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Abstract 

The use of AA6xxx series alloys continues to grow with the increasing demand for more fuel 

efficient vehicles. AA6xxx series alloys are commonly used in automotive applications because 

of their extrudability and good strength/weight ratio. As the use of these alloys becomes more 

prominent, new technologies must be developed to improve them. Chromium has been used as 

an alloy addition to AA6xxx alloys to control the grain structure by creating dispersoids that pin 

grains and limit grain growth and thereby improve the mechanical properties of aluminum alloys. 

However, the addition of chromium and other transition metals can have some adverse effects on 

aluminum alloys including making them more quench sensitivity after processing. The objective 

of this research was to do study the effect of alloy composition including the effect of Cr on the 

quench sensitivity of AA6xxx aluminum alloys, and to measure the effect of quench sensitivity 

on subsequent mechanical properties both in the T4 (naturally aged) and T6 (artificially aged) 

temper conditions. The experiments were conducted using a standard Jominy quenched end test 

and also included tensile testing for various quenching conditions for the AA6xxx alloys studied.  

The Jominy test provided a large range of cooling rates, which provided data for the variation in 

hardness as a function of cooling history.  Supplemental tests were done on the alloys using 

tensile samples and water, air and furnace cooling to see what effect these cooling histories had 

on mechanical properties. It was found that the addition of Cr and Mn to the AA6xxx alloy 

caused an increase in quench sensitivity, and the cooling rate during quenching had a strong 

effect on the mechanical properties. It was found that AA6063 can be air cooled or cooled at a 

rate of ~0.8°C/s (48°C/s) after extrusion to retain 90% of its peak yield strength. Composition 1 

(high Cr) must be cooled at a rate of at least ~25°C/s (1500 °C/min) in order to retain 90% of its 
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peak yield strength. Composition 3 (high Cr and Mg) must be cooled at a rate of ~30°C/s in 

order to retain 90% of its peak yield strength.  
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1 Introduction 
 

Interest in light-weighting vehicles and the use of AA6xxx series aluminum alloys in 

automotive applications has increased as the Corporate Average Fuel Economy (CAFÉ) 

regulations around the world have become more stringent. Referring to Figure 1-1, vehicle 

weight reduction represents the lowest cost near term solution to addressing CAFÉ and CO2 

reduction legislation. By switching to lower density aluminum extruded parts, the overall weight 

of vehicles is reduced, resulting in better performance of the vehicle and increased fuel 

efficiency. 

 

Figure 1-1: Relationship between car fuel consumption and car weight, showing CAFÉ standards for 2016 [1] 



 With the increasing demand for aluminum parts, the processes used to make parts must 
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be constantly researched and improved. AA6xxx aluminum alloys are considered viable 

candidates for use in automotive applications. These alloys are heat treatable medium strength 

alloys, commonly used for automotive parts because they not only have excellent strength to 

weight ratio, but also because, from a manufacturing perspective, they are very extrudable and 

can be made into complex cross sections. The aluminum extrusion process requires a billet to be 

pre-heated and then pushed through a die with the final desired cross-sectional geometry. The 

extrusion process results in large plastic deformation of the aluminum and changes to the 

microstructure due to the deformation. Typically, extrusion temperatures for the AA6xxx alloys 

exceed the solutionizing temperature such that all of the Mg2Si which will later harden the 

material via an age hardening process dissolves into solution. Once the material has been forced 

through the die at the elevated temperature it comes out as an extrudate and depending on the 

alloy and final property requirements may be cooled either in still air, using fans or in some cases 

water quenched.  Quenching can be done using a number of different media, in all cases the goal 

is to control the cooling rate of the material after the extrusion. Balanced against this is the need 

to minimize warping and high residual stresses of the final part which may occur if the cooling 

rates are too fast. The quenching process after extrusion can greatly affect the success of the heat 

treatment as too slow of a cooling rate will result in precipitation of the Mg2Si along the grain 

boundaries and deteriorate the ability to strengthen the material during the subsequent age 

hardening treatment. Situations where heat treatable aluminum extrusions are age hardened 

directly after the extrusion process without using a separate solutionzing treatment are known as 

a T5 temper.  The more common T6 temper is designated for cases when the aluminum is 

solutionized, quenched and then age hardened. Knowledge of the quench sensitivity of these 

alloys after the extrusion process is critical to understand what their subsequent response to the 
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age hardening heat treatment will be. Depending on the alloy chemistry certain aluminum alloys 

are not considered to be very quench sensitive, meaning that the amount of precipitation that 

occurs during quenching is not significantly affected by the quench rate, and slower quench rates 

can be tolerated and still allow the precipitates to remain within the solid solution. Other 

aluminum alloys may be extremely quench sensitive, meaning that variation in cooling rate may 

result in variation in mechanical properties. Quench sensitivity of an aluminum alloy depends 

both on alloy composition but also the thermal treatments such as homogenization experienced 

by the material as both of these parameters will dictate the dispersoid density in the alloy. 

Quench sensitivity data may be used to model what occurs after the extrusion, in terms of what 

cooling rate must be applied during the quench after the extrusion to achieve the necessary 

mechanical properties [3, 5-8].  

AA6xxx series alloys are medium strength, heat treatable alloys whose main alloy additions 

are Mg and Si. These alloys are known for their excellent extrudability and machinability [2]. 

These alloys may be easily formed and then undergo a heat treatment to age the material and 

cause precipitates to form that significantly enhance the material strength. Processing of these 

alloys begins with Direct Chill (DC) casting into billets, followed by homogenization to remove 

any macrosegregation in the alloys. The homogenization treatment plays a role in quench 

sensitivity due to the formation of dispersoids that can then act as nucleation sites during 

subsequent quenching operations. Dispersoids are one of the precipitate phases formed during 

homogenization because the alloy is held at a high temperature for a long period of time. These 

dispersoids form due to free energy or thermodynamic requirements [9]. The distribution of 

precipitates and phases plays a large role in the aging kinetics and by extension mechanical 
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properties. In order to correctly study quench-sensitivity and the effect of alloy content on this, 

the same homogenization treatment must be applied to all the alloys studied. 

Alloying elements such as chromium and manganese are often added to AA6xxx series 

aluminum alloys for a number of different reasons such as controlling grain recrystallization. 

Adding these elements may adversely affect the quench sensitivity.  

As a result, a collaborative NSERC Automotive Partnership Canada (APC) research 

program was started between General Motors (GM), the University of Waterloo, McMaster 

University, the University of Sherbrooke, McGill University and CANMET Materials to develop 

AA6xxx extrusion alloys for an automotive front rail component.    
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2 Literature review 
 

2.1 Al-Mg-Si System 
 

The Al-Mg-Si or AA6xxx series aluminum alloys are a family of medium strength heat 

treatable alloys that rely on age hardening to produce their high strength via precipitation 

hardening. A significant advantage of the AA6xxx alloys is that they are also extrudable and are 

highly machineable making them a good choice for many applications [5-8]. The equilibrium 

phase diagram for this alloy system is relatively well known and referring to Figure 2-1, the 

system can be considered to be a pseudo-binary Al-Mg2Si at a magnesium-to-silicon ratio of 

1.73:1 (wt%) [10]. Referring to Figure 2-1, the pseudo-binary system has a eutectic at 595°C and 

~15 wt% Mg2Si. Excess silicon and magnesium reduce the solid solubility of Mg2Si in 

aluminum, although the effect of magnesium is more predominant than that of silicon [10]. 

 

Figure 2-1: Pseudo-binary phase diagram for Al-Mg2Si system [10] 

These Al-Mg2Si alloys can be divided into three categories. The first category includes 

alloys where the total amount of magnesium and silicon is less than 1.5%. A good example of 

this type of alloy is AA6063 which is mainly used in extruded architectural sections and contains 



 

 

6 

 

1.1% Mg2Si [11]. Table 1 shows the range of nominal composition for a AA6063 aluminum 

alloy.  

Table 2-1: Nominal composition AA6063 (wt%) [11] 

 

 

 

 

With a solution treatment temperature of just above 500°C and low quench sensitivity, this 

alloy does not require separate solution treatment after extrusion; however, these alloys may be 

air quenched and artificially aged to obtain moderate strength, good ductility, and excellent 

corrosion resistance. 

The second category of alloys contains 1.5% or more of magnesium and silicon. The 

addition of other elements, such as 0.3% Cu, increases the strength in a T6 temper condition. 

Manganese, chromium, and zirconium additions control the grain structure. Alloys such as 6061, 

which belong to this category generally, have a tensile strength of 310 MPa [11], whereas the 

previous category of alloys (6063) has a tensile strength of only 240 MPa in the T6 temper 

condition [11]. These alloys require a higher solutionizing temperature than the first category of 

alloys and are quench sensitive. Therefore, they require a solution treatment process followed by 

rapid quenching with a critical time of five seconds and artificial aging [16]. 

The third category of alloys contains almost the same amount of Mg2Si, but they have 

excess silicon. In an alloy containing 0.8% Mg2Si, the addition of 0.2% excess silicon increases 

the strength by 70 MPa [11]; without the addition, the tensile strength is only 230 MPa [11]. 

Nevertheless, large amounts of excess silicon are less beneficial. These alloys can experience 

grain boundary fracture in recrystallized structures due to segregation of excess silicon to the 

Al Cr Cu Fe Mg Mn Si Ti Zn 

≤97.5 ≤0.1 ≤0.1 ≤0.35 0.45-0.9 ≤0.1 0.2-0.6 ≤0.1 ≤0.1 
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grain boundaries. The effect of excess silicon can be counteracted by the addition of manganese, 

chromium, or zirconium, preventing recrystallization during heat treatment [10]. Common alloys 

of this group are Al 6351 and Al 6009. 

In AA6xxx alloys, each alloying element has a specific purpose for it’s addition. 

Chromium is added to control the grain structure and more specifically form many dispersoids to 

help prevent recrystallization and create a fibrous grain structure after hot deformation. 

Chromium will react with aluminum and silicon to form dispersoids which will start to 

precipitate out of the matrix during the homogenization heat treatment [5-8]. Manganese has 

very similar properties to chromium and is intended to also control recrystallization via the 

formation of dispersoids. Due to the large atomic size of Cr and Mn [5-8], these two elements are 

considered to be less mobile than elements such as Mg and Si [5-8] in the aluminum matrix. This 

slow diffusional effect leads to microsegregation in AA6xxx alloys. A suitable homogenization 

procedure must be selected to reduce microsegregation and uniformly distribute solutes through 

the solid solution. Dispersoids form when the solid solution is heated up to temperatures close to 

the solidus line. They typically form during homogenization and remain in the matrix during 

subsequent manufacturing operations. After manufacturing, the alloys can sometimes be age 

hardened directly (T5 temper) or solutionized and then age hardened (T6 temper). The faster the 

alloy is quenched after the manufacturing operation for a T5 temper or after the solution 

treatment for a T6 temper, the less likely Mg2Si will precipitate during quenching. These Mg2Si 

phases are hardening phases, to achieve maximum strength, these precipitates should be fully 

dissolved into solution, making them able to be precipitated during the aging treatment [4].  
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2.2 Effect of Thermal Cycle on AA6xxx Alloys 
 

2.2.1 Homogenization and Solutionizing 

Casting is followed by the homogenization heat treatment process. The overall aim is to 

remove the undesirable features of the as-cast microstructure and prepare it for extrusion. The 

aims of the homogenization process are: 

 Dissolution of low melting eutectics 

 Spherodisation of intermetallics 

 Removing concentration gradients within grains 

 Transformation of β-AlFeSi into α-AlFeSi 

 Precipitation of secondary dispersoids 

The process parameters, i.e. heating and cooling rate as well as homogenization time and 

temperature have to be chosen based on the metallurgical reactions listed above. Particular care 

has to be applied during cooling after homogenization as Mg-Si containing phases precipitate at 

temperatures below the Mg2Si solvus. On the one hand, the cooling rate has to be high enough to 

avoid precipitation of coarse β-Mg2Si in favour of finer, lath-shaped β’-Mg-Si-phases, which 

dissolve much more readily during billet pre-heating before extrusion [40]. On the other hand, if 

all Mg and Si are kept in solid solution, due to high cooling rates, flow stresses during extrusion 

are significantly increased. 

Age hardening after extrusion is typically conducted in two steps: natural ageing, that occurs 

during room temperature storage and artificial ageing at elevated temperatures. In contrast to 

AA6xxx series alloys that are used in automotive body sheet applications and therefore 

experience natural ageing for several weeks, most extruded products are artificially aged within a 

few hours after extrusion. While natural ageing is known to have a negative effect at least on 
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alloys containing Mg+Si > 1wt.%, the process set up - artificial ageing is mostly conducted in 

batches of several extrusions - dictates natural ageing times between 30 min and 4 h. During the 

subsequent artificial aging process, the aim is to precipitate a high number of fine β-precipitates. 

Artificial ageing temperatures are chosen between 150 – 200°C. Higher temperatures result in a 

fast hardness increase but lower peak hardness compared to lower temperatures, which lead to 

higher peak hardness values after longer artificial ageing times. The optimal hardness occurs 

when the alloy is aged at 185°C for 5 hours.  

Solutionizing is the process by which all the precipitates and other solutes in the solid 

solution are dissolved into solution by heating the alloy up to a temperature between the solvus 

and the solidus line of the desired phase [22]. In 6063 alloys, Mg2Si is the phase that is desired to 

be dissolved into solution. As shown in Figure 2-2, the solution must be heated to 485°C in order 

to dissolve the Mg2Si into the solid solution [13]. The goal of solutionizing is to dissolve the 

particles back into solution, in order to allow them to be precipitated during aging.  

 

Figure 2-2: Pseudo binary phase diagram for AA6063 [13] 
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The equation for a regular solid solution, where B is soluble in A but A is virtually insoluble in 

B, is shown by equation 2.1 [12].  

𝜇𝐵
𝛼 =  𝐺𝐵

𝛼 + Ω(1 − 𝑋𝐵)2 + 𝑅𝑇𝑙𝑛𝑋𝐵     (2.1) 

Where µ is the potential energy between two phases and Ω is the change in energy when one 

mole of A dissolves in B. This shows how temperature is related to the change in potential 

energy between phases. If the solubility of A in B is low, then equation 2.2 applies [12].  

𝑋𝐵
𝑒 = 𝐴 𝑒𝑥𝑝

−𝑄

𝑅𝑇
       (2.2) 

Equation 2.2 shows the effect of temperature on the solid solubility of B in A. This shows that by 

increasing the temperature, it is possible to dissolve B in A where it would otherwise be 

insoluble at room temperature [12].  

Homogenizing is a form of solutionizing designed to help uniformly distribute 

precipitates that microsegregated during casting of the wrought alloy [9]. The amount of time 

necessary to homogenize until homogeneity is reached can be calculated. If it is assumed that CB 

the concentration of solute B varies in a sinusoidal manner as a function of distance in one 

direction of the casting then eventually the sinusoidal function will decrease in amplitude until 

the concentration is approximately uniform in all directions [12].  

 

𝐶 = 𝐶̅ + 𝛽0 𝑠𝑖𝑛
𝜋𝑥

𝑙
,  When t = 0     (2.3) 

In equation 2.3, 𝐶̅ represents the mean composition, l is the distance in the x direction, and β0 is 

the amplitude of the initial concentration profile. If it is assumed that the diffusion of B is 

independent of the concentration of the solution, then equation 2.4 can be rewritten as:  

𝐶 = 𝐶̅ + 𝛽0 𝑠𝑖𝑛 (
𝜋𝑥

𝑙
) exp (

−𝑡

𝜏
)    (2.4) 
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Equation 2.4 expresses the dependence of time on the relationship shown in equation 2.4 where 

time was assumed to be 0 [12]. The relaxation time is represented by the constant τ that accounts 

for the length of one cycle and the diffusion constant. If C at x =1/2 gives the amplitude of the 

concentration profile, then the following expression gives the amplitude [12].  

𝛽 = 𝛽0𝑒𝑥𝑝
−𝑡

𝜏
       (2.5) 

The homogenization time can be calculated by taking the limit as β approaches 0. If the 

amplitude is 0 then the line becomes flat and the concentration at any point of x becomes equal to 

the mean concentration [12]. Homogenization is important to quench sensitivity the dispersoids 

that form during homogenization will ultimately affect the quench sensitivity [9].   

2.2.2 Quenching/Quench Sensitivity 

 

Quenching is an important part of aluminum manufacturing. The cooling rate can play a 

major role in the overall mechanical properties of the alloy. This is mainly due to the fact that 

quenching is the precursor to the aging process, and the constituents in solution in the quenched 

state will affect the success of the subsequent aging operation [16-20]. After reaching the 

solutionizing temperature and holding at the desired amount of time, the precipitates are 

dissolved into the solid solution and no or very few precipitates should be left in the solid 

solution [14, 15].  

Quench sensitivity is loosely defined as the dependence of material properties after age-

hardening on quench rates after extrusion or solution treatment. It can affect mechanical 

properties such as strength, hardness and fracture toughness as well as the electro-chemical 

properties, corrosion and anodizing response. Quench sensitivity is attributed to attributed to 

precipitation of the strengthening phase forming elements during cooling at reduced rates and the 
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reduced concentration of mobile, non-equilibrium vacancies (“quenched-in vacancies”) as a 

result of slow cooling. 

Another way of looking at quench sensitivity is the ability of a AA6xxx material to 

tolerate slower cooling rates and not precipitate Mg2Si out of solution when quenched slowly [4]. 

The importance of this appears during the aging procedure, if too much Mg2Si precipitates out of 

solution, then there will not be enough Mg and Si left in solution to precipitate the desired β”- 

Mg2Si out of solution [15]. The age hardening transformation sequence will be discussed in 

greater detail in section 2.2.3. 

Keeping Mg and Si in solution is critical because when quenched slowly, only later forms 

of Mg2Si such as β’ will be present [15]. These are non-hardening phases and cannot be reversed 

back to β”-Mg2Si unless the whole solutionizing process is redone. By elevating the temperature 

and allowing the required amount of time, the activation energy barrier is overcome and the 

precipitation sequence may continue, however if a transformation occurs where β-Mg2Si (non-

hardenable phase) has been formed during quenching, then this will result in a lowered amount 

of Mg and Si available for precipitation hardening [21]. Quenching too slowly can lead to 

reduction in vacancy supersaturation, unwanted precipitation, and over aging in certain parts of 

the alloy where precipitation has occurred [4]. This effect can be detrimental to the age 

hardening ability of the alloy.  

Many who have previously studied quench sensitivity found that the addition of Mn/Cr 

increases quench sensitivity [5-8]. This happens because the addition of Mn/Cr increases the 

number of dispersoids that contain either of these two elements [5-8]. Mn/Cr dispersoids are 

good nucleation sites for β’-Mg2Si particles during cooling [5-8]. Upon the addition of these two 

elements, quench sensitivity then becomes related to homogenization heating rate, temperature, 
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and time, as well as the cooling rate. By increasing the concentration of these two constituents, 

quench sensitivity will increase making it imperative that the alloys are quenched fast enough to 

avoid precipitation of Mg2Si.  

2.2.3 Aging 

Precipitation hardening or age hardening is a process by which alloys that are age 

hardenable are elevated to a certain temperature that allows a series of transformations to occur 

resulting in the formation of precipitates [4, 23]. These precipitates cause lattice strain and 

increase the hardness of the alloy [15]. Precipitation occurs when the alloy is held at an elevated 

temperature much lower than the solutionizing temperature but high enough to overcome the 

energy barriers need for precipitation. The solutes dissolved into the supersaturated solid solution 

transform through a number of metastable states progressing from a less stable state to the most 

stable state which is known as the equilibrium phase. The following is a theoretical 

transformation where β’ transforms into a more stable state [12].  

𝛽′ → 𝛽      (2.6) 

By transforming into a more stable state, the system or solution is lowering the free energy and 

therefore wants to move towards this transformation. Diffusion must permit the above 

transformation to occur. By carefully controlling the temperature and time, two variables that can 

be manipulated, keeping the desired metastable state from transforming into a more stable state if 

it is undesired, is possible. Forming precipitates usually results in a decrease in free energy if 

creation of a nucleus will result in the destruction of a defect [12].  

∆𝐺ℎ𝑒𝑡 = −𝑉(∆𝐺𝑣 − ∆𝐺𝑠) + 𝐴𝛾 − ∆𝐺𝑑   (2.7) 

∆𝐺𝑑 represents the free energy released by destroying a defect while Aγ refers to the interfacial 

energy term. The interfacial energy term is important because it will determine where nucleation 
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occurs, for example on a grain boundary or a free surface. The activation energy barrier that must 

be overcome is shown by the following expression [12].  

∆𝐺ℎ𝑒𝑡
∗

∆𝐺ℎ𝑜𝑚
∗ =

𝑉ℎ𝑒𝑡
∗

𝑉ℎ𝑜𝑚
∗       (2.8) 

This activation energy and the free energy shown in equation 2.8 is largely dependent on the 

interfacial energy term meaning that the type of nucleation site will play a large role in the 

likelihood of forming a precipitate. The thermodynamics of phase changes must be considered as 

it plays a large role in the formation of precipitates and predicting the outcome of aging 

procedures. Nucleation along grain boundaries and interphase boundaries such as a dispersoid, is 

more likely to occur at a faster rate than nucleation at vacancy sites or dislocations [4]. This is 

because ∆𝐺ℎ𝑒𝑡 is much lower for nucleation at interphase boundaries. The inclusion of 

dispersoids proves to be problematic to the aging procedure because Mn/Cr containing 

dispersoids prove to be favoured nucleation sites for unwanted β’precipitate nucleation [5-8]. 

The following is a schematic that represents the precipitation sequence in AA6xxx series alloys 

[4].  

SS  Mg/Si Co-clustering  GP Zones  β”  β’  β (Mg2Si)  (2.9) 

In these alloys, β” is the hardening phase as due to the rod structure of the β” [24-29]. This 

stresses the importance of quenching because when the specimen is quenched fast enough there 

is enough Mg2Si in solution that can transform into the various metastable transition phases [4, 

24-29]. The formation of precipitates leads to an increase hardness from the extra stress needed 

to force dislocations through coherent zones [12]. The result of the formation of precipitates is an 

increase in misfit strain energy and an overall increase in mechanical properties such as hardness 

and yield stress. In order to be effective the aging sequence must be stopped at the β” and β’ 

combination stage, or the precipitates become too large and dislocations are allowed to bow 
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through the strained zones, whereas β” hardening phases are shearable and are therefore more 

effective for hardening [4,12]. The growth of precipitates will happen naturally even after 

quenched by a process known as particle coarsening. This refers to the decrease in interfacial 

energy of larger particles and a desire to reduce the free energy of the system by the diffusion of 

small particles to larger ones. The transformation of transition phases stops when all the 

precipitates have reached their stable equilibrium phase β –Mg2Si. The alloy at this point will be 

softer than at the peak-aged hardness. Aging for too long will result in an overaged alloy and a 

reduction in alloy strength [4,12].   

2.3 Effect of Alloy Chemistry 
 

2.3.1 Effect of Chromium and Manganese 

 

For a long time, chromium has been used in combination with manganese to control grain 

structure. They typically have a limited effect on mechanical properties. Precipitates containing 

chromium are formed during homogenization; these precipitates are called dispersoids [5-8]. Due 

to high density and thermal stability, these dispersoids may act as nucleation sites for 

strengthening particles as well as affect recrystallization, grain growth, and recovery. α – 

Al(CrMnFe)Si is the phase present when both chromium and manganese are present [8]. When 

only chromium is present α-AlCrSi which is an FCC unit cell, as well as a phase known as α-

Al(CrFe)Si [6]. These dispersoids all have complex structures which are incoherent with the Al 

matrix. Heterogeneous nucleation appears to be the suggested nucleation method of dispersoids 

[5, 30-31]. Various different nucleation sites have been suggested such as β” and β’ needle 

structures [5]. To study the formation of dispersoids in AA6xxx series alloys containing Mn and 

Cr an electrical resistivity test along with TEM was conducted by Westengen et al. where alloys 

containing Mn were found to have a large variation in electrical resistivity during high 



 

 

16 

 

temperature annealing compared to alloys that only contained Cr [6]. This occurs because 

dispersoid formation is non-uniform and is subject to variation. Various researchers have noted 

that this can be controlled by slow heating [5]. Results from Logaard and Ryum’s work shows 

that slow heating to roughly 250°C resulted in uniform distribution of dispersoids [5,6]. 

Electrical resistivity methods were used to find out the variation in precipitation by comparing an 

alloy with no dispersoid forming agents to an alloy with dispersoid forming agents [9]. 

According to this paper, it is believed that the addition of Mn/and Cr will affect the overall 

equilibrium solubility of strengthening particles containing Mg2Si [5-8], this is however 

negligible because later results showed that the electrical resistivity between the two alloys were 

almost identical and the real difference occurs during the precipitation of Mn [5]. This study also 

showed that Cr precipitates more slowly than Mn, and precipitates at a higher temperature of 

roughly 490°C [5]. Logaard and Ryum’s paper investigates a phase they call the U-phase” and in 

their paper it states that only this phase acts as a nucleation site for dispersoids not the β’ 

precipitates [6].  

 

Figure 2-3: Schematic of Transformation from Precipitates to Dispersoids [6] 
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The nucleation method of dispersoids shown in Figure 2-3 occurs during homogenization and 

affects quench sensitivity by providing nucleation sites for hardening phase particles. Without 

the formation of these dispersoids, the alloy would be more tolerant to slower quench rates. 

Sheppard showed in his work that chromium can change fracture properties; the addition of 

chromium changes the failure mode from intergranular to transgranular [7].  

2.3.2 Effect of Magnesium/Silicon on Mg2Si 

 

Mg and Si are two important elements found in AA6xxx series aluminum alloys. When 

they associate together they form the compound Mg2Si. Stoichiometry dictates that there are 2 

Mg atoms for every Si atom in this compound. Manufacturing an alloy and designing alloy 

chemistry requires the correct ratio of Mg to Si. The enrichment of certain phases or states with 

either Mg or Si must be considered in order to properly balance the alloy or even have an 

advantageous excess of one element. The equilibrium phase Mg2Si or β-Mg2Si is usually Mg 

enriched [9]. Metastable states such as β”-Mg2Si are typically silicon enriched [9]. Having an 

excess of Si will result in the predominance of the metastable states given that the correct free 

energy requirements are met. Mg enrichment will promote the formation of the equilibrium 

phase.  

 Mg and Si also play a role in dispersoid distribution. Zhong et al. found that with 

decreasing Mg/Si ratio, there was a more homogenous distribution of dispersoids along with a 

higher dispersoid density [9]. This means that alloys containing Si enrichment promotes 

dispersoid formation. They also found that an excess of Mg slows down the natural aging 

process. It was found that Si enriched or alloys with a low Mg/Si ratio had an increased work 

hardening capacity [32]. The findings from this study show that there are many added benefits to 

increasing Si and increasing Mg, but too much of either could have negative effects. Figures 2-4 
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and 2-5 show the results from the Zhong et al. experiment, where Figure 2-4 shows a higher 

Mg/Si ratio and figure 2-5 shows a lower Mg/Si ratio [33].  

 

Figure 2-4: Dispersoid density of an alloy with a high Mg/Si ratio [33] 

The white dots shown in the electron micrographs are the dispersoids. The grey contrasting in 

Figure 2-5 may appear due to some error in polishing with colloidal alumina suspension.   

 

 
Figure 2-5: Dispersoid density of an alloy with a low Mg/Si ratio [33] 

Zhong et al. found in their study that increasing silicon concentration within the matrix promotes 

the formation of dispersoids and increases dispersoid density as shown in Figure 2-5 [33].  
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2.4 Experimental Techniques for Studying Quench Sensitivity  
 

2.4.1 Jominy Quench End Test 

The Jominy end quench test is a test designed to measure quench sensitivity of an alloy. 

The test was originally designed to measure the hardenability of steel [34], however it was 

shown by other researchers that it could be an effect tool for other types of alloys including 

aluminum alloys. The test accomplishes this task by machining a Jominy bar out of the desired 

material and quenching the bar from one end giving a range of different cooling rates down the 

length of the bar. The hardness is then taken along the length of the bar in the axial direction and 

each hardness is corresponded to a cooling rate from each different section of the bar.  

Newkirk and Mackenzie showed in their experiment that the Jominy test follows a one 

dimensional heat transfer model by measuring the hardness radially across the bar at a specific 

length. The results of their experiment are shown in Figure 2-6 [35].  

 

Figure 2-6:Vickers hardness across the radial surface of Jominy specimen showing 1D axial heat transfer [35] 
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The radial heat transfer according to the results of their experiment was shown to be negligible 

and it can be deduced that the heat is flowing through the bar axially [35]. Tanner and Robinson 

also did a study on the quench sensitivity of certain aluminum alloys using the Jominy method 

[20]. The results from their experiment are shown in Figure 2-7.  

 

Figure 2-7: Hardness for Jominy specimens plotted against distance from quenched end, circles indicate 7010, triangles 7175 

and squares 5083 [20] 

Tanner and Robinson found that the quench sensitivity of some 7xxx series alloys is higher than 

5xxx series alloys, showing that the Jominy end quench test can be used for aluminum alloys. 

The data collected from the Jominy bar may then be taken and related to the quench rate. Work 

previously done by Strobel et al. relate the hardness and quench rate to the dispersoid density and 

quench sensitivity [40].  



 

 

21 

 

 

Figure 2-8: Relationship between dispersoid density and quench sensitivity [40] 
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3 Objective and Scope 
 

With the increasing demand for low density alloys, aluminum parts are now more prominent 

than ever. As the use of aluminum increases, newer and better processes are being developed. 

AA6xxx aluminum alloys are frequently used in automotive production, and there is a greater 

desire now to improve these alloys than ever. Extrusion is among the most prominent forming 

techniques used for automotive applications. One potential way to improve aluminum alloys is 

through the addition of alloying elements. Chromium is commonly used in aluminum alloys to 

control grain growth and recrystallization. The addition of Cr may not always have advantageous 

effects; one of those disadvantages is that Cr is known to form dispersoids during 

homogenization, and Cr containing dispersoids may lead to an increase in quench sensitivity of 

the alloy. Quench sensitivity occurs when Mg2Si in AA6xxx alloys, is allowed to precipitate out 

during the quenching procedure, as a result of inadequate quenching rates. 

 The extrusion of aluminum alloys may be done in such a way where during extrusion all of 

the Mg2Si dissolves and no subsequent solution treatment is necessary, this is known as the T5 

condition. This extrusion procedure is beneficial economically, and results in using less energy, 

as no separate solution treatment is required. If this process is to be implemented in alloys 

containing increased amounts of Cr, it becomes of interest to study the quench sensitivity of 

these AA6xxx alloys to understand the required quench rates after extrusion and the effect this 

will have on the final mechanical properties.  

The objective of this research was to do an in depth study on the effect of Cr and other alloy 

additions on the quench sensitivity of AA6xxx aluminum alloys, and to see the effect of quench 

sensitivity on the mechanical properties of these AA6xxx alloys. This information will then be 

used to decide what type of quenching operation may be necessary after extrusion. 
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4 Experimental Methods and Materials 
 

4.1 Materials 
The AA6xxx alloys used in this experiment were industrially produced and supplied by 

GM Canada in the as-cast and homogenized state. The three different compositions used are 

shown in Table 2 and included: a baseline alloy (B), which was essentially a AA6063 alloy, 

composition one (C1) with a Cr and Mn addition for dispersoid formation, and composition three 

(C3) with increased Mg, Si, Cr, and Mn. 

Table 4-1: Composition of AA6xxx alloys used in this research 

AA6xxx Si Mg Cu Fe Cr Mn Ti 

AA 6063 (Baseline)  0.4 0.49 0.01 0.16 - 0.029 0.01 

Composition 1 (C1) 0.4807 0.4965 0.148 0.195 0.182 0.0965 - 

Composition 3 (C3) 0.5921 0.9171 0.1437 0.198 0.1974 0.0957 - 

 

This research will help elucidate the effects of alloy composition of the AA6xxx 

aluminum alloys of their quench sensitivity after solutionizing. The supplied material was 

industrially homogenized using the following procedure: the material was heated to 560°C at a 

rate of 100°C/hour, the material was held at 560°C for 6 hours, and then the material was 

quenched with compressed air.  

4.1.1 Alloy phase diagrams 

 

Colleagues at McGill University in Professor Jung’s lab who are partners in this research 

supplied thermodynamic database calculations for these alloys in the form of phase fraction 

versus temperature for each of the alloys being studied and shown in Figures 4-1 to 4-3.  
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Figure 4-1: FACTSAGE predictions of phase fractions a function of temperature for the AA6063 baseline alloy. 
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Figure 4-2: FACTSAGE predictions of phase fraction as a function of temperature for C1. 

 
Figure 4-3: FACTSAGE predictions of phase fraction as a function of temperature for C3. 
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Table 4-2: Table summarizing data from FACTSAGE predictions 

Alloy 

Solidus 

Temperature 

°C 

Mg2Si 

Dissolution 

Temperature 

°C 

Equilibrium 

Mg2Si at 

Room 

Temperature 

wt % 

Al13Cr2 

Intermetallics 

Predicted at 

room 

temperature 

Baseline 620 485 0.65 No 

1 615 490 0.6 Yes 

2 600 545 1.4 No 

3 600 550 1.4 Yes 

 

Table 4-2 shows the dissolution temperatures of the target precipitate Mg2Si and the 

weight percent at room temperature. This also shows the difference between the predicted 

microstructural changes by adding different alloying elements in each alloy. The FACTSAGE 

predictions shown in Figures 4-1, 4-2, and 4-3 were used to help understand the range of phases 

present in the alloy under equilibrium conditions as well as predict the Mg2Si dissolution 

temperatures, and will be explained in further detail in section 4.2.2. 

4.2 Jominy Quenched End Test  
 

4.2.1 Apparatus/Test Samples 

 

A standard Jominy end-quench test was used to measure how quench sensitive each alloy 

was. This test was chosen due to its relative simplicity, it’s availability at the University of 

Waterloo, ability to create a number of various cooling rates in a single sample, and because it 

worked within the material constraints. The Jominy test apparatus is known as a Jominy rig, 

containing an orifice that sprays water at the bottom of the bar, and a holder to hold the bar after 

it comes out of the furnace. Figure 4-4 shows a schematic for the Jominy rig set up, while Figure 



 

 

27 

 

4-5 shows the necessary dimensions and distance from the orifice as stated in the ASTM 

handbook, A255-10, pages 1-26.  

 

Figure 4-4: Schematic of a Jominy rig set up based on ASM handbook [38] 

 
Figure 4-5: schematic indicating necessary dimensions for Jominy rig and test specimen from ASTM Handbook [34] 
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The most important dimension is that the orifice must be 12.7 mm. It is also imperative 

that water does not spill up the sides of test specimen to ensure the heat transfer remains one 

dimensional to the bottom of the specimen. 

The test samples used in this study were modified slightly from the ASTM Jominy 

specifications. The ASTM specifications state that the bar should be 101.6 mm in length. Due to 

material constraints the length of the bars was shortened to 88 mm with a 12.7 mm cap was 

machined to give the full 101.6 mm of mass as shown in Figures 4-7 and 4-9. The bars also 

contained another modification: the bar was pre-milled to provide two flat surfaces. This is 

typically done after the quench is complete in a standard Jominy test; however, problems occur 

when the material is switched to aluminum. With steels, the local heating is not enough to affect 

precipitation, however based on the phase diagram of AA6xxx alloys, there was a risk of local 

heating affecting the precipitation in that region via age hardening and final hardness. It was for 

this reason that the bars were pre-milled.  

 

Figure 4-6: 3D Solidworks drawing of 88.9 mm bar used in Jominy test  

A 3D solidworks model of the modified Jominy bars used in the experiments is shown in 

Figure 4-6. A screw to the cap shown in Figure 4-9 attaches this bar with the milled edges. 

Figure 4-7 shows the Solidworks drawing for the bar in figure 4-6.  
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Figure 4-7: Solidworks drawing of 88.9 mm test specimen and an image of the specimen once cap is attached 

Figure 4-7 shows the exact specifications for the test specimens. The material was taken 

from a homogenized DC cast billet. All specimens were taken from the billet at a distance of 

25.4 mm to the center of the billet. The space was allotted all around the perimeter of the billet.  
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Figure 4-8: Cross section of homogenized DC cast billet showing locations where samples were extracted 

 

Figure 4-9: 3D Solidworks model of cap for 88.9mm bar 

The cap shown in figure 4-9 is attached to the 88.9 mm bar using a screw going through the 

middle of the cap and down 4.76 mm into the bar. The purpose of the cap is to keep the heat 

transfer constant with the instrumented bars. The thermal conductivity of aluminum is high 

enough that the interface created between the cap and the bar provides negligible resistance to 

heat transfer. The top of the cap was extended by 7.6 mm in diameter to provide flaps that would 

hold the specimen up when placed in the holder of the Jominy rig. The caps were machined from 

samples taken from the same DC cast ingot as the 88.9 mm bars.  
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4.2.2 Procedure 

The Jominy test involves 2-stages: the heating stage and cooling stage. The heating stage 

occurs when the specimen is placed into a furnace and allowed to reach the solutionizing 

temperature and is held there for a 10 minutes. The cooling stage is when the specimen is taken 

out of the furnace and is quickly placed into the holder of the Jominy apparatus, and is then 

quenched from the bottom end. Detailed information on the required time necessary to heat the 

specimen up to the solution treatment temperature was collected using thermocouple 

instrumented samples. This information is found in section 4.2.4.  

The samples were prepared for solution treatment by attaching the cap to the 88.9 mm 

test specimen. After this step, the bar was then placed into a custom built dual-zone furnace and 

left to reach the solution treatment temperature of 560°C. The bar from the time it was put into 

the furnace until it was taken out was 67 minutes. 57 minutes were required to reach the desired 

temperature and 10 minutes were selected for the solutionizing time. Figures 4-1, 4-2, and 4-3 

show FACTSAGE predictions of the various temperatures required for Mg2Si dissolution. The 

Mg2Si dissolution temperature for C3 is 550°C. To keep the experiment consistent, the same 

solutionizing temperature had to be chosen for all alloys. The lowest solidus temperature is 

found in C3, 600°C which is well above the Mg2Si dissolution temperatures for all alloys. A 

solutionizing temperature of 560°C was chosen for all alloys. After completing the Jominy 

quench, the alloys were then all aged for 5 hours at 185°C, a standard practice to age 6063 alloys 

to the T6 condition [6]. The samples were left at room temperature for a week to naturally age, 

they were then tested in the T4 condition. The T6 samples were stored at -25°C and then aged 

within 3 days.    



 

 

32 

 

 

Figure 4-10: Heating data from instrumented Jominy bar with thermocouple at x = 40mm showing the necessary time 

required, indicated by the red dotted line, to heat the Jominy bar to 560°C 

 

4.2.3 Hardness Profiles  

Some of the Jominy specimens were left in the T4 for conditions (naturally aged for a 

week), while others were aged to T6. The hardness was taken in a line starting from the 

quenched end and finishing 40 mm from the quenched end of the bar. After 40 mm, the change 

in hardness measured was minimal. A different set of tests was designed to measure extreme 

cooling rates. A NANOVEA-M1 Nano indenter was used to make the indentations to measure 

the Vickers hardness. The standard metallurgical preparation procedure was used to prepare the 

sample. The 88.9 mm test specimen was cut at 42 mm from the quenched end. Then the sample 

was ground from 320 grit to 2400 grit using silicon carbide paper. Only one pre-milled side was 
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polished; the other side was ground to 600 grit to ensure the sample was sitting flat. The sample 

was then polished using STRUERS MD-Mol pads and 3 micron DP-Diamond Spray. MD-Nap 

pads were then used along with 1 micron DP-Diamond spray.  

 

Figure 4-11: Jominy specimen after polishing 

 

The sample was then placed in the NANOVEA and 40 indentations were made, starting at 0.2 

mm from the quenched end. Each indentation was spaced 1 mm apart, going down the length of 

the specimen. The indentations were then observed under an OLYMPUS optical microscope. 

Lines were made along the two diagonals of the diamond indents; both diagonals were entered 

into the Vickers hardness formula shown in the following equation,  

𝐻𝑉 =
2𝑃 𝑠𝑖𝑛(

136

2
)

𝑑2
=

1.8544𝑃

𝑑2
       (4.1) 

where P is the load in kgf and d is the length of the diagonal in microns. The hardness was then 

plotted against the distance from the quenched end, which is also known as a hardness profile.   
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4.2.4 Instrumented Samples and Calculating Cooling Rates 

In order to obtain the cooling rates along different lengths of the bar, eight separate Jominy 

bars were instrumented with thermocouples varying in length. Figure 4-12 shows an example of 

a 3D Solidworks model of the Jominy bar with a 2 mm thermocouple depth. The 2 mm bar 

shows the thermocouple placed closest to the quench end, while the 60 mm bar shows the 

thermocouple placed furthest from the quench end. Thermocouples were placed at 2 mm, 4mm, 

10 mm, 20 mm, 30 mm, 40mm, 50 mm, and 60 mm.  

 

Figure 4-12: 3D Solidworks model along with specifications for instrumented Jominy bar with a thermocouple placed 2 mm 

from the quenched end 

The data collected from the thermocouples was done using a NI USB-6212 data 

acquisition system. LABVIEW was the program used to acquire the data and apply the standard 

filter. After the heating and cooling data was collected, the filtered data was plotted as is to 

generate a time-temperature curve or cooling curve. The eight cooling curves were plotted on 

one graph to show the difference in cooling as the distance from the quench end increased.  
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The average cooling rate was then obtained by linearizing the cooling curves through 

averaging and removing noise from the data. The average of every 10 points was taken and 

plotted against the time at every tenth of a second. The first derivative was then taken and plotted 

against the time. Due to the nature of these alloys the important transformations occur during the 

cooling period from 500°C to 250°C during quenching. Based on this information, the average 

cooling rate was calculated between this temperature range.  

To model the Jominy cooling process, a 1D transient heat transfer solution of a semi 

infinite solid is typically used. The assumption that the thermal diffusivity remains constant must 

be made in this scenario [39]. It must also be assumed that the bar is thermally insulated meaning 

that heat does not escape from the bar radially. With the case of surface convection, the 

following assumption must be made to create the boundary condition.  

−𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=0
= ℎ[𝑇∞ − 𝑇(0, 𝑡)]       (4.2) 

Where the thermal diffusivity remains constant and the surface of the solid is exposed to 

convection of a fluid with a constant temperature. In this case equation 4.3 shows the analytical 

solution to the PDE, complementary error functions must be used in the solution as there is no 

analytical solution to the integrals from this heat transfer equation [39]. 

𝑇(𝑥,𝑡)−𝑇𝑖

𝑇∞−𝑇𝑖
= 𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼𝑡
) − exp (

ℎ𝑥

𝑘
+

ℎ2𝛼𝑡

𝑘2 ) 𝑒𝑟𝑓𝑐 (
𝑥

2√𝛼𝑡
+

ℎ√𝛼𝑡

𝑘
)   (4.3) 

Table 4-3 contains the data used to solve the 1D transient heat transfer problem. The data from 

this table was entered into the solution to generate time-temperature curves showing temperature 

as a function of time for varying x values.  
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Table 4-3: Data and material properties used to solve 1D semi infinite transient heat transfer model 

Symbol Property Value 

Density  ρ 2635 kg/m3 

Thermal diffusivity  α 𝑘

𝜌𝐶𝑝
=0.000076 m2/s 

Thermal conductivity k 212 W/mK 

Heat capacity Cp 1.06 J/Kg 

Initial temperature To 560°C 

Water temperature Tw 10°C 

Heat transfer coefficient  h 29100 W/m2K 

 

4.3 Quench Sensitivity Tests/Extreme Cooling 
 

4.3.1 Procedure/Test Samples 

The Jominy bar gives a wide range of cooling rates, however it is of interest to 

investigate cooling rates even slower than the Jominy bar can offer. This is because the T4 

condition commonly used in industry involves an air cooled environment. Automotive parts may 

sit in warehouses for up to 3 months before being used. These samples also provided the ability 

to test tensile samples for complete mechanical property determination. Three different quenches 

were performed creating three different conditions. A quench using water was designed to 

provide the fastest cooling rate. The second procedure was to leave the sample to air cool to 

simulate industrial conditions. The third procedure was to create an extreme condition, to 

achieve this the sample was heated to solution treatment temperature, the furnace was then 

turned off and left over night to cool.  
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To machine the samples a bar of each material with a radius of 12.7 mm was taken and 

cut with a lubricated vice saw to minimize any effects resulting from the heat cause by 

deformation of the material. Each sample was then cut to a length of 12.7 mm, creating a 

cylindrical sample. After the machining process, the sample was then placed into the dual-zone 

tube furnace and heated to the solutionizing temperature of 560°C. Based on data obtained from 

the instrumented samples, it was found that the sample took 27 minutes to reach the solutionizing 

temperature. The samples were left in the dual-zone furnace for 10 minutes solutionizing time, 

for a total of 37 minutes in the furnace for each sample. Figure 4-13 shows a schematic of the 

different heat treatments used to conduct these tests.  

 

Figure 4-13: Schematic of heat treatments used in the procedure for extreme cooling rate tests 
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The samples were then aged for 5 hours at 185°C until they reached the T6 condition. The 

samples were then prepared via the standard metallurgical sample preparation method for 

Vickers hardness measurements.  

 

4.3.2 Hardness Data 

The NANOVEA-M1 Nano indenter was used to make the indentations to measure the 

Vickers hardness. In order to measure Vickers hardness, a flat and polished surface is required. 

The standard metallurgical preparation procedure was used to prepare the sample. The test 

specimen was ground using 180 grit paper to ensure both sides were of the specimen were flat. 

The sample was then ground from 320 grit to 2400 grit using silicon carbide paper. Only one 

side was polished; the other side was ground to 600 grit to ensure the sample was sitting flat. The 

sample was then polished using STRUERS MD-Mol pads and 3 micron DP-Diamond Spray. 

MD-Nap pads were then used along with 1 micron DP-Diamond spray. The sample was then 

placed in the NANOVEA and 5 indentations were made, starting from the left side and moving 

towards the right. Each indentation was spaced 5 mm apart, across the diameter of the specimen. 

The indentations were then observed under an OLYMPUS optical microscope. Lines were made 

along the 2 diagonals of the diamond indents; both diagonals were entered into the Vickers 

hardness formula shown in equation 4.1. The data was then averaged over all the points taken on 

each specimen. The new value was the average Vickers hardness for each different condition.  
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Figure 4-14: Example of sample used in one of the tests to show the effect of extreme cooling rates 

4.3.3 Instrumentation and Cooling Curves and Calculating Rate 

The cooling rates of each sample are important to calculate because there is a direct 

correlation between cooling rate and the mechanical properties after the T6 treatment. To do this 

for the 12.7 mm radius samples, the samples had to be instrumented with thermocouples. 1/16 

inch holes were drilled from the side of the sample and move through the sample in the axial 

direction. The holes were drilled 12.7 mm deep. This was done to reflect the temperature at the 

middle of the sample, the last part of the sample to reach the equilibrium temperature. K+ 

thermocouples from OMEGA were used to collect the data. The data collected from the 

thermocouples was done using a NI USB-6212 data acquisition system. LABVIEW was the 

program used to acquire the data and apply the standard filter. After the heating and cooling data 

was collected, the filtered data was plotted as is to generate a time-temperature curve or cooling 

curve. The average cooling rate was then obtained by linearizing the cooling curves through 

averaging and removing noise from the data. The average of every 10 points was taken and 

plotted against the time at every tenth of a second. The first derivative was then taken and plotted 

against the time. Due to the nature of these alloys the important transformations occur during the 
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cooling period from 500°C to 200°C during quenching. Based on this information the average 

cooling rate was calculated between this temperature range. The average cooling rate was 

calculated by averaging the first derivative between the temperatures of 500°C to 200°C. The 

data was then taken from these calculations and matched up with hardness values as well tensile 

tests.  

4.4 Tensile Tests 

4.4.1 Apparatus/samples  

The tensile test was conducted using an INSTRON tensile tester. The tensile specimens 

were sub sized tensile specimens following the ASTM E8/E8M standards. Samples are typically 

made from sheet metal; however, the 6063 alloys were all in the billet form. The tensile samples 

were extracted from the billet and machined into the sub-size specimens. The samples had to be 

machined to a thickness of 6 mm to ensure the material did not bend upon removal from the 

billet. Figure 4-15 shows the ASTM E8/E8M standard for a sub-size tensile specimen. 

 

Figure 4-15: ASTM E8/E8M sub-size tensile standard used for tensile tests 

The width of the gauge of the sample was 6 mm. The gauge length shown in Figure 4-15 by the 

letter “A” was 25.4 mm long. Each sample was prepared for tensile testing to a specified test 

condition corresponding to the extreme cooling rate tests found in section 4.3. A set of two 
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tensile specimens were prepared for each condition. For each alloy, three different conditions 

were applied to the tensile samples. The three conditions were: quenched in water, air-cooled, 

and furnace-cooled. After each quenching operation was complete, the samples were then aged 

to the T6 condition. The samples were aged in the custom built dual zone furnace at 185°C for 5 

hours. The samples were quenched in water after the aging treatment to bring the sample back to 

room temperature. 

   

Figure 4-16: Example of actual tensile sample used in this experiment 

4.4.2 Procedure  

The tensile test involves applying a load and measuring the corresponding displacement while 

applying the load. The load can be converted into engineering stress by using the following 

equation: 

𝜎 =  
𝑃

𝐴
       (4.4) 

Where P is the applied load, and A is the cross sectional area. The engineering strain can be 

calculated by using equation 4.5.  

𝜀 =  
∆𝐿

𝐿0
       (4.5) 

The engineering strain is calculated by the elongation divided by the original gauge length of the 

specimen. Figure 4-17 shows the behaviour of mechanical plastic deformation on a material. 

During the tensile test, the specimen be pulled under axial tension and the specimen will 

continue to deform until fracture.  
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Figure 4-17: Schematic of plastic deformation behaviour of an alloy under axial tension [37] 

Figure 4-17 shows a round test sample, the samples used in this experiment follow the 

specifications in Figure 4-16. The test specimens were loaded into the grips connected to the load 

cell by tightening the grips until the sample was tightly in place. The software provided by 

UNITED was then zeroed and the test was initiated. The strain rate was set to 1mm/min, with a 

data acquisition rate of 5 Hz. A 1-inch INSTRON extensometer modified for compatibility with 

the UNITED data acquisition system, was attached to the gauge of the sample. The test was run 

with the extensometer on till a strain of 1.5 mm. After this point the extensometer was removed 

and the test was allowed to continue. The displacement of the load cell was measured in 

millimeters after the 1.5 mm strain point. The specimen was pulled to strain failure and was then 

removed from the tensile testing machine. Table 4-4 shows the different conditions for each 

tensile test specimen and the number of times the test was repeated.  
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Table 4-4: Different alloy compositions and corresponding conditions, aging treatment, and repeat numbers for specimens 

used in tensile tests 

Alloy Composition Condition Aging treatment Number of repeats 

Baseline Water quenched T6 2 

Baseline Air-cooled T6 2 

Baseline Furnace-cooled T6 2 

C1 Water quenched T6 2 

C1 Air-cooled T6 2 

C1 Furnace-cooled T6 2 

C3 Water quenched T6 2 

C3 Air-cooled T6 2 

C3 Furnace-cooled T6 2 

 

Once the data was obtained it was processed by taking the average of the data from the 

two tests and using them to come up with the yield stress, UTS, and the elongation. The yield 

stress found by creating a 0.2% offset. This was done by fitting the straight part of the curve 

where the Young’s modulus is found and creating a line. Then the equation of the line was 

found, and the line was shifted over by 0.2%. The stress at the point where the shifted line 

running parallel with the straight part of the curve and the stress-strain curve intersect is known 

as the yield stress. The UTS was determined graphically by finding the point that satisfies the 

following equation.  

𝑑𝜎

𝑑𝜀
= 0       (4.6) 

This point signifies a local maximum, and the stress at this point is known as the UTS. The two 

UTS values were averaged together to give an average UTS for each condition. To measure 
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elongation, two marks were placed at both ends of the gauge at exactly 1-apart prior to testing. 

After the test was concluded, the two marks were then measured using a caliper and the data was 

recorded. The data was then entered into equation 4.5 to give the percent elongation.  

4.5 Metallography 
 

4.5.1 Sample Preparation 

Samples of interest were prepared using the metallographic sample preparation 

procedure. Four of the samples from section 4.3 used in the extreme cooling rate measurements 

were prepared for examination. Any rough edges on both sides of the sample were removed by 

using 180 grit silicon carbide paper. The edge not being examined was then polished using 320 

and 600 grit silicon carbide papers till a flat surface was achieved. The samples were large 

enough that no metallurgical mounting procedure was required. The side to be examined under 

the SEM was also polished using 320 and 600 grit silicon carbide paper. After this step, 1200 grit 

and 2400 grit silicon carbide paper were used. Samples were ground for roughly 5 minutes for 

each grit using a STRUERS Roto-Pol 31. After this step, the sample was polished using 

STRUERS MD-Mol pads and 3 micron DP-Diamond Spray. MD-Nap pads were then used along 

with 1 micron DP-Diamond spray. MD-Nap along with ¼ micron DP-Diamond Spray from 

STRUERS were then used in the final polishing step. The samples were then correctly stored 

until the examination time, where the etchant procedure was conducted approximately one hour 

prior to SEM examination.     

 

4.5.2 Etching Procedure 

The 4 samples were etched approximately one hour prior to examination. 75 mL of 

etchant was prepared by adding 25 mL of hydrochloric acid, and 25 mL of nitric acid to 25 mL 

of methanol. 1 drop using an eye dropper of hydrofluoric acid was then added to the solution to 
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prepare the etchant. A petri dish was then filled with the etchant and the areas undesired for 

etching were covered using platers tape. The sample was then immersed into the etchant and the 

sample was held there for 30 seconds. After the sample was then rinsed using water and 

methanol and quickly air dried. The sample was then cleaned using the ultrasonic cleaner for 3 

minutes per sample. The samples were then quickly dried again using compressed air and the 

sample was taken for SEM examination.   

4.5.3 SEM Procedure  

The SEM used to characterize the microstructure was a ZEISS 1530 FESEM, a state of 

the art piece of equipment. The SEM was able to resolve structures as small as 2 nm. The four 

selected samples; baseline water quenched, baseline furnace cooled, C3 water quenched, and C3 

furnace cooled were all in the as quenched condition and unaged. The samples were then placed 

into the sample holder and placed in the vacuum chamber. To view the samples, the correct field 

must be selected in the SmartSEM software used to navigate the SEM. Baseline furnace cooled 

was conducted on its own in field 1. Once the samples were inserted onto the stage found in the 

vacuum chamber, the gate was shut and the vacuum process was initiated. An accelerating 

voltage of 15 kV and 5 kV were both used to image the specimens. Images were taken in both 

secondary electron mode and AsB backscatter mode.  
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5 Results and Discussion  
 

5.1 Jominy Quenched End Test Cooling Rates 

The hardness profiles were an effective way to study the change in mechanical properties 

along the length of the Jominy bar based on difference in cooling rates. It was of interest to know 

the cooling rates that corresponded to the changing distance from the quench end of the Jominy 

so that hardness measurements could be correlated to cooling history. 

5.1.1 Measured Cooling Histories  

As described in the methodology section, the Jominy bars were instrumented with type K 

thermocouples so that detailed knowledge of the thermal history experienced during cooling 

could be obtained. Figure 5-1 shows typical measured cooling rates for different positions along 

the Jominy bar during cooling of AA6063. For visual clarity the start time of each location was 

offset by 10 seconds.   

 

Figure 5-1: Measured cooling histories from the quenched end of the Jominy bar during cooling of AA6063 
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To determine the average cooling rate during cooling, cooling histories between 500°C and 

250°C were considered at each location, as this is the critical temperature range over which 

precipitation of the Mg2Si will occur [19]. Figure 5-2 shows an example of how the average 

cooling rate was calculated for each location.  

 

Figure 5-2: Calculation of average cooling rate along the Jominy bar 

5.1.2 Analytical Solution of Jominy Cooling Curves 

Previous research [41] had shown how the Jominy quench test could be approximated as a 1D 

transient heat condition heat transfer problem and solved analytically.  In this research, a similar 

approach was used and the a 1D transient heat transfer of a semi-infinite solid model was solved 

to predict the cooling history at different positions along the Jominy bar as a function of distance 

from the quenched end.  
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Figure 5-3: 1D transient heat transfer solution of a semi-infinite solid where T0= 560°C and Tw = 10°C, h= 29100 W/m2K 

Figure 5-3 shows the 1D transient heat transfer model predictions for a semi-infinite solid that 

was conducted to simulate the cooling of a Jominy bar from 560°C to room temperature. The 

analytical solution was solved using equation 4.3 and the boundary conditions shown in equation 

4.2. To come up with the solution, the heat transfer coefficient at the end was altered until the fit 

between the measured data at that location and predicted thermal history based on the 1D 

transient heat transfer solution close to the end at the 2 mm position fit well. Further from the 

quenched end the measured results deviated from the model predictions and indicated that 

perhaps heat loss to air during cooling of the bar started to play a role and the assumption of 1D 

heat transfer became less certain.   
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The measured temperature-time data shown in Figure 5-1 was plotted in such a way that 

all the lines were shifted away from each other by x=10s in order to give a better visual clarity of 

the cooling curves at the different locations.  

 

Figure 5-4: Comparison between calculated cooling curves (black) and measured cooling curves (red) 

The experimentally obtained results show reasonable agreement with the calculated cooling rates 

close to the quenched end however at locations further from the quenched end (i.e. 40 mm) the 

measured and calculated results start to deviate substantially. This is likely due to the fact that 

the Jominy bar is not thermally insulated and the model assumes that heat is only lost in one 

direction. In reality, some heat is lost from the radial surface of the Jominy bar causing the bar to 

cool slightly faster than predicted. The boundary conditions assumed in the model were 

calculated using data found by Wells et al. [42] and the heat transfer coefficient was averaged 
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over the entire cooling process which again is an oversimplification to a more complicated 

boiling heat transfer problem.  

5.1.3  Average Cooling Rate  

To combine the results from the Jominy test, and the average cooling rate (between 500°C 

and 250°C) corresponding to the distance from the quenched end was calculated and plotted 

against the distance from the quenched end. Figure 31 shows the results of the calculated average 

cooling rates from the thermocouple data, versus the distance from the quenched end.  

  

Figure 5-5: Average cooling rate versus distance from the quenched end, each cooling rate is an average of the cooling rate at 

the corresponding distance from the quenched end, in reality the cooling rate is not linear but varies as a function of time and 

distance  

Using this graph, the cooling rate at any position along the Jominy bar can be obtained and a 

measured hardness can be correlated to a cooling rate. As shown in Figure 5-5, the cooling rates 

are highest close to the quenched end and rapidly decrease along the length of the bar.  
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5.2 Other Cooling Tests 

5.2.1 Cooling Curves 

 

To measure the cooling rate for each condition for the other cooling rate tests, cooling 

curves were constructed by instrumenting the samples with thermocouples. The results for the 

measured cooling curve of the water, air and furnace quenched samples are shown in Figure 5-6.  

 

Figure 5-6: Time temperature curves plotted on a logarithmic scale showing the difference in cooling between the water 

(394.6°C/s), air (0.727°C/s), and furnace (0.0605°C/s) cooled samples 

Using the same procedure as for the Jominy quenched end bar, average cooling rates from 500-

250°C were also calculated for these tests. The data shown in Figure 5-6 shows extremely fast 

cooling of the sample for the water quenched case (cooling rates of ~390°C/s) in contrast the air 
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cooled sample had an average cooling rate of 0.73°C/s and the furnace cooled sample was cooled 

orders of magnitude slower at an average cooling rate of 0.0605°C/s.  

Figure 5-6 is plotted on a logarithmic scale, the difference in cooling for the three 

conditions is exponentially different. These tests were designed to capture cooling that could not 

be achieved using a Jominy bar, and to provide samples for subsequent tensile testing.  

5.3 Hardness Profile of AA6063 
 

The hardness profile is the hardness data collected from the Jominy bar, plotted against 

the distance from the quenched end of the Jominy bar. Figure 5-7 shows the results of the results 

of the Jominy end quench test in the form of a hardness profile.  

 

Figure 5-7: Measured hardness profiles along the Jominy quench bar for AA6063  

The results of this experiment show that as the distance from the quench end increases, 

and subsequently the cooling rate decreases, then the hardness of the alloy remains fairly stable 
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for the T4 condition but goes down slightly in the T6 condition. As shown in this figure, the 

hardness of AA-6063 alloy was not particularly quench sensitive. As seen in Figure 5-7 the 

difference between the quenched end and the furthest point there is only ~11 HV.  

 

5.3.1 Hardness vs. Cooling Rates 

 

The Jominy test provided a range of cooling rates, however the Jominy bar was unable to 

provide cooling rates that significantly changed the properties after approximately 40 mm from 

the quenched end. To further the understanding of the mechanical behaviour of these alloys with 

respect to quench sensitivity, a test was designed that measure more extreme cooling rates and 

provide larger samples for tensile testing. The hardness with respect to the cooling rate was 

investigated under the three conditions, water cooled, air cooled, and furnace cooled. Figure 34 

shows the results of the hardness plotted against the three different average cooling rates for the 

baseline alloy.  
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Figure 5-8: Measured hardness profile as a function of average cooling rate using both selected Jominy bar locations and the 

other cooling tests for AA6063 in the T6 condition – cooling rates: water – 394.6°C/s, air – 0.727°C/s, and furnace – 

0.0605°C/s 

The above figure shows the measured hardness results from both the Jominy test and other 

cooling tests in the form of hardness plotted against the cooling rate. As expected with the 

AA6063, the alloy does not appear to be very quench sensitive until the cooling rate drops below 

0.8°C/s.  

5.4 Effect of alloy composition 

5.4.1 Hardness Profiles 

 

The same Jominy quench tests were done for AA6xxx alloys C1 and C3. The results of 

the Jominy quench test for each of these alloys are shown in Figure 5-9 in the form of a hardness 

profile for the alloys in the T4 condition.  
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Figure 5-9: Measured hardness profile along the Jominy bars for all the alloys studied in the T4 temper  

Referring to Figure 5-9, it is apparent that alloy C3 exhibits the highest hardness and also 

appears to be more quench sensitive in the T4 condition than either alloy C1 or AA6063. Alloy 

C1 and AA6063 appear to have a similar hardness in the T4 condition  

This research indicates that the alloy composition in particular the amount of transition 

elements (Cr and Mn) play a large role in the quench sensitivity of AA6xxx aluminum alloys. In 

addition, as expected the amount to Mg and Si determine the overall hardness of the alloy. The 

transition metals play a large role in quench sensitivity as higher levels of these alloy additions 

can lead to larger dispersoid densities for a given homogenization treatment and is known to be 

one of the key factors that affects the quench sensitivity of an alloy. In fact, other research has 
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shown that there is a direct proportional relationship between the two for AA6xxx series 

aluminum alloys processed under equivalent conditions [5-8]. 

At industrially relevant cooling rates, dispersoids act as precipitation sites for non-

hardening Mg-Si-containing phases and hence promote solute loss. This precipitation can also 

take place at other precipitation sites such as grain boundaries and/or dislocation lines. Although, 

due to their lower distribution, nucleation on these sites is less common. 

AA6xxx series extrusion alloys all contain dispersoids that are very similar in their size 

and composition. The size, composition and crystal structure of dispersoids are determined by 

the homogenization treatment and the alloy composition, in particular the transition metal (Cr 

and Mn) content. For transition metal contents typical in the alloys investigated (Mn < 0.3wt.%, 

Cr < 0.3wt.%) all dispersoid phases are based on the primary intermetallic phases Al12Fe3Si or 

Al15Mn3Si2. This means that all dispersoids have a cubic unit cell with the cell parameter 

a=1.26nm [40], so that the interfacial energy is expected to be very similar. The potential of each 

single dispersoid to act as a nucleation site is hence the same, particularly since the size of the 

dispersoids are probably very similar after the same homogenization treatment (560°C for 6 

hours) independent of the alloy composition. Consequently, it can be assumed that the nucleation 

kinetics would probably be the same in each of the alloys. Therefore, it is expected that all 

dispersoids present under the conditions described above have the same potential as nucleation 

sites for the Mg-Si phases. 
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Figure 5-10: Measured hardness profiles along the Jominy quench bar for all the alloys studied in the T6 condition; 

comparison between C1, C3, and baseline alloys, all in the T6 condition 

Figure 5-10 shows that once the Mg2Si comes out of solution during quenching, the 

subsequent aging procedure results in overaged precipitates which are non hardening phases. 

Once the alloy was aged, quench sensitivity, though minimal, was observed in AA 6063. The 

results shown in Figure 5-10 show that the effect of adding Cr to a AA6xxx aluminum alloy (C1 

and C3). These alloys exhibit more quench sensitivity then the baseline AA6063. The large 

change in mechanical properties as a function of cooling rate is likely due to precipitation of 

Mg2Si on dispersoids in the matrix. The data does show some scatter; however, the overall trend 

is down as the distance from the quenched end increases. The difference in HV between the 

highest hardness and lowest hardness is ~ 30 HV, a relatively large number. The same pattern 

was observed in Figure 5-10, showing that precipitation of Mg2Si during the quenching operation 

greatly affects the age hardening response of the alloy. C1 showed an alloy with similar Mg 
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concentration to the baseline alloy, but increased amounts of Cr. C3 is an alloy that contains 

increased amounts of both Mg and Cr. The reason for comparing C1 and C3 is to prove that the 

increased quench sensitivity is in fact coming from the added Cr and Mn, while some may be 

coming from added Mg. The results of the Jominy quenched end test shown in the hardness 

profile in Figure 5-10 shows a similar result to the one observed in C1. The difference in 

hardness between the closest point to the quenched-end and the furthest point is ~29 HV.  

 

Figure 5-11: Normalized hardness profiles along the Jominy quench bar for all the alloys studied in the T6 condition; 

comparison between C1, C3, and baseline alloys, all in the T6 condition –  

The results shown in Figure 5-11 also compare the normalized hardness profiles to 

compare the change from the maximum hardness as the distance from the quenched end 

increased. This shows that the increase in Cr and Mn is one of the reasons responsible for the 

increase in quench sensitivity and the increase in Mg, which has an increase on the overall 

hardness of the alloy, does not affect quench sensitivity significantly. The increase in hardness 

due to the added Mg is no longer apparent when the cooling rate is ~1 °C/s. At this cooling rate 



 

 

59 

 

the added Mg no longer hardens the alloy. Figure 5-11 compares the quench sensitivity of the 

three alloys based on the results from the Jominy quenched end test and the other cooling tests. 

Both C1 and C3 have similar trends and progress down in a similar manner. The two alloys show 

agreement in their quench sensitivity and as expected, the two alloys have similar quench 

sensitivity. C1 and C3 are the two alloys containing higher amounts of Cr and Mn, while the 

baseline alloy does not contain Cr and has a lower amount of Mn. The baseline alloy has a more 

level progression downwards as the distance from the quenched end increases. C1 and the 

baseline 6063 alloy have similar Vickers Hardness but the difference between the hardness at the 

quenched end and at the point furthest from the quenched end are different for the two alloys.  

5.4.2 Hardness vs. Cooling Rate 

To extend the cooling rates further, other cooling tests were combined with the results 

from the Jominy bar in Figure 5-12.  

 

Figure 5-12: Extended hardness profile showing data obtained from extreme cooling tests and Jominy bar combined for all 

three alloys, all hardness measurements were taken in the T6 condition and all cooling rates are averages 
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The baseline alloy at a cooling rate of approximately 0.8°C/s had a Vickers hardness of 

88 HV, the C1 alloy containing a similar composition with increased amounts of Cr had a 

Vickers hardness of 67 HV at the same average cooling rate. The baseline alloy did not decrease 

in strength the same way that C1 did, the decrease in hardness becomes even more dramatic if 

the percent decrease in hardness is taken into consideration. C1 was harder after the water 

quench, at 114 HV the C1 alloy was 18 HV harder than the baseline alloy, which was at 96 HV. 

The increased Cr caused the alloy to go from 18 HV harder after the water quench to 14 HV 

softer than the baseline alloy after the air cooling. A similar trend was seen in the C3 alloy as the 

C1 alloy, however the quench sensitivity was even greater in this alloy because the hardness was 

140 HV after the water quench.   

When the alloy reached approximately 0.8°C/s, the HV of the C3 alloy became 71 HV. 

The results shown in Figure 5-12 show a similar pattern for both C1 and C3 alloys. However, 

both C1 and C3 differ from the results of the AA6063 alloy, and are more quench sensitive due 

to the addition of Cr to the composition. The most important points for comparison are the two 

cooling rates of ~370°C/s and ~0.8°C/s. These two values correspond to the water and air 

cooling rates respectively.  

When looking at these two important cooling rates in Figure 5-12, it can be seen that at 

the fastest cooling rate, C3 is the hardest, then C1, and baseline is the weakest. Comparing this to 

the much slower cooling rate of 0.8°C/s, the baseline alloy at this cooling rate is the hardest, and 

C3 and C1 have similar values. The addition of Cr and Mn as seen in these results, greatly affects 

the age hardening response when the alloy is quenched too slowly. Quenching fast allows Mg 

and Si to remain in solution, however quenching more slowly allows Mg2Si to begin 
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precipitating during the quench. The addition of Cr and Mn appears to increase the ability of 

Mg2Si to precipitate during the quenching operation probably due to the increased number of 

dispersoids and nucleation sites for the Mg2Si to precipitate on. 

5.4.3 Stress vs. Strain   

 

The results from the tensile tests can be converted into stress-strain curves and the data 

may be represented as one of these curves. The yield stress, ultimate tensile stress (UTS) 

elongation, toughness, and fracture stress can all be found from the stress-strain curve. The 

stress-strain curve for the C3 alloy in the T6 condition that was water quenched is shown in 

Figure 5-13. 

 

Figure 5-13: Measured stress-strain curves for AA6xxx alloy C3 that was water, air, and furnace cooled after solution 

treatment, and then aged to a T6 temper 
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The yield stress and UTS seen for C3 water quenched (C3W) T6, are relatively large compared 

to those seen in the C3 air cooled (C3A) T6 condition. The C3W condition had the fastest 

cooling rate and there for resulted in the highest yield strength and UTS. The yield strength and 

UTS seen in C3 furnace cooled (C3F) T6, as expected are lower than those observed in C3A T6. 

The elongation in C3A T6, appears to be only slightly larger than the elongation in C3W T6. It 

was expected that the strain would be slightly larger than the strain in C3F T6, this result was 

exactly as expected. A low yield strength, and a low UTS were expected from an alloy that 

quenched extremely slowly. The elongation in C3F T6 was also as expected, the ductility of the 

sample dramatically increased from the C3W T6 samples. According the results seen for these 

three conditions, quench sensitivity due to the addition of Cr and Mn to the AA6xxx alloys, 

increased greatly, affecting the mechanical properties obtained from the stress-strain curve. This 

was observed by the large decreases in both yield strength and UTS as the cooling rate got 

slower. 
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Figure 5-14: Measured stress-strain curves for AA6xxx alloy C1 that was water, air, and furnace cooled after solution 

treatment, and then aged to a T6 temper 

To compare and show the effect of cooling rate on various mechanical properties. The 

stress-strain curves for alloy C1 under the three different cooling conditions were plotted on the 

same graph for visual comparison. Figure 5-14 shows the graph of all three stress-strain curves, 

showing a clear relationship between the quenching condition and the mechanical properties of 

the alloy. C1W T6 had a relatively high yield strength, and UTS. This shows that the water 

quenched specimens have undergone the least Mg2Si precipitation during quenching. This was 

seen in the mechanical properties after aging. By not allowing Mg2Si to precipitate out of the 

supersaturated solid solution during quenching, more Mg2Si is available to transform into the β” 

hardening precipitates. The addition of Cr, increases the likely hood that Mg2Si will precipitate 

during slower quenches causing quench sensitivity. The slower cooling rates as a result of air 

cooling, caused C1A T6 to have a lower yield strength, and UTS than the water quenched sample 
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seen in Figure 5-14. The ductility as expected increased in the air cooled sample. C1F T6 was 

cooled slower than C1A T6, and the difference in the stress-strain relationship when quenched 

under these conditions was shown in Figure 5-14. The results from this test for C1F T6 shown in 

figure 43 show that by cooling even slower than air, the yield strength and UTS continue to go 

down while the ductility continues to increase. The cooling rate during the furnace quench was 

extremely slow. Like the results seen in Figure 5-13 with the C3F T6 alloy, this C1F T6 alloy 

shows that the cooling rate affects the mechanical properties after aging. Like the other Cr 

containing alloy C3, C1 also exhibits increased quench sensitivity. 

 

5.4.4 Yield Stress vs. Cooling Rate 

 

Figure 5-15: Measured yield strengths plotted against the cooling rate during quenching of the AA6xxx alloys C1 and C3 

alloys, all samples were in the T6 condition 
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The yield stresses of three different tensile samples that were all made from the C1 alloy and in 

the T6 condition were plotted against their respective cooling condition in Figure 5-15. Based on 

the results shown in Figure 5-15, the yield stress had a strong correlation with the cooling rate 

during the quench after the solution treatment. As the cooling rate increased, the yield stress also 

increased. The difference in yield strength for this alloy between the water and furnace cooled 

samples was large. The furnace-cooled sample was 18.7% of the strength of the water-cooled 

sample. The percent difference in strength between the water-cooled sample and the furnace-

cooled sample was 81.3%.  

  Figure 5-15 also shows the yield stress plotted against the cooling rate, for the C3 alloy, 

all samples were in the T6 condition. The difference in yield strength for this alloy between the 

water and furnace cooled samples was large in C3. The furnace-cooled sample was 19.6% of the 

strength of the water-cooled sample. The percent difference in strength between the water-cooled 

sample and the furnace-cooled sample was 80.4%. The percent difference in yield strength 

between both Cr containing alloys was almost identical.  

5.4.5 UTS vs. Cooling Rate 

The ultimate tensile strength is another mechanical property that may be affected by 

quench sensitivity. From the data obtained from the tensile tests, the UTS of each sample 

condition was taken and plotted against the cooling rate during the quench after the solution 

treatment. This was done in order to show the effect of the cooling rate during quenching on the 

UTS.  
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Figure 5-16: Measured ultimate tensile strengths plotted against the cooling rate during quenching of the AA6xxx alloys C1 

and C3 alloys, all samples were in the T6 condition 

Figure 5-16 shows the UTS plotted against the cooling rate during quenching. The UTS 

increases as the cooling rate increases. Based on the results shown in Figure 5-16, there is a 

positive correlation between UTS and cooling rate. It should be noted that the cooling rate was 

plotted using a logarithmic scale. The lowest cooling rate of ~0.06°C/s had a UTS of 113.9 MPa, 

while the highest cooling rate of ~370°C/s had a UTS of 245.5 MPa in the C1 alloy. The furnace 

cooled or slowest cooled sample had a UTS that was 46.4% of the strength of the fastest cooled 

or water cooled sample. This gives a percent difference of 54.6% between the water cooled and 

furnace cooled sample. Figure 5-16 also shows the results from the tensile tests for the C3 alloy 

in the T6 condition. The UTS was plotted against the cooling rate. The cooling rate was plotted 

using a logarithmic scale. Figure 5-16 shows that the UTS increases as the cooling rate increases, 

similar to the results observed for C1. The lowest cooling rate of ~0.06°C/s had a UTS of 134.4 
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MPa, while the highest cooling rate of ~370°C/s had a UTS of 341.2 MPa for the C3. The 

furnace cooled or slowest cooled sample had a UTS that was 39.4% of the strength of the fastest 

cooled or water cooled sample. This gives a percent difference of 60.6% between the water 

cooled and furnace cooled sample. This differed slightly from the results observed for C1, there 

was a 6% difference in strength between the two percent differences. This was likely due to the 

fact that C3 had a high Mg content which affected the strength of the alloy. In both alloys there 

was a major change in strength based on the cooling rate, the two alloys had a slightly different 

response due to the role Mg plays in work hardening.  

5.4.6 Elongation vs. Cooling Rate 

Elongation is a measure of ductility in materials. The effect of cooling rate during 

quenching on the ductility of alloy was studied by plotting the percent elongation against the 

cooling rate.  
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Figure 5-17: Measured percent elongation versus cooling rate during quenching of the AA66xx C1 and C3 alloys, after age 

hardening in the T6 condition 

The percent elongation decreases as the cooling rate increases. Figure 5-17 shows that the 

ductility of the material decreases as the cooling rate increases. This result was expected because 

typically materials that have larger yield strengths and ultimate tensile strengths, typically have 

lower percent elongations. The plastic behaviour of materials usually follows this pattern, and as 

seen in previous figures the cooling rate plays a large role in the strength of both C1 and C3 

alloys. The results shown in figure 5-17 indicate that C3 follows a similar pattern to C1 with 

respect to percent elongation. The percent elongation however in the C3 alloy is affected by the 

increased Mg of the alloy resulting in smaller percentages of percent elongation than observed in 

C1.  

5.4.7 Scanning Electron Microscopy  

 

To characterize the microstructure and look for the differences in microstructure between 

specimens that were slow cooled and specimens that were rapidly cooled in water, an SEM was 
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used to image the samples. These samples were imaged in the as quenched condition, meaning 

that they were not aged. The goal of this was to look for precipitation that may have occurred 

during quenching, if the samples were aged, only precipitates after aging may have been seen, 

however β” hardening precipitates are too small to be seen in the SEM. Equilibrium phase Mg2Si 

is large enough for viewing in the SEM.  

 

Figure 5-18: Scanning electron micrograph of as quenched baseline 6063 alloy at 10.00K x magnification and 5.00 kV, a) 

sample in furnace quenched condition, b) Sample in water quenched condition 

Image “A” in Figure 50 shows the AA6063 alloy after being furnace cooled, while image “B” 

shows the same alloy after being water quenched. The furnace quenched sample appears to have 

larger phases due to the aggregation of precipitates during the quenching process. This 

microstructure shows how the quench rate can affect the over all mechanical properties. The 

smaller particles seen in image “B” result in an alloy with higher yield strength, and UTS. The 

smaller particles seen in image “B” can be attributed to higher amount of Mg2Si remaining in 

that solid solution. 
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Figure 5-19: Scanning electron micrograph of as quenched C3 alloy at 10.00K x magnification, 15.00kV and 5.00 kV, a) 

sample in furnace quenched condition, b) Sample in water quenched condition 

The images shown in Figure 5-19 are the SEM micrographs of the C3 alloy. Image “A” is in the 

furnace quenched condition and had the lowest strength. Image “B” is in the water quenched 

condition, and had the highest strength. The image in B appears to have a more defined 

microstructure, where as the image in A appears to contain larger precipitates. This may be 

contributing to the weakened state of the alloy.  
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6 Conclusions and Suggested Work  

 

This research shows that the alloy content in AA6xxx alloys, in particular the transition metal 

content (Cr and Mn) which lead to different dispersoid densities, plays a significant role in 

quench sensitivity. This is mainly due to dispersoids acting as precipitation sites for the non-

hardening β -Mg2Si phase, leading to solute loss and a reduced amount of Mg and Si available 

for subsequent precipitation hardening. These results confirm the general knowledge about 

quench sensitivity and the role dispersoids play during the process. 

Various laboratory experiments including the Jominy quenched end test, tensile test, and 

scanning electron microscopy were conducted. Three different alloys were tested, AA6063, 

Composition 1, and Composition 3, where these compositions were AA6063 alloys with added 

alloying elements. Compositions 1 and 3 were both chromium containing alloys, but also had 

higher levels of Mn and the objective this thesis was to find out the quench sensitivity of each of 

these alloys.  After conducting these tests several conclusions can be drawn: 

I. The AA6063 exhibited minimal quench sensitivity and can tolerate relatively slow 

cooling rates after solutionizing but still get close to peak aged strength.  

II. The addition of chromium and manganese to AA6xxx aluminum alloys causes an 

increase in quench sensitivity as seen with composition 1 and 3. The hardness of 

composition 1 in the air cooled condition was ~67 HV while the baseline 6063 alloy 

was 88 HV. There was ~21 HV difference between composition 1 and the baseline 

alloy quenched at the same rate, and the only major difference in their composition 

was the addition of chromium.  

Both compositions 1 and 3 exhibit the same level of quench sensitivity and this appears 

to be related to the Cr and Mn levels in these alloys. Both alloys followed the same 
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trends in the Jominy results with about the same level of quench sensitivity. 

Composition 1 had a difference of ~30 HV between the fastest and slowest cooled points 

along the Jominy bar. Composition 3 had a difference of ~29 HV between the fastest and 

slowest cooled points along the Jominy bar. To improve on the findings found in this 

thesis, an in depth transmission electron microscopy study should be conducted. A TEM 

study will greatly increase the knowledge of how dispersoids affect the quench 

sensitivity of AA6xxx aluminum alloys. Due to the small size of β” precipitates, it was 

difficult to see the precipitates and measure precipitate density when viewing under the 

SEM. The SEM also did not have a high enough resolution to accurately conduct an 

EDS scan on a chromium containing dispersoid. Without doing this it is impossible to do 

a complete microstructural analysis that would benefit this study.  

This study looked at homogenized samples but the effect of grain structure both 

smaller recrystallized grains and a fibrous structure more typical of extruded profiles and 

the effect this has on quench sensitivity would also be of interest to study. Another 

interesting study would be to create samples via homogenization with no dispersoids and 

see if they exhibit any quench sensitivity.    
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Appendix A 
 

Jominy quenched end test individual hardness profiles: 

 

A- 1: Hardness profile of Baseline AA6063 in the T6 condition 

 
A- 2: Hardness profile of C1 in the T6 condition 
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A-3: Hardness profile of C3 in the T6 condition 

Tensile test results and extra data:  

 

 
A-4: Yield stress portion of stress-strain curve for C3 alloy in the T6 condition 
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A-5: Yield stress portion of stress-strain curve for C1 alloy in the T6 condition 

 

 
A-6: Stress-strain curve of composition 3 in the water quenched and T6 condition 
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A-7: Stress-strain curve of composition 3 in the furnace cooled and T6 condition 

 
A-8: Stress-strain curve of composition 3 in the air cooled and T6 condition 
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A-9: Stress-strain curve of composition 1 in the air cooled and T6 condition 

 
A-10: Stress-strain curve of composition 1 in the water quenched and T6 condition 
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Time-temperature profiles from extreme cooling rates test:  

 
A-11: Time-temperature profile for water quenched AA6063, C1, and C3 alloys 

 
A-12: Time-temperature profile for air cooled AA6063, C1, and C3 alloys 
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A-13: Time-temperature profile for furnace cooled AA6063, C1, and C3 alloys 


