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Abstract  

Intelligent Transportation System (ITS) is the combination of information technology, 

sensors and communications for more efficient, safer, more secure and more eco-friendly 

surface transport. One of the most viable forms of ITS is the driverless car, which exist 

mainly as prototypes. Serval automobile manufacturers (e.g. Ford, GM, BMW, Toyota, 

Tesla, Honda) and non-automobile companies (e.g. Apple, Google, Nokia, Baidu, 

Huawei) have invested in this field, and wider commercialization of the driverless car is 

estimated in 2025 to 2030. Currently, the key elements of the driverless car are the 

sensors and a prior 3D map. The sensors mounted on the vehicle are the “eyes” of the 

driverless car to capture the 3D data of its environment. Comparing its environment and a 

pre-prepared prior known 3D map, the driverless car can distinguish moving targets (e.g. 

vehicles, pedestrians) and permanent surface features (e.g. buildings, trees, roads, traffic 

signs) and take relevant actions. With a centimetre-accuracy prior map, the intractable 

perception problem is transformed into a solvable localization task. The most important 

technology for generating the prior map is Mobile Laser Scanning (MLS). MLS 

technology can safely and rapidly acquire highly dense and accurate georeferenced 3D 

point clouds with the measurement of surface reflectivity. Therefore, the 3D point clouds 

with intensity data not only offer the detailed 3D surface of the road but also contains 

pavement marking information that are embedded in the prior map for automatic 

navigation. Relevant researches have been focused on the pavement marking extraction 

from MLS data to collect, update and maintain the 3D prior maps. However, the accuracy 

and efficiency of automatic extraction of pavement markings can be further improved by 

intensity correction and window-based enhancement. Thus, this study aims at building a 
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robust method for semi-automated information extraction of pavement markings detected 

from MLS point clouds. 

The proposed workflow consists of three components: preprocessing, extraction, and 

classification. In preprocessing, the 3D MLS point clouds are converted into the 

radiometrically corrected and enhanced 2D intensity imagery of the road surface. Then 

the pavement markings are automatically extracted with the intensity using a set of 

algorithms, including Otsu’s thresholding, neighbour-counting filtering, and region 

growing. Finally, the extracted pavement markings are classified with the geometric 

parameters using a manually defined decision tree. Case studies are conducted using the 

MLS datasets acquired in Kingston (Ontario, Canada) and Xiamen (Fujian, China), 

respectively, with significantly different road environments by two RIEGL VMX-450 

systems. The results demonstrated that the proposed workflow and method can achieve 

93% in completeness, 95% in correctness, and 94% in F-score respectively when using 

Xiamen dataset, while 84%, 93%, 89% respectively when using Kingston dataset. 
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Chapter 1 Introduction 

1.1 Motivation 

Intelligent transportation systems (ITS) have been introduced for many years. It is the 

result of developing transportation systems by information technology (IT), sensors and 

communications technologies (GSMA, 2014). A country’s transportation system has 

significantly improved by building new roads, maintaining aging infrastructures as well 

as integrating infrastructures (roads, traffic lights, messages signs, etc.) into vehicle 

systems via wireless technologies. ITS can improve the performance of the transportation 

system significantly, enhancing road safety, improving traffic efficiency and 

environmental sustainability, and reducing incidents and congestion.  

The current development of ITS focuses on driverless car, which is the most viable 

form of ITS. The driverless cars are still in the research stage, but it is estimated to be 

launched in the next decade. Several companies predicted the commercial sale of the 

fully autonomous vehicles would be between 2018 and 2020 (Litman, 2014). Companies 

in automotive and other industries are racing to develop the technologies, including Tesla, 

Ford, General Motors, Honda, Google, Apple, Baidu; etc. As a robotic vehicle that is 

capable of traveling between destinations without a human operator, the driverless car is 

driven not by human but the data. There are two principal data sources for the navigation 

of the driverless cars. The first one is the sensory input in terms of the surroundings of the 

driverless car. It can be acquired and collected by the radar, LiDAR sensor and video 

cameras. The roof-mounted Light Detection and Ranging (LiDAR) sensor monitors a 

range from 60 to 100m from the car and creates a 3D map of the environment (Google 

driverless car report, 2015; Whitwam, 2014). The second one is a prior highly detailed 
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3D map. Different from the traditional road map, this detailed 3D map is developed for 

the machine. The highly precise map is indispensable not only to allow a car to locate 

itself on the traffic lane but also enable a vehicle to take corresponding actions correctly 

(Guizzo, 2011). In a scenario where a driverless car tries to overtake a slower truck in 

front of it on a motorway. The car itself must have the knowledge that there is another 

lane to move into. It has to follow the legal restrictions to overtake or drive in the other 

lane. The width of the lane and the stretch length of road for completing the maneuver 

also need to be taken in to consideration. Thus, the automated car has to be supported by 

detailed lane model. Such a lane model needs to have precise lane geometry with lane 

boundaries and rich attributions such as lane types, lane traversal information, lane 

marking types and lane speed limit information (Kent, 2015). Except the detailed 

information of lanes, every stationary object should be recorded in the precise 3D map. 

Therefore, the car is able to recognize the moving objects that are not in the 3D map, 

such as vehicles and pedestrians. With the prior 3D map, the autonomous driving is 

transformed from a difficult perception task into a localization problem. 

To capture the world in 3D for autonomous vehicles, Mobile Laser Scanning (MLS) 

technology is applied before the driverless cars hit the road. It is an effective and efficient 

method for acquiring highly accurate, precise, and dense geo-referencing 3D topographic 

data (Puente et al., 2013). MLS systems are the mobile mapping systems based on the 

LiDAR, which capture 3D point clouds from the surrounding environment using profiling 

scanners. The laser scanners are mounted on the roof or the rear of the vehicle to acquire 

the range data during the movement of the vehicle. The vehicle has motion-tracking 

navigation devices, and the vehicle’s trajectory and attitude are tracked by a global 
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navigation satellite system (GNSS) and inertial measurement unit (IMU). The 

information acquired can be used to geo-reference a 3D point cloud from the range data. 

MLS offers many advantages, including high accuracy, high point density and rapid data 

acquisition. For example, the integration of two RIEGL VQ-450 laser scanners in a 

RIEGL VMX-450 system can provide 8 mm measurement accuracy and 5 mm precision 

(RIEGL, 2015). Their maximum effective measurement rate can reach 1.1 million points 

per second. As a result, the system can collect data up to 250 Mb in 100 m path with 20 m 

width at the speed of 30-50 km/h. Therefore, MLS is a feasible 3D mapping technology 

for surveying and mapping of the urban environment (Williams et al., 2013). The detailed 

3D point cloud data normally involves the important information of traffic lane such as 

lanes’ geometry and boundary, lanes’ types, speed limit and lane traversal information. 

The indispensable data helps the driverless car make solid decisions (Kent, 2015). 

However, processing the point cloud data to generate the highly detailed 3D map is a 

labour-intensive process. There are three challenges in processing the 3D point clouds 

collected by MLS. Firstly, the volume of MLS data is incredibly large. Secondly, the 

MLS data is unstructured. Thirdly, the MLS data has unevenly distributed intensity. In 

this context, using the state-of-the-art and efficient MLS data to extract detailed 

information of lanes become an urgent need for the development of driverless cars. It is 

noted that majority of the information of lanes is represented by the road markings, thus, 

this study focuses on the extraction and recognition of road markings from MLS data for 

building the prior map of driverless car. 

1.2 Objective 

The main purpose of this study is to develop a semi-automatic workflow for road 



4 

 

marking detection and classification using 3D point clouds that are acquired by a vehicle-

mounted MLS system. The positioned and recognized road markings can be transformed 

to the detailed lane information (such as lanes’ geometry, boundary and types) to support 

the operation of the driverless car. In this study, the MLS data of Island Ring Road (City 

of Xiamen, Fujian) and King Street (City of Kingston, Ontario) were acquired and 

collected from the two RIEGL VMX-450 systems, provided by the Fujian Key 

Laboratory of Sensing and Computing for Smart Cities, Xiamen University, China and 

the Tulloch Engineering, Ottawa, Ontario, respectively. The detailed research objectives 

are listed below: 

(1) Completely extract the road markings from MLS data automatically with high 

accuracy in different environments; 

(2) Classify the road markings into thorough and detailed categories based on the 

extracted information from MLS data with a high accuracy. 

1.3 Thesis Structure 

The thesis consists of the five chapters.  

Chapter 1 introduces the research background and motivations followed by 

addressing the research objectives.  

Chapter 2 reviews fundamental knowledge of the MLS technology, and the related 

studies about the road surface information extraction and recognition by using MLS data 

and digital images/videos.  

Chapter 3 describes the study areas and test datasets, the designed workflow and the 

algorithms details for road information extraction and classification is also explained.  
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Chapter 4 first presents the extracted and classified road marking information from 

the MLS data of Island Ring Road in Xiamen using the proposed workflow and 

algorithms. The results were compared with the performance of the three recently 

published methods. Second, the MLS data of the King Street, Kingston is used to apply 

the proposed workflow and algorithm with modification to handle the cracking, rutting 

and potholes issues.  

Chapter 5 concludes contributions of the thesis and points out the future research 

directions. 
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Chapter 2 Background and Related Work 

2.1 Principle of Mobile Laser Scanning  

2.1.1 Components of a Mobile Laser Scanning System 

Mobile laser scanning (MLS) may be defined as the science and technology for 

deploying portable laser scanner(s) on road, rail or marine vehicles to rapidly collect 3D 

georeferenced point clouds for digital representation of the built and physical 

environments. Compared with the early mobile mapping systems mainly using digital and 

video cameras (Schwarz and El-Sheimy, 2007; Lemmens, 2011), a MLS system 

nowadays is normally integrated with optimal digital camera(s), laser scanner(s), a 

Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit 

(IMU), and a Distance Measurement Indicator (DMI) (Olsen, 2013; Florida Department 

of Transportation, 2013). 

The laser scanner emits laser pulses or continuous waves to the surface of a target 

and receives the backscattered pulses or waves. There are two range measurements for 

laser scanning technologies: time-of-flight (TOF) and phase shift (Vosselman and Maas, 

2010).  

The TOF scanners (also called pulse-based) scanners emit a laser pulse to the target, 

and receives the backscattered pulse. The pulse traveling time recorded in the system is 

used to measure the distance between the scanner and the target. In the phase-based 

system, the phase shift and the number of transmitted are used to calculate the distance. 

Both of these approaches utilise the amount of the reflected energy to measure the 

intensity of a point on the surface. Even though the phase-based scanner has a less 

measurement range than the pulse-based scanner’s, it has a higher scanning frequency 
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and accuracy. In addition, the pulse-based scanners are more suitable for 3D 

reconstruction of large areas, such as in urban environment; while the phase-based 

scanners are more appropriate in the case of more detailed and precise measurement, such 

as digital archaeology (Ogund, 2015). Thus, the majority of MLS systems are mounted 

with pulse-based scanners. For example, the maximum range of TOF scanner RIEGL 

VQ-450 is 800 m. 

The optical digital cameras capture the color of the target surface to supplement the 

original 3D point clouds that are acquired by laser scanners. The raw MLS point clouds 

lack of the texture information, while the true colour images cannot provide with accurate 

geometry information. Fusion of the true colour images and raw point clouds produce 3D 

true coloured point clouds, which can facilitate the elaborated visualization and 3D 

construction. 

The GPS receiver observes time, position and the estimated velocity. It provides 

highly accurate position under optimal satellite configuration (Olsen, 2013; Florida 

Department of Transportation, 2013). However, the positioning accuracy would decline 

when the GPS receiver is under poor satellite configuration. For example, the GPS is 

located in a place surrounded by a cluster of tall buildings. 

The IMU consists of three accelerometers and three gyroscopes. The acceleration is 

measured in three axes (X, Y, Z), and the angular rate is measured along each of the 

acceleration axes. In the signal processing step, the total acceleration and rotation are 

calculated for an IMU sample period. Different from GPS, the performance of IMU is not 

influenced by satellite signal strength. However, the errors of IMU add up over time, and 

lead to the decrease of the accuracy in positioning and orienting (Puente et al., 2013). It 
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should be noted that the errors can be compensated by the high accurate positioning 

information from a GPS; while the positioning accuracy of GPS can be also improved. 

Thus, the integration of the GNSS/IMU is able to provide a high accurate position and 

orientation for the MLS system. 

The DMI is installed on the one of the vehicle’s rear wheels to estimate the traveled 

distance (Talaya et al., 2004). The DMI offers the observation to help constrain the error 

drift when the vehicle locates in an area where tall buildings block the view of the sky. 

2.1.2 A Mobile Laser Scanning System  

A vehicle-mounted MLS system is used in the mapping of roads and urban public 

space. It can offer sufficient speed to keep pace with the traffic and acquire a large 

amount of dense and precise point cloud dataset for various surveying tasks (Kukko et al., 

2012). The MLS point clouds contain intensity data that can be applied to detect urban 

infrastructures automatically, such as buildings, pavement, roads, curbs, markings, 

manholes, traffic sign, poles and pylons. As shown in Figure 2.1, the environment is 

rendered with the intensity data of point cloud in greyscale where the road markings are 

distinguished. The MLS system RIEGL VMX-450 is mounted on the rear of the vehicle. 

It contains two tilted laser scanners, each scanner has a 360º field of views and their scan 

direction is counter-clockwise. The tilted angle of the scanners is 35 º, and the yaw offset 

is ±30 º. With the scanners’ tilted angle of 35 º and the yaw offset of ±30 º, this 

configuration is call “Butterfly” or “X” pattern. As the vehicle moves along the road, the 

navigation system based on GPS, IMU and DMI tracks the vehicle‘s trajectory and 

attitude for direct geo-referencing of laser scanning data. Due to the different position, 

movement speed, scan frequency and number of the scanners, the characteristics of the 
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obtained point cloud are different from airborne laser scanning (ALS) data, such as point 

pattern, distribution and point density. The flatness of the terrain and absence of tall 

targets result in the significant drop of the point density beyond 30 m (Guan et al., 2014). 

There are other factors that impact the point density, such as the vehicle speed, scan 

frequency and point measurement rate. 

 
 

Figure 2.1: A Mobile Laser Scanning system. 

2.1.3 Geo-referencing of MLS Data 

The principle of geo-referencing is illustrated in Figure 2.2. The laser scanner is able 

to locate P point in its coordinate system by measuring scan angle 𝛼 and scan range 𝑑. 

Then the position of P in scanner system is transformed into the coordinate system of the 

mapping frame.  
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Figure 2.2: Principle of Geo-referencing. 

The parameters that are used in the geo-referencing method is summarised in Table 

2.1: [𝑋𝑃, 𝑌𝑃, 𝑍𝑃]𝑇  indicates the location of target P in the mapping frame coordinate 

system; [𝑋𝐺𝑃𝑆, 𝑌𝐺𝑃𝑆, 𝑍𝐺𝑃𝑆]𝑇  represents the position of the GPS antenna in the mapping 

frame; 𝜔, 𝜑, κ indicates the rotation matric from the IMU coordinate system; 𝛼  and 𝑑 

refers to the scan angle and range of the laser beam; and the others are the parameters that 

is determined by system calibration and measurement (Barber et al., 2008). 

Table 2.1: Parameters of the geo-referencing equation. 

Parameters Description Source 

𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃 Coordinate of target P in mapping frame.  

𝑋𝐺𝑃𝑆, 𝑌𝐺𝑃𝑆, 𝑍𝐺𝑃𝑆 Coordinate of GPS antenna in mapping frame. GPS antenna 

𝑅𝑀
𝐼𝑀𝑈(𝜔, 𝜑, κ) 

Rotation matrix from IMU coordinate system to 

mapping frame 

IMU 

𝑟𝑃
𝑆(𝛼 𝑑) 

The vector from laser scanner to point P. 𝛼 is the 

scan angle and 𝑑 is the scan range. 

Laser scanner 

𝐿𝑋, 𝐿𝑌, 𝐿𝑍 
The offsets from the GPS origin to the IMU 

origin. 

System calibration 

and measurement 

𝑙𝑋, 𝑙𝑌, 𝑙𝑍 
The offsets from the IMU origin to the laser 

scanner origin. 

System calibration 

and measurement 

𝑅𝐼𝑀𝑈
𝑆 (∆𝜔, ∆𝜑, ∆κ) 

Rotation matrix from laser scanner coordinate 

system and IMU coordinate system. 

System calibration 

and measurement 

 



11 

 

The coordinate of a target P can be calculated by equation 2.1: 

 [
𝑋𝑃

𝑌𝑃

𝑍𝑃

] = 𝑅𝑀
𝐼𝑀𝑈(𝜔, 𝜑, κ) ∙ (𝑅𝐼𝑀𝑈

𝑆 (∆𝜔, ∆𝜑, ∆κ) ∙ 𝑟𝑃
𝑆(𝛼 𝑑) + [

𝑙𝑋

𝑙𝑌

𝑙𝑍

] + [
𝐿𝑋

𝐿𝑌

𝐿𝑍

]) + [

𝑋𝐺𝑃𝑆

𝑌𝐺𝑃𝑆

𝑍𝐺𝑃𝑆

] (2.1) 

2.2 Road Surface Detection Using Mobile Laser Scanning Data 

In order to extract the road markings efficiently, the first step is to extract the road 

surface from the large-volume raw MLS point cloud data. A variety of methods were 

developed to detect roads from LiDAR data. The generic road surface detection with 

MLS data schemes from (a) 2D features filtering, (b) scan line segmentation, (c) 3D 

geometric features filtering, (d) surface growing, (e) random sampling consensus 

(RANSAC), to (f) voxel-based algorithm.   

In the 2D features filtering approach, the road surface is detected given its elevation 

value, point density and intensity value. Li et al. (2004a) designed a method named 

Density of Projected Point (DOPP) to segment the range image. They used the density of 

projected point as an important criterion for road extraction. Guan et al. (2015) 

implemented elevation filtering to remove the high objects from the geo-referenced 

intensity image, and a point-density filter to extract the road surface. Clode et al. (2007) 

developed a hierarchal classification method to extract road from off-road points, based 

on intensity and elevation information. 

In the second category (scan line segmentation), the MLS data is split into scan lines 

(or row of a range image) before the extraction. The detection of the road edges is used to 

determine the region of the road surface. First of all, the raw MLS data was segmented 

into profiles by a profiling process, and then processed by different algorithms. 

McElhinney et al. (2010) removed high elevations from the profiles and calculated the 
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rapid changes in the slope of the spline. The nearest points with the greatest changes were 

identified as the left and right edge of the road. Yang et al. (2013) implemented a moving 

window process on successive road cross section to detect border points of ground. Guan 

et al. (2014) detected curb points by the calculation of the slope and the elevation 

differences between a point and its neighbours in each scan line. Furthermore, the road 

surface can also be detected in each scan line separately. Manandhar and Shibasaki 

(2002) analyzed the histogram of height deviation of the points along the width of the 

road to extract the road surface. Zhao and Shibasaki (2002) also conducted a scan-line 

based classification by employing height deviation to separate the range points into 

building surface, road surface, other surfaces, windows, trees and others. In the study 

conducted by Smadja et al. (2010), RANSAC was implemented to detect the road 

boundary in each scan line.  

In the third category (3D geometric features filtering), the road surface is extracted by 

a 3D features filtering. Hervieu and Soheilian (2013) calculated normal vector of each 

point and determined curbs and curb ramps based on its angular distance to normal vector 

of the ground. Liu et al. (2013) developed a digital elevation model using 2D sequential 

laser data. A probabilistic moving object deletion approach was utilised to remove the 

objects on the road. Then the slope and height variance between the curb candidate grid 

and adjacent grids were calculated for the identification of the curb grids.  

In the fourth category (surface growing), Vosselman et al. (2004) introduced a surface 

growing algorithm to segment the point clouds into planes. The connectivity and 

smoothness of the plane, and the orthogonal distance between a candidate point and a 

plane were taken into account. Based on the surface growing segmentation, Pu et al. 
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(2011) defined and categorized all the feature types regarding geometric attributes and 

topological relations. In a rough classification, the road surface segments were extracted 

based on the distance to the vehicle trajectory.   

In terms of the ground removal methods, Zhou et al. (2012) implemented RANSAC 

to fit the planes of the road surface, and the points within a distance to the planes are 

extracted as the ground. Cabo et al. (2013) simplified the point cloud approach based on 

the space regular voxelization. All voxels were segmented into horizontal slices, and the 

fragments of target poles were grouped and extracted in 2D sections. In the end, the 

tridimensional neighborhood analysis was applied to the grouped voxels of each pole, 

and the slices of the targets join to its neighbours to reconstruct the target poles. Yu et al. 

(2015) partitioned point data into an octree structure with a voxel size. For each voxel, it 

grew upward to its 9-neighbour voxels, and then the growing scheme continued until 

reached the top boundary. If the elevation of the top voxel smaller than the predefined 

threshold, the cluster of these voxels is regard as ground and the point clouds were 

labeled as ground points.  

Four categories of road surface detection techniques were summarised in Table 2.2. 

The application of the elevation, point-density and intensity filtering is simple and fast, 

but the extraction results are in relatively low accuracy. The scan-line based segmentation 

focuses on the detection of the road edges or curbs based on the elevation changes in each 

scan line. A rapid change of slope is employed to distinguish curb or road border from the 

ground (McElhinney et al., 2010; Yang et al., 2013; Guan et al., 2014). Different from 

road edge detection, some studies aimed at extracting the road surface directly according 

to its smoothness. One of the main parameters in this method is the height deviation that 
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measures the smoothness (roughness) of the surface (Manandhar and Shibasaki, 2002; 

Zhao and Shibasaki, 2002). Compared with scan-line based segmentation, 3D geometric 

features filtering is able to extract road surface in a global scale. Hervieu and Soheilian 

(2013) calculated the normal vectors of the points to detect the curb and curb ramps. Liu 

et al. (2013) transformed a3D problem into a 2D problem, making their method faster 

than Hervieu and Soheilian’s method (2013). In addition, the surface growing algorithm 

takes the coplanarity and connectivity into the consideration and detects the road surface 

in a global scale but in a time-consuming manner. 
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Table 2.2: Summary of different road surface detection techniques. 

Method Information Advantages Limitations Examples 

2
D

 f
ea

tu
re

s 

fi
lt

er
in

g
 

●Point density 

●Elevation 

●Straightforward 

●High computational 

efficiency 

● Difficult to handle steep 

terrain 

● Cannot remove the wheels 

from the road 

Distinguishing ground and building by calculating density of projected 

point (Li et al., 2004a) 

Removing the high object by elevation filtering and extract road surface by 

point-density filtering (Guan et al., 2015). 

●Point intensity 

●Elevation 

●Straightforward 

●High efficiency 

● Cannot detect boundary lines  Detection and vectorization of roads from LiDAR data by hierarchal 

classification with intensity and height values (Clode et al., 2007) 

S
ca

n
 l

in
e 

se
g

m
en

ta
ti

o
n

 

●Edge of Road ●Detecting the accurate 

edge of the road surface 

in urban area 

●Without additional 

information, such as point 

density, point intensity 

●The curb-based road 

detections fail in rural area 

●Need vehicle trajectory 

information for profiling 

Initial results from European road safety inspection (EuRSI) mobile 

mapping project (McElhinney et al., 2010)  

Partitioning MLS into road cross sections to detect border points of 

ground (Yang et al., 2013) 

Curb-based road extraction based on rapid elevation changes through 

successive road cross section (Guan et al., 2014). 

●Height 

deviation 

●Scan range 

●Detecting the road 

surface according to the 

smoothness of the road  

 

●Need vehicle trajectory 

information for profiling 

The histogram analysis was implemented along scan line to detect the 

height deviation and extract road surface (Manandhar and Shibasaki, 2002) 

Vehicle-borne laser range data was segmented by scan line, and the 

successive linear patches are extracted. Then the extracted patches were 

classified into the horizontal and vertical surface according to their orientations. 

(Zhao and Shibasaki, 2002)  

3
D

 

g
eo

m
et

ri
c 

fe
at

u
re

s 

●Slope 

●Height 

difference 

●Normal vector 

●Processing in Global 

scale 

● The complex of the methods 

depends on calculation of the 

3D features 

Curb detection based on DEM built from UGV(Liu et al., 2013) 

Road side detection with angular distance to ground normal (Hervieu and 

Soheilian, 2013) 

S
u

rf
ac

e 

g
ro

w
in

g
 

al
g

o
ri

th
m

 ●Coplanarity 

(Normal vector) 

and 

●Connectivity 

●Processing in Global 

scale 

 

●Time consuming Segment the laser point cloud with a surface growing 

algorithm.(Vosselman et al., 2004)  

The point clouds were partitioned by surface growing algorithm, and road 

surface segments were detected by the spatial relationship to vehicle trajectory. 

(Pu et al., 2011) 

R
A

N
S

A
C

 ●Smoothness ●No need of trajectory 

information 

●High computational 

efficiency 

●Accuracy depends on how the 

model fit the data  

●Cannot handle the terrain with 

large elevation variance 

Implementing RANSAC to fit a plane for ground, and searching the 

ground points within a distance to the plane (Zhou et al., 2012) 

V
o

x
el

-b
as

ed
  

al
g

o
ri

th
m

 ●Connectivity 

along vertical 

direction 

●No need of trajectory 

information 

●High efficiency 

● Cannot handle the terrain 

with large elevation variance 

 

Implementing voxelization and partitioning the voxels into horizontal 

slice to analyze and extract the pole voxels. (Cabo et al., 2013) 

Applying voxel-based upward growing to remove ground point from 

entire point clouds (Yu et al., 2015) 
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2.3 Road Marking Extraction Methods 

In general, the road markings have much higher reflectance than the unpainted road 

surface. Therefore, their relatively high intensity can be used for detecting the road 

markings with the assistance of different data sources. Based on data sources, the studies 

can be categorized into two groups: (a) digital images or videos based and (b) mobile 

laser scanning data based. 

2.3.1 Images and Video-based Road Marking Extraction 

The use of digital images and videos for road marking extraction has been 

investigated for years. This extraction consists of two steps: candidate extraction and road 

marking classification. Taking the study of Kheyrollahi and Breckon (2010) as an 

example, they implemented a multi-level-threshold segmentation to detect the candidate 

road markings. A set of connected contours were extracted from the binary images. Based 

on the shape of the road markings, artificial neural network were utilised to classify these 

road markings. 

In order to overcome the difficulty of inconstant luminance, road markings were 

identified with local thresholding. Beside the multi-level-threshold segmentation, 

Kheyrollahi and Breckon (2012) processed the image line by line and identified the left 

and right boards based on the changes of the luminance along the lines. Wang et al. 

(2009) and Mathibela et al. (2015) applied Inverse Perspective Mapping (IPM) to 

transform the perspective image into a top-view image and implemented steerable filter 

(Freeman and Adelson, 1991) to detect the lane markings. The image was then segmented 

by lane markings and arrow markings were extracted using the Otsu thresholding (Otsu, 

1979).These methods avoided the application of global thresholding for the extraction 



17 

 

process and explored different partitioning strategies to segment the MLS data into data 

stripes/profiles to avoid spatial variance.  

One of the main challenges of the images and videos based extractions is the 

inconstant luminance of road markings and pavements. The process of measuring the 

reflected sunlight inherits the disadvantage of passive remote sensing. Various factors 

would affect the detection of road markings, such as weather, time of day, moving 

vehicles and shadows (see Table 2.3). Equipped with active sensors, MLS systems have a 

good performance in detecting road markings. First of all, the detection is weather and 

sunlight independent. The MLS systems can work in cloudy weather, without shadows 

occurring on the road surface and operate at night avoiding the dense traffic. However, 

some factors would impact the intensity data measured by MLS systems, such as scan 

range, incidence angle and surface properties (see Table 2.3). Similar to the 

images/videos-based methods, the MLS-based methods have their own “inconstant 

luminance” issue. The details will be further discussed in Section 2.3.5. 

Table 2.3: Summary of impacts of road marking extraction. 

Data source Impacts Description 

Images and videos Weather Cloudy weather reduces the contrast between 

markings and pavements. 

 Time of day Cameras can be used only during day time. 

 Occultation Vehicles on the road cover the road marking. 

Pedestrians walk through zebra crossing. 

 Shadows Shadows of buildings, trees and vehicles reduce 

the luminance of the road marking. 

MLS data Scan range  Atmospheric attenuation 

 Incidence angle Lambert's cosine law 

 Surface properties The surface roughness, grain properties and 

albedo determine the intensity of the road 

markings. 
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2.3.2 MLS Based Road Marking Extraction 

In the MLS systems to extract the road markings, the first step is to distinguish road 

surfaces points from raw MLS data. The road markings are then detected based on their 

high reflectance in the form of laser intensity. Based on the MLS data, the road marking 

extraction process can be classified into three categories (a) global intensity filtering, (b) 

global intensity filtering with preprocessing, (c) multi-thresholding segmentation. 

With regard to global intensity filtering, Smadja et al. (2010) implemented a simple 

threshold on intensity for detecting the road markings. Toth et al. (2008) selected an 

intensity value based on the intensity distribution in a search window as a global 

threshold for the extraction. Yang et al. (2012) extracted continuous edge lines and 

broken lane line markings successfully. First of all, a two-step filtering was undertaken to 

MLS point clouds based on intensity and elevation information. The markings were then 

detected according to their patterns and arrangements. However, there were some noises 

in those three road marking results due to unevenly distributed intensity of point clouds. 

To eliminate the intensity variance caused by the unevenly distributed point clouds, 

Jaakkola et al. (2008) conducted a study to correct the intensity data before extraction. 

They projected the MLS point clouds into the raster images, and used image-processing 

algorithms to extract markings. First of all, the intensity image was profiled by column in 

the study. Along the profile, a second order curve fitted the median intensity 

measurements to reduce the variance of the measured intensity value. After radiometric 

correction, a 3-by-5 average filter was applied for denoising the corrected image. Then a 

constant threshold was used to extract road markings.  

Studies were also undertaken aiming at solving the problem caused by inconstant 
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intensity. Chen et al. (2009) selected the intensity peaks along the scan line as lane 

marking points by using adaptive thresholding. Vosselman (2009) proposed a distance-

dependent thresholding method to detect the road markings, and a connected components 

analysis to extract road markings. In Vosselman (2009), the threshold was expressed as a 

function of the distance to overcome the disturbance of inconstant intensity. Kumar et al. 

(2014) applied a range dependent thresholding function to extract road markings from 

intensity and range images. The strategies used by Vosselman (2009), Kumar et al. (2014) 

and Chen et al. (2009) can be concluded as an equivalence of the transverse multi-

thresholding segmentation. The algorithm proposed by Chen et al. is a transversal 

segment, while the methods proposed by Vosselman (2009) and Kumar et al (year) are a 

longitudinal segmentation. In other studies, the distance-dependence of intensity was 

used in different ways (Guan et al, 2014; Yu et al, 2015). 

Guan et al. (2014) implemented point-density-dependent multi-thresholding 

segmentation to extract road markings. The distribution of point density along the cross 

section was fitted to a Gaussian normal distribution function. The road surface points 

were segmented into some bins according to the range r that was calculated by the 

estimated mean µ and standard deviation σ. Yu et al. (2015) applied a distance-dependent 

multi-thresholding segmentation.in which the road surface points were segmented into 

the blocks along the road. A distance-based segmentation was then used to partition the 

blocks into segments, in which each segment was threshold by Otsu method individually. 

Table 2.4 summarizes the advantages and limitations of the three categories of road 

marking extraction from MLS data.  
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Table 2.4: Summary of road marking detection techniques from MLS data. 

Method Information Advantages Limitations Examples 
Global 

intensity 

filtering  

●Intensity ●Simple ●Inaccurate 

extraction result 
Using road pavement markings 

as ground control for LiDAR 

data 

(Toth et al., 2008). 

A simple global intensity 

filtering was implemented to 

extract road markings (Smadja 

et al., 2010).  

Global 

intensity 

filtering with 

preprocessing 

of intensity 

●Intensity 

 

●Distance to 

vehicle 

trajectory  

●Removing 

some variance 

of road 

markings by 

intensity 

correction  

●Distance-

dependent 

correction is rough 

The intensity values were 

corrected radiometrically with 

distance prior to a global 

intensity filtering (Jaakkola et 

al., 2008). 

Multi-

thresholding 

segmentation 

●Distance to 

vehicle 

trajectory 

●Eliminating 

the influence 

of inconstant 

intensity by 

multi-

thresholding 

●The intensity 

variance of road 

marking remains in 

segments and 

disturbed the 

extraction process 

●Partitioning relies 

on the information 

of the navigation 

trajectory 

 

Selecting the intensity peaks 

along the scan line as road 

marking points (Chen et al., 

2009). 

Expressing the threshold as a 

function of distance to extract 

road marking (Vosselman, 

2009; Kumar et al., 2014). 

Point-density-dependent multi-

thresholding segmentation for 

road marking extraction (Guan 

et al., 2014). 

Distance-dependent multi-

thresholding segmentation for 

road marking extraction (Yu et 

al., 2015). 

 

It is noted that the inconstancy of the intensity value may result in errors in the 

extraction results. Therefore, multi-thresholding segmentation was employed to minimise 

the impact of the inconsistent intensity (Vosselman, 2009; Kumar et al., 2014; Guan et 

al., 2014; Yu et al., 2015). Based on the findings from literature review, there are three 

research gaps in the field of road marking extraction from MLS. Firstly, limited studies 

were conducted on the challenging dataset from the conditions ofcracking, rutting, 

potholes and decay. Therefore, this study concentrated on two different study areas to 

explore the extraction of deficient road markings in poor road conditions. 
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Secondly, majority of the research did not undertake radiometric correction for 

reducing intensity variance before road marking extraction except the study conducted by 

Jaakkola et al. (2008). Thus, this study aims at introducing an improved radiometric 

correction of laser intensity for road marking extraction to improve the road marking 

extraction result. 

Thirdly, most of studies were conducted on reducing intensity variance by multi-

thresholding segmentation (Vosselman, 2009; Kumar et al., 2014; Guan et al., 2014; Yu et 

al., 2015), without the implement of the window based method to overcome the unevenly 

distributed intensity. Although multi-thresholding segmentation can reduce the in-class 

variance in each segment, some intensity variances would remain in the traversal and 

longitudinal segments. Because of the size of the window is small, window based method 

could result in less intensity variance than the traversal and longitudinal segments. Thus, 

the window based method should be used to improve the road marking extraction, 

especially in overcoming the unevenly distributed intensity issue, and improving the road 

marking extraction result in this thesis. 

2.3.3 Scanning Range and Incidence Angle Effects on MLS intensity 

A laser light, as the near infrared light, follows the reflection and transmission of 

electromagnetic radiation. The strength of its intensity measured by a scanner depends on 

the range from the laser point to the scanner, the incidence angle of a laser beam and the 

material property. 

Kaasalainen et al. (2011) analyzed the impacts of the range and incidence angle on 

the intensity measurements from terrestrial laser scanners (TLS). In their study, the radar 

equation was used as below (Wagner et al., 2006) 
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 𝑃𝑟 =
𝑃𝑡𝐷𝑟

2

4𝜋𝑅4𝛽𝑡
2 𝜎 (2.2) 

where Pr is the received power, Pt is the transmitted power, Dr is the receiver aperture, 

R is the range, and βt is the transmitter beam width. σ is the backscatter cross section. 

Assuming all variables are constant, the previous equation can be simplified to 

 𝑃𝑟 =
𝐾

𝑅2
 (2.3) 

where K is a constant, representing a combination of the variables Pt, Dr, and βt. The 

geometry and parameters involved in the radar equation are presented in Figure 2.3. The 

laser scanner emits the waves, the receiver captures diffusion reflected waves and 

measures the intensities. The transmitter and receiver are side by side at the same location, 

while the transmitter and receiver are drawn at different locations for clarity. 

 

Figure 2.3: Geometry and parameters involved in the radar equation (Source: Wagner et 

al., 2006). 
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The experimental results from the study conducted by Kaasalainen et al. (2011) 

indicated that the intensity values roughly follow the K/R
2
 prediction (Equation (2.3)) at 

ranges of 10-15 m and further. At a small distance, the intensities recorded in different 

TLS datasets deviate significantly from Equation (2.3). Measured intensity obtained from 

other kinds of TLS decreases due to other factors, such as a brightness reducer for near 

distances. Thus, the efficiency of intensity correction depends on the type of the scanner. 

Another limitation of the correction is the estimation of the scan range. Without the 

support of raw range data, the calculation of the scan range requires the utility of the 

trajectory information that increases the complexity of the correction. Although the scan 

range can be estimated by dividing the height of scanner by the cosine of the scan angle 

rank, the error will be amplified by the 𝐾/𝑅2 prediction, which leads to a non-linear 

relationship between 1/𝑅2 and the measured intensity.  

 In the study on incidence angle effects on the intensity measurements, an empirical 

correction function was introduced to use incidence angle to express received intensity 

(Kaasalainen et al., 2011): 

 𝐼(𝜃) = 𝑎(𝜔, 𝑔)(1 − 𝑏(𝜔, 𝑔)(1 − cos 𝜃)) (2.4) 

where, 𝜃 represents the incidence angle, 𝑎 is the value of intensity, 𝜔 is the reflectance or 

albedo, and 𝑔 is the grain size of the material. 𝜃 = 0, 𝑏 = 0 indicates that there is no 

Lambertian component, while 𝑏 = 1  represents a fully Lambertian behavior (𝐼(𝜃) =

𝑎(𝜔, 𝑔) cos 𝜃);   

For extraction of road marking, the material property of markings is same. In the case 

that the material property of marking is same, the albedo 𝜔 and grain size 𝑔 are constant. 

Note that, 𝑎(𝜔, 𝑔) and 𝑏(𝜔, 𝑔) are proportional to 𝜔 and 𝑔. Thus, they are constant too. 
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As a result, Equation (2.4) can be simplified as below: 

 𝐼(𝜃) = 𝐴 + 𝐵 cos 𝜃 (2.5) 

where, 𝐴 and 𝐵 are the constants that depend on the albedo and grain size of the material. 

Therefore, the intensity value received by the scanner can be corrected with incidence 

angle 𝜃. However, an accurate incidence angle can only be calculated using the direction 

of the laser beam and normal vector of the surface, which is time-consuming with 

massive calculations. A simple and rough way to get the incidence angle is to employ the 

scan angle rank recorded in MLS data as an estimator. The scan angle rank ranges from -

90 º to +90 º within 1 º accuracy (ASPRS Standards Committee, 2011). It is an angle 

based on 0 º being the nadir. -90 º to the left side of the direction of trajectory. The 

absolute value of the scan angle rank is close to incidence angle when the ground surface 

is planar. The cosine of the scan angle rank will be used to correct the intensity value 

according to Equation (2.5) in Section 3.3.3. Because the range based correction is more 

sensitive to the cross slope of the road than the scan angle based correction, this study 

only explores the latter method. 

Besides the incidence angle, the surface roughness also plays a critical role in the 

optical scattering. The rougher the surface, the higher intensity the pavements have. 

Because pavement surface is polished by road traffic, the point clouds of pavements 

would have various intensity values. Therefore, the intensity correction based on 

Equation (2.5) is not able to eliminate the variance of intensity caused by different 

roughness of pavements.  
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2.4 Road Marking Classification  

The classified road markings offer a precise lane geometry with lane boundaries and 

rich attributions such as lane types, traversal information, marking types and speed limit 

information. Thus, the information of road markings can help to build the detailed lane 

model and support driverless cars and advanced driver assistance systems. With the 

increasing demands for detailed 3D road network update, the techniques in detecting and 

recognising road markings from MLS were developed in recent years. Based on the 

image, video and point cloud based algorithms, the classification of road markings 

commonly consists of three steps: splitting road markings into objects, extracting features 

of objects and recognizing road marking objects.  

2.4.1 Road Marking Isolation 

Each isolated road marking has its shape that can be used to distinguish it from 

others. The first stage is to segment the whole road markings into the portions for 

recognition. The road marking isolation can be classified into to three categories: (1) the 

Hough transform, (2) the contour-based analysis and (3) the region-based analysis. 

(1) Hough transform 

As one of the most common post-processing techniques used in line road marking 

detection, it was used to transform to detect rectilinear markings, such as lines, dashed 

lines and zebras (Rebut et al., 1997). Li et al. (2004b) also applied a multiresolution 

Hough-transform-based algorithm for detecting and tracking of road contours. Chen et al. 

(2009) implemented Hough transform clustering to extract candidate markings. In theory, 

the Hough transform is efficient, but can only be used to detect line shape road markings. 

(2) Contour-based analysis 
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Another strategy for isolating the road markings is by detecting the contour of the 

road markings. Li et al. (1997) applied a fuzzy-reasoning-based general technique for 

edge detection. It classified a pixel in an image to a region according to luminance 

gradient between the pixel and its neighbours. Kheyrollahi and Breckon (2010) also 

employed a contour-based approach to isolate the pixels of road markings, and then 

simplified the isolated shapes into a closed polygon shape representation using the 

Douglas–Peuker derivative (Wu and Márques, 2003). 

(3) Region-based analysis  

Franke et al. (1998) implemented a colour-connected component (CCC) extraction to 

segment images to produce a database containing candidates of road markings. 

Maximally Stable Extremal Regions (MSERs) was used to prune the image to partition as 

the candidates of road markings (Wu and Ranganathan, 2012). Foucher et al. (2011) 

detected road marking objects as connected components based on their geometric 

parameters, such as minimum bounding rectangle and the rectangularity. Euclidean 

distance clustering was also employed on unorganized and insular road marking points to 

obtain candidate road marking clusters (Yu et al., 2014). 

2.4.2 Feature Extraction 

Feature extraction retrieves the shape information (e.g. geometric parameters and 

descriptors) to facilitate the shape recognition. Yang et al. (2008) compared and 

discussed the characteristics and performances of various shape-based feature extraction 

approaches (see Figure 2.4). It should be noted that majority of the road markings are 

line-shaped or rectangular, therefore, only a portion of shaped based extraction 

techniques were used in road marking recognition studies. 
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Figure 2.4: An overview of shape description techniques. (Source: Yang et al., 2008) 

Franke et al. (1998) computed the attributes of all segmented regions for road 

marking recognition and employed the template matching method on the distance 

transform images. The attributes are the area, bounding box, aspect ratio, length, and 

smoothness of contour. Rebut et al. (2004) used one-dimensional Fourier descriptor as 

the shape signatures for the recognition of the road arrows. Li et al. (2007) identified 

arrow markings based on the shape information, such as chain code, moment features, 

length and aspect ratio of a minimum bounding box. Tournaire et al. (2007) used various 

variables (i.e. centroid and orientation, the width and the length) to describe rectangular 

marking. In addition, a projection based method was used to determine the ROI of arrow 
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markings, describe arrow markings with wavelet feature, and then recognize the 

markings with SVM classifier (Wang et al., 2009). Kheyrollahi and Breckon (2010) 

calculated many feature placement of simplified contour shape for classification, 

including the aspect ratio of the glyph (i.e. height divided by width), normalized central 

moment, horizontal/ vertical projection of the glyph and fuzzy zoning of angles. Danescu 

and Nedevschi (2010) applied RANSAC to extract the edge lines of the road markings, 

and then classified the markings based on three characteristics. The first character is the 

ratio between the outliers and the total number of points on a border line. The second one 

is the deviation from the line for the outliers. The third one is the position of points with 

the maximum number of error on each side. Foucher et al. (2011) calculated the 

minimum bounding box of connected components in an image and then classified the 

components into crosswalks and arrows by their areas, rectangularity and profiles. Wu 

and Ranganathan (2012) detected corners in road marking regions, labeled the corners as 

the points of interest (POI), then calculated the histogram of oriented gradients (HOG) of 

each POI as the features of the shape. A routine template matching was implemented to 

recognize the road markings. Yu et al. (2014) classified the road markings based on the 

size of marking, the direction of marking (variance between the orientation of marking 

and the direction of trajectory/curb-lines) at the first level of hierarchical classification. 

At the second level of hierarchical classification, the small road markings were rasterized 

into 2-D binary images with a size of n×n. Each 2-D binary images correspond to an n×n 

dimension vector. Since the n×n dimension vector is the feature vector representing a 

specific template, it changes when the 2-D image is rotated. In addition, each small road 

markings consists of four directional templates, including south to north, west to east, 
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southeast to northwest and southwest to northeast. Based on these 2-D images, the Deep 

Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009) was designed and 

developed for the classification of these small road markings. Hervieu et al. (2015) 

projected the point cloud vertically to generate an ortho-image, and the intensity value of 

the lowest projected point was set to the pixel. The intensity image was classified by 

Model&data-driven Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. 

The RJMCMC sampler was applied to check whether the target is similar to the road 

marking pattern. With the assistance of a simulated annealing, the sampler process 

detected the road markings through the minimization of the output of the energy function. 

A number of geometric parameters are used as representatives of the markings shapes 

in the road marking classification. Table 2.5 summarized the geometric parameters that 

can be used to describe the features of the road markings, and the shape descriptors that 

are used in road marking classification. 
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Table 2.5: Summary of different geometric features of road marking shape. 

Shape parameters Description Examples 

Area The number of pixels in the shape Franke et al. (1998) 

Foucher et al. (2011) 

Yu et al. (2014) 

Danescu and Nedevschi (2010) 

Perimeter The number of pixels in the boundary of the shape Franke et al. (1998) 

Tournaire et al. (2007) 

Mathibela et al (2015) 

Compactness/ 

Circularity 

How closely-packed the shape is  

Eccentricity The ratio of the length of the major axis to the length 

of the minor axis. Measurement of aspect ratio 

Franke et al. (1998) 

Li et al. (2007) 

Kheyrollahi and Breckon (2010) 

Rectangularity How much it fills its minimal bounding box: ratio of 

object/area 

 

Foucher et al. (2011) 

Circularity Smoothness of contours, ratio of (4 × PI × Area) / 

(Perimeter^2) 

Franke et al. (1998) 

Danescu and Nedevschi (2010) 

Orientation The overall direction of the shape Tournaire et al. (2007) 

Yu et al. (2014), Mathibela (2015) 

Centre of gravity Centroid of the shape Tournaire et al. (2007) 

Advanced shape 

descriptors 

Description Examples 

Moment A statistical properties to describe shape Li et al. (2007) 

Kheyrollahi and Breckon (2010) 

 

Chain Code The contours are described as a connected sequence 

of straight-line segments with given lengths and 

directions (Zhang and Lu, 2004; Liu et al., 2007). 

Li et al. (2007) 

Kheyrollahi and Breckon (2010) 

 

Shape matrix Shape matrix is an 𝑚 × 𝑛 matrix to present a region 

shape 

 

Yu et al. (2014) 

Minimum 

bounding 

rectangle 

The smallest rectangle that contains every point in the 

shape 

Franke et al. (1998), Li et al. (2007) 

Foucher et al. (2011) 

Hervieu et al. (2015) 

Profiles The profiles count the number of pixels in the region 

in each row/column on Cartesian coordinate system 

(Yang et al., 2008). 

Wang et al. (2009) 

Kheyrollahi and Breckon (2010) 

Foucher et al. (2011) 

One-dimensional 

Fourier 

descriptors 

A one-dimensional function derived from contour 

coordinates by applying Fourier transform 

 

Rebut et al. (2004) 

Wavelet 

transform 

The wavelet descriptor decomposes a contour into 

components of different scales containing global and 

local information respectively. (Yang et al., 2008).  

Wang et al. (2009) 

Shape transform  Distance transformation converts a binary digital 

image, consisting of the target and non-target pixels, 

into an image where all non-target pixels have a value 

corresponding to the distance to the nearest feature 

pixel (Borgefors, 1986). 

Franke et al. (1998) 

 Histogram of oriented gradients (HOG) counts 

occurrences of gradient orientation in localized 

portions of an image (Dalal and Triggs, 2005). 

Wu and Ranganathan (2012) 
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Compared to images or videos acquired from the camera sensors, MLS data has fewer 

limitations and disturbances for the road marking extraction. Additionally, the result 

retrieved from the MLS-based extraction is more comprehensive and accurate than the 

one obtained from the image or video-based extraction method. It was also identified that 

since the location and rotation of the road markings cannot affect the shape of the road 

markings, the geometric features used by road marking classification need be both 

translation and rotation invariant. 

2.4.3 Classification Methods  

A number of supervised classification methods were developed for recognizing road 

markings. 

Danescu and Nedevschi (2010) classified the road markings by defining a decision 

tree based on the shape of the road markings. Li et al. (2007) generated a Bayes classifier 

with minimum error rate training In which over 5000 samples of five different road 

markings were used to train the classifier. Kheyrollahi and Breckon (2010) manually 

extracted 1022 sample glyphs from real road footage sequences and trained the artificial 

neural network (ANN) classifier for recognising road markings. Additionally, zebra 

crossing and arrows were defined as a repetitive pattern and a single pattern respectively 

in the study conducted by Foucher et al. (2011). With the criterion of size, Firstly, based 

on the difference of size, the zebra crossing and arrows were identified from other road 

markings. These two markings will be further separated based on their difference on 

orientation, rectangularity, vertical and horizontal profiles. Wu and Ranganathan (2012) 

generated the feature vectors from HOG for each POI in all template images, and all of 

these feature vectors were stored in the template pool. Then road markings were 
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identified by the template matching method based on the template pool. Taking the 

numerous noise sources (i.e. shadows, sun/headlight/streetlight reflection, road surface 

debris and decay) into consideration, Rebut et al. (2004) trained K-Nearest Neighbour 

(KNN) classifier with the noise-added training base. The Fourier descriptors were utilised 

to describe the shapes of the road markings. Wang et al. (2009) also designed a multi-

class support vector machine (SVM) to classify arrow markings based on the hierarchical 

classification method. The SVM classifiers at the nodes of the hierarchical tree were 

trained to form the hierarchical classification. Based on the Euclidean distance clustering 

result of road marking points, Yu et al. (2015) trained the DBM model with 2-D images 

of small-sized road markings, and the small-sized road markings were then classified into 

the various categories (i.e. arrow markings, rectangular-shaped marking, pedestrian 

warning marking and other markings). Mathibela et al. (2015) classified the road 

markings into seven distinct classes within a Conditional Random Field (CRF) and 

probabilistic RUSBoost classification framework by employing a set of geometric feature 

functions. 

It was identified from the review that machine learning algorithms were widely used 

for road marking recognition, except the study conducted by Danescu and Nedevschi 

(2010) in which rules were encoded in a simple decision tree to classify the road 

markings. It is noted that the machine learning algorithms require training of the samples 

to determine whether a candidate matches a model sufficiently. In addition, the success of 

the road markings classifications relies on the quality and quantity of training dataset. 

There was a positive correlation between the number of the training samples and the 

performance of the machine learning algorithms. On the other hand, manually building 
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the decision tree relies on the strong prior knowledge. It is clear that the pavement 

marking guide, as strong prior knowledge, can be easily encoded in the decision tree as 

rules while the machine learning algorithms need training process. 

Based on the prior knowledge of road marking shapes, three geometric parameters are 

selected to be considered in feature extraction, including area, width and orientation. The 

detailed feature extraction methods will be discussed in Section 3.5.2. 

Based on the findings from literature review, limited research classified the road 

markings into thorough and detailed categories. The roughly classified results would be 

sufficient to support the maneuver of driverless cars. Thus, there is a need to improve the 

detailed classification of the road markings in this research field. 

2.5 Chapter Summary 

In this chapter, the fundamental knowledge of the MLS technology and the literature 

on road surface extraction from MLS data were reviewed. A variety of studies on the 

road-marking extraction and recognition from the digital images/videos and MLS data 

are discussed. It is identified that the MLS data is more suitable than digital 

images/videos to detect and recognize the road markings. A hybrid road surface 

extraction will be applied in the experiments of this study. A scan-angle-rank-based 

intensity correction will be undertaken to improve marking extraction. Based on the 

strong prior knowledge of the marking shapes, a decision tree will be constructed 

manually to classify the road markings into detailed types.  
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Chapter 3 Proposed Method 

This chapter provides an overview of workflow for road marking extraction and 

classification, and the method adopted in this research. Section 3.1 introduces the study 

area and test datasets, followed by an overview of the proposed workflow presented in 

Section 3.2. The workflow is divided into three stages, including preprocessing, 

extraction and classification, which will be discussed in Section 3.3, 3.4 and 3.5 

respectively. Section 3.6 summarizes this chapter. 

3.1 Study Area and Dataset 

Two study areas were selected within this research, one is located in the City of 

Xiamen (see Figure 3.1(a)) and the other is in the City of Kingston, Ontario (see Figure 

3.1(b)). Xiamen is a port city on the southeast coast of mainland China. A complete 

survey of mobile laser scanning was carried out back and forth on Xiamen Island Ring 

Road on 23 April 2012 by a RIEGL VMX-450 system. The Ring Road is a two-side, 

four-lane road with a centre median. The total length for one direction survey was around 

10 km. This primary road in Xiamen is characterized by numerous vehicles, trees, shafts 

(e.g., light poles and traffic poles). The majority of the road surface and road markings 

are in good condition. Seven samples of the survey data (i.e. the straight, curve roads and 

different types of road markings) were selected as the test dataset for evaluating the 

proposed method.  

The King Street in the City of Kingston, Ontario was selected as another study area to 

test the robustness of the proposed method in Canada’s road network, see Figure 3.1(b). A 

survey was carried out five times along the King Street, and the point cloud data was 

collected on August 29, 2013 by a RIEGL VMX-450 system from the Tulloch 
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Engineering. Different from Xiamen’s Island Ring Road, King Street is a two-side and 

two-lane local road. The residential houses and sidewalks are located along the road 

sides. Due to the winter maintenance operations and road traffic, pavement markings are 

deficient in the sample of Kingston. Thus, the Kingston datasets are more challenging 

than the Xiamen datasets. In this study, the Xiamen datasets were used in the early stage 

of the experiment to assist the algorithm configurations, and the Kingston datasets were 

employed to test the robustness of the proposed method. 

   
(a) 

  
(b) 

Figure 3.1: Study areas: (a) Island Ring Road in Xiamen, Fujian, China, and (b) King 

Street in Kingston, Ontario, Canada. 
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The average point density of Xiamen datasets and Kingston datasets are 7,000 

points/m
2
 and 4,800 points/m

2
, respectively. The two datasets were then converted into 

the format of LAS that is a standard in the laser scanning industry. The LAS format 

contains binary data consisting of a Header Block, Variable Length Records, and Point 

Data. The Header Block consists of a public block including point numbers and 

coordinate bounds. The Variable Length Records contain projection information, 

metadata and user application data. The Point Data records the X, Y, and Z 3D 

coordinates, intensity, returns, scan direction flag, scan angle rank and other attribute 

information (ASPRS Standards Committee, 2011). The data record in a LAS file is 

illustrated in Table 3.1, and the coordinate, intensity value and scan angle rank were 

adopted within this research. 

Table 3.1: Point Data Record (Source: ASPRS Standards Committee, 2011) 

Item Description 

X Coordinate 

Y Coordinate 

Z Coordinate 

Intensity The intensity value is the integer representation of the 

pulse return magnitude. 

Return Number The Return Number is the pulse return number for a given 

output pulse. 

Number of Returns  

(given pulse) 

The Number of Returns is the total number of returns for a 

given pulse. 

Scan Direction Flag The Scan Direction Flag denotes the direction at which the 

scanner mirror was traveling at the time of the output 

pulse. 

Edge of Flight Line The Edge of Flight Line data bit has a value of 1 only when 

the point is at the end of a scan. 

Scan Angle Rank  

(-90 º to +90 º) – Left 

side 

The Scan Angle Rank is a signed one-byte number with 1ᵒ 
of accuracy from +90 º to –90 º. The scan angle is an angle 

based on 0 º being nadir, and –90 º to the left side of the 

aircraft in the direction of flight. 

GPS Time The GPS Time is the double floating point time tag value at 

which the point was acquired. 
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3.2 Description of the Proposed Workflow 

The proposed method within this study consists of three phases, including 

preprocessing (see Figure 3.2 (a)), road marking extraction (see Figure 3.2(b)) and road 

marking classification (see Figure 3.2(c)).  

  

 (a) Preprocessing   
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(b) Road Marking Extraction                            (c) Road Marking Classification 

Figure 3.2: Workflow of road marking extraction and classification: (a) Workflow of 

Preprocessing, (b) Workflow of Road Marking Extraction, (c) Workflow of Road 

Marking Classification. 

(1) Preprocessing: the raw point clouds are preprocessed in two steps to reduce the 

volume of the data and overcome the problem resulting from the uneven distribution of 

intensity data.  

The first step is the road surface detection. The non-ground removal is implemented 

to extract ground points from the MLS data. The ground surface points are rasterized into 

a digital terrain model (DTM) by inverse distance weighted (IDW) interpolation. In the 

DTM method, the road surface is distinguished from other features by its smoothness and 

connectedness. The smoothness of DTM is the absolute value calculated by a 3×3 high-

pass filter. 
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The second step is the intensity correction and enhancement. The intensity value of 

the ground surface points are corrected by the scan angle rank, following by the IDW 

interpolation. After scan-angle-rank-based intensity correction and rasterization, the 

corrected intensity image is further enhanced by the large size high-pass filtering process. 

(3) Road marking extraction: with the application of Otsu’s thresholding method, the 

corrected and enhanced intensity image is used to extract road markings followed by 

denoising process.  

(4) Road marking classification: the extracted road markings are clustered by a region 

growing segmentation. The road marking clusters are then segmented into road marking 

segments by the neighbour counting filtering process. Eventually, the road marking 

segments are classified based on the geometry features using a manually built decision 

tree.  

3.3 Preprocessing of MLS Data 

3.3.1 Road Surface Extraction 

The raw MLS data includes various non-ground points, such as the pedestrians, 

vehicles, trees, poles, and buildings. In order to eliminate the disturbance from non-road 

points and improve the computational efficiency of road marking extraction, these non-

road points are removed prior to the extraction. A hybrid road surface extraction is 

introduced in this step, including a voxel-based upward growing, DTM interpolation, 

high-pass filtering and region growing segmentation. 

3.3.1.1 Non-ground Points Removal 

A voxel-based upward growing method is employed to segment the raw MLS data 

into ground points and non-ground points. This method partitions point cloud data into an 
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octree structure with a voxel size (see Figure 3.3(a)). For each voxel, it expands to its 9-

neighbour upward voxels (see Figure 3.3(b)), and then the growing scheme expends until 

it reaches the top boundary. If the elevation of the top voxel is smaller than the predefined 

threshold, the cluster of these voxels is referred to the ground. The point clouds in these 

voxels are labeled as ground points. Otherwise, the point clouds will be categorized as 

non-ground points. 

 

(a)                                                       (b) 

Figure 3.3: Octree structure and upward 9-neighbours voxel: (a) Octree partition structure, 

and (b) upward growing scheme (Source: Yu et al., 2015) 

3.3.1.2 IDW Interpolation of DTM 

In the removal process, all the non-ground points (e.g. pedestrians, vehicles, trees, 

shafts and buildings) are removed from raw point clouds. The volume of the ground 

points concentrates 60% of the raw MLS data. To further reduce the data volume and 

improve the computational efficiency, the ground points will be rasterized into the DTM 

by IDW interpolation. With the IDW interpolation, the grey value of a grid is interpolated 

with its neighbours. The grey value of a grid is calculated given the formula below: 
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𝑧(𝑥) = ∑ 𝑤𝑘
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𝑘=1

𝑧𝑘 ∑ 𝑤𝑘

𝑛

𝑘=1

⁄  

wk = 1/𝑑𝑘
2 

 

(3.1) 

 

where wk is the weight of the k-th point within the grid, as the function of distance 

𝑑𝑘; zk is the k-th point grey value that can either be an z value or intensity value; n is the 

number of points in a grid. When zk represents the elevation of the point, the result of the 

IDW interpolation is the DTM; when zk represents the intensity of the point, the result is 

intensity image of the ground. 

3.3.1.3 High-pass Filtering 

The main features of the road surface are characterised by its smoothness and 

connectedness. In general, the surface of the grass is rougher than the road surface. 

Additionally, it is clear that the existence of a curb would result in a sudden change in the 

height on the road boundary. Therefore, a high-pass filter is applied to the DTM. The 

absolute value of filtering result indicates the roughness of the surface. A 3×3 and A5×5 

high-pass kernels are shown in Figure 3.4. 

                        

                            3×3 high-pass filter                    5×5 high-pass filter 

Figure 3.4: Illustrations of the high-pass filters. 

The high-pass filter compares the centre grid with the average value of its 

neighbourhood and assigns the difference as the grid value. The grids with high absolute 

values indicate that there is a sharp elevation change at the location, i.e. the roughness of 
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the surface. To distinguish the road surface from other grounds (e.g. lawn and curbs), a 

threshold should be defined based on the absolute value of the filter results. 

3.3.1.4 Region Growing Segmentation 

In order to improve the computational efficiency, the points of the road surface were 

rasterized into a 2D intensity image using the IDW interpolation method. Although the 

elevation information was lost after the dimensionality reduction, the intensity 

information was retained in the 2D image, which was essential for the road marking 

extraction.  

One of the critical parameters in intensity image generation is the spatial resolution 

(pixel size) of grid to store the result of IDW interpolation. It determine the accuracy of 

the intensity image and the computational efficiency of road marking extraction The 

larger grid size leads to lower spatial resolution, smaller data volume and non-distinct 

details. The fine grid interpolation captures the details of pavement markings and 

increases the computational work. To improve the computational efficiency of extraction 

and provide accurate and detailed road markings for further classification, the analysis of 

grid size of IDW interpolation will be undertaken in Section 4.1.2. 

3.3.2 Intensity Image Generation 

In order to improve the computational efficiency, the points of the road surface were 

rasterized into a 2D intensity image using the IDW interpolation method. Although the 

elevation information was lost after the dimensionality reduction, the intensity 

information was retained in the 2D image, which was essential for the road marking 

extraction.  
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One of the critical parameters in intensity image generation is the spatial resolution 

(pixel size) of grid to store the result of IDW interpolation. It determine the accuracy of 

the intensity image and the computational efficiency of road marking extraction The 

larger grid size leads to lower spatial resolution, smaller data volume and non-distinct 

details. The fine grid interpolation captures the details of pavement markings and 

increases the computational work. To improve the computational efficiency of extraction 

and provide accurate and detailed road markings for further classification, the analysis of 

grid size of IDW interpolation will be undertaken in Section 4.1.2. 

3.3.3 Scan Angle Based Intensity Correction 

The unevenly distributed intensity leads to the large in-class variance of road marking 

points, which affects the extraction of the road markings. A variety of methods were 

developed to overcome the distribution issue of MLS data. For example, the MLS dataset 

can be partitioned into subsets, such as segments or profiles, to reduce the in-class 

variance and improve the extraction performance.  

In this study, a scan angle based intensity correction was adopted to reduce the 

variance of intensity directly. The first step of the correction was to figure out the linear 

relationship between the cosine of the scan angle rank and the intensity of road markings. 

The scatterplot associated with the intensity image (see Figure 3.5) presents the 

relationship between pixel intensity and the rasterized cosine of scan angles. Figure 3.5(a) 

illustrates the scatter plots including all of the pixel intensities from Sample05. The 

clouds on the bottom and top of the image refer to the pavement pixels and the pavement 

marking pixels with high intensities, respectively.  
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Based on Equation (2.4) in Section 2.3, the measured intensity values have a positive 

correlation with cosines of incidence angles. According to mathematical deduction, the 

Equation 2.4 holds for pixel data interpolated by IDW. Thus, the linear regression model 

generated from the intensity image can be used to correct the intensity value of MLS data. 

Figure 3.5(b) demonstrates the scatter plots corresponding to the “purified” road marking 

pixels that were selected manually. After the removal of the outlier, the linear regression 

model was built using these pure road marking samples. The formula of the linear 

regression model is presented as below: 

 𝑦 = 15115 ∙ 𝑥 + 24794 (3.2) 

In this regression model, the R-squared is 0.77, and the P-value is less than 0.0001. It 

indicates that the model can explain 77% variance of the road marking pixel intensity. 

The correlation between the cosine of scan angle and the intensity value is significant. 

With this linear regression model, the road marking intensity can be corrected by the 

cosine of the scan angle rank; and majority of the in-class variance of the road marking 

intensity will be eliminated.    

              
(a)                                                   (b) 

Figure 3.5: Intensity of the Sample05 and its associated plot: (a) the plot of the cosine of 

the scan angle rank vs. intensity and (b) Scatterplot of pure road marking pixels. Green 

points are the inlier and the cyan points are the outlier. The red line is the trend of the 

linear regression. 

In
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3.3.4 Large-size High-pass Enhancement 

 Aiming to eliminate the uneven distribution of the intensity the scan-angle-rank-

based correction is implemented to the road surface points prior to rasterization. After 

rasterization of the corrected intensity image, the large-size high-pass enhancement will 

be utilized on the corrected intensity image to eliminate the spatial varieties of intensity 

caused by various surface roughness. 

The principle of the filter is to distinguish the road marking pixels from pavement 

pixels in a window-based process, such as the 3×3 kernel. In this window, the centre pixel 

is the target, and it is compared to its neighbouring pixels one by one. Based on the 

differences from its neighbours, the pixel will be classified into the road marking or the 

pavement.  

The designed kernels of the filters are same as ideal high-pass filters (see Figure 3.4). 

Compared with other high-pass filters, each neighbour pixel has the same weight in an 

ideal high-pass convolution. Additionally, the comparisons between target pixel and its 

neighbour pixels are equitable. The convolution of the ideal high-pass filter can be 

interpreted by the mathematical expressions below: 

 
ℎ = 𝑛 × 𝑎 + ∑(−1) × 𝑏𝑖

𝑛

𝑖=1

 
 

(3.3) 

  

ℎ = ∑(𝑎 − 𝑏𝑖)

𝑛

𝑖=1

 
(3.4) 

where ℎ  is the convolution result; 𝑎  denotes the value of target pixel; bi  denotes 

neighbour pixel of the target pixel; (𝑎 − 𝑏𝑖) indicates the difference between the target 
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pixel and one of its neighbour pixel. It is assumed that there are only two classes (e.g. 

road marking and pavement) in the image, and the pixels in the same class have the same 

value while the road markings have a higher intensity value than road pavements. If the 

target pixel and the neighbour pixel are both in the same class, (𝑎 − 𝑏𝑖) is close to 0. If 

the target pixel is the road marking and the neighbour pixel is the pavement, (𝑎 − 𝑏𝑖) will 

be larger than 0. If the target pixel is the road pavement and the neighbour pixel is the 

road marking, (𝑎 − 𝑏𝑖)  will be less than 0. Therefore, ℎ  summarizes the differences 

between the target and its neighbours. Assuming no in-class variance exists in road 

markings and pavement, the convolution result ℎ > 0 indicates the target pixel is the road 

markings and ℎ < 0 indicates the target pixel is the road pavement. However, there is an 

in-class variance in each class. The threshold cannot be simply set to 0 for extracting road 

markings from convolution result. Therefore, Otsu’s thresholding method needs to be 

applied to determine the optimal threshold for the extracting from the convolution result. 

Based on the interpretation of the convolution, the ideal high-pass filter is used to 

distinguish the road markings from the pavements. 

The application of the ideal high-pass filter is able to solve the unevenly distributed 

intensity problem. (1) It helps the targets to be distinguished from the background. When 

the window size is smaller than the object, only the edges between the objects and the 

background will be highlighted. If the window size is significantly larger than the target, 

the target will be outstanding from the background; (2) the relatively small window size 

makes the ideal high-pass process free from the impact of unevenly distributed intensity. 

Although the intensities distribute unevenly in the whole image, the variance of road 

markings in a small window is relatively limited. Therefore, the ideal high-pass filter has 
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the great potential to distinguish the road markings from the pavements and solve the 

unevenly distributed intensity problem.  

Based on the characteristics of the ideal high-pass filter, the kernel has to meet the 

requirements as follows. Firstly, the kernel size must be large enough to contain both road 

marking pixels and pavement pixels. Secondly, the kernel size should be small enough to 

avoid the impact of the spatial variance of the intensity.  

Sample02 is selected to verify the minimum kernel size of the high-pass filter, 

because it has the longest and widest road marking. Sample06 is selected to reveal the 

maximum value, as it has a segment of three-road that contains more spatial varieties.  

The no-data areas are defined as no-data pixels, which may interrupt the high-pass 

filtering. Therefore, before the filtering, the no-data areas are assigned a value, which is 

between the pavement pixel value and the road marking pixel value. The alternative value 

of the no-data pixel can be defined by an average filter. A value that is three times of the 

average of neighbouring values is assigned to the no-data pixel. This method of a self-

adaptive compensation can be utilized to all the samples.  

The performance of the high-pass enhancement will be evaluated in Chapter 4, and 

the best size of the filter will be provided after the assessment. 

3.4 Extraction of Road Marking 

3.4.1 Otsu’s Thresholding 

The Otsu’s thresholding method is applied to extract road markings based on the 

discriminant analysis. It segments the image automatically with the optimum threshold 

that helps minimize the within-class variance. It is assumed that the image is bimodal and 
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the illumination is uniform, therefore the bimodal brightness can be determined based on 

the differences of the materials’ properties.  

The road surface area is preserved in the intensity images in the format of either the 

asphalt pavements or the road markings. With the assistance of the intensity correction 

and enhancement, the illumination in the image is uniform. Thus, the enhanced and 

corrected intensity image is able to meet the requirements of the Otsu’s thresholding 

method, and then the global thresholding process can be employed to preprocess the 

intensity images. 

3.4.2 Image Denoising 

There are three principal sources of the noise: the irregularity of the road surface, the 

boundary of different adjacent pavement and the absence of point data. The scan-angle-

rank-based intensity correction is only capable to eliminate the intensity variance for a 

flat road surface. In the surveying of a poor-conditioned road, the laser beam may scan at 

the crack or the rutting slope. The relatively smaller incidence angle of the cracks and 

rutting would result in a brighter intensity compared to their neighbouring road surface 

and cause a false positive in the thresholding result. Another false positive could be 

resulted from the boundary of two different pavements, which is enhanced by the high-

pass enhancement. Besides, the gaps generated from a low point density between the 

points may also cause a false negative. 

Three de-noising methods, introduced by Adam and Bischof (1994), are employed in 

this research, including median filtering, neighbour-counting filtering and region growing 

segmentation. Small pixels of false-positive and false-negative can be eliminated utilizing 

the median filtering approach. The segments of false-positive with medium sizes (i.e. 
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small fragments of cracks, and manholes) can be removed using the region growing 

segmentation if they are smaller than the smallest road marking segment. However, the 

region growing method is not applicable for the large segments of false-positive, which 

occur at a depression or boundary between two different pavements. Figure 3.6(a) 

demonstrates the intensity image of a pedestrian crossing, where the intensity of the 

concrete pavement is brighter than asphalt pavement’s. The concrete region is detected as 

markings (see Figure 3.6(b)). Figure 3.6(c) illustrates a 15×15 kernel whose convolution 

is equal to the number of marking pixels in a 15×15 window. Because concrete region 

has more homogeneous neighbouring pixels than pedestrian crossing, the concrete region 

can be detected during neighbor-counting filtering. After the neighbour-counting filtering 

(see Figure 3.6(d)), these large false positive regions are hollowed out and broken into 

small pieces that could be removed using the region growing algorithm. It should be 

noted that the neighbour-counting filtering is applied in the case study of Kingston to 

compress the noise caused by depression and different pavements. 

       
  (a)                         (b)                              (c)                          (d) 

Figure 3.6: Neighbour-counting filtering: (a) corrected intensity image of road surface,  

(b) extracted result from enhanced intensity image, (c) 15×15 kernel of neighbours 

counting, and (d) neighbour-based filtering result. 

The last step in the road marking extraction is the de-noising process. Method and 

function of the road marking extraction approaches are summarized in Table 3.2.  
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Table 3.2: Summary of road marking extraction. 

 Method Function 

Road surface 

detection 

Voxel based upward 

growing algorithm 

Removing non-ground points 

 

 

 High-pass filtering Removing non-road region 

 

Intensity correction 

and enhancement 

Scan-angle-rank-based 

intensity correction 

Eliminating variance of intensity caused by 

different incidence angle 

 

 Large size high-pass 

enhancement 

Eliminating variance of intensity caused by 

different surface roughness 

 

Thresholding Otsu’s thresholding Extracting road markings 

 

Denoising Neighbours-based 

filtering 

Breaking the false positive region caused 

by the boundary of pavements 

 

 Region growing 

segmentation 

Removing salt-noise and small fragments 

 

 Median filtering Filling the pepper-noise on the road 

markings 

 

3.4.3 Accuracy Assessment 

In order to evaluate the performance of the road marking extraction, an accuracy 

assessment will be implemented with manually labeled reference data.  

Table 3.3 illustrates a confusion matrix for the binary classification, where 𝑡𝑝 and 𝑡𝑛 

indicate a true positive and negative; 𝑓𝑝 and 𝑓𝑛 represent a false positive and negative, 

respectively. In this study, the road marking class is the target class (positive), and the rest 

class is the pavement class (negative). 

Table 3.3: A confusion matrix for binary classification. 

Classified  

Class          
as Positive as Negative 

Positive 𝑡𝑝 𝑓𝑛 

Negative 𝑓𝑝 𝑡𝑛 
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The overall accuracy, as the most used empirical measure, is not enough to evaluate 

the performance of the extraction especially for this study where the proportion of target 

class is small in the study area. 

 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
  (3.5) 

In the extraction, the accuracy of the road marking extraction is much more important 

than the accuracy of the pavement detection. Therefore, three commonly-accepted 

performance evaluation measures: recall, precision, and F-Score, are employed in the 

accuracy assessment (see formula 3.6 – 3.8) (Sokolova et al. 2006). 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3.6) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (3.7) 

 𝐹­𝑆𝑐𝑜𝑟𝑒 =
(𝛽2 + 1) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.8) 

Precision is a function of the true positive and false positive, which indicates the 

correctness of road marking extraction. Recall represents the completeness of road 

marking extraction. The F-Score is evenly balanced or partial to precision, when 𝛽 = 1 

or 𝛽 > 1, respectively. In this study, the completeness is adopted, and the precision is 

replaced by the correctness. Both completeness and correctness make the same 

contribution to the F-Score (𝛽 = 1) (see formula 3.9 – 3.11): 

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3.9) 

 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (3.10) 
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 𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 + 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
 (3.11) 

In order to validate the proposed extraction method, the evaluation results will be 

compared with the outputs from three recently published road marking extraction 

methods with MLS data. The comparison will be further discussed in Chapter 4. 

3.5 Classification of Road Marking 

In this research, the road marking recognition consists of three steps, including road 

marking isolation, feature extraction and road marking classification. 

3.5.1 Road Marking Segmentation 

The first step of road marking classification is dividing the extracted road marking 

into segments, where a 4-neighbour region growing segmentation (Adams & Bischof, 

1994) is employed. The region growing segmentation has the capacity of separating 

different clusters and ensures the connection of the pixels in each cluster. During region 

growing segmentation, regions that are smaller than the smallest road marking are 

removed from the road marking segments.  

        

(a) Extracted road marking            (b) Region growing segmentation 

Figure 3.7: Region growing segmentation: (a) extracted road marking, (b) region growing 

segmentation result. 

Figure 3.7 shows an extracted road marking and the segmentation result, in which the 

Road marking                                                                            Clusters 
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noise and little clusters are removed in the procedure of region growing. In addition, the 

road markings which are attached to each other could be merged into a large region (see 

Figure 3.7 (b)). This large road marking should be segmented into a few road markings to 

guarantee the subsequent recognition of transverse road marking and zebra crossing 

stripes. Taking the width and junction into consideration, the large road marking can be 

easily classified into two types: the thin road marking and the wide road marking.  

The segmentation method consists of two steps: distinguishing thin and wide road 

markings, and splitting road markings at junctions. The neighbour-counting filtering is 

applied to detect the thin, wide road markings and their junctions. 

     

(a)                                      (b)                                     (c) 

      

 (d)                                          (e) 

Figure 3.8: Segmentation of large road marking segments: (a) neighbour-counting image 

of large segments, (b) neighbour-counting image of wide road marking, (c) junction 

detection based on neighbour-counting, and (e) segmentation result of large road marking. 

The width of road markings can be inferred by counting the neighbours of a pixel. As 

shown in Figure 3.8(a) in terms of the road marking pixels, the wide road marking pixels 
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have more neighbours while the thin markings have less. Therefore, wide markings and 

thin markings can be distinguished as illustrated in Figure 3.8(b). Figure 3.8(c) shows the 

neighbour-counting of wide markings. It can be observed that junction regions have more 

neighbours, thus junctions can be detected by the application of the neighbours based 

filtering. Figure 3.8(d) shows the detected junction region, and the wide road markings 

are separated at junctions. The final segmentation result is presented in Figure 3.8(e). 

3.5.2 Feature Extraction of Road Marking  

After the road marking is partitioned into segments, geometric parameters of marking 

segments will be calculated. To achieve the translation and rotation invariance of road 

marking shape and improve the computational efficiency of the feature, four parameters 

were employed in road marking classification, including area, perimeter, estimated width 

and orientation. Area and perimeter, as the basic geometric parameters of a road marking, 

can be directly calculated. The estimated width is the function of the width of a segment 

from area and perimeter: 

 𝑤𝑖𝑑𝑡ℎ =
2 ∗ 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 (3.12) 

Although this estimated value is not the true width of the segment, it can indicate the 

thinness of road markings. Table 3.4 shows the area, perimeter, real width, real length 

and the estimated width of each kind of road markings. The estimated width is fairly 

accurate when the length is much longer than the width. As shown in Figure 3.9, road 

marking of some classes can be distinguished from others according to area (see Figure 

3.9(a)) and width (see Figure 3.9(b)).  
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Table 3.4: Road marking geometric measures 

Road 

markings 

Zebra 

Crossing 

Continuous 

line 

Broken 

line 1 

Broken 

line 2  

Diamond Arrow 

(Straight) 

Word 

Shape 
 

   
  

 

Width (cm) 45 15 45 15 15 15 20 

Length(cm) 600 8000 100 200 Null  300 Null 

Area (cm
2
)

 
27000 120000 4500 3000 6772.74 5400 13080 

Perimeter(cm) 1290 16030 290 430 903 649 1221 

Estimated 

width (cm) 

42 10 31 14 15 17 21 

Error (cm) 3 0 14 1 1 2 1 

 

 
(a)                                                               (b) 

Figure 3.9: Road marking shape feature: area and width: (a) area of labeled road 

markings, and (b) estimated width of labeled road markings. 

Based on area and width of the road marking, rectangular markings can be detected 

and recognized, but irregular markings having similar area and width, i.e. road diamonds, 

may be misclassified. In this case, a Minimum Bounding Rectangle (MBR) is derived to 

present the extent of each road marking (see Figure 3.10). According to the width of 

MBRs, road markings can be classified into the road marking in thin MBRs (e.g. zebra 

strip and broken line) and road marking in wide MBRs (arrow, diamond, character and 

number).  

Based on the MBRs, the main angle of a road marking can be calculated. Compared 
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with longitudinal markings, transverse markings have a higher variance of the main angle 

in a section of the road. It makes transverse markings distinguishable from longitudinal 

markings. 

 
(a)                           (b)                          (c)                           (d) 

Figure 3.10: Road marking boundaries and minimum bounding rectangles: (a) and (b) 

show the boundaries of the road marking segments, (c) and (d) show the bounding 

rectangles of the road marking segments. 

Compared to other shape descriptors, the use of the parameters (i.e. area, perimeter 

and estimated width) has two advantages for road marking classification. Compared to 

shape descriptor and template matching, these three basic shape features require 

relatively low computational work. They can be calculated rapidly than other advanced 

shape descriptors, such as moment, chain code, profiles, Fourier descriptor and wavelet 

transform. It is noted that the orientation of the road markings is non-uniform and varying  

therefore, the template matching needs to be adapted to allow multi-angle matching thatis 

based on the cost of computational power. Assuming that each of the road marking has 

different instances in eight directions in the study areas, accordingly eight templates need 

to be developed for multi-angle matching. This increases the amount of computation. 

Another factor that would increase the computation complexity of template matching is 

the template size. In the classification process, the size of road markings ranges from 1 m 

to 6 m. The increased size of the road markings requires larger templates in the matching 

process, which complicates the computational work. In addition, these three parameters 

(i.e. area, perimeter and estimated width) can be easily used to represent the shape of the 
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road markings. Each road marking has its own characteristics such as area, perimeter and 

width. Thus, in this study, these three basic shape parameters are used to descript the 

shape of road markings for further recognition. The MBR and its orientation are then 

employed to make the different road markings more distinguishable and recognizable 

from others. 

3.5.3 Decision-tree Based Hierarchical Classification 

Base on strong prior knowledge of the road marking criteria, road-marking segments 

can be grouped into classes based on their geometric parameters (i.e. areas, estimated 

width, MBR area and MBR width). A decision tree is designed and developed for the 

classification. The hierarchical tree of road marking categories that developed in this 

study is illustrated in Figure 3.11. According to the People's Republic of China National 

Standards: Road Traffic Marking (2009), the road markings in Xiamen dataset can be 

classified into two categories: longitudinal and transverse marking. The orientation of 

road marking segments can be measured by the main angle of MBRs. Transverse and 

longitudinal markings have a high and low variance of the main angle in a section of the 

road respectively. The difference of orientation variance is adopted as the rule for the first 

level of the decision tree. Transverse markings of the Xiamen dataset include stop lines 

and transverse reduction lines. At the second level, longitudinal marking segments are 

separated into two groups based on the MBR width. In the third level, if the width of the 

segment exceeds 45 cm, it is refer to a wide MBR (i.e. road arrow or non-road arrow); 

otherwise, it is referred to a thin MBR (i.e. strip of zebra crossing, broken line or 

continuous line). In the fourth level, zebra crossings, broken lines, continuous lines, road 

arrows and non-road arrows are further classified into specific subclasses based on their 
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area and estimated width.      

 

Figure 3.11: A hierarchical tree of the road marking categories. 

The classification result is illustrated in Figure 3.12. At the first level, the marking 

segments are categorized into transverse markings (red) and longitudinal markings (white) 

(see Figure 3.12(a)). At the second level, the longitudinal markings are divided into thin 

MBRs (white) and wide MBRs (red) (see Figure 3.12(b)). Figure 3.12(c) shows the 

subclasses of thin MBRs, including zebra crossings (purple), broken lines (green) and 

continuous lines (yellow). At the fourth level, the categories of the road markings are 

sub-classified into the specific types (e.g. 15cm×200cm broken line and 45cm×100cm 
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broken line).  

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 3.12: Decision tree classification: (a) the first level result, (b) the second level 

result, (c) the third level result, (d) the fourth level result. 

 

3.6 Chapter Summary 

This chapter introduces a road marking extraction and classification workflow. A 

preprocessing stage is proposed, focusing on the detection of the road surface and 

reduction of in-class variance of the road markings and the pavements. A high-pass filter 

with a window size of 3×3 is applied on the digital terrain model (raster). The absolute 

values of the filtered result are then binarized to extract road surface from the ground 

surface. In addition, a scan-angle-rank-based intensity correction and a large window 

high-pass filter are implemented to decrease the in-class variance of the road markings 

and increase the difference between the road markings and the pavements. The Otsu’s 

thresholding is then employed to partition the corrected and enhanced intensity images. 
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Based on a manually labeled reference dataset, the performance of road marking 

extraction method is evaluated with three measures (i.e. correctness, completeness and F-

Score). The third section introduced road markings’ geometric parameters and developed 

a tree-based hierarchical classification for road markings recognition.   
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Chapter 4 Results and Discussion  

The chapter begins with the results and discussions of road surface detection and 

scan-angle-rank-based intensity correction. To explore an appropriate size for the large-

kernel-sized high-pass enhancement, the high-pass enhancement processes are 

demonstrated and evaluated by an accurate assessment. The following section presents 

the road-marking segmentation process. Finally, two datasets were selected to 

demonstrate the application of the research reported in the thesis. Results from both case 

studies are reported and analysed, in order to draw some conclusions regarding the 

validity of the extraction methods reported in this study. 

4.1 Preprocessing of MLS Data 

Preprocessing aims to compress the large-sized data and balance the uneven 

distribution of intensity data prior to the extraction of the road markings. Section 4.1 

demonstrates how to eliminate the intensity variance and evaluate the performance of 

proposed preprocessing methods. In addition, all pixel values are normalized between 0 

to 255 to make the results comparable in each step. 

4.1.1 Road Surface Extraction 

4.1.1.1 Non-ground Removal 

In this study, voxel-based upward growing aims to remove the non-ground points 

(e.g. pedestrians, vehicles, trees, poles and buildings) from the MLS dataset. Figure 4.1 

presents the raw MLS data of Sample07 and its ground surface points with intensity 

value.  
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(a) MLS data                                  (b) Ground surface points 

Figure 4.1: MLS data of Sample07: (a) MLS data, (b) ground surface points. 

4.1.1.2  Road Surface Region Extraction 

The road surface region was extracted by the integration of IDW interpolation, high-

pass filtering, thresholding and region growing segmentation. Figure 4.2(a) provides a 

view of DTM created from ground surface points, where the black area representing no-

data area. The grid size of the DTM is set to 5 cm that corresponds with the size of the 

resolution intensity image. The large grey area refers to the road surface and the brighter 

regions represent the median strips. 

The 3×3 high-pass result of DTM and the absolute value of the high-pass value are 

shown in Figure 4.2(b) and Figure 4.2(c), respectively. It is noted that in the high-pass 

result, the absolute values of the road surface are much lower than the values of the other 

surfaces’. With a defined threshold (0.04 in this image), the objects (e.g. grass and curbs) 

can be distinguished from the ground. Other surface types with less roughness remain in 

Figure 4.2(d). Due to its character of continuous connectivity, the road surface is obtained 

as the largest smooth region that is shown in white (see Figure 4.2(e)). 



63 

 

 

(a)                                     (b)                                    (c)                

 

(d)                                (e)  

Figure 4.2: Sub-sample of the ground surface: (a) DTM (5 cm grid size), (b) 3×3 High-

pass Filtering, (c) Absolute Value of High-pass Filtering, (d) Thresholding Result, and (e) 

Region Growing Result. 

4.1.2 Intensity Image Generation 

The IDW interpolation was applied to the ground surface points derived from MLS 

data at different levels (from 1 cm to 10 cm). However, the fine resolution can result in 

the increase volume of data and workload for computation (see Table 4.1). 

Table 4.1: Resolution of intensity image and image size (Sample02). 

Resolution 

(cm) 

1 2 3 4 5 6 7 8 9 10 

Image size 

(M) 

98.6 

 

24.6 

 

10.9 

 

6.18 

 

3.96 

 

2.75 

 

2.01 

 

1.54 

 

1.22 

 

0.99 
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From the grid size of 2.5 cm to 10 cm, the images of the road markings were blurred 

and the computational work was decreased (see Figure 4.3). With the grid size of 5 cm, 

the thinnest road marking (line width 15 cm) can be presented in the intensity image, and 

the gaps between the MLS points will be interpolated. Therefore, the road surface points 

were rasterized by IDW with the grid size of 5 cm. 

Grid Size 

    (cm) 

Broken Line 

45cm×100cm 

Broken Line 

15cm×200cm 

Taper Angle of 

 Road Arrows 

Road Arrow 

 

 

2.5 

    

 

 

3 

    
 

 

4 

    
 

 

5 

    
 

 

10 

    

     

Figure 4.3: Intensity image generated at different resolutions. 

Figure 4.4 shows the intensity image generated by the IDW interpolation with a grid 

size of 5 cm. In addition, the distinct details of the road markings are presented with an 

image resolution of 5 cm. In respect of intensity, the road markings look brighter than the 

pavements (asphalt). Nevertheless, the intensity of the pavement and the road markings 

are both unevenly distributed, which leads to large in-class variance and contaminated 
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extraction results.  

 

Sample01 

 

 

Sample02 

 

 

Sample03 

 

 

Sample04 
 

 

Sample05 

 

 

Sample06 

 
  

Figure 4.4: IDW interpolation results of point intensity: with the grid size of 5cm from 

Sample01 to Sample06. 

 

4.1.3 Intensity Image Correction 

In order to extract the road marking, a scan-angle-rank-based intensity correction was 

used to correct various intensity values caused by different incidence angles. The 

corrected intensity images are presented in Figure 4.5. It is evident that the contrast 

between road markings and the pavements was enhanced, therefore the road markings 

became more detectable. However, the variance of pavement intensity remained after the 

correction. The intensity value of the rough pavements on the road boundaries is too high 

to be distinguished from the road markings within the global thresholding method and 
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cannot be distinguished from road markings by global thresholding. Therefore, a local 

scale filtering approach was undertaken to eliminate the spatial variance caused by 

different pavement roughness prior to the road marking extraction process.  

 

Sample01 

  

 

Sample02 

 

 

Sample03 

 

 

Sample04 
 

 

Sample05 

 

 

Sample06 

 
  

Figure 4.5: Corrected Intensity Image from Sample01 to Sample06. 

In theory, the application of the intensity correction will decrease the in-class variance 

and increase the between-class variance. The improvement of the intensity image was 

demonstrated in the histograms of Sample02 (see Figure 4.6). It is clear that the 

distribution of the pavements and the road marking intensity value are more concentrated 

using the intensity correction process. The in-class variance of pavements and road 

markings decrease from 21.23 to 14.10 and 32.38 to 18.57, respectively. The difference 

between the road markings and the pavements also decreases from 91.10 to 78.42. 
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 (a)                                                           (b) 

Figure 4.6: Histograms of the road markings and pavements: (a) the histogram of 

pavements and road markings in intensity image and (b) the histogram of pavements and 

road markings in corrected intensity image. 

In summary, the intensity correction minimizes the in-class variance and keep the 

between-class variance still, thus, the road markings become more detectable. The results 

of the intensity correction indicate that the cosine of scan-angle-rank-based intensity 

correction works well on a global scale. Nonetheless, the intensity in some areas, which 

have different slopes and roughness, cannot be explained by the cosine of the scan angle 

rank.  

4.2 High-pass Filter Enhancement and Accuracy Assessment 

4.2.1 High-pass Filter Enhancement 

In this section, the large-size high-pass kernel was validated using Sample02 and 

Sample06 to get the optimal size of the kernel. The corrected intensity image of 

Sample02 was processed by high-pass filters in different sizes. The intensity of no-data 

area in Sample02 is set to a constant value that is higher than the intensity of pavements 

and lower than the intensity of road markings. Therefore, the success of the high-pass 

enhancement can be guaranteed among the no-data pixels. The individual high-pass result 

is binarized by the Otsu’s thresholding method, and the extraction results are assessed 

Pavements Pavements 

Road markings Road markings 



68 

 

using manually labeled references. The performance of individual high-pass enhancement 

is represented by the F-Score in an accuracy assessment. The F-Score of results with 

different sizes of the high-pass kernel is shown in Figure 4.7. 

 

Figure 4.7: F-Score for each high-pass filter size based on Sample02. 

The F-Score grows significantly with the increase of kernel sizes at the beginning, 

and it reaches 92.15% at size of 31×31. After the size of 31×31, F-Score grows smoothly 

with the increase of kernel size. As shown in Figure 4.8, the increase of the kernel size 

(from 3×3 to 31×31) makes the distinguishing of the road markings from the pavement 

much easier. When kernel size is bigger than 5×5 (25×25cm
2
), the thin road markings 

(15-20cm) (e.g. boundary line, centreline and traffic lane line) are detectable in the 

images. When kernel size is bigger than 11×11 (55-55cm
2
), the road markings with 

medium width (40-45cm) (e.g. stop line and a zebra crossing stripe) become detectable. 

When kernel size exceeds e 31×31 (155×155cm
2
), the widest road markings (e.g. road 

arrow) can be detected. With the result of Sample02, the minimum high-pass window 

size was determined to be 31×31 in order to achieve the detectability of the widest road 

markings.  
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Figure 4.8: High-pass results with 3×3, 5×5, 11×11, 31×31, 51×51 kernel. 

Based on the corrected intensity images, the 31×31 high-pass enhanced results are 

shown in Figure 4.9. The no-data areas are set as a specific value between the intensity of 

the pavement and the road markings. However, a constant value is not universally 

applicable. Thus, the following section will discuss the errors that are caused by the value 

setting in the case of no-data. 
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Figure 4.9: High-pass enhanced images with 31×31 kernel. 

Based on the high-pass enhanced image (31×31 kernel), the Otsu’s thresholding 

results are shown in Figure 4.10. It is identified that majority of the road markings were 

extracted but with five errors. 

 

 

 

 

  



71 

 

Sample01 

 

Sample02 

 

Sample03 

 

Sample04 

 

Sample05 

 

Sample06 

 
  

Figure 4.10:  Otsu’s thresholding results based on high-pass enhanced images from 

sample01 to Sample06. 

As shown in Figure 4.11, error 1 is a typical misclassification of road marking caused 

by replacing no-data with a constant value. The road marking pixels with a lower value 

than the constant value are misclassified as pavements. This problem can be solved by 

setting the no-data area with a dynamic value. Error 2 is the false negative located in the 

inner of the road arrows. Applying a larger window size increase the amount of detected 

pixels inside the road markings. Error 3 is caused by lacking of sufficient laser points. 

The increase of the gaps between the laser points results in a low value that was 

interpolated into the intensity image. It is noted that the gaps can be eliminated using 

IDW interpolation with a larger pixel size. However, this method may lead to the loss of 

details in return. The noises in Error 4 and Error 5 are resulted from the roughness of the 

road. With the assistance of the intensity enhancement, the high intensity pixels of the 

 Error 1 

Error 2 Error 3 

Error 4 

Error 5 
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pavement were suppressed and identified as noise. In addition, the noise can be further 

eliminated using the region growing segmentation. 

 

Figure 4.11: Intensity image, ground truth image (white: road marking pixels, black: 

pavement pixels), error image (white: False Negative, red: False Positives, blue: True 

Positives). 

The no-data values were assigned dynamically, and defined as the three-time value of 

the average of its neighbours’. The road in Sample 06 is wider than the one in Sample02, 

therefore, the intensity variance is larger in Sample 06 is larger than Sample02’s. Thus, 

the Sample06 is the supplement of Sample02 to reveal the decrease of F-Score with an 

increased high-pass filter size. 

Figure 4.12 shows the F-Score of the test based on Sample06. The F-Score increased 

sharply with the size of the filter from 3×3 to 19×19. From 19×19 to 29×29, the F-Score 

increased smoothly, and it reached the peak (93.66%) at 29×29. After 29×29, the F-Score 

of extraction decreased with the increase of the filter size. This phenomenon was caused 

by the growth of the filters size when the spatial variance increased, high-pass process is 

influenced by the uneven intensity distribution. For example, if the small size kernel 
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processing the road boundary line that is far from the laser scanner, it actually compares 

the boundary line with the neighbouring pavement. If the kernel size is overlarge, the 

kernel will cover some brighter road markings pixels which are close to the vehicle’s 

trajectory. In that case, the high-pass value of the boundary line will be restrained by the 

influence of brighter road markings. Therefore, the boundary line will be misclassified as 

a pavement and the accuracy of the extraction will decrease. The beginning of the trend 

in Figure 4.12 is similar to the case in Sample02 and then F-Score started to decrease 

after the kernel size reached 29×29. The Sample02 represents the case of extracting the 

largest road markings while Sample06 represents the case with significant spatial 

variance. To strike a balance between the capability of detecting large road markings and 

the immunity to spatial variance, the high-pass filter size should be set to 31×31. It can 

make the largest road markings detectable and avoid the generation of increased intensity 

variance in each window. Thus, the size of 31×31 was identified to be the optimal size of 

the high-pass filter to improve the performance of the road marking extraction in Xiamen 

datasets.  

 

Figure 4.12: Performance of different high-pass filter with Sample06. 
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4.2.2 Accuracy Assessment of Road Marking Extraction and Comparative Study 

The final extraction result of road markings is shown in Figure 4.13. 
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Figure 4.13: Results of road marking extraction. 

After the preprocessing step, majority of the road markings are extracted from the 

image but three incomplete markings. The errors are caused by the road marking decay, 

the window size of the high-pass filter or the lack of sufficient laser points.  

Table 4.2: Quantitative assessment using completeness, correctness and F-Score.  

Performance (%) Sample01 Sample02 Sample03 Sample04 Sample05 Sample06 

Completeness 89.42 93.36 94.19 93.88 90.80 92.03 

Correctness 96.02 93.55 96.06 95.60 97.50 95.12 

F-Score  92.61 93.45 95.11 94.73 94.03 93.55 

 

After the intensity correction and high-pass enhancement (31×31), the global Otsu’s 

thresholding was implemented on the samples. The noises were removed from the 
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extraction results using 3×3 median filtering and region growing method. As shown in 

the quantitative assessment (see Table 4.2), the proposed road marking extraction is 

capable to achieve 93% completeness, 95% correctness and 93% F-Score. The rate of 

completeness is smaller than the correctness’s in each sample, indicating that some 

marking pixels were misclassified into the pavements. Due to the decay of the road 

markings, the sizes of manually labelled references are bigger than the damaged road 

markings’. Therefore, the performance of proposed method was underestimated in the 

result. 

4.2.3 Comparative Study 

The following section will undertake a comparison between the results from the 

proposed method and other studies i.e. Chen’s (Chen et al., 2009), Guan’s (Guan et al., 

2014) and Yu’s methods (Yu et al., 2015). 2D intensity image generated from points 

clouds were used in Guan’s and the proposed method for the extraction of road markings; 

while 3D point clouds were directly applied in the extraction practices in Chen’s and Yu’s 

studies. The evaluation results of these three methods are adapted from Yu’s study as 

shown in Figure 4.14 and Figure 4.15. One of the limitations in Chen’s method is that the 

extraction only focuses on the lane markings along the traffic direction Guan’s, Yu’s and 

the proposed method have extended the extraction boundary to any types of road 

markings.  

Compared with Guan’s approach, increased number of markings can be extracted 

using the proposed method, as shown in Figure 4.14(e) and 4.15(e). Based on the 

distribution of point density, Guan’s method is capable to partition the road. However, 

Guan’s method still suffered from the inconstant intensity, so that the road markings 
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could not be distinguished from the rough pavement near the road boundary (see Figure 

4.14(c) and 4.15(c)). It is also noted that Yu’s method is point-based while Guan’s and 

proposed method are pixel-based. Therefore, Yu’s method would not be affected by 

blurring data and achieves higher completeness than Guan’s and proposed methods.  

 

Figure 4.14: Extracted road markings from Sample 01 dataset: (a) road surface points, (b) 

Chen’s method result, (c) Guan’s method result, (d) Yu’s method result, (e) proposed 

method result, and manually labeled reference data (Adapted from: Yu, 2015). 
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Figure 4.15: Extracted road markings from Sample 05 dataset: (a) road surface points, (b) 

Chen’s method result, (c) Guan’s method result, (d) Yu’s method result, (e) proposed 

method result, and manually labeled reference data (Adapted from: Yu, 2015). 

The performance of these four methods is evaluated in a quantitative way, using three 

variables, i.e. completeness, correctness and F-score (see Table 4.3). It is identified that 

the proposed method outmatches Chen’s and Guan’s methods while it is inferior to Yu’s 

method in terms of the completeness.  

Table 4.3: Quantitative evaluation results of different road marking extraction methods. 

Sample Sample 01 Sample 05 
Method Chen Guan Yu Proposed Chen Guan Yu Proposed 

Completeness  (%) 75 86 93 89 71 89 93 91 

Correctness     (%) 91 90 92 96 92 91 91 98 

F-Score           (%) 82 88 93 92 80 90 92 94 
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4.3 Road Marking Segmentation 

Before the classification process, a road marking was segmented into the clusters by 

4-neighbours region growing segmentation. The segmentation results from road marking 

extraction are presented in Figure 4.16. Based on the neighbour counting filtering, the 

large regions of the road markings were segmented successfully except in Sample03. The 

reserve area that was segmented into pieces cannot be interpreted correctly in Sample03. 
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Figure 4.16: Results of road marking clustering and segmentation. 
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4.4 Road Marking Classification 

The marking segments were classified into categories based on the decision tree. All 

kinds of the road markings in the samples are illustrated in Figure 4.17. It is identified 

that majority of the segments were classified into correct categories. Nevertheless, three 

problems arose in the classification.   
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Figure 4.17: Results of road marking classification. 
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Resulting from these three problems, there were number of unclassified road marking 

segments within the images. In order to solve the issue caused by the marking decay, a 

rectification method was employed to group the unclassified segment to its nearest road 

marking. The principle behinds this method is that the damaged road marking still inherit 

the major features with its congeneric markings. 

In order to overcome the difficulty in the identification of the Chinese characters, it 

was proposed to expand the segments of the strokes. Thus, the strokes would be easier to 

be grouped as a unit. The dilation, as one of the basic operators in the area of 

mathematical morphology, was used to unite the strokes. The use of the dilation and its 

recognition result are presented in Figure 4.19.  

                                

(a)                                                             (b) 

Figure 4.18: Errors of road marking classification. 

Aiming at these unclassifiable segments, causing by marking decay, a rectification 

method can correct these misclassifications. The basic idea is that these unclassified 

segments should be reclassified according to the confessedly recognized road marking 

segments. Based on these correctly classified road-marking segments, the near 

unclassified segment can be set into the closest road marking. Although the damaged road 

marking cannot be classified correctly by its geometric features, it still has a strong 

spatial relationship with its congeneric markings.  

In order to identify Chinese characters, successfully separating the strokes becomes 
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the crucial point. One solution is to expand the segments of strokes to generate them to 

become one connected region, and then detected as one character correctly. The dilation, 

as one of the basic operators in the area of mathematical morphology, was tested to 

connect separate strokes. Figure 4.19 shows the dilation of Chinese characters and the 

recognition result. After region expanding, the strokes in one connect area can be 

classified as one character. 

                                   

(a)                              (b)                               (c) 

Figure 4.19: Detection of Chinese characters: (a) road marking region, (b) dilated road 

marking region, (c) Chinese characters classified in dilated region. 

Since the proposed method is based on the global threshold strategy, it can process 

the multi-path MLS data. Since the MLS dataset in Xiamen was retrieved from a round-

trip survey, it consists of both back and forth point cloud data. Compared to the distance-

dependent road marking detection, the proposed method can process the entire dataset at 

one time without the trajectory data. The intensity image of the road surface and 

extraction results of Sample07 is shown in Figure 4.20. 
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(a) 

 
(b) 

Figure 4.20: Road marking extraction of sample07 in Xiamen (a) road surface intensity 

image, (b) road marking extraction result. 

4.5 A Case Study on Road Marking Classification in Kingston 

The proposed method was initially implemented with MLS data acquired in Xiamen. 

In order to test the feasibility of the proposed method in Canada’s road network, a case 

study was carried out in the City of Kingston. It should be noted that the MLS data 

acquired in Kingston is more challenging due to the impacts from climate condition 

difference, topographic variability, and the resultant pavement aging. The pavement 

cracking, rutting, potholes and aged asphalt pavement surface would be the sources that 

generate noises in Kingston’s MLS data. The noises would have effect on the application 

0                255                            
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of the Otsu’s thresholding in extracting road marking successfully. Hence, the threshold 

in the road-marking extraction was set to be lower than the Otsu’s method’s. However, 

this set-up may lead to the generation of a number of false positive pixels included in the 

road marking. The source of these false positive pixels will be discussed in Section 4.5.1. 

Additionally, the denoising methods are applied to remove these false positive pixels.  

The following section consists of three parts. First, the challenges and 

countermeasures for the Kingston’s study were discussed. The second section aims to 

validate the efficiency of using maximum intensity in the corrected image for road 

marking extraction in which different methods for rasterizations of point clouds were 

employed and compared. In the third section, based on the corrected image data in the 

Kingston’s study, maximum and mean intensities were utilised in an overlapping analysis 

to monitor the decay of the road markings. 

4.5.1 Challenges and Adjustments 

There are four major challenges on processing the Kingston dataset using the method 

proposed within this research. 

The first challenge is the flexibility of adapting this method in different pavement 

marking guides. In general, the road markings are similar in the worldwide but with 

differences e.g. between major and local roads. It is noted that the sampled roads in 

Xiamen are major roads that are more complicated than the local roads in Kingston. 

Thus, the decision tree needs to be adjusted based on the Ontario Traffic Manual (2000). 

The second challenge is the ability to accurately extract the pure road surface in 

different circumstance. Different from the main roads in Xiamen with a continuous 
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connectivity, the sample from Kingston is a local street where the sidewalks connect to 

the drive road at the crossroad and many cracks occur on the roads. The differences 

would impact the performance of the extraction so that the threshold was modified to 

separate the road surface from the sidewalks (see Figure 4.21(b)). In addition, the 

fractures of the road marking would be obtained from the extraction of the incomplete 

pavement surface, which makes the road marking recognition very difficult. Thus, it is 

proposed that the candidate markings were first filtered with an overlapping area of the 

road surface. As shown in Figure 4.21 (b), occupying 40% of the road surface, the road 

markings are identified and labelled successfully. 

              
(a)                                                   (b) 

Figure 4.21: Road surface detection in Kingston’s sample: (a) candidate road markings 

(green) (b) road surface coverage thresholding result, including road surface (blue), road 

markings (green), and non-marking segments (red). 

The third challenge is how to overcome the effect of the pavement distortion on the 

intensity correction. One of the assumptions in the proposed intensity correction method 

is that the road surface would be flat. However, the intensity variance caused by the 

grooves on the road cannot be mitigated using the proposed correction method but leads 

to the generation of some noises. 

Within this study, individual noises can be eliminated using region growing 
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segmentation, and the noise clusters can be detected in the period of road marking 

classification with a specific geometric parameter (i.e. rectangularity). Rectangularity is 

the ratio of the object area to the minimal bounding box area, used to distinguish the 

noise clusters from the road markings. Furthermore, the neighbour-counting filtering can 

also be applied to eliminate the noises. The neighbours’ number of the road marking 

pixels are counted within a window size of 15×15.For example, the pixels in the centre of 

the noise clusters have a large number of neighbours. Thus, the density filtering was 

employed to remove the center pixels of the noise cluster and make the road marking 

lines distinguishable from the background. The line road markings before and after the 

density filtering are shown in Figure 4.21(a) and Figure 4.21(b), respectively. 

        
(a)                                                              (b) 

Figure 4.22: Density filtering of road marking: (a) road marking with noise, and (b) 

density filtering result of (a). 

The fourth challenge is the identification of the damaged road markings. As discussed 

in section 4.4, the proposed decision tree is very sensitive to the decay of the road 

markings. Due to the cold winter condition and excessive loading, the occurrence of 

cracking and road marking decay is inevitable. Cracks in the road surfaces arising from 

both the Canada’s climatic conditions and excessive traffic loading, makes the decay of 

the road markings almost inevitable. 
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It is identified that the broken road marking segments can be extracted and classified 

by reclassification strategy. For example, the unclassified road markings highlighted in 

red in Figure 4.23(a) cannot be recognized using the decision tree. Based on the 

reclassification criteria, they were grouped into the nearest road markings (see Figure 

4.23(b). 

                          
(a)                                                    (b) 

Figure 4.23: A remedial measure of road marking: (a) the unclassified marking segments, 

and (b) result of the rectification method.  

4.5.2 Results and Discussion 

To overcome the challenges discussed in the previous section, a series of approaches 

were applied.  

Both the IDW interpolation and maximum value enhancement were utilised to 

generate intensity images for road marking extraction. The IDW mean corrected intensity 

image and maximum intensity corrected image are presented in Figure 4.24 (a) and (b). It 

is noted that the road arrow was brighter and more complete in the Figure 4.24(b), 

compared to the one in Figure 4.24(a). Figures 4.24(c) and (d) show the results of road 

marking extraction from the IDW mean intensity corrected image and the maximum 

intensity corrected image respectively. As shown in Figure 4.24(c) and Figure 4.24(d), the 

extraction result from maximum intensity corrected images was more nearly complete 
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and clear. 

                      
(a)                                                     (b) 

 

                      
(c)                                                     (d) 

 

Figure 4.24: IDW interpolation vs Maximum value enhancement: (a) IDW mean intensity 

image, (b) the maximum corrected-intensity image, (c) road marking extraction result 

from IDW mean corrected-intensity image, and (d) road marking extraction result from 

maximum corrected-intensity image. 

In addition, compared to IDW interpolation, the maximum value enhancement can be 

used to improve the road marking extraction performance. Based on the assessment of 

three variables (correctness, completeness and F-score), the comparison results is 

illustrated in Table 4.4. It is clear that the maximum intensity contributes to the 

enhancement of the fade marking and improves the performance of the extraction 

significantly. 

Table 4.4: Comparison of the road marking results from different rasterization methods. 

Rasterization method IDW interpolation Maximum value enhancement 

Correctness (%) 82.95 93.47 

Completeness (%) 76.79 84.16 

F-Score (%) 79.75 88.57 
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 Based on the Kingston dataset, the final classification result of the road markings is 

shown in Figure 4.25. Based on a 3×3 high-pass filtering result of DTM, the road surface 

and curbs were detected and shown in black and blue (see Figure 4.25(a)). However, the 

corrected and enhanced intensity image was not qualified to be masked before the road 

marking extraction. Therefore, high-pass enhancement and filtering were employed in the 

maximum intensity corrected image for all road marking candidates. The road markings 

whose majority of it located on the road surface were labelled as road marking, and the 

others were classified as non-markings and removed. It should be noted that a modified 

decision tree and a reclassification strategy were utilised to classify the road markings. A 

number of criteria were developed for the classification of both detected and undetected 

segments. For example, the broken pedestrian crossing lines caused by the road marking 

decays were reclassified successfully as shown in Figure 4.25(b) and Figure 4.25(c).  
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                                  (b)                                                                    (c) 

Figure 4.25: Road marking classification in Kingston: (a) overview of road marking 

classes, black area represent detected road surface, blue lines represent curbs, (b) road 

intersection 1, (c) road intersection 2. 

Based on the quantitative assessment results, it is identified that the extraction 

performance using the Kingston dataset was not as good as the Xiamen’s. The values of 

three parameters (correctness, completeness and F-score) achieved from the Kingston’s 

case were lower than the ones obtained from the Xiamen’s case (see Table 4.5). The 

reason behinds this result is that the road marking detection is significantly affected by 

the road marking decay and digital erosion. On one hand, the road markings in King 

Street (Kingston) are in disrepair. Due to the winter maintenance and traffic, the road 

markings have heavy reflectance losses and cannot be extracted correctly. For example, 

the completeness of the road arrows and the pedestrian crossing lines are 81% and 82%, 

respectively. One the other hand, the region growing method was used to remove the 

noises and group the road marking pixels. It is identified that, it removes the small 

fragments of damaged road markings inevitably. As a result, without shape features, 

these damaged road markings cannot be recognised by the decision tree as standard road 

markings. Therefore, both the decay and the digital erosion result in the relatively low 
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completeness in the Kingston’s case within this research. 

Table 4.5: Quantitative assessment results using the Kingston dataset 

                       Performance(%) 

Road markings Correctness Completeness F-Score 

Continuous line 93.26 85.86 89.41 

Stop line 98.24 83.03 89.99 

Road Arrow  99.82 80.96 89.41 

Broken line 90.97 86.95 89.91 

Pedestrian crossing 90.34 81.79 85.85 

Overall (Kingston) 93.47 84.16 88.57 

Overall (Xiamen) 95 93 94 

 

4.6 Chapter Summary 

This chapter analyzed the performance of the application of the proposed method in 

Xiamen and Kingston. The main discussion and analysis were based on the performances 

of the preprocessing, extraction and classification in Xiamen dataset. The case study in 

Kingston was discussed and analyzed as the complementary case for the proposed 

method. The Xiamen dataset was mainly used to demonstrate the performance of the 

processes, including the preprocessing, extraction and classification. The Kingston 

dataset was employed as a complementary case for the application of the proposed 

method. 

With the IDW interpolation with the grid size of 5 cm, large amounts of 3D point 

clouds were transferred to 2D images, thus the computation efficiency was significantly 

improved. In addition, two methods (i.e. scan-angle-rank-based intensity correction and 

large-size-high-pass enhancement) were used to solve the effect caused by the uneven 

distribution of the MLS interpolated intensity data. The function of cosine was used to 

correct the intensity data and achieve a normal distribution of the histogram of the road 
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marking pixels. Therefore, the contrast between the road markings and the pavements 

was enhanced. Furthermore, in order to eliminate the spatial variance of the road marking 

in the road boundary, a large size high-pass enhancement was employed with 30 different 

window sizes. The Otsu’s method was then applied to segment the images, whose 

performance was tested based on the evaluation of three parameters, i.e. completeness, 

correctness and F-score. It is identified that the optimal size of the large window for high-

pass enhancement is31×31. 

Compared with the others three recently published MLS data based road marking 

detection methods, the proposed method has its advantages. First, the proposed method 

employed the function, i.e. cosine of scanning angle to correct the intensity value. Second, 

a large size high-pass filter was utilized to overcome the uneven intensity issue. As a 

result of these two steps, the road markings became more detectable from the pavements. 

Thus, the global Otsu’s thresholding can be implemented successfully to extract the road 

markings. It is noted that “true” image can be produced using IDW interpolation, but 

replacing the IDW interpolation value with a maximum corrected intensity generates 

increased numbers of road marking pixels for further extraction and classification. 

After the extraction, road markings were segmented by 4-neighbour-region growing 

segmentation process. The extreme large road markings were divided into transverse 

markings, wide longitudinal markings and thin longitudinal markings. Based on the 

geometric features, these road marking segments were classified into corresponding 

categories. The main problems of the proposed method lie on the classification of the 

damaged road markings and the isolated strokes of Chinese characters. With the 

expansion of the dilation kernel, Chinese characters can be grouped and recognized as 
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one marking. A reclassification strategy was also developed and implemented for the 

unclassified broken road markings in the case studies. It is noted that the decision tree 

would need adjustment due to the difference of climate condition and topography, and the 

pavement ageing effect. In addition, the noises generated in Kingston’s case were 

successfully eliminated using the density filtering approach.  

A number of features were used in the road marking classification process, including 

its connectivity, area, width, bounding box, rectangularity and spatial relationship. In the 

Kingston’s case study, both the maximum and mean intensity corrected images were 

generated associated with two results. It is identified that the maximum value 

enhancement of intensity helps scale up the road markings’ spectral characteristic with 

increased numbers of marking-alike pixels. Therefore, the utilization of the maximum 

intensity interpolation in the road marking extraction results in higher completeness, 

correctness and F-Score than the extraction result using IDW interpolation approach.  
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Chapter 5 Conclusions and Recommendations  

5.1 Conclusions 

The main conclusions of this study can be summarized as follows:  

The driverless car, as one of the most viable forms of ITS, has been developed by 

many automotive and other companies, and fully-autonomous vehicles are predicted to be 

launched in the next 5 years. It is noted that the sensors and a prior 3D map are the key 

elements of the driverless cars. In addition, one of the biggest challenges to develop the 

prior 3D maps lies in the generation of the lane model with the precise lane geometry and 

rich attributions. The Mobile Laser Scanning (MLS) technology is also essential for 

capturing the point clouds that are used to detect the road markings. 

Majority of the existing MLS point clouds-based road marking extraction methods 

are based on the application of global intensity filtering and multi-thresholding 

segmentation. However, these methods could be greatly influenced by the unevenly 

distributed intensity. This highlights the need for well-developed preprocessing before 

the road marking extraction. The preprocessing aims at eliminating the in-class variance 

of road markings and thus improving the marking detection. Additionally, the machine 

learning algorithms are normally utilized in road marking classification and its 

application requires extensive training effort. Hence, this study has proposed a decision 

tree that is able to classify the road markings in a detailed and efficient way.  

This study has highlighted that the application of the scan-angle-rank-based intensity 

correction and the large-size high-pass filtering have the potential to significantly reduce 

the in-class variance of road markings and pavements. In addition, based on the 
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comprehensive prior knowledge, a shape-based hierarchical tree developed in this study 

is capable to undertake the classification in an efficient and systematic manner. It should 

be noted that the efficiency of the intensity correction method greatly depends on the 

flatness of the road surface (e.g. cracking, rutting). Furthermore, the proposed workflow 

may not be able to achieve the ideal performance on poor road conditions due to the road 

marking decay. Therefore, the neighbors-based filtering and region growing algorithm 

have been applied in maximum intensity images to eliminate the noise caused by 

cracking and rutting.  

Two case studies have been undertaken to demonstrate the applicability of the 

proposed workflow. They also aimed at evaluating the performance of the developed 

methodology using different MLS datasets acquired from various roadway environments. 

The comprehensive prior knowledge was applied to assess the accuracy of the road 

marking classification. Based on the case study results, the preprocessing has attenuated 

the intensity variance of road makings and improved the extraction performance. It has 

also been highlighted that the road conditions (i.e., flatness of the road surface, 

completeness of the road markings) have a great impact on the accuracy of extraction and 

sequent classification.  

The thesis has concluded that the developed workflow is capable of rapid extraction 

and classification of the road markings in the MLS point clouds. 

5.2 Contributions 

 This section presents four principal research contributions to the study of road 

marking extraction and classification. 



95 

 

This section summarizes the main contributions of this thesis. 

(1) The hybrid road-surface extraction method for road surface detection has been 

developed. Based on the ground points generated by the voxel-based upward growing 

algorithm, the 3×3 high-pass kernel was applied to generate the DTM. Then the road 

surface was extracted based on the smoothness and connectivity of the road. Different 

from the surface growing approach (Vosselman et al., 2004), the hybrid method involved 

the removal of the non-ground points and the integration of the point cloud into DTM. It 

aims at reducing the data volume prior to the extraction step. At the same time, the hybrid 

method inherited the advantage of the pixel-based region growing algorithm to take the 

smoothness and connectivity into consideration in 2D images. Thus, the hybrid method 

can be used to extract the road surface rapidly. 

(2) The scan-angle-rank-based intensity correction has been undertaken to 

attenuate the intensity variance caused by varying incidence angles. The in-class variance 

of the road markings has dropped significantly after the intensity correction. In addition, 

the improved efficiency of the intensity correction has demonstrated that radiometric 

calibration was critical for the road marking extraction.  

(3) The large-size high-pass filter has been utilised to attenuate the intensity 

variance caused by different surface roughness to ensure the realization of the global 

thresholding. The selection of an optimal size of high-pass filter can enhance the road 

markings from pavements and reduce the spatial variance in the kernel. Compared with 

the application of multi-thresholding segmentation in others’ studies, the large-size high-

pass filter used in this research resulted in less spatial variance, and a better road marking 

extraction performance. The improved filter efficiency demonstrates the applicability of 
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the window-based extraction approach.  

(4) The shape-based hierarchical tree for road markings classification has been 

developed based on the comprehensive prior knowledge of the road-marking shapes. On 

the basis of the hierarchical tree, a decision-tree for classification can be manually 

developed and classify the road markings into detailed categories. It is noted that the 

hierarchical tree has the flexibility to meet different requirements, either for a rough or 

detailed classification. In general, the diarchy tree is able to classify the road markings 

into detailed categories including the information of precise lane geometry and rich 

attributions. The hierarchical tree is superior to other machine learning classifiers because 

it does not need any training process. The prior knowledge of the traffic markings were 

coded into the trees manually. Moreover, the development of the hierarchical tree requires 

less computation than the use of template matching algorithm.  

In conclusion, the manually developed hierarchical tree can be easily integrated with 

human prior knowledge and used to classify the road markings. In addition, the detailed 

classification result, as an indispensable data source, was used for developing the prior 

3D map to support the operation of driverless cars. 

5.3 Recommendations for Future Studies 

This section presents the limitations of the proposed method and discusses the future 

work. 

5.3.1 Point Cloud Intensity Correction 

The scan-angle-rank-based correction of intensity has enhanced the contrast between 

pavements and markings significantly. However, the efficiency of the method depends on 
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the flatness of the road surface. The cracking, rutting and potholes, which are not in 

compliance with the plane model, can hardly be corrected by the proposed method. In the 

future, advanced radiometric calibration of MLS data should be developed and applied 

prior to the road marking extraction. 

5.3.2 Large-size High-pass Enhancement 

This thesis introduces a large-size high-pass filtering method to reduce the in-class 

variance and highlight the road markings from pavements successfully. However, this 

image-based filter cannot be implemented on the 3D point cloud directly. Due to the 

conceptual similarity between the pixel and the voxel, lots of sophisticated pixel-based 

algorithms can be applied in voxel-based point cloud processing. In the future, the large-

size high-pass enhancement of markings could be realized by a suitable voxel-based 

algorithm. 
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