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Abstract

This thesis considers two routing and scheduling problems. The first problem is task
allocation and sequencing for multiple robots with differential motion constraints. Each
task is defined as visiting a point in a subset of the robot configuration space – this
definition captures a variety of tasks including inspection and servicing, as well as one-
in-a-set tasks. Our approach is to transform the problem into a multi-vehicle generalized
traveling salesman problem (GTSP). We analyze the GTSP insertion methods presented
in [1] and we provide bounds on the performance of the three insertion mechanisms. We
then develop a combinatorial-auction-based distributed implementation of the allocation
and sequencing algorithm. The number of the bids in a combinatorial auction, a crucial
factor in the runtime, is shown to be linear in the size of the tasks. Finally, we present
extensive benchmarking results to demonstrate the improvement over existing distributed
task allocation methods.

In the second part of this thesis, we address the problem of computing optimal paths
through three consecutive points for the curvature-constrained forward moving Dubins
vehicle. Given initial and final configurations of the Dubins vehicle, and a midpoint with an
unconstrained heading, the objective is to compute the midpoint heading that minimizes
the total Dubins path length. We provide a novel geometrical analysis of the optimal
path, and establish new properties of the optimal Dubins’ path through three points. We
then show how our method can be used to quickly refine Dubins TSP tours produced
using state-of-the-art techniques. We also provide extensive simulation results showing
the improvement of the proposed approach in both runtime and solution quality over the
conventional method of uniform discretization of the heading at the mid-point, followed
by solving the minimum Dubins path for each discrete heading.
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Chapter 1

Introduction

1.1 A Distributed Task Allocation and Sequencing

Algorithm for Robots with Differential Constraints

Task allocation and sequencing is a fundamental component of multi-robot operation and
has been studied extensively [2, 3]. The problem consists of finding an assignment between
tasks and robots along with an ordering of the tasks assigned to each robot. The objective
is typically to minimize the average time, maximum time, or energy consumption of per-
forming all tasks. A wide variety of task types and robot models have been considered in
the literature, are reviewed in [2, 3]. Our focus is on tasks that require a robot to visit a
location in the workspace. In this area, the literature can be divided based on 1) single or
multiple robot, 2) centralized or distributed, and 3) vehicle dynamics or simple motion.

For a single robot the problem is simply one of task sequencing. If the robot does not
have dynamics, then computing an ordering of task locations is a traveling salesman prob-
lem (TSP), for which very successful heuristic and approximation algorithms exist [4, 5].
A simple class of TSP algorithms are insertion heuristics [6], which operate by repeat-
edly inserting a new vertex into a partial tour. Two such heuristics, nearest and cheapest
insertion, provide 2-factor approximations to the optimal tour.

For a single robot with dynamics, the Dubins vehicle model in which vehicle paths have
bounded curvature is commonly studied. Early papers on the Dubins TSP include [7, 8].
In [9], a method for solving the Dubins TSP was proposed based on conversion to the
generalized traveling salesman problem (GTSP). In the generalized traveling salesman
problem, the cities are partitioned into disjoint sets, and the goal is to find a tour that
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visits one city in each set. The GTSP can be solved via a reduction to the TSP, or directly
using GTSP solvers [10]. A similar conversion to the GTSP was proposed for planning
tours for a robotic arm in [11], for a single Dubins TSP with neighborhoods [12] and for
high-level task sequencing problems [13]. Sequencing problems have also been considered
for differential drive and Reeds-Shepp models [14].

For multiple robots without dynamics, the centralized problem can be posed as a multi-
vehicle TSP. In [15], a reduction is given from the multi-vehicle TSP to the single vehicle
TSP for the min-sum objective. An approximation algorithm has also been recently de-
veloped for the objective of minimizing the maximum path length among vehicles [16].
In [12], a GTSP approach was proposed for the problem of multiple shortest tours through
generalized neighborhoods under dynamic constraints of the Dubins vehicle. In this study,
the discrete representation of the configuration space at the neighborhoods is converted to
a GTSP.

The distributed problem for multiple robots without dynamics is commonly solved
using market-based auctions [17, 18, 19]. When there are an equal number of robots and
tasks, the problem is commonly referred to as task assignment [20, 21]. There are two
main auction-based approaches: 1) bidding on individual tasks in each auction [22, 23], or
2) bidding on subsets of tasks in each auction, known as combinatorial auctions [24, 25].

The advantage of bidding on subsets of tasks is a faster convergence rate, while the
main drawback is the additional computational complexity [17] as the number of subsets
grows exponentially with the number of tasks. Moreover, winner determination in the
combinatorial auction is shown to be NP-hard [26]. Therefore, there are several techniques
to limit the number of subsets [24] and heuristics to approximate the winner determination
problem [27]. A successful auction-based approach for allocation and sequencing is the
consensus-based bundle algorithm (CBBA) [17], which uses consensus algorithms to spread
bids between robots. Each robot generates a single subset of tasks and bid on the tasks in
the subset.

In the first part of the thesis we focus on distributed task allocation and sequencing
for heterogeneous robots with differential motion constraints, for which prior work is lim-
ited. The CAPT algorithm [28] provides a solution when the number of tasks equals the
number of robots, and thus sequencing is not required. To the best of our knowledge,
the existing studies on the distributed task allocation for multiple robots with dynamics
constraints propose decoupling the motion constraints from the task allocation problem
[29, 30]. These algorithms consist of a task allocation and sequencing phase with assump-
tion of Euclidean distances between the points, followed by a trajectory planning phase
that converts the sequence of tasks to feasible tours. Although the decoupling of the task
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allocation and trajectory planning reduces the complexity, the resulting paths may suffer
in the quality [31].

1.2 Optimal Dubins Path Between Three-Consecutive

Points

Routing problems for non-holonomic vehicles have been studied extensively in the fields of
robotics and autonomous systems [12, 7, 32, 33]. The non-holonomic motion of a forward-
moving Dubins vehicle with bounded turning radius [34] is commonly studied as a model
for fixed-wing aerial vehicles. A configuration of a Dubins vehicle consists of a location
(x, y) in the Euclidean plane and a heading α ∈ [0, 2π). The motion of the Dubins’ vehicle
with minimum-turning radius Rmin and control input u ∈ [−1/Rmin, 1/Rmin] is governed
by the following equations:

ẋ = cosα, ẏ = sinα, α̇ = u.

Dubins [34] provided the set of candidate optimal paths between pair-wise configura-
tions of the Dubins vehicle.

In this thesis, we focus on the Dubins path problem between three consecutive points,
where headings at only the initial and final point are fixed. Our interest in this problem
stems from two applications. First, given a Dubins path through a set of points, a fast
solution to this problem provides a method for inserting a new point into the Dubins path
with minimum additional cost. Second, we show how it can be used as a tool to perform
repeated local optimizations on a Dubins path through a set of points.

Related work: Ma et al. [35] study the optimal Dubins paths for three consecutive
points where the initial heading is fixed and the midpoint and final point have free headings.
Under the assumption that the pairwise Euclidean distance between all points is at least
2Rmin, the authors provide a sufficient condition for the optimal path between the points.
In addition, a receding horizon algorithm is proposed to construct feasible Dubins path on
an ordered set of points.

The authors of [36] formulate a family of convex optimization sub-problems to address
the problem of the optimal Dubins path between a set of n ordered points with distance at
least 4Rmin apart. The drawback of the approach is that the number of convex optimization
sub-problems can grow to 2(n−2) in the worst case. Their approach provides a solution to the
three-point Dubins problem, but it requires solving several convex optimization problems.
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A heuristic was recently proposed [37] to extend this method to the problem of Dubins
paths through neighborhoods.

Another closely related problem is the Dubins TSP, where given n points, the objective
is to sequence the points and choose a heading at each point such that the resulting Dubins
tour length is minimum. In [8, 30, 38], approximation algorithms are proposed to assign
headings to the points given the optimal ordering of the Euclidean TSP problem on the
same set of points. In [38], the headings are assigned by a heuristic solution to the three-
point Dubins problem considered in this thesis. This heuristic approach is adopted in [39]
to insert points into the tours of multiple-Dubins vehicles.

In [9], the continuous interval of headings at each point is approximated by a finite
number of samples. Each sample, along with the position of the corresponding point forms
a configuration, and the problem reduces to computing a generalized traveling salesman
problem (GTSP) tour that visits one configuration for each point. The authors in [40]
present an experimental comparison of Dubins TSP algorithms including the GTSP ap-
proach. Recently and built on the results for the pairwise optimal Dubins interval path,
Manyam and Rathinam [41] proposed a Dubins TSP algorithm based on uniform discretiza-
tion of the headings at each point to intervals.

In Table 1.1, we provide references to the studies involving Dubins vehicle based on the
different features of the problems. The notations in the table are defined as follows:

(i) Multiple-ordered: The problem of planning feasible Dubins vehicle path between
multiple points with fixed order;

(ii) D.E.: Abbreviation of Dynamic Environment. In the studies with this notation, the
tasks arrive in time;

(iii) N: Tasks are defined as visiting a neighborhoods;

(iv) Polygonal car: Dubins vehicle in a polygonal shape;

(v) (A): Autonomous underwater vehicle(AUV); and

(vi) (d): Distance constraint between the points.
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1.3 Thesis Contribution

We analyze two routing problems in this thesis. For the task allocation problem, the
main contribution of this thesis is to provide a distributed algorithm for task allocation
and sequencing for multiple robots with dynamics. Tasks are defined as subsets of the
robot configuration space. A robot completes a task by visiting any point in the subset.
Building on prior work [11, 9], we transform the problem into a multi-vehicle GTSP. We
provide bounds on the performance of three GTSP insertion methods proposed in [1] that
are generalization of TSP insertions [6]. We then provide a distributed implementation
of the insertion methods based on large-neighborhood search, and benchmark the perfor-
mance of the approach on several instances from the TSPLIB [62]. Our approach utilizes
an optimization framework called large neighborhood search (LNS) [63], which has been
successfully applied to several vehicle routing problems [64, 65]. The high-level idea is to
begin with a candidate solution and then repeatedly perform destroy and repair proce-
dures. If the cost of the new solution satisfies an acceptance criterion, then it is accepted
and the procedure is repeated.

The focus of second part of the thesis is to provide an efficient method for computing
the optimal Dubins path between three consecutive points. We present a novel analysis of
the problem that relies on inversive geometry, and results in a set of equations defining the
optimal heading at the mid-point. We provide a simple method to approximate the optimal
heading, and give bounds on its worst-case deviation from optimal. We then present an
iterative method that is guaranteed to converge to the optimal solution. In simulation, we
compare our approach to the uniform discretization method of [9] in both solution quality
and computation time. Finally, we show that a Dubins TSP can be solved using a coarse
heading discretization followed by repeated heading optimization using our technique to
achieve high-quality tours in approximately 8% of the computation time.

1.4 Organization

The thesis is organized as follows. A review of the literature on task allocation prob-
lems is presented in Chapter 2. In Chapter 3, we provide mathematical preliminaries and
background on combinatorial problems, vehicle models and geometrical properties of circle
inversion. Chapter 4 discusses the problem of distributed task allocation in systems of
robots with motion constraints. In Chapter 5, we present our method for the optimal Du-
bins problem between three consecutive points. Finally, the conclusions and our directions
for the future research is presented in Chapter 6.
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[34, 42] + - - - + - - + - - -

[8] - + - - - - + + - - -

[36] - + - - - - + + - - - 4Rmin (d)

[9, 41, 43] - - + - - - + + - - -

[35] + + - - - - + + - - - 2Rmin (d)

[40] - + + - - - + + - - -

[44, 45] + - - - + - - + - - - Steady wind

[46] + - - - - + - + - - -

[47, 48, 49] + - - - + - - - + - -

[50] - - + + - - - + + - + D.E.

[15] - - + - - - + + - - +

[51] + - - - + - - + - + - Polygonal car

[52] + - - - + - - + - - - Bounded velocity

[53] - - + + - - + + - - -

[54] + - - - - - + + - - +

[29] + + - - - - + + - - + Underwater current(A)

[55] - + - - - - + + - - +

[56] - + - + - - + + - - -

[57] - - + - - - + + - - - Uncertainty

[58, 59] - - + - - - + + - - +

[60] - + - + - - + + - + - Area Coverage

[61] + - - - - - + - + - - Implementation

Table 1.1: References to the studies involving Dubins vehicles.
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Chapter 2

Literature Review

The task allocation problem for a system of agents is extensively studied in the literature.
Several variations of this problem are formulated and addressed with various techniques,
including exact and approximation methods. Researchers have studied the problems with
complex tasks, uncertain and dynamic environments and constraints on the agents. Mainly,
following aspects define a task allocation problem:

• Centralized, decentralized or distributed algorithm;

• Objective function, e.g. minimizing the maximum tour cost or the total tour cost;

• Complex or simple tasks;

• Heterogeneous or homogeneous agents;

• Dynamic or static environment;

• Exact, approximation or heuristic methods; and

• Constraint on the agents e.g. capacity, energy and motion constraints.

In this section, we have an emphasis on the studies addressing multi-agent routing
problem which is the primary purpose of this thesis. Simple task in the literature is
defined as visiting a location in the workspace. Several constraints on the tasks define
various complex tasks in the studies in this area, however, the definitions usually include
visiting locations.
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2.1 Centralized Task Allocation

The centralized task allocation algorithms assume a central unit with complete awareness
of the environment and tasks. The central unit plans the trajectories for each agent and
broadcasts it to the agents. The centralized approaches have the computational load on
a central unit (can be a non-mobile unit) and provide the opportunity to use smaller
agents. In the downside, agents are required to remain in the communication range of the
centralized unit. As a consequence, these algorithms limit the operation area. Moreover,
these methods are susceptible to communication loss and agent failures.

A class of centralized algorithms is based on reducing the task allocation problem to
well-studied problems e.g. TSP. Various factors of the problem affect the computational
effort required to solve the problem. For instance, the capacity of an agent with limited
energy resources indicates the maximum capability of the agent to perform tasks. The
capacity is a crucial aspect of the problem in the terms of time complexity. The problem
of assigning n tasks with the minimum total cost to m agents (m > n) with the capacity
of performing one task is optimally solved in polynomial time with a reduction to the
matching in bi-parted graphs [66].

In task allocation problem for mobile robots, the cost of performing a task is defined as
the time to reach and complete a task. Therefore, the cost depends on the sequencing of
the tasks in an agent’s path. The problem of assigning tasks with the objective of minimum
total cost (i.e. min-sum) is shown to be NP-hard and a reduction is given to the traveling
salesman problem (TSP) [15, 67]. The reduction based task allocation methods, utilizing
the state-of-the-art TSP solvers [4] and the computational capacity of the central unit,
offer solutions with good quality for the task allocation in static environments. However,
these algorithms suffer in dynamic environments, where the tasks arrive sequentially in
time. These algorithms have to generate and solve a new TSP instance, including the new
tasks, for each task arrival.

Several studies also consider centralized algorithms without providing reductions to
the TSP [68, 69, 70, 71, 16]. These algorithms are polynomial in time with practical or
mathematical performance guarantees. Moreover, they offer more flexibility to problems
with dynamic environments compared to the reduction based algorithms. The collision-free
trajectory assignment is another factor in designing planning algorithms. Two approaches
are considered in this matter: 1) Planning paths without considering collisions and relying
on the lower-level local planners to avoid obstacles; 2) consider the obstacles in the planning
procedure [70, 28]. Turpin et al. [28] consider an obstacle-free environment and plan
trajectories to avoid collisions between the agents. Assuming capacity of one task for the
agents, authors proved optimality for the generated trajectories.
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One of the few studies offering a mathematical guarantee for the task allocation problem
capturing the minimization of the maximum tour cost (min-max) is a centralized approx-
imation algorithm with a 5-approximation factor [16]–assuming homogeneous agents with
no constraint on their capacities.

2.2 Distributed Task Allocation

The centralized algorithms are highly dependent on the communication between the central
unit and the agents, however, the distributed [72, 17, 73, 74, 18, 19, 75, 76] methods allocate
and sequence the tasks independent of a central unit. We do not distinguish between the
terms decentralized and distributed task allocation since there are few subtleties in the
definitions of the terms. A brief description of the both terms and the differences is
given in [77]. To leverage the drawbacks of depending on a central unit, the decentralized
and distributed algorithms distribute the computational load of planning between the
agents. As a consequence of eliminating the requirement of connection to a central unit,
the operation area becomes larger. The connectivity of each agent to the network of agents
at any time is the most common assumption in the decentralized algorithms.

Eliminating a central unit with a complete awareness of the tasks and the assigned
agents leaves agents with partial information. In order to avoid conflicts in the assignments
– a result of inconsistent awareness of agents on the assignment of the tasks – two methods
are proposed in the literature as follows: 1) Assuming a shared memory between the
agents [72, 78] 2) reach a consensus on the information between the agents [17, 76].

A set of decentralized algorithms generating sub-optimal assignments are the market-
based algorithms [17, 19, 50, 79, 80, 81]. In [19] authors give an auction based algo-
rithm for different objective functions with approximation factors. In a system of m
robots and n tasks, the algorithm is a 2-approximation for min-sum objective function
and a 2m-approximation for min-max problems. The Consensus-Based Bundle Algorithm
(CBBA) [17] is a decentralized auction algorithm consisting of two phases, namely bidding
and consensus. The agents place bids on the tasks with the maximum revenue and spread
the bid between other agents with a consensus algorithm. For a communication graph
with diameter D, the number of communications required to converge a final assignment is
upper-bounded by min{n,mD}. Moreover, the final assignment ensures 2-approximation
of the total optimal path cost. The auction phase in the CBBA between different pairs
of agents take place simultaneously. Later, this algorithm adjusted to have asynchronous
auctions, while preserving the mathematical properties [82].
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The auction algorithms are also divided based on their bidding mechanisms. In [74],
authors characterize the performance of several auction structures based on the number of
agents and tasks involving in each auction. In [23], several TSP-based bidding mechanism
are proposed, where the agents bid on an individual task. On the other hand, several task
allocation algorithms consider bids on subsets of tasks [24, 83]. The advantage of bidding
on subsets of tasks is the fast convergence rate of the auctions, however the determination
of the winners is the bottleneck. Authors in [84] provide a survey of the literature of the
market-based task allocation problem.

Several decentralized and distributed task allocation algorithms are proposed to cover
constraints on the tasks. A generalization of the simple tasks are the tasks require visiting
a neighborhood [85, 50]. In [86], a distributed algorithm proposed for the assignment
of grouped tasks. In [87], authors provide an extension of the decentralized algorithm
CBBA to address the assignment problem of tasks with coupled constraints. Authors
in [88] consider tasks requiring more than one agent to visit. The constraints in the task
allocation problem are not limited to the tasks. In [50], authors assume curvature bounded
motion for the agents and propose a decentralized auction-based algorithm.
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Chapter 3

Preliminaries

In this chapter we provide some background on the mathematical concepts for the thesis.
In Section 3.1 we give definitions from graph theory presented in [89]. Section 3.2 presents
definitions of some combinatorial problems. Section 3.3 provide background on standard
vehicle models and Section 3.4 presents the preliminaries on the circle inversion.

3.1 Graphs

A graph G is a pair of sets G = (V,E), where v ∈ V represents a vertex in the graph and
E ⊆ V × V is the set of edges between the vertices. An edge is pointed from u to v if the
ordered pair (u, v) is in E. A graph is complete if there exist an edge (u, v) ∈ E for every
u, v ∈ V, u 6= v.

Definition 3.1.1 (Weighted Graph). A graph G is a weighted graph if there is a function
c : E → R>0 assigning values to each edge e ∈ E.

Definition 3.1.2 (Undirected Graph). A graph G is undirected if for every edge (u, v) ∈ E
there is an edge (v, u) ∈ E.

Definition 3.1.3 (Subgraph). Subgraph of a graph G is a graph G′ = (VG′ , EG′) where
VG′ ⊆ V and EG′ ⊆ E. A subgraph G′ is called a spanning subgraph if VG′ = VG.

Definition 3.1.4 (Path). A path P in graph G is a subgraph (VP , EP ) with vertices
{v1, v2, . . . , vk+1} such that vi 6= vj for 1 ≤ i < j ≤ k + 1 and

EP =
{

(vi, vi+1)|i ∈ {1, . . . , k}
}
⊆ E.
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Equivalently a path can be represented as a sequence of vertices from v1 to vk+1 connected
by edges.

Definition 3.1.5 (Cycle). A cycle C in graph G is a subgraph (VC , EC) with vertices
{v1, v2, . . . , vk+1} such that vi 6= vj for 1 ≤ i < j ≤ k + 1 and

EC =
{

(vi, vi+1)|i ∈ {1, . . . , k}
}
∪ {(vk+1, v1)} ⊆ E.

A spanning cycle is called a tour.

Definition 3.1.6 (Connected Undirected Graph). An undirected graph G is connected if
for every pairs of vertices u, v ∈ V there exist a path in the graph G from u to v.

Definition 3.1.7 (Tree). A tree T = (VT , ET ) in an undirected graph G is a connected
subgraph with no cycle.

Definition 3.1.8 (Minimum Spanning Tree). A spanning tree T in an undirected graph
G is a tree such that VT = V . Minimum spanning tree in a weighted graph, is a spanning
tree with minimum total weight, i.e.

∑
e∈ET ce.

The following section discusses number of combinatorial problems related to graph
theory that we will be referring to in the thesis.

3.2 Combinatorial problems

Consider a graph G = (V,E, c) consists of a set of vertices V , a set of edges E and edge
costs c : E → R>0.

The traveling salesman problem (TSP): Given a complete weighted graph G, the
TSP is the problem of finding a tour T = (V,ET ) that minimizes the sum of the edge costs
on the tour

∑
e∈ET c(e).

The generalized traveling salesman problem (GTSP): Given a complete weighted
graph G = (V,E, c) along with a partition of its vertex set into m mutually disjoint sub-
sets (V1, V2, . . . , Vm), the GTSP is the problem of finding a tour T = (VT , ET )that includes
exactly one vertex from each subset Vi (i.e., |VT ∩ Vi| = 1 for each i ∈ {1, . . . ,m}) and
minimizes

∑
e∈ET c(e).

The multi-vehicle GTSP (MGTSP): In the multi-vehicle GTSP, we are given
a complete graph G = (V,E, c) with vertex partition (V1, V2, . . . , Vm) and a number of
vehicles Nv. The goal is to find Nv tours that collectively visit each vertex set exactly once
and with minimum total length. More precisely, the goal is to find tours T j = (VT j , ET j),
j ∈ {1, . . . , Nv} such that
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(i) VT j ∩ VTk = ∅ for each j, k ∈ {1, . . . , Nv};

(ii) | ∪Nvj=1 VT j ∩ Vi| = 1 for each vertex set Vi; and

(iii)
∑Nv

j=1

∑
e∈E

Tj
c(e) is minimized.

Combinatorial auction problem: We are given a set C = {c1, . . . , cm}, a set of subsets
{S1, . . . , Sn} where each Si ⊂ C, and non-negative price for each subset pi > 0. Our goal
is to find a set of subsets W taken from among {S1, . . . , Sn} that forms a partition of C
and has maximum total value,

∑
i|Si∈W pi.

3.3 Vehicle Dynamics

The following are three commonly-used models for vehicle dynamics. For each model, the
shortest path between two configurations can be efficiently computed [90].

3.3.1 Dubins vehicle

The model describes a vehicle with bounded turning radius. The equations of motion are

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = u.

where u ∈ [−v/Rmin, v/Rmin], (x, y) ∈ R2, Rmin is the minimum turning radius of the
vehicle, and v is the constant velocity. The optimal path between any pair of configurations
of the Dubins vehicle is limited to 6 possible path types. Let L,R denote the turn to left
and right, respectively and S denote the traversing a straight line. Any optimal path is a
member of set {LRL,RLR,LSL,RSR,RSL,LSR} [34].

3.3.2 Reeds-Shepp car

The Reeds-Shepp’s car model extends the Dubins model to allow the vehicle to travel in
reverse, and is a more realistic model of a four-wheeled vehicle such as an automobile.
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Letting ω ∈ {−1, 1} be the forward and reverse gears, and u ∈ [−v/Rmin, v/Rmin], the
model is

ẋ = ω v cos θ,

ẏ = ω v sin θ,

θ̇ = u ω.

Additional to the motion primitives of Dubins vehicle, the Reed-Shepp car requires a
notation of froward or reverse gear.

3.3.3 Differential drive robot (DD):

The DD robot actuates two wheels independently and is capable of changing its heading
without translation. Let ur, ul be the angular velocities of the right and left wheels, r be
the radius of the wheels and L be the distance between the them. Then, the model is

ẋ =
r

2
(ur + ul) cos θ,

ẏ =
r

2
(ur + ul) sin θ,

θ̇ =
r

L
(ur − ul).

In this thesis, we use the term TSP with prefix of a vehicle model name (e.g., Dubins
TSP) to denote a minimum length tour for the vehicle on a given set of vertices. In general
we refer to the TSP problem involving a robot with differential constraint as VTSP where
V represents the dynamics of the robot.

3.4 Circle Inversion

In two dimensional geometry, circle inversion [91] is a mapping of a geometric object Q
with respect to a circle C = circle(O,R) to another object inv(Q, C). The inverse of points,
lines and circles are defined as follows:

Definition 3.4.1 (Inverse of a point). The inverse of a point P with respect to C is a point
P ′ on the segment OP with distance R2

|OP | from P .

Figure 3.1 depicts the geometrical method to find the inverse of point P .
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Figure 3.1: The inverse of point P with respect to circle C = circle(O,R).

Definition 3.4.2 (Inverse of a line). The inverse of a line l is obtained by inverse of points,
with respect to C, on the line, i.e. ∀P ∈ l,∃P ′ = inv(P, C) such that P ′ ∈ inv(l, C).

The inverse of a line is either a line or a circle. Following define the inverse of a line
with respect to C = circle(O,R).

(i) If O ∈ l, then the inverse of the line is the line itself,

(ii) If O 6∈ l, then the inverse of the line is a circle passing through O.

Definition 3.4.3 (Inverse of a circle). The inverse of a circle Q is obtained by inverse
of points, with respect to C, on the circle, i.e. ∀P ∈ Q,∃P ′ = inv(P, C) such that P ′ ∈
inv(Q, C).

The inverse of a circle is either a line or a circle, and the inverse is well defined by
inverse of three point on the line. Following conditions define the inverse of a circle with
respect to C = circle(O,R).

(i) If O ∈ Q and Q does not intersect C, then the inverse is a line tangent to Q at O,

(ii) If O ∈ Q and Q intersects C, then the inverse is a line passing through the intersection
points of Q and C,

(iii) If O 6∈ Q, then the inverse is a circle passing through O.

With a slight abuse of terminology, we define inverse of a line segment S with respect
to C to be the inverse of the infinite line containing the line segment S with respect to C.
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The angle between a circle and an intersecting line is defined as the angle between the
line and the tangent to the circle at the intersection point. Following proposition provides
a property of the circle inversion on preserving angles between intersecting lines.

Proposition 3.4.4 (Circle inversion preserves angels). The angle between two intersecting
lines, l1, l2 equals the angle between the inv(l1, C) and inv(l2, C).
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Chapter 4

A Distributed Task Allocation and
Sequencing Algorithm for Robots
with Differential Constraints

4.1 Problem Formulation and Approach

In this section, we present the task allocation problem and give a procedure for converting
it into a GTSP instance.

4.1.1 Task Allocation and Sequencing Problem

Consider a group of Nr robots with differential constraints on their motion, located in
a planar workspace X ⊂ R2. The team is given a set of Nt tasks to accomplish with
minimum traveling distance. The location of a robot can be specified by an (x, y) location
in X, and the configuration of the robot is a point in Q = X × Θ, where Θ describes the
remaining states of the robot. For example, for the three models above, Θ = S1 is the set
of heading angles of the robot. We define a task ti as a subset of Q, consisting of a subset
of locations Xi ⊂ X and a subset of states Θi ⊂ Θ:

ti = {(x, y,θ)|(x, y) ∈ Xi, θ ∈ Θi}.
Several common tasks fit in this definition. For example, the simple task of visiting a
location using any configuration (i.e., any heading) is captured when Xi contains a sin-
gle point and Θi = Θ. A constrained version where Θi ⊂ Θ captures tasks in which
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only certain configurations can be used to complete the task. Finally, setting Xi =
{(x0, y0), (x1, y1), . . . , (xk, yk)} captures one-in-a-set tasks, where a robot can complete a
task by visiting just one of several locations.

4.1.2 Conversion to GTSP

Our approach is to construct a GTSP graph that represents each task along with shortest
tours between tasks. To do this, we select discretized configurations from each task. The
set of n discretized configurations from the space Xi×Θi for task i is denoted by tni . In [9],
the Dubins TSP (in which each task i contains a single (xi, yi) location) is converted to
a GTSP by selecting equally spaced headings θ at the location. Thus, the n discretized
configurations of task i are

tni =
{

(xi, yi, θj) | θj =
2π

n
j, j ∈ {1, . . . , n}

}
.

Given Nr robots and Nt tasks, we construct a GTSP as follows. We define a complete
weighted graph G = (V,E, c) and a partition of V into m = Nt + Nr mutually disjoint
subsets V1, V2, . . . , VNt , V 1, . . . , V Nr , where

(∪Nti=1Vi) ∪ (∪Nri=1V i) = V.

The set Vi, where i ∈ {1, . . . , Nt}, contains a vertex v for each discretized configurations
of tni . There is a single vertex in each vertex set V i, i ∈ {1, . . . , Nr} representing initial
state (depot) of the robots. Additionally, we let xu denote the location of the discretized
configurations associated with the vertex u in the working space X. We will refer to xu
simply as the location of the vertex u. The weight of the edge c(u, v) is the cost of the time
optimal path between (xu, θu) and (xv, θv). We assume that these edge weights satisfy
the triangle inequality. Note that, in the case X = R2, this assumption holds for time
optimal paths of three vehicles models in Section 3.3, due to the fact that the weight of
an edge between two vertices is the minimum time to travel between the corresponding
configurations. However, the edge weights are non-symmetric for the Dubins vehicle, and
thus only the directed triangle inequality holds [9]. In more general workspace X, where
the point-to-point paths are obtained by the sampling-based planners [93, 94], we take the
metric closure of the graph [92], in which the edge between two vertices is replaced with
the shortest path between the vertices in the graph.

Given the graph G, our objective is to find Nr tours T i = (VT i , ET i), i ∈ {1, . . . , Nr}
such that 1) each tour T i includes the vertex in V i, 2) the tours collectively visit the Nt

vertex sets exactly once and 3) the sum of the tour cost is minimized.
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Remark 4.1.1 (Computing Edge Weights). The conversion to GTSP relies on efficient
computation of optimal point-to-point paths between configurations. In the case X = R2,
each point-to-point path can be computed in constant time for the three vehicle models
in Section 3.3, since there exist an only finite number of candidate shortest paths between
any two configurations [90]. In a more general workspace X and other vehicle models, close
to optimal paths are provided by the sampling based point-to-point planners [93, 94]. •

4.2 An Insertion Heuristic for the GTSP

A class of insertion methods for constructing GTSP tours are presented in [1]. In this
section, we apply these methods to construct TSP tours for vehicles with differential motion
constraints.

4.2.1 Insertion Methods

The insertion methods presented in [1] are the extensions of the class of insertion methods
defined for constructing TSP tours in [6]. These extensions are as follows.

Consider a GTSP graph G = (V,E, c), a sub-tour T = (VT , ET ), a vertex set Vi such
that Vi ∩ VT = ∅, and a vertex v ∈ Vi. We find the edge (u,w) ∈ ET which minimizes
the insertion cost, i.e. cost(u, v, w) = c(u, v) + c(v, w)− c(u,w), and construct a sub-tour,
denoted by TOUR(T, v), by deleting the edge (u,w) from T and adding the edges (u, v)
and (v, w) to T .

In a GTSP graph with m vertex sets, an insertion method starts from a sub-tour T1
with one vertex and creates a sequence of sub-tours T1, . . . , Tm by inserting a vertex v ∈ Vi,
where Vi ∩ Ti = ∅ at each step, i.e.,

Ti+1 = TOUR(Ti, v).

The final tour Tm includes a vertex from each vertex set and the tour is an approximation
for the optimal GTSP tour.

For each insertion heuristic, a vertex set is chosen for insertion, and then the vertex
in that vertex set with minimum insertion cost is inserted in between in the tour position
that minimizes the insertion cost. To simplify the language, we refer to this insertion as
“inserting a vertex set”.
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Insertion Heuristics:

• Nearest insertion inserts the vertex set Vj containing the vertex with the minimum
distance from the tour:

arg min
Vj

min
v∈Vj ,u∈VT

{c(u, v)}.

• Cheapest insertion inserts the vertex set Vj containing a vertex with minimum inser-
tion cost:

arg min
Vj

min
v∈Vj ,(u,w)∈ET

{c(u, v) + c(v, w)− c(u,w)}.

• Farthest insertion inserts the vertex set Vj whose closest vertex from the tour is
maximum:

arg max
Vj

min
v∈Vj ,u∈VT

{c(u, v)}.

Remark 4.2.1 (A variation of nearest insertion). In this thesis, we use a variation of the
nearest insertion method where the method inserts the vertex set Vj containing the vertex
with the minimum distance from or to the tour, i.e.,

arg min
Vj

min
v∈Vj ,u∈VT

min{c(u, v), c(v, u)}.

•
Remark 4.2.2 (Special Case of TSP Insertions). When each vertex set Vi contains only
one vertex and the costs are symmetric, the problem becomes a TSP, and the three in-
sertion mechanisms are those from [6]. It is shown that cheapest and nearest insertion
provide 2-approximations to the optimal tour, and farthest insertion provides a dlnne+ 1
approximation to the optimal. •

Built on the time complexity analysis in [6] for the TSP insertion methods, the cheapest
insertion method for GTSP can be implemented to run in O(|V |m logm). Moreover, the
nearest and farthest insertion methods for GTSP run in O(|V |m).

4.2.2 Bounds on the GTSP Tour Cost

In this section, we provide bounds on the cost of tours constructed by each of the GTSP
insertion methods. Since each method is a generalization of the TSP insertion [6] to the
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GTSP, we extend the analysis in [6] to provide bounds. The results for the TSP insertion
method hold only when the distances between the vertices are symmetric. Also, the TSP
is characterized simply by the ordering of the vertices. The challenge in extending the
TSP results is to bound an asymmetric GTSP tour cost where the cost depends not only
on the ordering, but also on the vertex selected in each vertex set. In order to provide
approximation factors for the insertion methods, we require the following assumptions on
the edge costs.

Assumption 4.2.3 (Directed triangle inequality). The edge costs satisfy the directed-triangle
inequality, i.e.,

c(u, v) + c(v, w) ≥ c(u,w) ∀u, v, w ∈ V.
Assumption 4.2.4 (Bounded ratio of edge costs). The edge costs between every pair of the
vertices are in constant factor k of each other, i.e.,

c(u, v)

c(v, u)
≤ k ∀u, v ∈ V.

Assumption 4.2.3 is the directed triangle inequality satisfied by the time optimal paths
of the three vehicle models in Section 3.3. In Section 4.2.3, we show that Assumption 4.2.4
also holds for the time optimal paths of the three vehicle models.

Let d be the maximum distance between the vertices in the same vertex set and ε be
the minimum Euclidean distance between vertices in different vertex sets. Define ρ = d

ε
as

a parameter capturing the density of the task locations.

Recall the directed-wighted graph G = (V,E, c) from Section 4.2.1, and let S ⊆ V be
the set of vertices selected by an insertion method. Consider another complete symmetric
weighted graph G′ = (S,E ′, c′) on the vertex set S. Define the cost of the edge (si, sj) in
G′ as c′(si, sj) = min{c(si, sj), c(sj, si)}.

Let INSERT be the cost of the tour in G constructed by a GTSP insertion heuristic
and TSP(G′) be the cost of the optimal TSP tour in G′. Theorem 3 in [6] states that the
TSP tour on G′ constructed via any insertion method (i.e., using any insertion ordering,
but inserting each vertex into its best edge of the sub-tour) is not greater than (dlogme+
1)TSP(G′). Therefore, the GTSP tour constructed on the graph G with any insertion
heuristic is

INSERT ≤ k(dlogme+ 1)TSP(G′). (4.1)

Let GTSP∗ be the cost of the optimal GTSP tour in G and GTSP(S) be the cost of the
GTSP tour in G obtained by including the vertices in S but using the vertex set ordering
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of GTSP∗. Then we have

TSP(G′) ≤ GTSP(S) ≤ GTSP∗ + 2md. (4.2)

With the definition of the ε, we know that GTSP∗ ≥ mε. Combining this with inequalities
(4.1) and (4.2) we have,

INSERT

GTSP∗
≤ k(1 + 2ρ)(dlogme+ 1).

For nearest and cheapest insertion methods we can improve the bound.

Proposition 4.2.5. Let INSERT be the cost of the tour constructed using either nearest
or cheapest insertion. Then

INSERT

GTSP∗
≤ (1 + k)(1 + 2ρ).

Before providing a proof for the proposition, we require establishing a property of the
insertions at each step. Let Ti be the tour after i insertion steps and si ∈ Vi be the vertex
that the nearest insertion for the GTSP inserts at the step i. Let vi be the vertex in Vi
which has the closest distance from or to the tour. Without loss of generality assume that
u is the closest vertex in the tour, then the cost of inserting v into tour Ti, between u and
w, is defined by

cost(Ti, vi) = c(u, vi) + c(vi, w)− c(u,w).

Lemma 4.2.6 (Bound on insertion cost). Cost of inserting si in the sub-tour Ti is

cost(Ti, si) ≤ (1 + k)c′(p, q) ∀p ∈ VTi , q ∈ S \ VTi .

Proof. Consider the set S and the graph G′. The insertions insert the vertex in Vi with
the minimum insertion cost, then we have,

cost(Ti, si) ≤ cost(Ti, vi).

Then, by Assumptions 4.2.4 and 4.2.3 we have,

cost(Ti, si) ≤ cost(Ti, vi) ≤ c(u, vi) + c(vi, u) (4.3)

≤ (1 + k) min{c(u, vi), c(vi, u)}.
Since, v is the closest vertex from the tour, then the following inequality follows from
inequality (4.3),

min{c(u, vi), c(vi, u)} ≤ c′(p, q) ∀p ∈ VTi , q ∈ S \ VTi . (4.4)

From Equations (4.3) and (4.4), we conclude the proof.
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Recall that the cheapest insertion inserts a vertex to the sub-tour with the minimum
insertion cost. The cost of inserting a vertex by the cheapest insertion into the sub-tour Ti
is at most cost(Ti, si), thus the bound on the insertion cost in Lemma 4.2.6 holds for the
cheapest insertion.

Now we can establish the approximation factors in Proposition 4.2.5 for the nearest
and cheapest insertions.

Proof of Proposition 4.2.5. Lemma 3 in [6] states that if the insertion cost at each step is
less the (1 + k)c′(p, q) ∀p ∈ VTi , q ∈ S \ VTi , then the cost of the constructed tour is less
than the minimum spanning tree MST(G′) on the vertices of the graph G′. Therefore,
from Lemma 4.2.6 and inequality (4.2) we have,

INSERT ≤ (1 + k)MST(G′) ≤ (1 + k)TSP(G′)

≤ (1 + k)(1 + 2ρ)GTSP∗.

4.2.3 Bound on Vehicle Tour Cost

The following result gives an upper-bound on the path cost between two configurations
for each of the three vehicle models in Section 3.3. The Dubin’s bound was conjectured
in [8] and established in [95], while the Reeds-Shepp and DD bounds are, to the best of
our knowledge, new results.

Lemma 4.2.7 (Distance of robot configurations). Consider a robot whose dynamics are
governed by one of the three vehicle models (Dubins, Reeds-Shepp, DD) and two robot
configurations q1 and q2. Then, the travel time from q1 to q2, denoted dist(q1, q2) satisfies

dist(q1, q2) ≤ Euc(q1, q2) + C,

where Euc is the Euclidean distance between the points (xq1 , yq1) and (xq2 , yq2). C is defined
in terms of the vehicle model as

(i) C = 7π
3
Rmin for Dubins;

(ii) C = π
2
L
r

for Differential Drive; and

(iii) C = πRmin for Reeds-Shepp.
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Proof. The proof of (1) is established in [95]. The proof of (2), (3) is given in Appendix A.1.

To compare the performance bound on the insertion methods to the existing approxi-
mation in Lemma 4.2.7 we assume that each task consists of a single workspace location,
i.e., |Xi| = 1. In this case, the Euclidean distance between the vertices inside the same
vertex set is zero, and thus dmin = C and ρ = C

ε
. Thus we arrive the following result,

For the case of a Dubins vehicle, the distance bounds from [95] allow us to provide
tighter performance bounds. To this end, we redefine the edge costs in the graph G′ to the
Euclidean distance between the vertices, i.e., c′(si, sj) = Euc(xsi ,xsj).

The bound in (4.1) becomes

INSERT ≤ (1 + 2ρ)2(dlogme+ 1)TSP(G′).

Let VTSP be the optimal tour cost for a vehicle model in 3.3 in a workspace X = R2, then
we have

Corollary 4.2.8. The total tour cost constructed by the nearest or cheapest insertion is
bounded by

INSERT ≤ 2(1 + ρ)VTSP.

Proof. From Lemma 4.2.7 and inequality (4.3), the cost of inserting any vertex in the tour
at step i by the nearest and cheapest insertion is

cost(Ti, si) ≤ c(u, si) + c(si, u) ≤
2(1 + ρ)Euc(xp,xq) ∀p ∈ VTi , q ∈ S \ VTi .

From Lemma 3 in [6] we have,

INSERT =
m∑
i=1

cost(Ti, si) ≤ 2(1 + ρ)MST(G′). (4.5)

The MST(G′) and TSP(G′) are the minimum spanning tree and the optimal TSP in
the graph G′, respectively. The minimum spanning tree and the optimal tour on the task
locations are shorter than the optimal tour between the locations for the vehicles VTSP.
Finally, the approximation factor for our cheapest and nearest insertion methods is as
follows:
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INSERT

VTSP
≤ min{(dlog me+ 1)(1 + 2ρ)2, 2(1 + ρ)}.

Note that for environments with large values of ρ and m ≥ 5 this bound becomes
2(1 + ρ), which is an improvement over the bound for the Dubins TSP method in [9],
which was

min{(1 + ρ) log m,
3

2
(1 + ρ)2}.

In the case that the minimum turning radius for the Dubins and the Reeds-Shepp’s models
and distance between the wheels for the DD robot are negligible compared to the distances
between task location i.e. ρ ≈ 0, the problem becomes the TSP on the task locations, and
both nearest and cheapest insertion provide 2-approximations to the optimal.

Remark 4.2.9 (LNS via Repeated Insertions). In practice, one can perform repeated rounds
of insertions to improve the tour. An initial insertion method is chosen and a tour is
constructed. A subset of vertices on the tour are deleted and then reinserted into the tour
using a randomly chosen insertion method. This procedure is repeated, accepting tours
when they pass an acceptance criterion (for example, if the new tour has smaller cost).
This is the basic idea of large neighborhood search (LNS) [63]. •

4.2.4 Insertion Heuristic for Multiple Robots

In this section, we extend the approximation factor of the insertion methods for a single
robot in Section 4.2.3 to a system of multiple robots. The high-level idea is to reduce the
mGTSP problem to a GTSP problem and construct a tour via the insertion methods.

In [67], a reduction is given from the problem of multiple shortest cost tours for hetero-
geneous robots with dynamic constraints to TSP. The reduction creates a GTSP instance
consisting of the duplicates of tasks for each robot and a duplicate of each depot. The
reduction is followed by a reduction from the GTSP instance to TSP [96]. Under assump-
tion that the configurations for robots at the depots are fixed, the reduction converts the
GTSP graph in Section 4.1.2 with Nr robots and V as tasks to a GTSP instance with
Nr(|V | + 2) vertices. A reduction of the mTSP problem with homogeneous robots to the
TSP is presented in [15]. The reduction only creates a duplicate of the depots, therefore,
the size of the graph with Nr robots and V as tasks become |V |+ 2Nr.

The reduction from mTSP to TSP in [15] for a system of homogeneous robots can be
extended to the mGTSP problem without adding the duplicates for a system of multiple
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homogeneous robots. We provide the approximation factors for the insertion methods in
the reduced GTSP instance and then we extend the results to the heterogeneous robots.

Let V = {V 1, . . . , V Nr} denote the set of depots for the robots. Each V i is a vertex
set consisting of the samples in the configuration space at the depot location of robot i.
Also, the replicas of the vertices at the depots are defined in the set V

′
= {V ′1, . . . , V

′
Nr}.

Consider a dummy vertex with zero edge cost to the depots and edges of cost M to the
vertices in V , where M is a large number equal to

|Nr||V | max
vi,vj∈V

{c(vi, vj)} max
vi∈V,vj∈V

{c(vi, vj}}.

Recall from Section 4.2.3 that the vertices in the graph represent configurations at the task
locations. Let distr be a cost function which takes an edge (u, v) as an input and returns
the minimum required time for robot r to traverse the path between two configurations
associated with the vertices u and v. In a homogeneous system of robots the cost function
distr is identical for the robots and it is denoted by dist.

The reduction of the multi-robot task allocation to the single GTSP problem is as
follows:

Consider a complete weighted graph G = (W,E, c) where

W = V ∪ V ∪ V ′ ∪ {dummy}.

We set the edge cost c(u, v), u, v ∈ W to M with the exception of the following cases:

(i) dist(u, v) if u, v ∈ V ;

(ii) dist(u, v) if u ∈ V i, i ∈ {1, . . . , Nr} and v ∈ V ;

(iii) dist(u, v) if u ∈ V , v ∈ V ′i and i ∈ {1, . . . , Nr};

(iv) zero if u = dummy and v ∈ V 1;

(v) zero if v = dummy, u ∈ V ′i and i ∈ {1, . . . , Nr};

(vi) zero if u ∈ V ′i, v ∈ V i+1 and i ∈ {1, . . . , Nr − 1}; and finally

(vii) zero if u ∈ V i, v ∈ V ′i and i ∈ {1, . . . , Nr} .
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Let INSERT be the cost of the tour generated by the nearest or cheapest insertions
on G and TSP be the total cost of the optimal tours. Let S be the set of vertex sets
selected by an insertion method. Now, we define a complete symmetric weighted graph
G′ = (S,E ′, c′) where the edge cost c′(u, v) where u, v ∈ S is set to M with the exception
of the following cases:

(i) Euc(xu,xv) if u, v ∈ V ;

(ii) Euc(xu,xv) if u ∈ V and v ∈ V ;

(iii) Euc(xu,xv) if u ∈ V , v ∈ V ′i and i ∈ {1, . . . , Nr};

(iv) zero if u = dummy, v ∈ V 1;

(v) zero if v = dummy, u ∈ V ′i and i ∈ {1, . . . , Nr};

(vi) zero if u ∈ V ′i, v ∈ V i+1 and i ∈ {1, . . . , Nr − 1}; and finally

(vii) zero if u ∈ V i, v ∈ V ′i and i ∈ {1, . . . , Nr} .

Before providing the bounds on the tours constructed by the nearest and cheapest inser-
tion methods for multiple robots we require to establish the following result. Let mVTSP
be the minimum total cost of the tours for multiple robots with differential constraints.

Lemma 4.2.10 (Lower bound on multiple optimal tours). The minimum spanning tree
MST(G′) on the graph G′ is at most equal to mVTSP.

Proof. Deleting an edge from each optimal tour result in a set of trees which collectively
visit all the depots and the tasks. Connecting these trees with zero costs edges to a dummy
vertex creates a spanning tree on the optimal configurations. Note that for every edge (u, v)
in the optimal tours, the cost dist(u, v) is lower-bounded by the Euc(u, v). Therefore,
MST(G′) is at most equal to the cost of the spanning tree on the optimal configurations.
The constructed spanning tree on the optimal configurations, via deleting non-zero cost
edges from the tours and adding zero cost edges, is a lower bound for the total cost of the
optimal tours.

Theorem 4.2.11 (Homogeneous robots). The total tour cost constructed by the nearest
or cheapest insertion is bounded by

INSERT ≤ 2(1 + ρ)mVTSP.
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Proof. Consider tour Ti as the sub-tour constructed by the nearest or cheapest insertions at
step i on graph G′. Starting from the dummy vertex, the nearest insertion method selects
a configuration at the first depot u ∈ V 1 with cost zero from the dummy vertex. The
closest vertex set to the tour in the next step is the replica of the previously selected depot
with cost zero. Without loss of generality, assume that the nearest insertion method selects
the exact replica of u in ∈ V ′i, namely u′, and inserts u′ in the tour (recall c(u, u′) = 0).
Inserting the exact replica of u ensures that the tour is complete with equal starting and
destination configurations.

The nearest insertion continues to insert a vertex in each depot and again without loss
of generality inserts the exact replica of the vertex afterward. Due to the fact that the
vertices are inserted in a position in the sub-tour with the minimum insertion cost, each
vertex u′ ∈ V ′i is adjacent to the vertex u ∈ V i in the sub-tour. Otherwise, the insertion
cost in each insertion is M .

The nearest insertion creates a sub-tour consisting of all the depots and their replicas
with zero cost edges. Therefore, the total sub-tour cost after adding all the depots and
their replicas is zero. Note that the cheapest insertion constructs the same sub-tour by
inserting vertices with zero insertion cost. Also, note that, by the definition of the zero
costs edges in the graph G, the u′ ∈ V

′
i in the sub-tour is adjacent to a vertex in V i+1.

Proceeding in the process of inserting the tasks, the nearest insertion inserts the vertices
in V to the tour. Note that, by the definition of the edge costs in G, the insertion cost of a
task in V between V

′
i and V i+1 is 2M . Similarly, the cost of inserting a vertex in between

V
′
i and the dummy vertex is 2M . Therefore, the nearest or cheapest insertion methods only

insert tasks in between depots and their replicas, i.e. between V i and V
′
i, i ∈ {1, . . . , Nr}.

Recall from Section 4.2.3 that for each insertion of the nearest and cheapest insertions
for the graph G we have,

cost(Ti, si) ≤ 2(1 + ρ)Euc(p, q) ∀p ∈ Ti, q ∈ S \ Ti. (4.6)

By Lemma 3 in [6], the inequality (4.6) is sufficient to show that the sum of the
right-hand side of Equation (4.6) is INSERT, and the sum of the left-hand side is the
minimum-spanning tree on G′. Therefore, from Lemma 4.2.10 we and inequality (4.6) we
conclude the bound on INSERT.

Obtaining Nr tours from the tour constructed by the insertion methods in G consists
of two steps. First, deleting the zero cost edges and the dummy vertex outputs Nr paths.
Second, deleting the vertices in the replicas of the depots and closing the paths by adding
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the edge from the last vertex of each path to the vertices of the depots result in Nr tours.
Note that the total tour length is preserved under the extraction of Nr tours, since the
added edge costs to close the paths are equal to the edge costs of the deleted edges.

For a system of multiple heterogeneous robots, the configurations at each task location
and the time to traverse the edge between two configurations varies for different robots.
Therefore, a vertex set Vj is defined at each task location for robot r consisting of the
configurations of robot r, namely V r

j .

By initializing the tours {T 1, . . . , TNr} with a sample at the depots, the nearest and
cheapest insertion are redefined as follows:

• Nearest insertion: inserts the vertex set V r
j containing the vertex with the minimum

distance to or from the tour T r and deletes all other duplicates of the vertex set Vj.

arg min
V rj ,T

r

min
v∈V rj ,u∈VTr

min{distr(u, v), distr(v, u)}.

• Cheapest insertion: inserts the vertex set V r
j containing the vertex with minimum

insertion cost in the tour T r and deletes all other duplicates of the vertex set Vj.

arg min
V rj ,T

r

min
v∈V rj ,(u,w)∈ETr

{distr(u, v) + distr(v, w)

−distr(u,w)}.

• Farthest insertion: inserts the vertex set V r
j whose closest vertex has the maximum

distance from the tour T r and deletes all other duplicates of the vertex set Vj.

arg max
V rj ,T

r

min
v∈V rj ,u∈VTr

{dist(u, v)}.

Note that at each step of inserting vertices in the tours, the insertion methods only
insert one of the duplicates of the vertex set Vj.

In Section 4.2.3, we defined ρ for three vehicle dynamics. Let ρmax be the maximum ρ
in the set of multiple heterogeneous robots.

Corollary 4.2.12 (Heterogeneous robots). The total tour cost constructed by the nearest
or cheapest insertion is bounded by

INSERT ≤ 2(1 + ρmax)mVTSP.
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Proof. Suppose that the insertion methods, in a step of insertions, insert vertex sj ∈ V r
j to

the tour T r. Also, by the definition of the nearest insertion, the distance of vertex set V r
j

to the tour T r is minimum between all vertex sets to the tours. Therefore, the insertion
cost is limited by the

cost(T r, sj) ≤ 2(1 + ρmax)Euc(p, q),∀p ∈
Nr⋃
i=1

V i(T i), ∀q ∈
Nr⋃
i=1

V i \ V i(T i). (4.7)

The summation of the insertion costs on the right-hand side of Equation (4.7) is the
total tour cost of the robots. Note that summation of the Euclidean distances on the
left-hand side is equal to the cost of the minimum spanning forest rooted at the depots.
The minimum spanning forest is a lower bound on the optimal total tour cost.

So far, the algorithms of creating tours by the insertion methods were centralized. In
the next section, we propose a distributed algorithm for constructing the tours.

4.3 A Distributed Auction-Based Algorithm

We now present a distributed algorithm for task allocation and sequencing. The algorithm
leverages the GTSP insertion mechanisms presented in Section 4.2 in a manner similar
to large neighborhood search (LNS) [63]. The high-level idea is to delete a set of tasks
from a robot’s tour and then reinsert them in new robot tours via an auction. We assume
that there is an initial assignment of tasks to robots that is conflict-free, i.e., each task is
assigned to one robot, and that the communication graph between robots is connected for
all time. In the literature, conflicts are solved by an additional consensus algorithm.

The high-level description of the auction procedure is as follows:

(i) A robot randomly decides to begin an auction by selecting a set of robots in its
communication range.

(ii) The robot sequentially deletes a set of tasks from its tour, takes the auctioneer role
and offers the selected robots to bid on the tasks.

(iii) The robots select an insertion method and place bids on subsets of tasks that can be
inserted as a continuous segment on its tour.
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V6 V3

V2
V4

V7

V1

Figure 4.1: Largest subset of S4 = {V1, V2, V3, V4} containing V4 that forms a segment on the tour
is {V3, V2, V4}. The insertion cost of {V3, V2, V4} is the difference between the cost of the segment
shown in dashed arrows and the cost of the edge from V6 to V7.

(iv) Each robot sends its bids (each consisting of a subset of tasks and a corresponding bid
value) to the auctioneer, who solves the combinatorial auction problem to allocate
the tasks.

(v) Auctioneer communicates the result of the auction to the winner agents.

(vi) Each robot inserts the tasks it has won and locally optimizes its tour.

We now give a more detailed description of the steps. In Step (i), each robot assigns
a score to each other robot and increases scores of the winning robots after each auction.
The robot selection operation is a roulette wheel selection algorithm.

The bidding starts at Step (ii). Assume the auctioneer is robot r. Its bids are generated
by sequentially deleting tasks from its tour T r. Without loss of generality, let V1, V2 . . . , Vd
be the tasks deleted from the auctioneer’s tour and Sri = {V1, . . . , Vi}, i ∈ {1, 2, . . . , d} be
the subset of tasks until ith the step of deletions.

The bidding algorithm generates a bid after each deletion, which is a pair consisting of
subset of Sri containing Vi and a non-negative bid on the subset:

BIDr
i = (bid-seti, bid-valuei).

The set bid-seti is the largest subset of Si containing Vi that forms a continuous segment
of T r and bid-valuei is the insertion cost of the segment of T r corresponding to bid-seti
(see Figure 4.1).

At Step (iii) robots generate subsets to bid given their current tour and the set of tasks
from the auctioneer. Given set of tasks up for auction {V1, V2, . . . , Vd}, each robot in the
auction selects an insertion method and sequentially inserts the tasks in their tours. The
set Sri , i ∈ {1, 2, . . . , d} is the set of tasks inserted in the tour of robot r in the first i steps
of insertions. Again we assume (without loss of generality) that Sri = {V1, . . . , Vi}. Let T ri
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be the tour of robot r in step i of insertions. The bidding mechanism is closely related to
the auctioneer’s bidding process in Step (ii) with a subtle but important difference. Unlike,
the bidding for the auctioneer where the algorithm searches for the largest segment of the
original tour, the algorithm for all other robots returns the largest segment in T ri . More
precisely, in BIDr

i , the set bid-seti is the largest subset of Si containing Vi that forms a
continuous segment of T ri . The bid value bid-valueri is the insertion cost of the segment
in T ri .

The auctioneers goal is to find an allocation that assigns each task to exactly one robot
and such that the summation of the winner bids on the subsets is minimum. Determining
the winners of the auction at Step (iv) is formulated as a combinatorial auction problem
whose integer programming formulation (IP) is as follows:

minimize
∑
i,r

bid-valueri · xri

subject to∑
i,r

xri = 1 for all i ∈ {1, . . . , d}, r ∈ Ir,

xri ∈ {0, 1} for all i ∈ {1, . . . , d}, r ∈ Ir.

(4.8)

where xri is an integer variable equal to 1 if the bid BIDr
i is accepted and 0 otherwise, and Ir

contains the indices of all robots participating in the auction. Note that the IP is feasible
since the auctioneer’s bids form a feasible solution. Several techniques are proposed to
reduce the run-time of solving this IP [97] which results solving problems with large sizes.
In addition we prove that the number of the variables is linear in the size of the problem.

Step (v) is a simple process by the auctioneer to broadcast the result of the auction.
At Step (vi) each robot inserts its winning bids in the same position on the tour it used
to generate the bid. The consistency of the insertion methods in the bidding and insertion
steps is required to prove the monotonic decrease in the total tour cost after each auction.
Further optimization is done by robots locally. After completing the auction, each robot
locally optimizes its tour by deleting tasks from its tour and reinserting then via the GTSP
insertion methods.

Let D be the maximum number of tasks offered for an auction. Assuming that each
edge cost can be encoded with at most k bits, the following lemma summarizes properties
of the proposed algorithm.

Lemma 4.3.1 (Auction algorithm properties). The distributed auction algorithm has the
following properties:
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(i) The message size per robot per auction is at most D(D logD + k) bits.

(ii) Number of the variables in the IP (4.8) for a set of m robots is not greater than
min{mD, 2D − 1}.

(iii) Total tour cost monotonically decreases after each auction.

Proof. Proof of (i): At each step of the bidding, only a single new bid is added. Therefore,
in total D bids are submitted by each robot. Moreover, the cardinality of the bid-sets is
at most D. Each bid value is a result of the summation of D − 1 edge costs and each bid
value is encoded by logD+ k bits. Thus, the number of bits transferred in an auction per
robot is at most D(D logD + k).

Proof of (ii): Note that the set of all possible combinations of tasks is the power-set of
the tasks. Also, note that without loss of optimality we can replace all the bids submitted
on the same bid-set by the bid with minimum bid-value. From (i), we know that each robot
submits at most D bids, therefore, the total number of bids in the IP (4.8) is equivalent
to min{mD, 2D − 1}

Proof of (iii): Let cost(T r) be the tour cost of robot r prior to the auction. Let operation
⊕ represent inserting a set of tasks to a tour by an insertion method. Define the set win(r)
as the set of tasks that robot r has won. The bid-values are the insertion costs of the
bid-sets. Therefore,

cost(T r ⊕ win(r)) = cost(T r) +
∑
i

bid-valueri · xri .

This holds for any robot in an auction. Let z∗ denote the optimal solution to the integer
program (4.8) and z be the objective value of assigning all tasks to the auctioneer. Thus,
the total path tour is ∑

cost(T r ⊕ win(r))−
∑

cost(T r) = z∗ − z. (4.9)

Note that assigning all the tasks to the auctioneer is a feasible solution to (4.8). As a
consequence, the right-hand side for (4.9) is not greater than zero.

4.3.1 Variations of LNS-Auction

The auction procedure in Section 4.3 and the integer programming formulation (4.8) can
be extended to cover additional properties.
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Capacity Constrained Robots

The auction algorithm in Section 4.3 considers the case without binding on the capacity
of the robots. The capacity is defined as the maximum number of tasks assigned to a
robot. The proposed auction algorithm in Section 4.3 solves the task allocation problem
with capacity-constrained robots with adjustment in the IP formulation.

Let Lrmax be the capacity of Robot r, where
∑

r L
r
max ≥ Nt. Assuming that the initial

assignment of the tasks satisfy the capacity constraint, therefore adding the following set
of inequalities to the constraints of IP (4.8) ensures that the solution of IP for auctions
satisfy the capacity constraints.

Lr +
∑
i

|bid-seti|xri ≤ Lrmax for all r ∈ Ir. (4.10)

The initial assignment of the tasks are assumed to satisfy the capacity constraint,
therefore, the assignment of tasks before the auction is a feasible solution to the IP (4.8)
augmented by the set of constraints (4.10).

Multiple Auctioneers

The auction algorithm in Section 4.3 is a distributed implementation of Large neighbor-
hood search. In the large neighborhood search algorithm, deleting and re-inserting tasks
from different tours result in searching in a larger subset of the solution space and usually
converges faster. Deleting tasks from multiple robots require multiple auctioneers. Al-
though the auction structure remains the same with an auctioneer solving the IP (4.8),
there is a subtle but important point to ensure monotonicity of the auction algorithm with
multiple-auctioneers. In this implementation, similar to the original algorithm, one can
show the monotonicity of the algorithm, ensuring that the assignment of tasks before the
auction is a feasible solution to the constraints at the formulation (4.8). We adjust the
original LNS-Auction algorithm as follows:

Let A = {r1, . . . , ra} be the subset of robots taking the auctioneer role and T r be
the tasks in the path of robot r prior to an auction. Let T rdel, r ∈ A be the set of tasks
in auctioneer r’s tour after deletion. In our adjustment of the LNS-Auction to cover
multiple auctioneers, the bidding procedure for bidders is similar to the original approach.
However, the subtlety appears on the bids submitted by the auctioneers. Non-auctioneer
robots generate bid-seti similar to the procedure detailed in Section 4.3. The bid-set

is the largest subset of Si containing Vi that forms a continuous segment of T ri . However,
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the bid-valuei is the total of the insertion cost of the segment in T ri and cost(T r). Note
that the auctioneers generate the bids by inserting the tasks to T rdel. Let T ri,del be the tour
of auctioneer r after i steps of insertions.

(i) Each auctioneer r ∈ A submits a bid on its path prior to the auction, where bid-set

is the tasks in the T r and bid-value is cost(T r).

(ii) Each auctioneer deletes a set of task from its path and offers to other robots in the
auction.

(iii) Auctioneer r inserts the tasks offered for the auction.

(iv) The bid-set is the union of the largest subset of Si containing Vi that forms a
continuous segment of T rdel and the tasks in T rdel.

(v) The bid-valuei, is the total of the insertion cost of the segment in T ri,del and cost(T rdel).

The adjustment (i) ensures that the assignment of the tasks prior to the auction is a
feasible solution to the auction. Therefore, the monotonicity of the algorithm is preserved.
Note that without applying (v), the assignment in (i) is the only feasible solution to IP
(4.8).

4.4 Simulation Results

In this section, we compare our distributed algorithm to two different implementations
of the Consensus-Based Bundle Algorithm (CBBA)1 from [17], Multi-Vehicle Algorithm
(MVA) [30] and a centralized algorithm [67]. The CBBA algorithm plays the benchmarking
role in recent studies as the state of the art distributed task allocation algorithm [98, 99].
The first implementation, named CBBA-AA, finds the assignment without considering
dynamics for the robots. Each task consists of visiting a location with any heading, and
we consider Dubins vehicle dynamics. In this implementation, we linked the CBBA and
the Alternating Algorithm (AA) [8] to create feasible solutions to the Dubins vehicle after
the assignment. Given a Euclidean TSP solution, the AA assigns a heading to each point
based on the position of the point in the tour. Let Tij be the jth task in the tour of robot
i. If j is odd then heading with the AA procedure is the orientation of segment from Tij

1The CBBA code is available at http://acl.mit.edu/projects/cbba.html
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to Ti(j+1), otherwise the heading is equal to the heading assigned to the previous point in
the tour.

In the second implementation of the CBBA, namely CBBA-GLKH, we linked the CBBA
and the state of the art GTSP solver– GLKH [100]. After assigning the tasks by CBBA,
the set of tasks assigned to each robot is converted to a GTSP instance by sampling the
headings at each task location and solved separately by GLKH.

The MVA algorithm presented in [30], considers decoupling the motions of the robots
from the assignment problem. After tasks assignment and sequencing by the distributed
variation of the Prim’s algorithm, a heuristic method is proposed to construct feasible
Dubins tours on the sequenced tasks. Assuming 2Rmin distance between each pair of tasks
and starting from a configuration at a depot, the algorithm plans the optimal path to the
next task in the tour with a free heading. The MVA algorithm is constrained to the 2Rmin

distance between the points, therefore, this algorithm is augmented by an exhaustive search
method for the cases that point distances are smaller than 2Rmin. The exhaustive search
method searches all the paths to the next point with a fine discretization of the headings
(0.1 degree) and returns the Dubins path with the minimum cost.

The results of the proposed algorithm are also compared to centralized algorithm [67].
The problem of task allocation and sequencing for multiple Dubins vehicles is transformed
to GTSP and solved by the state-of-the-art GTSP solver.

The experiments are conducted on random communication graphs in which robot i
and j can communicate with probability p. In each experiment, robots are initialized by
randomly assigning the tasks without any conflicts. Given the initial allocation, each robot
constructs a path by an insertion method.

4.4.1 Random Instances

Figure 4.2 compares the total tour cost of the LNS-Auction to CBBA-LKH and the cen-
tralized method for different random instances. Due to the fact that the published im-
plementation of the CBBA constructs paths, after the tasks assignment by the CBBA,
we perform a post-processing on the paths by the state of the art TSP solver, namely
LKH, in order to improve the quality of the tours. In each instance, tasks are uniformly
randomly distributed in a 10 × 10 square. The communication graphs are generated for
each p ∈ {0.4, 1}. At each run of the algorithm, a new communication graph is generated.
The seven robots in the system are assumed to have no motion constraints. The number of
auctions for the LNS-Auction algorithm is equal to the number of the tasks. Without con-
sidering any dynamics for the robots, Figure 4.2 shows that the LNS-Auction algorithm for

36



20 30 40 50 60 70 80
Number of Tasks

20

40

60

80

100

120

T
o
ta

l 
T
o
u
r 

C
o
st

CBBA-LKH

Centralized

LNS-Auction, p = 1

LNS-Auction, p = 0.4

Figure 4.2: Total tour cost versus the number of tasks for seven agents on uniformly randomly
generated instances in a 10 × 10 square environment. The robots do not have a differential
constraint on their motion ρ = 0. For a different number of tasks, 30 random instances are
generated. The reported tour cost for each number of tasks is the average of 30 instances, each
solved 10 times. The error bars represent the standard deviation of the results in different runs
and instances.
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Figure 4.3: Total tour cost versus the number of tasks for seven Dubins’ cars with turning radius
of 1 on uniformly randomly generated instances in a 10 × 10 square environment. For a different
number of tasks, 30 random instances are generated. The reported tour cost for each number of
tasks is the average of 30 instances, each solved 10 times. The error bars represent the standard
deviation of the results of different runs and instances.

different communication graphs gives considerable improvements in tour quality compared
to CBBA-LKH.

In the next experiment, we replace the robots with seven Dubins vehicles with minimum
turning radius of 1. To construct the GTSP instance we discretize the heading at each
location with 5 equally spaced headings. Figure 4.3 shows the tour costs in different random
instances compared to the CBBA-AA, CBBA-GLKH, MVA and the centralized method on
random instances. The maximum deviation of the tour cost of the LNS-Auction from the
centralized algorithm is 37% and the average is 16%. However, the maximum deviation of
the tour cost of the CBBA-GLKH from the centralized algorithm is 76% and the average
deviation is 65%.

Finally, Figure 4.4 shows paths for the CBBA-AA and our implementation of LNS
heuristics for a system of three Dubins vehicle on 30 task locations.
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(a) LNS-Auction
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(b) CBBA-AA

Figure 4.4: Paths for three Dubins vehicle with Rmin = 1. The 30 task locations are randomly
generated in a 10 × 10 square.
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4.4.2 TSPLIB Instances

The TSPLIB [62] provides a large library of TSP instances on which we can test the
performance of our algorithm. Table 4.1 shows the total path cost of the greedy and LNS
approaches for a system consisting of seven Dubins vehicles with minimum turning radius
of 1. Moreover, the experiment shows the ratio of the total auction time of the LNS-
Auction to that of solving the Euclidean problem with CBBA. The experiment includes
several medium-size geometric instances from TSPLIB. To be consistent on the ratio of the
distances to the minimum turning radius, we scale the task locations in each instance so
that they lie in a 10 × 10 square. The initial location of the seven robots are the first seven
locations in each instance. The quality of the tours constructed by LNS-Auction algorithm
is compared to the two implementations of the CBBA algorithm, namely CBBA-GLKH and
CBBA-AA. The published versions of CBBA, GLKH and LNS-Auction are implemented in
MATLAB, C and Python, respectively. Although the times are not completely comparable,
we provide the time ratio for LNS-Auction to CBBA-GLKH. The total time of the LNS-
Auction on ulysses22 and kroA150 instances on a Corei5 @2.5Ghz processor are 10.14
and 62.84 seconds, respectively.

4.5 ROS Implementation

The Robot operating system (ROS) [101] is a communication tool and protocol–widely
used in Robotics. Figure 4.5 demonstrates the high-level implementation of our auction
algorithm for two agents (robots). The consensus algorithm, named server, randomly
assigns the tasks to different agents. Agent 1 (agent 01) in Figure 4.5 takes the auctioneer
role and requests participation of other agents in the auction. Agent 2 (agent 02) provides
the service agent to agent for auctioneers to invite it to auctions. The message in this
request (msg/tsk list) is the set of tasks that the auctioneer has deleted from its path and
offers for the auction. Table 4.2 shows the inputs and output parameters of the auction
service call. The task and bid lists are arrays of objects Task.msg and Bid.msg detailed in
tables 4.3 and 4.4. Agent 2 in a response to the auction request from the auctioneer returns
its availability for the auction. The agent accepts all the auction request calls unless it is
involved in another auction. To avoid assigning tasks more than the capacity of robot r,
the agent also returns the remaining capacity of itself, namely Lrmax − Lr in Section 4.3.1.

Agent 1 calls the service provided by Agent 2 to return the results of the assignment,
named update path. After inserting the tasks in the path of Agent 2, the local planner
generates the paths towards the next goal.
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Centralized LNS Auc. CBBA-GLKH CBBA-AA Time

Ave. min Auc. Ratio
ulysses22 35.3 65.1 46.2 99.0 103.0 0.32 5.13
att48 90.4 134.2 117.7 146.4 213.8 0.20 4.23
eil51 96.7 133.3 122.6 153.3 221.6 2.21 3.11
berlin52 91.3 127.0 119.8 169.7 234.6 0.40 2.32
st70 131.4 175.4 170.4 194.4 302.3 0.34 2.51
eil76 125.1 185.2 165.0 202.7 302.6 0.47 2.10
pr76 128.8 172.3 167.2 198.3 325.2 0.98 2.31
rat99 163.0 238.5 219.3 259.8 404.7 1.14 1.34
kroA100 170.7 246.1 244.3 263.7 429.9 0.47 0.74
kroB100 173.6 244.6 229.0 263.1 417.1 1.25 0.91
eil101 164.6 222.0 178.9 304.6 471.0 0.77 3.01
lin105 150.1 190.7 184.3 232.0 362.8 0.57 0.97
bier127 181.5 299.4 285.1 324.4 490.7 0.60 0.65
ch130 212.9 300.2 286.7 448.7 537.0 1.09 0.77
ch150 234.2 338.9 321.4 365.5 595.7 0.65 0.66
kroA150 239.8 343.4 335.0 364.6 564.3 0.92 0.81

Table 4.1: Total tour cost on TSPLIB instances. The LNS-Auction used the communication
graph with p = 1.0. Auc. denotes the total time spent for I.P. (4.8) averaged on different trials
and Ratio indicates the average time ratio of the LNS-Auction to CBBA-LKH. The results for
LNS-Auction are average of 20 experiments on each instance.

Name Input Output

auction request Task bool Availability

Bid

int16 agent id

int16 capacity

Table 4.2: The table shows the content of an agent to agent service call message.
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Service/server_to_agent

agent_01/Action/

Call_service/

auction_request

Call_service/server_to_agent agent_01/update_task_list

Server

agent_01/acution

agent_01/Action/

Call_service/

update_path

agent_02/drive_to_goal

/base_local_planner

agent_02/Service/

agent_to_agent

agent_02/Service/

update_path
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agent_01

msg/task_listmsg/bid_list

Figure 4.5: High-level representation of the LNS-Auction algorithm in a system of two robots.

Type Name Description

PoseStamped pose Position of a task in Euclidean space
uint64 task id The identification number of the task
int16 task type Identifying the type of task in Section 4.1.2
int16 agent id Currently assigned agent’s id
int16[] capable agent list List of agents capable of performing the task

Table 4.3: Contents of a Task.msg message

Type Name Description

int16 bid set List of tasks in the bid-set
uint64 bid val Value of the bid

Table 4.4: Contents of a Bid.msg message
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Chapter 5

On Efficient Computation of Shortest
Dubins Paths Through Three
Consecutive Points

5.1 Problem Formulation

We now formulate the problem of finding an optimal path for a Dubins vehicle (see Sec-
tion 3.3) between three consecutive points.

5.1.1 Three-Point Dubins Path

Let the tuple Xi = (xi, αi) denote a Dubins vehicle configuration, consisting of a point xi
in the Euclidean plane, and a heading αi ∈ [0, 2π) at xi. An alternative representation
of the heading at xi is two circular arcs (left and right turns) containing xi and tangent
to the heading. Given initial and final configurations Xi and Xf , along with a midpoint
xm with a free heading, the three-point problem is defined by the tuple (Xi,xm, Xf ) and
stated as follows.

Problem 5.1.1 (Three-point Dubins path). Given a tuple (Xi,xm, Xf ), with pairwise
Euclidean distances between the points xi, xm, xf of at least 4Rmin, find a heading αm
at xm such that the length of an optimal Dubins path starting at Xi, passing through
Xm = (xm, αm), and arriving at Xf is minimum.
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From the Bellman’s principle of optimality [102], the optimal Dubins path through
three configurations is obtained by concatenating two optimal Dubins paths between the
pairs. Given two configurations X1 and X2, the optimal Dubins path from X1 to X2 can
be computed in constant time [34]. The optimal Dubins paths between two configurations
is in the set {CCC,CSC} where S is a straight line segment and C is a circular turn
with minimum turning radius in either left L or right R direction. Therefore, in general
the optimal path through three points is obtained by concatenating two Dubins paths as
follows.

{(C1C2C3)1(C4C5C6)2, (C1C2C3)1(C4S5C6)2,

(C1S2C3)1(C4C5C6)2, (C1S2C3)1(C4S5C6)2}.

From [36] the set of optimal Dubins paths under 4Rmin distance assumption of Problem
5.1.1 is reduced to (C1S2C3)1(C4S5C6)2 . The 4Rmin distance constraint is relaxed further
in Section 5.6.

5.1.2 Properties of Three-Point Dubins Path

In a path of type (C1S2C3)1(C4S5C6)2, the arc segments C3 and C4 are the two incident
path segments to the mid-point. In the optimal solution to Problem 5.1.1, the two arcs
incident to the mid-point have equal lengths and both are in the same turning direction
i.e., left turn or right turn [36]. Thus for simplicity we represent the path as C1S2C3S4C5.
We summarize the properties of the optimal Dubins path through three consecutive points,
provided in [36], as follows.

Lemma 5.1.2 (Three-point Dubins). Given (Xi,xm, Xf ), in an optimal path of type
C1S2C3S4C5, the line segment between xm and the center of the circle associated with
the optimal heading bisects the angle between the line segments S2 and S4.

Substituting the left L and right R turns for each Ci in the path C1S2C3S4C5, we obtain
the set of 8 candidate optimal path types for Problem 5.1.1.

In [35], the authors address a variation of Problem 5.1.1 in which the final heading
is also free, i.e., the problem (Xi,xm,xf ). The authors show that under a 2Rmin distance
constraint the optimal path is of type C1S2C3S4, and the optimal heading bisects the angle
between S2 and S4 as in Lemma 5.1.2. Limiting the path types in the problem (Xi,xm, Xf )
to C1S2C3S4C5, the result of Lemma 5.1.2 applies even without the 4Rmin constraint. The
proof follows directly from the proof in [35] for the problem instance (Xi,xm,xf ).
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Figure 5.1: An optimal path of type R1S2R3S4L5. Each component of the path is sketched in
different colors.

5.2 Optimal Path and Inversive Geometry

In this section, we use inversive geometry to establish properties of optimal paths of type
C1S2C3S4C5, that form the basis of our solution approach to Problem 5.1.1.

5.2.1 Inversive Geometry in Dubins Paths

Figure 5.1 shows the optimal path for the case R1S2R3S4L5. The points A,B and xc
are the centers of the circles associated with the headings at the points xi,xf and xm
respectively. In Figure 5.1, the common tangent of the circles centered at A and xc is an
outer-common tangent and the common tangent of the circles centered at xc and B is an
inner-common tangent.

Figure 5.2 shows the inverse of the components of the path with respect to the circle
C centered at xm with radius Rmin. Each S segment in Figure 5.1 is shown as a line
in Figure 5.2. The circle inversion operation (see Section 3.4) on each line generates a
circle containing the mid-point xm, shown in Figure 5.2 in the same color. The inverse of
the circle associated with the heading at xm is a line passing through the two intersection
points of circle(xm, Rmin) and circle(xc, Rmin).

The following lemma provides a sufficient condition for optimality of a C1S2C3S4C5

path based on Lemma 5.1.2.
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Figure 5.2: Inverse of the components of the path R1S2R3S4L5 with respect to the dashed circle
C = circle(xm, Rmin).

Lemma 5.2.1 (Radius of inverted circles in an optimal path). In any optimal path of type
C1S2C3S4C5, the inverses of the line segments, S2 and S4, with respect to a circle centered
at xm with radius Rmin are two circles of equal radius.

Proof. Consider any optimal path of type C1S2C3S4C5 — for such a path we can define
the following quantities as shown in Figure 5.3. Let P be the intersection of the two line
segments in the optimal path and P ′ be the inverse of P with respect to C. Note that P ′

is the inverse of the point P and the line PP ′ contains xm by the definition of P ′, thus the
inverse of PP ′ with respect to C is the line itself. The point P is common in both lines
S2 and S4, thus the point P ′ is lies on both circles inv(S2, C) and inv(S4, C). From Lemma
5.1.2 we know that the line PP ′ is the bisector of the angle between two line segments,
S2 and S4. From Proposition 3.4.4, circle inversion preserves the angle between PP ′ and
S2 and angle between PP ′ and S4. Therefore, the angles between the line PP ′ and circles
inv(S2, C) and inv(S4, C) are equal. Thus we have, ∠P ′Cxm = ∠P ′Dxm, which implies

∠P ′DC =
∠P ′Cxm

2
=

∠P ′Dxm
2

= ∠P ′CD.

Let Q be the intersection of the lines CD and P ′xm. The points xm and P ′ are common in
both circles inv(S2, C) and inv(S4, C), implying ∠P ′QC = ∠P ′QD = π

2
. Thus the triangles

4P ′CQ and 4P ′DQ are equal given that they have common side P ′Q and two equal
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Figure 5.3: Path R1S2R3S4L5 and inverse of the path components. The optimal path given in
the figure with initial state Xi, final state Xf and point xm to visit.

angles. Therefore, the segments CP ′ and DP ′ have equal length, implying that the circles
have same radius.

5.2.2 Optimality Condition

Without loss of generality we set Rmin to 1 in the rest of this chapter, otherwise, we scale
the location of the points to satisfy the assumption. In addition, we rotate the coordinate
system such that the centers A and B lie on the x-axis. Then, the optimal heading at xm
equals the angle between the line tangent to circle(xc, Rmin) at xm and the x-axis.

Due to the 4Rmin distance constraint on the points, circle(A,Rmin) does not contain
xm. Therefore, the inverse of circle(A,Rmin), i.e.,inv(circle(A,Rmin), C), is a circle centered
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at point A′ with radius rA′ (see Figure 5.3). The point A′ and radius rA′ are defined as
follows:

rA′ =
1

|Axm|2 − 1
, |A′xm| = |Axm|rA′ . (5.1)

Substituting A,A′ and rA′ with B,B′ and rB′ , respectively, we can define B′ and rB′ .

To derive a set of equations for the optimal heading in the path C1S2C3S4C5, we require
the following additional definitions:

• µA is 1 if C1 = C3 and −1 otherwise,

• µB is 1 if C5 = C3 and −1 otherwise,

• R is the radius of the circles centered at C and D in the optimal path,

• θ = ∠xmCD = ∠xmDC (see Figure 5.3),

• β1 = ∠xmAB and β2 = ∠xmBA.

Following proposition provide the set of equations to obtain the optimal heading.

Proposition 5.2.2. The optimal heading α∗ at xm is the unique solution to the following
set of equations:

1

2(µA + |Axm| cos(β1 + θ − α∗)) = R, (5.2)

1

2(µB + |Bxm| cos(β2 + θ + α∗))
= R, (5.3)

1

2(1− sin(θ))
= R. (5.4)

Proof. Figure 5.4 shows the triangles 4CA′xm and 4DB′xm of Figure 5.3. The length
of the segment CA′depends on the line segment S2. If the line segment S2 is an inner com-
mon tangent then circle(A′, rA′) is contained in circle(C,R) and share a common tangent,
therefore, |CA′| equals R − rA′ . On the other hand, if the line segment S2 is an outer
common tangent the circle(A′, rA′) is tangent to circle(C,R) from outside and the length
of the segment |CA′| is R+ rA′ . The same applies to the segment DB′ with respect to the
segment S4. The circles centered at C and D in Figure 5.3 are tangent to line l. Therefore,
the distance of the centers C and D from the line l is R. Since the line l passes through
the intersection points of the two equally sized circles centered at xm and xc, the distance
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Figure 5.4: Triangles 4CA′xm and 4DB′xm of Figure 5.3. Line l contains xm and is parallel
to the direction of the heading at xm.

of xm from the line between C and D is R − Rmin

2
which results Equation (5.4). Finally,

the cosine law for triangles 4CxmA
′ and 4DxmB

′ in Figure 5.4 result Equations (5.2)
and (5.3), respectively.

The set of unknowns in Equations (5.2), (5.3) and (5.4) are R, α and θ, where α
is the optimal heading at xm. Unfortunately, we have been unsuccessful in obtaining a
closed form solution to these set of trigonometric equations. In Section 5.3.1, we leverage
Proposition 5.2.2 to bound the optimal heading at the mid-point. Moreover, we propose
a geometric method to approximate the heading, followed by an iterative procedure to
converge to the optimal.

5.3 Three-point Dubins Algorithm

In this section, we propose a simple method to find the optimal path in the problem instance
(Xi,xm, Xf ). First, leveraging the properties in Section 5.2, we propose a method to find
an approximate midpoint heading.
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5.3.1 Approximation Method

In this section, we propose an approximation of the optimal heading at the mid-point xm.
We assume that the pair-wise distances of xi, xm and xf go to infinity. Then, the length
of segments Axm and Bxm go to infinity which, by Equation (5.1), implies |A′xm| and
|B′xm| approach zero. From Lemma A.2.1 (see Appendix A.2), the radius of the circles
inv(S2, C) and inv(S4, C) is bounded from below by 1

4
Rmin. Therefore, the angles ∠xmCA

′

and ∠xmDB
′ (see Figure 5.4) approach zero and the angles ∠CxmA and ∠BxmD go to

π
2
.

Therefore, in terms of the angles β1 = ∠xmAB, β2 = ∠xmBA, θ = ∠xmCD, we have

β1 − α + θ =
π

2
, β2 + α + θ =

π

2
.

From these equations, we can approximate the heading α at the mid-point α by

ᾱ =
β1 − β2

2
. (5.5)

The following result establishes the maximum error between ᾱ and the optimal heading
α∗. The proof is given in Appendix A.2.

Proposition 5.3.1 (Maximum error of approximated heading). For the optimal path of
Problem 5.1.1, the following holds for the optimal heading at xm:∣∣∣∣α∗ − β1 − β2

2

∣∣∣∣ ≤ ζ.

For the optimal path P ∗, the bound ζ is defined as

(i) ζ = 0 if |Axm| = |Bxm| and P ∗ is RSRSR, LSLSL, RSLSR, or LSRSL;

(ii) ζ = π
9

if P ∗ is RSRSR or LSLSL;

(iii) ζ = π
5

if P ∗ is RSLSR or LSRSL; and

(iv) ζ = 11π
36

if P ∗ is RSRSL, LSRSR, RSLSL, or LSLSR.

Note that the ζ values in Proposition 5.3.1 are the worst-case bounds, thus in Section
5.6, we provide the mean deviation of the approximated heading from the optimal on
50000 instances with various distance constraints. Also, note that the worst-case bounds
improve as the distance between the points increase. Given this approximation of the
optimal heading at the mid-point, we can initialize an iterative method to converge to the
optimal.
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Figure 5.5: Illustration of the vectors ~evi , ~evf and ~vm for a path of type L1S2L3S4R5.

5.3.2 Iterative Method

Starting from the heading given in Section 5.2 as the initial heading, we propose the
following method for iteratively improving the heading. The method converges to the
optimal heading by iteratively correcting the angle between the bisector of the two line
segments of the path C1S2C3S4C5 and the vector between the mid-point and the center of
the circle associated with the heading (see Figure 5.5). Without loss of generality, assume
that the center of the first curve is located at the origin and the center of the final curve
is located at (xf , 0) and let xm = (xm, ym) be the mid-point. We define vectors ~vi and
~vf parallel to the first and second line segments the path C1S2C3S4C5. Let xc = (xc, yc)
be the center of the circle associated with a heading at the mid-point. Let Rotθ be the
rotation matrix with angle θ and ~ev be the unit length vector in the direction of vector ~v.
We have,

~vi = Rotθi [xc, yc], ~vf = Rotθf [xc − xf , yc],
~vm = [xm − xc, ym − yc], ~v = ~ev + ~evf .

The angle θi is the angle of a common tangent of two circles circle(A, 1) and circle(xc, 1)
from the line connecting the centers A and xc. The angle θi equals zero if the line segment
is an outer-common tangent and sin−1(2/|vi|), otherwise. The algorithm for each path of
type C1S2C3S4C5 is as follows:

(i) Find the approximated heading ᾱ (Equation (5.3.1)),
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Figure 5.6: Two examples of the case that ~evi and ~evf sum to zero.

(ii) Compute vectors ~vi, ~vf and ~vm,

(iii) Compute the vector ~v bisecting the angle between ~vi and ~vf ,

(iv) Return if vectors ~v and ~vm are aligned,

(v) compute the angle γ between ~vi and ~vm,

(vi) Rotate (xc, yc) about xm by γ,

(vii) continue from step (ii).

The problem of finding the optimal heading at the mid-point is defined as the following:

min
xc,yc

cos−1(~ev · ~vm) (5.6)

The minimum of (5.6) occurs when the vectors ~v and ~vm are parallel. Note that
the derivative of the right hand side of objective function (5.6) is not defined where the
vectors ~ev and ~vm are parallel. However, minimizing (5.6) is equivalent to the following
maximization:

max
xc,yc

~ev · ~vm (5.7)
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To prove correctness of the iterative method, it suffices to show that all local maxima
(xc, yc) of (5.7) are globally maximal. The following lemma validates the iterative method.

Lemma 5.3.2. The optimal heading is the unique maximim of (5.7).

Proof. Note that the length of the vectors ~vm, ~evi and ~evf are independent of α, and the
derivative of either of the vectors is orthogonal to the vector itself. The derivative of ~ev ·~vm
with respect to change of the heading α at the mid-point is as follows:

d(~ev · ~vm)

dα
= −~evf ·

d~evi
dα

+ ~evi ·
d~evf
dα

|~evi + ~evf |3
(~evi + ~evf ) · ~vm+

d~evi
dα

+
d~evf
dα

|~evi + ~evf |
· vm +

~evi + ~evf
|~evi + ~evf |

· dvm
dα

.

(5.8)

Case (i): The vectors ~vi and ~vf are dependent, Equation (5.8) simplifies to

d(~ev · ~vm)

dα
=

d~evi
dα

+
d~evf
dα

|~evi + ~evf |
· vm +

~evi + ~evf
|~evi + ~evf |

· dvm
dα

. (5.9)

Note that |~evi+~evf | equals zeros only if the vectors ~evi and ~evf are collinear with different
directions. Therefore, the line segments are tangent to the circle at xm and the heading
corresponding to this case is the optimal heading (see Figure 5.6). If ~evi and ~evf do not
sum up to zero, then the optimal heading is the root of the following equation:

(
d~evi
dα

+
d~evf
dα

) · vm + (~evi + ~evf ) ·
dvm
dα

=
d

dα
((~evi + ~evf ) · ~vm) = 0.

Trivially, the roots of this equation occur where ~vm is parallel to ~evi + ~evf .

Case (ii): The vectors ~vi and ~vf are linearly independent. Therefore, we can write ~vm
and the derivative as a linear combinations of ~vi and ~vf , i.e.

~vm =
1

|~evi + ~evf |
~evi +

c

|~evi + ~evf |
~evf , (5.10)

d~vm
dα

=
1

|~evi + ~evf |
Rotπ

2
~evi +

c

|~evi + ~evf |
Rotπ

2
~evf . (5.11)
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In order to prove that the extremums occur where the bisector of the angle between ~vi
and ~vf aligns with ~vm, we need to show that c = 1 is the only solution to Equation (5.8).
Substituting Equations (5.10) and (5.11) into Equation (5.8) and simplify the equation,
we have

(1− c)(~evf · Rotπ
2
~evi + c~evi · Rotπ

2
~evf ) =

(1− c)2(~evi · Rotπ
2
~evf ) = 0.

With the assumption that ~vi and ~vf are linearly independent, the equation equals to zero
if and only if c = 1.

An immediate consequence of Lemma 5.3.2 is the convergence of the iterative method.

Corollary 5.3.3. The iterative method converges to the optimal heading at the mid-point.

5.4 Relaxing The Distance Constraint

The 4Rmin distance constraint in Problem 5.1.1 ensures that the path types are of type
C1S2C3S4C5. Eliminating the distance constraint introduces additional path types, i.e.,
paths including CC and CCC segments. The proof of optimality for Lemma 5.3.2 does
not consider any distance constraint between the points. Therefore, the iterative method
is applicable to any C1S2C3S4C5 path type even when 4Rmin is not satisfied.

Note that by eliminating the 4Rmin distance constraint, the optimal path may con-
tain CC path types. The Dubins path type CC is considered as a CSC path with a
zero-length line segment. However, the results in Lemma 5.1.2 does not hold for this
case. Recall that the lemma requires a non-zero line segment. Figure 5.7 shows three
optimal paths consisting of a CC segment. A constant time method is presented in [32] for
computing CC paths. Implementing the method for computing CC paths alongside our
iterative method for C1S2C3S4C5 paths, we obtain a method to optimally find the heading
at the mid point for all path types between three consecutive points with exception of
{C1C2C3S4C5, C1S2C3C4C5, C1C2C3C4C5}. Although these path types are not considered
in our method, the extensive simulation results in Section 5.6 shows that under the relaxed
distance condition the paths generated by our method are in 0.1 percent of the optimal
path.
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Figure 5.7: Optimal three point Dubins paths – each consisting of a CC segment.

5.5 Locally Optimizing a Dubins TSP Tour

The solution to Problem 5.1.1 provides a method for locally optimizing a Dubins TSP
tour in a post-processing phase. Given a set of n points in the Euclidean plane, a solution
to the Dubins TSP is an ordering of the n points, along with a heading at each point
that minimizes the total path length. Let T be a Dubins tour such that Ti is the ith
configuration (xi, αi). Now we define our post-processing method as follows:

(i) For every Ti, solve the problem (Ti−1,xi, Ti+1) and update αi,

(ii) Randomly delete a configuration Ti in T and re-insert to a position in the tour with
minimum additional cost.

Note that every segment of three consecutive vertices on the tour is a (Xi,xm, Xf ) problem
instance. Therefore, in a tour of length n, finding the position to insert a point with
minimum additional cost requires solving n − 1 problem instances of type (Xi,xm, Xf ).
The steps (i) and (ii) of refinements terminates if there is no improvement in the path.

5.6 Simulation Results

We evaluate the performance of the proposed approach on both randomly generated
(Xi,xm, Xf ) instances and in post-processing Dubins TSP tours as in Section 5.5. The
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2Rmin 3Rmin 4Rmin

Approx. heading 65.3 67.1 74.2
Iterative method 5.2 6.8 13.6

Table 5.1: The factor of improvement in runtime of the iterative and approximation method over
360 discrete headings.

point-to-point Dubins path [103] and the three-point Dubins method are implemented in
Python and the experiments are conducted on an Intel Corei5 @2.5Ghz processor. The
experiments in this section consider a Dubins vehicle with Rmin = 1.

5.6.1 Three-Point Dubins

In this section, we compare the performance of the initial approximation and the iterative
method to discretizing the heading at xm with 360 equally-spaced headings. Let αd be a
heading among the discretized headings. The discretization method creates the configura-
tion Xm = (xm, αd), and solves two Dubins path problems, namely (Xi, Xm) and (Xm, Xf ).
The discretization method returns the minimum path among the headings.

Figure 5.8 (top) shows the percentage deviation in path length for the approximate
heading ᾱ in (5.5), relative to the path length computed using 360 heading discretizations.
The bottom figure shows the deviation of the path length produced by the iterative method
to that of the discretized heading. The experiments are conducted on 50000 random
(Xi,xm, Xf ) instances, where the points are uniformly randomly selected in a 10 × 10
environment. The x-axis in Figure 5.8 is the rounded minimum distance of the three
points. The negative values represent instances in which the proposed methods outperform
the discretization method. The distribution shows that even in the cases where points are
less than 4Rmin apart from each other, the iterative method generates shorter paths.

The average computation time may vary based on the distances of the points due to
considering additional path types mentioned in Section 5.4. The iterative method improves
the runtime of computing a three-point Dubins path, under 4Rmin distance constraint,
compared to 360 discretization by a factor of 13.65. However, this factor of improvement
is 5.21 for the instances with points less than 2Rmin apart. Table 5.1 shows the factor
of improvement in runtime of the iterative and approximation method when compared to
discretization with 360 headings.
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Figure 5.8: The percentage deviation of the length of paths generated by the approximation
method (top) and iterative method (bottom) from the discretization method with 360 equally
spaced headings. The width of the distributions represent the probability of occurring an instance
in the corresponding difference percentile.
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5.6.2 Post-processing on Dubins Tour

In this experiment, we implement the GTSP method [9] on random instances with various
discretization levels followed by our post-processing method in Section 5.5. Given a Dubins
TSP on n points, and a discretization level of d at each point, the GTSP instance will have
nd vertices. The results show the advantages of the local optimization on GTSP solutions
with coarse discretization over solving GTSP with fine discretization.

To characterize the performance of our algorithm, we conduct experiments on low and
high-density Dubins TSP instances. Tables 5.2 and 5.3 show the results on uniformly
randomly generated instances. Each row of the table is a class of 20 random instances
with the same problem parameters: that is, the environment size W × W , the number of
points N , and the minimum pair-wise distance D.

The GTSP instances are solved using the state-of-the-art GTSP solver, GLKH [100]
which is implemented in C. In Table 5.2 the abbreviations G. Len and G. Time represent
the average tour length and solver time, in seconds, for the GTSP solver. Similarly, P. Len
represents the average tour length after post-processing and P. Time represents the time
required for the post-processing of the GTSP tour. The total time of the GTSP approach
and the post-processing is denoted by Time. Table 5.2 shows the performance of the
post-processing technique on the GTSP tours with a discretization level of 1 and 10 in
low-density Dubins TSP instances. The time and the tour length of the GTSP solution
with discretization level 20 is the reference, denoted by ref, for evaluating the performance
of the post-processing method. The table includes the ratios of the total time and post-
processed tour length to the reference. In the class of instances N30W20D2.0, the deviation
of the post-processed tour length from the reference is 3.7% and the total time of solving
the GTSP with 1-discretization followed by the post-processing technique is just 1.6% of
the solver-time of the GTSP approach with discretization level 20.

In an environment with high density of points, the discretization level has larger impact
on the ordering of the points in a GTSP solution. Table 5.3 shows the results of the GTSP
tour with post-processing on high-density instances. For example, the results on the class
of instances N50W20D0.0 show that the tour length of the post-processed GTSP tour
with discretization level 5 is 5.3% longer than the GTSP tour with discretization level 20.
However, the runtime is improved by a factor of 13.26.
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Low Density

P. Time G. Time G. Len P. Len P. Len/ref Time/ref

d
is

c.
1

N10W15D4.0 0.1 0.0 75.5 54.6 1.000 0.018
N10W10D3.0 0.1 0.0 66.0 38.2 1.003 0.029
N20W20D3.0 0.3 0.0 142.5 94.5 1.002 0.013
N30W20D2.0 0.5 0.4 187.3 110.3 1.037 0.016
N30W30D3.0 0.4 0.1 229.0 157.6 1.006 0.030
N40W30D4.0 0.9 0.3 289.7 205.3 1.022 0.040

d
is

c.
10

N10W15D4.0 0.1 0.8 54.8 54.6 1.000 0.167
N10W10D3.0 0.1 0.6 38.4 38.1 1.000 0.178
N20W20D3.0 0.3 9.5 94.7 94.5 1.002 0.255
N30W20D2.0 0.5 18.4 107.1 106.4 1.000 0.182
N30W30D3.0 0.4 20.5 157.1 156.7 1.000 0.152
N40W30D4.0 0.9 45.8 201.3 200.7 1.000 0.162

Table 5.2: Average tour length and time of the GTSP approach compared to the post-processing
method on random instances with low-density of points. The instance names consist of the
environment size W × W , the number of points N , and the minimum pair-wise distance D.
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P. Time GTSP 3-discretization GTSP 5-discretization

G. Time G. Len P. Len G. Time G. Len P. Len

N10W5D0.0 0.3 0.6 30.8 27.8 1.5 28.0 25.1
N20W5D0.0 0.6 4.48 50.37 45.9 7.5 44.6 41.8
N30W5D0.0 2.3 13.9 68.5 59.4 24.5 58.2 54.5
N30W20D0.0 0.7 1.4 112.9 103.7 3.6 103.0 97.5
N50W20D0.0 0.8 13.3 170.5 160.2 23.2 153.5 145.2

P. Time GTSP 10-discretization GTSP 20-discretization

G. Time G. Len P. Len G. Time G. Len P. Len

N10W5D0.0 0.3 2.4 24.6 22.9 6.5 21.4 21.2
N20W5D0.0 0.6 16.5 38.6 36.4 46.2 35.1 34.8
N30W5D0.0 2.3 39.2 52.5 50.9 121.4 46.6 46.0
N30W20D0.0 0.7 16.0 97.0 93.2 67.3 95.4 92.3
N50W20D0.0 0.8 63.3 141.7 137.9 318.0 137.7 136.9

Table 5.3: Average tour length and time of the GTSP approach compared to the post-processing
method on random instances with high-density of points. The instance names consist of the
environment size W × W , the number of points N , and the minimum pair-wise distance D.
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Chapter 6

Conclusions and Future Work

This thesis presented two routing and scheduling problems. The first problem considered
task allocation and sequencing for multiple robots with differential motion constraints.
Our approach was based on transforming the problem to a multi-vehicle GTSP. We pro-
vided bounds on the performance of several new insertion methods for the GTSP. We also
proposed an auction-based distributed implementation of the allocation and sequencing
algorithm that utilizes the core ideas of large neighborhood search.

In the second part of the thesis, we considered the problem of three-point Dubins path
between three consecutive points. The presented approximation method followed by the
iterative method show improvement in run-time compared to the discretization of the
headings. In addition to the experimental results, the application of inversive geometry
provides a direction for further research.

6.1 Future Directions for Distributed Task Allocation

and Sequencing Algorithm for Robots with Dif-

ferential Constraints

The sampling of the configuration space offers the flexibility to define a different number
of tasks types [12] and the approximate configuration space of a large number of vehicle
models [9, 11]. The solution quality of the sampling methods relies on the number of
the samples and the size of the configuration space. For instance, consider a 14 DOF
robotic arms performing a set of tasks. The sampling of the 14 dimensional configuration
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space to cover the close to optimal solutions requires an enormous number of samples. The
discretization level for approximating the motion of the robots directly affects the quality of
the result and has an inverse relation to the solving time. In Chapter 5 we proposed the idea
of inserting tasks without explicitly constructing samples of the allowable configurations
for each task for the Dubins vehicle. Although the implementation shows considerable
improvement in the quality, this approach is limited to the Dubins vehicle. For future work,
we are pursuing the idea of sampling the continuous space and eliminating the samples
that are not present in any optimal solution. A related problem is the elimination of the
edges in the symmetric-TSP [104]. The authors provide heuristic methods to eliminate the
edges that are not present in any optimal path. In [105], the authors introduce an LP-
based approach to eliminate edges in a GTSP instance. Eliminating all the edges incident
to a vertex in the GTSP problem removes the vertex from the problem and reduces the
problem size. This approach is based on the LP-formulation of the GTSP problem and
requires solving the LP several times.

6.2 Future Directions for Optimal Dubins Path Be-

tween Three-Consecutive Points

The problem of finding the optimal Dubins path through three consecutive points is origi-
nally motivated by the well-known TSP-insertion methods [6]. Implementation of the large
neighborhood search (LNS) with the TSP-insertion methods shows considerably good re-
sults on TSP instances. Similar to the analogy of the TSP insertion methods, our algorithm
for three points Dubins path inserts a point between two configurations with optimal cost.
However, the LNS algorithm relies on repeated deletions and insertions in order to achieve
a close to optimal solution. In the GTSP implementations of Dubins TSP, the pair to pair
distances are precomputed and the computation of an insertion cost requires accessing the
fixed location in the memory in constant time. On the one hand, the GTSP method has
the discretization error and the run-time is extremely dependent on the discretization level
and on the other hand, accessing the pre-computed distances is faster than computing the
insertion costs with our algorithm. Therefore, for future research, we will pursue the idea
of introducing insertion methods and large neighborhood search algorithm for Dubins TSP
based on the proposed method in Chapter 5 and eliminating redundant computations of
the insertion costs.

As another direction for the future work, we are interested in extending our method to
assign headings to n ordered points. In fact in the optimal path through n points, each
subset of three consecutive points is the optimal solution to the problem we addressed
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Figure 6.1: In the Dubins tour through n ordered points problem, the headings are discretized
at each point and the problem is presented as the shortest path problem in multipartite graphs.
Point p′1, the replica of p1, is added to the problem in order to close the tour.

in Chapter 5. The problem of Dubins path through n order points with 4Rmin pair-wise
distances is addressed in [36] by solving 2n convex optimization problems. The problem
of optimal Dubins path through n points can be approximated by discretization the head-
ings at the points [1] and implementing the Breadth-first search algorithm (BFS) on the
multipartite graph shown in Figure 6.1. Therefore, we are interested in reducing the 2n

path types to one by finding the shortest path in the multipartite graph and converge to
the optimal by the iterative method in Section 5.3.2.
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Appendix A

Proof of Results

A.1 A Distributed Task Allocation and Sequencing

Algorithm for Robots with Differential Constraints

Proof. [Proof of Theorem 4.2.7] Proof of (ii): Without loss of generality assume that the
initial condition is q1 = (0, 0, 0), q2 = (x2, y2, θ2) and ur, ul ∈ {−1, 1}. Let α be the angle
of the line segment connecting the points (0, 0) and (x, y), β be the angle between the final
heading and the line segment. The following are two feasible suboptimal paths:

• Rotate by α, translate a distance Euc(q1, q2), and rotate by β; and

• Rotate by π − α, translate a distance Euc(q1, q2) with reverse gear, and rotate by
π − β.

The total rotation in one of the paths, i.e., θ + α or 2π − (θ + α), is less than or equal to
π. The time for traveling on the optimal path between dist(q1, q2) ≤ Euc(q1, q2) + π

2
L
r
.

Proof of (iii) We begin with showing the feasible paths for the Reed-Shepp’s car to
change the heading by θ. Without loss of generality we assume that the initial configuration
of the car is q1 = (0, 0, 0) and the destination is q2 = (0, 0, θ). For θ ∈]0, π], Path1 in

Figure A.1a consists of arcs
_

OM+,
_

MN− and
_

NK+ is the feasible path with length Rminθ.
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(a) Feasible Reeds-Shepp’s paths to change the
heading at point O by θ ∈]0, π] and π + θ, Path1

and Path2, respectively.

(b) Feasible Reeds-Shepp’s paths to change the
heading at point O by θ ∈]0, π] and π + θ, Path1

and Path2, respectively.

Superscripts on the arcs shows the forward and reverse gear motions.

dist(q1, q2) = l(
_

OM) + l(
_

MN) + l(
_

NK)

= Rmin(∠AED + ∠EDO + ∠EAO)

= Rmin(∠AOD) = Rminθ

Path2 in the figure shows the feasible path to reach q′2 = (0, 0, θ + π), consists of arcs
_

OL+,
_

LK− and
_

KO+, with length Rmin(π−θ). The case for θ ∈ [π, 2π[ is similar to Figure
A.1a.

With this result, same path construction procedure for DD robot applies to the Reed-
Shepps model. Thus the optimal path between the configurations q1 = (0, 0, 0) and q2 =
(x2, y2, θ2) is not greater then Rminπ + Euc(q1, q2).

A.2 On Efficient Computation of Shortest Dubins Paths

Through Three Consecutive Points

To prove Proposition 5.3.1 we require the following result.

Lemma A.2.1 (Minimum radius of an inverted circle). The radius of the inverted circles
circle(C,R) and circle(D,R) in the optimal path are greater than Rmin

4
.
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xm

xc

K

Q

C

S2

Figure A.2: Line segment S2 tangent to the circle xc at Q. The closest pointon S2 to the center
of inversion xm is K.

Proof. There are two cases that we need to consider regarding the relation of either of the
line segments (S2 or S4) and the circle of inversion as follows: Case 1) The line tangent to
circle(xc, Rmin) intersects the circle of inversion circle(xm, Rmin). Then the inverted circle
contains the intersection points and the center of the circle of inversion. The radius of the
inverted circle is minimum when the points of intersection are the same, i.e., the line is
tangent to the circle of inversion. The corresponding inverted circles have a radius equal
to 1

2
Rmin.

Case 2) The tangent line does not intersect the circle of inversion. In this case the
maximum distance between the center of inversion and one of the tangent lines (blue or
red line in Figure 5.3 for instance) is 2Rmin.

Figure A.2 shows that the distance of the center of inversion xm from the tangent line
to circle(xc, Rmin) is not greater than |xmQ|. The maximum distance of the point xm from
the line tangent to the circle xc occurs when the points Q and K are the same, which
implies that the maximum distance is bounded by 2Rmin. Thus, the inverse of the point
K with respect to the circle C is within distance Rmin

2
of xm. Note that both xm and the

inverse of Q are in the inverse of S2 with respect to circle(xm, Rmin). The product of the
inversion is a circle such that the inverse of K is the farthest point to xm (K is the closest
point on l to xm). Therefore, the radius of the inverted circle is greater than Rmin

4
.

Proof. [Proof of Proposition 5.3.1

For a path contained in {RSRSR,LSLSL,RSLSR,LSRSL}, Equations (5.2)-(5.4)
simplify to the following:

|Axm| cos(β1 − θ + α) = |Bxm| cos(β2 + θ + α). (A.1)
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With the assumption of case (i) (|Axm| = |Bxm|) and by Equation (A.1), the optimal
heading is equal to the approximated heading, namely α = β1−β2

2
.

Case (ii): Under the distance constraint of Problem 5.1.1 (4Rmin), the approximated
heading has maximum deviation from the optimal heading when the radius R reaches
infinity or its lower bound from Lemma A.2.1, namely 1

4
. For the path types RSRSR and

LSLSL, substituting the minimum and maximum R values in the Equations (5.2) and
(5.3) result the following:

−α + β1 + θ ∈
[
cos−1

(1

3

)
, cos−1

(−1

3

)]
,

α + β2 + θ ∈
[
cos−1

(1

3

)
, cos−1

(−1

3

)]
.

Therefore, the maximum deviation of the approximated heading from the optimal heading
is in the range [−π

9
, π
9
].

Case (iii): using similar argument:

−α + β1 + θ ∈
[
cos−1(1), cos−1

(1

3

)]
,

α + β2 + θ ∈
[
cos−1(1), cos−1

(1

3

)]
.

Therefore, the optimal heading lies within the interval [−π
5
, π
5
] centered at the approximated

heading.

Case (iv): We prove the bound for path types in {RSRSL,LSLSR} and the other
path types directly follow same analysis. In these types of paths, substituting the upper
and lower bounds of R in Equations (5.2)-(5.4) yields the following:

−1

3
≤ cos(β1 + θ − α) ≤ 1

3
,

1

3
≤ cos(β2 + θ + α) ≤ 1.

Thus,

β1 + θ − α ∈
[π

2
− π

9
,
π

2
+
π

9

]
, β2 + θ + α ∈

[
0,
π

2
− π

9

]
.

Therefore, the maximum error of ᾱ is 11π
36

.
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