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Abstract 

NiTi shape memory alloys (SMAs) have revolutionized engineering design across all industries, 

with major contributions in the medical, aerospace, and automotive industries. These fascinating 

materials possess the shape memory effect, pseudoelastic effect and biocompatibility, which 

make them so highly desired. Since their discovery mid-way through the 20
th

 century a large 

research effort has been underway to gain fundamental understanding of the mechanisms 

responsible for their properties. The material properties depend on a large number of variables 

including the microstructure, the texture, the stress/strain state, and the temperature. An 

understanding of the interdependence of these variables is still being developed, with particular 

focus on their evolution when either multi-axial loading, or fatigue cycling are applied to the 

material. Furthermore, the advanced manufacturing techniques required to properly process NiTi 

have only recently become a reality, with further advancements being developed to continue 

pushing the limits of these materials. One limitation of NiTi is that standard manufactured 

products have only one transformation temperature. A number of techniques have been 

developed in an attempt to address this limitation and increase the functionality of SMAs. A 

highly accurate and repeatable technique was recently developed that uses a high energy density 

process (e.g. laser) to alter the composition of NiTi in localized regions. Laser processing 

enables the tailoring of different regions of a single piece of NiTi to have different 

transformation properties. However, there have been no in-depth studies of the evolution of the 

properties of these laser processed materials over multiple mechanical or thermal cycles. This 

lack of fundamental knowledge significantly limits both the understanding and possibilities for 

the application of laser processed NiTi. In addition to this limitation, the most widely used form 

of NiTi SMA is wires, but the major studies on laser processing have focused on sheets. 

Investigation of the evolution of laser processed NiTi wires over multiple mechanical or thermal 

cycles would not only benefit laser processing technologies, but it would also improve the 

general understanding of SMAs, with benefits to other areas including other local processing 

techniques, welding and joining, mechanical and thermomechanical fatigue. The current study 

investigated the evolution of the properties of laser processed NiTi when the materials were 

subjected to thermal cycling, mechanical cycling, and fatigue cycling. The knowledge gained 
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was used to identify limitations in the current technology, and develop thermomechanical 

treatments to address these limitations. 

The first part of the investigation focused on a wire that had a single laser processed spot (i.e. a 

laser weld). Few investigations have been attempted to characterize the mechanical fatigue 

properties of NiTi joints, and to the author’s knowledge there have been no previous 

investigations on the thermomechanical fatigue properties of these joints. The current work 

investigated the thermomechanical fatigue properties of Nd:YAG pulsed laser welded, and post-

weld heat treated NiTi wires. The welded wires maintained over 86 % of the base metal ultimate 

tensile strength; however, they had reduced actuation stability and stroke, and had significantly 

reduced cycle life. Use of a post-weld heat treatment successfully increased both the actuation 

stability and the cycle life by an order of magnitude compared to the welded wires. 

The second part of the investigation focused on the development and characterization of laser 

processing techniques for NiTi wires. The process altered the composition of the NiTi wire with 

a reduction of 0.23 at.% Ni for each laser pulse after the first pulse. The first laser pulse removed 

0.40 at.% Ni, which was a larger amount than the following pulses, because the wire drawn 

surface finish was less reflective than the laser processed surface. The coarse grained laser 

processed NiTi had 71 % of the base metal ultimate tensile strength, 40 % of the base metal 

ductility, significant reduction in the stability of the shape memory properties, and an almost 

complete loss of the fatigue life of the base metal. Using the fundamental knowledge gained 

from this investigation a thermomechanical treatment was developed to improve the properties of 

the laser processed NiTi. The treated laser processed NiTi had an ultimate tensile strength 

matching the base metal and a ductility 70 % greater than the laser processed NiTi. Significant 

improvement to the shape memory properties were achieved, with a return of pseudoelasticity, 

and an 80% greater shape memory recovery than the untreated laser processed NiTi. Furthermore 

the low strain (i.e. 2%) thermomechanical fatigue lives of the treated laser processed NiTi were 

equal to the base metal. Finally, actuators were developed with two distinct memories, with the 

treated actuator having 33 % lower plastic strain, and 42 % greater shape memory recovery than 

the untreated actuator. 
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This technology was exploited to develop a self-biasing actuator. A shape memory alloy (SMA) 

actuator that is biased internally (i.e. self-biasing) would not need an external bias to achieve 

multiple actuation cycles. This would reduce cost, complexity and weight compared to standard 

one-way SMAs. The self-biasing actuators that have been developed to date have a lack of 

geometric and actuation stability. The current study developed a self-biasing NiTi actuator using 

a laser based vaporization process to alter the bulk composition of a NiTi wire. The martensitic 

laser processed NiTi region was the actuator, and un-processed austenitic base metal region was 

the internal bias. It was discovered that the laser processed region of the self-biasing actuator was 

unstable during high stress thermomechanical cycling due to the coarse grained microstructure. 

Cold-working of the half martensitic and half austenitic component resulted in similar 

deformation characteristics to single phase NiTi, which enabled the formation of a uniform 

nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times 

under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing 

actuator exhibited the stabilization behaviour of traditional one-way actuators. This behaviour 

was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and 

ensured minimal plastic deformation.  
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1 Introduction 

1.1 Background 

The shape memory effect was first observed in the early 20
th

 century in the Au-Cd and In-Th 

systems [1, 2]. These systems had negligible change in shape, making the shape memory effect 

only of academic interest until the discovery of NiTi in the mid-20
th

 century [3]. NiTi has a 

significant shape memory effect of up to 10 % recovery [4], but needed decades of research to 

develop both the fundamental knowledge for application and the proper manufacturing 

techniques before NiTi was first implemented in industry in the latter half of the 20
th

 century [5, 

6]. In the modern day shape memory alloys (SMAs) have become widely used in the medical 

industry and have enabled revolutions in design throughout the engineering world [5, 7-11]. In 

many of these designs, traditional motors and actuators are being replaced with NiTi SMAs, and 

this replacement is forecasted to significantly increase over the next decade [5]. SMAs are of 

particular interest in actuation applications due to their high stress, high actuation strain, and high 

energy density. Further improvement to their actuation frequency and the number of 

transformation properties per NiTi component is desired to increase the range of applications for 

these materials [12]. 

SMA components with a gradient of properties or regions of different properties would enable 

greater functionality for countless applications including medical tools and implants [13], 

multiple position actuators [14], self-biasing actuators [15], or SMAs with complex responses 

that are activated at distinct temperature ranges [16]. Previous methods explored to make multi-

functional SMAs include antagonistically positioning SMAs, local heat treatment techniques, the 

two-way shape memory effect, and local alteration of SMA properties [17-19]. Local property 

modification is the most flexible method which and can be used in a wide scale and range of 

applications [13, 14, 16, 20, 21]. A highly versatile method of tailoring local properties using 

high energy density sources (e.g. laser) was recently developed at the University of Waterloo 

[16]. This process has been proven to create multiple transformation temperatures and 

pseudoelastic plateaus in a single NiTi component [13]. Application of this technology is 

currently limited by a lack of fundamental knowledge of the evolution of the properties of the 
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laser processed NiTi over multiple thermal or mechanical cycles. The current study investigated 

the thermal, mechanical and thermomechanical cycling of laser processed NiTi. The objective of 

this study was to gain a fundamental understanding of the process-structure-properties 

relationship of these materials, which would increase the depth of knowledge of SMAs, and 

expand the potential beneficial use of laser processed or other multi-functional SMAs throughout 

industry. 

1.2 Objectives 

The motivation for this work was to gain a fundamental understanding of the process-structure-

properties relationship of laser processed NiTi when it was cycled thermally and mechanically. 

This knowledge was used to design thermomechanical treatments to improve the properties of 

the laser processed NiTi. This knowledge provides a deeper understanding of NiTi SMAs, and 

enable the wider use of laser processed SMAs to benefit society. SMAs have already enabled a 

revolution in engineering designs, and SMAs with multiple properties across a single component 

can enable a second revolution, which can benefit humanity immensely. This study involved: 

1. Investigation of the effect of welding (i.e. single laser processing spot) of NiTi SMAs 

on the thermomechanical fatigue properties. There have been no previously 

published investigations in this area. Part of this investigation was to determine if 

any post-weld processes could be implemented to improve the material properties. 

2. Characterization of the laser processing of NiTi wires. Investigation of the structure-

properties relationship of the laser processed wires with focus on multiple thermal 

and mechanical cycles. Identification of the underlying mechanisms behind any 

limitations in the properties (e.g. stability, fatigue life) of these materials and 

development of thermomechanical treatments to improve the properties. 

3. Development of a self-biasing (i.e. moves on heating and cooling) actuator using the 

laser processing technology. This would further increase the functionality and 

potential applications of SMAs. The adoption of a self-biasing actuator by industry 

would require it to achieve tens of thousands of cycles while maintaining geometric 

and actuation stability. This has not yet been achieved by other self-biasing methods. 
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1.3 Thesis Organization 

The thesis is divided into 8 chapters.  

Chapter 1 is an introduction, the objectives and the motivation behind this work. 

Chapter 2 is a literature review of NiTi SMAs, including their physical metallurgy, 

manufacturing, and physical, transformation and fatigue characteristics. The limitations of 

current laser processing technologies are identified and the motivations for the current work are 

expanded. 

Chapter 3 describes the experimental methods used for this study. 

Chapter 4 investigates the effect of laser welding on the thermomechanical fatigue of NiTi SMA 

wires. There was a significant reduction in the fatigue life and stability of actuation after laser 

welding, which was partially recovered by the application of a post-weld heat treatment. 

Chapter 5 investigates the laser processing of NiTi SMA wires. The laser processed wires had 

significant reduction in physical, transformation and fatigue properties compared to the base 

metal. The thermomechanical treatment applied to the wires recovered a large portion of the 

properties, with full recovery of the ultimate tensile strength, improvements to the pseudoelastic 

and shape memory properties and low strain fatigue values in the same order of magnitude as the 

commercially available actuator wire. 

Chapter 6 discusses the development of a self-biasing actuator developed using the processes 

from Chapter 5. The treated self-biasing actuator had a stabilized actuation, with low plastic 

strain build-up after thousands of cycles. 

Chapter 7 details the main conclusions of the study and recommendations for future work.  

Chapter 8 lists the author’s contributions to research. 
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2 Literature Review 

The study of the thermomechanical fatigue of laser processed shape memory alloys requires a 

fundamental understanding of the crystallography, microstructure, phase transformation kinetics, 

material processing and manufacturing methods, and the mechanism of fatigue unique to SMAs. 

The following literature review examined this vast field of knowledge, and was used to build key 

relations essential to the success of the project as outlined in the results chapters. 

2.1 NiTi Physical Metallurgy 

The NiTi SMA is a near equiatomic (i.e. ~Ni 50.0 at. % Ti) Ni and Ti intermetallic compound, 

which is in between the Ti2Ni and Ni3Ti intermetallics in the Ni-Ti binary phase diagram shown 

in Figure 2.1. As indicated in the phase diagram the undesirable brittle Ti2Ni phase forms during 

solidification of a Ti-rich NiTi. It can also form in Ni-rich NiTi when the environment contains 

any amount of oxygen, due the higher solubility of oxygen in Ti2Ni [22]. Forming this 

compound can lead to solidification cracking during rapid solidification processes such as 

welding [16, 23]. Other detrimental phases can form during ingot casting including TiC carbides, 

which form due to a eutectic reaction with the graphite crucibles used in vacuum induction 

melting (VIM). The high reactivity of NiTi requires inert or vacuum atmospheres to impede 

reactions with the atmospheric contaminants but even these methods are incapable of completely 

stopping the peritectic reaction that forms Ni2Ti4OX and TiO oxides [22, 24]. During the casting 

process a greater amount of carbides form than oxides in part due to the faster kinetics of eutectic 

reactions compared to peritectic reactions [25-27]. Methods of coating the crucible have been 

developed to limit the formation of these detrimental carbides [28]. After casting, during the 

forming processes these inclusions can fracture and form particle void assemblies (PVA) that 

serve as crack initiation points for failure [26, 27, 29-31]. The oxides are generally larger than 

carbides and fracture more readily to form the PVAs [31]. 
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Figure 2.1: The Ni-Ti Phase diagram [6, 32] 

 

NiTi is a stoichiometric intermetallic at room temperature, but the diffusion of Ni and Ti greatly 

increases above 923 K (650 °C) [6]. Solutionizing above this temperature followed by quenching 

will form a supersaturated solid solution, which can then be aged to form beneficial precipitates 

[6]. These metastable phases are indicated by the insert in Figure 2.1. Their form is dependent on 

ageing time and temperature with longer times and higher temperatures resulting in the phase 

being absorbed by the matrix (i.e. Ni4Ti3 → Ni3Ti2 → Ni3Ti) [33]. The metastable Ni4Ti3 is the 

preferred phase used for strengthening the microstructure, forming coherent lenticular 

precipitates in the matrix [34, 35]. Fine, homogenous distribution of this beneficial phase 

requires Ni supersaturation, and the homogeneous distribution of grain boundaries, dislocations 

and other high energy areas that act as preferential nucleation sites [6, 36].  

NiTi has a phase change that occurs near room temperature, from the parent B2 austenite phase 

to the product B19’ martensite phase as illustrated by Figure 2.2. The B2 phase is a cubic CsCl 

type structure with lattice parameter 0.3015nm, and the B19’ martensite phase is a monoclinic 

structure with lattice parameters a =0.2889, b = 0.4210, c = 0.4622 and β = 96.8° [37, 38]. Heavy 

cold work, the presence of precipitates, or nanocrystalline grains can restrict the maximum strain 

that can be accommodated by the structure without plastic deformation [36, 39]. This restriction 
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of strain results in an intermediate small strain transformation to a rhombohedral (R-phase) 

structure that enables the transformation between the B2 and B19’ phases (Figure 2.3).  

 

Figure 2.2: Crystal structure of the parent austenit (B2) and product martensite (B19') phases and the lattice 

correspondence between the two phases [40] 

 

Figure 2.3: Lattice change from B2 to R-phase. The axes a’, b’ and c’ represent the principal axes in that 

lattice deformation [41] 

2.2 The Reversible Martensite Transformation in Shape Memory Alloys 

The word ‘martensite’ was first used to describe quench hardened steel microstructures, but is 

now used to describe a wide breadth of materials that have a variety of crystallographies, 

properties and growth kinetics [42]. The martensitic transformation is a diffusionless phase 

transformation from a parent phase to a coherent product phase of the same composition that 

occurs via the homogeneous shear of the crystal lattice that propagates through the material as a 

wave [42]. The transformation occurs between the martensite start (Ms) and finish (Mf) 

temperatures, with the reverse martensite to austenite transformation occurring between the 

austenite start (As) and finish (Af) temperatures [43]. Martensite formation in carbon steels is not 

reversible in part due to the large volume change between the phases (Table 2.1), which results 

in large plastic strains [40].  The introduction of large amounts of plastic strain in martensitic 

steels results in a transformation hysteresis of hundreds of degrees Kelvin, with As being in a 
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temperature range (i.e. 1003 K (730 °C)) where carbon diffuses rapidly. This results in the 

supersaturated body-centred tetragonal martensite decomposing into carbides and body centred 

cubic ferrite before reforming austenite [40]. 

Table 2.1: Percent volume change between austenite and martensite in NiTi (SMA), CuAlNi (SMA) and an 

Iron-Nickel-Carbon alloy [44] 

NiTi CuAlNi Iron-Nickel-Carbon Alloy 

0.023 % 0.297 % -2.586 % 

 

The combination of the nearly constant volume (Table 2.1) and high elastic limit in NiTi enables 

the elastic accommodation of martensite in the austenite matrix with minimal plastic deformation 

[44]. This lack of plastic deformation maintains coherency between the phases and enables them 

to grow or shrink depending on the thermodynamics of the system [42, 44]. The limited 

deformation causes the hysteresis to be on the order of tens of degrees and not in the range where 

significant diffusion could impede the reverse transformation [40]. In addition to these critical 

properties a number of other criteria are required to achieve the unique reversible martensite 

transformation possessed by SMAs: 

 A parent phase with a single low energy state 

o B2 austenite in NiTi 

 Multiple low energy product phases (If only 1 variant exists, significant slip will occur) 

o 24 variants can form in B19’ [45] 

 The ability of the material to form and change microstructures freely 

o i.e. self-accommodation of martensite variants reorientation of these variants, and 

their relation to the recoverable strain of the shape memory effect [44, 46] 

2.3 Ductility of the NiTi Intermetallic Compound 

Intermetallics generally possess limited plasticity; however, the NiTi intermetallic can be cold 

worked up to 60 % [6, 47]. The exact reasons for the ductility of this material are still under 

investigation [48, 49]. The near stoichiometric NiTi intermetallic exists over a range of 

compositions meaning it can accommodate local chemical inhomogeneity resultant from ‘like’ 

atoms being in contact [50, 51]. Compared to a stoichiometric intermetallic, this makes NiTi less 
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resistant to diffusion driven phenomena including grain growth, recrystallization, recovery, grain 

boundary sliding and dislocation climb [52]. Furthermore, the bonds in intermetallics are a 

mixture of metallic, covalent and ionic bonds [51]. The added constraints of these directional 

bonds relate to the brittle nature of intermetallics, which increases with a decrease in unit cell 

symmetry, and with an increase in atoms per unit cell [51]. The B2 strukturbericht CsCl-type 

cubic crystal structure of the NiTi system (Figure 2.2) has high symmetry and only 1.5 atoms per 

unit cell. Comparatively, the brittle non-stoichiometric Ti2Ni unit cell has low symmetry and 96 

atoms [53]. 

Several other important factors contribute to the unusually high ductility of the NiTi 

intermetallic. The critical stress for dislocation motion of solution treated NiTi is as low as       

150 MPa [54]. This low stress is believed to be a result of the low elastic constants c’ and c44, 

with the c44 being between 1/3 and ½ that of standard intermetallics [6, 54]. Additionally the 

elastic anisotropy of the material is as low as 2, where intermetallics can be as high as 10 [55-

57]. This low elastic anisotropy ensures that in boundary fracture does not occur, increasing 

ductility. Finally the martensite phase has 24 variants, numerous twinning and slip modes (Table 

2.2), which serve to further increase the ductility of the material. The ductility of the stabilised 

austenite phase is less than the martensite phase because it has fewer slip and twin modes for 

deformation . 

Table 2.2: Twinning modes of B19' martensite [6] 

Twinning 

Mode 
K1 Η1 K2 η2 s (shear) 

{𝟏̅𝟏̅𝟏} Type I1 
(1̅1̅1) 

(1̅11) 

[0.54043 0.45957 1] 

[0.54043 0.45957̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1] 

(0.24695 0.50611 1) 

(0.24695 0.50611̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1) 

[2̅1̅1] 
[2̅11] 

0.30961 
0.30961 

{𝟏𝟏𝟏} Type I 
(111) 

(11̅1) 

[1.51172̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.51172 1] 

[1.51172̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.51172̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1] 

(0.66875̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.33750 1) 

(0.66875̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.33750̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1) 

[211] 
[21̅1] 

0.14222 

0.14222 

{𝟎𝟏𝟏} Type I1 
(011) 

(011̅) 

[1.57271 11̅] 

[1.57271̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 11] 

(0.72053 1 1̅) 

(0.72053̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1 1) 

[011] 
[011̅] 

0.28040 

0.28040 

{𝟎𝟏𝟏} Type 

II1,2 

(0.72053 11̅) 

(0.72053̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 11) 

[011] 
[011̅] 

(011) 

(011̅) 

[1.57271 11̅] 

[1.57271̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 11] 
0.28040 

0.28040 

Compound 
(001) 
(100) 

[100] 
[001] 

(100) 
(001) 

[001] 
[100] 

0.23848 
0.23848 

{𝟐𝟎𝟏̅}3 (201̅) [1̅02̅] (001̅) [100] 0.4250 

(1) Lattice invariant strain 

(2) Dominant twinning mode 

(3) {201̅} deformation twinning mode, which appears under heavy deformation 
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2.4 Deformation of NiTi 

The deformation characteristics of NiTi depend on the phase in which and the temperature at 

which testing is performed (Figure 2.4) [58]. The modulus, detwinning stress, and transformation 

stress are all change significantly with temperature. The material can also exist in a mixed phase 

state between transformation temperatures (i.e. Ms>T>Mf, Af>T>As), making properties like the 

elastic modulus a composite of multiple phases [48]. 

 

Figure 2.4: a) Displacement-Temperature schematic indicating NiTi transformation temperatures, and 

monotonic stress strain curves b) below Mf (100 % martensite), c) above Af (100 % Pseudoelastic Austenite) 

and d) above Md (stabilized austenite) the temperature where the stress for slip is below that for stress 

induced martensite [59] 

2.4.1 The Shape Memory Effect 

The lattice invariant strain in NiTi martensite is recoverable because it is predominantly 

accommodated by twinning, and not dislocation motion or stacking faults [60, 61]. This twinning 

mechanism minimizes lattice strain, dislocation activity and change in system energy during 

deformation. The twins organize by ‘self-accommodation’ meaning the twinning across the 

microstructure occurs in a pattern that minimizes the total increase in energy of the system, 
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which enables the transformation to be reversible [44]. When a single crystal of NiTi is stressed, 

the variants that form in the centre of the crystal minimize the energy by accommodating the 

maximum strain with minimal dislocation activity, while the variants at the crystal boundaries 

serve to satisfy boundary conditions (i.e. conform to the existing geometry). The two competing 

requirements results in fine zig-zag deformation patterns [46, 62]. If no load is applied and the 

transformation is cycled thermally then the self-accommodation of the martensite will cause no 

macroscopic shape change [44]. The only visible sign that a phase transformation has taken place 

is the occurrence of surface relief from the deformation of the lattice [63]. The repetitive 

formation of this surface relief can hasten fatigue crack nucleation [64]. 

Thermal martensite variants all have the same energy state [44]. When a load is applied the 

variants rearrange as shown in Figure 2.5 B→C [11]. There is no driving force to return the 

variants to their original orientation during unloading, so only the elastic strain is recovered as 

shown in Figure 2.5 C→D [11]. The remaining deformation is recovered upon heating to the 

single variant austenite phase as shown in Figure 2.5 D→E→F→A→B. This recovery requires 

rearrangement of the atom to the original configuration [44]. The maximum recoverable strains 

are limited by texture and loading orientation as discussed in the following sections. Loading to 

above the maximum strain causes permanent plastic deformation and reduces the possible 

recoverable strains [44]. 

 

Figure 2.5:  Stress-strain-temperature data illustrating the shape memory effect for a typical NiTi SMA [12] 
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2.4.1.1 Transformation Temperatures 

The transformation temperatures are measured either by changes in the electrical resistance 

(Figure 2.6) or differential scanning calorimetry (DSC) (Figure 2.7) [40, 65]. The transformation 

temperatures are related to the Helmholtz free energy of the system, with the austenite phase 

minimizing this energy at high temperatures, and the martensite minimizing it at low 

temperatures [44]. The equilibrium between the austenite and martensite phases and the resultant 

transformation temperatures can be altered if either the chemical or elastic strain is changed.  

 

Figure 2.6: Electrical resistance vs temperature 

curve showing the transformation temperatures of 

the Ti-50.0at %Ni alloy [65] 

 

Figure 2.7: DSC curves showing the 

transformation temperatures of the Ti-50.6at.% Ni 

alloy [66] 

 

Altering the composition can be done through bulk alloying, or by forming of secondary phases. 

Work by Tang et al. [67, 68] which was later confirmed and refined by Frenzel et al. [22] (Figure 

2.8), compared previously reported Ms temperatures to alloy compositions, showing that a 

change of 0.1 at.% Ni can result in a 10 K change in the transformation temperature of the 

material [69]. This variation is much smaller than the compositional tolerances for most 

engineering materials, meaning NiTi production requires much tighter tolerances resulting in 

higher costs. Below 49.7 at.% Ni the Ti2Ni phase forms and consumes the excess Ti in the 

system, thereby maintaining the composition of the matrix, and ensuring a constant temperature 

as the Ni content is further decreased [67]. During casting of the alloy undesired additions to the 

composition such as oxygen or carbon can enter the melt and deplete the system of Ti, thus 

reducing the transformation temperatures [22, 24]. The transformation temperatures are also 

affected by the elastic stress, the orientation of the stress, the texture of the material, the 

thermomechanical treatment history, and thermal or strain cycling [70]. 
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Figure 2.8: Dependence of Ms Temperature on Ni composition of NiTi, left) Tang et al. [67], right) Frenzel et 

al. [22] 

2.4.1.2 Transformation Induced Plasticity 

The hysteresis observed between the peaks in Figure 2.7 is a result of the resistance of the 

microstructure to the motion of the martensitic interface (i.e. internal friction). This internal 

friction occurs due to the alteration of local stress fields by the presence of secondary phases, and 

defects in the crystal lattice [71, 72]. This change in the local stress field influences the 

preferential martensite variants that form in these regions and increases the stress required to 

reorient these variants to accommodate the passage of the martensitic interface [73]. 

The complete reversible accommodation of the transformation in these localised regions is not 

always possible, leading to plastic deformation via dislocation creation and motion in the 

<100>{011} slip system followed by entanglement with sessile dislocations [72, 74, 75]. This 

deformation mechanism is called transformation induced plasticity. Transformation induced 

plasticity can increase dislocation density by two orders of magnitude after only 100 cycles [72, 

75]. The resultant microstructure after thermal cycling is banded austenite and retained 

martensite. The increase in dislocation density in thermally cycled SMAs increases the driving 

force necessary for phase transformation (i.e. lowers transformation temperatures), may lead to 

R-phase forming, increases internal friction (i.e. higher critical stress to reorient martensite), and 

increases the stored elastic energy (i.e. alters the elastic modulus) [76]. When an SMA is 
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thermomechanically cycled this microscopic build-up of plastic deformation results in a 

macroscopic plastic strain and decrease in actuation strain as shown in Figure 2.9. 

 

Figure 2.9: Thermal cyclic loading (50 cycles) of a NiTi shape memory alloy wire under constant load of     

150 MPa [12] 

2.4.2 Stress Induced Martensite and Pseudoelasticity 

Elastically straining NiTi adds energy to the system and decreases the driving force required for 

the martensite transformation (i.e. increases the Ms temperature) [77]. If pseudoelastic austenite 

exists at the test temperature (i.e. Af < T < Md) and a sufficient stress is applied then the Ms will 

increase to the point where the pseudoelastic austenite shears into stress induced martensite 

(Figure 2.10 B→C). The stress induced martensite transformation propagates in an isostress state 

(i.e. pseudoelastic) that may have a serrated profile due to the Lüders-like propagation of strain 

bands across the specimen [78, 79]. Upon removal of the stress, the transformation temperatures 

will decrease and the stress induced martensite will transform back into pseudoelastic austenite 

(Figure 2.10 D→A). The critical stress for slip of the material must be above the critical stress 

for stress induced martensite (i.e. Figure 2.11 A); otherwise the material would plastically 

deform before stress induced martensite formed (i.e. Figure 2.11 B) [80]. As discussed 

previously, the temperature at which the stress for slip is less than the stress for stress induced 

martensite is called the Md temperature and is indicated in Figure 2.11. Above Md (Figure 2.11) 

the austenite is mechanically stable and behaves like a standard elasto-plastic material as was 

observed in Figure 2.4 [80]. Solutionized NiTi generally displays little to no PE properties and 
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requires strengthening via cold work, grain refinement, and precipitate formation to exhibit these 

properties [6]. 

 

Figure 2.10: Standard tensile stress-strain curve of PE austenite [12] 

 

 

Figure 2.11: Schematic diagram representing region of shape memory effect and transformation 

pseudoelasticity in temperature-stress coordinates; (A) represents critical stress for slip for case of high 

critical stress and (B) represents critical stress for slip for [80] 
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Figure 2.12: Critical stresses as a function of temperature for: open circles) inducing stress-induced 

martensite (SIM) (T>Ms) and for detwinning thermal martensite (T<Ms), closed circles) Reverse SIM 

transformation [81] 

 

The stress at which pseudoelastic austenite forms stress-induced martensite increases as the test 

temperature is increased above the Ms because a greater elastic energy is required to overcome 

the increasing temperature differential. The increase in stress has a linear relation with 

temperature (Figure 2.12) for which the most useful model is the Clausius-Clapeyron relation 

shown in Equation 2.1 [82]. Where dσ is the change in the stress required for stress-induced 

martensite, dT is the change in test temperature, σ is the uniaxial applied stress, ΔH
*
 the enthalpy 

of transformation per unit volume, ε the transformation strain, and T is the temperature. In this 

equation the transformation from parent to product phase is negative. The left side of the 

equation is the rate of change of stress with respect to the temperature which changes with 

material processing method and is generally between 3 and 20 MPa °C
-1

 [58]. 

 
𝑑𝜎

𝑑𝑇
= −

∆𝐻∗

𝜀𝑇
 (2.1) 

 

During the forward and reverse stress-induced martensite transformations the material releases 

and absorbs heat respectively due to the exothermic and endothermic nature of the 

transformations [83]. This effect can change the material temperature in turn changing the stress-
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induced martensite plateau stress [83]. The detwinning stress of thermal martensite is a thermally 

activated process, so the stress for detwinning increases with decreasing temperature as shown in 

Figure 2.12 [6]. The presence of the R-phase results in additional intermediary detwinning of 

stress-induced martensite features in the stress-strain curves as shown in Figure 2.13. 

 

Figure 2.13:  Classification of stress-strain curves according to test temperatures for Ti-Ni alloys. a) B19’ 

shape memory effect (SME), b) B19’ and R-phase SME, c) R-phase SME and non-recovered stress induced 

martensite (SIM), d) Recovered SIM and R-phase SME, e) SIM and R-phase SIM, f) SIM [84] 

 

The hysteresis observed between the forward and reverse stress-induced martensite plateaus is 

related to the same internal friction effects encountered in thermally cycled SMAs as discussed 

in the previous section. However, in the case of successive tensile cycling the critical stress for 

stress-induced martensite is reduced as shown in Figure 2.14. As was the case with thermal 

cycling the forward stress-induced martensite transformation (Ms → Mf) experience a greater 

reduction that the reverse (As → Af), resulting in a reduction in the hysteresis after cycling. It is 

hypothesized that this reduction in stress and hysteresis occurs because dislocation networks 

created by prior deformation and the stored elastic strain enable easier transformation of 

preferred variants during successive cycles [85, 86]. This effect may be the cause of a 

particularly interesting aspect of the pseudoelastic the material; its ability to ‘remember’ the 

deformation history [48]. If a torsional load is first applied, and then a uniaxial tensile load 
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applied, upon removal of the loads the material will first recover the tensile strain and second the 

torsional strain as shown in Figure 2.15 [87]. The reasons for this effect are hypothesized to be 

related to the reorganization of the dislocation networks; however this remains to be proven [87]. 

Recent investigations have proposed that the dislocation networks that evolve in the 

microstructure alter the transformation from a wave propagating across the material, to a uniform 

transformation occurring throughout the material [88]. 

 

Figure 2.14: The underaged NiTi wire is 

prestrained twice: curve 1 shows the first 

prestraining to 4 % and curve 2 shows the 

second postponing to 8 %. A deformation (heavy 

line) then exhibits two yield drops (A and B) 

before the original flow stress is achieved (C) [85] 

 

Figure 2.15: Equivalent stress–strain plots in 

torsion (2 %), followed by tension (0 %, 0.7 %, 

1.05 %, 3 %, 5.8 %) and reverse unloading (Type 

II) [87] 

2.4.3 The Two-Way Shape Memory Effect 

The two-way shape memory effect achieves a change in shape during both the heating and 

cooling cycles. There are a number of methods used to train an SMA to exhibit the two way 

shape memory effect, including the introduction of dislocations, formation of preferentially 

oriented precipitates, thermal cycling, and constrained aging [6, 19]. The first method uses the 

dislocations formed during severe plastic deformation of the martensitic phase to inhibit full 

shape recovery during transformation to the austenitic state [19]. The presence of these 

dislocations during the reverse transformation leads to preferential formation of certain 

martensite variants which results in the material possessing a two-way shape memory effect [19]. 

The other methods of achieving the two-way shape memory effect alter the microstructure to 
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achieve the same effect. The two-way shape memory effect can achieve approximately 2 % 

recoverable strain, however the actuation strain degrades and the plastic strain can substantially 

increase as cycling progresses and the microstructure evolves [6, 89]. This degradation can be 

greater than 5 % plastic strain under stresses as small as 100 MPa; furthermore, significant 

degradation in the actuation occurs under stress-free thermal cycles, which limits the 

applicability of the two-way shape memory effect for high precision devices [89]. The methods 

used to cause the two-way shape memory effect are also used to ‘train’ actuators so that they are 

stable for the load and strain of a specific application as will be discussed in Section 2.5.2. 

2.4.4 Texture Dependence of Deformation 

Single crystals of NiTi have anisotropic properties with different moduli of elasticity, strain 

reversibility, slopes and hysteresis of stress-induced martensite when loaded in different 

crystallographic directions [90]. The recoverable tensile strain can vary from 3 % in the <100> 

direction to 10.5 % in the <111> direction (Figure 2.16) [4]. The unidirectional nature of shear 

strain on the habit planes contributes to this anisotropic, asymmetric deformation [91]. In 

addition, the orientation of the crystal with respect to the load affects twinning, which influences 

the anisotropy of stress-induced martensite [92]. 

In a polycrystalline material the grains are joined at the grain boundaries and need to move 

together while maintaining a continuous displacement across the grain boundaries [44]. When 

the boundary is parallel to a tensile load it is similar to a single crystal deformation; however, 

when it is perpendicular to a tensile load it exhibits a complex deformation that is brittle [93, 94]. 

Triple junctions are more complicated; requiring the formation of complex twin microstructures 

to accommodate strain, thus restricting the deformation in these regions [44]. The restrictions 

imposed by the grain boundaries and multiple grain junctions can lead to localized plasticity 

even at macroscopically low stresses [44, 46]. 

When polycrystalline NiTi is loaded grain boundary variants maintain the strain between grains, 

while variants in the grain interiors arrange to enable the greatest overall strain of the material, 

with neighbouring grains competing for preferential deformation [44]. The anisotropic properties 

of a single NiTi crystal make the deformation characteristics of a polycrystalline material highly 
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dependent on the texture. The material properties, including the elastic modulus, the yield stress, 

ductility, work hardening, the transformation stresses and hysteresis, transformation strains and 

recoverable strains can all change depending on the texture and the orientation of the load with 

the texture [95-98]. An example of this anisotropy is the difference of martensite deformation in 

tension and compression shown in Figure 2.17. The grains in this example were oriented such 

that they provided more recoverable modes of deformation in tension than in compression. The 

tensile specimens had pseudoelastic recovery but the compressive specimens did not; only the 

elastic stain was recovered [99-101].  

 

 

Figure 2.16: Orientation dependence of the recoverable strain of a single crystal in A) the <001> direction, B) 

a mixed texture, C) the <011> direction, D) the <111> direction. Deformed below As and then heated above Af 

[4] 
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Figure 2.17: Tensile and compressive stress-strain curves for peak-aged NiTi (1.5h at 673 K): a) [111] 

orientation, b) polycrystal (with <111> texture) [100] 

 

Material texture depends on the processing route with tubes, sheets, rods, and different sizes of 

these forms all having unique textures which are not significantly altered by heat treatments 

[102]. Uneven distribution of stress throughout the textured microstructure can lead to 

unpredicted localisation of strain, and in turn unexpected fatigue failure [103]. This dependence 

on texture can lead to significant issues when cutting a component out of a textured material, for 

example when a stent is laser cut from NiTi tubing [103]. Luckily the texture of drawn NiTi 

wires is in the <111> direction which is the direction that has the largest recoverable strains 

[104]. This enables polycrystalline NiTi wires to have between 5.5 % [105] and 8 % recoverable 

strain, depending on the processing route [81].  

2.5 Fatigue of Shape Memory Alloys 

Thermal and mechanical fatigue testing of NiTi material has been conducted for more than 40 

years but has not resulted in a universally applicable constitutive model [59]. Initial testing in the 

1960s-1980s was done with substandard material purity and processing methods (i.e. grain size 

~100μm) so the conclusions of these investigations are not applicable to modern day 

manufactured materials (i.e. grain size <1μm) [59, 86, 106]. To make matters worse, much of the 

current research is proprietary and unpublished [59]. The published results of thermal or 

mechanical cycling of SMAs are often contradictory, and more emphasis is required to relate the 
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microstructural and bulk mechanical properties to develop adequate quasi-static models and 

evolving material fatigue models [107]. 

Classical fatigue models assume a stable microstructure throughout the life of the material [108]. 

This assumption does not hold with SMAs, which have significant variation in microstructure 

and thus bulk properties -primarily the reorientation of thermal martensite and the formation of 

stress-induced martensite - that change as fundamental variables of fatigue testing (i.e. stress, 

strain, and temperature) are changed [108]. The fatigue behaviour differs substantially depending 

on what phase is stable; thermal martensite, pseudoelastic austenite, a mixed phase (i.e. between 

Ms and Mf or As and Af) or stable austenite [108]. The presence of precipitates, inclusions, other 

defects and their effect on the evolution of transformations further complicates the modelling of 

the material behaviour [6]. The dependence of the material behaviour on the crystallographic 

texture and the loading path make simple tension-compression cycling difficult to model, with 

multi-axial loading being poorly understood, and modelled with minimal success [87]. Recently 

synchrotron micro-X-ray diffraction has been used to separate elastic and transformation strain 

during cycling, which can be used to develop a fundamental understanding of the evolution of 

the NiTi microstructure during mechanical and thermal fatigue cycling [103, 109]. This is 

required for the modelling of NiTi with traditional FEA stress computations, and describing the 

evolution of the material [109]. The combination of these noted issues results in the fatigue 

behaviour of a specific material and testing parameters being applicable only to this specific case 

[59]. This means that no generic S-N or ε-N curves can be produced for NiTi, only application 

specific curves [110]. This results in the costly requirement of fatigue testing each application 

[111-114]. This is an acceptable increase in cost with pseudoelastic applications that can be 

cycled at relatively high frequencies (e.g. 50 Hz) [115]. Shape memory effect cycle frequencies 

are usually in the sub-Hz range, which can lead to testing time of over one year and be an 

impediment for any companies interested in entering the market with an SMA actuating device 

[59]. 

Further impeding the studies of these materials is the lack of standards describing how fatigue 

testing for either pseudoelastic or shape memory effect materials should be performed and 

analysed [116]. This has resulted in every lab developing their own testing and using various 
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analysis methods, making comparison between results difficult. If standards were developed they 

could help accurately compare the fatigue lives of materials offered by different manufacturers, a 

number of whom make substantial claims (e.g. 4 % actuation strain for 100,000 cycles) and until 

recently offered little evidence to back up their claims [117-119]. 

2.5.1 Mechanical Fatigue of Shape Memory Alloys 

The majority of work in fatigue of SMAs has been focused on pseudoelastic alloys because of 

their much earlier adoption into industry than their shape memory effect counterparts [59]. The 

focus of this thesis is thermomechanical fatigue, but due to the lack of literature in this area, a 

thorough review of mechanically induced fatigue of NiTi is useful. Pseudoelastic materials are 

tested in a similar manner to other materials: by mechanically straining with methods such as 

rotation-bending fatigue, bending fatigue or hydraulically actuated tension/compression fatigue 

[59]. Tension-tension testing of NiTi is known to have the lowest life compared to bending or 

rotation-bending fatigue, because the continual crack growth, and a maximum volume of cross 

section is subjected to maximum strains, as opposed to the partial tension and compression of the 

other methods [59, 120]. 

2.5.1.1 Stress Life 

The stress in NiTi is only related to the strain while in the limited elastic strain regions. In the 

plateau regions the strain increases while the stress remains constant. This makes the S-N 

analysis of total fatigue life less meaningful than the ε-N analysis. Use of the S-N method has 

erroneously found the fatigue life of pseudoelastic austenite greater than thermal martensite at 

400 MPa, not because of the superiority of the material but because the strain in the austenite 

was only 2 % while that of the martensite was 9 % [121]. Similar conclusions were made when 

increasing the test temperature, which saw an increase in fatigue life, but this was resultant from 

the increase in modulus and critical stress for stress-induced martensite which reduced the strain 

amplitude of the test [58, 122]. There has been no study relating S-N and ε-N effects with 

significant conclusions. Only one study has ever related the three major failure analysis methods 

(i.e. S-N, ε-N, and damage tolerant approaches), and this was performed by the pioneering 

investigators Melton and Mercier [121, 123]. They used substandard material and did not 

compare microstructural effects; which can be significant considering that after only 10 cycles 
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retained martensite has been observed due to permanent deformation in the microstructure [86, 

106, 124, 125]. 

2.5.1.2 Strain Life 

The majority of pseudoelastic NiTi fatigue studies are conducted with the strain-life method, 

which allows control of the ratio of martensite and austenite [59]. When testing at zero-mean 

stress, thermal martensite had the highest fatigue life of all the microstructures (i.e. martensite, 

pseudoelastic austenite, mixed phase, stable austenite) for equivalent strain values because the 

stress for detwinning martensite is much lower than that needed to from stress-induced 

martensite [126, 127]. Pseudoelastic austenite fatigue lives were longer when the test 

temperature was closer to Af because the stress for stress-induced martensite was lower [128]. 

Long fatigue lives (e.g. 10
6
) required cycling only in the elastic region with a constant phase 

fraction, in which case typical fatigue damage accumulation occurred [113, 129]. Dislocation 

free transformation between austenite and martensite is required for a high cycle fatigue life, but 

the high shear strain typical of the transformations leads to dislocation creation even under zero-

load conditions, making high fatigue life of pseudoelastic phase transformations impossible 

[108]. Cycling between martensite variants, or between austenite and martensite led to shorter 

fatigue lives because of the increase in plastic deformation. Strains typical of low fatigue life 

pseudoelastic austenite are significantly higher than standard materials measuring 10 % at 1000 

cycles compared to 1 % or less of standard materials [121]. The stable austenite phase had the 

lowest fatigue life because a limited number deformation routes are available to accommodate 

the strain. When cycling between the linear elastic region into the stress-induced martensite 

plateau the deformation is related to the Coffin-Manson region [130, 131]. The formation of 

stress-induced martensite and not plastic deformation results in the inability to directly compare 

this material using this method. 

Many applications experience non-zero mean strain, such as cardiovascular or gastrointestinal 

stents, which use interference fits with the surrounding biology that leads to strain in the 

pseudoelastic plateau [111, 132, 133]. When cycling with non-zero mean stress it was found that 

increasing the mean strain did not always lead to a reduction in the fatigue life; leading to the 

conclusion that the Goodman and Soderberg constructions [134, 135] are not valid for NiTi [113, 



24 

 

129]. Increasing mean strains in pseudoelastic austenite into the middle of the stress-induced 

martensite plateau saw an increase in the strain amplitude that reached 10
6
 cycles [75, 112, 114]. 

When in the stress-induced martensite plateau the strain amplitude is the major contributor to 

fatigue life of pseudoelastic austenite and not the mean strain. Multi-axial deformation of NiTi is 

poorly understood and there is very limited work on multi-axial fatigue [136]. 

2.5.1.3 Damage Accumulation, Crack Growth and Fracture 

There are few studies that use damage tolerance analysis, mainly because of the dimensionally 

small sizes (e.g. 0.2mm stent strut) of medical industry devices [133]. Crack initiation in these 

small components can be difficult to measure, and failure could occur in only hours or days after 

nucleation [137]. Therefore, emphasis has been placed on control of crack nucleation instead of 

crack growth. Small cracks are theorized to have much lower crack initiation and propagation 

resistances, but there is no reported data on small crack measurement [138]. This makes it 

impossible to currently use the damage tolerant method for product life prediction. Total life 

analysis is deemed acceptable in components that have critical crack lengths below 15-50 μm, 

above which parts are rejected [138]. New applications in areas including aerospace and 

orthopaedics have large cross sections in which cracks may have stable growth before failure; in 

which case damage tolerance analysis may be beneficial. 

Fatigue crack growth in NiTi is dependent on the phase. The high ductility of thermal martensite 

resulted in the stress intensities (i.e. ΔKth from the Paris law) required for crack initiation being 

the highest compared with the other microstructures, and it having the best growth resistance 

[139, 140]. The stress intensity and growth resistance decreased as the temperature increased 

through the pseudoelastic austenite phase with the lowest values being for stabilized austenite 

due to its limited deformation mechanisms [139, 141]. Normalizing the stress intensity factors 

with the modulus enables evaluation of the strain intensity range revealing that the materials 

have similar crack growth rates to other biomedical materials like titanium or stainless steel 

[142]. The stable crack growth rate exponent m = 2.5 was shown to be independent of the 

specimen thickness, geometry, the loading (R) ratio and the phase of the material [121, 139, 141-

143]. Increasing R (i.e. tension-tension testing) led to lower fatigue thresholds. Testing specific 

product forms is required to evaluate crystallographic texture issues, which affect the fracture 
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initiation point and direction [115]. The crystallographic texture, component geometry and 

loading direction affect the direction of crack growth and the deformation around the crack tip 

[144]. Synchrotron X-ray diffraction has revealed that the traditional peanut plasticity zone 

found in linear-elastic fracture mechanics models is not found in NiTi; rather, the texture of the 

surrounding grains determined suppression of or transformation of the surrounding grains [144]. 

Most important to note is that the build-up of plastic deformation is a necessity to resist crack 

growth in NiTi [143]. A fully cold worked material needs to be annealed or the residual stress 

will lower the stress intensity and cracks will initiate earlier [143]. 

There are only six studies in fracture toughness, and of these only one had a specimen thickness 

significantly larger than the plastic zone [115, 140, 145-148]. The results are potentially 

erroneous; however a few conclusions can be made from the work. Steady state fracture 

toughness can vary across product forms and microstructures; however, the fracture toughness 

for both martensite and pseudoelastic austenite were measured to be approximately 30 MPA m
1/2 

[115, 140, 145-148]. This is due to the formation of stress-induced martensite at the crack tip in 

pseudoelastic austenite, meaning the crack is growing through the same microstructure (i.e. 

martensite) in both cases. The adiabatic heating observed during these transformation, was found 

to have little effect on the crack growth kinetics [115, 149-151]. Above Md in the stabilized 

austenite phase, where the crack propagates through austenite the fracture toughness increased to 

53 MPa m
1/2 

related to the increase in yield strength [148]. 

Fractography of NiTi fatigue specimens is very similar to standard metals [115]. Martensite and 

pseudoelastic austenite fracture surfaces are similar because failure occurred through the 

martensite as mentioned above. The crack propagation is texture dependent and branches in a 

tortuous path dictated by the microstructure [115]. Cracks formed preferentially at near surface 

inclusions or other stress risers such as precipitates, oxide or carbides and wire drawing striations 

[145]. If these inclusions were below the critical flaw size (i.e.15-50um) they were proven to not 

affect the fatigue life of the material [126, 138]. The fracture surface of low and high fatigue 

specimens are very similar, with a small crack propagation region and large ductile overload 

failure region [127]. This signifies that the majority of fatigue cycles are in crack initiation and 
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not propagation [127]. In high cycle fatigue specimens the fatigue striations are worn, absent or 

require high magnification to view. 

2.5.2 Thermomechanical Fatigue of Shape Memory Alloys 

Thermomechanical fatigue testing is generally performed by applying a constant or linearly 

varying (e.g. weight or spring) stress or strain to a material and thermally cycling between 

martensite and austenite until failure.  Fatigue failure of SMAs can be by fracture, but failure can 

also include the change in physical and SMA properties that may lead to the component no 

longer performing as required (i.e. reduction in actuation strain) [107]. 

There is limited published work in the thermomechanical fatigue of SMAs and there is no 

comprehensive review of this field. Most investigations reported as ‘fatigue’ only observe a few 

cycles (e.g. 10-1000), partly due to the testing frequencies of 0.05 Hz and below, because of 

limitations of heat transfer upon cooling [152-155]. Actuation frequency has recently been 

increased by decreasing the diameter of the wire, but these innovations require a higher grade 

material for acceptable fatigue lives [119]. The first investigations of thermomechanical fatigue 

were performed on coiled springs, which had significant strain (i.e. 3 %) for very high cycle lives 

(i.e. 10
8
 cycles); however the difference in geometry makes comparison to linear wire actuators 

difficult [106, 156]. Most thermal fatigue investigations focus on the stability and plastic build-

up in the two-way shape memory effect, but these were generally done with little to no load 

applied [89, 157]. In the limited thermomechanical fatigue investigations of loaded thermal 

cycled  failure of SMAs, a large number investigated ternary or off-chemistry NiTi alloys (e.g. 

NiTiCu or Ni60Ti40), which are incorporated into the following review [153, 154, 158].  

Transformation induced plasticity is limited in thermomechanically cycled NiTi by 

microstructures that have a nanocrystalline microstructure and strengthening Ni4Ti3 precipitates 

[159-163]. Higher annealing temperatures result in larger grained microstructures that are less 

resistant to dislocation motion. These microstructures can have longer lives as shown in Figure 

2.18, because a greater number of cycles are required for dislocations to pile up and cause 

cracking [143, 153]. The higher dislocation activity reduces transformation strain and increases 
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plastic strain compared to smaller grain microstructures (i.e. lower heat treatment temperatures) 

as shown in Figure 2.19 [163]. 

 

Figure 2.18: Fatigue life of TiNiCu alloy annealed at various temperatures for 15min [153] 

 

Figure 2.19: Influence of annealing temperature on transformation and plastic strain development [153] 

 

Even with the optimized microstructure, accumulation of plastic strain is significant in the initial 

thermomechanical cycles, so the properties must be stabilized (i.e. trained) before use in an 

actuation system [152, 164, 165]. As the initial plastic strain is increased, it becomes more 
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difficult to cause further plastic deformation and the material will stabilize with a lower rate of 

increase in plastic strain [72, 74, 125]. The ‘training’ of  an  SMA involves artificially inducing 

plastic buildup before putting the SMA into service, which is usually done by cycling an actuator 

for a number of cycles at higher stresses than the application [166, 167]. The training increases 

the fraction of martensite variants preferentially oriented in the trained direction, with dislocation 

structures formed to maintain the stability of these variants [168, 169]. Other methods of training 

include thermal cycling slightly above the martensite yield stress, or applying a load and 

constraining motion while thermally cycling [108, 157, 161]. The improvement in stability after 

training can be shown in Figure 2.20, where RS is the recovery strain and RD is the remnant 

deformation. This training was initially investigated for creating the two-way shape memory 

effect [170, 171]. Similar to the ‘training’ the use of intermittent overload cycles can improve the 

fatigue life of an actuator because of beneficial plastic hardening [172]. 

Functional and fatigue properties of SMAs are highly linked to the stress-strain-temperature 

relationship of a specific application [108, 152, 158, 166, 173]. Practical actuation applications 

are limited to 200-300 MPa and 2-4 % strain due to fatigue life issues. Plastic deformation is 

higher at higher stresses, but within the mentioned range there is little effect on the fatigue life 

(Figure 2.21). 



29 

 

 

Figure 2.20: Strain versus number of cycles plot 

upon of NiTi SMA wires under a stress of            

200 MPa before and after stabilization treatment 

[159] 

 

Figure 2.21: Strain versus number of cycles plot of 

NiTi SMA wire at 200 and 300 MPa [159] 

 

 

Fatigue life reduces with increasing strain; doubling actuation strain reduced fatigue life by more 

than half as shown in Figure 2.22. SMA fatigue life is also very sensitive to overheating. 

Increasing the maximum test temperature by only 10 K can reduce the fatigue life by over 50 %, 

and increasing from 10 K over Af  to 40 K over Af decreased fatigue life by almost 75 % (Figure 

2.23). Partially transforming (mixed phase) results in a much higher fatigue life than fully 

transforming [158, 161, 173]. With partial transformation there is very little plastic buildup 

because the martensite transformation is for the most part accommodated elastically, as opposed 

to full transformation which will have a comparably large amount of plastic deformation 

resultant from the transformation of poorly aligned variants [157, 174]. Of the three control 

parameters (i.e. stress, strain, temperature) the fatigue life has the highest sensitivity to 

overheating, so actuator heating must be controlled precisely. 
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Figure 2.22: Strain versus number of cycles plot of 

NiTi SMA wire at 200 MPa with actuation strain 

(RS) at 2 and 4 %. RD is residual strain [159] 

 

 

Figure 2.23: Strain versus number of cycles plot 

showing fatigue life as a function of Tmax in the 

wire; conducted at a stress of 200 MPa [159] 

 

When thermally cycling via joule heating a resistance feedback loop can be used to detect the 

transformation temperature of the material [175]. Stopping heating after the transformation is 

detected can lead to an order of magnitude increase in the fatigue life [176]. This feedback loop 

can also be used to control the amount of transformation (actuation). Current pulsing with a ramp 

up and down instead of a square wave has been shown to increase the stability of an actuator 

[177]. Heat input can be further reduced by the use of electrically conductive coatings [178]. 

The heating of NiTi wires by current leads to interlinked cracks forming in the core of the wire 

(Figure 2.24), which affects the fatigue life of the wire [179]. These cracks form as a result of 

strain inhomogeneity due to temperature inhomogeneity across wire cross section. The formation 

of these cracks increases the temperature inhomogeneity (i.e. increased local resistance) and 

accelerates the damage. During cycling, the brittle oxide layer on the outer diameter of the wire 

cracks in many places [154]. These and other defects serve as crack initiation points, with final 

fracture being similar to what is observed in mechanical fatigue of NiTi, but the surface cracks 

and internal cracks may merge and reduce the life of the part  [108, 158]. 
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Figure 2.24: Schematic representation of a propagating fatigue crack interaction with the damaged core 

region; a1: fatigue crack depth, and a2: effective crack depth after interaction with the damaged zone. [179] 

 

The thermomechanical fatigue of NiTi is a function of the stress, strain, material processing, and 

percent transformation. The maximum fatigue lives reported in academic literature range from 

under 1.5 % actuation strain at 80 MPa stress for 100,000 cycles, to 4 % actuation strain at      

109 MPa for 500,000 cycles [173, 180]. The stresses for the corresponding actuations of the 

above studies are significantly lower than what is reported by industry which one manufacturer 

achieving 3.5 % actuation for 120,000 cycles at 200 MPa with only 0.3 % plastic deformation 

and another achieving an astounding 10
6
 cycles with 1% actuation at 350 MPa and less than     

0.2 % plastic deformation [118, 119]. The results from the latter report are summarized in Figure 

2.25. It is important to note that these results are under ideal actuation conditions; which likely 

will not be present in application, or may require a complex control system. 
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Figure 2.25: Fatigue lifetime for Smartflex 76 under different stress-strain conditions [119] 

2.6 Manufacturing of Shape Memory Alloys 

The manufacturing of NiTi SMAs is not a trivial task [181]. With the modern day technology in 

use it is still common to receive material with widely different transformation properties from 

what was specified, or even within a single component (e.g. a pseudoelastic sheet containing 

pseudoelastic and shape memory effect properties). Inability to provide custom defect-free 

components is also an issue in this field. A review of the manufacturing processes is useful to 

design both laser processing, and post-laser processing thermomechanical treatments for optimal 

material performance. 

2.6.1 Refining and Casting NiTi 

The extreme sensitivity of NiTi to the chemical composition makes contamination a potential 

cause of loss of production [181]. Raw materials and alloying methods must be chosen to 

minimize impurities. Ni and Ti are not found in nature in their metallic form, and the ores require 

costly refining processes (e.g. the Van Arkel de Boer, and Kroll-reduced processes) in order to 

produce the 99.99 % pure titanium sponge, and 99.94 % electrolytic nickel used to make  NiTi 

[69, 182]. VIM and vacuum arc re-melting (VAR) are of similar cost and both suitable to 

produce ingots with the inclusion size and density lower than the ASTM F2063 standard. These 

are the two main furnace melting processes used to make NiTi ingots, providing a transformation 

temperature control of ±5 °C [69, 126, 182]. The induction coil heated graphite crucible of the 

VIM process contaminates the melt with C (i.e. 300-700ppm C), but the ingots have excellent 

homogeneity due to mixing by eddy currents [181]. The contamination can be minimized by 
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coating the graphite crucible with the Ti bars/disk to create a TiC diffusion barrier, reducing the 

time the ingot is molten, and running consecutive ingots [28, 183]. The VAR process uses DC 

current to melt a compacted Ni and Ti electrode into a water-cooled copper crucible and results 

in much less contamination because the melted region is not in contact with the crucible [69]. 

This lack of complete melting causes inhomogeneity in the ingot that is rectified by flipping over 

the ingot, or even cutting it up and re-melting it several times, but this adds cost and risk of 

atmospheric contamination [181]. The combination of the two processes in the VIM/VAR 

process is used to get a higher purity VAR ingot in the initial melt and the homogeneity of the 

VIM process after the second melt [181]. After casting the ingots are commonly solutionized to 

ensure homogeneity [184]. 

There is a push by industry for smaller cross section components and very fine wires, for medical 

applications and fast actuation [185, 186]. In these small components the ASTM F2063 

standards for inclusion size are no longer acceptable because the defects consume a much larger 

area of the cross section. Greater purity ingots are needed for these next generation NiTi 

components [185, 186]. High purity VIM and VAR methods have been developed to serve this 

need [31]. E-beam vacuum melting has also been used to prepare high purity NiTi alloys (i.e. 

0.007 %-0.016 % C for E-beam, vs 0.04 % to 0.06 % C for VIM), and there is an effort to scale 

up the current production size which is currently limited to 2kg [187-189]. Obstacles in the use 

of this technique include the difficulty in controlling the composition due to Ni evaporation 

during E-beam melting. 

2.6.2 Bulk Material Deformation 

As-cast NiTi has poor ductility, limited SMA properties and poor fracture resistance properties 

[69, 181, 190, 191]. Further processing is required for acceptable stability, and fatigue. Post-

casting processing includes hot working, cold working, heat treatments, joining, machining, and 

surface treatments. The most common final products are plates, sheets, tubes, ribbons and wires. 

The most prevalent form of NiTi is wires, which are cold drawn. This review will focus on the 

manufacturing requirements for wires. The following sections will detail the requirements. 
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2.6.2.1 Hot Work 

Hot working NiTi brings the material closer to the final product form and changes the 

microstructure [181]. Hot working of NiTi is done in the range of 300-900 °C, with significant 

softening occurring near 400 °C and 100 % elongation possible at 900 °C due to the reduction in 

critical flow stress with increase in temperature [192-194]. Degradation of material due to 

oxidation can occur at the higher temperatures (900-1000 °C), with cracks forming at the edges 

because of embrittlement by oxides [195]. The temperature of 800 °C provides good workability 

without the massive oxidation of the higher temperature range [195]. Significant oxidation can 

still occur at these temperatures so methods have been developed to minimize oxidation, which 

include canning with Cu or mild steel sleeves, or extrusion [118, 196, 197]. Dynamic 

recrystallization and precipitation formation begins between 400-600 °C; however, long range 

recrystallization does not occur and the microstructure is typically elongated grains [198, 199]. 

Swaging is most often used as the initial high deformation process for forming bars for wire 

drawing. Swaging can produce high reduction with low energy, is more dimensionally precise 

than forging, yields 4-6 pieces per minute, and has higher surface quality and mechanical 

properties, but it does have issues related to stress distribution over the component surface and 

the resultant metal flow [200]. 

2.6.2.2 Cold Work 

Hot working is generally followed by cold working steps, to provide final product shape, finish, 

fine microstructure and mechanical properties [181]. Cold forming leads to much greater 

retained martensite and amorphization than hot forming [201]. Marforming (i.e. T < Mf) makes 

finer subgrains than ausforming (i.e. T > Md) because dislocation annihilation and dynamic 

recrystallization do not occur at the lower temperature [196]. Ausformed parts are less sensitive 

to heat treatment because they are more thermally stable [196]. The finer microstructure of 

marforming results in a higher strength, stability and fatigue life than ausforming [162]. 

Ausforming at lower temperatures avoids these recrystallization issues but does not have as fine 

a grain structure as marforming due to the limited available deformation mechanisms [196, 198]. 

NiTi work-hardens quickly so is limited to between 30 and 40 % cold work, after which a full 
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anneal of 600-800 °C is required [181]. Initial cold work of bars is done first by swaging, then by 

rolling and finally by wire drawing. 

2.6.2.3 Wire Drawing 

Many different forms of wires can be drawn. This review will focus on the drawing of wire with 

a circular cross section. The process of wire drawing usually limits the maximum reductions per 

pass to between 30 and 35 %, and much lower amounts are normal as in the case of many non-

ferrous materials [202]. The deformation involved in wire drawing is not as simple as an 

idealised one dimensional tensile deformation, or even a multi-axial deformation of rolled sheets. 

The circumferential reduction of the wire as it passes through the die is the result of a complex 

interaction between the wire and the walls of the die. Assuming uniform flow through the die, 

the true strain of wire reduction is found in 2.2, the strain rate in 2.3, and the wire reduction in 

cross sectional area in Equation 2.4 [202]. In Equation 2.2 εt is the wire drawing true strain, and 

d0, d1 are the original and final diameter respectively. In equation 2.3 VDRAW is the drawing 

speed. In equation 2.4, r is the wire drawing reduction, and A0 and A1 are the initial and final 

area. Non-uniform strain occurring at the die entrance and exit can lead to redundant strain that 

can be incorporated into these equations with a correction factor. 

 
𝜀𝑇 = 𝑙𝑛 [(

𝑑0

𝑑1
)

2

]   [202] (2.2) 

 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 =  𝜀𝑇𝑉𝐷𝑟𝑎𝑤   [202] (2.3) 

 𝑟 = 1 − (
𝐴1

𝐴0
)   [202] (2.4) 

 

The die angle α is the angle between die wall and the wire centreline (Figure 2.27). This angle 

and the reduction are used to calculate the area of the idealised deformation zone; the trapezoid 

shown in Figure 2.27, which is characterized by the variable Δ. The effect of Δ on the 

deformation zone can be shown in Figure 2.28. The value of Δ greatly affects the wire drawing 

deformation, and the optimization of this value as close to 1 as possible leads to optimal wire 

drawing conditions [202]. Certain engineering constraints such as the requirement to keep the 

drawing stress at less than 0.6 of the existing wire’s yield stress lead to the optimal values of Δ 
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often being between 2-3. The drawing stress (D) is the sum of the uniform work (WU), redundant 

work (WR) and the frictional work (WFriction) as shown in Equation 2.5. 

 𝐷 = 𝑊𝑈 + 𝑊𝑅 + 𝑊𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  [202] (2.5) 

 

The uniform work is work required to thin and stretch the wire. Both the redundant and frictional 

work reduces the total possible reduction in wire diameter [202]. The redundant work is related 

to the change in direction of material flow at the die entrance and exit that have no effect on wire 

geometry but require energy. The redundant work increases substantially as Δ increases because 

of non-uniformity in strain across the cross-section (Figure 2.28) [203]. This non-uniformity 

leads to uneven hardness across the wire cross section which can require more inter-anneal steps 

than a more uniform strain. This effect can be used beneficially to harden the surface with a very 

light pass, causing a residual compressive stress that can increase wire fatigue life resistance 

[204]. 

The frictional work is resultant from the interaction between the die surface and the wire. The 

wire temperature can increase due to the work and friction in the die region and must be cooled 

to avoid localized recrystallization, lubricant deterioration, die-sticking or transformation from 

the preferable marforming to the undesirable ausforming of NiTi [205]. With adequate 

lubrication, lower values of Δ are preferred for reducing friction. High Δ can lead to high wear 

on the wire causing local fracture in the form of ‘fines’ flaking off. These fines clog the lubricant 

and die, leading to poor quality material or breakage [206]. 

With adequate lubrication, a low Δ (i.e. low approach angles / larger reductions) reduces die 

wear [207], frequency of intermediate annealing (hardening of surface because redundant work), 

risk of breakage (compressive not tensile stresses in core) [208], improves ductility and 

minimizes bulging at the entrance and thinning after exiting from the die (i.e. drawing stress 

higher than wire flow stress) [209]. Throughout the wire drawing stages the Δ should be kept 

constant (i.e. same die angle and percent reduction) to ensure consistent drawing mechanics. 

Maintaining equivalent draw stress to flow stress ratios also ensures consistency [202]. It is also 
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important to align the die concentric with the wire so that the forces are distributed evenly across 

the die cone and deformation occurs evenly. 

 

Figure 2.26: Flow of the wire through the 

drawing die. Note the deflections upon entering 

and exiting the deformation zone [202] 

 

 

Figure 2.27: An analytical schematic illustration 

of a wire drawing pass [202] 

 

Figure 2.28: Illustrations of three different 

deformation zones as wire being drawn through 

the die, and associated values of Δ, die semi-

angle, and reduction [202] 

 

The effectiveness of the lubricant directly impacts the surface quality of the drawn wire and thus 

the fatigue properties of the wire. When no lube is used the surface has heavy striations and 

string bonds form between the wire and die, which results in a fracture surface and metal stuck in 

the die [210]. With non-continuous lubricant local effects termed ‘crows feet’ form due to 

sticking/shear fracture. The formation of these chevrons have a large number of drawbacks, 

including entrapping debris and lubricant, reducing lubricant efficacy leading to die wear, 

reduction in physical and fatigue properties and the potential for breaking the wire, which can 
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jeopardize the net positive income of a drawing process [210]. The ideal bright drawing is 

possible if a thin continuous film of lubricant is achieved, but attempting to achieve this 

condition can result in the non-continuous lubrication issues mentioned above [210]. If the 

lubricant layer is too thick it provides excellent lubrication, but a poor wire finish. This is due to 

a shear stress developing between the die and the wire, which causes a shear band to form with 

grain to grain variation in strain leading to a poor surface devoid of surface ironing and covered 

in asperities [211]. If the lubricant is a medium amount then there will be a mixture of regions, 

with bright anneal properties and deep gouges typical of thick lubricants [210]. 

2.6.2.4 Wire Drawing Shape Memory Alloys 

NiTi is more difficult to wire draw than stainless steel, copper or other engineering materials, but 

with proper lubrication and die design industry can draw wires as small as 17um with an 

acceptable time and cost [181]. Thin oxide films can be used as lubricant, but thick oxide films 

have cracks and spalling which impeding wire drawing, in which case MoS2 is advised to be 

used [212]. Few published works on wire drawing NiTi exist, with the majority of work being 

proprietary to industry and kept secret. None of the publications detail the final steps of cold 

work by wire drawing; rather they may specify the total percent cold work. Final cold work 

percentages between 20-50 % have been identified as being suitable for good physical properties, 

transformation stability and fatigue life [58, 69, 213-215]. The most complete work on wire 

manufacturing is by Grossman et al., but even this publication leaves the last cold work steps 

unmentioned [184]. 

The number of passes between equivalent reductions can affect the uniformity of hardness across 

the cross section (Figure 2.29) [212]. The use of multiple passes reduced the drawing stress and 

chance of breaking. Multiple passes around the Ms result in the lowest critical stress for 

deformation (Figure 2.12), reducing the drawing stress (Figure 2.30) and maximizing the number 

of passes possible between inter-annealing. Drawing in R-phase results in an even lower stress 

because it has the lowest critical stress for deformation [216]. 
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Figure 2.29: The hardness curves across the wire 

section for Ti50Ni50 wires drawn from 0.85mm dia 

to 0.78mm dia [184]  

 

Figure 2.30: The drawing stress vs. drawing 

temperature for the as-annnealed Ti49.7Ni50.3 wire 

[184]. See Figure 2.12 for relation to NiTi 

deformation. 

2.6.3 Heat Treatment 

Final heat treatment is required after cold work to bring back SMA properties, provide 

strengthening by precipitates in Ni-rich NiTi and increase resistance to fatigue crack nucleation 

[143]. The combination of percent cold work, heating temperature and time dictate the final 

microstructure [58, 181]. At intermediate temperatures (350-475 °C) the nucleation and diffusion 

processes are optimized for maximum, coherent fine precipitate formation [58, 217]. A heat 

treatment temperature of around 400 °C for about 1 hour has been identified as providing the 

most stable properties for both Ni-rich and Ti-rich NiTi [6, 69, 218, 219]. Quenching after heat 

treatment is required to avoid the formation of Ni3Ti [220]. 
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Figure 2.31: Functional diagram of annealing [118] 

 

The morphology, nucleation and growth of the Ni4Ti3 precipitates, and the NiTi matrix can be 

affected by small changes in superimposed external stresses [73, 221, 222]. Large production 

facilities use continuous production strand heat treatment (Figure 2.31), and need to monitor and 

control the tensile loading which are reported to be between 35-300 MPa with temperatures of 

350-600 °C [58, 118]. The tensile load, annealing temperature and time are crucial for 

stabilization and functional properties. The initial stages of heating lead to spring back due to any 

remnant shape memory effect. The applied strain will straighten the wire and potentially reduce 

the wire diameter. 

Heat treating wires by electropulse has shown promise, producing similar microstructures and 

properties to conventional heat treatment methods [223]. This method may be a suitable 

replacement of continuous strand annealing for specific applications, where the wire can be heat 

treated in-situ in the application [224, 225]. 

Shape setting heat treatments are used to set the wire’s ‘memory’ to specific shapes. These 

treatments are generally performed between 325-525 °C for 5-30min, followed by a water 

quench [69].The desired form is ensured by constraining the NiTi with a stainless steel fixture, at 

high temperatures the austenite grains are stress relieved and will return to this new form after 

deformation and shape memory effect activation. 

2.6.4 Surface Properties 

High cycle fatigue lives of electropolished NiTi were slightly longer than black oxide surfaces; 

however, low cycle fatigue was unaffected [126]. The effects of poor oxide surfaces and the 
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hardening of the surface region are magnified when the size of component is reduced and total 

area of oxide to total cross sectional area ratio is increased, where it can have significant effect 

on low cycle fatigue [158]. Striations created by the wire drawing process must be removed by 

electropolishing or chemical etching or fatigue cracks will nucleate from these areas [226, 227]. 

Hydrogen embrittlement can occur during manufacturing processes including the mentioned 

chemical etching and can reduce fatigue life of NiTi by a small amount [228]. If there are no 

surface defects, then failure initiates at the previously mentioned PVAs (Section 2.1.1) [227]. 

Crack initiation was observed at these points even in high purity materials, with higher oxygen 

content leading to lower fatigue lives in both the low cycle fatigue and high cycle fatigue regions  

[227]. 

2.7 Laser Processing - Welding of Shape Memory Alloys 

2.7.1 Laser Welding of Shape Memory Alloys 

Despite the importance of welding and joining in manufacturing there is a relatively small 

amount of literature detailing the welding and joining of SMAs. Mechanical joining techniques 

are generally used to integrate NiTi SMAs into systems, but these techniques have limitations in 

joint geometry and maximum load. These limitations can be overcome with metallurgical 

bonding, which has a number of advantages that include high strength connections to control 

systems [229], and reduction of cost by joining NiTi with less expensive materials [230-232]. 

The counterpoint to these advantages are the difficulties that can be encountered during joining 

of NiTi, which include solidification cracking, formation of brittle intermetallics and oxides, and 

degradation of the material properties [16, 23]. 

Nd:YAG laser welding was chosen for the current study because it is a superior method for 

joining SMAs, achieving NiTi joint efficiencies of 80 % with minimal heat input [233]. The low 

heat input limits the deterioration of the strain of actuation, strength and ductility [234, 235], 

while preserving the functional properties (i.e. the shape memory effect and pseudoelasticity) of 

NiTi [236]. Characterization of the joint properties to date has focused on quasi-static tests, but 

integration of SMAs into actuator applications requires characterization of fatigue properties.  
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As was discussed in previous sections, the texture of NiTi is important for the maximum 

achievable recoverable strain. The texture along the axis of wires is in the preferred <111> 

direction which provides the maximum possible strain of all crystal directions [104]. During the 

solidification of laser welded spots in the wire the texture becomes the <100> direction [23]. 

This is the preferred growth direction of cubic metals. This change in texture directly affects the 

SMA properties, with a lower overall achievable strain in the FZ compared to the BM [23].  

2.7.2 Fatigue of Welded Shape Memory Alloys 

There have been a few investigations on the effect of welding on the mechanical fatigue of 

pseudoelastic NiTi [237-239]; but to date there have been no investigations on the 

thermomechanical fatigue of welded SMAs. The sole investigation on a small number of thermal 

cycles of a welded SMA involved a two-way shape memory effect actuator, which concluded 

that the effect on the actuator performance was minimal [240]. The same cannot be concluded 

for the cycle life, which has been shown to be greatly affected by coarse grained microstructures 

like those in the heat affected and fusion zones of the welded wires [59, 163, 237, 238, 241]. 

Furthermore, mechanical fatigue investigations of welded NiTi reported a reduction in the 

mechanical cycles to failures compared to the base material as a result of the alteration of the 

microstructure [242]. A post-weld heat treatment strengthened the microstructure and improved 

the cycle life of the weld [237, 241]. It is hypothesized that a similar result would occur for 

thermomechanical fatigue of welded NiTi; however, one must carefully chose the post-weld heat 

treatment as it can promote phase transformations that inhibit either the shape memory or 

pseudoelastic effects at a given operating temperature of operation. 

2.7.3 Laser Processing of NiTi Shape Memory Alloys 

The limitation of having one transformation property for a NiTi component has resulted in the 

development of numerous methods to increase the number of transformations possible. Previous 

methods explored to achieve multiple properties in a single component include antagonistically 

positioning SMAs, local heat treatment techniques, the two-way shape memory effect, welding, 

and local alteration of SMA properties [17-19, 243]. Of these methods the local property 

modification methods are the most flexible and can be used in a wide scale and range of 

applications [16, 19]. 
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Local annealing techniques have been used to make SMA component with both the 

pseudoelastic and shape memory effects [18, 244-246]. Unfortunately these techniques are 

limited by a number of factors including the composition permitting pseudoelastic and shape 

memory effect to both exist at operating temperatures, geometries that accommodate local 

heating, lack of control over the transformation temperatures, and issues associated with the heat 

affected regions [18, 244-246]. 

Local-chemistry modification has been shown to be a more effective and flexible method of 

controlling local SMA properties [16, 247]. Powder metallurgy was used to make a proof of 

concept muti-phase actuator; however, this method is limited by carbon contamination, porosity, 

micro-chemical inhomogeneity and undesirable intermetallic formation [247, 248]. In 

comparison, laser processing can accurately modify local bulk composition and microstructure, 

while avoiding the aforementioned issues [16]. Proof of concept laser processed devices include; 

a multi-position micro-gripper, a two-memory linear actuator, multiple pseudoelastic 

components and a hybrid pseudoelastic-shape memory component  [13, 14, 20, 249]. 

The laser processing technology uses the vaporization of liquid metal that occurs during laser 

welding to locally alter chemistry [16, 250]. This effect was initially studied in the laser welding 

of stainless steels, where the loss of chromium negatively impacts the corrosion properties of the 

weld [250-254]. The difference in vapour pressures of the alloying elements (shown in Figure 

2.32), results in a difference in vaporization rates, and thus a change in composition of the 

solidified fusion zone as shown in Figure 2.33 [255]. 

In the NiTi system, Ni has a higher vaporization rate than Ti during laser welding [13, 16]. This 

difference in vaporization rates results in the solidified fusion zone having a Ni-lean composition 

compared to the base metal. A small change of 0.1 at.% Ni can result in a 10 K change in the Ms 

transformation temperature. The laser processing technology has been designed to provide 

precise control over these small changes in chemistry to enable a high resolution of control of the 

transformation temperatures [13]. 
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Figure 2.32:  Equilibrium vapor pressures of the various alloying elements (a) over respective pure liquid and 

(b) over 304 stainles steel as a function of temperature [255] 

 

 

Figure 2.33: Concentration change of the various alloying elements as a function of power density. Laser 

power: 1067 W and pulse duration: 3ms. [255] 

 

Laser processing of NiTi SMAs has a number of limitations that can be addressed through the 

development of a more fundamental understanding of the process-structure-properties 

relationship. Pequegnat et al. [13] identified that the yield stress of laser processed NiTi sheets 

was not sufficient to accommodate stress-induced martensite. A post-laser processing 
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thermomechanical treatment was applied to the sheets which consisted of a cold-work reduction 

and a heat treatment designed to strengthen the microstructure. This study was limited to single 

thermal and tensile cycles; the evolution of the material over multiple cycles was not 

investigated. The only investigation of multiple thermomechanical cycles of laser processed NiTi 

used a low stress, and only 200 cycles [20]. Characterization of these materials over thousands of 

cycles is required to gain a fundamental understanding of their evolution, so that they can be 

successfully manufactured for use by industry. The following areas have been identified to be 

addressed in the current study: 

1. There is no literature on thermomechanical fatigue of laser welded NiTi (i.e. single laser 

spot processing). Chapter 4 presents the first study on the thermomechanical fatigue of 

lase welded NiTi, and investigated if a post-weld heat treatment could improve the 

properties of the material. This knowledge was used for the work presented in Chapter 5. 

2. There is no in-depth study on the manufacturing or the thermomechanical cycling of laser 

processed NiTi wires. Chapter 5 of this study detailed an in-depth study on the 

manufacturing of laser processed NiTi wire, and fully investigate the process-structure-

properties relationship of these materials as they were thermally, mechanically and 

thermomechanically cycled. 

3. The above knowledge was used to design a thermomechanical treatment that improved 

the properties of the laser processed NiTi wires as they were cycled thermally, 

mechanically and thermomechanically. 

4. The knowledge gained from the previous sections was used to design and manufacture a 

laser processed NiTi wire actuator that had a new type of two-way shape memory effect, 

which is detailed in Chapter 6. An actuator that could move on both heating and cooling, 

without an external load (i.e. self-biasing) is desired by industry, because the use of an 

external bias adds complexity, weight and space. This is of specific importance in micro-

actuation devices where the assembly processes account for 80 % of the production cost 

[256]. These added costs have led to ongoing efforts by researchers to eliminate the 

dependence of cyclically actuating SMAs on an external bias; with the goal of creating a 

self-biasing actuator. Adoption of these self-biasing actuators by industry would require 
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them to achieve tens of thousands of cycles while maintaining geometric and actuation 

stability. This benchmark has thus far not been met. It is proposed that a stable multiple 

memory laser processed NiTi actuator could meet this requirement. 
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3 Experimental Setup 

The experimental setup was separated to reflect the different results chapters. Section 3.1 refers 

to Chapter 4, section 3.2 refers to Chapter 5, and section 3.3 refers to Chapter 6. There is overlap 

between the experimental setup in Chapters 4-6. To limit repeating information only differences 

in testing methods were highlighted in the different sections. 

3.1 Thermomechanical Fatigue of Laser Welded NiTi 

3.1.1 Materials, Welding and Heat Treatment 

The NiTi wire used in this investigation was purchased from Dynalloy Inc., is called flexinol, 

and measured 381 μm in diameter. These wires were of a proprietary composition, with 

Dynalloy Inc. publishing an austenite finish temperature of 90 °C. An oxide was present on the 

wire due to a final heat treatment by the manufacturer. This oxide was removed prior to welding 

with an etchant of 7 vol. % HF, 20 vol. % HNO3, bal H2O, to ensure quality joints [257]. This 

process reduced the average diameter of the wire to 370 μm. 

Nd:YAG laser welding was chosen for the current study because it is a superior method for 

joining SMAs, achieving NiTi joint efficiencies of 80 % with minimal heat input [233]. The low 

heat input limits the deterioration of the strain of actuation, strength and ductility [234, 235], 

while preserving the functional properties (i.e. the shape memory effect and pseudoelasticity) of 

NiTi [236]. Laser welding was performed using a Miyachi Unitek LW50A pulsed Nd:YAG 

laser, which had a wavelength of 1.064 µm, a spot size of 600 µm and a top-hat energy 

distribution. The effect of joint fit-up was not the focus of this investigation. To remove this 

effect, bead-on-plate welds were made with single wires. The pulse profile had a peak power of 

1kW and a width of 7ms including an up and down slope of 2 ms each. The downslope was used 

to minimize solidification cracking that can occur in Ti-rich NiTi [258, 259]. The pulse was 

designed to form a full penetration joint with the minimal energy required, to preserve the 

physical properties of the base metal. 

A custom fixture (Figure 3.1) was designed to clamp the wire securely in place and shield it with 

an argon flow rate of 0.56 m
3
h

-1
. The wires were martensitic at room temperature, so the shape 

memory effect could be activated by the thermal cycle of the weld which caused the wire to 
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move during welding and distort the weld as shown in Figure 3.2 A and B. The ideal weld 

approximated the shape of the original wire. A weld with minimal distortion and no necking is 

shown in Figure 3.2C; this was the standard set for quality control, any irregularities in shape 

greater than this were deemed unacceptable and were discarded. This standard of quality was 

repeatedly achieved when a protocol of thermal cycling the wire prior to welding was initiated, 

so that no detwinned martensite remained to be recovered during the weld thermal cycle. 

 

Figure 3.1: Image of the welding fixture. A base and a cap clamped together to secure the wire, with shielding 

gas from the top and bottom to ensure limited oxygen pickup by the weld 

 

The welded wires were separated into two groups for comparison. The first group was the as-

welded wires, and the second group was further processed with a post-weld heat treatment. The 

heat treatment consisted of a 3600 s heating cycle at 400 °C in an air furnace followed by a water 

quench. This protocol was used previously by Yan et al. [237] and Chan et al. [241] during their 

investigation of the effect of post weld heat treatments on the mechanical cycling fatigue of 

pseudoelastic NiTi wires. It was posited that this well-known heat treatment which benefits the 

shape memory properties, and shape memory fatigue would also improve the thermomechanical 

fatigue life of the welded wires. A separate batch of base metal was solutionized at 1000 °C for 

3600 s and water quenched. This material was used as a reference for the transformation 

properties of the heat affected zone. 
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Figure 3.2: Weld joint quality control diagram a) fail due to distortion, b) fail due to necking, c) pass due to 

minimal irregularities. 

 

3.1.2 Phase Analysis 

A Thermal Analysis Q2000 system equipped with a refrigerated cooling system was used for 

differential scanning calorimetry (DSC). The ASTM F2004-05 standard was used, with 

modification of the standard including a test rate of 5 °C min
-1

 and a temperature range of -75 °C 

to 120 °C. The Thermal Analysis Universal 2000 software was used to locate the As, Af, Ms, Mf, 

R-phase start and finish (Rs, Rf) temperatures. The software calculated the temperatures as the 

intersection of the tangent of the maximum slope of the reaction peak and base line. The DSC 

samples for the welds were cut out of the wire to only contain the fusion and heat affected zones, 

in order to compare these regions with the original base material. 

3.1.3 Tensile and Thermomechanical Fatigue Testing 

An Instron 5548 micro-tensile tester with an environmental chamber was used for tensile testing. 

A standard ASTM F216-07 testing protocol was used with a strain rate of 0.04 mm mm
-1

min
-1

. 

The tensile specimens had a gauge length of 20 mm, which was composed of a weld, a heat 

affected zone and the base metal as shown in Figure 3.3. The tester was used for tensile failure 

loads and characterization of single actuation cycles. At least three samples were tested per 
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parameter, and the tests were performed at room temperature (22 °C) and 10 °C above the Af 

(i.e. 77 °C) of the base material. Pneumatic grips flat faces were used to clamp the wires. The 

wire lengths extended out of the backside of these grips, and there was no observed change in the 

length of the wires out of the back of the grips, which indicating minimal slippage of the wires 

occurred. A mechanical extensometer was attached to the wires, but resulted in significant 

deformation before testing, so it was not used. It was decided that strain would be measured 

using the cross head motion. The gauge length for this method was smaller than that 

recommended by the ASTM standard, but was chosen due to constraints of the environmental 

testing chamber. The region of the material around the grips can be affected by the pressure from 

the grips [260]. A series of tests was performed on different gauge lengths to determine the 

minimum gauge length required for accurate data (i.e. the gauge length from which increasing 

the gauge length no longer affected the elastic moduli or detwinning plateaus). The gauge length 

used in the current study was set above this minimum length to avoid significant effects from the 

grips. Comparison of the different specimens was performed with the knowledge that their data 

would all potentially have artefacts related to the above discussed testing methods. 

 

Figure 3.3: Schematic of welded tensile and fatigue specimens 
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Figure 3.4: Tensile tester used for characterization of stress-strain response and zero load recovery of shape 

memory properties 

 

Thermomechanical fatigue testing was conducted using a custom designed setup shown in Figure 

3.5. The testing of NiTi can lead to erroneous results if testing equipment is not designed or used 

properly, therefore a comprehensive review of literature, ASTM standards for tensile and fatigue 

testing and available works including those by Shaw et al. [260-266] were reviewed for the 

manufacturing and design of the testing equipment. The test specimens had a gauge length of 20 

mm and were held in the system as per the schematic of Figure 3.3. Serrated quench hardened 

steel, that was tightened by screws was used for the grips. This provided excellent gripping with 

no slippage, but had a heat sink effect on the wire. An Omega LCMFD 500N load sensor and a 

MT 2571 Heidenhain displacement sensor with ±0.2 µm sensitivity were used for 

characterization of the actuation properties. A NI PXI-1031 DAQ from National Instruments was 

used to monitor the sensors and control the Sorensen XG 33-25 power supply which supplied a 

current of 4 A, with a varying potential near 2 V to heat the wire for actuation for a period of 5 s, 

followed by a cooling of 8 s for each thermomechanical cycle. At least three samples were tested 

per load, with the load being set at the beginning of the test using a biasing spring. 
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Figure 3.5: Thermomechanical fatigue tester in spring-biased configuration a) front view, b) side view with 

specimen in grips 

 

3.2 Laser Processing and Thermomechanical Treatment of NiTi Wires 

3.2.1 Materials and Laser Processing 

A 700 μm diameter Ni-rich NiTi wire (NT-E9) manufactured by the Furukawa Electric Co. 

LTD., was used in this investigation. This wire was thermomechanically processed by the 

manufacturer to exhibit pseudoelastic behavior at room temperature. Prior to laser processing the 

wire was cleaned to remove any contaminants. No acid etching was required as the oxide layer 

was previously removed by the supplier and the remaining oxide was very thin [233]. 

Laser processing was performed using a Miyachi Unitek LW50A pulsed Nd:YAG laser with a 

wavelength of 1.064 μm. A laser spot size of 600 μm and energy of 16 J per laser pulse was 

used. An example of the laser processed NiTi wire is shown in Figure 3.6. The wire was fed 

through a custom fixture and shielded with Ar gas at a flow rate of 0.71 m
3
 h

-1
 to prevent 

atmospheric contamination of the processed region. The design of the pulse was done to 

minimize expulsion and solidification cracking [259, 267]. A cylindrical cross section of the 

process region was designed to facilitate overlapping of the spots. The centreline of the laser 
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processed fusion zone was the weak point where failure occurred during initial wire drawing 

attempts. The centrelines were removed by overlapping the 1200 μm laser processed spots by   

60 % in order to enable wire drawing. Overlapping the sports increased the removal of Ni per 

length of wire. This limited the current process to having one memory above room temperature 

after wire drawing. Using the base metal as the first memory, and the laser processed NiTi as the 

second memory, two memory actuators were manufactured by laser processing one half of a wire 

(i.e. Ti-rich, or high temperature) and leaving the remaining portion of the wire as base metal 

(i.e. Ni-rich, or low temperature). Additional single and two memory specimens were processed 

and subjected to a series of thermomechanical treatments defined in Section 3.2.2 which were 

designed to improve the properties of the material. 

 

Figure 3.6: Laser processed NiTi wire 

3.2.1.1 Laser Characterization 

Repeatability of the laser process was important to ensure consistency over the length of the 

study, and for the knowledge transfer to future students and industry partners. The laser power 

was measured to ensure consistency before each use. The average power measured over the 

period of six months of use for the 16 J laser pulse (i.e. 16 J reported by the laser controller) was 

11.21 J ± 0.05 J. If the average power measured from 10 consecutive pulses varied more than  

2.5 % from the average of the measured powers then the system was diagnosed. During this time 

period the optics did not require re-alignment; the only requirement was cleaning of the 

protective glass on the collimator to return the laser to its original condition. If the laser was 

opened for maintenance or alteration then the optics were realigned and the system recalibrated 

to return to the optimal beam profile and power. 
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A 400 μm step index (SI) fibre was attached to the Nd:YAG laser. This fibre carried the beam to 

a collimator with a lens of 150/100 aspect ratio. This optics package would produce an ideal spot 

size of 600 μm. A Spiricon BeamGage was used to characterize the beam profile. The spot size 

measured was 649 μm, with an ellipticity of 0.996, flatness of 0.917, and an edge steepness of 

0.956, indicating that the spot was circular and had a uniform energy across the spot.  

 

Figure 3.7: a) 2D-beam profile, b) 3D-beam profile 

 

3.2.2 Post-Laser Processing Thermomechanical Treatment 

The post-laser processing thermomechanical treatments are outlined in Table 3.1. The treatment 

was designed to homogenize the microstructure, and to reduce the grain size thus minimizing 

dislocation activity for improved cyclic actuation properties [59, 75]. The treatments began with 

a solutionization treatment at 1000 °C in an argon atmosphere for 3600 s followed by a water 

quench. A number of wire drawing steps and inter annealing stages were performed as per Table 

3.1 to a final diameter of 460 μm. The true strain (εt) was calculated as shown in Equation 2.2. 

This final diameter had the equivalent of a total final area reduction of 45 % which is near the 

limit of the range identified for superior physical, stability and fatigue properties [58, 69, 213-

215]. At this final diameter a final heat treatment of 400 °C in air for 3600 s and a water quench 

were applied. 

There are a limited number of publications on the wire drawing of NiTi, which were used to aid 

in the design of the thermomechanical treatment [58, 69, 181, 184, 212-216]. The limits of the 

maximum potential reductions were investigated, along with the required total reduction for 



55 

 

stable shape memory properties. Commercial wire drawing rarely involves single stage 

reductions above 30-35 %, and many materials have much lower maximum reductions [202]. 

Larger reductions near the maximums possible for a material are desired for a number of reasons 

including higher UTS, less potential defects, less redundant work during the drawing process, 

and less die wear [202]. The total reduction possible with NiTi is much lower than other standard 

wire drawn engineering materials; NiTi is severely hardened when CW exceeds 30 % and 

becomes difficult to work further [215]. To ensure consistent drawing mechanics and thus 

consistent microstructure evolution through each die, the reductions were designed to be 

consistent. The reductions were kept in the between φ = 0.1-0.15 range, after the work by 

Grossman et al. [184]. The current investigation found that higher amounts of reduction per die 

resulted intermittent breaking of the wire. Reductions to φ = 0.597 (i.e. 45 % reduction) was 

achieved in this work, with this large total reduction being used to refine the grains to be 

nanocrystalline for superior fatigue performance [163]. The wire drawing parameters were 

designed to avoid the issues that can occur during wire drawing including surface defects, 

internal defects, and deformation issues at the die [202, 208]. The drawing speed of 0.5 mm s
-1

 

was used for all wire reductions, which combined with the consistent reduction strain ensured a 

consistent strain rate through all dies according to Equation 2.3. 

Table 3.1: Thermomechanical treatment schedule 

Die Diameter (um) εt Per Die Total εt 
Total Area 

Reduction (%) 

 Laser Processing 

 Solutionization 1000 °C, 3600s 

660 0.118 0.118  

620 0.125 0.243 22.6 

 Inter Anneal 600 °C, 600s 

580 0.133 0.133 12.5 

540 0.143 0.276 24.1 

500 0.154 0.430 35.0 

460 0.167 0.597 45.0 

 Final Heat Treatment 400 °C, 3600s 

 

The dies used in this study were purchased from Advanced Wire Die Ltd. The dies were tungsten 

carbide with a cobalt matrix, which has very good wear resistance [268]. Tool steel dies deform 
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relatively quickly, so were avoided in order to keep the die drawing properties consistent 

throughout the study [268]. A custom fixture was designed to hold the die and wire, while the 

tensile tester drew the wire as shown in Figure 3.8. The Instron model 4465 tensile tester was 

used to control the drawing speed and measure the drawing stress. 

 

Figure 3.8: Wire drawing setup installed in tensile testing machine. Tensile tester used to monitor drawing 

force and control drawing speed 

 

The wires were lubricated with a MoS2 lube from McLube, McGee Industries Inc.. The MoS2 

was applied as a liquid, but required to dry before wire drawing. The MoS2 was chosen as the 

lubricant for this study because it has a lower drawing stress than soap, which is commonly used 

for lubrication in wire drawing [210, 212]. 

The furnace temperatures were measured using a K-type thermocouple from Omega, in addition 

to their internal thermocouple readings. The Carbolite tube furnace used for solutionization had a 

set temperature of 1000 °C, which was measured by the thermocouple to be 969.6 °C ± 2.9 °C, 

across a hot zone measuring 203 mm. The Thermo Electron Corporation Lindberg/Blue M 

furnace used for the inter-anneal and final heat treatment was set to 400 °C and 600 °C, which 

was measured by the thermocouple to be 391 °C ± 2 °C, and 594 °C ± 2 °C respectively. 
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The thermomechanically treated laser processed wire is referred to as the treated laser processed 

NiTi. The two-memory actuators are referred to as the laser processed actuator, and the treated 

laser processed actuator. 

3.2.2.1 Wire Quality Evaluation – Drawing Force, Surface Properties, Cross Section 

It is recommended to keep drawing stresses below 0.6 of the wire ultimate tensile strength (UTS) 

of the wire to avoid any wire drawing related defects [202]. The drawing stresses of the initial 

laser processed NiTi were above this limit due to the uneven surface of the wire, and 

microstructural properties including texture. After the first inter-anneal the drawing stress 

reduced below the recommended limit. The wires were analysed to determine if any defects 

occurred due to these initial high drawing stresses. The key points of this analysis are presented 

below. 

  

Figure 3.9: Wire drawing stress for left) first reduction after solutionization treatment, right) first reduction 

after inter annealing treatment 

 

A number of defects can occur on the surface of wires including sticking, striations, and cracking 

[202]. It is important to avoid these defects because the surface properties of NiTi can affect the 

fatigue life of components [59]. This effect can become significant at smaller cross section sizes 

where defects become proportionally larger, and where the surface region becomes a large 

fraction of the cross-sectional area [59]. Figure 3.10 shows a comparison of the Furukawa, 
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Dynalloy flexinol and final treated laser processed NiTi wire. There are no observable 

differences between the flexinol and the treated laser processed NiTi, and no defects observed in 

either surface. The Furukawa surface was etched with acid by the manufacturer. 

 

Figure 3.10: SEM analysis of the surface of the a) Furukawa base metal, b) Dynalloy flexinol base metal, c) 

treated laser processed NiTi. Comparison of different oxides 

 

Micrographs of the cross sections of the treated base metal, and the treated laser processed NiTi 

are shown in Figure 3.11. The cross sections are free from surface defects, centreburts or any 

non-uniformities across the cross section [202]. The wire drawing process that the author 

designed for this work produced defect free wires that are suitable for characterization in the 

following chapters. 

 

Figure 3.11: Cross sections after wire drawing; free of defects associated with wire drawing 
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3.2.3 Phase Analysis 

The microstructure of the NiTi was analysed using a number of methods. Optical microscopy 

was performed using an Olympus BX51M optical microscope. The NiTi microstructures were 

characterized using scanning and transmission electron microscopy (STEM / TEM). A JEOL 

2010F TEM/STEM field emission microscope operating at 200 kV and a Phillips CM12 

analytical TEM operating at 120 kV were used.  Prior to analysis the thin film samples were 

prepared using focused ion beam milling (FIB) on wires that had been cold mounted in epoxy 

and prepared with a final polish of colloidal silica. Cold mounting of the wires was required to 

ensure no significant alteration to the sensitive microstructure, which can be significantly altered 

by the hot mounting process. 

The composition of the base metal and laser processed NiTi was measured using micro-particle 

induced X-ray emission (micro-PIXE) spectroscopy. A 3 MeV, 4 nA photon beam was scanned 

across 20 x 20 μm area of the centre of each laser processed spot. Homogeneity of the overall 

laser spot was confirmed by taking measurements in multiple regions of the single laser pulsed 

spot. The X-ray intensities were determined using a least-squares-fit. These values were 

converted to concentrations of the measured elements using the National Institute of Standards 

and Technology (NIST) materials standards. The accuracy of the measurements was ±0.12 at. % 

Ni. The lower crystal charging from Bremsstrahlung radiation reduces the background radiation 

compared to X-ray spectroscopy analysis, which provides the higher accuracy of micro-PIXE. 

This high accuracy is required for measuring NiTi because a 0.1 at.% Ni can result in a 10 K 

change in the Ms transformation temperature of the material [69]. 

A Thermal Analysis Q2000 system, equipped with a refrigerated cooling system was used for 

differential scanning calorimetry (DSC) analysis. 

3.2.4 Tensile and Shape Memory Properties 

Tensile tests were performed using an Instron model 5548 micro-tensile tester equipped with an 

environmental chamber. The testing protocol followed the ASTM F216-07 protocol, with a 

gauge length of 20 mm, at a strain rate of 0.04 mm mm
-1

min
-1

 and a measurement accuracy of +-

0.5 μm. Pneumatic grips with knurled faces were used to clamp the wires. Tests were performed 
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below the Mf (i.e. -26 °C) with the environmental using liquid nitrogen as the cooling medium. 

Tests were also performed, above the Af of the materials and above the Md temperatures to 

compare the materials in their martensitic, pseudoelastic austenitic, and stable austenitic phases. 

Tests performed on 2 memory actuators were performed with the gauge length being half one 

material and half the other material. 

3.2.5 Thermomechanical Fatigue of Laser Processed NiTi 

The transformation temperatures compared in this section were measured using a TA 

Instruments, Discovery DSC. The tensile testing was performed at room temperature using an a 

strain rate of 0.04 mm mm
-1

min
-1

 and a gauge length of 25.1 mm were used to test specimens. 

This change was made to match the gauge length of the specimens tested in the fatigue tester. 

Thermomechanical fatigue was performed using a custom setup as shown in Figure 3.12. Lead 

weights were used to apply a constant load shown in Table 3.2 that was equivalent to a 600 MPa, 

when the stress is calculated using the nominal wire diameter. A gauge length of 25.1 mm was 

used for testing. The grips were faced with sacrificial pieces of ceramic, ensuring no heat sync 

effect on the wire. The current was delivered by speaker posts shown in Figure 3.12. The heating 

was performed at currents suggested by the Dynalloy Inc. manufacturer for wires of these 

diameters as shown in Table 3.2. These currents were determined according to the recommended 

currents by Dynalloy Inc. for wires of these diameters. The current for the laser processed NiTi 

was determined by extrapolation via a polynomial fit of the data provided by Dynalloy Inc. 

Heating was controlled to specific strains, and thermally cycled until failure. Cooling was 

performed using a vortex tube that was turned on when the current was turned off. The setup 

measured the load using an Omega LCMFD 500 N load sensor, and the displacement using a 

MT 2571 Heidenhain displacement sensor with a measurement sensitivity of ±0.2 μm. A NI 

PXI-1031 DAQ from National Instruments was used to monitor the sensors and control the 

power supply. The currents were kept constant by a constant current control set by a Sorensen 

XG 33-25 power supply. 
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Table 3.2: Wire diameter, constant loads and currents used in the thermomechanical fatigue testing 

Wire 
Laser Processed 

NiTi 

Treated Laser 

Processed NiTi 
Flexinol 

Nominal Diameter (μm) 700 460 381 

Constant Load (N) 241 100 68 

Current (A) 7.43 3.27 2.25 

 

 

Figure 3.12: a) Thermomechanical fatigue tester in constant load configuration, b) close-up view of grips with 

wire specimen 

3.3 Development of a Stable, High Stress Self-Biasing Actuator 

3.3.1 Material and Processing 

The material used was the 700 μm diameter Ni-rich NiTi wire (NT-E9) manufactured by the 

Furukawa Electric Co. The laser processing parameters used had an energy of 15 J. Individual 

wire specimens of 80 mm length for use as test actuators were cut from the supplied material and 

then processed as described in the previous section. One half (i.e. 40 mm) of each wire specimen 

was laser processed to exhibit shape memory effect properties while the other half retained the 
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base metal pseudoelastic properties (Figure 3.13). The laser processing enabled control of the 

properties of the shape memory effect portion of the actuator to allow for the synergistic 

coupling with the pseudoelastic portion. Additional specimens were processed and subjected to a 

series of thermomechanical treatments designed to improve their properties. These treatments 

were the same as those described in the previous section. The different regions of the 

thermomechanically treated wire are referred to as treated base metal and treated laser processed 

regions. The combination base metal and laser processed actuator are referred to as the untreated 

actuator, and the thermomechanically treated pair will be referred to as the treated actuator. 

 

Figure 3.13: Schematic of self-biasing laser processed linear actuator, with the base metal (BM) on the left 

and laser processed NiTi (LP) on the right 

 

3.3.2 Tensile and Shape Memory Properties 

An Instron model 5548 micro-tensile tester with a measurement accuracy of ±0.5 μm and an 

ASTM F216-07 testing protocol with a strain rate of 0.04 mm mm
-1

min
-1

 were used to test 

specimens. The materials were tested separately with a gauge length of 20 mm. The untreated 

and treated actuators were pulled with half of the gauge length being base metal and half being 

laser processed NiTi. Tests were performed at room temperature (22 °C) and 10 °C above the Af 

temperature of the laser processed (LP) or laser processed and thermomechanically treated 

(TMLP) sample, these test temperatures were also used for the biasing base metal and 

thermomechanically treated base metal. 

A custom setup was built to characterize the self-biasing laser processed linear actuator as shown 

in Figure 3.14. A load cell was placed in line with the actuator to measure the change in force 

during actuation. A pre-stress was applied to the actuator prior to actuation; measuring 400 MPa 

and 180 MPa for the as-processed and treated actuators respectively. After being pulled into 
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tension, the ends of the actuator were held fixed in place. A Heidenhain displacement sensor 

with a sensitivity of ±0.2 μm was attached at the interface between the base material and laser 

processed portions of the actuator (Figure 3.13), and was used to measure displacement during 

the heating and cooling of the actuator. The actuation and plastic strain were calculated as the 

displacement of the interface with respect to the original 40 mm length of the laser processed 

region. 

 

Figure 3.14: Self-biasing laser processed actuator fatigue tester with biasing base metal (BM) on the left and 

actuating laser processed NiTi (LP) on the right 

 

A constant current Sorensen XG 33-25 programmable direct current (DC) power supply was 

used for joule heating of the actuator enabling transformation of the shape memory effect regions 

from martensite to austenite. The entire actuator was joule heated to prove applicability in 

passive as well as active situations. A fan was used to increase the convective cooling of the 

actuator so that the actuator could be cycled at a higher frequency (i.e. 0.04Hz). The load, 

displacement and current were measured using a National Instruments PXI-1031 data acquisition 

(DAQ) module. 
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4 Thermomechanical Fatigue of Laser Welded NiTi 

The first investigation of the effect of laser processing on the properties of NiTi is to investigate 

the effect of a single laser processed spot, or a weld. This chapter investigates the effect of a bead 

on plate weld made in Ti-rich flexinol wire. The results reveal a significant effect of the weld on 

the physical and fatigue properties of the NiTi. Post-weld heat treatments improved the 

properties of the material by minimizing strain localization. 

4.1 Microstructure 

Both the welded and post-weld heat treated microstructures are shown in Figure 4.1. The low 

magnification optical microscopy analysis of these microstructures revealed that both the weld 

and post-weld heat treated samples had the coarse grained fusion zones typical of laser welded 

SMA wires [238]. The large reduction in grain boundary area, dislocations, precipitates and other 

structures that limit transformation induced plasticity make these coarse grained structures less 

stable than the ideal nanocrystalline NiTi base metals during thermomechanical cycling [163]. 

While being a small region of the wire, the substantially different properties of the welded region 

may have a significant effect on the performance of the welded assembly. The coarse grained 

structure was found to contain micron scaled dendrites when analysed at higher magnification as 

shown in Figure 4.1. These dendrites and the coarse grained heat affected zone did not change 

during the post-weld heat treatment because it was performed below the recrystallization 

temperature of NiTi [214, 269]. 
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Figure 4.1: Optical micrograph of the a) welded and b) post-weld heat treated samples 

 

 

Figure 4.2: Optical micrograph of the heat affected zone and fusion zone in the a) weld and b) post-weld heat 

treated samples 
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4.2 Transformation Temperatures 

The DSC analysis of the phase transformation properties of the base metal, solutionized base 

metal, welded and post-weld heat treated NiTi are shown in Figure 4.3 and Table 4.1. The 

forward austenite peak of the base metal was the amalgamation of both the martensite to R-phase 

and R-phase to austenite transformations. The R-phase is observed in materials that have 

undergone thermomechanical treatments to increase the dislocation density, form Ni-rich 

precipitates, or form nanocrystalline grains [39, 59, 270]. The constrictions of movement in the 

microstructure introduced by these features limit the strain that can be accommodated by the 

matrix, and leads to the intermediate R-phase transformation which has a lower strain than the 

austenite to martensite transformation [271, 272]. 

The solutionized base metal had the single stage transformation typical of large grained NiTi 

[190, 273]. This sample served as a reference for the heat affected zone in the welded samples. 

The transformation peaks of the solutionized base metal overlapped those of the welded NiTi, 

with these overlapping regions being related to the heat affected zone. The R-phase was not 

distinctly observed in the welded NiTi; however it may have been obscured in the overlapped 

peaks. The coarse grains, and low dislocation density would lead to single stage transformations 

in these regions [234]. However, oxygen pickup can lead to the formation of Ti2Ni and Ti2NiO 

phases in the fusion zone, which can induce the R-phase transformation [22]. The R-phase was 

observed in the post-weld heat treated wires. The grain structure of the fusion zone was not 

changed by the heat treatment, but the temperatures were sufficient to affect the dislocation 

density [196]. The change in dislocation networks, or the presence of base metal in the DSC 

specimen was responsible for the observed R-phase peak. Ni4Ti3 precipitates forming in the heat 

affect zones of laser welded NiTi have previously been identified as the source of the R-phase 

peak; however, it is unlikely that this phase formed in the current alloy [274]. 
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_____________ 

Figure 4.3: DSC of the transformation temperatures for a) base metal, b) solutionized BM, c) weld, d) post-

weld heat treated samples 

 

Table 4.1: Transformation temperatures (°C) of the base metal (BM), solutionized base metal (SOL), weld 

and post-weld heat treated (PWHT) samples. Rs in the PWHT sample is the beginning of the combined 

transformation peak and not the beginning of the R-phase transformation 

 As Af Rs Rf Ms Mf 

BM 58 77 74 51 41 2 

SOL 81 110 N/A N/A 80 52 

Weld 61 105 N/A N/A 73 40 

PWHT 57 92 63 29 17 -16 
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4.3 Tensile Properties 

The tensile failure properties of the base metal, weld, and post-weld heat treated samples at room 

temperature and 87 °C (i.e. 10 °C above the Af of the base material) are shown in Figure 4.4. As 

shown in Table 4.2, at room temperature the welded samples maintained 86 % ± 1 % of the 

ultimate tensile strength (UTS) of the base material and had an increase in ductility. The post-

weld heat treated samples had the same UTS and a further increased ductility. At 87 °C the base 

metal maintained 94 % ± 4 % of the base metal UTS but had a reduced ductility, while the post-

weld heat treated sample maintained 78 % ± 1 % of the base metal UTS and had a slightly 

increased ductility. The heat affected and fusion zones of the welded samples experienced 

annealing temperatures which destroyed dislocations  [35, 58, 196, 275], and increased grain size 

as shown in Figure 4.2. This coarsening of the microstructure resulted in the observed decrease 

in ultimate tensile strength and increase in ductility of the welded samples compared to the base 

metal. 

Application of the post-weld heat treatment was done to the entire gauge length of the wire. No 

grain growth was observed in the fusion zone, and as discussed in the previous section, a change 

in the transformation temperatures indicated alteration of the dislocation density in the material. 

These phases increase the strength and decrease the ductility of the heat affect and fusion zones. 

This would have had minimal effect on the fusion and heat affected zones, however the 

remaining base material in the gauge length had a reduction in dislocation density  [6, 196, 237], 

which contributed to the increased ductility and decreased UTS of the post-weld heat treated 

sample compared to the base material and welded samples. These changes in the post-weld heat 

treated samples also resulted in the formation of a clear martensite detwinning plateau, and a 

small initial R-phase plateau. The R-phase plateau was present due to the shift in transformation 

temperatures observed in Figure 4.3. 

The localized alteration to the microstructure in the welded and post-weld heat treated samples 

led to necking in the wires which further contributed to the decreased properties [241]. The 

ductility of these wires was reduced during pseudoelastic deformation (i.e. tensile test at 87 °C) 

due to this strain localization, which correlated well with previous work in welded pseudoelastic 

wires [238]. The higher pseudoelastic stress plateau of the post-weld heat treated samples 
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compared to the base metal was due to the shift to a lower Af shown in Figure 4.3. This higher 

plateau contributed to a greater plastic deformation in these samples compared to the base metal 

during the stress-induced phase transformation. Furthermore, the presence of both martensite in 

the weld region, and austenite in the base metal resulted in an interface between these two 

phases, with plastic deformation being reported to occur at these interfaces [6, 75]. 

 

 

Figure 4.4: Tensile failure of the base metal (BM), weld and post-weld heat treated (PWHT) samples at room 

temperature (top) and 87°C (bottom) 
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Table 4.2: Comparison of the ultimate tensile strength (UTS) and ductility of the weld and post-weld heat 

treated (PWHT) to the base metal 

 Room Temperature 87 °C 

 % BM UTS % BM 

Ductility 

% BM 

UTS 

% BM 

Ductility 

Weld 86  ± 1 135 ± 10 94 ± 4 86 ± 0 

PWHT 86  ± 1 191 ± 3 78 ± 1 106 ± 0 

 

4.4 Cyclic Properties 

Single tensile cycles followed by the zero-load shape memory effect recovery of the base metal, 

welded and post-weld heat treated samples are shown in Figure 4.5. The welded and post-weld 

heat treated samples had lower detwinning stresses than the base metal for the previously 

discussed microstructural and phase reasons; however, their recoverable strain was unaffected 

during a single cycle. All three samples recovered their strain fully under zero-load heating. 

Small deflections from the linear detwinning plateaus observed in the welded and post-weld-heat 

treated samples were related to the detwinning of the martensite in the different regions of the 

material (i.e. base metal, heat affected zone, fusion zone), which have different grain sizes, with 

respective differences in detwinning stresses [276, 277]. 

 

Figure 4.5: Tensile cycle followed by zero-load shape memory recovery of the base metal (BM), welded and 

post-weld heat treated (PWHT) samples. 
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Thermomechanically cycling the wires while under load resulted in a significant difference in the 

properties of the base metal, welded, and post-weld heat treated samples as shown in Figure 4.6. 

Actuation strain was measured as the change in strain between the austenitic and martensitic 

states of the material. The plastic strain was measured as the change in strain of the martensitic 

state of the material. The base metal sample had the highest number of cycles to failure, and 

retained the greatest amount of actuation throughout cycle life. The welded sample had a rapid 

reduction in actuation, high necking and low cycles to failure compared to the base material. The 

post-weld heat treated samples had improved cycle life and actuation stability compared to the 

welded samples. The reduction in actuation strain and increase in plastic strain during 

thermomechanical cycling were related to the creation and motion of dislocations as the habit 

plane passed through the material [59, 72, 74]. Reduction in transformation strain was resultant 

from the buildup of these dislocations which formed retained martensite that no longer 

transformed [278]. This same dislocation activity resulted in plastic elongation of the wires, 

which also contributed to the necking. 

The fine-grained, cold worked and precipitation hardened modern SMAs are designed to impede 

plastic buildup in the material in order to maintain geometric and actuation properties [59]. 

Decrease of the actuation strain and increase of the plastic strain in the welded NiTi occurred 

because the coarse grained, dislocation lean heat affected zone and fusion zones could not 

impede the rapid buildup and motion of dislocations  [59, 190, 279]. The post-weld heat treated 

samples had a reduction in dislocation density in the remaining base metal of the gauge length 

resulting in a gauge length with more consistent properties than the as-welded wires. This 

reduced the strain localization in the coarse grained region, and led to a stability of actuation 

strain similar to that observed in the base material. The elongation of the wires during the tests 

resulted in the extension of the biasing spring being reduced throughout the cycle life of the 

samples. This reduction in biasing load was responsible for part of the reduction in actuation 

strain. 
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Figure 4.6: Evolution of tensile strains in the heated austenite and cooled martensite state of the base metal 

(BM), weld, and post-weld heat treated (PWHT) samples that were pre-loaded to 40 N (i.e. 350 MPa) 

 

 

Figure 4.7: Cycle life versus pre-load of the base metal (BM), weld, and post-weld heat treated (PWHT) 

samples 

 

The cycle-life of the base metal, welded and post-weld heat treated samples loaded to different 

pre-loads are shown in Figure 4.7. The welded and post-weld heat treated samples pre-loaded to 
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20 and 30 N (i.e. 186 and 279 MPa) experienced significant plastic elongation to the point where 

the biasing spring was fully unloaded. Unloading of the biasing spring resulted in the samples 

not failing via fracture; therefore, failure for these samples was defined as the cycle at which the 

actuation strain was less than 0.2 %. This lack of fracture resulted in little to no change in the 

cycle lives of the welded and post-weld heat treated samples as shown in Figure 4.7. In all other 

samples failure occurred by fracture. Analysis by pre-load and not stress was chosen because the 

stress state of the samples changed during testing due to the necking of the wires and the 

unloading of the biasing spring. The equivalent pre-stress was provided for reference on the right 

side of Figure 4.7. A non-constant biasing load was chosen to be studied as a real-world example 

of application instead of the standard constant load testing. 

The welded samples had the lowest fatigue life compared to the base metal and post-weld heat 

treated samples. The coarsening of the grains, and destruction of dislocations enabled significant 

dislocation activity during themomechanical cycling, leading to the low fatigue life. After post-

weld heat treatment the samples had a significant improvement in fatigue life. The more uniform 

gauge length properties contributed to the improvement in cycle life. These improvements in 

thermomechanical fatigue properties were similar to the improvements observed in mechanical 

fatigue of pseudoelastic NiTi wires [237, 238]. 

Low fatigue lives observed in these wires were compounded by a number of factors in the testing 

protocol. The high loads, and non-constant biasing stress both have been shown to reduce fatigue 

life [280]. The high loads were chosen to shorten testing time, which at these low test 

frequencies can take months or up to a year to complete, and are generally reserved for proving 

out real-world design [59]. The power used to heat the wire was selected to rapidly heat the wire; 

however, it may have contributed to overheating evidenced by oxidation of the wires, which can 

reduce cycle life. Overheating of the centre of the wire can occur due to heat sink effects of the 

grips on the ends of the wires, which can reduce cycle life [176]. The transformation 

temperatures of NiTi may decrease as thermomechanical cycling occurs, which can lead to more 

severe overheating [65, 176]. Partial transformation (i.e. lower heating), and lower loads in the 

actual applications would significantly reduce the plastic strain, improve retention of actuation 

strain and the cycle life [59, 237]. 
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4.5 Summary 

This study was the first investigation on the effects of welding, and a post-weld heat treatment on 

the thermomechanical fatigue of NiTi shape memory alloys. Several areas of key interest were 

identified: 

1. The welding protocol used in this investigation achieved 86 % of the base metal ultimate 

tensile strength; however, this metric was not an adequate gauge for thermomechanical 

fatigue properties. 

2. The welded wires had greater buildup of plastic strain and degradation of actuation strain 

than the base metal during thermomechanical cycling, with a significantly lower fatigue 

life. 

3. The post-weld heat treated wires had similar plastic strain buildup, and actuation strain 

degradation to the base metal during thermomechanical cycling. This reduction in strain 

buildup led to an order of magnitude increase of the fatigue life compared to the welded 

wires. 
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5 Laser Processing and Thermomechanical Treatment of NiTi Wires 

The previous section investigated the effect of a single laser weld on a Ti-rich wire. The laser 

welding process coarsened the microstructure and reduced the fatigue life by orders of 

magnitude compared to the base metal. A post-weld heat treatment reduced the strain 

localization at the weld and increased the fatigue life of the samples. If a wire is completely 

processed (i.e. re-melted) then this treatment would not be effective. If the wire is Ni-rich then 

some strengthening would be provided via Ni4Ti3 precipitates; however, to achieve optimal 

properties both cold work and heat treatment would need to be applied to take advantage of the 

strengthening mechanisms of grain size reduction and precipitate hardening [6]. Furthermore, 

precipitate strengthening was not an option because the current study focused on laser processing 

to create Ti-rich NiTi, in order to create two-memory actuators. 

Laser processing of SMAs to control their local composition and properties was discovered in 

the past decade [16]. Since its inception, development has been largely focused on components 

with multiple pseudoelastic plateau stresses, like the orthodontic archwire ‘SmartArch’ [13]. 

This prior work included the development of thermomechanical treatments for returning 

pseudoelasticity to laser processed NiTi sheets. These investigations focused on single tensile 

and thermal cycles. 

The current work has developed a method to treat laser processed wires, which are the most 

commonly used shape memory alloy geometry [5]. This treatment was developed with the intent 

of improving the physical and fatigue properties of the material. The focus of the study is on the 

effect of multiple tensile, and thermomechanical cycles on the response of the material. This is 

the first in investigation into the stability of treated laser processed SMA wires, which has 

produced promising results with fatigue lives of trained wires matching those of industry made 

wire. 

5.1 Laser Processing to Change Bulk Composition 

Pequegnat et al. [13], and Khan et al. [16] investigated the use of laser processing to alter the 

chemistry and phase transformation properties of NiTi SMA sheets. These investigations showed 

the repeatability of laser processing in changing the elemental content and transformation 
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temperatures of SMAs. Wire is the most widely used SMA geometry but there has been no 

published in depth study of the repeatability of laser processing with these materials. The current 

study investigated the effect of multiple laser pulses on a single spot on a wire. Micro-PIXE 

analysis of these laser processed spots revealed a consistent reduction of 0.23 at.% Ni with each 

successive laser pulse, as shown in Figure 5.1. The first laser pulse removed 0.40 at.% Ni, a 

larger amount than the average, because the wire drawn surface finish was less reflective than the 

laser processed surface. There was no change in rate observed from the Ni-rich to the Ti-rich 

regions of the phase diagram. The point at which Ni reduction no longer affects the change of 

transformation temperatures has been reported to be 49.7 at.% Ni [22]. Beyond this point the 

matrix maintains a constant composition and any excess Ti forms the brittle Ti2Ni phase. In the 

current study this saturation point was reached between 4 to 5 laser pulses, as shown by the 

plateau in the Ms temperature in Figure 5.2. The phase transformation and composition data was 

used to plot the relation between Ni content and Ms temperatures, which is shown in Figure 5.3. 

The slope of the change in Ms with change in at.% Ni was first investigated by Tang et al. [68], 

but the study depended heavily on literature for experimental validation of the model derived to 

predict the relationship between Ms and at.% Ni. A more recent study by Frenzel et al. [22], 

made a series of vacuum cast specimens controlled to specific compositions, which were used to 

calculate a slope of -83 K / at.% Ni. In their study of laser processing of sheets Pequegnat et al. 

[13] calculated a slope of -72.36 K / at.% Ni, and attributed the variation from Frenzel et al.’s 

work to the uptake of oxygen, which is known to decrease the transformation temperature of 

NiTi [24]. The current study calculated a slope of -68.76 K / at.%  Ni which is in the range of the 

value determined by Pequegnat et al. [13], due to the oxygen dissolution into the fusion zone that 

occurs during laser processing. 

The laser processing of the tensile specimens used in the current work was designed to make a 

Ti-rich material for actuation above room temperature. To achieve this goal a composition in the 

range of 4 to 6 pulses was desired, which would be minimize Ti-saturation, thereby minimizing 

the formation of the brittle Ti2Ni phase while maximizing the transformation temperature. DSC 

analysis presented in Figure 5.8 confirmed the desired transformation temperatures were 

achieved. 
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Figure 5.1: Micro-PIXE analysis of change in Ni content with number of laser pulses per spot 

 

 

Figure 5.2: Change in Ms temperature with number of laser pulses per spot 
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Figure 5.3: Change in Ms temperature vs at.% Ni. Number of laser pulses per spot before saturation indicated 

(i.e. 0, 1, 2, 3, 4) 

5.2 Microstructure and Phase Analysis 

TEM analysis of the base material is shown in Figure 5.4. Darkfield TEM analysis was used to 

measure the grain size to be 70 nm. The small scale of the grains was confirmed by the ringed 

diffraction pattern shown in Figure 5.4a. This grain size is desired for stability of transformation 

in NiTi SMAs [163]. These nanocrystalline microstructures limit the dislocation activity 

responsible for transformation induced plasticity during repeated cycles of either pseudoelastic 

or shape memory phase transformations [59, 163]. The Ni-rich material was confirmed to be B2 

austenite at room temperature by SAD analysis in Figure 5.4a. High purity of NiTi is required to 

avoid the formation of excessive amounts of brittle oxide and carbide inclusions so that long 

fatigue lives can be achieved [26, 27, 29-31]. However the high reactivity of the material leads to 

the inevitable formation of these inclusions, with costly process controls required to avoid large 

amounts of these phases during the vacuum casting methods used to form and homogenize the 

ingots [183]. Ti2NiOx oxides (Figure 5.4b), and TiC carbides (Figure 5.4c) form the majority of 

inclusions in NiTi SMAs achieved [26, 27, 29-31]. These phases cannot be dissolved via heat 

treatment, but are reduced in size by being fractured during cold working and forming particle-
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void-assemblies as shown in Figure 5.4b. These hard phases and their delamination with the 

surrounding matrix serve as mechanisms for reduction of material strength, and crack initiation 

points especially when they are located on the surface of the material [31]. No Ni4Ti3 

strengthening precipitates were located; however, they may be indistinguishable from the matrix 

due to the nanocrystalline size, and they can be obscured in grain boundaries. 

 
Figure 5.4: TEM analysis of a) NiTi base metal, SAED from multiple grains (left), and from a single grain 

(right), b) Ti2NiOx oxide identified as particle in image, SAED of the large particle on the left, c) Rectangular 

inclusion identified as TiC carbide by SAED 
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Laser processing of the NiTi involved the full re-melting of the material with laser energy. As 

discussed in the experimental section, the weak point of the weld centreline was removed by 

overlapping the welds 60 % in order to accommodate the wire drawing process. However, to 

avoid Ti saturation and large amounts of brittle Ti2NiOx phases, a balance of centreline and Ni 

removal was required. Therefore, minimal overlap was used, which resulted in part of the 

centreline remaining. The microstructure is shown in Figure 5.5a, with both the fusion 

boundaries, and the remaining centreline indicated. This fusion zone is dominated by large 

columnar dendrites (Figure 5.5b), which is typical of welded NiTi wires [233, 281]. There is also 

a small region of planar growth at the fusion boundary. The low cross sectional area of the wires 

limits the heat conduction away from the joint, which limits the cooling rate of the fusion zone, 

resulting in the planar growth at the fusion boundaries, and the columnar dendrites in the fusion 

zone [233, 238, 282]. Epitaxial growth is shown by the dendrites indicated in Figure 5.5b and c, 

which cross the fusion boundary. The microstructure of the laser processed NiTi is coarse 

compared to the nanocrystalline base metal, with the grains and dendrites in the micron scale. 

TEM analysis of the laser processed NiTi is shown in Figure 5.6. The diffraction pattern in 

Figure 5.6a indicates that the material was in the B19’ phase at room temperature. Figure 5.6b 

shows a larger amount of Ti2NiOx compared to the base metal, due to the saturation of Ti in the 

matrix. Compositional analysis was used to confirm the identity of these inclusions. The Ti2NiOx 

phase formed by microsegregation along the dendrite boundaries [283]. 
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Figure 5.5: Optical micrograph of a) laser processed NiTi cross section, b) fusion boundary, c) centerline of 

partially overlapped fusion zone 
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Figure 5.6: STEM of laser processed NiTi a) twinned matrix and SAED from a large region of the coarse 

microstructure, b) Ti2NiOx phase (darker) in matrix identified by SAED 

TEM analysis of the microstructure of the treated laser processed NiTi is shown in Figure 5.7. 

The microstructure was refined to a nanograined material with an average grain size measured 

via dark-field imaging of 29 nm. This small grain size geometrically confined the matrix so that 

the constricted compound (001) twinning of nano-scaled microstructures formed (Figure 5.7a), 

instead of the larger length scaled type I and II twins (Figure 5.6a) of coarser microstructures that 

was observed in the laser processed NiTi [272]. The Ti2NiOx inclusions shown in Figure 5.7b 

were fractured and formed into particle-void-assemblies during the wire drawing process. 

 
Figure 5.7: TEM of a) treated laser processed NiTi matrix with SAED of multiple grains, b) Ti2NiOx particle 

void assemblies identified by SAED 
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The DSC results of the phase transformations of the materials are shown in Figure 5.8. The B19’ 

phase transformation was suppressed in the base metal, and the R-phase transformation occurred 

due to the nanocrystalline microstructure [284]. The presence of the R-phase in the forward and 

reverse transformations was due to the geometric constriction of the matrix by the grain 

boundaries, leading to lower strain intermediate R-phase [39]. 

 

Figure 5.8: DSC analysis of transformation temperatures of a) base metal, b) laser processed NiTi, c) laser 

processed NiTi solutionized at 1000C, d) cold drawn to 0.62 μm and heat treated at 600 °C for 10 min, e) 

treated laser processed NiTi 
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Table 5.1: Transformation temperatures (°C) of the a) base metal (BM), b) laser processed NiTi (LP), c) laser 

processed NiTi solutionized at 1000 °C (LP 1000°C), d) cold drawn to 0.62 μm and heat treated at 600 °C for 

10 min (LP CW 600°C), e) treated laser processed NiTi (T-LP) 

Sample Mf Ms 
Rf 

reverse 

Rs 

reverse 
As Af 

Rs 

forward 

Rf 

forward 

BM - - -0.10 19.12 -8.81 - - 22.70 

LP 48.62 74.18 - - 74.86 103.20   

LP 1000°C 60.18 77.66 - - 88.48 109.26   

LP CW 

600°C 
62.94 74.16 - - 92.63 106.53 - - 

T-LP -15.36 13.80 49.85 62.25 55.35 73.46 - - 

 

Laser processing coarsened the microstructure, and removed a significant amount of Ni resulting 

in the material being Ti-rich. The resultant transformation temperatures reached the range of the 

maximum potential temperatures of NiTi with an Ms of 74.18 °C as shown in Figure 5.8b. The 

deviation observed in the laser processed NiTi curves compared to the smooth curves of the 

solutionized NiTi was related to inhomogeneity across the fusion zones [16]. Solidification 

during welding can cause inhomogeneity across the fusion zone due to microsegregation of the 

alloy constituents as the solidification front grows [6, 16, 282]. Solutionization of the laser 

processed NiTi resulted in the homogenization of the processed regions as shown by the single 

smooth peak in Figure 5.8C. After cold work to 0.62 μm and inter annealing the transformation 

peaks narrowed due to a homogenization of the microstructutre into a uniform grain size [190]. 

After the final heat treatment the material had the R-phase and suppressed transformation 

temperatures typical of nanograined NiTi [284]. The Ti-rich material had no Ni4Ti3 precipitates, 

meaning the presence of R-phase was solely due to the geometric constriction of the grains. 

5.3 Tensile Deformation 

NiTi SMAs have a significant change in their tensile properties depending on their temperature 

and phase present [6, 59]. Lower temperatures will have martensite detwinning, while higher 

temperatures will have pseudoelastic deformation. Failure of the samples was compared at 

temperatures sufficiently above Md (i.e. the temperature above which the stress for slip is below 

the stress for inducing the martensite transformation) to ensure that there were no longer any 

pseudoelastic properties in the material (i.e. Af + 175 °C). This enabled comparison of the 
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materials without the influence of the phase transformations. The Ni-rich nanocrystalline base 

metal had the highest ductility and ultimate tensile strength of the three materials as shown in 

Figure 5.9 and Table 5.2. The coarse grained and Ti2NiOx embrittled laser processed NiTi 

achieved 71% of the base metal UTS and 40 % of the base metal ductility. The treated laser 

processed NiTi had a significant improvement in properties with a UTS of 95 % of the base 

metal and a ductility of 68 % of the base metal. Ti-rich NiTi alloys have a lower UTS and 

ductility than Ni-rich NiTi, due to the larger amount of brittle Ti2NiOx phases [6, 59]. The 

ductility of the treated laser processed wire was lower than the base metal due to these brittle 

phases, which had a stronger effect than the reduction in grain size. Change in texture of the laser 

processed materials may also have contributed to the loss of physical properties [4]. Other 

contributors to the observed difference in properties include the thermomechanical treatments 

applied by the manufacturer compared to those used in the current study. Further optimization of 

the current parameters could lead to an improvement in the properties of the treated laser 

processed NiTi. 

 

Figure 5.9: Tensile failure of the base metal (BM), laser processed NiTi (LP), and the treated laser processed 

NiTi (T-LP) at Md + 175 °C 
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Table 5.2: Tensile properties of the base metal (BM), laser processed NiTi (LP), and treated laser processed 

NiTi (T-LP) at Md + 175 °C 

 Ultimate Tensile Strength (MPa) Ductility (%) 

BM 1298.61 ± 3.06 11.93 ± 1.71 

LP 925.02 ± 66.76 4.76 ± 1.10 

T-LP 1235.52 ± 5.98 8.08 ± 0.28 

 

5.4 Transformation Properties 

The pseudoelastic response of the base metal over 100 tensile cycles is shown in Figure 5.10, and 

the plastic and pseudoelastic strains at the 100
th

 cycle are shown in Table 5.3. The increase in 

plastic strain observed as the cycles progressed is due to the multiplication and displacement of 

dislocations that occurs as the phase transformation moves through the material [59, 72]. The 

base metal had a low plastic strain due to the small grain size which limits transformation 

induced plasticity (i.e. dislocation activity) [163, 225]. The grain size of this material was 

designed to limit the transformation induced plasticity and ensure a stable phase transformation. 

The reduction in pseudoelastic stress as the tensile cycles progressed was previously theorized to 

be due to the reorientation of the microstructure into a preferred direction for pseudoelastic 

deformation, and the presence of retained martensite; however, the change in response of the 

material was recently proven to be due to the buildup of dislocations which alters the 

transformation from a propagating transformation front, to a uniform transformation the gauge 

length [6, 88].  This effect is also responsible for the reduction in hysteresis. The broadened 

peaks of the base metal transformation observed in the DSC results of Figure 5.8 indicated that 

the base metal had undergone a stabilization protocol [59]. This contributed to the limited plastic 

strain buildup and the stable pseudoelastic response. 

Table 5.3: Plastic strain and pseudoelastic strain of the base metal (BM), and treated laser processed NiTi at 

the 100th cycle of deformation to 5 % strain at Af + 20 °C. 

 Plastic Strain % Pseudoelastic Strain % 

BM 0.73 4.23 

T-LP 2.36 2.64 
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Figure 5.10: Pseudoelastic tensile response of base metal cycled to 5 % strain, at 43 °C (i.e. Af + 20 °C) 

 

The coarse grained laser processed NiTi had a yield stress that was lower than that required for 

stress-induced martensite [13]; therefore, no pseudoelastic behaviour was observed as shown in 

Figure 5.11. The low UTS and ductility of this material resulted in failure occurring after 17 

cycles. 

The treated laser processed NiTi regained the pseudoelastic effect as shown in Figure 5.12. The 

grain refinement served to increase the strength of the material to enable the pseudoelastic 

properties. However, the pseudoelastic response changed from that observed in the base metal to 

the response of a material with 30 nm grains [285], which achieved 62 % of the base metal 

pseudoelasticity. This small grain size constricted the maximum recoverable strain, resulting in 

the observed decrease in pseudoelastic strain, and collapse of the hysteresis [39, 285]. 
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Figure 5.11: Pseudoelastic tensile response of laser processed NiTi cycled to 5 % strain, at 123 °C (i.e. Af + 20 

°C) 

 

 

Figure 5.12: Pseudoelastic tensile response of treated laser processed NiTi cycled to 5 % strain, at 94 °C (i.e. 

Af + 20 °C) 

 

Tensile cycling and zero-load recovery of the base metal at a temperature below the Rf of the 

base metal are shown in Figure 5.13, and Table 5.4. The initial R-phase plateau was observed in 
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the tensile curve, followed by the higher stress martensite detwinning curve. Plastic deformation 

of the R-phase resulted in a lager plastic strain of the materials cycled in the thermal martensite 

phase than the cycling of pseudoelastic austenite phase. The lower stress required for detwinning 

the thermal martensite resulted in the shape memory effect stabilizing within a smaller number of 

cycles than the pseudoelastic effect [286]. 

 

Figure 5.13: Tensile cycling to 5 % strain at -26 °C (i.e. Mf of treated laser processed NiTi -10 °C), and zero-

load shape memory recovery of the base metal 

 

Table 5.4: Plastic strain and shape memory recovery strain after 10 tensile cycles to 5 % strain at Mf – 10 °C, 

and zero-load shape memory recovery of the base metal (BM), laser processed NiTi (LP), and treated laser 

processed NiTi (T-LP) 

 Plastic Strain % Shape Memory Strain % 

BM 1.03 3.36 

LP 2.66 1.02 

T-LP 2.52 1.81 

 

The cyclic tensile deformation of the laser processed NiTi is shown in Figure 5.14. This coarse 

grained microstructure was unable to block dislocation activity so exhibited strain hardening 

during martensite detwinning [13], leading to 260 % of the plastic strain of the base metal, and a 

shape memory recovery of 30 % of the base metal. 
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The treated laser processed NiTi (Figure 5.15) had a shape memory recovery of 54 % of the base 

metal, and a plastic strain of 245 % of the base metal. The reduced grain size constricted the 

matrix, resulting in a lower recoverable strain [39, 225, 285]. This resulted in only a portion of 

the 5 % strain being recoverable, with the remainder being lost to plastic strain via permanent 

deformation of the grains. The larger grains of the base metal constrict the matrix less, enabling 

greater self-accommodation and reorientation of the twins instead of permanent deformation via 

slip [225]. 

 

Figure 5.14: Tensile cycling to 5 % strain at 38°C (i.e. Mf -10 °C), and zero-load shape memory recovery of 

the laser processed NiTi  
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Figure 5.15: Tensile cycling to 5 % strain at -26 °C (i.e. Mf -10 °C), and zero-load shape memory recovery of 

the treated laser processed NiTi  

 

5.5 Multiple Memory Actuation 

Laser processing of SMAs has a wide range of revolutionary applications that the can be 

advantageous to multiple industries. One of these opportunities is the development of SMAs that 

have different transformation temperatures in a single component. Initial exploration of this 

concept was on coarse grained actuators that had the physical limitations explored above. With 

the development of the thermomechanical treatments to improve the properties of the laser 

processed NiTi it is now possible to create multi-memory actuators with stable responses, and 

potentially long lives. The tensile cycling and shape memory recovery response of both a laser 

processed, and a treated laser processed two-memory actuator are shown in Figure 5.16 and 

Figure 5.17 respectively, with key values highlighted in Table 5.5. These actuators were half 

base metal, and half laser processed. Significant deformation (i.e. 15 % strain) was applied in 

order to observe the response of both memories in these actuators. The treated actuator had 33 % 

less plastic strain than the untreated actuator, and 42 % greater shape memory recovery strain. 

The treated actuator stabilized due to the nanocrystalline microstructure, compared to the coarse 
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grained untreated actuator which did not stabilize. The majority of the plastic strain in the 

untreated actuator was in the coarse grained laser processed region. In addition to grain 

refinement, the transformation temperatures were closer together, which enabled less overheating 

of the lower temperature memory, and contributed to the higher stability [159]. The increase in 

actuation of the treated base metal compared to the original base metal indicates that potential 

texture effects contributed to the low shape memory recovery of the treated laser processed NiTi, 

in addition to the discussed potential grain size mechanisms [4]. Further optimization of the laser 

processing and thermomechanical treatments is underway which will enable less overheating, 

and more uniform detwinning plateaus, enabling a two memory response with a higher stability. 

The transformation temperatures of the current actuators are unsuitable for fatigue testing at 

room temperature. Furthermore, there are limited applications for this sub-zero temperature 

range. Current work is underway to develop actuators that have two or more memories above 

room temperature. 

 

 

Figure 5.16: Tensile cycling to 5 % strain at -26 °C (i.e. Mf -10 °C of treated laser processed NiTi), and zero-

load shape memory recovery of the base metal, of a half-base metal and half-laser processed sample heated to 

33 °C and 113 °C. 
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Figure 5.17: Tensile cycling to 5 % strain at -26 °C (i.e. Mf of treated laser processed NiTi -10 °C), and zero-

load shape memory recovery of the base metal, of a treated half-base metal and half-laser processed sample 

heated to 72 °C and 94 °C. 

 

Table 5.5: Plastic strain and shape memory recovery strain after 10 tensile cycles to 5 % strain, and zero-load 

shape memory recovery of the laser processed (BM-LP), and treated laser processed (T-BM-LP) two memory 

actuators 

 
Plastic Strain 

% 

Shape Memory Strain % 

1
st
 Memory 2

nd
 Memory Total 

BM-LP 7.10 3.21 1.44 4.65 

T-BM-

LP 
4.75 3.55 3.05 6.60 

 

5.6 Comparison of Laser Processed NiTi to Industry Standard Actuation Wire 

The previous section compared the treated laser processed NiTi to a Ni-rich pseudoelastic base 

metal from which it was manufactured. The current section compares the treated laser processed 

NiTi to a Ti-rich shape memory actuation wire. This is the same material used in Chapter 4, and 

will be referred to as flexinol throughout the following discussion. There are numerous 

difference between the Ni-rich and Ti-rich wires, making comparison of two Ti-rich wires a 

better measure of performance metrics. This investigation revealed that the treated laser 
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processed NiTi achieved similar fatigue lives to the commercial flexinol wires when 

thermomechanically cycled at low strains. 

5.6.1 Microstructure and Phase Analysis 

TEM analysis of the microstructure of the flexinol is shown in Figure 5.18. The average grain 

size as measured by dark-field TEM was 72 nm. This is similar to the base metal of the previous 

section, and is typical of industrial NiTi designed for stability of actuation and long life. This Ti-

rich material had no observed Ni4Ti3 precipitates, as these do not form in Ti-rich NiTi. The cross 

section was observed to contain Ti2NiOX and TiC inclusions which were identified by EDS 

analysis, however, neither of these was found in the TEM sample. 

 

Figure 5.18: STEM of the nanocrystalline flexinol microstructure 
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Figure 5.19: DSC analysis of a) laser processed NiTi, b) treated laser processed NiTi, and c) flexinol 

 

The laser processed NiTi had the single phase transformations typical of a coarse grained, low 

dislocation density and precipitate free NiTi [6]. The treated laser processed NiTi had a similar 

phase transformation property to the flexinol, due to the Ni-lean composition and the small grain 

size. The sharp peaks indicated that the grains were dislocation lean [72]. 

The flexinol had a multi-stage phase transformation of a nanograined microstructure which 

geometrically constrained the martensite, reducing the maximum transformation strain, leading 

to the lower strain transformation of the R-phase [39]. The peaks of both materials are in similar 

positions, indicating that they have similar compositions, and microstructures, which is 

confirmed by the microscopy and composition analysis discussed in previous sections. The broad 

peaks of the flexinol phase transformations indicate that the flexinol had undergone a training by 
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the manufacturer to stabilize the microstructure by introducing dislocations to create networks 

[166, 167]. 

5.6.2 Tensile Properties 

As discussed in the previous sections the laser processed NiTi had a coarse grained 

microstructure which led to a lower UTS and ductility compared to the nanocrystalline treated 

laser processed NiTi. The treated laser processed NiTi and the flexinol had equal UTS, while the 

treated laser processed NiTi had a 34 % greater ductility than the flexinol, due to the smaller 

grain size [286]. 

 

Figure 5.20: Tensile failure of the laser processed NiTi (LP), the treated laser processed NiTi (T-LP) and the 

flexinol (flex) at room temperature 

 

 

Table 5.6: Tensile properties of the laser processed NiTi (LP), the treated laser processed NiTi (T-LP), and the 

flexinol (flex) at room temperature 

 

 Ultimate Tensile Strength (MPa) Ductility (%) 

LP 1017.64 ± 28.24 10.48 ± 0.44 

T-LP 1303.38 ± 69.83 20.39 ± 0.09 

Flex 1311.22 ± 61.85 15.25 ± 0.75 
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The materials were tensile cycled to a load of 600 MPa and then thermally cycled at zero stress 

to recover shape memory strain as shown in Figure 5.21-23. The coarse grained laser processed 

NiTi had a significant plastic strain, and the resultant plastic deformation resulted in a shape 

memory strain of 18 % of flexinol after 10 cycles. The treated laser processed NiTi had an 

increase in plastic strain compared to the laser processed NiTi, but maintained significant shape 

memory strain equal to that of the flexinol. The smaller grains enabled a larger deformation to 

occur than the coarse laser processed NiTi, but a large part of this deformation was not 

recoverable due to the constriction of the matrix [88, 225]. The flexinol wire had 22 % of the 

plastic strain buildup of the treated laser processed NiTi, and a similar shape memory strain. The 

training that the flexinol had undergone was used to build a dislocation network that ensured that 

it had a more stable initial deformation than the virgin treated laser processed NiTi, which was 

dislocation lean as indicated by the DSC curves in Figure 5.19. 

 

Figure 5.21: Tensile cycling to 600 MPa at room temperature, and zero-load shape memory recovery of the 

laser processed NiTi  
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Figure 5.22: Tensile cycling to 600 MPa at room temperature, and zero-load shape memory recovery of the 

treated laser processed NiTi 

 

 

Figure 5.23: Tensile cycling to 600 MPa at room temperature, and zero-load shape memory recovery of the 

flexinol 
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Table 5.7: Plastic strain and shape memory strain after 10 tensile cycles to 600 MPa at room temperature, and 

zero-load shape memory recovery of the laser processed NiTi (LP), treated laser processed NiTi (T-LP), and 

flexinol 

 Plastic Strain % Shape Memory Strain % 

LP 3.18 1.08 

T-LP 3.93 5.94 

Flex 0.88 5.99 

 

5.6.3 Thermomechanical Fatigue Properties 

Comparison of the fatigue lives of the laser processed NiTi, treated laser processed NiTi, and the 

flexinol are shown in Figure 5.24. The wires were loaded to 600 MPa and thermally cycled to 

controlled strains until failure. The coarse grained laser processed NiTi was previously shown to 

have high plastic buildup and low shape memory strain which resulted in very low fatigue lives 

compared to the treated laser processed NiTi and the flexinol. The thermomechanical fatigue life 

of NiTi is related to the maximum achievable strain [59, 163]. The lower the percentage of the 

maximum strain used, the greater the fatigue life achievable. The maximum strains for 1 cycle at 

a load of 600 MPa are indicated on the strain axis (i.e. Y-axis) of Figure 5.24. The optimized 

microstructure of flexinol enabled the maximum recoverable strain, followed by the more 

restrictive, smaller grained treated laser processed, and finally the coarse grained laser processed 

NiTi. At lower percentages of the maximum strain the treated laser processed NiTi and flexinol 

had fatigue lives in the same order of magnitude. 

The treated laser processed NiTi had a substantial increase in both achievable strains and fatigue 

life at these higher strains compared to the laser processed NiTi. The flexinol had a further 

increase in both achievable strain and fatigue life due to the more optimized grain size [163], and 

the training that it underwent by the manufacturer [166, 167]. A training of 20 cycles at 4 % 

strain was applied to the treated laser processed NiTi and resulted in an increase in the fatigue 

life at 2 % strain from 21474 cycles to 33043 cycles, bringing it close to parity with the flexinol 

which had an average cycle life of 36022 cycles as shown in Figure 5.24. The stability of the 

microstructure ensured that progression of dislocations, and crack growth was slowed in the 

trained treated laser processed NiTi, leading to the longer fatigue life [59, 163]. 
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Figure 5.24: Cycles to failure of laser processed NiTi (LP), treated laser processed NiTi (T-LP), trained 

treated laser processed NiTi (T-LP Trained), and flexinol (flex) loaded to a constant 600 MPa and cycled to 

the indicated strains 

5.7 Summary 

A consistent reduction in Ni content of 0.23 at.% Ni was observed with each laser pulse. The 

change in Ms temperature with at.% was measured to be -68.76  K / at.% Ni. This value is 

consistent with a previous investigation of laser processing of NiTi sheets. 

The Ni-rich base metal had an average grain size of 70 nm that was optimized for a stable 

pseudoelastic response. The Ti-rich laser processed NiTi had a coarse grained, columnar 

dendritic microstructure that had 71% of the base metal ultimate tensile strength (UTS) and 40 % 

of the base metal ductility, when tested above the Md temperature. This coarse grained material 

was refined to a nanocrystalline microstructure through application of a thermomechanical 

treatment. This refined material had 95 % of the base metal UTS and 68 % of the base metal 

ductility, when tested above the Md temperature. 

The laser processed NiTi had a yield stress lower than that required for the pseudoelastic effect, 

and only 30 % of the shape memory recovery strain of the base metal after 10 cycles. The 

nanocrystalline treated laser processed NiTi had 62 % of the base metal pseudoelasticity after 

100 cycles, and 54 % of the shape memory recovery strain of the base metal after 10 cycles. The 
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smaller grain size of the treated laser processed NiTi constricted the maximum achievable strain, 

contributing to the reduced transformation strain. 

An untreated and a treated two memory actuator were cycled 10 times and recovered the shape 

memory strain at two distinct temperatures. The treated two memory actuator had a decrease in 

plastic strain of 33 % and an increase of shape memory recovery of 42 % compared to the 

untreated two memory actuator. Future work is underway in the development of treated actuators 

that have multiple memories above room temperature. 

The treated laser processed NiTi had the same UTS as flexinol and 34 % greater ductility due to 

the smaller grain size. The treated laser processed NiTi had the same shape memory recovery 

strain as flexinol when cycled to 600 MPa and thermally recovered at zero-load. The treated laser 

processed NiTi had 347 % greater plastic strain than the flexinol. The training of the flexinol by 

the manufacturer, and the less constrictive microstructure of the flexinol ensured lower 

permanent deformation compared to the treated laser processed NiTi. 

When loaded to 600 MPa the coarse grained and embrittled laser processed NiTi had 1/3 of the 

recoverable strain of flexinol and fatigue lives orders of magnitudes smaller. The treated laser 

processed NiTi had 2/3 of the maximum achievable strain of the flexinol, and fatigue lives in the 

same order of magnitude as flexinol at lower strains. The smaller grain size of the treated laser 

processed NiTi limited the achievable strain. Training of the treated laser processed NiTi 

increased the fatigue life to parity with the flexinol at 2 % strain. Future work is underway to 

further optimize the processing and training for superior fatigue properties. 
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6 Development of a Stable, High Stress Self-Biasing Actuator 

SMA actuators that can move on both heating and cooling without an external bias would reduce 

complexity, weight and space compared to standard one-way SMA actuators. Industry would 

require these self-biasing actuators to maintain their properties over thousands of cycles. This 

benchmark has thus far not been met by other technologies. This chapter presents the 

development of a stable laser processed self-biasing actuator. 

6.1 Multiple Memory Material Enabled Self-Biasing Actuation 

Laser based vaporization technologies use a high intensity energy source to locally alter 

composition and microstructure of shape memory alloys; controlling their properties with greater 

accuracy and repeatability than other processes [16]. In NiTi SMAs the process increases local 

transformation temperatures through the preferential vaporization of Ni [16]. Control of local 

properties was used in this study to make a monolithic SMA with both shape memory effect and 

pseudoelastic properties enabling a novel self-biasing actuation mechanism. A simplified self-

biasing linear actuator is shown experiencing a heating and cooling cycle in Figure 6.1. The laser 

processed NiTi shape memory effect region acted as the actuator and the base metal 

pseudoelastic region acted as the internal bias, removing the requirement for an external spring 

or weight bias. A pre-stress was applied by extending the actuator, to detwin the martensite in the 

laser processed NiTi and cause stress-induced martensite to form in the austenite base metal 

(Figure 6.1a). After this initial strain was applied, the ends of the actuator were held fixed in 

place, and the middle of the actuator moved during thermal cycling as shown in Figure 6.1.  

Heating the actuator (Figure 6.1 a-b) resulted in the detwinned martensite transforming to 

austenite and recovering some of its original length by extending the base metal. The limited 

strain applied to the base metal only partially transformed this region into stress-induced 

martensite. Upon cooling (Figure 6.1 b-c-d) the laser processed NiTi transformed back into 

martensite and was detwinned by the base metal. This moved the interface between the two 

regions back to the original position. When the laser processed NiTi was detwinned the strain in 

the base metal reduced and the stress-induced martensite transformed back into austenite. It 

should be noted that step c) of Figure 6.1 is shown for clarification however, steps c) and d) 

occur simultaneously. 



103 

 

 

Figure 6.1: A simplified schematic of self-biasing laser processed actuator being thermally cycled, left) biasing 

base metal (BM), right) actuating laser processed NiTi (LP). Stress-induced martensite (SIM) 

 

Successful design of SMA actuators must account for the dependence of SMA material 

properties on temperature [35]. When the actuator is heated, the detwinning stresses of the laser 

processed NiTi will decrease due to thermal effects on twin boundary motion [35]. The stress for 

stress-induced martensite of both the base metal and austenitic laser processed NiTi increase 

with temperature due to stabilization of the austenite phase, following a Clausius-Clapeyron 

relationship [84]. Furthermore, pre-stressing the actuator and the dynamic actuation of both laser 

processed NiTi and base metal can affect the strains and stresses exhibited by the actuator [287]. 

These effects are accounted for in the design of standard SMA actuators, which have proper 

matching between the biasing loads (e.g. spring, weight) and the actuating NiTi. Similarly the 

self-biasing actuator of the current application required careful matching of properties for both 

biasing base metal and actuating laser processed NiTi. 

6.2 Microstructural Refinement  

Successful matching of the base metal and laser processed NiTi properties was dependent on the 

composition and microstructure of the two materials. It is known that the physical and shape 

memory properties of NiTi are improved in nanocrystalline structures, so fine grained materials 
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have become an industry standard. The original base metal had a nanocrystalline microstructure, 

as shown through TEM analysis in Figure 6.2a. In comparison, the re-solidified laser processed 

NiTi consisted of a coarse grained microstructure (Figure 6.2c) as described in previous studies 

on laser melted NiTi wires [233, 281]. Using dark field TEM imaging the average grain size of 

the base metal was measured to be 70 nm, which was orders of magnitude smaller than the 

coarse grained laser processed NiTi. Standard single memory NiTi SMAs with a nano-scaled 

microstructure have high actuation stability and long fatigue lives [163]. It was hypothesized that 

similar benefits would occur if the microstructure of the untreated actuator could be refined; 

however, the effects of cold-drawing on a multi-phase component were unknown. Cold-drawing 

of the half austenitic and half martensitic wire revealed similar deformation properties to single 

phase NiTi. This resulted in a uniform, nanocrystalline microstructure throughout both regions of 

the actuator as shown in Figure 6.2 b and d. Using dark field TEM imaging the average grain 

size of the base metal and laser processed regions of the treated actuator were measured to be 27 

nm and 29 nm respectively. 
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Figure 6.2: TEM images of a) untreated base metal, b) treated base metal, c) laser processed NiTi, d) treated 

laser processed NiTi 

 

6.3 Transformation Temperatures 

Microstructural and compositional change was used to control the NiTi mechanical and thermal 

properties following previous work [13, 191]. Ideal pairing of the transformation temperatures 

would avoid overheating the biasing component and ensure maximum stability [288]. 

Transformation temperatures and DSC curves of the four materials are shown in Table 6.1 and 

Figure 6.3, respectively. The untreated base metal (Figure 6.3a) had a single stage forward 

transformation that was the amalgamation of the martensite to R-phase, and the R-phase to 

austenite transformations. Constriction of the matrix by the grain boundaries in the nano-scaled 

grains limited the strain that could be accommodated for the martensite transformation, resulting 
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in the lower strain intermediate R-phase transformation occurring [284]. The B19’ 

transformation was completely suppressed in the finer grained treated base metal which only had 

the lower strain R-phase transformation as shown in Figure 6.3b [284]. This suppression of the 

martensite transformation was responsible for the missing return peak in Figure 6.3a. The 

increase in transformation temperature that followed the decrease in grain size from untreated to 

treated base metal (Figure 6.3b) has been previously observed; however, no valid explanation 

has been given for this relation to-date [289]. 

 

Figure 6.3: DSC results of a) untreated base metal, b) treated base metal, c) laser processed NiTi, and d) 

treated laser processed NiTi 
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Table 6.1: Phase transformation temperatures (°C) of the untreated and treated base metal and laser 

processed NiTi. 

 Rs Rf Ms Mf As Af 

Untreated NiTi 21.0 1.6 - - -8.2 29.5 

Treated NiTi 53.9 32.5 - - 48.4 61.6 

Laser Processed NiTi - - 73.0 49.2 99.5 105.2 

Treated Laser Processed NiTi 61.3 55.7 24.4 5.7 58.8 75.1 

 

Laser processing of the base metal dramatically increased the transformation temperature due to 

nickel depletion and grain growth [13, 16]. This large change in grain size led to a lack of R-

phase as shown in Figure 6.3c. Increase in the grain size altered the martensite morphology from 

the constricted compound (001) twinning of nano-scaled microstructures to the larger length 

scaled (Figure 6.2c) type I and II twins of coarser microstructures [272]. Finally, non-uniformity 

observed in the forward transformation peak in Figure 6.3c was due to inhomogeneity from 

microsegregation that occurs in laser welded materials [6, 16]. 

Thermomechanical treatments applied to the laser processed NiTi significantly refined the grain 

size, as described in the previous section. Figure 6.3d showed a depression of the transformation 

temperature and the formation of R-phase in the treated laser processed NiTi. Geometric 

constriction imposed by the nanocrystalline grain boundaries increased the driving force required 

for the martensite transformation and caused these shifts in transformation properties [284]. The 

applied thermomechanical treatment changed the transformation temperatures to a more ideal 

pairing of austenite finish temperatures that reduced the aforementioned risk of overheating the 

biasing treated base metal, as compared to the untreated actuator. 

6.4 Tensile Failure Properties 

The mechanical properties of SMAs can be controlled by the alteration of microstructure and 

composition designed through laser processing and thermo-mechanical treatment [13, 190]. 

Tensile failure results for the untreated, treated and laser processed materials are shown in Figure 

6.4. The nano-grained base metal exhibited a flat stress-induced martensite plateau, a high 

ultimate tensile strength (UTS) and high elongation.  Grain size reduction from the untreated to 

treated base metal increased the UTS and elongation. The significant increase in elongation may 
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have been due in part to grain boundary sliding which can occur in similar scaled nano grained 

metals [290, 291]. The increase in plateau stress of the treated base metal was due to the 

previously discussed suppression of the martensite transformation that accompanies the 

reduction in grain size [292]. Compared to the nano-grained base metal, the coarse grained and 

solidification embrittled [283] laser processed NiTi had a significantly lower UTS and 

elongation. Grain refinement of the treated laser processed NiTi restored the UTS and elongation 

(Figure 6.4). 

The tensile failure of the untreated and treated actuators is shown in Figure 6.5. The thermal 

martensite detwinning plateau of the laser processed NiTi and the stress-induced martensite 

plateau of the base metal were observed in the tensile curves of both the untreated and treated 

actuators. The failure stress of the untreated actuator was limited by the coarse grained laser 

processed NiTi region, but the overall ductility was greater than that of the laser processed NiTi 

because of the stress-induced martensite transformation in the base metal region. The failure 

stress and ductility of the treated actuator was much greater than the untreated actuator due to the 

refined microstructure. 

 

Figure 6.4: Tensile failure of the untreated base metal (BM), treated base metal (T-BM), laser processed NiTi 

(LP), and treated laser processed NiTi (T-LP) at room temperature 
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Figure 6.5: Tensile failure of the untreated and treated actuators, with labeled stress-induced martensite 

(SIM), and thermal martensite detwinning plateaus 

 

6.5 Cycled Tensile Properties 

Tensile cycling results for the untreated materials up to 5 % strain at room temperature and 115 

°C are shown in Figure 6.6. At room temperature, the untreated base metal exhibited less than    

1 % plastic strain, which is typical for nanocrystalline NiTi [286]. At 115 °C, which is 10 °C 

above the laser processed NiTi Af, the untreated base metal was no longer pseudoelastic and did 

not recover from deformation. The shape memory effect of the laser processed NiTi recovered   

2 % strain after being strained to 5 %, as indicated by the arrow in Figure 6.6.  No detwinning 

plateau was observed for the martensite phase at room temperature as the coarse microstructure 

yielded before the onset of detwinning [13]. Plastic deformation that occurred during the 

detwinning resulted in the observed limited shape recovery. The laser processed NiTi did not 

exhibit pseudoelasticity above its Af temperature due to the flow stress being below the stress 

required for stress-induced martensite of the coarse grain microstructure [13]. These properties 

of the base metal and laser processed regions were designed to function synergistically as a self-

biasing actuation system, with martensite detwinning stresses of the shape memory effect region 
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and the stress-induced martensite plateau of the PE region coinciding. These complementary 

properties assisted the cyclic self-biasing actuation. 

 

Figure 6.6: Cyclic tensile properties of the untreated base metal (BM) and laser processed NiTi (LP) at room 

temperature and 10 °C above the austenite finish temperature of the laser processed NiTi 

 

Tensile cycling of the treated material is shown in Figure 6.7. The treated base metal revealed the 

R-phase plateau, as expected from the transformation temperatures (Figure 6.3). The apparent 

greater residual strain compared to the untreated base metal, was partially recovered by heating 

to transform the R-phase to austenite [84]. The Af of the treated laser processed NiTi and base 

metal exhibited a better overlay when compared to the untreated material in Figure 6.3. This 

allowed the treated base metal to retain its pseudoelasticity above the Af of the treated laser 

processed NiTi. After cycling to 5% strain at room temperature the treated laser processed NiTi 

wire recovered 2 % strain as shown in Figure 6.7. Limited actuation was due to grain refinement 

of the treated laser processed NiTi suppressing martensite transformation so that only R-phase 

transformation occurred above room temperature [163]. The increase in strength brought about 

by the grain refinement ensured minimal plasticity during detwinning of the martensite and 

formation of stress-induced martensite, with both deformation mechanisms having relatively flat 

plateaus (Figure 6.7). 
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Figure 6.7: Cyclic tensile properties of the treated base metal (T-BM) and treated laser processed NiTi (T-LP) 

at room temperature and 10 °C above the austenite finish temperature of the treated laser processed NiTi 

 

Tensile cycling and zero-load shape memory effect recovery of the untreated and treated 

actuators are shown in Figure 6.8 and 11 respectively. The coarse grained laser processed NiTi 

of the untreated actuator was unable to impede dislocation activity, so the plastic strain increased 

and the shape memory effect recovery reduced as shown in Figure 6.8 [163]. In contrast, the 

nanocrystalline base metal impeded dislocation motion and maintained the pseudoelastic 

properties [163]. The hardening of the stress-induced martensite plateaus was due to the increase 

in dislocation density that occurs with mechanical cycling, which reduced the transformation 

temperature further below the test temperature and increased the required driving force (i.e. 

stress) for the stress-induced martensite to transform  [59, 72, 75]. The treated actuator had 

significant initial plastic deformation, but had a greater stability than the untreated actuator 

during the ten cycles as shown in Figure 6.9. The stability of the shape memory effect and 

pseudoelastic was due to the nanocrystalline microstructure impeding dislocation activity during 

the cyclic phase transformations [59]. The stress-induced martensite plateau and the martensite 

detwinning plateau of the treated actuator softened due to dislocation accumulation which 

reduced the transformation temperatures [72], bringing them closer to the test temperature, and 

thus reducing both the driving force required for stress-induced martensite, and the detwinning 
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stress of martensite [35, 75]. The discovery that both the shape memory and pseudoelastic 

properties in the treated actuator stabilized, and did not negatively impact one another is of great 

import to the understanding of multi-phase SMA components. 

 

Figure 6.8: Ten tensile cycles and zero-load thermal recovery of the untreated actuator 

 

 

Figure 6.9: Ten tensile cycles and zero-load thermal recovery of the treated actuator 
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6.6 Self-Biasing Actuation Properties 

Characterization of the separate base metal and laser processed NiTi regions was used to design 

the combined untreated and treated self-biasing actuators. The evolution of the actuation and 

plastic strain in the self-biasing untreated and treated actuators are shown in Figure 6.10. Both of 

the actuators completed 6,000 self-biased actuation cycles without failure. A pre-stress was 

applied to these actuators, after which they were held fixed at both ends and the displacement 

was measured in the middle of the actuator at the interface between the base metal and laser 

processed regions. During thermomechanical testing the untreated actuator cycled between 175 

and 400 MPa, due to the phase transformations in the different regions of the wire. Actuation 

strain reduced from 0.9 % to below 0.5 % strain by 1000 cycles and further decreased to below 

0.4 % by 6000 cycles. The plastic strain did not stabilize and increased above 1.1 %. This 

decrease in actuation and increase in plastic strain resulted from the coarse microstructure of the 

laser processed NiTi being unable to impede dislocation formation, motion and buildup during 

thermal cycling (i.e. transformation induced plasticity) [75]. 

The homogeneous nanocrystalline structure of the treated actuator limited plastic strain at 6000 

cycles to 0.11 % [163]. This limited plastic strain was achieved despite the larger stress and 

strain experienced by the treated actuator, which cycled between 150 and 600 MPa. Actuation 

strain decreased from 1.2 % to 0.6 % by 1000 cycles and this actuation was maintained past 6000 

cycles. The lower detwinning stress of the treated laser processed NiTi, and the more ideal 

pairing of transformation temperatures also contributed to the increased stability of the treated 

actuator. The discovery that different transformation properties (i.e. pseudoelastic and shape 

memory effect) contained in a single component can stabilize and remain consistent for a 

significant number of cycles is a vital contribution to the rapidly expanding field of multi-phase 

SMAs. 
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Figure 6.10: Evolution of the actuation and plastic strain during thermomechanical cycling of the untreated 

and treated actuators. 

 

Compared to other methods of inducing a two-way shape memory effect in SMAs, the actuators 

prototyped in this work have unparalleled stability due to their refined microstructure. The 

stability of the treated actuator was similar to a standard untrained NiTi SMA [163]. Training of 

the treated actuator would further improve the stability [293]. A number of routes are available 

for further improving the performance of these actuators. The limited actuation stroke of the 

current prototypes can be improved by optimizing the shape memory effect properties for the 

application specific temperatures; thereby using the full martensite transformation, and not the 

low-strain R-phase transformation. Optimization of the shape memory effect and pseudoelastic 

pairing can further improve the actuator properties. Immediate improvement of the current 

actuator stroke can be achieved by using different geometries, such as coiling the wire into a 

spring. This would provide the design freedom necessary to enable larger actuation strains from 

the shape memory effect region and balance the biasing stress from the pseudoelastic region.  

This would also enable biasing to occur at stresses near the detwinning stress of the shape 

memory effect region, greatly increasing the fatigue life and stability of the actuator. 
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6.7 Summary 

A self-biasing actuator was created using a laser based vaporization method that altered the bulk 

composition of one half of a NiTi wire. The laser processed region was martensitic at room 

temperature serving as the actuator. The unprocessed base metal region served as an internal bias 

that detwinned the martensite after an actuation cycle was completed. It was discovered that the 

laser processed region of the actuator had significant increase in plastic strain and decrease in 

actuation strain during high stress thermomechanical cycling due to the coarse grained 

microstructure. 

Investigation of cold working to strengthen the microstructure revealed that the half martensitic 

and half austenitic actuator had similar deformation properties to single phase shape memory 

alloys. Due to these consistent deformation characteristics, the cold-worked actuator had a 

uniform nanocrystalline microstructure along its entire length. High stress thermomechanical 

cycling of this nanocrystalline self-biasing actuator revealed that it had the same stabilization 

behaviour as a single memory actuator, with minimal plastic strain buildup after thousands of 

cycles. This important discovery proves that separate shape memory properties existing in a 

single component can evolve stable transformation characteristics. 

Other self-biasing technologies are unable to attain the stability of these self-biasing actuators, 

and as such are unsuitable for real-world applications. The stable self-biasing shape memory 

alloy (SMA) prototypes developed in this study can be readily adopted by industry to achieve 

reduction in weight, cost and complexity of current SMA designs. Work is currently underway to 

develop a self-biasing spring actuator. Significant improvement of the actuation stroke, stability 

and cycle life could be achieved by forming the self-biasing actuator into a spring. Optimized 

actuator-bias matching would be possible by tailoring the spring geometry of the different 

regions.  
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7 Conclusions and Future Work 

7.1 Thermomechanical Fatigue of Laser Welded NiTi 

The investigation of the thermomechanical fatigue of laser welded NiTi showed that weld 

strength was not an indicator of stability or cycle life. Despite maintaining 86 % of the base 

metal strength, during thermomechanical cycling the welded wire had a greater buildup of plastic 

strain and degradation of actuation strain than the base metal. This resulted in a significantly 

lower fatigue life. Application of a post-weld heat treatment reduced strain localization at the 

weld. During thermomechanical cycling the heat treated wires had similar plastic strain build-up 

and actuation strain to the base metal, resulting in an order of magnitude improvement of the 

fatigue life compared to the welded wires. This work highlighted that post weld heat treatments 

would be insufficient to return the properties of laser processed NiTi, which would not be subject 

to strain localization. 

7.2 Laser Processing  

The laser processing of NiTi wires had a consistent reduction of 0.23 at.% Ni with each laser 

pulse. A Ni-rich base metal was laser processed to be a Ti-rich composition. The base metal had 

an average grain size of 70 nm, while the laser processed NiTi had a coarse grained columnar 

dendritic structure that was embrittled by Ti2NiOx inclusions. This coarse grained embrittled 

laser processed NiTi had 71 % of the base metal ultimate tensile strength (UTS) and 40 % of the 

base metal ductility, when tested above the Md temperature. The laser processed NiTi had a yield 

stress lower than that required for the pseudoelastic effect. The microstructure was unable to 

resist dislocation motion, resulting in large plastic strain buildup, and only 30 % of the shape 

memory recovery strain of the base metal after 10 cycles. The laser processed NiTi was 

compared to flexinol in thermomechanical fatigue tests with a constant stress of 600 MPa. The 

coarse grained and embrittled laser processed NiTi had 1/3 of the recoverable strain of flexinol 

and fatigue lives orders of magnitudes smaller due to the inability of the microstructure to inhibit 

dislocation activity. 

The coarse grained material of the laser processed NiTi was refined to a nanocrystalline 

microstructure through application of a thermomechanical treatment. This reduction in grain size 
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resulted in the treated laser processed NiTi having 95 % of the base metal UTS and 68 % of the 

base metal ductility, when tested above the Md temperature. Improvements were also realized in 

the shape memory properties with the treated laser processed NiTi having 62 % of the base metal 

pseudoelasticity after 100 cycles, and 54 % of the shape memory recovery strain of the base 

metal after 10 cycles. The grain size of the treated laser processed NiTi was less than half that of 

the base metal, which resulted in a constriction of the twins, and a reduction in the maximum 

achievable transformation strain compared to the base metal. This smaller grain size resulted in 

the treated laser processed NiTi having the same UTS as flexinol and 34 % greater ductility. 

When cycled to 600 MPa and thermally recovered at zero-load the treated laser processed NiTi 

had the same shape memory recovery strain as flexinol. The treated laser processed NiTi had  

347 % greater plastic strain than the flexinol, due to permanent deformation of the grains, and a 

lack of training compared to the trained flexinol. The treated laser processed NiTi had 2/3 of the 

maximum achievable strain of the flexinol due to the smaller grain size, and fatigue lives in the 

same order of magnitude as flexinol at lower strains. Training of the treated laser processed NiTi 

increased the fatigue life to parity with the flexinol at 2 % strain. 

The laser processing and thermomechanical treatments were used to make an untreated and a 

treated two memory actuator. These actuators were cycled to 15 % strain and recovered the 

shape memory strain at two distinct temperatures 10 times. The untreated actuator did not 

stabilize in plastic strain or shape memory recovery. The treated two memory actuator had a 

decrease in plastic strain of 33 % that stabilized within 10 cycles, and an increase of shape 

memory recovery of 42 % compared to the untreated two memory actuator. 

7.3 Self-Biased Actuator 

A self-biasing actuator was created using the laser processing and thermomechanical treatments 

developed in this work. Half of the wire actuator was austenitic at room temperature, while the 

other half was martensitic. The austenitic region was a pseudoelastic bias, and the martensitic 

region was the shape memory actuator. The laser processed self-biasing actuator had a buildup of 

1.1 % plastic strain and decrease of actuation strain to 0.4 % at 6000 thermomechanical cycles 

because the coarse microstructure could not inhibit dislocation activity. Treating the actuator to 

refine the microstructure successfully created a homogenous microstructure in both regions. This 
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nanocrystalline microstructure enabled self-biasing of high stress actuation. This self-biasing 

actuator had similar stabilization behaviour to standard one-memory after thermomechanical 

cycling, with minimal plastic buildup of 0.11 % after 6000 cycles, and 50 % greater strain than 

the untreated actuator despite being cycled to a 50 % larger stress. This proves that multiple 

memory NiTi components can evolve stable transformation characteristics, making them viable 

for real-world application. This is not possible with the other self-biasing mechanisms developed 

to date. 

7.4 Future Opportunities 

7.4.1 Welding and Joining of NiTi 

The first part of this work was the first investigation to be published on the effect of welding on 

the thermomechanical fatigue of SMAs. Future work in this area includes investigating methods 

to improve the properties of the welded region. 

 The NiTiCu alloy has lower stresses required for thermomechanical cycling, and lower 

plastic deformation during cycling, so may have an advantage over NiTi in the fatigue of 

welds [153, 154]. 

 Alloy elements could be added to the fusion zone to refine the grains [294, 295], however 

this would not address the coarsened heat affected zone (HAZ). 

 The NiTiHf alloy has great potential for post weld heat treatments due to their dense 

network of strengthening precipitates that form, which could strengthen both the fusion 

zone and HAZ [296]. 

 The investigation of dissimilar welds and their fatigue is the ultimate goal of these 

studies. Many applications and revolutionary designs can be realized if joints of NiTi-

based SMAs with dissimilar materials could achieve high cycle fatigue lives. 

 The functionality of these designs would be further increased by the joining of multiple 

memory SMAs to dissimilar materials. 

7.4.2 Laser Processing Shape Memory Alloys for Many Memories 

Future work is underway in the development of actuators that have multiple memories above 

room temperature. This work is focusing on the development of new laser processing methods 
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that can increase the resolution of the current process by reducing the amount of Ni removed per 

laser pulse. Numerical modeling of the laser process [254, 255, 297], would enable a better 

fundamental understanding of the process, and enable faster development of new processes. 

7.4.3 Treatment of Laser Processed NiTi for Optimized Performance 

Parallel work is being performed on the optimization of the post-laser processing 

thermomechanical treatments to optimize the properties of the material so that the initial base 

metal properties can be fully recovered. The development of finer wire diameter actuators, 

training to improve stability, and control of actuation are all being pursued by research 

collaborators. 

7.4.4 Laser Processing of other Shape Memory Alloys 

Other SMA systems have benefits compared to NiTi including lower cost, higher temperatures, 

and smaller transformation hysteresis [298-300]. Successful laser processing of these other SMA 

alloys would lead to a wide range of beneficial multiple memory SMA applications. Initial 

studies have been performed, including the study of a lower cost CuAlMn SMA alloy by the 

author [301]. 

7.4.5 Modeling of Laser Processed Shape Memory Alloys 

The modeling of these multiple memory NiTi components is important for both gaining a 

fundamental understanding of the deformation of these materials, and to improve efficiency in 

the initial design stages for products. The manufacturing methods developed in the current work 

were used to make multiple memory wires that had their tensile response modelled in the 

published work of Michael et al. [302]. Future work is being pursued to investigate more 

complicated models that are being developed for use with new medical devices. 

7.4.6 Self-Biasing Springs and other Geometries 

The proposed work of a self-biasing spring is currently being investigated. The strains and 

stresses of actuation in springs are lower than linear actuators, which would increase the stability 

of actuation, and fatigue life [106, 156]. Other methods of using geometry to exploit these 

methods have been explored and could be applied using sheets, tubes, or ring. 
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