
Variations on the Theme of Caching

by

Cristian Gaspar

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Cristian Gaspar 2005

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis is concerned with caching algorithms. We investigate three variations of the

caching problem: web caching in the Torng framework, relative competitiveness and caching

with request reordering.

In the first variation we define different cost models involving page sizes and page costs.

We also present the Torng cost framework introduced by Torng in [29]. We analyze the

competitive ratio of online deterministic marking algorithms in the Bit cost model combined

with the Torng framework. We show that given some specific restrictions on the set of

possible request sequences, any marking algorithm is 2-competitive.

The second variation consists in using the relative competitiveness ratio on an access

graph as a complexity measure. We use the concept of access graphs introduced by Borodin

et al. [11] to define our own concept of relative competitive ratio. We demonstrate results

regarding the relative competitiveness of two cache eviction policies in both the basic and

the Torng framework combined with the Classical cost model.

The third variation is caching with request reordering. Two reordering models are defined.

We prove some results about the value of a move and number of orderings, then demonstrate

results about the approximation factor and competitive ratio of offline and online reordering

schemes, respectively.

iii

Acknowledgements

I am very grateful to my supervisor, Prof. Ian Munro, for his time, support, and help, for

always being available to discuss research ideas and results, for his insight and guidance that

made this thesis possible. Thank you, Ian!

I am also grateful to Spyros Angelopoulos for all his comments and insights, for his

patience in discussing my research results, and for his suggestions on how to improve them.

Euχαρiστώ, Spyros!

I also thank my readers, Prof. Alex López-Ortiz and Prof. Jeremy Barbay, for their

comments and suggestions on how to make this thesis more readable. Thank you for your

help!

My graduate study and research at UW was supported by a NSERC Scholarship and a

President’s Graduate Scholarship for which I would like to thank the Natural Sciences and

Engineering Research Council of Canada and the University of Waterloo.

I thank God and my family: Mihail, Mariana, Anca, and Diana for helping and supporting

me for the duration of my Masters program. Extra special thanks go to my best friends,

Melodie and Cristian, who encouraged me and boosted my morale during the writing of this

thesis.

iv

Contents

1 Introduction 1

1.1 Thesis Overview . 3

1.2 Terminology . 4

1.3 Classical Caching . 7

1.3.1 Deterministic Online Eviction Policies 8

1.3.2 Randomized Online Eviction Policies 9

2 Web Caching and the Torng Framework 11

2.1 Introduction . 11

2.2 Torng Framework . 13

2.2.1 Introduction . 13

2.2.2 Previous Work . 15

2.2.3 New Results for the BIT Model with Non-Optional Caching 16

3 Relative competitiveness 22

3.1 Introduction . 22

v

3.2 New Results for the CLASSICAL Model with Non-Optional Caching 24

4 Demand Caching with Request Reordering 37

4.1 Introduction . 37

4.2 Reordering Models . 42

4.3 Previous Work in the FEDER Model . 44

4.4 Overlapping Moves and Ignoring Backward Moves 46

4.5 Value of a Move and a Property of Effective Moves 51

4.6 Number of Orderings . 59

4.7 BIDIRECTIONAL Model Results . 61

4.8 UNIDIRECTIONAL Model Results . 65

4.8.1 Introduction . 65

4.8.2 A Reordering Scheme for the General Case 65

4.8.3 Optimal Ordering for a Special Case 73

4.8.4 Online Reordering Schemes . 94

4.8.5 Conservative Online Reordering Schemes 99

4.8.6 Online Reordering Schemes with Look-Ahead 100

5 Conclusions 104

5.1 Summary of Results . 104

5.2 Open Problems . 106

A Appendix 107

vi

A.1 Miscellaneous Results . 107

A.2 Notation . 112

A.3 Definitions . 115

Bibliography 122

vii

List of Figures

3.1 Graphs G and G∗ (the cycle Cmax is indicated by bold edges) 26

3.2 Graph G constructed for c(G,EDO,LRU). 32

4.1 A forward move m. 38

4.2 Simulation of a backward move by forward moves. 48

4.3 A typical partition when r = 3. S1 = {m1,m2,m3}. S2 = {m′

1,m
′

2,m
′

3}. . . . 66

4.4 LFD serves σ1. Faults are indicated by dashes. Arrows indicate the moves

that OPT performs. Initial LFD cache configuration: {1, 2, . . . k}. Final LFD

cache configuration: {1, 2, . . . k, k + 1} \ {x} where x is one of 1, 2, . . . k. . . 68

4.5 LFD serves σ′
1. Faults are indicated by dashes. Initial LFD cache configura-

tion: {1, 2, . . . k}. Final LFD cache configuration: {2, . . . k, k + 1}. 69

4.6 LFD serves σ2. Faults are indicated by dashes. Arrows indicate the moves

that OPT performs. Initial LFD cache configuration: {2, . . . k, k + 1}. Final

LFD cache configuration: {2, . . . k, k+1, k+2}\{x} where x is one of 2, . . . k,

k+1. 70

viii

4.7 LFD serves σ2. Faults are indicated by dashes. Initial LFD cache configura-

tion: {2 . . . k, k + 1}. Final LFD cache configuration: {2, . . . k, k + 2}. 71

4.8 LFD serves σ3. Faults are indicated by dashes. Arrows indicate the moves

that OPT performs. Initial LFD cache configuration: {2, . . . k, k + 2}. Final

LFD cache configuration: {1, 2, . . . k, k + 2} \ {x} where x is one of 2, 3, . . . k,

k+2. 71

4.9 LFD serves σ′
3. Faults are indicated by dashes. Initial LFD cache configura-

tion: {2, . . . k, k + 2}. Final LFD cache configuration: {1, 2, . . . k}. 72

4.10 Type 1© moves: m1 and m′
1. Type 2© move: m2. Type 3© move: m3 74

4.11 Type I move: m1 = (5, 3). Type II moves: m2 = (5, 3), m′
2 = (5, 3). Type

III moves: m3 = (4, 1), m′
3 = (4, 2) . 78

4.12 Cases (1.5) and (1.6) in the C1[j] formula . 82

4.13 Cases (2.4) and (2.5) in the C2[j] formula . 83

4.14 Cases (3.8), (3.9), and (3.10) in the C3[j] formula 85

ix

Chapter 1

Introduction

Caching is ubiquitous in the world of computer hardware and software, it is crucial to efficient

performance in many aspects of computation including operating systems, databases, and

search engines. In this thesis we focus our attention on the mathematical modelling of the

caching problem that is defined as follows, simplifying a multi-level memory hierarchy to

two levels. We are given access to two types of memory: slow but large memory (secondary

storage) and fast but small memory (the cache). The cache can store a fixed number of

memory units which are a subset of the secondary storage memory units. We regard each

memory unit as a page and will use this term through the rest of this thesis. The access

time ratio between the secondary storage and the cache can be as large as five orders of

magnitude. Hennessy [17] reports a ratio between 7, 000 and 150, 000. It is easy to see the

improvement if a page is read from cache instead of secondary storage. The processing of a

sequence of page requests is done in the following manner: if the page is already in cache,

1

CHAPTER 1. INTRODUCTION 2

no extra work needs to be done. We call this case a hit. If the page is not in cache, then

it is brought in. This case is a miss, also referred to as a fault and the page on which the

fault occurs is called a faulting page. Processing a request has a different cost depending

on whether the request is a fault or a hit. The total processing cost is the sum of all fault

costs and hit costs. Note that in practice the hit cost is very small in comparison to the fault

cost, this will be reflected in our mathematical model. In the case of a fault, a number of

pages might be evicted from cache so that the faulting page can be brought into cache. We

call this event an eviction. Given a fixed request sequence, the factor that determines its

total processing cost is the decision of which pages to evict (the cache eviction policy).

For the rest of this thesis the term eviction policy refers to a cache eviction policy. The

goal of a caching problem is to minimize the total cost incurred while processing the given

request sequence.

There is a multitude of variations of caching models given all possibilities regarding hit

costs, fault costs, page sizes, reordering of requests, and complexity measures. This thesis

focuses on two aspects that have not previously been studied in literature, namely request

reordering [3, 14] in Chapter 4 (see Definition 4.8) and relative competitiveness in

Chapter 3 (see Definitions 3.2 and 3.3). We also discuss a variation on the well studied

Torng framework [29] in Chapter 2 (see Definition 2.2).

CHAPTER 1. INTRODUCTION 3

1.1 Thesis Overview

This chapter continues with the definitions, terminology and other background to our results.

It also presents the most commonly studied problem: classical caching (Definition 1.7).

Finally we provide a description of all three variations analyzed in this thesis: web caching

in the Torng framework, relative competitiveness and caching with request reordering.

Chapter 2 deals with the first major variation: a combination of the Torng framework

and web caching variants. We define various cost models involving page sizes and page costs.

We present the Torng framework which includes costs for hits as well in the total service

cost as opposed to the basic framework in which only fault costs are counted in the total

cost (Definition 2.2). We survey some of the results of Torng [29] and provide new results

on the Torng framework in the Bit model where fault costs are proportional to page sizes.

In Chapter 3 we analyze the second variation: using the relative competitiveness ratio on

an access graph as a complexity measure. We explain the concept of access graphs introduced

by Borodin [11] and use it to define our own concept of relative competitive ratio. We prove

results regarding the relative competitiveness of two cache eviction policies, LRU and EDO,

in both the basic and the Torng framework for the Classical cost model.

In Chapter 4 we focus on the third variation: caching with request reordering. Two

reordering models are defined. We survey the relevant results of Feder et al. [14] and Albers

[3]. We first prove some important results regarding the value of a move and number of

orderings. The main sections present results for the two reordering models regarding the

competitiveness of offline and online caching schemes.

CHAPTER 1. INTRODUCTION 4

In Chapter 5 we present a summary of our results and a list of open problems for future

research. The Appendix contains a few stand-alone results, followed by a list of terms and

notation that are used in this thesis. We attempted to reference every definition and notation

we have used, but whenever the reader is still in doubt we recommend checking the Appendix.

Note that in all chapters, the complexity measures being used are the approximation

factor and the competitive ratio except for Chapter 3 that uses the relative competitive

ratio. Results in Chapter 2 involve the Torng framework, results in Chapter 3 involve

both the basic and Torng framework, and results in other chapters involve only the basic

framework.

1.2 Terminology

In order to understand the results and their proofs in this thesis we now define the ba-

sic caching models and relevant terms: offline/online algorithms, c-competitiveness, runs,

phases, etc.

We first provide some basic classifications of the types of caching.

Definition 1.1 In demand caching a page can be brought into cache if and only if it is

the currently faulting page. We call such an operation a demand admission. An eviction

policy using this model is called a demand eviction policy.

In non-demand caching any page can be brought into cache at any time and the addi-

tional processing cost is equal to the fault cost of the page that was brought into cache. We

call such an operation a non-demand admission.

CHAPTER 1. INTRODUCTION 5

Note that in Observation 4.1 we show that any eviction policy can be simulated by a

demand eviction policy. Consequently, all results in this thesis implicitly use the demand

caching model.

Definition 1.2 In optional caching a faulting page may or may not be brought into cache.

In non-optional caching every faulting page must be brought into cache.

In most results presented in this thesis the type of caching (optional or non-optional)

is not mentioned. Whenever this occurs the implicit type is non-optional caching. Those

results using optional caching will mention this explicitly in the statement of the result.

We continue by presenting terms that are relevant to the caching problem. An eviction

policy is said to be online if it does not have any information about future requests. On

the other hand an offline eviction policy is one that knows the complete request sequence

in advance.

We present the concept of competitive ratio of an online eviction policy. Let cost(E(σ))

denote the cost of processing σ using some eviction policy E .

Definition 1.3 Let σ be a request sequence, E be a deterministic online eviction policy and

OPT be an optimal offline eviction policy. We say that E is c-competitive if

∃ constant b such that ∀σ, cost(E(σ)) ≤ c · cost(OPT (σ)) + b

The deterministic competitive ratio of E, denoted by cE , is the smallest value of c

such that E is c-competitive.

CHAPTER 1. INTRODUCTION 6

Definition 1.4 Let σ be a request sequence, E be a randomized online eviction policy and

OPT be an optimal offline eviction policy. Let E(cost(E(σ))) denote the expected cost of

processing σ using eviction policy E. The expectation is taken over the random choices made

by E. We say that E is c-competitive if

∃ constant b such that ∀σ,E(cost(E(σ))) ≤ c · cost(OPT (σ)) + b

The randomized competitive ratio of E, denoted by cE , is the smallest value of c such

that E is c-competitive.

We will use the term competitive ratio when it is clear from the context whether we

are referring to the deterministic or to the randomized case.

We introduce the following notation: given a request sequence σ let σ(i : j) denote the

subsequence of requests σ(i) σ(i + 1) . . . σ(j) (i ≤ j).

Definition 1.5 Let σ be a request sequence. We call subsequence σ(i : j) a run if and only

if it is a maximal subsequence of requests for a particular page; more precisely, for some

page x

(i) σ(i : j) = xj−i+1 (i.e.: j − i + 1 requests for x), and

(ii) σ(i − 1) 6= σ(i) and σ(j) 6= σ(j + 1)

n will always denote the length of the request sequence (n = |σ|) and k will denote the

cache size (in bytes). u will be the number of distinct pages in the universe of requests. Note

CHAPTER 1. INTRODUCTION 7

that when we use the term subsequence of σ we always mean a set of consecutive requests

in σ.

Definition 1.6 Let σ be a request sequence. The size of subsequence σ(i : j) is the sum

(in bytes) of sizes of all distinct pages requested in B. Given index i > 0, let j ≥ i be the

maximum index such that the size of σ(i : j) is less than or equal to k. We say that σ(i : j)

is the chunk starting at index i.

We partition a request sequence σ into adjacent chunks as follows: let the first chunk in

σ start at σ(1) and j1 be its end index. The second chunk starts at σ(j1 + 1); let j2 be its

end index. The third chunk starts at σ(j2 + 1); repeat until the last chunk is selected as the

one whose end index is n. Note that, in this thesis, the term “chunk” refers to one of the

chunks implied by the partition above.

If page sizes are not uniform then it is possible that any of the chunks to have total size

strictly less than k. This does not affect the validity of our results in the non-classical cost

models (see Definition 2.1). Even if all page size are equal to 1, it is possible that the last

chunk has size strictly less than k.

1.3 Classical Caching

We now present the caching variation that has been most studied in previous literature.

Recall the concept of non-optional caching introduced in Definition 1.2.

CHAPTER 1. INTRODUCTION 8

Definition 1.7 The classical caching problem is non-optional caching with page size and

page fault costs equal to 1 and hit costs equal to 0.

In the classical caching problem, the total cost of processing a request sequence σ is

exactly the number of faults that are encountered while serving σ and using a particular

eviction policy. Note that Definition 1.7 implies that the cache can hold at most k pages at

any time.

The classical caching problem has been extensively studied in [1, 8, 11, 16, 22, 25, 27, 28,

33]. We will present a short survey of the main results to introduce the reader to the world

of theoretical offline/online caching results.

Belady [8] introduced an optimal offline eviction policy running in polynomial time called

Longest Forward Distance(LFD). LFD always evicts the page in cache whose next request

occurs furthest in the future.

1.3.1 Deterministic Online Eviction Policies

Sleator and Tarjan in [28] introduced a slight modification to the classical caching problem

by having different cache sizes for the online and optimal offline eviction policies (k and

h for the online and offline cache sizes respectively h ≤ k). They proved in [28] that any

deterministic online eviction policy has competitive ratio at least k
h−k+1

. By taking h = k

we get the next important result.

Theorem 1.1 ([28]) In the classical caching problem any deterministic online eviction pol-

icy has competitive ratio at least k.

CHAPTER 1. INTRODUCTION 9

Two other well studied eviction policies are Least Recently Used (LRU) and First In First

Out (FIFO). As their title suggest LRU evicts the page in cache whose last access time is

smallest while FIFO evicts the page whose cache entry time is smallest.

Sleator and Tarjan [28] prove a matching upper bound on the competitive ratio of LRU

and FIFO, so taking h = k it follows that both eviction policies have competitive ratio at

most k. By Theorem 1.1 we get the following result.

Theorem 1.2 ([28]) In the classical caching problem LRU and FIFO attain a competitive

ratio of k and are optimal among deterministic online eviction policies.

1.3.2 Randomized Online Eviction Policies

Before we present the next lower bound result due to Fiat et al. [16], we need the following

notation. We denote by Hk the k-th harmonic number: Hk =
∑k

i=1
1
i
. For any k ≥ 1,

ln k < Hk ≤ ln k + 1.

Fiat, Karp, Luby, McGeoch, Sleator and Tarjan give the following lower bound on ran-

domized online eviction policies, for details we direct the reader to [16].

Theorem 1.3 ([16]) In the classical caching problem every randomized online eviction pol-

icy has competitive ratio at least Hk.

In [16] they also present the following upper bound result which shows that the MARK-

ING eviction policy is optimal, up to a constant factor. MARKING uses the following phase

concept: in the beginning of a phase all pages in cache are unmarked. When a page is

CHAPTER 1. INTRODUCTION 10

accessed for the first time in the current phase it is marked. If an eviction is necessary the

eviction policy chooses uniformly at random one of the unmarked pages. If all pages are

marked, then this is the end of a phase, all pages in cache are unmarked and the process

resumes.

Theorem 1.4 ([16]) In the classical caching problem the MARKING eviction policy is

2Hk-competitive.

Achlioptas et al. [2] present a randomized online eviction policy EQUITABLE that is

optimal. For details see [2].

Theorem 1.5 ([2]) In the classical caching problem the EQUITABLE eviction policy is

Hk-competitive.

Chapter 2

Web Caching and the Torng

Framework

2.1 Introduction

One of the most active areas of caching research is web caching [4, 7, 12, 18, 19, 20, 31, 32].

Recall that, in classical caching, all pages have size equal to 1. In web caching, pages have

different sizes; usually the range of page sizes varies significantly, from a few kilobytes for a

text file to a few megabytes for an mp3 file or even to a few hundreds of megabytes for a

video file.

When dealing with caching problems in the basic framework, two major parameters must

be considered: page sizes and page fault costs (recall hit costs are 0 in the basic framework).

Based on these two parameters, previous literature introduced the following seven models. In

11

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 12

the first model, the Classical model, fault costs and page sizes are equal to 1. This model

has been extensively researched, for relevant papers see [1, 8, 11, 16, 22, 25, 27, 28, 33].

In the second model, fault costs vary and page sizes are equal. It is usually referred to as

the Weighted model. In the third model, fault costs are equal and page sizes vary. This

model is called the Fault model. Clearly, one can normalize the fault costs under the Fault

model and assume that they are equal to 1. Similarly, page sizes in the Weighted model

can be normalized so that they are equal to 1. In the fourth model (the Generalized

model), fault costs vary and page sizes vary as well. In order to restrict the last model a bit

more, the Bit model was defined, where page sizes and faults costs vary and the fault cost

is proportional to the size of the page the fault occurs on.

We now present two other hybrid models that were suggested by López-Ortiz in [24] and

introduced by Au et al. in [6]. In the Dual-Size model, the page sizes are equal to 1 or to a

constant, L (L > 1). The fault costs under this model are based either on the Fault model

or on the Bit model. Another hybrid model is the Real model in which page sizes vary

and the fault cost is a linear function of the page size. To summarize the models presented

above, we provide the next definition that was introduced in [6].

Definition 2.1 ([6]) (Caching Models)

CLASSICAL - Uniform page size and uniform cost of fault).

WEIGHTED - Uniform page size and variable cost of fault.

FAULT - Variable page size and uniform cost of fault. [19]

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 13

GENERALIZED - Variable page size and variable cost of fault.

BIT - Variable page size and cost of fault equals p times the page size (p is a constant). [19]

DUAL-SIZE - Two page sizes and variable cost of fault. [24]

REAL - Variable page size and cost of a fault is w1· pageSize +w2

(w1 and w2 are positive constants). [24]

2.2 Torng Framework

2.2.1 Introduction

We now describe two cost frameworks that are to be used in combination with one of the

cost models presented in Definition 2.1. Each cost framework will define specific hit costs

and fault costs.

Recall, that in the classical caching problem, hit costs are 0 and fault costs are 1. We

call this the basic cost framework. The assumption behind this cost framework is that

cache memory is so fast compared to secondary storage, that reading a page from cache is

”instantaneous“. However this simplification that hit costs are 0 signifies that fault costs

are basically infinite compared to the hit cost. However in practice this is not true. For

example, the fault cost - hit cost ratio for paging is between 7, 000 and 150, 000 (see [17]).

Having observed this discrepancy, Torng introduced a new framework (Torng frame-

work) in [29] for the Classical model. He considers hit costs equal to 1 and fault costs

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 14

equal to (p + 1): p for bringing the page into cache and 1 to access it. Since we will combine

the Torng framework with the Bit model, in our results p denotes the fault penalty for 1

byte.

We now formalize the cost framework concept.

Definition 2.2 The basic framework is one where hit costs are equal to 0 and fault costs

are equal to 1. The Torng framework is one such that hit costs are equal to 1, and fault

cost for a page x is equal to cf (x) = p · s(x) + 1 where s(x) is the size in bytes of page x

and p is the fault penalty for 1 byte.

Definition 2.3 The total cost of processing a request sequence σ using some eviction policy

E is the sum of costs of all faults and hits that occur while E is serving σ.

Observation 2.1 A request sequence σ of length n is processed using an eviction policy E.

Let s be the total sum (in bytes) of sizes of pages that E faults on. In the Torng framework

the total cost of processing σ using E is cost(E(σ)) = s · p + n.

The competitive ratio for the Torng framework is defined exactly the same as for the

basic framework (Definitions 1.3 and 1.4) but it uses the total cost as defined above.

Torng [29] also introduces the class of marking eviction policies.

Definition 2.4 ([29]) A marking eviction policy is an eviction policy whose behaviour

can be mimicked as follows. The eviction policy works in phases: at the beginning of a phase

all pages in cache are unmarked. Each new page being requested is marked and only unmarked

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 15

pages are evicted, if necessary. The phase ends when all pages in cache are marked. At this

moment they are all unmarked and a new phase begins.

2.2.2 Previous Work

We now survey the online eviction policy results of Torng [29] in the Torng cost framework.

All of his results are regarding the Torng framework combined with the Classical model

(hit costs equal to 1 and fault costs equal to p · s(x) + 1 = p + 1) and non-optional caching

(Definition 1.2). Torng focuses on the class of online eviction policies called marking eviction

policies (Definition 2.4).

Observe that LRU and FIFO are marking eviction policies therefore any lower bound

results concerning marking eviction policies applies to both LRU and FIFO. Torng [29]

proved that any marking eviction policy is k(p+1)
k+p

≈ min(k, p + 1)-competitive. Since p

is a constant the result partially confirms the constant competitive ratio of deterministic

online eviction policies like LRU that was observed in practice. This is in contrast to the

basic framework where there is a non-constant lower bound of k on the competitive ratio

(see Theorem 1.1). Furthermore Torng showed that min(k, p + 1) is also a lower bound on

the competitive ratio of any deterministic eviction policy, so marking eviction policies are

optimal among deterministic online eviction policies.

Recall the concept of a chunk (Definition 1.6). Torng also modelled the locality of ref-

erence by considering request sequences to have average chunk size (Definition 2.5) larger

than a · k. We call these request sequences “(a, k)-referenced request sequences” (see Defini-

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 16

tion 2.6). Torng [29] proved that, given this restriction, the competitive ratio of any marking

eviction policy is less than 1 + p
a
. Therefore if a is comparable to p then the competitive

ratio is a constant, matching previous LRU experimental results. In contrast to this, evic-

tion policies like Most Recently Used (MRU), Last In First Out (LIFO) and Least Frequently

Used (LFU) have lower bounds of (p+1) on the competitive ratio even on severely restricted

request sequences where the average chunk size is an arbitrarily large multiple of k · p.

In the same paper [29] Torng also showed several results about randomized online eviction

policies. The eviction policy MARKING (see Section 1.3) always evicts a page from the

unmarked pages in cache. Torng proved that the competitive ratio of the MARKING eviction

policy is 2Hp + 2 − 2 ln 2 if 2
√

e ≤ p ≤ 2k or 2Hk if p > 2k or 1 + p√
e

if p < 2
√

e (recall

Hi is the i-th Harmonic number). He also showed that MARKING is optimal, within a

constant, among randomized online eviction policies. The last relevant result of Torng is

the following: if the set of possible request sequences contains only (a, k)-referenced request

sequences, then the competitive ratio of MARKING is at most 2 + 2 ln p
2a

if p
2k

≤ a ≤ p
2
√

e
,

at most 2Hk if a < p
2k

, and at most 1 + p
a
√

e
if p > p

2
√

e
.

2.2.3 New Results for the BIT Model with Non-Optional Caching

We provide new results on the Torng framework in the Bit model with non-optional caching

(Definition 1.2) where fault costs are proportional to page sizes.

Recall the definition of a chunk (see Definition 1.6).

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 17

Definition 2.5 Let σ be a request sequence, n be its length and sσ be the sum (in bytes)

of sizes of all requests in σ. Let B(σ, k) denote the number of chunks in σ. The average

chunk size in σ is L(σ, k) = sσ

B(σ,k)
and the average request size in σ is Lr(σ) = sσ

n
.

It is possible for a chunk to have total size less than k, therefore L(σ, k) can be smaller

than k. Recall that k denotes the cache size (in bytes). Let smin and smax be the minimum

and maximum sizes (in bytes) of a page in U , the universe of requests (1 ≤ smin ≤ smax ≤ k).

Using the definition above we immediately obtain the following observation.

Observation 2.2 Let σ be a request sequence, L(σ, k) be the average size of a chunk in σ,

and Lr(σ) be the average request size in σ. The following inequalities hold:

L(σ, k) ≥ k − smax + 1 (2.1)

smin ≤ Lr(σ) ≤ smax (2.2)

We now present an upper bound on the competitive ratio of any marking eviction policy

(Definition 2.4). Let cf (x) be the fault cost on page x and s(x) be the size of page x. Recall

that cf (x) = p · s(x) + 1 where p is a constant.

Theorem 2.1 Let σ be any request sequence, M be any marking eviction policy and OPT be

an offline optimal eviction policy. The following inequality holds in the Bit model combined

with the Torng framework:

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 18

cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
L(σ,k)
Lr(σ)

+ sminp

Proof:

Observe that any marking eviction policy M pays at most the cost of one page fault on

each distinct page in each chunk in σ. Let B be the current chunk and p1, p2, . . ., pdB
be

all distinct pages that are requested in B. It follows that k
smax

≤ dB ≤ k
smin

. Let lB be the

total number of requests in B. The hit cost of M on B is lB − dB. The fault cost of M

on B is p
∑dB

i=1 s(pi) + dB. The total cost of M on B is p
∑dB

i=1 s(pi) + lB ≤ p · k + lB. Let

B(σ, k) = b and the chunks of σ be denoted by B1, B2, . . ., Bb. Therefore cost(M(σ)) ≤

pkb +
∑b

j=1 lBj
= pkb + n (i).

The offline optimal eviction policy OPT has to fault at least once in each chunk B. Recall

that cf (x) = ps(x) + 1. Since both p and smin are at least 1, the cost of a fault is strictly

greater than the cost of a hit. Therefore the minimum cost of OPT on B is achieved when

OPT faults only once on B and its cost is p · s(x) + lB where x is the page OPT faults

on. The total cost of OPT on B is at least p · smin + lB. Summing over all chunks we get

cost(OPT (σ)) ≥ psminb +
∑b

j=1 lBj
= psminb + n (ii). By inequalities (i) and (ii):

cost(M(σ))

cost(OPT (σ))
≤ n + psminb + p(k − smin)b

n + psminb
= 1 +

p(k − smin)b

n + psminb

= 1 +
p(k − smin)

n+psminb
b

= 1 +
p(k − smin)

n
b

+ sminp

Recall that by Definition 2.5 b = B(σ, k) = sσ

L(σ,k)
and Lr(σ) = sσ

n
.

It follows that
cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
nL(σ,k)

sσ
+ sminp

= 1 +
p(k − smin)

L(σ,k)
Lr(σ)

+ sminp
.

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 19

Theorem 2.2 In the Bit model combined with the Torng framework the following holds:

the competitive ratio of every marking eviction policy is less than min
{

k
smin

, 1 + smaxp
}

.

Proof:

Let M be a marking eviction policy.

By Theorem 2.1 we have that
cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
L(σ,k)
Lr(σ)

+ sminp
, ∀σ.

By inequalities 2.1 and 2.2 we get that

cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
k−smax+1

smax
+ sminp

= 1 +
smaxp(k − smin)

k − smax + sminsmaxp + 1
,∀σ (1)

This gives us an upper bound on the competitive ratio cM of every marking eviction

policy M. Since k−smax +1 > 0 it must be that cM ≤ 1+ smaxp(k−smin)
smaxsminp

= 1+ k−smin

smin
= k

smin
.

Now it remains to show that cM ≤ 1 + smaxp. Start with inequality (1) above:

cost(M(σ))

cost(OPT (σ))
≤ 1 +

smaxp(k − smin)

k − smax + sminsmaxp + 1
≤ 1 +

smaxpk

k − smax + sminsmaxp + 1

Since smin ≥ 1 and p ≥ 1 it holds that sminsmaxp − smax + 1 > 0.

Hence costM(σ)
costOPT (σ)

≤ 1 + smaxpk
k

= 1 + smaxp, ∀σ. The result follows.

Since p is a constant, if smax is also constant, the above theorem implies that the com-

petitive ratio of every marking eviction policy is constant. If smax and smin are equal to 1

then our result matches the previous result of Torng that the competitive ratio of M is less

than min{k, p + 1}.

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 20

We now introduce a restriction on the possible request sequences.

Definition 2.6 Let σ be a request sequence that satisfies L(σ, k) ≥ ak. We call σ an (a, k)-

referenced request sequence.

Theorem 2.3 Let S be the set of all (a, k)-referenced request sequences. Let the model be

the Bit model combined with the Torng framework. If the set of possible request sequences

is S, then the competitive ratio of any marking eviction policy is less than

min

{

k

smin

, 1 +
smaxp

a

}

Proof:

Let M be a marking eviction policy. By cM we denote the competitive ratio of M when

the set of all possible request sequences is S.

The proof that cM ≤ k
smin

is the same as the one for the first part of Theorem 2.2. It

remains to demonstrate that cM ≤ 1 + smaxp
a

.

By Theorem 2.1 we have that
cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
L(σ,k)
Lr(σ)

+ sminp
, ∀σ.

By definition of (a, k)-referenced request sequences it follows that L(σ, k) ≥ a·k. Combine

this with inequality 2.2 to obtain that

cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
ak

smax
+ sminp

= 1 +
smaxp(k − smin)

ak + sminsmaxp
,∀σ ∈ S

Since smaxp > 0 we obtain that cM ≤ 1 + smaxpk
ak+sminsmaxp

. Also sminsmaxp > 0 hence

cM ≤ 1 + smaxpk
ak

= 1 + smaxp
a

. The result follows.

CHAPTER 2. WEB CACHING AND THE TORNG FRAMEWORK 21

We know that in [29] p is estimated to range between 0.5 to 150 with 10 being a reason-

able value. Therefore, if a ≥ smax in the previous theorem, then the upper bound on the

competitiveness of M is about 11.

If L(σ, k) is restricted even more, then we have an upper bound of 2 on the competitiveness

of every marking eviction policy M.

Theorem 2.4 Let S be the set of all (a, k)-referenced request sequences σ that satisfy a ≥

pLr(σ). Let the model be the Bit model combined with the Torng framework. If the set of

possible request sequences is S, then the competitive ratio of any marking eviction policy is

less than 2.

Proof:

Let M be a marking eviction policy. By cM we denote the competitive ratio of M when

the set of all possible request sequences is S.

By Theorem 2.1 we have that
cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
L(σ,k)
Lr(σ)

+ sminp
, ∀σ.

By definition of (a, k)-referenced request sequences, L(σ, k) ≥ ak, so

cost(M(σ))

cost(OPT (σ))
≤ 1 +

p(k − smin)
ka

Lr(σ)
+ sminp

= 1 +
k − smin

ka
pLr(σ)

+ smin

Since a ≥ pLr(σ), ∀σ ∈ S we obtain that
cost(M(σ))

cost(OPT (σ))
≤ 1 +

k − smin

k + smin

≤ 2, ∀σ ∈ S.

The result follows.

Chapter 3

Relative competitiveness

3.1 Introduction

In this chapter we will prove results that use both total cost definitions: both the basic and

the Torng cost framework (see Definition 2.2).

The underlying request model is that of the access graph model introduced by Borodin

et al. in [11]. More precisely each page in the universe of requests has a corresponding

vertex in the access graph G. Given two vertices vp and vq, (vp → vq) is a directed edge

if q is contained in the set of pages that can be immediately requested after a request for

page p. The undirected edge (vp, vq) is defined similarly; both pages p and q can be requested

immediately one after the other.

Next we introduce the concept of a request sequence that is consistent with an access

graph.

22

CHAPTER 3. RELATIVE COMPETITIVENESS 23

Definition 3.1 Given an access graph G and a request sequence σ we say σ is consistent

with G if σ can be obtained by walking on G and requesting the page associated with each

of the vertices visited during this walk.

The difference between the standard caching model and the access graph model is that

the access graph model models a particular type of request sequences whereas the standard

caching models assumes any request sequence is possible. Note that the standard caching

model is represented by the complete access graph.

Given that k is the size of the cache, any graph with less than (k + 1) vertices is not

interesting: for any eviction policy, once all pages are in its cache, it does not fault on any

page anymore. Therefore in all results that follow we consider graphs with at least (k + 1)

vertices.

We now present the relative competitive ratio of two eviction policies. Two definitions are

provided: one for the standard caching model and another one for the access graph model.

Definition 3.2 Let E1 and E2 be two eviction policies. E1 is c-competitive relative to E2

if

∃ constant b such that ∀σ, cost(E1(σ)) ≤ c · cost(E2(σ)) + b

The competitive ratio of E1 relative to E2, denoted by c(E1, E2) is the smallest value

of c such that E1 is c-competitive relative to E2.

Definition 3.3 Let G be an access graph and SG be the set of all request sequences that

are consistent with G. Let E1 and E2 be two eviction policies. E1 is c-competitive on G

CHAPTER 3. RELATIVE COMPETITIVENESS 24

relative to E2 if

∃ constant b such that ∀σ ∈ SG, cost(E1(σ)) ≤ c · cost(E2(σ)) + b

The competitive ratio of E1 on G relative to E2, denoted by c(G, E1, E2) is the

smallest value of c such that E1 is c-competitive on G relative to E2.

This definition of relative competitive ratio has been introduced in [5]. It is different from

the one introduced by Koutsoupias and Papadimitriou in [23]. We compare two particular

eviction policies, whereas Koutsopias and Papadimitriou compare classes of eviction policies.

The access graph model was studied in [11, 10, 21, 15, 13], but all results involve the common

competitive ratio that compares the online eviction policy against the offline optimal. None

of the previous literature mentions any results using the relative competitive ratio on an

access graph as defined in Definition 3.3.

3.2 New Results for the CLASSICAL Model with Non-

Optional Caching

We now prove a few basic results regarding the relative ratios of Least Recently Used (LRU)

and Evict Diametrically Opposed (EDO) in the Classical model (Definition 2.1) with non-

optional caching (Definition 1.2).

The concept of a distance between two vertices of a graph is presented next.

CHAPTER 3. RELATIVE COMPETITIVENESS 25

Definition 3.4 Given an undirected and non-weighted graph G and two vertices vp and vq

of G the distance d(vp, vq) is the length of the shortest path in G between vp and vq.

EDO is the eviction policy that always evicts the page in cache that is the most distant

from the current faulting page. Formally if the current faulting page is p then EDO evicts

from its cache the page q that maximizes d(vp, vq). EDO is similar to the FAR eviction policy

introduced by Borodin et al. [11]. The difference is that FAR evicts from cache the page

that is the most distant from a set of marked pages whereas EDO evicts the page that is

the most distant from the faulting page.

Given a non-weighted, undirected and connected access graph G, let Cmax be a cycle of

G of maximum length. Using only edge deletions, we build its connected spanning subgraph

G∗ such that Cmax is the only cycle in G∗.

Let the set of vertices in Cmax be denoted by Vmax = V max
1 ∪ V max

2 where V max
1 is the

set of vertices on Cmax that have degree 2 and V max
2 is the set of vertices on Cmax whose

degree is at least 3. We can say that each vertex in V max
2 has an external tree attached to it

(external to Cmax, rooted at a vertex in V max
2). We refer to these external trees as hanging

trees.

For example, see hanging tree T = (VT , ET) in Figure 3.1 where

VT = {v1, v22, v23, v24, v25, v26, v27, v28, v29}

CHAPTER 3. RELATIVE COMPETITIVENESS 26

and

ET = {(v1, v22), (v22, v23), (v22, v24), (v24, v25), (v24, v27), (v25, v26), (v27, v28), (v27, v29)}

V15
V16V17

V19

V18V20

V21

V1
V

13

G G*

V14

V

2

8

9VV7
V6 11V

V1012V

28V V29
V

24
V22

V V4

V53V
27V

V25

23V

26
V

Figure 3.1: Graphs G and G∗ (the cycle Cmax is indi-
cated by bold edges)

Let Th be the set of all hanging trees in G∗. Let l(T) denote the number of leaves of a

rooted tree T . Let L =
∑

T∈Th
l(T) and N = |V max

1 |. L and N depend on the way we break

ties in selecting the maximum cycle and removing edges. For the results in this section we

assume that the ties are broken such that L + N is maximized to M = maxL,N (L + N).

The following result reveals a property of the pair of vertices whose distance is maximum

among all vertex pairs in a G∗-type graph.

Lemma 3.1 Let G be an undirected, non-weighted, and connected graph such that G con-

tains exactly one cycle C. Let S1 be the set of vertices of degree 1 in G. Let vp and vq be

two vertices in G whose distance d(vp, vq) is maximum among all pairs of vertices in G. If

|S1| > 0, then at least one of vp and vq is in S1.

CHAPTER 3. RELATIVE COMPETITIVENESS 27

Proof:

Use proof by contradiction; assume that neither vp, nor vq are in S1. We distinguish

several cases: either both vp and vq belong to C (case 1) or vp is in C, vq is in a hanging

tree Ti, and vq is not a leaf in Ti (case 2) or vq is in C, vp is in a hanging tree Ti, and vp is

not a leaf in Ti (case 3) or both vp and vq are vertices in two hanging trees Ti = (Vi, Ei) and

Tj = (Vj, Ej) and neither vp nor vq are leaves (case 4).

Focus on case 1 where both vp and vq belong to C. Let the vertices of C be v1, v2, . . ., vc.

Since C is the only cycle in G there are no edges e = (vi, vj) in G such that i, j ∈ {1, 2,. . . , c}

and j 6= i+1 except for edge (vc, v1). Hence there are no shortcuts between any two vertices

vg and vh on C; there are only two paths between vg and vh, one going clockwise on C and

the other one going counter-clockwise on C. Observe that d(vp, vq) =
⌊

c
2

⌋

. Furthermore,

given any vertex v′
p on C, there exists a vertex v′

q on C such that d(v′
p, v

′
q) = d(vp, vq) due to

cycle symmetry (i).

G has at least one vertex of degree 1 (|S1| > 0) and C is the only cycle in G. Therefore

there exists a subtree Ti = (Vi, Ei) of G that is rooted at a vertex vi on cycle C such that

none of the edges in C are in Ei. Ti is a hanging tree on at least 2 vertices. Using the

Breadth First Search algorithm we can identify a leaf wi in Ti such that wi is the vertex

furthest from the root (wi maximizes d(vi, wi) over vertices in Vi).

By observation (i) above, there exists a vertex v′
q on C such that d(vi, v

′
q) = d(vp, vq).

Since Ti is a tree and C is the only cycle in G, it follows that d(wi, v
′
q) = d(wi, vi)+d(vi, v

′
q) =

d(wi, vi) + d(vp, vq) > d(vp, vq). We have a contradiction: d(vp, vq) is not the maximum

CHAPTER 3. RELATIVE COMPETITIVENESS 28

distance in G.

Consider case 2: vp is in C and vq is in a hanging tree Ti rooted at some vertex vi on C

and vq is not a leaf in Ti. There exists a leaf wi in Ti such that d(wi, vi) is the maximum

distance from the root vi to any vertex in Ti. Hence d(wi, vi) > d(vq, vi). It holds that

d(wi, vp) = d(wi, vi) + d(vi, vp) > d(vq, vi) + d(vi, vp) = d(vp, vq). This contradicts the fact

that d(vp, vq) is maximum.

Focus on case 3 where vq is in C and vp is in a hanging tree Ti rooted at some vertex vi

on C and vp is not a leaf in Ti. This case is identical to case 3, with vp and vq interchanged.

In case 4, both vp and vq are two vertices in two hanging trees Ti = (Vi, Ei) and Tj =

(Vj, Ej) and none of vp and vq are leaves. Ti is rooted at vi and Tj is rooted at vj. There are

two subcases: Ti = Tj (4.1) and Ti 6= Tj (4.2).

In case 4.1, Ti = Tj. Given any pair of vertices v and w in a tree, there exists only one

path between those vertices. The distance between them is the length of this path. Let P

denote the path in Ti between vp and vq. Since vp is not a leaf, it must have at least one

neighbour vs such that vs is not on P . It follows that d(vs, vq) = 1 + d(vp, vq) > d(vp, vq)

which contradicts the hypothesis that d(vp, vq) is maximum.

Consider case 4.2 where Ti 6= Tj. Note that d(vp, vq) = d(vp, vi)+d(vi, vj)+d(vj, vq). Let

wi and wj be leaves in Ti and Tj such that they maximize the distances d(vi, wi) over vertices

in Vi and d(vj, wj) over vertices in Vj. Hence d(wi, vi) > d(vp, vi) and d(wj, vj) > d(vq, vj).

Therefore d(wi, wj) = d(wi, vi) + d(vi, vj) + d(vj, wj) > d(vp, vi) + d(vi, vj) + d(vj, vq) =

d(vp, vq). This contradicts the fact that d(vp, vq) is maximum.

CHAPTER 3. RELATIVE COMPETITIVENESS 29

In all four cases, the hypothesis that d(vp, vq) is maximum was contradicted. Our as-

sumption is false, hence at least one of vp and vq is a leaf. The result follows.

Recall that Th is the set of all hanging trees in G∗ and l(T) denotes the number of leaves

of a rooted tree T . Also recall that L =
∑

T∈Th
l(T), N = |V max

1 |, and M = maxL,N (L+N).

Theorem 3.1 Let G be any access graph on (k + 1) vertices. In the basic framework (De-

finition 2.2) combined with the Classical model if n → ∞, then the competitive ratio of

LRU on G relative to EDO is at least M
2
:

c(G,LRU,EDO) ≥ M

2

Proof:

Let Cmax be a cycle in G of maximum length. Remove edges as necessary to obtain the

connected spanning subgraph G∗ of G such that Cmax is the only cycle in G∗. It is obvious

that G∗ is planar, fix a planar embedding of it such that all the edges of G∗ not in Cmax are

on the outside face of Cmax. See Figure 3.1 for an example.

Let vp and vq be two vertices in G∗ whose distance d(vp, vq) is the largest among all pairs

of vertices in G∗. Given the planar embedding of G∗, consider all request sequences that

can be obtained by a clockwise traversal of G∗. Of all these request sequences, pick the one

starting at vp and denote it by σ. Let σ′ = σm (σ′ is m repeated copies of σ). When serving

the first copy of σ, both LRU and EDO fault on every request since the cache is initially

CHAPTER 3. RELATIVE COMPETITIVENESS 30

empty.

Consider the behaviour of EDO on each of the (m−1) remaining copies of σ. EDO faults

first on the request for p. Since d(vp, vq) is maximum among all pairs of vertices in G, vq is

the vertex most distant from vp. When EDO faults on p, it evicts page q. Recall the cache

size is k and the number of distinct requests in σ is k + 1. All requests occurring before

the next request for q are hits. When q is requested, it is a fault. The most distant vertex

from vq is vp, so EDO evicts p. All requests, before p is requested again, are hits. When p

is requested again, the process repeats itself. Hence EDO faults only twice on each of the

(m − 1) remaining copies of σ (i).

While serving the remaining (m− 1) copies of σ, LRU faults on only two types of pages.

The first type are the pages corresponding to vertices in V max
1 ; recall that V max

1 is the set of

vertices on Cmax that have degree 2. The second type are the pages corresponding to leaves

of hanging trees. We consider two cases: L = 0 (case 1) and L 6= 0 (case 2).

Focus on case 1 where L = 0. G∗ contains no hanging trees, so it is a cycle of length

k +1 (G∗ = Cmax). All vertices in Cmax have degree 2, so N = |V max
1 | = |Cmax| = k +1 6= 0.

M = maxL,N (L + N) = N = k + 1. Since G∗ is a cycle of length k + 1, when a fault

occurs, LRU evicts the page that is requested next. LRU faults on each request of the

remaining (m − 1) copies of σ. Therefore cost(LRU(σ ′)) = m(k + 1). By (i) we get that

cost(EDO(σ′)) = 2(m − 1) + k + 1. Hence

lim
m→∞

cost(LRU(σ′))

cost(EDO(σ′))
= lim

m→∞

m(k + 1)

2(m − 1) + k + 1
=

k + 1

2
=

M

2

CHAPTER 3. RELATIVE COMPETITIVENESS 31

Consider case 2 where L 6= 0. There exists at least one hanging tree in G∗, so there

exists at least one vertex of degree 1 in G∗. By applying Lemma 3.1 one of vp and vq is a leaf

in one of these hanging trees. Without loss of generality assume vp is a leaf in some hanging

tree T .

Recall that σ(1) = p, due to construction of σ. The last faulting request in the first copy

of σ can be one of the following three: the last leaf v in T requested before vp (case 2.1) or

the last-requested leaf w in hanging tree T0 traversed before T will be traversed (case 2.2)

or the vertex x of degree 2 on Cmax that is visited just before T is traversed (case 2.3). Case

2.1 occurs when vp is not the first visited leaf in T , cases 2.2 and 2.3 occur when vp is the

first visited leaf in T . In case 2.2, l(T0) ≥ 1 and in case 2.3, l(T0) = 0 (T0 does not exist, the

corresponding vertex x is in V max
1). In all three cases (2.1, 2.2, and 2.3), the page that LRU

evicts is p and LRU’s next fault will be on the next request for p.

Let pnext be the least recently used page when the next request for p occurs. vpnext
is

either the next leaf (after vp) in the traversal of T (case 2.4) or the first leaf in hanging tree

T1 traversed after T (case 2.5) or the vertex y of degree 2 on Cmax that is visited just after

T is traversed (case 2.6). Case 2.4 occurs when vp is not the last visited leaf in T , cases 2.5

and 2.6 occur when vp is the last visited leaf in T . In case 2.5, l(T1) ≥ 1 and in case 2.6,

l(T1) = 0 (T1 does not exist, the corresponding vertex y is in V max
1). In all three cases (2.4,

2.5, and 2.6), the page that LRU evicts is either a leaf in one of the hanging trees or a vertex

in V max
1 . Repeating this argument yields our claim that LRU faults only on such requests.

In case 2 it holds that cost(LRU(σ′)) = (L + N)(m − 1) + k + 1. By (i) we obtain that

CHAPTER 3. RELATIVE COMPETITIVENESS 32

cost(EDO(σ′)) = 2(m − 1) + k + 1. Recall that n → ∞, hence m → ∞.

lim
m→∞

cost(LRU(σ′))

cost(EDO(σ′))
= lim

m→∞

(L + N)(m − 1) + k + 1

2(m − 1) + k + 1
=

L + N

2
=

M

2

We conclude that c(G,LRU,EDO) ≥ M
2

.

Theorem 3.2 In the basic framework combined with the Classical model there exists an

access graph G such that if n → ∞, then the competitive ratio of EDO on G relative to

LRU is infinite:

c(G,EDO,LRU) = ∞

Proof:

We give an access graph G and a walk σ on G such that limn→∞
cost(EDO(σ))
cost(LRU(σ))

= ∞

Let P = v1v2 . . . vk be a path of length k and vk+1 be a vertex not on P . Let G be the

graph obtained by connecting vk+1 to vdk/2e (see Figure 3.2).

 k/2 k/2 +1 k/2 -11 2
VV

kk-1
VVV VV

Vk+1

Figure 3.2: Graph G constructed for c(G,EDO,LRU).

Let σb = vkvk−1 . . . vdk/2e+1vdk/2evdk/2e−1 . . . v2v1v2 . . . vdk/2e−1vdk/2evdk/2e+1 . . . vk−1.

Set σ = vk+1vdk/2evdk/2e−1 . . . v2v1v2 . . . vdk/2e−1vdk/2evdk/2e+1 . . . vk−1(σb)
m (σ ends in m

copies of σb).

CHAPTER 3. RELATIVE COMPETITIVENESS 33

We call the prefix vk+1vdk/2evdk/2e−1 . . . v2 v1v2 . . . vdk/2e−1vdk/2evdk/2e+1 . . . vk−1 the start-

ing block of σ.

On requests in the starting block LRU ’s behaviour is the same as EDO’s behaviour.

Their hits and faults match exactly: there are dk/2e − 1 hits and k faults. On the next

request following the starting block (vk) LRU evicts vk+1 which is never requested again in

the future. Hence LRU never faults on the remaining requests. However when vk is requested

EDO evicts v1 instead, then faults on v1 and evicts vk, then faults on vk and evicts v1 and

so on. So EDO faults exactly twice on each of the σb subsequences. Therefore the cost of

LRU on σ is k + 1 and the cost of EDO is k + 2m. n = dk/2e + k − 1 + (2k − 2)m. Since

n → ∞, it must be that m → ∞ as well.

lim
m→∞

cost(EDO(σ))

cost(LRU(σ))
= lim

m→∞

2m + k

k + 1
= +∞

Hence c(G,EDO,LRU) = ∞.

The next result follows immediately from the previous theorem since the CLASSICAL

model is a subset of the Bit model.

Corollary 3.1 In the basic framework combined with the Bit model there exists an access

graph G such that if n → ∞, then the competitive ratio of EDO on G relative to LRU is

infinite:

c(G,EDO,LRU) = ∞

CHAPTER 3. RELATIVE COMPETITIVENESS 34

Theorem 3.3 In the Torng framework combined with the Classical model, for any access

graph G with (k + 1) vertices, if n → ∞, then the competitive ratio of LRU on G relative to

EDO is larger than 1 + (L+N−2)p
2p+2k

:

c(G,LRU,EDO) ≥ 1 +
(L + N − 2)p

2p + k + 1

Moreover, there exists an access graph G such that if n → ∞, then the competitive ratio of

EDO on G relative to LRU is larger than 1 + p
k−1

:

c(G,EDO,LRU) ≥ 1 +
p

k − 1

Proof:

For the first statement we construct G∗ from G. Using the same argument as in Theo-

rem 3.1, we construct a request sequence σ′ such that

cost(LRU(σ′))

cost(EDO(σ′))
≥ n + ((L + N)(m − 1) + k + 1)p

n + (2(m − 1) + (k + 1))p

We know that σ′ = σm, so n = m|σ|, where |σ| denotes the length of σ. This implies

cost(LRU(σ′))

cost(EDO(σ′))
≥ m(|σ| + (L + N)p) + (k + 1 − L − N)p

m(|σ| + 2p) + (k − 1)p

CHAPTER 3. RELATIVE COMPETITIVENESS 35

Since n → ∞ it must be that m → ∞. k, p, L and N are fixed, so we obtain

c(G,LRU,EDO) ≥ lim
m→∞

m(|σ| + (L + N)p) + (k + 1 − L − N)p

m(|σ| + 2p) + (k − 1)p
=

(L + N)p + |σ|
2p + |σ|

Then

c(G,LRU,EDO) ≥ 1 +
(L + N − 2)p

2p + |σ| (i)

We derive a formula for |σ|. Recall that σ is a clockwise traversal of G∗ starting at some

vertex vp of degree 1 and ending at vp’s neighbour. For any vertex v let deg(v) denote the

degree of v in G∗. Each vertex v not on Cmax is visited deg(v) times, but each vertex v on

Cmax is visited only (deg(v)− 1) times. Let VG∗ and EG∗ be the set of vertices and edges in

G∗. Hence |σ| =
∑

v∈VG∗
deg(v) − |Cmax| = 2 |EG∗ | − |Cmax|.

Recall Th is the set of hanging trees in G∗. Observe that |EG∗ | =
∑

T∈Th
|ET | + |Cmax|.

Since T is a tree it holds that |ET | = |VT |− 1, hence |EG∗ | =
∑

T∈Th
(|VT |− 1)+ |Cmax|. Also

the root of each tree T lies on Cmax therefore
∑

T∈Th
(|VT | − 1) = |VG∗ | − |Cmax|. Combining

the observations above we obtain that |EG∗ | = |VG∗ | = k +1. Hence |σ| = 2 |VG∗ | − |Cmax| =

2k + 2 − |Cmax| (ii).

The minimum value of |Cmax| is obtained when G∗ is a tree. In such a case, any edge can

be considered to be Cmax and |Cmax| = 2. Substituting in formula (ii) we get |σ| = 2k. The

maximum value of |Cmax| is obtained when G∗ is the same as Cmax (G∗ contains no hanging

trees). In this case |σ| = 2k + 2 − (k + 1) = k + 1. Notice how the two cases above give

the maximum and minimum length of σ, hence k + 1 ≤ |σ| ≤ 2k. Combining this inequality

CHAPTER 3. RELATIVE COMPETITIVENESS 36

with (i) we obtain c(G,LRU,EDO) ≥ 1 + (L+N−2)p
2p+2k

which proves the first statement of the

theorem.

For the second statement we use the same construction for σ as in Theorem 3.2 and

derive

cost(EDO(σ))

cost(LRU(σ))
≥ n + (k + 2m)p

n + (k + 1)p

Substituting n = dk/2e + k − 1 + (2k − 2)m we get that

cost(EDO(σ))

cost(LRU(σ))
≥ (2k − 2 + 2p)m + kp + dk/2e + k − 1

(2k − 2)m + (k + 1)p + dk/2e + k − 1

Since n → ∞ we have m → ∞. Since both k and p are fixed,

c(G,EDO,LRU) ≥ lim
m→∞

cost(EDO(σ))

cost(LRU(σ))
=

k − 1 + p

k − 1
= 1 +

p

k − 1

This proves the second statement of the theorem.

Chapter 4

Demand Caching with Request

Reordering

4.1 Introduction

It is often acceptable to alter the order of requests, within some bounds. The concept of

caching with request reordering was proposed and analyzed by Feder et al. in [14] and by

Albers in [3]. We consider two variations of the caching problem that are similar to the one

mentioned above.

We allow the request sequence to be reorganized subject to a set of delay constraints.

Reorganization is performed in steps; each step is called a move. Before defining the concept

of a move, we introduce the following notation. Given two positive integers i and j such

that i < j, let Ji, jK denote the set {i, i+1, . . . j−1, j}. Recall that given a request sequence

37

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 38

σ, σ(i : j) denotes the subsequence σ(i) σ(i + 1) . . . σ(j − 1) σ(j).

Definition 4.1 Let σ be any request sequence. A move m = (j, i) applied to σ is an

operation that relocates request σ(j) to position i. Let the resulting request sequence be

denoted by σ′. Move m is a forward move if σ(j) is moved closer to the front of σ

(j > i). Move m is a backward move if σ(j) is moved closer to the back of σ (j < i).

Its from-coordinate and to-coordinate are j and i respectively. If m is a forward move,

the range of m is Rm = Ji, jK and m shifts every request in σ(i : j − 1) backward by one

position. I.e.: σ′(1 : i − 1) = σ(1 : i − 1), σ′(i) = σ(j), σ′(i + 1 : j) = σ(i : j − 1), and

σ′(j + 1 : n) = σ(j + 1 : n). If m is a backward move, the range of m is Rm = Jj, iK and m

shifts every request in σ(j + 1 : i) forward by one position. I.e.: σ ′(1 : j − 1) = σ(1 : j − 1),

σ′(j : i − 1) = σ(j + 1 : i), σ′(i) = σ(j), and σ′(i + 1 : n) = σ(i + 1 : n).

See Figure 4.1 for an illustration of a forward move. Recall that σ(1) is the first request

in σ and σ(n) is the last one.

m

σ() . . . σ() σ() . . . σ() σ() . . . σ()i-1 i j-1 j n1

Figure 4.1: A forward move m.

We give an example to illustrate Definition 4.1. Let σ = u y v w x z. The forward

move m = (5, 3) relocates request for x from position 5 to position 3. The resulting request

sequence is σ′ = u y x v w z. The range of m is Rm = J3, 5K and its from-coordinate and

to-coordinate are 5 and 3, respectively.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 39

A request reordering algorithm or simply a reordering algorithm is an algorithm

that performs a sequence of moves on a given request sequence σ0 and obtains a permutation

(final ordering) σf . We distinguish the process of reordering requests from that of serving

them so each algorithm for this problem (reordering scheme) is a pair of a request reorder-

ing algorithm and an eviction policy. In the first phase the request reordering algorithm is

applied to the initial request sequence σ0 and a final ordering σf is obtained. In the second

phase σf is served using the selected eviction policy. We now formalize the concepts of a

reordering scheme and its cost.

Definition 4.2 A reordering scheme is a pair (R, E) where R is a reordering algorithm

and E is an eviction policy.

I.e.: (NoReordering, LFD) is a reordering scheme that does not apply any moves to

the initial request sequence σ0 (σf = σ0) and serves σ0 using the Longest Forward Distance

(LFD) eviction policy.

Definition 4.3 Let σ be a request sequence and (R, E) be a reordering scheme. Let R(σ) be

the request sequence obtained by applying R to σ. The cost of reordering scheme (R, E),

denoted by cost(E(R(σ))), is the cost of processing request sequence R(σ) using E as an

eviction policy.

We now introduce the concepts of online/offline reordering algorithms and on-

line/offline reordering schemes.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 40

Definition 4.4 An offline reordering algorithm is a reordering algorithm that can ob-

serve all requests in the request sequence, move of any of them, and revoke any of its deci-

sions. An online reordering algorithm is a reordering algorithm which cannot observe

any requests past the current request, can move forward only the current request, and makes

irrevocable decisions.

Definition 4.5 Given a reordering scheme (R, LFD), if R is an offline reordering algorithm

then (R, LFD) is an offline reordering scheme. If R is online, then (R, LFD) is an

online reordering scheme.

Recall that Belady’s result in [8] shows that LFD is an optimal eviction policy given

a fixed request sequence. Our goal is to find a reordering algorithm R that minimizes

cost(LFD(R(σ))), ∀σ (E = LFD). We denote such an algorithm by OPT , call it an

optimal offline reordering algorithm and call the reordering scheme (OPT,LFD) an

optimal offline reordering scheme.

Note that we focus on deterministic offline and online reordering schemes. The approx-

imation factor of a deterministic offline reordering scheme is presented next.

Definition 4.6 Let σ be a request sequence, R be a deterministic offline reordering algo-

rithm, and OPT be an optimal offline reordering algorithm. We say that the offline reorder-

ing scheme (R, LFD) is an α-approximation if

cost(LFD(R(σ))) ≤ α · cost(LFD(OPT (σ))) + b,∀σ and some constant b

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 41

The approximation factor of (R, LFD), denoted by α(R, LFD) is the smallest value

of α such that (R, LFD) is an α-approximation.

We present the concept of a competitive ratio of a deterministic online reordering

scheme.

Definition 4.7 Let σ be a request sequence, R be a deterministic online reordering algo-

rithm, and OPT be an optimal offline reordering algorithm. We say that the online reorder-

ing scheme (R, LFD) is c-competitive if

cost(LFD(R(σ))) ≤ c · cost(LFD(OPT (σ))) + b,∀σ and some constant b

The competitive ratio of (R, LFD), denoted by c(R, LFD) is the smallest value of c

such that (R, LFD) is c-competitive.

Most of the results presented in Chapter 4 use Definitions 4.3, 4.6, and 4.7. The only

exceptions are results in Sections 4.3 and 4.7 where we could not separate the analysis of the

reordering algorithm and the eviction policy. Hence for all results mentioned in Sections 4.3

and 4.7 we decided to use the term caching algorithm instead of reordering scheme.

The main difference between a reordering scheme and a caching algorithm is the way we

analyze reordering and evictions: in a reordering scheme they are distinct phases (first the

whole request sequence is reordered and afterwards it is served using an eviction policy), but

in a caching algorithm they are intertwined (the request sequence is divided into batches and

each batch has its own reordering and eviction phases, so the analysis alternates between

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 42

the reordering and eviction phases).

Note that our results concerning reordering schemes use LFD as an eviction policy, but

our results concerning caching algorithms use other eviction policies. All results presented

in Chapter 4 are for the Classical cost model combined with the basic framework (Defin-

itions 2.1 and 2.2).

4.2 Reordering Models

We now present our Bidirectional and Unidirectional reordering models and men-

tion the similarities and differences between our Bidirectional model and that of Feder

et al. [14]. All three models constrain the “distance”, r, that a request may be moved. The

model of Feder et al. says that one request can be served before another if it occurs no

later than r positions after that request in the original request sequence. This model, then,

deals with the promptness of one request relative to any other. We introduce two models

that deal with the absolute time that a request is served relative only to its position in the

original request sequence. Under the Bidirectional model a request must be served within

r positions of its place in the initial request sequence. Under the Unidirectional model a

request may be moved forward arbitrarily but may not be delayed more than r positions of

its place in the initial request sequence.

In Chapter 4 by request x = (h, x) we mean the h-th request for page x in a request

sequence σg. Note that we usually write x when referring to x = (h, x) and the index of

x clarifies the exact position of this request. Let σ−1
g (x) denote the index of request x in

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 43

request sequence σg. Whenever required we use a more detailed notation for the same index:

σ−1
g ((h, x)). For example let σg = x y x z y v z x y x z y y. The position of request x = (4, x)

is σ−1
g (x) = σ−1

g ((4, x)) = 10.

We now present the three reordering models and the concept of a reordering thresh-

old.

Definition 4.8 Let r ≥ 1 be a fixed parameter. Let σ0 be the initial request sequence and σf

be the final request sequence that a reordering algorithm produces. The constraints that any

reordering algorithm must satisfy are:

• Feder model ([14]): request y can be served before request x if σ−1
0 (y) − σ−1

0 (x) < r,

∀ requests x and y in σ0

• Bidirectional model: |σ−1
f (x) − σ−1

0 (x)| ≤ r, ∀ request x in σ0

• Unidirectional model: σ−1
f (x) − σ−1

0 (x) ≤ r, ∀ request x in σ0

In all three models the parameter r is called the reordering threshold.

Observe the following reordering model that is similar to the ones above: 0 ≤ σ−1
f (x) −

σ−1
0 (x) ≤ r, ∀ request x in σ0. For any final ordering σf of σ0 (σf 6= σ0), there exists some

request x such that σ−1
f (x) < σ−1

0 (x); this reordering model is useless, so we only analyze

the 3 reordering models presented in Definition 4.8.

Note that the Bidirectional model is similar to the Feder model, but they are not

equivalent. Observe that any two consecutive request blocks of length equal to r, the reorder-

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 44

ing threshold, can be exchanged without violating the constraints of the Bidirectional

model. However performing such an exchange is impossible in the Feder model.

For instance, consider σ0 = x1 x2 . . . xr−1 xr xr+1 xr+2 . . . x2r and let σf = xr+1 xr+2

. . . x2r x1 x2 . . . xr−1 xr. On one hand,
∣

∣σ−1
f (x) − σ−1

0 (x)
∣

∣ = r, ∀ requests x in σ0, so the

Bidirectional model constraints are satisfied. On the other hand, the request for page

x2r is served before the request for page x1 and this violates the constraints of the Feder

model.

4.3 Previous Work in the FEDER Model

This section focuses on the FEDER model and the results of Feder et al. [14] and Albers

[3]. Recall u is the number of distinct pages in the universe of requests. All results that

Feder et al. present in [14] are for non-optional caching (Definition 1.2). They show that

when the cache size k is equal to 1 there is an optimal offline caching algorithm that runs

in time O(nr2r) or O(nru+1). Observe that this runtime is polynomial if u is a constant

or r is O(log n). Feder et al. [14] also present some results concerning online caching

algorithms. Their definition of online caching algorithms is similar but is not equivalent to

our definition of online reordering schemes with look-ahead of size equal to r, the reordering

threshold. See Definitions 4.4, 4.5, and 4.20) for details on online reordering schemes. Feder

et al.’s online caching algorithms reorder and serve requests online, while online reordering

schemes reorder requests online but serve them offline. We note only the results of

Feder et al. where k is arbitrary and where both the online and the optimal offline caching

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 45

algorithm are allowed to reorder the request sequence. For deterministic caching algorithms,

the competitive ratio has a lower bound of k. They demonstrate that a modified version of

LRU achieves a competitive ratio of k + 2 in the Feder model. The competitive ratio of

randomized caching algorithms is lower bounded by Hk. Recall the randomized MARKING

eviction policy presented in Section 1.3. Feder et al. [14] prove that a modified version of

MARKING attains a competitive ratio of 2Hk + 2 in the Feder model.

Albers [3] developed new results for the offline problem in the Feder model with optional

caching (Definition 1.2) for arbitrary k. She reduced the request reordering problem to that

of computing the optimal reordering in individual batches of size equal to r, the reordering

threshold. Albers [3] presented an offline caching algorithm BMIN for the Classical cost

model. Let b(x) denote the index of the batch where the next request for x occurs. If such

a batch does not exist, then set b(x) =
⌊

n
r

⌋

+ 1. BMIN serves σ in batches. Let S be the

set of pages in BMIN’s cache before it starts processing the current batch B. The caching

algorithm first serves all requests in B that are in S. For each remaining request for x that

is a fault, if the cache is full, then BMIN computes bm = minx′∈C b(x′) where C is set of

pages that are currently in cache. If b(x) = bm then x is not brought into the cache. If

b(x) < bm BMIN evicts a page y from cache such that b(y) = bm. Albers [3] proved BMIN

is a 2-approximation algorithm in the Feder model.

The complexity of caching with request reordering is open in both the Unidirectional

and Bidirectional models. The brute force offline reordering scheme, which applies the

LFD eviction policy to all possible orderings, takes exponential time. Even for r equal to 1

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 46

the number of possible orderings is exponential (see Theorems 4.3 and 4.4).

4.4 Overlapping Moves and Ignoring Backward Moves

Given a sequence of moves M and a request sequence σ, let σM denote the request sequence

obtained by applying all moves in M to σ.

Definition 4.9 Let σ a request sequence and M and M ′ be two sequences of moves. If

σM = σM ′ we say M and M ′ are equivalent.

We now introduce notation for a decomposition of a sequence of moves. Let M be the

sequence of moves m1, m2, . . ., mf . For some g ≤ f , let M1 be the sequence of moves m1,

m2, . . ., mg, and M2 be the sequence of moves mg+1, mg+2, . . ., mf . We write M = M1, M2

to show the decomposition of M into two sequences of moves M1 and M2. Note that this

notation can be easily extended for the decomposition of M into h sequences of moves M1,

M2, . . ., Mh, where h ≤ f .

Lemma 4.1 For every sequence of moves M , there exists an equivalent sequence of moves

M ′ such that all moves in M ′ are forward moves.

Proof:

We show that any backward move in M can be replaced by a sequence of forward moves

such that the resulting sequence of moves M ′ is equivalent to M . By repeating this argument,

the result follows.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 47

We now formalize the argument. Let M = M1, m, M2 be a sequence of moves and m be

a backward move. We prove that there exists a sequence Mf of forward moves such that the

sequence of moves M ′ = M1, Mf , M2 is equivalent to M .

For reasons of simplicity, we use an alternative definition and notation for a move. Let σ

be any request sequence and x, y be two requests in σ. A move m = (x, y) is an operation

that relocates request x behind request y. Move m is a forward move if σ−1(x) > σ−1(y)+1

or a backward move if σ−1(x) < σ−1(y). The rest of the definition and notation is identical

to one used in Definition 4.1 where i = σ−1(y) and j = σ−1(x).

Let m = (x, y) be a backward move in M (M = M1, m, M2) that relocates request x

behind request y in σM1
. Let b = σ−1

M1
(y) − σ−1

M1
(x). Note that m moves request for page x

backward b positions. This is equivalent to b steps in each of which x is bumped backward

one position. Each of these b steps is the result of performing a forward move in which the

request behind x is moved in front of x. Let the requests that are moved forward one position

be denoted by x1, x2, . . ., xb = y. Let z be the request requested immediately before x in

σM1
. Consider the following b forward moves: m1 = (x1, z) and mh = (xh, xh−1), ∀h ∈ {2, 3,

. . ., b}. Let Mf = {mh : 1 ≤ h ≤ b}.

Move m1 relocates request x1 behind request z. The second move m2 relocates x2 behind

x1, m3 relocates x3 behind x2, etc., the last move mb relocates xb = y behind xb−1. For an

illustration, see Figure 4.2.

Let M ′ be a sequence of moves such that M ′ = M1, Mf , M2. Observe that σM ′ = σM ,

hence M and M ′ are equivalent sequences of moves.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 48

 1 2 b-1 b

 1 2 b-1 b

... z x x x ... x x =y ...

... z x x x ... x x =y ...

Figure 4.2: Simulation of a backward move by forward
moves.

Given Lemma 4.1 we can assume that a request reordering algorithm performs only

forward moves. Hence for the rest of this thesis the term “moves” refers to forward moves,

unless explicitly stated otherwise.

We now introduce the concept of valid sequence of moves. Note that σg satisfies the

Unidirectional model constraints if the Unidirectional model constraints are sat-

isfied for σf = σg.

Definition 4.10 Let M be a sequence of f moves applied to request sequence σ0. Let σg be

the request sequence obtained after the g-th move in M is applied to σg−1 (∀g ∈ {1, 2, . . .,

f}).

M is valid in the Unidirectional model if σg satisfies the Unidirectional model

constraints, ∀g ∈ {1, 2, . . ., f}.

The concept of overlapping moves is presented next.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 49

Definition 4.11 Let σ be a request sequence. Let m1 and m2 be two moves that are applied

to σ and R1 = Ji1, j1K and R2 = Ji2, j2K be their ranges. If i1 ≤ i2 ≤ j1 or i2 ≤ i1 ≤ j2, then

m1 and m2 are overlapping moves.

We now present a result concerning the maximum number of moves that pairwise overlap

one another.

Theorem 4.1 Let M be a sequence of moves which, applied to a request sequence σ0, result

in a request sequence σf that satisfies all constraints of the Unidirectional model.

There exists a sequence of moves M ′ that is valid in the Unidirectional model, is

equivalent to M , and has the property that the maximum number of moves in M ′ that pairwise

overlap one another is equal to r, the reordering threshold.

Proof:

First we show how to construct a sequence of moves M ′ that is equivalent to M and is

valid in the Unidirectional model. Consider the initial request sequence σ0 and the final

request sequence σf , both of length n. Let mg be the g-th move we select to be in M ′. Let

σg−1 be the request sequence to which mg is applied and σg be the resulting request sequence.

The selection process is such that the common prefix of σg and σf is strictly longer than the

common prefix of σg−1 and σf . By repeating this process, σ0 is transformed into σf .

The selection proceeds as follows: at step g the current ordering is σg−1. Find the smallest

index i such that σg−1(i) 6= σf (i). Let j be the position of request σf (i) in σg−1. Let σg be

the request sequence obtained by applying move mg = (j, i) to σg−1. Since σg(i) = σf (i), the

common prefix of σg and σf is at least 1 longer than the common prefix of σg−1 and σf (i).

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 50

If σg = σf , then stop. Otherwise proceed to the next step. By (i), this process is finite. Let

M ′ be the sequence of moves that were selected. It is obvious that M ′ is equivalent to M .

Before we show that M ′ is valid in the Unidirectional model we present the concept

of a delay value. Given a request sequence σ0 and a ordering of it, σg, the delay value of

a request x relative to σg is d(x, σg) = σ−1
g (x) − σ−1

0 (x). In words, the delay value is equal

to the number of positions that x has been delayed in σg. Note that a negative delay value

means that x has been advanced before its initial position in σ0.

Let mg = (j, i) be any move in M ′. Recall mg is applied to σg−1 and the resulting request

sequence is denoted by σg. Observe that if the delay values of requests in σg−1(i : n) are

in non-increasing order, then the delay values of requests in σg(i + 1 : n) are non-increasing

order. This is true since requests in σg−1(j + 1 : n) = σg(j + 1 : n) do not have their delay

value changed due to mg and requests in σg−1(i : j − 1) = σg(i+1 : j) have their delay value

increased by 1 due to mg. Since delay values of requests in initial request sequence σ0 are in

non-increasing order, by the invariant above it follows that for any move mg = (j, i) in M ′

the delay values of requests in σg(i + 1 : n) are in non-increasing order.

We now prove that if σg−1 satisfies the constraints of the Unidirectional model so

does σg (ii). Since σ0 satisfies these constraints by default, this invariant proves that M ′ is

valid in the Unidirectional model.

Let σg−1 satisfy the constraints of the Unidirectional model. Falsely assume that

σg does not satisfy them. Since move mg can only increase delay values by 1 and only for

requests in σg−1(i : j−1), there exists some request x in σg(i+1 : j) such that d(x, σg−1) = r

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 51

and d(x, σg) = r + 1. Let request σg(i + 1) be denoted by y. By the delay value invariant,

d(y, σg) ≥ d(x, σg) ≥ r + 1. Due to the selection process, σg(1 : i) = σf (1 : i), hence

σ−1
f (y) ≥ σ−1

g (y). Therefore d(y, σf) ≥ d(y, σg) ≥ r + 1. σf violates the Unidirectional

model constraint, this is a contradiction. Hence our assumption was false, σg also satisfies

the Unidirectional model constraints.

We now show that the maximum number of moves in M ′ that pairwise overlap one an-

other is equal to r, the reordering threshold. Notice that, due to the selection process, the

from-coordinates of moves in M ′ are in strictly increasing order (see Definition 4.1) (iii). Let

mg = (jg, ig) and mh = (jh, ih) be any two moves in M ′ such that mh is performed after mg

is applied. By (ii), ig < ih. By definition of a move, ih < jh, hence jh ≥ ig + 2 (iv). By (iii),

if mg and mh overlap, then there is at least one request in the range of mg that has been

bumped back two positions as a result of applying moves mg and mh. Observe that if there

exist h moves in M ′ that pairwise overlap one another, then there exists a request that has

been bumped back h positions. Since M ′ is valid in the Unidirectional model, no request

was bumped back more than r positions, therefore the maximum number of moves in M ′

that pairwise overlap one another is r.

4.5 Value of a Move and a Property of Effective Moves

We now introduce the concept of value of a move.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 52

Definition 4.12 Let σg+1 be the request sequence obtained by applying move m to request

sequence σg. The value of a move m is

v(m) = cost(LFD(σg)) − cost(LFD(σg+1))

Note that if m has a positive value, then the LFD cost will increase if m is performed. If

m has a negative value, then the LFD cost will increase if m is performed. See the following

definition for a classification of moves according to their value.

Definition 4.13 Let m be a move. If v(m) > 0 then m is a positive move. If v(m) < 0

then m is a negative move. If v(m) = 0 then m is a neutral move.

Borodin and El-Yaniv give the following statement as an exercise in [10] (Exercise 3.1).

Note that they used the term page replacement algorithm instead of eviction policy, and that

their definition of a demand eviction policy is slightly different from ours (see Definition 1.1).

Observation 4.1 ([10]) Any eviction policy can be changed into a demand eviction policy

without increasing the overall cost of processing any request sequence.

Proof:

Let σ be any request sequence and E1 be some eviction policy. We construct an eviction

policy E2 that uses one less non-demand admission than E1 and its cost satisfies cost(E2(σ)) ≤

cost(E1(σ)). By repeating this construction, the result follows.

Suppose that, after serving some request σ(i) for a page p, E1 brings into cache some

page q1 6= p and, if necessary, evicts some page q2 6= q1 to make room for q1. Recall this

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 53

is a non-demand admission (Definition 1.1). Let E2 be an eviction policy that is identical

to E1 except that it does not bring in q1 when σ(i) is served. Note that E2 uses one less

non-demand admission than E1.

Given an eviction policy E let CE,h be E ’s cache contents just before serving request

σ(h). Since E2 does not bring q1 into cache and evict q2 after serving σ(i), we get that

CE1,i+1 \{q1} = CE2,i+1 \{q2} and up to position i+1 the cost incurred by E2 is one less than

the cost incurred by E1 (i).

Since E2 evicts the same pages that E1 evicts, the only differences in cost and cache

contents between the two eviction policies occur at those times when pages q1 or q2 are

requested, brought into cache or evicted from cache.

Let the next request for q1 and q2 be at time i1 > i and i2 > i respectively (σ(i1) = q1

and σ(i2) = q2). We consider four cases: E1 evicts q1 before its next request (case 1), E1

brings in q2 by a non-demand admission (Definition 1.1) before its next request (case 2), E1

serves the next request to q2 (case 3), and E1 serves the next request to q1 (case 4).

Consider case 1, where E1 evicts q1 to bring in some page q3 at time i3 (i3 < i1). At

time i3, E2 evict q2 to bring in q3. The costs of E1 and E2 increase by 1 each (ii). The cache

contents of the two eviction policies are now the same and will remain identical while the

rest of the request sequence is processed.

In case 2, E1 brings q2 into cache and evicts some page q3 at time i3 (i3 < i2 < i1). Since

i3 < i2, σ(i3) 6= q2; E1 brings q2 during a non-demand admission. E2 already has q2 in cache,

so instead it brings in q1 and evicts q3. The costs of E1 and E2 increase by 1 each (iii). Notice

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 54

that the cache contents of both eviction policies are identical while the rest of the request

sequence is processed.

Consider case 3, where E1 serves request σ(i2) = q2 and evicts some page q3 at time i2

(i2 < i1), E1 faults on σ(i2) = q2 and evicts q3 to bring in q2. E2 already has q2 in its cache,

σ(i2) is a hit for it. The cost of E2 is unchanged, but the cost of E1 increases by 1 (iv). Note

that CE1,i2+1 \ {q1} = CE2,i2+1 \ {q3} (v). The cache contents of E1 and E2 still differ in only

one pair.

In case 4, E1 serves request σ(i1) = q1 at time i1. Request σ(i1) = q1 is a hit for E1.

E2 faults on it, brings in q1 and evicts from its cache the page by which it differs from E1’s

cache (see equality (v) above). The cost of E1 remains the same, but the cost of E2 increases

by 1 (vi). Observe that the contents of the two caches are now the same and will remain the

same while the remaining requests are processed.

The analysis for all four cases still holds if the mismatch between the cache contents

of E1 and E2 changes slightly as it does in case 3 (see equality (v)). There are three

possibilities. If none of cases 1, 2, 3, and 4 occur, then by observation (i) we get that

cost(E2(σ)) ≤ cost(E1(σ)). If only case 3 occurs (one or more times), by observations (i)

and (iv) cost(E2(σ)) ≤ cost(E1(σ)). If case 3 occurs zero or more times and afterwards one

of cases 1, 2, or 4 occurs once, by observations (i), (iv), (ii), (iv) and (vi) above we obtain

that cost(E2(σ)) ≤ cost(E1(σ)). Due to the observation made in the beginning of this proof,

the result follows.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 55

We present a result about the value of a move.

Theorem 4.2 For any move m, the value of m satisfies the inequality −2 ≤ v(m) ≤ 2.

Furthermore if m relocates the last request, then v(m) ≤ 1.

Proof:

Let m = (j, i) be a move that is applied to some request sequence σg. Let σg+1 be the

resulting request sequence. m relocates request σg(j) = x to position i in σg.

We construct an eviction policy EMU that is not necessarily a demand eviction policy.

EMU that processes σg, but emulates the behaviour of LFD on σg+1. Let CEMU,h and CLFD,h

be EMU’s and LFD’s cache contents just before serving the requests σg(h) and σg+1(h),

respectively. Saying that EMU and LFD’s cache contents mismatch in pages x and y before

serving the h-th request is equivalent to CEMU,h \ {x} = CLFD,h \ {y}.

We now describe the behaviour of EMU. EMU serves σg(1 : i − 1) by making the same

evictions as LFD does when it serves σg+1(1 : i − 1). Therefore CEMU,h = CLFD,h, ∀h ∈ {1,

2, . . ., i− 1}. LFD is currently serving request σg+1(i) = x. Note that when EMU will serve

the same request for x (σg(j) = x), LFD will not do anything since it has already served

this request as request σg+1(i) = x.

If x ∈ CLFD,i then the request σg+1(i) = x is a hit for LFD; CLFD,i+1 = CLFD,i, hence

CEMU,i = CLFD,i+1. If x /∈ CLFD,i then the request σg+1(i) = x is a fault for LFD. It evicts

some page p, brings in page x, and its cost increases by 1. We force EMU to also evict p and

bring in x, so its cost also increases by 1. Note that CEMU,i = CLFD,i+1.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 56

EMU serves requests in σg(i : j − 1) by making the same evictions that LFD does while

serving σg+1(i + 1 : j). Therefore CEMU,j = CLFD,j+1 and the costs incurred by EMU and

LFD up to and including position j − 1 and j, respectively, are equal.

If x ∈ CEMU,j then σg(j) = x is a hit, CEMU,j+1 = CLFD,j+1. If x /∈ CEMU,j then σg(j) = x

is a fault. EMU evicts some page p and brings in x, so its cost increases by 1. Immediately

afterwards, EMU evicts x and brings p back into cache so EMU’s cost increases by 1 again

and CEMU,j+1 = CLFD,j+1. Therefore the cost incurred by EMU up to and including position

j is at most two larger than the cost of LFD up to and including position j (i).

In both cases, CEMU,j+1 = CLFD,j+1. EMU serves requests in σg(j + 1 : n) by making

the same evictions that LFD does while serving σg+1(j + 1 : n). Therefore the cost incurred

by EMU while serving σg(j + 1 : n) is equal to the cost incurred by LFD while serving

σg+1(j + 1 : n) (ii).

By (i) and (ii), cost(EMU(σg)) ≤ cost(LFD(σg+1))+2. Since LFD is an optimal demand

eviction policy, by Observation 4.1 we obtain cost(LFD(σg)) ≤ cost(EMU(σg)). By the last

two inequalities and the definition of the value of a move, it follows that v(m) ≤ 2.

The proof that v(m) ≥ −2 is extremely similar to the one above. The difference is that

EMU will process σg+1 and imitate the behaviour of LFD on σg such that cost(EMU(σg+1)) ≤

cost(LFD(σg)) + 2.

Let m relocate the last request in σg (σg(n) = x). The proof is identical to the one above,

except that when EMU serves σg(j) = x it does not evict x and bring p back into cache.

The costs satisfy cost(EMU(σg)) ≤ cost(LFD(σg+1)) + 1, so v(m) ≤ 1.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 57

We now introduce the concept of an ineffective move.

Definition 4.14 Let M be a sequence of moves and m be a move in M . We say move m

is ineffective with respect to M if the cost of LFD is reduced by removing m from M :

cost(LFD(σM\{m})) ≤ cost(LFD(σM))

Otherwise m is effective with respect to M.

For example, let k = 1, σ = z x x y v v y x, M = m1,m2, and m = m1, where m1 = (4, 3)

and m2 = (8, 4). Observe that σM\{m} = σm2
= z x x x y v v y and σM = z x y x x v v y.

Since cost(LFD(σM\{m})) = 5 < cost(LFD(σM)) = 6, m is a move that is ineffective with

respect to M.

Observe that if m is ineffective with respect to M then a reordering algorithm R can

choose to perform all moves in M \ {m} instead of those in M , without increasing the LFD

cost of processing the final ordering. By repeating this observation, we obtain a reordering

algorithm that performs a sequence M ′ of effective moves such that the cost of processing

σM ′ using LFD is equal to or smaller than the cost of processing σM . This implies there

exists an optimal reordering algorithm that performs only effective moves.

Lemma 4.2 Let M be a sequence of moves, m be a move in M , and Rm be the range of

m. If m is effective with respect to M , then LFD faults on at least one request in σM whose

index is in Rm.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 58

Proof:

Let σg = σM\{m} and σg+1 = σM . Let m = (j, i) relocate request σg(j) = x to position i

in σg. Let σg+1 denote the resulting request sequence. By definition Rm = Ji, jK.

We use a proof by contradiction. Assume that all requests whose indices are in Rm are

hits when LFD serves σg+1. We show that

cost(LFD(σg)) ≤ cost(LFD(σg+1)) (4.1)

so m is an ineffective move, which contradicts the hypothesis.

To prove 4.1 we describe an eviction policy EMU that emulates LFD but processes σg

instead, such that

cost(EMU(σg)) = cost(LFD(σg+1))

Let CEMU,h and CLFD,h be EMU’s and LFD’s cache contents just before serving the

requests σg(i) and σg+1(i + 1), respectively. Up to and including position i − 1 EMU evicts

exactly the same pages that LFD evicts. Hence CEMU,i = CLFD,i (i).

The requests in σg+1 whose indices are in Rm are the requests in σg+1(i : j). By our

assumption, all of these requests are hits for LFD, so they are in CLFD,i. By (i) these

requests are also in CEMU,i. Observe that σg+1(i : j) contains the same requests as σg(i : j).

Therefore all requests in σg(i : j) are hits for EMU as well.

Next it follows that CEMU,j+1 = CLFD,j+1. EMU again serves requests past position j

by evicting the same pages that LFD evicts. EMU faults on each of the requests that LFD

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 59

faults and it does not fault on any other ones. Hence cost(EMU(σg)) = cost(LFD(σg+1)).

Since cost(LFD(σg)) ≤ cost(EMU(σg)), we get that cost(LFD(σg)) ≤ cost(LFD(σg+1))

so cost(LFD(σM\{m})) ≤ cost(LFD(σM)). By Definition 4.14, m is ineffective with respect

to M . This contradicts the hypothesis that m is effective with respect to M . Our assumption

was wrong, so the result follows.

4.6 Number of Orderings

The complexity of caching with request reordering is open in both the Unidirectional

and Bidirectional models. Recall that Belady shows in [8] that LFD is an optimal offline

eviction policy, given a fixed request sequence. LFD can be implemented to run in polynomial

time and space (Observation A.1). However the brute force offline reordering scheme that

applies LFD to all possible orderings runs in exponential time. Even for r equal to 1 the

number of possible orderings is exponential (see Theorems 4.3 and 4.3).

Theorem 4.3 Let the reordering threshold r be equal to 1 and let the initial request sequence

be σ0 of length n. The number of possible orderings of σ0 in the Unidirectional model is

2n−1.

Proof:

We use strong induction on n. The theorem clearly holds for n = 1 or 2. The induction

hypothesis is that the result holds for n ≤ k. Consider a request sequence σ of length k + 1.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 60

Now consider the orderings of σ in which request σ(k +1) is in position j, ∀j ∈ {1, 2, . . .,

k + 1}. By Theorem 4.1 we can assume that the maximum number of pairwise overlapping

moves is r. Since r is 1, moves do not overlap. For j = 1, there is one ordering of this

form. For j > 1, the number of these orderings is equal to the number of orderings of a

request sequence of length j − 1 since moves do not overlap. By the induction hypothesis,

the number of such orderings is 2j−2. Since these are all the possible orderings, there are

1 +
∑k−1

h=0 2h = 2k orderings. Since the result holds n = k + 1, by induction it holds for any

value of n.

Theorem 4.4 Let the reordering threshold r be equal to 1 and the initial request sequence be

σ0 of length n. The number of possible orderings of σ0 in the Bidirectional model is Fn+1,

the (n+1)-st Fibonacci number. It is equal to φn+1

√
5

rounded to the nearest integer, where φ

is the golden ratio.

Proof:

Clearly the result holds for n = 1 and n = 2. We prove the property by induction on n.

Fix k ≥ 2 and make the induction hypothesis that the result holds for n ≤ k. Consider the

case of a request sequence σ of length k + 1. Let x and y be the requests in positions k + 1

and k in σ. By the inductive step there are Fk+1 orderings in which x is still in position

k + 1 and a further Fk with x in position k and y in position k + 1. Request x cannot be

elsewhere, hence there is Fk + Fk+1 = Fk+2 valid orderings of length k + 1. By induction,

the result holds for any value of n.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 61

The second part of the theorem holds by Binet’s Fibonacci Number Formula [30].

4.7 BIDIRECTIONAL Model Results

We now turn our attention to the Bidirectional model (Definition 4.8). Recall that this

model simulates strong dependencies between requests such that the delay constraints are to

move an element no more than r positions in both forward and backward directions where

r is the reordering threshold (Definition 4.8).

Partition a request sequence into batches as follows: given request sequence σ0 of length

n, the i-th batch in σ0 is the subsequence

σ0(ir + 1 : min{ir + r, n}),∀i ∈ {0, 1, 2, . . . , bn/rc}

All batches, except for possibly the last one, have size equal to r.

A batch-processing algorithm is a caching algorithm that can only perform moves

whose from-coordinate and to-coordinate are within the same batch. Recall the concept of

a caching algorithm that was introduced in Section 4.1. The terms caching algorithm and

reordering scheme refer to the same concept; the difference is that for caching algorithms

we do not have a separate analysis of the reordering algorithm and the eviction policy being

used.

Theorem 2 by Albers in [3] implies that offline algorithm BMIN (Section 4.3) is an optimal

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 62

batch-processing algorithm in the Feder model. A batch-processing algorithm can permute

the r requests in a given batch in any possible order, without violating the constraints of

either the Bidirectional or Feder models. Therefore BMIN is an optimal offline batch-

processing algorithm in Bidirectional model.

By slightly adapting the proof of Lemma 1 presented by Albers in [3] we prove that any

caching algorithm can be transformed into a batch-processing algorithm whose cost is at

most three times the cost of the initial caching algorithm.

Theorem 4.5 Let our reordering model be the Bidirectional model and the type of caching

be optional caching (Definition 1.2). Let A be a caching algorithm that serves request se-

quence σ0. There exists a batch-processing algorithm B that serves σ0 such that its cost is

smaller than 3 times A’s cost:

cost(B(σ0)) ≤ 3 · cost(A(σ0))

Proof:

Recall that given a request sequence σ0 of length n, its i-th batch of requests is

σ0(ir + 1 : min{ir + r, n}),∀i ∈ {0, 1, 2, . . . , bn/rc}

Let Bi be the set of pages requested in batch i. Let Ai be the set of pages in A’s cache at

the beginning of batch i (just before request σ0(ir + 1) is served). A0 is defined to be the

empty set and Abn/rc+1 is the final cache configuration of A.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 63

Let Di = Bi \ (Ai ∪ Ai+1). Recall the definition of optional caching (Definition 1.2). It

follows that a page in Di is either not loaded into cache at all or it is loaded but then evicted

before the end of the batch. A faults on those requests to pages in Di and in Ai+1 \ Ai.

Therefore

cost(A(σ0)) ≥
bn/rc
∑

i=0

(|Di| + |Ai+1 \ Ai|) (4.2)

Algorithm B starts processing batch i by first serving the requests for pages in Ai that

are requested in batch i. B incurs no cost on these requests. B then serves requests for pages

in Ai+1 \ Ai by evicting pages in Ai \ Ai+1. Afterwards B serves the requests in Di without

bringing them into its cache. If i > 0, then B schedules requests to pages in Di−1∪(Ai−1\Ai)

that are requested in batch i. Finally, if i < bn
r
c, then B serves the requests for pages in

Di+1 ∪ (Ai+2 \ Ai+1) that are requested in batch i.

By the definition of the Bidirectional model, A could have moved requests in batch i

to batch i − 1 or to batch i + 1. Therefore requests in batch i must be in Ai ∪ Ai+1 ∪ Di or

in Di−1 ∪ Ai−1 or in Di+1 ∪ Ai+2. Hence B serves all the requests in σ0. It follows that

cost(B(σ0)) ≤
bn/rc
∑

i=0

(|Ai+1 \ Ai| + |Ai+2 \ Ai+1| + |Ai−1 \ Ai| + |Di−1| + |Di| + |Di+1|) (4.3)

|D−1| = 0, |Dbn/rc+1| = 0, |A−1 \ A0| = 0, and |Abn/rc+2 \ Abn/rc+1| = 0.

Observe that:

(i)
∑bn/rc

i=0 |Di−1| ≤
∑bn/rc

i=0 |Di|

(ii)
∑bn/rc

i=0 |Di+1| ≤
∑bn/rc

i=0 |Di|

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 64

(iii)
∑bn/rc

i=0 |Ai+2 \ Ai+1| ≤
∑bn/rc

i=0 |Ai+1 \ Ai|

We show that:

(iv)
∑bn/rc

i=0 |Ai−1 \ Ai| ≤
∑bn/rc

i=0 |Ai+1 \ Ai|

Let p be a page in Ai−1 \ Ai. p gets evicted some time before the end of batch i − 1.

Let j < i − 1 be the index of the batch when p was last brought into A′s cache. Therefore

p ∈ Aj+1 \ Aj. Hence for every page eviction that contributes 1 unit to the left hand side

of (iv), there is an earlier page admission to cache that also contributes 1 unit to the right

hand side of (iv). Totalling over all pages proves inequality (iv).

By inequalities (i),(ii), (iii), and (iv)

bn/rc
∑

i=0

|Ai+1 \Ai|+ |Ai+2 \Ai+1|+ |Ai−1 \Ai|+ |Di−1|+ |Di|+ |Di+1| ≤ 3

bn/rc
∑

i=0

(|Ai+1 \Ai|+ |Di|)

(4.4)

By inequalities 4.2, 4.3, and 4.4, it follows that cost(B(σ0)) ≤ 3 · cost(A(σ0)).

Corollary 4.1 Caching algorithm BMIN is a 3-approximation in the Bidirectional model

if optional caching (Definition 1.2) is used.

The result follows immediately by our previous result (Theorem 4.5), since BMIN is an

optimal batch-processing algorithm in the Bidirectional model.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 65

4.8 UNIDIRECTIONAL Model Results

4.8.1 Introduction

Recall that the Unidirectional model simulates weak dependencies between requests such

that the delay constraints are to delay an element no more than r positions (Definition 4.8).

Therefore no limits are placed on the forward direction, so that even the last request in the

initial request sequence can in the first position in the final request sequence.

4.8.2 A Reordering Scheme for the General Case

No Reordering (NR) is an a reordering algorithm that performs no moves on the initial

request sequence. We now analyze the approximation factor achieved by reordering scheme

(NR,LFD) in the Unidirectional model.

We first prove an upper bound on the approximation factor of reordering scheme (NR,LFD).

Theorem 4.6 In the Unidirectional model, the approximation factor of the reordering

scheme (NR,LFD) is smaller than 2r + 1.

Proof:

Let σ0 denote the initial request sequence. Let M be the sequence of moves that some

optimal reordering scheme (OPT,LFD) performs. By Theorem 4.1 we can assume that M

is valid (Definition 4.10) and that the maximum number of moves in M that pairwise overlap

one another is equal to r, the reordering threshold.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 66

Let S be the set of moves in M . Consider the moves in S as sorted in increasing order

of their from-coordinate (Definition 4.1). Partition S into sets S1, S2, . . . by the following

process. Let m1,1 be the first move in S, in left-to-right order. S1 = {m ∈ S : m and m1,1

are overlapping moves}. By convention m1,1 ∈ S1. The process continues: m1,2 is the first

move in S \ S1 in left-to-right order and S2 = {m ∈ S \ S1 : m and m1,2 are overlapping

moves}. At step i, let m1,i be the first move in set S \ (
⋃j=i−1

j=1 Sj), in left-to-right order.

Si = {m ∈ S \ (
⋃j=i−1

j=1 Sj) : m and m1,i are overlapping moves}. Note that m1,i ∈ Si. The

partition process stops at step i if S = (
⋃j=i−1

j=1 Sj). Figure 4.3 shows a typical partition.

3m’
2m’1m’2

3

1m m

m

Figure 4.3: A typical partition when r = 3. S1 =
{m1,m2,m3}. S2 = {m′

1,m
′

2,m
′

3}.

Recall moves m1,i and m1,i+1 are the first moves in left-to-right order in S \ (
⋃j=i−1

j=1 Sj)

and S \ (
⋃j=i

j=1 Sj), respectively. Observe that the from-coordinate of m1,i+1 is larger than

the from-coordinate of m1,i (i). Since m1,i+1 /∈ Si, m1,i+1 does not overlap m1,i (ii). Using (i)

and (ii) above it follows that the to-coordinate of m1,i+1 is larger than the from-coordinate

of m1,i. Therefore the ranges of m1,i+1 and m1,i are disjoint and the range of m1,i+1 is to the

right of the range of m1,i. Repeating this argument for increasing values of i it follows that

for any i, j, i 6= j the ranges of moves m1,i and m1,j are disjoint.

As mentioned before we can assume OPT performs only moves that are effective with

respect to M (see Definition 4.14 and the observation following it). Hence we can apply

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 67

Lemma 4.2 to move m1,i. LFD faults at least once in the range of m1,i in the final ordering

σf . Since for any i, j, i 6= j the ranges of moves m1,i and m1,j are disjoint, the cost of

processing σf using LFD is larger or equal to the number of Si sets (iii).

Recall that there are at most r moves that pairwise overlap in any part of σ. Observe

|Si| ≤ r and the number of Si sets is larger or equal to |S|
r

. By (iii) cost(LFD(OPT (σ0))) ≥

|S|
r

(iv). By Theorem 4.2 each move can reduce the LFD cost by at most 2. The cost

of reordering scheme (NR,LFD) is equal to LFD’s cost on the initial request sequence.

Therefore cost(LFD(OPT (σ0))) ≥ cost(LFD(σ0)) − 2|S| = cost(LFD(NR(σ0))) − 2|S|.

Apply this inequality to get that:

cost(LFD(NR(σ0)))

cost(LFD(OPT (σ0)))
≤ cost(LFD(OPT (σ0))) + 2|S|

cost(LFD(OPT (σ0)))
= 1 +

2|S|
cost(LFD(OPT (σ0)))

By (iv)

cost(LFD(NR(σ0)))

cost(LFD(OPT (σ0)))
≤ 2r + 1,∀σ0

which proves our result.

The next result shows a lower bound on the approximation factor of (NR,LFD).

Theorem 4.7 In the Unidirectional model, the approximation factor of the reordering

scheme (NR,LFD) is larger than 2r + 1.

Proof:

We create three request sequences σ1, σ2, and σ3 such that LFD’s cache configuration

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 68

is the same at the end of request sequence σ1σ2σ3 as it was in its beginning. We create an

arbitrarily long request sequence σ0 by repeating σ1σ2σ3 such that

lim
n→∞

cost(LFD(NR(σ0)))

cost(LFD(OPT (σ0)))
= 2r + 1

where (OPT,LFD) is an optimal reordering scheme.

Let σb1 be the request sequence 2 3 . . . k 1 2 3 . . . k (k + 1). Let σ1 = (k + 1)(σb1)
r, that

is page (k + 1) followed by r copies of σb1 .

x(out)

repeated r times

1(in) k+1(in)
k+1(out)
1(in)

1(out)
k+1(in)

o

k+1(in)
k+1(out)1(out)

k+1(in)
k+1(out)
1(in)

1(out)

(k+1) 2...k 1 2...k (k+1) 2...k 1 2...k (k+1) ... 2...k 1 2...k (k+1)

1b

Figure 4.4: LFD serves σ1. Faults are indicated by
dashes. Arrows indicate the moves that OPT performs.
Initial LFD cache configuration: {1, 2, . . . k}. Final LFD
cache configuration: {1, 2, . . . k, k + 1} \ {x} where x is
one of 1, 2, . . . k.

Let pages 1, 2, . . . and k be in LFD’s cache before it starts serving σ1. See Figure 4.4

for details. Note that notation x(in) and y(out) on a fault means page x is brought into

LFD’s cache and page y is evicted from LFD’s cache.

LFD faults on request σ1(1). In each of the r copies of σb1 LFD faults twice: once one the

request for page 1 and once on the request for page k + 1. See Figure 4.4 for more details.

We get that cost(LFD(NR(σ1))) = 2r + 1. OPT performs the following r moves on σ1: for

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 69

each copy, the request for page 1 is moved to the first position. Let the resulting sequence

be denoted by σ′
1 (Figure 4.5).

r copies of 2...k 2...k (k+1)

1 1 ... 1 (k+1) 2...k 2...k (k+1) 2...k 2...k (k+1) ... 2...k 2...k (k+1)

r copies

k+1(in)
1(out)

Figure 4.5: LFD serves σ′
1. Faults are indicated by

dashes. Initial LFD cache configuration: {1, 2, . . . k}. Fi-
nal LFD cache configuration: {2, . . . k, k + 1}.

When serving σ′
1 LFD faults only on the first request for k+1. Observe that the r requests

for page 1 that were moved to the front are now hits (1 is in cache at the beginning). The

fault occurs when k+1 is first requested (Figure 4.5). LFD evicts 1 which is never requested

again in the new request sequence. All other requests are for pages already in cache so LFD

never faults again. It holds that cost(LFD(OPT (σ1))) = 1 so cost(LFD(NR(σ1)))
cost(LFD(OPT (σ1)))

= 2r + 1.

This result assumes the initial cache configuration is {1, 2, . . . k}. Since we need an empty

initial cache configuration, let σe1
= 1 2 . . . k σ1 and σ′

e1
= 1 2 . . . k σ′

1. We obtain that

cost(LFD(NR(σe1
)))

cost(LFD(OPT (σe1
)))

= 2r+1+k
k

. Note that repeating the request pattern in σe1
with totally

different sets of pages does not help; the final cost ratio will still be 2r+1+k
k

. To get a cost

ratio of 2r + 1 we introduce two other request sequences σ2 and σ3 to wrap around; in the

following analysis, the LFD cache configuration at the end of σ1 is the initial LFD cache

configuration for σ2, the LFD cache configuration at the end of σ2 is the initial LFD cache

configuration for σ3 and the LFD cache configuration at the end of σ3 is equal to {1, 2, . . . k}

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 70

which is the initial LFD cache configuration for σ1. Due to this wrap-around feature we first

analyze the cost of LFD on σ1, σ2, and σ3 separately, and combine these costs in the analysis

of the final request sequence σ0 = 1 2 . . . k(σ1σ2σ3)
m.

We define σ2. Let σb2 be the request sequence 2 . . . k (k + 1) 2 . . . k (k + 2) and let σ2 =

(k + 2) (σb2)
r.

b

k+2(in)

(k+2) 2...k (k+1) 2...k (k+2) 2...k (k+1) 2...k (k+2) ... 2...k (k+1) 2...k (k+2)

k+1(in)

o

k+1(out)
k+1(in)

repeated r times

k+1(out)
k+1(in)
k+2(out)

k+2(in)
k+1(out) k+2(out)

k+2(in)
k+2(out)

k+2(in)
x(out)

2

Figure 4.6: LFD serves σ2. Faults are indicated by
dashes. Arrows indicate the moves that OPT performs.
Initial LFD cache configuration: {2, . . . k, k + 1}. Final
LFD cache configuration: {2, . . . k, k+1, k+2}\{x} where
x is one of 2, . . . k, k+1.

Let pages 2, 3, . . ., k, and (k+1) be in LFD’s cache before it starts serving σ2 (Figure 4.6).

LFD faults on request σ2(1). In each of the r copies of σb2 it faults once on request for page

k + 1 and once on request for page k + 2 (see Figure 4.6 for more details). Therefore

cost(LFD(NR(σ2))) = 2r + 1.

OPT performs the following r moves on σ2: for each copy relocate request for page k+1 to

the first position. The new sequence of requests is denoted σ′
2. By a similar argument we get

that LFD only faults once when serving σ′
2 (Figure 4.7). Hence cost(LFD(OPT (σ2))) = 1.

Let σb3 be the request sequence 2 . . . k (k + 2) 2 . . . k 1 and let σ3 = 1 (σb3)
r. Let pages

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 71

r copies of 2...k 2...k (k+2)

(k+1) (k+1)...(k+1) (k+2) 2...k 2...k (k+2) 2...k 2...k (k+2) ... 2... k 2...k (k+2)

r copies

k+2(in)
k+1(out)

Figure 4.7: LFD serves σ2. Faults are indicated by
dashes. Initial LFD cache configuration: {2 . . . k, k + 1}.
Final LFD cache configuration: {2, . . . k, k + 2}.

2, 3, . . ., k, and (k+2) be in LFD’s cache before it starts serving σ3. By an argument similar

to those for σ1 and σ2, cost(LFD(NR(σ3))) = 2r + 1 (Figure 4.8).

3

1(out)1(out)
k+2(in)k+2(in)

k+2(out)k+2(out)
1(in)1(in)1(in)

1(out)
k+2(in)

k+2(out)
1(in)

repeated r timeso

1 2...k (k+2) 2...k 1 2...k (k+2) 2...k 1 ... 2...k (k+2) 2...k 1

x(out)

b

Figure 4.8: LFD serves σ3. Faults are indicated by
dashes. Arrows indicate the moves that OPT performs.
Initial LFD cache configuration: {2, . . . k, k + 2}. Final
LFD cache configuration: {1, 2, . . . k, k + 2} \ {x} where
x is one of 2, 3, . . . k, k+2.

OPT performs the following r moves on σ3: for each copy relocate request for page k + 2

to the first position. The resulting request sequence is denoted by σ ′
3. By an argument

similar to those for σ1 and σ2, cost(LFD(OPT (σ3))) = 1 (Figure 4.9).

Note that if LFD serves σ2 immediately after serving σ1, then the last evicted page

in σ1 is page 1 (Figures 4.4 and 4.6). Therefore the cache configuration at end of σ1 is

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 72

r copies of 2...k 2...k 1

(k+2) (k+2)...(k+2) 1 2...k 2...k 1 2...k 2...k 1 ... 2...k 2...k 1

r copies

1(in)
k+2(out)

Figure 4.9: LFD serves σ′
3. Faults are indicated by

dashes. Initial LFD cache configuration: {2, . . . k, k +2}.
Final LFD cache configuration: {1, 2, . . . k}.

{2, 3, . . . , k, k + 1}, the same as the initial cache configuration required for σ2. Similarly

if LFD serves σ3 just after it finishes serving σ2, then the final eviction in σ2 is that of

page k + 1 (x = k + 1) (Figures 4.6 and 4.8). Hence the configuration at the end of σ2 is

{2, 3, . . . , k, k +2} and is identical to the configuration required at the beginning of σ3. By a

similar argument if LFD serves σ1 again after serving σ3, its cache configuration at the end

of σ3 matches the initial configuration for σ1 (Figures 4.4 and 4.8).

Let σ0 = 1 2 . . . k(σ1σ2σ3)
m (1 2 . . . k followed by m copies of σ1σ2σ3). Note that σ0

is arbitrarily long (m → ∞). The first k requests in σ0 ensure that LFD’s initial cache

configuration is 1 2 . . . k as required by σ1 and by σ′
1. Using the previous observations and

the LFD analysis on each individual subsequence we conclude that LFD faults 2r + 1 times

on each of σ1, σ2, and σ3. Therefore cost(LFD(NR(σ0))) = k + 3(2r + 1)m.

By Figures 4.4, 4.6, and 4.8 we observe that the final cache configuration for σ ′
1 is the

same as the initial cache configuration for σ′
2. Similarly the final cache configurations for σ′

2

and σ′
3 are identical to the initial cache configurations for σ ′

3 and σ′
1 respectively. By the

analysis of LFD when serving each subsequence we obtain that LFD faults exactly once on

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 73

each of σ′
1, σ′

2, and σ′
3. Hence cost(LFD(OPT (σ0))) = k + 3m.

lim
n→∞

cost(LFD(NR(σ0)))

cost(LFD(OPT (σ0)))
= lim

m→∞

k + 3(2r + 1)m

k + 3m
= 2r + 1

The result follows.

Theorems 4.6 and 4.7 yield that the reordering scheme (NR,LFD) is a tight (2r + 1)-

approximation.

Theorem 4.8 In the Unidirectional model, the reordering scheme (NR,LFD) has an

approximation factor of (2r + 1).

4.8.3 Optimal Ordering for a Special Case

The goal of this section is to develop an optimal ordering for the special case when both the

cache size, k, and the reordering threshold, r, are equal to 1. The reader should then focus

on this case, although specific note of the values of r and k will be made in each theorem or

lemma.

First we prove some properties of an optimal reordering scheme. We describe a dynamic

programming algorithm that computes the LFD cost of the optimal ordering. We show how

to compute the optimal ordering as well.

Recall the definition of a run (see Definition 1.5). We make the following observation

about the cost of processing a fixed request sequence using the eviction policy LFD.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 74

Observation 4.2 Let σ be a request sequence. If the cache size is equal to 1, then the cost

of processing σ using eviction policy LFD is equal to the number of runs in σ.

The proof follows immediately by noticing that, when LFD serves σ it only faults on the

first request of each run in σ. Before we present the following definition, recall that all moves

are implicitly forward moves (Lemma 4.1).

Let σ be a request sequence. We say that m = (j, i) is a move of

• type 1© if m relocates request σ(j) = x to a position adjacent to a preceding copy

of x

• type 2© if m relocates request σ(j) = x to fall between two adjacent requests, one for

y and the other for z, where y 6= z, y 6= x, z 6= x (if i = 1, then σ(j) = x is moved in

front of z = σ(1) and z 6= x)

• type 3© if m relocates request σ(j) = x between requests σ(i − 1) = y and σ(i) = y,

where y 6= x.

For an illustration, see Figure 4.10.

1
m

3
m

. . . y y . . . x . . .

2

. . . y z . . . x . . .

’

. . . x . . . x . . .

. . . x . . . x . . .

m
1

m

Figure 4.10: Type 1© moves: m1 and m′
1. Type 2©

move: m2. Type 3© move: m3

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 75

Lemma 4.3 Let the cache size k be equal to 1 and the reordering threshold r be an arbitrary

positive integer. Let σ be a request sequence and j be an index in σ (1 ≤ j ≤ n). Let

m1 = (j, i1), m2 = (j, i2), and m3 = (j, i3) be moves of type 1©, 2©, and 3©, respectively.

For a fixed index j, all moves of a given type have the same value and the following

equality holds for the values of each individual move

v(m1) = v(m2) + 1 = v(m3) + 2

Proof:

Let m = (j, i) be a move that relocates σ(j) = x to position i. We consider three cases:

σ(j − 1) = σ(j + 1) 6= x (case 1), at least one of σ(j − 1) and σ(j + 1) is equal to x (case 2),

and σ(j − 1), σ(j + 1), and x are all distinct (case 3).

Consider case 1 where σ(j − 1) = σ(j + 1) 6= x. Note that σ(j) = x is a run of length 1.

One of the effects of move m is to merge the two runs that contain σ(j − 1) and σ(j + 1),

respectively (i).

If m is of type 1©, then σ(j) = x is joined to a previous run of x. By (i) and Obser-

vation 4.2, v(m) = 2. If m is of type 2©, no other runs are merged or broken. By (i) and

Observation 4.2, v(m) = 1. If m is of type 3©, then σ(j) = x breaks the run containing

σ(i − 1) and σ(i). By (i) and Observation 4.2, v(m) = 0. This implies the equalities stated

in the lemma hold for case 1.

In case 2, at least one of σ(j − 1) and σ(j + 1) is equal to x. By a similar analysis, if m

is of type 1©, v(m) = 0. If m is of type 2©, v(m) = −1. If m is of type 3©, v(m) = −2. The

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 76

equalities hold.

Consider case 3 where σ(j − 1), σ(j + 1), and x are all distinct. By a similar analysis, if

m is of type 1©, v(m) = 1. If m is of type 2©, v(m) = 0. If m is of type 3©, v(m) = −1. The

equalities hold.

We now define two cases of type 1© moves called A and B , and one case of type 2©

moves called C . Let σ be a request sequence and σ(j) = x be a run of length 1 in σ

(σ(j − 1) 6= x and σ(j + 1) 6= x). We say that m = (j, i) is a move of

• type A if σ(j − 1) 6= σ(j + 1) and σ(j) = x is moved to a position adjacent to a

preceding copy of x (σ(i) = x or σ(i − 1) = x or both)

• type B if σ(j − 1) = σ(j + 1) and σ(j) = x is moved to a position adjacent to a

preceding copy of x

• type C if σ(j − 1) = σ(j + 1) and σ(j) = x is moved to fall between two adjacent

requests, one for y and the other for z, where y and z are distinct from x and from one

another (if i = 1, then σ(j) = x is moved in front of z = σ(1) and z 6= x)

We show that any positive move must be either of type A , B , or C .

Lemma 4.4 Let the cache size k be equal to 1 and the reordering threshold r be an arbitrary

positive integer. All positive moves that are applied to σ are moves of type A , B or C .

Furthermore, moves of type A , B , and C have value 1, 2, and 1, respectively.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 77

Proof:

Recall the proof of Lemma 4.3. If m is of type A , then m is of type 1© in case 3 of that

proof. Hence v(m) = 1. If m is of type B , then m is of type 1© in case 1 of that proof.

Therefore v(m) = 2. If m is of type C , then m is of type 2© in case 1 of that proof, so

v(m) = 1.

Notice that these 3 cases are the only ones among the 9 combinations presented in the

proof of Lemma 4.3 such that v(m) > 0.

We describe some specific types of moves (I, II, and III) that will be of direct use in

developing an optimal ordering. Let σ be a request sequence. Consider all moves of type A

that relocate request σ(j). The move among them, of smallest range, is a move of type I.

Similarly, a move m = (j, i) of type II (respectively III) is the move whose range is smallest

among all moves of type B (respectively C) that relocate request σ(j).

Definition 4.15 Let σ be a request sequence. Let σ(j) = x be a run of length 1 (σ(j−1) 6= x

and σ(j + 1) 6= x). Let m = (j, i) be a move that is applied to σ. We say m is of

• type I if σ(j − 1) 6= σ(j + 1) and σ(j) = x is moved to next to the closest preceding x

• type II if σ(j − 1) = σ(j + 1) and σ(j) = x is moved next to the closest preceding x

• type III if σ(j − 1) = σ(j + 1) and σ(i : j − 1) is a run and σ(i − 1) 6= σ(j) = x (if

i = 1, then σ(j) is moved in front of the run σ(1 : j − 1))

See Figure 4.11 for an illustration of type I, II, and III moves.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 78

2 3

3
m

m

1
m

z x v v x v

z x y v x v y v v x v

1 2 3 4 5

1 2 3 4 5

v v v x v

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

z x y v x w

i

o(i)

2

o(i)

i

i

o(i)

o(i)

o(i)

i

i

m’

m’

Figure 4.11: Type I move: m1 = (5, 3). Type II moves:
m2 = (5, 3), m′

2 = (5, 3). Type III moves: m3 = (4, 1),
m′

3 = (4, 2)

We now introduce the concept and notation for a value of a move relative to a

sequence of moves which will be used in the proof of Theorem 4.9. Recall that σM

denotes the ordering of σ after the sequence of moves M has been performed; hence σM,m is

the ordering when move m is subsequently performed and σM,N is the ordering that results

by applying the sequence of moves M , then the sequence of moves N to σ.

Definition 4.16 Let m be a move and M be a sequence of moves such that m is not in M .

By vM(m) we denote the value of m relative to M, that is the value of move m after all

moves in M have been performed.

Formally, vM(m) = cost(LFD(σM)) − cost(LFD(σM,m)).

Let M be the sequence of moves performed by reordering algorithm E1.

Theorem 4.9 Let r and k be equal to 1 and σ be a request sequence. For any reordering

scheme (E1, LFD), there exists a reordering scheme (E2, LFD) such that the request reorder-

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 79

ing algorithm E2 uses only moves of type I, II, or III and the cost of LFD is smaller on

E2(σ) than on E1(σ):

cost(LFD(E2(σ))) ≤ cost(LFD(E1(σ))).

Proof:

Let M be the sequence of moves performed by reordering algorithm E1. By Theorem 4.1

(r = 1) we can assume that no moves in M overlap one another. By the definition of overlap-

ping moves (Definition 4.11), all ranges of moves in M are pairwise disjoint. Therefore, no

matter in what order the moves in M are performed, the final ordering is the same. Hence

for the rest of this proof, M will denote the set of moves that E1 performs.

We show how to modify set M into M ′ such that M ′ contains only moves of type I, II,

and III and cost(LFD(σM ′)) ≤ cost(LFD(σM)). If reordering algorithm E2 performs the

moves in M ′, the result follows.

The modification process is as follows: let m = (j, i) be the first move in left to right

order (by from-coordinate) in M such that m is not of type I, II, or III. If there is no such

move, we are done (M ′ = M).

If there exists such move m, either m is of type A (case 1), B (case 2) or C (case 3),

or it is not of any of these types (case 4).

Focus on case 1 where m is of type A . Since m is not of type I, there exists a move

m′ = (j, i′) (i′ > i) such that m′ is of type I (this implies m′ is also of type A). Assume that

all moves in M \{m} have been performed. Recall the notation introduced in Definition 4.16.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 80

Apply Lemma 4.4 to moves m and m′ and obtain that vM\{m}(m
′) = vM\{m}(m) = 1. M ′ =

M \{m}∪{m′} contains one less undesirable move and cost(LFD(σM ′)) = cost(LFD(σM)).

Since σM satisfies the reordering constraints and the range of m′ is a subset of the range of

m, σM ′ also satisfies the reordering constraints.

Case 2, where m is of type B , is very similar to case 1.

In case 3, m is of type C . Let h be the smallest index less than j such that σ(h : j−1) =

vj−h where v = σ(j − 1). Since m is of type C , y = σ(i − 1) 6= z = σ(i). Since y and z

cannot be both equal to v, h ≥ i. Since m is not of type III, h 6= i. Hence h > i.

Move m′ = (j, h) is either of type II if σ(h− 1) = σ(j) or of type III if σ(h− 1) 6= σ(j)

(implicitly m′ is also of type B or C , respectively).

Apply Lemma 4.4 to moves m and m′ and obtain that vM\{m}(m) = 1 and vM\{m}(m
′) ∈

{1, 2}. M ′ = M \ {m} ∪ {m′} contains one less undesirable move and cost(LFD(σM ′)) ≤

cost(LFD(σM)). Since σM satisfies the reordering constraints and the range of m′ is a subset

of the range of m, σM ′ also satisfies the reordering constraints.

Focus on case 4 where m is not of type A , nor B , nor C . Apply Lemma 4.4 to move

m and obtain vM\{m}(m) ≤ 0. M ′ = M \ {m} contains one less undesirable move and

cost(LFD(σM ′)) ≤ cost(LFD(σM)). Obviously σM ′ still satisfies the reordering constraints.

By repeating the transformation process, we get a set M ′ that uses only moves of type

I, II or III such that cost(LFD(σM ′)) ≤ cost(LFD(σM)). Let reordering algorithm E2

perform the moves in M ′. The result follows.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 81

Corollary 4.2 Let the cache size k and reordering threshold r both be equal to 1. There

exists an optimal reordering scheme using LFD such that the moves it performs are of type

I, II or III.

For this special case (both r and k are equal to 1), we give a dynamic programming

algorithm (DP) to compute the optimal cost, which is the LFD cost of the optimal ordering.

Let σ be a request sequence. Let C(j) denote the LFD cost of the optimal ordering of the

prefix σ(1 : j). Let C1[j] denote the LFD cost of the optimal ordering of σ(1 : j) if σ(j) is

not moved. Let C2[j] be the LFD cost of the optimal ordering of σ(1 : j) if σ(j) is moved

next to its closest copy (we call this a copy move). Let C3[j] be the LFD cost of the optimal

ordering of σ(1 : j) if σ(j) is moved immediately before the run containing σ(j − 1) (we call

this an evacuation move). Observe that it is possible that a move is both a copy move and

and an evacuation move. For instance m = (4, 3) applied to σ = x y x y is such a move.

The DP algorithm computes C1[j], C2[j] and C3[j], ∀j ∈ {1, 2, . . ., n} and then computes

C(n) by formula 4.5 and returns it. Note that C(n) is the LFD cost of the optimal ordering.

After the proof of Theorem 4.10 we explain how to obtain the optimal ordering.

C(j) = min{C1[j], C2[j], C3[j]}, ∀j ∈ {1, 2, . . . , n} (4.5)

First we give a formula for C1[j].

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 82

C1[j] =















































































































1 if j = 1 (1.1)

1 if j = 2 & σ(1) = σ(2) (1.2)

2 if j = 2 & σ(1) 6= σ(2) (1.3)

C1[j − 1] if j ≥ 3 & σ(j − 1) = σ(j) (1.4)

min{C1[j − 1] + 1, C2[j − 1] + 1} if j ≥ 3 & σ(j − 1) 6= σ(j) (1.5)

& σ(j − 2) 6= σ(j)

min{C1[j − 1] + 1, C2[j − 1], C3[j − 1]} if j ≥ 3 & σ(j − 1) 6= σ(j) (1.6)

& σ(j − 2) = σ(j)

See Figure 4.12 for an illustration of lines (1.5) and (1.6) in the above formula. Note that

z may be equal to v, but the essential is that z 6= x.

(1.6)(1.5)

o(i) o(i)
ii

. . . z v x . . .

. . . j-2 j-1 j j-2 j-1 j . . .
. . . x v x . . .

Figure 4.12: Cases (1.5) and (1.6) in the C1[j] formula

We now focus on the formula for C2[j]. Let g be the index of the closest preceding copy

of σ(j). If such an index does not exist, then g = 0. Observe that g = j − 1 implies

σ(j − 1) = σ(j).

Let cg,j denote the cost incurred by LFD when processing request sequence σ′ = σ(g : j).

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 83

C2[j] =































































































+∞ if j = 1 (2.1)

+∞ if j ≥ 2 & g = 0 (2.2)

C1[j] if j ≥ 2 & g = i − 1 (2.3)

C1[g] + cg+1,j−1 if j ≥ 2 & 1 ≤ g ≤ j − 2 (2.4)

& σ(g + 1) = σ(g + 2)

min{C1[g] + cg+1,j−1, C2[g + 1] + cg+2,j−1} if j ≥ 2 & 1 ≤ g ≤ j − 2 (2.5)

& σ(g + 1) 6= σ(g + 2)

See Figure 4.13 for an illustration of cases (2.4) and (2.5) in the above formula.

. . . x y z . . . x . . .

. . . g g+1 g+2 . . . j . . .
. . . x y y . . . x . . .
. . . g g+1 g+2 . . . j . . .

o(i) o(i)
ii

(2.4) (2.5)

Figure 4.13: Cases (2.4) and (2.5) in the C2[j] formula

We now present the formula for C3[j]. Let h be the starting index of the run containing

σ(j − 1). If j = 1 then by convention h = 0. Note that if j ≥ 2 then h ≥ 1. The C3[j]

formula is presented as a four-part formula.

If j = 1 then C3[j] = +∞. (3.1)

If j ≥ 2 and h = 1 then

C3[j] =















1 if σ(j − 1) = σ(j) (3.2)

2 if σ(j − 1) 6= σ(j) (3.3)

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 84

If j ≥ 2 and h = 2 then

C3[j] =































2 if σ(j − 1) = σ(j) (3.4)

2 if σ(j − 1) 6= σ(j) & σ(1) = σ(j) (3.5)

3 if σ(j − 1) 6= σ(j) & σ(1) 6= σ(j) (3.6)

If j ≥ 2 and h ≥ 3 then

C3[j] =































































































































C1[h] if σ(j − 1) = σ(j) (3.7)

C2[j] if σ(j − 1) 6= σ(j) (3.8)

& σ(h − 1) = σ(j)

min{C1[h − 1] + 2, C2[h − 1] + 2} if σ(j − 1) 6= σ(j) (3.9)

& σ(h − 1) 6= σ(j)

& σ(h − 2) 6= σ(j)

min{C1[h − 1] + 2, C2[h − 1] + 1, C3[h − 1] + 1} if σ(j − 1) 6= σ(j) (3.10)

& σ(h − 1) 6= σ(j)

& σ(h − 2) = σ(j)

See Figure 4.14 for an illustration of cases (3.8), (3.9) and (3.10) in C3[j] formula. Note

that z may be equal to y or v, but the essential is that z 6= x.

Observe that due to the above dependencies, the cost values must be computed in in-

creasing order of j and at each step the computation order must be: first compute C1[j],

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 85

j-h-1. . . x v v x x v v x . . .
. . . h-2 h-1 h . . . j . . .

j-h-1

. . . h-1 h . . . j . . .

. . . x v v x . . .

. . . h-2 h-1 h . . . j . . .

. . . z y v v x . . .

. . . x y v v x . . .j-h-1

i i

i

o(i)

o(i)

o(i)

(3.8) (3.9)

(3.10)

Figure 4.14: Cases (3.8), (3.9), and (3.10) in the C3[j]
formula

then C2[j], and then C3[j].

Theorem 4.10 The DP algorithm computes the LFD cost of an optimal ordering for the

case when both the cache size k and reordering threshold r are equal to 1.

Proof:

Let σ be the initial request sequence. The result follows immediately once we prove that

C(j) is the LFD cost of the optimal ordering of request sequence σ(1 : j). If σ(j) is not

moved, then the LFD cost of the optimal ordering of request sequence σ(1 : j) is equal to

C1[j] (i).

If σ(j) is moved (denote the move by m = (j, i)), by Corollary 4.2 we can assume that

m is of type I, II, or III. Recall the definition of copy moves and evacuation moves that

was presented after Corollary 4.2 and the definition of the moves of type I, II, and III

(Definition 4.15). Observe that if m is of type I, then it is a copy move. If m is of type II,

then it can be either a copy move or an evacuation move (recall there exist moves that are

both copy moves and evacuation moves, i.e.: move m′
2 of type II in Figure 4.11). If m is

of type III, then it is an evacuation move. By definition of C2[j] and C3[j] it follows that,

if σ(j) is moved, then the LFD cost of the optimal ordering of request sequence σ(1 : j) is

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 86

equal to the minimum of C2[j] and C3[j] (ii). By (i) and (ii) above, formula 4.5 is correct.

We prove the correctness of the formulas for C1[j], C2[j], and C3[j], line by line. The

proof is by induction on j. We assume the correctness of the formulas for C1[i], C2[i], and

C3[i], ∀i ∈ {1, 2, . . ., j − 1} and prove the correctness of the formulas for C1[j], C2[j], and

C3[j].

Focus first on the C1[j] formula. The base cases are lines (1.1) to (1.3). By

inspection, all these formulas are correct. We demonstrate the correctness of the remaining

lines ((1.4) to (1.6)) in the C1[j] formula.

Consider line (1.4) where j ≥ 3, if σ(j − 1) = σ(j). By definition of C1[j], σ(j) is not

moved. Relocating σ(j − 1) forward is not a type I, II, or III move (iii). Let a be the LFD

cost of the optimal ordering of σ(1 : j), when σ(j) is not moved. Let b be the LFD cost of

the optimal ordering of σ(1 : j), when both σ(j − 1) and σ(j) are not moved. By (iii) and

Corollary 4.2 we obtain that a = b. Since σ(j − 1) = σ(j), b is equal to the LFD cost of the

optimal ordering of σ(1 : j − 1), when σ(j − 1) is not moved. By the induction hypothesis,

we obtain that b = C1[j − 1]. Since C1[j] = C1[j − 1], we get that C1[j] = a, so line (1.4) is

correct.

We now analyze lines (1.5) and (1.6) in the C1[j] formula (see Figure 4.12).

Consider line (1.5) where σ(j − 1) 6= σ(j) and σ(j − 2) 6= σ(j). Since σ(j) is not moved, a

move involving σ(j − 1) cannot be of type II, nor III (iv). Let a be the LFD cost of the

optimal ordering of σ(1 : j), when σ(j) is not moved. Let b be the LFD cost of the optimal

ordering of σ(1 : j), when both σ(j − 1) and σ(j) are not moved. Let c be the LFD cost

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 87

of the optimal ordering of σ(1 : j), when σ(j) is not moved and σ(j − 1) is moved next

to its previous copy. Let d be the LFD cost of the optimal ordering of σ(1 : j − 1), when

σ(j − 1) is not moved. Let e be the LFD cost of the optimal ordering of σ(1 : j − 1), when

σ(j − 1) is moved next to its previous copy. By (iv) and Corollary 4.2, a = min{b, c}. Since

σ(j−1) 6= σ(j), we get b = d+1. Since σ(j−2) 6= σ(j), we obtain c = e+1. By the induction

hypothesis, d = C1[j − 1] and e = C2[j − 1]. Since C1[j] = min{C1[j − 1] + 1, C2[j − 1] + 1},

we get C1[j] = min{b, c} = a, which proves the correctness of line (1.5).

Now consider line (1.6) in the C1[j] formula, where σ(j−1) 6= σ(j) and σ(j−2) =

σ(j). Since σ(j) is not moved, the move involving σ(j − 1) cannot be of type I (v). Let

a be the LFD cost of the optimal ordering of σ(1 : j), when σ(j) is not moved. Let b1

be the LFD cost of the optimal ordering of σ(1 : j), when both σ(j − 1) and σ(j) are not

moved. Let c1 be the LFD cost of the optimal ordering of σ(1 : j), when σ(j) is not moved

and σ(j − 1) is moved next to its previous copy. Let d1 be the LFD cost of the optimal

ordering of σ(1 : j), when σ(j) is not moved and σ(j − 1) is moved immediately before the

run containing σ(j−2). Let b2 be the LFD cost of the optimal ordering of σ(1 : j−1), when

σ(j − 1) is not moved. Let c2 be the LFD cost of the optimal ordering of σ(1 : j − 1), when

σ(j − 1) is moved next to its previous copy. Let d2 be the LFD cost of the optimal ordering

of σ(1 : j − 1), when σ(j − 1) is moved immediately before the run containing σ(j − 2).

By (v) and Corollary 4.2, a = min{b1, c1, d1}. Since σ(j − 1) 6= σ(j), we get b1 = b2 + 1.

Since σ(j − 2) = σ(j), we obtain c1 = c2 and d1 = d2. By the induction hypothesis, b2 =

C1[j−1], c2 = C2[j−1] and d2 = C3[j−1]. Since C1[j] = min{C1[j−1]+1, C2[j−1], C3[j−1]},

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 88

it follows that C1[j] = min{b1, c1, d1} = a. Line (1.6) is correct.

Focus now on the correctness of the C2[j] formula. By inspection, the base case

formula (line (2.1)) is correct. We prove the correctness of the remaining lines ((2.2)

to (2.5)) in the C2[j] formula.

By definition of C2[j], σ(j) is moved next to its closest preceding copy which is in some

position g. If g = 0, there is no previous copy next to which σ(j) can be moved, so C2[j] is

set to +∞ (line (2.2)). If g = j − 1, then σ(j) is already next to its copy (σ(j − 1) = σ(j)).

The optimal cost is equal to C1[j] (line (2.3)).

Now consider lines (2.4) and (2.5) where 1 ≤ g ≤ j − 2 (see Figure 4.13). Note

that the closest preceding copy of σ(j) is in position g in the initial request sequence. Since

r = 1, no request can be bumped back more than 1 position. Therefore an optimal reordering

scheme could not have first moved σ(g) and afterwards moved σ(j) next to the new position

of σ(g). Hence we can assume request σ(g) remains in position g. Notice that an optimal

reordering scheme might move request σ(g + 1) before moving σ(j). There are two cases.

In the first case (line (2.4)), σ(g +1) = σ(g +2), so a move involving σ(g +1) cannot

be of type I, nor II, nor III. By Corollary 4.2 there exists an optimal reordering scheme

that would not perform such a move. By the induction hypothesis, C1[g] is the optimal cost

for σ(1 : g) when σ(g) is not moved. Since σ(g) 6= σ(g + 1) and σ(j) is a hit for LFD after it

is moved, the optimal cost for σ(1 : j) is C1[g] plus the cost incurred by LFD in processing

request sequence σ′ = σ(g + 1 : j − 1) (line (2.4)).

In the second case (line (2.5)), σ(g + 1) 6= σ(g + 2); we have to consider two costs:

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 89

the optimal cost if σ(g + 1) is not moved (same as the cost in line (2.4)) and the optimal

cost if σ(g + 1) is moved. Note that if σ(g + 1) is moved, then σ(g) gets bumped back one

position to index g + 1, so σ(j) is moved into position g + 2 instead of g + 1. Since σ(j)

is moved next to its closest previous copy, σ(g + 2 : j − 1) does not contain copies of σ(j),

hence σ(g) = σ(j) 6= σ(g + 2). A move involving σ(g + 1) cannot be of type II or III, so by

Corollary 4.2, we need only consider the case that it is a move of type I. By the induction

hypothesis, C2[g + 1] is the optimal cost for σ(1 : g + 1), when σ(g + 1) is moved next to its

closest preceding copy. If σ(g + 1) is moved next to its closest preceding copy, the optimal

cost for σ(1 : j) is C2[g +1] plus the cost of processing request sequence σ′ = σ(g +2 : j − 1)

using LFD (vi). Therefore the optimal cost in line (2.5) is the minimum of costs in line (2.4)

and (vi).

Finally we demonstrate the correctness of the formula for C3[j]. This is the optimal

cost for σ(1 : j) when σ(j) is moved immediately before the run containing request σ(j − 1).

Recall h is the starting index of the run containing σ(j − 1). By inspection, the base cases’

formulas for C3[j] (lines (3.1) to (3.6)) are correct. We now show the correctness of the

remaining four cases (lines (3.7) to (3.10)) (see Figure 4.14).

Consider line (3.7) where σ(j − 1) = σ(j). σ(j) is moved at the beginning of the run

that it is part of. The optimal cost for this case is the same as the optimal cost on σ(1 : h),

when σ(h) is not moved. By the induction hypothesis, C1[h] is the optimal cost on σ(1 : h),

when σ(h) is not moved. This proves the correctness of line (3.7).

Focus on line (3.8) where σ(j − 1) 6= σ(j) and σ(h − 1) = σ(j) (line (3.8)). σ(j) is

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 90

moved next to its closest previous copy. This move is both a copy move and an evacuation

move. We have already shown that C2[j] is the optimal cost for σ(1 : j) if σj is moved to its

closest preceding copy (evacuation move). Hence the optimal cost for σ(1 : j), when σ(j) is

moved immediately before the run containing σ(j − 1) is equal to C2[j]. Since C3[j] = C2[j],

line (3.8) is correct.

The remaining two cases (lines (3.9) and (3.10)) have the following in common: σ(j−

1) 6= σ(j) and σ(h − 1) 6= σ(j). σ(j) is moved next to σ(h − 1) which is not its copy. If

σ(h − 1) is not moved, the optimal cost is C1[h − 1] to which we must add 2 (vii). This is

true since after σ(j) is moved, σ(h : j) has exactly two runs and σ(h − 1) 6= σ(j). We have

also used the induction hypothesis that C1[h − 1] is the optimal cost for σ(1 : h − 1), when

σ(h − 1) is not moved. We now focus on the differences between lines (3.9) and (3.10).

In line (3.9), σ(h−2) 6= σ(j) (see Figure 4.14). Hence σ(h−2 : j) = z y vj−h x (z 6= x)

before σ(j) = x is moved and σ′(h − 2 : j) = z y x vj−h after σ(j) = x is moved. z may

be equal to y or v, but the essential is that z 6= x. σ′(h − 1) = y is preceded by z and

followed by x. Since z 6= x, a move involving y = σ′(h − 1) cannot be of type II nor III.

By Corollary 4.2, this move can be only of type I. If this move is performed, the optimal

cost is C2[h − 1] plus 2 (z 6= x and σ′(h : j) is a run of x followed by a run of v) (viii). We

have used the induction hypothesis that C2[h − 1] is the optimal cost on σ(1 : h − 1), when

σ(h − 1) is moved next to its closest preceding copy. The optimal cost in this case is the

minimum of the expressions (vii) and (viii) (line (3.9)).

In line (3.10), σ(h−2) = σ(j) (see Figure 4.14). Hence σ(h−2 : j) = x y vj−h x before

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 91

σ(j) = x is moved and σ′(h − 2 : j) = x y x vj−h after σ(j) = x is moved. σ′(h − 1) = y is

preceded by x and followed by x. A move m involving y = σ′(h − 1) cannot be of type I.

By Corollary 4.2 m must be of type II or III. If m is performed, LFD does not fault on

σ′(h) = x. Since σ′(h + 1 : j) is a run of v so the cost of serving it using LFD is 1. If m is

of type II, then the optimal cost is C2[h− 1] + 1 (ix). If m is of type III, then the optimal

cost is C3[h − 1] + 1 (x). We have used the induction hypothesis twice: first, that C2[h − 1]

is the optimal cost on σ(1 : h − 1), when σ(h − 1) is moved next to its closest preceding

copy and second, that C3[h− 1] is the optimal cost on σ(1 : h− 1), when σ(h− 1) is moved

just before the run containing σ(h − 2). The optimal cost in this last case is the minimum

of the expressions (vii), (ix), and (x) (line (3.10)). This concludes the analysis, DP returns

the cost of the optimal ordering.

We now explain how to obtain the optimal ordering. Let S1[j] be some sequence of moves

such that the ordering σf (1 : j), obtained by applying them, has LFD cost equal to C1[j]

(∀j ∈ {1, 2, . . . , n). Similarly we define S2[j] (respectively S3[j]) to be a sequence of moves

such that the ordering σf (1 : j), obtained by applying them, has LFD cost equal to C2[j]

(respectively C3[j]). The formulas for S1[j], S2[j], and S3[j] can easily be derived from the

formulas for C1[j], C2[j] and C3[j] while using the exact same cases and line notation.

Let φ denote the sequence of 0 moves (empty sequence). By inspection, S1[j] = φ in lines

(1.1) to (1.3) (for a description of these cases, see formula for C1[j]), S2[j] = φ in lines (2.1)

and (2.2) (see formula for C2[j]) and S3[j] = φ in line (3.1) (see formula for C3[j]). Also by

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 92

inspection, S3[j] = (j, h) in lines (3.2) to (3.6) (see formula for C3[j]).

Cases that involve a single term in the expression of the optimal cost are straight forward.

I.e.: S1[j] = S1[j − 1] in line (1.4) (see formula for C1[j]), S2[j] = S1[j] in line (2.3) (see

formula for C2[j]), S2[j] = S1[g], (j, g + 1) in line (2.4) (see formula for C2[j]), S3[j] =

S1[h], (j, h) in line (3.7) (see formula for C3[j]), and S3[j] = S2[j] in line (3.8) (see formula

for C3[j]).

For the cases that involve the “minimum” of 2 or 3 terms, we select the sequence of

moves that corresponds to the term with the minimum value. I.e.: formula for C1[j] in line

(1.6) is C1[j] = min{C1[j − 1]+1, C2[j − 1], C3[j − 1]}. If C1[j − 1]+1 is the minimum, then

S1[j] = S1[j − 1]. If C2[j − 1] is the minimum, then S1[j] = S2[j − 1]. If C3[j − 1] is the

minimum, then S1[j] = S3[j − 1]. All other cases that involve a minimum are similar to this

one and use the same rule of choosing the sequence of moves that corresponds to the term

with the minimum value.

The following result is about the time and space requirements of computing the optimal

cost using the DP algorithm.

Theorem 4.11 The DP algorithm can be implemented to run in Θ(n) time and use Θ(n)

space.

Proof:

The time and space consuming calculations are following: computing the g and h indices

in C2[j] and C3[j] formulas, and cg,j−1 and cg+1,j−1 in C2[j].

To speed up the calculations we pre-compute the values of g and h. More precisely we

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 93

have two arrays G and H of size n such that G[j] is the g index for C2[j] and H[j] is the h

index for C3[j].

Recall that g = G[j] is the maximum index, no greater than j, such that σ(g) = σ(j).

If g doesn’t exist, then g = 0. In words G[j] is the index of the previous copy of σ(j) = x

that is closest to position j. Array G is computed in Θ(n) time and space as follows: for

each distinct page x requested in σ have a linked list Lx that stores the indices (in increasing

order) of requests for x in σ. A main level linked list stores the pointers to each of these

Lx lists. After the lists are created go through them one by one, say current one is Lx with

indices j1 ≤ j2 . . . ≤ jm. Then G[j1] = 0 and G[je] = je−1, ∀e ∈ {2, 3, . . ., m}.

Recall h = H[j] is the minimum index less than j such that σ(h : j − 1) = vj−h where

v = σj−1. In words h is the start index of the run that contains request σ(j − 1). Array H

is computed in linear time and space as well.

H[j] =















































0 if j = 1

1 if j = 2

j − 1 if j ≥ 3 & σ(j − 2) 6= σ(j − 1)

H[j − 1] if j ≥ 3 & σ(j − 2) = σ(j − 1)

Observe that array C1 can be computed in Θ(n) time using Θ(n) space. The same

holds for array C3 if array H is pre-computed. To compute C2[j] the most time-consuming

operation is to compute cg,j−1 and cg+1,j−1. Computing g takes O(1) time given that array

G is pre-computed.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 94

Recall g ≤ j. Since k = 1 it is not difficult to show that the following formula holds.

cg,j =















c1,j − c1,g if σ(g) 6= σ(g + 1)

c1,j − c1,g + 1 if σ(g) = σ(g + 1)

Therefore if we pre-compute the c1,j values, ∀j ∈ {1, 2, . . ., n} then we can compute

cg,j in O(1) time. Notice that since k is 1 we can keep track of the LFD cost at each posi-

tion j while computing the LFD cost for the whole request sequence σ. The c1,j values can

be computed in Θ(n) time and storing them requires Θ(n) space. Since cg,j is computed in

O(1) time, it follows that we can compute the C2[j] array in Θ(n) time. The result follows.

4.8.4 Online Reordering Schemes

Recall the concepts of an online reordering algorithm and an online reordering scheme (Def-

inition 4.4 and 4.5). By definition, online reordering algorithms cannot observe any requests

past the current one, can move forward only the current request, and make irrevocable

decisions.

A lower bound result for online reordering schemes is presented next.

Theorem 4.12 In the Unidirectional model, for k equal to 1 and arbitrary r, there is a

lower bound of 1.5 on the competitive ratio of any online reordering scheme.

Proof:

Let (R, LFD) be an arbitrary online reordering scheme. We show how an adversary can

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 95

construct σ0 such that

cost(LFD(R(σ0))) ≥ 1.5 · cost(LFD(OPT (σ0)))

where (OPT,LFD) is an optimal reordering scheme.

The adversary selects a request sequence σ0 such that σ0(1 : 2) = x1 x2. At step 2, R has

two choices: either move σ0(2) = x2 or do nothing. If R moves σ0(2), then the adversary sets

n = r+2 and σ0(3 : n) = xr
2. Note that the optimal ordering of the original request sequence

σ0 = x1 x2 xr
2 is σ0 itself. Hence cost(LFD(OPT (σ0))) = 2. However R’s reordered request

sequence so far (after the second step) is σ′ = x2 x1 xr
2. Since the request for x1 cannot be

bumped back more that r − 1 positions, R cannot move all requests in the third run (xr
2)

past the request for x1. Therefore R’s final ordering is xn1

2 x1 xn2

2 where n1, n2 ≥ 1 and

n1 + n2 + 1 = n. Hence cost(LFD(R(σ0))) = 3. Since cost(LFD(OPT (σ0))) = 2, the result

follows.

If R does not move σ0(2) = x2, the adversary sets n = r + 3 and σ0(3 : n) = xr+1
1 . Given

σ0 = x1 x2 xr+1
1 , observe that the optimal ordering is x2 x1 xr+1

1 and cost(LFD(OPT (σ0))) =

2. When R is at step 3, its request sequence is the same as the initial one: x1 x2 xr+1
1 . Since

the request for x2 cannot be bumped back more that r positions, R cannot move all requests

in the xr+1
1 run past the request for x2. Hence R’s final ordering is xn1

1 x2 xn2

1 where n1, n2 ≥ 1

and n1 + n2 + 1 = n. We get that cost(LFD(R(σ0))) = 3. Since cost(LFD(OPT (σ0))) = 2

the result follows.

Observe the result holds for arbitrarily long request sequences as well. The adversary

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 96

can construct a request sequence σ such that σ consists of m copies of σ0 and each copy is

made of requests to completely distinct pages. I.e.: the first copy has requests to pages x1

and x2, the second has requests to pages x3 and x4, etc. By a similar analysis it follows that

cost(LFD(R(σ0))) ≥ 3m and cost(LFD(OPT (σ0))) = 2m. Hence

cost(LFD(R(σ0)))

cost(LFD(OPT (σ0)))
≥ 1.5

which proves the result.

We now focus on a particular online reordering scheme which we call (Greedy, LFD).

Given the current j-th request reordering algorithm Greedy moves σ(j) to the closest position

i (i < j) such that this move diminishes the LFD cost of processing current prefix σ(1 : j).

We now present a definition about the value of a move relative to a given prefix of a

request sequence.

Definition 4.17 Let 1 ≤ g ≤ h ≤ n. Let m be a move that is applied to request sequence

σg. Let σg+1 be the resulting request sequence.

The value of move m relative to the prefix σg(1 : h) is

vh(m) = cost(LFD(σg(1 : h))) − cost(LFD(σg+1(1 : h)))

Given the notation above, Greedy performs m if vj(m) > 0. Moreover i (i < j) is the

maximum index such that vj(m
′) > 0 where move m′ = (j, i). In words Greedy breaks ties

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 97

between moves by the size of their range, so the chosen move has the smallest range.

We now present a result regarding the competitiveness of reordering scheme (Greedy, LFD).

Theorem 4.13 In the Unidirectional model for k = 1 and r ≥ 2, there is a lower bound

of 2r+1
3

on the competitive ratio of reordering scheme (Greedy, LFD).

Proof:

We give counterexamples that imply the lower bound for each of two possible cases: the

reordering threshold, r, is either even or odd.

Consider first the case where r is even, of value r = 2b. Let σ0 = x1 (x2 xr+1
1 x3 xr+1

1)b

and (OPT,LFD) be an optimal reordering scheme. Since the requests in σ0 are to 3 distinct

pages, the optimal cost must be at least 3. To get an optimal ordering move all requests

for x2 at the front of the request sequence, then move all requests for x3 to the front. We

obtain is xb
2 xb

3 x1 (xr+1
1 xr+1

1)b. Observe that this ordering satisfies the constraints of the

Unidirectional model. Since k is equal to 1, Observation 4.2 implies that this ordering

has LFD cost equal to 3 (b > 0 since r ≥ 2). Hence cost(LFD(OPT (σ0))) = 3 (i).

Recall the definition of Greedy above. When serving σ0, Greedy proceeds as follows: at

step j, it observes σ0(1 : j) and has to decide if it should move σ0(j) or not (∀j ∈ {1, 2,

. . ., n}). The first change occurs at its third step, when it observes σ0(1 : 3) = x1 x2 x1.

Move m = (3, 2) has relative value v3(m) = 1, so Greedy performs it. At the fourth step,

it observes sigma(1 : 4) = x1 x1 x2 x1. Move m = (4, 3) has relative value v4(m) = 1 so

Greedy performs it as well. Repeating this argument we obtain that Greedy performs moves

(5, 4), (6, 5), . . ., (r + 2, r + 1) before it gets to step r + 3. At step r + 3, the ordering is

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 98

σ′ = xr+1
1 x2 x1 x3 xr+1

1 (x2 xr+1
1 x3 xr+1

1)b−1. Since request σ′(r + 2) = x2 has been pushed

back r positions, Greedy cannot move request σ′(r + 3) = x1. At step r + 4, Greedy does

nothing since moving σ′(r + 4) = x3 does not improve the LFD cost of the current prefix.

At step r + 5, Greedy observes σ′(1 : r + 5) = xr+1
1 x2 x1 x3 x1. Move m = (r + 5, r + 4)

has relative value vr+5(m) = 1 so Greedy performs it. Repeating this similar argument, we

obtain the following ordering for step 2r + 5: σ′′ = xr+1
1 x2 xr+1

1 x3 x1 (x2 xr+1
1 x3 xr+1

1)b−1.

Since σ′′(2r + 4) = x3 has been bumped back r positions, σ′′(2r + 5) = x1 cannot be moved.

Repeating this argument for each subsequence x1 x2 xr+1
1 x3 xr+1

1 , we get that the final

ordering produced by Greedy is σf = (xr+1
1 x2 xr+1

1 x3)
b x1. Since k is equal to 1, apply Ob-

servation 4.2 to get that cost(LFD(σf)) = 4b+1 = 2r+1. Hence cost(LFD(Greedy(σ0))) =

2r + 1 (ii). By definition of the competitive ratio and (i) and (ii) above, it follows that the

competitive ratio of reordering scheme (Greedy, LFD) is at least 2r+1
3

.

Consider now the case where r is odd, of value r = 2b + 1. The proof is similar to the

one in the first case where r is even (r = 2b). The difference is that when r is odd, an extra

copy of sequence x2 xr+1
1 needs to be appended to the end of the request sequence used in

the first case. Let σ0 = x1 (x2 xr+1
1 x3 xr+1

1)b x2 xr+1
1 . The final ordering obtained by Greedy

is (xr+1
1 x2 xr+1

1 x3)
b xr+1

1 x2 x1 and its LFD cost is 4b + 3 = 2r + 1. An optimal ordering

is xb+1
2 xb

3 x1 (xr+1
1 xr+1

1)b xr+1
1 . Since b > 0 (r ≥ 2), the LFD cost on the optimal ordering

is 3. The competitive ratio of reordering scheme (Greedy, LFD) is at least 2r+1
3

.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 99

4.8.5 Conservative Online Reordering Schemes

In this section we focus on a subset of the class of online reordering schemes that we call

conservative online reordering schemes. We now introduce notation for the value of

a move m when a request sequence is appended at the end of the current prefix sequence

(before m is performed).

Definition 4.18 Let a request sequence σs of length h be appended at the end of request

sequence σg(1 : j). Let the resulting request sequence be denoted by σ. Let σ′ be the request

sequence obtained by applying move m = (j, i) to σ. The value of m relative to time

t and suffix sequence σs is the difference of LFD cost on prefix sequences σ(1 : t) and

σ′(1 : t):

vt,s(m) = cost(LFD(σ(1 : t))) − cost(LFD(σ′(1 : t)))

The current and full values of m relative to suffix σs are the values of m relative to σs

and to times j and j + h, respectively (vj,s(m) and vj+h,s(m)).

The concept of a conservative online reordering scheme is introduced next.

Definition 4.19 A conservative online reordering scheme is an online reordering

scheme where the reordering algorithm performs a move m if for every request sequence

σs, the full value of m relative to suffix sequence σs is non-negative.

Recall the definition of an online reordering scheme (Definition 4.4). Since any conserva-

tive online reordering scheme is implicitly an online reordering scheme, it can move only the

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 100

current request σ0(j) at the j-th step (σ0 denotes the initial request sequence). Using the

notation introduced in Definition 4.18 we obtain that for any move m = (j, i) performed by

a conservative online reordering scheme and any possible suffix σs starting at index j + 1,

vj+h,s(m) ≥ 0 where h is the length of σs. The full value of any move m performed by a

conservative online reordering scheme is non-negative (no matter what the suffix is).

Decompose the sequence of moves performed by a conservative online reordering scheme

such that M = M1,{m},M2. We focus on the special case when r is equal to 1. Since the

reordering algorithm is online, the moves in M are in increasing order by from-coordinate

(Definition 4.1). By Theorem 4.1 we can assume no moves in M overlap. Therefore all moves

in M2 are performed on suffix σs. Let σs,M2
be the request sequence obtained by applying

moves in M2 to suffix σs. By the definition of conservative online reordering schemes, the

value of m relative to σs,M2
is non-negative. Since this holds for any move m in M , the

cost incurred by any conservative online reordering scheme is at most the cost incurred

by reordering scheme (NoReordering, LFD) when r is 1. By using this observation and

applying Theorem 4.6 we obtain the following upper bound result.

Corollary 4.3 In the Unidirectional model with r equal to 1, no conservative online

reordering scheme has a competitive ratio larger than 3.

4.8.6 Online Reordering Schemes with Look-Ahead

Recall the concept of an online reordering scheme (see Definitions 4.5 and 4.4). We now

present the concept of online reordering schemes with look-ahead.

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 101

Definition 4.20 An online reordering scheme has look-ahead of size l if, given the current

request in position j, the reordering scheme can observe all requests in σ(j : j + l).

Note that the look-ahead l does not include the current request σ(j). Observe that in

previous sections, online reordering schemes had look-ahead of 0. Also note that offline

reordering schemes (Definition 4.5) have look-ahead n − 1, where n is the length of the

request sequence.

Theorem 4.14 An online reordering scheme requires look-ahead of size at least n − 3 to

compute the optimal cost for a request sequence of length n, assuming k and r both equal

to 1.

Proof:

We show how the adversary can construct σ0 such that a look-ahead of size at least n−3

is required to compute an optimal ordering. Note that k and r are equal to 1. Let σ0 = x1

x2 x1 xc3
3 xc4

4 xc5
5 . . . x

cs−1

s−1 xcs
s x. x is either x1, x2, or xs+1 (the adversary picks its value) and

ci ≥ 1, ∀i ∈ {3, 4, . . ., s} are arbitrary positive integers such that |σ0| = 4 +
∑s

i=3 ci = n.

Let (R, LFD) be online reordering scheme that computes the optimal cost. The proof is

by contradiction. Assume that the reordering algorithm R has a look-ahead of l such that

l ≤ n − 4. Therefore it cannot observe the last request σ0(n) = x when it serves the first

three requests: σ0(1), σ0(2), and σ0(3).

Given the current request σ0(j), an online reordering algorithm has only two choices to

make at this step: it can move σ0(j) or do nothing. Note this is the only time when R can

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 102

move σ0(j). Let (R, LFD) serve σ0. The first choice for R occurs when the current request

is σ0(2). R has two choices: to move σ0(2) or to do nothing.

If it moves σ0(2) = x2, then the request sequence becomes σ1 = x2 x1 x1 xc3
3 xc4

4 xc5
5

. . . x
cs−1

s−1 xcs
s x. The adversary sets x = x2. Note that the reordering threshold r is equal

to 1, and σ1(2) = x1 has already been bumped back 1 position. Hence at the n-th step,

R cannot move σ1(n) = x2 next to its copy in position 1 (σ1(1) = x2). Therefore the

best ordering it can achieve is σ1. It follows that cost(LFD(R(σ0))) ≥ cost(LFD(σ1)) =

2 + s− 2 + 1 = s + 1. Let (OPT,LFD) be an optimal reordering scheme. Notice that OPT

has to perform moves m1 = (3, 2) and m2 = (n, 4) or in words, move σ0(3) = x1 next to

its previous copy (σ0(1) = x1) and then move σ0(n) = x2 next to its previous copy which

is in position 3 after m1 is performed. The optimal ordering is σf = x1 x1 x2 x2 xc3
3 xc4

4 xc5
5

. . . x
cs−1

s−1 xcs
s . Hence cost(LFD(OPT (σ0))) = cost(LFD(σf))) = 2 + s − 2 = s. Note that

cost(LFD(R(σ0))) ≥ s+ 1 = cost(LFD(OPT (σ0))) + 1. It follows that (R, LFD) is not an

optimal reordering scheme.

If R does not move σ0(2), then no changes are made. The current request is σ0(3). R

has two choices again: either move σ0(3) = x1 next to its previous copy (σ0(1) = x1) or do

nothing.

If R moves σ0(3) = x1, the new ordering is σ1 = x1 x1 x2 xc3
3 xc4

4 xc5
5 . . . x

cs−1

s−1 xcs
s

x. The adversary sets x = x1. Because the reordering threshold r is equal to 1 and

σ1(3) = x2 has already been bumped back 1 position, R cannot move σ1(n) = x1 next

to its previous copy in position 2 (σ1(2) = x1). Therefore σ1 is the best ordering R can

CHAPTER 4. DEMAND CACHING WITH REQUEST REORDERING 103

achieve. Hence cost(LFD(R(σ0))) ≥ cost(LFD(σ1)) = 2 + s − 2 + 1 = s + 1. Note

that an optimal ordering is obtained by applying by moves m1 = (2, 1) and m2 = (n, 4)

to σ0. Let (OPT,LFD) be the optimal reordering scheme that performs these moves.

The final request sequence obtained by (OPT,LFD) is σf = x2 x1 x1 x1 xc3
3 xc4

4 xc5
5 . . .

x
cs−1

s−1 xcs
s . Hence cost(LFD(OPT (σ0))) = cost(LFD(σf)) = 2 + s − 2 = s. Observe that

cost(LFD(R(σ0))) ≥ s + 1 = cost(LFD(OPT (σ0))) + 1. It follows that the reordering

scheme (R, LFD) is not optimal.

If R does not move σ0(3) = x1, then the adversary sets x to be xs+1. In the best case,

R does not performs any moves on the remaining suffix of the request sequence. The best

ordering that R can achieve is the initial request sequence, σ0 = x1 x2 x1 xc3
3 xc4

4 xc5
5 . . .

x
cs−1

s−1 xcs
s xs+1. Hence cost(LFD(R(σ0))) ≥ cost(LFD(σ0)) = 3 + s − 2 + 1 = s + 2. Note

that σf = x1 x1 x2 xc3
3 xc4

4 xc5
5 . . . x

cs−1

s−1 xcs
s xs+1 is an optimal ordering. Let (OPT,LFD)

be an optimal reordering scheme that produces σf . It follows that cost(LFD(OPT (σ0))) =

cost(LFD(σf)) = 2 + s − 2 + 1 = s + 1. Observe that cost(LFD(R(σ0))) ≥ s + 2 =

cost(LFD(OPT (σ0))) + 1. Therefore the reordering scheme (R, LFD) is not optimal.

We have shown that in all cases the reordering scheme (R, LFD) is not optimal, hence

an optimal online reordering scheme does require look-ahead of size at least n − 3.

Chapter 5

Conclusions

In this thesis we analyzed three variations of the caching problem: web caching under the

Torng framework (Chapter 2), the relative competitive ratio (Chapter 3), and caching with

request reordering (Chapter 4). Our main results concern caching with request reordering,

which we divided into two sections, Sections 4.7 and 4.8, one for each reordering model,

Bidirectional and Unidirectional respectively. In the Bidirectional model we fo-

cused on offline caching algorithms, whereas in the Unidirectional model we studied both

offline and online reordering schemes.

5.1 Summary of Results

In Chapter 2 we proved new results for the Bit model combined with the Torng framework:

the competitive ratio of any marking eviction policy is smaller than min
{

k
smin

, 1 + smaxp
}

.

If we restrict any marking eviction policy M to serve only (a, k)-referenced request sequences,

104

CHAPTER 5. CONCLUSIONS 105

then its competitive ratio is less than min
{

k
smin

, 1 + smaxp
a

}

. If a is larger than the fault cost

of the average-sized page in σ, then the competitive ratio of M is smaller than by 2.

Regarding the relative competitiveness ratio (Chapter 3), we proved several results that

combine the basic or Torng frameworks with the Classical model. For the basic framework

combined with Classical model, we showed that there exists an access graph G such the

competitive ratio of eviction policy EDO on G relative to LRU is infinite (Theorem 3.2). For

details on all other results, see Theorem 3.1 and Corollaries 3.3 and 3.1.

The third and most important variation is caching with request reordering (Chapter 4).

We extended a result by Albers [3] to show that offline algorithm BMIN is 3-competitive

in the Bidirectional model with non-optional caching (Definition 1.2). For the Unidi-

rectional model we proved the following main results. For the case when both r and k

are equal to 1, we presented a fast dynamic programming algorithm which computes the

optimal ordering and its LFD cost. We also showed that (NoReordering, LFD) is a tight

(2r + 1)-approximation reordering scheme. We proved that for k equal to 1 there exists

a lower bound of 1.5 on the competitiveness of any online reordering scheme. For online

reordering scheme (Greedy, LFD) we showed a lower bound of 2r+1
3

assuming k is equal

to 1. We also demonstrated an upper bound of 3 on the competitiveness of any conservative

online reordering scheme when k is equal to 1. We also showed that any online reordering

scheme requires look-ahead of size at least n − 3 to compute the optimal cost for a request

sequence of length n assuming both r and k are equal to 1.

CHAPTER 5. CONCLUSIONS 106

5.2 Open Problems

Several problems for caching with request reordering are still open. One research area could

be the Bidirectional model: What is the exact competitive ratio of the BMIN algorithm?

Is there an optimal algorithm for the Bidirectional model that runs in polynomial time?

Are there online reordering schemes that are constant-competitive in the Bidirectional

model?

We do not know the time complexity status of the optimal offline reordering scheme for

the Unidirectional model. Extending the offline optimal reordering scheme (DPR,LFD)

in Section 4.8.3 (even to k = 1 and r = 2) is a challenging task. We conjecture that the

problem is NP-hard for arbitrary values of k and r.

Some problems regarding online reordering schemes in the Unidirectional model are

open as well: what is the competitive ratio of (Greedy, LFD)? Can we determine a lower

bound, expressed in terms of k and r, on the competitive ratio of any online reordering

scheme?

Another interesting research area is the analysis of online reordering schemes with look-

ahead l. How is the competitive ratio affected by doubling or tripling the size of the look-

ahead? Can we get a constant competitive ratio if the size l of the look-ahead is O(r)?

Appendix A

Appendix

A.1 Miscellaneous Results

This section contains a few stand-alone results that are potentially useful for future research

in caching with request reordering. Note that none of the other results presented in this

thesis depend on or use any of the results presented in this section.

Next we present a useful observation about the running time and space of processing a

request sequence using eviction policy LFD. Note that no detailed analysis of the run time

and space required by LFD exists in the literature.

Observation A.1 Let σ be a request sequence of length n. LFD can be implemented such

that processing σ takes O(n log k) or O(n log log n) time and O(n) space.

Proof:

For the special case k = 1 notice that LFD has runtime linear in n and requires constant

107

APPENDIX A. APPENDIX 108

space. For k ≥ 2 we create an integer array N of size n such that N [i] is the index of the

next request for x after position i where x = σ(i). If there are no more requests for x after

position i then N [i] = +∞.

I.e.: for σ = x1 x2 x1 x3 x4 x3 x1 x2 x3, N = 3 8 7 6 +∞ 9 +∞ +∞ +∞.

Observe the N array can be computed in Θ(n) time and space using the following tech-

nique: for each distinct page x requested in σ we create a linked list Lx that stores the indices

(in increasing order) of requests for x in σ. A main level linked list stores the pointers to

each Lx list. Observe all the lists can be created with a single pass of σ. Once they are

created, we traverse them one at a time. If the current one is Lx with indices i1 ≤ i2 . . . ≤ im

then N [ih] = ih+1, ∀h ∈ {1, 2, . . ., m − 1} and N [im] = +∞.

We also keep a balanced binary search tree T of size k that stores only info about pages

that are in cache. The elements at each node are pair of type (nx, x) where nx is the index

of the next request for x. The indices nx serve as keys in the tree.

Whenever a page y = σ(i) is requested, LFD checks if it is in cache by searching for the

i. This works since if y is in cache, then ny = i. If i is not found in T then y is not in cache.

This test takes O(log k) time. If y is in cache, then the key ny of y needs to be updated to

N [i]. The tree rebalancing can be performed in O(log k).

If y is not in cache, then it must be inserted in T . Before performing the insertion LFD

checks if its cache is full. If this is the case, it must evict the page in cache whose next

request is furthest in the future. This page is the one whose key is largest in T . Searching T

for this key and deleting it requires O(log k) time. Finally LFD must insert y into T which

APPENDIX A. APPENDIX 109

takes time O(log k).

All of the operations take O(log k) time for each of the n steps. The total time is

O(n log k) and total space is O(n).

An alternative implementation would be to use a van Emde Boas priority queue [9, 26]

for T since the values of the keys are from the set {1, 2, . . . n}. All of the above operations

would take O(log log n) per step, hence the total runtime would be O(n log log n).

Now recall the chunk definition (Definition 1.6). Recall that we analyze caching with

reordering under the Classical cost model. Since all pages have size equal to 1, the

number of distinct pages in a chunk is always k, except for possibly the last chunk in the

request sequence.

Let σ be a request sequence. Recall the partitioning of σ into chunks that was presented

after Definition 1.6. Note that in the next result, the order of chunks is the one implied by

this partition.

Observation A.2 In the Unidirectional model, an optimal reordering scheme does not

always maximize chunks in the order they occur in the request sequence.

Proof:

Recall that by σm we mean m consecutive copies of request sequence σ. Consider the

following example where k is 1 and r > 2.

Let σ0 = x1 (x2 x3)
r+1 xr

1. If chunks are to be maximized in the order in which they

appear in σ0, the last r requests for page x1 must be moved to the front of σ0. Since the

APPENDIX A. APPENDIX 110

requests for pages x2 and x3 would be bumped back r positions, it would not be possible to

perform any other moves. Therefore a reordering scheme, that maximizes chunks in order

they appear in σ0, produces a final request sequence σf = xr+1
1 (x2 x3)

r+1. Since the cache

size, k, is 1, it follows that cost(LFD(σf)) = 2r + 3.

A much better ordering (in fact an optimal one) can be obtained by moving the last r

requests for page x2 next to σ0(2) = x2. The final request sequence is σ′
f = x1 xr+1

2 xr+1
3 xr

1

and its cost satisfies cost(LFD(σ′
f)) = 4. The result follows.

The following results describe properties about the behaviour of LFD on a chunk. The

motivation was this: we wanted to bound the number of LFD faults on a chunk, so that we

can obtain good bounds on the cost of LFD on a fixed request sequence and, implicitly, good

bounds on the approximation factor or competitive ratio of a reordering scheme. Note that

Corollary A.1 gives an upper bound on the cost incurred by LFD on a chunk. However we

were not able to get a tight bound on the number of chunks in a request sequence, therefore

we could not obtain good bounds on the cost of LFD on a fixed request sequence. This

approach to proving bounds on the approximation factor or competitive ratio of a reordering

scheme was not successful. We now present our results related to this approach in hope that

new insights might arise from them.

We introduce the following notation: given a chunk B in some request sequence σ, let

Bp denote the set of pages requested in B. Since we are dealing with the Classical model

each chunk contains at most k distinct pages, so |Bp| ≤ k. For each page x in Bp, let f(x,B)

APPENDIX A. APPENDIX 111

denote the number of times that x is requested in B.

Lemma A.1 Let k be arbitrary (k ≥ 1). Let B be a chunk in request sequence σ and LFD

serve σ. For any page x in Bp, LFD does not fault on any of the last f(x,B) − 1 requests

to x in B.

Proof:

We use proof by contradiction. Assume the i-th request (i ≥ 2) for x in B (denote it x)

is a fault for LFD. The time this request is serviced is σ−1(x).

Since there is at least one previous request x′ for page x in B, it must be that x was

evicted after x′ was served but before x was served. Let the request that caused a fault and

this eviction of x, be request y. x was evicted at time σ−1(y).

By the definition of LFD, at time σ−1(y), x was the page in cache whose next request

was furthest in the future. Therefore all other k − 1 pages present in cache at time σ−1(y)

were requested again before the next request for x. Since the next request for x is in B, all

these k − 1 next requests must occur in B as well. Since request y was a fault, it must be

distinct from all k pages in cache at time σ−1(y). Hence there exist at least k + 1 distinct

pages in B. This contradicts the chunk3 definition, so the assumption is false.

The following upper bound on the cost of LFD in processing a chunk follows immediately

from Lemma A.1, by noting that the number of distinct pages requested in any chunk is at

most k.

APPENDIX A. APPENDIX 112

Corollary A.1 Let k be arbitrary (k ≥ 1), σ be a request sequence and B be a chunk in σ.

Let LFD serve σ. The cost incurred by LFD in processing B is at most k.

A.2 Notation

Observe that some symbols (i, u, p, . . .) have multiple uses but the correct meaning is

obvious from the context.

Hi =
∑i

j=1
1
j

= i-th harmonic number

φ = 1+
√

5
2

= golden ratio; also the empty set

k = size (in bytes) of the cache

k = maximum number of pages in cache (Classical cost model only)

σ = a request sequence

U = universe of requests (all pages that can be requested in σ)

u = size of the universe of requests

n = |σ| = length of σ

i, j, g, h = indices of requests in σ

σ0 = initial request sequence

σf = final request sequence (after a sequence of moves have been applied to σ0)

σg+1 = the request sequence obtained by applying move m to σg

σ(i) = i-th request in σ

σ(i : j) = subsequence of σ containing σ(i), σ(i + 1) ... up to σ(j) (i ≤ j)

σ−1
g (overlinex) = position of request x in σg

APPENDIX A. APPENDIX 113

CALG,i = contents of algorithm ALG’s cache just before σ(i) is served

m = (j, i) = single move m that relocates σg(j) to position i (i ≤ j) (Definition A.15)

m = a number of repetitions (copies) of a request sequence

M = a sequence of moves

σm = σ repeated m times

Rm = range of move m (Definition A.15)

v(m) = value of move m (Definition A.17)

σM = request sequence obtained by applying all moves in M to σ

vt,s(m) = value of m relative to time t and suffix sequence σs (Definition A.20)

vh(m) = value of m relative to prefix σg(1 : h) (Definition A.19)

s(x) = size (in bytes) of page x

smin = minimum size (in bytes) of a page in U

smax = maximum size (in bytes) of a page in U

cf (x) = cost of fault on page x

sσ = sum (in bytes) of sizes of all requests in σ

B = a chunk (Definition A.4)

B(σ, k) = number of chunks in σ

L(σ, k) = average chunk3 size in σ (Definition A.5)

Lr(σ) = average request size in σ (Definition A.5)

a = parameter for (a, k)-referenced request sequences; they satisfy L(σ, k) ≥ ak

E = cache eviction policy

APPENDIX A. APPENDIX 114

cost(E(σ)) = cost of processing σ using eviction policy E

cE = competitive ratio of eviction policy E

cost(E(σ(g : h))) = cost of processing σ(g : h) using eviction policy E and starting with

an empty cache at g-th position

cg,j = cost(LFD(σ(g : j))) = cost incurred by LFD on σ(g : j) starting with an empty

cache at position g

(R, E) = a caching scheme composed of reordering algorithm R and eviction policy E

R(σ) = ordering obtained by applying reordering algorithm R to σ

cost(E(R(σ))) = cost of processing request sequence R(σ) using E as an eviction policy.

c(R, LFD) = competitive ratio of online caching scheme (R, LFD)

c(G,A,B) = competitive ratio of algorithm A on access graph G relative to algorithm B

(Definition A.10)

l = size of look-ahead (Definition A.22)

p, q, x, y, z, v, w, u = requested pages

p = fault penalty for 1 byte

LFD = Belady’s Longest Forward Distance algorithm

LRU = Least Recently Used algorithm

FIFO = First In First Out algorithm

MRU = Most Recently Used algorithm

LIFO = Last In First Out algorithm

LFU = Least Frequently Used algorithm

APPENDIX A. APPENDIX 115

EDO = Evict Diametrically Opposed algorithm

NR = No Reordering algorithm

A.3 Definitions

Definition A.1 In demand caching a page can be brought into cache if and only if it is

the currently faulting page. We call such an operation a demand admission. An eviction

policy using this model is called a demand eviction policy.

In non-demand caching any page can be brought into cache at any time and the addi-

tional processing cost is equal to the fault cost of the page that was brought into cache. We

call such an operation a non-demand admission.

Definition A.2 In optional caching a faulting page may or may not be brought into cache.

In non-optional caching every faulting page must be brought into cache.

Definition A.3 Let σ be a request sequence. We call subsequence σ(i : j) a run if and only

if it is a maximal subsequence of requests for a particular page; more precisely, for some

page x

(i) σ(i : j) = xj−i+1 (i.e.: j − i + 1 requests for x), and

(ii) σ(i − 1) 6= σ(i) and σ(j) 6= σ(j + 1)

Definition A.4 Let σ be a request sequence. The size of subsequence σ(i : j) is the sum

(in bytes) of sizes of all distinct pages requested in B. Given index i > 0, let j ≥ i be the

APPENDIX A. APPENDIX 116

maximum index such that the size of σ(i : j) is less than or equal to k. We say that σ(i : j)

is the chunk starting at index i.

Definition A.5 Let σ be a request sequence, n be its length and sσ be the sum (in bytes)

of sizes of all requests in σ. Let B(σ, k) denote the number of chunks in σ. The average

chunk size in σ is L(σ, k) = sσ

B(σ,k)
and the average request size in σ is Lr(σ) = sσ

n
.

Definition A.6 Let σ be a request sequence that satisfies L(σ, k) ≥ ak. We call σ an

(a, k)-referenced request sequence.

Definition A.7 ([6]) (Caching Models)

CLASSICAL - Uniform page size and uniform cost of fault).

WEIGHTED - Uniform page size and variable cost of fault.

FAULT - Variable page size and uniform cost of fault. [19]

GENERALIZED - Variable page size and variable cost of fault.

BIT - Variable page size and cost of fault equals p times the page size (p is a constant). [19]

DUAL-SIZE - Two page sizes and variable cost of fault. [24]

REAL - Variable page size and cost of a fault is w1· pageSize +w2

(w1 and w2 are positive constants). [24]

APPENDIX A. APPENDIX 117

Definition A.8 The basic framework is one where hit costs are equal to 0 and fault costs

are equal to 1. The Torng framework is one such that hit costs are equal to 1, and fault

cost for a page x is equal to cf (x) = p · s(x) + 1 where s(x) is the size in bytes of page x

and p is the fault penalty for 1 byte.

Definition A.9 An access graph is a graph that models a particular set of possible request

sequences. Each page in the universe of requests has a corresponding vertex in the access

graph G. Given 2 vertices vp and vq, (vp → vq) is a (directed) edge if q is contained in the

set of pages that can be immediately requested after a request for page p. An undirected edge

(vp, vq) signifies both p and q can be requested immediately one after the other.

Definition A.10 Let G be an access graph and SG be the set of all request sequences that

are consistent with G. Let E1 and E2 be two eviction policies. E1 is c-competitive on G

relative to E2 if

∃ constant b such that ∀σ ∈ SG, cost(E1(σ)) ≤ c · cost(E2(σ)) + b

The competitive ratio of E1 on G relative to E2, denoted by c(G, E1, E2) is the

smallest value of c such that E1 is c-competitive on G relative to E2.

Definition A.11 Let σ be a request sequence and (R, E) be a reordering scheme. Let R(σ)

be the request sequence obtained by applying R to σ. The cost of reordering scheme

(R, E), denoted by cost(E(R(σ))), is the cost of processing request sequence R(σ) using E

as an eviction policy.

APPENDIX A. APPENDIX 118

Definition A.12 Let σ be a request sequence, R be a deterministic offline reordering algo-

rithm, and OPT be an optimal offline reordering algorithm. We say that the offline reorder-

ing scheme (R, LFD) is an α-approximation if

cost(LFD(R(σ))) ≤ α · cost(LFD(OPT (σ))) + b,∀σ and some constant b

The approximation factor of (R, LFD), denoted by α(R, LFD) is the smallest value

of α such that (R, LFD) is an α-approximation.

Definition A.13 Let σ be a request sequence, R be a deterministic online reordering algo-

rithm, and OPT be an optimal offline reordering algorithm. We say that the online reordering

scheme (R, LFD) is c-competitive if

cost(LFD(R(σ))) ≤ c · cost(LFD(OPT (σ))) + b,∀σ and some constant b

The competitive ratio of (R, LFD), denoted by c(R, LFD) is the smallest value of c

such that (R, LFD) is c-competitive.

Definition A.14 Let r ≥ 1 be a fixed parameter. Let σ0 be the initial request sequence and

σf be the final request sequence that a reordering algorithm produces. The constraints that

any reordering algorithm must satisfy are:

• Feder model ([14]): request y can be served before request x if σ−1
0 (y) − σ−1

0 (x) < r,

∀ requests x and y in σ0

APPENDIX A. APPENDIX 119

• Bidirectional model: |σ−1
f (x) − σ−1

0 (x)| ≤ r, ∀ request x in σ0

• Unidirectional model: σ−1
f (x) − σ−1

0 (x) ≤ r, ∀ request x in σ0

In all three models the parameter r is called the reordering threshold.

Definition A.15 Let σ be any request sequence. A move m = (j, i) applied to σ is an

operation that relocates request σ(j) to position i. Let the resulting request sequence be

denoted by σ′. Move m is a forward move if σ(j) is moved closer to the front of σ

(j > i). Move m is a backward move if σ(j) is moved closer to the back of σ (j < i).

Its from-coordinate and to-coordinate are j and i respectively. If m is a forward move,

the range of m is Rm = Ji, jK and m shifts every request in σ(i : j − 1) backward by one

position. I.e.: σ′(1 : i − 1) = σ(1 : i − 1), σ′(i) = σ(j), σ′(i + 1 : j) = σ(i : j − 1), and

σ′(j + 1 : n) = σ(j + 1 : n). If m is a backward move, the range of m is Rm = Jj, iK and m

shifts every request in σ(j + 1 : i) forward by one position. I.e.: σ ′(1 : j − 1) = σ(1 : j − 1),

σ′(j : i − 1) = σ(j + 1 : i), σ′(i) = σ(j), and σ′(i + 1 : n) = σ(i + 1 : n).

Definition A.16 Let σ be a request sequence. Let m1 and m2 be two moves that are applied

to σ and R1 = Ji1, j1K and R2 = Ji2, j2K be their ranges. If i1 ≤ i2 ≤ j1 or i2 ≤ i1 ≤ j2, then

m1 and m2 are overlapping moves.

Definition A.17 Let σg+1 be the request sequence obtained by applying move m to request

sequence σg. The value of a move m is

v(m) = cost(LFD(σg)) − cost(LFD(σg+1))

APPENDIX A. APPENDIX 120

Definition A.18 Let m be a move. If v(m) > 0 then m is a positive move. If v(m) < 0

then m is a negative move. If v(m) = 0 then m is a neutral move.

Definition A.19 Let 1 ≤ g ≤ h ≤ n. Let m be a move that is applied to request sequence σg.

Let σg+1 be the resulting request sequence.

The value of move m relative to the prefix σg(1 : h) is

vh(m) = cost(LFD(σg(1 : h))) − cost(LFD(σg+1(1 : h)))

Definition A.20 Let a request sequence σs of length h be appended at the end of request

sequence σg(1 : j). Let the resulting request sequence be denoted by σ. Let σ′ be the request

sequence obtained by applying move m = (j, i) to σ. The value of m relative to time

t and suffix sequence σs is the difference of LFD cost on prefix sequences σ(1 : t) and

σ′(1 : t):

vt,s(m) = cost(LFD(σ(1 : t))) − cost(LFD(σ′(1 : t)))

The current and full values of m relative to suffix σs are the values of m relative to σs

and to times j and j + h, respectively (vj,s(m) and vj+h,s(m)).

Definition A.21 An offline reordering algorithm is a reordering algorithm that can

observe all requests in the request sequence, move of any of them, and revoke any of its

decisions. An online reordering algorithm is a reordering algorithm which cannot observe

any requests past the current request, can move forward only the current request, and makes

irrevocable decisions.

APPENDIX A. APPENDIX 121

Definition A.22 An online reordering scheme has look-ahead of size l if, given the current

request in position j, the reordering scheme can observe all requests in σ(j : j + l).

Bibliography

[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging

algorithms. In Proceedings of the 4th European Symposium on Algorithms, LNCS 1136,

pages 419–430, 1996.

[2] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging

algorithms. Theoretical Computer Science, 234:203–218, 2000.

[3] S. Albers. New results on web caching with request reordering. In Proceedings of the

16th Annual ACM Symposium on Parallel Algorithms, pages 84–92, 2004.

[4] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. In

Proceedings of the 10th annual ACM-SIAM Symposium on Discrete algorithms, 1999.

[5] S. Angelopoulos, R. Dorrigiv, A. López-Ortiz, and J. I. Munro. Private communication.

2004.

[6] K. Au, N. Dumir, C. Gaspar, B. Genc, and S. M. Liong. Generalized caching. Project

report for course CS860, School of Computer Science, University of Waterloo, Waterloo,

ON, 2004.

122

BIBLIOGRAPHY 123

[7] O. Bahat and A. Makowski. Optimal replacement policies for non-uniform cache objects

with optional eviction. In Proceedings of the IEEE Infocom 2003 Conference, 2003.

[8] L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM

Systems Journal, 5:78–101, 1966.

[9] P. Van Emde Boas. Preserving order in a forest in less than logarithmic time and linear

space. Information Processing Letters, 6:80–82, 1977.

[10] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[11] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality

of reference. Journal of Computer and System Sciences, 50(2):244–258, 1995.

[12] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the

1997 Usenix Symposium on Internet Technologies and Systems (USITS-97), Monterey,

CA, 1997.

[13] M. Chrobak and J. Noga. LRU is better than fifo. In Proceedings of the 9th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 78–81. Society for Industrial and

Applied Mathematics, 1998.

[14] T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van Stee, and A. Zhu. Combining

request scheduling with web caching. Theoretical Computer Science, 324(2-3):201–218,

2004.

BIBLIOGRAPHY 124

[15] A. Fiat and A. R. Karlin. Randomized and multipointer paging with locality of reference.

In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC),

pages 626–634, 1995.

[16] A. Fiat, R. Karp, M. Luby, L. A. McGeoch, D. Sleator, and N. E. Young. Competitive

paging algorithms. Journal of Algorithms, 12:685–699, 1991.

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 2nd edition, 1996.

[18] S. Hosseini-Khayat. On optimal replacement of nonuniform cache objects. IEEE Trans-

actions on Computers, 49(8):769–778, 2000.

[19] S. Irani. Page replacement with multi-size pages and applications to web caching.

Algorithmica, 33(3):384–409, 2002.

[20] S. Irani. Randomized weighted caching with two page weights. Algorithmica, 32(4):624–

640, 2002.

[21] S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive algorithms for paging with

locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996.

[22] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy

caching. Algorithmica, 3(1):70–119, 1988.

[23] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis. SIAM Journal

on Computing, 30(1):300–317, 2000.

BIBLIOGRAPHY 125

[24] A. López-Ortiz. Private communication. 2004.

[25] L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging algorithm.

Algorithmica, 6:816–825, 1991.

[26] R. Kaas P. Van Emde Boas and E. Zijlstra. Design and implementation of an efficient

priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[27] P. Raghavan and M. Snir. Memory versus randomization in online algorithms. In

Proceedings of the 16th ICALP, LNCS 372, pages 687–703, 1989.

[28] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

[29] E. Torng. A unified analysis of paging and caching. Algorithmica, 20:175–200, 1998.

[30] D. Wells. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex,

England: Penguin Books, 1986.

[31] N. E. Young. On-line caching as cache size varies. In Proceedings of the 2nd Annual

ACM-SIAM symposium on Discrete Algorithms, pages 241–250, 1991.

[32] N. E. Young. On-line paging against adversarially biased random inputs. Journal of

Algorithms, 37(1):218–235, 2000.

[33] N. E. Young. Competitive paging and dual guided online weighted caching and match-

ing algorithms. Ph.D. thesis. Department of Computer Science, Princeton University,

Princeton, NJ, October 1991.

