A Framework for Ensemble
Predictive Modeling

by

Tarek Abdunabi

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

© Tarek Abdunabi 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Ensemble systems have been successfully applied in many fields, such as finance, bioin-
formatics, medicine, cheminformatics, manufacturing, geography, information security,
information retrieval, image retrieval, and recommender systems. The ultimate objective of
an ensemble system is to produce better predictions by combining the approximations of
different classifiers/models. However, the ensemble performance depends on three main
design features. Firstly, the diversity/independence of the base models/classifiers. If all
models/classifiers produce similar/correlated predictions, then combining those predictions
will not provide any improvement. Diversity is considered to be a key design feature of any
successful ensemble system. Secondly, the fusion topology, namely, the selection of a repre-
sentative topology. Thirdly, the fusion function, namely, the selection of a suitable function.
Accordingly, building an effective ensemble system is a complex and challenging process,
which requires intuition and deep knowledge of the problem context, and a well-defined
predictive modeling process.

Although several taxonomies have been reported in the literature, which aim to categorize
ensemble systems from the system’s designer point of view, there are still important research
gaps need to be addressed. First, a comprehensive framework for developing ensemble
systems is not yet available. Second, several strategies have been proposed to inject model
diversity in the ensemble; however, there is a shortage of empirical studies that compare
the effectiveness of these strategies. Third, most of the ensemble systems research has
concentrated on simple problems, and relatively small /low-dimensional data sets. Further
experimental research is required to investigate the application of ensemble systems to large
and/or high-dimensional data sets, with a variety of data types.

This research attempts to fill these gaps. First, the thesis proposes a framework for
ensemble predictive modeling. It coins the term “ensemble predictive modeling” to refer
to the process of developing ensemble systems. Second, the thesis empirically compares
several diversity injection strategies. Third, the thesis validates the proposed framework
using two real-world, large/high-dimensional, regression and classification case studies. The
empirical results indicate the effectiveness of the proposed framework.

1ii

Acknowledgements

After a long and intense period, today is the day to put the finishing touch on my thesis.
It has been a rewarding and enlightening experience for me, and I would like to reflect on
the people who have supported me throughout this journey.

First and foremost, I would like to express my sincere gratitude to my supervisor
Prof. Otman Basir for his wisdom, patience, motivation, enthusiasm, immense knowledge,
and continuous support. I express my deepest appreciation for granting me the freedom to
explore new ideas. His invaluable guidance, keen interest, and continuous encouragement
helped me during my research.

I would like to thank the members of my doctoral committee: Prof. Mahmoud El-Sakka,
Prof. Keith Hipel, Prof. Fakhri Karray, and Prof. Ladan Tahvildari for their encouragement,
and insightful comments.

My sincere thanks also go to Prof. Roger D. Peng, Prof. Brian Caffo, and Prof. Jeff
Leek from Johns Hopkins University, USA, for their valuable “Specialization Certificate in
Data Science”, which has equipped me with the hands-on skills to perform my research.
Special thanks to Prof. Andrew Ng from Stanford University, USA, for his excellent machine
learning online course. Needless to say, I owe many thanks to the open source commu-
nities and Programming forums, especially the R and Python communities, Kaggle.com,
stackoverflow.com, and stackexchange.com. They have taught me many industry-level skills.

I am grateful to Prof. Mike Holcombe and Prof. Jon Barker from the University of
Sheffield, UK, for their continuous support and encouragement. Also, I would like to thank
my colleagues at the Pattern Analysis and Machine Intelligence (PAMI) Center, University
of Waterloo, for the stimulating discussions, and excellent environment. Many thanks go to
my fellow scuba divers at the Tri-city Scuba Center for the memorable diving trips, which
helped me take time out and recharge.

I would like to extend my sincere thanks to the Libyan people for fully sponsoring my
graduate studies, and providing me this opportunity.

Last but not least, I would like to express my deep sense of gratitude to my family, and
friends, in Canada and back home, for their unconditional support, encouragement, and
best wishes.

v

Dedication

To the memory of my beloved mother, for her prayers for me. May her soul rest in peace.
To my father, for teaching me the value of hard work, and being self-reliant.
To my brothers and sisters, for their unconditional love and support.

To my close friends, for the wonderful company.

Table of Contents

List of Tables xi
List of Figures XV
1 Introduction 1
1.1 Motivationo 1
1.2 Objective 3
1.3 Organization)
2 Background and Literature Review 6
2.1 Introduction 6
2.2 Philosophy of Ensemble Systems L. 6
2.2.1 Statisticalo 7

2.2.2 Computational oo 8

2.2.3 Representational oL 9

2.3 Ensemble Methodso 9
231 Bagging 10

2.3.2 Boosting 10

2.3.3 Random Subspace 11

2.4 Fusion Topology 11
2.5 Fusion Function 14

vi

3

2.5.1 Majority Vote and Weighted Majority Vote 15
2.5.2 Bayesian Combination 16
2.5.3 Dempster-Shafer Theory 17
2.5.4 Stacked Generalization 0L 17
2.6 Related Work 17
2.7 Summary e 20
Proposed Framework for Ensemble Predictive Modeling 22
3.1 Introduction 22
3.2 Phase 0: Objective 23
3.3 Phase 1: Data Preparation 24
3.3.1 Exploratory Data Analysis 24
3.3.2 Feature Engineeringo 24
3.3.3 Data Processing 25
3.3.4 Data Partitiono 25
3.4 Phase 2: Model Building 0o oo 26
3.4.1 Injecting Model Diversity 27
3.4.2 Model Selection and Training 29
3.4.3 Model Evaluation oo 33
3.5 Phase 3: Model Fusion 34
3.5.1 Fusion Topology 34
3.5.2 Fusion Function Lo o 34
3.5.3 Fusion Evaluation 0 35
3.6 Experimental Design and Development Tools 35
3.7 Summary 36

vii

4 Regression Case Study:
Predicting the Stock Market’s Short-term Behavior Following Liquidity

Shocks 37
4.1 Introduction Lo 37
4.2 Objective 39
4.3 Data Preparation o 40
4.3.1 Exploratory Data Analysis 40
4.3.2 Feature Engineeringo Lo 45
4.3.3 Data Transformations for Individual Predictors 47
4.3.4 Data Partition 48
4.4 Model Building 49
4.4.1 Single-model Strategy Lo 49
4.4.2 Multi-model Strategyo 50
4.4.3 Cascading-model Strategies 51
4.4.4 Market-based vs Security-based Approach 55
4.5 Feature Selection)
4.6 Model Selection and Training 58
4.6.1 Single-model Strategy 59
4.6.2 Multi-model Strategyo 63
4.6.3 Cascading-Model Strategies 75
4.7 Performance Evaluation 0000 80
4.7.1 Performance Evaluation Using the 10-fold CV Resampling 81
4.7.2 Performance Evaluation Using the Testing Dataset 84
4.7.3 Computational Cost 98
4.8 Model Fusion 102
4.9 Summary 104

viii

5 Classification Case Study:
Predicting a Biological Response of Molecules from Their Chemical Prop-

erties 105
5.1 Imtroduction 105
5.2 Objective 106
5.3 Data Preparation 107
54 Model Building 108
5.5 Feature Selection 108
5.5.1 Principal Component Analysis 108
5.5.2 Predictors’ Area Under ROC Curve 110
5.5.3 Relief Algorithm 111
5.6 Model Selection and Training 112
5.6.1 Stochastic Gradient Boosting Machine (GBM) 114
5.6.2 Support Vector Machine (SVM) 117
5.6.3 Random Forest (RF) 121
5.6.4 Flexible Discriminate Analysis (FDA) 124
5.6.5 K-Nearest Neighbors (KNN) 127
5.7 Performance Evaluation 0L 130
5.7.1 10-fold Cross-validation Resampling 131
5.7.2 Evaluating Class Probabilities 139
5.7.3 Class Predictions 156
5.7.4 Computational Cost 165
5.8 Model Fusion 166
5.8.1 Diversity Measures 166
5.8.2 Fusion By Majority Voteo 168
5.8.3 Fusion by Model Stacking L. 173
5.8.4 Fusion of Intelligently Selected Models 176
5.8.5 Computational Cost, 177
5.9 Summary . .o ... 178

X

6 Conclusion and Future Work

6.1 Conclusion

6.2 Future Work

References

List of Tables

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Raw Data fields
Engineered predictors oo

Number of required models per strategy for market-based and security-based
approaches (for only one learning algorithm)

The optimal hyper-parameters of the Bidygo’s NNET level; model (with
Box-Cox transformation and/or normalization)

The optimal hyper-parameters of the Askigy’s NNET level; model (with
Box-Cox transformation and normalization)

The optimal hyper-parameters of the Bidigy’s MARS level; model (with
Box-Cox transformation and/or normalization)

The optimal hyper-parameters of the Askige’s MARS level; model (with
normalization only) L

The optimal hyper-parameters of the Bidjpy’s GBM level; model (with
Box-Cox transformation and/or normalization)

The optimal hyper-parameters of the Askjgo’s GBM level; model (with
Box-Cox transformation and/or normalization)

The optimal hyper-parameters of the Bidgy’s SVM level; model (with Box-
Cox transformation and/or normalization, and different values of Epsilon

(€)) « o e e e

Training time for a SVM model with different € values (level; dataset with
182,388 observations)

The optimal hyper-parameters of the Bidyoy’s RF level; model (with Box-Cox
transformation/normalization and different number of trees)

el

95

61

62

64

65

67

68

72

72

4.13 The optimal hyper-parameters of the Bidjoo/Askiopo MARS levely models

(cascading strategy land 2) L 77
4.14 The optimal hyper-parameters of the Bidyoy/Askiogo GBM level, models

(cascading strategy land 2) 80
4.15 Statistics of the Bidjgo/Askigo prices (pence) 84
4.16 RMSE statistics for the NNET level; Bids/Asks models (N =30,327). . . 86
4.17 RMSE statistics for the MARS 50 Bids/50 Ask models 91
4.18 RMSE statistics for the GBM 50 Bids/50 Ask models 96
4.19 Number of observations for security 75 96
4.20 Prices statistics for security no. 75o 97

4.21 RMSE statistics for the NNET level; Bids/Asks models (without security 75) 97
4.22 RMSE statistics for the MARS 50 Bids/50 Ask models (without security 75) 98
4.23 RMSE statistics for the GBM 50 Bids/50 Ask models (without security 75) 98

4.24 Model selection time (using an Amazon EC2 instance with 32 cores and 65

GB RAM) 99
4.25 Training time statistics for the 50 Bid/50 Ask models (using a PC with 6

coresand 8 GB RAM) 100
4.26 Prediction time statistics for the 50 Bid/50 Ask prices (using a PC with 6

cores and 8 GB RAM, test N =30,327) 101
4.27 RMSE of Mean Fusion - MARS modeling strategies (model diversity at the

data and feature levels) 102
4.28 RMSE of Mean Fusion - GBM modeling strategies (model diversity at data

and feature levels) o o 103
4.29 RMSE of Mean Fusion - MARS and GBM modeling strategies (model

diversity at data, feature, and learning algorithm levels) 104
5.1 GBM selected classifiers L 117
5.2 SVM selected classifiers 121
5.3 RF selected classifierso 124
5.4 FDA selected classifiers o 127

xii

2.5
2.6
2.7
2.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
2.19
2.20

5.21
5.22
5.23
5.24

5.25

5.26

5.27

KNN selected classifiers 130

Area Under ROC Curve (AUC) of the GBM classifiers 150
Area Under ROC Curve (AUC) of the SVM classifiers 151
Area Under ROC Curve (AUC) of the RF classifiers 152
Area Under ROC Curve (AUC) of the FDA classifiers 153
Area Under ROC Curve (AUC) of the KNN classifiers. 154
All 25 models Area Under ROC Curve (AUC) 155
An example of the confusion matrix L. 156
Performance of GBM’s classifiers based on class predictions (N=1125) . . . 157
Performance of SVM’s classifiers based on class predictions (N=1125) . . . 158
Performance of RFE’s classifiers based on class predictions (N=1125) 159
Performance of FDA’s classifiers based on class predictions (N=1125) . . . 160
Performance of KNN’s classifiers based on class predictions (N=1125) . . . 161
Performance of the 25 classifiers based on class predictions (N=1125) . . . 162
Miss-classified samples by ensembles (test dataset, n=1125). 163
Performance of the 25 classifiers based on class predictions (test dataset

N=33T) . . o, 164
Computational cost for the twenty-five classifiers 165
Diversity measures (at the feature and structural levels, N = 1125) 167
Diversity measures (at the learning algorithm level, N = 1125) 167

Diversity measures (at the feature, structural, and learning algorithm levels,
N =1125) . . oo 168

Model fusion by majority vote (diversity at the feature and structural levels,
N=33T) . 169

Ensembles ranks based on the diversity measures (at the feature and struc-
tural levels, N=337) 170

Model fusion by majority vote (diversity at the learning algorithm level, N
= 337) L, 171

xiii

5.28

5.29

2.30

5.31

5.32

5.33

5.34

2.3

Ensembles ranks based on the diversity measures (at the learning algorithm
level, N =337)

Model fusion by majority vote (diversity at the feature, structural, and
learning algorithm levels)

Ensemble’s rank based on the diversity measures (at the feature, structural,
and learning algorithm levels, N =337)

Model fusion by model stacking (on top of 25 base models) to minimize log
loss function, N =337

Model fusion by model stacking (on top of 25 base models) to maximize
AUC, N =337 . . . e

Model fusion by model stacking (on top of 25 base models) to maximize
Kappa, N =337

Fusion of intelligently selected classifiers to minimize Logloss function, N =

33T o e

Computational cost for the fusion strategies

Xiv

171

172

172

174

175

175

List of Figures

2.1 Statistical reason for using ensemble systems (reproduced from [21])

—
~—

2.2 Computational reason for using ensemble systems (reproduced from [21

2.3 Representational reason for using ensemble systems (reproduced from [21])

NS

2.4 Cascading topology (reproduced from [68])
2.5 Parallel topology (reproduced from [30, 68])
2.6 Hierarchical topology (reproduced from [68])
2.7 Hierarchical (serial) topology (reproduced from [30])
2.8 Conditional topology (reproduced from [30])
2.9 Hybrid topology (reproduced from [30])
2.10 An ensemble taxonomy based on four levels (reproduced from [16])

2.11 An ensemble taxonomy based on five dimensions (reproduced from [16]) . .

3.1 Proposed framework for ensemble predictive modeling
3.2 Injecting diversity at the data level
3.3 Injecting diversity at the feature level
3.4 Injecting diversity at the learning algorithm level
3.5 Model selection using grid-search and 10-fold cross-validation
3.6 An example of hyper-parameters selection results (SVM classifier)

3.7 An example of comparing several learning algorithms using 10-fold CV
4.1 Stock market’s dynamicso

XV

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28

Distribution of securities 41

Distribution of securities based on the initiator (Sell/Buy) 42
Askb0 per security ... 43
Trade volume causing the liquidity shock (per security) 44
Skewness of predictors 45
Data splitting 48
Single-model strategy 49
Multi-model strategy o 50
Cascading-model (strategy 1) 52
Cascading-model (strategy 2) 53
GA feature selection using 3-fold cross-validation 56
Ask100’s GA feature selection 57
Bid100’s GA feature selection L. 57
Ask100’s (left)/ Bid100’s (right) selected features 58
Model selection using 10-fold cross-validation 59
Bidigo’s NNET level; model selection with normalization only 60

Bidigo’s NNET level; model selection with transformation and normalization 60
Askigg’s NNET level; model selection with transformation and normalization 61
Bids NNET’s RMSE using different iterations 62
Bidigo’s MARS level; model selection with normalization only 63
Bidygg’s MARS level; model selection with transformation and normalization 64
Askipo’s MARS level; model selection with normalization only 65
Bidygp’s GBM level; model selection with normalization only 66
Bidigo’s GBM level; model selection with transformation and normalization 66
Askipo’s GBM level; model selection with transformation and normalization 67
Bidypp’s SVM level; model selection (e = 1) with normalization only 69

Bidige’s SVM level; model selection (¢ = 1) with transformation and nor-
malization e 69

Xvi

4.29
4.30

4.31
4.32

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54

Bidipo’s SVM level; model selection (e = 0.1) with normalization only . . .

Bidigo’s SVM level; model selection (e = 0.1) with transformation and
normalization oo

Bidypo’s SVM level; model selection (e = 0.01) with normalization only . .

Bidygo’s SVM level; model selection (¢ = 0.01) with transformation and
normalization L

Bidyop's RF (1000 tree) level; model selection
Bidypo’s RF (3000 tree) level; model selection
Bidige’'s RF (5000 tree) level; model selection
Bidigo’s MARS levely model selection (cascading strategy 1)
Askioo’s MARS levely model selection (cascading strategy 1)
Bidigo’'s MARS levels model selection (cascading strategy 2)
Askioo’s MARS levely model selection (cascading strategy 2)
Bidipo’s GBM levely model selection (cascading strategy 1)
Askyoo’s GBM levely model selection (cascading strategy 1)
Bidige’'s GBM levely model selection (cascading strategy 2)
Askioo’s GBM levely model selection (cascading strategy 2)
Level, Bidygg models resampling performance
Level; Askigo models resampling performance
Levely Bidyg (strategy 1) models resampling performance
Levely Askyop (strategy 1) models resampling performance
Levely Bidygo (strategy 2) models resampling performance
Levely Askyg (strategy 2) models resampling performance
RMSE for the NNET level; models (test dataset, N =30,327)
Performance of the NNET level; Bidigg o . o o o oo ..
Performance of the NNET level; Askioo« o o
RMSE for the MARS level; models (test dataset, N =30,327)
Performance of the MARS level; Bidygo

xvii

4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71

4.72

5.1
5.2
2.3
0.4
2.5
2.6
2.7

Performance of the MARS level; Askigg 87
RMSE for the MARS level, (cascading strategy 1) models (test, N = 30,327) 88

Performance of the MARS levely Bidygy (cascading strategy 1) 88
Performance of the MARS levely Askigp (cascading strategy 1) 89
RMSE for the MARS level, models (cascading strategy 2)(test, N = 30,327) 89
Performance of the MARS levely Bidygo (cascading strategy 2) 90
Performance of the MARS levely Askigy (cascading strategy 2) 90
RMSE for the GBM level; models (test dataset, N =30,327) 91
Performance of the GBM level; Bidiygg« v v v oo o oo 92
Performance of the GBM level; Askigo 92
RMSE for the GBM level, (cascading strategy 1) models (test, N = 30,327) 93
Performance of the GBM level, (cascading strategy 2) Bidipo 93
Performance of the GBM level, (cascading strategy 1) Askiog 94
RMSE for the GBM level, (cascading strategy 2) models (test, N = 30,327) 94
Performance of the GBM level, (cascading strategy 2) Bidipg 95
Performance of the GBM level, (cascading strategy 2) Askiog - 95

Model fusion topology of models with diversity injected at the data and
feature levels 102

Model fusion topology of models with diversity injected at data, feature, and

learning algorithm levels oo 103
Data partition 107
Variance explained by first 10 PCA components 109
First vs. second PCA components 109
Cumulative variance explained by PCA components 110
Frequency of predictors vs. their area under ROC curve 111
Frequency of predictors vs. their Relief score 112
Model selection and training strategy 113

xviii

2.8

2.9

5.10
5.11
5.12
2.13
5.14
5.15
5.16
0.17
5.18
5.19
5.20
5.21
2.22
2.23
5.24
5.25
5.26
2.27
5.28
5.29
2.30
5.31
2.32
5.33
5.34

Model selection using grid-search and 10-fold CV 114

GBM model selection using all 1776 predictors 115
GBM model selection using 255 PCA components with 95% Var.. 115
GBM model selection using 11 PCA components (Kaiser rule) 116
GBM model selection using 81 predictors (Area under ROC) 116
GBM model selection using 86 predictors (Relief algorithm) 117
SVM model selection all 1776 predictors 118
SVM model selection using 255 PCA components with 95% Var. 119
SVM model selection using 11 PCA components (Kasir rule) 119
SVM model selection using 81 predictors (AUC) 120
SVM model selection using 86 predictors (Relief algorithm) 120
Random Forest model selection using all 1776 predictors 122

Random Forest model selection using 255 PCA components with 95% Var. 122

Random Forest model selection using 11 PCA components (Kasir rule) . . 123
Random Forest model selection using 81 predictors (AUC) 123
Random Forest model selection using 86 predictors (Relief algorithm) . . . 124
FDA model selection using all 1776 predictors 125
FDA model selection using 255 PCA components with 95% Var. 125
FDA model selection using 11 PCA components (Kasir rule) 126
FDA model selection using 81 predictors (AUC) 126
FDA model selection using 86 predictors (Relief algorithm) 127
KNN model selection using all 1776 predictors 128
KNN model selection using 255 PCA components with 95% Var. 128
KNN model selection using 11 PCA components (Kasir rule) 129
KNN model selection using 81 predictors (AUC) 129
KNN model selection using 86 predictors (Relief algorithm) 130
GBM classifiers’ resampling performance 132

Xix

2.3
2.36
2.37
2.38
5.39
5.40
0.41
0.42
0.43
5.44
5.45
5.46
2.47
5.48
2.49
5.50
5.51
2.52
2.53
5.54
2.55
2.56
2.57
2.58
2.59
5.60
5.61

SVM classifiers’ resampling performance 133

RF classifiers’ resampling performance 133
KNN classifiers’ resampling performance 134
FDA classifiers’ resampling performance 134
All predictors classifiers’ resampling performance 135
PCA 95% classifiers’ (255 PCA) resampling performance 136
Kaiser classifiers’ (11 PCA) resampling performance 136
ROC classifiers’ resampling performance 137
Relief classifiers’ resampling performance 137
All 25 classifiers’ resampling performance 138
Histograms of class probabilities 139
GBM classifiers” histograms of class probabilities 140
SVM classifiers” histograms of class probabilities 141
RF classifiers” histograms of class probabilities 142
FDA classifiers’ histograms of class probabilities 143
KNN classifiers’ histograms of class probabilities 144
Calibration and Lift plots 145
Calibration and lift plots of the GBM classifiers 146
Calibration and lift plots of the SVM classifiers 146
Calibration and lift plots of the RF classifiers 147
Calibration and lift plots of the FDA classifiers 147
Calibration and lift plots of the KNN classifiers 148
An example of a classifier’s ROC Curve 149
ROC Curves of the GBM classifiers 150
ROC Curves of the SVM classifiers 151
ROC Curves of the RF classifiers 152
ROC Curves of the FDA classifiers 153

XX

5.62
2.63

5.64

2.65

2.66

2.67

0.68

2.69

2.70
5.71

2.72

5.73

ROC Curves of the KNN classifiers

GBM’s 5 classifiers, Left: Total miss-classifications (467 sample), Right:
Shared miss-classifications (119 sample) L.

SVM’s 5 classifiers, Left: Total miss-classifications (485 sample), Right:
Shared miss-classifications (96 sample)

RF’s 5 classifiers, Left: Total miss-classifications (411 sample), Right: Shared
miss-classifications (124 sample) oo L

FDA’s 5 classifiers, Left: Total miss-classifications (598 sample), Right:
Shared miss-classifications (113 sample)

KNN’s 5 classifiers, Left: Total miss-classifications (562 sample), Right:
Shared miss-classifications (112 sample) L.

All 25 models, Left: Total miss-classifications (762 sample), Right: Shared
miss-classifications (40 sample)o oL

Fusion by majority vote topology (diversity at the feature and structural
levels) o

Fusion by majority vote topology (diversity at the learning algorithm level)

Fusion by majority vote topology (diversity at the feature, structural, and
learning algorithm levels, test dataset n =337)

Fusion by stacking topology (diversity at the feature, structural, and learning
algorithm levels)

Fusion of intelligently selected models topology (diversity at the feature,
structural, and learning algorithm levels)

poel

158

159

160

161

163

169
170

172

174

Chapter 1

Introduction

1.1 Motivation

We live in the age of data, where many things around us are connected to data sources, and
many aspects of our daily lives are captured and stored digitally. We are surrounded by an
ever-expanding sea of data fed from multitudes of sources, including: social networks, video,
news, smartphones data, customer transactions, stock markets data, economic data, weather
data, geospatial data, machine-generated data, healthcare records, scientific publications,
government records, and the list goes on.

We often make decisions based on the information. In some cases, we have factual,
objective data, such as our current financial situation. Other times we rely on intuition and
experience such as the experience we use in making decisions in avoiding specific routes
during icy weather; or that we use in making a decision to perform a medical test based on
our parents’ medical history. In either case, we are making decisions based on the predicted
future events given the information and experience we currently have. As the available
data/information is growing exponentially with each passing day, the opportunities to make
better decisions to improve all aspects of our lives is also growing exponentially. Given the
inability of the human brain to process huge, diverse, and/or high-dimensional data, we
turn to computer systems to aid in our decision making. The process of developing these
kinds of systems has evolved in fields such as machine learning, statistical learning, artificial
intelligence, data mining, pattern recognition, chemistry, biology, knowledge discovery,
predictive analytics, and more recently, data science. Although each field approaches
the problem from different perspectives and using different tools, they all share the same
ultimate objective of making accurate predictions [15].

Predictive modeling is commonly used to refer to the process of developing a mathemat-
ical model, using a learning algorithm, to approximate the relationship between a target,
response, or dependent variable and various predictors or independent variables. The devel-
oped model is then used to predict future, unknown, values of the target variable [19, 45].
Depending on the type of the target variable, numerical /continuous or discrete/categorical,
the problem is, respectively, called a regression or classification problem. However, systems
designers are faced with two limitations, which often affect the proper approximation of
the relationship. Firstly, real-world data sets often contain a substantial quantity of noise
(e.g. errors, uninformative or highly correlated predictions), which can mislead the learning
algorithm and produce non-optimal or wrong approximations. Secondly, most learning
algorithms have limitations of their operations. So, it is possible that the model space
considered by the learning algorithm for the problem does not contain the optimal model.
As a result of these limitations, the building of a perfect model/classifier for any given
problem is often impossible. On the other hand, different learning algorithms vary in
their interpretations of the data and noise, which may lead to different approximations
of the relationship between the target and its predictors. This diversity between learning
algorithms had resulted in the development of ensemble systems [08].

In the literature, the term ensemble is often used to refer to a collection of classi-
fiers/models built using the same learning algorithm (e.g., random forest and stochastic
gradient boosting machines). On the other hand, the term multi-classifier system is used to
refer to a collection of classifiers built using different learning algorithms [73]. Nevertheless,
this research uses the term ensemble to refer to both kinds of systems.

The ultimate objective of an ensemble system is to produce better predictions by
fusing/combining the approximations of different classifiers/models. Ensemble systems
have been successfully applied in many fields such as: finance [51], bioinformatics [35],
medicine [50], cheminformatics [59], manufacturing [55, 72, 74], geography [15], information
security [58, 61], information retrieval [23, 25, 75, 70], image retrieval [52, 89], and recom-
mender systems [79]. Intuitively, the combination of different models/classifiers should
produce better results than a single model/classifier. However, this depends on three main
design features. Firstly, the diversity/independence of the base models/classifiers. If all
models/classifiers produce similar/correlated predictions, then combining those predictions
will not provide any improvement. Diversity is considered to be a key design feature
of any successful ensemble system. Secondly, the fusion topology, namely, the selection
of a representative topology for model fusion. Thirdly, the fusion function, namely, the
selection of a suitable function [68]. Accordingly, building an effective ensemble system
is a complex and challenging process, which requires intuition and deep knowledge of the
problem context, and well defined predictive modeling process [15].

Although several taxonomies have been reported in the literature [11, 22, 38, 12, 16, 73,
, 90], which aim to categorize ensemble systems from the system’s designer point of view,
there are still research gaps need to be addressed. First, a comprehensive framework for
developing ensemble systems is not yet available [77]. Moreover, some of the proposed design
methods, such as “overproduce and choose” (also called “test and select”) [34], become
unfeasible for large and/or high-dimensional data sets. Second, several strategies have been
proposed to inject model diversity in the ensemble; however, there is a shortage of empirical
studies that compare the effectiveness of these strategies. Third, most of the ensemble
systems research has concentrated on simple problems and relatively small /low-dimensional
data sets. Further experimental research is required to investigate the application of
ensemble systems to large and/or high-dimensional data sets, with a variety of data types,
such as time-series, text, multimedia, etc [73].

1.2 Objective

The primary objective of this thesis is to propose a comprehensive framework for ensemble
predictive modeling, which can be used to develop ensemble systems for large and/or high-
dimensional data and a wide range of applications. The thesis coins the term “ensemble
predictive modeling” to refer to the process of developing ensemble systems. The effectiveness
of the proposed framework is validated by two real-world, high-dimensional, regression and
classification case studies. The proposed framework will address the following main design
issues:

« Data preparation: data preparation has a significant impact on the predictive ability
of a model, especially for regression applications [15]. A typical data preparation
phase involves exploratory data analysis, feature engineering, data pre-processing,
and data partition. Despite its importance, data preparation is overlooked by the
ensemble design methods reported in the literature.

e Injecting model diversity: for an ensemble system to be successful, the errors made
by its classifiers/models should not be highly correlated. Accordingly, model diversity
is considered to be a key design feature of any ensemble system [30, 16, 68, 73, 77].
Model diversity can be systematically injected at three levels, namely, at data, feature,
and learning algorithm levels [16].

e Model selection: in the context of ensemble predictive modeling, model selection
may be classified into three types. First, the selection of the ensemble size, how

many base models/classifiers should be trained. Second, the selection of the optimal
hyper-parameters for the learning algorithms over a set of candidate values. Third,
the selection of the learning algorithms to use over others.

e Model evaluation: model evaluation is of paramount importance in any predictive
modeling task. It becomes even more important in ensemble predictive modeling,
where the relative performance and diversity of models/classifiers must be thoroughly
evaluated. Typically, some measure of accuracy is used to assess the effectiveness of a
model/classifier. However, accuracy can be measured using different ways, each with
its subtle difference. Relying solely on a single metric to evaluate models/classifiers,
and understand their strengths and weaknesses, is problematic [15].

» Model fusion: once a set of diverse and accurate models/classifiers are built, an
appropriate fusion strategy should be selected to obtain the optimal ensemble perfor-
mance. Model fusion involves two main design decisions, namely, the selection of the
fusion topology, and the selection of fusion function.

e Fusion evaluation: similar to the model evaluation, model fusion should be thor-
oughly evaluated. In addition to the ensemble performance, several aspects should
be assessed. Such aspects include: required computing resources, model selec-
tion and training time (needed to build all base models/classifiers and the fusion
model/classifier), and prediction time (required to produce a final prediction by the
ensemble for a new sample) [73].

« Experimental design: during the model selection phase, several models/classifiers
are experimentally compared, based on their performance. In order to have an accurate
comparison, it is imperative to account for sources of variation. Such sources may
include: the choice of the testing/training datasets, the internal randomness of the
training algorithm, and the random classification error [20, 16]. In addition to these
sources of variation, it is also important to account for the randomness in parallel
computing, if the model selection is performed on a cluster of computers/cores.

As secondary objectives, this thesis aims to empirically investigate the following issues:

« Evaluating the effectiveness of model diversity strategies: several strategies
have been proposed in the literature to inject model diversity in the ensemble, at
data, feature, and learning algorithm levels; however, it is not clear which approach(s)
leads to the optimal model diversity, and consequently, to the optimal ensemble
performance [16]. The thesis aspires to provide empirical evidences on the relative
effectiveness of these strategies.

« The application of ensemble systems to large/high-dimensional data ap-
plications: most of the ensemble systems research has concentrated on simple
applications, and relatively small/low-dimensional data sets [73]. This research aims
to validate the proposed framework using two real-world, large/high-dimensional,
regression and classification case studies.

o Investigating the relationship between diversity metrics and ensembles
performance: several diversity metrics have been proposed in the literature to
measure the diversity of the ensembles classifiers. This research aims to empirically
assess the relationship between these metrics and the performance of the ensembles.

o Evaluating the scalability of learning algorithms: scalability is one of the
critical issues in large-scale data analysis and modeling. For example, if a learning
algorithm works well for a data set with 30 variables and 10,000 samples, is it still
going to perform well for a data set with 300 or 3000 variables and 100,000 samples?.
Using two real-world, high-dimensional data sets, and Amazon EC2 instance with
32 cores, this research attempts to experimentally evaluate the effect of “the curse
of dimensionality” and sample size on model selection, model performance, and
computational cost of several learning algorithms.

1.3 Organization

This thesis is organized as follows: Chapter 2 provides a comprehensive background to
ensemble systems from the system’s designer point of view. The proposed framework for
ensemble predictive modeling is introduced in Chapter 3. To validate its effectiveness,
the proposed framework is applied to develop ensemble systems for two, regression and
classification, case studies. The regression case study, to predict the stock market’s short-
term behavior following liquidity shocks, is presented in Chapter 4. Chapter 5 describes the
classification case study, to predict the biological response of molecules from their chemical
properties. Finally, the conclusion and future work are presented in Chapter 6.

Chapter 2

Background and Literature Review

2.1 Introduction

In supervised learning, a learning algorithm attempts to build a mathematical model to
represent the relationship between the target variable and the independent variables. The
developed model is then used to predict future, unknown, values of the target variable [19, 45].
Depending on the type of the target variable, numerical /continuous or discrete/categorical,
the problem is, respectively, called a regression or classification problem. Several factors
affect the proper approximation of the relationship; such factors may include: a substantial
quantity of noise in the training data set (e.g. errors, uninformative or highly correlated
predictions), and the limitations of the used learning algorithm. Given that different learning
algorithms vary in their interpretations of the data and noise, various approximations of
the relationship between the target and its predictors may be obtained.

The main idea of ensemble systems is to combine a set of models/classifiers, in order
to obtain a better approximation of the relationship, and hence, a better, and reliable,
predictive performance than any single model/classifier [73]. This chapter provides a
comprehensive background to ensemble systems from the system’s designer point of view.

2.2 Philosophy of Ensemble Systems

Several theoretical and empirical studies have demonstrated that the performance of an
ensemble of classifiers/models outperforms the performance of a single classifier/model.

Kuncheva [10] states that the common understanding in the research community is that
ensemble systems work for three general reasons: statistical, computational, and represen-
tational [21, 65].

2.2.1 Statistical

The goal of a learning algorithm is to search a space H of hypotheses to find the best
hypothesis in the space. If the size of the available training data is too small compared to
the size of the hypotheses space, the statistical problem emerges. The learning algorithm,
without sufficient training data, may find several hypotheses in the space H, all of which
have the same performance on the training data, but may have different generalization
performances. If we pick one of these classifiers/models as the solution, we may run into the
risk of choosing the wrong classifier/model for the problem. By constructing an ensemble
to combine the output of these classifiers/models, this risk is reduced [21, 16, 65].

H (Hypotheses space)

True hypothesis

The space of all hypotheses with good
performance on the training data.

Figure 2.1: Statistical reason for using ensemble systems (reproduced from [21])

Dietterich [21] graphically illustrates this argument in Figure 2.1. The outer curve
denotes the hypotheses space H, while the inner curve denotes the set of hypotheses that
all have a good performance on the training data. The true hypothesis is denoted by h*.
By combining all accurate hypotheses, we may find a better approximation to h* than
any single hypothesis [16]. Although it is not guaranteed that the ensemble performance
outperforms the best single classifier/model, the risk of making a poor selection is certainly
reduced [65].

2.2.2 Computational

Several computational reasons justify the use of ensemble systems, which include imperfect
learning algorithms, too much data, small sample size, divide and conquer, and data
fusion [21, 46, 65].

Some learning algorithms, such as the back-propagation algorithm for training neural
networks, are only guaranteed to converge to a local optima. Even with enough training
data, it is computationally difficult for the learning algorithm to find the best hypothesis.
Therefore, constructing an ensemble of several classifiers/models with different starting
points, as shown in Figure 2.2, may result in a better approximation of the true hypothesis
than any individual classifier/model [21, 16].

H (Hypotheses space)

True hypothesis

Hypothetical trajectories for the
classifiers during training

Figure 2.2: Computational reason for using ensemble systems (reproduced from [21])

In the age of big data, training a single classifier/model using too much data becomes
unfeasible. A better choice is to construct an ensemble of many classifiers/models trained
on different, manageable, parts of the available data. On the other hand, if the sample
size is small, the ensemble base classifiers/models can be trained on different data subsets,
generated by using a resampling technique [16, 65].

For some problems, a divide and conquer approach is the most efficient one. The problem
is split into smaller, easier to handle, sub-problems. Then, a classifier/model is trained
for each sub-problem. The overall solution to the problem is achieved by constructing an

ensemble of all classifiers/models, where each sub-problem is handled by the specialized
classifier/model [10, 65].

Finally, data fusion is another reason for the use of ensemble systems. In many real-
world applications, the data comes from a variety of sources, and with different nature of
features (e.g., text, images, video, audio, measurements, etc.). Instead of training a single
classifier/model on all types of features, it might be better to construct an ensemble of
classifiers/models; each one is built on a particular type of features [16, 65].

2.2.3 Representational

The representational reason arises from the fact that for some applications the true hy-
pothesis h* cannot be represented by any of the hypotheses in the space H, as shown in
Figure 2.3. By constructing an ensemble of good hypotheses drawn from the space H, it
may be possible to produce a solution close to the true one. For example, an ensemble of
linear classifiers can produce a highly nonlinear classification boundary [21, 40].

7‘[(Hypotheses space)

Figure 2.3: Representational reason for using ensemble systems (reproduced from [21])

2.3 Ensemble Methods

Although it is highly probable that the fusion of several models/classifiers would outperform
a single model/classifier [78], the fusion of different models might only add to the complexity
of the system without any performance improvement. Thus, for an ensemble to be successful,

its base models/classifiers should be different from each other [33]. Several methods have
been reported in the literature to inject model diversity. In this section, three common
methods are reviewed, namely, bagging, boosting, and random subspace. More details on
these methods can be found in the provided references.

2.3.1 Bagging

Bagging, which is an acronym for Bootstrap AGGregatING, was introduced by Breiman [11].
The idea of bagging is to inject model diversity at the data level, by training the ensemble
classifiers/models on bootstrap replicates (sampling with replacement) of the training data
set. Then, the outputs of the classifiers/models are combined using majority vote (in
the case of classification), or averaging (in the case of regression). Often, the boosting
method is used to build ensembles of decision trees classifiers/models,but it can be applied
to ensembles of other learning algorithms. However, bagging is most effective when it is
used with unstable non-linear learning algorithms (e.g., decision trees, neural networks,
etc.), where small changes in the training data set will lead to significant changes in the
classifier/model predictions [30, 16]. The random forests [12], and stochastic gradient
boosting machines [29] learning algorithms have built-in bagging algorithms. The two
algorithms will be used to build classifiers/models for the regression and classification case
studies, Chapter 4 and Chapter 5, respectively. Although random forest and stochastic
gradient boosting machines often produce high performance, as the size and dimension
of the training data increase, powerful computing resources and long training time are
required.

2.3.2 Boosting

The boosting algorithms have been ranked among the top ensemble methods, due to
their accuracy, robustness, and broad applicability [16]. Boosting defined by Freund
and Schapire [20] as “general problem of producing a very accurate prediction rule by
combining rough and moderately inaccurate rules-of-thumb”. AdaBoost [27], which is
an acronym for ADAptative BOOSTing, is one of the top boosting algorithms. There
are two implementations of the AdaBoost algorithm, namely, with resampling and with
reweighting. The general idea of AdaBoost algorithm with resampling is to build the
ensemble incrementally, adding one classifier/model at a time. The newly added classifier
at step k is trained on a dataset selectively sampled from the training dataset Z. The
sampling distribution of the training samples starts from uniform and is updated for each

10

new classifier/model, based on the performance of the previous classifier. The likelihood of
the misclassified samples at step & — 1 is increased, so that they have higher probabilities
to be selected in the training dataset for the next classifier. In the AdaBoost algorithm
with reweighting, no sampling is required. The base classifiers directly use the probabilities
on Z as weights [30, 46]. The stochastic gradient boosting machines [29] learning algorithm
has, in addition to bagging, a built-in boosting algorithm.

2.3.3 Random Subspace

The random space method [37] injects model diversity at the feature level. The ensemble is
constructed from classifiers/models trained on randomly sampled subsets of the features.
The final prediction of the ensemble is made by combing the outputs of the classifiers/models
using majority vote (for classification tasks), or averaging (for regression tasks) [30, 10].
The random forests [12] learning algorithm employees, in addition to bagging, the random
space method.

2.4 Fusion Topology

Several types of topologies have been reported in the literature to combine the output of base
models/classifiers. Lu [51] proposes three categories: cascading, parallel, and hierarchical. A
more comprehensive categorization is provided by Lam [50], where topologies are classified
into conditional, hierarchical (serial), parallel and hybrid. These topologies are reviewed in
this section [30, 65].

In a cascading topology, the output of a classifier/model is used as an input to the
next classifier/model, as shown in Figure 2.4. The final prediction is obtained by the last
classifier/model in the chain. The major drawback of this configuration is the inability of
later classifiers/models to correct errors made by the earlier classifiers/models.

Input_»' Classifier 1 H Classifier 2 I ---------- Classifier N Output

Figure 2.4: Cascading topology (reproduced from [08])

11

The parallel topology combines the output of all classifiers/models in a single location,
as shown in Figure 2.5. The performance of ensembles using this topology largely depends
on the selection of proper fusion function. This is particularity important if the base

classifiers/models have significantly different performances, where poor classifiers/models
can affect the overall performance of the ensemble.

Classifier 1

|| Classifier 2 I

Classifier N

Input

Output

Figure 2.5: Parallel topology (reproduced from [30, 68])

In the hierarchical topology, both cascading and parallel configurations are used to com-
bine the base classifiers/models, as shown in Figure 2.6, to obtain the optimal performance.

The use of this topology may compensate the drawbacks of the cascading and parallel
topologies.

Classifier 1 Classifier 2

Classifier 3
Input

Output

Classifier N
Figure 2.6: Hierarchical topology (reproduced from [65])

12

Lam [50] defines a slightly different hierarchical (serial) topology, where the base
classifiers are applied in succession to reduce the number of possible classes in the input
data, as shown in Figure 2.7. As the data travels through the system, the decision of later
classifiers becomes more focused.

Input Classifier 1 Class 1

Classifier 2 Class 2

Classifier N Class M

‘ Other

Figure 2.7: Hierarchical (serial) topology (reproduced from [30])

In the conditional topology, a classifier/model is first selected to make a prediction. If
it fails to produce an accurate prediction for the presented data, another classifier/model is
selected, as shown in Figure 2.8. Often, a primary classifier/model is selected by default as
the first one in the classifiers/models queue. The selection of the next classifier/model can
be static or dynamic (based on the prediction of the primary classifier/model). The major
drawback of this topology is the selection of a criterion by which the failures and success of
a classifier/model can be evaluated at prediction time.

Input output

Classifier 1

Rejected

output

Classifier 2

Figure 2.8: Conditional topology (reproduced from [30])

Finally, a hybrid topology, shown in Figure 2.9, employees a selection mechanism to

13

select the best classifier/model for a given input data. This topology could be considered
as a trade-off between the parallel and serial topology. Complexity is the main drawback of

the hybrid topology.

|| Classifier 2 I

Classifier N

Input Output

Figure 2.9: Hybrid topology (reproduced from [30])

2.5 Fusion Function

Once a set of classifiers/models have been trained, and a topology is selected, the next step
is to combine the output of classifiers/models using an appropriate fusion function.

Generally, the selection of the fusion function depends on the type of the classifiers’
output. Kuncheva [10] categorizes classifiers’ output into three types: Type 1 - abstract
level (the classifier produces a label), Type 2 - rank level (the classifier produces an ordered
list of possible classes), and Type 3 - confidence or measurement level (the classifier/model
produces numerical values, which represents class probabilities (for a classification task),
or target predictions (for a regression task). For example, if the base classifiers’ output of
Type 1 or Type 2, several fusion functions can be used, such as majority vote, weighted
majority vote, and Bayesian combination, while if the base classifiers’ output is of Type
3, average rule, max rule, min rule, median rule and the Dempster-Shafer approach can
be used among others [30, 68]. Stacked generalization, a more advanced approach, can be
applied to both types of output.

Different categorizations of fusion functions have been reported in the literature [65].
Xu et al. [91] categorize fusion functions into two categories: feature-vector-based meth-
ods (e.g. neural networks), and syntactic-and-structural methods (e.g., fuzzy rule bases).

14

Canuto [17] divides fusion functions into four more informative categorizations, namely,
linear (e.g., sum, product, etc.), non-linear (e.g., majority vote, weighted majority vote),
statistical (e.g., Dempster-Shafer technique, Bayesian combination, etc.), and computation-
ally intelligent (e.g., neural networks, genetic algorithms, etc.). Duin [22] classifies fusion
function into fixed, and trainable. The fixed functions, such as majority vote, sum, and
average, do not require training. On the other hand, trainable functions, such as stacked
generalization approach, require a training phase.

Some of the common fusion functions are briefly discussed in the following sections.
More details can be found in the provided references.

2.5.1 Majority Vote and Weighted Majority Vote

The majority vote is one of the oldest strategies for decision making. It can be traced back
to the era of ancient Greek city states and Roman Senate. Each classifier in the ensemble
classifies a new sample based on its own evaluation; the final class prediction is the class
with the greatest number of votes [30, 46]. To avoid a tie, the modeler should choose an
odd number of ensemble’s classifiers. Majority vote will be used in the classification case
study, Chapter 5.

Kuncheva [16] formalizes the majority vote function as follows [30]: let us assume the
outputs of the ensemble’s classifiers is denoted by a binary vector of size M,

[di 1, ~-~,dz‘,M]T € {0, l}M,i ={1,...,B}

where B is the number of ensemble’s classifiers, M is the number of possible classes. If
the ith classifier votes the class Cj, for the new sample, d; ; = 1, otherwise d; ; = 0. The
ensemble will predict the class C} if it has the maximum number of votes:

B M B
2 e = wiax D diy 21)

The weighted majority vote function is a variation of the majority vote, where each
classifier is assigned a weight. The classifiers” weights are determined, using some criterion,
before the fusion process. Equation 2.1 can be converted to the weighted majority vote,
Equation 2.2, by adding the w; vector, which represents the weights for the ith classifier [30].

B B
i=1 =13

15

2.5.2 Bayesian Combination

The Bayesian approach is based on the posteriori probability, where the conditional terms
are represented by the predictions of the ensemble’s classifiers. For a given new sample
x, the ensemble will assign the class that maximizes such probability. Formerly, for the
generic class C, the fusion function has to predict the class that maximizes the probability:

P(Ck|y17y27“-7y3) (23)

where y; represents the class prediction of the ith classifier. However, the conditional
probabilities are often unknown. To overcome this problem, the Bayesian rules can be used
to approximate Equation 2.3. Common combination rules include product rule, sum rule,
max rule, min rule, and median rule. The product rule is explained next [30)].

Using the Bayes rule, Equation 2.3 can be rewritten as:

P(Cy)P (y1,v2, .-, yB|Ck)

P (Cilyi, ya, ..., = 2.4
(k’yl 2 yB) P(ylay27"'7yB) ()
The denominator can be rewritten as:
M
P(y17y27"'ayB) :ZP(917927-~-7?JB|CZ) P(Ok) (25)

=1

where M is the number of possible classes. By assuming conditional independence between
the predictions of all the classifiers, the conditional probability can be rewritten as:

P(y17927-~7y3|0k> = HP(yi|Ck) (2-6)

i=1
consequently Equation 2.4 becomes:
P(Cy) HzB:1 P (y;|Cy)

P (Cilyr, Y2, s yp) = u
(Cklyr,y2, - yB) SM IR, P (3] C)) P(Cy) 0

In order to maximize Equation 2.7, the numerator needs to be maximized with respect to
k, that is:

16

ml?X{P(Ck) ﬁP(yi|Ck)} (2.8)

=1

Equation 2.8 represents the product rule. One of the major drawbacks of the product
rule is that one or more of the ensemble’s classifiers may give a probability very close to
zero, which leads to an aggregate result very close to zero. In this case, the fusion function
could fail [30].

2.5.3 Dempster-Shafer Theory

The Dempster and Shafer (DS) theory [31] has been used to deal with uncertainty manage-
ment and incomplete reasoning. Unlike the Bayesian approach, DS theory can explicitly
model the unknown information. The accumulation of evidence is used to narrow down a set
of hypotheses. DS theory allows the representation of the ignorance due to the uncertainty
of the evidence. If the value of the ignorance reaches zero, the DS model is reduced to a
standard Bayesian model [30)].

2.5.4 Stacked Generalization

Wolpert [93] introduced the concept of stacked generalization (or stacking), where the fusion
function is another classifier/model, called meta-learner, trained using the outputs of the
ensemble’s classifiers/models. It is critical that the training of the meta-learner is done
on a new training dataset (was not used to train the ensemble’s classifiers/models), or
on the predictions of the out-of-fold cross-validation [30]. Stacking will be utilized in the
classification case study, Chapter 5.

2.6 Related Work

The ensemble methods have received a lot of interest from researchers and practitioners.
Specifically, several taxonomies have been reported in the literature, which aim to categorize
ensemble systems from the system designer’s point of view. This section provides an
overview on the most common taxonomies [73].

Ho [38] as well as Valentini and Masulli [90] divide the ensemble methods into two
categories:

17

1. Coverage optimization methods: such as boosting, aim to improve the predictive
performance by combining a large set of complementary, generic classifiers/models
using a fixed fusion function (e.g., majority vote, average, etc.).

2. Decision optimization methods: such as the mixture of experts, aim to find the
optimal combination of a fixed set of highly specialized classifiers/models.

Duin [22] as well as Kamel and Wanas [12] propose two categories of ensemble methods
(based on the type of the fusion function):

1. Non-trainable ensembles: a simple fusion function (e.g., majority vote, average, etc.)
is used to combine the output of the base classifiers/models, without the need to train
the combiner.

2. Trainable ensembles: additional training is necessary to train the combiner to optimally
combine the output of the base classifiers/models.

Sharkey [$1] developed a taxonomy for neural networks ensembles, with three dimensions:

1. The first dimension indicates if the ensemble’s base models/classifiers are competitive
or co-operative. In a competitive ensemble, a single base classifier/model is selected
to make the final prediction, while in a co-operative ensemble, the final prediction is
made by combining all base classifiers/models.

2. The second dimension indicates if the ensembles are created top-down or bottom-up.
In top-down ensemble, the combiner does not take into account the output of the
base classifiers/models. On the other hand, in bottom-up ensembles, the output of
the base classifiers/models is taken into account by the combiner.

3. The third dimension indicates if ensemble has pure, modular, or hybrid components.
In pure ensembles, all base classifiers/models are combined to obtain a more accurate
and reliable prediction for the same task. On the other hand, modular systems break
down a complex problem into several sub-problems, each sub-problem is solved by
a specialized classifier/model.

Brown et al. [11] categorizes ensemble methods, based on how model diversity is injected,
into two types. Implicit diversity, by using randomization methods, or explicit diversity,
via some diversity metric.

Kuncheva [16] groups ensemble methods, based on how model diversity is injected, into
four levels, as shown in Figure 2.10:

18

1. Combination level: different approaches to combine base classifiers/models, are used.
2. Classifier level: various types of learning algorithms are used to construct the ensemble.
3. Feature level: different feature subsets are used to train the base classifiers/models.

4. Data level: different training subsets are used to train the base classifiers/models.

Combiner level:
Use different fusion
topologies and/or
functions.

Classifier level:
Use different base
models.

Feature level:
Use different feature
subsets.

Data level:
Use different data
subsets.

Figure 2.10: An ensemble taxonomy based on four levels (reproduced from [16])

Rokach [73] proposes a taxonomy of five dimensions, as shown in Figure 2.11:
1. Combiner usage: specifies the relationship between the combiner and the ensemble
generator.

2. Classifiers dependency: how does each classifier affect the other classifiers during
training. Independent classifiers can be trained simultaneously, while dependent
classifiers are trained serially.

3. Diversity generator: how model diversity is injected into the ensemble.

4. Ensemble size: how to determine the number of classifiers/models in the ensemble.

19

5. Cross-inducer (universality): whether the ensemble method can be applied to all
common learning algorithms, or specifically designed for a certain algorithm(s).

(a) Not specified i. Non-trainable output combiner
(b) Specified ii. Trainable output combiner
iii. Meta-classifier (always trained)

1. Combiner

(a) Independent training (simultaneous)

2. Building the ensemble <: o _
(b) Dependent training (incremental growing)

(a) Training of the base classifiers

(b) Resampling the training data
3. DiVGI’Sit:[(C) Different label targets : i. Horizontal (bites of data)

(d) Partitioning of the training data ii. Vertical (feature subsets)

(e) Different base classifier models (heterogeneous ensemble)

(a) Fixed in advance
4. Ensemble size 4 (b) Determined during training
(c) Overproduce and select

(a) Specified base classifier model

5. Universality .
(b) Any base classifier model

Figure 2.11: An ensemble taxonomy based on five dimensions (reproduced from [16])

2.7 Summary

This chapter provided a comprehensive overview of ensemble systems from the system’s
designer point of view, which included: the philosophy behind the use of ensemble systems,
ensemble methods, and types of fusion topology and function.

The chapter ended by presenting the related work to this research. Although several
taxonomies have been reported in the literature, there are several research gaps need to
be addressed. First, a comprehensive framework for developing ensemble systems is not

20

yet available [77]. Moreover, some of the proposed design methods, such as “overproduce
and choose” (also called “test and select”) [31], become unfeasible for large and/or high-
dimensional data sets. Second, several strategies have been proposed to inject model
diversity in the ensemble; however, there is a shortage of empirical studies that compare
the effectiveness of these strategies. Third, most of the ensemble systems research has
concentrated on simple problems and relatively small/low-dimensional data sets. Further
experimental research is required to investigate the application of ensemble systems to large
and/or high-dimensional data sets, with a variety of data types, such as time-series, text,
multimedia, etc [73].

In the next chapter, a framework for ensemble predictive modeling is proposed, to
address the first research gap. The remaining research gaps will be dealt with in the
consecutive chapters.

21

Chapter 3

Proposed Framework for Ensemble
Predictive Modeling

3.1 Introduction

Predictive modeling is typically an iterative process involving problem formulation, ex-
ploratory data analysis, data pre-processing, feature selection/engineering, model selection,
model validation and interpretation of the results. Kuhn and Johnson [15] state some
common reasons why predictive models fail. These may include inadequate data pre-
processing, inadequate model validation, unjustified extrapolation (e.g., applying the model
to a new data space which was not used during model training), or, over-fitting the model
to the training data set. In the context of ensemble systems, the proposed framework
incorporates the principles and best practices of predictive modeling outlined by [15] to
build optimal subsystem components (base models/classifiers). The thesis coins the term
“ensemble predictive modeling” to refer to the process of developing ensemble systems. In
addition to subsystem (individual models) predictive modeling, this process includes the
systematic introduction of model diversity, the selection of a representative fusion topology,
the selection of a suitable fusion function, and adequate fusion evaluation.

The proposed framework for ensemble predictive modeling, shown in Figure 3.1, contains
four main phases, namely, phase 0: objective, phase 1: data preparation, phase 2: model
building, and phase 3: model fusion. These phases are discussed in the following sections.

22

Phase 0: Objective Phase 1: Data Phase 2: Model Building Phase 3: Model Fusion
Preparation

What's the question
We're answering?

Input

.—Pi Model 1 l Model K l
|
i

Fusion
topology

What are the
constraints?

Exploratory
data analysis

Injecting model diversity

Data fegture Algorithm
level level level

What data is
needed?

Feature
engineering

Fusion
function

selec./training

Data
processing

Acquire

the data .
Fusion

evaluation

Model
evaluation

Data
partition

Clean
the data

Experimental design & development tools

|
| |
| |
|
|
| |
| |
|
|
| |
| |
|
|
| |
| |
: ! Model
| |
| |
|
|
| |
| |
|
|
| |
| |
|
|
| |
| |

|
/ i
|
|
S Setl . Set N .‘ Model 1 ' ----- Model --! Final ensemble(s) '

Figure 3.1: Proposed framework for ensemble predictive modeling

Output

3.2 Phase 0: Objective

Kuhn and Johnson [15] argue that building a machine learning model appears to be
straightforward: choose a learning algorithm, feed it data, and produce a predictive model.
However, the generated model will most likely not be reliable and trustworthy for predicting
new data. They state that the first step in any predictive modeling task is to understand
the objective and data of the modeling.

Therefore, the problem/question addressed by the ensemble predictive modeling project
must be clearly defined, along with the desired outcomes. The modeler (commonly referred
to as data scientist in the industry) must take into account any constraints, and ensure
that the final results are practical and actionable. Then, the data/tools needed to answer
the question should be identified. This process involves the assessment/cleaning of the

23

currently available data, data to be collected, volume/features of the data to develop the
models/ensembles, and the appropriate tools/resources.

Although phase 0 has a significant impact on the quality of the models/ensembles
(following the famous rule “ garbage in, garbage out”), often in academic research the data
collection step is not done by the modeler/data scientist. Thus, the available data to answer
the question at hand may not be enough. On the other hand, data scientists in industry
settings have to design experiments/procedures to collect, clean, and integrate required
data from different sources. The primary outcome of phase 0 is a clean data set, which
serves as the input to the next phase (data preparation).

3.3 Phase 1: Data Preparation

Data preparation has a significant effect on the predictive ability of a model, especially for
regression applications [15]. This section presents the typical steps performed to pre-process
the clean data set, obtained from phase 0 before it is used in phase 2 (model building). In
the first case study, Chapter 4, these steps are explained in details using a real data set.

3.3.1 Exploratory Data Analysis

Exploratory data analysis is typically applied before any formal modeling commences.
Several statistical summaries and visualizations can be used to understand the data at hand,
and eliminate or sharpen potential hypotheses about the world that can be addressed by the
available data. Some of the common statistical summaries and plots include histograms and
predictor’s statistics. Histograms can be used for class distribution, predictor’s skewness,
etc., while predictor’s statistics can be used for missing values, minimum, first quartile,
median, mean, third quartile, maximum, and standard deviation. The box-and-whisker plot
is typically used to represent most predictor’s statistics graphically. The exploratory data
analysis step also identifies what data preparation steps are needed (e.g., data processing
to resolve the skewness of predictors).

3.3.2 Feature Engineering

Feature engineering, how the predictors are encoded, is an important step in the data
preparation phase, which often has a significant impact on the performance of models.

24

Some of the feature engineering tasks, such as adding/removing predictors, are informed by
the modeler’s knowledge of the problem domain at hand. Others, such as binning predictors
and converting from categorical to dummy predictors, are standard procedures.

3.3.3 Data Processing

In many of real-world data sets, some of the predictors have no values for a given sample.
It is vital to understand why these values are missing and identify if the pattern of missing
data is correlated with the outcome, before any strategy to handle the missing values is
applied. Such a strategy could be as simple as using the predictor’s mean to fill the missing
values, or as complex as building models to predict the missing values.

Many of the learning algorithms, such as artificial neural networks and support vector
machines, require the predictors to have a common scale. The common scale is achieved by
subtracting their average value from all the values. The centered predictors have a zero
mean. Then, the predictors are scaled by dividing each value by the predictor’s standard
deviation. The scaled predictors have a common standard deviation of one. Performing
both operations is commonly referred to as normalization. It should be noted that if data
transformation is required to resolve skewness (e.g. Box-Cox transformation [10]), it should
be performed first, and then, followed by centering and scaling [15].

Resolving predictors’ skewness is another issue that should be handled. It should be
noted that data transformations should be applied to the training data at hand, and the same
values used to transform the training data, are applied to the validation/testing data. For
example, during model selection using 10-fold cross-validation, the data transformations are
applied on-the-fly to the first nine folds, used as training data, and the same transformation
values are used to transform the 10th fold, used as a validation data. The process is repeated
for other iterations.

3.3.4 Data Partition

The proper allocation of data to different tasks (e.g., model/feature selection, model training,
model fusion, performance evaluation) is one of the important aspects of ensemble predictive
modeling. A crucial element of data partition is maintaining a similar population across
all samples. For example, in a classification problem, a similar class distribution must
be preserved across all data sets (e.g., model selection (including cross-validation folds),
training, fusion, and testing data sets) by using stratified sampling.

25

The number of observations/samples allocated for each modeling task depends on the
size of the available data. If the data is small, data partition can have a critical impact
on the quality of the final models. For example, if the training data set is small, the
learning algorithms, used to build models, may not be able to capture the underlying
patterns. On the other hand, a small testing data set would have a limited capacity to
evaluate the performance of models/ensembles. In this case, a resampling technique, such as
n-fold cross-validation, combined with only a training data set might be a better choice for
performance evaluation [15]. The processed data partitions (e.g., model/feature selection,
training, fusion, and testing data sets) constitute the input to phase 2 (model building).

3.4 Phase 2: Model Building

The model building phase is the most significant phase in the proposed framework for en-
semble predictive modeling. It is highly probable that the fusion of several models/classifiers
would outperform a single model/classifier [73]. However, the fusion of different models might
only add to the complexity of the system without any performance improvement. Thus, in
order for an ensemble to be successful, the errors made by its base models/classifiers should
not be highly correlated, and each base classifier/model has an acceptable performance [33].
Accordingly, model diversity is considered one of the key design features within a successful
ensemble [30, 46, 68, 73, 77]. Another significant key design feature is the selection of the
optimal hyper-parameters (model selection) for the learning algorithms using a quantitative
approach, which leads to the optimal performance of the individual models/classifiers. The
use of a quantitative approach for model selection is a significant difference between the
proposed framework and the common practice reported in the literature [77], where random
values are selected for the hyper-parameters by the modeler based on his intuition, to inject
model diversity. Proper model evaluation is a vital third step in the model building phase,
where the performance and diversity of the base models/classifiers are evaluated before the
model fusion phase. If the performance and diversity are not acceptable, some/all of the
three steps of the model building phase are repeated. If no improvements are achieved, the
modeler needs to go back and start at phase 0 (to collect relevant data), or phase 1 (to
investigate engineering new features or/and different data processing approaches). The
primary output of the model building phase is a collection of diverse models/classifiers.
This section gives an overview on injecting model diversity, model selection/training, and
model evaluation. Practical details, using real-world data sets, will be provided in the case
studies, Chapter 4 and Chapter 5.

26

3.4.1 Injecting Model Diversity

At the model building phase, the proposed framework for ensemble predictive modeling
incorporates three levels of model diversity, namely, model diversity at the data, feature, and
learning algorithm levels [16]. We hypothesize that the optimal performance of an ensemble
can be achieved by systematically injecting model diversity at all levels. Conventional
methods to incorporate model diversity at these levels are discussed in the following
subsections.

Diversity at the Data Level

Model 1 ' Model 2

Learning Learning
Algorithm Algorithm

Learning
Algorithm

Figure 3.2: Injecting diversity at the data level

Injecting model diversity at the data level is the most used approach to incorporate model
diversity within an ensemble. Diversity is injected by training models, using the same
learning algorithm, on different subsets of the training data set, as shown in Figure 3.2. The
most popular method for the selection of the subsets is the bagging technique, discussed in
Section 2.3.1. On each iteration of the learning algorithm, a predefined percentage of the
training data set is drawn randomly, with replacement, to train the current model. Boosting,
discussed in Section 2.3.2; is another traditional subsampling method, where the error
rate of the previous iteration is used to adjust the probability distribution of the training
samples. The new probability distribution is then used to randomly draw, with replacement,
a subset of the training samples. Stochastic Gradient Boosting Machines (GBM) has a
built-in bagging and boosting algorithms to construct diverse base models/classifiers, while
the Random Forest learning algorithm has a built-in bagging algorithm. Another simple
subsampling method is to manually construct disjoint subsets of the training data set, and
train a separate model for each subset. Finally, diversity at the data level can be achieved

27

by training models on copies of the same training data set, but pre-processed using different
techniques [30, 16, 68, 73, 77, 82].

In the regression case study, Chapter 4, model diversity at data level is achieved by
three methods. First, manually splitting the training data set into two disjoint subsets, and
training models on each subset. Second, the built-in bagging and boosting within the GBM
learning algorithm add an extra layer of diversity to the GBM models. Third, two different
pre-processing techniques are applied to the training subsets. Due to the relatively small
data set, model diversity at the data level in the classification case study, Chapter 5, is
achieved by the built-in bagging and boosting within the GBM learning algorithm, and
bagging within the Random Forest learning algorithm.

Diversity at the Feature Level

Model 1 ' Model 2

Learning Learning
Algorithm Algorithm

Learning
Algorithm

Figure 3.3: Injecting diversity at the feature level

Model diversity at the feature level is achieved by training models, using the same learning
algorithm, on copies of the same training dataset, but with different features [16, 68, 73, 82]
as shown in Figure 3.3. The features for each training subset can be selected manually
or by using different feature selection algorithms. The selected features for the training
subsets may overlap or be completely disjoint. Some learning algorithms, such as Random
Forest algorithm, have a built-in algorithm to inject model diversity at the feature level.

For the regressing case study, model diversity at feature level is achieved by training
models on manually selected subsets of features, while for the classification case study,
models are trained on subsets of features selected by five feature selection algorithms. In
addition, an extra layer of model diversity at feature level is added to the Random Forest
models by its built-in algorithm.

28

Diversity at the Learning Algorithm Level

voaerz) (a2
R S A S \

Learning Learning
Algorithm 1 Algorithm 2

Figure 3.4: Injecting diversity at the learning algorithm level

The main approach to injecting model diversity at the learning algorithm level is to apply
different learning algorithms to train models on the same training data set and features,
as shown in Figure 3.4. Other methods involve the injection of randomness into the same
learning algorithm, such as using different initial weights for several neural networks trained
on the same data set [07], or training several models, using the same learning algorithm
and data set, with different hyper-parameters values [16, 68, 77, 82].

Model diversity at the learning algorithm level is mainly achieved in the regression and
classification case studies by using several learning algorithms. A second layer of diversity is
added in the classification case study, where different optimal hyper-parameters values are
selected for the same learning algorithm (due to the use of data sets with different features).

3.4.2 Model Selection and Training

In the context of ensemble predictive modeling, model selection may be classified into three
types. First, the selection of the ensemble size, how many base models/classifiers should be
trained. Second, the selection of the optimal hyper-parameters for the learning algorithms
over a set of candidate values. Third, the selection of the learning algorithms to use over
others (e.g. based on their performance).

The Selection of Ensemble Size

The ensemble size is determined by several factors, such as the desired accuracy, the nature
of the regression/classification problem, computational cost, and the available computing

29

resources [73]. For ensemble learning algorithms, such as the Stochastic Gradient Boosting
Machines (GBM), the ensemble size can be treated as a hyper-parameter and tuned using
a quantitative approach.

Kuncheva [10] argues that building a large ensemble of strong classifiers is a waste
of resources since there is no scope for diversity (e.g., many base classifiers will produce
identical predictions, regardless of how different the classifiers may be). He hypothesizes
that an ensemble with a small number of strong classifiers may improve on the individual
accuracy if their errors are not highly correlated. On the other hand, if the classifiers
are weak, a large number of diverse classifiers is required. As discussed before, bagging,
boosting, and random forest techniques incorporate this approach.

In the context of big/high-dimensional data, building large ensembles requires powerful
computing resources and scalable learning algorithms. Therefore, the proposed framework
for predictive modeling suggests building small to medium (e.g., from 3 to 50 classifiers)
heterogeneous ensembles of strong base classifiers/models. To maximize model diversity,
diversity should be injected at the data, feature, and learning algorithm levels.

The Selection of Optimal Hyper-parameters

Most learning algorithms have one or more hyper-parameter(s). These parameters can
not be directly estimated from the data using analytical formulas. The complexity of the
model/classifiers is controlled by its hyper-parameters, and hence, poor choices for their
values can lead to under- or over-fitting [15]. The proposed framework stress the importance
of selecting the optimal hyper-parameters based on a quantitative approach. The use of a
quantitative approach for model selection is a significant difference between the proposed
framework and the common practice reported in the literature [77], where random values
are selected for the hyper-parameters by the modeler based on his intuition, to inject model
diversity. As will be shown in the experimental results using real-world datasets, Chapter 4
and Chapter 5, a small change in the value of the hyper-parameter can have a significant
impact on the model’s performance.

A general approach to search for the optimal hyper-parameters is to define a grid of
candidate values, use a proper sampling technique, such as 10-fold cross-validation, to
generate reliable estimates of performance for each hyper-parameters combination, as shown
in Figure 5.8. The best performing values across all folds are then selected. However, to have
a fair comparison, care must be taken regarding three important aspects. First, the similar
class distribution must be maintained across all folds, by using stratified sampling. Second,
the folds should be presented in the same order, with exactly the same samples, to the

30

learning algorithms (this is particularly important for the selection of learning algorithms).
Third, if data pre-processing is required, it should be done on the fly, as shown in Figure 3.5.

ROC (Cross—Validation)

- For each iteration, fit a model for all hyper-parameters combination.
- Then, average the performance of all models across folds.
- Select the hyper-parameters of the best performing model.

Model Selection Dataset I

(Transform), Center & Scale Features

.
| [>

(Transform)._/‘ (Transform),
Center & Scale Center & Scale

|‘ .l]
i‘ Vl

Iteration 2

(Transform),
Center & Scale

Iteration 10

(Transform), Center & Scale Features

k (Transform),
Center & Scale

Figure 3.5: Model selection using grid-search and 10-fold cross-validation

Sigma
2~ 0 o 2n-20 0O —— ROC Sens Spec
27-10 x M-25 O ° . -
27~15 v o—— MN-5 A — B
1 1 1 I 1 1
g - 2
L g -
L 2g-
2 2
LR o
L 0
o _
T T T T T T © -7 ° & © 7 °ou o 47 e oowoo
270 A1 2nD on3 o274 215 L T T T T T T
0.76 0.78 0.80 0.700.750.80 0.65 0.70 0.75
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 3.6: An example of hyper-parameters selection results (SVM classifier)

31

The proposed framework highlights the importance of two aspects during the selection of
the optimal hyper-parameters. First, the modeler should understand the effect of different
combinations of hyper-parameters values on the classifier/model performance by visualizing
the performance of the hyper-parameters grid-search. For example, Figure 3.6a shows
the results 10-fold CV and grid-search for SVM classifier Radial Basis Function (RBF)
kernel, which has two hyper-parameters (cost and sigma). Based on such a quantitative
approach, the modeler may need to go back and refine the hyper-parameters grid, and
repeat the process. Second, the modeler should assess the uncertainty of the selected
optimal hyper-parameters by visualizing the resampling accuracy’s distribution of the
optimal model/classifier. Figure 3.6b shows the resampling accuracy (area under ROC,
sensitivity, and specificity) distributions of the selected optimal SVM classifier.

The Selection of Learning Algorithms

The selection of the learning algorithms, to build the ensemble models/classifiers, generally
depends on the nature of the problem, the modeler’s experience and knowledge of algorithms,
scalability, computational cost, and performance of algorithms. The proposed framework
stresses the importance of selecting the learning algorithms based on a fair quantitative
approach. A useful approach is to visualize the results of the selection of the optimal
hyper-parameters for each learning algorithm, using the same 10-fold cross-validation data,
to assess the relative performance and diversity of the algorithms. Two useful plots are the
performance distributions using the box-and-whisker plot, shown in Figure 3.7a, and the
performance estimates with 95% Confidence Level (CL), shown in Figure 3.7b.

055 065 0.75 0.550.600.650.700.750.80
L1 Ilqolc L1 L1 é L1 | L1 é Ll Ll
ens pec ROC Sens Spec
RF_All o fo o fe}- I RF_All - —— ——
GBM_All off o 1] h GBM_AIl - —— ——
SVM_AII R o [k o et SVM_AI - — ——
FDA_AI oith o ifef-1 - FDA_All - - -
KNN_AII £ -G} S MR KNN_AII - — T
T T T : : : T
055 065 075 055 065 075 0.550.600.650.700.750.80 0.550.600.650.700.750.80
(a) Performance distributions (b) Estimates with 95% CL

Figure 3.7: An example of comparing several learning algorithms using 10-fold CV

The selected optimal hyper-parameters are then used to train models/classifiers using
the whole training data set(s).

32

Several diversity measures for classification tasks have been reported in the literature [0,
|. However, experimental research [3, 33, 17, 19, 85, 92] suggest a weak, and sometimes
contradictory, relationship between the diversity measures and ensembles accuracy. This
research also experimentally confirms these findings in Section 5.8.1. Therefore, the
proposed framework does not use these diversity measures as criteria for selecting the
ensemble classifiers. Instead, the framework systematically injects model diversity at all
levels (data, feature, and learning algorithm levels), and use the n-fold cross-validation
results to assess the relative performance and diversity of the classifiers. As will be validated
by experimental results in the classification case study, Chapter 5, this approach leads to
the optimal ensemble accuracy without the need for a diversity measure.

3.4.3 Model Evaluation

Model evaluation is of paramount importance in any predictive modeling task. It becomes
even more important in ensemble predictive modeling, where the relative performance and
diversity of models/classifiers must be thoroughly evaluated. Typically, some measure of
accuracy is used to assess the effectiveness of a model/classifier. However, accuracy can be
measured using different ways, each with its subtle difference. Relying solely on a single
metric to evaluate models/classifiers, and understand their strengths and weaknesses, is
problematic [15]. Therefore, the proposed framework for ensemble predictive modeling calls
for utilizing several quantitative metrics and visualizations to better assess the performance
of the models/classifiers.

A second important aspect of model evaluation is the size of the test data set. If the
test dataset is small, it may not be sufficient to make reasonable judgments [15]. Moreover,
using a single test dataset can be a poor choice [36, 57, 60]. Therefore, it advisable to use, in
addition to a separate test data set, the n-fold cross-validation resampling, used for model
selection, as a first step to assess the relative performance of the selected models/classifiers.

Finally, in large-scale/high-dimensional data analysis and modeling, the computational
cost of developing several models/classifiers must be considered. The model selection,
training, and prediction time for each model should be measured. Prediction time is
particularly important for mission-critical applications, such as algorithmic trading systems,
where near real-time prediction is essential.

If the performance and/or diversity of models/classifiers are not acceptable, some/all of
the three steps of the model building phase are repeated. If no improvements are achieved,
the modeler needs to go back and start at phase 0 (to collect relevant data), or phase 1 (to
investigate engineering new features or/and different data processing approaches).

33

More details on using several quantitative metrics and visualizations, to evaluate the
performance of regression and classification models, will be given in the regression and
classification case studies, Chapter 4 and Chapter 5, respectively.

3.5 Phase 3: Model Fusion

Once a set of diverse and strong models/classifiers are produced by the model building
phase, an appropriate fusion strategy should be selected to obtain the optimal ensemble
performance. The model fusion phase is an iterative process, where three major tasks are
performed sequentially. These tasks are the selection of the fusion topology, the selection of
fusion function, and the fusion evaluation.

3.5.1 Fusion Topology

Generally, the selection of a fusion topology depends on the type of the problem at hand,
which can be solved by combining ensemble, modular, or hybrid components. Sharkey [30]
and Lam [50] distinguish between pure ensemble systems and modular systems. The goal
of a pure ensemble system is to combine several models/classifiers, each of which solves
the same task (parallel topology), to obtain more accurate and reliable predictions. On
the other hand, a modular system breaks down the problem into several sub-tasks, each of
which is solved by a specialized model/classifier [65, 73]. A hybrid system combines both
approaches.

Another aspect, the system’s modeler should investigate, is whether to combine all
models/classifiers, produced by the model building phase or combine only a selected subset
of them, using a particular criterion [16].

In the regression case study, Chapter 4, hybrid topologies, without selection, are used to
combine models, while in the classification case study, Chapter 5, several parallel topologies,
with and without selection, are investigated.

3.5.2 Fusion Function
As discussed in Section 2.5, the choice of the fusion function often depends on the type

of base models/classifiers’ output. For example, if the output is a confidence level (e.g.,
class probability) or measurement (e.g., regression problem), several simple fusion functions

34

can be used, such as average, weighted average, sum, max, min, etc. If the output is an
abstract level (e.g., class label), functions such as majority vote, weighted majority vote,
etc., can be used. In both cases, a trained model/classifier, using stacked generalization,
can be used to combine the output of the base models/classifier [30, 46, 68]. Tt should be
noted that to avoid over-fitting, the data used to train the base models/classifiers must
never be used to train the fusion model/classifier. Instead, a new dataset or out-of-fold
cross-validation’s predictions should be utilized.

The ensemble size is another important factor in choosing the fusion function. If the
ensemble contains a small number of strong models/classifiers, a trained model/classifier
might be needed to outperform the best individual model/classifier. On the other hand,
high performance can be achieved for large ensembles with a variety of simple fusion
functions [16].

In the regression case study, Chapter 4, a simple fusion function, average, is chosen as
the fusion function, while in the classification case study, Chapter 5, majority vote, and
several stacked generalization classifiers, are investigated.

3.5.3 Fusion Evaluation

Similar to the model evaluation, model fusion should be thoroughly evaluated. In addition
to the ensemble performance, several aspects should be assessed. Such aspects include
required computing resources, model selection and training time (needed to build all base
models/classifiers and the fusion model/classifier), and prediction time (required to produce
a final prediction by the ensemble for a new sample) [73]. These aspects are considered in
the regression and classification case studies, Chapter 4 and Chapter 5, respectively.

The model fusion phase steps should be repeated until the final ensemble(s) produces
an acceptable performance. If no improvement is achieved, the modeler should go back
and start at phase 2 (to investigate different model diversity approaches or/and learning
algorithms), phase 0 (to collect relevant data), or phase 1 (to examine engineering new
features or/and different data processing approaches).

3.6 Experimental Design and Development Tools

During the model selection step of phase 2 (model building), several models/classifiers are
experimentally compared, based on their performance, using the same data set. To have

35

an accurate comparison, it is imperative to account for sources of variation. Such sources
may include the choice of the testing/training datasets, the internal randomness of the
training algorithm, and the random classification error [20, 46]. In addition to these sources
of variation, it is also important to account for the randomness in parallel computing, if
the model selection is performed on a cluster of computers/cores.

An essential ingredient, for successful ensemble predictive modeling, is a versatile
development toolbox and powerful computing resources. The toolbox should offer techniques
for data pre-processing, visualization, and a large collection of machine/statistical learning
algorithms. Due to the intensive computations, especially during model selection using
grid-search and n-fold cross-validation, the need for powerful computing resources becomes
a requirement as the size and/or the dimension of the data increase.

The most common used programming languages in the industry/academia, for data
analysis and machine learning modeling, are the open source R statistical computing
language [66] and Python scikit-learn package [02]. As computing resources, computer
clusters/cloud computing have been used. Apache Spark is the current industry’s state-of-
the-art computing resource for large-scale machine learning. Spark is an open source cluster
computing framework, initially developed at the University of California, Berkeley [95].

This research uses the R statistical computing language and several machine/statistical
learning R packages as the development tools. An instance of Amazon Elastic Compute
Cloud (EC2), with 32 cores and 65 GB RAM, is used as the computing resource.

3.7 Summary

This chapter introduced the proposed framework for ensemble predictive modeling. The
proposed framework contains four major phases, namely, phase 0: objective, phase 1: data
preparation, phase 2: model building, and phase 3: model fusion. In the next chapter, the
proposed framework will be validated using a complex regression case study.

36

Chapter 4

Regression Case Study:
Predicting the Stock Market’s
Short-term Behavior Following
Liquidity Shocks

4.1 Introduction

The prices in order driven markets, such as Nasdaq, London Stock Exchange, and Tokyo
Stock Exchange, are determined by the publication of orders to buy or sell shares. Two
types of orders, limit orders or market orders, may be submitted by the participants of such
markets. In limit orders, the trader specifies the price at which he is willing to transact.
The limit order book stores limit orders that do not execute immediately for later execution.
Market orders are immediately executed against orders stored in the limit order book. The
limit order book acts as a pool of trading interest over a range of prices. Standing buy (sell)
orders with the highest bid (lowest ask) price have the highest probability of execution.
The bid-ask spread is the difference between the two best prices, which is made small by the
competition between market participants. Traders, exchanges, and regulators are interested
in understanding the dynamic interplay between market and limit orders, and the state of
the limit order book [10].

The two types of changes to the state of the limit order book are trade or quote events.
A trade event takes place when shares are sold or bought while a quote event happens
whenever the best ask or bid price is updated. Market liquidity is defined as the ability

37

of market participants to trade large amounts of shares at low cost and quickly. Market
resiliency (also known as liquidity replenishment) refers to how a market recovers after
liquidity has been consumed. Market resiliency is of vital importance to traders willing to
reduce their trades impact costs by splitting large orders across time. A liquidity shock
occurs when any trade changes the best bid or ask price. Shocks often occur when all
available volume at the best price is consumed by a large volume trade (or series of small
trades). Following a liquidity shock, the bid-ask spread might be temporarily widened,
and/or result in permanent price shifts, as shown in Figure 4.1 [10], and the order book
is updated by new orders to buy and sell. Market resiliency is expressed by the ability of
bid-ask spread to partially or completely revert to former levels following a liquidity shock.
The aim of a liquidity replenishment model /system is to determine the relationship between
recent past order book events and future stock price mean reversion following liquidity
shocks. Some of the important factors in the development of such a model/system include
order arrival rate, bid-ask spread, transaction size, timing, and trading volume [10].

g25 | Sell-side orders
824
823
822
821
820

N
0,

819 : Liquidity

818 f \ replenishment

817

o6 Quote events Trade events Trade followed by Bid-Ask
815 ‘ x a liquidity shock Spread
814 4,—| i

813 O

812 H
811 :
810 :

809
808 | Buy-side orders

Price (pence)

1 2 3 .. 45 46 47 48 49 80 51 52 53 54 55 .. 98 99 100
Transaction time (t)

Figure 4.1: Stock market’s dynamics

The data for this case study is obtained from the kaggle.com’s competition “Algorithmic
Trading Challenge” [10] held between Nov. 11th, 2011 and Jan. 8th, 2012. The provided
dataset contains recent intraday trade and quote data from the London Stock Exchange

38

(LSE) before and after a liquidity shock. The raw dataset has 754,018 observations, 207
predictors, and 100 outcomes (50 bid and 50 ask prices to be predicted). Table 4.1 lists the
description of the raw data fields.

Table 4.1: Raw Data fields

Predictor name Description Type

row_id Unique row identifier Integer

security_id Unique stock identifier Integer

p_tcount Count of previous day’s on-market trades in current Integer
security

p-value Sum of previous day’s on-market values in current Integer
security (£)

trade_vwap Volume-Weighted average price of the trade causing Double
the liquidity shock (pence)

trade_volume Size of the trade causing the liquidity shock (num- Integer
ber of shares)

initiator Whether the trade is buyer or seller initiated (B = String
Buyer, S =Seller)

transtype(t) Whether the time-series event is a trade or quote String
event (T=Trade, Q=Quote) at event time t

time(t) Event time (HH:MM:SS.mmm) at event time t String

bid(t) Best buy price (pence) at event time t. Bidl to Double
Bid50 are predictors, while Bid51 to Bid100 are
outcomes to be predicted

ask(t) Best sell price (pence) at event time t. Askl to Double

Askb50 are predictors, while Ask51 to Ask100 are
outcomes to be predicted

4.2 Objective

Most backtesting simulations of trading strategies assume zero market resiliency. Modeling
market resiliency increases the realism of these simulations, and hence, improves the trading
strategies evaluation methods [10)].

The primary objective is to apply the proposed framework for ensemble predictive

39

modeling to develop a system that predicts the stock market’s short-term response following
large trades. The system is required to predict the behavior of 50 bid and 50 ask consecutive
prices following such liquidity shocks. As secondary objectives, the case study aims to
compare empirically different modeling strategies and regression learning algorithms (NNET,
MARS, GBM, SVM, and RF) based on their performance and computation costs (model
selection time, training time, and prediction time). The work in this case study was inspired
by the author’s previous work on algorithmic trading systems [1, 2, 1].

4.3 Data Preparation

Data preparation has a significant effect on the predictive ability of a model, especially for
regression applications [15]. This section presents the steps involved in data preparation
phase, namely, exploratory data analysis, feature engineering, data pre-processing, and data
partition.

4.3.1 Exploratory Data Analysis

As discussed in Section 3.3.1, the first step in predictive modeling for any application
is to understand the data at hand using several statistical summaries and visualizations.
This process helps in the development of appropriate predictive models by eliminating or
sharpening potential hypotheses about the world that can be addressed by the data. In
this section, some of the important aspects of the provided raw data are highlighted.

Figure 4.2 shows the distribution of the 102 securities/stocks in the dataset. The
histogram clearly shows unbalanced distribution between securities (some securities have
much larger number of observations than others). Since we assume all securities have
the same weight, it is critical to use stratified sampling to maintain the same securities’
distribution in all stages of predictive modeling (feature selection, model selection, model
training, and model evaluation).

40

40000
|

30000
|

Number of Observations
20000
|

10000
|

0
|

[I I I I 1
0 20 40 60 80 100

Security

Figure 4.2: Distribution of securities

Another important aspect of the dataset is determined by the predictor initiator. This
predictor specifies whether the trade, which caused the liquidity shock, is a sell or buy
trade. Buy and sell initiated shocks have different behaviors. Therefore, it is essential to
split the dataset into two categories according to the initiator, and build different predictive
models for each category. Figure 4.3 shows the distribution of securities based on the two
categories (Sell/Buy).

41

Sell

- _
c
g o
s g -
[] —
[%2]
o
o] _
[
[} S
2 n
IS
=}
o -
< I T T T T 1
0 20 40 60 80 100
Security
” _ Buy
c
g o
s g -
(] —
[%2]
o
o) _
=
[} S
2 5
IS
=}
o -
< I T T T T 1
0 20 40 60 80 100
Security

Figure 4.3: Distribution of securities based on the initiator (Sell/Buy)

Given that the provided dataset has an unbalanced distribution of securities, it is
expected that the distributions of bid/ask prices and trade volume are significantly different.
Figure 4.4 shows the Askb0’s box and whisker diagrams for each security. The distribution
of trade volume per security is shown in Figure 4.5.

This difference in distributions leads to the skewness of predictors. Figure 4.6 shows
examples of skewed predictors. In these examples, the predictors are right-skewed, meaning
that there is a greater concentration of data points at relatively small values and a small
number of large values. These are some of the issues that will be addressed in the following
sections.

42

81

(20uad) oISy

b r= b Fs $ s -
- Lo F s b b bre| .
b Es | S .
boFs | 5 + - 5 b-e| S I+~
++ - @ $ = It s IFe
b b b8 b s|=]H - e [+
{ o {ts # -3 br= - t
H - = 3 b+ H+ - R b
b o ++ o T .
b= $ =]+ - 3 b+ }
T T
00S¢ 00ST 00S 000¢ 00ST 000T 00S 000 00ST 000T 00S 0 0009 000v 000C 0 000 00ST 000T 008
1= e + s el = g+
bre tre| - R g -
- Ly : | e Ir e k
b - b b=k & {
o fe bt bt bt *
bop bofel e O
oot e ¥l Foo|
- fo bsl 4 | I s+
i -~ HH § |] . - o
+|+ o b= $ += I te +H+
T T
00S¢ 00ST 00S 000¢ 00ST 000T 00S 0002 000T 00S 0 00S€ 00S¢ 00ST 00s 0 000c 00ST 000T 00S

101

91 92 93 94 95 96 97 98 99

83 84 85 86 87 88 89 90

82

Security

Figure 4.4: Ask50 per security

43

Trade Volume (No. of Shares)

8e+05

4e+05

250000 0e+00

150000

150000 0 50000

50000

8e+05 0

4e+05

100000 200000 300000 0e+00

0

[Te}
o
<
- [}
<
- R A N 1
- i S ST S (- N R —t—— e b e —— —t—
T T T T T T T T T T 38 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 © 11 12 13 14 15 16 17 18 19 20
I g 4 :
()
<
— ©
o
2
[}
. . 39
] . -
3 H . o °
T T T T T T T T T T 38 T T T T T T T T T
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
— ° [Te}
o
2 | .
° [}
<
o .
s § g 4
° () °
- B l N
L
. . P . o M .
it i dididl i =|3] —ddi A i
T T T T T T T T T T 8 T T T T T T T T T
41 42 43 44 45 46 47 48 49 50 o 51 52 53 54 55 56 57 58 59 60
. 8] .
o
8 o
| = R
o
° o
- o
o
o
N
- ° o °
. S
M s |
o
o
— -
. [T R
_ _l__a_-I—__l__—_— —t——t— O - .-i——l—-l——l——l—l—-l——i—-a—
T T T T T T T T T T T T T T T T T T T
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
. § | . N
Q °
— n
° ° -~ ° s
4 S .
£ i
i =
o
— o
. s 4
54 °
i B ro) . L. s
H ° ° . °
i [T T S I PR ..L..LL.J_J__I_;_L.LL_I__L
T T T T T T T T T T T T T T T T T T T 1T
81 82 83 84 85 8 87 83 89 90 91 92 93 94 95 96 97 98 99 101
Security

Figure 4.5: Trade volume causing the liquidity shock (per security)

44

Ask50 (pence) Bid50 (pence)

60000 100000
1 1
60000 100000
1 1

20000
1
20000
1

=

0
L
0
L

T T T 1

T T 1

0 2000 4000 6000 0 2000 4000 6000
Trade Volume (No. of Shares) Volume-weighted average price
0 -
sl —
T 5
8 o
© i=3
o
o
- o
|
wn
B i
g
Q
<
o
(=]
S
- =3
©
[fe}
o -
g
[
N
o
(=]
i S 4
i=]
~N
(=3
o
£ - o -
]
o I T T T T T 1 I T T T T 1
0 5000 10000 15000 20000 25000 30000 0 1000 2000 3000 4000 5000

Figure 4.6: Skewness of predictors

4.3.2 Feature Engineering
Feature engineering, how the predictors are encoded, is an important part of data processing,
which often has a significant impact on the performance of models. Some of the feature

engineering tasks, such as adding/removing predictors, are informed by the modeler’s
knowledge of the problem domain at hand.

Adding Predictors

Based on the author’s basic knowledge of algorithmic trading and stock markets, 74 new
predictors are engineered. Table 4.2 presents the new predictors and their description.

45

Removing Predictors

To decreased computational time and complexity, some of the raw dataset’s predictors are
removed based on the author’s hypotheses that these predictors have no information, and
can be eliminated without compromising the performance of the models. The removed
predictors include row_id, security_id, initiator, and timel to time49

Table 4.2: Engineered predictors

Predictor name Description Type

shock_time_interval Liquidity shock time grouped in hours String
bid_mean The mean of best buy price (pence) Double
bid_sd The standard deviation of best buy price (pence) Double
ask_mean The mean of best buy price (pence) Double
ask_sd The standard deviation of best buy price (pence) Double
spread(t) The difference between (bid-ask) (pence) at event Double

time t
spread_mean The mean of spread (pence) Double
spread_sd The standard deviation of spread (pence) Double
bid_EMA3 The Exponential Moving Average (EMA) of the Double
last 3 bid prices (pence)

bid_EMA5 The EMA of the last 5 bid prices (pence) Double
bid_ EMA10 The EMA of the last 10 bid prices (pence) Double
bid_low The lowest bid price (pence) Double
bid_high The highest bid price (pence) Double
ask EMA3 The EMA of the last 3 ask prices (pence) Double
ask EMAS The EMA of the last 5 ask prices (pence) Double
ask EMA10 The EMA of the last 10 ask prices (pence) Double
ask_low The lowest ask price (pence) Double
ask_high The highest ask price (pence) Double
spread_EMA3 The EMA of the last 3 spreads (pence) Double
spread _EMA5 The EMA of the last 5 spreads (pence) Double
spread_EMA10 The EMA of the last 10 spreads (pence) Double
spread_low The lowest spread (pence) Double
spread_high The highest spread (pence) Double
tradeV _pt_count ratio The ratio between trade_volume/p_tcount Double
tradeVW _pvalue ratio The ratio between trade_vwap/p_value Double

46

Binning Predictors

The time(t) predictors measures time at event ¢ in HH:MM:SS.mmm. To simplify the
liquidity shock’s time (time50), it is binned into intervals of the form HH:MM to cover
the daily trading hours (e.g. 08:00-8:59, 09:00-9:59, ..., 16:00-16:59). The newly created
predictor, shock_time_interval, is used to replace the time50. The author hypothesizes
that the liquidity shock’s time could be a significant factor in predicting the resiliency of
the London Stock Exchange since it indirectly captures the status of other stock markets
worldwide (e.g. opening, closing, etc.).

Converting from Categorical to Dummy Predictors

The categorical predictors, shock_time_interval and transtypel to transtyped0, are re-
encoded into smaller bits of information called “dummy variables”. Each category gets its
own dummy variable that is a zero/one indicator for that group. This step is mandatory in
order to be able to apply data transformation to the individual predictors.

4.3.3 Data Transformations for Individual Predictors

The exploratory data analysis, Section 4.3.1, revealed the skewness of most predictors and
significant differences in their scales. Some of the learning algorithms used in this case
study, such as artificial neural networks and support vector machines, require the predictors
to have a common scale. Resolving predictors’ skewness is another issue that should be
investigated. This section presents the two major data transformations performed.

Centering and Scaling

The predictors are centered by subtracting their average value from all the values. The
centered predictors have a zero mean. Then, the predictors are scaled by dividing each
value by the predictor’s standard deviation. The scaled predictors have a common standard
deviation of one. Performing both operations is commonly referred to as normalization. It
should be noted that if data transformation is required to resolve skewness (e.g. Box-Cox
transformation), it should be performed first, and then, followed by centering and scaling.

47

Resolving Distributional Skewness

The Box-Cox transformation method [10] is used to resolve the predictors skewness. However,
as will be shown in Section 4.6, the predictive accuracy of some learning algorithms is
worsened by incorporating Box-Cox transformation in the data pre-processing pipeline. On
the other hand, Box-Cox transformation improves the predictive accuracy of other learning
algorithms. Therefore, the modeler should investigate the predictive accuracy of the models
with and without data transformation.

4.3.4 Data Partition

The proper allocation of data to different tasks (e.g., model /feature selection, model training,
model fusion, performance evaluation) is one of the important aspects of ensemble predictive
modeling. Figure 4.7 shows the partition of the available data. Stratified sampling is used
to maintain similar class distribution across all data sets.

Available
Dataset
(754,018 Obs)

Sell
(379,847 Obs)

Buy
(374,171 Obs)

Repeat the same for
the Buy Dataset

Test
(75,926 Obs)

Train
(303,921 Obs)

Train Train Model Final
(Levell) (Level2) Fusion Test
182,388 Obs) || (121,533 Obs){| (45,599 Obs) (30,327 Obs)

Feature/ Feature/
Model Sel. Model Sel.
(10,991 Obs) (10,016 Obs)

Figure 4.7: Data splitting

48

4.4 Model Building

Predicting the post-liquidity shock’s 50 Ask/50 Bid prices is a multi-target regression task
that can be formally described as follows:

Let X and Y be two random vectors, where X consists of d input predictors/variables
X1, Xg, ..., Xg and Y consists of m target outcomes Y7, Ys, ..., Y,,. The samples of the form
(X,Y) are assumed to be iid (independent and identically distributed) according to the
joint probability distribution P(X,Y) on X x Y where X = R? and Y = R™ are the input
and output space. In a sample (x,y), © = [r1,29,...,x4) and y = [y1, Y2, ..., Ym] are the
realizations of X and Y respectively. Given a set D = {(z!,¢'), ..., (2", y")} of n training
examples, the goal is to learn a model(s) h : X — Y such that given a an input vector z?,
it is able to predict an output vector ¢ = h(xP), which best approximates the true output
vector yP [87].

For this case study, we divide the input and output spaces based on the Ask/Bid prices
such that the goal is to learn a model(s) for each group hags @ Xask — Yask and hpiq :
XpBia = Ygig- The X 44 and Xp;4 input spaces are to be determined using feature selection,
Section 4.5. The Y, and Ypg;q are respectively represented by Asks;, Askss, ..., Askigo and
B’id51, Bid52, . B’idloo.

This section describes the modeling strategies used to predict the post-liquidity shock’s
50 Ask/50 Bid prices, and systematically inject model diversity at data, feature, and
structural levels. Model diversity at learning algorithm level is achieved by implementing
these modeling strategies using several learning algorithms.

4.4.1 Single-model Strategy

Train a model to predict Train a model to predict
all 50.Asks at once using all SQ Bids at once using
Train (Levell) dataset , Train (Levell) dataset
1
Asks' _>—> Asks' ﬁgtg% E Bids' _>—> Bids' g:gg%
Selected Model : Selected Model :
1 ' 1
Features ASK100 Features Bid100
1

Figure 4.8: Single-model strategy

49

In the single-model strategy, shown in Figure 4.8, one model is trained for each price
(M ask tevely / M Bidever,) to predict all 50 outcomes at once. This requires the development
of only two models per initiator’s dataset (Sell/Buy).

The strategy is represented by the equations:

YASk,levell == MAsk,levell (XAsk,levell)

YBid,levell = MBid,levell (XBid,levell)

Where }A/Asmevell and ?Bidkvell are matrices of the predicted Asksi jever,, ASKs2ieveys s
ASklOO,levell and BidSl,levelp BidSQ,levella ey BileO,leveh reSpeCtiVel}’- The XAsk,leveh /XBid,levell
are the selected features for each price. The ;e refers to using the partition of the available
data for [evel; models, see Figure 4.7. Levely data partition will be used to train models in
the cascading-model strategies, Section 4.4.3.

In theory, the learning algorithm used to implement this strategy should be able to cap-
ture the dependency between the outcomes, and hence, produce the best performance (min-
imum RMSE). However, few learning algorithms are capable of multi-target /multivariate
regression. An example for such algorithms is the feedforward neural network, which will
be used to implement this strategy using level; training dataset, Section 4.6.1.

4.4.2 Multi-model Strategy

Train a model for each Ask Train a model for each Bid
using Train (Levell) dataset using Train (Levell) dataset
Asks' —p» ' E Bids' — e)
Selected —»| Alakzl T Ask51 | Selected —»| B|\|/(115(;L T Bid51
Features —»| ode i Features— ols
Asks' —p , E Bids' —p - , .
Selected —» Al\s/lkzz Is Ask52 | selected —» Bl\'/?Sdz T Bid52
Features —»| ol i Features— ode
Asks' —p 3 E Bids' —p . ,]
Selected —»| AT\IAQSOIS Ask100 1 Selected —» B"sllzols Bid100
Features —»| oote ' Features— sl

Figure 4.9: Multi-model strategy

20

The multi-model strategy decomposes the multi-target regression problem into single-target
regression problems. Then, it trains a separate model for each post-liquidity shock’s Ask/Bid
price, as shown in Figure 4.9, using the same selected features for all models.

The 50 Asks’ models can are represented by the following equations:

YAsk51,level1 - MAsk51,level1 (XAsk,le'uell) (43)

YAsk52,level1 — MAsk52,level1 (XAsk,levell)

YAskmmlevell - MAskmo,Zevell (XAsk:,levell) (45)

Similarly, the 50 Bids’ models are represented by the equations:

YBidsy tevety, = MBidsy jevety (X Bid,ievel) (4.6)

YBidssicvels = MBidsy ievels (X Bid,ievel;)

YBidloo,levell - MBidmo,levell (XBid,levell) (48)

where Yask, sevets /Y Bidysevet, a0d Mask, tevets / M Bid, sever, arve respectively the predicted
Ask/Bid prices and trained Ask/Bid models at event t, ¢t € [51,100], using level; data
partition. The decomposition of the multi-target regression problem into single-target
regression problems gives the modeler unlimited options when it comes to what learning
algorithm can be used to implement this strategy. In Section 4.6.2, four different machine
learning algorithms, Multivariate Adaptive Regression Splines (MARS), stochastic Gradient
Boosting Machines (GBM), Support Vector Machine (SVM), and Random Forest (RF) will
be investigated to implement the multi-model strategy.

4.4.3 Cascading-model Strategies

Similar to the multi-model strategy, the two cascading-model strategies train a separate
model for each Ask/Bid price. However, they use different features for each model. The
strategies incorporate model fusion to build new models.

The cascading-model strategy 1, shown in Figure 4.10, trains new models for each
Ask/Bid price on an expanding features set by chaining the predicted post-liquidity shock’s
prices Ask;/Bidy, t € [51,99], using models trained on level; data, with the selected features

ol

from level, data partition. To avoid over-fitting, it is essential to use the models trained on
level; data to predict the prices using levely selected features (e.g. M asks, evely (X Ask.icvels))-

Use models trained on Stage One Use models trained on
Train (Levell) to predict Asks Train (Levell) to predict Bids
for the Train (Level2) dataset for the Train (Level2) dataset
Selected .I Ask51's Predicted Selected .I Bid51's Predicted
Features Model Ask51 Features Model Bid51
—> —>
Selected .I Ask52's Predicted Selected .I Bid52's Predicted
Features Model Ask52 Features Model Bid52
—> —>
1 1
1 1
Selected .I Ask99's Predicted Selected .I Bid99's Predicted
Features Model Ask99 Features Model Bid99
—> —>
Train a model for each Ask Stage Two Train a model for each Bid
using Train (Level2) dataset using Train (Level2) dataset
— 0 H '
Selected _y A;kzlls AskB1 Selected >| Bids1's Bids1
> odel eatures Model
. 1 Y
T] | e Tl e e v
— | Mode! (Bid51) Model
' '
SF+pred. Ask100's SF+pred. Bid100's
(Ask51+..+Ask99) Model Ask100 (Bid51+..+Bid99) Model Bid100

Figure 4.10: Cascading-model (strategy 1)

The cascading-model strategy 2, shown in Figure 4.11, uses the same approach but the
expanding features set is formed by chaining the predicted post-liquidity shock’s prices
with only the last three prices just before the liquidity shock.

o2

Use models trained on
Train (Levell) to predict Bids
for the Train (Level2) dataset

Use models trained on
Train (Levell) to predict Asks
for the Train (Level2) dataset

Stage One

Selected > Ask51's Predicted Selected > Bid51's Predicted
Features Model Ask51 Features Model Bid51
—> —>
Selected > Ask52's Predicted Selected > Bid52's Predicted
Features Model Ask52 Features Model Bid52
—> —>
1 1
1 1
Selected > Ask99's Predicted Selected > Bid99's Predicted
Features Model Ask99 Features Model Bid99
—> —>
Train a model for each Ask Stage Two Train a model for each Bid
using Train (Level2) dataset using Train (Level2) dataset
— , —
Ask48,Ask49, __p,| ASKS1'S Ask51 Bid48,Bid49, __ | Bid51's Bids1
Ask50 > Model Bid50 Model
Ask48,Ask49, —P ! Bid48,Bid49, —| _. ,
Asks0 + Pred. —p-| ASK5Z'S Ask52 Bid50 + Pred. —p»| Bid52'S Bid52
(Ask51) —p»| Model (Bid51) __p.| Model
; :
Ask48,Askd9, —») Bid48,Bid49, — el
Ask50+pred. —>A5k100 = Ask100 Bid50+pred. —»| Bid100's Bid100
(Ask51+..+Askog)—yp| Model (Bid51+..+Bid99) __y,| Model

Figure 4.11: Cascading-model (strategy 2)

The cascading-model strategy 1 Ask/Bid models are represented by the equations:

Viasksrdevels = Masks, sevels (X Ask.levels) (4.9)

Viaskspievels = Masksy tevets ([X ask.tevetss Masks, tevets (X Askievets)]) (4.10)
Viiskroodevels = Maskroo tevets ([X sk tevetss Masksy tevets (X asitevels)
M Askiss tevely (X Ask,levels)
.

M Askgg tevety (X sk, levels)]) (4.11)

23

YBidsy tevels = MBidsy tevels (X Bid levels) (4.12)

?Bid527level2 = MBidsg,levelg ([XBidJevelz) MBid51,level1 (XBid,levelz)]) (4 13)

YBidloo,levelg = MBidloo,levelg ([XBid,levelz ’ MBid51,level1 (XBid,levelz)a
MBidg,g,levell (XBidJevelg)a

ceey

MB'idgg,levell (XBid,level2>]) (414)

The cascading-model strategy 2 Ask/Bid models are represented by the equations:

Y/Askm,levelg = MAskm,levelg ([[A3k487 A8k497 ASkf}O]levelg]) (415)
YAsk52,level2 = MASk52,l€’U6l2 ([[A8k487 A8k497 ASkSO]levelz; MAsksl,leveh (XAsk,levelg)]) (416)

YAsklgo,levelg = MAskloo,levelg ([[A5k48> Askyg, ASkSO]levelg)
MAsk51,level1 (XAsk,levelg)7
MASksg,le’Uell (XAsk,leUelg)7

ceey

MAskgg,levell (XAsk,levelg)]) (417)

}A/Bidg,l,levelg = MBidsl,levelz (HBleLSa B'L.d497 Bid50]level2]) (418)
YBid52,level2 = MB’idsQ,l@UelQ ([[BZd48a Bid497 Bid50]level2) MBidsl,levell (XBid,levelg)]) (4 19)

YBidloo,levelg =M Bidigo,levels ([[B tdyg, Bidyg, B Zd50] levels

MBid51 Jevely (XBid,levelg))
MBid52,levell (XBid,le'Uelz))

ceey

M Bidgo tevel, (X Bidjevets)]) (4.20)

o4

4.4.4 Market-based vs Security-based Approach

Given our multi-target regression problem for 102 securities/stocks from the London Stock
Exchange, there are two possible approaches: market-based or security-based. In a market-
based approach, Ask/Bid models are developed to predict the post-liquidity shock’s prices
for all 102 securities. In a security-based approach, different Ask/Bid models are developed
to predict the post-liquidity shock’s prices for each security of the 102 securities. Table 4.3
lists the number of required models to be developed for each approach using only one learning
algorithm. Given the massive number of models required by the security-based approach
(30,804 models, not including the model selection step), the market-based approach is chosen
to implement our modeling strategies for two main reasons. Firstly, to minimize the cost of
using the Amazon Elastic Cloud EC2 for model selection, and training time. Secondly, we
hypothesize that the market-based approach will reasonably capture the dynamic of the
stock market following liquidity shocks, and any performance gains might be achieved by
the security-based approach will be diminished by its computations cost.

Table 4.3: Number of required models per strategy for market-based and security-based
approaches (for only one learning algorithm)

Modeling strategy Market-based models Security-based models
Single-model 2(Ask/Bid) 2(Ask/Bid) x 102 = 204
Multi-model 2(Ask/Bid) x 50 = 100 2(Ask/Bid) x 50 x 102 = 10200

cascading-model st1 2(Ask/Bid) x 50 = 100 2(Ask/Bid) x 50 x 102 = 10200
cascading-model st2 2(Ask/Bid) x 50 = 100 2(Ask/Bid) x 50 x 102 = 10200
Total models 302 30, 804

4.5 Feature Selection

Given the large number of observations and relatively high-dimensional dataset, a Genetic
Algorithm (GA) feature selection approach is employed to reduce the computations cost
of training a large number of models. To handle the intensive computations, an Amazon
EC2 instance with 32 cores and 65 GB RAM is used. To minimize over-fitting the GA
to the features, 3-fold cross-validation (formed using stratified sampling to maintain the
same securities distributions across all folds), shown in Figure 4.12, is used for Ask/Bid
prices’ features. The GA has maximum generations of 100, a population of 5 per generation,

95

0.8 crossover probability, and 0.1 mutation probability. To assess the performance of the
selected features for each population, a linear regression model is fit, and the RMSE and R?
are calculated for the out-of-fold samples. The set of features with the minimum average of

RMSE are selected.
Feature/Model Selection Dataset
Train (Levell, 10,991 Obs.)
Perform GA

Iteration 1 Test Train Train (100 Generation,
Population of 5/Gen.)

_Center & Scale‘ P Center & Scale Features

Center & Scale

Perform GA
Iteration 2 Train Test Train (100 Generation,
Population of 5/Gen.)

Center & Scale
Perform GA

Iteration 3 Train Train Test (100 Generation,

Population of 5/Gen.)
Center & Scale Features Center & Scale

Figure 4.12: GA feature selection using 3-fold cross-validation

It should be noted that combining GA with model’s performance (e.g. linear regression,
random forest, etc.) and cross-validation for relatively a large dataset (e.g. 10,991 observa-
tion and 184 features) requires powerful resources to handle the intensive computations.
For example, we started with 10-fold cross-validation and a population of 50 per generation,
but even a powerful Amazon EC2 instance with 32 cores and 65 GB RAM could not handle
the computations and crashed. We had to reduce the number of folds and population per
generation several times to complete the feature selection process.

Ideally, the feature selection process should be applied to each post-liquidity shock’s
Ask/Bid price. However, to reduce the computations cost, we implement the feature
selection step to only the Askigy/Bidioy prices, and use the selected features for the
remaining post-liquidity shock’s prices.

Figure 4.13 shows the Askjgy’s GA feature selection. Out of 184 features/predictors,
34 were selected. The external performance of the selected features is RMSE = 1.775
and R?=1.0. The Bidyy’s GA feature selection performance is shown in Figure 4.14. 44
predictors were selected out of 184 with RMSE = 1.834 and R?*=1.0. The Ask/Bid selected
features’ names are shown in Figure 4.15.

o6

1.82- °

181- :

° ° ° Estimate
. " - External

. « Internal

1.79+ ’ ::." oease oce "..:'-'.l".:'.o-.--:-'-.0"0“-Oo-'--o-.-...oo.o.'..'..'..:.'......-' *°

1.78 - . o

1774 | | |
0 25 50 75 100
Generation

Figure 4.13: Ask100’s GA feature selection

1875-
c 2" X Estimate
@ 1.850 - °. e e - External
E . v000e8%0000e®®00® © -.-n...nn:n.. v « |Internal
1.825 - - 55— = . ——————

1.800 - , :
0 25 50 75 100
Generation

Figure 4.14: Bid100’s GA feature selection

57

spread_sd

spread_low
tradeVW_pvalue_ratio
S e _au
spread_h|gh ask hlgh - trade _pVa Ue_rat|0
spread_sd e: <
Hoean | Spread_EMA3 S ~'shock time intervali6:00-16:59
ask_low O S d EMA3
| pread_ bid_mean
~ask_EMAS5 Bid d
spread_EMA10SP 8) —
tradeV_pt_count_ratio ask_high
ask_ EMA3 .
ask_EMA5 Spread EMAS ask EMAL0 tradeg/p_rg% é:OEJII;l/'IEA%aUO

shockﬁtlerg%ilgt\';\elrval15:00—15:59
spread_mean bid_EMA3
shock_fime_interval14:00-14:59

Figure 4.15: Ask100’s (left)/ Bid100’s (right) selected features

4.6 Model Selection and Training

As advised by the proposed framework for ensemble predictive modeling, a proper sampling
technique, such as cross-validation with stratified sampling, should be employed to produce
quantitative assessments of the models to help us make the choice. In the first part of this
section, the focus is on selecting the best hyper-parameters and using them to train the
models. The selection of learning algorithms will be discussed at the end of the section.

Similar to the feature selection step, model selection should ideally be applied to all
post-liquidity shock’s Ask/Bid prices. However, to reduce the computations cost, the model
selection step is implemented to the Askygo/Bidigg prices for each learning algorithm and
modeling strategy. Given the intensive computations involved, 10-fold cross-validation (with
stratified sampling) is applied to a relatively small sample of the dataset (level; dataset:
10,991 observations and levely dataset: 10,016 observations), as shown in Figure 4.16,
to determine the best hyper-parameters for each learning algorithm. To understand the
effect of different combinations of hyper-parameters values, the performance of the hyper-
parameters grid-search is visualized. The performance’s uncertainty of the optimal model
is also visualized using its resampling accuracy. Another important aspect this section
investigates is the effect of data pre-processing with and without data transformation (e.g.
Box-Cox transformation to resolve the predictors’ skewness) on the performance of the
learning algorithms. The model selection tasks are performed on an Amazon EC2 instance
with 32 cores and 65 GB RAM.

o8

Feature/Model Selection Dataset
Train (Levell, 10,991 Obs.

Train a model for each
Hyper-parameters
combination

Iteration 1

(Transform), J
Center & Scale (Transform),
Center & Scale

L [|
l |

Train a model for each
Iteration 2 [Trainjf Test || TrainfiTrainjfTrainjTrainfTrainfiTrainliTrain|fTrain Hyper-parameters
combination
(Transform),

Center & Scale

Train a model for each
Hyper-parameters
combination

Iteration 10 |Train{fTrain||Train{{Train|| Train{[Train|Train|{Train|[Train|f Test

(Transform), Center & Scale Features

<

»
s

(Transform),
Center & Scale

Figure 4.16: Model selection using 10-fold cross-validation

The best hyper-parameters for each learning algorithm are then used to train all post-
liquidity models for each Ask/Bid price on larger training data sets (level; dataset: 182,388
observations and levely dataset: 121,533 observations). To minimize the financial cost of
renting Amazon EC2 instances, the training of models is performed on a local PC with 6
cores and 8 GB RAM.

4.6.1 Single-model Strategy

As discussed in Section 4.4.1, in this strategy one model is trained for each price (Mas jever, /
MBidjever,) to predict all post-liquidity shock’s 50 prices at once. This strategy is im-
plemented using a feedforward Neural NETwork (NNET), which is one of few learning
algorithms capable of multi-target regression. A single-layer feedforward neural network [9]
has two main hyper-parameters: the weight decay and number of hidden units. Before
they are fed to an NNET, predictors should be on the same scale; hence, they should
be normalized (centered and scaled). The effect of predictors’ transformation, to resolve
skewness before normalization is also investigated. The number of predictors for Ask models
is 34 while for Bid models are 44. Level; model selection dataset, with 10,991 observations,
is used to select the Ask/Bid neural network’s hyper-parameters, while level; train dataset,
with 182,388 observations, is used to train the Ask/Bid neural networks.

29

#Hidden Units
RMSE R r

100 + —— 150 x 200 v — 2 g |—Requared
2 9 ~
S | | | | | | S o
=1 o
3 0 a7
= 100 - - 2 S
7 2 9 8
» 90 o D S —
%] o s
8 80 - 8 3

— Yol
o T ——— S
70 = S
s I T T T T T g — O og® 90 © O o 90 ®°o
o T T T T T T T T T

000 001 002 003 004 005 20 40 60 80 100120 0.990 0.995 1.000
Weight Decay
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.17: Bidioo’s NNET [evel; model selection with normalization only

#Hidden Units

RMSE Rsquared
100 « —— 150 x 200 v — S | s
N
.5 | | | | 1 | g 7] g |
8 70 L o S
= o1 > 8- o
T 60 Y =] S
> @ o
o 50 . & 3 g |
] N o 3"
S < S
o 40 - 8 i § |
L 30 L 2
(é) T T T T T T 8 7 ®0 Ppo® o H 00 0o ® ®
o © T T T T T T T T T T T
000 001 00z 003 004 005 -20 0 20 40 60 80 0.997 0999 1.001
Weight Decay
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.18: Bidygp’s NNET level; model selection with transformation and normalization

Figure 4.17 shows the results of Bidioo’s NNET model selection with predictors’ nor-
malization only as a data pre-processing step. Figure 4.17a shows the effect of different
combinations of the number of hidden units and weight decay, while Figure 4.17b shows the
uncertainty of the optimal model’s performance using the 10-fold cross-validation accuracy.

60

Similarly, Figure 4.18 shows the model selection results of the Bidipo’s NNET model with
predictors transformed, using Box-Cox method, and then normalized. It should be noted
that due to the current technical limitations of the used R language’s caret package, the
model selection for the NNET models are performed using a single-target (Askoo/Bidino)-
The optimal hyper-parameters of the NNET Bid;g model (with Box-Cox transformation
and/or normalization) are presented in Table 4.4. Clearly, applying Box-cox transformation
to predictors before normalization has significantly improved the accuracy of Bidyg’s NNET

model.

Table 4.4: The optimal hyper-parameters of the Bidygy’s NNET level; model (with Box-Cox

transformation and/or normalization)

Preprocessing size decay RMSE R2 RMSE SD R2 SD
Norm. 150 5e-04 68.50369 0.99556 16.02323 0.00204
Trans. & Norm. 150 5e-05 27.03484 0.99914 16.49858 0.00073
#Hidden Units

100 o 150 x 200 . RMSE §_ Rsquared

_g 1 l l l l l S

3 < 8

= 40 S S

g Z°

I 35 - <

% 8 N Q

O 30 - 2 87

o

w25

(é) | I | | | | §— ® oo °© o o — o O o0Qo ©

4 000 001 002 003 004 005 Tt Pro ot

Weight Decay

(a) Hyper-parameters grid-search

0 10 20 30 40 50 0.9980 0.9990 1.0000

(b) Optimal model resampling accuracy

Figure 4.19: Askygo’s NNET level; model selection with transformation and normalization

The same model selection process is repeated for the Askigp’s NNET model with Box-Cox
transformation and normalization, as shown in Figure 4.19. The optimal hyper-parameters

and their results are presented in Table 4.5.

Table 4.5: The optimal hyper-parameters of the Askigo’s NNET level; model (with Box-Cox
transformation and normalization)

Preprocessing size decay RMSE R2 RMSE SD R2 SD
Trans. & Norm. 200 5e-05 22.31050 0.99947 9.99622 0.00045

The optimal Askigg/Bidigo hyper-parameters are then used to train the two Asks/Bids
NNET models on the levell train dataset, with 182,388 observations. Given the large
number of observations, the NNET’s number of iterations becomes critical concerning
training time and model’s accuracy. To select the best number of iterations, based on
model’s accuracy (RMSE), several Bid’s NNET models, with iterations 1000, 2000, 3000,
and 5000, are trained using levell dataset. Then, a validation dataset is used to compare
the accuracy of the models, as shown in Figure 4.20. The best performing number of
iterations, 3000, is then used to train the Ask NNET model. Due to its high computations
cost, the NNET is only used to implement the single-model strategy.

25-

Iterations
1000
—A- 2000
—=-3000
5000

20 -

RMSE

15-

10 -

(= cwar s o e A RS R AR L 8 G e iainin

T T T T T T
50 60 70 80 90 100

Bid's index

Figure 4.20: Bids NNET’s RMSE using different iterations

62

4.6.2 Multi-model Strategy

The multi-model strategy, discussed in Section 4.4.2; trains a separate model for each
post-liquidity shock’s Ask/Bid price. Grid-search and 10-fold cross-validation is applied to
the level; model selection data set (with 10,991 observations and 34/44 selected features
for Ask/Bid prices), to choose the best hyper-parameters for four learning algorithms. The
algorithms are Multivariate Adaptive Regression Splines (MARS), Stochastic Gradient
Boosting Machines (GBM), Support Vector Machines (SVM), and Random Forest (RF).
The primary objective of using different learning algorithms is to inject model diversity at
the learning algorithm level. A second objective is to compare the performance of these
learning algorithms, given a relatively large number of observations, concerning accuracy and
computational cost. Model selection across the learning algorithms, based on the outcome of
the comparison, is then performed to select algorithms for levels cascading-model strategies.
To have a fair comparison, the samples in the ten folds must be exactly the same for all
learning algorithms, and sampled using stratified sampling to maintain the same securities
distributions. Similar to the single-model strategy, the effect of predictors’ normalization
with/without Box-Cox transformation on the performance of the algorithms is investigated.

Model Selection for the MARS Algorithm

The MARS algorithm [28] has two hyper-parameters, the number of retained terms and
the degree of predictors involved in the hinge function.

Product Degree RMSE Rsquared
1 o 2 X 3 z — 0
o
,g | | | | | ?I—)]
©
=40 4 = ©
© | — Lo
2 \\ > <
S 30 | - 25 &
| | s -
f 204 | - o) 3
9 | ™ F
| L - [0]
© 104 | n o &
L (U RSN U T o
(é) T T T T — g— °BQ® o 00 E— 00 o O@O
o 10 20 30 40 ! ! e Pt
15 2.0 25 0.999995 0.999998
#lerms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.21: Bidigo’s MARS level; model selection with normalization only

63

Product Degree RMSE Rsquared
1 o — 2 x 3 v —
=
o ! ! ! ! ! o | .
p=} - o
5} ¥ o
% 250 — ~ > § _
2 o
> 200 o L % 3 =
g 150 - g .
pudt — — N
S 100 S S _
w207 B S|
2 0 ~ g — ®% @0) o ° W00 D
x T T T T T T T T T T
8 9 10 11 0.99990 0.99993
#Terms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.22: Bidipo’s MARS level; model selection with transformation and normalization

The results of model selection for Bidygy’s MARS algorithm, with only normalization
applied to the predictors, is shown in Figure 4.21. Figure 4.22 shows the same model selection
but with both transformation and normalization applied to the predictors. Opposite to the
feedforward neural network results, Table 4.4, adding Box-Cox transformation before the
normalization of predictors has significantly degraded the accuracy of the MARS algorithm.
Table 4.6 lists the optimal hyper-parameters for the two Bidigg’s MARS models and their
performance.

Table 4.6: The optimal hyper-parameters of the Bidigp’s MARS level; model (with Box-Cox
transformation and/or normalization)

Preprocessing #Terms degree RMSE R2 RMSE SD R2 SD
Norm. 3 1 1.80114 0.99999 0.23290 7.9193e-07
Trans. & Norm. 7 2 8.99145 0.99993 0.71213 1.1913e-05

Similarly, the model selection process, with predictors’ normalization, is applied to the
Askiopo MARS model to tune the algorithm’s hyper-parameters. The optimal Ask MARS
model’s hyper-parameters and its performance are listed in Table 4.7.

64

Product Degree RMSE Rsquared
1 o — 2 x 3 v —
= 0| .
o ! ! L L L - o
T 200 - 3
o 3
T 2 o g
g 150 L g 21 |
2] (0] Te}
100 - 3
2 o, T
O 50 L S ~
L o
(é) O_I ' ! ; I ™ g_ 0 ®gp 0000 %— @000 ¥p 0
x 10 20 30 40 1T T T 11 o T T T T
1.21.41.61.82.02.2 0.999996 0.999998
#Terms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.23: Askioo’'s MARS level; model selection with normalization only

Table 4.7: The optimal hyper-parameters of the Askioy’s MARS level; model (with nor-
malization only)

Preprocessing #Terms degree RMSE R2 RMSE SD R2 8D
Norm. 3 1 1.75041 0.99999 0.18818 5.9686e-07

The optimal Askigo/Bidigo MARS’s hyper-parameters are then used to train 50 Ask/50
Bid MARS models on the level; training dataset, with 182,388 observations.

Model Selection for the GBM Algorithm

The Stochastic Tree-Based GBM [29] learning algorithm has five main hyper-parameters
that control the complexity and performance of the GBM model. These are: the loss
function (distribution), the number of iterations (n.trees), the depth of each tree (interac-
tion.depth), the shrinkage (or learning rate), and the subsampling rate (bag.fraction). For
regression problems, the gaussian distribution is used. The subsampling rate (bag.fraction)
of 0.5 is recommended by [69]. The remaining three hyper-parameters are tuned for the
Askyoo/ Bidigpo GBM models, using 10-fold cross-validation.

65

Shrinkage

0.001 o 001 v ——
0.005 x ——— 01 o ——
1 2 3 4 5 6
| | | | | L1 | | | | |
n trees: 5000 n trees: 7000 600 o RMSE Rsquared
—~ . I~ —]
= 2 500 o
-% . - 400
- — 300 o
=2 . 200 o S 4
g - — 100 = - =
, . F=e—a—w w7 > O
@ n trees: 1000 n trees: 10000 @
2 600 - - .
G 500 \\ﬂ_e - o 9 S -
= 400 = = B
W 300 =
200 =
= 100 -
x o N s s K 3
T T T T 1 L B S ®® o o© © 7 o e
1 2 3 4 5 6 T T T T T T T T T
0 5 10 15 20 0.9997 0.9999
Max Tree Depth
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy
Figure 4.24: Bidygo’s GBM level; model selection with normalization only
Shrinkage
0.001 o 001 v ——
0.005 x ——— 01 o ——
1 2 3 4 5 &6
| | | | | L1 | | | | |
n trees: 5000 n trees: 7000 RMSE Rsquared
- SR
S] - 400 ©
. - 300
= . - 200 o 8 |
. - 100 - e
5 liw—e——eee C5° 5 3 S
a n trees: 1000 n trees: 10000 7}
8 600 - .
Q 2007 \\’\V—e—, N 03 S
= 400 L S S
W 300 =
200 =
= 100 -
X g4 Mg_g_g —e——a 8 ——a| 8
T T T T T L T T T T S ®® ° o o—-7o oV o®
1 2 3 4 5 6 T T T T T T T T T
0 5 10 15 20 0.9997 0.9999
Max Tree Depth
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.25: Bidioo’s GBM level; model selection with transformation and normalization

66

Another important aspect when comparing different models of a learning algorithm,
which has an internal element of randomness such as the GBM’s subsampling rate, is setting
the same random seeds for all models to have the same subsampled observations. Setting
the seed becomes especially important if the 10-fold cross-validation is being executed using
parallel computing over several numbers of cores (e.g. an Amazon instance with 32 cores).
In this case, the same random seeds should be passed to all computing processes. The
results of model selection for Bidioy’s GBM algorithm with normalization only are shown
in Figure 4.24. Figure 4.25 shows the results with both transformation and normalization
applied to the predictors. Table 4.8 indicates that applying Box-Cox transformation prior
to normalization resulted in the same performance and hyper-parameters.

Table 4.8: The optimal hyper-parameters of the Bidigy's GBM level; model (with Box-Cox
transformation and/or normalization)

Preprocessing Shrinkage Depth Trees RMSE R2 RMSE SD R2 SD
Norm. 0.005 1 7000 7.50759 0.99993 4.69944 0.00009
Trans. & Norm. 0.005 1 7000 7.49348 0.99993 4.68744 0.00009
Shrinkage
0.001 o 001 ¥
0005 x ——— 01 o ——

1 2 3 4 5 6
L1 1

| | | | |
n trees: 7000 RMSE Rsquared

| | | |
n trees: 5000

—_ . - 600
S = 500 5]
e}] 400 o 7
8 . 300 o °
= = -200 S |
8 _ -100 8 3
| B P A — e a we—-e——al) > o S
a n trees: 1000 n trees: 10000 o & | 3
S 600 B g o =4
O 500 — \\’\‘,_Q_e = [a Rl S |
= 400 - S g
w300 = ~ =
9D 200 - S S
= 100 X~ - = «
04 0 - —a e 8 |/ we o o 4 o o
T T T T T T T T T T T S °
1 2 3 4 5 6 T T T T T T T T T
0 10 20 30 0.9992 0.9996 1.0000
Max Tree Depth
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.26: Askigo’s GBM level; model selection with transformation and normalization

67

Although the Box-Cox transformation of predictors, to resolve the skewness, before
normalization has the same performance as applying normalization only, the transformation
is applied to the GBM models to inject diversity at the data pre-processing level, opposite
to the MARS models, where only normalization is used. Figure 4.26 shows the model
selection results for the Askigg’s GBM model. The model’s optimal hyper-parameters and
its performance are listed in Table 4.9.

Table 4.9: The optimal hyper-parameters of the Askigo’s GBM level; model (with Box-Cox
transformation and/or normalization)

Preprocessing Shrinkage Depth Trees RMSE R2 RMSE SD R2 SD
Trans. & Norm. 0.005 1 10000 9.12861 0.99987 7.97573 0.00025

The optimal Askjgo/Bidigo GBM’s hyper-parameters are then used to train 50 Ask/50
Bid GBM models on level; training dataset, with 182,388 observations.

Model Selection for the SVM Algorithm

SVMs [91] for regression use a threshold (denoted as €), set by the modeler, to select the
data points that contribute to the regression fit (data points with an absolute residual
greater than e contribute to the regression fit). The choice of ¢, as will see in this section,
has significant implications on the SVM model’s performance and training time, especially
for a relatively large number of observations. Other hyper-parameters are defined by the
type of kernel selected. For this case study, an SVM with a radial basis function is used,
which has two hyper-parameters, o and Cost, that control the complexity of the model.

Similar to the MARS and GBM models, model selection, using 10-fold cross-validation
and grid-search, is performed for Bidygg price to select the optimal ¢ and Cost, given two
different pre-processing steps. This process is repeated for three € values (1, 0.1, and 0.01).

Figure 4.27 to Figure 4.32 show the results of the Bidigo’s SVM model selection with
predictors transformation and/or normalization for the three € values (1, 0.1, and 0.01),
respectively.

68

Sigma RMSE Rsquared
2710 0 ——— 2r-4 O 8
211 x ——— 20 -6 S o |
—~ 2n=-12 v ——— < <
= o
2 o
© l l l l l ® 8
% 70 = —-——w5——+=-B—e5——®8——5 | %\ S
=~ 650 o——o——o——o——o—o——o0—o—o | g o 9
0 o s
g 600 — - = | o
(_)/ 550 — - o
(_L}J) B T T T T a § — o Owmo % o — o ® R®o
s A A A A A T 1T 17T 171 T T T T
@ 2% 28 2710 2M2 2n4 480 500 520 0.88 0.90 0.92 0.94
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy
Figure 4.27: Bidigo’s SVM level; model selection (e = 1) with normalization only
Sigma RMSE Rsquared
2710 o —— 2r-4 O o
M-11 X ——— 27 -6 S S
_ 712 v o S o
c o o —
S S S
T I I I I I g - o |
§ 750 4 —8—8 85885858858 | % P ©
< _ L o o |
7 e T -8 ¢
tln o o o
v 600 4 x—=x — 0 S
© 550 - 8 °
© 500 - S S
o
B 0T T T T T 3 S7c cado VoMo o o0 o
o
S 2N N 271 2712 2714 T T T T T T T T T
74 ° 8 0 400 450 500 550 0.935 0.945 0.955
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.28: Bidigo’s SVM level; model selection (e = 1) with transformation and normal-
ization

69

Sigma RMSE Rsquared

2710 o —— -4 o © g

2711 x 27 -6 S - S
—~ 2n=-12 v ——— ©
c o
o © 8 —
= | | | | | S
- 30w 855 5 v 5 a8) S 4
T 250 - - 2 3 ©
? O S| S |
1, 200 - ol =
8 150 - 8 4 g |
O 100 - ° D
W 50 7 . . . — - S o o0o0 ~o{/ & o oam
s N N A A A T T T T T T T 1
x 28 2M0 22 2M4 50 60 70 0.99700.99800.9990

Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.29: Bidigo’s SVM level; model selection (e = 0.1) with normalization only

Sigma RMSE Rsquared

27~=10 o ——m 2h-4 O

2011 X ——— 27 -6 . |
— 2n-12 v) _|
S ° g |
T ! ! ! ! ! 8

0—s—8—8—8—8—8—8—8—~H b
2 100 - = 34 S |
< c 3
> O o
&y 80 - o S
%] g _ g
8 60 1 4 X B S
o w T N
(L}J) 40 T T T T i SH7° cwmeoo © 70 8e@ "o
S 2N N 271 2712 2714 T T T T T T T T
o ® 8 0 38 40 42 44 0.9985 0.9987
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.30: Bidjpp’s SVM level; model selection (e = 0.1) with transformation and
normalization

70

Sigma RMSE Rsquared
22-10 o ——— 27 -4 o = o
2711 x ——— 27 -6 o S -
= 7”12 v — 9 3
2 P
= | | | | | & - 3
=] —8—8—8—8—&8—8—&8—&8—= 2 o 8
(_>U 250 - — 2 ﬂ | ~
> 200 B 8 3 S
© 100 - 0 -
© 50 = =
(.L}J) 0 - - 8 - @008 o © o ° 0o % ®
o
s N N ~ N A T T 1 T T T T 1
o 276 2"8 2010 22 2M4 4 6 8 10 0.99990 0.99996
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.31: Bidjgo’s SVM level; model selection (e = 0.01) with normalization only

Sigma RMSE Rsquared
27-10 o ——— 2r-4 o
2011 X ———— 2" -6
_ 712 v
c o
s o g
S > " S
=)
£ 60 ~ S o
0 o v _| S |
8 40 - — o 8
O 20 _
N—r
(L}J) g 1 D RSP o Ro® o®
S 2 2N 271 o712 2714 T T T T T T T T
o 6 8 0 50 55 60 65 0.999960 0.999970
Cost
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.32: Bidjpp’s SVM level; model selection (¢ = 0.01) with transformation and
normalization

Table 4.10 presents the optimal model’s hyper-parameters and performance for each value
of € and pre-processing method. The results indicate that applying Box-Cox transformation
to predictors, before normalization, results in a slight performance improvement, but

71

considerably different models. The choice of a smaller € significantly increases the model
performance.

Table 4.10: The optimal hyper-parameters of the Bidioy’s SVM level; model (with Box-Cox
transformation and/or normalization, and different values of Epsilon (¢))

Preprocessing Epsilon Sigma Cost RMSE R2 RMSE SD R2 SD
Norm. 1.0 276 26 509.5908 0.91887 11.04999 0.01210

Trans. & Norm. 1.0 2-10 26 4571774 0.94578 30.68183 0.00374
Norm. 0.1 276 26 56.40770 0.99833 5.09217 0.00048

Trans. & Norm. 0.1 210 29 4212075 0.99869 1.45918 6.6202e-05
Norm. 0.01 212 29 6.88528 0.99996 1.42417 1.9209e-05

Trans. & Norm. 0.01 2~ 215 590125 0.99997 0.28531 2.9439¢-06

To investigate the effect of €’s value on the model’s training time, for a relatively large
dataset, the optimal hyper-parameters of the Bidigo’s SVM models with e = 1 and € = 0.1
are applied to level; training dataset, with 182,388 observations. The training is performed
on a local PC with 6 cores and 8 GB RAM.

Table 4.11 shows that training an SVM regression model, using a large dataset, takes
a very long time. A small reduction in €’s value results in an enormous increase in the
training time. For the purpose of this research, the computation cost of training 100 SVM
Ask/Bid models, just for levely, is considered unacceptable; and therefore, the SVM learning
algorithm is abandoned.

Table 4.11: Training time for a SVM model with different € values (level; dataset with
182,388 observations)

Epsilon Time per model Estimated time for all 100 Bid/Ask models

1 8.73 hours 8.73 hours x 100 = 36 days
0.1 3.72 days 3.72 days x 100 = 372 days

Model Selection for the RF Algorithm

Random forest [12] learning algorithm has a major tuning hyper-parameter called m,.,,
which is the number of randomly selected predictors to choose from at each split. For a

72

regression problem, Breiman [12] recommends setting my,., to the number of predictors
(P) divided by 3. Although RF is relatively insensitive to different values of my,, around
the recommended value, grid-search and cross-validation are used to select the optimal
My, value. A secondary hyper-parameter is the number of trees to grow. Figure 4.33 to
Figure 4.35 show the results of the Bidig’s RF model selection with 1000, 3000, and 5000
trees, respectively. Box-Cox transformation and normalization are applied to the predictors.

. A A RMSE Rsquared
c
=i =
= ™ o -
8 80 — — S 8
8
7 60 - 2z o g
2 w0 §°)
S - 8.
w20 - © <
%)
=
= 0 - I T a g 1 @8 o o o o 470 o o®
T T T T T T
> 10 0 5 10 0.99990 1.00000
#Randomly Selected Predictors
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy
Figure 4.33: Bidgo’s RF (1000 tree) level; model selection
- A A RMSE Rsquared
c
2 o
= ™ (=}
S 80 - e S
8
> 60 - B 2 o 8
@ B S S
[%2] jo <
S 40 - g
o = g |
w20 - o 8
) N
S . . | .
o T T S o o © o - o ©° o
5 10 1T T 11 1T 1T 17T T 17T
1 2 3 4 5 0.9999750.999990 1.00000!

#Randomly Selected Predictors

(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.34: Bidoo’s RF (3000 tree) level; model selection

73

| | RMSE Rsquared
S 38
i) ™ _| S
b= o
© — - ©
] 80
(_5 o
> 60 = > N S -
| = o o
(%] 7 ~
8 40 - o
_ o
S " 3- S -
w 20 - «
2
@x 0 T T B g = & ° o o o - 70 o o@
T T T T T T
1
5 0 0 5 10 0.99990 1.00000

#Randomly Selected Predictors

(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.35: Bidigo’s RF (5000 tree) level; model selection

The results of the Bidigy’s RF level; model selection with the three values of number of
trees are listed in Table 4.12. Although the number of trees appears to have no significant
effect on the RMSE, the RMSE standard divination for the 3000 tree model is lower than
the other two models. Therefore, the hyper-parameters my,, = 5 and n.trees = 3000 are
selected.

Table 4.12: The optimal hyper-parameters of the Bidig’s RF level; model (with Box-Cox
transformation /normalization and different number of trees)

n.trees mtry RMSE R2 RMSE SD R2 SD Model size Time

1000 7 4.03995 0.99998 3.40319 3.9263e-05 0.22 GB 0.5 hours
3000 5 3.06172 0.99999 0.97509 5.5409e-06 0.66 GB 1.12 hours
5000 7 4.09987 0.99998 3.48991 4.0441e-05 1.10 GB 37.73 hours

The table also lists the model size and computation time, on an Amazon EC2 instance
with 32 cores and 65 GB, using level; model selection dataset with 10,991 observations.
The selected hyper-parameters are then used to train the one Bid model, on a local PC with
6 cores and 8 GB, using the level; training dataset with 182,388 observations. However,
the available RAM (6 GB) could not handle the required model size with 3000 trees and a
large number of observations. The n.trees was reduced to 1000, but the computer crashed

74

again. Although RF models can be trained on the Amazon EC instance, with enough RAM
and cores, the estimated high financial costs, due to long training time of 100 Ask/Bid
RF models, is considered unacceptable for the purpose of this research; and therefore, the
random forest learning algorithm is abandoned.

In this section, model selection using grid-search and 10-fold cross-validation was
performed for four learning algorithms (MARS, GBM, SVM, and RF). Out of the four, only
MARS and GBM algorithms are selected to implement the multi-model strategy, and train
Ask/Bid post-liquidity shock’s models using level; training dataset. The trained models
will be utilized in the next section to implement level, cascading-model strategies.

4.6.3 Cascading-Model Strategies

As explained in Section 4.4.3, the two cascading-model strategies use the predictions of
level; models to train new post-liquidity shock’s 50 Ask/50 Bid prices for levels dataset,
with 121,533 observations. Similar to level; models, the model selection process is reapplied
to the new features of the Bidygo/Askio prices using levely, model selection dataset, with
10,016 observations.

Product Degree RMSE

Rsquared
1 o — 2 X 3 8
= &
o 1 1 1 1 1 © 4 ®
= 4
S 250 4 | - - Q
3 4 L = i
§ 200 | 5 v - &
& 150 - | N 8 ©
(2] |
S 100 4 | - o g -
(@) | a
o500 | -
IR I - 8
= T T T T T o #° o o T ° ® ol
(nd 10 20 30 40 I I I I [o I I I I I I
1.7 1.8 1.9 2.0 2.1 0.9999962 0.9999968
#Terms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.36: Bidjgo’'s MARS levels model selection (cascading strategy 1)

75

Product Degree RMSE Rsquared
1 o — 2 x 3 v — 0 -
%\ | | | | | i
g T .
=300 - B 2 o4 B
> ? -
&y 200 - o]
2 - .
G 100 - o S -
L o
(é) 0 _I - o @Po o0 0 o O o o o @
x 10 20 30 40 1T 1T T 1T T T T T T
1.71.81.92.02.12.22.3 0.9999955 0.9999965
#Terms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.37: Askioo’s MARS levely model selection (cascading strategy 1)

The cascading-model strategy 1 trains a new model for each post-liquidity shock’s
Ask/Bid price on an expanding features set by chaining the predicted post-liquidity shock’s
prices Bid;/Ask:, t € [51,99] with the selected features from level, dataset. So, the
number of features for Bidgy/Askigo models are 93/83. The model selection results for
Bidygo/ Askigo are shown in Figure 4.36 and Figure 4.37, respectively.

Product Degree RMSE Rsquared
1 o — 2 x 3 v — ©
= S
s | | | | | é 7
+~ O —
8 250 - -
8 200 - - = g
7 2 - &
@ 150 - g °
S 100 - g -
O N]
I 50 = -
o
%) 0 _| T T T T 3 © @o © o % — ° © 4090
(nd 10 20 30 40 I I I I I o I I I I I I
1.7 18 19 2.0 2.1 0.9999962 0.9999968
#Terms
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.38: Bidjgy’'s MARS levels model selection (cascading strategy 2)

76

=
o

Product Degree

2

X

300 4 |
200 4 |

100 - |

o
|

RMSE (Cross—Validation)

(a) Hyper-parameters grid-search

#Terms

RMSE Rsquared
o | ©
— o
2
3]
© - <
)]
=
2 © Q
8 i
~ &
o 4
o
o
o - ap® ©° o o a—) — o o 8P o
T T T T o T T T T T

18 19 20 21

0.9999962 0.9999968

(b) Optimal model resampling accuracy

Figure 4.39: Askigo’s MARS levely model selection (cascading strategy 2)

The cascading-model strategy 2 uses the same approach but the expanding features
set is formed by chaining the predicted post-liquidity shock’s prices with only the last
three prices just before the liquidity shock. So, the number of features for Bidyoo/Askioo
models is the same (52). Strategy 2 model selection results for Bidygg/Askigo are shown in

Figure 4.38 and Figure 4.39, respectively. Table 4.13 presents the cascading-model strategies

)

optimal hyper-parameters and results for the Bidgy/Askigpo MARS level; models. Both
cascading-model strategies appear to have almost the same performance.

Table 4.13: The optimal hyper-parameters of the Bidigo/Askiogo MARS levely, models

(cascading strategy 1 and 2)

Model #Terms degree RMSE R2 RMSE SD R2 SD
Bidyg (str. 1) 3 1 1.85590 0.99999 0.06404 1.8475e-07
Bidigo (str. 2) 3 1 1.85688 0.99999 0.06335 1.8249e-07
Askyoo (str. 1) 3 1 1.93861 0.99999 0.10085 3.4815e-07
Askyoo (str. 2) 3 1 1.91392 0.99999 0.07355 2.1929e-07

The same Bidygy/Askigo model selection processes are repeated for the GBM learning
algorithm. Figure 4.40 and Figure 4.41 show the results for cascading-model strategy 1,
while the results for strategy 2 are shown in Figure 4.42 and Figure 4.43, respectively.

7

RMSE (Cross—Validation)

RMSE (Cross—Validation)

Shrinkage

5e-05 o 0.005 v ——
5e-04 x ——— 005 o ——
1 2 3 4 5 6
| | | | | L1 | | | | |
n trees: 5000 n trees: 7000 RMSE Rsquared
- °\°‘o—o—g—e O\“"O—e—e—e - 800
- — 600 g g _
- - 400 S ®
— MH ~ 200 @
% o o 5 o w > 2 g |
n trees: 10000 n trees: 15000 a . I
800 7 T—— I 8 g |
600 — o\"\e—e—g_e B — 8 7
400 - 2 -
200 = °
has= === han] 81/ oo w0 o]~ cow e
1 2 3 4 5 6 e T T T T T 1T T 17T 1T 17T
60 70 80 90 100 0.991 0.993 0.995 0.997
Max Tree Depth
(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.40: Bidigo’s GBM levely, model selection (cascading strategy 1)

Shrinkage
5e-05 o 0005 v —
5e-04 x —— 005 o —

1 2 3 4 5 6
L1 1

| | | | |
n trees: 7000 RMSE Rsquared

| | | |
n trees: 5000

o
R e ey — —_ e . .l 800 3 | =k
- - 600 :
. - 400 O S |
— M ~ 200 e @
w% > 8
n trees: 10000 n trees: 15000 a S] S |
_ L oy “‘
800 8 o
600 ——. . F - g
400 — - S~ =
200 — - °
= (T o R CE A
o

1 2 3 4 5 6 T T T T T 1T T T 171
60 70 80 90 100 0.992 0.994 0.996
Max Tree Depth

(a) Hyper-parameters grid-search (b) Optimal model resampling accuracy

Figure 4.41: Askigo’s GBM level, model selection (cascading strategy 1)

78

RMSE (Cross—Validation)

RMSE (Cross—Validation)

300
250
200

300
250
200 —

Shrinkage

5e-04 o
0.005 x

0.05 v
0.5 o

1 2 3 4 5 6
| | | | | |

n trees: 5000

n trees: 7000

F=—

= 5

=—

n trees: 10000

n trees: 15000

—a—a—F—g -
le—F—w—5F—n
1T —— o—
== == | == —

— 300
~ 250
~ 200

Max Tree Depth

(a) Hyper-parameters grid-search

RMSE Rsquared
o |
n ©
-
g
=}
‘% S | g
c 9
[o
[a]
g &
=}
o
8_— o® g0 000 o — 00 0 @ @O
© T T T T T T T
100 150 200 0.96 0.97 0.98 0.99

(b) Optimal model resampling accuracy

Figure 4.42: Bidig’s GBM level, model selection (cascading strategy 2)

Shrinkage
5e-04 o 005 v ——
0.005 x —— 05 o ———

1 2 3 4 5 6
1 1

| | | |
n trees: 5000

| | | |
n trees: 7000

— — 300
— - 250
. W - 200
= —4
n trees: 10000 n trees: 15000
—8—g 58 o
B—s—y & B
\ P e—— -
= [F— —

Max Tree Depth

(a) Hyper-parameters grid-search

RMSE Rsquared
o |
[Te) o
-
2
=}
2 o S
B 8 | <
S o
o
g &
=}
o
8+~ cam coo o~ 0o weo
© T T T T T T T
100 150 200 0.96 0.97 0.98 0.99

(b) Optimal model resampling accuracy

Figure 4.43: Askigo’s GBM level, model selection (cascading strategy 2)

79

Table 4.14 lists the cascading-model strategies’ optimal hyper-parameters and results
for the Bidyoo/Askioo GBM level, models. Strategy 1 appears to have significantly higher
performance than strategy 2.

Table 4.14: The optimal hyper-parameters of the Bidigo/Askipo GBM levely models (cas-
cading strategy 1 and 2)

Model Shrinkage Depth Trees RMSE R2 RMSE SD R2 SD

Bidygo (str. 1) 5e-03) 10000 78.49496 0.99440 6.81351 0.00093
Bidy (str. 2) 5e-02 10000 160.1098 0.97637 19.0325 0.00558
Askyoo (str. 1) oe-03 10000 77.70901 0.99453 7.31307 0.00094
Askygo (str. 2) de-02 10000 160.4779 0.97630 19.2094 0.00563

<t Ot Ot

The optimal Askigg/Bidioo hyper-parameters for MARS and GBM are then used to
train Ask/Bid post-liquidity shock’s models on the levely training dataset, with 121,533
observations. The training is performed on a local PC with 6 cores and 8 GB RAM.

In this section, model selection and training were conducted for single-model, multi-
model, and cascading-model strategies. To inject model diversity at the data, features, and
learning algorithm levels, a total of 602 NNET, MARS, and GBM post-liquidity shock’s
models were trained using different datasets and features. The performance of these models
is evaluated in the next section.

4.7 Performance Evaluation

The most common metric to asses the predictive capabilities of a regression model is the
Root Mean Square Error (RMSE). The value of the RMSE is interpreted as either the
average distance between the observed values and the model predictions or as how far, on
average, the residuals (errors) are from zero. For this case study, the unit of the RMSE is in
pence (1 £=100 pence). Another common metric for regression models is the coefficient of
determination, commonly referred to as R?. Its value can be interpreted as the proportion
of the variance, in the test dataset, that is explained by the model [15].

In this section, the performance of the single-model, multi-model, and cascading-model
strategies is evaluated using 10-fold cross-validation (out-of-fold) and a testing dataset (with
30,327 observations). Although the 10-fold CV was only used for Askigg/Bidioo model

80

selection with a relatively small number of observations (level; 10,991 and level, 10,016),
it can be used to compare the performance of the five learning algorithms (NNET, MARS,
GBM, SVM, and RF).

4.7.1 Performance Evaluation Using the 10-fold CV Resampling

To make a fair comparison between the learning algorithms, the same order of the ten folds,
with exactly the same observations, was used during model selection for all algorithms
in Section 4.6. This section makes use of the model selection 10-fold CV resampling to
compare the performance of the optimal models for level; and levels models. For each
Askipo/ Bidigo, two plots are used to visualize the relative performance of the algorithms.
The first plot is the relative performance distributions, using box-and-whisker plots. The
second plot is the relative performance estimates with 95% Confidence Level (CL).

Level; model selection involved tuning the hyper-parameters of the Bidjgo/Askioo
NNET, MARS, GBM, SVM, and RF learning algorithms. Figure 4.44a shows level;’s
Bidygp models performance distributions, while Figure 4.44b shows their performance
estimates with 95% CL. The order of the algorithms based on the best performance
(minimum RMSE) is as follows: MARS, RF, SVM, GBM, and NNET. MARS and SVM
algorithms have very low-performance uncertainty (standard deviation), while RF and
GBM algorithms have higher uncertainty. The neural network has the highest performance
uncertainty. On the other hand, all five learning algorithms have almost similar R? values.
Since SVM and RF algorithms were abandoned, Figure 4.45 shows the relative resampling
performance of only the Askigo’s NNET, MARS, and GBM models. Similarly, the MARS
algorithm outperforms the GBM and NNET algorithms.

0 10 20 30 40 50 0 10 20 30 40
1 1 1 1 1 L1 1 1 1 1 1 | | | | | | | | | |
R Rsquared RMSE Rsquared
NNET | e - | NNET °
GBM | o o ¢ GBM | —o— o
svM | 4 { SVM o o
RF| & q RF | ~e— °
MARS | { 4 MARS | o o
T T
0 10 20 30 40 50 0 10 20 30 40
(a) Performance distributions (b) Estimates with 95% CL

Figure 4.44: Level, Bidioy models resampling performance

81

0 10 2|0 3|0 4|0 0O 5 10 15 20 25 30
IR N N RN RO TR N
Rsquared

| |
RMSE Rsquared

wer| e b e g NNET .
GBM B‘ ° + GBM | —— .
waRs | § i MARS | o

T T

0 10 20 30 40 0 5 10 15 20 25 30

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 4.45: Level; Askigy models resampling performance

In Section 4.6.3, the hyper-parameters of the Bid;gg/Askigo MARS and GBM models
were tuned using level, dataset and two cascading-model strategies. Figure 4.46 and
Figure 4.47 show the resampling performance of levely optimal Bidygo/Askio (strategy 1)
models, respectively. The performance of levely, MARS algorithm is consistent with its
level; performance. However, the performance of the GBM algorithm is worse than its
level; performance. This could be due to different patterns in levely dataset that the GBM
model could not fully capture.

The same trend follows in levely Bidygy/Askigo (strategy 2) MARS/GBM resampling
performance, shown in Figure 4.48 and Figure 4.49, respectively. Comparing the cross-
validation performance of models clearly suggests, even before using fully trained models
and a test dataset, that the MARS models will outperform the NNET and GBM models.
In the next section, a test dataset is used to evaluate the performance of fully trained (on
large datasets) models.

0 20 40 60 80 0 20 40 60 80
| | | | | | | | | | | | | | | | | | | |
RMSE Rsquared RMSE Rsquared
GBM -D { GBM el K
MARS 41 { MARS | o o
T T T T T T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 4.46: Levely Bidygo (strategy 1) models resampling performance

82

0 20 40 60 80 0 20 40 60 80
1 1 1 1 1 1 | 1 1 1 1 1 1 1

| | | |
R Rsquared RMSE Rsquared
GBM D { GBM o |0
MARS { { MARS | o o
T T T T T T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 4.47: Levely Askigy (strategy 1) models resampling performance

0 50 100 150 200 o 50 100 150

1 1 1 1 11 1 1 1 1 | | | | | | | |
R Rsquared RMSE Rsquared

GBM D { GBM —— | o

MARS { { MARS | o 0
T T T T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 4.48: Levels Bidygo (strategy 2) models resampling performance

0 50 100 150 200 o 50 100 150
1 1 1 1 L1 1 1 1 1 | | | | | | | |
R Rsquared RMSE Rsquared

GBM D { GBM —— |

MARS { 4‘ MARS | o 0
T T T T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 4.49: Levely Askioy (strategy 2) models resampling performance

83

4.7.2 Performance Evaluation Using the Testing Dataset

In this section, the performance of the fully trained Bid/Ask NNET, MARS, and GBM
models is evaluated using a testing dataset, with 30,327 observations. The RMSE of
the post-liquidity shock’s 50 Bid/50 Ask prices are visualized. To better understand the
performance of a regression model, the predicted vs. observed and residuals plots are used.
Given the large number of outcomes (50 Bid and 50 Ask prices), the two plots are shown
only for the Bidygg/Askigo prices.

It should be noted that the interpretation of the model’s RMSE dependence on the
outcome variance. For example, Table 4.15 shows the statistics of the Bidyoo/Askioo prices.
Given this huge variance, a small RSME, for example less than the minimum price, would
be considered a very good performance. As will be shown in this section, our hypothesis, in
Section 4.4.4, that a market-based approach will be able to handle the huge variance, and
reasonably capture the dynamics of the stock market.

Table 4.15: Statistics of the Bidyoo/Askioo prices (pence)

Price Min. 1st Qu. Median Mean 3rd Qu. Max.

Bidyoy 20.82 326.40 707.00 1134.00 1866.00 7530.00
Askipo 20.85 326.60 707.50 1135.00 1868.00 7540.00

Performance of the NNET Models

7.5+
7.2
7.4
7.1+
B o)
7.3+
> =504
x z70
7.2
6.9 -
7.1+
6.8 -
T T T T T T T T T T T T
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.50: RMSE for the NNET level; models (test dataset, N = 30, 327)

84

The two NNET models predict all post-liquidity shock’s Bid/Ask prices at once. Figure 4.50
shows the RMSE for the NNET level; post-liquidity 50 Bid/50 Ask prices. Although the
model selection for the single-model strategy, implemented by the NNET, was performed
only for Bidygy/Askigo, the performance of the NNET models is considered very reasonable.

o
o
8 o
& g
o f [=3)
o _|
3
g g -
=9 o
3 8 =
= 3 g]
e g
2 g o
£ R g %
N @ 8o
° o &
o — o hlﬂilﬂf ﬁ”
o QQ%D
T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Bid100 Predicted Bid100
(a) Bidigpp’s predicted vs observed (b) Bidoo’s residual
Figure 4.51: Performance of the NNET level; Bidyg
o
oS
8 o o
/! .
8 © 3)
o
3 o | e o
g . M
< S 3
B I o g _ °
0 xr o
o o o
L o <
o g - I
N
° o
o o?; .
T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Ask100 Predicted Ask100
(a) Askioo’s predicted vs observed (b) Askigo’s residual

Figure 4.52: Performance of the NNET level; Askigg

85

The predicted vs. observed values plot for NNET Bidqg is shown in Figure 4.51a. For a
model with good performance, the data points should align on the diagonal line. Given the
wide range of values (20.82 to 7530.00 pence), the plot is hard to interpret. A better plot to
zoom in on the performance of the model is the residual plot, shown in Figure 4.51b. The
same two plots are shown for the NNET Askjg in Figure 4.52. The figures show that the
largest residuals occur for securities/stocks with Bid/Ask prices higher than 4000 (pence).
This systematic pattern will be investigated at the end of this section. In addition, few
outliers (large residuals) exist for other securities. Table 4.16 presents the RMSE statistics
for the NNET level; Bids/Asks models. The total RMSE for all post-liquidity shock’s 50
Bid/50 Ask prices is 364.951 and 350.228 pence, receptively.

Table 4.16: RMSE statistics for the NNET level; Bids/Asks models (N = 30, 327)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids RMSE 7.046 7.228 7292 7299 7360 @ 7.529 364.951
Asks RMSE 6.782 6.920 6.995 7.005 7.086 7.271 350.228

Performance of the MARS Models

The MARS learning algorithm was used to implement the level; multi-model strategy, and
levely cascading-model strategies (1 and 2). Similarly, this section presents the performance
of the MARS models for each predictive modeling strategy.

1.5 1.5
H)J 1.0+ H)J 1.0 4
= =
o o

0.5+ 0.5+

0.0 0.0

1 1 1 1 1 1 1 1 1 1 1 1
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.53: RMSE for the MARS level; models (test dataset, N = 30, 327)

86

Figure 4.53 shows the RMSE for the MARS level; Bid/Ask models. Given the high
variance of Bid/Ask prices, the performance of the MARS models is considered very high.
For example, for the post-liquidity Bidigy price, the range of values is from 20.82 to 7530.00
(pence). The Bidgp’s RMSE is 1.799 pence, which is interpreted as on average, the predicted
value is +£1.799 (pence) from the observed value.

o
8 1
@ '5&, :’
® @
S | 4 Q - ®
3 8 8
8 ® e
‘g = Sobo @
o 8 g 8
o = k=l © 7 & 8
% < g & 8°
S o o8 °©
o o o ® o
o 8 - Q °
N (T‘ n o il
®» ©
o o
g |
\ T T T T b T T T
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Bid100 Predicted Bid100
(a) Bidygp’s predicted vs observed (b) Bidipo’s residual
Figure 4.54: Performance of the MARS level; Bidgg
o
o
8)
&
¢ S .
g | 4 °
8 ® o
; - .
an o E »® o
= 81 3 .o .
Q ~ 0 _ L ST STPY
= [o
Q 24 wwo o
©
9 o ‘WO000 o
o o _| ® o
Q 9 | @0
| @® o
o
o o
g |
I I I I I | I I I I
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Ask100 Predicted Ask100
(a) Askipo’s predicted vs observed (b) Askigp’s residual

Figure 4.55: Performance of the MARS level; Askqgg

87

Figure 4.54 and Figure 4.55 show a closer look at the performance of the MARS level;
Bidygo/ Askioo, respectively. Similar to the NNET residuals, the MARS level; residuals
appear to worsen for securities/stocks with Bid/Ask prices higher than 4000 (pence).
However, the MARS residuals for these securities is lower than the NNET residuals.

The RMSE for the MARS level, (cascading strategy 1) Bid/Ask models are shown in
Figure 4.56. The predicted vs observed and residuals plots for MARS levely Bidyoo/Askioo
models are shown in Figure 4.57 and Figure 4.58, respectively. The figures show similar, to
MARS level;, performance and residuals patterns.

1.5+ 154
% 1.0 1 % 1.0
> >
o o
0.5+ 0.5+
0.0 0.0
I I I I I I I I I I I I
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.56: RMSE for the MARS levely (cascading strategy 1) models (test, N = 30, 327)

o
S ®
[ee] & ° o
4 6°
g | 4 8 .
o e
© &
Q ®
S °
B o 3 &
@ o | 3 o 809
S 2 pap
8 g .
G Qﬁ
L o e °
o 8 | 8 | s o
« ! ° @ ®
o o
2 -
T T T T I T T T I
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Bid100 Predicted Bid100
(a) Bidygp’s predicted vs observed (b) Bidipo’s residual

Figure 4.57: Performance of the MARS levely Bidygo (cascading strategy 1)

38

o
8 —] o
@
&
¢ g o
g | 4 :
8 @ o
g 8 -
< = ® o
< 8 =]
- © S ®o o
g < @ 00000
P~ [o] o -
2 14 awo o
°
o o oo o
a S ® o
N 8 | @ o
I ® o
o o
o
<ol' | o
I I I I I | I I I I
0 2000 4000 6000 8000 0O 2000 4000 6000
Observed Ask100 Predicted Ask100
(a) Askigo’s predicted vs observed (b) Askigo’s residual

Figure 4.58: Performance of the MARS levely Askig (cascading strategy 1)

Finally, the RMSE for the MARS levely (cascading strategy 2) Bid/Ask models are
shown in Figure 4.59. Figure 4.60 and Figure 4.61 show detailed performance overviews for
the MARS levely Bidygo/Askioo models, respectively.

1.5+ 154
% 1.0 1 % 1.0
> >
o o
0.5+ 0.5+
0.0 0.0
I I I I I I I I I I I I
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.59: RMSE for the MARS levely models (cascading strategy 2)(test, N = 30, 327)

89

o
S P
®© f§ o °
e ?
S | 4 S .
5 3 8@
S ® @
—
E o = 5c:o
g - S o ra
3 ¥ @ &°
3 Y P
g « . .
a § | < ;o
39 ! ° @ ©
o o
o - o
<Il‘ — o
I I I I I I I I I
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Bid100 Predicted Bid100
(a) Bidygg’s predicted vs observed (b) Bidjoo’s residual

Figure 4.60: Performance of the MARS levels Bidygo (cascading strategy 2)

o
o
OOD °
&
f g n o
g | 4 °
8 @ o
g & -0
% o E - o
E 8 | .g ® o o
o ¥ ‘? 00000
3] v o -
5 o -o o
2 o @O0 o
o 8 — ® o
N 8 | ® o
| ® o
o o
o
o)
<t —
\ T T T T i \ T T T
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Ask100 Predicted Ask100
(a) Askjpo’s predicted vs observed (b) Askigp’s residual

Figure 4.61: Performance of the MARS levely Askig (cascading strategy 2)

As presented in Table 4.17, the MARS models for multi-model and cascading-model
strategies have very high and consistent performance, as predicted by the 10-fold CV
in Section 4.7.1. The fusion of level; models’ predictions with levely, models (cascading
strategy 1) appear to slightly improve the performance. On the other hand, levels models

90

(cascading strategy 2) and level; models have almost identical performance. The total
RMSE for all post-liquidity shock’s 50 Bid/50 Ask MARS models, for the three modeling
strategies, are significantly lower than the RMSE for the single-model strategy, implemented
by the feedforward neural network, Table 4.16.

Table 4.17: RMSE statistics for the MARS 50 Bids/50 Ask models

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids levely 0.000 1.028 1.326 1.237 1587 1.799 61.857
Bids levely (str. 1) 0.000 0.999 1.325 1.236 1.589 1.798 61.795
Bids levely (str. 2) 0.000 1.029 1.325 1.238 1.5387 1.798 61.877
Asks levely 0.000 0.936 1.308 1.231 1.589 1.813 61.537
Asks levely (str. 1) 0.000 0.937 1.310 1.230 1.564 1.809 61.494
Asks levely (str. 2) 0.000 0.937 1.310 1.231 1564 1.809 61.537

Performance of the GBM Models

2.25
2.00 2.00
t t
i 1.75 -
S 175 s
o o
150 1.50 4
1.25-
125 T T T T T T T T T T T T
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.62: RMSE for the GBM level; models (test dataset, N = 30, 327)

To add model diversity at the learning algorithm level, the GBM learning algorithm, in
addition to the MARS algorithm, was used to implement level; multi-model strategy, and
levely cascading-model strategies (1 and 2). In this section, the performance of the GBM
models is evaluated using the test dataset.

91

Figure 4.62 show the RMSE for the GBM level; multi-model strategy. Although the
performance is slightly lower than the performance of the MARS level; models, it is higher
than the performance of the single-model strategy, implemented by the NNET

Predicted Bid100

2000 4000 6000 8000

0

I
0

I
2000

I
4000

I
6000

Observed Bid100

I
8000

(a) Bidygp’s predicted vs observed

Predicted Ask100

(a) Askipo’s predicted vs observed

2000 4000 6000 8000

0

Residual

100

50

0 2000 4000

6000

Predicted Bid100
(b) Bidipo’s residual

Figure 4.63: Performance of the GBM level; Bidig

T
0

I
2000

I
4000

I
6000

Observed Ask100

I
8000

Residual

100

50

o

o

o
o

1.
%,
]
g
o
T T T T
0 2000 4000 6000
Predicted Ask100

(b) Askigp’s residual

Figure 4.64: Performance of the GBM level; Askig

To zoom in on the performance of the GBM regression models, predicted vs. observed

92

and residuals plots can be used. Figure 4.63 and Figure 4.64 show these plots for the GBM
levely Bidygg/Askigo models, respectively. The figures show repeated residuals patterns for
securities with price higher than 4000 (pence), where the difference between the predicted
and observed prices is widened.

The Bid/Ask RMSE for GBM level; cascading-model strategy 1 are shown in Figure 4.65.
It seems that feeding the predictions of level; models to level, models produced slightly
lower performance (higher RMSE).

2.8

2.4+
L w 4
N 22— n 26
= =
2 2

20- 2.4

18- i i U U i 2.2 i U i U U i

50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.65: RMSE for the GBM level, (cascading strategy 1) models (test, N = 30, 327)

o
g g
@© o — °
; o o
o n
S / g °
© -
8 o
%' _ 558
2 8 g g ®
g ¢ g :
5 © g
g 8 | <] o
o
N
- o
o 8 | o
T T T T 1 ! T T T 1
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Bid100 Predicted Bid100
(a) Bidygp’s predicted vs observed (b) Bidipo’s residual

Figure 4.66: Performance of the GBM level, (cascading strategy 2) Bidigo

93

o
o
o o
® o
Is %
S 4 S
S 7] S 7 3
o ©
S o
X — B
2 8. E 5 ;
P IERL B
2 X of
8 o
c g - il .
N
— o
o - 3 |
—
I I I I I : I I I I
0 2000 4000 6000 8000 0O 2000 4000 6000
Observed Ask100 Predicted Ask100
(a) Askigo’s predicted vs observed (b) Askigo’s residual

Figure 4.67: Performance of the GBM levels (cascading strategy 1) Askigo

Again, the Bid/Ask residuals patterns for securities with price higher than 4000 (pence)
are repeated, as shown in Figure 4.66 and Figure 4.67.

Finally, the RMSE for the GBM level, (cascading strategy 2) Bid/Ask models are
shown in Figure 4.72. Figure 4.69 and Figure 4.70 show detailed performance overviews for
the GBM levely Bidigy/Askioo models, respectively. The results and residuals patterns of
the strategy are consistent with the previous two strategies, but did not outperform GBM
level; models.

2.4 2.4
0 0
s 2.1 s 21+
o o

1.8+ 1.8

1 1 1 1 1 1 1 1 1 1 1 1
50 60 70 80 90 100 50 60 70 80 90 100
Bid's index Ask's index

Figure 4.68: RMSE for the GBM level, (cascading strategy 2) models (test, N = 30, 327)

94

o
o
o o
®
Vs S
st
g _ 4 =
=
o © 8
o UO.’ o
= 2
2 o s e
o o _| _g ol
3 9 @ ° %%
3] i) ©
= o e
2 o o ° o
a o _| bred
o I
«
o
st
—
o : o
T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000

Observed Bid100

(a) Bidygg’s predicted vs observed

Figure 4.69: Performance of the GBM levely

Predicted Bid100
(b) Bidjoo’s residual

(cascading strategy 2) Bidjg

o
o
o o
[¢e]
s S
o
S 4 -
8 o
g 3 2
5 o ©
S 8 2
E F g © o o
Q ['4
® o o
a g - 0
N
o
o
7
S o
T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000
Observed Ask100 Predicted Ask100

(a) Askjpo’s predicted vs observed (b) Askigp’s residual

Figure 4.70: Performance of the GBM levels (cascading strategy 2) Askigo

As presented in Table 4.18, the GBM models for multi-model and cascading-model
strategies have slightly different performance, with GBM level; models having the best
performance. It seems that the feeding of GBM level; models’ predictions to GBM levels
models produces lower performance (higher RMSE). However, as will be shown later, this

95

is not the case after the outliers are removed and the RMSE recalculated. The total RMSE
for all post-liquidity shock’s 50 Bid/50 Ask GBM models, for the three modeling strategies,
are slightly higher than the RMSE for the RMSE models, Table 4.17, but significantly lower
than NNET models, Table 4.16.

Table 4.18: RMSE statistics for the GBM 50 Bids/50 Ask models

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids level; 1.287 1.670 1.854 1.825 2.055 2.197 91.248
Bids levely (str. 1) 1.831 2.100 2291 2239 2424 2528 111.959
Bids levely (str. 2) 1.591 2.059 2.250 2210 2424 2593 110.486
Asks levely 1.242 1.557 1771 1.764 1.989 2208 88.204
Asks levely (str. 1) 2.213 2.424 2,575 2065 2722 2.881 128.240
Asks levely (str. 2) 1.582 1.980 2210 2.181 2391 2.598 109.075

Investigating Relatively Poor Performance for Some Securities

The performance of the NNET, MARS, and GBM post-liquidity shock’s Bid/Ask models
were evaluated using the same test data set, with 30,327 observations. A clear deterioration
in performance was revealed, by the residuals plots, for securities/stocks with Bid/Ask prices
greater than 4000 (pence). Such a systematic pattern, which was repeated in all modeling
strategies/models, calls for an additional investigation by the modeler to understand/pin
down the source of this behavior. Using exploratory data analysis, security/stock number 75
is identified as the only security with Bid/Ask price higher than 4000 (pence). To understand
this pattern of relatively poor performance for security number 75, two important factors
need to be explored. First, the number of observations for security 75 in level; and levels
training data sets. Second, how volatile is security 75.

Table 4.19: Number of observations for security 75

Partition Sec. 75 obs. Total obs. Percentage
level; training 1147 182,388 0.6289%
levels training 764 121,533 0.6286%
testing dataset 190 30,327 0.6265%

96

Table 4.20: Prices statistics for security no. 75

Price Min. 1st Qu. Median Mean 3rd Qu. Max.

Bidsg level; 6040 6300 6370 6457 6495 7530
Bidsg levely 6030 6295 6370 6457 6505 7510
Asksg level; 6050 6310 6385 6469 6505 7540
Asksg levely 6040 6305 6380 6469 6515 7520
Bids test 6130 6306 6362 6475 6514 7440
Asksg test 6140 6320 6372 6487 6524 7455

Table 4.19 shows the number of observations, in training and testing data sets, for
security 75. The security has a very small number of observations, compared to all
securities, for each training level (around 0.629%). This suggests that the available number
of observations is not enough for the NNET, MARS, and GBM learning algorithms to
capture the behavior of the security completely. A simple solution to this problem is
to collect more observations for security 75. The volatility of security 75 is explored by
Table 4.20, where the statistics for Bidsy/Asksg prices (prices at the liquidity shock) are
presented. It is clear that security 75 prices have a high variance, as compared to the
other securities. Since the learning algorithms try to minimize the overall RMSE, the high
variance combined with the tiny number of observations, the optimal models failed to
capture fully the volatility of security 75. This problem can be solved by separating the
observations of security 75 from the market-based training data sets, and training specific
Bid/Ask models for security 75 using these observations. However, for simplicity and the
purpose of this research, the 190 observations for security 75 are removed from the test
data set.

The RMSE for NNET, MARS, and GBM models, previously presented in Table 4.16,
Table 4.17, and Table 4.18, are recalculated without security 75 and represented in Table 4.21,
Table 4.27, and Table 4.29, receptively. The recalculated RMSE show that security 75, even
with only 190 out of 30,327 observations, has significant effect on the total 50 Bid/50 Ask
RMSE, especially for the GBM models. Similar to the MARS models, the feeding of GBM
level; models’ predictions to GBM [evel, models produces higher performance.

Table 4.21: RMSE statistics for the NNET level; Bids/Asks models (without security 75)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids RMSE 6.091 6.296 6.341 6.361 6.429 6.598 318.037
Asks RMSE 6.209 6.355 6.443 6439 6496 6.693 321.926

97

Table 4.22: RMSE statistics for the MARS 50 Bids/50 Ask models (without security 75)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids level; 0.000 0.844 1.080 1.027 1.303 1.505 51.332
Bids levely (str. 1) 0.000 0.821 1.078 1.025 1.303 1.505 51.255
Bids levely (str. 2) 0.000 0.844 1.078 1.027 1.302 1.505 51.337
Asks levely 0.000 0.745 1.059 1.005 1.300 1.494 50.225
Asks levely (str. 1) 0.000 0.742 1.057 1.002 1.288 1.490 50.116
Asks levely (str. 2) 0.000 0.742 1.057 1.003 1.288 1.490 50.126

Table 4.23: RMSE statistics for the GBM 50 Bids/50 Ask models (without security 75)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids levely 1.023 1.338 1.516 1.489 1.684 1.827 74.441
Bids levely (str. 1) 0.441 0.946 1.186 1.148 1.401 1.581 57.419
Bids levely (str. 2) 0.651 1.308 1.521 1.472 1.676 1.837 73.618
Asks levely 1.013 1.255 1.457 1.449 1.640 1.827 72.430
Asks levely (str. 1) 1.044 1.290 1.502 1.488 1.688 1.852 74.381
Asks levels (str. 2) 0.660 1.218 1484 1433 1.659 1.838 71.643

In Section 4.8, model fusion will be used to combine the predictions of the three modeling
strategies for the same learning algorithm (MARS/GBM), to investigate if the injection of
model diversity at data and features levels will result in better performance (lower RMSE).
The effect of adding model diversity at the learning algorithm (by combining MARS and
GBM models) will be also investigated.

4.7.3 Computational Cost

Often the computational cost of building machine/statistical learning models is ignored
for small and/or low-dimensional datasets. However, for large and/or high-dimensional
datasets, the computational cost of building such predictive models becomes a critical factor
to consider in choosing the best learning algorithm for the application at hand. In this
section, the learning algorithms (NNET, MARS, GBM, SVM, and RF) are compared based
on the computing power required, model selection time, training time, and prediction time.

98

Model Selection Time

In Section 4.6, grid-search and 10-fold cross-validation was used to select the optimal
hyper-parameters for the NNET, MARS, GBM, SVM, and RF learning algorithms. Given
the intensive computation required to generate a large number of models per learning
algorithm, a powerful computing resource is essential to handle memory constrains, and
speed-up the model selection process by using parallel computing to distribute the 10-fold
CV over several cores/computers. For this research, an Amazon EC2 instance, with 32
cores and 65 GB RAM, was used.

Table 4.24: Model selection time (using an Amazon EC2 instance with 32 cores and 65 GB
RAM)

Model Preproc. Levell Level2 (str.1) Level2 (str.2)
NNET Bid100 N. 8.069 hours N/A N/A
NNET Bid100 T. & N. 7.886 hours N/A N/A
NNET Ask100 T. & N. 5.578 hours N/A N/A
MARS Bid100 N. 4.932 mins 3.128 mins 1.619 mins
MARS Bid100 T. & N. 5.238 mins N/A N/A
MARS Ask100 N. 1.991 mins 2.637 mins 1.644 mins
GBM Bid100 N. 42.53 mins N/A N/A
GBM Bid100 T. & N. 45.22 mins 34.490 mins 24.32 mins
GBM Ask100 T. & N. 49.57 mins 39.813 mins 23.83 mins
SVM (e = 1) Bid100 N. 40.25 secs N/A N/A
SVM (e = 1) Bid100 T. & N. 2.160 mins N/A N/A
SVM (e = 0.1) Bid100 N. 1.727 mins N/A N/A
SVM (¢ =0.1) Bid100 T.& N. 3.592 mins N/A N/A
SVM (e = 0.01) Bid100 N. 29.83 mins N/A N/A
SVM (e =0.01) Bid100 T. & N. 1.68 hours N/A N/A
RF (T=1000) Bid100 T. & N. 29.07 mins N/A N/A
RF (T=3000) Bid100 T. & N. 1.119 hours N/A N/A
RF (T=5000) Bid100 T. & N. 37.73 hours N/A N/A

Table 4.24 lists the model selection time for level; and levels modeling strategies. Since
NNET, SVM, and RF algorithms were only used for level; strategy, they are not applicable
(N/A) for level, strategies. The results show significant differences between the learning

99

algorithms. For the NNET, MARS, and GBM (selected algorithms to train post-liquidity
shock’s Bid/Ask models), the MARS algorithm is the fastest, while NNET algorithm is the
worst. The table also shows that a slight reduction in the value of € for the SVM algorithm
increases the model selection time. On the other hand, increasing the number of trees for
the RF algorithm significantly increases its model selection time.

Training Time

To minimize the financial cost of renting Amazon instances, the Bid/Ask models for level;
and level, strategies were trained using a PC with 6 cores and 8 GB RAM.

Table 4.25: Training time statistics for the 50 Bid/50 Ask models (using a PC with 6 cores

and 8 GB RAM)

Models Min. Median Mean Max. Total
level; Bids

NNET N/A N/A N/A N/A 51.45 hours
MARS 53.14 secs. 54.21 secs. 55.68 secs. 70.10 secs. 46.40 mins.
GBM 27.02 mins. 30.96 mins. 30.41 mins. 33.57 mins. 25.84 hours
level; Asks

NNET N/A N/A N/A N/A 63.95 hours
MARS 41.61 secs. 41.97 secs. 42.23 secs. 45.01 secs. 35.19 mins.
GBM 29.77 mins. 30.81 mins. 30.87 mins. 35.02 mins. 25.73 hours
levelsy (st1) Bids

MARS 38.84 secs. 61.90 secs. 60.98 secs. 85.00 secs. 50.82 mins
GBM 16.61 mins. 25.89 mins. 25.27 mins. 33.90 mins. 21.05 hours
levely (st1) Asks

MARS 28.02 secs. 48.60 secs. 49.31 secs. 79.04 secs. 41.09 mins.
GBM 20.62 mins. 36.20 mins. 34.47 mins. 48.08 mins. 28.72 hours
levely (st2) Bids

MARS 3.94 secs. 23.92 secs. 23.86 secs. 44.56 secs. 19.88 mins.
GBM 10.19 mins. 66.13 mins. 67.24 mins. 124.7 mins. 56.03 hours
levely (st2) Asks

MARS 3.78 secs. 23.20 secs. 23.36 secs. 43.65 secs. 19.46 mins.
GBM 8.92 mins. 73.22 mins. 72.53 mins. 139.5 mins. 60.44 hours

100

Table 4.25 presents the training time for NNET, MARS, and GBM learning algorithms.
Again, the MARS algorithm outperforms the NNET and GBM algorithms by huge margins.
The GBM algorithm is faster than the NNET algorithm by about 50%.

Prediction Time

How long a model takes to produce a prediction becomes vitally important for real-time
applications, such as algorithmic trading systems. Table 4.26 presents the prediction time of

the 50 Bids/50 Asks prices. The NNET models are incredibly fast, while the MARS models
significantly outperform the GBM models only for levely cascading-model (strategy 2).

Table 4.26: Prediction time statistics for the 50 Bid /50 Ask prices (using a PC with 6 cores
and 8 GB RAM, test N = 30, 327)

Models Min. Median Mean Max. Total
level, Bids

NNET N/A N/A N/A N/A 0.895 secs.
MARS 16.34 secs. 16.71 secs. 16.85 secs. 20.61 secs. 14.05 mins.
GBM 16.41 secs. 16.54 secs. 16.56 secs. 17.03 secs. 13.80 mins.
level; Asks

NNET N/A N/A N/A N/A 1.01 secs.
MARS 12.04 secs. 12.25 secs. 12.35 secs. 12.91 secs. 10.29 mins.
GBM 25.69 secs. 25.88 secs. 25.96 secs. 26.91 secs. 21.63 mins.
level, (st1) Bids

MARS 6.42 secs. 16.51 secs. 16.06 secs. 44.41 secs. 13.38 mins.
GBM 15.50 secs. 15.97 secs. 16.34 secs. 19.38 secs. 13.62 mins.
levely (st1) Asks

MARS 3.155 secs. 5.676 secs. 5.839 secs. 9.546 secs. 4.87 mins.
GBM 5.87 secs. 6.02 secs. 5.99 secs. 6.27 secs. 4.99 mins.
levely (st2) Bids

MARS 0.41 secs. 2.48 secs. 2.54 secs. 4.73 secs. 2.54 mins.
GBM 17.47 secs. 17.65 secs. 17.69 secs. 18.24 secs. 14.74 mins.
levely (st2) Asks

MARS 0.38 secs. 2.51 secs. 2.53 secs. 4.81 secs. 2.11 mins.
GBM 17.60 secs. 17.75 secs. 17.78 secs. 18.08 secs. 14.81 mins.

101

4.8 Model Fusion

In Section 4.7.2, it was shown that feeding the predictions of level; models to levels
(strategies 1 and 2) improves the performance (lower RMSE) of both MARS and GBM
level; models. In this section, a second layer of model fusion is added by combining the
predictions of the three modeling strategies. Due to the complexity of model fusion by
stacking (e.g. 200 new fusion models need to be trained), fusion by taking the arithmetic
mean of the three modeling strategies for each post-liquidity shock’s Ask/Bid prices. Two
model fusion approaches will be investigated.

Y, ; Where, M= MARS/GBM,
P = Bid/Ask,

iin [51, 52,..., 100],
jin [52, 52,..., 100].

Figure 4.71: Model fusion topology of models with diversity injected at the data and feature
levels

Table 4.27: RMSE of Mean Fusion - MARS modeling strategies (model diversity at the
data and feature levels)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids level; 0.000 0.844 1.080 1.027 1.303 1.505 51.332
Bids levely (str. 1) 0.000 0.821 1.078 1.025 1.303 1.505 51.255
Bids levely (str. 2) 0.000 0.844 1.078 1.027 1.302 1.505 51.337
Bids mean fusion 0.000 0.836 1.078 1.025 1.303 1.505 51.233
Asks levely 0.000 0.745 1.059 1.005 1.300 1.494 50.225
Asks levely (str. 1) 0.000 0.742 1.057 1.002 1.288 1.490 50.116
Asks levely (str. 2) 0.000 0.742 1.057 1.003 1.288 1.490 50.126
Asks mean fusion 0.000 0.743 1.057 0.999 1.270 1.491 49.950

102

First, the fusion of MARS/GBM models separately (model diversity injected at the
data and feature levels). Figure 4.27 shows the fusion topology for this approach. The
predictions of the three modeling strategies are fed to the fusion function (arithmetic mean)
to produce a final prediction for each Ask;/Bid;, where i € [51,100]. Table 4.27 presents
the RMSE for the MARS’s three modeling strategies and the mean fusion. The results
for GBM modeling strategies with the mean fusion are shown in Table 4.29. Both tables
indicate that the performance of each learning algorithm’s models is further improved by
combining all strategies.

Table 4.28: RMSE of Mean Fusion - GBM modeling strategies (model diversity at data
and feature levels)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids level; 1.023 1.338 1.516 1.489 1.684 1.827 74.441
Bids levely (str. 1) 0.441 0.946 1.186 1.148 1.401 1.581 57.419
Bids levely (str. 2) 0.651 1.308 1.521 1.472 1.676 1.837 73.618
Bids mean fusion 0.435 0.969 1.200 1.157 1.400 1.574 57.860
Asks levely 1.013 1.255 1.457 1.449 1.640 1.827 72.430
Asks levely (str. 1) 1.044 1.290 1.502 1488 1.688 1.852 74.381
Asks levely (str. 2) 0.660 1.218 1.484 1.433 1.659 1.838 71.643
Asks mean fusion 0.555 0.941 1.201 1.173 1.415 1.613 58.665

Yo,

i

Fusion
Function

Where, P = Bid/Ask,
iin [51, 52,..., 100],
jin[52, 52,..., 100].

Figure 4.72: Model fusion topology of models with diversity injected at data, feature, and
learning algorithm levels

103

The second fusion approach is the fusion of all MARS and GBM models together
(diversity injected at data, feature, and learning algorithm levels). Figure 4.72 shows the
fusion topology of this approach, where RMSE results are presented in Table 4.29. Although
adding diversity at the learning algorithm did not produce a better performance (slightly
worse) than the MARS’s modeling strategies, it outperformed all GBM strategies, including
the performance enhancement achieved by combining only GBM’s modeling strategies.
This slightly lower performance might be enhanced by applying weighted mean or model
stacking by first training the fusion models, to combine MARS and GBM predictions, using
the fusion dataset (45,599 observations), and then applying the trained models to the test
dataset. However, for the purpose of this research, this complex process is considered as
future work.

Table 4.29: RMSE of Mean Fusion - MARS and GBM modeling strategies (model diversity
at data, feature, and learning algorithm levels)

Price Min. 1st Qu. Median Mean 3rd Qu. Max. Total

Bids mean fusion 0.218 0.859 1.101 1.052 1.317 1.505 52.588
Asks mean fusion 0.278 0.781 1.074 1.031 1.290 1.498 51.536

4.9 Summary

In this chapter, the proposed framework for ensemble predictive modeling was validated
using a complex regression case study, to predict the stock market’s short-term behavior
following liquidity shocks. The developed ensembles outperformed the performance of the
individual models. Moreover, the effectiveness of model diversity approaches was evaluated.
Finally, several predictive modeling strategies and learning algorithms were compared based
on their performance and computational cost. In the next chapter, the proposed framework
will be applied to a high-dimensional classification case study.

104

Chapter 5

Classification Case Study:
Predicting a Biological Response of
Molecules from Their Chemical
Properties

5.1 Introduction

The activity of predicting the biological response of molecules from their chemical properties
is classified as Quantitative Structure-Activity Relationship (QSAR) [6]. QSAR methods
require the identification of at least one lead molecule that elicits the activity. Then, the
QSAR method correlates the computed properties from molecules’ structure with their
activities. The resulting correlation is then used to predict the activity of hypothetical
molecules. This correlation may also help in understanding the structural features that
contribute to activities. Based on the set of features of molecules that are correlated with
activity, and methods used to identify the correlation, QSAR methods are broadly classified
into traditional methods, and 3D methods [39].

QSAR traditional methods use a combination of three types of features. The first type
is bulk molecular properties, such as computed/measured molar refractivity, molar volume,
and computed /measured octanol/water partition coefficient. The second type is topological
and geometrical features, such as the lengths of the principal axes, aspect ratios, the number
of aromatic bonds, and connectivity indices. The third type only applies in cases where
the molecules consist of substitutions of a common parent structure. Traditional methods

105

predictive accuracy is high in some systems and poor in others. QSAR 3D methods use
as features direct measurements of the three-dimensional shapes of molecules and three-
dimensional distribution of charges in and about molecules. 3D methods often produce
better predictions than traditional methods [39].

The development of a new drug mostly depends on trial and error. It typically involves
synthesizing thousands of compounds that finally becomes a drug. This process requires, on
average, thousands of dollars, and a considerable amount of time, ranging from few days to
few weeks. As a consequence, drug discovery is extremely expensive and slow [39]. Therefore,
the ability to accurately predict the biological activity of molecules, and understand the
rationale behind those predictions would be of great value to the pharmaceutical industry.

The data for this classification case study is obtained from the Kaggle.com’s competition:
“Predicting a Biological Response” [41] held between March 16th, 2012 and June 15th, 2012.
The objective of the competition was to build a predictive model to relate optimally molecular
information to an actual biological response. The competition’s sponsor (Boehringer
Ingelheim Ltd.) provided the data in the comma separated values (CSV) format. Each
row in the data set represents a molecule. The first column contains experimental data
describing an actual biological response; the molecule was seen to elicit this response (1 or
Active), or not (0 or Inactive). The remaining columns represent molecular descriptors (D1
through D1776). These are calculated properties that can capture some of the characteristics
of the molecule - for example, size, shape, or elemental constitution. The descriptor matrix
has been normalized (by the competition’s sponsor). Only the training data (with 3751
observations, and 1776 variables/predictors) is used to investigate the thesis objectives and
develop the multi-classifier system.

5.2 Objective

When building a predictive model for a domain-specific area, such as drug discovery,
one approach is to create a model from theory and then adjust its parameters based on
the observed data. However, in most real-life applications such models are not available.
Moreover, basic knowledge about the relationships between the input variables and outcomes
is not available. These limitations lead to an alternative approach using predictive modeling
to build a model directly from the data. The standard approach in data-driven modeling is
to build a single strong predictive model. However, recently, the focus has shifted towards
creating an ensemble of models or for the same task.

The primary objective of this case study is to apply the proposed framework for ensemble
predictive modeling to develop an ensemble system, for a high-dimensional data application,

106

to predict the biological response of molecules from their chemical properties. Our objective
is to develop an ensemble system that outperforms the best base classifier in several
performance metrics, namely, the area under ROC curve, specificity, sensitivity, accuracy,
and Kappa. Some of the work in this case study has been published in [3, 5].

As secondary objectives, this case study is used to investigate experimentally:

o The effectiveness of model diversity approaches: evaluate the effect of injecting model
diversity, at data, feature, or/and learning algorithm levels, on the performance of
the ensemble.

o The relative performance of several feature selection approaches: for the same learning
algorithm, compare the performance of classifiers built using all features, PCA,
predictors’ area under ROC curve, and Relief algorithm.

o The relative performance of learning algorithms: for the same feature selection
approach, compare the performance of classifiers build using Stochastic Gradient
Boosting Machines (GBM), Support Vector Machine (SVM), Random Forest (RF),
K-Nearest Neighbors (KNN), and Flexible Discriminate Analysis (FDA).

5.3 Data Preparation

As discussed in the proposed framework, Section 3.3, the data preparation phase typically
involves exploratory data analysis, feature engineering, data processing, and data partition.

Available dataset
(3751 Obs)

Y

Model Sel. &
Training 11;5ef)tb
(2626 Obs) (S)
Model Final
Fusion Test
(788 Obs) (337 Obs)
m m

Figure 5.1: Data partition

107

However, the available dataset was normalized (centered and scaled) by the competition’s
sponsor. Also, the names of the predictors were removed. Due to the large number of
predictors (1776), the exploratory data analysis steps performed are only presented in the
R code. Figure 5.1 shows the data partition for different modeling tasks. The stratified
sampling was used to maintain similar class distribution across all data sets.

5.4 Model Building

Due to the relatively small data set, model diversity at the data level is achieved by the
built-in bagging and boosting within the GBM learning algorithm, and bagging within the
Random Forest learning algorithm.

At the feature level, model diversity is achieved by training classifiers on subsets of
features selected by five feature selection approaches. In addition, an extra layer of model
diversity at feature level is added to the Random Forest models by its built-in algorithm.

Model diversity at learning algorithm level is mainly achieved using several learning
algorithms. A second layer of diversity is added, where different optimal hyper-parameters
values are selected for the same learning algorithm (due to the use of data sets with different
features).

5.5 Feature Selection

This section describes the feature selection approaches used to inject systematically model
diversity at the feature level.

5.5.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely used methods of modern
data analysis. It is a simple, non-parametric method able to reduce a complex high-
dimensional dataset to a lower dimension. PCA identifies relationships by generating
new variables/components which are linear combinations of variables that have common
variation [30].

108

Variances
10 20 30 40 50

0
L

Figure 5.2: Variance explained by first 10 PCA components

For our data set, PCA generates 1776 components (equals to the number of predictors).
Figure 5.2 shows the variance explained by the first 10 PCA components. Around 70% of
the variance is explained by first two components. However, plotting the first component
against the second component, as shown in Figure 5.3, reveals the complexity of the data
set, suggesting that more components are needed to separate the classes.

(o]
[e] (o)
o

Fowo o AC'[IV.e
g o Inactive

2nd PCA Component
2
l

1st PCA Component

Figure 5.3: First vs. second PCA components

Several methods have been proposed to determine the number of PCA components
to retain for further analysis and predictive modeling [63]. We use two popular methods

109

to build two GBM ensembles, namely, the proportion of total variance explained, and
Kaiser-Guttman rule.

95% Cumulative variance is explained
by the first 255 PCA components

I I I I
0 500 1000 1500

Cumulative Variance Explained (%)
50 60 70 80 90

Number of PCA Components

Figure 5.4: Cumulative variance explained by PCA components

In the proportion of total variance explained method, enough components are selected
to explain at least x% of the total variance. As shown in Figure 5.4, the first 255 PCA
components are required to explain 95% of the total variance.

In Kaiser-Guttman rule [32], PCA components with eigenvalues larger than 1.0 are
selected. Using this rule, the first 11 PCA components of our dataset are chosen to build
our models.

5.5.2 Predictors’ Area Under ROC Curve

Receiver Operating Characteristic (ROC) Curves [7, 13, 21] are general methods used to
determine an effective threshold such that values above the threshold are indicative of a
particular event. With categorical outcomes and numeric predictors, the area under the
ROC curve can be used to quantify predictor relevance. If the predictor could perfectly
separate the classes, there would be a cutoff for the predictor that would achieve a sensitivity
and specificity of 1 and the area under the curve would be 1. An entirely irrelevant predictor
would have an area under the curve of approximately 0.5 [15].

110

O 1
8 Threshold used (Area >= 0.55)
= :
3 |
5 8-
o ©
o
o —
o
o
o —
Y
o p—

| | | | i | | |
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Area under the ROC curve

Figure 5.5: Frequency of predictors vs. their area under ROC curve

Figure 5.5 shows the frequency of predictors versus their area under ROC. Using the
area greater than or equal to 0.55 as our threshold, only 81 predictors are selected to build
our models.

5.5.3 Relief Algorithm

The Relief algorithm [13] is a generic method originally developed for classification problems
with two classes. It attempts to estimate the quality of predictors according to how well
their values distinguish between instances that are near to each other. For a randomly
selected training instant Ri, the Relief algorithm finds its two nearest neighbors: one from
the same class, called the nearest hit H, and the other from the different class, called the
nearest miss M. It updates the quality estimation W/P] for all predictors P depending on
their values for Ri, M, and H. If instances Ri and H have different values of the predictor
P then the predictor P separates two instances with the same class which is not desirable
so the quality estimation W/P/ is decreased. On the other hand, if instances Ri and M
have different values of the predictor P then the predictor P separates two instances with
different class values which is desirable so the quality estimation W/P] is increased. The
whole process is repeated for m times, where m is a user-defined parameter [71].

The ReliefF algorithm [11] is an improved version of the Relief algorithm that can be
used for classification problems with more than two classes. It uses more than a single

111

nearest neighbor, and can handle missing predictor values. The RReliefF algorithm [70] is
another extension to handle regression problems [15].

In contrast to the majority of heuristic methods for estimating the quality of predictors,
which assume the conditional independence of the predictors, relief algorithms can estimate
the quality of the predictors with high dependencies between themselves [71].

o 1

o _ '

o 1

— '

— Thresshold used (Score >= 0.04)

>
[8) '
c o '
g 8 !
=3 '
E — 1
L '

o

o —

I3V

O p—

| | | i | | |
-0.02 0.00 0.02 004 006 008 0.10

Relief Score

Figure 5.6: Frequency of predictors vs. their Relief score

Figure 5.6 shows the frequency of predictors versus their Relief score. Kira and Ren-
dell [13] suggest that a threshold can be much smaller than where « is the desired
false-positive rate, and m is the number of randomly selecte&ammg instances used to
calculate relief scores. For our dataset, with 5% false positive rate, and m = 2626 the
suggested threshold is ~ 0.087. However, this value seems to be inappropriate for our
predictors’ scores. Therefore, we decided to use a score greater than or equal to 0.04 as our
threshold leading to the selection of 86 predictors.

5.6 Model Selection and Training

Many learning algorithms have important parameters called “hyper-parameters”. These
parameters can not be directly estimated from the data using analytical formulas. Most of
these parameters control the complexity of the model, and hence, poor choices for their
values can lead to under- or over-fitting [15].

112

Each learning algorithms used in this case study, Stochastic Gradient Boosting Machines
(GBM), Support Vector Machine (SVM), Random Forest (RF), Flexible Discriminate
Analysis (FDA), and K-Nearest Neighbors (KNN), contains, at least, one hyper-parameter
that needs to be tuned.

Model Selection &
Training Strategy

For each learning algorithm
(GBM,SVM,RF, FDA, KNN)

PCA kasier
train dataset

Use grid-search and 10-fold CV to find the optimal hyper-parameters
values, then fit a model with these values to the whole training dataset

(Al features) PCA95% ([PCA kasier ROC
Classifier Classifier Classifier Classifier
- —

Final Optimal Classifiers

Relief
train dataset

PCA 95%
train dataset

ROC
train dataset

All features
train dataset

Figure 5.7: Model selection and training strategy

Figure 5.7 shows the model selection and training strategy. First, for each learning
algorithm and feature selection approach, use grid search and 10-fold cross-validation, shown
in Figure 5.8, to find the optimal hyper-parameters. Then, fit a classifier, with the optimal
hyper-parameters, using the whole training dataset. Given that five learning algorithms
and five feature selection approaches are used, there will be twenty-five final classifiers.

Model selection, for such a high-dimensional data, is unfeasible using a local PC. To
hand the intensive computations, an instance of Amazon Elastic Cloud EC2, with 32 cores
and 65 GB RAM, is used for model selection and training. The following sections present
the results of the model selection and training strategy, shown in Figure 5.7.

113

Train dataset (all features, PCA 95%,
PCA Kasier, ROC, or Relief), 2626 Obs.

Iteration 1

Iteration 2

Iteration 10

- For each iteration, fit a model for all hyper-parameters combination.
- Then, average the performance of all models across folds.
- Select the hyper-parameters of the best performing model.

Figure 5.8: Model selection using grid-search and 10-fold CV

5.6.1 Stochastic Gradient Boosting Machine (GBM)

The Stochastic Tree-Based GBM learning algorithm [29] has five main hyper-parameters
that control the complexity and performance of a GBM classifier. These are the loss function
(distribution), the number of iterations (n.trees), the depth of each tree (interaction.depth),
the shrinkage (or learning rate), and the subsampling rate (bag.fraction).

For classification problems, the bernoulli distribution, and bag.fraction = 0.5 are
recommended for the loss function and subsampling rate respectively [09]. In our case
study, the remaining hyper-parameters: n.trees, interaction.depth, and shrinkage are tuned
over b, 6, and 4 values respectively using grid-search and 10-fold cross validation. Five
GBM optimal classifiers (one classifier per feature selection approach) are selected from a
total of 6005 trained classifiers.

Figure 5.9 to Figure 5.13 present the results of the GBM model selection for each feature
selection approach.

114

ROC (Cross—Validation)

ROC (Cross—Validation)

Boosting Iterations

Figure 5.9: GBM model selection using all 1776 predictors

1000 o 5000 v 10000
3000 X — 7000 0 —
0 10 20 30 40
| | | | | | | | | |
shrinkage: 1e-03 shrinkage: 1e-04
1= | - 0.78
- - 0.76
- - 0.74
shrinkage: 1e-01 shrinkage: 1e-02
0.78 = = =
0.76 @i ;SX; -
0744 Ne = & o -
T T T T T T T T T T
0 10 20 30 40
Max Tree Depth
(a) Hyper-parameters grid search
Boosting Iterations
1000 o 5000 v 10000
3000 x ——— 7000 o ———
5 10 15 20
| | | 1| | | | |
shrinkage: 1e-03 shrinkage: 1e-04
H P — = ——] - = &6 g 072
- - 0.71
_ ~ 0.70
- — 0.69
- — 0.68
- - 0.67
shrinkage: 1e-01 shrinkage: 1e-02
0.72 p——e—ee
R — e -
0.70 — & ° -
069 7 Y:E:;S‘”:Z =
0.68 -
0.67 -

Max Tree Depth

(a) Hyper-parameters grid search

ROC Sens Spec
n |
-
o |
o _| —
©
o 0
> =]
a3 © -
7]
[a] o < -
o |
N
~ 4
© 47 ° o°mmoo o 7 o -] o @ 0 P00
L 1 1 1 1 T 1
0.78 0.80 0.70 0.80 0.60 0.70

(b) Optimal classifier resampling accuracy

ROC Sens Spec
o |
—
o _|
N
©
8 S -
2z, ©
2
©
0g - o Al
0 - N
o — @000 0F o ®o® o 00 O© 0 ° 90
L LI B LI I B B B
0.70 0.74 0.70 0.80 0.40 0.50 0.60

(b) Optimal classifier resampling accuracy

Figure 5.10: GBM model selection using 255 PCA components with 95% Var.

115

ROC (Cross—Validation)

ROC (Cross—Validation)

Boosting Iterations

1000 o 5000 v
3000 x —— 7000 o —

10000

1 2 3 4 5 6

| | | | | | | |
shrinkage: 1e-03 shrinkage: 1e-04 ROC Sens Spec
(e | et [0 81
& . n _| ﬂ —
- - 064 S
- - 0.62 2R
shrinkage: 1e-01 shrinkage: 1e-02 2y | Sl
0.68 —— Eﬁ ° 0 -
0.66 — =t ——8—% B=> = - =7 0 -
0.64 — / T L 0 -
O'GZ_T —r T T T T T © 47 ° ®oo® o7 com ® o 4”7 6ews o
1 2 3 4 5 6 T T T T T T T T T T T
066 0.70 0.65 0.70 0.75 050 0.60
Max Tree Depth
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy
Figure 5.11: GBM model selection using 11 PCA components (Kaiser rule)
Boosting Iterations
1000 o 5000 v 10000
3000 x ——— 7000 0 ———
2 4 6 8 10
| | | | | | | | | |
shrinkage: 1e-03 shrinkage: 1e-04 ROC © Sens Spec
- —— 1 o 2 = 5 2 — 7
=4F = - 078 o | o |
e - o076 -
] - 074 9 o | © 4
e - 072 5 =
shrinkage: 1e-01 shrinkage: 1e-02 2 ©
5]
0.78 —_— . | og o <
0.76 = ©° ° o8
0.74 - % = S ~
0.72 -
T T T T T T T T Cr° R O Q7 " Rw T|O 7 ¥o8>
2 4 6 8 10 | L T 1T 1771 T T T T
0.76 0.78 0.80 0.65 0.75 0.85 060 0.70
Max Tree Depth
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.12: GBM model selection using 81 predictors (Area under ROC)

116

Boosting Iterations

1000 o 5000 10000
3000 x 7000 ©
2 4 6 8 10
Ishrirllkagle: 1(|a—03I Ishrir|1kag|e: 1¢|a—04{ ROC Sens Spec
= At %@i«éﬁ%ﬁ - 079 3 S
IS 7] C 0.78
g C 076 8- -
'3 shrinkage: 1e-01 shrinkage: 1e-02 @ ”
2 0.79 P e o e e e 8 Q o
G 078 : - o
< 0.77 4 W -
O 0.76 : B S
O 075 - @ =
@ 074 % B
T T T T T T T T © 7 Xoeo © 7 o @P% © 7 ° ®o%0
2 4 6 8 10 T T 1T 1771 T T T T T T T T
0.78 0.80 0.82 070 0.80 060 070
Max Tree Depth
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy
Figure 5.13: GBM model selection using 86 predictors (Relief algorithm)
Table 5.1: GBM selected classifiers
Model Shrinkage interaction.depth n.trees ROC(%) ROC SD(%)
GBM_ALL 0.0001 30 10000 79.57 0.67
GBM_PCA_95 0.001 16 3000 72.60 1.09
GBM_PCA Kasier 0.001 6 3000 68.66 1.07
GBM_ROC 0.0001 5) 10000 79.21 0.87
GBM Relief 0.0001 11 10000 79.44 0.68

5.6.2 Support Vector Machine (SVM)

The kernel trick allows the SVM [91] classifier to produce extremely flexible decision
boundaries. This complexity is controlled by the choice of the kernel function parameters
and the cost value. For example, if the cost value is too low, the SVM classifier most likely
will under-fit the data. Conversely, if the cost value is too high, the SVM classifier will
probably over-fit the data, especially if the kernel parameter has a large value. Therefore,

117

these hyper-parameters should be appropriately tuned (e.g., using 10-fold CV) to find a
reasonable balance between under- and over-fitting [15].

For this classification study case, a SVM with a radial basis function is used to build five
SVM base classifiers. Two hyper-parameters, o and Cost, are tuned using grid-search and
10-fold CV to select the optimal model. For each feature selection approach, an optimal
model is selected out of 36 unique models [6 (o values) x 6 (Cost values)] with total 361
trained models [36 (unique models) x 10 (10-fold CV) + 1 (complete dataset)]. The total
number of trained models for all feature selection approaches is 1805 models [361 (models
per feature selection) x 5 (number of feature selection approaches)].

Figure 5.14 to Figure 5.18 present the results of the SVM model selection for each
feature selection approach.

Sigma
280 o —— 2720 o ROC Sens Spec
27-10 X 27-25
= 27-15 v 20-5 4 0 |
5 1 1 1 1 1 1 « o
= X% - o |
m "L A A 7N o _| -
S 07 —H—= g g «
= >
>|ﬂj 06 SR =]
7)) [
(%] _ | agi=pE n -
g o5 = o
€ 04 L
O o—e/e\e—e—o
Q I I T T T T O 0088 00 O 70 Ye®» o o 08 8000 o
@ T T T T T T T T°71 T T T T T
200 2M1 282 2/3 274 215
0.72 0.76 0.80 065 075 0.85 055 0.65 0.75
Cost
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.14: SVM model selection all 1776 predictors

118

ROC (Cross—Validation)

ROC (Cross—Validation)

%ﬁffo y gt%g o ROC Sens Spec
2715 v 27-5 A 3 Q
| | | | | |
o _| o |
070 7 § 2 £ o M= [~ < =1 “,_1’
0.65 — = 20 |
£8
_ L o
0.60 % ° =1
0.55 - s ° 7
0-50 7 "\"/o\o——e—/‘0 i =7 i
0.45 — T T T T T T T O —|7%0 @@ o O — @ ©00 ® o o ®%°
210 on] 219 273 2”4 ong T T T T T T T T 1T T 71T
0.68 0.72 0.65 0.75 0.54 0.58 0.62
Cost

(a) Hyper-parameters grid search

(b) Optimal classifier resampling accuracy

Figure 5.15: SVM model selection using 255 PCA components with 95% Var.

Sigma
%2_20 g gtgg o . ROC Sens Spec
2715 v ——— 2 -5 A 7 S
l L L L L L 0 S
[3 -
0.67 — = S8 o ©
0.66 - - 2984 © - ©
B9 < N
0.65] / —
—a— 0 - o~ 4 «
064 1.V . —— —
: T T T T T T o — B®B o o 8®mmw oo o o & o&wo
210 N1 2nD 213 7Y 2ong 1T T 11 T T T T 1T T T 1
0.64 0.68 0.72 0.65 0.75 0.45 0.55 0.65

Cost

(a) Hyper-parameters grid search

(b) Optimal classifier resampling accuracy

Figure 5.16: SVM model selection using 11 PCA components (Kasir rule)

119

ROC (Cross—Validation)

ROC (Cross—Validation)

Sigma

A — 2720 0O ——— ROC Sens Spec
2710 X ——— 2725 °
15 v n’s A — 3
| | | | | |
o _| o _
0.78 - - >“ g =
0.76 L 29 -
2” 2
0.74 @ i — = a | 8 & o 4
0.72 - o
S -
0.70 o
J
T T T T T T © °© &0 (Sl 0 0gQ ™ o - ® 00®O o
210 on] 219 273 2”4 ong L T T T T T T
0.76 0.78 0.80 0.700.750.80 0.65 0.70 0.75
Cost
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.17: SVM model selection using 81 predictors (AUC)

Sigma
280 o — 2"-20 o ROC Sens Spec
2n-10 X ——m— 2n=25
2715 v 2rn-5 A o
1 1 L L L L N Q- 0
0.8 1 a_— A ke %* & A [— 7
P — 2 = — 8 Q -
0.7 B > o
=19 = 9
0.6 - 27
) g
0.5 ~ = o - 0 -
0.4 /_,/\, I n —
| | | | | | © 77 009 ° O 7 °0v& O WO 0
210 "] 2nD 2n3 274 215 1T 1T 171 T T T T T T T
0.74 0.78 0.82 0.700.750.80 0.60 0.70
Cost
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.18: SVM model selection using 86 predictors (Relief algorithm)

120

Table 5.2: SVM selected classifiers

Model Sigma Cost ROC(%) ROC SD(%)
SVM_ALL 210 8 75.73 1.32
SVM_PCA_95 210 4 71.49 1.28
SVM_PCA Kasier 2% 8 67.54 1.34
SVM_ROC 210 8 79.18 0.86
SVM_Relief 270 1 78.39 1.43

5.6.3 Random Forest (RF)

Random Forest [12] has one major tuning hyper-parameter called my,.,,, which is the number
of randomly selected predictors to choose from at each split. Breiman [I2] recommends
setting my,, to the square root of the number of predictors. Although the RF model
is relatively insensitive to the values of my,,, too large values may lead to over-fitting.
Therefore, it is advisable to tune my,, using the grid-search and cross-validation approach.
Kuhn and Johnson [15] recommend starting with values that are evenly spaced across the
range from 2 to P (number of predictors in the dataset).

In our case study, the RF’s my,, is tuned over several values using grid-search and
10-fold CV to select the optimal model. The number of trees per ensemble is kept constant
at 5000 trees. Five RF optimal models (one model per feature selection approach) are
selected from a total of 555 trained models.

Figure 5.19 to Figure 5.23 present the results of the RF model selection for each feature
selection approach.

121

ROC (Cross—Validation)

ROC (Cross—-Validation)

0.80

0.78

0.76

0.74

0.72

0.70

T
0

T
500

T
1000

T
1500

#Randomly Selected Predictors

(a) Hyper-parameters grid search

0.720

0.715

0.710

0.705

0.700

(a) Hyper-parameters grid search

Density
10 20 30 40 50 60

0

ROC Sens Spec

o _| 0 —
N
n _J O —
-
S ¥
0 N~

o Yo@e oo o q“7o0 Ta © o — o @0®%

T T T T T T T T T T T
0.780.800.82 0.70 0.80 0.60 0.70 0.80

(b) Optimal classifier resampling accuracy

Figure 5.19: Random Forest model selection using all 1776 predictors

0

50

T
100

T
150

T
200

T
250

#Randomly Selected Predictors

15 20

Density
10

o

ROC Sens Spec
3 -
— ©
o -
N © — < -
. <
~
. ~
— O 0@%%& o — o 8 o 0 0% ©°
1T T T 11 T T T T T T T
0.66 0.70 0.74 0.6 0.7 0.8 0.9 0.4 0.5 0.6

(b) Optimal classifier resampling accuracy

Figure 5.20: Random Forest model selection using 255 PCA components with 95% Var.

122

ROC (Cross—Validation)

0.692

0.691

0.690

0.689

T
2

T
4

T
6

T
8

T
10

#Randomly Selected Predictors

(a) Hyper-parameters grid search

Density

ROC Sens Spec
n _|
[V o _|

—
8 =] o
o _|
— © -
S 0 < —
0 — ~ -
o oo & ° o — 090 ® X0 o °© o%®
1T 1T 1T T T T T T T T
0.66 0.70 0.74 0.65 0.75 0.50 0.60

(b) Optimal classifier resampling accuracy

Figure 5.21: Random Forest model selection using 11 PCA components (Kasir rule)

ROC (Cross—-Validation)

0.790

0.785

0.780

0.775

#Randomly Selected Predictors

(a) Hyper-parameters grid search

Density

(b) Optimal classifier resampling accuracy

Figure 5.22: Random Forest model selection using 81 predictors (AUC)

123

ROC Sens Spec
3 - & S -
3 - =]
S 0 _| © 7
—
o _| © —
[32] o _|
o -
N T ~
S - ©] & -
O 70 ®e o0 o q”70 &® o o — o0 & ¥o
T T 1 T 1 T T 1
0.76 0.80 0.65 0.75 0.60 0.70

= : ' ' ' ' ROC Sens Spec
i) °
S 0.795 - - © 9 o |
< g - -
= >
= o |
B 0.790 - L 28 =
S g o -
@) O
N—r mn —
8 0.785 — - 9 -
. I T T T T © 47 ° o0 oo o—-H7o0 wBP O o - 0060
0o 20 40 60 80 LI I T T T T T T 1
0.770790.810.83 070 080 060 0.70
#Randomly Selected Predictors
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.23: Random Forest model selection using 86 predictors (Relief algorithm)

Table 5.3: RF selected classifiers

Model mtry n.trees ROC(%) ROC SD(%)
RF_ALL 600 5000 80.07 1.24
RF_PCA_95 75 5000 72.34 1.63
RF_PCA Kasier 4 5000 69.21 1.40
RF_ROC 20 5000 79.32 1.55
RF_Relief 20 5000 79.84 1.11

5.6.4 Flexible Discriminate Analysis (FDA)

Flexible discriminant analysis [35] using MARS (Multivariate Adaptive Regression Splines)
[28] has two hyper-parameters, the number of retained terms and the degree of predictors
involved in the hinge functions. As the values of the two parameters increase, the probability
of over-fitting increases.

In our case study, the number of retained terms and the degree of predictors is tuned
(over nineteen and three values, respectively) using grid-search and 10-fold CV to select the
optimal classifier. Five FDA optimal classifiers (one model per feature selection approach)
are chosen from a total of 2855 trained models.

124

Figure 5.24 to Figure 5.28 present the results of the FDA model selection for each
feature selection approach.

Product Degree

1 o — 2 X 3 v — ROC Sens Spec
o
— ™ 7] o _|
g | | | | N
= 0.75 o &
< o |
© o UH" —
= 0.74 + - >
g 2
I 0.73 L c 9 - =)
2 a 0
O 0.72 - 3
@) 0
~ 0.71 = 0
(@]
Q O —7° o &° O <470 % ® o o 00 ©0 o®oo
4 T T T 171 T T T T T T T T
0.70 0.74 0.78 0.70 0.80 0.60 0.70

#Terms

(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.24: FDA model selection using all 1776 predictors

Product Degree

1 o — 2 X 3 v — ROC Sens Spec
—
5 | | | | & © -
ke
S 064 - - S8 S © -
S G
l 062 = $2 <
2 a 0 -
S 0.60 = o - o -
O
O 0.58 — o - O o @og 00 o — oWRoP O o — o @{p
e LI T T T T T 11
0.60 0.64 0.68 0.60 0.70 0.45 0.55 0.65

#Terms

(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.25: FDA model selection using 255 PCA components with 95% Var.

125

Product Degree

1 o — 2 x — 3 v ROC Sens Spec
~ 8 —
g | | | | 9 © -
— o
< 0.64 - B
o 0 — |
T 0.62 - = 2% ©
7 25 o
» 0.60 - o ® <
@ Qg <« 4
S 0.58 — = _
9.1 91 - N N
O 0.56 —
(@] T T T T o —70 o ©o0 o -7 e epooo o - oBOR,
4 5 10 15 20 T T T 1771 T T T T T T T T 171
0.62 0.64 0.66 0.55 0.65 0.75 0.45 0.55 0.65
#Terms

(a) Hyper-parameters grid search

(b) Optimal classifier resampling accuracy

Figure 5.26: FDA model selection using 11 PCA components (Kasir rule)

Product Degree

1 o — 2 x — 3 v ROC Sens Spec

° i
3

’g | | | | Sy

— o _|

‘cB‘ a | <

S 0.76 S - o

S 075 7 - %8 . Sl

l£ 0.74 = g S

S 0.73 - © o

© o072 - S

O _| L

O 0.71 o - &R o o —-H“7o OESP0 o 0 0 %aPoa

@ | | —— | —

0.75 0.77 0.79 0.65 0.75 0.650.700.75

#Terms

(a) Hyper-parameters grid search

Figure 5.27: FDA model selection using 81 predictors (AUC)

126

(b) Optimal classifier resampling accuracy

Product Degree

1 o — 2 X 3 ROC Sens Spec
S L L I 1 < 9
2 076 - ¥ - ® -
g S 3
g O == SNV I 27 S 7]
> 072 B b=
) &8 <
B 0.70 L 3
o 0 -
S5 068 - - o o
O 066 -
o T T T T O -7 % ogRoo° o o %% @ o 00 & ®BE
o 5 10 15 20 T T T T T T T T T T T
072 076 0.650.700.750.80 0.60 0.70 0.80
#Terms
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.28: FDA model selection using 86 predictors (Relief algorithm)

Table 5.4: FDA selected classifiers

Model Product.degree n.terms ROC(%) ROC SD(%)
FDA_ALL 1 5 75.00 2.02
FDA_PCA_95 | 10 65.35 2.01
FDA_PCA_Kasier 1 9 64.45 1.01
FDA_ROC | 5 76.58 0.74
FDA_Relief 1 5 75.80 1.18

5.6.5 K-Nearest Neighbors (KINN)

KNN [64] uses a sample’s geographic neighborhood to predict the sample’s class label.
It uses the K-closest samples from the training dataset to predict a new sample. The
K-closest training dataset samples are determined via the chosen distance metric. The
hyper-parameter for KNN is the number of neighbors (K-closest samples) used to predict
a new sample. Too few neighbors lead to over-fitting while too many neighbors result in
under-fitting [15].

In our case study, the value of K is tuned over 51 values using grid-search and 10-fold
CV to select the optimal classifier. Five KNN optimal classifiers (one classifier per feature
selection approach) are selected from a total of 2555 trained classifiers.

127

Figure 5.29 to Figure 5.33 present the

feature selection approach.

ROC (Cross—Validation)

ROC (Cross—-Validation)

0.68

0.66

0.64

0.62

0.60

0.58

T T T T T T
0 20 40 60 80 100

#Neighbors

(a) Hyper-parameters grid search

results of the KNN model selection for each

o ROC Sens Spec
Q-
o | 4
o _]
N
<« 4
o _|
= < - i
24 -
Q
No | 1
— o~
o 4
© T 8 © © o o & oo I ¥® ® %
T T T T T T T T T T T T T
0.66 0.70 05 06 0.7 0.8 0.4050.60.70.8

(b) Optimal classifier resampling accuracy

Figure 5.29: KNN model selection using all 1776 predictors

0.65

0.60 —

0.55

0 20 40 60 80 100
#Neighbors

(a) Hyper-parameters grid search

ROC Sens Spec
o _|
N
o | .
N o |
—
20 .
o
QS 0
0
o a®o SO ® o o 0w ® — @ &0
T T T T T T 11 T T T
0.66 0.70 0.55 0.65 0.75 0.5 0.6 0.7

(b) Optimal classifier resampling accuracy

Figure 5.30: KNN model selection using 255 PCA components with 95% Var.

128

ROC (Cross—Validation)

ROC (Cross—-Validation)

0.64

0.62

0.60

0.58

0.56

(a) Hyper-parameters grid search

#Neighbors

80

100

ROC Sens Spec
o -
o _|
—
© -
< -
0 -
.
& 000%0 O oP G o o o %%
| L L L T T T T
0.600.640.68 0.55 0.65 0.75 0.50 0.60

(b) Optimal classifier resampling accuracy

Figure 5.31: KNN model selection using 11 PCA components (Kasir rule)

0.76

0.74

0.72

0.70

0.68

0.66

(a) Hyper-parameters grid search

T
20

Figure 5.32: KNN model selection using 81 predictors (AUC)

T T
40 60

#Neighbors

80

100

Density

129

20 30 40

10

o

ROC Sens Spec
o _|
— o _|
-
o |
—
o -
0 -
© o %o%ay o - o o P8 o o — ocowg B
T T T T T T T T T T T T T
0.720.740.760.78 0.70 0.80 0.55 0.65

(b) Optimal classifier resampling accuracy

_ ! ! : : ' ' ROC Sens Spec
s oo 0, 9 - S -
5 0.74 - «
i g © 7 © -
S 072 1 =
! 210 - < © 7
0 %)
@ 0.70 - 2
o Lo | < -
S e o N
Q 0 | N
Q .
0.66 — : I I I I — o - @O @ o o - ® 8o 0® o - 0o®@® o8
0 20 40 60 80 100 LI — LI B T T T 1
0.72 076 0.550.650.75 0.85 0.55 0.65 0.75
#Neighbors
(a) Hyper-parameters grid search (b) Optimal classifier resampling accuracy

Figure 5.33: KNN model selection using 86 predictors (Relief algorithm)

Table 5.5: KNN selected classifiers

Model n.neighbors ROC(%) ROC SD(%)
KNN_ALL 9 68.75 1.29
KNN_PCA_95 7 68.48 1.27
KNN_PCA_Kasier 3 65.21 2.02
KNN_ROC 23 75.56 1.05
KNN Relief 23 74.96 1.25

5.7 Performance Evaluation

In this section, different metrics and approaches are employed to evaluate the classification
performance of the twenty-five classifiers, developed in the previous section. The choice of a
particular metric/method depends on the application and the designer’s objectives. However,
it is imperative that the designer of the ensemble system uses different metrics/approaches
to evaluate the individual and relative performance of the base classifiers before combining
them. As discussed in Section 3.4.3, the training data (used to train the classifiers)
should never be used to evaluate the classification performance. Instead, the out-of-fold
cross-validation and/or testing data (new data, never seen by the classifiers) should be

130

employed. The 10-fold cross-validation (out-of-fold) and a testing dataset (with a number
of observations n = 1125) are used to evaluate different aspects of classifiers’ predictions
using statistics and visualizations. As additional objectives, this section aims to investigate:

o Algorithms scalability: Experimentally evaluates the effect of “the curse of dimen-
sionality” on the model selection, model performance, and computation cost of several
learning algorithms.

o Comparing feature selection algorithms: Compares the performance of models
built using several feature selection algorithms across different learning algorithms.

o Learning algorithms’ relative performance: Compares the performance of sev-
eral learning algorithms for a high-dimensional classification problem.

5.7.1 10-fold Cross-validation Resampling

In Section 5.6, the 10-fold cross-validation resampling is applied to the training dataset to
tune classifiers’ hyper-parameters and select the optimal models. During model selection,
the classifier is trained on nine folds and tested on the 10th fold. This process is repeated
ten times as previously explained in Section 3.4.2. So, for each optimal classifier, there are
ten out-of-folds predictions. In this section, the out-of-folds performance (area under ROC,
Sensitivity (Sens.), and Specificity (Spec.)) are compared based on three approaches. In
the first approach, the performance of classifiers is compared per modeling algorithm. The
second approach compares classifiers per feature selection approach. Finally, in the third
approach all twenty-five classifiers’ performances are compared. The performance metrics
are compared in two categories: the metrics’ distribution (using the box-whisker plot), and
metrics’ estimates with 95% Confidence Level (CL).

In the context of building ensemble systems, this comparison reveals the effect of
injecting diversity at feature/structural and learning algorithm levels on the base classifiers’
performance. Using out-of-folds cross-validation often gives robust estimates of classifiers’
performance, especially in the absence of a large testing dataset. However, as discussed
in Section 3.4.2, in order to compare apples-to-apples, the same folds should be used for
training and validation across all learning algorithms. The stratified sampling should
be used to generate the CV folds to maintain similar class’s distribution across all folds.
Besides, care should be taken to minimize the effect of randomness in the learning algorithm
and distributed computing by properly setting the seed of the random numbers generator.

131

Comparing Classifiers per Learning Algorithm

The classifiers built using the same learning algorithm are grouped together, and their
performances are compared. Since five learning algorithms (GBM, SVM, RF, FDA, and
KNN) are used in this case study, there are five groups (one for each learning algorithm).
Within each group, there are five classifiers (one for each feature selection approach). The
objective here is to compare the relative performance of classifiers built using the same
learning algorithm and cross-validation folds but different feature selection algorithms.

05 06 07 08

05 06 07 08
1 1 1 1 1 1

L1
]
ROC Sens ROC Sens

1 1
Spec
GBM_All of 41 {«} GBM_AIl . _,_ -
GBM_Relief & -tk ‘e h GBM_Relief B - -
GBM_ROC of o ik Lo GBM_ROC - —— —
GBM_PCA_95 # {o}: | o} GBM_PCA_95 - o |
GBM_PCA_Kaiser 4 Y o}~ GBM_PCA_Kaiser o o o
T T T T T T T T T T T T T T T L T T T T T T
05 06 07 0.8 05 06 0.7 08 05 06 07 08 05 06 07 08
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.34: GBM classifiers’ resampling performance

Figure 5.34, compares the performance of the five GBM classifiers. The performance’s
distributions of classifiers, shown in Figure 5.34a, are ordered by the median of the area
under ROC, while the performance’s estimates with 95% CL of classifiers, shown in
Figure 5.34b, are ordered by the average of the area under ROC. The GBM classifiers
built using all predictors (1776) (GBM _All), the Relief feature selection (GBM _Relief),
and the area under ROC feature selection (GBM _ROC) algorithms produce similar ROC
distribution, but slightly different sensitivity and specificity distributions. It should be
noted that the high-dimensional feature space has no effect on the performance of the
GBM learning algorithm (the GBM _All is the best performing classifier) because it has a
built-in feature selection algorithm. The classifiers built using PCA (GBM _PCA_95 and
GBM _PCA_Kaiser) produce the worst performance.

132

05 06 07 08

1 1

1

1

0.55 0.65 0.75

i?OCl éens épec | IRIOCI L1 | IS:;nsl L1 | ISE)ecI L1
SVM_ROC 4 el o ¢k SVM_ROC - - he
SVM_Relief e o ek gt SVM_Relief - - ——
SVM_AII 3 o [o et SVM_AII - —— ——
SVM_PCA 95 offo Lh Lok SVM_PCA_95 - e hs
SVM_PCA_Kaiser oy O T AR Y SVM_PCA_Kaiser - - -
T T T T T T T T T T T T T

T T T T 1 T T T

05 06 07 08

T T T T

05 06 07 08 0.55 0.65 0.75

0.55 0.65 0.75

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.35: SVM classifiers’ resampling performance

The performance of the five SVM classifiers are compared in Figure 5.35. The SVM
classifiers built using the area under ROC feature selection (SV M_ROC'), and the Relief
feature selection (SV M _Relief) algorithms produce similar ROC distributions, but different
sensitivity and specificity distributions. The SVM classifier built using all predictors (1776)
(SV M _All) comes in the third place, which suggests that the performance of the SVM
learning algorithms is negatively affected by the high-dimensional feature space. The
classifiers built using PCA (GBM _PCA_ 95 and GBM _PCA_Kaiser) produce the worst
performance.

0.5 0.6 0.7 0.8
1 1 Il 1 1 1

05 06 0.7 08

L Il Il Il Il Il Il Il Il

[
ROC

L | |
SO Spec ROC Sens Spec
RF_AIl ol o g o} RE_Al N _ -,-
RF_Relief Bis o fh L RF_Relief - - o
RF_ROC ofe o M eh RF_ROC - o .
RF_PCA_95 4 o [eh|+{e}-: RF_PCA_95 - —— | ——
RF_PCA_Kaiser ¢ o} 0] RF_PCA_Kaiser o o o
T T T T T T T T T T T T T T T T T T T T
05 0.6 07 0.8 05 0.6 0.7 08 05 06 07 08 05 06 07 0.8

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.36: RF classifiers’ resampling performance

Figure 5.36, compares the performance of the five RF classifiers. The RF classifiers built
using all predictors (1776) (RF_All), the Relief feature selection (RF _Relief), and the
area under ROC feature selection (RF_ROC) algorithms produce similar ROC distribution,
but slightly different sensitivity and specificity distributions. Analogous to the GBM
learning algorithm, the RF algorithm has a built-in feature selection algorithm, which
eliminates the effect of the high-dimensional feature space on the classifier’s performance

133

(the REF_All is the best performing classifier). The classifiers built using PCA (RF_PCA_95
and RF_PCA_Kaiser) produce the worst performance.

050 0.60 0.70 0.80 055 065 0.75
1 1 lRlO(:l) I lslensl) I lslpecl - | | IROCI: | 11 i éenls i [i |Spe|c 1 1
KNN_ROC off o k| r{eh KNN_ROC - —— e
KNN_Relief ok {3 e h KNN_Relief - —— ——
KNN_PCA_95 e et R Ol KNN_AII - — —
KNN_AIl $F --Lo }- e} KNN_PCA_95 - —o— ——
KNN_PCA_Kaiser 0} 1 -k KNN_PCA_Kaiser =~ - -
IS e e s B B s s s BB s s B T T T T T o T
050 0.60 0.70 0.80 050 0.60 0.70 0.80 055 065 075 055 065 075
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.37: KNN classifiers’ resampling performance

The performance of the five KNN classifiers are compared in Figure 5.37. The KNN
classifiers built using the area under ROC feature selection (K NN_ROC'), and the Relief
feature selection (K N N _Relie f) algorithms produce similar ROC distributions, but different
sensitivity and specificity distributions. The KNN classifier built using all predictors
(KNN_All) comes in the third place, which suggests that the performance of the KNN
learning algorithms is negatively affected by the high-dimensional feature space. The
classifiers built using PCA (KNN_PCA_95 and KNN_PCA_Kaiser) produce the worst
performance. The results show that KNN classifiers have a high variance of performance.

05 06 07 08 055 065 075
1 lROCl L1 15 1 L1 15 L L Lo PR [R R R |
ens pec ROC Sens Spec
FDA_ROC fl fO - ek FDA_ROC - — ha
FDA_Relief o - {eb {F FDA_Relief - o ——
FDA_All otk o ek oo e FDA_AIl o —— —
FDA_PCA_95 o} R ek FDA_PCA_95 e e
FDA_PCA_Kaiser offe P Lot FDA_PCA_Kaiser i -
. : : T T : : T
05 06 07 08 05 06 07 08 055 065 075 055 065 075
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.38: FDA classifiers’ resampling performance

Finally, Figure 5.38, compares the performance of the five FDA classifiers. The FDA
classifiers built using the area under ROC feature selection (FDA_ROC) algorithm, the
Relief feature selection (FDA_Relief) algorithm, and all predictors (F-DA_AIl) produce

134

similar ROC distributions, but different sensitivity and specificity distributions. Since the
FDA algorithm has a built-in feature selection algorithm, the high-dimensional feature
space has a slight effect on its performance. The classifiers built using PCA (FDA_PCA_95
and FDA_PCA_Kaiser) produce the worst performance.

Comparing Classifiers per Feature Selection Algorithm

The classifiers built using the same feature selection algorithm are grouped together and
their performances are compared. Since five feature selection algorithms/approaches (all
features, PCA 95%, PCA Kaiser, area under ROC, and Relief) are used in this case study,
there are five groups (one for each feature selection algorithm). Within each group, there
are five classifiers (one for each learning algorithm). The objective here is to compare the
relative performance of the five learning algorithms (GBM, SVM, RF, FDA, and KNN),
given the exact same features and cross-validation folds.

055 065 0.75
1 1 Il 1 1

1

Sens

0.550.600.650.700.750.80
I N N B

ROC Sens
RF_All o flo Lot -k RF_All o —— ——
GBM_AIl of o b Lot GBM_AIl o —— —
SVM_AIl R [eh o et SVM_AII - —— ——
FDA_AIl o! o {e}-1 te- Lo} FDA_AIl o —o— ——
KNN_AIl £ R R BT KNN_AII - — T
T T T T T T T T T T T T T T T T T T

0.550.600.650.700.750.80

(b) Estimates with 95% CL

0.550.600.650.700.750.80

0.55 065 0.75 0.55 065 0.75

(a) Performance’s distributions

Figure 5.39: All predictors classifiers’ resampling performance

The performances of the five classifiers built using all features (1776 feature) are compared
in Figure 5.39. The performance’s distributions of classifiers, shown in Figure 5.39a, are
ordered by the median of the area under the ROC while the performance’s estimates
with 95% CL of classifiers, shown in Figure 5.39b are ordered by the average of the area
under ROC. The RF _All classifier has a slight edge (in terms of ROC and specificity)
over the GBM _All classifier, which comes in the second place. However, the GBM _All
has slightly better sensitivity. As noted in the previous comparisons, the performance of
the RF and GBM learning algorithms is not affected by the high-dimensionality because
they have built-in feature selection algorithms. The SV M_All and FDA_All classifiers
come respectively in the third and fourth positions. The K NN _All classifier has the worst

135

performance. It should be noted that the order of classifiers based on their area under ROC
does not agree with their order based on sensitivity and specificity.

0.5 06 0.7 0.8 05 06 07 08
T B B T B B I L

Il
ROC Sens Spec | | | | | | | | | | | |

ROC Sens Spec
RF_PCA_95 fl Lodi| - Lot GBM_PCA_95 o o o

GBM_PCA_95 # fo} e} RF_PCA_95 - —— | ——
SVM_PCA_95 ofo {h R SVM_PCA_95 - . o
KNN_PCA_95 o o} --fo } KNN_PCA_95 - —— ——
FDA_PCA_95 ok i ek FDA_PCA_95 - - —

T T

05 0.6 0.7 0.8 05 06 0.7 0.8 05 06 07 08 05 06 07 08

(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.40: PCA 95% classifiers’ (255 PCA) resampling performance

Figure 5.40 compares the performances of classifiers built using the PCA with 95%
variance (255 PCA components). Based on the average area under ROC, the GBM _PC' A_95
classifier outperforms all classifiers. The REF_PCA_95 classifier comes in the second place,
and the classifiers SVM_PCA 95 KNN_PCA95, and FDA_PCA_95 follow respectively
in the third, fourth, and fifth places. The order of classifiers based on the sensitivity agrees
with the order based on the area under ROC except for the first two positions, where the
RF_PCA95 classifier slightly outperforms the GBM_PCA_95 classifier. On the other
hand, the order of classifiers based on the specificity is reversed.

0.50 0.60 0.70

0.55 0.60 0.65 0.70
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L L L L | | | | | | | |
RO SIS Spec ROC Sens Spec
RF_PCA_Kaiser i+ o L1 RF_PCA_Kaiser o o .
GBM_PCA_Kaiser 41 -l L} GBM_PCA_Kaiser o ~— |
SVM_PCA_Kaiser I SO PR IY SVM_PCA_Kaiser o —— | ——
KNN_PCA_Kaiser {e] o} D] KNN_PCA_Kaiser o —— ——
FDA_PCA_Kaiser offe el Lo}-: FDA_PCA_Kaiser - —— ——
T T T T T T T T T T T T T T T T71 T T T T T T T T T T T T
050 060 0.70 050 060 0.70 0.550.60 0.65 0.70 0.55 0.60 0.65 0.70
(a) Performance’s distributions (b) Estimates with 95% CL

Figure 5.41: Kaiser classifiers’ (11 PCA) resampling performance

The performances of the classifiers built using the PCA Kaiser rule (11 PCA compo-
nents) are shown in Figure 5.41. The order of classifiers based on the average area under
ROC is respectively as follows: REF_PCA_kaiser, GBM_PCA_kaiser, SV M_PC A_kaiser,

136

KNN_PCA _kaiser, and FDA_PCA_kaiser. This order agrees with the classifiers’ order
based on the sensitivity while the order based on the specificity slightly disagrees (the
specificity of KNN_PCA_kaiser is better than SV M _PCA_kaiser).

SVM_ROC
GBM_ROC
RF_ROC
FDA_ROC

KNN_ROC

0.60 0.70 0.80

1 1 1 1 1 1 1 1

Sens
5] -1 o tH
off RO ¢ ok
o flo [o+ r{e}s
3] et Lok
oufh o rfeby [1-{ok
T T T T T T T T T T T T T T T

0.60 070 0.80 0.60 070 0.80

(a) Performance’s distributions

0.600.650.700.750.80
1 1 1 1 1 1 1 1

| | |
ROC Sens Spec

RF_ROC - —— ——
GBM_ROC - —— ——
SVM_ROC o —— ——
FDA_ROC o —— ———
KNN_ROC o ——— | e

T T T T T T T T T T T T T T T
0.600.650.700.750.80 0.600.650.700.75 0.80

(b) Estimates with 95% CL

Figure 5.42: ROC classifiers’ resampling performance

Figure 5.42 compares the performances of classifiers built using the area under ROC
feature selection algorithm. Based on the average area under ROC, the order of classifiers is
respectively RF_ROC, GBM _ROC, SVM_ROC, FDA_ROC, and KNN_ROC'. However,

this order substantially disagrees with the orders based on the sensitivity and specificity.

RF_Relief
GBM_Relief
SVM_Relief

FDA_Relief

KNN_Relief

0.600.650.700.750.80

1 1 1 1 1 Il 1 1 1 1

RXOC1 Sens épec
RIN Lok et
b3 REEE O N IR OO
b o r{eh 3
sk -k R I
RO o IR {

L LI B LI B L T L L
0.600.650.700.750.80 0.600.650.700.75 0.80

(a) Performance’s distributions

RF_Relief
GBM_Relief
SVM_Relief

FDA_Relief
KNN_Relief

0.65 0.70 0.75 0.80
1 1 1 1 1 1 1 1 1 1 1 1

Sens

0.65 0.65 0.70 0.75 0.80

(b) Estimates with 95% CL

0.70 0.75 0.80

Figure 5.43: Relief classifiers’ resampling performance

The performances of classifiers built using the Relief feature selection algorithm are
compared in Figure 5.43. The order of classifiers, based on the average area under ROC,
is respectively RF _Relief, GBM _Relief, SV M _Relief, FDA_Relief, and K NN _Relief.
The classifiers” order based on the sensitivity and specificity greatly agrees with their order
based on the average area under ROC.

137

]
ROC Sens Spec
RF_AIl o flo o iets [O)
RF_Relief o o {e}i b
GBM_All oft LIS | e
SVM_ROC 51 pR e o &
GBM_Relief # L [k
GBM_ROC ofi o h Frm
RF_ROC o do o o LR CE
SVM_Relief o o i{sh #Fio
FDA_ROC 3] o et -
FDA_Relief i Bh i-{sh --
KNN_ROC odh o i{sh -{h
SVM_AII *h o [&h o i -4
KNN_Relief by - o
FDA_All o 4h o fek-i --Teka
RF_PCA_95 IR0 ° CoFs | - ==
GBM_PCA 95 £ ot b e
SVM_PCA_95 ofo IO Teh
RF_PCA_Kaiser e Lo i-Th
KNN_PCA_95 o P-fot- e i
KNN_AII ®h e BN bl I E—
GBM_PCA_Kaiser By -3 ot -i
SVM_PCA_Kaiser o et -i P-1eFA
KNN_PCA_Kaiser e FLet - i-ToH
FDA_PCA_95 o Bt IO [l I
FDA_PCA_Kaiser ofte e i et -
T T T T T T T T T T T T T T
05 06 0.7 08 05 06 07

(a) Performance’s distributions

0.5 0.6 0.7 0.8
| | | | | | | | | | |

ROC Sens Spec

RF_AIl
RF_Relief
GBM_AII
GBM_Relief
RF_ROC
GBM_ROC
SVM_ROC
SVM_Relief
FDA_ROC
FDA_Relief
SVM_AII
KNN_ROC
FDA_AIIl
KNN_Relief
GBM_PCA_95 o
RF_PCA_95 o
SVM_PCA_95 -
RF_PCA_Kaiser o
KNN_AII -
GBM_PCA_Kaiser - o
KNN_PCA_95 -
SVM_PCA_Kaiser -
FDA_PCA_95 o
KNN_PCA_Kaiser - —
FDA_PCA_Kaiser -

?Q‘!(}quq

tdaqq,
f *+ Py g
{ ARRRAFREREE

(b) Estimates with 95% CL
Figure 5.44: All 25 classifiers’ resampling performance

138

Finally, Figure 5.44 compares the performances of all twenty-five classifiers. The
comparison shows that injecting model diversity at the feature, structural, and learning
algorithm levels produces a diverse area under ROC, sensitivity, and specificity.

5.7.2 Evaluating Class Probabilities

Using the test data set (with 1125 observations) and several types of plots, this section
evaluates the class probabilities produced by the trained classifiers. These plots include:
histograms of class probabilities, calibration plot, lift charts, and the Receiver Operating
Characteristics (ROC) curves plot.

Histograms of Class Probabilities

For two classes, histograms of the predicted classes for each of the true outcomes reveals the
strengths and weaknesses of a classifier. Figure 5.45 shows histograms of the test set class’s
probabilities for the SV M _Relief (left plot) and FDA_PCA95 (right plot) classifiers (the
panels indicate the true Active/Inactive status). Ideally, the probability of active (left
panel) for molecules with an active response should have a left skewed distribution while the
probability of inactive for molecules with an inactive response should have a right skewed
distribution. In contrast, if the probabilities are flat (or uniformly distributed), as for the
FDA_PCA95, this reflects the classifier’s inability to distinguish active/inactive molecules.

0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 0.8 1.0
| | | | | | | | | | | | | | | | | |1 | | | | |
True Outcome: Active | True Outcome: Inactive True Outcome: Active | True Outcome: Inactive
I 60 — o
100 — -
< £40 u
=} =}
@] @]
O 50 | O
20 -
0 = - 0 -
T T
0.0 0.2 04 0.6 0.8 1.0 0.0 02 04 06 08 1.0
Probability of Active (SVM_Relief) Probability of Active (FDA_PCA_95)

Figure 5.45: Histograms of class probabilities

139

0.2 0.3 0.4 05 0.6 0.7 0.8
I Y N N A N S N N O NN I N |

True Outcome: Active [True Outcome: Inactive
100 1 -
€
>
o
O 50 — —
0 - 1 L
T T T T T T T T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability of Active (GBM_ALL)
02 04 06 08 02 04 06 08
| | | | | | | | | | | | | | | |
True Outcome: Active | True Outcome: Inactive True Outcome: Active | True Outcome: Inactive
M | 60 A L N -
60 L |
= 240 - r
Sa0 - L5
@) o
O O
20 L 20 L
0 - 0 -
T T T T T T T T T T T T T T T T
02 04 06 08 02 04 06 08
Probability of Active (GBM_PCA_95) Probability of Active (GBM_PCA_kaiser)
03 04 05 06 07 0.3 0.4 05 0.6 0.7 08
| |
True Outcome: Active [True Outcome: Inactive True Outcome: Active [True Outcome: Inactive
200 = 1
150 L 100 L
€ €
8100 — o 2
O O 50 B
] m’rh-l_’-‘, —‘]
0 - 0 —l -
T T
0.3 04 05 06 07 0.3 04 05 0.6 0.7 0.8
Probability of Active (GBM_ROC) Probability of Active (GBM_Relief)

Figure 5.46: GBM classifiers’ histograms of class probabilities

Figures 5.46 to 5.50 present the histograms of class probabilities for the twenty-five
classifiers grouped by the learning algorithm. Most GBM, RF, SVM, and FDA classifiers

140

have good skewed distributions of class probabilities except the classifiers built using the
PCA features. On the other hand, all KNN classifiers have near flat/uniform distributions.

00 02 04 06 08 1.0
1 1 1 1 1 L1 1 1 1 1 1

20 True Outcome: Active | True Outcome: Inactive
l — _ —
100 =
80 -
€
S 60 -
@)
O
40 =
20 -
0 — —
T T T T T T T T T T T T
0.0 02 04 06 08 1.0
Probability of Active (SVM_ALL)
00 02 04 06 08 1.0 02 04 06 08 1.0
| | | | | | | | | | | | | | | | | 11 | | | | |
True Outcome: Active | True Outcome: Inactive True Outcome: Active [True Outcome: Inactive
| 80 o -
100 -
- =60 B
c c
3 3
40 -
O 50 B O
20 =
0 - 0 -
T T T T T T T T T T T T T T T T T TT T T T T T
0.0 02 04 06 08 1.0 02 04 06 08 10
Probability of Active (SVM_PCA_95) Probability of Active (SVM_PCA_kaiser)
0.0 02 04 06 08 10 0.0 02 04 06 08 1.0
| |
True Outcome: Active | True Outcome: Inactive True Outcome: Active | True Outcome: Inactive
150 — -
100 | -
5100 - 5
o @)
O O 50 |
N M _
0 - 0 = -
T T
00 02 04 06 08 10 00 02 04 06 08 1.0
Probability of Active (SVM_ROC) Probability of Active (SVM_Relief)

Figure 5.47: SVM classifiers’ histograms of class probabilities

141

Count

Count

0.0 02 04 06 08 1.0

True Outcome: Inactive

True Outcome: Active
80 —
60
c
3
G40
20 _|
0 —

T T T T T T
0.0 0.2 04 0.6 08 1.0

Probability of Active (RF_ALL)

00 0.2 04 06 08 1.0
| | | | | | | | | | | |

True Outcome: Active | True Outcome: Inactive

80

60

20

T T T T T T
0.0 0.2 04 06 08 1.0
Probability of Active (RF__PCA_95)

0.0 0.2 04 06 0.8 1.0
| | | | | | | | | | | |

True Outcome: Active | True Outcome: Inactive

80

60

20

|

T T T T T T T T T T T T
0.0 0.2 04 06 08 10

Probability of Active (RF_ROC)

00 0.2 04 06 08 1.0
| | | | | | | | | | | |

True Outcome: Active | True Outcome: Inactive

60

Count

20

]

T T T T T T T T T T T T
0.0 0.2 04 06 08 1.0
Probability of Active (RF_PCA_kaiser)

0.0 0.2 04 06 0.8 1.0
| | | | | | | | | | | |

True Outcome: Active | True Outcome: Inactive

Count

|

T T T T T T T T T T T T
0.0 0.2 04 06 08 10

Probability of Active (RF_Relief)

Figure 5.48: RF classifiers’ histograms of class probabilities

142

Count

Count

60

20

100

80

60

40

20

00 02 04 06 08 10
| 1| | | | | |

|
True

Outcome: Active

True Outcome: Inactive

150

100

Count

50

H

00 02 04 06 08 1.0
Probability of Active (FDA_ALL)

00 02 04 06 08 1.0

True Outcome: Active | True Outcome: Inactive

0.0 02 04 06 08 10

Probability of Active (FDA_PCA_95)

00 02 04 06 08
| | | | | | | | | |

True Outcome: Active | True Outcome: Inactive

T T T T T
00 02 04 06 08

Probability of Active (FDA_ROC)

Figure 5.49: FDA classifiers’

02 04 06 08 1.0
| | | | | | | | | |
True Outcome: Active | True Outcome: Inactive
60 | =
Sa40
[e]
O
B 20
- 0 - n
T T T T T T T T T T
02 04 06 08 1.0
Probability of Active (FDA_PCA_kaiser)
0.0 02 04 06 08
| | | | | | | | | |
True Outcome: Active | True Outcome: Inactive
L 250 M
L 200
L £150 -
>
@]
L O100 -
-2 0l il
— 0 —
T T T T T T T T T T

00 02 04 06 08
Probability of Active (FDA_Relief)

histograms of class probabilities

143

Count

Count

100

150

100

50

Count

0.0 0.2 04 0.6 08 10
| | | | | |

True OQutcome: Active

True Outcome: Inactive

120

100
80
60

40

20

_ r|I'I|_|

0.0 02 0.4 0.6 08 1.0
Probability of Active (KNN_ALL)

0.0 0.2 0.4 06 0.8 10
| | | | | |

True Outcome: Active

True Outcome: Inactive

|

401

LI N B B
0.0 0.2 04 06 0.8 1.0

Probability of Active (KNN_PCA_95)

0.0 0.2 04 0.6 0.8 1.0
I I N N B

True Outcome: Active

True Outcome: Inactive

80

60

40

20

T T T T T T
0.0 0.2 0.4 06 08 1.0

Probability of Active (KNN_ROC)

0.0 0.2 0.4 06 0.8 10
| | | | | |

True Outcome: Active

True Outcome: Inactive

[

1 T T T 1
0.0 0.2 04 06 08 1.0

Probability of Active (KNN_PCA_Kkaiser)

0.0 0.2 04 06 0.8 1.0
I I N N B

True Outcome: Active

True Outcome: Inactive

T T T T T T
0.0 0.2 0.4 06 08 1.0

Probability of Active (KNN_Relief)

Figure 5.50: KNN classifiers’ histograms of class probabilities

144

Calibration and Lift Plots

Regardless of the application’s domain, one desirable feature of a classifier is that the
predicted class probabilities are well-calibrated. That is, they must reflect the true likelihood
of the event of interest in a given sample. The calibration plot is one approach to assessing
the quality of the predicted class probabilities. It measures the observed probability of an
event versus the predicted class probability. The calibration plot is constructed by applying
the classifier to the test data set. Next, the data is binned into groups based on their
class probabilities (e.g. [0, 10%], (10%, 20%],..., (90%, 100%]). Then, for each bin, the
observed event rate is determined. The classifier’s predicted probabilities are well-calibrated
if the points fall along the 45° line [15]. For example, Figure 5.51a shows the calibration
plots for the GBM _ALL and RF _ALL classifiers. The RF_ALL produces good-calibrated
probabilities. On the other hand, the GBM _ALL classifier produces poorly calibrated
probabilities, where no samples with active response were predicted with a probability
above 80%.

GBM_ALL ° RF_ALL x GBM_ALL RF_ALL
| | | | | | | | | | | |
100 — - 100 — -
]
(]
£ oA - 80 | -
8-) 60 o i 60 o
5 8
> Q.
w40 H - E 40 -
3 2]
2 X
2 20 = 20 =
Qo
o
0 = 0 - =
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Bin Midpoint % Samples Tested
(a) Calibration plot (b) Lift plot
Figure 5.51: Calibration and Lift plots
Lift charts [53] are used to assess the ability of a classifier to detect the events in a binary

classification problem. The lift charts rank the samples by their event class probability
and determine the cumulative event rate as more samples are evaluated. Optimally, the
N highest-ranked samples contain all N events in the data set. The number of samples
detected by a classifier above an entirely random selection of samples is called the lift. So,
the lift chart plots the cumulative lift against the cumulative percentage of the samples

145

tested. Figure 5.51b shows the lift charts for the GBM _ALL and RF_ALL classifiers. The

left top corner of the triangle represents the event rate in the test data set (in our case, the

event (active) rate is 54.2%). A perfect classifier would have a curve that goes into the top

left corner of the triangle, which indicates that all of the events have been captured by the

classifier. On the other hand, a non-informative classifier would have a curve close to the

45° line. Lift charts can be used to compare the performance of different classifiers [15].
GBM_ALL o GBM_ROC © GBM_ALL —— GBM_ROC ——
GBM_PCA 95 x GBM_Relief GBM_PCA 95 ——— GBM_Relief

GBM_PCA_kaiser v GBM_PCA_kaiser
| | | | |

o 100 - 100 -
(o))
8
S 80 - o 80 o
g g
() o
& 60 o 60 o
5] @
> Q.
M 40 = E 40 -
§ n
5 204 - S 20 o o
%]
Qo
O o - 0 -

T T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Bin Midpoint % Samples Tested
(a) Calibration plot (b) Lift plot

Figure 5.52: Calibration and lift plots of the GBM classifiers

SVM_ALL o SVM_ROC © SVM_ALL o SVM_ROC ——
SVM_PCA 95 x SVM_Relief SVM_PCA_95 o SVM_Relief
SVM_PCA_kaiser v SVM_PCA_kaiser
| | | | | | | | | | | |
o 100 R 100 — =
(o)) %
8
e - - - -
g 80 -g 80
() o
QO 60 o L 60 o
£ 3
g =
40 = E 40 =
§ 2]
5 20— - S 20 -
(%]
Qo
© o4 - 0 -
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Bin Midpoint % Samples Tested
(a) Calibration plot (b) Lift plot

Figure 5.53: Calibration and lift plots of the SVM classifiers

146

Observed Event Percentage

Observed Event Percentage

80

60

40

20

100

80

60

40

20

°

RF_ALL
RF_PCA 95
RF_PCA_kaiser v

| | | | |

RF_ROC ©
RF_Relief

X

FDA_ALL .
FDA_PCA_95 x

20 40 60 80 100
Bin Midpoint

(a) Calibration plot

% Samples Found

RF_ALL
RF_PCA 95
RF_PCA_kaiser

100 —

80

60

40

20

e RF_ROC
—_— RF_Relief

Figure 5.54: Calibration and lift plots

FDA_ROC ©
FDA_Relief

FDA_PCA kaiser v

20 40 60 80 100
Bin Midpoint

(a) Calibration plot

% Samples Found

FDA_ALL
FDA_PCA_95
FDA_PCA_kaiser

100

80

60

40

20

20

T T
40 60

% Samples Tested

(b) Lift plot

of the RF classifiers

—_— FDA_ROC
—_— FDA_Relief

100

20

T T
40 60

% Samples Tested

(b) Lift plot

Figure 5.55: Calibration and lift plots of the FDA classifiers

147

80

100

KNN_ALL ° KNN_ROC o KNN_ALL — KNN_ROC —
KNN_PCA 95 x KNN_Relief KNN_PCA_95 — KNN_Relief
KNN_PCA_kaiser v KNN_PCA_kaiser
| | | | | | | | | | | |
o 100 - - 100 e
(o))
8
c - - - -
3 80 -§ 80
[o
2 60 o = 60 =
= ()
Q =
40 - E 40+ -
§ n
5 20 - S 20 o
1%} /
Qo /
O o4 !) % - o+ 7 -
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Bin Midpoint % Samples Tested
(a) Calibration plot (b) Lift plot

Figure 5.56: Calibration and lift plots of the KNN classifiers

Figures 5.52 to 5.56 present the calibration and lift plots for the twenty-five classifiers
grouped by the learning algorithm. Most SVM, RF, and FDA classifiers have good
calibration of class probabilities while GBM and KNN classifiers have poorly-calibrated
probabilities. The class probabilities produced by a classifier can be re-calibrated, to reflect
the likelihood of the event seen in the data set, by training an additional classifier (such
as Logistic Regression or Naive Bayes) to adjust the predicted probabilities [15]. Having
well-calibrated class probabilities might prove to be worthy of consideration, especially when
using these probabilities as predictors in the model fusion by model stacking, discussed
in Section 5.8.3. However, for this case study, the predicted probabilities will be used
in the model fusion without re-calibrating. Investigating the effect of re-calibrating class
probabilities on the overall performance of ensembles is considered a future work.

The ranks of classifiers (per learning algorithm) based on the lift charts are consistent
with the ranks in Section 5.7.1 (based on the average CV area under ROC).

Receiver Operating Characteristic (ROC) Curves

The ROC curve is a common quantitative measure of classifiers’ performance in binary
classification problems. It can also be used to compare visually the performance of different
classifiers (e.g. classifiers built using the same learning algorithm, but different feature
selection algorithms and/or different hyper-parameters).

148

Figure 5.57 shows an example of a ROC curve for the GBM _ALL classifier. A perfect
classifier would have 100% sensitivity and specificity (defined in Section 5.7.3). The ROC
curve for such a classifier would be a single step between (0,0) and (0,1) and remain constant
from (0, 1) to (1, 1), and its Area Under ROC Curve (AUC) would be 1.0. On the other
hand, an entirely ineffective classifier would have an ROC curve alone the 45° line, and
AUC of approximately 0.50. When comparing several classifiers, the optimal classifier would
be the one with an ROC curve shifted towards the upper left corner of the plot, or, the
classifier with the largest AUC [15].

Q
i

Sensitivity
0.6

0.4

0.2

AUC: 0.857 | — GBM_ALL

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Figure 5.57: An example of a classifier’'s ROC Curve

This Section presents the ROC curves of the trained twenty-five classifiers grouped
by the learning algorithm. The classifiers’ area under ROC curve (AUC), and their 95%
Confidence Interval (CI) are also presented.

149

o
S -
[e¢]
g
[{e]
P S]
=
‘@
c
[<8]
N«
s
~ AUC: 0.857 | — GBM_ALL
© AUC:0.831 | —— GBM_PCA_95
AUC: 0.829 | —— GBM_Relief
AUC: 0.828 | —— GBM_ROC
= AUC: 0.766 | —— GBM_PCA_Kasier
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Figure 5.58: ROC Curves of the GBM classifiers

Figure 5.58 compares the ROC Curves of the GBM classifiers, while Table 5.6 ranks the
GBM classifiers based on their AUC. The order of the classifiers (for the test dataset) is
slightly different from the order previously obtained using the average 10-fold CV AUC

(Figure 5.34b). Besides, the magnitudes of classifiers’ AUC are more optimistic than the
average 10-fold CV AUC.

Table 5.6: Area Under ROC Curve (AUC) of the GBM classifiers

Rank Model AUC (%) AUC 95% CI (%)
1 GBM_ALL 85.65 (83.44 - 87.86)
2 GBM_PCA_95 83.15 (80.73 - 85.57)
3 GBM_Relief 82.90 (80.47 - 85.32)
4 GBM_ROC 82.83 (80.38 - 85.28)
5 GBM_PCA_Kasier 76.59 (73.82 - 79.36)

150

o
S
[ce)
®
[{e]
> °
=
‘@
c
5]
0«
g
~ AUC: 0.858 | — SVM_Relief
© AUC:0.839 | —— SVM_PCA_95
AUC:0.831 | — SVM_ALL
AUC: 0.828 | —— SVM_ROC
= AUC:0.766 | —— sSVM_PCA_Kasier
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Figure 5.59: ROC Curves of the SVM classifiers

The ROC Curves of the SVM classifiers are compared in Figure 5.59. The classifiers’
order based on their AUC, presented in Table 5.7, is slightly different and more optimistic
than their order based on the average 10-fold CV AUC (Figure 5.35b).

Table 5.7: Area Under ROC Curve (AUC) of the SVM classifiers

Rank Model AUC (%) AUC 95% CI (%)
1 SVM_Relief 85.79 (83.57 - 88.01)
2 SVM_PCA_95 83.85 (81.48 - 86.22)
3 SVM_ALL 83.08 (80.64 - 85.52)
4 SVM_ROC 82.84 (80.41 - 85.27)
5 SVM_PCA _Kasier 76.58 (73.80 - 79.37)

151

o
S
[ce)
® -
[{e]
> °
=
‘@
c
5]
0«
3
~ AUC:0.866 | — RF_ALL
© AUC: 0.861 | —— RF_ROC
AUC: 0.861 | —— RF_Relief
AUC:0.834| —— RF_PCA 95
= AUC:0.804| —— RF_PCA_Kasier
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Figure 5.60: ROC Curves of the RF classifiers

Figure 5.60 compares the ROC Curves of the RF classifiers while Table 5.6 ranks the
RF classifiers based on their AUC. This order is consistent with the order of RF classifiers
based on the average 10-fold CV AUC (Figure 5.36b). However, the magnitudes of the
AUC are more optimistic.

Table 5.8: Area Under ROC Curve (AUC) of the RF classifiers

Rank Model AUC (%) AUC 95% CI (%)
1 RF_ALL 86.56 (84.42 - 88.69)
2 RF_ROC 86.14 (83.98 - 88.30)
3 RF_Relief 86.07 (83.90 - 88.24)
4 RF_PCA_95 83.36 (80.97 - 85.75)
5 RF_PCA_Kasier 80.41 (77.88 - 82.94)

152

o
S
[ce)
® -
[{e]
> S]
=
‘@
c
5]
N«
3
~ AUC: 0.819 | — FDA_ALL
© AUC:0.810 | —— FDA_ROC
AUC:0.800 | —— FDA_Relief
AUC: 0.740 —— FDA_PCA_95
= AUC:0.705 | —— FDA_PCA_Kasier
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Figure 5.61: ROC Curves of the FDA classifiers

Figure 5.61 compares the ROC Curves of the FDA classifiers. The classifiers are ranked
in Table 5.9 based on their AUC. This order is slightly different from the order of classifiers
based on the average 10-fold CV AUC (Figure 5.38b). Moreover, the magnitudes of the
AUC are more optimistic.

Table 5.9: Area Under ROC Curve (AUC) of the FDA classifiers

Rank Model AUC (%) AUC 95% CI (%)
1 FDA_ALL 81.85 (79.35 - 84.36)
2 FDA_ROC 80.96 (78.42 - 83.51)
3 FDA_Relief 79.96 (77.36 - 82.56)
4 FDA_PCA_95 74.00 (71.13 - 76.87)
5 FDA_PCA Kasier 70.45 (67.43 - 73.47)

153

o
S
[ce)
©
[{e]
> °
=
‘©
c
5]
N«
g
~ AUC: 0.810 | —— KNN_ROC
© AUC: 0.801 | —— KNN_Relief
AUC:0.788 | —— KNN_PCA_95
AUC: 0.787 | —— KNN_ALL
= AUC:0.758 | —— KNN_PCA_Kasier
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Figure 5.62: ROC Curves of the KNN classifiers

Finally, Figure 5.62 compares the ROC Curves of the KNN classifiers. The order of
classifiers based on the AUC, presented in Table 5.10, is consistent with the order of
classifiers based on the average 10-fold CV AUC (Figure 5.37b). Moreover, the magnitudes
of the AUC are more optimistic.

Table 5.10: Area Under ROC Curve (AUC) of the KNN classifiers

Rank Model AUC (%) AUC 95% CI (%)
1 KNN_ROC 81.00 (78.47 - 83.54)
2 KNN_Relief 80.15 (77.59 - 82.71)
3 KNN_PCA_95 78.79 (76.15 - 81.43)
4 KNN_ALL 78.73 (76.11 - 81.36)
5 KNN_PCA Kasier 75.82 (73.80 - 79.37)

154

Table 5.11 ranks the twenty-five classifiers based on their area under ROC (using the
test data set with 1125 samples). The order of the top performing classifiers based on the
test dataset is consistent with the order based on the average 10-fold cross-validation AUC
(Figure 5.44b), which indicates the robustness of the trained classifiers.

Table 5.11: All 25 models Area Under ROC Curve (AUC)

Rank Model AUC (%) AUC 95% CI (%)

1 RF_ALL 86.56 (84.42 - 88.69)

RF_ROC 86.14 (83.98 - 88.30)
3 RF_Relief 86.07 (83.90 - 88.24)
4 SVM_Relief 85.79 (83.57 - 88.01)
5 GBM_ALL 85.65 (83.44 - 87.86)
6 SVM_PCA_95 83.85 (81.48 - 86.22)
7 RF_PCA_95 83.36 (80.97 - 85.75)
8 GBM_PCA_95 83.15 (80.73 - 85.57)
9 SVM_ALL 83.08 (80.64 - 85.52)
10 GBM_Relief 82.90 (80.47 - 85.32)
11 SVM_ROC 82.84 (80.41 - 85.27)
12 GBM_ROC 82.83 (80.38 - 85.28)
13 FDA_ALL 81.85 (79.35 - 84.36)
14 KNN_ROC 81.00 (78.47 - 83.54)
15 FDA_ROC 80.96 (78.42 - 83.51)
16 ~ RF_PCA_Kasier 80.41 (77.88 - 82.94)
17 KNN_Relief 80.15 (77.59 - 82.71)
18 FDA_Relief 79.96 (77.36 - 82.56)
19 KNN_PCA_95 78.79 (76.15 - 81.43)
20 KNN_ALL 78.73 (76.11 - 81.36)
21 GBM_PCA_Kasier 76.59 (73.82 - 79.36)
22 SVM_PCA Kasier 76.58 (73.80 - 79.37)
23 KNN_PCA_Kasier 75.82 (73.80 - 79.37)
24 FDA_PCA_95 74.00 (71.13 - 76.87)
25 FDA_PCA _Kasier 70.45 (67.43 - 73.47)

155

5.7.3 Class Predictions

The confusion matriz is one of the standard methods to quantify the performance of a
classifier. Table 5.12 shows an example of the confusion matrix for a binary classification
problem. The diagonal cells (True Positive (T'P) 4+ True Negative (T'N)) represent the
correctly predicted classes while the incorrectly predicted classes (False Positive (FP) +
False Negative (F'N)) are represented by the off-diagonals. The number of samples in the
test dataset is N =TP+ TN + FP + FN.

Table 5.12: An example of the confusion matrix

Predicted Observed
Active Inactive

Active TP FP

Inactive FN TN

Several performance metrics are derived from the confusion matrix. Some of these
metrics include [15]:

TP+ TN
Accuracy = ERih Al (5.1)
N
TP
tivity = ————— 2
Sensitivity TP LN (5.2)
TN
Specificity = ———— 5.3
peci ficity TN+ FP (5.3)
Another important metrics is the Kappa statistic [18], which takes into account the
class distributions of the samples. It assesses the agreement between two raters.
O—-F
K = 5.4
appa = T (5.4)

Where O is the observed accuracy and F is the expected accuracy based on the marginal
totals of the confusion matrix. Kappa takes values between -1 and 1. If there is no agreement
between the observed and predicted classes, the Kappa statistic would have a value of 0.

156

A value of 1 indicates a perfect agreement while negative values indicate that the classifier’s
predictions are in the opposite direction of the truth. Generally, a reasonable agreement
between the classifier’s predictions and the observed classes is indicated by Kappa values
within 0.30 to 0.50 [15].

Using these metrics, the rest of this section presents the performance of the trained
twenty-five classifiers, grouped by the learning algorithm. For each group of classifiers, the
total and shared miss-classified samples are visually examined to assess the diversity of the
ensemble.

Table 5.13: Performance of GBM’s classifiers based on class predictions (N=1125)

Rank Model Acc.(%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)
1 GBM_ALL 78.58 (76.06-80.94) 83.44 72.82 56.59
2 GBM_PCA_95 77.33 (74.77-79.75) 82.79 70.87 54.03
3 GBM_ROC 77.33 (74.77-79.75) 83.61 69.90 53.96
4 GBM Relief 76.53 (73.94-78.98) 81.97 70.10 52.41
) GBM_PCA Kasier 70.67 (67.91-73.31) 75.08 65.44 40.68

214 1045
29 . S 4y, 1122 401137
142 1111 1050862 320"%% 70
88 1060 1117 @ 787
826 406 1101 221 893 1025 ©
1118 53 8001051 564 K11
662 815 <
0g F006994190 {454 116 g &6 2 19
761 33045 8ol 530 a8 1064, 1 925
742 2 899 509 734 o 033641017 841 022 7
637 3 131 o 827 121 691682 585
1000 497 188,99 W72 630 818067 21064638 0% /8 10157187 a2
§1075347 613 11191105 gy 643535 g51 gs2 968~ 856"
SOk 28971] 5 1114 23587 | 8161122 690202 oag
222 § 900649 ko se00% o 97 12278 6691117715 93707011587 o
31 g 6806 g2 101658 779" o P 750 B985 o
127%1856321%410 111347%;581 363 Jbs7 87453 1?&2) 9&3&3 85793%)
5110057885 12 ot ST 35056 o % g0 S
© 484 f 671387 0 120447 885 2558757224 3 8721027 750 733 S
10 %4 5015 672568 1066 L0 697,866 oo 1008 1049
w195 1070 594 942 492030 1085 887 ~ 1005
3621043765 311 14 18019751256 B07gy 835
415 564 929 B4 404
0 518 241 782 ~ 5o
0 8L9960 2 693802 -
356 130 « 10201080 3
617 & 986500 534 403
© 337 %3‘(1) : § 959%3% 542 2
R 706 1,508 1106 30499

Figure 5.63: GBM’s 5 classifiers, Left: Total miss-classifications (467 sample), Right: Shared
miss-classifications (119 sample)

157

Table 5.13 ranks the GBM classifiers based on their accuracy. This order is consistent
with the 5 GBM classifiers” order based on their area under ROC (Table 5.6). The total
unique and shared miss-classified test samples are shown in Figure 5.63. The five classifiers
share 25.48% of miss-classified samples, which indicates that injecting diversity at the
feature and structural levels resulted in GBM classifiers that make reasonably different
errors.

Table 5.14: Performance of SVM’s classifiers based on class predictions (N=1125)

Rank Model Acc. (%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)
1 SVM Relief 79.56 (77.08-81.88) 82.46 76.12 58.72
2 SVM _PCA 95 78.31 (75.79-80.69) 82.95 72.82 56.07
3 SVM_ALL 77.51 (74.96-79.92) 80.82 73.59 54.57
4 SVM_ROC 75.82 (73.21-78.30) 76.89 74.56 51.37
5 SVM_PCA Kasier 71.02 (68.27-73.66) 75.90 65.24 41.34

401612 213 1059 508 2761082 328
QY 2 298 142
6498 6857135 gy 512
368 6394 5 /118, 866 9i9099278
10010554 041l 339421 16 116285, 975
23 2159% on 3440 1123 648
¥ ™ 1 410 390 9{21113
o)
son 100 s 9915 604 7897822 T 802 802 214 103
N 20
130 320 gee @ 146 s B 1121060 T3S 8186y 6o1 084
38 730 2 LA 6572 g L EeT 1001 1070 S soss .
14 o 45%7 52101011738~ 9725 ®, 45 789 949958 112 1012
N 18756 (419397779 1111 89 1064851 1071917 1072 856
409%™ 230 IR AR 655 1121895 715652 5651968
7421057 15,1095200 952 willo 825 o &1
® 638 8 783 247 48 @ 75
§773© S a80 4‘80 578 537 633 835 905
3 827268 @ 1936741
0432 1195(73 704 ™ S {8 0 g4g 932
678, b 88127 - =94 g7a os537 299 @0 =, ©8091015
o 1105 1101 i{{émsgg 6981447 596382) (56067, 1008 .
< 772 o ~< @ o2
J 1'022970281 286) 0%9978 1043% 1050508 &2 o
B 37 B31%Es o O 888 g
2243%13 981 3995194 m%g 3 538 552
1039 483 954 246 (7, %%

o 125 736

g 891
? 533 1084 275

Figure 5.64: SVM’s 5 classifiers, Left: Total miss-classifications (485 sample), Right: Shared
miss-classifications (96 sample)

The five SVM classifiers are ranked based on their accuracy in Table 5.14, which exactly

158

the same order based on their area under ROC (Table 5.7). Figure 5.64 shows that out of
the 485 total miss-classified test samples only 19.79% are shared by the five SVM classifiers.

Table 5.15: Performance of RF’s classifiers based on class predictions (N=1125)

Rank Model Acc. (%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)
1 RF Relief 79.56 (77.08-81.88) 83.28 75.15 58.65
2 RF_ALL 79.29 (76.80-81.62) 81.97 76.12 58.20
3 RF_ROC 79.11 (76.62-81.45) 81.64 76.12 57.85
4 RF_PCA 95 76.98 (74.40-79.41) 81.80 71.26 53.36
5} RF PCA Kasier 73.16 (70.46-75.73) 76.89 68.74 45.76

1075
185 176
1033 211
1043 4230 1062923 o B 95‘3171
8 57 h 1113131
o 497412 4711 686 754
979157 409 420
104123 390 49; 6717 aatigy S48 483 1048 fjf%j - 11287 o
154 3
i 5% %80 s w13444690 948 925 goy 1036 "563'00%,
38b03384 531516 as 942 778759 715 1023 oo
0415 852 2 603800 641 473 1001555 544 1122 875 15 975 99150 809 856
2 513 8 o g 2 952596 299 933 761 03 3% 3507s"
330 4 Cers 564 o ote 5529 830 49 lg%
688 753439183 | 058 742, Bagg o 968 816
10675 ggg o B18 788 1002 ¥ o7 S § 560 8;05 922 85800
9%84 Z7ASI ot o1 oss 195,503 % 8
10663 1082423 492, T
349 685 %[1)%3 706 ©1072
825 1045 734 956 % 11191%°1 356 &
638 7 160 o 1057
484 984 612

1102
221

594

489
857
140

Figure 5.65: RF’s 5 classifiers, Left: Total miss-classifications (411 sample), Right: Shared
miss-classifications (124 sample)

Table 5.15 presents performance of the five RF classifiers based on their class predictions.
The RF classifiers” accuracy based ranks is slightly different from their AUC based ranks
(Table 5.8). Moreover, Figure 5.65 shows that 30.17% of the total unique miss-classified
test samples are shared by the five RF classifiers, which indicates that injecting diversity at
feature and structural levels for the RF learning algorithm did not result in the classifiers
making substantially different errors.

159

Table 5.16: Performance of FDA’s classifiers based on class predictions (N=1125)

Rank Model Acc. (%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)
1 FDA ALL 76.27 (73.67-78.73) 76.39 76.12 52.34
2 FDA ROC 74.76 (72.11-77.27) 73.61 76.12 49.44
3 FDA Relief 74.58 (71.93-77.10) 76.72 72.04 48.77
4 FDA_PCA_95 68.00 (65.19-70.72) 67.70 68.35 35.87
5 FDA_PCA Kasier 65.51 (62.65-68.29) 70.33 59.81 30.25

1022 5537 854
937 737 7
ou N 1108
986 477
919 774 99530 187 2
2 14 Bldtas 1000888 8105243
g 3 8%y 4 480g53926 4100t 361
3482_5%174 977 330 3% 635 102@42 183 975
1123,
x 51093 719@ 715920145586 a3 10967351 1122
5540 107 544 371 651
830 549958 8?%:%5 0 7 ° a0n o 9 1012823
838 363 34771 900787 5 54 541 852704499 595 5317% - 525 33918899 835 1;2;983)8 1008
3948 68 2 o 73
. 783 416728 R 56) 1015 3620
59232é bo é? 26 i 16 5 L w1 10m © 788%% 244 @(;53?5(’08 858 - 3
. s063i6 © o o 8 3
dlggggg 866 713()61 o) 712(:)33 ;,/7%1735 % § 537055 661 8%29 33710 973 0,
905 850 326 97 300 ©130 185 920 1005 1041 1048
41057 870 197 ¢ 092876 © 953819 4
pag™ 176770 294 235 313 639 5159 o 1008 995611 8095
140 3 77995732 24405604 N 6453115 58
1 1120 84572 985108575, 809222347 085 o, 455 741 96140%2948
1074 341387 686502 68 aq) B oso g
32 396527 @ 180731 220
356 1066 3448 516 S 623 1113
L 1087'\3 S gragm ppsiole 100
at3 825 1 00 saa270 568 Bg1101 3 271N65;;r %865
956 it 519
457 1014932 2 796 707 706 711 .
614
353 232 795923280/ %01 3204133
1082

491 790
246 1084 1062

Figure 5.66: FDA’s 5 classifiers, Left: Total miss-classifications (598 sample), Right: Shared

miss-classifications (113 sample)

Table 5.16 ranks the five FDA classifiers based on their test accuracy. This classifiers

Y

order is precisely the same order based on their AUC (Table 5.9). Despite that the total
number of miss-classified test samples, by the FDA classifiers, is the largest among all
the five learning algorithm based ensembles, FDA classifiers share only 18.90% of the
miss-classifications. This indicates that with diversity injected at the feature and structural
levels, FDA classifiers make substantially different errors, which would intuitively result in

160

an ensemble’s performance higher than the performance of any individual base classifier as
we will see in Section 5.8.2.

Table 5.17: Performance of KNN’s classifiers based on class predictions (N=1125)

Rank Model Acc. (%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)
1 KNN_ROC 74.76 (72.11-77.27) 81.31 66.99 48.71
2 KNN_Relief 73.60 (70.92-76.16) 78.03 68.35 46.59
3 KNN PCA 95 72.27 (69.55-74.87) 77.05 66.60 43.86
4 KNN ALL 71.91 (69.19-74.52) 78.03 64.66 43.01
5 KNN PCA Kasier 71.82 (69.09-74.44) 76.07 66.80 43.02

342
735 1096

©
8 1092 1025
7}3‘502843847 86 7 4761024 304
604 40n g2 519 1106904 1071
445 3 1000
972 10512 S
84 < 854 1103 =3
28 29 b=y QS 827
901" 16 dayoa © 880 7950%18‘ 268 984 411 395
193 ~S 187 1076631 2 e 410 1073 1107 1105
o - 1074 29 a8 160 112s 835
—i908 134 g
170 1013 g 374 3778 28575”1156 1113 2135 o738 7411012 919
8888823 L5 1116 145 560 S 1005 ~
1031 1050 534 ~ & 502 750 1116 923
© 82174650, 403299 1 1015
S 519 7al 504 377 1049 383 288 691 1117 1008 684
3¢ 917787 78 31 Nopo38Y 706 o5 009975 gg3
615 #8550 121 1030 567783 24155 289 1036 816
416 pa 603 1,020 537
34 453 88@ 648 95 174 530 260 eszf 1 1121
217396582 %%5 6 (954, A5 05028175673 1054 949617 535 851174
L 20593 - TR 655 oo 5300
10112 564 2031059 10509 716 39S 600 281 ® 805 1076 905, 1072
e 1057 608 08 526933 N g 11542 233 0372008 10a9 07
§S3 - 924 1048] 0 1073
2337540 1101 45 855 616275 S ogs 994 201 9221123618 2688
326 148 b 674 545 439 < 1064 594
6 S 50 o > 267 g 551 895 620 =
662 S 1007 & 592
;] 1058 S 964605 598 624
1039 338 34 870 645 296 926
966 /50420 955 507 0
2231014 »5064%8 100 & /5L
3301085 535 — 1016 1095 § 861 /81
466 247 672 417,, 8343 1064 922
942 159 1120 191313”1077
88 124 8
7 1115 694)
1018 12 724 602449
819 1114

Figure 5.67: KNN’s 5 classifiers, Left: Total miss-classifications (562 sample), Right: Shared
miss-classifications (112 sample)

Finally, the five KNN classifiers are ranked based on their accuracy in Table 5.17. The
KNN classifiers maintain the same order based on their AUC (Table 5.10). Similar to FDA
classifiers, Figure 5.67 shows that the KNN classifiers produce substantially different errors
by sharing only 19.93% of the total number of unique miss-classified test samples. As shown

161

in Section 5.8.2, this diversity would result in a better overall ensemble’s performance than
the performance of the individual base classifiers.

Table 5.18: Performance of the 25 classifiers based on class predictions (N=1125)

Rank Model Acc. (%) 95% CI(%) Sens. (%) Spec.(%) Kappa(%)
1 SVM_Relief 79.56 (77.08-81.88) 82.46 76.12 58.72
2 RF _Relief 79.56 (77.08-81.88) 83.28 75.15 58.65
3 RF_ALL 79.29 (76.80-81.62) 81.97 76.12 58.20
4 RF_ROC 79.11 (76.62-81.45) 81.64 76.12 57.85
5 GBM_ALL 78.58 (76.06-80.94) 83.44 72.82 56.59
6 SVM_PCA_95 78.31 (75.79-80.69) 82.95 72.82 56.07
7 SVM_ALL 77.51 (74.96-79.92) 80.82 73.59 54.57
8 GBM_PCA 95 77.33 (74.77-79.75) 82.79 70.87 54.03
9 GBM_ROC 77.33 (74.77-79.75) 83.61 69.90 53.96
10 RF_PCA_95 76.98 (74.40-79.41) 81.80 71.26 53.36
11 GBM_Relief 76.53 (73.94-78.98) 81.97 70.10 52.41
12 FDA_ALL 76.27 (73.67-78.73) 76.39 76.12 52.34
13 SVM_ROC 75.82 (73.21-78.30) 76.89 74.56 51.37
14 FDA_ROC 74.76 (72.11-77.27) 73.61 76.12 49.44
15 KNN_ROC 74.76 (72.11-77.27) 81.31 66.99 48.71
16 FDA _Relief 74.58 (71.93-77.10) 76.72 72.04 48.77
17 KNN_Relief 73.60 (70.92-76.16) 78.03 68.35 46.59
18 RF_PCA Kasier 73.16 (70.46-75.73) 76.89 68.74 45.76
19 KNN_PCA 95 72.27 (69.55-74.87) 77.05 66.60 43.86
20 KNN_ALL 71.91 (69.19-74.52) 78.03 64.66 43.01
21 KNN_PCA Kasier 71.82 (69.09-74.44) 76.07 66.80 43.02
22 SVM_PCA Kasier 71.02 (68.27-73.66) 75.90 65.24 41.34
23 GBM_PCA Kasier 70.67 (67.91-73.31) 75.08 65.44 40.68
24 FDA PCA 95 68.00 (65.19-70.72) 67.70 68.35 35.87
25 FDA_PCA Kasier 65.51 (62.65-68.29) 70.33 59.81 30.25

The twenty-five trained classifiers are ranked based on their accuracy in Table 5.18.
The top ten performing classifiers are SVM, RF, and GBM based classifiers. Generally, the
worst performing classifiers are built using PCA based features.

162

889 616

688411
388 845 a5
981 g6 758 149 557 574 97 319
a7 503 1044472 855 &72 110 %
936”’ 899
53 143 724 e gjg
898 1115 658 g%% 83 300 105
234 s Koo 17 = 1050 575 140 305
526 241 829 £ 637,260
694371 598 3 784 5301
1098 711 746 595 o 429 5 349 1024 228
89“ 21719 828 194 1975 ¢
61%0%753@ 34866 639
89
2294 568 248 . - G396 ggg 70488099 596827 89
496 817 B 243 1059 , 1033 473 753 203
8 97238%%2 284 2 178 243 131
: 1034 1022 14
S 531:1123 §102636 752 92755 ggq 806 11 03 9% e
S 846 © 834 320 754 328 809
- o7l 98;?3” 3! 76788 °7 894 271 708597 702063510390 642 521 35 8689497925
43024 60950, S99 g 781;\ S833113 514779 o 1529 015, 131076
125 174 51, 1958 244 o8 735 1070 1082 ® 451610088835
3095281 ”’“ 41686 362 133 978 -
48 6621103 8960 124 31541451 296 5 27484 1060 47161852 191
146 28 © 15577615901 8220 0 51
220 ® ©21 So4 & 1081 995
1101 _ /38130 498 So 606 8105 3 s
470 96 176 S 337 279 832 1036
o 3 7 11402299147 2252 Toge 230 895
906 629433 4061093 31, 742, 103 27 339 s 491 704 823
: 1087 208 0% 379 870 288
o5 921 m()?AéGS 98658643997 538 31 71 459 838 323
904886 793 201 g0y Y 1032 185
346,505 400 3 #1084 36486 a88 249 " go4 627625,
10
8,,, 519 & 455 4050100 g
65412 2
= 176 390854317 186 221 506 5091100977445
1108 344 453 205 578 859 994544 1057 825193 670
233 183 707 1001706592 oo
<
1096 127728 1011 984 603 764715 B
449 ’ 515 811
181 714 1014 s
152 g3g 1105
659 979

134 1048 1120

Figure 5.68: All 25 models, Left: Total miss-classifications (762 sample), Right: Shared
miss-classifications (40 sample)

Table 5.19: Miss-classified samples by ensembles (test dataset, n=1125)

Rank Models Total Shared Shared(%)

A1l 25 classifiers 762 40 05.25
PCA 95 classifiers 562 102 18.15
FDA classifiers 598 113 18.90

SVM classifiers 485 96 19.79
KNN classifiers 562 112 19.93
PCA Kasier classifiers 596 124 20.81
All Pred. classifiers 494 112 22.67
Relief classifiers 457 114 24.95

GBM classifiers 467 119 25.48
ROC classifiers 430 125 29.07
RF classifiers 411 124 30.17

— =
DE ©ow-ao ol wN—
or ool ol on o o1 o1 ol O

163

Out of 762 unique miss-classified samples, the twenty-five classifiers share only 05.25%
of miss-classifications. This low percentage clearly indicates that injecting diversity at
the feature, structural, and learning algorithm levels, would result in the ensemble’s base
classifiers make ultimately different errors. This diversity would intuitively lead to a the
ultimate ensemble performance as shown in Section 5.8.2. Table 5.19 ranks feature, learning
algorithm based ensembles and the 25 classifiers ensemble based on their percentage of
shared miss-classified test samples. The overall performance of ensembles will be examined
in the next section.

Table 5.20: Performance of the 25 classifiers based on class predictions (test dataset N=337)

Rank Model Acc. (%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%h)
1 SVM_Relief 81.60 (77.05-85.59) 81.42 81.82 63.04
2 RF_ALL 80.71 (76.09-84.79) 80.87 80.52 61.24
3 RF_ROC 80.42 (75.77-84.52) 80.33 80.52 60.66
4 GBM_ROC 80.12 (75.45-84.25) 81.42 78.57 59.96
5 RF Relief 80.12 (75.45-84.25) 81.97 77.92 59.92
6 SVM_PCA_95 80.12 (75.45-84.25) 82.51 7727 59.88
7 GBM_ALL 79.82 (75.13-83.98) 81.42 77.92 59.34
8 SVM_ALL 79.23 (74.50-83.43) 79.78 78.57 58.23
9 GBM_PCA 95 78.34 (73.55-82.62) 80.87 75.32 56.29
10 FDA ALL 78.04 (73.24—82.35) 73.77 83.12 56.25
11 GBM Relief 78.04 (73.24-82.35) 80.33 75.32 55.71
12 SVM_ROC 77.74 (72.92-82.07) 75.41 80.52 55.50
13 RF_PCA 95 77.45 (72.61-81.80) 79.23 75.32 54.56
14 KNN Relief 75.96 (71.04-80.43) 78.69 72.73 51.50
15 KNN_ROC 75.96 (71.04-80.43) 80.33 70.78 51.34
16 FDA ROC 75.37 (70.41-79.88) 70.49 81.17 51.00
17 FDA _Relief 75.07 (70.10-79.60) 75.41 74.68 49.93
18 KNN_ALL 74.48 (69.47-79.05) 79.23 68.83 48.31
19 KNN _PCA 95 74.18 (69.16-78.77) 75.96 72.08 48.01
20 FDA_PCA 95 73.29 (68.23-77.94) 71.58 75.32 46.57
21 RF PCA Kasier 73.29 (68.23-77.94) 75.41 70.78 46.19
22 GBM_PCA _Kasier 72.40 (67.30-77.11) 74.86 69.48 44.37
23 SVM_PCA _Kasier 71.81 (66.68-76.55) 74.86 68.18 43.11
24 KNN PCA Kasier 71.22 (66.06-75.99) 71.58 70.78 42.21
25 FDA PCA Kasier 69.73 (64.52-74.59) 69.95 69.48 39.26

164

5.7.4 Computational Cost

Table 5.21: Computational cost for the twenty-five classifiers

Model Model selection & training time Prediction time
All 1776 features
GBM_ALL 5.2245 hours 1.9372 secs
SVM_ALL 1.7044 mins 2.2771 secs
RF_ALL 1.9791 hours 3.5183 secs
FDA_ALL 21.2017 mins 1.0911 secs
KNN_ALL 36.1009 mins 1.2461 mins
PCA with 95% variance (255 components)
GBM_PCA_95 22.3885 mins 0.4363 secs
SVM_PCA_95 45.8724 secs 0.6348 secs
RF_PCA_95 11.0254 mins 1.0178 secs
FDA_PCA_95 3.2669 mins 0.0752 secs
KNN_PCA_95 2.0230 mins 10.4531 secs
PCA Kasier rule (11 components)
GBM_PCA Kasier 1.2937 mins 0.2612 secs
SVM_PCA_Kasier 28.4544 secs 0.4183 secs
RF_PCA_Kasier 1.0283 mins 0.8327 secs
FDA_PCA_Kasier 10.6081 secs 0.0091 secs
KNN_PCA_Kasier 8.2679 secs 0.0814 secs
Predictors area under ROC curve (81 features)
GBM_ROC 7.4156 mins 0.7164 secs
SVM_ROC 32.1860 secs 0.4335 secs
RF_ROC 3.8801 mins 0.9033 secs
FDA_ROC 1.1197 mins 0.0348 secs
KNN_ROC 12.5632 secs 0.4962 secs
Relief algorithm (86 features)
GBM_Relief 10.2612 mins 1.0299 secs
SVM_Relief 34.1287 secs 0.5358 secs
RF_Relief 3.9246 mins 0.8309 secs
FDA _Relief 1.1300 mins 0.0305 secs
KNN_Relief 13.3004 secs 0.5382 secs

165

Table 5.21 lists the computational cost for the twenty-five classifiers (e.g., model selection,
training, and prediction times). The results show significant differences in training time
between the learning algorithms. It should be noted that the model selection and training
were performed on an Amazon EC2 instance with 32 cores and 65 GB RAM, while the
predictions were performed on a local PC with 6 cores and 8 GB RAM.

5.8 Model Fusion

The choice of an appropriate fusion strategy may further improve the performance of
a diverse ensemble [10, 48, 68, 82]. In this section, three non-linear fusion strategies:
majority vote, stacked generalization, and fusion of intelligently selected classifiers are
applied to several ensembles. Each ensemble is constructed using a different approach to
injecting classifier diversity at the feature, structural, and/or learning algorithm levels.
The performances of ensembles are compared to each other and the performances of the
individual classifiers on a test data set of 337 samples, shown in Table 5.20. Also, in
this section, the relationship between ten theoretical diversity measures and the empirical
performance of the ensembles is assessed for each diversity injection approach.

To avoid over-fitting during training a second layer of fusion classifiers, in Section 5.8.3
and Section 5.8.4, the test dataset, with 1125 samples, is split into two data sets. The first
data set, with 337 samples, is used as a final test dataset to evaluate the performance of
ensembles and individual classifiers. The second data set, with 788 samples, is used as a
training data set to train the fusion classifiers.

5.8.1 Diversity Measures

The theoretical diversity measures/metrics assume a relationship between diversity and
the ensemble performance. If such a correlation exists, the classifiers to include in the
ensemble could be selected in advance by using diversity (measured by these metrics) as a
criterion [16, 46]. Although this research does not use the diversity measured by such metrics
as a selection criterion, this section measures the ensemble diversity using ten diversity
metrics (four pairwise and six non-pairwise) to investigate whether a high correlation
exists between the diversity metrics and ensembles performance. These metrics are Yule’s
Q statistic (| Qay), correlation (| pay), Disagreement (1 D,,), Double Fault (| DF,,),
Kohavi-Wolpert Variance (1K W), interrater agreement (Jk), Entropy (1£), measure of
difficulty ({ €), Generalized Diversity (1GD), and Coincident Failure Diversity (1CFD).

166

The down arrow (|) means a lower metric value indicates a better diversity while the up
arrow (1) means a higher value indicates a better diversity. Complete descriptions of these
diversity measures can be found in [16, 65].

Measurements of ensemble diversity at the feature and structural levels are shown in
Table 5.22. Each row represents an ensemble of five classifiers built using the same learning
algorithm (GBM, SVM, RF, FDA, or KNN) and five feature selection approaches (all
features, PCA with 95%, PCA Kasier, ROC, and Relief).

Table 5.22: Diversity measures (at the feature and structural levels, N = 1125)

Models | Qaw | paw T Daw |DFe TEW [k tE |0 1GD 1CFD

GBM 8850 .6085 .1465 .1659 .0586 .5974 2116 .1233 .3063 .5300
SVM 8545 .5623 1618 1547 .0647 .5508 .2316 .1154 .3434 .5670
RF 9244 6573 1223 1627 .0489 .6480 .1782 .1248 2732 4842
FDA 7486 4950 2117 1759 .0847 4769 3138 1177 3757 5874
KNN 8180 .4964 .1991 1717 0796 .4964 2978 1180 .3670 .5712

Table 5.23 shows the measurements of ensemble diversity at the learning algorithm level.
Each row represents an ensemble of five classifiers built using the same feature selection
approach (all features, PCA with 95%, PCA Kasier, ROC, or Relief) and five learning
algorithms (GBM, SVM, RF, FDA, and KNN).

Table 5.23: Diversity measures (at the learning algorithm level, N = 1125)

Models | Qaw | paw TDaw |DFew TKW [k tE |60 1GD 1CFD

All 8733 5656 .1584 1537 .0634 .5567 2262 1153 .3401 .5870
PCA_95 8218 .5064 .1927 .1579 .0771 4918 2773 1125 .3790 .6139
PCA_k .8250 .5119 .2048 .2048 .0819 .5083 .3022 .1263 .3464 .5524
ROC 9222 6458 1282 1724 .0513 .6450 .1849 .1293 2711 4767
Relief 9020 .5921 .1477 .1585 .0591 .5859 .2169 .1193 .3179 .5350

Finally, Table 5.24 shows the measurements of ensemble diversity at the feature, struc-
tural and learning algorithm levels. The ensemble is constructed using all 25 classifiers.

167

Table 5.24: Diversity measures (at the feature, structural, and learning algorithm levels, N
= 1125)

Models | Qaw 4 paw TDaw | DF TEW Wk TE |0 1GD 1CFD
A1l 25 .8196 .5059 .1896 .1555 .0910 .4949 2701 .0967 .3786 .6567

The three tables, Table 5.22, Table 5.23, and Table 5.24 show that most of the diversity
metrics do not agree with each other on the most diverse ensemble even within the same
diversity injection approach. In the next section, the theoretical assumption that there exists
a correlation between diversity measured by the ten metrics and ensembles performance is
empirically examined.

5.8.2 Fusion By Majority Vote

Majority vote, discussed in Section 2.5.1, is a simple but an effective fusion approach, where
the class label of a new sample is assigned by the ensemble based on the majority vote
of its base classifiers. In this section, the majority vote is used as a fusion function for
eleven ensembles. These ensembles are constructed to inject diversity at feature, structural,
or/and learning algorithm levels.

At the feature and structural levels, five ensembles are formed. Each ensemble consists
of five classifiers. These classifiers are built using one learning algorithm (GBM, SVM,
RF, FDA, or KNN), and five feature selection approaches (all features, PCA 95%, PCA
Kasier, ROC, and Relief algorithm). Diversity at the learning algorithm is achieved by
constructing five ensembles. Each ensemble consists of five classifiers built using one feature
selection approach (all features, PCA 95%, PCA Kasier, ROC, or Relief algorithm) and
five learning algorithms (GBM, SVM, RF, FDA, and KNN). Finally, the diversity at the
feature, structural, and learning algorithm levels is achieved by grouping all twenty-five
models built using the five learning algorithms and five feature selection approaches. Since
the base classifiers are independent of each other, the parallel topology is chosen as the
fusion topology for all ensembles.

168

* Where, M, in [SVM, RF, GBM,
N FDA, KNNJ
i is aclass label

Majority Vote
Fusion

Figure 5.69: Fusion by majority vote topology (diversity at the feature and structural levels)

Figure 5.69 shows the majority vote fusion topology of ensembles with diversity at the
feature and structural levels. The performance of the five ensembles on the test dataset
is presented in Table 5.25. Although the SVM ensemble outperformed the other four
ensembles with 80.71% accuracy, it failed to outperform the best performing individual
classifier SVM_Relief with 81.6% accuracy.

Table 5.25: Model fusion by majority vote (diversity at the feature and structural levels,
N=337)

Ensemble Acc.(%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)

SVM 80.71 (76.09, 84.79) 81.42 79.87 61.20
RF 8042 (75.77,84.52) 81.42 79.22 60.58
GBM 79.82 (75.13,83.98) 8251 76.62 59.26
FDA 7745 (72.61,81.80) 73.22 82.47 55.07
KNN 76.26 (71.35,80.70) 79.78 72.08 52.02

Table 5.26, presents the ensembles ranks based on the ten diversity metrics. Although
the double fault (DF,,) metric was able to predict the best performing ensemble (SVM

169

ensemble), it failed to rank the remaining ensembles based on their accuracy. The other
nine diversity metrics failed to rank all ensembles.

Table 5.26: Ensembles ranks based on the diversity measures (at the feature and structural
levels, N=337)

Ensemble | Quo 4 pow T Dew | DFw 1tKW 1k 1E 16 1GD 1CFD

SVM 3rd 3rd 3rd 1st 3rd 3rd 3rd 3rd 3rd 3rd
RF 5th 5th 5th 5th 5th 5th 5th 5th 5th 5th
GBM 4th 4th 4th 4th 4th 4th 4th 4th 4th 4th
FDA 1st 1st 1st 2nd 1st 1st 1st 1st 1st 1st
KNN 2nd 2nd 2nd 3rd 2nd 2nd 2nd 2nd 2nd 2nd

' where, F,in [All, PCA_95, ROC,
* PCA_Kasier, Relief]

Y i is a class label

Majority Vote
Fusion

l SVM_F, '

3 3
Test Test
Data Data

Figure 5.70: Fusion by majority vote topology (diversity at the learning algorithm level)

The majority vote fusion topology of ensembles with diversity at the learning algorithm
level is shown in Figure 5.70. The performance of the five ensembles is presented in
Table 5.27. The most accurate ensemble, all features ensemble with 81.31% accuracy, failed
to outperform the best individual classifier SVM_Relief with 81.6% accuracy.

170

Table 5.27: Model fusion by majority vote (diversity at the learning algorithm level, N =
337)

Ensemble Acc.(%) 95% CI(%) Sens.(%) Spec.(%) Kappa(%)

A1l 81.31 (76.73, 85.33) 81.42 81.17 62.43
Relief 79.82 (75.13, 83.98) 80.87 78.57 59.38
PCA_95 79.82 (75.13, 83.98) 80.87 78.57 99.38
ROC 78.34 (73.55, 82.62) 78.14 78.57 96.51
PCA_k 73.29 (68.23, 77.94) 75.96 70.13 46.13

Ensembles with diversity at the learning algorithm level are ranked based on the ten
diversity metrics in Table 5.28. The double fault (DF,,) metric ranked almost all ensembles
correctly based on their accuracy. Ensembles ranks by the remaining metrics did not match
their performance.

Table 5.28: Ensembles ranks based on the diversity measures (at the learning algorithm
level, N = 337)

Ensemble | Quo 4 pew T Dew | DFw 1tKW 1k 1E 16 1GD 1CFD

A1l 3rd 3rd 3rd 1st 3rd 3rd 3rd 2nd 3rd 2nd
Relief 4th 4th 4th 3rd 4th 4th 4th 3rd 4th 3rd
PCA_95 1st 1st 2nd 2nd 2nd 2nd 1st 1st 1st 1st
ROC 5th 5th 5th 4th 5th 5th 5th 5th 5th 5th
PCA k 2nd 2nd 1st oth 1st Ist 2nd 4th 2nd 4th

Finally, the majority vote fusion topology of the ensemble with diversity at the feature,
structural, and learning algorithm levels is shown in Figure 5.71. The performance of the
ensemble, presented in Table 5.29, which combines all twenty-five base classifiers (with
82.20% accuracy, 83.06% sensitivity, and 64.16% kappa) outperforms the best single classifier,
SVM_Relief (with 81.6% accuracy, 81.42% sensitivity, and 63.04% kappa). However, the
ensemble’s specificity (81.17%) was slightly lower than the specificity of the SVM_Relief
classifier (81.82%).

171

Where, M, in [SVM, RF, GBM,
f FDA, KNN]J
Majority Vote F, in [All, PCA_95, ROC,
Fusion N PCA_Kasier, Relief]

i is a class label

Figure 5.71: Fusion by majority vote topology (diversity at the feature, structural, and
learning algorithm levels, test dataset n = 337)

Table 5.29: Model fusion by majority vote (diversity at the feature, structural, and learning
algorithm levels)

Ensemble Acc. (%) 95% CI(%) Sens. (%) Spec. (%) Kappa(%)
A1l 25 82.20 (77.69, 86.13) 83.06 81.17 64.16

Table 5.30: Ensemble’s rank based on the diversity measures (at the feature, structural,
and learning algorithm levels, N = 337)

Ensemble | Qu | paw T Daw DF, tTKW [k tE |60 1tGD 1CFD
A1l 25 4th 4th 5th 3rd 1st 4th 5th 1st 4th 1st

Three of the ten diversity metrics, shown in Table 5.30, were able to predict that the
ensemble with twenty-five base classifiers (diversity injected at the feature, structural, and
learning algorithm levels) is the best performing ensemble compared to the other ensembles
with diversity injected at one level.

172

In this section, the simple majority vote was used as the fusion function. The ensemble
with diversity at all levels (at the feature, structural, and learning algorithm levels) outper-
forms the best single classifier and other ensembles with diversity injected at one level. The
experimental results clearly indicate a weak correlation between the diversity, measured by
the ten most used theoretical diversity metrics, and ensembles’ performance. Therefore,
these theoretical metrics should not be used as a guide to constructing the ensembles. In
the next section, a more sophisticated fusion strategy, model stacking, is employed to try
further improve the performance of the ensemble with diversity injected at all levels.

5.8.3 Fusion by Model Stacking

In the previous section, the majority vote was used to combine the class labels predicted
by the twenty-five base classifiers to produce a final class label. In this section, the model
stacking fusion strategy, discussed in Section 2.5.4, is employed. In this sophisticated
fusion strategy, a new classifier is trained using the class probabilities produced by the base
classifiers as predictors (independent variables) and the actual class label as the response.
The fusion by model stacking topology is shown in Figure 5.72.

As discussed in Section 3.5.2, to avoid over-fitting, the class probabilities produced by
the twenty-five base classifiers must be for a new data set, which was not used to train
the base classifiers, or cross-validation’s out-of-fold predictions. In our case, the test data
set (1125 samples) is split into two parts, a training dataset (788 samples) to produce the
class probabilities and train the fusion classifier, and a final test dataset (337 samples)
to evaluate and compare ensembles’ performance with the performance of the best single
classifier (SVM_Relief).

To compensate for the relatively small training data set, the bootstrap resampling (25
bootstraps) is employed for model selection. Another important factor in model selection,
is the loss function being optimized. Three different loss function, the logistic loss or
cross-entropy function ! (minimize), Area Under ROC (AUC) (maximize), and Kappa
(maximize), are used to select the optimal fusion classifier. Finally, three different learning
algorithms, Support Vector Machine (SVM), Random Forest (RF), and Stochastic Gradient
Boosting Machine (GBM) are used to build the fusion classifiers (a total of 9 ensembles).
The goal, in addition to obtaining the most accurate prediction, is to compare the effect of
the loss function and learning algorithm on the performance of the ensemble.

Yogloss = — % Eiv(yilog(pi)—l—(l—yi)log(l —pi)), where y; = true class, and p; = predicted probability.

173

Where, M, in [SVM, RF, GBM,

Y p FDA, KNN]
F, in [All, PCA_95, ROC,
f . PCA_Kasier, Relief]

Model,_Fun_ Y i is a class probability [0,1]
Stacking Model, in [SVM, RF, GBM]
Fun,, in [Logloss, AUC, Kappa]

Figure 5.72: Fusion by stacking topology (diversity at the feature, structural, and learning
algorithm levels)

Table 5.31: Model fusion by model stacking (on top of 25 base models) to minimize log loss
function, N = 337

Model Acc. (%) 95% CI(%) AUC.(%) Sens.(%) Spec.(%) Kappa(h)

SVM_Log 81.90 (77.37,85.86) 88.17 83.61 79.87 63.51
RF_Log 81.31 (76.73, 85.33) 88.66 81.97 80.52 62.39
GBM_Log 81.01 (76.41, 85.06) 88.28 83.61 77.92 61.66

The results of model stacking fusion built by minimizing the log loss function are
presented in Table 5.31. The SVM fusion classifier produced the best ensemble’s performance
in terms of accuracy (81.90%), sensitivity (83.61%), and Kappa (63.51%). In terms of AUC
and specificity, the RF fusion classifiers produced the best performance (88.66% and 80.52%
respectively). The performance of the SVM fusion classifier also outperforms the best
single classifier, SVM_Relief, in terms of accuracy (81.6%), sensitivity (81.42%), and Kappa
(63.04%), but failed to outperform its specificity (81.82%). The achieved improvement also

174

failed to outperform the performance of the ensemble produced by the simple majority vote
fusion strategy.

Table 5.32: Model fusion by model stacking (on top of 25 base models) to maximize AUC,
N = 337

Model Acc. (%) 95% CI(%) AUC.(%) Sens.(%) Spec.(%) Kappa(h)

GBM_AUC 81.60 (77.05,85.59) 88.17 83.06 79.87 62.93
RF_AUC 81.31 (76.73, 85.33) 88.66 81.97 80.52 62.39
SVM_AUC 80.12 (75.45, 84.25) 88.27 80.87 79.22 60.00

The results of model stacking fusion built by maximizing the AUC are presented in
Table 5.32. The GBM fusion classifier produced the best ensemble’s performance in terms
of accuracy (81.60%), sensitivity (83.06%), and Kappa (62.93%). In terms of AUC and
specificity, the RF fusion classifiers produced the best performance (88.66% and 80.52%
respectively). The performance of the GBM fusion classifier also outperforms the best
single classifier, SVM_Relief, in terms of sensitivity (81.42%) with similar accuracy (81.6%),
but failed to outperform its specificity (81.82%) and Kappa (63.04%). The achieved
improvement also failed to outperform the performance of the ensemble produced by the
simple majority vote fusion strategy.

Table 5.33: Model fusion by model stacking (on top of 25 base models) to maximize Kappa,
N = 337

Model Acc. (%) 95% CI(%) AUC.(%) Sens.(%) Spec.(%) Kappa(h)
RF Kappa 81.90 (77.37,85.86) 88.90 83.06 80.52 63.55
SVM_Kappa 81.60 (77.05, 85.59) 88.16 83.61 79.22 62.89
GBM_Kappa 80.71 (76.09, 84.79) 88.03 84.15 76.62 61.00

Finally, the results of model stacking fusion built by maximizing the Kappa measure are
presented in Table 5.33. The RF fusion classifier produced the best ensemble’s performance
in terms of accuracy (81.90%), AUC (88.90%), specificity (80.52%), and Kappa (63.55%).
In terms of sensitivity, the GBM fusion classifiers produced the best performance (84.15%).
The performance of the RF fusion classifier also outperforms the best single classifier,
SVM_Relief, in terms of accuracy (81.6%), sensitivity (81.42%), and Kappa (63.04%), but
failed to outperform its specificity (81.82%). The achieved improvement also failed to

175

outperform the performance of the ensemble produced by the simple majority vote fusion
strategy.

In this section, three loss functions and three learning algorithms were used to build
fusion classifiers by model stacking. It is shown that different optimization loss functions
produce different ensemble’s performances for the same learning algorithm. Although better
ensemble’s performance than the best single classifier was achieved by the complex model
stacking fusion strategy, the achieved performance failed to outperform the simple majority
vote fusion strategy.

5.8.4 Fusion of Intelligently Selected Models

To take into account the fact that some of the twenty-five classifiers perform better than
the others, the model stacking fusion strategy, Section 5.8.3, is adjusted to combine the
class probabilities of only intelligently selected classifiers (e.g using Genetic Algorithms
GAs), as shown in Figure 5.73.

Y, ,
Where, M, in [SVM, RF, GBM,
FDA, KNN]
F. in [All, PCA_95, ROC,
PCA_Kasier, Relief]
i s a class probability [0,1]

SVM_Logloss
Stacking

=

Y (selected)

GA_Selector

Figure 5.73: Fusion of intelligently selected models topology (diversity at the feature,
structural, and learning algorithm levels)

176

To reduce the risk of over-fitting, any extensive search based algorithm, such GAs,
must be combined with a proper resampling procedure. For this case study, GA was used
to conduct the search of the feature space (the 25 class probabilities produced by the
base classifiers) repeatedly within 10-fold cross-validation resampling. The entire GA is
carried out ten separate times. For example, for the first fold, nine tenths of the data are
used in the search while the remaining tenth is used to estimate the external performance.
Another important aspect of fusion by model stacking is tuning the hyper-parameters (model
selection) of the fusion classifier using another resampling procedure. Therefore, inside
of the external resampling loop, the fusion classifier (SVM) is tuned using bootstrapping
resampling (25 bootstraps). The logloss function is used to guide (internally) and to know if
the GA has over-fitted the features (externally). After the external resampling is completed,
the optimal number of generations for the GA and SVM’s hyper-parameters are determined.
Finally, the entire data set is used in the last execution of the GA search, and the final
fusion classifier is built on the subset of the base classifiers that is associated with the
optimal number of generations determined by resampling.

Needless to say, using GA with two resampling producers substantially increases the
computational intensity of this fusion strategy, which requires parallel computing and large
RAM to make it feasible to execute within an acceptable time. For this case study (with
a small fusion dataset), using a compute-optimized instant of Amazon EC2 with 32 cores
and 65 Gigabyte RAM, the fusion strategy took approximately 12 hours to execute.

Table 5.34 presents the results of combining intelligently selected classifiers using a SVM
as the fusion function (meta-learner). The results indicate that this fusion strategy has
significantly outperformed previous fusion strategies in all metrics.

Table 5.34: Fusion of intelligently selected classifiers to minimize Logloss function, N = 337

Model Acc. (%) 95% CI(%) AUC.(%) Sens.(%) Spec.(%) Kappa(%)
SVM_GA_Log 83.38 (78.97, 87.20) 88.97 83.06 83.77 66.62

5.8.5 Computational Cost

Table 5.35 lists the computational cost for the fusion strategies (e.g., model selection,
training, and prediction times). The results show significant differences in training time
between the fusion strategies, especially the fusion of intelligently selected models. It should
be noted that the model selection and training were performed on an Amazon EC2 instance
with 32 cores and 65 GB RAM, while the predictions were performed on a local PC with 6
cores and 8 GB RAM.

177

Table 5.35: Computational cost for the fusion strategies

Model Model selection & training time Prediction time

Model stacking to minimize the logloss function

SVM_logloss 25.3077 secs 0.1673 secs

RF_logloss 4.3950 mins 0.1798 secs

GBM_logloss 21.9762 mins 0.0675 secs
Model stacking to maximize the AUC

SVM_AUC 25.6098 secs 0.1186 secs

RF_AUC 4.3835 mins 0.1705 secs

GBM_AUC 21.9071 mins 0.0482 secs
Model stacking to maximize the Kappa

SVM_Kappa 24.9003 secs 0.1035 secs

RF_Kappa 4.3189 mins 0.1627 secs

GBM_Kappa 21.8565 mins 0.0411 secs
Fusion of intelligently selected models

SVM_logloss 11.8385 hours 0.1854 secs

5.9 Summary

In this chapter, the proposed framework for ensemble predictive modeling was successfully
applied to a high-dimensional classification case study, to predict the biological response of
molecules from their chemical properties. The effectiveness of model diversity approaches
on the performance of ensembles were thoroughly evaluated. In addition, the relative
performance of several feature selection approaches and learning algorithms were empirically
compared. The next chapter presents the conclusion and future work.

178

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Ensemble systems, which build a predictive system by combining the predictions of multiple
classifiers/models, are used to improve the prediction performance, and mitigate the risk of
selecting the wrong classifier/model for the task. Researchers from various disciplines such
as statistics, pattern recognition, and machine learning have explored different aspects of
ensemble systems, especially from the system’s designer point of view. However, there are
still research gaps need to be addressed. First, a comprehensive framework for developing
ensemble systems is not yet available. Second, several approaches have been proposed to
inject model diversity in the ensemble; however, there is a shortage of empirical studies
that compare the effectiveness of these approaches. Third, most of the ensemble systems
research has concentrated on simple applications and relatively small/low-dimensional data
sets. Further experimental research is required to investigate the application of ensemble
systems to real-world, large and/or high-dimensional, data sets. This thesis attempts to fill
these gaps.

The primary contribution of this thesis is a framework for ensemble predictive modeling,
shown in Figure 3.1. The proposed framework addressed seven fundamental design issues:

o Data preparation: Despite its importance, data preparation is overlooked by
the ensemble design methods reported in the literature. The proposed framework
incorporates data preparation as one of the main phases of developing ensemble
systems. A typical data preparation phase may involve exploratory data analysis,
feature engineering, data pre-processing, and data partition.

179

Injecting model diversity: Model diversity is considered to be an essential design
feature for any ensemble system. To maximize the ensemble performance, the proposed
framework calls for the systematic injection of model diversity at the data, feature,
and learning algorithm levels.

Model selection: in the context of ensemble predictive modeling, model selection
may be classified into three types. First, the selection of the ensemble size, how
many base models/classifiers should be trained. Second, the selection of the optimal
hyper-parameters for the learning algorithms over a set of candidate values. Third,
the selection of the learning algorithms to use over others. The proposed framework
suggests building small to medium (e.g., from 3 to 50 classifiers) heterogeneous
ensembles of strong base classifiers/models. For hyper-parameters, it recommends
using a quantitative approach, such as grid-search and n-fold cross-validation, to
select the optimal values. It advises the use of visualizations to better understand
the effect of different hyper-parameters combinations, which helps refine the grid-
search, and estimate the uncertainty of the selected values. Finally, the proposed
framework stresses the important of using a fair quantitative approach, such n-fold
cross-validation, to select the learning algorithms.

Model evaluation: model evaluation is of paramount importance in any predictive
modeling task. It becomes even more important in ensemble predictive modeling,
where the relative performance and diversity of models/classifiers must be thoroughly
evaluated. The proposed framework calls for using several performance metrics
and visualizations to evaluate models/classifiers and understand their strengths and
weaknesses. Therefore, the proposed framework does not use these metrics as criteria
to select the ensemble classifiers.

Model fusion: once a set of diverse and accurate models/classifiers are built, an
appropriate fusion strategy should be selected to obtain the optimal ensemble perfor-
mance. To obtain the optimal ensemble, the proposed framework calls for investigating
different fusion topologies and functions.

Fusion evaluation: in addition to the predictive performance of the final ensemble(s),
the proposed framework calls for evaluating other aspects, such as required computing
resources, model selection and training time (needed to build all base models/classifiers
and the fusion model/classifier), and prediction time (required to produce a final
prediction by the ensemble for a new sample).

Experimental design: in order to have an accurate, and fair, comparison during
model selection, the proposed framework stresses the importance of taking into account

180

different sources of variation, such as the choice of the testing/training datasets, the
internal randomness of the training algorithm, the random classification error, and
the randomness in parallel computing (if the model selection is performed on a cluster
of computers/cores).

As secondary contributions, this thesis performed the following empirical studies:

The effectiveness of model diversity approaches: the thesis investigated the
effect of injecting model diversity at data, feature, or/and learning algorithm levels,
on the performance of ensembles. To maximize the performance of an ensemble, the
empirical results suggest the need to inject model diversity at all levels.

The application of ensemble systems to large/high-dimensional data ap-
plications: the thesis validated the effectiveness of the proposed framework using two
real-world, large/high-dimensional, regression and classification case studies. Ensem-
bles were built in the regression case study to predict the stock market’s short-term
behavior following liquidity shocks, while in the classification case, to predict the
biological response of molecules from their chemical properties.

Investigating the relationship between diversity metrics and ensembles
performance: in the classification case study, the thesis experimentally investigated
the relationship of ten diversity metrics and the ensembles performance. Experimental
results suggest a weak, and sometimes contradictory, relationship.

Evaluating the scalability of learning algorithms: scalability is one of the
key issues in large-scale data analysis and modeling. The thesis experimentally
evaluated the scalability, based performance and computational cost, of several learning
algorithms, applied to regression and classification tasks. Empirical results indicate
significant differences between the algorithms, especially in term of computational
cost.

Future Work

Data science is currently a hot area not only in the academia but also across many industries,
ranging from government to biotech. Cutting-edge startups, as well as established tech
companies and universities, are pioneering new, novel, and exciting ways to apply data
science/machine learning to interesting problems [34]. In the context of this research, several
issues should be investigated in the future, such as:

181

e« Combining the proposed framework with Spark framework: Spark is an
open source cluster computing framework, initially developed at the University of
California, Berkeley [95], which can be used to apply machine learning algorithms
to petabytes of data '. As shown by the experimental results, developing ensemble
systems for large/high-dimensional data requires very powerful computing resources
to handle the intensive computation involved in the model building phase (e.g., model
selection and training). Having such a computing resource allows the application of
ensemble systems to commercial big data applications in many industries.

e Re-calibrating class probabilities before model fusion: as shown in Sec-
tion 5.7.2, some trained classifiers have poorly-calibrated class probabilities. The class
probabilities produced by a classifier can be re-calibrated, to reflect the likelihood of
the event seen in the data set, by training an additional classifier (such as Logistic
Regression or Naive Bayes) to adjust the predicted probabilities [15]. Having well-
calibrated class probabilities might prove to be worthy of consideration, especially
when using these probabilities as predictors in the model fusion by model stacking,
discussed in Section 5.8.3.

« Applying ensemble systems to novel applications: the concept of ensemble
systems naturally lends itself to many novel applications, such as combining machine
learning, behavioral analytics, and big data. Examples of such applications include
assigning an insurance’s risk index to a customer based on several factors, or real-
time threat detection against insider and targeted outsider cyber attacks to protect
intellectual property, trade secrets, and/or classified information 2.

LA petabyte (PB) is 10'® bytes of data, 1,000 terabytes (TB) or 1,000,000 gigabytes (GB)
2A commercial real-time threat detection platform is developed by the Canadian startup Interset
https://www.interset.com/

182

https://www.interset.com/

References

1]

Tarek Abdunabi and Otman Basir. Architectural considerations for multi-asset, multi-
strategy algorithmic trading systems. In proceedings of the 22nd ISCA International
Conference on Software Engineering and Data Engineering (SEDE 2013), September
25-27, 2013, Los Angeles, USA. 1JCA, 2013.

Tarek Abdunabi and Otman Basir. An integrated multi-asset, multi-strategy algo-
rithmic trading system. In proceedings of the 22nd ISCA International Conference
on Software Engineering and Data Engineering (SEDE 2013), September 25-27, 20183,
Los Angeles, USA. 1JCA, 2013.

Tarek Abdunabi and Otman Basir. Building diverse and optimized ensembles of
gradient boosted trees for high-dimensional data. In Cloud Computing and Intelligence
Systems (CCIS), 2014 IEEE 3rd International Conference on, pages 351-356. IEEE,
2014.

Tarek Abdunabi and Otman Basir. Holonic intelligent multi-agent algorithmic trading
system. International Journal of Computers and Their Applications (IJCA), 21(1):1-8,
2014.

Tarek Abdunabi and Otman Basir. Predicting a biological response of molecules from
their chemical properties using diverse and optimized ensembles of stochastic gradient
boosting machine. In Big Data (Big Data), 2014 IEEE International Conference on,
pages 10-17. IEEE, 2014.

Donald J Abraham. Burger’s medicinal chemistry and drug discovery. Wiley Online
Library, 2003.

Douglas G Altman and J Martin Bland. Diagnostic tests 3: receiver operating
characteristic plots. BM.J: British Medical Journal, 309(6948):188, 1994.

183

[8] Yaxin Bi. Analyzing the relationship between diversity and evidential fusion accuracy.
In Multiple Classifier Systems, pages 249-258. Springer, 2011.

[9] Christopher M Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

[10] George EP Box and David R Cox. An analysis of transformations. Journal of the
Royal Statistical Society. Series B (Methodological), pages 211-252, 1964.

[11] Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.
[12] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[13] Christopher D Brown and Herbert T Davis. Receiver operating characteristics curves
and related decision measures: A tutorial. Chemometrics and Intelligent Laboratory
Systems, 80(1):24-38, 2006.

[14] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods:
a survey and categorisation. Information Fusion, 6(1):5-20, 2005.

[15] Lorenzo Bruzzone, Roberto Cossu, and Gianni Vernazza. Detection of land-cover
transitions by combining multidate classifiers. Pattern Recognition Letters, 25(13):1491—
1500, 2004.

[16] Harris K Butler. The relationship between diversity and accuracy in multiple classifier
systems. Technical report, Defense Technical Information Center (DTIC), USA, 2012.

[17] Anne Magaly de Paula Canuto. Combining neural networks and fuzzy logic for
applications in character recognition. PhD thesis, University of Kent at Canterbury,
2001.

[18] Jacob Cohen et al. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37-46, 1960.

[19] David A Dickey. Introduction to predictive modeling with examples. Raleigh, N.
Carolina State U., NC, 2012.

[20] Thomas G Dietterich. Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural computation, 10(7):1895-1923, 1998.

[21] Thomas G Dietterich. Ensemble methods in machine learning. In Multiple classifier
systems, pages 1-15. Springer, 2000.

184

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

Robert PW Duin. The combining classifier: to train or not to train? In Pattern
Recognition, 2002. Proceedings. 16th International Conference on, volume 2, pages
765-770. IEEE, 2002.

Yuval Elovici, Bracha Shapira, and Paul B Kantor. Using the information structure
model to compare profile-based information filtering systems. Information Retrieval,
6(1):75-97, 2003.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861—
874, 2006.

M Fieschi et al. Context-sensitive medical information retrieval. MedInfo, page 282,
2004.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119-139, 1997.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.
In ICML, volume 96, pages 148-156, 1996.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics,
pages 1-67, 1991.

Jerome H Friedman. Stochastic gradient boosting. Computational Statistics € Data
Analysis, 38(4):367-378, 2002.

Francesco Gargiulo, Claudio Mazzariello, and Carlo Sansone. Multiple classifier systems:
theory, applications and tools. In Handbook on Neural Information Processing, pages
335-378. Springer, 2013.

Jean Gordon and Edward H Shortliffe. The dempster-shafer theory of evidence.
Rule-Based Fxpert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project, 3:832-838, 1984.

Louis Guttman. Some necessary conditions for common-factor analysis. Psychometrika,
19(2):149-161, 1954.

Stefan T Hadjitodorov, Ludmila I Kuncheva, and Ludmila P Todorova. Moderate
diversity for better cluster ensembles. Information Fusion, 7(3):264-275, 2006.

185

[34] Laura Hamilton. Six novel machine learning applications, 2014. http://www.forbes.
com/sites/85broads/2014/01/06/six-novel-machine-learning-applications/
#2b9396£467bf. Accessed: 2016-03-11.

[35] Trevor Hastie, Robert Tibshirani, and Andreas Buja. Flexible discriminant analysis by
optimal scoring. Journal of the American statistical association, 89(428):1255-1270,
1994.

[36] Douglas M Hawkins, Subhash C Basak, and Denise Mills. Assessing model fit by
cross-validation. Journal of chemical information and computer sciences, 43(2):579-586,
2003.

[37] Tin Kam Ho. The random subspace method for constructing decision forests. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832-844, 1998.

[38] Tin Kam Ho. Data complexity analysis for classifier combination. In Multiple Classifier
Systems, pages 53—67. Springer, 2001.

[39] Ajay N Jain, Kimberle Koile, and David Chapman. Compass: predicting biological
activities from molecular surface properties. performance comparisons on a steroid

benchmark. Journal of Medicinal Chemistry, 37(15):2315-2327, 1994.

[40] Kaggle.com. Competition: Algorithmic trading challenge, 2011. https://www.kaggle.
com/c/AlgorithmicTradingChallenge. Accessed: 2016-02-11.

[41] Kaggle.com. Competition: Predicting a biological response, 2012. http://www.
kaggle.com/c/bioresponse. Accessed: 2016-02-11.

[42] Mohamed S Kamel and Nayer M Wanas. Data dependence in combining classifiers. In
Multiple Classifier Systems, pages 1-14. Springer, 2003.

[43] Kenji Kira and Larry A Rendell. The feature selection problem: Traditional methods
and a new algorithm. In AAAI pages 129-134, 1992.

[44] Tgor Kononenko. Estimating attributes: analysis and extensions of relief. In Machine
Learning: ECML-94, pages 171-182. Springer, 1994.

[45] Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2013.

[46] Ludmila Kuncheva. Combining pattern classifiers: methods and algorithms. John
Wiley & Sons, second edition, 2014.

186

http://www.forbes.com/sites/85broads/2014/01/06/six-novel-machine-learning-applications/#2b9396f467bf
http://www.forbes.com/sites/85broads/2014/01/06/six-novel-machine-learning-applications/#2b9396f467bf
http://www.forbes.com/sites/85broads/2014/01/06/six-novel-machine-learning-applications/#2b9396f467bf
https://www.kaggle.com/c/AlgorithmicTradingChallenge
https://www.kaggle.com/c/AlgorithmicTradingChallenge
http://www.kaggle.com/c/bioresponse
http://www.kaggle.com/c/bioresponse

[47] Ludmila I Kuncheva. That elusive diversity in classifier ensembles. mallorca, spain,
2003. In Proceedings of 1st Iberian Conference on Pattern Recognition and Image
Analysis.

[48] Ludmila I Kuncheva. A theoretical study on six classifier fusion strategies. IFEFE
Transactions on Pattern Analysis & Machine Intelligence, (2):281-286, 2002.

[49] Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine learning,
51(2):181-207, 2003.

[50] Louisa Lam. Classifier combinations: implementations and theoretical issues. In
Multiple classifier systems, pages 77-86. Springer, 2000.

[51] William Leigh, Russell Purvis, and James M Ragusa. Forecasting the nyse composite
index with technical analysis, pattern recognizer, neural network, and genetic algorithm:
a case study in romantic decision support. Decision Support Systems, 32(4):361-377,
2002.

[52] Hwei-Jen Lin, Yang-Ta Kao, Fu-Wen Yang, and Patrick SP Wang. Content-based
image retrieval trained by adaboost for mobile application. International Journal of
Pattern Recognition and Artificial Intelligence, 20(04):525-541, 2006.

[53] Charles X Ling and Chenghui Li. Data mining for direct marketing: Problems and
solutions. In KDD, volume 98, pages 73-79, 1998.

[54] Yi Lu. Knowledge integration in a multiple classifier system. Applied Intelligence,
6(2):75-86, 1996.

[55] Oded Maimon and Lior S Rokach. Data mining by attribute decomposition with
semiconductor manufacturing case study. In Data mining for design and manufacturing,
pages 311-336. Springer, 2001.

[56] Paul Mangiameli, David West, and Rohit Rampal. Model selection for medical diagnosis
decision support systems. Decision Support Systems, 36(3):247-259, 2004.

[57] J Kent Martin and Daniel S Hirschberg. Small sample statistics for classification error

rates I: Error rate measurements. Information and Computer Science, University of
California, Irvine, 1996.

[58] Eitan Menahem, Lior Rokach, and Yuval Elovici. Troika—an improved stacking schema
for classification tasks. Information Sciences, 179(24):4097-4122, 2009.

187

[59] Christian Merkwirth, Harald Mauser, Tanja Schulz-Gasch, Olivier Roche, Martin
Stahl, and Thomas Lengauer. Ensemble methods for classification in cheminformatics.
Journal of chemical information and computer sciences, 44(6):1971-1978, 2004.

[60] Annette M Molinaro, Richard Simon, and Ruth M Pfeiffer. Prediction error estimation:
a comparison of resampling methods. Bioinformatics, 21(15):3301-3307, 2005.

[61] Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown computer
worms based on behavioral classification of the host. Computational Statistics € Data
Analysis, 52(9):4544-4566, 2008.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

[63] Pedro R Peres-Neto, Donald A Jackson, and Keith M Somers. How many principal
components? stopping rules for determining the number of non-trivial axes revisited.
Computational Statistics & Data Analysis, 49(4):974-997, 2005.

[64] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[65] Robi Polikar. Ensemble based systems in decision making. Circuits and systems
magazine, IEEE, 6(3):21-45, 2006.

[66] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014.

[67] Romesh Ranawana and Vasile Palade. A neural network based multi-classifier system for
gene identification in dna sequences. Neural Computing & Applications, 14(2):122-131,
2005.

[68] Romesh Ranawana and Vasile Palade. Multi-classifier systems: Review and a roadmap
for developers. Int. J. Hybrid Intell. Syst., 3(1):35-61, 2006.

[69] Greg Ridgeway. Generalized boosted models: A guide to the gbm package. Update,
1(1), 2007.

[70] Marko Robnik-Sikonja and Igor Kononenko. An adaptation of relief for attribute esti-
mation in regression. In Machine Learning: Proceedings of the Fourteenth International

Conference (ICMLAS97), pages 296-304, 1997.

188

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

Marko Robnik—éikonja and Igor Kononenko. Theoretical and empirical analysis of
relieff and rrelieff. Machine learning, 53(1-2):23-69, 2003.

Lior Rokach. Mining manufacturing data using genetic algorithm-based feature set de-
composition. International journal of intelligent systems technologies and applications,
4(1-2):57-78, 2008.

Lior Rokach. Taxonomy for characterizing ensemble methods in classification tasks:
A review and annotated bibliography. Computational Statistics € Data Analysis,
53(12):4046-4072, 2009.

Lior Rokach and Oded Maimon. Data mining for improving the quality of manufac-
turing: a feature set decomposition approach. Journal of Intelligent Manufacturing,
17(3):285-299, 2006.

Lior Rokach, Oded Maimon, and Mordechai Averbuch. Information retrieval system
for medical narrative reports. In Flexible Query Answering Systems, pages 217-228.
Springer, 2004.

Lior Rokach, Roni Romano, and Oded Maimon. Negation recognition in medical
narrative reports. Information Retrieval, 11(6):499-538, 2008.

Fabio Roli, Giorgio Giacinto, and Gianni Vernazza. Methods for designing multiple
classifier systems. In Multiple Classifier Systems, pages 78-87. Springer, 2001.

Dymitr Ruta and Bogdan Gabrys. Classifier selection for majority voting. Information
fusion, 6(1):63-81, 2005.

Alon Schclar, Alexander Tsikinovsky, Lior Rokach, Amnon Meisels, and Liat Antwarg.
Ensemble methods for improving the performance of neighborhood-based collaborative
filtering. In Proceedings of the third ACM conference on Recommender systems, pages
261-264. ACM, 2009.

AMANDA J C SHARKEY. On combining artificial neural nets. Connection Science,
8(3-4):299-314, 1996.

Amanda JC Sharkey. Types of multinet system. In Multiple Classifier Systems, pages
108-117. Springer, 2002.

Amanda JC Sharkey. Combining artificial neural nets: ensemble and modular multi-net
systems. Springer Science & Business Media, 2012.

189

[83]

[84]

[85]

[36]

[87]

[38]

[89]

[92]

93]
[94]

Amanda JC Sharkey and Noel E Sharkey. Combining diverse neural nets. The
Knowledge Engineering Review, 12(03):231-247, 1997.

Amanda JC Sharkey, Noel E Sharkey, Uwe Gerecke, and Gopinath Odayammadath
Chandroth. The 4ALJtest and selectaAl approach to ensemble combination. In Multiple
Classifier Systems, pages 30-44. Springer, 2000.

Catherine A Shipp and Ludmila I Kuncheva. Relationships between combination
methods and measures of diversity in combining classifiers. Information fusion, 3(2):135-
148, 2002.

Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

Eleftherios Spyromitros-Xioufis, Grigorios Tsoumakas, William Groves, and loannis
Vlahavas. Multi-label classification methods for multi-target regression. arXiv preprint
arXiv:1211.6581, 2012.

Aik Choon Tan, David Gilbert, and Yves Deville. Multi-class protein fold classification
using a new ensemble machine learning approach. Genome Informatics, 14:206-217,
2003.

Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. Asymmetric bagging
and random subspace for support vector machines-based relevance feedback in image
retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(7):1088—
1099, 2006.

Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. In Neural
Nets, pages 3—20. Springer, 2002.

Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business
Media, 2013.

Terry Windeatt. Diversity measures for multiple classifier system analysis and design.
Information Fusion, 6(1):21-36, 2005.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

Lei Xu, Adam Krzyzak, and Ching Y Suen. Methods of combining multiple classifiers
and their applications to handwriting recognition. Systems, Man and Cybernetics,
IEEE Transactions on, 22(3):418-435, 1992.

190

[95] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. HotCloud, 10:10-10, 2010.

191

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objective
	Organization

	Background and Literature Review
	Introduction
	Philosophy of Ensemble Systems
	Statistical
	Computational
	Representational

	Ensemble Methods
	Bagging
	Boosting
	Random Subspace

	Fusion Topology
	Fusion Function
	Majority Vote and Weighted Majority Vote
	Bayesian Combination
	Dempster-Shafer Theory
	Stacked Generalization

	Related Work
	Summary

	Proposed Framework for Ensemble Predictive Modeling
	Introduction
	Phase 0: Objective
	Phase 1: Data Preparation
	Exploratory Data Analysis
	Feature Engineering
	Data Processing
	Data Partition

	Phase 2: Model Building
	Injecting Model Diversity
	Model Selection and Training
	Model Evaluation

	Phase 3: Model Fusion
	Fusion Topology
	Fusion Function
	Fusion Evaluation

	Experimental Design and Development Tools
	Summary

	Regression Case Study: Predicting the Stock Market's Short-term Behavior Following Liquidity Shocks
	Introduction
	Objective
	Data Preparation
	Exploratory Data Analysis
	Feature Engineering
	Data Transformations for Individual Predictors
	Data Partition

	Model Building
	Single-model Strategy
	Multi-model Strategy
	Cascading-model Strategies
	Market-based vs Security-based Approach

	Feature Selection
	Model Selection and Training
	Single-model Strategy
	Multi-model Strategy
	Cascading-Model Strategies

	Performance Evaluation
	Performance Evaluation Using the 10-fold CV Resampling
	Performance Evaluation Using the Testing Dataset
	Computational Cost

	Model Fusion
	Summary

	Classification Case Study: Predicting a Biological Response of Molecules from Their Chemical Properties
	Introduction
	Objective
	Data Preparation
	Model Building
	Feature Selection
	Principal Component Analysis
	Predictors' Area Under ROC Curve
	Relief Algorithm

	Model Selection and Training
	Stochastic Gradient Boosting Machine (GBM)
	Support Vector Machine (SVM)
	Random Forest (RF)
	Flexible Discriminate Analysis (FDA)
	K-Nearest Neighbors (KNN)

	Performance Evaluation
	10-fold Cross-validation Resampling
	Evaluating Class Probabilities
	Class Predictions
	Computational Cost

	Model Fusion
	Diversity Measures
	Fusion By Majority Vote
	Fusion by Model Stacking
	Fusion of Intelligently Selected Models
	Computational Cost

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References

