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ABSTRACT 

 

In biomedical engineering, the mechanical properties of biological tissues are commonly 

determined by using conventional methods such as tensile stretching, confined and unconfined 

compression, indentation and elastography. With the exception of elastography, most techniques 

are implemented on ex-vivo soft tissue samples. This study evaluated a newly developed 

technique that has the potential to measure the mechanical properties of soft tissues in their in-

vivo condition. This technique is based on the mechanics of internal spherical cavity expansion 

inside soft materials. Experimental, mathematical and numerical investigations were conducted.  

Experimentally, the pressure-cavity volume relationship was measured using two types of 

polyvinyl alcohol (PVA) hydrogels of different stiffnesses, namely Sample1 and Sample 2. In 

addition, unconfined compression tests were conducted to measure the stress-strain relationship 

of the two gels. Based on the cavity expansion test results, the measured pressure-volume data 

was translated into the stress-strain relationship using a mathematical model. The stiffness of the 

two gels was then compared to that determined by the unconfined compression technique. The 

resulting stiffness of the two techniques was then compared at overlapping range of strains, with 

the average percentage of difference being 8.46% for Sample1 and 5.36% for Sample 2.  A 

numerical model was developed to investigate the analytical solution of the new technique. This 

investigation was based on verifying the displacement predicted by the analytical solution.  
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The promising outcome of the technique encouraged extending this study to include 

bovine liver tissues. A tissue sample was extracted from a bovine liver and subjected to tensile 

loading to evaluate its stiffness. The result was a stiffness of 76.92 kPa. A second sample of the 

same bovine liver was evaluated using the spherical expansion technique which resulted in a 

stiffness of 87.94 kPa. 

 

Keywords: Young’s modulus; Spherical expansion; Unconfined compression; Finite element 

model; Evaluated stiffness; Radial displacement; Tensile test 
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Chapter 1 

Introduction 

 

1. 1. General  

Different methods have been proposed to measure the direct mechanical properties of soft 

tissues including, indentation, tensile and compression testing; these are in addition to the 

image-based technique of elastography. Tensile testing is a conventional technique used to 

evaluate the mechanical properties of ex-vivo soft tissue samples. Indentation and 

compression tests are used widely to evaluate the mechanical properties of soft tissues. 

Although both techniques are based on applying compressive force, only the indentation test 

can be applied on in-vivo soft tissues. When evaluating the stiffness of soft tissue using 

indentation, Poisson’s ratio has to be evaluated using a separate technique such as tensile or 

compressive testing.  

In this study, an experimental and analytical evaluation of a stretching technique 

developed by Al-Mayah (2011) based on the cavity expansion theory is presented. The 

cavity expansion theory is one of the most common theories in civil engineering, widely 

used to analyze geotechnical problems. Since 2000, this theory has been mastered and 

developed to be used in the analysis of different media that exhibit different responses; it is 

used in analyzing ballistic penetration problems of concrete, metals and geological targets. 

Using the cavity expansion theory in evaluating the properties of biological tissues is a 

pioneering solution which could help healthcare professionals to understand the 

characteristics of biological organs.  
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The technique has the potential to enable medical professionals to measure the 

mechanical properties of in-vivo and patient-specific soft tissues in order to improve the 

accuracy of biomechanical modeling for image-guided interventions and diagnoses. 

 

1. 2. Objectives  

The main goal of this study is to evaluate the potential of using the cavity expansion theory 

in measuring soft tissue elastic moduli. A comprehensive experimental and analytical 

investigation was conducted.  The new technique was evaluated using hydrogel and animal tissue 

samples, and the results were compared to the analytical and numerical modeling outcomes.   

The main objective was achieved through the following specific steps:  

- investigating, experimentally, the cavity expansion method using different 

hydrogels and biological tissues 

- comparing the results of the method with other conventional testing methods, 

namely, compression and tensile 

- conducting an imaging investigation using computed tomography (CT) to 

investigate the configuration of the cavity inside the soft materials; 

- developing analytical models to translate the pressure-volume data to the stress-

strain relationship 

- developing a finite element model for the cavity expansion method to provide an 

insight into the stress distribution inside the soft materials 
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1. 3. Thesis Arrangement 

      A thorough literature review is presented in Chapter 2. It addresses the background of 

manufacturing PVA hydrogels, applications of PVA hydrogels, behaviour of soft tissues, 

mechanical properties of soft tissues, and applications for the mechanical properties of soft 

tissues. Chapter 3 addresses the elastic solution of the spherical cavity expansion theory and the 

application of this theory in different aspects of engineering. Chapter 4 provides details about the 

experimental work including test setups, devices and instrumentations, test results, and a 

comparison of results to investigate the validity of the new proposed technique. In Chapter 5, 

further investigation is conducted using the finite element method (FEM) to examine the validity 

of the new technique. As the investigation exhibited positive outcomes, this study was extended 

(see Chapter 6) to include bovine liver tissues. Chapter 7 reports the research discussion, 

conclusions and recommendations.  
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Chapter 2 

Literature Review 

  

2. 1. Background and Significance 

         The mechanical properties of soft materials, such as hydrogels and soft tissues, play a 

significant role in many applications including medical and engineering.  In medical 

applications, the mechanical properties of soft tissues are the essential part of biomechanical 

modeling of human organs that has been expanding in its application in many cancer centers 

around the world to accurately locate the tumor for radiotherapy applications. Image-guided 

surgery and brachytherapy are other applications for biomechanical modeling. This chapter 

presents a review of the mechanical properties of hydrogels and soft tissues. The techniques of 

measuring the properties of these materials are also presented. 

2. 2. Hydrogels 

2. 2. 1 General 

       Hydrogels are water-swollen gels formed by polymer chains held together in networks by 

one or a combination of the following interactions: ionic forces, polymer crystallites, affinity 

interactions, hydrophobic interactions, hydrogen bonds, and covalent crosslinks. These networks 

are shown in Figure (2.1). 
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Fig (2.1) Ideal macromolecular network of hydrogels; multifunctional junctions networks; hydrogels with physical 

entanglements (Buddy et al. 2013). 

 

 

Different types of hydrogels have been developed based on their biomedical application, 

method of presentation, physical structure, and ionic charge. Some of these hydrogels are acrylic 

hydrogels, polyvinyl alcohol (PVA) hydrogels, polyethylene glycol (PEG) hydrogels, pH-

sensitive hydrogels, and pH-responsive complexation hydrogels.  

PVA hydrogels, an artificial polymer used widely in biomedical and tissue engineering 

fields, are the main focus of this study. This preference is mainly because of its biocompatibility, 

biodegradability, and hydrophilicity (Paradossi et al., 2003), especially in maintaining various 

tissues such as heart valves (Jiang et al., 2004), corneal implants (Vijayasekaran et al., 1998), 

and arterial phantoms (Chu and Rutt, 1997).  PVA hydrogels are water-soluble (Kumeta et al., 

2003). For PVA hydrogels to be feasible in the medical field, they must be crosslinked. 

Crosslinking is a curing process conducted to modify polymers to reach new and enhanced 

properties (Hassan and Peppas, 2000). Generally, there are two techniques to achieve 

crosslinking: 
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- Chemical crosslinking 

Chemical crosslinking is based on the modification of a PVA hydrogel by adding 

multifunctional crosslinking agents to its hydroxyl group. These agents include: dicarboxylic 

acids (Huang and Rhim, 1993), dialdehydes (Cha et al., 1993), dianhydrides (Gimenez et al. 

1996).  

 
Fig (2.2) Polymers crosslinking with multifunctional crosslinkers (Buddy et al. 2013). 

 

According to Kuhn and Balmer (1962), when a crosslinking agent is used, two types of 

crosslinking can be produced: intermolecular and intramolecular. Intermolecular is between 

molecules of the crosslinked polymer leading to a formation of gel due to significant increase in 

viscosity. Intramolecular occurs within a single molecule of the crosslinked polymer resulting in 

the volume shrinkage of polymer coils because of a decrease in viscosity.  Gebben and his 

colleagues measured the viscosity of different degrees of crosslinked PVA hydrogels (Gebben et 

al., 1985). Figure (2.3) shows that the uncrosslinked PVA hydrogel experienced a drop in 

viscosity as the temperature increased. This was attributed to an alteration of the molecules’ 

conformation as the temperature changed. When the PVA hydrogel was crosslinked, its 

flexibility was reduced and its molecules lost their ability to change their conformation. 
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Fig (2.3) Intrinsic viscosity of PVA vs temperature at different crosslinking degrees: 0%, 1.2%, 2.4%, and 4.5% 

(Gebben et al. 1985). 

 

In many applications, irradiation is used in the crosslinking process. Using electron 

beams or ɣ-rays, the irradiation process demonstrated its ability to enhance the properties of 

PVA polymers on a large commercial scale (Yoshii et al., 2007; Slamawi, 2010; Nikolic, 2007). 

Generally, the polymer interacts with the radiation and absorbs its energy which triggers 

different chemical reactions (Mishra et al., 2007). These reactions are based substantially on the 

chemical structure of the polymer. When a polymer interacts with radiation, two opposing trends 

occur; namely, crosslinking and degradation. They co-exist and compete with each other under 

radiation. 

Crosslinking of polymer molecules is an important phenomenon because it enhances the 

mechanical and thermal properties of the polymer. On the other hand, degradation is an 

undesirable outcome because it weakens the polymer. According to Cota and his colleagues, the 

predomination of either crosslinking or degradation  
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depends on the magnitude of oxygen existing in the polymer and the polymer’s capability 

to substitute the oxygen with radicals produced throughout the irradiation process (Cota et al. 

2007). 

- Physical crosslinking (Freeze-thaw cycles)  

Chemical crosslinking can cause toxic residue which makes the crosslinked polymer 

undesirable for pharmaceutical and biomedical applications. Therefore, the need for physical 

crosslinking of polymers is needed. In general, PVA aqueous solutions can form hydrogels if 

they are stored for long periods of time at room temperature. This hydrogel is considered very 

weak and inefficient for a broad scale of applications in which the mechanical properties of PVA 

are the main focus (Kenawy et al., 2013). An alternative to physically crosslinking PVA 

polymers is to apply cycles of freezing and thawing. Peppas (1975) pioneered the use of the 

freeze-thaw technique to crosslink PVA polymers. In his work, Peppas made crystalline PVA 

hydrogels by subjecting aqueous PVA solutions to freezing at -20 𝐶𝑜for 45 to 120 minutes and 

then thawing at room temperature for periods of up to 12 hours. Figure (2.4) shows the 

transmittance of light recorded as a function of thawing time. 

 
Fig (2.4) Transmittance of light through aqueous PVA solutions crosslinked by freezing for 45min, 60min, 75min, 

105min, 120min, and 150min, and then thawing at 23𝐶𝑜, vs thawing time (Peppas, 1975). 
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The properties of physically crosslinked PVA hydrogels can be modified by controlling 

the number of freeze-thaw cycles and the concentration of PVA. Gupta et al.  (2011) 

demonstrated that the degree of crystallinity, swelling, transparency, wettability, and the 

mechanical properties pf PVA hydrogels were strongly controlled by the number of freeze-thaw 

cycles. 

 

2. 2. 2. Mechanical Properties of PVA Hydrogels 

             The mechanical properties of hydrogels play a major role in their application. The 

investigation of the mechanical properties of PVA hydrogels to overcome the challenges related 

to the mechanical properties of soft tissues has been the main interest of many researchers.  

Different techniques have been used to characterize the mechanical properties of PVA 

hydrogels. The tensile test is one of the applied techniques used to investigate the mechanical 

properties of PVA hydrogels. This technique is based on stretching a test sample at a specific 

rate while observing the force necessary to maintain the constant rate of stretching. Figure (2.5) 

shows the tensile test results of hydrogel samples at different initial strains (Millon et al., 2006). 
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Fig (2.5) Stress-strain relationships of PVA hydrogel samples with different initial strains (0%, 25%, 50%, 75%, and 

100%) (Millon et al. 2006).  

   

 

 
 

Fig (2.6) Uniaxial tensile test to dog-bone shaped hydrogel sample (Liu, 2010). 

 

An unconfined compression test was used to measure the mechanical behaviour of PVA 

hydrogels (Lee et al. 2009). In this technique, PVA hydrogel samples were subjected to 

compressive forces between two plates. Applied forces and the resulting deformations were 

observed to derive the stress-strain relationship, as shown in Figure (2.7).  
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A confined compression technique was also applied where samples were confined to a 

chamber to prevent lateral deformation as the axial compressive load was applied (Behravesh et 

al., 2002). Indentation is another technique to evaluate the mechanical properties of hydrogels. 

Liu and Ju (2001) developed a novel indentation technique to characterize the viscoelastic 

properties of polymer films bi-axially and axisymmetrically, as shown in Figure (2.8). This 

technique is based on indenting a circumferentially fastened polymer membrane using a stainless 

steel ball of known weight and dimension. The corresponding deformation at the center of the 

membrane was observed to evaluate the mechanical properties of hydrogels in a non-destructive 

manner.  

 
Fig (2.7) Stress-strain relationship of hydrated and non-hydrated PVA hydrogels (Lee et al., 2009). 
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Fig (2.8) Ball indentation technique (Ahearne et al. 2005). 

 

 

2. 2. 3. Applications of the Mechanical Behaviour of PVA Hydrogels 

  In the biomedical engineering field, there is a need to build feasible replicas of many 

human tissues, each of which exhibits its own unique behaviour. Hydrogels showed a remarkable 

capability to match the behaviour of biological soft tissues when the preparation technique was 

controlled. Wan et al. (2002) showed that controlling the conditions of preparing PVA hydrogels 

using the freeze/thaw technique, led to behaviour close to the porcine aortic root. The mechanical 

behaviour of PVA-based membranes, in addition to their distinctive biocompatibility, makes 

them a great option in vascular grafting (a vascular graft [or vascular bypass] is a redirection of 

blood flow. Surgeons use vascular grafting when performing organ transplantations and in cases 

of schemia, as shown in figure (2.9).  
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Fig (2.9) Vascular grafting (W. L. Gore & Associates, Inc. 2011). 

 

Another application for PVA hydrogels is osteochondral defect repair. Bichara et al. 2014 

showed that strong PVA hydrogel-based materials can be an ideal option in cartilage tissue 

replacement. 

 

2. 3. Soft tissues 

2. 3. 1 General  

          Soft tissues are tissues that form the human body’s organs. These tissues are recognized 

for their unique mechanical properties and their relatively high flexibility. Soft tissues are 

considered complex structures. Their behaviour is based on the hierarchal structure of their 

elements such as collagen, elastin, and the hydrated matrix of proteoglycans. 

Both collagen and elastin are proteins which are the main elements of the extracellular 

matrix of soft tissues. Collagen is formed by a group of collagen fibrils linked to each other by 

covalent bounds. In many tissues, collagen is formed by a sophisticated network of collagen 

fibers immersed in a gelatin-like matrix of proteoglycans. Elastin exists as thin strands in soft 

tissues. 
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2. 3. 2 Mechanical Properties of Soft Tissues   

Soft tissues behave anisotropically because their fibers are formed in certain directions. 

In addition, they exhibit viscoelastic behaviour because of the lubrication offered by a matrix of 

heavily glycosylated proteins between collagen fibrils called Proteoglycans (Minns et al., 1973). 

The main characteristics of soft tissues are as follows:  

1. Nonlinearity: “The stress –strain relationship for most tissues is nonlinear” (Gao et al. 

1996). For example, the stress-strain behaviour of skin shows a typical J-shaped curve when 

tensile stress is applied. Figure (2.10) shows a schematic diagram of a typical (tensile) stress-

strain curve for skin. 

 
Fig (2.10) Typical (tensile) stress-strain curve for skin (Holzapfel 2000). 

 

The deformation of the skin goes through three main stages: 

Stage I:  In this stage, the collagen fibers are in a relaxed condition; they exist in their entangled 

form as no load or a small load is applied.  

 

http://en.wikipedia.org/wiki/Glycosylation
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Stage II: As the load increases, the collagen fibers straighten with the direction of the load. As 

the fibers start to prolong, they interact with the hydrated proteoglycan matrix. 

 

Stage III: At this stage, most of the collagen fibers are straight and the response of the collagen 

fibers is stiffer, resulting in a linear stress-strain relationship. As the load continues to increase 

beyond the ultimate tensile strength, the fibers start to break. 

 

 Like skin, arterial walls can deform largely in a nonlinear stress-strain relationship. 

However, if these arteries are treated with digestive enzymes to remove elastin from the tissue, 

they become less extensible. If arteries are treated with formic acid to remove collagen, the 

tissues will lose strength and deform under small stresses. Figure (2.11) shows tension-

elongation curves of fresh, formic acid-treated, and trypsin-treated arterial walls (Roach and 

Burton, 1957). 

 
Fig (2.11) Tension-elongation curves of fresh, formic acid-treated, and trypsin-treated arteria walls (Roach 

and Burton., 1957). 
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2. Inhomogeneity: Different soft tissue constituents have different chemical and physical 

characteristics. Therefore, these tissues behave as composite materials made up of constituents of 

different properties. For instance, tissues rich in elastin, collagen, and smooth muscle such as 

nuchal ligament, sole tendon, and intestinal smooth muscle have different tensile properties. The 

elastin-rich tissues have much less strength and much more flexibility than the collagen-rich 

tissues. The intestinal smooth muscle is much softer than the other two tissues and more 

viscoelastic as it has a wide hysteresis loop in its stress-strain relationship. Figure (2.12) shows 

the tensile properties of nuchal ligament, sole tendon, and intestinal smooth muscle (Hasagawa 

and Azuma, 1974). 

 
Fig (2.12) Tensile properties of elastin-rich canine nuchal ligament, collagen-rich sole tendon, and intestinal 

smooth muscle (Hasagawa and Azuma, 1974). 

 
 

3. Anisotropy:   “Almost all biological soft tissues are mechanically anisotropic” 

(Holzapfel and Ogden, 2003). This is mainly because of the content of collagen and elastin 

which are intrinsically anisotropic. For example, a tissue such as skin has different properties in 

different directions as shown in Figure (2.13), (Tong and Fung, 1976). 
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Fig (2.13) Tension-elongation relations of rabbit skin (Tong and Fung, 1976). 

 

4.  Viscoelasticity is the property of materials that exhibit both viscos and elastic characteristics 

when undergoing deformation. This property is exhibited by open hysteresis loops in the stress-

strain curves of most biological soft tissues such as in Figure (2.14). These loops are developed 

due to rapid relaxation of these tissues followed immediately by gradual relaxation as the stresses 

are released (Yamamoto et al., 1999). 

 
Fig (2.14) Relaxation curves of collagen fascicles and patellar tendons (Yamamoto et al., 1999). 
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5. Incompressibility: Most biological soft tissues are considered incompressible, mainly 

because they have a water content that exceeds 70% (Holzapfel and Ogden, 2003). 

Experimentally, this has been proven in arterial walls (Choung and Fung, 1984; Care et al., 

1968). However, the concept of incompressibility is not applicable in some soft tissues such 

as articular cartilage, because cartilage contains micro pores, allowing water to leave the 

pores when loads are applied (Woo et al., 1979). 

These properties are the main focus of much of the research into modelling soft tissues 

behaviour. Taber (1984) studied the nonlinear stress-strain relationship by observing the elastic 

behaviour of pigs’ eyeballs when compressed by rigid cylindrical indentures. Viidik (1966) 

studied the behaviour of the achilles tendon of rabbits and the anterior cruciate ligaments in 

trained and untrained animals subjected to tensile stresses. Fung (1981) developed a quasilinear 

viscoelastic theory of soft tissues. Troung (1971) measured both the attenuation coefficient and 

velocity of wave-propagation in striated muscles. Levinson (1987) proposed a linear transverse 

anisotropic model of frog sartorius samples by observing the velocity of ultrasound wave 

propagation in these samples. Parker et al. (1993) measured the linear and non-linear modulus of 

elasticity of human prostate samples. The impedance of tissues increase with increased 

frequencies. Von Gierke et al. (1952) and Oestreicher (1951) developed a theory to explain this 

increase by observing the behaviour of the human body surface as it undergoes mechanical 

vibration and sound fields. 
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2. 3. 3. Applications for the Mechanical Properties of Soft Tissues  

As evidenced by the outcome of the studies mentioned above, modelling of biological 

soft tissues has significant potential in many medical applications, including image guided 

radiotherapy and brachytherapy.  

Image guided therapy is a cancer treatment approach based on local tumor ablation. In 

this approach, tumors are destroyed by delivering a measured dose of radiation that elevates the 

temperature within the tumorous tissue above lethal levels. However, deformations associated 

with anatomical change, patients’ movement, and physiological functions can also harm the 

healthy tissues around the tumor. Therefore, deformable image registration is applied to process 

soft tissue deformation. Much work has been conducted to apply biomechanical modelling for 

the image registration of breast (Semani et al., 2001; Reiter et al., 2004; Zhang et al., 2007; Krol 

et al., 2006), head and neck (Al-Mayah et al., 2010), prostate (Wu et al., 2006; Yan et al., 1999), 

and lungs (Werner et al., 2009; Al-Mayah et al., 2009; Zhang et al., 2004). 

Brachytherapy is a radioactive therapy based on inserting a radiation source such as 

radioactive seeds, in or near the tumor. Temporal deformations during the insertion process may 

result in misplacement of the seeds. Therefore, much FEM work has been conducted to model 

deformation during the insertion process (Bharatha et al., 2001; Alterovitz et al., 2003; DiMaio 

and Salcudean, 2005; Goksel et al., 2006; McAnearney et al., 2010). 
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2. 3. 4.  Techniques of Measuring the Mechanical Properties of Soft Tissues: 

           As noted earlier in this thesis, there are many testing methods used to measure the 

biomechanical properties of soft tissues: tensile stretching, confined and unconfined 

compression, indentation and elastography. 

Tensile stretching is based on applying tensile stresses to ex-vivo tissues of known 

dimensions. The tension mechanisms generated by tissues such as muscles are active and 

passive. Active tension originates from the interaction of actin and myosin filaments. Passive 

tension is generated by the elongation of muscles beyond their resting length. The behaviour of 

the tested tissue depends on the rate of stress applied. The stress-strain curves of soft tissues have 

several regions. The Toe region is the initial elongation. The Elastic region is the non-linear 

region which follows the Toe region, also called the “transition zone”. If the applied stress 

increases, the curve will flatten to represent permanent damage of the tissue, this region is called 

the Plastic region. Figure (2.15) shows the stress-strain curve for connective tissue.  

 
Fig (2.15) Stress-strain curve for connective tissue (Tanaka and Eijden, 2003). 
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During normal activities, the strain in most ligaments and tendons is typically in the Toe 

or Transition regions (Carlstedt and Nordin, 1989). The slow application of tensile stress will 

create less passive tension on soft tissues. On the other hand, the fast application of tensile stress 

will result in a higher stiffness of soft tissue. Figure (2.16) shows typical force-elongation curves 

for slow and fast stretches for a muscle, tendon, and ligament (Knudson, 2006). 

 
Fig (2.16) Typical force-elongation curves for slow and fast stretches for a muscle, tendon, and 

ligament (Knudson 2006). 

  

 Confined and unconfined compression is based on applying direct compression stress on 

ex-vivo samples of known dimensions in order to measure their properties. This test is applied on 

many types of soft tissues including articular cartilage (Korhonen et al., 2002). Articular 

cartilage is an inhomogeneous material that shows non-linear and anisotropic mechanical 

properties in both tension and compression (Roth and Mow, 1980; Korhonen et al., 2001; 

Jurvelin et al., 1996). Much work has been conducted to simulate the mechanical behaviour of 

articular cartilage; elastic (Hayes et al., 1972), viscoelastic (Parson and Black, 1977), biphasic 

and triphasic (Mow et al., 1980; Lai et al., 1991), transversely isotropic biphasic (Cohen et al., 



 

22 
 

1998), poroviscoelastic (Mak., 1986), fibril reinforced poroelastic (Soulhat et al., 1999; Li et al., 

1999), and cone-wise linear elasticity (Soltz and Ateshian, 2000). 

 Indentation tests are widely used to study the mechanical properties of soft tissues such 

as subcutaneous tissues (Bader and Bowker, 1983; Reynolds and Lord, 1992; Mak et al., 1994; 

Vannah and Childress, 1996), articular cartilage (Sokoloff, 1966; Mow et al., 1989), lungs( Hajji 

et al., 1979), prostate (Carson et al., 2011), breast (Samani and Plewes, 2004). The test is based 

on observing the response of soft tissues when a localized pressure is applied by an indenter. The 

interaction between the tissues and the indenter depends on the dimensions of the indenter. 

Figure (2.17) shows that indenters with smaller diameters tend to cause larger vertical 

displacements because the stress they generate is higher (Ja’afreh et al., 2008). 

 
Fig (2.17) Vertical displacement cause by different indenter diameters (Ja’afreh et al., 2008). 

 

         Elastography is a state-of-the-art medical imaging process in which the mechanical 

properties of soft tissues are identified. In this process, cancerous tissues can be diagnosed by 



 

23 
 

mapping the elastic properties of the targeted tissues due to their harder and stiffer constitution 

when compared to the surrounding tissues. Ultrasound elastography and magnetic resonance 

elastography are the two major applications of elastography. Ultrasound elastography is based on 

the propagation of high frequency waves to quantitatively image the modulus of elasticity which 

exhibit significant variations between different biological tissues (Sarvazyan et al., 1995).  

Figure (2.18) shows the difference in stiffness between cancerous and healthy tissues.   Magnetic 

resonance elastography (MRE) is based on measuring the stiffness of soft tissues by introducing 

secondary waves (shear waves) and using the magnetic resonance imaging (MRI) technique to 

image their propagation. Mariappan and his colleagues developed a technique where the 

secondary waves are encoded into the phase of MRI images with the help of motion-encoding 

gradient pairs (Mariappan et al., 2010). 

 
Fig (2.18) An adenocarcinoma appears stiffer in the elasticity image and darker in the ultrasound image, (Gennisson 

et al., 2013). 

 
 

2. 4. Challenges Related to Measuring Biomechanical Properties of Soft Tissues 

Most of the biomechanical modeling techniques use ex-vivo mechanical properties to 

model in-vivo tissues. This is mainly related to the challenges associated with measuring in-vivo 

tissues. 
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The tests mentioned above are commonly used to measure parameters such as Young’s 

modulus (Stiffness, E), aggregate modulus (Ha), and Poisson ratio (ν). These parameters 

characterize the biomechanical properties of soft tissues. Young’s modulus is perhaps the most 

important parameter because it depends on the structure of soft tissues (Gao et al., 1996). 

Changes in the stiffness of soft tissues could be related to abnormal growth of soft tissues such as 

cancerous tumors. Despite the broad foundation of modelling elastic tissue parameters that exist 

today, there remain huge gaps in our knowledge of the elastic properties of diseased and normal 

tissue. One of these gaps is the lack of determining the in-vivo mechanical properties of soft 

tissues. 

It is a well-known fact that the biomechanical properties of soft tissues vary depending on 

how they are measured, i.e., in-vivo or in-vitro, in-situ or as an excised sample. The majority of 

the measured soft tissue parameters are based on ex-vivo samples. As these samples are 

dissected from their natural environment, they tend to provide substantially different parameters 

when tested due to a lack of the additional factors that contribute to their natural environment, 

such as blood circulation, temperature and surrounding constraints (Miller et al. 2005; Kerdok et 

al., 2006; Fung, 1993; Gefen and Margulies, 2004). In addition, ex-vivo soft tissue conditions are 

different because the tissue is exposed to different preservation conditions and undergoes 

different experimental conditions, such as time of tissue excision, temperature and hydration. As 

a result, laboratory work usually consists of testing a number of samples with a large standard 

deviation because of these variations.  
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The outcome of different testing methods can vary from method to method. Korhonen et 

al. (2002) showed that parameters such Young’s modulus varies based on the testing method. 

Table (2.1) Young’s modulus of humeral (n=9); patellar (n=8) and femoral (n=9) articular cartilages (Mean+/- SD, 

MPa) 

 
 

The values obtained from the compression tests differ slightly, while a broad gap exists 

between the results of indentation and compression testing. The main cause of these differences 

is believed to be the source of applied stresses. In compression testing, the load is applied on a 

larger surface area than in indentation testing, which results in higher applied stresses in the 

latter. 

 

 

 

 

 

 

 

 



 

26 
 

2. 5. Summary 

        This chapter introduced the mechanical behaviour of PVA hydrogels and soft tissues. PVA 

hydrogels showed the potential to overcome the challenges related to mimicking the mechanical 

behaviour of soft tissues given their unique distinguishing behaviours. Therefore, PVA hydrogels 

were used in numerous medical applications. For PVA hydrogels, the mechanical behaviour is 

usually characterized by common techniques, i.e., stretching, compression (unconfined and 

confined), and indentation. 

The mechanical properties of soft tissues play an essential role in developing models that 

simulate the behaviour of soft tissues. These models showed significant potentials in many 

medical applications such as image guided therapy and brachytherapy. The evaluation of soft 

tissues’ mechanical properties is usually applied through the common techniques in the 

biomedical engineering field. These techniques intersect with those used with PVA hydrogels in 

addition to elastography.  
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Chapter 3 

Cavity Expansion Technique  

 

         The developed technique of the cavity expansion method involves the expansion of a 

balloon inside a soft media in addition to the needle insertion. In this chapter, the mechanics of 

cavity expansion are presented as is its application in related fields. Needle insertion and other 

factors contributing to its performance are also presented. 

 

3. 1 Cavity Expansion: Theory and Applications 

 

3. 1. 1 General 

            Studying the stresses and displacements caused by the contraction and expansion of 

spherical or cylindrical cavities is the main scope of cavity expansion theory. Although the 

pioneering work that drew attention to the theory occurred between the 1940s and the 1960s, 

significant work has been conducted in the past three decades. These studies focused mainly on 

the development of primary solutions for cavity expansion and the application of cavity 

expansion theory to physical problems in various fields of engineering. There have been many 

solutions developed for the cavity expansion theory such as elastic analysis of multilayered 

sphere (Borisov, 2010), solutions in isotropic and anisotropic media (Yu, 2000), mathematical 

models for ductile materials (Bishop et al., 1945) and elastic plastic materials (Zhen et al., 2013), 

and the fractured response of materials that have large elastic deformations such as gelatin-like 

materials (Liu et al., 2014). In this latter study, the investigation used hydrogels that exhibited 

elastic behaviour.  
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3. 1. 2. Elastic Solution of Spherical Cavity Expansion: 

Consider a sphere with inner and outer radii of ri and ro, respectively, and subjected to an 

external pressure (𝑃0 ) and an internal pressure (𝑃𝑖), as shown in figure (3.1).The pressures are 

assumed to increase from zero to initiate cavity expansion from a zero radius. The main goal of 

this analysis is to understand the stresses and displacements of the sphere as the pressures are 

applied. 

 

Fig (3.1) Sphere under external and internal pressure (Borisov, 2010). 

The equilibrium equation for cavity expansion of sphere is: 

r 
𝑑𝜎𝑟

𝑑𝜎𝜃 
 + 2(𝜎𝑟 + 𝜎𝜃 )                      (3.1) 

where 𝜎𝑟  and  𝜎𝜃 are the radial and hoop stresses acting in the radial and tangential directions, 

respectively. Figure (3.2) shows the distribution of radial and tangential stresses. 
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Fig (3.2) Radial and hoop stress distribution (Shigley and Mischke, 1989). 

 

 

The boundary conditions that govern this equation are:  

                𝜎𝑟 = 𝑃𝑖  at r = 𝑟𝑖 , and 𝜎𝑟  = 𝑃𝑜 at r = 𝑟𝑜. 

These stresses generate strains in the radial and tangential directions, and are expressed as: 

            Ԑ𝑟 = −
𝑑𝑢
𝑑𝑟 

, and Ԑ𝜃 = −
𝑢
𝑟 
                 (3.2) 

Where 𝑢 is the displacement in the radial direction 

               Ԑ𝑟 = 
𝑑(𝑟 Ԑ𝜃) 

𝑑𝑟 
                         (3.3)                  

For elastic materials, the stress-strain relationship for spherical cavities is: 

                  Ԑ𝑟= 
1

𝐸
 [ 𝜎𝑟 − 2 𝜐 𝜎𝜃  ]                     (3.4) 
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                     Ԑ𝜃= 
1

𝐸
 [ −𝜐𝜎𝑟 + (1 −  𝜐 )𝜎𝜃]           (3.5)  

Where 𝐸 is the modulus of elasticity and 𝜐 is Poisson’s ratio.  

By combining equations (3.1), (3.3), (3.4), and (3.5), the result will be a differential equation in 

terms of radial stress: 

                                      𝜎𝑟 = A + 
𝐵

𝑟3                      (3.6) 

Where A and B are integration constants, the hoop stress can be evaluated by substituting (2.6) 

into (2.1). 

                                     𝜎𝜃 = 𝐴 - 
𝐵

2𝑟3                      (3.7) 

Since at r = 𝑟𝑖, 𝜎𝑟 = 𝑃𝑖  and r =𝑟𝑜,  𝜎𝑟  =𝑃𝑜.  

                                             A + 
𝐵

𝑟𝑖
3 = 𝑃𝑖                           (3.8) 

                                                A + 
𝐵

𝑟𝑜
3 = 𝑃𝑜                       (3.9) 

Solving for A and B: 

                                            A= 
 𝑃𝑖 𝑟𝑖

3− 𝑃𝑜𝑟𝑜
3 

𝑟𝑖
3−𝑟𝑜

3                   (3.10) 
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                                            B= 
 (𝑃𝑜−𝑃𝑖)  𝑟𝑖

3𝑟𝑜
3

𝑟𝑖
3−𝑟𝑜

3                 (3.11) 

Substituting A and B into equations (2.6) and (2.7) to reach the solution for the stresses 

               𝜎𝑟 = 
1

𝑟𝑖
3−𝑟𝑜

3 (𝑃𝑖  𝑟𝑖
3 − 𝑃𝑜𝑟𝑜

3 + 𝑟𝑖
3𝑟𝑜

3

𝑟3  (𝑃𝑜 − 𝑃𝑖) )         (3.12) 

                 𝜎𝜃=  
1

𝑟𝑖
3−𝑟𝑜

3 (𝑃𝑖  𝑟𝑖
3 − 𝑃𝑜𝑟𝑜

3 − 𝑟𝑖
3𝑟𝑜

3

2𝑟
3  (𝑃𝑜 − 𝑃𝑖) )    (3.13) 

Substituting 𝜎𝑟 and 𝜎𝜃 into (2.4) to determine the radial and tangential strains. 

               Ԑ𝑟 = 
   𝑃𝑖 𝑟𝑖

3− 𝑃𝑜𝑟𝑜
3

𝑟𝑖
3−𝑟𝑜

3  . 
1−2𝜐

𝐸
 + 

𝑟𝑖
3𝑟𝑜

3

𝑟3  . 
𝑃𝑜−𝑃𝑖

𝑟𝑖
3−𝑟𝑜

3 . 
1+𝜐

𝐸
   (3.14) 

               Ԑ𝜃 = 
   𝑃𝑖 𝑟𝑖

3− 𝑃𝑜𝑟𝑜
3

𝑟𝑖
3−𝑟𝑜

3  . 
1−2𝜐

𝐸
 - 

𝑟𝑖
3𝑟𝑜

3

𝑟3  . 
𝑃𝑜−𝑃𝑖

𝑟𝑖
3−𝑟𝑜

3 . 
1+𝜐

2𝐸
    (3.15) 

     By setting  𝑟𝑜  ∞, the new solution for stresses can be    

         Obtained:  

                                              𝜎𝑟 = 𝑃𝑜 + (𝑃𝑖 − 𝑃𝑜) (
𝑟𝑖

3

𝑟3 )                    (3.16) 

                                  𝜎𝜃 = 𝑃𝑜 + 
1

2
 (𝑃𝑖 − 𝑃𝑜) (

𝑟𝑖
3

𝑟3 )                         (3.17) 
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3. 2. Applications of Cavity Expansion 

 

3. 2. 1. Ballistic Penetration 

In the field of ballistic penetration, cavity expansion and penetration are the two main 

areas of research. Extensive research work has been conducted in penetration problems such as 

(Hunter and Crozier, 1968; Bishop et al., 1945; Chadwick, 1959).  These researchers tried to 

derive models to determine the wall pressure on cylindrical or spherical cavity expansion. 

Forrestal (1985) developed the elastic-cracked model for cavity expansion by studying the 

penetration into geological targets such as porous rocks. Luk et al. (1991) developed the dynamic 

spherical cavity expansion model in which the effects of strain hardening were taken into 

account. There is also a comprehensive study conducted by Satapathy (1997) on cavity 

expansion models for brittle and ductile materials.  In ballistic tests, gelatin is used as a substitute 

for the human body to evaluate penetration and impact trauma. Liu et al. (2014) developed a 

cavity expansion model for gelatin-like materials. The solution was based on the assumption that 

there is a fractured layer around the cavity wall as shown in figure (3.3).  

 
Fig (3.3) Schematic of the elastic and fractured response around a spherical cavity (Liu et al., 2014). 
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The model is used to estimate the work needed to open a unit volume of the cross-layered 

cavity. The model’s prediction is then compared with experiments of gelatin blocks penetrated 

by various shaped fragments. The experiments are shown in   figure (3.4). 

 

Fig (3.4) Typical photos from high-speed videos recording the temporary cavity caused by different types of 

projectiles (Liu et al., 2014). 

 

 

3. 2. 2. Geomechanics 

          Cavity expansion theory has been commonly used in the field of geomechanics, especially 

in in-situ soil testing, pile foundation, and pipe bursting.  

- Pile foundation:  

Pile foundations have two mechanisms to transfer loads from upper structural systems to 

different layers of soils and rocks. Capacity is based on the end bearing (point bearing) and the 

friction along the embedded shaft. Shaft capacity is the amount of load being resisted by the 

pile’s shaft; it is based on the friction mechanism between the pile’s shaft and the surrounding 

soil. End bearing capacity, on the other hand, is the amount of load transferred from the pile to 

the soil from the lower end of the pile. Predicting end bearing capacity is considered one of the 

geotechnical engineering challenges because of the many factors such as soil compressibility, 
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shear stiffness, strength, and the angle tapering of the pile, that need to be taken into account. As 

a consequence, many researchers have tried to model the behaviour of piles such as Baligh 

(1985) who developed the strain path method in an attempt to predict the behaviour of pile 

foundations. Similarly, other researchers focused on developing solutions to predict the end 

bearing capacity of driven piles. Yasufuku and colleagues used spherical cavity expansion to 

derive an evaluation technique for the end bearing capacity in straight cylindrical piles 

(Yasufuku et al., 1995, Yasufuku et al., 2001). Manandhar and Yasufuku (2012) used spherical 

cavity expansion theory to evaluate the end bearing capacity of tapered piles. 

- Pipe Bursting: 

Pipe bursting is a method of replacing pipes to enlarge the flow diameter. In this operation, a 

new pipe is connected to a bursting head that goes into the original, smaller-in-size pipe as 

shown in Figure (3.5).  

 
Fig (3.5) The pipe bursting operation layout (www.plasticpipe.org). 

 

This operation is a main focus of research because of the risks associated with its 

application. The movement of the bursting head generates subsurface ground movement and 

outward displacement in a region called the plastic zone that affects underground structures and 

utilities. This zone is controlled by the initial cavity radius, the existing soil condition, and the 

expansion ratio. As the soil reaches its yield stress at the plastic zone, a large deformation takes 
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place which damages neighboring utilities. Therefore, the extension of the plastic zone from the 

new pipe is considered one of the major concerns to fulfill safety requirements of utilities and 

subsurface structures. There has been much work done to evaluate the geometry and extension of 

the plastic zone. O’Rouke (1985) proposed a solution that estimates the extension of the plastic 

zone based on soil stiffness and cavity expansion. Yu and Houlsby (1991) used the cavity 

expansion theory to develop a solution to predict ground displacements, Fernando and Moore 

(2002) investigated their work by conducting a comparison using measures from Atalah et al., 

(1997) who used the cavity expansion theory to predict the extension of the soil plastic zone. 

3. 3.  Needle Insertion Mechanics 

         In this research, volumes of water are injected into the test samples. These volumes will 

generate internal stresses and deformations which are the main components needed to measure 

the mechanical properties of the samples. This process is done by attaching a balloon to a 

medical needle and then injecting the balloon into the samples in order to deliver specific 

volumes of water. Since the balloon is inserted into test samples using a medical needle, the 

mechanics of needle insertion will be highlighted in this chapter. 

In medical fields, medical needles are used to access tissue structures in a variety of 

applications, such as, injecting specific dosages of drugs, delivering radioactive treatment to 

tumor sites, especially in cases of prostate cancer, and to remove samples for diagnostic 

examination. The insertion of a needle into biological tissue creates a deformation of the tissue 

followed by its sudden rupture. This rupture occurs because of the formation and propagation of 

uncontrolled cracks inside the tissue. Figure (3.6) shows the formation mechanism of an 
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uncontrolled crack. Strain energy is stored during the deformation, but the formation of initial 

cracks releases this energy which causes the cracks to extend.  

 

Fig (3.6) Crack formation starts with a micro crack at the needle tip of the original area A; s the applied force 𝐹𝑛 

increases, the micro-crack extends to an increase of dA. 𝑊𝑐 is the work applied by the needle, 

                   Mahvash and Dupont (2010). 

 

It is known that as the motion velocity of the needle insertion increases, less deformation 

occurs during the penetration process. This effect was studied by Brett et al. (1997) and Hing et 

al. (2007). Brett et al. (1997) found that the cutting force profile of a needle in porcine samples 

and cadavers did not change with insertion velocity, but the maximum force decreased as the 

insertion velocity increased. Moreover, Hing et al. (2007) observed a decrease in the average 

needle penetration force in liver samples as the insertion velocity increased. Mahvash and 

Dupont (2010) confirmed the same response when the test results of porcine cardiac tissue 

agreed with the analytical prediction of their fracture model. In their work, the insertion process 

was modeled based on four main stages shown in Figure (3.7).  
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Fig (3.7) Force-displacement curve for needle insertion into porcine cardiac tissue, Mahvash and Dupont (2010).   

 

The needle insertion force-displacement relationship can be divided into four stages. 0 to 

1, known as deformation; 1 to 2, known as rupture, where the crack is formed and starts to 

propagate; 2 to 3, known as cutting stage, where the crack breaks through in an organized 

manner as the needle moves forward; 3 to 4, known as unloading deformation, where another 

displacement takes place as the needle ceases its forward movement and begins to go backward.    

The process of delivering volumes of water and how they are related to measuring the 

mechanical properties of the samples will be discussed in details in the next chapters. 

 

Note: Sign convention: This study adopts the conventional sign notation generally used in 

geomechanics wherein compressive pressures and stresses are considered positive.  
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3. 4. Summary 

          This chapter addressed the theoretical aspect of the cavity expansion technique.  For half a 

century, the cavity expansion theory was used to solve a variety of engineering problems. It has 

been implemented to provide analytical solutions in many different media and for various 

material behaviours. This study adopts the elastic solution of spherical cavity expansion to 

evaluate the mechanical behaviour of soft materials. This theory is used in many fields of 

engineering including ballistic penetration and geomechanics. 

The cavity expansion technique is based on developing an expanding cavity within soft 

materials. This process is achieved through injecting an expanding sphere using a medical 

needle. This chapter addressed needle insertion mechanics, which can be described as the sudden 

rupture which occurs due to the propagation of uncontrolled cracks. These cracks are generated 

as a result of deformation when the needle is applied to soft tissue. 
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Chapter 4  

Experimental Work on Polyvinyl Alcohol Hydrogels 

 

A new testing method is used to evaluate the stiffness of PVA hydrogel samples. To 

check the validity of the new techniques’ results, the results were compared with the results from 

a conventional test method used to evaluate the mechanical properties of the hydrogel samples 

known as unconfined compression test. The unconfined compression test is based on applying a 

uniaxial compression load to the test samples without providing side supports against the lateral 

displacement. The new proposed method is based on creating a spherical cavity within the 

hydrogels by applying uniform stresses from a volume-controlled region inside the test samples. 

In this chapter, the procedures of testing the PVA samples by unconfined compression 

test and the new spherical cavity expansion method are presented, in addition to X-ray imaging 

works. 

4.1. Test Program 

      Using hydrogel samples, two types of experimental tests were conducted, namely: (a) 

unconfined compression test, and (b) spherical expansion test. X-ray computed tomography (CT) 

imaging was performed to investigate the internal expansion of the spherical cavity.  

In the unconfined compression test, as uniaxial load was applied, both vertical and lateral 

displacements were monitored. To evaluate Poisson’s ratios, the maximum lateral displacements 

at the end of the test were observed and used to evaluate the lateral strains.  
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  In the spherical expansion test, stresses were applied from a controlled region from 

within the hydrogel samples. These stresses were generated by applying various cavity volumes 

of water inside the hydrogel samples. The stiffness of the samples was then evaluated based on 

the applied volumes of water and corresponding applied stresses. 

4. 2. PVA Hydrogel Samples 

           In this study, the new proposed method is based on an assumption that the PVA hydrogel 

samples are homogeneous isotropic linear elastic materials. Knowing the PVA to water ratio, 

both samples were physically cross-linked by a single freeze and thaw cycle (FTC). Table (4.1) 

shows the characteristics of the samples. The samples are shown in figure (4.1).  

Table (4.1) Characteristics of PVA samples.  

 PVA/ Water (%) # of FTC Height (mm) Diameter (mm) 

Sample1 12 1 46 33.5 

Sample2 14 1 47.5 35 

 
 

 
Fig (4.1) PVA hydrogels samples    
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4. 3. Unconfined Compression Test 

4. 3. 1. Test Setup  

To characterize the mechanical behaviour of the hydrogel samples, uniaxial unconfined 

compression test of the samples was performed between two flat plates. The samples were 

loaded at a rate of 10mm/min using an Instron loading machine (model 4465; Canton, MA, 

USA). Figure (4.2) shows the apparatus used in the unconfined compression test. A linear 

variable differential transformer (LVDT) and load cell were used to measure displacement and 

load. The load-displacement relationship was recorded during the test using a data acquisition 

system. Figure (4.3) shows the application of compression loads on a hydrogel sample. A digital 

vernier caliper was used to measure the transverse (lateral) deformation at the maximum applied 

vertical displacement. Sample1 was uniaxially deformed with a vertical displacement of 17mm. 

Sample 2 was deformed with a vertical displacement of 12mm.  

 
Fig (4.2) Instron (model 4465; Canton, MA, USA); the apparatus used in the unconfined 

compression test. 
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Fig (4.3) PVA hydrogel sample mounted between two flat plates during unconfined compression test. 

 

4. 3. 2 Results  

 The stress-strain relationship was established for both samples using measured load and 

displacement data, as shown in figure (4.4). As expected for hydrogel, a nonlinear relationship 

between stress and strain was observed. Therefore, the Young’s modulus was measured at 

different strain levels.  

 For Sample 1, Young’s modulus was calculated at 15%, 25%, and 30% strain. An 

assumption was made that the average of tangents of 15%-25%, 20%-30%, and 25%-35% from 

stress-strain data were equal to 20%, 25%, and 30% strain, respectively. Following the same 

trend, the average of tangents of 10%-20%, 15%-25%, and 18%-25% from stress-strain data of 

Sample 2 were assumed to be equal to 15%, 20%, and 22% strain, respectively.  
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Fig (4.4) stress-strain relationship for Sample 1 and Sample 2.  

 Transverse diameters of Sample 1 and Sample 2 at maximum applied loads were 

39.04mm and 39.2mm, respectively. Poisson’s ratio was then evaluated as the ratio of transverse 

strain to axial strain. Table (4.2) shows the stiffness and Poisson’s ratio for each sample.  

Table (4.2) Stiffness at different points of stress-strain curves, and Poisson’s ratio for samples (1) and (2). 

  

  Strain% 

 

Stiffness  

(KPa) 

Poisson’s ratio 

 

Sample1 

20% 224.5  

 

0.46 

25% 235.08 

30% 306.67 

 

Sample2 

15% 299.53  

 

0.46 

20% 351.68 

22% 379.35 
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4. 4 Spherical Expansion Test 

 

4. 4. 1 Test Setup 

       A prototype was constructed to apply the required cavity volumes. The prototype 

consisted of a low durometer urethane balloon with a radius of 5 mm manufactured by Vention 

Medical Inc, medical needle (0.7mm x 40mm, BD Precision GlideTM), syringe (3ml), syringe 

pump (Cole-Parmer Instrument Co. Model 75900-00, USA), and a digital pressure gauge 

(Ashcroft Inc. Model DG25, USA). 

  The needle was machined to provide an opening which was later used to provide 

various volumes of water. The balloon was slid onto the needle as shown in figure (4.5) and then 

epoxy glue was applied to securely attach the balloon to the needle at both open sides of the 

balloon. The sharp open head of the needle was blocked using epoxy to limit the water flow to 

the balloon through the side opening on the needle. The system is assembled as shown in Figure 

(4.6). 

 
Fig (4.5) Low durometer balloon assembled with the needle. 
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Fig (4.6) Spherical expansion system. 

 

 

 

4. 4. 2 Results 

 

  The test is based on inserting the needle inside the samples, then using the syringe 

pump to control the volumes of water injected. The injected water flows into the balloon from 

the side holes as the needle’s head was sealed using epoxy glue. As the injected water volume 

increases, the pressure for expanding the balloon increases. Table (4.3) lists the applied volumes 

of water and the consequent applied pressures for Samples (1) and (2). 
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Table (4.3) Applied water volumes and consequent applied pressures for samples (1) & (2) 

 

 

4. 4. 3. Mathematical Model Analysis 

  The pressure vs volume change relationship is an efficient way for the mechanical 

characterization of material subjected to volumetric changes. This relationship has been used in 

finite element models as the required input for soft tissue properties. However, the raw data can 

be used to find the conventional stress-strain relationship. 

  The calculation of the strain (such as radial strain) is based on the volumetric strain. 

The volumetric strain can be defined as the ratio of the change in volume (𝛥𝑣) to the volume of 

the affected zone (𝑉). The first is known as the injected volume of water with increasing 

increments of 100ul. The second is assumed to be a spherical volume with a radius (𝑟𝑙𝑖𝑚). This 

radius represents the radius of each hydrogel sample. This assumption was based on an 

investigation conducted using equation (3.16) to verify the limit of the balloon expansion effect 

at each applied volume. The outcome of this investigation is shown in figures (4.7a and b), 

Sample1 Sample2 

Applied Volumes 

(ul) 

 

Consequent applied pressure 

(kPa) 

Consequent applied pressure 

(kPa) 

523.6 

7 

24.95 28.47 

623.6 31.09 36.16 

723.6 37.36 42.33 

823.6 44.12 49.98 

923.6 51.22 58.19 

1023.6 58.95 66.74 

1123.6 67.01 75.84 

1223.6 75.42 85.42 

1323.6 84.59 95.49 

1423.6 94.38 106.11 

1523.6 104.8 117.34 

1623.6 115.9 128.93 

1723.6 125.96 141.13 

1823.6 135.82 - 

1923.6 142.72 - 



 

47 
 

which shows that the effect of applied pressure significantly decreases at the edge of the 

hydrogel samples. 

 
 (a) 

 
 

 
(b) 

Fig (4.7) Effect of applied pressure from balloon-hydrogel contact surface to the edge of the hydrogel a) Sample 1 

and b) Sample 2. 
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  According to the boundary conditions of the mathematical model, the stress at the 

contact surface between the hydrogel and the balloon is the same as the applied pressure; this 

stress decreases as the distance from the balloon to the gel increases. For example, when a water 

volume of 524ul is injected, the stress at the outer surface of Sample 1 and Sample 2 were 

0.664E-3 MPa and 0.66E-3 MPa, respectively. These stresses represent about 2.65% and 2.3% of 

the original applied stresses; therefore, 𝑟𝑙𝑖𝑚 was taken as the samples’ radius (16.75mm for 

Sample 1, and 17.5mm for Sample 2). The volumetric strain was then calculated at each applied 

volume of water. For each applied volume, the bulk modulus (K) and Young’s modulus were 

calculated. The first was calculated as the ratio of the consequent applied stress to the volumetric 

strain as shown in equation (4.1): 

 

                 K =  
𝑃𝑖

Ԑ𝑣
                                  (4.1) 

 

Where: 

Ԑ𝑣: Volumetric strain (the ratio between the volume of the balloon at each injected volume of 

water to the volume of the affected region (V)). 
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Young’s modulus is then calculated from equation (4.2): 

 

                            K =  
E

3(1−2υ)
                                         (4.2) 

υ : is the Poisson’s ratio evaluated using the unconfined pressure test.  

  The radial and hoop stresses were calculated using equations 3.12 and 3.13, 

respectively. The radial strain is calculated using equation (3.4). Tables (4.4) and (4.5) include 

the volumetric strain, bulk modulus, Young’s modulus, and radial strain for each applied volume 

of water into samples (1) and (2) at the contact surface between the hydrogel and the balloon. 

Table (4.4) Volumetric strain, bulk modulus, young’s modulus, and radial strain for Sample 1. 

Applied 
volume (ul) 

Volumetric 
strain Bulk modulus (MPa) E (kPa) Radial strain (Ԑr)  

523.6 0.0169 1.47 256.6 0.1660 

623.6 0.0202 1.54 268.5 0.1987 

723.6 0.0234 1.59 278.1 0.2318 

823.6 0.0266 1.65 288.5 0.2651 

923.6 0.0299 1.71 298.6 0.2988 

1023.6 0.0331 1.78 310.1 0.3329 

1123.6 0.0363 1.84 321.1 0.3672 

1223.6 0.0396 1.90 331.9 0.4020 

1323.6 0.0428 1.97 344.1 0.4371 

1423.6 0.0461 2.04 357.0 0.4726 

1523.6 0.0493 2.12 370.4 0.5084 

1623.6 0.0525 2.20 384.4 0.5446 

1723.6 0.0558 2.26 393.5 0.5812 

1823.6 0.0590 2.3 401.0 0.6182 

1923.6 0.0623 2.37 413.5 0.6556 
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Table (4.5) Volumetric strain, bulk modulus, Young’s modulus, and radial strain for Sample 2 

Applied 
volume (ul) 

Volumetric 
strain Bulk modulus (MPa) E (KPa) Radial strain (Ԑr)  

523.6 0.0233 1.22 314.8 0.1347 

623.6 0.0277 1.26 326.4 0.1611 

723.6 0.0322 1.31 338.6 0.1878 

823.6 0.0367 1.36 351.3 0.2147 

923.6 0.0411 1.41 364.7 0.2418 

1023.6 0.0456 1.46 377.4 0.2692 

1123.6 0.0500 1.51 390.7 0.2968 

1223.6 0.0545 1.57 404.1 0.3246 

1323.6 0.0589 1.62 417.6 0.3527 

1423.6 0.0634 1.67 431.4 0.3811 

1523.6 0.0679 1.73 445.8 0.4097 

1623.6 0.0723 1.78 459.7 0.4386 

1723.6 0.0768 1.84 474.0 0.4677 

 

  For further investigation of the effect of applied stresses on the hydrogel samples, 

arbitrary zones were chosen at 2mm, 3mm, and 5mm from the contact surface between the 

balloon and the hydrogel. Figures (4.8a, b and c) show the relationship between the consequent 

applied stress and the radial strain at 2mm from the contact surface, 3mm from the contact 

surface, and 5mm from the contact surface for samples (1) and (2).  It is clearly observed that 

Sample 1 showed a softer behaviour when compared with Sample 2 which agreed with the data 

obtained from the unconfined compression test. 
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(a) 

 
(b) 

 
(c) 

Fig (4.8) Stress-radial strain relationship of spherical expansion test for samples (1) & (2), at a) 2mm, b) 3mm and c) 

5mm distances from the balloon-hydrogel interface. 
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4. 5. Comparison Between Unconfined Pressure and Cavity Expansion Results 

  A comparison was made between the results obtained from the unconfined compression 

test and the cavity expansion method. Figures (4.9) and (4.10) show the comparison between the 

stress-strain relationship from the unconfined compression test and stress-radial strain 

relationships from the spherical expansion test at the previously mentioned zones for samples (1) 

and (2). As some medical professionals prefer to use the modulus of elasticity in their work for 

its simplicity, the Young’s modulus was calculated and compared using the stress-strain 

relationships. Table (4.6) shows values of stiffness for both methods at the previously mentioned 

strains.  

  Linear interpolation was used to evaluate the stiffness from the proposed method at 

strains that match the nominal strains from the unconfined compression test. 

 

Table (4.6) Comparison between E values of unconfined compression test and spherical expansion test. 

 Strain % 

 

 

Unconfined compression 

test. 

E (KPa) 

Spherical expansion 

test. 

  E (KPa) 

Deference 

ratio (%)  

 

Sample1 

20% 224.5 236 

 

 

5.12 

25% 235.08 248.7 5.79 

30% 306.67 262.4 14.43 

 

Sample2 

15% 299.53 321.38 

 

 

7.29 

20% 351.68 344.35 2.08 

22% 379.35 353.9 6.7 
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(a) 

 

 
(b) 

 

 
(c) 

Fig (4.9) Comparison between stress-strain relationships of unconfined compression test and spherical expansion 

test of Sample1 at a) 2mm, b) 3mm and c) 5mm from the balloon-hydrogel interface. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

Fig (4.10) Comparison between stress-strain relationships of unconfined compression test and spherical expansion 

test of Sample2 at a) 2mm, b) 3mm and c) 5mm from the balloon-hydrogel interface. 
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  From Table (4.6) and Figures (4.9) and (4.10), the stiffness values obtained from the 

cavity expansion technique showed a slight difference in the stiffness obtained from the 

unconfined compression test. However, at 30% strain in Sample 1, the difference ratio was the 

highest. This can be attributed to the nature of the PVA hydrogels’ behaviour under unconfined 

compression testing. As it will be shown in chapter 7, the J-shaped stress-strain relationship 

exhibited by the unconfined compression test showed a noteworthy curvature at 30% strain when 

compared with the stress-strain relationship obtained from the cavity expansion test. 

 

4. 6. X-ray Imaging 

           To verify the response of the balloon inside the hydrogel samples, GE X-ray inspection 

system (v/tome/x s 240, Germany) was used. Figure (4.11) shows how the samples were 

installed inside the X-ray system. Both air and water injections were investigated. First, the 

needle was inserted into the hydrogel samples and the samples were then injected with 3ml of 

air, as shown in Figure (4.12). It was noticed that air compressibility resulted in generating 

random shapes of expansion which affected the precision of the mathematical solution. 

Therefore, an incompressible fluid, such as water was tried in the second imaging process. 
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Fig (4.11) Hydrogel sample injected with water and subjected to beams of X-ray to create 3-D images of the cavity 

expansion. 

 
Fig (4.12) 3ml of air injected inside hydrogel samples. 
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It was obvious in the collected images that water exhibited a more spherically uniform 

expansion as shown in Figure (4.13). As such, water was used for the rest of the testing 

procedure of the cavity expansion method. Notwithstanding, the images were not clear. This is 

mainly due to the fact that the main component of the hydrogel samples is water. In X-ray 

imaging, when X-ray beams exit an object, they contain an image of the object formed by the 

variation in exposure to these beams. This variation occurs as a result of attenuation when the X-

ray beam passes through different parts of the object. Since samples (1) and (2) were made of 

PVA/water ratios of 12% and 14%, respectively, and water was used to create cavity voids, the 

X-ray system was not able to clearly identify the applied water void inside the hydrogel samples. 

 
Fig (4.13) X-ray image of balloon filled with water inside a hydrogel sample. 
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To enhance the quality of the images, a contrast agent was used. Contrast agents are 

materials used to increase the contrast of an object’s components when subjected to X-ray 

beams. X-ray attenuation-based contrast agents are the most common, especially in medical 

imaging. In this type of contrast agent, iodine and barium are widely used to enhance X-ray 

based imaging.  

Iodine is a chemical element with an atomic number of 53. As an element with a 

relatively high atomic number, iodine has the potential to efficiently absorb X-ray beams which 

makes it a very good option as a contrast agent. The method adopted to make a contrast agent 

was based on dissolving small parts of iodine into distilled water or alcohol. However, iodine 

solubility in water is considered relatively low, so that we redirected our interest towards iodide. 

Iodide is the ion state of iodine. Ionic compounds dissolve in polar solvents such as water. 

Therefore, we used sodium iodide (Nal) which is a salt of iodide and sodium. A solution was 

made by dissolving sodium iodide into water with a concentration of 1.5g/ml. Figure (4.14) 

shows a cavity created inside a hydrogel sample using a sodium iodide solution. 
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Fig (4.14) X-ray image of the balloon injected with a sodium iodide solution inside a hydrogel sample 

 

It can be noticed from the top view that the expansion of the balloon inside the hydrogel 

is more uniform, unlike when air was injected. This difference can be attributed to the 

intermolecular distance between air particles. On a molecular level, this distance is large in 

gases, like air, which allow them to expand and occupy any space available, or compress when 

subjected to applied pressures. On the other hand, the intermolecular distance between particles 

of liquids, or water in our case, is less which made them less compressible. The molecular 

property of liquids, made water an acceptable option as a source of applied internal pressure.     
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4. 7. Conclusions 

1. Two hydrogel samples with different PVA water ratios were tested using the unconfined 

compression and cavity expansion methods. 

 2. The Young’s modulus for each sample was measured at different strain levels. As expected, 

the Young’s modulus increased with strain in both samples to the nonlinear elasticity nature of 

the gel.  

3.  A good agreement between Young’s moduli at different stress levels using the two testing 

methods was seen.  

4.  Using X-ray CT imaging, the injection of water into the balloon resulted in a more spherical 

cavity formation than that formed when injecting air. This was attributed to the incompressibility 

nature of water.    
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Chapter 5 

Finite Element Study 

 

          The feasibility of the mathematical model presented in Chapter 3 can be examined using 

the finite element model. It has been demonstrated that the behaviour of soft tissues radically 

change when dissociated from their environment (Ottensmeyer et al., 2004). In this research, the 

new proposed method is believed to pioneer a new testing technique that will allow surgeons to 

probe and anticipate the mechanical response of soft tissues, in vivo; therefore, finite element 

models were developed to investigate the validity of the mathematical model. A comparison will 

be made between the values of radial displacement calculated by both the mathematical and 

finite element models. 

5.1. Finite Element Model 

5. 1. 1. Model Configuration 

 An axisymmetric finite element model was constructed using ABAQUS/CAE (version 

6.12-3) to investigate the validity of the mathematical solution. Investigation criterion was based 

on examining the displacements anticipated by the mathematical model at each applied volume 

of water for each hydrogel sample. As the elastic moduli were determined from experimental 

work, the values of Young’s moduli obtained from the spherical expansion test were used in the 

finite element model. The model is a rectangular shell with dimensions of 35mm by 47mm with 

an empty opening at the neutral axis of 5mm in radius. An arch shell of 0.2mm in thickness was 

constructed to occupy the arch vacancy to represent the balloon. The model was then discretized 
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by four-node bilinear elements (CAX4) with the 0.5 x 0.5mm2grid density as shown in Figure 

(5.1).  

 

Fig (5.1) An axisymmetric finite element body constructed on ABAQUS to simulate the combination of the 

hydrogel and the balloon. 

 The opening was created as the size of the balloon radius. The size of the balloon limits 

the minimum spherical form of the balloon to 524mm3.  Smaller volumes of injected water 

would result in non-spherical balloon inflations which were not addressed in the analytical 

solution presented in Chapter 4. 
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5. 1. 2. Material Properties 

  The material behaviour of the hydrogel was defined by the mathematical model 

(isotropic, elastic material). The balloon behaviour was defined as hyperelastic. A cavity 

expansion test was conducted on the balloon while it was free, with the test data analyzed and 

used as a source to compute the strain energy. These data are series of applied stresses and radial 

strains presented in Table (5.1). 

Table (5.1) Stress-strain relationship of the test balloon. 

Applied stress (MPa) Radial strain. 

0.0055 0.06 

0.00979 0.113 

0.0142 0.1628 

0.0188 0.2081 

0.0235 0.25 

0.0282 0.289 

0.033 0.326 

0.0377 0.362 

0.0424 0.395 

0.047 0.427 

0.051 0.457 

0.0515 0.487 

 

 The radial strain was evaluated from the volumetric strain of the balloon. Since the 

original balloon volume is 524ul, and the injection increment was 100ul, the volumetric strain 
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was evaluated as the ratio of the change in volume (∆V) to the original volume (V). The radial 

strain was then calculated using equation (5.1) 

             
∆𝐕

𝑽
=  Ԑ3 + 3Ԑ2 + 3Ԑ                             (5.1) 

Where Ԑ is the radial strain of the balloon. 

  In the mathematical model, Poisson’s ratio of the balloon was assumed to be 0.499; 

therefore, the assumption of incompressibility was adopted for the balloon in the numerical 

model.  As in the experiment, the values of Young’s modulus of the hydrogel obtained from the 

cavity expansion test (Tables 4.4 & 4.5) were inserted with their matching stresses at each 

consequent applied pressure. 

5. 1. 3. Contact Surfaces and Friction 

      In the FEM, the interaction between the balloon and the hydrogel was modeled as a 

contact surface between the outer surface of the balloon and the hydrogel. This surface was 

defined as surface-to-surface interaction on ABAQUS, defining the balloon surface as the master 

surface and the hydrogel surface as the slave surface. As observed from Figure (4.13) in the past 

chapter, when the balloon was inflated, it experienced an overwhelming entrapment by the 

hydrogel samples; therefore, a rough surface interaction was chosen to define the contact 

between the balloon and the hydrogel on ABAQUS. 
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  5. 1. 4. Boundary Conditions 

  Boundary conditions (BCs) in the numerical axisymmetric model consisted of two types, 

namely: constant and variable. The constant BCs represented constraints, with the variable BCs 

representing applied pressures. In the constant BCs, the hydrogel was constrained from moving 

horizontally along the symmetry axes. In the variable BCs, the values of pressures obtained from 

the spherical expansion test were entered in the FE model. These pressures were then applied on 

the inner surface of the balloon. Each applied pressure was uniformly distributed through the 

inner surface of the balloon. 

 

5. 2. Results:  

Figure (5.2) shows the inflation of the balloon inside the hydrogel simulated by finite 

element software. 

 

Fig (5.2) Simulation of balloon inflation inside the hydrogel (Sample2), the balloon was injected with 1724ul of 

water. 

 A verification of the mathematical solution is conducted by comparing the radial 

displacement calculated from the mathematical model and the displacement calculated by the 

finite element model. By using Young’s modulus at each applied volume of water and Poisson’s 
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ratios obtained from the experimental work (Tables 4.2, 4.4, and 4.5), hoop strain can be 

calculated from equation (3.5). The radial displacement is then computed by equation (3.2). 

Figures (5.3) and (5.4) show radial displacements, and radial displacements computed by the 

finite element model at each applied volume of water for gel Sample 1 and Sample 2. 

 
Fig (5.3) Comparison between the radial displacements obtained by the mathematical model and numerical model 

for Sample 1. 

 
 

 
Fig (5.4) Comparison between the radial displacements obtained by the mathematical model and numerical model 

for Sample 2. 
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 As can be noticed from Figures (5.3) and (5.4), the results of the displacements from the 

mathematical model and finite element analysis are close. This outcome encourages extending 

the research further to include investigating the stiffness of real soft tissue. 

5. 3. Summary 

            An axisymmetric finite element model was developed using ABAQUS/CAE (version 

6.12-3). It consisted of a hydrogel sample and a balloon. The material properties used to define 

the behaviour of FE models were the results obtained from the experimental work. 

 The purpose of this FE study was to verify the mathematical solution presented in chapter 

4. The criterion of verification was the comparison between the radial displacements predicted 

by both the numerical analysis and mathematical analysis. The outcome of this study encouraged 

extending this work to include investigating the validity of the cavity expansion technique on 

actual soft tissues. 
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Chapter 6 

Case Study: Evaluating the Stiffness of Liver 

 

      In most mammals, the largest ventral organ is the liver. The liver is a glandular organ 

responsible for major functions including metabolism, regulating glycogen storage, producing 

hormones, synthesizing blood proteins, and filtering blood before it goes to the rest of the body. 

Although the liver is located in a relatively protected position, according to Brammer et al. 

(2002), it is one of the most common abdominal organs that experience injury as a result of blunt 

trauma. For example, in frontal vehicle accidents, the liver is frequently injured (Elhagediab and 

Rouhana, 1998). It is also subjected to many diseases such as cirrhosis, cancer, fatty liver, 

hepatitis, and fibrosis. Evaluating the mechanical properties of liver tissues is critical to 

comprehending their behaviour which is essential to many medical applications.  Several 

techniques have been proposed for the mechanical testing of liver tissue (Brown et al., 2003; 

Kalanovic et al., 2003; Nava et al., 2004; Nava et al. 2004). One of the common techniques to 

evaluate the mechanical properties of liver tissues is the tensile test (Kemper et al., 2010; Lu et 

al., 2014; Brunon et al., 2010). 

This chapter adopts the same pattern used in chapter (4). Bovine liver tissues were tested 

using a uniaxial tensile test, in addition to the spherical expansion method to evaluate their 

stiffness. The results obtained from the tensile test were then used as a reference to investigate 

the validity of the results obtained from the spherical expansion method. 
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6. 1. Test Program 

      In this case study, the program consisted of two test series: (a) uniaxial tensile test; and 

(b) cavity expansion test. Both tests were conducted on a bovine liver. The liver samples used in 

both tests were extracted from the right lobe. The sample used in the spherical expansion test 

was aged 24 hours (from extraction). The sample used in the uniaxial tensile test was aged 72 

hours (from extraction). 

6. 2. Test Samples  

6. 2. 1. Uniaxial Tensile Test Samples 

In the tensile test, the sample was extracted from the core of the liver. A 2.5cm thick slice 

was cut from the liver, then punched at a region where there was no vascular veins using a 2cm 

machined tube connection as shown in Figure (6.1) 

 
Fig (6.1) A segment of liver punched using a 2cm cylinder.  

 

The cylindrical liver segment was then cut into a small sample with a cross-section of 2.85mm ⨉ 

6mm, as shown in Figure (6.2). 
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Fig (6.2) Liver sample 2.85mm x 6mm. 

 

6. 2. 2. Spherical Expansion Test Sample  

          The sample used in this test was cut from the right lobe of the liver. This sample had an 

average thickness of 4cm. The sample is shown in Figure (6.3). 

 
Fig (6.3) Sample of spherical expansion test. 
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6. 3. Test Setup 

6. 3. 1. Uniaxial Tensile Test  

        A uniaxial tensile test was conducted using a uniaxial test system (Biotester, CellScale, 

Waterloo, ON, Canada). Figure (6.4) shows the apparatus used in the test. 

 
Fig (6.4) The biotester. 

The liver sample was entangled to rakes with hooks at their ends of 2.5mm in length as shown in 

Figure (6.5). The sample was preloaded with a force of 2.5mN. At this state, the strain is 

considered zero. The distance between the hooks at this state was 15.85mm. The sample was 

then loaded with a loading rate of 10mN/s. 

 
Fig (6.5) Liver 2.85mm x 6mm liver sample mounted in the biotester. 
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6. 4. Results 

 A set of data representing the applied forces was obtained from the output of load cells 

located on the actuators. A group of images were captured using a high-definition camera 

throughout the test. To procure the stress-strain relationship, stress was calculated by dividing 

the force data by the area of initial cross-section. Two paper clips were mounted on the surface 

of the liver sample as shown in figure (6.6); strain was then calculated by tracking the grid point 

coordinates of the paper clips throughout the test. The method used to calculate the stiffness of 

the liver sample is shown in Figure (6.7). This method was adopted from Kahlon et al., 2014. 

The stiffness was determined as the slope of the maximum linear portion of the stress-strain 

curve. The maximum linear region was defined with an R-squared value of 0.989. The tensile 

elastic modulus was then calculated as the slope of the line, and the stiffness of the liver tissue 

was 76.92 KPa. 

 
Fig (6.6) Paper clips mounted on the liver tissues to evaluate the stretching strain. 
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Fig (6.7) Stress–strain curve and calculation of liver stiffness. 

 The spherical expansion system was used in testing the liver samples. In this test, the 

balloon expansion caused an immediate rupture to the liver tissue. Therefore, 524ul of water was 

applied.  

6.  5.  Analysis and Results 

  The solution process used to calculate the radial strains produced in PVA hydrogel was 

based on evaluating the elastic moduli. The process goes from observing the volumetric strain, 

calculating the bulk modulus, and then calculating the stiffness. Poisson’s ratio was evaluated 

from the unconfined compression test. Numerous research work on soft tissues is based on an 

assumption that soft tissues are incompressible materials (Roan and Vemaganti, 2007; Gao et al., 

1996). Glozman and Azhari (2010) measured the elastic moduli for a set of soft tissues (agar-

gelatin, porcine fat tissues, turkey breast tissue, and bovine liver tissue). Poisson’s ratio of the 

bovine liver was 0.4999979. This value was adopted for the liver tissues used in the spherical 

expansion test. Using this Poisson’s ratio, the solution process used in chapter 4 led to irrational 
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values of liver stiffness, i.e. E 0. Therefore, a more simplified method to evaluate the strain in 

liver tissues was used. For an elastic and isotropic material, Ehrgott (1971) defined the radial 

strain as the ratio of the change in radius to the original radius. 

Ԑ𝑟 =  
∆𝑟

𝑟0
                                                            (6.1) 

 This concept was used in the expansion test. Inside the liver sample, the original radius 

was defined as the radius of an assumed spherical region that has a radius equivalent to the 

average thickness of the liver sample. The radial deformation (∆𝑟) was considered as the radius 

of the inflated balloon as it was injected with 524ul of water. 𝑟0 considered as the radius of a 

sphere that has a diameter equal to the average thickness. The pressure reading observed at this 

injected volume was 0.0219 MPa. The radial strain evaluated from equation 6.1 was 0.2501. 

Since the technique assumes that the liver is a linear elastic isotropic material, the stiffness was 

evaluated using equation 6.2 

                                                       E= 
𝜎𝑟

Ԑ𝑟
                                               (6.2) 

Equation 6.2 yields a Young’s modulus of 87.56 KPa. 

Figure (6.8) shows a stress-strain chart representing the data of both techniques. 
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Fig (6.8) Stress-strain data of tensile test and cavity expansion test. 

 

 The data obtained from the cavity expansion test provided the behaviour of liver tissues 

only at the rupture stage. A smaller balloon size is recommended in order to extend the range of 

the recorded stress-strain relationship in tissues like liver. Although the stiffness evaluation of 

the liver tissue in the cavity test (E1) was based on an assumption of linear elastic behaviour, it 

predicted a close behaviour to the one observed from the tensile test (E2). In the next chapter, a 

detailed discussion will address the restrictions that lead to limited cavity expansion data. 
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6. 6. Summary 

         Two techniques were used to evaluate the stiffness of bovine liver tissues, uniaxial tensile 

testing and cavity expansion testing. 

 In the uniaxial tensile test, the liver tissue sample (2.85mm x 6mm x 15.85mm) was 

stretched using the biotester. The stiffness was evaluated as the slope of the maximum linear 

region of the stress-strain curve. The tensile stiffness was 76.92 kPa. 

 In the cavity expansion test, the liver sample had an average thickness of 4cm. 524ul of 

water was injected into the balloon while it was inside the liver sample. The stiffness was 

evaluated using equation (6.2). The evaluated stiffness was 87.56 kPa. 
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Chapter 7 

Discussion and Conclusions 

 

       In this study, the technique of cavity expansion was applied to evaluate the mechanical 

properties of PVA hydrogels; the results were compared with a conventional testing method 

(unconfined compression test) to investigate the validity of the new technique. Additional 

verification was conducted by creating an FEM for further investigation of the validity of the 

new proposed technique. The outcome of this further investigation encouraged the expansion of 

the study to apply the new technique on bovine liver tissues. 

This chapter presents a discussion on the factors that affected the accuracy of the new 

technique.  

7. 1. Size of the Balloon 

          The balloon dimensions were 10mm in diameter and 0.2mm in thickness. These 

dimensions limited the minimum applied cavity volume to 524mm3. In the case of PVA 

hydrogel samples, the strains ranged from 16.6% to 65.56% for Sample 1 and from 13.47% to 

46.77% for Sample 2. Therefore, the comparison of stiffness was conducted in the overlapping 

range of strains using unconfined pressure test and spherical expansion. Although the 

comparison showed promising outcomes, extending the stress-strain relationship line to the 

region where smaller stresses and strains occur will provide more accurate results of stiffness. 

Therefore, a smaller balloon can extend the stress-strain relationship to cover lower stress-strain 

zones.  An assumption was made that the balloon inflates spherically at volumes of 100ul, 200ul, 
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300ul, and 400ul; these volumes are less than the actual spherical shape of the inflated balloon 

(524ul). The results are shown in Figures (7.1) & (7.2). 

 

 

Fig (7.1) Stress-strain relationships of unconfined compression test and spherical expansion test. (A) PVA hydrogel, 

Sample 1. 
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Fig (7.2) Stress-strain relationships of unconfined compression test and spherical expansion test. (B) PVA hydrogel, 

Sample 2.    

 

It is common in rubbery materials that their stiffness increases with stretching; therefore, 

building a balloon that has the ability to extend from a very small volume to a large volume is 

recommended to provide a wider range of stress-strain data.  

7. 2. Incompressible Fluids 

The compressibility of the injected fluid is one of the factors that affects the accuracy of 

the new technique. This technique was first tried using air as the injected component into the soft 

material. As shown in Figure (7.3), the 3ml of air that was injected into Sample 1 resulted in an 

elliptic cavity expansion. This deformation caused an inaccurate calculation of volumetric strain. 
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Fig (7.3) Using air, top view of X-ray image for 3ml of air injected in PVA hydrogel (Sample 1). 

 

In the balloon expansion technique, the soft materials were assumed to be linear, elastic, 

isotropic materials.  However, in reality they did not exhibit this behaviour. Therefore, injected 

fluids will encounter different resistances from different directions within the soft materials. Air 

is a gas with a bulk modulus around 1x102 KPa. As a gas, the distance between air individual 

particles is relatively large.  When air is injected, balloon expansion will encounter different 

resistances; as more air is injected, the individual air particles will be compressed relative to the 

resistance they encounter (a higher resistance will result in a higher deformation). Therefore, the 

balloon deforms more at the point where it experiences higher resistance from the soft materials. 

In this study, the alternative to air was water. Water, with a bulk modulus around 2 x 106 KPa, is 

commonly known as an incompressible fluid mainly because of the adjacent individual particles 

of water. 
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7. 3. Balloon Stiffness Effect 

          In this study, the balloon effect starts to contribute to the stiffness of the material at 

volumes greater than 524ul. Based on the experimental work (tensile testing and unconfined 

compression testing), the liver tissue showed very soft behaviour when compared with the PVA 

hydrogel samples. Unlike hydrogel testing, the balloon contribution was ignored in the analysis 

of the liver tissue as no balloon stresses resulted at 524ul of injected water. 

The balloon effect on the softer PVA hydrogel sample (Sample 1) was investigated. The 

investigation plan was based on using the GE X-ray inspection system to check the average 

diameter of the balloon at each applied volume of contrast agent. The average diameter was 

estimated by taking the average of the largest diameters from the imaging outcome (side view, 

front view, and top view).  Unfortunately, when the epoxy that was used to a fix the balloon to 

the needle and to seal the needle’s head was in continuous contact with the contrast agent during 

the imaging, the epoxy slowly deteriorated, causing the contrast agent to leak within the hydrogel 

sample. Although every effort was made to evaluate the balloon diameter where the balloon-

needle entity was perfectly sealed, some leakage occurred during the imaging process (average 

duration 15 minutes) which affected the evaluated diameter (De).Table (7.1) shows applied 

volumes, calculated diameters, and the evaluated diameters from the X-ray inspection system. It 

is worth mentioning that the contrast agent was used for imaging only. 
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Table (7.1) Applied volume, diameter calculated from the theoretical sphere (𝐷𝑐), diameter evaluated from X-ray 

images (𝐷𝑒). 
Applied volume 

(ul) 

Calculated diameter (𝑫𝒄) 

(mm) 

Evaluated diameter (𝑫𝒆) 

(mm) 

Ratio 

(𝑫𝒄/ 𝑫𝒆) 

Average 

ratio. 

524 10 6.92 1.445  

 

 

1.315 

824 11.631 9.32 1.248 

1124 12.9 10.21 1.263 

1424 13.959 10.7 1.304 

 

To generalize the difference between the theoretical diameters (Dc) and the evaluated 

diameters (De) from the available data, the average value of the ratio between calculated 

diameters and evaluated diameters Dc and De was calculated and redistributed on all the data at 

the observed volumes, and then generalized on all applied volumes of water, as shown in Table 

(7.2). 
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Table (7.2) Re-evaluated balloon diameters at each applied volume of water. 

Applied volume (ul) Strain (%) 𝑫𝒄 (mm) 𝑫𝒆′ (mm) 

524 16.60 10.00 7.60 

624 19.87 10.60 8.06 

724 23.18 11.14 8.47 

824 26.51 11.63 8.84 

924 29.88 12.08 9.18 

1024 33.29 12.50 9.51 

1124 36.72 12.90 9.81 

1224 40.20 13.27 10.09 

1324 43.71 13.62 10.36 

1424 47.26 13.95 10.61 

1524 50.84 14.27 10.85 

1624 54.46 14.58 11.09 

1724 58.12 14.87 11.31 

1824 61.82 15.16 11.52 

1924 65.56 15.43 11.73 

 

From Table (7.2), balloon diameters at strains of 20%, 25%, and 30% are less than  

10mm.Therefore, the balloon effect was neglected in evaluating Young’s modulus of hydrogel 

samples. Although the evaluation of the balloon effect was based on approximation (by studying 

only limited actual balloon diameters) in the case of PVA hydrogels, considering the precise 

balloon effect in data analysis will significantly increase the accuracy of obtained values of 

Young’s modulus. If the precise diameter of the balloon is known while it acts inside the soft 

material, balloon stiffness can be evaluated when it inflates to that certain diameter. By 
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eliminating balloon stiffness, the stiffness of soft materials can be precisely evaluated, especially 

when large volumes of water are injected. 

7. 4. Conclusions 

      The balloon expansion technique showed promising results in evaluating the stiffness of 

different soft materials. Good agreement was found between this technique and conventional 

techniques, as well as the verification with numerical analysis. 

From this study, the following can be concluded: 

1. The mathematical model used in the balloon technique provides simple and practical 

evaluation of the strain that could not be observed during the test. 

2. A direct comparison between the values of stiffness obtained from the spherical 

expansion test and the unconfined compression test at the overlapping range of strains 

resulted in congruence between the two techniques. 

3. The use of the contrast agent indicated that fluids with high bulk moduli, such as water, 

represent the best option to be used in the balloon expansion technique instead of air.  

4. The range of strains used to evaluate the stiffness is controlled by controlling the size of 

the balloon and the range of expansions provided by the test balloon. 

5. The FEM model created to investigate the validity of the mathematical model used in the 

balloon expansion technique showed good agreement in radial displacement values 

obtained from both models. 

6. Notwithstanding the limitation represented by the fixed size of the balloon which 

constrained the stress-strain data of the liver sample, the value obtained from the new 
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technique showed promising results of bovine liver stiffness when compared with the 

tensile stiffness of the liver.   

 

7. 5. Recommendations  

      The following recommendations require further investigation as they are believed to increase 

the accuracy of the balloon expansion technique: 

1.  Building a smaller balloon with softer material behaviour is believed to significantly 

contribute to expanding the range of stress-strain relationship to lower strain values. 

2. Although using distilled water in the balloon technique showed good results, using fluids 

with higher bulk moduli such as seawater, glycerin, or sulfuric acid is believed to 

enhance the accuracy of the balloon expansion technique. As these fluids could be 

questionable in terms of safety, recommending their use is for investigation purposes 

only.  

3. Since soft materials are known to be non-homogeneous and anisotropic, developing the 

mathematical model to consider the anisotropy of soft materials is believed to tangibly 

improve the obtained results from the spherical expansion technique.  

4. Nonlinear elastic properties can be calculated using a technique with different energy 

functions.  
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