4.6: Ten fold reconstruction PSNR (db)

Fold CD-
SFCRF

ACD-
SFCRF
(ground
truth
mask)

ACD-
SFCRF
(single
b-value
MAP)

ACD-
SFCRF
(multi
b-value
MAP)

ACD-
SFCRF
(multi
b-value
ML)

ACD-
SFCRF
(three
classifier
voting)

1 37.74 37.57 37.54 37.55 37.55 37.55
2 37.95 37.83 37.83 37.83 37.83 37.84
3 38.38 38.12 38.13 38.12 38.13 38.13
4 37.45 37.20 37.20 37.20 37.27 37.22
5 37.85 37.67 37.71 37.61 37.63 37.65
6 38.22 38.04 38.03 38.08 38.06 38.03
7 38.22 37.83 37.79 37.85 37.84 37.83
8 38.76 38.69 38.70 38.70 38.63 38.68
9 39.89 39.62 39.63 39.62 39.62 39.63
10 38.34 38.20 38.18 38.18 38.13 38.20
mean 38.27 38.07 38.07 38.07 38.06 38.07

Visual classification results can be seen in Figure 4.9, the single b-value Bayes classifier
classified most of the prostate correctly. However, it did not classify any pixels as tumor
which is incorrect. The accuracy of the classifier is still very high because the difference
between the ground truth is only a few pixels. The multi b-value Bayes classifier did a
better job of classifying tumor pixels in addition to the prostate that was classified. This
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Table 4.7: Ten fold reconstruction run time for 30 iterations (seconds)

Fold CD-
SFCRF

ACD-
SFCRF
(ground
truth
mask)

ACD-
SFCRF
(single
b-value
MAP)

ACD-
SFCRF
(multi
b-value
MAP)

ACD-
SFCRF
(multi
b-value
ML)

ACD-
SFCRF
(three
classifier
voting)

1 15.71 14.54 14.47 14.52 14.55 14.47
2 14.82 14.11 14.01 14.03 14.17 14.03
3 14.80 14.02 13.96 13.96 14.01 13.99
4 14.38 13.37 13.38 13.57 13.33 13.55
5 15.69 14.22 14.22 14.14 14.27 14.15
6 15.80 14.55 14.75 14.66 14.48 14.56
7 16.09 14.72 15.27 14.65 14.94 14.84
8 18.79 17.48 17.66 17.43 17.52 17.45
9 17.95 16.84 16.78 16.74 16.62 16.83
10 16.49 15.54 15.72 15.77 15.74 15.62
mean 16.02 14.91 14.99 14.92 14.94 14.92

is because the multi-b value classifier utilizes more complete information in regards to
tumors attributes. The ML classifier over classified on the number of tumor pixels there
are and this lowered the accuracy of the classifier compared to the other classifiers. Finally,
the combined classifier did a good job to capture the tumor area while at the same time
capturing the outline of the prostate. The combined classifier in the end looks very similar
to the multi b-value Bayes classifier. This is reflected from the accuracy table in Table 4.5
as well.

From both visual and quantitative results, we can see that the multi b-value Bayes
classifier is a reliable classifier for classifying regions of interest while maintaining good
accuracy to ground truth data.

Image Reconstruction Results

The PSNR analysis is performed between the CD-SFCRF, ACD-SFCRF with ground truth
and ACD-SFCRF with each of the classified tumor and prostate masks in comparison to the
original image. Table 4.6 shows the comparisons between the methods. The ACD-SFCRF
had a average decrease of 0.2dB in comparison to the CD-SFCRF. This is expected as the
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(a) Original Image (b) Sparse Sampled
Image

(c) CD-SFCRF (d) ACD-SFCRF
Ground truth mask

(e) ACD-SFCRF
single b-value
Bayes mask

(f) ACD-SFCRF
multi b-value Bayes
mask

(g) ACD-SFCRF
multi b-value ML
mask

(h) ACD-SFCRF
combined classifier
mask

Figure 4.10: Comparison of different reconstruction results

ACD-SFCRF uses a smaller neighborhood connectivity in areas of irrelevance compared
to the neighborhood connectivity constant of 80% used for the CD-SFCRF. There is little
difference between the different classifiers as the majority of the image are areas of non
relevance. The ACD-SFCRF can increase the PSNR in regions of interest while lowering
the computation complexity in areas of irrelevance. This effect can be seen in Table 4.7 as
over 30 iterations the ACD-SFCRF is faster than the CD-SFCRF by more than one second.
This shows the ability of the ACD-SFCRF to process areas of irrelevance more efficiently
with minor decrease in image quality. Considering the CD-SFCRF itself is a very powerful
reconstruction algorithm already. The ACD-SFCRF performed a good job in segmenting
the image and adapting the CD-SFCRF for better efficiency in areas of irrelevance while
maintaining high image quality for regions of interest.

Visually, comparison between the CD-SFCRF and ACD-SFCRF using different classi-
fiers is demonstrated in Figure 4.10. The ACD-SFCRF produced similar level of recon-
struction to the CD-SFCRF. The ACD-SFCRF was able to restore details and fine tissue
structure in the reconstruction. This is to be expected as the ACD-SFCRF takes advan-
tage of more complete neighborhood consistencies in a fully connected nature. The model
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takes into account edge and other details when performing inference. The ACD-SFCRF
adapted the reconstruction to enhance details in regions of interest while increasing the
efficiency in areas of irrelevance without losing image quality. This utilization of training
data and the segmentation of the image allowed the ACD-SFCRF to take advantage of the
advanced reconstruction of the CD-SFCRF while increasing reconstruction efficiency and
improving on overall image quality.

Both qualitative and quantitative analysis demonstrate the potential of the ACD-
SFCRF as a reliable reconstruction approach for compressive sensing in MRI. The ACD-
SFCRF has the ability to produce edge and tissue details at low sampling rates, by fully
utilizing available information while increasing overall efficiency and improving image qual-
ity. Preservation of tissue structure, detail enhancement and noise reduction are very
important for MRI as the diagnostic quality is directly related to the image quality.

4.2.3 CCD-SFCRF Results

Table 4.8: Calculated PSNR for different methods

Sampling Percentage (%) PSNRTV (dB) PSNRCD−SFCRF (dB) PSNRCCD−SFCRF (dB)

5 26.30 27.58 27.69
10 31.06 35.16 29.54
15 34.64 37.84 30.37
19 36.42 39.10 30.86
24 37.59 40.06 30.90
28 39.05 41.20 29.67
32 41.03 41.90 27.87
36 42.07 42.70 27.36

To evaluate the quality of reconstruction of the proposed compensated cross domain
stochastically fully connected conditional random field (CCD-SFCRF) method, compar-
isons are made between the total variation [18, 24, 25] reconstruction as well as the CD-
SFCRF [39] from previous work. These methods are compared quantitatively though
PSNR analysis and visually. Because current MRI acquisitions are already sub-sampled in
current systems, PSNR would not be a good measure to compare reconstructed results to
already sparsely sampled original images. Therefore, PSNR analysis is performed on fully
sampled phantom MRI images. Reconstruction results from the CCD-SFCRF on phantom
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(a) Original (b) TV (c) CD-SFCRF (d) CCD-SFCRF

(e) Original (f) TV (g) CD-SFCRF (h) CCD-SFCRF

(i) Original (j) TV (k) CD-SFCRF (l) CCD-SFCRF

Figure 4.11: Visual result of proposed reconstruction method (CCD-SFCRF) for patient 1
to 3, compared to existing methodology (TV, CD-SFCRF) at 32% percentage sampled
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(a) Original (b) TV (c) CD-SFCRF (d) CCD-SFCRF

(e) Original (f) TV (g) CD-SFCRF (h) CCD-SFCRF

(i) Original (j) TV (k) CD-SFCRF (l) CCD-SFCRF

Figure 4.12: Visual result of proposed reconstruction method (CCD-SFCRF) for patient 4
to 6, compared to existing methodology (TV, CD-SFCRF) at 32% percentage sampled
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(a) 15% Original (b) 15% TV (c) 15% CD-
SFCRF

(d) 15% CCD-
SFCRF

(e) 20% Original (f) 20% TV (g) 20% CD-
SFCRF

(h) 20% CCD-
SFCRF

(i) 24% Original (j) 24% TV (k) 24% CD-
SFCRF

(l) 24% CCD-
SFCRF

Figure 4.13: Visual result of proposed reconstruction method (CCD-SFCRF) compared to
existing methodology (TV,CD-SFCRF) at different (15%, 19%, 24%) percentage sampled
for patient 4
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(a) 32% Original (b) 32% TV (c) 32% CD-
SFCRF

(d) 32% CCD-
SFCRF

(e) 36% Original (f) 36% TV (g) 36% CD-
SFCRF

(h) 36% CCD-
SFCRF

(i) 40% Original (j) 40% TV (k) 40% CD-
SFCRF

(l) 40% CCD-
SFCRF

Figure 4.14: Visual result of proposed reconstruction method (CCD-SFCRF) compared to
existing methodology (TV,CD-SFCRF) at different (32%, 36%, 40%) percentage sampled
for patient 4
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MRI images can be quantitatively measured. Qualitative comparisons can be observed
from reconstructing sparsely sampled slices from six different patients using the proposed
CCD-SFCRF.

Figure 4.15 shows PSNR trends calculated for the different methods, the PSNR values
are evaluated according to the original fully sampled high-resolution phantom MRI data.
Comparisons show that at the lowest sampling rate the PSNR for the CCD-SFCRF was
better than the other methods. However, as the sampling rate increases, the PSNR for
the CCD-SFCRF drops significantly, this is because the PSNR calculation for the CCD-
SFCRF was performed on a resized version of the original image and this can potentially
throw off PSNR calculations. The resizing is required for the compensation and this makes
PSNR an unreliable comparison for this study. Furthermore, as the amount of available
information increases, the reconstruction results are much better than the original image
as the original image contains degredations and artifacts. This affects PSNR calculations.
Visually the phenomenon described above can be observed.

Figure 4.15: PSNR trends for different sampling rates.

Figures 4.16, 4.17 shows the visual comparison between the proposed CCD-SFCRF
compared to the other iterative methods for different sparse sampling ratios on the phan-
tom image. The CCD-SFCRF was able to produce high quality reconstruction by fully
utilizing available information especially at higher sampling percentages. At higher sam-
pling percentages, because of the vast amount of available information, the results between
TV, CD-SFCRF and CCD-SFCRF are very similar and less differentiated. At low sam-
pling rates because there are a very high amount of artifacts as any deblurring can produce
artifacts and this is evident as for the low sampling percentages, the TV and CD-SFCRF
reconstruction has better visual results due to the smoothing. However, at higher sampling
percentages the CCD-SFCRF builds on the good reconstruction result from the CD-SFCRF
reconstruction to produce images with high detail and structure preservation.
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(a) 15% Original (b) 15% TV (c) 15% CD-
SFCRF

(d) 15% CCD-
SFCRF

(e) 20% Original (f) 20% TV (g) 20% CD-
SFCRF

(h) 20% CCD-
SFCRF

(i) 24% Original (j) 24% TV (k) 24% CD-
SFCRF

(l) 24% CCD-
SFCRF

Figure 4.16: Visual result of proposed reconstruction method (CCD-SFCRF) compared to
existing methodology (TV,CD-SFCRF) at different (15%, 19%, 24%) percentage sampled
for phantom data.
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(a) 32% Original (b) 32% TV (c) 32% CD-
SFCRF

(d) 32% CCD-
SFCRF

(e) 36% Original (f) 36% TV (g) 36% CD-
SFCRF

(h) 36% CCD-
SFCRF

(i) 40% Original (j) 40% TV (k) 40% CD-
SFCRF

(l) 40% CCD-
SFCRF

Figure 4.17: Visual result of proposed reconstruction method (CCD-SFCRF) compared
to existing methodology (TV,CD-SFCRF) at different (32%, 36%40%) percentage sampled
for phantom data.
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Figures 4.11, 4.12 shows the visual comparison between the proposed CCD-SFCRF
compared to the other iterative image reconstruction techniques for slices in six patients.
TV reconstruction produces block like regions within the image, this is to be expected as
the total variation constraint promotes regional smoothness. The CD-SFCRF was able to
eliminate the radial artifacts from the sparse sampling process. Furthermore, there was
blurring as a result of the artifact elimination and from originally introduced blurring from
sparse sampling. The CCD-SFCRF was able to preserve edges and structural details while
eliminating blurring and reducing artifacts. Comparing with the original fully sampled
image, it is visible that the CCD-SFCRF restored a lot of the edge details while effectively
eliminating blur from the original image. The CCD-SFCRF is a great addition to the
CD-SFCRF as the CD-SFCRF was able to greatly eliminate the sparse sampling artifacts
at the cost of image sharpness and edge distinction.

Figure 4.13, 4.14 shows the visual comparison between the proposed CCD-SFCRF com-
pared to the other iterative methods for different sparse sampling ratios on the same slice
in patient 4. At low sampling percentages, total variation reconstruction produced good
reconstruction with blocking artifacts as expected. The CD-SFCRF efficiently eliminated
artifacts at the cost of a significantly blurred image. The CCD-SFCRF was able to pro-
duce high quality reconstruction and good tissue differentiation. Given the sparsity of
available information, the CCD-SFCRF at 15% sub sampling was able to restore a signifi-
cant amount of details comparable to the original fully sampled image. At higher sampling
rates, with an increased amount of available information the CCD-SFCRF was able to
further produce increased tissue and structural details comparable even surpassing the
original images. The total variation reconstruction results does not increase significantly
as the sampling rate increases. This is the limitation of the total variation reconstruc-
tion. The CD-SFCRF have better reconstruction and tissue details as the sampling rate
increases, the amount of tissue and structure details increases while the artifacts are con-
sistently eliminated throughout the different sampling rates. The CCD-SFCRF based on
the CD-SFCRF was able to take advantage of the scalability of the CD-SFCRF to produce
even better reconstruction results.

Quantitatively, the CCD-SFCRF does not edge out the other methodologies in the
PSNR calculations. Qualitatively, the CCD-SFCRF demonstrates a very high scalability
with increasing amount of available information. Furthermore, at low resolutions the CCD-
SFCRF produced very viable reconstruction results with very little available information.
This demonstrates the superior reconstruction ability of the CCD-SFCRF to produce high
quality reconstruction given any amount of available data. The visual results demonstrate
the potential of the CCD-SFCRF to be a viable reconstruction algorithm for compressive
sensing MRI.
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4.3 Chapter Summary

In this chapter, both qualitative and quantitative comparisons using real patient data
were made for the CD-SFCRF and its extension frameworks with existing state of the art
methods. Results demonstrated the ability of the CD-SFCRF to utilizes original k -space
measurements with spatial domain pairwise potentials to reconstruct compressive sensing
MRI data with high visual fidelity. Furthermore, the ACD-SFCRF improves the algorithm
efficiency by being selective in the amount of pairwise calculations made based on the data
presented. Results demonstrate a comparable reconstruction result to the CD-SFCRF
while being faster in runtime. Additionally, the CCD-SFCRF was able to further improve
the reconstruction of the CD-SFCRF by introducing a compensation step. This effectively
removes image degradations caused by the imaging apparatus to produce further enhanced
tissue and structural details. These results demonstrate the ability of the CD-SFCRF as
a viable reconstruction framework for compressive sensing MRI.
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Chapter 5

Summary and Future Work

5.1 Summary

Magnetic resonance imagery (MRI) is a non-invasive and crucial imaging modality for the
early detection of prostate cancer, one of the four major types of cancer affecting North
Americans. MRI provides multi-modal information that can be used for accurately detect-
ing tumor regions to guide the diagnosis for medical staff. However, our reliance on MRI
is severely hindered by the long acquisition times associated with MRI imaging. Compres-
sive sensing demonstrates the potential to reduce acquisition times by sparsely sampling
a sufficient set of observations. Compressive sensing strategies are usually accompanied
by strong reconstruction algorithms to facilitate for compressive sensing MRI. Current re-
construction algorithms are usually focused in a singular domain and cannot fully take
advantage of the MRI original observations that are made in the k -space.

Chapter 3 introduced a cross domain stochastically fully connected conditional random
field (CD-SFCRF) approach for the reconstruction of compressive sensing MRI data by
utilizing both original k -space measurements as well as neighborhood consistencies in the
spatial domain. Chapter 3 described the underlying mathematics behind the framework
and the implementation details associated with this new approach. Additionally, exten-
sion frameworks are introduced and mathematiclaly formulated as well. The first extension
being an adaptive CD-SFCRF (ACD-SFCRF) approach that optimizes the CD-SFCRF al-
gorithm by learning and classifying the imagery before hand to increases the focus on
regions of interest to enhance image quality and structural details while lowering focus in
regions of non interest to increase algorithm processing speed. Secondly, a compensated
CD-SFCRF (CCD-SFCRF) is introduced that learns the MRI imaging apparatus proper-
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ties and compensates for the degradations caused by the imaging system. By performing
compensation image quality and tissue details can be further enhanced.

Chapter 4 explains the experimental procedure partaken to evaluate the performance of
the CD-SFCRF and its extension frameworks. Real patient data with tumor and prostate
segmentation regions are used. Different evaluation criteria are explained and simulation
parameters identified. Experimental results demonstrate the ability of the CD-SFCRF
to utilize additional information for higher reconstruction quality. The CD-SFCRF was
able to further lower the amount of available information while maintaining image fidelity
and accurate tissue detail. Additionally, the ACD-SFCRF was able to produced similar
results to the CD-SFCRF while lowering processing time and increasing efficiency. Finally,
the CCD-SFCRF demonstrated the ability to further enhance image details and structural
information at low sampling rates. Experimental results demonstrates the CD-SFCRF and
its associated extensions as viable reconstruction algorithms to facilitate for compressive
sensing MRI used in the early diagnosis of prostate cancer.

5.2 Recommendations

5.3 Future Work

Although initial results of the CD-SFCRF are promising, there are additional work that
can be done to improve the framework and the reconstruction result.

5.3.1 Computer Aided Diagnosis Applications

Compressive sensing method used to reconstruct MR image can influence the performance
of the computer-aided diagnosis (CAD) tools. For example, several radiomics-based CAD
algorithms have been proposed for automatic prostate cancer detection which use T2w
and DWI to extract texture and morphological features fed into a classifier [40–45]. These
algorithms heavily rely on the quality of regions of interests in similar cases in DWI and
therefore, it is expected that a reconstructed MRI with better quality will improve the
performance. As future work, we will investigate the effect of the proposed compressive
sensing method on the detection accuracies of these radiomics-based CAD algorithms with
respect to the L2 and HL0 methods. Moreover, recently, computational diffusion MRI
(CD-MRI) has been introduced which utilizes the wealth of information in DW-MRI to
computationally construct new sequences of MRI that potentially will help radiologists with
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more accurate and consistent diagnosis [7, 46]. The proposed CD-SFCRF framework will
be integrated into CD-MRI algorithms [7,46] to investigate whether CD-SFCRF improves
the separability of cancerous and healthy tissues in prostate for these computationally
generated MR sequences with respect to the L2 and HL0 methods.

5.3.2 Region Specific Compressive k-space Sampling

Different types of body organs and body types have been shown to be sparse in different
domains [13]. This means that for different MRI imagery the sparseness of the sampling
as well as the location in the k -space that is sampled can be trained to better utilize
this information. By exploring the different type of sparse sampling to use for different
tissue types , it is possible to reduce sampling percentages to only sample the necessary
information for the specific organ/area of interest.

5.3.3 Advanced Classifier Integration to ACD-SFCRF

The ACD-SFCRF demonstrated that for by segmenting regions of interest it is possible to
preserve the image fidelity in regions of interest while improving on the processing time
of the overall algorithm. The classifier used in this experiment was very basic and simple.
Using a more accurate classifier could greatly increase the quality of the segmentation of the
area of interest. If the segmentation quality is very good, then the amount of neighborhood
connections for areas of non interest can be greatly decreased and the efficiency can be
greatly increased. Furthermore, the amount of details in the areas of interested can be
enhanced as well by increasing the stochastic connections.

5.3.4 Compensated Adaptive CD-SFCRF

Individually the ACD-SFCRF, the CCD-SFCRF has demonstrated their benefits and capa-
bilities. one future work could be to combine the two frameworks together, with the ACD-
SFCRF improving the efficiency while the CCD-SFCRF applying compensation. This
combined framework have the potential to greatly increase image quality with faster algo-
rithm processing speed.
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