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Abstract

Relative nucleation rates for fluid bubbles of nanometre dimensions in polymer matrices are

calculated using both classical nucleation theory and self-consistent field theory. An identical

model is used for both calculations showing that classical nucleation theory predictions are off by

many orders of magnitude. The main cause of the failure of classical nucleation theory can be

traced to its representation of a bubble surface as a flat interface. For nanoscopic bubbles, the

curvature of the bubble surface is comparable to the size of the polymer molecules. Polymers on

the outside of a curved bubble surface can explore more conformations than can polymers next to

a flat interface. This reduces the free energy of the curved interface which leads to a significantly

smaller barrier energy to nucleation and thus a much higher nucleation rate. Also, there is a

reduction of unfavorable energetic contacts between polymer and fluid molecules in the vicinity of

a curved interface. Polymers on the outside of a curved interface are less likely to find a portion

of themselves in the interior of the unfavorable fluid bubble. A secondary cause of the failure of

classical nucleation theory is due to the collapse of the bulk region inside the bubble. As the radius

of a bubble is reduced, eventually the diffuse walls collide causing increased mixing of polymer

and fluid molecules everywhere. This causes a reduction of internal energy associated with the

interface, leading to smaller nucleation barrier energies and, again, a reduced barrier energy to

nucleation.

PACS numbers: 82.70.Rr, 47.57.Bc, 68.03.Cd, 36.20.Fz, 33.15.Bh, 36.20.Ey, 64.75.Jk
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I. INTRODUCTION

Polymer foams, which consist of polymer matrices with fluid bubble inclusions, are used in

furniture, automotive parts, packaging, construction materials, insulation, and many other

areas [1]. A high quality foam should have a large number of small and uniform cells (bub-

bles). This requires cell nucleation to take place rapidly when creating the foam. Classical

nucleation theory (CNT) is often used to predict bubble nucleation rates [2–6] so that one

can engineer polymer foams with smaller cell sizes – microcellular foams, for example. Fur-

ther improvements are being sought by reducing cell sizes to nanometre dimensions to create

nanocellular foams [2]. When working at the nanoscale however, the science and engineering

changes fundamentally. In particular, issues arise with the use of CNT as some assumptions

break down for nano-sized bubbles. Oxtoby has reviewed CNT assumptions [7]: 1. CNT

assumes an energy barrier to nucleation always exists, which is not always the case. 2. CNT

assumes a bubble always has bulk properties, even it if is very small, and that it always has

a sharp interface. 3. CNT represents a bubble interface by an infinite flat planar surface. In

addition to these limitations listed by Oxtoby, CNT contains no kinetic information. This

can be very important in polymer foams, for example in nonstationary diffusion growth in

nanosized pores [8].

Self-consistent field theory (SCFT) is free from the limitations listed by Oxtoby. SCFT

is a mean field, statistical mechanical theory well suited to studying inhomogenous polymer

systems [9, 10] including interfaces in polymer foams [11–14]. In this paper, we calculate

critical radii, nucleation barriers and relative nucleation rates in polymer bubble systems

using SCFT and compare to results found using CNT for the same systems. Although SCFT

is like CNT in that it doesn’t contain any kinetic information, this is actually advantageous

in that a comparison between the two theories is on an equal footing – more will be said

about the kinetic limitations of SCFT in the theory section. CNT requires certain inputs

(surface tension and volume free energy density) which we compute using SCFT. We have

therefore an ideal system that, by construction, would give perfect agreement between SCFT

and CNT if CNT was completely correct. Although our model system is not expected to

be quantitative, it shows correct qualitative features and is free of confounding factors in

judging CNT. Furthermore, the identical model used means all disagreements found are

systemic to CNT and independent of quantitative arguments. SCFT uses a coarse-grained
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microscopic model which (unlike other approaches to polymer bubble nucleation [15, 16])

includes molecular degrees of freedom, and so by comparing SCFT to the same model using

CNT, the microscopic origins of the failure of CNT are unambiguously revealed. Specifically,

we find that the increased conformations available to polymer molecules adjacent to a curved

cell interface compared to a flat planar interface moderates the free energy difference between

small bubbles and large bubbles. The curved interface also allows more space for polymers to

avoid intruding into the chemically unfavorable bubble region compared to a flat interface.

Taken together, the increased conformations and reduced internal energy resulting from

the existence of bubble curvature on the length scale of the polymer reduce significantly

the nucleation barrier energy for nanocellular foams and changes nucleation rates by many

orders of magnitude. A secondary cause of the failure of CNT, which is only important for

very small bubbles, is due to the disappearance of the bulk region inside the bubble. This

causes increased mixing of polymer and foaming agent both inside and outside the bubble

and contributes to the deviation of SCFT and CNT predictions.

In section 2, we summarize CNT and give our SCFT model for a polymer bubble. Al-

though heterogenous nucleation is a much more important factor determining nucleation

rates in polymer foams than homogenous nucleation [17, 18], we will examine only the lat-

ter, following the philosophy that homogenous nucleation is an appropriate place to start

when testing CNT predictions given that CNT, in its simplest form, is a theory for ho-

mogenous nucleation [7, 19, 20]. Furthermore, many heterogenous nucleation theories are

modifications of homogenous nucleation quantities [17, 18], so corrections to the latter will

affect the former. In section 3, we show an example of the differences between critical radii,

nucleation barriers and nucleation rates predicted by SCFT and CNT. These results provide

some circumstantial evidence that there may be much more homogenous nucleation taking

place in polymers foams than previously thought and that heterogenous nucleation rate

predictions may also be inaccurate. We discuss the microscopic origins of the differences

between SCFT and CNT in this section. In section 4, we review our conclusions and list

possible future directions of research.
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II. THEORY

Classical nucleation theory (CNT) assumes that phase transitions in fluids take place via

nucleation and growth, with bubbles of the new phase nucleating in a matrix of the old

phase at a rate J given by

J = J0 exp
(
−

∆F ∗

kBT

)
(1)

where J0 is a prefactor associated with the characteristic time scales of motion in the system,

kB is Boltzmann’s constant and T is the temperature [1, 7]. The nucleation rate depends

most importantly on the activation barrier ∆F ∗, which is the free energy of formation of a

typical bubble of a radius R equal to the critical radius R∗. The critical radius of a bubble

is that radius smaller than which the bubble shrinks and disappears and larger than which

the bubble grows continually. According to CNT, the free energy ∆F necessary to form a

typical bubble of an arbitrary radius is

∆F (R) = 4πR2γ −
4π

3
R3∆FV . (2)

The first term of on the right hand side of equation (2) is an energy penalty due to the

existence of a bubble surface. γ is the surface tension between the two phases assuming

an infinite flat planar interface. The second term of (2) is an energy reduction due to the

volume of the new phase bubble. We shall call ∆FV the volume free energy density and we

will define it such that it has a positive value. The second term of CNT is more commonly

written in terms of a pressure difference ∆p rather than ∆FV [1, 19]. The units are the same

however and the latter offers a more general interpretation – we find it convenient to follow

the presentation of Oxtoby [7] or Jones and Richards [20] in the use of ∆FV . Maximization

of equation (2) gives the critical radius R∗ and thus the activation barrier ∆F ∗.

In this article, script F will denote free energy densities, latin F extensive free energies

and tildes dimensionless quantities. A self-consistent field theory (SCFT) model for a bubble

of fluid in a polymer matrix can be summarized by the free energy functional

F̃ ≡
NF

ρ0kBTV
= −(1 − φs) ln

[
Qp

V (1 − φs)

]
−

φs

α
ln

(
Qsα

V φs

)

+
1

V

∫
dr [χNϕp(r)ϕs(r) − ws(r)ϕs(r) − wp(r)ϕp(r)] . (3)

where ϕp(r) and ϕs(r) are the local (position dependent) volume fractions of polymer and

solvent, respectively. The term “solvent” is often used in SCFT to refer to molecules lacking
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polymeric internal degees of freedom. We will use this term interchangeably with “fluid” to

refer to the gas or fluid phase of a polymer foam system. In addition to equation (3), an

incompressibility constraint, ϕp(r) + ϕs(r) = 1, is enforced. The use of an incompressible

equation of state is not realistic for a polymer foam system, but it has been found to show

the correct qualitative behavior of the interface [2, 13, 14] and it removes complications that

can cloud interpretations. Realistic equation of state effects can be added to the formalism

[11, 12] – see Conclusions and Outlook section 4. The total system volume fractions for

polymer and solvent are (1−φs) and φs, respectively, and single molecule partition functions

are given by Qp and Qs, respectively. The ratio of the volume of a solvent molecule to a

polymer molecule is denoted by α, with the volume of one polymer segment being ρ−1
0 and the

degree of polymerization being N . The segregation between solvent molecules and polymer

segments is given by a Flory-Huggins parameter χ. w(r)s or p are the mean fields felt by

each solvent molecule or polymer segment due to interactions with all other molecules and

segments in the system. The left hand side of (3) is the system free energy (F ) per system

volume (V ), made dimensionless by dividing by the thermal energy kBT and multiplying by

the volume of one polymer, N/ρ0. A set of coupled equations are derived from the free energy

functional (3) when combined with the incompressibility constraint, with one equation for

each of ϕp(r), ϕs(r), wp(r) and ws(r). These equations, together with incompressibility, are

solved self-consistently and numerically using reflecting boundary conditions. Details of the

SCFT approach, including its limitations such as the neglect of fluctuations, can be found

in the review of Matsen [10], the book of Fredrickson [9] or, for polymer/solvent interface

systems, the review of Binder et al. [11] and our previous work on the subject [12].

SCFT can be used to calculate the surface tension of an infinite flat planar sol-

vent/polymer interface. The surface tension is the excess free energy of the interface divided

by the interfacial area. The excess free energy density is found by subtracting the bulk free

energy densities on either side of the interface (the phase separated free energy densities)

from the system free energy density, equation (3):

F̃ex = F̃ − F̃s. (4)

This is schematically summarized in figure 1, panels (a) and (b). Panel (a) shows a typical

interface predicted by SCFT using formula (3). Panel (b) shows two, independent, ho-

mogenous systems with polymer and solvent fractions corresponding to the phase separated
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FIG. 1: Schematic showing the structures used to calculate various SCFT quantities for comparison

with CNT. In all figures, the abscissa is a dimensionless radial coordinate and the ordinate shows

volume fractions according to the legends. (a) A typical SCFT prediction of a polymer/fluid

interface from equation (3). The vertical line is the location of the defined bubble radius. (b)

Two, independent, homogenous systems with polymer and fluid volume fractions corresponding

to the phase separated values on either side of the interface of panel (a). The vertical radius

marker now divides the two sub-systems. (c) A homogenous, bubble free, structure with the same

overall volume fractions as panel (a). The vertical radius marker is left in for comparison. To

calculate the excess free energy density F̃ex, one takes the difference of free energy density between

panels (a) and (b) (equation (4)). To calculate the volume free energy density ∆̃FV , one takes the

difference of free energy density between panels (b) and (c) (equation (10)). To calculate the free

energy density of formation of a bubble of radius R̃, one takes the difference of free energy density

between panels (a) and (c) (equation (12)).
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values on either side of the interface of panel (a). To calculate the excess free energy density

F̃ex, one essentially takes the difference of free energy density between panels (a) and (b)

(equation (4)) as we will now describe. The total phase separated free energy density is

given by [10, 12]

F̃s = F̃
(1)
h

(
V1

V

)
+ F̃

(2)
h

(
V2

V

)
(5)

where F̃
(1)
h and F̃

(2)
h are the bulk homogenous free energy densities on either side of the

interface, illustrated in figure 1(b). These are found using the homogenous version of the

free energy functional (3) which is

F̃h ≡
NFh

ρ0kBTV
= (1 − φs) ln(1 − φs) +

φs

α
ln

(
φs

α

)
+ χN(1 − φs)φs (6)

where the bulk volume fractions φ(1)
s and φ(2)

s on either side of the interface would be used in

equation (6) to get F̃
(1)
h and F̃

(2)
h , respectively. V1 and V2 are the volumes of the homogenous,

phase separated regions given by

V1 + V2 = V (7)

and
V1

V
=

φ(2)
s − φs

φ
(2)
s − φ

(1)
s

(8)

which conserves the total volume of solvent of the inhomogenous system (3) in the phase

separated expression (5) – see references 10 and 12. Dividing the excess free energy by

interfacial area A, the dimensionless surface tension γ̃ is [21]

γ̃ ≡
6Rgγ

a2ρ0kBT
=

(
V

Rg

)
F̃ex

A
(9)

where a is the average length of a polymer segment and Rg is the unperturbed radius of

gyration of a polymer. Rg will be used as the unit of length for all results presented. The

multiplication by volume on the right hand side of equation (9) converts the (dimensionless)

excess free energy density into an extensive free energy. More details on calculating surface

tensions and excess free energies in SCFT can be found in references 10 and 12.

A flat interface surface tension found from equation (9) can be used in CNT, but one

also needs the volume free energy density ∆FV . One can find this by taking the difference

between the phase separated free energy density Fs given by equation (5) and the homoge-

nous free energy density Fh given by equation (6). In equation (6), the total system volume
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fraction φs would be used.

∆̃FV ≡
N∆FV

ρ0kBT
=

V

V1

(
F̃h − F̃s

)
. (10)

This is illustrated schematically in figure 1 panels (b) and (c). Panel (b) shows two, in-

dependent, homogenous systems with polymer and solvent fractions corresponding to the

phase separated values on either side of the interface of panel (a) while panel (c) shows a

homogenous, bubble free, structure with the same overall volume fractions as panel (a). To

calculate the volume free energy density ∆̃FV , one essentially takes the difference of free

energy density between panels (b) and (c) (equation (10)). In (10), (V1/V )−1 is given by

equation (8); this pre-factor is a convenience used to split the full free energy density (3)

into surface and volume terms as will be explained later in this section. The SCFT surface

tension (9) and volume free energy density (10) can be calculated for a flat, infinite planar

surface and used in a dimensionless version of equation (2)

∆̃F (R) ≡
N∆F

ρ0kBTR3
g

= 4π

(
R

Rg

)2

γ̃ −
4π

3

(
R

Rg

)3

∆̃FV (11)

which gives the CNT prediction for the free energy to form a bubble as a function of bubble

radius.

One can also calculate ∆̃F directly from SCFT. One subtracts the homogenous free

energy density (6) from the system free energy density (3) and multiplies by V to get a

(dimensionless) extensive free energy rather than a free energy density:

∆̃F =
V

R3
g

(F̃ − F̃h). (12)

This is illustrated schematically in figure 1 panels (a) and (c). Panel (a) shows a typical

interface predicted by SCFT from formula (3) while panel (c) shows a homogenous, bubble

free, structure with the same overall volume fractions as panel (a). To calculate the free

energy density of formation of a bubble of radius R̃, one essentially takes the difference of

free energy density between panels (a) and (c) (equation (12)). From definitions (9) and

(10), this can be rewritten in the suggestive form

∆̃F =

(
A

R2
g

)
γ̃ −

(
V1

R3
g

)
∆̃FV . (13)

This is just a geometry independent generalization of the CNT formula (11). It is for this

reason that the factor (V1/V )−1 was included in the definition of (10) and it shows that
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V1 is being defined as the volume of a bubble of surface area A. For spherical coordinates,

equation (13) becomes identical to (11) but now it is no longer the case that the surface

tension (9) and volume free energy (10) are evaluated for an infinite flat planar surface.

We are now solving the full SCFT free energy functional for a spherical bubble symmetry

with no CNT assumptions. Unlike the fixed flat interface surface tension, ∆̃F (R) depends

on the system volume V used in the SCFT calculation (as does the volume free energy).

To get an unambiguous value, one must use in formula (3) the volume V that gives the

prescribed total volume fraction φs. That is, one must match to experimental conditions. For

∆̃F (R) therefore, one must change the system volume and recalculate for each morphology

of differing radius [22]. To associate each morphology with a radius R one must define the

radius of the structure one finds. In CNT, the radius is uniquely defined since the bubble

interface is assumed to be a sharp step. When calculating a bubble morphology in SCFT

one finds a more realistic diffuse interface. The location of this interface is therefore a

matter of definition [23]. Since we are comparing with CNT, we use the CNT definition

as given by equation (8). This means that V1 is the volume of a spherical bubble, with

the radius being derived from this volume. This radius corresponds to the dividing surface

defined in figure 1, panel (b) and shown against the diffuse interface in panel (a). Since

these two figures show systems with the same number of molecules, the radius is defined at

the equimolecular surface. Therefore, surface tensions calculated using this radius will be

consistent with thermodynamic definitions of surface tension and with excess free energies

per area calculated in grand canonical formalisms. The reader should note that the SCFT

approach differs from CNT in that it is thermodynamically consistent: the overall volume

fraction φs is required as input, and the system volume must be changed for each radius

of bubble in order to preserve this volume fraction. In this way, the single bubble being

modeled is a representative one for an environment in which many bubbles are nucleating

and which therefore changes as the bubbles grow. Similar issues have been discussed by

Leung et al. from a different perspective [2, 24].

Since a nucleating bubble is unstable in that it will necessarily shrink or grow, an equilib-

rium statistical mechanical method like SCFT is not an obvious way to model such systems.

Previous authors have worked in grand canonical formalisms and measured the critical radius

by determining where computations become unstable [11, 19] or by introducing constraints

on the morphology [25, 26]. Oxtoby pointed out that bubbles are stable in canonical for-
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malisms where the free energies can be correctly evaluated [7]. We use a constraint-free,

canonical ensemble here. The bubbles we study are stable against growth above the critical

radius. At and below the critical radius, a homogenous solution is always found. For these

smaller radii, intermediate accuracy calculations show the bubble is spontaneously shrinking

during the course of the calculation, as expected.

There is also the related issue of whether real bubbles in polymer foams reach quasi-

equilibrium as modeled here with SCFT. While there will certainly be cases where this is

not true, such as when the polymer is near its glass transition or in the late stages of phase

separation where viscoelastic effects are more pronounced, there will also be many systems

where the quasi-equilibrium picture should be valid [11]. In any case, CNT suffers the same

kinetic limitations so, as mentioned in the introduction, SCFT is an appropriate tool to

reveal the failure of CNT within such a non-kinetic picture.

III. RESULTS AND DISCUSSION

We examine systems with α = 0.01 (α is related to polymer molecular weight) , χN

ranging from 120 to 160 (χN is related to temperature and chemistry) and φs ranging from

0.2 to 0.33 (φs is the volume fraction of gas), always chosen such that we are working in the

nucleation and growth regime. In what follows, we depict and discuss results for α = 0.01,

χN = 140 and φs = 0.23, but our conclusions are valid for the range of values we studied.

Figure 2 shows example profiles for two different bubble sizes. One notices that the bulk

volume fractions φ(1)
s and φ(2)

s are slightly different for the two profiles and it is found they

are also slightly different from the infinite, flat planar values. The bulk volume fractions are

therefore weak functions of the bubble radius. It is the radially dependent rather than the

flat planar values of φ(1)
s and φ(2)

s that we use to calculate the spherical surface tension since

these radially dependent values reflect the non-equilibrium conditions in which the bubble

exists for any given radius.

Figure 3 shows the free energy of the existence of a bubble, ∆̃F , as a function of bubble

radius R̃ ≡ R/Rg. The solid line is the prediction of CNT (equation (11)) based on a

surface tension value of γ̃ = 3.3 and a volume free energy density of ∆̃FV = 7.1. These

are the values predicted by SCFT based on a flat interface that reaches bulk conditions on

both sides of the interface. The open circles in figure 3 are the predictions for ∆̃F directly
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FIG. 2: Local volume fraction profiles for a bubble of solvent in a polymer matrix. The abscissa is a

dimensionless radial coordinate and the ordinate shows volume fractions according to the legends.

(a) Smaller bubble. (b). Larger bubble. In both panels, the definition of the location of a bubble

interface, and therefore the radius of the bubble, is given by the vertical solid line.

from SCFT calculated from formula (13). The dashed line is a guide to the eye. We see

that CNT overestimates the size of the critical radius by a factor of almost 1.5 and, more

significantly, it overestimates the size of the energy barrier to nucleation by more than a

factor of six. When used in the exponential nucleation rate formula (1), assuming the same

prefactor for both CNT and SCFT, we find that CNT underestimates the nucleation rate by

a factor of more than 5× 105. Evans and Oxtoby have studied non-polymeric systems using

classical density functional theory and they too find orders of magnitude deviations from

CNT – see their figure 4 [19]. In polymer foam systems, heterogenous nucleation is thought

to dominate bubble nucleation because CNT predicts such a small rate for homogenous

nucleation [17, 18]. The above results indicate that homogenous nucleation may be taking

place at rates previously thought to be consistent only with heterogenous nucleation. It

may be that homogenous nucleation plays a much more significant role in polymer foaming

that previously thought. To confirm this, more quantitative predictions would be required

– see Conclusions and Outlook section 4. In any case, the above results should also modify

heterogenous nucleation rate predictions since these rates are often based on modifications

of the free energy barrier height used in CNT for homogenous nucleation [17, 18].

To understand the deviation of CNT from SCFT for nanocellular polymer systems, one
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FIG. 3: Free energy of the existence of a bubble, ∆̃F , as a function of bubble radius R̃. The

solid line is the prediction of classical nucleation theory. Open circles are SCFT predictions with

a dashed line guide to the eye.

can notice that with SCFT phrased in the CNT-like form of equation (13), all differences

between CNT and SCFT predictions arise due to the bubble radius dependence of the surface

tension γ̃ and volume free energy density ∆̃FV . We have observed from our calculations

that neither γ̃ nor ∆̃FV alone is able to account for a majority of deviation of SCFT from

CNT; both quantities are important. We examine γ̃ first. The surface tension is plotted as a

function of radius R̃ as the thick solid line in figure 4. To understand the microscopic origin

of the radius dependence of the surface tension, we have broken it up into thermodynamic

components, which we also show in figure 4. Details on this procedure can be found in

reference [12]. One observes that it is the configurational entropy contribution to the surface

tension (open circle line) and the internal energy contribution (closed dot line) that cause

the surface tension to drop with decreasing radius. (Note that all the curves in figure 4 have
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FIG. 4: Contributions to the surface tension of various thermodynamic components as indicated

in the legend. For ease of comparison, all components have been shifted by varying amounts to be

zeroed at a comparatively large radius of approximately R = 2.5Rg .

been shifted to a convenient zero in order to easily compare their shapes.) We discuss the

conformational entropy contribution first because it is mostly responsible for the drop in

surface tension. This is a quite different from our SCFT study of flat surface tensions where

the polymer configurational entropy was not a significant factor in predicting behavior [12].

For flat surface tensions then, simple liquid theories can be successful in predicting surface

tension behavior as discussed in reference 12 whereas on the nanoscale, simple liquid theories

would be inadequate because curvature effects make polymer conformations a dominant

factor. This is consistent with experimental findings of Shukla and Koelling for nanocellular

foams [3]. They were only able to fit their results with CNT when they modified their surface

tension using the Tolman approximation [27]. The Tolman expression is a phenomenological
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FIG. 5: Schematic showing the differences in conformations and internal energies for polymers

located near surfaces. The grey area is the gas bubble region and the white area is the polymer

melt region. One polymer is explicitly shown with an “x” marking its center of mass. (a) A flat

surface discourages certain conformations by increasing the internal energy. (b) A curved surface

allows these conformations with no additional energy penalty.

expansion that gives surface tension a bubble radius dependence; it has no microscopic

information and introduces an arbitrary fitting parameter known as the Tolman length.

In contrast, larger bubble foams, including microcellular foams, can sometimes be fitted

with CNT, as reported by Goel and Beckman [6]. This brings us to the conformational

entropy discussion. For large bubbles, the cell surface appears flat on the length scale of

a polymer molecule. The polymer is discouraged from entering the bubble because of an

energy penalty for doing so – the gas and polymer molecules are immiscible – and the possible

polymer conformations are reduced near the bubble surface – see figure 5(a). As the bubble

shrinks to nanometre length scales, the curvature of the surface becomes significant on the

length scale of a polymer molecule. As depicted in figure 5(b), regions that were previously

less accessible to the polymer are now favorable. The number of polymer conformations per

unit bubble surface area are increased relative to a flat surface and the excess free energy of

the interface is ultimately lowered. Although the surface area of the bubble is also smaller,

which would tend to increase the surface tension, the excess free energy shrinks more rapidly
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so that the surface tension becomes lower than for the flat case. The lower surface tension

results in a smaller nucleation barrier and a higher nucleation rate.

The internal energy component of the surface tension is a secondary, less important, con-

tributor to the drop in surface tension with decreasing bubble radius. The same mechanism

as for the configurational entropy is found to contribute to the internal energy component

drop. Although polymers are discouraged energetically from entering the gas bubble region

as depicted in figure 5, some will inevitably venture in. This will occur more frequently for

flat surfaces than for curved ones since some conformations that result in bubble entry in

the flat case do not enter the bubble in the curved case. This means there will be a lower

internal energy per unit bubble surface area for smaller, more curved bubbles, which ulti-

mately results in a lower surface tension. Of course the internal energy per volume increases

for smaller bubbles, as observed in figure 2, where we see greater mixing of polymer and

gas for the smaller bubble system compared to the larger bubble system. The mechanism

described above moderates this increase and so contributes to a dropping surface tension.

From figure 4, one notices that the internal energy surface tension component drops more

sharply for radii below about 0.9Rg. This is due to another factor that starts affecting the

structure of the bubble. For these very smallest bubbles, the bubble walls start colliding

together, meaning there is no bulk region at all in the interior of the bubble. This increases

the mixing of the gas and polymer molecules and raises the internal energy of the system.

It turns out that the internal energy of the bulk regions increases more quickly due to this

merging of interfaces than the system as a whole, so the system internal energy density minus

the bulk internal energy density (the excess internal energy density) drops for the smallest

radii instead of increasing. This excess internal energy drop, even though divided by a

decreasing bubble surface area, causes the steeper decline of the internal energy component

with shrinking radius depicted in figure 4. Overall, the internal energy surface tension

component drops both because of the increased curvature of the interface which allows for

less mixing, in a relative sense, of gas and polymer near the interface, and, for smaller radii,

increased mixing of gas and polymer away from the interface (in the bulk region) when the

bubble interior starts to collapse.

The volume free energy density also contributes to the lower nucleation barrier. Figure

6 shows the negative of ∆̃FV (since the volume term is negative in the CNT formula) as a

function of bubble radius together with its thermodynamic components. The negative vol-

16



0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

4

6

R/R
g

di
m

en
si

on
le

ss
 v

ol
um

e 
fr

ee
 e

ne
rg

y
co

nt
rib

ut
io

n

 

 

volume free energy density
polymer translational entropy
solvent translational entropy
internal energy

FIG. 6: Contributions to the (negative) volume free energy density of various thermodynamic

components as indicated in the legend. For ease of comparison, all components have been shifted

by varying amounts to be zeroed at a comparatively large radius of approximately R = 2.5Rg.

ume free energy density drops (the magnitude of ∆̃FV increases) with decreasing radius and

so contributes to a lower nucleation barrier. From figure 6 we see that the polymer and gas

entropic contributions are responsible for this drop. This can be viewed as merely a volume

response to the surface mechanisms already described, namely, the increased curvature of the

interface and the collapse of the bubble interior which causes increased bulk mixing. From

figure 2 we see that a smaller radius bubble has more mixing of polymer and gas than does

a larger radius bubble. This means the internal energy per volume rises while the entropic

contributions drop (entropies increase) as the radius is decreased. This happens because the

extra conformational entropy and internal energy gained with increased interface curvature

changes the balance of energy and entropy as does, to a lesser extent, the extra bulk mixing

when the bubble walls collide.
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The internal energy contribution to the surface tension drop, due to both the curvature

effect and the increased deviation from bulk conditions resulting from a collapsing bubble,

was usually found to be a less important contributor to the failure of CNT than the polymer

configurational entropy curvature effect. The greatest internal energy contribution to the

surface tension drop was found for χN = 160, φs = 0.26 and α = 0.01, where we found

this effect approached the magnitude of the configurational entropy effect. One might sup-

pose that for higher segregations still, the internal energy contribution might become the

dominant factor. Real polymer foam systems would be expected to have lower values of α

than used here and higher χN values, so the internal energy mechanisms, especially due to

a collapsing bubble, should not be discounted until further numerical studies are possible.

Computational limitations prevent us from exploring such cases in this work. Previous work

by Lee and Flumerfelt predicted that increased mixing of polymer and gas would be the

primary cause of the failure of CNT for polymer foaming systems as opposed to curvature

effects [15]. However they weren’t able to examine the microscopic origins of these factors

since they assumed a perfectly sharp bubble interface and didn’t use a model containing

polymer degrees of freedom. Thus the mixing mechanism was, by construction, the only

candidate.

It is interesting to note that comparisons of CNT to other, non-polymeric, systems, show

that CNT fails for reasons related to the present system. There have been many recent

expositions of the failure of CNT, for example, references 28 (and references therein), 29–33,

that show CNT fails for small bubble or droplet sizes. In particular, density functional

studies reveal that it is the long range attractive portion of the particle interactions that

are responsible for the failure of CNT [19], 31 (and references therein). This is analogous to

the present conformational entropy effect in polymers since this non-local nature of macro-

molecules represents an effective longer range potential.

IV. CONCLUSIONS AND OUTLOOK

We have compared classical nucleation theory to self-consistent field theory using an iden-

tical model. For nanoscale bubbles, where the curvature of the bubble surface is comparable

to polymer molecular sizes, we found, in the reported example, that classical nucleation

theory is more than a third too large in its estimation of the critical radius, more than six
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times too large in its estimation of the nucleation barrier and more than five orders of mag-

nitude too small in its estimation of the nucleation rate. We found similar disagreements

for other parameter values. Given that polymer foaming is thought to be dominated by

heterogenous nucleation [17, 18] in part because CNT predicts a negligible rate for homoge-

nous nucleation, our SCFT results provide circumstantial evidence that there may be much

more homogenous nucleation taking place in polymers foams than previously thought. Our

results also suggest that heterogenous nucleation rates will be different than predicted by

some models [17, 18].

The main microscopic origin of the CNT error was the increased number of conformations

available to polymer molecules in the vicinity of a curved interface compared to a flat

interface. Related to this, mixing of polymer and fluid was also reduced, in a relative

sense, in the vicinity of a curved interface compared to a flat interface. Another mechanism

for the failure of CNT, found for very small bubbles, was increased bulk mixing due to

the disappearance of the bulk region in the interior of the bubble. While this effect is less

important than the curvature effect, different, experimentally appropriate, parameter choices

could change the relative importance. Although such parameter choices are computationally

inaccessible to us at present, choosing polymers that have a volume very much greater than

fluid molecules would justify the use of the ground state approximation [9, 10]. This could

both simplify the SCFT formalism and, perhaps, make accessible other choices of system

parameters.

For quantitative predictions, not only should longer polymers be used, but equation of

state effects should be included. Using equation of state effects in polymer SCFT surface

tension calculations has been discussed elsewhere [11, 12]. These equations of state methods

could be combined with the ground state approximation to allow for quantitative but sim-

ple models of nanocellular polymer foam nucleation. In particular, the Simha-Somcynsky

equation of state has been shown to be very effective for describing the behaviors of polymer-

CO2 mixtures [34]. Heterogenous nucleation could also be studied using SCFT techniques

borrowed from the study of nanocomposite materials [35].
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[33] S. Ghosh and S. K. Ghosh, J. Chem. Phys 134, 024502 (2011).

[34] M. M. Hasan, Y. G. Li, G. Li, C. B. Park, and P. Chen, J. Chem. Eng. Data 55, 48854895

(2010).

[35] M. W. Matsen and R. B. Thompson, Macromolecules 41, 1853 (2008).

21


