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Abstract

A web crawler is a program that “walks” the Web to gather web resources. In
order to scale to the ever-increasing Web, multiple crawling agents may be deployed
in a distributed fashion to retrieve web data co-operatively. A common approach is
to divide the Web into many partitions with an agent assigned to crawl within each
one. If an agent obtains a web resource that is not from its partition, the resource
will be transferred to the rightful owner.

This thesis proposes a novel approach to distributed web data gathering by
partitioning the Web into topics. The proposed approach employs multiple focused
crawlers to retrieve pages from various topics. When a crawler retrieves a page of
another topic, it transfers the page to the appropriate crawler. This approach is
known as topic-oriented collaborative web crawling.

An implementation of the system was built and experimentally evaluated. In
order to identify the topic of a web page, a topic classifier was incorporated into the
crawling system. As the classifier categorizes only English pages, a language iden-
tifier was also introduced to distinguish English pages from the non-English ones.
From the experimental results, we found that redundance retrieval was low and
that a resource, retrieved by an agent, is six times more likely to be retained than
a system that uses conventional hashing approach. These numbers were viewed as
strong indications that topic-oriented collaborative web crawling system is a viable

approach to web data gathering.
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Chapter 1

Introduction

A web crawler is a program that “walks” the Web to gather web resources. Given
a Uniform Resource Locator (URL), the crawler retrieves the corresponding web
page. The links are then extracted from this page and stored into a queue. The
next URL is removed from the queue and the retrieval process is repeated. The
retrieved pages are retained for future processing. There are various application
of web crawling, such as to retrieve pages with specific content [7] or to create an

indexable database of web pages for use by a search engine [1].

1.1 Motivation

The Web has been growing at a dramatic rate. As the amount of web data increases,
retrieving a good representative portion of the Web is becoming an increasing chal-
lenge for a single crawler. Therefore multiple crawling agents (web crawlers) are

often deployed in a distributed fashion to retrieve web data co-operatively. A com-
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mon approach is to divide the Web into partitions with an agent assigned to crawl
each one. When an agent obtains a web resource that does not belong to its par-
tition, the resource will be transferred to the rightful owner. As overheads for
transferring of data are costly, it is inefficient if external resources are retrieved

frequently by the agents.

1.2 Thesis’ objective

Web pages of similar interest are often linked to each others, hence a crawler that
is assigned to retrieve pages of a particular topic tends to retrieve pages from
that topic. Based on this observation, a novel approach to web data gathering is
presented in this thesis. An agent is assigned to crawl web pages of a specific topic.
When it retrieves a web page, it examines the content to determine the topic to
which the page shall be assigned. If the page is assigned to the agent’s topic, it will
be retained. Otherwise, it will be routed to the appropriate external agent. This is
known as topic-oriented partitioning approach.

In conventional web crawling systems, the transferred resources do not con-
tribute to the crawlers’ performance. However, the crawlers in a topic-partitioned
system collaborated on the retrieval by continuously supplying relevant web pages
to each other. These pages link to more pages of the same topic, thus reinforcing
the inclination of each crawler to retrieve pages from its partition and reduce data
transfer between the crawlers.

In order to identify the topic of a web page, a topic classifier is used. This thesis

identifies a classification technique that is suitable for use by the crawling system.
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Topic classifiers are language-dependent. In other words, if a topic classifier is
trained using a Chinese corpus, classification on non-Chinese pages will produce
meaningless results. Therefore the natural language of a document needs to be
identified before it can be classified into a topic. As this thesis focuses on classifying
English pages, a simple and fast language identifier that distinguishes English pages
from non-English ones is introduced. When a page is retrieved, the identifier first
determines if it is an English page. If it is, it will be categorized by the topic classifier
into a set of topics. Otherwise, it is placed in a separate “non-English” category.
To support the thesis, an implementation of the topic-oriented collaborative web

crawling system named C4 was built.

1.3 Organization of Thesis

The following describes the organization of the thesis:

Chapter 2 provides the background to web crawling. HTTP and HTML are
reviewed with a focus on the aspects of the protocol that are important for web
crawler implementation. Crawlers are widely used by search engines, therefore a
section is dedicated to searching on the Web. The graph structure of the Web is
also introduced here. Finally various design concerns and implementation issues of
web crawlers are explored.

Chapter 3 discusses distributed web crawling. It begins by differentiating cen-
tralized and non-centralized methods for distributed web crawling system. Various
web partitioning methods are introduced. It then discusses the architecture of the

Multitext crawler. Finally, C4, the collaborative crawling system, is presented.
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In chapter 4, we look into classification of web pages. The background to classi-
fication is first studied. A topic classifier and a language identifier that are suitable
to be used in C4 are then identified.

Chapter 5 presents the results of a crawling experiment carried out with C/ over
a period of 28 days. This experiment focuses on the retrieval rate of the crawling
system and data redundancy among the crawlers.

The final chapter provides a summary of the thesis. It also analyses the overall
performance of C4 and the feasibility of the topic-oriented partitioning approach.

It then concludes the thesis with a list of possible future work.



Chapter 2

Background and related work

This thesis proposes a novel approach to distributed crawling system. Before the
approach is detailed, the background pertaining to web crawling is presented in this
chapter. Web crawling involves the retrieval of web resources such as HTML pages
and images. The first section covers the protocol for transferring web resources over
the Internet with a focus on the aspects of the protocol that are important for web
crawler implementation. The second section looks into the issues of parsing HTML
pages to extract URLs that are needed for crawlers to traverse the Web. As the
Web contains documents of multiple languages, the means to identify the natural
language of these documents are also outlined in these two sections. Section three
explores the issues of searching the Web, follows by an introduction to link analysis

on the Web. The final section discusses the anatomy of a web crawler.
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2.1 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol [20] is an application-level protocol for distributed,
collaborative, hypermedia information systems running on top of TCP/IP. This
protocol has been used by the World Wide Web to transfer resources since 1990.
This section provides a quick review of the protocol focusing on the aspects that

are important to web crawlers.

URL. Location of web resources, such as web pages and images, are represented
by Uniform Resource Locators (URLs) [43]. A URL is a string that makes up of

several parts, as follows:
protocol:/ [ host name:port number [ resource path? query string

the protocol, host name and resource path must be present in a URL. In the absence

of port number, it defaults to 80. For example, the URL:
http://plg.uwaterloo.ca:88/"c3chung/search?q=Singapore

indicates that the resource “/“c3chung/search”, with a query “q=Singapore”, is

obtainable from host “plg.uwaterloo.ca” at port 88 using the HTTP protocol.

HTTP Connection. A HTTP server is a daemon that is commonly bound to
port 80. For a client to obtain a web resource, a connection to the remote HTTP
server where the resource resides is established. In Unix systems, this connection
can be made using a socket, which is an application-level abstraction for data

communication between two hosts. After it is connected, the client sends a request
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packet. The packet consists of a HT'TP request method, the requested file and a

HTTP version. For example, to retrieve the web page
http://plg.uwaterloo.ca/"c3chung/index.html

using HTTP version 1.0, a connection to the host plg.uwaterloo.ca is established.
The client then writes the following GET request string (which terminates with an

empty line) into the connection:

GET /"c3chung/index.html HTTP/1.0

Based on the request method, the server replies with a respond packet. Every
respond packet has a status line, a HTTP header and, possibly, a entity-body
content. The status line consists of the message’s protocol version and a (success
or error) status code. The HTTP header consists of server information and entity
meta-information. This header ends with an empty line, after which the start of
entity body (if any) follows. After the content body has been sent, the server closes
the connection. As every HT'TP connection is independent from the previous one,
they are considered stateless.

Many types of information can be obtained from the header of response packets,
like the size of the requested resource (“Content-Length”) and the time when the
resource was last modified (“Last-Modified”). The ones that are of importance to
web crawlers are the HTTP status code in the first line and the “Content-Type”
field. Figure 2.1 shows an example of a response packet. The first line of the packet
is the HTTP status line, followed by eight lines of HTTP header. This header

is terminated with an empty line, after which the transmission of the requested
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resource begins. In this example, the server has responded with a “200” status
code and a “Content-Type: text/html” field. These respectively indicate that the
resource has been successfully requested and is a HTML web page, which will be

transmitted as the entity body.

HTTP/1.1 200 OK

Date: Fri, 15 Jun 2001 01:54:15 GMT

Server: Apache/1.2.6

Last-Modified: Thu, 14 Jun 2001 01:38:43 GMT
ETag: '"32b7a6-168a-3b2815a3"

Content-Length: 5770

Accept-Ranges: bytes

Connection: close

Content-Type: text/html

<HTML>

</HTML>

Figure 2.1: An example of a HTTP respond packet that indicates a successfully
request

Language support. As the Web is a multi-lingual corpus, documents of various
languages are transferred through HTTP. The natural language of the transmitted
document is indicated in the “Content-Language” and “Accept-Language” entity-
header fields. For example, the appropriate field to indicate a body content that is

intended only for a Danish-literate person is:
Content-Language: da

The natural language can be encoded in different character sets. An optional

“charset” parameter of the “Content-Type” field is for indicating the character
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set used in a web page. For instance, the appropriate field to indicate that the
transmitted document is a HTML web page encoded in the “JUNET” encoding of
Japanese [46] is: Content-Type: text/html; charset=1S0-2022-JP. In the absence of
the “charset” parameter, the language encoding defaults to US-ASCIl. US-ASCII is
a 7-bit encoding scheme for the English language that uses 8 bits for each character
(the most significant bit is always set to zero), hence it is capable of distinguising

128 characters.

1xx | Informational
2xx Successful
3xx | Redirection
4xx | Client Error

hxx | Server Error

Table 2.1: Description of different sets of HTTP status code

HTTP status code. The 3-digit HT'TP status code in the status line of a server’s
respond packet indicates the validity of a client’s request. Table 2.1 shows the
different types of status codes. There are two sets of status code that are essential
to web crawler implementation: 2XX (successful) and 3XX (redirection) code. The
first indicates that the requested resource is available and will be transferred to
the client. Pages that contain a 2XX status code are referred to as wvalid pages
in this thesis. The second code indicates that the resource is residing in another
location (URL). In the case where the resource is a HTML web page, the entity
body will be the web page if the request is successful. If the server responded with

a redirection, the entity body is usually (though not always) a HTML page that
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contains a hypertext link to the URL where the resource resides. Figure 2.1 and

2.2 provide examples of HTTP response packets with these status codes.

HTTP/1.1 301 Moved Permanently

Date: Fri, 15 Jun 2001 03:00:37 GMT

Server: Apache/1.2.6

Location: http://plg.uwaterloo.ca/~c3chung/
Connection: close

Content-Type: text/html

<HTML>

</HTML>

Figure 2.2: An example of a HTTP respond packet that indicates a redirected
request

2.2 Hypertext Markup Language (HTML)

Hypertext Markup Language (HTML) is the universal language used on the World
Wide Web. Among many data items that can be embedded into HTML documents
are the locations of other web resources, which are represented using URLs. This
section focuses on the issues of parsing HTML pages to extract these URLs which

are needed by crawlers to traverse the Web.

2.2.1 Parsing HTML page

Before any analysis can be done on a HTML web page, it needs to be parsed.

Different parts of a HTML page requires different parsing conditions. A HTML
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web page can be broken into three parts: HTML tags, scripts and text.

Tags A HTML tag begins with a “<” and ends with a “>”. In the case of a
comment tag, it begins and ends with “<! — —” and “—— >” respectively (e.g.
<! — —Comment tag — — >, therefore the greater-than (“<”) and less-than (“>")
characters are accepted within it). Element refers to the keyword of a tag. Some
elements require end tags (which are denoted by a slash (/) before the associated
element name) while others do not. For example, <html> and < /html> indi-
cate the start and end tag of an html element. An element may have a set of
associated properties call attributes, which are defined within each tag (e.g. <A

href="http://www.uwaterloo.ca/index.html” > is a tag of element A with attribute

href defined).

Scripts HTML script, such as VBScript and JavaScript, encodes program source
code associated with a web page that is executed on the client’s machine when the
page is down-loaded. There are many applications for scripts, such as multi-media
interaction and dynamic web page modification. A script can be attached to a
HTML document in two ways. The first way is through intrinsic events that are
associated with control elements (such as INPUT, SELECT, BUTTON, TEXTAREA,
and LABEL) in the form of attributes. For example, the following tag executes a

JavaScript function to validate the value when the user leaves the input field:
<INPUT NAME="userName' onblur='"validUserName(this.value)'>

These embedded scripts are parsed as HTML tags.
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The second way of attaching a script is to use the SCRIPT element. The content
of the script can either be embedded into the document between the start and
end tags of the element. As not all browsers are script-enabled, scripts are often
embedded within a HTML comment tag. This form of embedded scripts are parsed
as tags as well (see figure 2.3). Alternatively, the script can be located in an external

file which is referred to by the src attribute (see figure 2.4).

<HTML>

<script language="JavaScript'>

<l--

document.write("Last modified: " + document.lastModified) ;
/] -=>

</script>

</html>

Figure 2.3: An example of an embedded script in a HTML page. The line embedded
in the HTML comment is a program encoded in JavaScript.

<HTML>

<SCRIPT language="JavaScript"
src="http://plg.uwaterloo.ca/ c3chung/Script/code.js">
</SCRIPT>

</html>

Figure 2.4: An example of attaching an external script file in a HTML page by
using the “src” attribute of the “SCRIPT” element.
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Text Lastly, text is the entire web page without the HTML tags and scripts. In

English text, words are often broken into tokens by white space and punctuation.

2.2.2 URL extraction

HTML allows the location of other web resources (URLs) to be specified in web
pages. As a crawler parses a HTML web page, it looks for tags that support sre

or href attributes (see table 2.2). These attributes contain URLs of other web

Attribute | Elements (tags)
HREF | A, AREA, LINK, BASE
SRC SCRIPT, INPUT, FRAME, IFRAME, IMC

Table 2.2: Elements that supports href and src attribute.

resources and are extracted for future crawling. The following is an example of an

anchor tag that refers to a web resource:
<A href="http://www.uwaterloo.ca/">click here</A>

Relative URLs can also be specified by src¢ or href attributes. For instance, a

relative URL
../NeverEnds/this_thesis.html
found in the web page of
http://work.com/My/Tasks/Current/index.html

1s resolved into

http://work.com/My/Tasks/NeverEnds/this_thesis.html
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A relative URL can also be resolved to a URL of a different host by using the BASE
element. This element allows authors to specify a document’s base URL explicitly.

For example, the following shows the web page of an arbitrary URL:

<BASE href="http://work.com/My/Tasks/Current/">

Hell breaks loose when this

<A href="../NeverEnds/this_thesis.html'">thesis</A> is done

the relative URL
../NeverEnds/this_thesis.html

would also resolve to

http://work.com/My/Tasks/NeverEnds/this_thesis.html.

2.2.3 Language support

Various issues of globalizing HTML have been addressed [69], in order to support
multiple languages on the Web. The Lang attribute, a property that is applicable
in many elements, specifies the language within the element content. For instance,

in response to the following HTML text:
<P>As the saying goes: <Q lang='"fr''>c’est la vie</Q>.</P>

a HTML parser should treat the content within the Q element as french.
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Beside natural languages, HTML also supports a set of special entity charac-
ters that cannot be entered directly using a conventional keyboard. These char-
acters can be represented numerically (either decimal or hexadecimal) or symbol-
ically. For example, the character “(©)” can be denoted by “&#169;”(decimal) or
“&copy;” (symbolic). Escape characters of HTML (or any other ASCII characters)
can be represented using numerical entity references which corresponds to their

ASCII values (see table 2.2.3).

Escape | Numerical Symbolic
character | reference reference

K &H#£34; &quot;

& &#38; &amp;
< &H#60; &lt;
> &H#62; &gt

Table 2.3: Some examples of entity characters that are commonly found in HTML
pages.

2.3 Searching the web

In December 1997, the Web was estimated to contain at least 320 million indexable
web pages [38]. In less than two years, it increased to 800 million pages, containing
6 TB of data on 3 million servers [39]. As the Web grows, a challenge for web search

engines is to locate resources, track document changes and find relevant web pages.
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2.3.1 Search engines

Search engines, such as Google! and Directhit?, are popular portals into the World
Wide Web. Each of them maintains a large database of indexed web pages which
are retrieved from the Web by specialized programs known as web crawlers. To
search for a document, a user provides a small set of words, known as a query,
that is descriptive of the page or site desired. A search engine then uses this query
to match against documents in its database. These selected documents are then
ranked in order of likely relevancy before their corresponding URLs are presented

to the user.

Ranking techniques. Different engines employ different techniques to rank doc-
uments. Content-based methods observe the degree of similarity between the web
pages and the query terms by assigning similarity values based on the occurrence
of query terms in the pages [53, 52, 10].

Beside observing the content of a query, web documents can be ranked through
link analysis methods. Back-links of a page are pages that contain a hyperlink to
it. In other words, if page A contains a hyperlink to B, then A is a back-link of
B. Assuming that pages linked to by many others are considered more important,
back-link counts keep track of the number of back-links of each page. As the Web
is a uni-directional graph, this algorithm requires the retrieval of the entire Web
(which is nearly impossible). Hence back-link weight is often approximated by

considering the pages that a crawler has retrieved so far [9]. An extension to the

thttp://www.google.com
Zhttp://www.directhit.com
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HTTP protocol that would greatly improve the feasibility of this ranking technique
is to include back-link information, which was proposed by Chakrabarti [6].

The technique of using back-link counts has a number of drawbacks. Consider
Yahoo's home page (http://www.yahoo.com). It is likely to be referenced (linked
to) by many web pages, hence the page is ranked highly using this technique. How-
ever an important web page (e.g. http://dir.yahoo.com/News_and_Media/) linked by
the Yahoo home page may be ranked poorly as it is rarely referenced. On the
other hand, Page Rank (which is used in Google search engine) [47] propagates the
weighting by recursively defining the weight of each page based on the weight of
pages that point to it. The algorithm assigns a high weight to a page if it is pointed

to by many other pages, or if some pages that point to it have high weights.

Web Coverage. Beside the ranking technique, a search engine’s coverage of the
Web indirectly reflects its retrieval performance. This coverage is commonly mea-
sured in terms of the quantity of indexable web pages. Lawrence and Giles [38]
examined six search engines and found that no engine covered more than one-third
of the Web (which was then estimated to contain 320 million pages). They proposed
that web coverage could be improved by combining results of multiple engines.

Meta search engines send user’s query to multiple search engines. The results
returned are then processed and re-ranked (merged) before being presented to the
user. Unlike conventional engines, meta search engines do not index web pages.
Some examples of such engines are MetaCrawler [56], SavvySearch [28] and ProFu-
ston [22].

The quality of the index is an alternative measure to the web coverage of search
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engines. With the motivation that a small but high quality index might satisfy user
needs on broad queries better than a large one, index quality was measured using
an arbitrary page-weight assignment function [25]. A simple methodology that uses
this function was devised to compare various engines by performing a random walk

on the Web. It was found that indexes of search engines differ greatly in quality.

Performance evaluation. Recall and precision [45] are two measurements that
benchmark the performance of retrieval techniques. The former measures its effi-
ciency of retrieving relevant documents while the latter measures the relevance of

the retrieved set of documents to the users’ query.

Number pages retrieved that are relevant

1l =
reca Total number of relevant pages

Number pages retrieved that are relevant

recision =
P Total number of pages retrieved

As data collections of search engines contain large number of web pages, the recall
values are often hard to determine. However, precision can be estimated by ex-
amining the first N retrieved pages [24]. For example, precision at 20 of a search

engine is:

P@20 =

(number of the first 20 retrieved documents that are relevant)

N =20

In order to obtain a good measurement of the retrieval techniques, these values are

averaged over a set of queries.
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2.3.2 Query Expansion

When a search engine receives a query, it looks into its database of web pages for
documents that contain the query terms. However, different words can be used
to describe the same concept but authors often use the same word to represent
the same concept in their document. This inconsistency causes a problem in in-
formation retrieval when searches are based on the co-occurrence of query terms
in documents [63]. A common solution is to expand queries by including words or
phrases of similar meaning to the query terms. Relevance feedback [2] iteratively
reformulates the original query using the terms from relevant documents selected
by the user. Given an initial query, the search engine retrieves a small number of
documents, from which the user is to select the relevant ones. A new query, pre-
pared from this set of selected documents, is then used to retrieve more documents.
This process is repeated until a satisfactory set of relevant document is obtained.
Several automatic query expansion methods have been tested. An approach is to
use a global thesaurus to add terms of similar meaning to the query [62]. WordNet?
is an example of such thesaurus. It is an online reference system that maintains
a database of words that are clustered based on their meanings. Instead of using
a global thesaurus, a similarity thesaurus [49] that is based on the terms in the
corpus can be automatically constructed. Such methods, that expand queries by
examining the corpus as a whole, are known as global analysis techniques [63]. Local
techniques, unlike the global ones, expand queries by examining the top ranked

documents retrieved by the original query. Two such techniques were compared

3http://www.cogsci.princeton.edu/ wn/main/
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by Xu and Croft [63]: local feedback and local context analysis. Local feedback
i1s a method that automates relevance feedback by re-formulating the initial query
using the terms obtained from the top ranked documents. These documents are
returned by an arbitrary retrieval method using the original query. It was found
that poorly-performed queries retrieve few relevant documents after local feedback
since more words are obtained from non-relevant documents. Local context analysis

is a technique combines global analysis and local feedback.

2.4 Link analysis in a hypertext environment

This section studies the framework of the Web. It aims to obtain a better under-
standing of the structure of the Web, in order to perform crawling and information

searching on the Web more effectively.

Web communities. A web community is a set of pages that are related to a
common topic. For example, web pages about cycling, swimming or rock-climbing
might be found in a SPORT community. There are numerous, explicitly gathered,
resource collections (e.g. the Yahoo web directories) in the Web that categorize
URLs into a set of pre-defined topics based on their content. These topics are com-
monly ordered hierarchically. By observing link relationships between web pages
and using a graph-theoretical approach, implicitly-defined communities can also
be identified and enumerated automatically [37]. This is done by scanning web
pages retrieved in a crawl, for web graph structures that are indicative signatures

of communities.
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Web pages may seem to be randomly inter-connected, however they do not
form a worst-case graph as pages with related content are often linked together.
Empirical evidence of topical locality in the Web and value of descriptive text as
representatives of the targeted page was provided by Davidson [13]. It was found

that the likelihood of linked pages having similar textual content is high.

Hub pages Authority pages

o

Figure 2.5: A conceptual example of a link relationship between hubs and author-
ities.

Hubs and authorities. An authority page is one that contains high quality
information about a specific topic and a hub page is one that contains a large

number of links to pages containing information about the topic [4]. The home
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page of University of Waterloo is an example of an authority page for the topic
“Educational Institutions”. An example of a hub page is a car buyers’ resource
web site that contains links to many car dealer web sites. Kleinberg [34] observed
that hubs and authorities have a mutually reinforcing relationship: a good hub
often points to many authorities and a good authority is often pointed to by many
hubs (see figure 2.5). Using this observation, he formulates an iterative algorithm

that identifies authorities in a hyperlinked environment in the following manner

[23]:

1. Each page p is associated with a hub h(p) weight and an authority a(p) weight,

which are both initialized to 1.

2. The a(p) of each web page is then updated by adding all the hub weights of
every web page that points to p and h(p) by adding all the authority weights
of every web page that it points to. In other words, by denoting p — ¢ as

page p containing a link to page ¢, the weights of each page are updated by:

a(p) =Y hiq)

q—rp

p—q

3. This process of updating is repeated until the authority and hub weights of

all pages converge [23].

An implementation of Kleinberg’s algorithm is HITS [23]. Given a user-query,

HITS retrieves up to 200 pages returned by a search engine. This set of pages are
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then increased by adding pages that points to the initial set and that the initial set
points to. The algorithm is then applied on the set. The pages with the highest
weights are then presented to the user. ARC [4] is a system developed at IBM
Almaden Research Center that automatically compiles a list of authoritative web
resources such as those provided by Yahoo. Its algorithm is an extension of HITS
with slight-modification: ARC assigns authority weight of a page p by examining

the text around the Aref links that point to p.

2.5 Web crawling

Web crawler is an agent that acquire resources, such as web pages and images,
from the Web. Given an initial URL, the crawler (also known as a web spider) first
retrieves the corresponding web page. URLs are then extracted from the page and
stored into a work queue. This queue, which is not necessarily a FIFO, contains the
URLs that are to be retrieved by the crawler. After a page has been processed, the
next URL is removed from the work queue to repeat the retrieval process. There
are many application of web crawling, for example indexing of web pages by search

engine companies.

2.5.1 Web crawler anatomy

There are several issues that a crawler should address:

¢ Robot Exclusion Protocol compliance. Many web servers want to re-

strict crawlers from accessing certain, if not all, pages in their domains for
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several reasons. For example, some pages (such as cgi-scripts) are not suitable
for crawling. Thus the Robot Exclusion Protocol* was established. In order
to specify the pages that incoming crawlers should not access, an access policy
is specified in the “/robots.txt” file that is located at the top directory of a
server. This protocol is not a standard of the internet, and it relies on total
co-operation from the crawlers for compliance, hence it contains no security

value to restrict web access.

e Avoid web server overloading. It is common for web pages to point to
other pages within the same host. Thus there is a tendency for a crawler to
request multiple pages from a host in a short period of time. This overloading

of web servers should be avoided as it affects the servers’ performance.

o System recovery. Crawlers often run over a long periods of time. Therefore
they may break down for various reasons such as a shut down of the host for
maintenance. When that happens, restarting crawlers with their initial URL
seeds is redundant as retrieved data will be recollected. A self-recovering
crawler 1s able to continue crawling from where it left off without having to

re-crawl old pages.

e Refreshing stale pages. Information changes rapidly on the web, especially
pages from the media (e.g. CNN pages) and financial domains (e.g. stock
values). To keep a fresh copy of the web, these pages need to be re-visited

more frequently than the others.

*http://www.robotstxt.org/wc/exclusion.html
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e Data duplication. URL and content duplication are two issues that need
to be addressed to reduce web retrieval redundancy. The former refers to the
presence of a URL on multiple web pages. For example, many web pages
link to the home page of Yahoo (http://www.yahoo.com), which is a common
portal on the Web. The latter refers to different URLs that points to exactly

the same page content. An example would be the following two URLs:

1. http://plg.uwaterloo.ca/"c3chung/

2. http://plg.uwaterloo.ca/"c3chung/index.html

Duplicate web pages do not necessarily reside on the same host. For instance,
Sun’s version of the Java Documentation is likely to be available on numer-
ous servers. Web crawlers that keep track of previously-visited URLs and
previously-retrieved content are able to reduce repetitious work. However,
unlike URL duplication, content duplication cannot be completely avoided
since a web page needs to be retrieved before it is known if the page is a
duplicate one. Once a page is identified as a duplicate, it is removed and its

links will not be extracted for retrieval.

e Prioritized crawling. Exhaustive crawlers attempt to retrieve the entire
Web and ignore the qualities of different web pages. However, not all pages
are of the same quality. Some pages are more important because they contain
information that the crawler is searching for, or perhaps they are referenced
by more pages (i.e. high back-links). URLs of pages that are most likely

to be important are retrieved first so as to keep a high quality harvest rate
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throughout the crawl. Thus, the order in which web pages are visited is

significant [9].

e Bandwidth and server resources. Considering the size of the web, crawlers
require considerable system resources. If not supervised, they have the po-
tential to overload the network’s bandwidth or use up server resources such

as disk space and CPU time.

2.5.2 Focused crawling

A rising interest in the area of web crawling is to train specialized crawlers to re-
trieve pages of particular interests [7, 16]. Brute-force crawlers rely on conventional
graph algorithms, such as breadth-first or depth-first search, to traverse the Web.
However, a crawler does not need to look into every corner of the Web if it is to
acquire information on a specific interest. Therefore the crawler uses a topic clas-
sifier to follow links that are expected to point to pages on relevant topics. This is
known as focused crawling.

Two methods of determining crawl routes have been proposed [7]: soft-focus
and hard-focus methods. Both methods crawl a child page ¢ only if some ancestor
page of ¢ is classified as a page of the relevant topic. The only difference is that the
hard-focus approach selects child pages with the highest probability. A group from
NEC presented a focused crawler that uses a context graph [16]. The classifier is
trained by using the links and content of documents that are closely linked to a
set of seed pages. It was claimed that the context-graph crawler outperformed the

standard focused one by retrieving 50% to 60% more “on-topic” documents.
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2.5.3 Distributed crawling

Distributed crawling addresses the issue of bandwidth and server resources in web
crawling. It utilizes multiple web crawlers that are scattered across the Inter-
net to retrieve web pages in a co-operative fashion [12, 60]. Experimental results
shown a significant increase in retrieval rate when distributed crawlers are used
[64]. Although the physical location of each crawler is immaterial to the functional
correctness of a distributed web crawling system, they are situated away from each
other so as to reduce bottleneck at physical nodes (e.g. gateways) of the Internet.

A collaborative crawling experiment was carried out at IBM Almaden Research
Center [60]. They partitioned the Web based on a URL hierarchy and assigned
crawlers to retrieve pages from each sub-space. If a link is retrieved that does not
belong within the same sub-space, it will be routed to other crawlers. A major issue
in collaborative crawling is to minimize such crossing links as the overhead for such
transfer can be costly. Unfortunately no result was provided for their experiment.
Their partitioning approach is based only on the URLs, and is independent from
the content of the pages. Therefore URL duplication is a concern but they did not
explain what they would do in this case.

Mobile crawling [19] is an alternative approach to a traditional web crawling
system. It migrates the data retrieval component (i.e. the web crawler) to the host
where the web pages reside. The mobile crawlers are managed by a crawler manager
that resides in the home host of the crawling system. After the pages have been
collected and processed remotely, they are transmitted back to the home host. This

proposal reduces network bandwidth in several ways:
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e Accessing web pages locally reduces request/response time.

e Unwanted pages do not need to be downloaded since the evaluation is done

at remote hosts.
e Unwanted portion of web pages can be discarded before transmitting.
e Web resources can be compressed before transmitting over the Internet.

Although mobile crawling brings numerous advantages, several issues need to be

addressed before the prototype can be used on the Web [36, 19].



Chapter 3

Distributed web crawling

Due to the size of the Web, multiple spiders are commonly deployed in a distributed
fashion to retrieve web information [1]. One approach is to divide the Web into
small partitions and assign a spider to crawl within each one. As pages often
point to others in different partitions, retrieval redundancy may occur. Therefore
web partitioning is a major consideration and is studied in this chapter from the
perspective of web data duplication. The architecture of Multitext crawler, which
was developed at the University of Waterloo, will be outlined next. Finally we
present C4, a collaborative web crawling system that is adapted from the Multitext
crawler. (4 partitions the Web based on the content of pages. For the rest of
the thesis, an entire distributed crawling network is referred to as a web crawling
system, and each remote data retrieval component is simply referred to as a web

crawler (or a spider).

29
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3.1 Non-centralized distributed crawling

As the web grows, efforts to obtain a meaningful copy of it are becoming more
tedious. In order to lighten the workload, multiple crawlers are often instantiated
to perform web data gathering in a co-operative fashion [60]. However, the problems
of URL and content duplication are amplified in distributed crawling systems. URL
duplication occurs when the page of a URL is retrieved by multiple crawlers and
content duplication occurs when the same web pages, referred to by different URLs,
are retrieved by multiple crawlers.

URL duplication can be eliminated by using a centralized URL database server
[12, 1]. The server maintains a list of URLSs to be retrieved by the crawling system.
Since this list is overseen by a single machine, it is easy to ensure that the same
URL is not retrieved multiple times. To reduce content duplication, retrieved data
needs to be maintained by a centralized server as well (see figure 3.1). However, the
centralized approach creates a bottleneck and a single source of failure. To reduce
these problems in centralized distributed systems (for example, file systems [27])
multiple servers are often connected in a hierarchical fashion (see figure 3.2).

An alternative to the above approach of distributed crawling is the non-centralized
database. This approach divides (partitions) the Web among its crawlers; each
crawler retrieves web pages from the partitions that are assigned to it. When a
crawler retrieves a resource that does not belong to it, the resource is forwarded to
its respective owner. There is no restriction on the number of partitions that can
be assigned to a single crawler. However, to simplify the discussion, it is assumed

that exactly one is assigned to each crawler. Hence the concepts of crawler and
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URL Database Server

Crawler

Crawler

Crawler

Crawler

Retrieved Data Server

Figure 3.1: Centralized servers.

partition are closely associated in this chapter.

3.1.1 Web partitioning

31

There are pros and cons to this non-centralized approach. The concerns for bottle-

necks and single source of failures have been replaced by issues of data duplication.

Unlike the centralized approach, the approach chosen to partition the Web is more

crucial here. Pages often point to others in different partitions, therefore a non-

centralised crawler may retrieve pages that are outside its partition. If that happens

frequently, then it is equivalent to having N crawlers retrieving a full copy of the

Web. Various partitioning methods have been proposed and will be discussed next.
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URL Database Server

/

URL Database Server URL Database Server
URL Database Server URL Database Server

Crawler Crawler

Crawler Crawler Crawler Crawler

Retrieved Data Server

Retrieved Data Server
Retrieved Data Server

Figure 3.2: Hierarchical organisation of centralised servers.

URL-oriented partitioning URL-oriented partitioning methods are those that
divide the Web by assigning URLs to partitions. They eliminate URL duplication
as the same URLs are always retrieved by the same crawlers. The kind of resource
that is transferred between the crawlers is the URL. To measure the effectiveness

of various URL-oriented partitioning methods, we define the following measure:
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Definition 3.1.1 Degree of local URL assignment, PrX(u), is the probability of a
crawler to retrieve the web page of a linked URL w, where u is extracted from a

page retrieved by the crawler and N s the number of partitions.

As the overhead for transferring URLs could be costly, Pr%(u) should be maximized.
Next, numerous URL-based methods are discussed.

A common URL assignment method is URL-based hashing. It hashes URLs to
determine their partition, hence pages referred to by the same URL are retrieved by

exactly one crawler. A good hash function produces an unbiased random partition

1
5

assignment, therefore Pry(u) =

Web pages may be more likely to refer to those that are found within the same
host. For example, the web pages of Yahoo directories contain numerous links to
other pages residing in the Yahoo site. Host-based hashing ensures that URLs from
the same host are retrieved by the same crawler by hashing only the host name,
instead of the entire URL [8].

Country domain takes this approach step further by examining only the coun-
try domain extension of each URL (e.g. “br” for Brazilian’s servers and “sg” for
Singapore’s). Pages whose host names end with the same country domain exten-
sion are located in close proximity geographically. By assigning crawlers to retrieve
pages that are located physically close by, the Internet’s traffic-load and data trans-
fer time can be reduced. For example, a crawler located in Japan is assigned to
retrieve pages whose URL host names end with “jp” (which is the country do-

main extension for Japan). Although work bas been done on geographical crawlers

[12, 64], they are implemented using the centralized database approach.
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The URL hierarchy approach is a variant of URL-based and host-based hashing.
It divides the Web by breaking down a URL into sub-domains. This dissection of
URL does not need to end at the host name, it can be further fragmented down the
directory. A group from IBM Almaden Research Center [60] implemented a URL
hierarchy partitioning approach that dynamically alters the division of Web among

the crawler, in order to perform load-balancing.

Content-oriented partitioning URL does not reflect the content of its associ-
ated page. Since a web page can be referred to by different URLs, URL-oriented
partitioning would result in multiple crawlers obtaining copies of identical web
pages. However this redundancy can be reduced by partitioning the Web based
on the content. URL-oriented and content-oriented partitioning methods differ
in the order in which the partition assignment is determined with respect to the
retrieval of web pages. The former assigns a partition before the web page is
retrieved (pre-retrieval assignment) and the latter assigns a partition after the re-
trieval (post-retrieval assignment). Due to this dissimilarity, the same measurement
for partitioning effectiveness cannot be use on both kinds of methods. To measure
the effectiveness of various content-oriented partitioning methods, we define the

following

Definition 3.1.2 Degree of local page assignment, Pri(8), is the probability of a
crawler assigned to retrieve the links in the page &, where § resides in the same

partition as the crawler and N s the number of partitions.

An example of such approach is content-based hashing. When a crawler is given

a URL, it retrieves and hashes the URL’s web page content. The hash value in-
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dicates the crawler that is to retrieve the child pages of the links from the page.
To avoid repetitious connections to HTTP servers (which are expensive operations
in web crawlers), the retrieved web content (instead of the URL) is transferred
to the corresponding crawler. This hashing approach increases the amount of data
transfer between the crawlers over the URL-based ones, however it reduces content-
duplication. A good hash function produces an unbiased random partition assign-

ment, therefore Priy(§) = .

Combination partitioning Both content-based and URL-based hashing com-
plement each other’s redundancy issues: the former eliminates URL duplication
but fails to address content duplication while the latter ignores URL duplication
but reduces content duplication.

An alternative hashing approach, combination hashing, is to hash on both the
URL and its content. Each crawler is assigned ownership to a set of URLs and a
set of web pages. These sets are assumed to be independent. In other words, a
crawler owns a URL does not imply that it owns the corresponding web page, and
vice versa. When a URL is received by a crawler A, it is checked if it has been seen.
The URL will be removed if so, or the corresponding web page § will be retrieved.
The page ¢ is then hashed to determine its owner (say, crawler B). After B obtains
o from A, it will discard § if the page has been previously seen. If not, each link
from ¢ is extracted and hashed to determine the crawler that has ownership over
the URL. The retrieval process is then repeated after these links are distributed to
their crawlers. This approach has not been implemented but has the potential to

reduce the redundancies faced in URL-based and content-based hashing. However,
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the superiority of this approach comes with a high price tag as large amount of

data needs to be transferred.

3.2 Multitext crawler

The Multitext crawler is a multi-threaded, single processor web spider developed
at the University of Waterloo. The crawler has been used to generate crawls of up

to a tera-byte of web data at a rate of up to 600 KB/sec.

3.2.1 Design of the crawler

The crawler contains multiple independent child processes that operate on batches
of URLs. These batches are processed in ordered stages. They are also processed
concurrently: multiple processes may be working on multiple batches at each mo-
ment.

The child processes are co-ordinated by a crawler manager. The manager begins
by reading a crawler script that specifies parameters, such as the format for input
and output filenames, associated with each process. At each stage, a child process
reads in a set of input files and produces a set of output files, which may then be
treated as the input files for another process. The input files are removed after
being processed by the program if the scripts specifies so. A process is instantiated
by the manager if an input file for that program exist. However, no two instances of
the same process may be ran at the same time. The crawler begins crawling with an
initial URL batch. After the last processing stage, more URL batches are produced.

These batches are fed back into the crawler to repeat the retrieval process. No
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assumption is made by the manager about its child processes. This brings about
a modular design to the crawler, enabling the crawler to be highly extensible;
processes can be added into Multitext crawler to implement new functionality just

by changing the script.

System recovery Instead of circumventing the various possible faults that can
break a crawler, the Multitext crawler takes on a passive approach and focuses on
failure recovery.

When a process is started, it is assigned a URL batch and a unique transaction
number. This number will be used as the suffix on the output files generated by the
process. A transaction log file is updated to indicate the start of this process with
this transaction number. The successful termination of processes are also indicated
in the log file. When a Multitext crawler begins execution, it first reads the log
file (if it exists) to search for processes that failed to commit during the last crawl.
Existence of such processes implies that the crawler was terminated abruptly. The
batches that correspond to these processes are rolled back to their initial state by
removing the files with the transaction number as its suffix and are restarted during

the next crawl.

3.2.2 Tasks of child processes

The following list describes the independent child processes of the Multitext crawler
(see figure 3.3):

o The robot resolver performs two tasks. It implements the Robot Exclusion
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Protocol and maintains a DNS cache that maps host names to IP addresses
(see figure 3.4). This cache reduces the time for resolving host names. Besides
the DNS cache, there is a robot cache that stores information about robots.txt
file of each host. Both caches are updated together. In other words, if an IP
address of a host exists in the DNS cache, then its robots file would be found
in the robot cache. When the resolver is given a URL, it searches for the
host’s IP address in the DNS cache. If it does not exist or is more than a
day old (i.e. it has expired), the host name cache and the robot cache will be
updated. After update of the robot cache, the URL is checked against the
cache to determine if the crawler is restricted from accessing this web page.

Restricted URLs are removed from the batch.

o The fetcher starts multiple threads to retrieve web resources of a URL batch.
Given a URL, each thread connects to the HT'TP server where the resource
resides. After the connection is established, the thread sends a resource re-
quest to the server. The connection is closed by the server after the resource
has been transferred. After the batch is fetched, the retrieved web resources

are merged together.

e The extractor generates a new set of URLs by extracting links (URLs) from
the retrieved web pages by looking into HREF or SRC attributes of every
HTML tag. If a relative URL is specified, it is resolved to its absolute form.

At this point, crawled data is output from the crawler.

o Xdup removes duplicate copies of web pages. The crawler keeps track of dupli-
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cate pages by hashing the content of each page (excluding the HTTP header)
using the MD5 [50] message digest algorithm. Given a string of arbitrary
length, MD5 produces a 128-bit signature. This algorithm is commonly used
to verify data integrity. If a page produces a hash value that has been seen

by the crawler, it is treated as a duplicate page and is discarded.

o The restrictor removes the URLs that are indicative of non-HTML pages
(e.g. those that ends with GIF or JPEG). It also restricts the crawler from
accessing pages that do not belong to a specific domain, For example, the
crawler might only want to retrieve pages that are within the University of

Waterloo domain.

o The filter maintains a database of URLs that have been retrieved and removes
URLs that has been previously crawled. Thus, it addresses the issue of URL

duplication.

e The scrambler shuffles a URL batch to reduce retrieval of web pages from the

same host simultaneously, thus avoiding web server overloading.

o Batch is the last process to operate on each batch of URLs. It distributes the
remaining URLs into several smaller batches that are to be fed back into the

crawler.

3.2.3 System considerations

The Multitext crawler offers options to limit bandwidth utilisation. The crawler at-

tempts to maintain a user-defined rate of incoming data by dynamically controlling
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Figure 3.3: High-level view of the design of Multitext crawler.

the number of fetch threads. This prevents the crawler from dominating network
bandwidth. Crawlers can also be set to idle for a period of time each day. When
a crawler is idling, it has no active child processes. This is to prevent the crawler

from retrieving data in the daytime when the network is shared by many users.
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3.3 The topic-oriented crawling system

We present C4, a novel approach to web data gathering. It is a non-centralized

distributed web crawling system, adapted from Multitext crawler, that divides the
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Web using a topic-oriented partitioning approach.

3.3.1 Topic-oriented partitioning

When a spider of a distributed crawling system enters a page, it retains the resources
(URLs or web pages) that belong to the spider and route the rest to their appro-
priate crawlers. Davidson [13] found that web pages are significantly more likely
to link to pages that are topically related, as opposed to pages that are selected
at random. Thus crawlers that crawl pages on a specific topic may be more likely
to continue retrieving pages on that topic. These spiders are commonly known as
focused crawlers. By dividing the Web into various categories of general interest,
we propose topic-oriented partitioning, a novel approach to web-partitioning for
distributed web crawling.

A spider is assigned to crawl web pages of a specific topic. When it retrieves
a web page, it examines the HTML content to determine the topic that the page
i1s most relevant to. If it is most relevant to the topic that the spider is assigned,
it will be retained. Otherwise, it will be routed to the appropriate spider. For
example, a spider that has the category of ART assigned to it focuses on retrieving
pages that have artistic content. If it comes across a page that contains BUSINESS
content, the page will be transferred to the BUSINESS crawler. We call this form
of distributed crawling collaborative.

This partitioning approach allows the system to be highly scalable. Crawlers
may be added by breaking topics into sub-topics. For example, the category of

BUSINESS might be divided into technological and non-technological industries.
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Crawler boundaries When a crawler in C4 retrieves a page that does not belong
to it, we say that the crawler has reached a boundary. One of our main concerns
is to determine the frequency of a crawler reaching its boundaries. A crawler that
encounters its boundary frequently is inefficient as it needs to route a large amount

of web pages to external crawlers.

3.3.2 Architecture of C4

C4 1s our implementation of a web crawling system that uses the topic-oriented
partitioning approach. This system uses Multitext crawlers to retrieve web pages
from each topic. It allows multiple instances of Multitext crawlers to execute inde-
pendently and provides a corridor to allow interaction between them. To achieve
this behaviour, two processes are added into each Multitext crawler: classifier and
gofer (see figure 3.5).

From a set of categories, the classifier determines the most relevant one to assign
to an arbitrary web page. This set of categories is determined by the categorized
corpus used to train the classifier. The task of gofer is to transfer pages between

the spiders in the crawling system. Next we discuss these two processes in details.

C4 classifier

Given a web page (including the HTTP entity header), the classifier examines its
HTML text to determine its category. This category indicates the crawler that has
ownership over this page. If the page belongs to a remote crawler, then it will be

stored in a local directory waiting to be picked up by the gofer associated with the
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Figure 3.5: C4 classifier and gofer processes for crawler #1.

crawler. Otherwise, it will be retained locally so that its links will be retrieved and
classified by the local crawler.

Although it is possible, not every web page should be assigned to a category
based on its content, as some pages contain HTML text that are not indicative of

any topic. We define a page to be unclassifiable if it is

e EMPTY: a page that has no HT'TP header and no HTML data.

e INVALID: a page that does not have a 2XX HTTP status code.
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e NO-TEXT: a valid web page that does not contain any informative HTML
text. Non-informative text includes punctuation, numerical data and white

space.

These pages, which will not be classified by the classifier, are identified in the pre-
processing stage (see figure 3.6). During this stage, categories are assigned to them
but not based on its content. Empty pages are assigned to the local crawler (cat-
egory) because, otherwise unnecessary overhead is required for transferring these
URLs without any benefit gained (since they have no out-going links). Invalid web
pages, which are mostly re-direct (3XX) and client error (4XX) pages, are also be

retained locally because:

o Re-direct pages often contain URLs where the resources actually reside. There-
fore unnecessary overhead is required if these pages were routed to an external

crawler since they will often be immediately routed back.

e Other form of invalid pages seldom contain URLs. Routing these pages in-

troduces unnecessary transfer overheads.

Valid web pages that do not contain any HTML text are commonly found in the
Web. To avoid duplicate copies of web pages from residing in different crawlers,
these unclassifiable web pages are not retained locally. Instead they are arbitrarily
assigned to category #0.

If a web page is classifiable, it is fed into the topic classifier for categorization.
The classifier plays an important role in C4 as a crawler with an ineffective classifier

reaches its boundary frequently. The objective of the next chapter is to identify a
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classifier that is able to divide the Web effectively so that spiders in our collaborative

crawling system have minimal interaction.

Gofer

The crawlers interact on a pull protocol. In every crawler, there is a directory
for storing batches of out-going pages for each remote (external) crawler. After
pages have been retrieved and classified, those that are assigned to remote crawlers
are stored in their appropriate directories (see figure 3.5). To perform the transfer,
every crawler has a gofer process that looks into its corresponding remote directories
for these batches of web pages. A transfer sequence, which is performed every 30
minutes, involves the copying of pages from the remote directories, follow by the
removal of these pages if they are successfully transferred. Transferred web pages
are then merged. As these are categorized pages, they will not be reclassified,

instead they are directly fed into the extractor (see figure 3.5).
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Chapter 4

Classification of web pages

The objective of this chapter is to identify a classifier for our collaborative crawling
system. The Web is divided into a set of topics, with a crawler assigned to retrieve
pages from each one. When a page is retrieved by a crawler, it is examined by the
classifier to determine its topic. This topic indicates the crawler that is to retrieve
the links from the page. As the classifier is to be used on web data obtained in real
time, its components have to be effective and efficient.

Text categorization is the grouping of text documents into a set of predefined
categories [30, 41]. Since a main focus of our work is to classify web pages into a
set of topics, an area of text categorization that is of importance to our crawling
system is topic classification. Topic classification is the problem of assigning a topic
to a document based on its content. For example, given only EDUCATION and
SPORT categories, a university course web site may be more likely to belong to the
former.

The Web contains documents in many natural lanagues. The natural language

48
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of an arbitrary web page needs to be determined before topic classification can
be applied. Therefore, another aspect of text categorization that we focus on is
language identification, which is the problem of identifying the language in which
a document is encoded.

The focus of this work is on English language pages. Instead of discarding
non-English pages, these pages are grouped into a single category. At the end of
this chapter, a topic classifier and a language identifier is combined to form the C4

Classtfier.

4.1 Classification background

Text Categorization is the problem of assigning predefined categories to text doc-
uments based on the probabilities suggested by a set of training documents. The
words in a document are extracted and weighed against the training data using a
classification method. The category that gives the highest probability is the one
assigned to the document. Given a large set of new documents, a classification
system replaces human judgment by automatically assigning categories to them,
thus producing a large database of categorized documents to support effective and
efficient data retrieval.

The evaluation of a classifier involves two stages: training and testing. Training
a classifier requires a large set of pre-classified documents, in which good discrimi-
nators of each category are identified. A good discriminator of a category is a term
that characterizes the category. For example, the words “gallery” and “university”

are good discriminators of ART and EDUCATION categories respectively. After the
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classifer has been trained, it is tested by re-assigning categories to another large
set of pre-classified documents. The performance of a classifier is measured by the

number of documents that are correctly classified in the testing stage.

4.1.1 Corpus

The corpus to be used as training and testing data needs to be selected before a
classifier can be evaluated. It consists of a large set of documents that are classified
into different categories. Publicly available test collections are gaining popularity as
a common source of corpora to be used for research in text retrieval, because they
eliminate the time needed for data preparation (e.g. converting unclassified data
into classified data) and promote comparison between different implementation of

classification techniques. Some of the publicly available corpora are:

e The Reuter Test Collection is a corpus of full-text newswire stories from
1987 that are classified into more than 100 categories. The most updated
collection contains 21,578 news articles (therefore known as Reuter-21578)

and is publicly available!

e The OHSUMED)|26] corpus was developed at Oregon Health Sciences Uni-
versity to promote medical information retrieval research. It has 18,000 cat-

egories containing over 300,000 medical documents.

e The Web harbours many online hierarchical collections. Each online

collection contains URLs that are categorized into a set of hierarchical topics.

thttp://www.research.att.com/ lewis/
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These collections are commonly used to train and test classification techniques

on Web pages [17, 5].

An example of such a collection is the Open Directory Project (ODP).
ODP is a self-regulated organization maintained by volunteer experts who
categorize URLs into hierarchical class directories. At the top level, there
are 21 categories. Volunteers examine the content of each URL to determine
the class (category) that it belongs to. Each level in the hierarchy contains
a list of URLs of relevant topics and a list of categories for the next level.
This categorized platform can be accessed though the Web?. Alternatively,

the entire directories of categorized URLs can be down-loaded?.

4.1.2 Term representation

A corpus normally consists of a large collection of documents. Various represen-
tation issues of these documents need to be resolved before they can be used as
training and testing data for a classifier. Each document is broken up into individ-
ual words known as terms. These terms are not necessarily individual words and

may also be phrases in the document, such as “New York”.

Term weighting

A weight is allocated to each term to reflect its importance to a document. Let

W(t,0) be the weight of a term ¢ in a document §. Numerous weight assignment

2http://dmoz.org/
3http://dmoz.org/rdf.html
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schemes for W(¢,d) exist and are presented next.

Term frequency A boolean indication of whether a term is in a document is the

simplest form of term weighting scheme:

1 iftis found in &
Wi(t,d) =

0 otherwise
But this representation fails to differentiate the importance of each term that appear
within a document. Hence the more frequent terms in a document are given the
same weight as the uncommon ones. Term frequency (TF) is an improvement over
boolean indication by observing that more significant terms are more frequently

found in a document.

W(t,d) = TF(t,0) = number of occurrence of ¢ in §

Inverse Document Frequency (IDF) I[DF focuses on the occurrence of words
across the collection of documents such that rarely-appearing words in the collection
are more important. Hence common words, such as “the” and “of”, are ranked low
in the list. Many variants of idf have been introduced [32, 10]. For instance, the

tdf of a term ¢ in the collection can be given by

number of documents in the collection )

IDF(t) = log (

number of documents containing the term ¢
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A term weighting scheme that combines ¢f and idf was proposed by Salton [54]:

W(t,5) = TF(t,5) x IDF(¢)

Weighted Inverse Document Frequency A disadvantage of idf is that it
does not distinguish the frequency distribution of terms across the collection of
documents. Consider a collection of D documents such that a term t’ appears once
in every document except in 6*, in which ¢’ occurs numerous times. The idf of ¢/
(which computes to zero) is not very informative since the distribution of ¢’ across
the collection is very skewed. Motivated by this observation, Weighted Inverse
Document Frequency (WIDF) [61] was proposed by using the frequency of each

term in the documents:
TF(t,0)
ZiED TF(tv 51)

W(t,8) =

4.1.3 Document indexing

Indexing documents in a large corpus can be a computational expensive procedure.
The term vector model treats each word as an indexable term and the order in
which the words occurred is ignored. Each document is represented by a high-
dimensional vector of words (known as document vector) in a vector space. Let T' =
{t1,t2, ..., 17|} be the set of terms (words) that appear in a corpus, where ¢; is the
indexable term 7, then document i can be represented as §; = {W; 1, Wia, ..., Wi |}
where W, ; is the weight of term j in document ¢. With this model, documents can
be indexed more efficiently[58]. The term frequency vector model is a common form

of document representation that uses ¢f to denote the weight of each terms in the
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documents.

Phrase indexing addresses the co-occurrence of words in a document by ob-
serving the phrases. Each phrase, which is a term made up of multiple words, is
considered to be in a document if all the words in the phrase occur in it. Fagan [18]
compared syntactic and non-syntactic phrasal indexing representation and found
that the the latter performs better.

Both word and phrasal indexing methods assume that a query is related to a
document based on common words. Retrieval is based on matching the terms in
the queries to those in the indexed documents. These techniques are also known as
surface-based matching [66]. However these word-based techniques fail to address
two fundamental issues of word characteristics: synonymy and polysemy. Synonymy
is the fact that multiple words can have (nearly) the same meanings (e.g. “car” and
“automobile”) and polysemy refers to words that have multiple distinctive meanings
(e.g. “Java” can either be a programming language or an island of Indonesia).
Latent Semantic Indexing (LSI) [15] addresses these deficiencies by using singular-
value decomposition to arrange documents in a document space. It observes the
latent semantic of words to position documents with similar conceptual content in
close proximity. After the documents have been indexed, the retrieval is carried
out by using the query terms to identify a single document, which is then returned

to the user along with its neighbouring documents.
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4.1.4 Classification technique

Ounly after various term and document representation formats has been determined,
can classification be performed. Numerous methods have been proposed for classi-
fying text documents and are reviewed in this section. In particular, three classi-
fication methods that we have compared experimentally will be studied in detail.
These methods are chosen because they are easy to implement. We believe that if
these simple methods prove to be effective for the collaborative crawling system,

then more complex algorithms will be worth exploring.

Naive Bayes Classifier

Let C be a space with K mutually exclusive and exhaustive partitions such that
C1UCU...UCK = C and for every i € {1,...,k}, the prior probability of category
C; is greater than zero (i.e. Pr(C;) > 0). Bayes” Theorem defines the probability of
assigning an instance § to partition C’ € C as:

Pr(C") Pr(d|C")

Pr(C'|§) = Sk Pr(Ci) Pr(6]C))

To find the most probable category C* assignment to &, Pr(C*|d) needs to be
computed for every category. Hence the classification decision rule can be simplified

to

C* = mfax Pr(C;) Pr(4]|C)

=1

Naive Bayes text classifier (NB) is commonly studied in text categorization [44].

The naive aspect of the classifier, which is the assumption that terms found in a
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category are independent from each other, greatly improves the efficiency of the

classification. The decision rule of NB states that

C*(6) = maxlog { D) I W (w, Ci)"¢ }

=1
wed

where C* is the category assigned to a new document &, W(w, C;) is the weight of a
term w in category C; and n(4, w) is the number of times w occurs in the document.

A variation of NB that has been studied uses a binary model on n(d,w) [35].

Lewis’ approach

Lewis [40] extended a probabilistic text retrieval model (proposed by Fuhr [21]) to
text categorization. He proposed that Pr(C; = 1|4), the probability of assigning

category C; to document J, can be estimated by

Pr(W; = 1|C; = 1) x Pr(W; = 1|§) = Pr(W; = 0/C; = 1) x Pr(W; = 0|6)
Pr(C; = D)x]] ( Pr(W; = 1) + Pr(W; = 0) )

2

where
e Pr(C; =1) is the prior probability of category Cj.

e Pr(W, = 1) is the prior probability that feature W; is present in a randomly

selected document.

e Pr(W, = 1|C; = 1) is the probability that feature W; is assigned to a doc-
ument given the knowledge that C; is assigned to that document. Pr(W; =
01C;=1)=1-Pr(W, =1|C,;, = 1)
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e Pr(W, = 1]4) is the probability that feature W; is assigned to document 4.

Pr(W; = 06) = 1 — Pr(W; = 1/5)

Rocchio-TFIDF

Relevance feedback is a common approach to information retrieval by improving a
query through user feedback (see section 2.3.2). Rocchio Relevance Feedback [51]
uses term frequency (TF) and inverse document frequency (IDF) to determine the
weight of each query term. Numerous variations of the Rocchio alorithm have been
proposed. The variant that is tested here is defined as follows [30]: let T F(w,d)
be the term frequency of the word w in the document 6, F' be the set of features
and the inverse document frequency IDF(w) = log %('w), where | D] is the size of

the document and DF(w) is the number of documents in the training data that

contains w. The decision rule of assigning the category C* to a new document ¢’ is

C*(8') = masx Lwer(TF(w,8)IDF(w))(TF(w,C)IDF(w))
ceC VEwer(TF(w',C)IDF(u'))?

Other classifiers

Support Vector Machine. Support vector machine (SVM) was initially target-
ted at pattern recognition, but has been gaining popularity in the area of classi-
fication [17, 31]. In short, it defines a hyperplane in a document vector space to
separate the positive documents from the negative ones. Platt [48] proposes an
alternative algorithm for training SVM: Sequential minimal optimization (SMO).

SMO improves the efficiency of the classification by breaking a large quadratic
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problem in the SVM into a series of small quadratic problems that can be solved

analytically.

K Nearest Neighbour (kNIN). The algorithm of kNN [65] is straightforward.
Given a document 4, it finds the k& most similar documents from the training data.
The category of ¢ is then determined from the categories assigned to these docu-
ments. The weight of each category is obtained by summing the similarity scores
between these neighbouring documents and §. The category with the highest weight

is then assigned to 4.

Linear Least Squares Fit. LLSF [66] is an example-based mapping method for
document retrieval and classification. Given an initial set of queries, documents
are selected using a surface-based matching retrieval technique (4.1.3). Words from
each set of retrieved documents are added to the associated query, which is in turn
used to obtain more related documents that were not retrieved by the inital query.
A LLSF technique therefore may be used to determine the related documents of

arbitrary queries.

4.1.5 Feature engineering

After a classifier has been trained, each category is characterized by a set of terms.
These terms are known as features. Due to noises in the training data, these features
may contain bad discriminators that affects the performance of classifiers. Therefore
the feature set is often put through a series of selection and extraction steps to

amplify good category discriminators, while removing bad ones. Various feature
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engineering processes have been investigated, including straightforward approaches
such as the removal of stop words (e.g. “the”, “of”, “are” etc) and the least and

most frequent words.

e SFS and SBS [29] modify the feature set by examining the features one at a
time. Stepwise Backward Selection (SBS) temporarily removes a feature and
then evaluates the classifier with the reduced set. If the deleted feature does
not deteriorate the classifier performance, it will be permanently removed.
This process is then repeated for every feature. Stepwise Forward Selection
(SEFS) works in the reverse order. A feature is added into an increasing feature

set if it improves the classification.

e Combined Stepwise Selection (CSS) [55] incorporates SBS, SE'S and ez-
haustive pairwise search. The pairwise search method is similar to both SBS
and SFS methods except that the classifier is tested on all subsets of two fea-

tures. It takes into consideration the fact that many features occur in pairs

(e.g. “New York”).

e Document Frequency [67] considers the number of documents in which
each feature is found. It assumes that features that appear in more documents

are more important.

e Term strength [68] estimates the importance of each feature by observing

its likelihood of appearing in sets of closely-related documents.
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4.1.6 Document clustering

Text categorization is the classification of new documents into a set of pre-defined
categories. Therefore, categorized corpora are needed to train classifiers to identify
the categories of documents. Such corpora are uncommon but can be built from un-
categorized ones by manual inspection of each document. However, this approach
is time-consuming, thus it is undesirable. An alternative to manual inspection is
to cluster documents automatically based on their similarity values. Each docu-
ment is given a value based on its content. Unlike text categorization, clustered
documents are not associated with predefined topics, clustering merely groups doc-
uments. Various methods have been adopted to determine the similarity values of

documents:

e Word/Phrase-intersection [70] groups documents that contains words (or

phrases) that are shared by all documents in the cluster.

e Locality-Sensitive Hashing [59] hashes similar values to similar docu-

ments.
e Term clustering [33] is the grouping of terms with similar meaning.

e Term clustering of syntactic phrases [42] is a clustering method proposed

by Lewis that combined both term clustering and syntactic phrasal indexing.

Conventional clustering methods are based on the words found in the docu-
ments. However link analysis has been applied to document clustering on the Web

using two algorithms [14]. These algorithms take the URL of a page to retrieve a
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set of related Web pages based on the connectivity information and not the content
of the pages. The companion algorithm identifies authority pages that are in close
locality to a source page. It first builds a vicinity Web graph of the input page, then
uses a modified HITS algorithm to retrieve the top authority pages in the graph.
The co-citation algorithm is an alternative approach to the above. It returns the
pages that has the highest degree of co-cited nodes. Two pages are co-cited if they
are referred to by a common parent page. Pages of similar interest tend to have

high degree of co-citation (number of common parent pages).

4.2 C4 Topic Classifier

The objective of this experiment is to determine a classification technique that not
only classifies web pages accurately and efficiently, but also tends to classify a child
page (link) in the same category as its parent. Considering the diversity of web
content, the above mentioned points are not neccessary the same.

Three classification methods are compared: Naive Bayes (NB), Lewis and Rocchio-
TFIDF. These methods are chosen because they are simple and have low compu-
tational complexities (O(n), where n is the number of words). Prior probabilities
required by the first two classification methods are assumed to be uniform across

all categories.

4.2.1 Training and testing data

The Open Directory Project (ODP) corpus is selected for training and testing our

classifier. It is chosen because its categorized data (web pages) are very similar
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to our target platform (the Web). A snapshot of 673 MB of data was obtained
from the ODP in November 2000. It contains URLs that are classified into their
corresponding categories. For the purpose of our experiments, the entire URL
directory tree is collapsed into the top categories, 17 of which contains categorized
URLs (i.e. are non empty). Among these non-empty categories, the content of two

of them were found to be overly unfocused for our classifier:

e the REGIONAL category contains web pages that are specific to various ge-
ographic areas. It organizes sites according to their geographic foci and rel-
evance to particular regional populations. For example, web pages about
the climate survey in the arctic and those about Arab Human Rights in the

Middle East can be found in this category.

e the WORLD category contains sites of non-English languages. Instead of us-
ing the classification technique to identify non-English pages, the language
identifer uses a different approach that does not require training data. How-
ever, this category is used to test the identifier. The language identifier is

explained in detail in section 4.4.

Hence only fifteen categories are chosen (see table 4.1).

Adult Arts Business
Computers Games Health
Home Kids/Teens  News
Recreation  Reference  Science
Shopping Society Sports

Table 4.1: Top categories in ODP chosen to be used in the English topic classifier.
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Data selection criterion. After the categories have been determined, we pro-
ceed in the following manner to obtain the data for testing and training the classifier.
After removing non-http URLs in all the categories, the remaining URLs of each
category are randomly divided into two equal and disjoint sets. 500 web pages are

then retrieved from these sets. Each page has/is

HTTP tag of “content-type: text/html”.

a valid HTML page (i.e. 2XX connection status code. See section 2.1).

more than 50 words, excluding HTML tags and scripts.

identified as English page. The identification technique used is discussed in

section 4.4.

These retrieved pages totalled to 227 and 232 MB respectively (see table 4.2 for

the breakdown).

Term extraction. Before a web page can be processed, it must be broken down
into tokens. There are three kinds of tokens: HTML tags, scripts and text. As clas-
sification of the web pages is to be based only on the text, our HTML document
parser ignores the HT'TP header, and removes all HTML tags and scripts. Numer-
ical data are removed as well. The remaining text is tokenized into words based
on white spaces and punctuations. These words are then converted to lower case.
The parser also attempts to interpret common HTML entity characters that can
be represented by 7-bit ascii codes (e.g. “&lt;” is interpreted as “<” and “&amp;”

as “&”). The other entity characters are treated as whitespace.
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Category Training Testing
Data Size (MB) | Data size (MB)

Adult 11.3 12.8
Arts 13.5 13.6
Business 10.7 11.1
Computers 14.8 16.7
Games 13.5 12.9
Health 17.6 17.1
Home 25.2 26.4
Kids/Teens 12.8 13.8
News 12.2 12.2
Recreation 124 12.1
Reference 21.1 20.1
Sclence 18.3 18.5
Shopping 12.8 12.4
Society 15.1 15.6
Sports 15.9 17.0

Table 4.2: Size of training and testing data gathered for each category.

Category characterization. FEach category is characterised by a list of terms
extracted from the training data web pages. Each term is associated with two
weight values: the number of term occurrences in the category and the number of

documents the term appears in.

4.3 Classification experiments

Naive Bayes (NB), LEWIS and Rocchio-TFIDF are the topic classification tech-
niques that were compared. As the final classifier is to be used in our collaborative
crawling system, its requirements are different from the conventional ones which fo-

cuses only on accuracy. The classifiers were compared by conducting three different
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experiments:

1. Classification Methods Comparison inquired about the classifiers’ performance

on different categories.

2. Hyperlink Relationship was an experiment we designed specifically for this
thesis. It looked into the performance of classifiers in the Web hyperlink
environment. We want to identify a classifier that would categorize a page

and many of its links under the same category.

3. Classification throughput identified the classifier that is able to categorize the

most amount of pages in the shortest time.

4.3.1 Classification Methods Comparison

To carry out the first experiment, 500 testing pages from each category were fed
into the three methods for classification. The result is shown in figure 4.1. The

means and variances of precision of the methods are computed:

NB LEWIS ROC-TFIDF

Average 60.7 % 58.2 % 43.7 %

Variance || 212.6964 356.8354 125.9911

The low mean value of ROC-TFIDF excludes the technique out of the competition.
Between NB and LEWIS techniques, the former achieved 2% higher accuracy than

the latter, with a smaller variance.
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Figure 4.1: Performance of classifiers on different categories.

4.3.2 Hyperlink Relationship

This experiment investigated the performance of each classifier in a hypertext en-
vironment, particularly the probability of routing a child page to another crawler.
As a crawler gathers pages from the web, it needs to determine which category
each page should be assigned to. That, in turn, determines the crawler assigned
to retrieve and classify the links from the page. Classifiers that assign many child
pages to external categories generate heavier overhead to perform the transfer of
these pages, thus they are considered inefficient.

100 web pages were randomly selected from each category in the testing data.
Up to five random links from each page were retrieved and classified. We recorded
the number of pages that were classified under the same category as their parent
pages. This likelihood is shown in figure 4.2. The average and variance of this

likelihood was also computed:
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NB LEWIS ROC-TFIDF

Average 624 % 623 % 48.9 %
Variance || 101.6592 70.7912 85.1478

NB and LEWIS performed competitively in this experiment. An average link clas-
sified using one of these methods had a probability of 62% of assigning the same

category as its parent page. ROC-TFIDF performed relatively poorly at only 49%.
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Figure 4.2: Likelihood of a link to be classified under the same category as its
parent page.

4.3.3 Classification throughput

The classification will be performed on web data obtained in real time by the
distributed crawling system. An inefficient classifier is a potential bottleneck that
slows down the crawling process. This experiment investigated the throughput of

each classifier. 30,000 web pages with an average length of 7,738 bytes each were
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fed into the classifiers. The following table showed the number of web pages the

classifiers categorized in a second:

Category NB LEWIS ROC-TFIDF

Throughput (pages/second) || 19.50  2.89 1.61

LEWIS performed almost twice as fast as ROC-TFIDF’s, but NB significantly out-
performed the rest; NB classified almost 12 times more pages than ROC-TFIDF’s

each second.

4.3.4 Discussion

NB produced the best result in all three experiments and ROC-TFIDF produced
the worst. Although NB and LEWIS performed competitively in the first two
experiments, it is the third experiment that mades NB the most attractive classifier
as it was able to categorize web pages substantially faster than the other two. Hence

NB was selected for use in our collaborative web crawler.

4.4 Language Identification

Given an arbitrary web page, the language in which the page is presented needs to
be identified before data processing can be performed on it. This can be determined
by looking at the HTTP character set field (“char-set”) and the HTTP language
fields, however they are often unavailable. Even if they are available, the language
specified may not be consistent with the web content.

Multilinguality is a major concern in this research. Web pages that are of non-

English content are referred to as foreign pages. As our topic classifier is trained
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on an English corpus, using it to categorize foreign pages would produce erroneous
results. Therefore, our crawlers need to determine if a page is of English content
before it can be classified into topics. There has been exhaustive research in the
area of language identification; current identifiers have a correctness of over 90%.
Despite this encouraging result from these identifiers, we propose a fast and simple
algorithm since our requirements for a identifier subtlely differ from the classical

o1nes:

1. Classical identifiers attempt to recognise multiple languages while ours iden-
tifies only English pages. Therefore implementing an identifier for multiple

languages is not only overkill, but it is also computational costly.

2. Classifical identifiers train and test on a pre-defined set of languages. The re-
sults of these identifiers when categorizing languages that they are not trained
on were rarely (if ever) made available. However the Web contains many lan-
guages using various encoding scheme (character-sets). Using the classical
approach to identify a random page obtained from the Web, the classifier has
to train on web pages of all encoding schemes. Such training data ia hard to
obtain. Therefore, the target corpus for our identifier contains languages not

found in the training data.

3. Most identification techniques are concerned only with the accuracy and ig-
nore the efficiency of the algorithms. However, the language identifier, like the
topic classifier, has to perform on an enormous amount of web data obtained

in real-time. Hence it not only has to be accurate, but also efficient.
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Despite these differences, comparing the results of multiple language identifiers

to that of ours provides a good reference as to how well our identifier performs.

4.4.1 Classical language identification techiques.

Several approaches to language identification are introduced next.

Unique character string. A simple approach is to look for substrings in words
that are characteristical to a language [57]. For example, the string czy is unique
to Polish. The task is to identify unique string sequences among all the languages.

However, unique substrings are hard to find as the language domain increases.

Common words approach. Another simple approach to language identification
is to observe the common words of various languages [11]. For example, the frequent
occurrence of words such as “the” and “of” highly suggests that it is an English
text. Likewise, el and de would suggest Spanish. However the performance of this

approach deteriorates as the text size reduces.

N-gram frequency profile. N-gram is an approach that takes a step further
with “unique character string” by slicing a string into a set N-character contiguous
sub-strings. For example, the various n-grams of word “GAME” (with padded
blanks (“*”) at the head and tail of the word) would be:

bi-grams: {*G, GA, AM, ME, E* }

tri-grams: {**G, *GA, GAM, AME, ME*, E** }
quad-grams: {**G, **GA, *GAM, GAME, AME* ME** E*** }
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Cavnar and Trenkle [3] constructed a n-gram frequency profile from the training
data. It was tested on 3,713 language samples, which averaged at 1,700 bytes. The

results produced an accuracy of over 90%.

4.4.2 Language identification on the Web

Classical identifiers are able to identify only languages that they are trained on.
Hence the results of recognising unknown languages are not mentioned in many
papers. This poses a problem on the Web where languages are diversified.

A language identification web spider was implemented by a group from New
Mexico State University [11]. Like the classical identifiers, this one identifies a
(large) set of predefined languages. The algorithm used by the spider was a variable
n-gram approach, which was an extension from the method proposed above by
Cavnar and Trenkle. Their error rate ranges from 11.92% (for 20-byte pages) to

0.27% (for 1000-KB pages).

4.4.3 Design and performance

A list of English words is available in a file (“/usr/dict/words”) on every Unix
operating system. In Linux Redhat version 2.0.36 (which was the operating system
used for our experiments), the file contains 45,402 distinct words. The words were
sorted in increasing order, ignoring upper and lower case. Certain Unix platforms
(such as SunOS version 5.6) exluded words that end with the letter “s” if the same
word without the last letter “s” was already in the list. For example, “success” and

“make” were found in the list, but “makes” was not.
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Using this list of words, we designed a simple method to determine if a web
page is of English content. A brute-force approach was taken to parse web pages
by assuming that the characters adhered to US-ASCII encoding scheme, however
characters that were encoded in invalid forms (non-zero most significant bit) were
not interpreted. In other words, characters with an ascii value of more than 127
were processed as they were.

g

Let w be a word in a document §. Define w® as the word w with the last

character (if it exist) removed, and let E(w)

1 if w or w® was found in the word list
E(w) = (4.1)

0 otherwise

> E(w) (4.2)

wed

1

Pr(¢ is English) = 7]

Proportionality Cutoff K. First we needed to determine the Proportionality
Cutoff K for our identifier such that the document ¢ is an English page if Pr(d) >
K. If K was too large, we would be rejecting many English pages. Conversely, we
would end up classifying many foreign pages if a small K" was used.

Sixteen categories were chosen from ODP. Of these categories, only one (WORLD)
is of foreign content, while the rest (see table 4.1) are of English content. The iden-
tifier is tested on 500 web pages selected randomly from each category. Figure 4.3
shows the number of pages classified as English. The following table shows the

precision of the identifier at three values of cutoff K:
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Figure 4.3: Distribution of Pr(d) across different ranges of cutoff A

K=04 K=05 K=06

English categories | 98.1 % 96.1 % 90.9 %

Foreign category 56.4 %  73.8%  82.6 %

The optimal value of K should produce high precision on both the English and the
Foreign categories. K at 0.4 is a bad cutoff as over 40% of the foreign pages were
classified wrongly. By increasing K from 0.4 to 0.5, the loss of 2% over English
pages is expiated with a gained of 17% over the foreign ones. However from 0.5
to 0.6, it loses 5.2% for a gain of less than 10%. Hence K is set at 0.5. After
removing noise from our training data (such as English pages that are in the non-
English category), the identifier has an accuracy of 90.22% and 96.1% on identifying
foreign and English pages respectively.

Despite its simplicity, the identifier is able to produce high accurarcy.
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4.5 Components of the C4 Classifier

A language identifier and a topic classifier that are efficient and effective have been
presented in this chapter. The identifier and classifier are combined to form the
C4 Classifier (see figure 4.4). When the classifier is given a classifiable web page, it
uses the language identifier to determine if the web page is of English content. If
it 1s, it will proceed to classify the web page into a pre-defined set of topics using

the topic classifier.

C4 Classifier

assign
tothe
WORLD
category

Non-Eninish web pages

Classifiable Language Identifier

web pages

English web pages

assign
tothe
classified
category

Topic Classifier

Figure 4.4: Categorization of classifiable web pages by C4 Classifier.

The C4 Classifier is trained to recognise a total of sixteen categories, of which
fifteen are based on the topics of interests (see table 4.1). The sixteenth category

contains pages of non-English content and is named as the WORLD category (note
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that the training data for this category is not associated with the WORLD category
in ODP).



Chapter 5

Experimental results

This chapter presents the data gathering results of C4. The collaborative web
crawling system retrieved web pages for about a month. The experimental setup is
described in the first section, followed by the results. Finally, a discussion on these

results is presented.

5.1 Experimental setup

The collaborative crawling system deployed sixteen instances of the Multitext crawler.
Each crawler was assigned to retrieve web pages of a particular category and no
two crawlers were assigned to the same category. When a web page was retrieved
by a crawler in the system, the crawler verified that it was a classifiable web page.
If it was, the crawler proceeded to categorize it into one of sixteen categories using
the C4 Classifier. Of these categories, fifteen contained English pages of various

topics (see table 4.1). The sixteenth (WORLD category) contained foreign pages.

76
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Hardware specification. The distributed setup for C4 was simulated over a
cluster of six workstation servers. Each server had a 300MHz processor with 128
MB of RAM, and ran Linux kernel version 2.0.36. Of these six servers, five executed
three crawlers and one a single crawler. The following table shows the categories

that were installed on each server:

Server Categories assigned

A ADULT, ARTS, BUSINESS
COMPUTERS, GAMES, HEALTH
HOME, KIDS, NEWS
RECREATION, REFERENCE, SCIENCE
SHOPPING, SOCIETY, SPORTS

MmO A

WORLD

As the servers were connected to the University of Waterloo shared network, each
crawler was set to retrieve data at a rate of 16 KB/sec to prevent it from dominating
the university’s external bandwidth. Retrieval was also limited to six hours at night
when the network traffic is low. When the execution time ended each morning, the
active processes were not terminated abruptly. Instead they were allowed to run to
completion but no new processes were spawned. A crawler is said to be idling if it
has no child processes running. Therefore, during that period, it retrieves no web

data.



CHAPTER 5. EXPERIMENTAL RESULTS 78

5.2 Results

5.2.1 General retrieval results

The crawling experiment was carried out over a period of 28 days, spanning across
May and June 2001. Throughout this period of time, C4 was not retrieving data
constantly. Besides idling in the daytime, the crawlers were shut down periodically
for maintenance. Whenever a crawler is resurrected from a shut down, it would
continue its retrieval from where it was interrupted. In the month of June 2001
when C4 was running, the university sent 1052 GB and received 2148 GB of data

over its external links. Of these, 0.005 GB and 123 GB (5.7%) were sent and

received by the crawlers.

Total exection duration (hours)

ADU  ART BUS COM GAM HEA HOM KID NEW REC REF SCI SHO SOC SPO WOR

Crawler

Figure 5.1: Duration of the crawlers in execution mode.

Child processes were spawned and terminated constantly in each crawler. A
crawler is considered to be active or in its ezecution mode when it has at least one
living child process. Figure 5.1 shows the amount of time the crawlers were active

during the experimental period.
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Figure 5.2: Number of URLs retrieved by each crawler.

URLs retrieved. A total of 8.912 million URLs were retrieved by the C4 Classi-
fiers. These pages totalled to 137.36 GB of data for an average of 16.12 KB/page.

Figure 5.2 and 5.3 shows the distribution of these data across the crawlers.

5.2.2 Topic classification

After the pages were retrieved, they were fed into the pre-processing stage of the
topic classifier before they were categorized based on their HTML text. In this

stage, unclassifiable pages were identified.

Unclassifiable pages. The unclassifiable web pages were identified during the
pre-processing stage. These pages fell into three groups: empty pages (i.e. no HTTP
header), invalid pages and valid pages that had no text. A total of 2.111 million web
pages, 23.69 % of all the URLs retrieved, were identified as unclassifiable. These
pages summed to 5.57 GB of web data, 4.1 % of all the web data retrieved. The

distribution of these unclassifiable pages over the categories is showed in table 5.1.
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Figure 5.3: Amount of web data retrieved by each crawler.

43.0% of these unclassifiable URLs were empty pages, 14.9% contain no text and

the remaining 42.1% were non-2XX (invalid).

Classifiable pages. Classifiable web pages constituted 131.79 GB of data (95.9
%). Categories were assigned to these pages by the topic classifier based on their
content. The probability that a URL in a category will remain in the same category
as 1ts parent page is presented in figure 5.4. Appendix A and B shows the amount

of URLs and web data distributed by each crawler respectively.

5.2.3 Duplicate retrieval by crawlers

Duplicate pages are those that are retrieved by more than one crawler. The URLs of
these pages are found in web pages of various topics. Figure 5.5 shows the amount

of duplicate pages retrieved by multiple crawlers.
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Category | Empty No Text Invalid
ADU 47263 (0) | 157304 (2.809) | 42213 (0.167)
ART 47292 (0) | 5896 (0.066) 56422 (0.056)
BUS 58290 (0) | 12183 (0.140) | 47067 (0.051)
COM | 57660 (0) | 7910 (0.122) 55643 (0.065)
GAM | 52384 (0) | 11617 (0.114) | 64153 (0.070)
HEA 58088 (0) | 5775 (0.052) 44518 (0.043)
HOM | 21922 (0) | 4218 (0.054) 36223 (0.056)
KID 55608 (0) | 8296 (0.086) 57661 (0.056)
NEW | 59689 (0) | 7176 (0.106) 46598 (0.061)
REC 52140 (0) | 9917 (0.095) 55635 (0.048)
REF 94957 (0) | 10511 (0.135) | 69602 (0.069)
SCI 79479 (0) | 7415 (0.105) 60427 (0.047)
SHO 42565 (0) | 8883 (0.084) 55140 (0.045)
SOC 54715 (0) | 8017 (0.101) 53823 (0.060)
SPO 41217 (0) | 6100 (0.074) 35748 (0.033)
WOR | 35748 (0) | 42867 (0.428) | 108770 (0.071)

Table 5.1: The number of URLs that were identified as unclassifiable during the
pre-processing stage of the topic-classifer. The values in brackets indicate the cor-
responding amount of retrieved data (in GB).

5.2.4 Transfer of pages between English and foreign crawlers

Classifiable web pages were fed into the C4 Classifier for categorization. The
classifier had two main components: the language identifier and the topic classifier.
The first component verified if a page was a foreign page. If so, it would categorized
the page under WORLD. Otherwise the second component categorized the page
under one of the fifteen English categories. To analysis the performance of language
identifier, we broke up the entire classified data into two groups: English and
Foreign. The English group contains web pages that were retrieved by the English

crawlers, and the Foreign group contains those retrieved by WORLD crawler.
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Figure 5.4: Percentage of classifiable URLs assigned to the same category as its
parent page. This result is compared against the theoretical result of a hashing
approach, which is constant at 6.25% across all categories.
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Figure 5.5: Amount of duplicate pages retrieved by multiple crawlers.

Of the 6.801 million classifiable pages, 9.3% were classified as foreign web pages.
Among the 0.558 million URLs retrieved by crawler #16 (WORLD), 45% were
foreign ones. The probability of an English web page pointing to a foreign one and
vice-versa were 6.88% and 55.0%.



CHAPTER 5. EXPERIMENTAL RESULTS 83

5.3 Discussion

5.3.1 Crawlers’ retrieval rate

Although the crawlers were ran under numerous network restrictions (such as the
daily idling interval and maximum data retrieval rate), they generated 5.6% of the
incoming network traffic for the entire university during the month of June 2001.
During this time, the crawlers were retrieving data at an average rate of 13.2 KB /sec

and none retrieved more than the pre-set limit of 16 KB/sec (see figure 5.6).
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Figure 5.6: The rate of retrieval of each crawler, with an averaged of 13.2 KB/sec.

5.3.2 URL duplication

In this section, we explore the issue of URL duplication in C4. The number of
pages retrieved by multiple crawlers reflect the effectiveness of partitioning the
Web by topic. A badly partitioned Web results in multiple pages visited by multiple

crawlers. This redundancy is costly in a distributed web crawling system and should

be avoided.
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URL duplication occurs when the same URL was found in web pages of different
topics. To measure this redundancy, we looked into the URLs of pages that were
retrieved by each Multitext crawler. We found that the number of duplicate pages
retrieved sharply decreased as the number of crawlers that retrieved them increased
(see figure 5.5). 89% of web pages were retrieved by exactly one crawler and more
than 96% of web pages were retrieved by two crawlers or less.

Only 654 pages, less than 0.0001% of all pages, were retrieved by every crawlers.
Most of these pages did not reflect a single distinctive interest. An example of such
pages that are referenced by web pages of all topics is the “Yahoo!” web portal

(http://www.yahoo.com).

5.3.3 The influence of unclassifiable pages
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Figure 5.7: Ratio of classifiable pages against the unclassifiable ones.

Next, we examine the number of web pages retrieved by the crawlers that were
unclassifiable. If the amount of unclassifable web data is high, then the topic-
oriented approach is not effective since most of the data is not classified based on

content.
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The ratio of classifiable web pages against those that were not was approximately
1 to 4 in all categories except category #0, which was at 1 to 1 (see figure 5.7). This
is because pages of Adult content tend to contain graphical pages with no words. In
the entire crawl, 23.69% of URLs were unclassifiable. These pages constituted less
than 5% of the actual data retrieved. There was a substantial difference between
the number of unclassifiable URLs and the size of their content because these web

pages were generally small in size:

1. Empty pages did not have any HTTP nor HTML content, therefore they

contain zero bytes.

2. Invalid pages are mostly redirected (3XX) and client error (4XX) pages.

These pages are generally small in size.

3. Although it was not always the case, no-text pages were usually small in size.

In total, the no-text web pages consisted of 4.571 GB of web data, which was
82% of all the unclassifiable web data. These pages made up the most unclassifiable

ones because many of them contained large amounts of HTML tags or scripts.

5.3.4 Performance evaluation of the classifier

Next, we assess the performance of C4 Classifier. As the amount of unclassifiable
web data (5% of all data) is small, this analysis of the classifier does not take it

into consideration.

Crawler boundaries A crawler that encounters its boundary frequently is in-

efficient as it needs to route large numbers of web pages to external crawlers. To
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measure the probability of a crawler encountering its boundary, we observe the
amount of pages it retrieved that belongs to another crawler. The average proba-
bility of a classifiable web page to be assigned the same category as its parent page
is 39.48 %. The similar (hyperlink relationship) experiment that was carried out
earlier in section 4.3.2 yields a probability of 62.4%. The result deteriorates in the
crawling experiment because, unlike the earlier experiment which used web pages
that were pre-categorized into specific interests, numerous web pages retrieved by

the crawlers did not reflect a distinctive topic.

Category #0 classification Crawler #0 retains less than 4% of its child pages
(see table 5.4), which is worst than the random approach which yields 6.25%. This
result differs greatly from that of hyperlink relationship experiment in section 4.3.2
where Category #0 produces the best result. It seems to suggest that either pages
of this category often contained links of various topics or the classifier was badly
trained in identifying these pages. However, after examining the web pages retrieved
by the crawler #0, we found that it was the unclassifiable web pages that caused
the mediocre result.

Web pages that contained no text were assigned to the same category (i.e. #0).
These pages (e.g. frame pages), although they contained no text, may contain links
to other web pages. Therefore, crawler #0 would retrieve these links and categorize

them to various topics since their parent pages are from different categories.

English Language Identifier Crawler #16 (WORLD) is assigned to retrieve

foreign pages. Its probability of retaining a web page (Pry(§)) is about 45% (see
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figure 5.4). Despite that language identifier result had deteriorated by half in
comparison to the similar experiment carried out in section 4.4.3, the classifier for
crawler #16 still performed better than an average one (at 39.48%). Therefore the

language identifier is appropriate for use in C4.

5.3.5 The feasibility of topic-oriented partitioning

Despite a decline in the result of hyperlink relationship experiment on actual web
data, topic-oriented partitioning of the Web is still feasible for a distributed web

crawling system. If content-based hashing were to be used on our distributed

crawler, degree of local page assignment (i.e. Pri(3)) is + = 6.25%. However,

C4 produces a result (Prly(§)=39.48%) that is more than six times better than the

hashing techniques (see figure 5.4).



Chapter 6

Conclusion

This thesis identifies the importance of web partitioning in distributed web crawling
systems and proposes a novel approach by dividing the Web into different topics.
The proposed approach employs multiple focused crawlers to retrieve pages from
various topics. When a crawler retrieves a page of another topic, it routes the page
to the approriate crawler.

Classification is the means to assign web pages to crawlers. Of the topic clas-
sification techniques we compared, Naive Bayes is the most approriate for our
collaborative crawling system. We also propose a simple and efficient, yet effective,
language identifier. Despite its simplicity, the identifier was able to obtain an accu-
racy of over 90%. The language identifier and the topic classifier are then combined
to form the C4 Classifier, which is incorporated into the crawling system.

C4 is the implementation of our proposed topic-oriented collaborative web
crawling system. It divides the Web into sixteen categories, of which fifteen are

based on English topics. The system assigns a Multitext crawler to retrieve web

88



CHAPTER 6. CONCLUSION 89

pages from each topic. Although these crawlers operate independently, data are
transferred between them constantly.

A crawling experiment was carried out on C4 over a period of 28 days. The
results of the experiment were encouraging. Despite the various restrictions applied
to each crawler, the crawling system was able to retrieve data at a rate close to
the predefined limit. URL duplication was low; more than 96% of web pages
were retrieved by two crawlers or less. Every page retrieved by a crawler has a
probability of 39.48% to have its links retrieved by the same crawler. This value
is six times higher than the content-hashing technique. We view these numbers
as strong indications that topic-oriented collaborative crawling system is a viable

approach to web data gathering.

6.1 Future work

The positive results of the experiment encourage future work to follow up on the
results reported in this thesis.

The current implementation of C4 treats all pages within each topic as having
the same qualities. However, consider two web pages d; and d, from the same
partition P such that the probabilities of each page to be categorized under P is
60% and 90%. We would like to investigate whether the pages referred to by 4, are
more likely to be categorized under the same partition than those of §; since d, has
a higher probability.

URL duplication is a major concern in C4. The retrieval results showed that

the percentage of URL duplication is low. Our hypothesis is that as more data
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is retrieved, this percentage will continue to decrease until a certain threshold is
reached, after which it will increase. We also wonder if URL duplication would
increase with finer partitions. Furthur experiments are required to evaluate these
hypotheses.

Crawler #0 failed to retain most of its child pages No-text pages were assigned
to a common partition. This is to ensure that every successful (2XX) pages is
assigned uniquely to a web crawler to reduce content duplication across the crawlers.
However, the retrieval result of Crawler #0, which is the chosen one, was marred
by the no-text pages. The overall result may improve if an independent crawler is
to retrieve only no-text. It was also observed that most of the out-going pages went
to Crawler #16 (see appendix A). It is unclear why most of its child pages were

identified as foreign ones. Furthur investigations are required.
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Appendix A

URLs distribution to crawlers
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Figure A.1: Distribution of URLS from Adult crawler to others.
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Figure A.2: Distribution of URLS from Arts crawler to others.
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Figure A.3: Distribution of URLS from Business crawler to others.
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Figure A.4: Distribution of URLS from Computers crawler to others.
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Figure A.5: Distribution of URLS from Games crawler to others.
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Figure A.6: Distribution of URLS from Health crawler to others.

HOME

70

8

% URL
8

20

10

0 -
ADU ART BUS COM  GAM HEA HOM KID NEW REC REF SCI SHO SocC SPO WOR

Category assigned

Figure A.7: Distribution of URLS from Home crawler to others.
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Figure A.8: Distribution of URLS from Kids/Teens crawler to others.
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Figure A.9: Distribution of URLS from News crawler to others.
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Figure A.10: Distribution of URLS from Recreation crawler to others.
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Figure A.11: Distribution of URLS from Reference crawler to others.
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Figure A.12: Distribution of URLS from Science crawler to others.
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Figure A.13: Distribution of URLS from Shopping crawler to others.
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Figure A.14: Distribution of URLS from Society crawler to others.
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Figure A.15: Distribution of URLS from Sports crawler to others.
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Figure A.16: Distribution of URLS from World crawler to others.
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Data distribution to crawlers
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Figure B.1: Amount of data distributed from Adult crawler to others.
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Figure B.3: Amount of data distributed from Business crawler to others.
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Figure B.6: Amount of data distributed from Health crawler to others.
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Figure B.9: Amount of data distributed from News crawler to others.
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Figure B.10: Amount of data distributed from Recreation crawler to others.
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Figure B.12: Amount of data distributed from Science crawler to others.
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Percentage of distribution to

crawlers
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Figure C.1: Percentage of distribution (of URLs and Web data) from Adult crawler
to others.

113



APPENDIX C. PERCENTAGE OF DISTRIBUTION TO CRAWLERS 114

ARTS

100

80

60
X M URL

40 [] web data

20

0 mﬁﬂwéﬂﬂ%ﬂ

ADU ART BUS COM GAM HEA HOM KID NEW REC REF SCI SHO SOC SPO WOR

Category

Figure C.2: Percentage of distribution (of URLs and Web data) from Arts crawler
to others.
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Figure C.3: Percentage of distribution (of URLs and Web data) from Business
crawler to others.
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Figure C.4: Percentage of distribution (of URLs and Web data) from Computers
crawler to others.
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Figure C.5: Percentage of distribution (of URLs and Web data) from Games crawler
to others.
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Figure C.6: Percentage of distribution (of URLs and Web data) from Health crawler

to others.
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Figure C.7: Percentage of distribution (of URLs and Web data) from Home crawler
to others.
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Figure C.8: Percentage of distribution (of URLs and Web data) from Kids/Teens

crawler to others.
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Figure C.9: Percentage of distribution (of URLs and Web data) from News crawler
to others.
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Figure C.10: Percentage of distribution (of URLs and Web data) from Recreation
crawler to others.



APPENDIX C. PERCENTAGE OF DISTRIBUTION TO CRAWLERS 117

REFERENCE

100

80

60

X M URL
40 [] web data

20
0

ADU ART BUS COM GAM HEA HOM KID NEW REC REF SCI SHO SOC SPO WOR

Category

Figure C.11: Percentage of distribution (of URLs and Web data) from Reference

crawler to others.
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Figure C.12: Percentage of distribution (of URLs and Web data) from Science

crawler to others.
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Figure C.13: Percentage of distribution (of URLs and Web data) from Shopping

crawler to others.
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Figure C.14: Percentage of distribution (of URLs and Web data) from Society
crawler to others.
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Figure C.15: Percentage of distribution (of URLs and Web data) from Sports
crawler to others.
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Figure C.16: Percentage of distribution (of URLs and Web data) from World

crawler to others.



