
A Views-Based Design Framework for Web Applications

by

David Bruce Brown

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2002

©David Bruce Brown, 2002

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Web application design is a broad term that refers to any aspect of designing a Web application,

including designing Web interfaces to data. There are a number of commercial software tools available

that employ various techniques for implementing Web access to databases. However, these techniques

apply only to portions of Web application implementation and lack a common design paradigm. We

believe that defining an approach to designing and implementing Web applications based on views,

frameworks, and patterns allows us to extend an object-oriented design representation and develop

reusable and extensible design solutions for a class of Web applications in which the concerns are

separated.

The major contribution of this thesis is the development of a new approach to designing Web

applications, producing the following visible contributions: a model for Web applications based upon a

separation of concerns using views; a framework for system elements so that object-oriented design

patterns can be used to build the application; a reusable design approach so that many Web

applications can be built around the same framework; a coherent and organized framework

representation using extended UML; and an implementation approach that can be implemented on a

number of different platforms using a range of software and tools. In support of this solution, this thesis

shows the design and implementation of a proof-of-concept Web application using this design

technique.

We believe that the approach to Web application design promoted in this thesis has proven

itself useful in a practical way for the case studies discussed herein and points the way to a wider range

of design and implementation possibilities.

iv

Acknowledgments

To Dr. Donald Cowan for his guidance and expertise, Dr. Paulo Alencar for his help, Dr. Grant

Weddell for his patience, my parents Bruce and Claudia Brown for their support, my wife Annette for

putting up with me, and Tasmin just for being there.

“Writing a book is an adventure. To begin with it is a toy and an amusement. Then it

becomes a mistress, then it becomes a master, then it becomes a tyrant. The last phase

is just as you are about to be reconciled to your servitude, you kill the monster and

fling him to the public.”

Sir Winston Churchill: on writing a book (or a thesis).

v

Table of Contents

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Proposed Solution . 2

1.3.1 Views . 2

1.3.2 Frameworks and Design Patterns . 5

1.3.3 Representation . 6

1.4 Contributions . 7

1.5 Outline of the Case Study . 7

1.6 Related Work . 10

1.7 Thesis Overview . 13

Chapter 2: A Views-Based Framework . 14

2.1 The Framework . 14

2.2 The Repository . 16

2.3 The Middle . 19

2.4 The Clients . 24

2.5 A Simple Framework Example . 29

Chapter 3: A Sample Web Application Framework Design . 32

3.1 Application Overview . 32

vi

3.2 The DCRIS Applications Design . 33

3.3 The DCRIS Repository Package Design . 35

3.4 The Middle Package Design . 38

3.5 The Clients Package Design . 40

3.6 Discussion . 44

Chapter 4: Extending the Framework . 46

4.1 ‘Other Expertise . 46

4.2 Other Language Support . 48

4.3 Discussion . 50

Chapter 5: Reusing the Framework . 52

5.1 The DCRIS Administrative Web Application . 52

5.2 Further Framework Reuse . 54

5.3 Discussion . 57

Chapter 6: Implementing the Framework . 58

6.1 The Repository Package . 58

6.2 The Middle Package . 59

6.3 The Clients Package . 61

6.4 Further Implementation Notes . 65

Chapter 7: Conclusions and Future Work . 66

7.1 Discussion . 66

vii

7.2 Future Work . 67

Appendix I: The Directory of Canadian Researchers in International Security (DCRIS) 69

I.1 DCRIS Description . 69

I.2 DCRIS Entries . 70

I.3 DCRIS Use Cases . 72

Appendix II: Using Unified Modeling Language (UML) . 75

II.1 Basic UML Elements . 75

II.2 The WAE Model . 76

II.3 Extending the WAE Model . 79

 The DCRIS Repository . 82

III.1 DCRIS Tables . 83

III.2 DCRIS Table Relations . 90

Bibliography . 92

viii

List of Illustrations

Figure 1 A Simple View . 4

Figure 2 Multiple Views . 4

Figure 3 The Framework Packages . 15

Figure 4 A Generic Repository Package . 17

Figure 5 A Generic Middle Package . 20

Figure 6 Middle - Repository Associations . 21

Figure 7 Nested Middle Package Views . 22

Figure 8 Middle Package Services . 23

Figure 9 A Generic Clients Package . 25

Figure 10 Clients - Middle Associations . 26

Figure 11 Nested Clients . 27

Figure 12 Invoice Example . 29

Figure 13 DCRIS Design Overview . 33

Figure 14 The DCRIS Repository Package . 35

Figure 15 Repository Table Relationships . 36

Figure 16 The DCRIS Middle Package . 38

Figure 17 Middle to Repository Views . 39

Figure 18 View Making up an Directory Entry . 39

Figure 19 The DCRIS Clients Package . 40

Figure 20 Views Making up an Entry List . 41

ix

Figure 21 ‘Keyword’ Example . 41

Figure 22 ‘Keyword’ Display Example . 43

Figure 23 Addition of Other Expertise . 47

Figure 24 Addition of Language . 49

Figure 25 Class Reuse Between DCRIS Applications . 53

Figure 26 Framework Superclass Example . 55

Figure 27 HTML Forms Templates . 56

Figure 28 Sample keyword Table Contents . 58

Figure 29 SQL Script for the v_keyword View . 59

Figure 30 XML Representation of v_keyword . 60

Figure 31 XML Representation of v_keyword_list . 60

Figure 32 XSLT Template for a List of Keywords . 62

Figure 33 HTML Code for a List of Keywords . 62

Figure 34 Output of a List of Keywords . 62

Figure 35 XSLT Template for a Keyword Form . 63

Figure 36 HTML Code for a Keyword Form . 63

Figure 37 Keyword Form Output . 63

Figure 38 Web Page Request Processing . 64

Figure 39 Typical DCRIS Entry . 71

Figure 40 DCRIS Use Cases . 72

Figure 41 DCRIS Repository Overview . 82

Figure 42 Keyword Table . 83

Figure 43 List Table . 84

Figure 44 Member Table . 84

x

Figure 45 Member_Keyword Table . 85

Figure 46 Member_Supp_Key Table . 86

Figure 47 Publication Table . 86

Figure 48 Pub_Type Table . 87

Figure 49 Recommendation Table . 88

Figure 50 Rec_Type Table . 88

Figure 51 Supp_Key Table . 89

Figure 52 Table Relationships . 90

1 All trademarks and copyrights are owned by their respective companies.

1

Chapter 1: Introduction

1.1 Motivation

Web application design is a broad term that refers to any aspect of designing a Web application,

including referring to designing Web interfaces to data. With the proper back-end server, Web

browsers can provide an instant user interface for a wide range of applications. Input and output

approaches are, broadly speaking, standardized and familiar to users. They can provide both client and

server data processing making them flexible and allowing performance balancing. With the spread of

the Internet, Web applications are becoming more and more popular.

One of the spurs to the dramatic growth of the World Wide Web is the ease in which content

can be placed in Web pages and posted. Creating Web interfaces to databases needs software more

sophisticated than a simple HTML editor or word processor. There are a number of commercial

software tools available for implementing Web access to databases. However, such tools lack a

common design paradigm [41]. These include Janna System’s LivePage, Sybase Inc. Net Dynamo,

IBM’s Net Data, etc.1 Free software tools such as Perl or C-based (Common Gateway Interface) CGI

scripting and dynamic PHP Hypertext Processor (PHP) [44] Web pages are also in widespread use. In a

typical Web application each Web page stands on its own and is custom written to perform a particular

job. Client and server-side scripting provide some small measure of reuse through the use of script

libraries and Cascading Style Sheets (CSS) [42]. Extensible Style Language (XSL) [43] style sheets

provide reusable formatting code. These techniques apply only to portions of Web application

implementation. This thesis suggests a basis for organizing Web application design.

Chapter 1: Introduction 2

1.2 Problem Statement

A successful Web application design must bring together three major elements: structure, navigation,

and presentation. To bring these elements together in a Web application requires a clear and systematic

design approach that overcomes design problems related to separation of concerns, design frameworks

and patterns, and framework representation.

• In Web applications the three main concerns of structure, navigation and presentation are often

intermixed and it makes the design difficult to organize, reuse, and extend [46, 18].

• There is a need for a comprehensive approach that support the design of a class of Web

applications and is documented by design patterns [41, 10, 11].

• There is a need to be able to represent such a framework with an object-oriented extensible

notation [34, 6, 26].

1.3 Proposed Solution

This thesis examines Web application design, specifically focusing on the issues of separation of

concerns, reuse, and design representation. It proposes the use of views to deal with separation of

concerns, a framework to deal with reuse, and extensions to the Unified Modeling Language (UML) to

deal with representation.

1.3.1 Views

Separation of concerns is the first of the three key elements in Web application design that this thesis

emphasizes. Separation of concerns is a software engineering principle that hides complexity through

abstraction. Software applications have two ‘concerns’: First is the basic concern that deals with the

essential functionality of an application, i.e., what is the main purpose of a particular piece of

software? Second are the special purpose concerns, such as the user interface, control, or timing.

Chapter 1: Introduction 3

Separating these concerns makes software easier to design, implement, reuse, and modify. The goal of

the views model is to abstract the modeling of relationships between modules, and thus ease the job of

the designer [2].

One approach to designing a software application that emphasizes separation of concerns is to

design software using views. The views (or views-a) model is an extension to the software design

primitives is-a (specialization), has-a (aggregation), and uses-a (association). The Abstract Data Type

(ADT), with its emphasis on information hiding, is a very important concept in software engineering,

but is incomplete. The views model extends the concept of the ADT by providing an interface that acts

as a buffer between an ADT and the external world or other ADTs [3].

The views model has two basic constructs: objects and their interfaces (views). An object

should be designed to be independent of the external world as it is the job of the view to connect the

object to that world. The way in which the internal states of an object are presented to the external

world is irrelevant to the object. For example, the value of an integer in a viewed object could be

presented by a view as a number, a position on a dial, or a point on a slider. A user could change this

integer value in a number of ways. Yet for all of these, the viewed object need not ‘know’ which

representation was used. The view provides a clear separation of external representation from internal

state. The implementation details of an object-view relationship are unimportant for design purposes.

Indeed, objects and their views can be connected together at code-time, link-time, or run-time. During

design, only their states and public interfaces are considered.

Whenever the internal state of an object changes, a view of that object must change its

presentation of that state. A view may also change the state of an object through the object’s public

interfaces, or controls. In other words, a view is a representation of the state of the object it views.

Chapter 1: Introduction 4

Figure 1 A Simple View

Figure 2 Multiple Views

Figure 1 shows an example of a simple views relationship. Views and objects differ only in

their the relationships they have with each other. A view is just another type of object that is called a

view because of the duties it performs. Thus, a view may be viewed in the same way an object can be

viewed. In this context, a ‘view’ becomes an ‘object’.

A view puts a user at arms’ length from the object it views. All interactions between the user

and an object are encapsulated in the view. The only knowledge the user has of the object’s internal

state is provided by the view. Since a view is an object itself, it also has states and controls that can be

accessed and manipulated by other views. Thus views may be nested, allowing the creation of complex

user interfaces.

Figure 2 shows a more complex views relationship consisting of four objects. Object is viewed

directly by View_A and View_C. The one-way associations between the views and Object imply that

Object is unaware of the existence of View_A and View_C. View_A and View_C can examine the state

of Object at any time, but Object cannot view the states of View_A and View_C. Further, both View_A

and View_C can alter Object’s state through Object’s public interfaces, whereas Object does not have

access to the public interfaces of View_A and View_C. Both View_A and View_C must show Object in

the same state. Since Object may be in only one state at any given time, View_A cannot show Object in

one state, and View_C show Object in another. In other words, multiple views of a single object must

Chapter 1: Introduction 5

be consistent. (Multiple views need not be the same, just consistent. For example, an analog display

and a digital display can both be used to show the current time. The time is consistent; its views differ).

Views may be nested. View_A is viewed by View_B. To View_B, View_A is simply another

object. View_B can examine and alter the state of View_A, whereas View_A is unaware of the existence

of View_B. Since the state of View_A depends on the state of Object, and View_A’s has access to

Object’s public operations, View_B can indirectly examine and alter the state of Object through

View_A. View_B must display the state of View_A that is consistent with View_A‘s display of the state

of Object.

The advantages of using a views model are clear [3]:

• The views model emphasizes loose coupling between modules

• This separation of concerns improves reusability since modules are not closely linked together

• The higher level of abstraction makes a designer’s visualization of a software system easier

• The designer need only formally specify the connections between modules and systems using

the view model and leave the implementation details until later

1.3.2 Frameworks and Design Patterns

Reuse is key to keeping down the cost of developing large-scale software systems. The reuse of

software design elements from one project to another allows rapid and efficient development of the

new project through minimizing customization [12, 25]. One design pattern that emphasizes reuse is

the framework.

A framework is a “reusable chunk of architecture” [16]. A framework describes the interaction

between the various objects that make up a software system and provides common functionality for the

applications that are built around that framework. This identification of common functionality is key to

a framework’s support for reuse - design components from one system can be used with little or no

Chapter 1: Introduction 6

modification in another system where the systems are similar. A framework is generally useful only

within a single problem domain and is therefore most useful when a domain contains many

applications [18]. Well-designed frameworks evolve through use. As more applications are developed

for a particular framework, features common to those applications can be built into the framework, thus

improving the framework [16].

Modularity can also be emphasized within a framework by dividing the framework into several

parts according to their concerns (interface, control, timing, etc). These parts can be individually

modified, and reused. Further, the framework can be extended to add new functionality as it provides

hooks for the addition of new design elements [5]. The framework presented in this thesis uses views to

establish modularity and reuse as well as separation of concerns.

1.3.3 Representation

Representing a software design in a coherent, logical, and standard manner is key to the comprehension

of that design [26]. Muddled representation leads to muddled implementation. A good modeling

language is important to good design representation.

The Unified Modeling Language (UML) [32] is a widely accepted standard for modeling

software systems. UML is a highly flexible, extendable, modeling language that can be used to

represent a wide range of software systems and individual design elements [16]. This thesis uses an

extended version of UML to model a framework for Web applications. The first extension involves the

representation of views as particular types of UML classes. The second extension has been developed

by Conallen [6], and is named Web Application Extension (WAE). Appendix II shows these extensions

in more detail. This thesis demonstrates how the WAE model can be used as part of a views-based

framework to improve the design of Web applications.

Chapter 1: Introduction 7

1.4 Contributions

The thesis of this work is that defining an approach to designing and implementing Web applications

based on views, frameworks, and patterns allows us to extend an object-oriented design representation

and develop reusable and extensible design solutions for a class of Web applications in which the

concerns are separated.

The major contribution of this thesis is the development of a new approach to designing Web

applications. The work involved in attaining this goal has produced the following visible contributions:

• a model for Web applications based upon a separation of concerns using views

• a framework for system elements so that design patterns can be used to build the application.

• a reusable design approach so that many Web applications can be built around the same

framework.

• a coherent and organized framework representation using extended UML.

• an implementation approach that can be implemented on a number of different platforms using

a range of software and tools.

In support of this solution, this thesis will show the design and implementation of a proof-of-

concept Web application using this design technique.

1.5 Outline of the Case Study

The Directory of Canadian Researchers in International Security (DCRIS) was established at Wilfrid

Laurier University in Waterloo, Ontario, to support research on all aspects of international security by

identifying Canadian researchers and their specific areas of expertise, and by facilitating

communication amongst the community of Canadian researchers in international security. (See

Appendix I for a description of the Directory and its contents).

Chapter 1: Introduction 8

It was important that the Directory be made available to as many people as possible across

Canada in order to facilitate communication amongst its members. Access to the Directory had to be

simple, fast, and reliable. Using the World Wide Web was an obvious answer to these problems: Web

pages are, for the most part, platform independent; Web browsers are relatively easy-to-use and have

consistent interfaces; Web pages can easily mix text, graphics, video and sound; and the Web can be

accessed world-wide. In 1996 the author was asked to design and implement two Web applications for

the Directory - one for public access and one for administrative access. The author was chosen for this

task because of his experience in Web application creation for the Wilfrid Laurier University’s

Department of Physics & Computing.

Since 1991, the Department of Physics & Computing at Wilfrid Laurier University has been

making increasing use of electronic instructional tools in its courses. In the beginning, course

assignments were made available on the university’s mainframe computer, and electronic mail was

used to enhance communication between students and course instructors. With the appearance and

widespread adoption of the Internet, course material was made available through World Wide Web

pages. This material included lectures, labs, assignments, and links to off-campus resources.

Automated quizzes were created and used to a limited degree in some courses. Student marks were

made available to students on the Web. Courses used electronic mailing lists to pass on course

announcements, and provide a forum for discussion of course material and concerns. Much of the

information available through the Department’s Web applications was dynamic. Student grades, for

example, could not be efficiently presented through static Web pages because of security concerns and

the sheer volume of such data. The Department made extensive use of Web pages that were built on the

fly from data extracted from a repository. Such data could also be searched and filtered dynamically.

The DCRIS administrator was interested in tapping into this experience and making use of it in the

creation of the DCRIS Web applications.

Chapter 1: Introduction 9

The first iterations of the DCRIS Web applications were based upon data stored in flat files

accessed through Common Gateway Interface (CGI) scripts. These scripts, written in Perl for the most

part, allowed users of the DCRIS public Web application to search the Directory. They also allowed

the administrator to store and update the Directory contents. This method allowed some degree of

software reuse as the same CGI scripts could be called from different Web pages as needed. This reuse

was done strictly on an ad-hoc basis, however. As well, although the hypertext aspect of the Directory

material was much enhanced, all links had to be designed, implemented, and maintained by hand.

Consistency across Web pages also had to be maintained by hand.

Although this combination of ASCII flat files and CGI scripts worked, it was script and server

intensive, and the performance suffered. As well, the data was not very portable and changes to the

layout of the Directory contents were difficult to implement. When the Department acquired a Web

server capable of running an SQL database the Directory data was moved to this database. This

reduced the need for scripting, allowed the separation of the database server and the Web server, and

significantly improved the speed of the delivery of the Directory content. Automated Web-based

testing tools used by the Department went through a similar evolution.

In 1998 the Department acquired Janna System’s LivePAGE software, which eased the

management of Web applications, and, with its SQL database underpinnings, improved the ability of

the designer to develop dynamic Web pages. Livepage allows the embedding of SQL code and scripts

in various languages in Web pages, and is much easier to use and organize than CGI scripting. The

Directory was reimplemented in LivePage in 1999 / 2000.

As useful as these evolving software tools have been in dealing with the implementation of the

Directory Web application, none of them deal with the issue of how such a Web application should be

designed. As well, as the software and interfaces improved, so did the demands placed on them. The

Directory administrator requested more searching and filtering capabilities, easier updating, and

Chapter 1: Introduction 10

statistical information on the Directory’s use. The lack of an organized design for the Directory Web

application made adding these capabilities difficult as there was no organized framework onto which

these new features could be easily grafted. Further, the lack of an underlying framework and reusable

modules made the application increasingly difficult to maintain because of the lack of organization

amongst the application’s modules.

1.6 Related Work

Many approaches concentrate on the application architecture. Ebner et. al. [27] suggest a five-layer

architecture based upon an object-oriented framework. This architecture divides the application into

five modules: presentation, user interface components, business logic, data management, and system

infrastructure. The data model is explicitly separated from the data source, and uses a broker interface

between the modules, allowing components to be added, deleted, and modified with minimum effort.

This thesis suggests that business logic should not be treated as a single indivisible module, but rather

that all elements of a Web application design have their own business logic.

One approach to improving Web application design is through the use of domain-specific

languages. The <bigwig> language, as described Brabrand et. al. [28], is a high-level language

specifically designed for the implementation of interactive, dynamic content Web sites. <bigwig> is

designed to deal with what the authors define as the six major problems of Web site design and

implementation: sessions, dynamic documents, concurrency control, form field validation, database

integration, and security. This thesis suggests extending an existing design language (i.e. UML), rather

than creating a custom language.

Applying an object-oriented framework to Web application design is the approach of a number

of recent papers. Schwabe et. al. [29, 30] propose using the Object-Oriented Hypermedia Design

Method (OOHDM) to design Web applications. OOHDM allows a designer to view a Web application

Chapter 1: Introduction 11

design from three different perspectives: the conceptual model, which represents domain objects and

their functionality; the navigational model, which defines navigation nodes as views of conceptual

objects; and the interface model, which represents the visible manifestation of navigation nodes.

Within each of these models design patterns such as wrappers, advisors, observers, and decorators are

used to ease the burden of design. In [30] the authors advocate the use of views (using the views

approach of [1]) to define navigation nodes. This thesis also suggests the use of views applied to three

different perspectives.

The object oriented-hypermedia (OO-H) method outlined by Gomez et. al. [31] is another

object-oriented approach to Web application design. Building upon Conallen’s work [33], it uses the

Unified Modeling Language (UML) to represent Web application architecture. In a way similar to that

used in [29], OO-H divides the Web application design into three views: the conceptual view; the

navigation view; and the presentation view. Each of these views has its own UML representation. The

OO-H method further calls for the use of XML together with XSL stylesheets rather than HTML in

order to provide device-independent flexibility in the Web application design and implementation. This

thesis also examines the use of XML and XSL to implement Web application designs.

The UML is in common use in software design; indeed, it is claimed that “The Unified

Modeling Language (UML) ... is a visual modeling language that is presently the de-facto standard for

modeling software intensive systems” by Larsen and Conallen [36]. The UML, and extensions of it, are

put forward as being an excellent method of representing web application designs by Conallen [6, 33],

[31], Fuentes et. al. [35], and Larsen and Conallen [36]. Developing UML profiles, or collections of

UML elements to represent a particular design approach is suggested in [35]. The authors point out that

although application frameworks are an excellent design tool they often suffer from poor

documentation. UML profiles are a way of providing a common graphical notation and vocabulary for

a particular application domain. They offer a case study of a model named MultiTEL as an example of

Chapter 1: Introduction 12

how UML profiles can be developed and applied. Although not called a ‘profile’, both [6] and [36]

propose a similar approach through a set of UML extensions called the Web Application Extension

(WAE). In addition, the authors propose a Reusable Asset Specification (RAS) for defining reusable

bundles of design and code in a Web application. This thesis suggests the use of UML, but not the

‘profile’ concept.

Despite the popularity of UML, not all researchers in this field are enamored of it.

Reinhartz-Berger et. al. [40] suggest that a UML description of a Web application is unnecessarily

complex. They propose an approach called OPM/Web, an extension to the Object-Process

Methodology (OPM). As an object-oriented approach OPM/Web emphasizes the separation of Web

design into three main areas: structure, navigation, and presentation.

Another object oriented approach to Web application design is the Extensible Web Modeling

Framework (XWMF), explained by Klapsing et. al. [39]. XWMF is an application of the Resource

Description Framework (RDF), which is a World Wide Web Consortium (W3C) standard for

processing metadata. The paper demonstrates how a Web application design formally described using

XWMF separates content and layout and supports reuse. Further, the paper describes tools developed

by the authors to create, process, query, and analyze a Web application’s RDF description. This thesis

suggests that using metadata as a basis for Web application implementation is fertile ground for future

work.

The use of XML for data communication between a database and a web application is

discussed by Bertino and Catania [38]. The authors describe how XML is becoming a standard data

interchange format for the Web and the problem of storing and accessing XML using relational

databases. They discuss how XML data is homogenous and structured, heterogenous and unstructured,

or a hybrid of these, and databases can either mimic an XML data structure or simply store raw XML

data. Each approach has benefits and drawbacks in terms of design and implementation. Bertino and

Chapter 1: Introduction 13

Ferrari [37] stress the difficulties of integrating data models, schemas, and instances, and how XML

can be used to ease some of these difficulties. This thesis shows how XML can be used to implement a

views-based framework design.

1.7 Thesis Overview

This thesis is organized as follows. In Chapter 2 we describe a generic views-based framework for

Web application design, showing how it can be broken down into different design packages: the

repository package, the middle package, and the clients package. Further, it demonstrates how views

provide the connections between the different packages and isolate them from each other. In Chapter 3

we give a specific example of a Web application design framework and discuss how the various

elements of the DCRIS public Web application can be designed using this framework. In Chapter 4 we

demonstrate how the framework can be extended to add additional functionality to the DCRIS public

application. In Chapter 5 we discuss reuse of the framework with respect to the DCRIS administration

Web application and another, significantly different Web application, and show how reuse can take

place both at the design and code level. In Chapter 6 we demonstrate how the framework design

concepts can implemented and use the DCRIS Web applications as specific examples of proof of

concept implementations. In Chapter 7 we discuss the lessons drawn from the thesis’ design approach

and possible future work. In Appendix I we describe the DCRIS projects in some detail. In Appendix II

we describe the UML extensions used in this thesis. In Appendix III we describe in detail the structure

of the DCRIS relational database repository.

14

Chapter 2: A Views-Based Framework

In this Chapter we introduce a Web application design framework. This framework is divided into

three separate packages, the Repository Package, the Middle Package, and the Clients package. Each of

these packages uses views to promote separation of concerns and reuse. This framework is amenable to

being modeled in UML. These UML elements are described in detail in Appendix II.

2.1 The Framework

The key to understanding this framework is to recognize that a set of data can be viewed as a collection

of objects. Objects that share common attributes can be viewed as classes. Further, these objects can be

viewed as existing at three different levels. On the first level an object exists in persistent storage. Such

an object may be of limited use to a user because of its simplicity or lack of readability. These objects

can be searched, sorted, and selected. The concern at this level is strictly permanence and access to

these objects. At the second level further objects may be instantiated, updated, deleted, or combined by

manipulating the objects in storage. More complex objects may be made up from simple objects or

even simpler objects may created from extracting a subset of the attributes of a particular object. The

concern at this level is the creation and updating of objects, some of which may have no permanent

existence, but are made up of combinations of permanent objects. At the third level the objects from

the second level may be formatted so as to be accessible to a user. In their raw form objects at the

second level are generally not easily decipherable and the concern at this level is to make these objects

accessible to a user, human or otherwise. At all three levels there are rules as to how these objects

should be processed and views are used to describe this processing.

As a simple example, imagine a company that needs to produce invoices for its customers. At

Chapter 2: A Views-Based Framework 15

Figure 3 The Framework Packages

the first level the company has a database that stores customer and order information. The way in

which these customer and order objects are stored follows the business rules (explicit or implicit) that

this company has laid down. At the second level the company produces invoice objects based upon

their customer and order information. The company has rules for what goes into an invoice, for

example the customer’s name and address may be part of the invoice, but the customer’s phone number

may not, despite the fact the company has every customer’s phone number in its database. The

company bills customers on a monthly basis and all orders for a particular calendar month become part

of a customer’s invoice. Further, information can be added to an invoice. The invoice must have a total

based upon the orders it contains, though no such explicit total is stored in the company’s database. At

the third level, once the invoice object has be built from the appropriate customer and order objects and

further processing applied, the invoice must be sent to the customer in a format the customer can read.

The company gives customers a choice of how they would like to access an invoice: through a Web

page, a letter, or by phone. The company must format each particular invoice according to the

customer’s desires.

This example illustrates how a particular problem (e.g. producing invoices) can be divided into

the three elements that make up the proposed framework: storage, manipulation, and display.

Figure 3 shows the elements that make up the framework. Each element is represented by a

Chapter 2: A Views-Based Framework 16

UML package. A package is a high-level container for UML design elements and is useful for breaking

a large model up into smaller, more manageable pieces [7]. Packages may be related in a number of

ways. In Figure 3 the dashed arrow between packages represents a dependency. In UML a dependency

relationship specifies that a change in the source may affect the target that uses it, but not necessarily

the inverse. The dependencies in Figure 3 show that the clients package depends on the middle

package, and the middle package depends on the repository package. Thus changes to the middle

package do not affect the repository, but changes to the repository will likely affect the middle.

Similarly changes to the clients package do not affect the middle package, but changes to the middle

package will likely affect the clients package. This fits nicely into the views concept as a change in a

viewed object affects a view of it, but a change in a view does not affect the object being viewed. The

dashed lines in Figure 3 between the packages and the notes to the right simply indicate the

relationships between the UML elements and the corresponding notes.

The repository package represents the object store that a user wishes to access and the

operations needed to access that object store. The repository architecture and design is a well-known

software design pattern [11], as described in section 1.3.2. In implementation terms a repository can be

a database, a set of text files, a set of XML data, or some other kind of data storage mechanism.

The middle package contains objects extracted from the repository. These objects can be a

subset or a superset of all the objects available in the repository. In the middle package there are

methods for searching, sorting, and selecting objects acquired from the repository. In implementation

terms the middle package is composed of database scripts or other executable programs.

The clients package represents a user’s view of the repository contents as filtered through the

middle package. Depending on the user’s needs, this view can take many different forms such as paper

output, machine readable output, and video display. The clients package views assemble the objects

provided by the middle package views into appropriate output formats.

Chapter 2: A Views-Based Framework 17

Figure 4 A Generic Repository Package

2.2 The Repository Package

A repository design pattern provides a central data structure with an access interface for multiple

clients; these clients are independent of one another; each client can access the repository

simultaneously; and the repository controls client access through a transaction mechanism. The

repository reacts only to requests from outside, and thus does not have a signaling mechanism to alert

external clients of internal changes. Repositories in general may have signaling mechanisms, such as

triggers; such mechanisms are not necessary for this particular design. Clients must query the

repository to discover if any changes in its internal state have occurred [12].

Figure 4 shows a generic repository. A repository may contain a number of classes (here

labeled class_1, class_2, class_3, and class_4), each of which is realized by a component. In UML a

component represents the implementation level of a software system. Components map to some real-

world element, such as a text file, xml data, or a relational database. Components are important in the

design of a software system since every conceptual element of a design must eventually be mapped to a

real-world element. A system’s components need only be added in the final phases of the system’s

Chapter 2: A Views-Based Framework 18

development. The realization relationship is represented in UML by a dashed arrow between a module

and the component that realizes it, as between the class_1 class and the text file component. The

realization arrow is similar to a generalization arrow, except that the shaft of the arrow is dashed,

implying that realization is a form of inheritance [16].

Figure 4 shows that the repository package contains business rules. The various classes shown

are all dependent upon the repository’s business rules package. Business rules represent the conceptual

definitions of objects within the repository, the classes are the design realizations of those business

rules. As before the dependency relationship between the business rules and the classes that depend on

them implies that as the rules changes, the classes must be altered to fit those rules. On the other hand

changes to the classes (e.g. a change in language used to define the classes), do not imply a change to

the rules governing those classes, merely that a different means of expressing a business rule has been

chosen by the designer.

Using the example given in Section 2.1, a repository may contain a customer class based upon

the company’s definition of a customer. This class may contain customer information such as name,

address, telephone number, and customer ID as required by the company’s business rules regarding

customers. If the company uses an SQL database, then the actual customer data would be stored in an

SQL table. If the company changes their definition of a customer, then both the customer class and its

implementation would have to be changed to match the new customer definition.

The key to understanding the usefulness of a repository is flexibility. A repository structures

data, allowing it to be searched, sorted, and selected. The repository provides a clear and concise

interface for clients to access this data. The repository does not impose any display formatting on its

data, but it does impose a structure that governs how data may be accessed. The repository is

concerned only with the data itself. More complex relationships and presentation must be handled by

the other elements of the framework [14].

Chapter 2: A Views-Based Framework 19

Separating content from the other elements of a software system not only makes the overall

design easier, it also makes future expansion and uses of the system easier. A repository is completely

unconcerned with the presentation of its data, and therefore any clients wishing to present this data

must apply their own formatting. The corollary of this is that the repository does not impose any

limitations on the formatting that can be applied to its data, and thus clients may apply any formatting

they like to the repository’s data so long as they comply with the repository’s interfacing rules.

In keeping with a views approach to software design a repository is completely independent of

the objects that view it. It merely delivers or updates data upon request. Any formatting that must be

applied to the repository data must be applied by the objects that view the repository, not by the

repository itself. The objects that view the repository must respect the repository’s rules for accessing

data, not the other way around. Thus separation of concerns is enforced.

Given its independence from the other elements of a particular software system, a repository

can become part of many software systems. In one system a repository could be the source of data for a

Web application. In another system that same repository could be the source of data for a database

query tool. In yet another it could be the source of data for documentation. The applications may be

isolated from each other as they have no common elements beyond the repository itself [12].

2.3 The Middle Package

A repository provides the means for the data it contains to be sorted, searched, and selected. However,

it does not decide on the sorts, searches, and selections. Before data can be displayed by a client, it

must be structured in some way. The internal structure imposed upon data by the repository may be of

no use to a client. For example, if data is stored in an SQL database it is very likely normalized, i.e.,

redundancy is minimized and relations between objects implemented through some arbitrary foreign

key values. The final output desired by a user may need that redundancy reimposed and may not need

Chapter 2: A Views-Based Framework 20

Figure 5 A Generic Middle Package

these foreign key values exposed. Thus the objects retrieved from a repository may need restructuring

before the appropriate presentation formatting can be applied. A middle view therefore represents a

view of an object before it is formatted for display purposes.

Figure 5 shows a sample generic middle package. A middle package may contain a number of

views (here labeled view_1, view_2, view_3, and view_4), each of which is realized by a component.

These components represent real-world resources: a script (such as an SQL script); a java applet; or an

executable file. As shown by relationships between the executable component and view_3 and view_4,

one component may support multiple views.

The middle package also contains a business rules package. The business rules package

represents the sets of rules that must be followed when creating a view of data in the repository. These

rules determine the selections and projections that are applied to the repository data when generating a

view. These rules are determined by the real-world demands placed upon the software system. As these

systems undergo change, the business rules may also be modified. Note that the repository structure

need not necessarily change in response, merely how data is retrieved from that structure.

Chapter 2: A Views-Based Framework 21

Figure 6 Middle - Repository Associations

The package notation is simply a short-hand way of showing the relationship between two

high-level design components. Figure 3 shows the dependencies between the highest level packages in

the design framework. At a lower level, Figure 6 shows how the individual views of the middle

package relate directly to the individual classes in the repository package. One view may be restricted

to a single class in the repository, as in the relationship between view_1 and class_1. A view may

reference more than one class in the repository package, as in the relationships between view_2 and

classes class_2 and class_3. A single class may be viewed by multiple views, as in the relationships

between class_3 and views view_2, view_3, and view_4. Again, it is important to emphasize that in

keeping with the definition of a view, the classes within the repository package are unaware of the

existence of the views in the middle package. The only requirement of the repository package classes is

that they provide an interface to allow themselves to be viewed. Views may not access repository

package classes except through these interfaces.

Chapter 2: A Views-Based Framework 22

Figure 7 Nested Middle Package Views

Views in the middle package are not limited to viewing repository package classes. In general

views may be made up of other views. Figure 7 shows a sample overview view that references both

view_1 and view_2. The association multiplicities show that overview references only one occurrence

of view_1 but references one or more occurrences of view_2. Although overview does not access any

repository package classes directly, it has access to the repository data through view_1 and view_2. In

real-world terms overview (as its name implies) may represent some sort of aggregate report. Data is

extracted from the repository by view_1 and view_2 and overview bundles that data together, selecting

and projecting elements of those views as necessary. Furthermore, overview could provide sums or

other aggregate functions of the data in the two views it accesses.

The views view_1 and view_2 may or may not be able to stand alone in terms of being accessed

for display purposes by elements of the clients package or they may exist only to serve the needs of

overview. What is important is that either case may be true. Views in the middle package may be

reused for different purposes. For example, overview may represent an invoice, view_1 customer

information, and view_2 a list of items purchased by that customer. view_1 could be reused as part of a

list of customers and view_2 as part of a list of all items sold in a month.

The middle package has two further functional aspects: it controls the flow of data between the

repository package and itself, and between itself and the clients package. We call these specific

Chapter 2: A Views-Based Framework 23

Figure 8 Middle Package Services

functions the network services and client services respectively.

Figure 8 shows the components that make up the middle package services. The network

services represents the distribution of data within the framework design, as implemented using

protocols such as Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), or other

protocols. These other protocols need not be database protocols. Since the repository may consist of

files rather than a relational database, these other protocols may simply be the operating system’s file

access protocols.

The client services represent the applications that take the data retrieved by the network

services and process it before passing it onto the clients package. These applications are generally

packages such as Cold Fusion, LivePage, or PHP Hypertext Processor (PHP). The client services

implement the middle package views - the processing and formatting of repository data.

Access to the data in the repository package is granted by a discretionary security mechanism.

In a discretionary security mechanism a user has access to an entire data structure or none of it [24]. If

the repository is based upon a relational database such a structure could be a table or a set of attributes

of a table, and access to these structures would be controlled by the database’s internal security

Chapter 2: A Views-Based Framework 24

mechanism. If the repository is based upon a file system, then the data structure is a file and access to

the file is controlled by the file system’s user permissions mechanism. In order to access these data

structures the middle package’s network services are treated as users by the repository. A casual user,

who is anyone who is not an administrator, has no way of accessing a Web application’s data directly

and must work through the middle package’s services. If there are logins and passwords necessary to

access persistent storage, these logins and passwords are hidden from the casual user within the middle

package. The casual user does not even know how or where the data is stored. The Web application

acts as a buffer between the causal user and the data the user ultimately wishes to access.

Mandatory security restricts access to data based upon the contents of the data rather than the

data structure [24]. Mandatory security is applied by the middle package’s client services. A client

service applies data filtering to the objects the network service retrieves from the data source, allowing

only data that the end user is authorized to see to get through to the Web server. As the client service

processes requests it examines the credentials of the user requesting the data and fulfills or rejects

requests accordingly.

2.4 The Clients Package

An object constructed by a view in the middle package is of little use to a user unless that object has

been formatted in a way that makes it accessible to the user. Because the middle package elements

concern themselves only with providing a structured view of the data in the repository, applying

display formats to that data must be left to the views of the clients package. This distinction between

object storage and manipulation and how objects are viewed is key to the concept of separation of

concerns. The only concern of the clients package is to present data in some appropriate display format.

Chapter 2: A Views-Based Framework 25

Figure 9 A Generic Clients Package

Much like the generic middle package of Figure 5, Figure 9 shows a sample generic clients

package. A clients may contain a number of views (here labeled view_svg, view_htm, view_rtf, and

view_txt), each of which is realized by a component. These components represent real-world resources:

an XSL stylesheet; a java applet; or an executable file. As with all components each of these has a

interface defined: given the proper parameters and access to the repository package classes they will

produce the desired view object. As shown by relationships between the executable component and

view_rtf and view_txt, one component may realize many views.

Further, as with the views in the repository and middle packages, the views in the clients

package depend on business rules. These rules define not what data is to be presented, but rather how it

is to be presented. Referencing the example given in Section 2.1, imagine that an invoice object has

been created by the appropriate view in the middle package. Because the company wishes to produce

an HTML version of that invoice an appropriate view in the clients package is used to apply HTML

code to the invoice object. The invoice view of the clients package determines which data elements

have what codes applied (bold or italics, for example), and where on the page the data is placed.

Chapter 2: A Views-Based Framework 26

Figure 10 Clients - Middle Associations

Changes in the formatting and layout of the invoice do not affect the data that makes up the invoice as

defined in the appropriate middle package view.

Like Figure 6, Figure 10 shows how the individual views of the clients package relate directly

to individual views in the middle package. One clients package view may be restricted to a single

middle package view, as in the relationship between view_svg and view_2. A clients package view may

reference more than one middle package view, as in the relationships between view_htm and the

middles view_1 and view_2. A single middle package view may be viewed by multiple clients package

view, as in the relationships between view_4 and views view_txt and view_rtf. Again, it is important to

emphasize that in keeping with the definition of a view, the views within the middle package are

unaware of the existence of the views in the clients package. The only requirement of the middle

package classes is that they provide an interface to allow themselves to be viewed. Clients package

views may not access middle package views except through these interfaces.

The arbitrary names given to the views of this generic package are illustrative of their range

and purpose. Thus, the name of the view view_htm implies that it produces an HTML formatted object

Chapter 2: A Views-Based Framework 27

Figure 11 Nested Clients

from the data provided by the middle view_1 and view_2. Similarly the name of the view view_rtf

implies that it produces an rtf formatted object from the data provided by the middle view_4. This does

not imply that these are the only display formats that can be applied to middle package objects; rather it

simply indicates the possibilities available to the software designer.

Like the middle package, the clients package may contain nested views. Figure 11 shows an

example of such nested views. The view view_table references a single instance of the middle view_1

directly, perhaps to get a title for the table. Each instance of the view_row view references a single

instance of the middle view_2. However, view_table must contain one or more instances of view_row.

Thus, as the names of the views imply, a table of data (its actual formatting is irrelevant) is made up of

a set of rows of individual data elements. These data elements are extracted from the repository

through the middle elements as the clients have no direct access to the repository itself.

Separation of concerns can be made an intrinsic part of software design using this views

framework approach. Data storage and structure is separated from how the data is selected, projected,

and joined. This process of selection and projection is further separated from how the resulting objects

are displayed. Each level is isolated from the one above it. Changes to the clients layer have no effects

on the middle layer, and changes to the middle layer have no effect on the repository layer. Further, this

Chapter 2: A Views-Based Framework 28

layered approach promotes reuse. Because an object in the middle layer is independent of how it is to

be displayed, it can be extracted from the repository once and displayed in as many different ways as

the designer desires by simply applying different views to it. The idea is to minimize the number of

classes in both the repository and the middle layers. A properly designed view can be used in many

places, minimizing design time and making global changes easier to implement. Reuse is key to the

importance of views, since effective software reuse can improve software quality [5].

Discretionary security is also applied at the clients package level by restricting access to the

application’s Web pages. Each Web page in the Web application contains some top-level view of the

data in persistent storage. In the same way that a database table or a file are structures, a Web page can

be treated as a structure. Users are granted access to these pages through a Web server authorization

mechanism. Thus an administrator has access to Web pages that allow updating the contents of the

repository while a casual user has access only to Web pages that produce reports.

Together, security mechanisms in the repository, middle, and clients packages provide a Web

application with the ability to provide different views of data based upon a user’s credentials and

authorization. For example, in a Web application used by a university department, a professor is

allowed access to Web pages that list all students’ marks for a course that professor teaches. Further,

the professor is allowed to manipulate those marks through appropriate Web pages, and see aggregate

information such as an average mark. A student is allowed access to Web pages that contain only

information relating to that student, such as the student’s grades or course schedule. The student is not

allowed to see information belonging to other students or to change any of this information. The

student may or may not be allowed to see aggregate course information such as the average course

grade. A department head is allowed to set which Web pages can be seen by which professors based

upon the courses that they teach.

Chapter 2: A Views-Based Framework 29

Figure 12 Invoice Example

2.5 A Simple Framework Example

Although Chapter 3 discusses in detail a project implemented using the views framework model it is

instructive to provide a simple example of how this general approach to designing a software system

using a views-based framework can be applied. Figure 12 shows how the three packages of the

framework can produce a set of invoices and sales reports in various formats. The repository package

contains two data tables, customer and order. Both customer and order are tables of data as shown by

their stereotypes. The multiplicity of the association between them shows that a customer may have

many orders, but each order belongs to only one customer. According to the business rules governing

this data, each time a customer places an order an invoice must be generated. Thus, in the middle

package, an invoice view is defined according to this business rule. An invoice combines appropriate

customer and order data. Note that not all of the data for a particular customer or order may appear on

the invoice. Part of the duties of the invoice view is to select and project only the elements of the

repository data that fit the business rule that defines it. Thus, an invoice may include a customer’s

shipping address but not their phone number. As well, the invoice may generate data that does not

Chapter 2: A Views-Based Framework 30

appear in the repository. The total value of an invoice may not be stored in the order table, but the

invoice view could generate it on the fly. The important thing is that when the invoice view has been

generated for a particular order and matching customer, that view contains all the data, and only the

data, defined by the business rule for an invoice. The invoice view is not ordered or formatted for

display purposes. The data it contains is structured only so that it can be retrieved by a clients package

view that understands its structure. In other words, the invoice view has interface methods that allow a

clients package view to access its data.

According to the business rules governing these invoices, each customer receives three copies

of an invoice: a Web page generated when the customer places an order as represented by the view

invoice_htm; a pdf version emailed to the customer as represented by the view invoice_pdf; and a paper

document mailed to the customer as represented by the view invoice_rtf. These three views format the

data contained in the invoice view according to their particular display languages, html, pdf, and rtf.

Using a similar approach to the invoicing example, generating sales reports is a two step

process. The imaginary company’s sales reports are based upon the customer orders generated over a

period of time. Thus the middle package’s sales view is based upon the data in the order table. The

sales view contains only the data pertinent to a sales report. Thus it leaves out any customer

information that is part of an order, selects only orders placed during a given time period, and based

upon the company’s business rules generates appropriate totals and subtotals for items sold and values

invoiced.

Once the sales view has been generated it has to be formatted by the clients package into a

form appropriate for display. In this example the sales data is formatted to fit a spreadsheet

(represented by the view sales_xls), and for graphical display (represented by the view sales_svg).

This simple example shows how the layered views-based framework can support separation of

concerns and reuse. In summary, each of the three layers has a specific concern. The repository

Chapter 2: A Views-Based Framework 31

package concerns itself with data storage and retrieval. The middle package concerns itself with

creating objects by selecting and projecting data from the repository according to business logic. The

middle package need not know how the repository is implemented, it needs to know only how to

interface with the repository. The clients package concerns itself with formatting the objects created by

the middle package. As with the relationship between the middle package and the repository, the clients

package need not know how the middle package is implemented, it needs to know only how to

interface with the middle package.

This example also shows how reuse can be achieved. The data in the order table is used by

both the invoice and sales views for very different purposes. Although defined only once, both the

invoice and sales views are referenced by multiple views in the clients package, also for very different

purposes, and using different formats.

32

Chapter 3: A Sample Web Application Framework Design

This chapter demonstrates how the views-based framework was used to design an actual application. It

shows how views are an integral part of this framework, and how each of the packages within the

framework take on a different role in application design. Indeed, the separation of the design elements

into different packages reinforces both reuse and the separation of concerns, both critical goals in

software design. An overview of the framework is followed by individual descriptions of each package

and how these different packages are integrated.

3.1 Application Overview

The applications designed using this framework are the Directory of Canadian Researchers in

International Security public Web application and administrator Web applications. The public Web

application is a Web application that allows anyone with an internet connection and Web browser to

search for and examine information on members of the Directory, their publications, and expertise in

international security topics. The administrator Web application provides a front end for the Directory

administrators to modify information about Directory members. (See Chapter 1 and Appendix I for

details of the DCRIS project). This chapter concentrates on three specific elements of the public Web

application - enough to illustrate the use of the concepts discussed in Chapter 2. Chapter 4 shows how

this framework can be used to design the administrator Web application, and how to increase

functionality in both Web applications.

The three elements of the DCRIS project used to illustrate the views-based framework are the

‘Member’, ‘Keyword’, and ‘Publication’ elements. A ‘Member’ is a researcher in international security

who is part of the Directory. A ‘Publication’ is a book, conference paper, or journal article published

Chapter 3: A Sample Web Application Framework Design 33

Figure 13 DCRIS Design Overview

by a Directory ‘Member’. A ‘Keyword’ is a broad area of study in which a ‘Member’ has expertise.

Although it is not absolutely necessary for a ‘Member’ to have authored a ‘Publication’ in order for

that ‘Member’ to be part of the Directory, in practice most ‘Members’ have authored at least one

‘Publication’. Similarly most ‘Members’ have at least one area of broad expertise. Part of the purpose

of the Directory is to allow its users to see what ‘Members’ have published on the topic of international

security, and their areas of expertise.

3.2 The DCRIS Applications Design Overview

Figure 13 shows the design overview for the DCRIS public Web application. Its structure is divided

into the three levels discussed in Chapter 2, the repository package, the middle package, and the clients

package. Each package contains a set of business rules and the classes that depend on those business

rules.

The first step of the design process is to define the business rules classes. Business rules are

derived from information gathered from a the different users involved in a project during the

Chapter 3: A Sample Web Application Framework Design 34

requirements phase. The designer must determine at what level to place each rule. In general, rules that

determine how objects are to be displayed are placed at the clients package level. Rules that deal with

how objects are to be stored are dealt with at the repository package level. All other rules fall into the

middle package level by default. For example, a requirement that ‘Publications’ belonging to a

Directory ‘Member’ must be output in a bulleted list below a ‘Member’’s name clearly belongs to the

clients package business rules as it deals with how data is to be displayed. A requirement that

‘Member’ data consists of information such as surname, given name, mailing address, and email

address clearly belongs to the repository package business rules as it deals with data that is to be

stored. A requirement that ‘Members’ may be selected from the Directory on the basis of their

expertise belongs to the middle package business rules by default: this requirement is about what is

displayed, not how it is to be displayed, and therefore does not belong to the clients package; and it is

about how ‘Member’ objects are to be selected, not stored, and therefore does not belong to the

repository package.

Business rules are documented in English and their translation into code is done by hand by

human programmers. As these rules change, the code representing them changes.

The next step in the design process is to define the package classes based upon the business

rules in each package. As discussed in Chapter 2, each of these classes maps to one or more business

rules within the same package. The classes in the middle package may view classes in the repository

package and classes in the clients package may view classes in the middle package. Classes in the

clients package may not view classes in the repository package directly. Further, any given class may

be an aggregate of other classes in the same package, as will be demonstrated.

Chapter 3: A Sample Web Application Framework Design 35

Figure 14 The DCRIS Repository Package

3.3 The DCRIS Repository Package Design

Figure 14 shows some of the classes that belong to the DCRIS repository package. The business rule

classes here are the br_publication, br_keyword, and br_member classes. They represent the rules that

define the permanent DCRIS project objects. Each of these classes is identified as a business rule class

both by the fact that they are contained within a business rules package, and by the use of the

<<rule>> stereotype. The classes publication, keyword, and member represent the permanent objects

to which the previous rules refer. Each of these classes depends on these business rules. Should the

rules change, the classes that represent them must change as well.

Generally, business rules define only the broad outlines of objects and the relationships

between them and not the details on how these objects are to be realized. Thus, the business rules for a

DCRIS ‘Member’ demand that the name, address, and telephone number of that ‘Member’ be recorded,

but not how many characters should be set aside for each item. Another business rule states that a

‘Member’ must be uniquely identifiable without explaining how this identification is to be

accomplished. A further business rule states that a ‘Member’ owns zero or more of the ‘Publications’

in the Directory, and has an expertise in at least one of the set of ‘Keywords’ in the Directory without

describing how these relationships are to be expressed. This is not to say that business rules cannot go

to this level of detail - a business rule could describe how a five digit customer number is used to

Chapter 3: A Sample Web Application Framework Design 36

Figure 15 Repository Table Relationships

identify a customer uniquely, for example - the point here is that business rules need not go to this level

of detail. These things can be left up to the application designer.

Figure 15 shows the classes that were designed as a result of the business rules referred to in

Figure 14. Each class has its attributes and operations listed and the relationships between the classes

are explicitly shown. Each class has been given a <<table>> stereotype to indicate that objects of

this class are permanent. These tables happened to be implemented using SQL, although the choice of

language can be deferred until the implementation stage of the project. The publication, member, and

keyword classes contain attributes as explicitly defined by their associated business rules, such as the

publication authors, publisher, and title attributes, and the member last_name, first_name, and

institution attributes. These classes also contain attributes implicitly defined by their governing

business rules. Each object in the publication, member, and keyword tables must be uniquely

identifiable, so the attributes pub_id, member_id, and keyword_id were designed to do just that. Each

of these attributes has a <<PK>> stereotype to indicate that they are primary keys, i.e., unique

identifiers for the objects instantiated from each class. Because the business rules do not describe

explicitly how these objects are to be identified uniquely, the designer has the leeway to make an

appropriate choice.

The relationships between the member, publication, and keyword classes were also implicitly

defined by their governing business rules. Because relationships between tables are typically defined

Chapter 3: A Sample Web Application Framework Design 37

by foreign key values, this technique was used here. Thus, the publication class contains a member_id

attribute that is a foreign key value (as defined by the <<FK>> stereotype) relating each ‘Publication’

to a matching ‘Member’. (Although a many-to-many relationship between ‘Member’ and ‘Publication’

would better represent the possibility of more than one ‘Member’ contributing to a single ‘Publication’,

the DCRIS administrators stipulated that because the ‘Publication’ list for each ‘Member’ was not

exhaustive, they would select only representative publications that did not overlap between members.)

This association between member and publication is named owns. The arrow beside the association

name indicates how the association should be read: thus, a ‘Member’ owns ‘Publications’. The purpose

of an association name is to clarify a relationship between classes [7]. In order to define the many-to-

many relationship between the member and keyword classes a new table, member_keyword, was

defined, containing foreign keys to the two related tables. The association between the tables is named

“has expertise” with the arrow pointing towards the keyword table, thus reading: a ‘Member’ has

expertise in many ‘Keywords’. Again, these design choices are arbitrary on the part of the designer -

the important thing to recognize is that they fulfill the demands of the project’s business rules.

The operations defined for these repository classes are limited to selecting sets of objects from

the repository (as in the operations member_select, pub_select, etc.). As discussed in Chapter 2, all

other operations are left to the higher level packages.

Chapter 3: A Sample Web Application Framework Design 38

Figure 16 The DCRIS Middle Package

3.4 The Middle Package Design

Figure 16 shows some of the classes that belong to the DCRIS middle package. As with the DCRIS

repository, the middle package contains both business rules, identified with the <<rule>> stereotype,

and view classes, identified with the <<view>> stereotype. Although both the middle package and the

repository package contain business rule classes with the same names, such as br_publication, there are

no conflicts between the classes as each occupies its own namespace, i.e. each is contained within a

different package and can be referred to as such. As in the repository package, each of the middle

package classes depend on business rules within the package. Thus, the keyword view depends on the

business rules contained within the br_keyword class.

 Three different views, v_article, v_book, and v_paper, depend on the br_publication class.

There is no single publication view as there was a single publication table in the repository package.

This shows that a ‘Publication’ owned by a Directory ‘Member’ must fall into one of three categories:

it must be a journal article, a conference paper, or a book. Thus, although all ‘Publications’ may be

stored together in the repository package (as in the publication table), the business rules of the middle

package demands that each type of publication receive different treatment.

Chapter 3: A Sample Web Application Framework Design 39

Figure 17 Middle to Repository Views

Figure 18 View Making up an Directory Entry

Figure 17 shows the relationships between the views of the middle package and the tables of

the repository package. There is a one-to-one mapping between the v_keyword view and the keyword

table and three different views of the publication table.

Figure 18 shows the structure of the v_entry view. The business rules of the br_entry class

state that an entry in the Directory consists of member information, a list of keywords describing that

‘Member’s’ expertise, and a list of books, conference papers, and journal articles written by that

‘Member’. Thus the v_entry view is made up of the v_member, v_keyword, v_book, v_paper, and

v_article views. The diamond shape at the v_entry end of each association in Figure 18 is the UML

symbol for aggregation, implying that the subordinate classes are part of a greater whole [16]. The

multiplicity values displayed on the ends of each association show how many instances of each

subordinate class are to be expected within a v_entry object. Thus every entry has one ‘Member’, one

Chapter 3: A Sample Web Application Framework Design 40

Figure 19 The DCRIS Clients Package

or entries from the set of ‘Keywords’, and may or may not have any publications at all, but more than

one type of publication is allowed per entry.

The examples of the publications and the Directory entry demonstrate some of the flexibility of

views within this framework. A view may view another class directly, but it may also do so indirectly.

Thus complex views may be built up from simpler ones as in the v_entry example. Further, there may

be multiple views of a class as in the example of the three different views of the publication table.

3.5 The Clients Package Design

Figure 19 shows some of the classes that belong to the DCRIS clients package. As with the DCRIS

repository and middle packages the clients package contains both business rules (identified with the

<<rule>> stereotype) and view classes (identified with the <<view>> stereotype). As in the

repository and middle packages, each of the clients package classes depend on business rules within the

package. Thus, the html_member view depends on the business rules contained within the br_member

class. Both html_keyword_list and html_keyword_item depend on the br_keyword business rules.

br_keyword describes how a list of keywords should be displayed in HTML format.

Chapter 3: A Sample Web Application Framework Design 41

Figure 20 Views Making up an Entry List

Figure 21 ‘Keyword’ Example

Figure 20 shows how an HTML formatted list of entries is built from an aggregation of other

views. Like the v_entry view in Figure 18, the html_entry view is made up component parts, the

member, keywords, and publications views. html_entry then serves as an element of html_entry_list.

As with the v_entry example, the multiplicities given with the associations between the views show

how many sub-views each view may have.

Chapter 3: A Sample Web Application Framework Design 42

Figure 21 shows how these views are tied together between the different packages. The

example given is that of a list of ‘Keyword’ expertise held by a Directory ‘Member’. At the repository

package level there are tables, keyword and member_keyword that hold the keyword data and how

these keywords are associated with a particular ‘Member’ respectively. These two tables are viewed

from the middle package by the v_keyword view. This view selects the appropriate keyword values

from the repository tables for a particular ‘Member’. It does not, however, apply any display formatting

to this data. v_keyword is also shown to be part of the v_entry view. (The rest of the elements of

v_entry are not shown in this example). In the clients package the html_keyword_item view takes a

v_keyword object and applies HTML formatting to it. The html_keyword_list wraps an HTML list

definition about multiple html_keyword_item views, and then becomes part of an html_entry view.

Chapter 3: A Sample Web Application Framework Design 43

Repository Package

keyword <<table>> member_keyword <<table>>

keyword_id description keyword_id member_id
12 Arms Control 12 20

Middle Package

v_keyword <<view>>

keyword_id description member_id
12 Arms Control 20

Clients Package

html_keyword_item <<view>>

Arms Control

html_keyword_list <<view>>

<h3>Keywords</h3>

 Arms Control

Output

Keywords

! Arms Control

Figure 22 ‘Keyword’ Display Example

Figure 22 shows a simplified example of how the different packages manipulate an object. In

this example, a Directory ‘Member’ has only a single expertise, in this case ‘Arms Control’, and it is to

be displayed as part of the ‘Member’s’ entry. At the repository package level this data is stored as part

of the keyword and member_keyword table. At the middle package level the keyword table and

member_keyword table are joined by the v_keyword view resulting in a list of all expertise for this

Chapter 3: A Sample Web Application Framework Design 44

‘Member’ (whose member_id is 20). At the clients package level the keyword description alone is

extracted from the v_keyword view and the HTML code for a list item applied to it by the

html_keyword_item view. The result then has a title and the HTML code for an unordered list wrapped

around it by the html_keyword_list view. The result is displayed by a browser as a bulleted list under

the title “Keywords”. The actual implementation is more complex than this, but the implementation

details are not important at this stage.

3.6 Discussion

The examples given in this chapter are specific instances of the general approach that this framework

uses to promote separation of concerns during application design. This framework does indeed promote

separation of concerns by its division into different packages:

• The repository package is concerned with persistent storage only. The objects stored in the

repository are generally simple objects in comparison with the objects handled by the middle

and clients packages.

• The middle package is concerned with selecting the desired objects from storage and

constructing complex objects from simpler ones as necessary. The middle package views may

also derive new attributes not contained within repository objects through aggregation or

mathematical manipulation. The middle package views may also derive new objects based

upon redefinition of repository objects.

• The clients package views are concerned with applying display formatting to the objects

defined by the middle package views.

• Views within any package may have a <<views>> association to objects in another package,

either directly or as a result of aggregating other views within the same package.

It is important to note that as well as emphasizing separation of concerns during the design

Chapter 3: A Sample Web Application Framework Design 45

process, a framework should improve with use. As more applications are designed using a particular

framework, more elements of that framework can be recognized as common to the problem domain the

framework addresses. These common elements can then provide more functionality to the next

application built around that framework, thus making the framework ever more useful [16]. Further, the

more these common elements are used the more they are tested, and thus the confidence in the

reliability of these elements increases. The question of whether the design framework proposed by this

paper improves with use is discussed in Chapter 4.

46

Chapter 4: Extending the Framework

One of the criteria for judging the effectiveness of a software design framework is to determine how

amenable it is to change. Is the framework flexible enough to allow new elements to be added or old

ones deleted? Is the framework a help or a hindrance to change in a software design [15]? Two specific

examples of changes to the DCRIS public Web application will be examined in order to illustrate how

the Web application framework accommodates change.

4.1 ‘Other Expertise’

The original design of the DCRIS Web application assigned a set of narrow expertise in security issues

to a Directory ‘Member’. These narrow expertise are called ‘Supplementary Keywords’, and there are a

limited number of these to choose from. Examples of such expertise include ‘Modern Peacekeeping’

and ‘Arms Control and Disarmament’. As wide is the range of expertise covered by these

‘Supplementary Keywords’, they cannot deal with all possible expertise. Some ‘Members’ wished to

be able to display expertise that were not part of the existing lists. These new expertise were to be

called ‘Other Expertise’. Each ‘Other Expertise’ was to be part of an expertise List in the same way

that existing ‘Supplementary Keywords’ were.

To accommodate this request a number of design and implementation changes had to be made

to the DCRIS public Web application. New business rules had to be created and views of these rules

designed.

Chapter 4: Extending the Framework 47

Figure 23 Addition of Other Expertise

Figure 23 shows the original design for handling ‘Supplementary Keywords’ and the changes

made to that design to handle ‘Other Expertise’. The left side of the diagram shows the classes in all

three framework packages from html_entry view in the clients package down to the supp_key table in

the repository package. This design to handle ‘Supplementary Keywords’ is very similar to the design

to handle ‘Keywords’ as shown in Chapter 3. The right side of the diagram shows the additional

classes necessary to handle the changes to design.

Examining the changes from the bottom up, it can be seen that the supp_key table in the

repository package is now viewed by two different middle package views (v_supp_key and v_other),

rather than by one (v_supp_key) as in the original design. The supp_key table was altered by the

addition of a simple flag to each object (not shown) that categorizes the object as a ‘Supplementary

Keyword’ or an ‘Other Expertise’. Thus, each object in the supp_key table must be viewed by one of

v_supp_key or v_other. This is similar to the way in which each object in the publication table is

viewed as an article, book, or paper as discussed in Chapter 3. Note that v_other is dependent on a new

Chapter 4: Extending the Framework 48

business rule, br_other, that describes how an ‘Other Expertise’ should be dealt with. The business rule

that v_supp_key depends on is unchanged.

Having extracted the appropriate data from the supp_key table, the v_supp_key view is itself

viewed by the html_other_item view. This view, part of the clients package, applies display formatting

to an ‘Other Expertise’. The view html_other_item depends upon the new br_other_display business

rule that describes how a particular ‘Other Expertise’ should be displayed. ‘Other Expertise’ are to be

displayed as part of a ‘Member’s’ list of narrow expertise, so the html_supp_key_list view has been

expanded to include an association with the html_other_item view.

At the top end the html_entry view is unchanged. In the original design html_entry was

associated with the list of narrow expertise in the html_supp_key_list view. In the altered design the

fact that the elements that make up this list have changed is irrelevant to html_entry. The contents of

the narrow expertise list are not the concern of html_entry, they are only the concern of

html_supp_key_list. It is enough for html_entry to contain such a list as part of its display. One of the

strengths of this views-based framework is that its elements can be isolated from one another, making

changes easier to implement than if these items were tightly coupled. None of the other objects that

make up a Directory entry such as member information, keyword expertise, and publications, are

affected by the addition of the ‘Other Expertise’.

4.2 Other Language Support

The language of the user interface for the original DCRIS public Web application was English. When

the DCRIS project began to receive funding from the Canadian federal government, one of the

requirements for such funding was that the contents of the Directory be made available in French as

well as in English. This applied to both the actual contents of the Directory, such as the lists of

expertise, and the public Web application interface.

Chapter 4: Extending the Framework 49

Figure 24 Addition of Language

Figure 24 shows how the public Web application design was altered to handle the use of

French in displaying the broad expertise, i.e., ‘Keywords’, for a Directory ‘Member’. Examining the

changes from the top down, it can be seen that the changes to the clients package views html_entry,

html_keyword_list, and html_keyword_item were minimal. It was sufficient to provide a flag named

lang to indicate which language, English (‘en’) or French (‘fr’) should be used when displaying a

Directory entry. Each view contains sub-views with matching lang attributes. The value of the lang

attribute determines which language is actually displayed to the user.

The changes to the middle package view v_keyword were also small. It too was given a lang

attribute that determined the language in which to display an expertise description, for example,

choosing between displaying “Military History” or “Histoire militaire”. Note that v_keyword still

contained only one expertise description, but this description was in the language defined by its lang

attribute.

The largest change was at the repository level. Each ‘Keyword’ now had to be stored in

English in the field description_en and in French in the field description_fr in the keyword table. The

operation that selects a keyword object from the keyword table, keyword_select(), was altered to accept

a new parameter lang. This parameter identified which of the descriptions was to be extracted for any

Chapter 4: Extending the Framework 50

given object request.

It is important to understand that once it is decided which keyword description, English or

French, is to be extracted from the repository, this keyword description is treated just as it was in the

original design. A keyword description is, after all, simply a string of characters. The fact that the

string is in English or French is not important so far as displaying it to the user goes. The same display

rules are used whatever the language. The lang attribute that is now part of each view determines two

things: the language of the information wrapped around a keyword description and the order in which

the descriptions are to be sorted for display. Different languages may use different sorting orders.

This design is not limited to handling only English and French. By changing the value of the

lang attribute and providing the appropriate keyword descriptions and text, this approach could handle

any language.

4.3 Discussion

The time needed to design and implement the ‘Other Expertise’ portion of the DCRIS public Web

application was approximately two hours. Once the actual representation of the ‘Other Expertise’ data

and its place within the DCRIS repository package were determined the design and implementation of

the appropriate views was very simple. This simplicity arose from a number of factors:

• As with most of the objects in the DCRIS public Web application the ‘Other Expertise’ needed

only a limited number of views in the middle package. These views very similar to existing

views (such as those for supplementary keywords), and those existing views were used as

design and implementation templates.

• As with the middle views package there were a limited number of views to be designed and

implemented for the client views package, and existing views were used as design and

implementation templates.

Chapter 4: Extending the Framework 51

• Because changes to the design views reached only as high as the list of narrow expertise, i.e.,

the html_supp_key_list view, no changes had to be made to the entry views or the Web pages

that contained these views. The design and implementation updates were localized.

• Designing and implementing the ability to handle French was more involved, but mainly

because of the author’s extremely limited mastery of French as opposed to the flexibility of the

design framework. Defining a language attribute for each view was simple, as was adding extra

fields in the repository tables to contain the French versions of their text.

The addition of the ‘Other Expertise’ and multiple language capabilities to the DCRIS project

illustrates the framework flexibility and how the framework accommodates change.

52

Chapter 5: Reusing the Framework

For a software design framework to be considered successful, it must be not only extensible, but

reusable [16]. The DCRIS public Web application was used as a specific example of a successful

design using a views-based framework. A second application using this framework will be examined in

order to illustrate how the Web application framework accommodates reuse.

5.1 The DCRIS Administrative Web Application

The DCRIS administrative Web application allows the Directory administrators to update the contents

of the Directory. The administrators may manipulate ‘Member’ information and modify expertise. The

administrators may also view usage statistics for the public Web application. (See, for instance, the

DCRIS Web applications use cases in Appendix I.) A Web-based application was felt to be the best

option for the Directory administrators as it provided them with a number of benefits: a familiar, easy-

to-use interface in the form of a Web browser; access to the Directory from anywhere there was

Internet access; and rapid implementation. Further, many of the components of the public Web

application could be reused in the administrative Web application.

The entire DCRIS repository package is shared between the two Web applications. Such

sharing is easily accomplished as the repository is unaware of the fact that it is being viewed by any

application, let alone two. The repository package does not need to make any special accommodation

for the administrative Web application - the services it provides to the public Web application are

sufficient for the administrative Web application as well.

The DCRIS middle packages for the public and administrative Web applications are almost

identical. The objects used by the public Web application are a subset of the objects used by the

Chapter 5: Reusing the Framework 53

Figure 25 Class Reuse Between DCRIS Applications

administrative Web application. The only difference between the two packages is that the

administrative application has an object containing data on the public Web application usage

(v_history) that is not part of the public Web application. Casual users of the Directory do not have

access to information about the usage of the Directory.

Similar to the relationship between the two applications’ middle packages, the clients package

of the public Web application is a subset of the clients package of the administrative Web application.

The main differences lie in the fact that the administrative Web application allows the DCRIS

administrators to edit the Directory data using Web-based forms.

Figure 25 gives a simplified example of how the two applications share certain classes. The

examples given are the classes that deal with ‘Keywords’. The top left corner of the diagram, which is

labeled Public Web Application, shows the classes that are unique to the public Web application. All of

Chapter 5: Reusing the Framework 54

these classes are client pages, i.e., Web pages that are wrapped around ‘Keyword’ objects. The right

side of the diagram, which is labeled Admin Web Application, shows the classes that are unique to the

administrative Web application. The majority of the classes shown are client pages as well, with the

exception of the html_keyword_form class. This class presents data for an individual ‘Keyword’ in an

HTML form format – note that this is shared by two client pages. The bottom left corner of the

diagram, which is labeled Common Classes, shows some of the classes that are common to the two

applications. As noted earlier, these classes come from all three packages. The classes prefaced with

html_ come from the clients packages, the class prefaced with v_ comes from the middle packages, and

the keyword table comes from the repository packages. A similar situation applies to the other elements

of the Directory: the ‘Supplementary Keywords’, ‘Publications’, ‘Members’, and ‘Recommendations’.

5.2 Further Framework Reuse

Reusing this framework for the DCRIS administrative Web application was greatly facilitated by the

fact that the two DCRIS Web applications are very similar. What, if any, reuse benefits accrue between

two Web applications that lack the obvious common features of the DCRIS applications?

Another Web application designed by the author and used by the Department of Physics and

Computing at Wilfrid Laurier University is called OwlData. It is used by the department’s faculty,

staff, and students to administer course information, student marks, TA assignments, and the like.

Although it does not share any data with the DCRIS Web applications, it does share the three package

structure and many of the client formats with the DCRIS Web applications.

A framework provides a conceptual model around which applications can be built. At the most

fundamental conceptual level the framework tells a designer how to think about the design of an

application. Completed applications provide examples and refined guidelines to the designer, thus

improving the framework.

Chapter 5: Reusing the Framework 55

Figure 26 Framework Superclass Example

As the first concrete application of the views-based Web application framework, the DCRIS

Web applications needed careful thought and some trial and error when applying the framework.

Indeed, the framework was revised significantly during the process of building the DCRIS public Web

application. Practical experience showed where the framework was lacking or needed improvement.

Applying the framework to the design of the OwlData Web application was significantly easier

than to the DCRIS Web applications because of the experience gained through the earlier designs.

First, at the conceptual level the experience of allocating elements of the DCRIS Web applications to

the three packages - the repository package, the middle package, and the clients package - provided

clear guidelines for the elements of the OwlData Web application. Thus, although the details differed,

the basic approach to designing the tables and their relationships in the two repositories was the same

between the two sets of applications. The basic approach to the materialization of objects from

persistent storage in the middle package was the same. The design of views in the clients package and

their relationships to objects in the middle package was similar between the two sets of applications.

Once the framework’s conceptual model has been applied to a Web application, the actual

design must be laid out. In the design phase the framework provides common abstract classes that can

be shared amongst applications. The DCRIS Web applications, for example, group together objects of

the same type into lists within the middle package. Figure 26 shows how both the v_keyword_list class

Chapter 5: Reusing the Framework 56

Figure 27 HTML Forms Templates

from the DCRIS Administrative Web application and the v_student_list class from the OwlData Web

application are specializations of the v_list abstract class.

Further, the framework provides reuse in the form of code that is common to multiple

applications. Figure 27 shows how forms from both the DCRIS administrative Web application and

the Owldata administrative Web application share common HTML forms templates. The abstract class

html_form_template provides an outline for a standard Web form, including the access method and the

action and name attributes. The forms from the DCRIS and Owldata applications use these attributes

and provide their own values for them through parameters. Further, such forms may contain hidden

values. The class html_hidden_template provides an outline for the standard HTML <input

type=”hidden” ...> code. As with the form template, the hidden type template contains name

and value attributes that are inherited by the DCRIS and Owldata elements that use them. The

existence of such templates greatly speeds up the design and implementation of the client pages that

Chapter 5: Reusing the Framework 57

contain them. There are a large number of such common features between the DCRIS and Owldata

Web applications in their respective clients packages.

Lastly, at a very practical level, having multiple applications based upon the same framework

provides many opportunities for copying and pasting UML elements, documentation, and code from

one application to another.

5.3 Discussion

Successful reuse is key to the success of the views-based framework for Web applications. The three

level package structure has been applied to two applications that are very similar in content and a third

that differs significantly from the first two. Although the use of common templates to speed up coding

is extremely useful, more useful is the framework’s approach to the separation of concerns. Proper use

of each package in the framework imposes a coherent structure on a Web application design: object

persistence at the repository package level, object manipulation at the middle package level, and object

display at the clients package level. The hierarchical use of views within and between these packages

promotes separation of concerns and reuse within an application. The examples illustrate that

recognizing common features between applications allows the framework to improve with use.

58

keyword_id description
12 Military History
13 Civil-Military Relations
14 Defence Technology

Figure 28 Sample keyword Table Contents

Chapter 6: Implementing the Framework

The Web application framework described herein is modular, promotes separation of concerns and

reuse, and can be represented using UML. This raises the question of how easy it is to implement. How

do design elements map to implementation components? The storage, manipulation, and display of the

‘Keyword’ expertise in the DCRIS Web applications will be examined in order to illustrate one method

of implementing the Web application framework.

6.1 The Repository Package

The two DCRIS Web applications, i.e., the public and administrative Web sites, share a common

repository. This repository is implemented as an SQL database using Sybase SQL Anywhere Studio

7.04. The database is designed using standard techniques and for the most part is in Boyce-Codd

Normal Form [24].

‘Keywords’ are stored in the keyword table, which consists of two attributes: keyword_id, a

unique identifier for each ‘Keyword’ tuple and the primary key for the table; and description, a string

containing the name of the expertise. The table has an index on the description attribute.

Figure 28 shows a small subset of the keyword table data. The contents of the table may be

searched, sorted, inserted, updated, and deleted using standard SQL ‘92 commands.

Chapter 6: Implementing the Framework 59

function keyword_xml(in @keyword_id tinyint default 0)
returns long varchar
select
 f_tags(
 f_tags(keyword_id,'keyword_id')+
 f_tags(description,'description'),
 'keyword') into @string
 from keyword
 where keyword_id = @keyword_id;
return(@string)

Figure 29 SQL Script for the v_keyword View

6.2 The Middle Package

The middle package views of the repository objects are based upon XML (Extensible Markup

Language). XML is a set of rules and conventions for designing text formats for data that

• produces results that are easy to generate, read, search, sort, select, and project

• are unambiguous

• are extensible, allowing developers to create their own document definitions

• supports internationalization and localization

• is license-free, platform independent, and well-supported [21]

XML is ideal as a vehicle for the middle package objects. Object implementation is descriptive

rather than code-based, making such implementations easily portable to multiple systems. Once such

objects are defined using XML they can be manipulated by a wide range of software packages already

available on the market. The Web application developer need only choose the software that fits their

needs.

Figure 29 shows the SQL script used to generate the XML tagged representation of a keyword

table tuple. Although some SQL database packages now on the market can automatically generate

XML tagged data from a database structure, SQL Anywhere Studio is not one of those packages. Thus

all of the XML data in the DCRIS Web applications are generated from scripts written by the

developer. Such scripts are trivial to write as the XML data generated closely follows the database

table structures and all are very similar in design.

Chapter 6: Implementing the Framework 60

<keyword>
 <keyword_id>12</keyword_id>
 <description>Military History</description>
</keyword>

Figure 30 XML Representation of v_keyword

<keyword_list>
 <keyword>
 <keyword_id>12</keyword_id>
 <description>Military History</description>
 </keyword>
 <keyword>
 <keyword_id>13</keyword_id>
 <description>Civil-Military Relations</description>
 </keyword>
 <keyword>
 <keyword_id>14</keyword_id>
 <description>Defence Technology</description>
 </keyword>
</keyword_list>

Figure 31 XML Representation of v_keyword_list

Figure 30 shows the XML data that results from executing the SQL script from Figure 29 on

the ‘Military History’ tuple. These objects may be part of a larger XML data structure.

Figure 31 shows the XML representation of the v_keyword_list object. It is generated by

simply wrapping appropriate tags around a list of v_keyword objects. The actual Keyword objects

contained within a list depend on the context in which the list is generated. In a Directory Entry, a

Keyword list contains all of the Keyword expertise held by a particular Member. In this case

v_keyword_list is part of the v_entry object as illustrated in Chapter 3. In a different context all of the

Keyword expertise available in the Directory is listed from which the user can choose.

The key to the use of XML as the basis for the middle package objects is simplicity. There is

one, and only one, representation of a Keyword object in the middle package whether the keyword

object stands alone or is part of a larger structure. This keeps the amount of code dedicated to

retrieving objects from the repository to a minimum as an object can be copied out of the repository in

only one way. As far as the middle package is concerned all data objects are atomic. The extraction of

particular attributes from an XML object is the job of the views in the clients package. Nor does the

Chapter 6: Implementing the Framework 61

middle package need to concern itself with sorting as that is also the job of the views in the clients

package. The major job, then, of views in the middle package is to select data from the repository and

wrap the data items in XML tags.

6.3 The Clients Package

The middle package objects are not usually suitable for display. They contain XML tags and attributes

that should be invisible to the end user. It is the job of the views in the clients package to project and

sort the contents of the middle package objects. This projection and sorting is implemented using

Extensible Stylesheet Language Transformations (XSLT) stylesheets.

XSLT provides a descriptive rather than code-based method of converting XML data to some

other format. As with the use of XML in the middle package, this means that the display

transformations are easily portable to multiple systems. Once stylesheets are defined using XSLT they

can be used by a wide range of software packages already available on the market. The Web

application developer need only choose the software that best fits their needs.

In Web applications the client views transform the data from the middle package objects into

HTML formatted data. In other contexts this data could be transformed into other display formats. The

same ideas of simplicity and portability apply whether the end results are Web pages, charts, text, or

word processing documents.

Chapter 6: Implementing the Framework 62

<xsl:template match="keyword_list">

 <xsl:apply-templates select="keyword" mode="item">
 <xsl:sort select="description"/>
 </xsl:apply-templates>

</xsl:template>

<xsl:template match="keyword" mode="item">
 <xsl:value-of select="description"/>
</xsl:template>

Figure 32 XSLT Template for a List of Keywords

 Civil-Military Relations
 Defence Technology
 Military History

Figure 33 HTML Code for a List of Keywords

• Civil-Military Relations

• Defence Technology

• Military History

Figure 34 Output of a List of Keywords

Figure 32 shows the portion of an XSLT stylesheet designed to transform a v_keyword_list

object into an HTML formatted object. Figure 33 shows the HTML code generated by applying the

XSLT stylesheet to a XML formatted list of Keywords. Figure 34 shows the output of this code as

displayed in a Web browser.

Compare the final output of Figure 34 with the sample XML data of Figure 31. The XSLT

stylesheet has removed the keyword_id attribute from the final output and sorted the contents of the

Keyword list by the description attribute. No sorting or projection code needed to be provided by the

Web application developer - such capabilities are inherently part of the XSLT standard. The developer

need merely indicate within the XSLT template the sorting and projection desired.

Chapter 6: Implementing the Framework 63

<xsl:template match="keyword_form">
 <xsl:call-template name="form"/>
</xsl:template>

<xsl:template match="keyword" mode="form">
 <xsl:apply-templates select="keyword_id" mode="hidden"/>
 <table border="0" cellpadding="0" cellspacing="2">
 <tr>
 <td>Description: </td>
 <td><input type="text" name="description" size="65"
 maxlength="65" value="{description}"/></td>
 </tr>
 </table>
</xsl:template>

<xsl:template name="form">
 <form method="post">
 <xsl:apply-templates select="@*" mode="copy-attributes"/>
 <xsl:apply-templates select="hidden/@*" mode="hidden"/>
 <xsl:apply-templates select="*" mode="form"/>
 <p><input type="submit" name="submit" value="OK"/></p>
 </form>
</xsl:template>

<xsl:template match="*|@*" mode="hidden">
 <input type="hidden" name="{name()}" value="{.}"/>
</xsl:template>

Figure 35 XSLT Template for a Keyword Form

<form action="Name_Search_Results.htm" method="post">
<input type="hidden" name="keyword_id" value="12">
<table border="0">
<tr>
<td>Description: </td>
<td><input type="text" size="65" maxlength="65" name="description"></td>
</tr>
</table>
<p><input name="submit" type="submit" value="OK"></p>
</form>

Figure 36 HTML Code for a Keyword Form

Description: Military History

OK

Figure 37 Keyword Form Output

Figure 35 is an example of the XSLT template used to create an HTML input form for a

Keyword. Figure 36 shows the resulting HTML code, and Figure 37 shows the output as displayed by

Chapter 6: Implementing the Framework 64

Figure 38 Web Page Request Processing

a Web browser. Note that all the attributes of the v_keyword object are used by the form, though the

keyword_id attribute is hidden from the user’s view. Part of the XSLT template contains references to

generic template named form and a mode named hidden. These are examples of the reusable elements

mentioned in Chapter 5. These particular stylesheet elements can be used by any XML data that needs

to be presented as a generic HTML form. This is an example of how repeated use of a framework can

lead to the discovery of common features between applications, and how these common features can be

implemented in shared templates or libraries.

Figure 38 shows the steps necessary to display a Web page using this implementation. Once a

Web browser requests a Web page, the Web server (currently Apache) parses that page looking for

Web application server code. If found, this code is passed to the Web application server for execution.

The current DCRIS implementations uses PHP: Hypertext Preprocessor. If required the Web

application server requests XML formatted objects from the repository. It then passes these objects to a

XSLT processor which applies the desired XSLT stylesheets to the XML formatted data to produce

Chapter 6: Implementing the Framework 65

HTML formatted objects. The Web application server then returns these HTML formatted objects to

the Web server, which sends the completed Web page to the Web browser. The only code that needs to

be written by the application developer is the Web application server code that makes calls to the

repository and to the XSLT processor.

6.4 Further Implementation Notes

The DCRIS system has been implemented on a number of different systems. The original

implementation was done with Perl, but as a prototype it did not follow entirely the framework design

as laid out in this thesis. The first production implementation used Janna System’s LivePage Web

application server. LivePage took the place of PHP in the immediately preceding description. The

move to PHP was prompted by the withdrawal of LivePage from the market. The change from

LivePage to PHP was very easy. There were no code changes at the repository level as none of the

existing SQL functions and procedures needed to be altered. None of the XSLT stylesheets needed to

be changed as the stylesheets are independent of the XSLT software that processes them. Only the Web

application server code imbedded in the DCRIS Web pages needed to be altered as LivePage and PHP

use a different syntax to make SQL and XSLT calls. This trouble-free change-over demonstrates that

the key strengths of this framework, separation of concerns and reuse, apply even at the

implementation level. The repository deals with XML-formatted data objects, the XSLT processor

deals with applying display formatting, and the Web application server deals with selecting the objects

to be processed.

66

Chapter 7: Conclusions and Future Work

This thesis has described a views-based framework for designing Web applications. It focused on three

main points:

• how views promote the separation of concerns into persistence, manipulation, and presentation

• how a framework promotes reuse

• how UML and extensions to it provide a representation of views and the framework

In support of these points this thesis has:

• discussed the concepts behind views and frameworks

• demonstrated how a combination of the two was used to design and implement an actual Web

application

• showed how such a framework could be extended and reused

• gave sample representations of the framework using UML extensions

• showed how such a framework could be implemented

7.1 Discussion

In our opinion, the approach to Web application design discussed in this thesis looks promising and

would be worth further refinement. The proposed framework is a useful way to conceptualize and

implement a Web application. The three packages of this framework promote separation of concerns in

both design and implementation by clearly separating data storage, extraction, and presentation. This

separation is accomplished by using views that are each part of one of the three packages that make up

the framework. The use of views promotes reuse as a given view can be reused within a particular Web

application or within a similar application. By clearly separating different elements of the application,

Chapter 7: Conclusions and Future Work 67

each element can be treated as an object and thus have object-oriented software design techniques

applied to them. By using a hierarchy of views certain changes can be made to one level of views

without necessarily forcing changes in the views above or below that level.

From an implementation standpoint breaking an application up into distinct views through the

use of XML and XSL allows elements of an application to be implemented and tested separately from

other elements. By using XML as a intermediary between a data source and an output format, anything

from which XML can be generated can be used as a data source, such as a relational database, text file,

or executable. Further, output formats may be in forms other than HTML, such as text or SVG [45].

In our opinion UML, with appropriate extensions, is a suitable language for representing this

Web application design framework. It is already in broad use in object-oriented software design and is

thus familiar to many software designers. It is extensible, and this thesis has shown how it can be

further extended to handle views and elements particular to Web applications.

Lastly, this Web application design framework has been in use for over two years for various

Web applications in the Department of Physics & Computing at Wilfrid Laurier University. The

framework has evolved over that time, but has shown its worth within that environment.

7.2 Future Work

There are a number of areas of views-based frameworks for Web application design which deserve

further investigation.

The use of metadata would allow an application framework to be made even more generic, and

therefore more extensible and reusable, than the one discussed here. The key to using metadata is to

detail a method for standardizing the description of an application’s data and how it is to be

manipulated and displayed.

Formalizing a grammar for representing business rules would allow the creation of applications

Chapter 7: Conclusions and Future Work 68

that dynamically alter themselves to fit changes in the rules that define them. Indeed, such a set of

formalized rules could be thought of as a complement to the previous point about metadata. Because

rules describe the structure of the data in an application, they are metadata about metadata.

This thesis gave examples of Web applications that were implemented using relational

databases for their data sources, but claimed that other technologies could be used in their place. This

claim could be followed up with examples that use other technologies to determine their degree of

independence. Further, the claim has been made that HTML is not the only output format supported by

this framework. Some work involving output formats such as text or Scalable Vector Graphics (SVG)

[45] has already been done, and should be followed up by further work.

The issue of performance needs to be investigated. Although the real-world applications

described in this thesis perform well anecdotally, there is no evidence of how this approach would

scale up with larger implementations. Separation of concerns is very useful in design terms, but are

there trade-offs in terms of performance? Comparisons of different implementation methods at

different scales would help answer this question.

We believe that the approach to Web application design promoted in this thesis has proven

itself useful in a practical way for the case studies discussed herein and points the way to a wider range

of design and implementation possibilities.

69

Appendix I: The Directory of Canadian Researchers in

International Security (DCRIS)

I.1 DCRIS Description

DCRIS supports research on all aspects of international security by identifying Canadian researchers

and their specific areas of expertise, and by facilitating communication to, within, and from the

community of Canadian researchers in international security.

DCRIS Members are recognized Canadian researchers in all areas of international security.

The Directory lists them with institutional affiliations and addresses, as well as keywords describing

areas of research expertise and citations of up to three recent publications or projects. The Directory is

searchable by name, institutional affiliation, or keyword (or combination of keywords). DCRIS also

lists links to Web application addresses as recommended by Members. Recommendations are

searchable both by name and by URL. Although efforts are made to keep the list accurate and

up-to-date, DCRIS cannot guarantee either availability or relevance.

The DCRIS database is maintained on the Wilfrid Laurier University site on the world-wide

web. The address for direct access is http://www.wlu.ca/DCRIS. Access is also available from the Web

application of the Laurier Centre for Military Strategic and Disarmament Studies,

http://www.wlu.ca/~wwwmsds. Hard copies of the Directory are printed from time to time, and are

available to Members and others upon request.

DCRIS Members are Canadian researchers, defined as individuals who have produced

recognized research and who are Canadian or work in Canada. Normally, government employees and

students are not considered to be researchers, but exceptions can be made; students at the PhD level are

Appendix I: DCRIS 70

especially invited to apply. Decisions regarding the Directory and listings in it are be made by the

Directory Administrators, Dr. James Keeley of University of Calgary and Dr. Marc Kilgour of Wilfrid

Laurier University. Continuing support of DCRIS is provided by the Laurier Centre for Military

Strategic and Disarmament Studies. DCRIS was created and expanded with support from the

International Security and Outreach Program (ISROP) of the Department of Foreign Affairs and

International Trade, Canada.

The DCRIS Administrator is

D. Marc KILGOUR, Ph.D.
Director, Laurier Centre for Military Strategic and Disarmament Studies
Wilfrid Laurier University
WATERLOO, Ontario N2L 3C5
CANADA
Tel: (519-)884-1970 or -0710, ext. 4208
Fax: (519-)886-5057
Email: mkilgour@wlu.ca

The DCRIS data is stored in a SQL database, as described in Appendix III: The DCRIS

Repository. There are two separate DCRIS Web applications: the public Web application that gives

access to Directory information, and the administrative Web application that allows the Directory

administrators to update its contents. These are described in Appendix V: The DCRIS Public Web

application and Appendix VI: The DCRIS Admin Web application respectively. Appendix IV: The

DCRIS Views describes the various views of the Directory data that are at the core of the Web

application designs.

I.2 DCRIS Entries

A typical Directory entry contains information about a Member: their name, institutional affiliation,

telephone number, fax number, and email address. Each Member has areas of broad expertise in

military and security issues: these are listed as a Member’s Keywords. Members also have other areas

Appendix I: DCRIS 71

KILGO UR, Dr. M arc

Institution: Wilfrid Laurier University

Address: Laurier Centre for Military Strategic and Disarmament Studies

Wilfrid Laurier University

Waterloo ON N2L 3C5

Telephone: (519) 884-1970 x4208

Fax: (519) 886-5057

Email: mkilgour@wlu.ca

Keywords

• Arms Control and Non-Proliferation Studies

• Peacekeeping/Peace Implementation

• Strategic Studies

Lists

• Arms Control and Non-Proliferation Studies

• Confidence Building Measures

• Monitoring, Verification, Compliance, Detection, and Enforcement

• Quantitative Analyses

• Geographic Focus

• Global or General

• Peacekeeping and Peace Implementation

• Modern Peacekeeping

• Strategic Studies

• Approaches to Peacekeeping

• Arms Control and Disarmament

• Theoretical Aspects

• Weapons Proliferation

• Weapons Systems

• Conventional - General

• Nuclear - General

• Nuclear - Safeguards

Publications

• Rudolf Avenhaus, Morton Canty, D. Marc Kilgour, Bernhard von Stengel, and

Shmuel Zamir, "Inspection Games in Arms Control." European Journal of

Operational Research, 90, 3, 1996

• Kilgour, D. Marc, Liping Fang, David Last, Keith W. Hipel, and Xiaoyong Peng,

Peace Support, GMCR II, and Bosnia, Analysis for Peace Operations, Canadian

Peacekeeping Press, 1998

• Frank C. Zagare and D . Marc Kilgour, Perfect Deterrence, Cambridge University

Press, 2000

Figure 39 Typical DCRIS Entry

of narrow expertise: these are called Supplementary Keywords and are organized by topic into Lists.

Lastly, Members may have Publications related to military and security topics. Figure 39 shows a

typical Directory entry.

Appendix I: DCRIS 72

Figure 40 DCRIS Use Cases

I.3 DCRIS Use Cases

The DCRIS Web applications’ actions can be described using UML use cases. There are two actors in

this view of the DCRIS Web applications. The User represents a general user’s access to the Directory

through the public Web application. The Administrator represents a DCRIS administrator’s access to

the Directory through the admin Web application. Figure 40 shows the DCRIS actors and their

corresponding use cases.

The Administrator is a special type of User who inherits all of the User’s capabilities while

having extra privileges denied to a User. In practical terms this simply means that the DCRIS public

Web application makes no distinction between general users and administrators. There are no login

procedures on the public Web application, and a User may not make any changes to the contents of the

Directory. An Administrator must login to the admin Web application and has various options for

editing the contents of the Directory.

Appendix I: DCRIS 73

 Each of these use cases maps to one or more web pages in the appropriate DCRIS Web

application. These mappings are covered in more detail in Appendix V: The DCRIS Public Web

application and Appendix VI: The DCRIS Admin Web application.

The User Use Cases

List Entries

Displays all DCRIS Entries.

Search Entries by Expertise

Subsets of entries may be displayed based upon a Member's expertises.

Search Entries by Name

Subsets of entries may be displayed based upon a Member’s name, an Institution's name, or

both.

The Administrator Use Cases

Edit Expertises

Various expertises may be assigned to a Member.

Edit Keywords

Add, update, or delete a Keyword.

Edit Lists

Add, update, or delete a List.

Edit Members

Add, update, or delete a Member.

Edit Publications

Add, update, or delete a Publication.

Edit Recommendations

Add, update, or delete a Recommendation.

Appendix I: DCRIS 74

Edit Supplementary Keywords

Add, update, or delete a Supplementary Keyword.

75

Appendix II: Using Unified Modeling Language (UML)

II.1 Basic UML Elements

UML provides semantics and constraints for modeling software architectural elements. This paper uses

a number of UML elements to graphically illustrate its points. This appendix describes these graphical

elements in detail [7].

<<stereotype>>

A typical UML graphical element can represent a wide rage of things, so

long as those things fall within certain broad categories (e.g. elements may

be static or dynamic). A stereotype classifies and defines a particular model

element. Thus, a class model element representing a table in an SQL

database may be given a <<table>> stereotype to identify it as such.

A package is a high-level container for UML elements, and is most often

used to break a large model up into smaller, more manageable pieces.

Packages may be related by a dependency. In this diagram, the dashed line

between packages indicates a dependency. A dependency relationship

specifies that a change in the source may affect target that uses it, but not

necessarily the inverse. In a views context then, a change in a viewed object

affects a view of it, but a change in a view does not affect the object being

viewed. Dependencies may be stereotyped.

Appendix II: UML Web Extensions 76

A component represents the implementation elements of a model. A

component maps to a real-world element such as a text file, xml data, a java

class file, a code library, or a database. Every class in a software system is

realized (implemented) by at least one component, and may be realized by

more. Components may depend on other components. In such dependencies

a client component depends on a supplier component, and connects to that

component through an interface (also called a specification). For example,

in a software system implemented using C++, a component represents a

source code (.cpp) file, and an interface represents a header (.h) file.

II.2 The WAE Model

Building Web applications with UML by Conallen [6] describes modeling Web applications using the

Web application Extension (WAE) for UML. Conallen provides semantics and constraints for

modeling web architectural elements.

The foundation element of Web applications is the web page. In WAE, a number of different

stereotypes are applied to a web page depending on the role it plays in a Web application. Web pages

can be subdivided into various components depending on the functions of those components. (In

implementation terms each of these components can be mapped to HTML elements.) There is a large

set of WAE items defined for classes, components, packages, and other UML elements. Conallen

suggests class descriptions for a number of other web elements not listed here, such as frames, client-

side scripts, and java servelets. Further, he demonstrates the use of sequence diagrams, component

Appendix II: UML Web Extensions 77

diagrams, and other UML elements for describing the form and function of a Web application.

However, the narrow subset of WAE elements used in this paper is sufficient as a basis for the topics

under discussion. The following table present only those WAE items used in this paper.

A <<server>> page is a web page that contains operations executed by a

web server or application server. The server page itself cannot be viewed -

instead the execution of its operations builds a client page that is then

viewed by a browser.

A <<client page>> can be thought of as a virtual page - it has no

existence until it is built by a server page. It may contain data, images,

client operations, and further WAE elements such as forms. A client page

‘TitleTag’ tagged value is the title of the client page when viewed by the

end user.

A <<form>> is an element of a web page or client page. In

implementation terms it is a set of HTML input fields surrounded by a

<form> tag. It has no operations since these are contained within its

owning page. In UML forms are shown as part of their owning page

through an aggregate association. The ‘method’ tagged value is the

HTML submission method used by the form. Forms cannot stand alone

and must be part of a client page or a web page. One client page or web

page may contain many forms.

A <<web page>> is an HTML formatted text file. It may contain client

or server logic. The ‘path’ tagged value is the page’s location with respect

to the root of the web server.

Appendix II: UML Web Extensions 78

A <<builds>> association connects a server page to the client page it

build when the server page’s logic is executed. Because server pages may

contain conditional logic, one server page may build more than one class

of client pages. (Note that this stereotype is called both <<build>> and

<<builds>> at various places in Conallen [6]. This paper uses

<<builds>> throughout.)

A <<submit>> association shows the connection between a form and the

server page its data is submitted to. A form may have only one

<<submit>> association. A <<submit>> may have tagged value

parameters that are passed along with the submission request.

A <<link>> association shows hyperlinks between pages and is mapped

to the HTML anchor element. Web pages and client pages may link to all

other page types. (Not all server pages need form input data in order to be

executed and may thus be linked to directly). Note that the link from a

client page to another client page, and the server page that builds this

second client page are essentially the same. A <<link>> may have

tagged value parameters that are passed along with the page request.

<<input>> An <<input>> attribute stereotype maps to the HTML <input> tag. It

may have the tagged values:

Type - The type of input control to be used: one of Text, Number, Hidden,

Password, Checkbox, Radio, Submit , and Reset .

Size - Specifies how large an area to allocate on screen, in characters.

Maxlength - The maximum number of characters the user can input..

Appendix II: UML Web Extensions 79

<<select>> A <<select>> attribute stereotype maps to the HTML <select> tag. It

may have the tagged values:

Size - Specifies the number of lines of text to display at once on screen.

Multiple - Specifies that multiple values may be selected at once.

<<textarea>> A <<textarea>> attribute stereotype maps to the HTML <textarea>

tag. It may have the tagged values:

Rows - The number of visible text lines.

Cols - The visible width of the control in average character widths.

Table 1: WAE Elements

II.3 Extending the WAE Model

The WAE classes already discussed do not explicitly make use of the views concept. One of the

purposes of his paper is to demonstrate how the WAE model can be extended to include views. This

extension greatly enhances the usefulness of the WAE model. This section discusses the details of this

suggested extension. The following table shows changes and additions to the WAE elements from

Table 1 and how views can be related to these elements.

The original definition of a <<server page>> stereotype lacks the

‘path’ tagged value that is part of the <<web page>> stereotype. This

identifies the location of the server page for implementation purposes. As

well, in order for a form to submit its values it must know the address of

its submission target (the form’s ‘action’). The ‘path’ provides this

address.

Appendix II: UML Web Extensions 80

<<view>> The <<view>> association implies that one object views another. A view

association is a one-way association, with the viewed object unaware of

the existence of the viewer. In UML this is shown as an association that is

navigable only from the viewer to the viewed object. In this sense, forms

are really just a special type of view.

A <<view>> class represents an object that views another object. A view

may have attributes an operations, may view more than one object, and

may have an aggregate association with other views. One object may be

viewed by more than one view.

A client page may be made up of views, including forms, which are

special types of views. In their turn, forms may view objects directly or be

made up of other views. Server pages may not contain views. They may

contain logic that invokes a view, but the view is not considered part of

the server page. A view can be part of a client page that is built when the

server page’s logic is executed. Web pages may contain views, but these

views are static views, since web pages are hard coded. Thus a form that

is part of a web page is a static form, unlike a form that is part of a client

page.

Table 2: WAE Extensions

These extensions are not numerous, but they are significant. Allowing views to be part of the

WAE model means that web pages can be treated as shells for containing views. This makes use of the

Appendix II: UML Web Extensions 81

concept of separation of concerns. With this approach, a view and a web page become different things

in design terms. A web page’s various elements (header, links, style, etc.) can be dealt with separately

from the views contained in the web page. Similarly a view can be designed without worrying about

the web page that will eventually contain it. This separation of has a significant impact on reuse. If a

number of different web pages display the same information, then they can be designed and

implemented to make use of the same views. Should those views change, the web pages containing

them need not be altered as the views they contain are updated automatically.

82

Figure 41 DCRIS Repository Overview

Appendix II: The DCRIS Repository

The DCRIS Repository is implemented using an SQL database. The database product used is Sybase

Adaptive Server Anywhere 7.0. Figure 41 is a UML diagram of the overall database design showing

the database tables, attributes, and relationships. These are explained in more detail in the rest of the

Appendix.

Appendix III: The DCRIS Repository 83

Figure 42 Keyword Table

The database is designed using standard techniques and for the most part is in Boyce-Codd

Normal Form. (Its few deviations from BCNF are done for simplicity’s sake. In the Member table, for

example, the Institution field contains a few instances of repetitive data where more than one DCRIS

member serves at the same institution. In the Publication table, the Publisher field contains a few

instances of repetitive data where more than one publication has the same publisher. Given the

relatively small number of such repetitions, it was decided during the design process that no important

functional purpose would be served by breaking these elements out into separate tables). The

Repository consists of two sections: recommendations, as contained in the Recommendation and

Rec_Type tables; and entries, consisting of the contents of the remaining tables. Recommendations

stand alone as they are not connected to any particular DCRIS member once they are submitted to the

Directory. The other elements of the Directory - the expertises and publications - are related to DCRIS

members.

III.1 DCRIS Tables

This section describes the tables and attributes that make up the DCRIS database.

Keyword Table

Contains categories of broad security expertise.

Attributes

Description: varchar(50), not NULL, unique

The Keyword description.

Keyword_ID: tinyint, autoincrement, primary key

Arbitrary unique identifier for a Keyword. Autoincremented upon insertion.

Indices

i_Description

Appendix III: The DCRIS Repository 84

Figure 43 List Table

Figure 44 Member Table

An index on the Keyword Description.

List Table

Contains titles of areas of narrow security expertise.

Attributes

Description: varchar(100), not NULL, unique

Supplementary Keyword List description.

List_ID: tinyint, autoincrement, primary key

Arbitrary unique identifier for a List. Autoincremented upon insertion.

Indices

i_Description

An index on the List Description.

Member Table

Contains information about DCRIS Members.

Attributes

Address: long varchar

The Member's contact address.

Email: varchar(25)

The Member's email address.

Fax: varchar(25)

The Member' s fax number.

First_Name: varchar(25)

The Member's first name.

Appendix III: The DCRIS Repository 85

Figure 45
Member_Keyword
Table

Institution: long varchar, not NULL

The Member's institution of study or work.

Last_Name: varchar(25), not NULL

The Member's surname.

Member_ID: smallint, autoincrement, primary key

Key for the Member table. Autoincremented upon insertion.

Telephone: varchar(25)

The Member's contact number.

Title: varchar(25)

The Member's title (i.e. Dr., Professor, etc.)

Indices

i_Institution

An index on the Member Institution.

i_Name

An index on the Member name, First_Name within Last_Name.

Member_Keyword Table

A lookup table that joins the Member and Keyword tables.

Attributes

Keyword_ID: tinyint, primary key

Foreign key referencing Keyword (Keyword_ID).

Member_ID: smallint, primary key

Foreign key referencing Member (Member_ID).

Appendix III: The DCRIS Repository 86

Figure 46
Member_Supp_Key
Table

Figure 47 Publication Table

Member_Supp_Key Table

A lookup table that joins the Member and Supp_Key tables.

Attributes

Member_ID: smallint, primary key

Foreign key referencing Member (Member_ID).

Supp_Key_ID: smallint, primary key

Foreign key referencing Supp_Key (Supp_Key_ID).

Publication Table

Contains representative Publications of Members.

Attributes

Authors: long varchar

Authors (including Member) of Publication.

Conference: long varchar

Conference Publication was presented at. (Not applicable to

all publications).

Date: long varchar

Date Publication appeared (or will appear).

Journal: long varchar

Journal Publication appeared in. (Not applicable to all publications).

Member_ID: smallint

Foreign key referencing Member (Member_ID).

Pub_ID: smallint, autoincrement, primary key

Arbitrary unique identifier for a Publication. Autoincremented upon insertion.

Appendix III: The DCRIS Repository 87

Figure 48 Pub_Type
Table

Publisher: long varchar

Publisher of Publication.

Title: long varchar, not NULL

Title of Publication.

Type: char(1)

Foreign key referencing Pub_Type (Type).

Volume: long varchar

Volume Publication appeared in. (Not applicable to all publications).

Indices

i_Title

An index on the Publication Title.

Pub_Type Table

Contains Publication Type codes and descriptions.

Attributes

Description: varchar(20), not NULL, unique

Publication Type description.

Tag: varchar(20), not NULL, unique

XML tag for Publication Type.

Type: char(1)

Primary key identifier for Type. Value is supplied by the designer.

Appendix III: The DCRIS Repository 88

Figure 49 Recommendation
Table

Figure 50 Rec_Type
Table

Recommendation Table

Contains representative Publications of Members.

Attributes

Description: long varchar, not NULL, unique

The Recommendation description.

Rec_ID: smallint, autoincrement, primary key

Arbitrary unique identifier for a Recommendation.

Autoincremented upon insertion.

Type: char(1)

Foreign key referencing Rec_Type (Type).

URL: long varchar, not NULL, unique

The URL for the Recommendation.

Indices

i_Description

An index on the Recommendation Description.

Rec_Type Table

Contains Recommendation type codes and descriptions.

Attributes

Description: varchar(20), not NULL, unique

Publication Type description.

Tag: varchar(20), not NULL, unique

XML tag for Publication Type.

Appendix III: The DCRIS Repository 89

Figure 51 Supp_Key Table

Type: char(1)

Primary key identifier for Type. Value is supplied by the designer.

Supp_Key Table

Contains categories of broad security expertise.

Attributes

Description: varchar(100), not NULL, unique

The Keyword description.

List_ID: tinyint

Foreign key referencing List (List_ID).

Keyword_ID: tinyint, autoincrement, primary key

Arbitrary unique identifier for a Keyword. Autoincremented upon insertion.

Indices

i_Description

An index on the Supplementary Keyword Description.

Appendix III: The DCRIS Repository 90

Figure 52 Table Relationships

III.2 DCRIS Table Relations

This section describes the relationships between the tables of the DCRIS database. Figure 52 shows

the same relationships as in Figure 41, but the attributes have been left out of the table descriptions in

order to simplify the diagram. All table relationships in this database are implemented using foreign

keys.

Member - Keyword Relationship: Broad Expertise

Each Member has zero or more broad expertises in areas represented by a Keyword. Each area of broad

expertise may be held by zero or more Members. The lookup table Member_Keyword implements this

many-to-many relationship. Member_Keyword contains the foreign key columns Member_ID (from

Member) and Keyword_ID (from Keyword).

Appendix III: The DCRIS Repository 91

Member - Supp_Key Relationship: Narrow Expertise

Each Member has zero or more narrow expertises in areas represented by a Supplementary Keyword.

Each area of narrow expertise may be held by zero or more Members. The lookup table

Member_Supp_Key implements this many-to-many relationship. Member_Supp_Key contains the

foreign key columns Member_ID (from Member) and Supp_Key_ID (from Supp_Key).

Supp_Key - List Relationship: Part Of

Each Supplementary Key must be part of a List of areas of narrow expertise. The Supp_Key table

contains the foreign key field List_ID relating it to the List table.

Member - Publication Relationship: Written By

Publications are written by Members. A Publication may belong to one Member; one Member may

write many Publications. The Publication table contains the foreign key field Member_ID relating it to

the Member table.

Publication - Pub_Type Relationship: Is A

Each Publication must have a publication type (book, journal, paper, etc.). The Publication table

contains the foreign key field Type relating it to the Pub_Type table.

Recommendation - Rec_Type Relationship: Is A

Each Recommendation must be of a given Type, such as email List (L) or URL (U). The

Recommendation table contains the foreign key field Type relating it to the Rec_Type table.

92

Bibliography

[1] D. D. Cowan and C. J. P. Lucena, “Abstract Data Views: An Interface Specification Concept to

Enhance Design for Reuse”, IEEE Transactions on Software Engineering, Vol. 21, No. 3, pp

229 - 243.

[2] P. S. C. Alencar, D. D. Cowan, C. J. P. Lucena, and L. C. M. Nova. “The Views Relationship in

ObjectnOriented Analysis & Design”, Technical Report CSn97n13, Computer Science

Department, University of Waterloo, Ontario, Canada, 1997.

[3] P. S. C. Alencar, D. D. Cowan, and C. J. P. Lucena, “A Logical Theory of Interfaces and Objects”,

IEEE Transactions on Software Engineering, Vol. 28, No. 6, June 2002.

[4] P. S. C. Alencar, D. D. Cowan, and L. C. M. Nova. “A Formal Model for the Views-a

Relationship”, Proceedings of the Third Northern Formal Methods Workshop, Ilkley, U.K.,

1998.

[5] L. C. M. Nova, “A Formalization of an Extended Object Model Using Views,” PhD thesis,

Computer Science Department and Computer Systems Group, University of Waterloo,

Waterloo, Ontario, Canada, March 2000.

[6] Jim Conallen, Building Web applications with UML, Addison Wesley Longman, 2000.

[7] Pierre-Alain Muller, Instant UML, Wrox Press Ltd. 1997.

[8] Hans-Erik Eriksson and Magnus Penker, UML Toolkit, John Wiley & Sons, 1998.

[9] Mohamed Fayad and Douglas C. Schmidt, “Object-Oriented Application Frameworks”, Special

Issue on Object-Oriented Application Frameworks, Communications of the ACM, Vol. 40, No.

10, 1997.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of

Reusable Object-oriented Software, Addison-Wesley, 1995.

Bibliography 93

[11] David Garlan and Mary Shaw, Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

[12] Thomas J. Mowbray and Raphael C. Malveau, CORBA Design Patterns, John Wiley & Sons,

1997.

[13] Michael Stonebreaker with Dorothy Moore, Object-Relational DBMSs: The Next Great Wave,

Morgan Kaufmann Publishers, 1996.

[14] P. S. C. Alencar, J. Attard, D. D. Cowan, D. M. Germán, Luis Nova, B. Fraser, and J. Roberts,

Hypermedia Documentation - Implementation Strategies, 2001.

[15] Craig Larman, Applying UML and Patterns, Prentice-Hall, 1998.

[16] Perdita Stevens with Rob Pooley, Using UML: Software Engineering with Objects and

Components, Pearson Education, 2000.

[17] Robert C. Martin and James Newkirk, A Case Study of OOD and Reuse in C++, Object Mentor,

1996.

[18] Don Roberts and Ralph Johnson, Evolving Frameworks: A Pattern Language for Developing

Object-Oriented Frameworks, University of Illinois.

[19] Daniel Austin, Abbie Barbir, and Sharad Garg, ed., Web Services Architecture Requirements:

W3C Working Draft 29 April 2002, W3C (World Wide Web Consortium) 2002,

http://www.w3.org/TR/wsa-reqs.

[20] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, ed., Extensible Markup

Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000, W3C (World

Wide Web Consortium) 2000, http://www.w3.org/TR/2000/REC-xml-20001006.

[21] James Clark, ed., XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November

1999, W3C (World Wide Web Consortium) 1999, http://www.w3.org/TR/xslt.

Bibliography 94

[22] Toacy C. Oliviera, Paulo S. C. Alencar, and Donald D. Cowan, Towards a Declarative Approach

to Framework Instantiation, 2002.

[23] Marcus E. Markiewiez, Carlos J. P. Lucena, Donald D. Cowan, “Taming Access Security:

Extending Capabilities using the Views Relationship”, PUC-RioInf.MCC19/00, May 2000.

[24] Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, Addison-Wesley,

2000.

[25] Stephen R. Schach, Classical and Object-Oriented Software Engineering, 4th ed., McGraw-Hill,

1999.

[26] Martin Fowler with Kendall Scott, UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 2nd ed., Addison-Wesley, 2000.

[27] Ezra Ebner, Weiguang Shao, and Wei-Tek Tsai, “The Five-Module Framework for Internet

Application Development”, ACM Computing Surveys, Vol. 32, No. 1es, March 2000.

[28] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach, “The <bigwig> Project”, ACM

Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

[29] Daniel Schwabe, Robson Mattos Guimarães, and Gustavo Rossi, “Object-Oriented Design

Structures in Web Application Models”, Annals of Software Engineering 13, pp 97 - 110,

2002.

[30] D. Schwabe, R. Mattos Guimarães, and G. Rossi, “Cohesive Design of Personalized Web

Applications”, IEEE Internet Computing, Vol. 6 No. 2, pp 34 - 43, 2002.

[31] J. Gomez, C. Cachero, and O. Pastor, “Conceptual Modeling of Device-Independent Web

Applications”, IEEE Multimedia, Vol. 8 No. 2, pp 26 - 39, 2001.

[32] OMG Unified Modeling Language Specification Version 1.3, Object Management Group, June

1999, http://www.omg.org/cgi-bin/doc?ad/99-06-08.pdf.

Bibliography 95

[33] Jim Conallen, “Modeling Web Application Architectures with UML”, Communications of the

ACM, Vol. 42, No. 10, pp 63 - 70, 1999.

[34] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins, “Modeling

Software Architectures in the Unified Modeling Language”, ACM Transactions on Software

Engineering and Methodology, Vol. 11, No. 1, pp 2 - 57, 2002.

[35] Lidia Fuentes, Jose M. Troya, and Antonio Vallecillo, “Using UML Profiles for Documenting

Web-Based Application Frameworks”, Annals of Software Engineering 13, pp 249 - 264, 2002.

[36] Grant Larsen and Jim Conallen, “Engineering Web-Based Systems with UML Assets”, Annals of

Software Engineering 13, pp 203 - 230, 2002.

[37] E. Bertino and E. Ferrari, “XML and Data Integration”, IEEE Internet Computing, Vol. 5, No. 6,

pp 75 - 76, 2001.

[38] E. Bertino and B. Catania, “Integrating XML and Databases”, IEEE Internet Computing, Vol. 5,

No. 4, pp 84 - 88, 2001.

[39] R. Klapsing, G. Neumann, and W. Conen, “Semantics in Web engineering: Applying the Resource

Description Framework”, IEEE Multimedia, Vol. 8, No. 2, pp 62 - 68, 2001.

[40] Iris Reinhartz-Berger, Dov Dori, and Shmuel Katz, “OPM/Web – Object-Process Methodology for

Developing Web Applications”, Annals of Software Engineering 13, pp 141–161, 2002.

[41] Piero Fraternali, “Tools and Approaches for Developing Data-Intensive Web Applications: A

Survey”, ACM Computing Surveys, Vol. 31, No. 3, 1999.

[42] Cascading Style Sheets, level 2, CSS2 Specification, World Wide Web Consortium, 1998,

http://www.w3.org/TR/REC-CSS2/.

[43] Extensible Stylesheet Language (XSL) Version 1.0, World Wide Web Consortium, 2001,

http://www.w3.org/TR/xsl/.

[44] PHP: Hypertext Preprocessor, The PHP Group, 2002, http://www.php.net.

Bibliography 96

[45] Scalable Vector Graphics (SVG) 1.0 Specification, World Wide Web Consortium, 2001,

http://www.w3.org/TR/SVG/.

[46] P. Alencar, D. Cowan, T. Nelson, M. F. Fontoura, and C. J. Lucena, “Viewpoints and Frameworks

in Component-Based Design”, Building Application Frameworks: Object-Oriented

Foundations of Framework Design, M. Fayad, R Johnson, and D. Schmidt (editors), John-

Wiley, 163-165, 1999.

